
Playing Games with Your PET: Extending
the Partial Exploration Tool to Stochastic

Games

Tobias Meggendorfer1 and Maximilian Weininger2(B)

1 Lancaster University Leipzig, Leipzig, Germany
tobias@meggendorfer.de

2 Institute of Science and Technology Austria,
Klosterneuburg, Austria
mweining@ista.ac.at

Abstract. We present version 2.0 of the Partial Exploration Tool (Pet),
a tool for verification of probabilistic systems. We extend the previ-
ous version by adding support for stochastic games, based on a recent
unified framework for sound value iteration algorithms. Thereby, Pet2
is the first tool implementing a sound and efficient approach for solv-
ing stochastic games with objectives of the type reachability/safety and
mean payoff. We complement this approach by developing and imple-
menting a partial-exploration based variant for all three objectives. Our
experimental evaluation shows that Pet2 offers the most efficient partial-
exploration based algorithm and is the most viable tool on SGs, even
outperforming unsound tools.

Keywords: Probabilistic verification · Stochastic games · Partial
exploration · Model checker

1 Introduction

Stochastic games (SGs) [12] are a foundational model for sequential decision
making in the presence of uncertainty and two antagonistic agents. They are
practically relevant, with applications ranging from economics [1] over IT secu-
rity [35] to medicine [7]; and they are theoretically fundamental, in particular
because many associated classical decision problems are representative of the
important complexity class NP ∩ co-NP, e.g. deciding whether the value of a
reachability or mean payoff objective is greater than a given threshold [2,22]
(see [10] for recent advances). See [36, Chp. 1.3] for further motivation.

However, even mature tools either do not support SGs at all (Storm [21])
or employ approaches without formal guarantees, i.e. their results can be wrong

M. Weininger has received funding from the EU’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 101034413.
Data availability: We refer to the artefact with the exact code used for the submission
and all logs [31], and the gitlab with the continually developed source code [30].
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 359–372, 2024.
https://doi.org/10.1007/978-3-031-65633-0_16

https://zenodo.org/records/10927672
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_16&domain=pdf
http://orcid.org/0000-0002-1712-2165
http://orcid.org/0000-0002-1825-0097
https://doi.org/10.1007/978-3-031-65633-0_16

360 T. Meggendorfer and M. Weininger

(Prism-games [27] and Tempest [33]), which is unacceptable in the context
of safety-critical applications. This is because value iteration (VI), the de-facto
standard approach to solving stochastic systems, lacks a sound and efficient stop-
ping criterion, i.e. a “rule” to check whether the current iterates are sufficiently
close to the correct value. For Markov decision processes (MDPs) (SGs with only
one player) such a sound variant of VI (often called interval iteration) was devel-
oped a decade ago [8,17] and subsequently implemented in practically all major
model checkers. However, extending the underlying reasoning to SGs proved to
be surprisingly tricky, with sound variants even for special cases only developed
quite recently [15]. Just a year ago, [24] presented a unified way of ensuring
the soundness of VI for solving SGs with various quantitative objectives, which
forms the theoretical basis for this work.

Note that the classical approaches strategy iteration and quadratic program-
ming are sound in theory, but (i) the available implementations of [26] are pro-
totypical and unsound [26, Sec. 5], and (ii) these approaches usually either are
not practically efficient or use heuristics that actually make them unsound [18].

Contributions. We present version 2.0 of the Partial Exploration Tool (Pet),
the first tool implementing a sound and efficient approach for solving SGs with
objectives of the type reachability/safety and mean payoff (a.k.a. long-run aver-
age reward). In the following, we write Pet1 and Pet2 to refer to the previous
and now presented version of Pet, respectively.

Theoretically, Pet2 is based on the results of [24]. We provide two flavours of
their approach: Firstly, we implement the basic complete-exploration (CE) algo-
rithm, enhanced with several theoretical improvements, both new and suggested
in the literature. Secondly, we develop a partial-exploration (PE) approach, the
focus of Pet2, by combining the ideas of [24] with those in [8,15,29].

Practically, Pet2 is an extension of Pet1 [29] (only applicable to MDPs).
Apart from adding support for dealing with SGs and completely replacing the
approach of Pet1 with the ideas of [24], we implemented many engineering
improvements. Concretely, despite employing a more general algorithm, our
experimental evaluation shows that Pet2’s performance is on par with Pet1.
Moreover, Pet2 outperforms the existing SG solvers Prism-games and Tem-
pest, despite those not providing guarantees (and indeed returning wrong
results).

2 Preliminaries

Here, we very briefly recall turn-based stochastic games as far as they are nec-
essary to understand this paper, with more details in [32, App. A] and [24].

A (turn-based) stochastic game (SG) (e.g. [12]) consists of a set of states
S that belong to either the Maximizer or Minimizer player; a set of available
actions for every state, denoted A(s); and a probabilistic transition function δ
that for a state-action pair gives a probability distribution over successor states.
An SG where all states belong to one player is called Markov decision process
(MDP), see [34]; without nondeterministic choices, it is a Markov chain (MC).

Extending PET for Solving SGs 361

SGs are played in turns as follows: Starting in an initial state s0, the player
to whom this state belongs chooses an action a0 ∈ A(s). Then, the play advances
to the next state s1, which is sampled according to the probability distribution
given by δ(s, a). Repeating this process indefinitely yields an infinite path ρ =
s0a0s1a1 We write PathsG for the set of all such infinite paths in a game G.

A memoryless deterministic (MD) strategy σ of Maximizer assigns an action
to every Maximizer state s, i.e. σ(s) ∈ A(s). Minimizer strategies τ are defined
analogously. By fixing a pair of strategies (σ, τ) and thereby resolving all non-
deterministic choices, we obtain a Markov chain that together with an initial
state ŝ induces a unique probability distribution over the set of all infinite paths
PathsG [6, Sec. 10.1]. For a random variable over paths Φ : PathsG → R we write
E

σ,τ
G,ŝ[Φ] for its expected value under this probability measure.

An objective Φ : PathsG → R formalizes the “goal” of both players by assign-
ing a value to each path. In this paper, we focus on mean payoff (also called
long-run average reward) [16], which assign to every path the average reward that
is obtained in the limit. The presented algorithms and tools can also explicitly
handle reachability/safety objectives, which compute the probability of reaching
a given set of states while avoiding another. Such objectives are special cases of
mean payoff, see e.g. [4]. Another prominent objective is total reward [11], but
this is practically incompatible with our approach and goals (see [32, App. B]).

Given an SG and an objective, we want to compute the value of the game,
i.e. the optimal value the players can ensure by choosing optimal strategies.
Formally, the value of state s is defined as VG,Φ(s) := supσ infτ E

σ,τ
G,s[Φ](=

infτ supσ E
σ,τ
G,s[Φ]). We are interested in approximate solutions, i.e. given a con-

crete state ŝ and precision requirement ε, our goal is to determine a number v
such that |VG,Φ(ŝ) − v| < ε.

An end component (EC) intuitively is a set of states in which the system can
remain forever, given suitable strategies. Inclusion-maximal ECs are maximal
end components (MECs). The play of an SG eventually remains inside a single
MEC with probability one [14]. In other words, MECs capture all relevant long-
run behaviour of the system. The set of MECs can be identified in PTIME [13].

3 Complete-Exploration Algorithm for Solving SGs

In this section, we very briefly recall Alg. 2 of [24], a generic value-iteration based
approach for SGs, which in particular is the first such algorithm that provides
guarantees on the precision for mean payoff. This recapitulation is the basis for
the following descriptions of both (i) the main practical improvements over [24,
Alg. 2] added in our implementation (see the end of this section); and (ii) the
new partial-exploration approach described in Sec.4.

Intuition. The key insight of [24] is to “split” the analysis of SGs into infinite and
transient behaviour. Infinite behaviour occurs in ECs where both players want
to remain under optimal strategies; this is where the mean payoff is actually
“obtained”. Transient behaviour occurs in states that are not part of such an

362 T. Meggendorfer and M. Weininger

Fig. 1. Example SGs to explain deflating and inflating. States with upward and down-
ward triangles denote Maximizer and Minimizer states, respectively.

EC, i.e. that are almost surely only visited finitely often; such states in turn
achieve their value by trying to reach ECs that give them the best mean payoff.

Algorithm. Based on this intuition, we can summarize the overall structure of
the algorithm. It maintains two functions L and U, which map every state to
a lower and upper bound on its true value, respectively. Our aim is to improve
these bounds until they are sufficiently close to each other; then we can derive the
correct value up to precision ε. After initializing the bounds to safe under- and
over-approximations (e.g. the minimum and maximum reward occurring in the
SG), we repeatedly perform two operations, further described below: Firstly, we
use so-called Bellman updates to back-propagate bounds through the SG, which
also is the classical “value iteration step”. This corresponds to the transient
behaviour, intuitively computing the optimal choice of actions to reach the ECs
with the best value. Secondly, we use the operations of deflating and inflating.
These essentially inform states about the value obtainable by staying.

Bellman Updates. Bellman updates are at the core of all value iteration
style algorithms (see e.g. [9]). Intuitively, they update the current estimates
by “taking one step”, i.e. computing the expectation of following the action
that is optimal according to the current estimates. Formally, given a func-
tion x : S → R, the Bellman update B computes a new estimate function as
B(x)(s) := optsa∈A(s)

∑
s′∈S δ(s, a)(s′) · x(s′), where opts = max if s is a Max-

imizer state and min otherwise. Importantly, if x is a correct lower or upper
bound on the true value, then B(x)(s) is, too. However, only applying B(x) may
not converge!

Deflating and Inflating. We briefly describe why the convergence problem arises
and how deflating and inflating solve the issue, summarizing [24, Sec. V-C].

Recall the intuition that a state can get its value either from infinite behaviour
(i.e. “staying” in the current area of the game) or from transient behaviour (“leav-
ing” the current area). As a simple example, consider the SG (even MDP) in
Fig. 1 (left). Assume we have U = 5 in the grey area, i.e. by taking action b we
obtain at most 5, but for s the current upper bound is the conservative over-
approximation U(s) = 10. The Bellman update prefers a over b and keeps U(s)
at 10, even though following a forever will only yield a mean payoff of 4. This is
due to a cyclic dependency: s “believes” it can (eventually) achieve 10 because it
“promises” to achieve 10 by having U(s) = 10. Deflating now identifies that Max-
imizer wants to “stay” in s using a, computes the actual value that is obtained
by staying, i.e. 4, and compares it to the best possible exit from this region,

Extending PET for Solving SGs 363

namely leaving with b to obtain at most 5. Maximizer has to either stay forever
or eventually leave, thus we can decrease the upper bound to the maximum of
these two actions, i.e. 5. Dually, inflating raises the value of Minimizer states to
the minimum of leaving and staying. In other words, de-/inflating complement
Bellman updates by informing players about the consequences of staying forever,
forcing them to choose between this staying value and the best exit.

While this reasoning is simple for single-state, single-player cycles, it gets
much more involved in the general case of stochastic games. In particular, and
in contrast to MDPs, in two-player SGs the opponent can restrict which cycles
and exits are reachable from certain states. For example, consider the SG in
Fig. 1 (right): States p and s can form a cycle. However, if s goes to p, it depends
on the choice of Minimizer in p whether the play stays in the cycle {p, s} or
leaves towards X. To tackle this issue, [24, Alg. 2] repeatedly identifies regions
where players want to remain based on their current estimates, called simple end
component (SEC)-candidates. It does so by fixing one player’s choices (pretend-
ing that this is the strategy they “commit” to), and the regions where the other
player could remain are the SEC-candidates. These are then de-/inflated. We
highlight that as the player’s estimates change, the SEC-candidates do, too.

Improvements. We provide several practical improvements to this approach. We
briefly describe their ideas here and refer to [32, App. C] for further information.

– Instead of searching SEC-candidates in the complete SG, we once identify all
MECs and then search for SEC-candidates in each MEC independently.

– SEC-candidate search is not performed every iteration, but only heuristically
(improving a suggestion from [15, Sec. 6.2]).

– Instead of computing staying values precisely, which is often unnecessary, we
successively approximate them (as suggested in [25, App. E-B]).

– If possible, we locally employ MDP solution approaches, collapsing ECs that
are completely “controlled” by a single player into one state that then is
handled by the normal Bellman updates (as suggested in [15, Sec. 6.2]). This
transparently generalizes the existing algorithms for MDPs [4,8,17].

4 Partial-Exploration Algorithm for Solving SGs

Here, we present the novel partial-exploration (PE) algorithm obtained by com-
bining the complete-exploration (CE) algorithm of Sect. 3 with the ideas of par-
tial exploration [8,15,29]. Intuitively, for particular models and objectives, some
states are hardly relevant, and computing their exact value is unnecessary for an
ε-precise result. For example, in the zeroconf protocol (choosing an IP address
in a nearly empty network), it is hardly interesting what we should do when
we run into a collision 10 times: Since this is so unlikely to happen, the exact
outcome in this case barely influences the true result. Thus, we avoid exploring
what exactly is possible in this case and just assume the worst.

364 T. Meggendorfer and M. Weininger

More generally, we want to avoid working on the complete model when exe-
cuting Bellman updates or de-/inflating SEC-candidates. Instead, we use sim-
ulations to partially explore the model, finding the states that are likely to be
reached under optimal strategies, and focus computations on these. If the “rele-
vant” part of the state space (see [23]) is small in comparison to the whole model,
we can save a large amount of time and memory. We refer to the [8,15,29] for a
comprehensive discussion of the (dis-)advantages of this approach.

Algorithm. The algorithm follows the established structure of [8,15]: We sample
a path through the model, at every state picking an action and a successor
according to a guidance heuristic that prefers “relevant” states. We terminate
the simulation when it has reached a state where continuing the path does not
generate new information (e.g. an EC that cannot be exited). Then, we perform
Bellman updates, but only on the states of the sampled path. Additionally,
we repeatedly identify both collapsible areas and SEC-candidates in the partial
model and de-/inflate if necessary. This final step is the main technical difference
to the previous algorithms [8,15], which only employed collapsing and deflating,
respectively. It also is one of the major engineering difficulties, see [32, App. D.1].

Soundness and Correctness. In [32, App. D.2], we extend the proof of correctness
and termination from reachability [15, Thm. 3] to mean payoff. In the process of
proving correctness, we found and fixed an error in the guidance heuristic of [15].

Practical Improvements. As before, we applied several optimizations and heuris-
tics to this algorithm. Broadly speaking, the overall ideas are the same as for the
complete exploration approach, however with several intricacies. In particular,
observe that the partial model constantly changes as new states are explored.
Thus, efficiently tracking and updating SEC-candidates or collapsible parts of
the game is much more involved and intertwined with the rest of the algorithm.

5 Tool Description

In this section, we briefly describe relevant aspects of Pet2, focussing on new
features and changes compared to its predecessor Pet1. Like Pet1, Pet2 is
implemented in Java, reads models and objectives specified in the PRISM mod-
elling language, and outputs the computed value in JSON format.

Design Choices. Firstly, Pet2 exclusively employs (sound) VI-based approaches,
as opposed to, e.g., SI or LP. It offers two variants, based on complete exploration
(CE) and partial exploration (PE), as presented above.

Secondly, Pet2 deliberately comes without any configuration flags. In con-
trast, model checkers such as Prism [27] and Storm [21] implement numerous
different approaches and variants, each of which offers several hyper-parameters.
While our choice eliminates the potential for fine-tuning, we experienced that
even expert users often do not know how to best choose such parameters. Thus,

Extending PET for Solving SGs 365

we tried to select internal parameters such that the tool works reasonably well
out-of-the-box on all models. This comes with the additional benefit of greatly
reducing the number of code paths, which in turn makes testing much easier.

Thirdly, Pet2 fully commits to solving a single combination of model and
objective. This allows us to exploit information about the objective already when
building the model; for example, in reachability/safety objectives, we can directly
re-map goal and unsafe states to dedicated absorbing states. Arguably, this might
become a drawback when solving multiple queries on the same model, since the
model would need to be explored several times. However, by caching the parts
of the model constructed so far, we can effectively eliminate this problem. We
discuss further ways to exploit this design choice in [32, App. E].

Finally, Pet2 does not differentiate between Markov chains, MDPs, and SGs.
The algorithms are written for SGs, and, whenever possible, apply specialized
solutions locally. For example, if a part of an SG “looks like” an MDP (because
only one player has meaningful choices), PET locally applies MDP reasoning
where applicable. Aside from transparently gaining the performance of these
specialized solutions in most cases, this also eliminates code duplication, result-
ing in a code base that is more understandable, maintainable, and extendable.

Differences to Pet1. Pet2 effectively constitutes a complete re-write of nearly
all aspects of Pet, with roughly 9k lines of code added and 5k deleted compared
to Pet1 (according to git); for comparison, the overall source code of Pet2 has
roughly 14k lines. Most importantly, Pet2 now also parses SGs, fully focusses on
solving one model-objective combination, and also provides efficient CE variants
of the algorithms. These CE variants also come with numerous optimizations,
such as graph analysis to identify states with value 0 and 1 for reachability
and safety, collapsing end components, etc. Moreover, each PE variant is now
specialized to the concrete objective. Pet1 tried to unify as many aspects of
the sampling approach as possible, which however proved to be a major design
obstacle and performance penalty when incorporating all the different special-
ized solutions and practical optimizations for stochastic games. Additionally, we
also found and fixed a bug in the mean payoff computation of Pet1. In terms of
data structures, we improved several smaller aspects of working with probabilis-
tic models. For example, the “standard” internal model representation of Pet2
offers dedicated support for merging / collapsing sets of states while simultane-
ously tracking predecessors of each state. We note that the model representation
etc. is still provided by our separately available, generic purpose library, making
many of these improvements available independently of Pet.

Engineering Improvements. We evaluated several practical improvements, which
sometimes led to quite surprising effects. We highlight some insights which we
deem relevant for other developers.

1) “Unrolling” loops in hot zones of the code can lead to significant performance
improvements. For example, to find the optimal action for a Bellman update,
we need to use a for-loop to iterate over all available actions. This process is

366 T. Meggendorfer and M. Weininger

performed millions of times during a normal execution. Unrolling and special-
izing these loops for small action sets (≤ 3 actions) led to noticeable perfor-
mance improvements. Similarly, switching from for-each loops (which allocate
an iterator) to index-based for loops also yielded notable improvements.

2) We trade memory for time by adding additional data structures to optimize
certain access patterns. For example, maintaining the set of predecessors for
each state speeds up graph algorithms such as attractor computations. More-
over, in several cases it proved beneficial to store information in multiple
formats. For example, on top of a sorted array-based set, we explicitly store
the set of successors of a distribution object as a (roaring) bitmap [28], offering
fast “bulk” operations, such as intersection or subset checks.

3) We also investigated ahead-of-time compilation through GraalVM. While this
improved start-up time, it did not result in significant speed-ups but rather
even increased the runtime on some of the larger models (even with profile-
guided optimization). We conjecture that this is mainly due to Java’s just-
in-time compiler being able to apply better fine-tuning.

6 Experimental Evaluation

We now discuss our evaluation. The first goal of our experiments is to validate
that Pet2 can indeed solve SGs with reachability and mean payoff objectives in
a sound way. Secondly, we assess the impact of our performance improvements
and design choices, in particular having only the general algorithm for SG, by
comparing Pet1 and Pet2. Finally, we investigate whether our implementation
is competitive with other tools. We report some further insights in [32, App. F.3].
Our artefact, including all data, tools, scripts, logs, etc., is available at [31].

6.1 Experimental Setup

Technical Setup. We ran each experiment in a separate Docker container and,
as usual, restricted it to a single CPU core (of an AMD Ryzen 5 3600) and 8 GB
RAM. The timeout is 60 s (including the startup time of the Docker container).
We ran every instance three times to even out potential fluctuations in execution
times. While the PE approach is randomized by design, even “deterministic”
algorithms may behave differently due to, e.g., non-deterministic iteration order
of hash sets. We observed that the variance is negligible (the geometric standard
deviation usually was ≤ 1.05). We thus only report the geometric average of
the three runs in seconds. We require an absolute precision of ε = 10−6 for all
experiments.

Metrics. To summarize relative performance of Pet2 compared to tool X, we
introduce a four-figure score, written t[m+k/l], computed as follows: Let M the
set of instances where both tools terminated in time. Then, t equals the geometric
mean of timeX(I)/timePet2(I) over all instances I ∈ M , with timeT referring to
the overall runtime of tool T on an instance, m = |M | refers to the number of

Extending PET for Solving SGs 367

such instances, while k describes how often X timed out where Pet2 did not
and l vice versa. Note that t > 1 indicates that Pet2 is faster on average (on
M). When t < 1 but k � l, we see that on instances that both tools solved,
Pet2 was slower, but overall, Pet2 solved much more models, which one may
still consider advantageous.

Tools. Aside from both versions of Pet, for Markov chains and MDPs we con-
sider Prism-games1 [27], and Storm [21]. On SGs, we compare to the unsound
algorithms in Prism-games and Tempest [33] (an extension of Storm), as well
as Prism-ext, an extension of Prism-games with sound algorithms described
in [5,26]. Note that this selection includes all tools that participated in the SG
performance comparison in QComp 2023 [3]. For all tools, we provide the exact
version, ways to obtain them, and invocations in [32, App. F.1] and the artefact.

Performance Considerations. Restricting to a single CPU is commonly done
to ensure that no tool accidentally exploits parallelism. However, we observed
a significant decrease in performance for Pet, even though all algorithms are
sequential. This turned out to be due to garbage collection. Using jhsdb, we ver-
ified that in the single CPU case Java by default selects the Serial GC (instead of
the overall default G1GC). On some instances, we consistently observed improve-
ments of up to 33% (!), nearly on par with the performance without any CPU
restriction, by simply changing to the parallel GC (-XX:+UseParallelGC), even
though the parallel GC uses only one thread. Concretely, comparing CE and
PE with Serial and (single-thread) parallel GC, we get scores of 1.06 and 1.04,
respectively, meaning that even on average this change leads to a significant
difference. Interestingly, for Prism-games the Serial GC performed better. We
configured Pet2 to always use the Parallel GC by default. In a similar manner,
the hybrid engine of Storm experienced a slowdown of more than 30x due to
being restricted to a single CPU, which we addressed by adding appropriate
switches (see [32, App. F.1] for details). We are working with the authors of
Storm to automatically detect this case.

While these differences would not invalidate our conclusions in particular, we
still want to highlight these observations and emphasize the importance of both
careful evaluation and choosing good default parameters.

Benchmarks. We consider benchmarks from multiple sources. Firstly, we include
applicable models from the quantitative verification benchmark set (QVBS) [20],
which however does not provide SGs. Secondly, we consider the SGs used in
QComp 2023 [3]. Finally, we also gather several models from literature, provide
variations of existing models, and create completely new models. For details on
the models, we refer to [32, App. F.2]. All models are included in the artefact.

To ease the evaluation, we remove instances of QVBS that are very simple
(CE- and PE-approach of Storm and Pet2 taking less than one second) or

1 Personal communication with the lead developer confirmed that on Markov chains
and MDPs Prism-games uses the same approach as Prism.

368 T. Meggendorfer and M. Weininger

very time-consuming (all four approaches taking more than 30 s). With such a
timespan, differences and trends are clearly visible, but models remain small
enough for the experiments to be reproducible within reasonable time. This
filtering reduces the number of executions from nearly 10000 to about 1800.
Even then, the overall evaluation still takes about 24 h (with timeout of 60 s).

6.2 Results

We present central results in Fig. 2 and discuss each of our research questions.

Soundness and Scalability. We empirically validate the correctness of Pet2 by
(i) comparing against the reference results in QVBS (this only affects the special-
ized MDP reasoning of our algorithm), (ii) ensuring that both algorithms inside
Pet2 yield the same results, and (iii) comparing against manually computed
values, both for existing SG benchmarks as well as handcrafted ones exhibiting
various graph structures (some of which arose as test or corner cases). In all
cases, Pet2’s results are sound, i.e. within the allowed precision of ε = 10−6. In
contrast, throughout the whole SG benchmark set, Prism-games and Tempest
return several wrong answers, see [32, App. F.3] for details. In particular, Tem-
pest returns wrong answers in 6 out of 13 cases where we have known reference
results, often by a significant margin, e.g. returning 0.0003 instead of 0.481.

Additionally, we see that Pet2 can solve models with millions of states and
various difficult graph structures within a minute. Thus, we conclude that both
our algorithm and implementation scale well.

Comparison to Pet1. When solving Markov chains or MDPs, Pet2 still uses
algorithms that can handle SGs. This generality comes with some overhead,
for example because data structures for tracking ownership of states are not
necessary in MDPs. However, a score of 1.07[85+8/1] and Fig. 2 (left) show that
PE in both versions of Pet performs remarkably similar, with Pet2 even slightly

Fig. 2. Comparison of Pet2 to other tools. From left to right we compare Pet2-PE
and Pet1-PE, Pet2-CE on MDP and MC with Storm () and Prism-games (),
and finally Pet2-CE on SG with Tempest (), Prism-games (), and Prism-ext
(). A point (x, y) denotes that tool X and Pet2 needed x and y seconds, respectively.
If a point is above/below the diagonal, tool X is faster/slower. Plots are on logarithmic
scale, dashed diagonals indicate that one tool is twice as fast. Timeouts are pushed to
the orthogonal dashed line.

Extending PET for Solving SGs 369

faster. We conclude that the improvements in the implementation make up for
the algorithmic overhead.

Comparison to other Tools. It is well known that the structure of a model
is the determining factor for the relative performance of different algorithmic
approaches, see e.g. [5,18,29], in particular far more than the number of states
or transitions. (This is also supported by our comparison of CE and PE in [32,
App. F.3], sometimes showing order of magnitude advantages in either direc-
tion.) Thus, instead of comparing tools as a whole, we compare matching algo-
rithmic approaches (CE and PE based value/interval iteration) to assess only
the impact of different implementations. For similar reasons, here we only com-
pare the explicit engines and not symbolic or hybrid approaches (results on the
latter are provided in [32, App. F.3]).

Comparing PE approaches, Pet2 outperforms the only competitor Storm
with a score of 0.3[27+29/1] (Pet2 solves more than twice the number of
models); see [32, App. F.3] for details. For CE algorithms, across all instances
where both tools are applicable, the score of Pet2 against the Java-based tools
Prism-games and Prism-ext is 1.3[104+10/4] and 1.3[53+4/0], respectively,
while against the C++ tools Storm and Tempest it achieves 0.3[69+0/12] and
0.4[54+13/1], respectively. For a more detailed comparison, Fig. 2 (middle) com-
pares the CE algorithms of Pet2 with those in Storm and Prism-games on
Markov chains and MDPs. Here, as expected, Storm outperforms other tools, at
least partially due to performance differences of C++ and Java. However, Pet2
performs favourably against the state-of-the-art tool Prism-games. This shows
that our first, generic implementation of the CE algorithm for SG is comparable
to established tools even on Markov chains and MDPs. Finally, Fig. 2 (right)
compares Pet2 with the other tools on SGs, namely Prism-games, Tempest,
and Prism-ext. Recall that only Prism-ext uses a sound algorithm, while
the other tools use an unsound stopping criterion and thus require less work.
Nonetheless, Pet2 often outperforms the other tools (even Tempest, which
builds on the highly optimized Storm), making it the most viable tool on SGs
not only because of soundness, but also because of performance.

Finally, to (superficially) evaluate how much objective-specific optimizations
yield, we implemented viewing reachability objectives as “trivial” mean payoff
objective, i.e. goal states are set to be absorbing with reward 1, and all others
with reward zero. This modified query is then passed to our generic mean payoff
algorithm. Notably, even then Pet2 slightly outperforms Prism-games solving
the reachability objective directly (1.1[98+8/10]), and in turn the dedicated
reachability approach of Pet2 “only” scores 1.2[106+8/0] against this variant.

7 Conclusion

We presented Pet2, the first tool implementing a sound and efficient approach
for solving SGs with objectives of the type reachability/safety and mean pay-
off. Our experimental evaluation shows that (i) it is sound, while other tools

370 T. Meggendorfer and M. Weininger

indeed return wrong answers in practice, (ii) it offers the most efficient partial-
exploration based algorithm, and (iii) it is the most viable tool on SGs.

For future work, there is still a lot of room for heuristics and engineer-
ing improvements, for example adaptively choosing internal parameters, more
efficient tracking and handling of SEC-candidates, using topological order of
updates in VI, improved pre-computation for mean payoff, etc. Additionally,
support for total reward is planned; however, as described in [32, App. B], this
requires using ideas such as optimistic value iteration [5,19] in order to be rea-
sonably efficient.

References

1. Amir, R.: Stochastic games in economics and related fields: an overview. In: Ney-
man, A., Sorin, S. (eds.) Stochastic Games and Applications. NATO Science Series,
vol. 570, pp. 455–470. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-
010-0189-2_30

2. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on
graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp.
112–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-
6_13

3. Andriushchenko, R., et al.: Tools at the frontiers of quantitative verification:
QComp 2023 competition report. TOOLympics (to appear)

4. Ashok, P., Chatterjee, K., Daca, P., Křetínský, J., Meggendorfer, T.: Value iter-
ation for long-run average reward in Markov decision processes. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 201–221. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9_10

5. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A., Weininger, M.: Optimistic
and topological value iteration for simple stochastic games. In: Bouajjani, A., Holík,
L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 285–302. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19992-9_18

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
7. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game the-

ory to modelling mutations, onset, progression and immune competition of cancer
cells. Phys. Life Rev. 5(4), 183–206 (2008). https://doi.org/10.1016/j.plrev.2008.
07.001

8. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

9. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0_7

10. Chatterjee, K., Meggendorfer, T., Saona, R., Svoboda, J.: Faster algorithm for
turn-based stochastic games with bounded treewidth. In: SODA, pp. 4590–4605.
SIAM (2023). https://doi.org/10.1137/1.9781611977554.CH173

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-031-19992-9_18
https://doi.org/10.1016/j.plrev.2008.07.001
https://doi.org/10.1016/j.plrev.2008.07.001
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1137/1.9781611977554.CH173
https://doi.org/10.1007/s10703-013-0183-7

Extending PET for Solving SGs 371

12. Condon, A.: On algorithms for simple stochastic games. In: Advances In Compu-
tational Complexity Theory. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 13, pp. 51–71. DIMACS/AMS (1990)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

14. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

15. Eisentraut, J., Kelmendi, E., Kretínský, J., Weininger, M.: Value iteration for
simple stochastic games: stopping criterion and learning algorithm. Inf. Comput.
285(Part), 104886 (2022). https://doi.org/10.1016/j.ic.2022.104886

16. Gillette, D.: Stochastic games with zero stop probabilities. Contrib. Theory Games
3, 179–187 (1957)

17. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

18. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: Sankaranarayanan, S., Sharygina, N. (eds.)
TACAS 2023. LNCS, vol. 13993, pp. 469–488. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30823-9_24

19. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

20. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

21. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/S10009-021-00633-Z

22. Johnson, D.S.: The NP-completeness column: finding needles in haystacks. ACM
Trans. Algorithms 3(2), 24 (2007). https://doi.org/10.1145/1240233.1240247

23. Kretínský, J., Meggendorfer, T.: Of cores: a partial-exploration framework for
Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020). https://lmcs.
episciences.org/6833

24. Kretínský, J., Meggendorfer, T., Weininger, M.: Stopping criteria for value itera-
tion on stochastic games with quantitative objectives. In: LICS, pp. 1–14 (2023).
https://doi.org/10.1109/LICS56636.2023.10175771

25. Kretínský, J., Meggendorfer, T., Weininger, M.: Stopping criteria for value iteration
on stochastic games with quantitative objectives. CoRR abs/2304.09930 (2023)

26. Kretínský, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of algo-
rithms for simple stochastic games. Inf. Comput. 289(Part), 104885 (2022).
https://doi.org/10.1016/j.ic.2022.104885

27. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 475–487. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_25

28. Lemire, D., Kai, G.S.Y., Kaser, O.: Consistently faster and smaller compressed
bitmaps with roaring. SPE 46(11), 1547–1569 (2016)

29. Meggendorfer, T.: PET - a partial exploration tool for probabilistic verification. In:
Bouajjani, A., Holík, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 320–326.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_20

https://doi.org/10.1016/j.ic.2022.104886
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1145/1240233.1240247
https://lmcs.episciences.org/6833
https://lmcs.episciences.org/6833
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-031-19992-9_20

372 T. Meggendorfer and M. Weininger

30. Meggendorfer, T., Weininger, M.: Partial exploration tool gitlab. https://gitlab.
lrz.de/i7/partial-exploration

31. Meggendorfer, T., Weininger, M.: Artifact for “Partial Exploration Tool 2.0” (2024).
https://doi.org/10.5281/zenodo.10927672

32. Meggendorfer, T., Weininger, M.: Playing games with your pet: extending the
partial exploration tool to stochastic games. CoRR abs/2405.03885 (2024). https://
doi.org/10.48550/ARXIV.2405.03885

33. Pranger, S., Könighofer, B., Posch, L., Bloem, R.: TEMPEST - synthesis tool for
reactive systems and shields in probabilistic environments. In: Hou, Z., Ganesh,
V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 222–228. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88885-5_15

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

35. Roy, S., Ellis, C., Shiva, S.G., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of
game theory as applied to network security. In: HICSS, pp. 1–10. IEEE Computer
Society (2010). https://doi.org/10.1109/HICSS.2010.35

36. Weininger, M.: Solving Stochastic Games Reliably. Ph.D. thesis, Technical Univer-
sity of Munich, Germany (2022). https://mediatum.ub.tum.de/node?id=1661588

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://gitlab.lrz.de/i7/partial-exploration
https://gitlab.lrz.de/i7/partial-exploration
https://doi.org/10.5281/zenodo.10927672
https://doi.org/10.48550/ARXIV.2405.03885
https://doi.org/10.48550/ARXIV.2405.03885
https://doi.org/10.1007/978-3-030-88885-5_15
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1109/HICSS.2010.35
https://mediatum.ub.tum.de/node?id=1661588
http://creativecommons.org/licenses/by/4.0/

	Playing Games with Your PET: Extending the Partial Exploration Tool to Stochastic Games
	1 Introduction
	2 Preliminaries
	3 Complete-Exploration Algorithm for Solving SGs
	4 Partial-Exploration Algorithm for Solving SGs
	5 Tool Description
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

