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Cross‑architecture tuning of silicon 
and SiGe‑based quantum devices 
using machine learning
B. Severin 1, D. T. Lennon 1, L. C. Camenzind 2, F. Vigneau 1, F. Fedele 1, D. Jirovec 3, A. Ballabio 4, 
D. Chrastina 4, G. Isella 4, M. de Kruijf 2, M. J. Carballido 2, S. Svab 2, A. V. Kuhlmann 2, S. Geyer 2, 
F. N. M. Froning 2, H. Moon 1, M. A. Osborne 5, D. Sejdinovic 6, G. Katsaros 3, D. M. Zumbühl 2, 
G. A. D. Briggs 1 & N. Ares 5*

The potential of Si and SiGe‑based devices for the scaling of quantum circuits is tainted by device 
variability. Each device needs to be tuned to operation conditions and each device realisation requires 
a different tuning protocol. We demonstrate that it is possible to automate the tuning of a 4‑gate Si 
FinFET, a 5‑gate GeSi nanowire and a 7‑gate Ge/SiGe heterostructure double quantum dot device from 
scratch with the same algorithm. We achieve tuning times of 30, 10, and 92 min, respectively. The 
algorithm also provides insight into the parameter space landscape for each of these devices, allowing 
for the characterization of the regions where double quantum dot regimes are found. These results 
show that overarching solutions for the tuning of quantum devices are enabled by machine learning.

Before we can use a quantum computer we first need to be able to turn it on. There are many stages to this initial 
step, particularly for quantum computing architectures based on semiconductors. Silicon and SiGe devices 
can encode promising spin  qubits1, demonstrating excellent fidelities, long coherence times and a pathway to 
 scalability2–9. Many of these key characteristics revolve around the material itself providing the opportunity to 
be purified to a near-perfect magnetically clean environment resulting in very weak to no hyperfine interactions. 
As the material of choice of the microelectronics industry, gate-defined quantum dots in silicon and SiGe have 
great potential for the fabrication of circuits consisting of a large number of qubits, an essential requirement to 
achieving a universal fault-tolerant quantum computer 10,11.

Multiple gate electrodes provide the ability to tune differing devices into similar operating regimes. These gate 
voltages define a large parameter space to be explored. Each device architecture and material realisation defines a 
specific parameter space. The time-consuming challenge of tuning semiconductor devices becomes intractable as 
we combine different device architectures in the realisation of complex quantum circuits with millions of compo-
nents. In some cases it may take human experts over 3 h to tune a double quantum dot  device12. The development 
of machine learning algorithms for quantum device  tuning12–27 is exceptionally challenging when looking for 
such overarching solutions. Multiple algorithms address different parts of the tuning problem such as finding 
double quantum  dots13,22,25, and then the  optimisation15,16,21,24 and identification of transport  features18,19,26. A 
significant number of tuning algorithms have been developed for AlGaAs/GaAs double quantum  dots13,14,16,17,23. 
However, few have been demonstrated across different architectures nor on material compositions poised for 
 scalability20,28, and only a small number of algorithms provide insight into the device parameter  space12.

Here we demonstrate that it is possible to tune quantum dots in three different device architectures and mate-
rial systems completely automatically. This machine learning-based algorithm, which we call ‘Cross-Architecture 
Tuning Solution using AI’ (CATSAI), requires only the following hyperparameters to be set once, for each type of 
device, in a configuration file: source-drain bias, safety voltage bounds, resolution and size of acquisition current 
maps and traces, the offset current noise floor, and Coulomb peak segmentation threshold (see Supplementary 
Material S1). The origin and gate voltage sweep directions can be arbitrarily selected for devices operating with 
accumulation or depletion mode gate electrodes, and either holes or electrons as majority charge carriers. An 
advanced signal processing classification method handles charge switches and other noise patterns.
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We demonstrate our CATSAI algorithm for a Si accumulation-mode ambipolar  FinFET29–31, a depletion-mode 
Ge/Si core/shell  nanowire32–34 and a laterally-defined device in a Ge/SiGe  heterostructure35–38, operating with 
holes as charge carriers. We show that CATSAI outperforms random search and human experts on all devices. 
Our machine learning-based approach also reveals the size and characteristics of the double quantum dot regime 
within the multidimensional parameter space defined by each gate voltage architecture. The demonstration of 
a general algorithm for the automatic tuning of a range of different devices with different noise profiles and 
compatible with industry manufacturing standards opens the path to building quantum circuits at scale for the 
next generation of quantum computers.

Methods
The devices
Double quantum dots are defined by applying DC voltages to the gate electrodes V1 − V4 for the FinFET, V1 − V5 
for the nanowire, V1 − V7 for the heterostructure (Fig. 1). The dashed white circles show the approximate loca-
tions of the quantum dots formed in the devices. For the FinFET, the lead gate electrodes V1 and V4 , open and 
close the quasi 1D silicon channel to charge carriers by controlling the size of the tunnel barrier between the 
quantum dots and the source and drain. The left and right plunger gate electrodes V2 and V3 , control the occupa-
tion of the left and right quantum dot respectively. A current is driven through the FinFET by applying a bias 
voltage Vbias of 7.6 mV (+ 3.8 mV at the source, - 3.8 mV at the drain) to NiSi  contacts29. The gate voltages of 
the FinFET are operated such that the charge carriers are holes confined by accumulation. For the nanowire, 
gates V2 and V4 act as left and right plunger gates for the quantum dots formed within the 1D channel with the 
remaining gates mainly controlling the tunnel barriers. Hole quantum dots are formed in depletion mode. We 
set Vbias = 4 mV. For the Ge/SiGe heterostructure, V5 and V3 operate as the left and right plunger gate electrodes 
respectively, with the remaining gate electrodes utilised as barrier gates. The white arrow denotes the flow of 
current. We set Vbias = 0.5 mV and the charge carriers are holes confined in depletion mode. The values of Vbias 
are set to be above typical charging energies for single quantum dots in each device. The choice of Vbias can be 
left to an optimiser. For the heterostructure, experiments were performed at 300 mK, for the nanowire at 1.5 K 

Figure 1.  Device schematics. Si FinFET (a), GeSi nanowire (b) and Ge/SiGe heterostructure (c) device 
architectures and their corresponding current pinch-off hypersurfaces for hole transport calculated using a 
Gaussian process model for one of the tuning algorithm runs (d–f). Three gates are plotted for illustrative 
purposes with the remaining gates on each device set to a constant value. The bias was kept constant throughout 
the experiment. CATSAI was given control over the gate electrodes V1–V4 , V1–V5 , and V1–V7 on the FinFET, 
nanowire and heterostructure, respectively. The dashed white circles show the approximate locations of the 
quantum dots formed in the devices.
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and for the FinFET at 800 mK. The devices were operated at different temperatures based on access to different 
cryogenic equipment across laboratories.

Voltages applied to the gate electrodes of the devices can cause the current flow to pinch-off, transitioning 
from a relatively high current to a near-zero value. These voltages where pinch-off occurs define a hypersur-
face within the entire voltage space for each device. CATSAI has no knowledge of the device architecture and 
generates a model of the hypersurface after a given number of iterations. The resulting hypersurface for differ-
ent devices is shown in Fig. 1d–f. Three gates are plotted for the ease of visualisation and the remaining gates 
are kept constant at their average value at pinch-off across the hypersurface (see Supplementary Material S1). 
The hypersufaces corresponding to different devices present different curvatures, leading to different tuning 
landscapes. The FinFET hypersurface (Fig. 1d) is near symmetrical in the plunger gates plane, V2 − V3 . This is 
expected as these gate electrodes are nominally identical. Although V1 is wider than the plunger gates, its effect 
is not stronger. The curvature of the nanowire’s hypersurface is similar in the planes V1(V5)− V3 , since these 
planes are defined by the outer-middle barrier gates (Fig. 1e).

The heterostructure’s hypersurface has almost planar dependence on gate voltages V2,4,6 (Fig. 1f). The hyper-
surface’s curvature in the V2 – V4 plane is evidently similar to that in the V6 – V4 plane, in agreement with the gate 
architecture. This hypersuface is qualitatively different to that reported for a relatively similar gate architecture 
patterned on a different heterostructure (AlGaAs/GaAs) 12. The more pronounced curvature of the hypersurfaces 
corresponding to the FinFET and the nanowire are expected given the larger gate couplings that are typically 
observed in FinFET and nanowire devices. Hypersurface characterisation could be used to inform device design 
and quantify device variability. Despite the stark differences in gate voltage landscapes, which evidence the dif-
ficulties of cross-architecture tuning, CATSAI is able to tune across all three device architectures.

The CATSAI algorithm
CATSAI’s workflow consists of three stages, the initialisation stage, the sampling stage and the investigation 
stage (Fig. 2). In the initialisation stage Vbias is fixed, and the current range, i.e. the maximum and minimum 
current flowing through the device, is determined by measuring the current both with all the gate electrodes 
set to 0 V and to their maximum permissible magnitude. To avoid damage to the device the algorithm is given 
voltage bounds in which it can operate each gate electrode. The bounds are known or determined in advance 
of running the algorithm.

After the initialisation stage, the algorithm turns to the sampling stage. The algorithm selects a vector u in the 
gate voltage space of the device based on a Gaussian process model of the hypersurface as shown in Fig. 1d–f, 
and a weighting from the probability of finding Coulomb peaks at a given location in voltage space P̃peaks (see 
Supplementary Material S1). This vector consists of all the gate voltages considered for tuning. The algorithm 
then sweeps the gate voltages along that direction until pinch-off occurs. The algorithm identifies the onset of 
pinch-off as a current drop below a certain threshold ( 0.5% of the measured current range). The N-dimensional 
hypersurface is delimited by the pinch-off voltages of the N gate electrodes for each device.

At the start of the investigation stage, once pinch-off is found in a given gate voltage direction, a high-resolu-
tion current trace is performed. This current trace, which starts at the pinch-off location and runs diagonal within 
the plane defined by the plunger gates, was set to have a fixed length of 128 pixels and resolution 1.56 mV/pixel 
for the nanowire and 0.78 mV/pixel for the FinFET and the heterostructure. The plunger gates, selected before 
running the algorithm, are those expected to predominantly shift the electrochemical potential in left and right 
dots. Using a random forest  classifier39,40, the algorithm determines whether Coulomb peaks are present in the 
current trace. Due to prior training this approach is robust against noise and switches unlike simple peak-finding 
packages which are much more likely to be tricked that a trace of noise corresponds to hole/electron transport 
as they typically rely on the sole identification of local maxima. This classifier is key to the success of CATSAI 
across device types with different noise characteristics (see Supplementary Material S1).

If Coulomb peaks are found by the classifier then a low-resolution current map ( 16× 16 pixels, 5 mV/pixel 
for the nanowire and 9 mV/pixel for the FinFET and the heterostructure) is taken by sweeping the plunger gates. 
The current map is believed to contain double quantum dot features if it scores above a threshold, which is fixed 
and can be optimised. We use the same score function as in Ref.12. If double quantum dot features are believed 
to be present, a high-resolution current map ( 48× 48 pixels, 4.2 mV/pixel for the nanowire and 2.5 mV/pixel 
for the FinFET and the heterostructure) is taken. At the end of the iteration, CATSAI returns to the start of the 
sampling stage. CATSAI proceeds to update the hypersurface model and P̃peaks with the knowledge garnered of 
pinch-off and Coulomb peak locations respectively. CATSAI runs for a certain number of iterations. A posteriori, 
to gauge the algorithm’s performance, humans can verify if the double quantum dot features were successfully 
identified by the algorithm.

CATSAI is benchmarked against a version of this algorithm which does not use a weighted hypersurface 
model to influence the sampling of the hypersurface. It instead samples a point in the voltage parameter space 
of the device at random and carries out the investigation stage for each iteration. We call this version of CATSAI 
‘Random Search’, although it is important to highlight that it still relies on peak detection. In this manner we 
are able to gain insight into the online performance of our Coulomb peak detector. Moreover, it enables cross-
validation of CATSAI’s sampling method which could not be achieved otherwise, given the lack of alternative 
algorithms suitable for this tuning task.

Tuning across architectures and material systems
To make the algorithm general across different charge carriers and modes in which gate electrodes are designed 
to act (depletion or accumulation), the origin, bound, and direction of the gate-voltage space exploration used 
in the sampling stage are set in a configuration file (Fig. 3). The algorithm starts in the gate voltage configuration 
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which delivers the highest current and sweeps gate voltages in the direction of decreasing current with the aim 
of locating the boundary between the two regions. This flexibility in the search of gate voltage space, combined 
with a noise-tolerant classification of Coulomb peaks in the investigation stage, makes CATSAI robust across 
device architectures and material systems. The Coulomb peak classifier is trained on current traces acquired in 
different Si FinFET and GeSi nanowire devices (see Supplementary Material S1). This random forest classifier can 
successfully handle both noise and charge switches, resulting in a robust Coulomb peak detection. The number 
of false positives in the classification that are accepted for the next step of the investigation stage is thus reduced, 
significantly shortening device tuning times.

Results
The algorithm was run for 250 iterations for all experiments performed. The number of iterations that the algo-
rithm runs without a hypersurface model, i, which can be separately optimised, was fixed to twelve in this case. 
A few examples of output current maps identified by CATSAI as containing double quantum dot features for the 
different devices considered are displayed in Fig. 4. The double quantum dot regimes pictured in Fig. 4 show that 
our Algorithm is capable of identifying double dot regimes despite device characteristics that might be far from 
ideal. Although accurate most of the time, the score function that the algorithm uses to detect double quantum 
dot regimes can sometimes be tricked by charge switches, as observed in Fig. 4i. The ideal double dot regimes 
found by the algorithm are tuned to a point where a specialised fine tuning algorithm such as that developed by 
van Esbroeck et al.24 would be suitable to follow on and optimise transport features.

To benchmark the performance of the algorithm, the output current maps were labelled by human experts at 
the end of the tuning experiment to verify whether they corresponded to the double quantum dot regime (see 

Figure 2.  Outline of CATSAI’s workflow. The initialisation stage consists of setting Vbias then measuring the 
maximum and minimum (offset) current flowing through the device. The sampling stage detects pinch-off 
locations in gate voltage space. The algorithm selects a vector in gate voltage space u based on the model it 
generates of the hypersurface and of the probability of finding Coulomb peaks in a given location in gate voltage 
space. In the investigation stage the algorithm uses the plunger gates to sequentially acquire current traces and 
maps which are sent to the relevant classifiers. The Coulomb peak detector is a random forest classifier which 
determines whether Coulomb peaks are present (positive) or not (negative) within a current trace. In each 
iteration, the algorithm outputs a high-resolution current map if the double dot check score function is passed. 
After the investigation stage, the algorithm returns to the sampling stage.
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Figure 3.  Gate-voltage space exploration. Different charge carriers (gate operation modes) are represented 
in different columns (rows). Each panel illustrates the initial placement of the origin (white circle), search 
boundary (red cross), and search direction (black arrow). The gate voltage space is divided into regions of near-
zero (blue) and non-zero (pink) current. Regions of voltage space which cannot be explored due to the gate 
voltage bounds set to avoid device damage are greyed out.

Figure 4.  Device tuning. Examples of current map outputs on the different devices in which CATSAI was 
run. High resolution maps are generated during the investigation stage by sweeping the plunger gates of each 
device Vp1,p2 ; for the FinFET V3,2 (a–c), the nanowire V4,2 (d–f) and the heterostructure V3,5 (g–i). These current 
maps are labelled a posteriori by humans to verify whether they correspond to the double quantum dot regime. 
C indicates the number of humans out of four who labelled the current map as corresponding to a double 
quantum dot regime. Red (blue) indicates regions of high (low) current in each map.
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Supplementary Material S1). The human experts were unaware whether the current maps to be labelled were 
the output of CATSAI or Random Search. We asked multiple human experts to label the data as each human 
expert may have different criteria as to what constitutes a double quantum dot or not for example, well-defined 
bias triangles or a rough honeycomb pattern may suffice. We define C as the number of humans who labelled a 
current map as containing double quantum dot features. In each iteration of the algorithm, we cumulatively sum 
the value of C normalised by the total number of human labellers (four). The resulting quantity, C̄ , provides a 
measure of the number of double dot regimes found by the tuning algorithm while considering disagreements 
between human labellers.

Figure 5a–j shows C̄ as a function of laboratory time for 12 runs, where each line in Fig. 5a–j corresponds to a 
different run, of CATSAI and Random Search for each of the devices considered. CATSAI outperforms Random 
Search in the total number of double quantum dot regimes located in all cases. The Random Search algorithm did 
relatively well in locating double quantum dot regimes in the nanowire but did not locate any double quantum 
dot regime in the FinFET (Fig. 5b) and struggled to locate more than one double quantum dot regime in the 
Ge/SiGe heterostructure device (Fig. 5j).

The probability of Coulomb peaks estimated for a given number of iterations, P(peaks) , is plotted as a func-
tion of laboratory time for each algorithm run and each device in Fig. 5c–l. For the Random Search and the first 
i iterations of CATSAI, the algorithm chooses pinch-off locations randomly, and thus P(peaks) does not show a 

Figure 5.  Benchmarking the algorithm’s performance. Cumulative sum of the average number of double 
quantum dot regimes verified by humans C̄ (first and second columns) and probability of finding Coulomb 
peaks P(peaks) (third and fourth columns), as a function of laboratory time for each run of CATSAI and 
Random Search algorithms. Each coloured line corresponds to a different run. Rows correspond to the different 
devices. Only the first 4 h of each tuning run are shown for ease of visualisation. CATSAI outperforms Random 
Search in the number of double quantum dot regimes located for all devices. The value of C̄ remains at 0 in 
many of the Random Search runs, and thus are not visible in the plots of C̄ as a function of time. The increase 
in P(peaks) as a function of laboratory time observed for the CATSAI runs after the first 12 iterations can be 
explained by the algorithm ‘learning’ a better model of the hypersurface as the Gaussian process regression 
acquires more observations.
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definite trend. For the subsequent iterations, we expect CATSAI to learn which are the promising locations in 
gate voltage space, and P(peaks) should thus increase as a function of time. This increase would not be monotonic, 
since the algorithm balances an exploration/exploitation trade-off 12.

The trend of P(peaks) as a function of laboratory time observed in most CATSAI runs is similar for the 
FinFET, nanowire and the heterostructure devices. P(peaks) has a gradual upward trend in many of the experi-
mental runs after the first 30 min to an hour and then saturates over laboratory time at different values between 
the devices. The saturation after 1–2 h is expected given that transport feature can only be found in a limited 
portion of the gate voltage space.

For the FinFET device and the heterostructure, the values of P(peaks) are on average larger for Random 
Search than for CATSAI runs. However, the number of double dots found by Random Search is still less than 
CATSAI in both devices. The value of P(peaks) from the Random Search runs in these devices is inflated due to 
false positive classifications by the Coulomb peak classifier, confirmed by human labels of all the current traces 
(see Supplementary Material S1).

CATSAI tuned all devices faster than Random Search. The median tuning times are 10 min for the nanow-
ire, 30 min for the FinFET, and 90 min for the heterostructure (Table 1). The Random Search algorithm was 
surprisingly quick at tuning the nanowire, while unable to tune the FinFET successfully within 12 runs of the 
algorithm, which totals a laboratory time of 19 h. We estimate credible intervals as described in Ref.12. Reduced 
tuning times for the FinFET device could probably be achieved by fixing or grouping the lead gate voltages. The 
difference between the upper and lower credible interval of the tuning times achieved in the heterostructure 
device is an order of magnitude less than that achieved by Random Search.

The difference between median tuning times for different devices begs the question whether the dimension-
ality of the gate voltage space is the key factor affecting tuning times or if there is a more subtle characteristic at 
play. The faster median tuning times were achieved in those devices for which the gate voltage space has fewer 
dimensions, i.e. the FinFET and the nanowire. Although the nanowire does have greater gate electrode dimen-
sionality than the FinFET, we still observe faster tuning times for the nanowire. There would seem to be more 
double quantum dot regimes in the nanowire gate voltage space than there are in that of the FinFET.

This hypothesis is reinforced by the lack of double quantum dot regimes found in the FinFET by Random 
Search and it is in agreement with the experience of human experts when tuning these devices.

A reason for the lack of double quantum dot regimes is the sharp pinch-off that occurs as a function of the 
lead gate electrodes. The probability of finding lead gate voltages that enable current flow and plunger gate volt-
ages that lead to double quantum dot regimes is inherently low. As mentioned previously, faster tuning times for 
FinFETs would thus be expected for CATSAI and Random Search if the lead gate voltages, V1 and V4 , are fixed.

The parameter space in which double quantum dots were found, by labeller majority vote, across all experi-
mental runs varies greatly between devices (Fig. 6). In the 3D-parameter space shown in Fig. 6 the double quan-
tum dot regime volumes are 1.21 V3 , 17.7 V3 , 0.215 V3 for the FinFET, nanowire and heterostructure respectively. 
The FinFET (Fig. 6a) displays an almost planar voltage space across V3 , V1 and V4 which encapsulates the double 
quantum dots found. V1 and V4 display their symmetrical weighting by forming the base of the plane which is 
almost square, and centred at similar points in voltage space with an approximate area of 2 V × 2 V. This supports 
the thesis that tuning times could be reduced by grouping the lead gate electrode voltages. The nanowire (Fig. 6b) 
displays a much larger region in voltage space where double quantum dots were found across V1 , V3 and V5 . In 
the parameter space pictured, there are areas of the double quantum dot regime volume which are more dense 
with double quantum dots than others. At the upper bounds of V3 and V5 , double dots are present but sparse in 
the parameter space. However, the relatively high number of double dots across a wide parameter space pro-
vides evidence as to why the nanowire has the shortest tuning time and confirms that it has the most double dot 
regimes. The heterostructure displays the smallest volume across the parameter space of V2 , V4 and V6 and the 
double quantum dots are distributed more sparsely within the volume when compared to the two other devices. 
The combination of these two factors supports why the tuning times were the longest for the heterostructure in 
addition to its higher gate electrode dimensionality.

Beyond the 3D volumes displayed in Fig. 6, our Algorithm explores the full dimensionality of the available 
parameter space (4, 5, and 7 dimensional for the FinFET, nanowire and heterostructure, respectively), allowing 
us to gain new insights into the variability of operating regimes. The double quantum dot regime convex hull 
volumes, defined by the shape of the smallest convex set which encapsulates all double quantum dots found in 
the entire parameter space, are 16.6 × 10−2 V4 , 23.8 V5 , 26.3 × 10−4 V7 for the FinFET, nanowire and hetero-
structure, respectively. We name this metric, the Double Dot Voltage Space Volume (DDV). To put the DDVs 
into perspective we can scale them by the size of the parameter space of each device defined by the gate voltage 

Table 1.  Median device tuning times with 80% credible intervals (equal tailed) corresponding to CATSAI and 
Random Search algorithm runs for all devices considered. The random search tuning time for the FinFET is 
unknown as no double quantum dot regimes were located.

Device

Tuning times (min)

CATSAI Random search

GeSi nanowire 9.5 (6.7, 12) 17 (9.9, 26)

Si FinFET 30 (26, 37) –

Ge/SiGe Het. 92 (71, 120) 360 (190, 830)
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bounds. The DDVs of the FinFET, nanowire and heterostructure occupy 0.174%, 5.95%, and 0.00206% of the 
device parameter spaces (95.1 V4 , 400 V5 , and 128 V7 ) respectively. Comparisons between these values must 
take into consideration the effect of gate voltages on the confinement potential for each device architecture, the 
presence of disorder, strain, and material characteristics. Still, this percentage gives us an insight into the ease of 
tuning each device architecture. Our Algorithm’s proficiency in effectively exploring diverse DDVs across vari-
ous device architectures showcases its versatility and robust capabilities. The DDV metric can be used to explore 
differing quantum device architectures and materials, and thus has a wide-ranging of applicability.

Discussion
We demonstrated fully automated tuning of quantum devices across material compositions and gate architec-
tures. We achieved fast tuning times in a Si FinFET, a GeSi nanowire and a Ge/SiGe heterostructure device, 
three different types of devices with very different characteristics. The tuning times reported are as low as 30, 
10 and 92 min respectively. Although there exist bespoke algorithms for tuning double quantum  dots20,21,41, our 
algorithm is one of the few  algorithms28 to demonstrate its capabilities and characteristic generality of tuning 
across different architectures and material systems. Moreover, our algorithm provides insight into the parameter 
space across the different types of devices tuned. The capability to tune these devices from scratch completely 
automatically, prepares the pathway laid out for the scaling of semiconductor qubits that lend themselves to 
industrial scale manufacture.

An analysis of the hypersurfaces corresponding to different device types and material systems could mini-
mise variability and boost device performance by an informed device design. The size of the gate voltage space 
is also an important consideration in this context. While the FinFET and the nanowire gate-voltage spaces at 
mV resolution have approximately 1014 and 1017 pixels respectively, the mean tuning times are only different by 
a factor of 3, and surprisingly the median tuning time is shorter for the nanowire device.

The heterostructure, with a gate voltage space at mV resolution of 1023 pixels, shows a mean tuning time 
only 3 times longer than the nanowire. This would suggest that other factors, such as the design of the gate 
architecture and the disorder potential, might have a very significant role in how quickly a device can be tuned. 
Faster tuning times could be achieved by using device information, for example by grouping gate electrodes with 
similar functions. While the size of the gate voltage space is determined both by device properties and fabrica-
tion methods, the volume of the hypersurface and the volume of gate voltage space in which transport features 
are found could be useful to quantify device variability and to characterise and design different device architec-
tures. This includes calculating how the hypersurface of a particular architecture is different between devices 
or thermal cycles via point set registration as well as Coulomb peak occurrence and Coulomb peak sensitivity 
within parts of the voltage  space42. Additionally, our introduction of the new metric, Double Dot Voltage Space 
Volume (DDV), opens the door to understanding the sensitivity of the quantum dots’ confinement potential 
to each gate voltage value, and to examine the role of each gate electrode as plunger, barrier gates, etc. between 
devices. The DDV metric can be used to explore differing quantum device architectures and materials, and thus 
has a wide range of applicability.

We expect our Algorithm to be successful in tuning geometries where gate electrode cross-talk is more 
considerable. Moreover, our machine learning-based approach is geared towards navigating intricate param-
eter spaces rather than relying on a procedural algorithm workflow. As devices scale leading to more complex 
architectures and the number of quantum dots to tune grows, one could envisage tuning quantum dot arrays by 
using our Algorithm to tune a series of double quantum dots sequentially while deploying (novel) charge state 
compensation  methods43.

Figure 6.  Double quantum dot regime volumes. Regions of voltage space (grey) encapsulate and define a 
volume where double quantum dots were found (black points) across all experimental runs of both random 
search and CATSAI in the FinFET (a), nanowire (b), and heterostructure (c). Three gates are plotted for 
illustrative purposes.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17281  | https://doi.org/10.1038/s41598-024-67787-z

www.nature.com/scientificreports/

Radio-frequency reflectometry measurements would also lead to faster tuning times and the possibility of 
efficiently tuning large device arrays. Our work evidences the potential of machine learning-based algorithms 
to find overarching solutions for the control of complex quantum dot systems.

Data availability
The data acquired by the algorithm during experiments is available from the corresponding author upon rea-
sonable request.
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