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Designing athermal disordered solidswith
automatic differentiation
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The ability to control forces between sub-micron-scale building blocks offers significant potential for
designing new materials through self-assembly. Traditionally, this involves identifying a crystal
structure with a desired property and then designing building-block interactions so that it assembles
spontaneously. However, this paradigm fails for structurally disordered solids, which lack a well-
defined structure. Here, we show that disordered solids can still be treated from an inverse self-
assembly perspective by bypassing structure and directly targeting material properties. Using the
Poisson’s ratio as a primary example, we demonstrate how differentiable programming links
interaction parameters with emergent behavior, enabling iterative training to achieve the desired
Poisson’s ratio.We also tune other properties, including pressure and local 8-fold structural order, and
can even control multiple properties simultaneously. This robust, transferable, and scalable approach
can handle awide variety of systems andproperties, demonstrating the utility of disordered solids as a
practical avenue for self-assembly platforms.

To what extent can the material properties of disordered solids be con-
trolled? Recent results show that the properties of random spring net-
works close to the isostatic point can be radically and precisely tuned
through slight adjustments to the network topology1–5. More specifically,
the Poisson’s ratio, ν, of a randomly generated network can be tuned to
either the upper or lower bounds by removing only ~1% of the springs—
the choice of which springs to remove determines the final value of ν1.
This is possible because each spring’s contribution to the bulk modulus is
independent of its contribution to the shear modulus, meaning that their
ratio, which determines ν, can be tuned by the choice of removed springs.
However, in a real material, it is usually not possible to make precise,
targeted alterations to structure. In fact, the notion of removing springs
from a network simply does not translate to materials made up of par-
ticulate building blocks, ranging from atoms or molecules to larger
objects like proteins or colloids. Unlike a spring network, one cannot
simply remove the interaction between two particular particles, let alone
do so in a scalable way.

Nevertheless, this paper proposes a strategy for tuning the properties of
particulate-based disordered solids. This strategy is akin to an inverse self-
assembly approach, except that interaction parameters are adjusted to tune
properties rather than structure. The necessary connection between inter-
action parameters and emergent properties is made by exploiting a class of
numerical techniques called Automatic Differentiation (AD), enabling the
exploration of high-dimensional and complicated design spaces. Once this
connection is made, the system is “trained” similar to how one trains a
neural network.

We demonstrate this strategy by considering the simple case of
athermal sticky spheres. Specifically, we consider a two-dimensional system
of N particles divided evenly into nsp species, where the diameter of each
species, σα, and the binding energy between each pair of species, Bαβ = Bβα,
canbe continuously varied.MotivatedbyDNA-coated colloids, theparticles
interact via a Morse potential with the short-ranged repulsive part replaced
with a finite soft repulsion (see Fig. 1a and Methods)6,7. The system is
prepared at zero temperature following the protocol developed in the study
of the jamming of soft spheres8,9, where particles are placed randomly
(corresponding to infinite temperature) and then quenched to the nearest
local energy minimum.

Thefinalmaterial properties, such as thePoisson’s ratio, clearly depend
on the nsp + nsp(nsp + 1)/2 values of σα and Bαβ, but we are left with two
critically important questions. First, can these parameters be adjusted in
order to accurately and precisely control material properties? For example,
how close can ν be tuned to a particular target ν*? Second, can multiple
properties be controlled simultaneously and independently, enabling highly
nontrivial design?Wewill show that, even forour exceedingly simplemodel,
the answers to both questions are a definitive yes.

This result is obtained by directly connecting the nsp+ nsp(nsp+ 1)/2
model parameters to changes in material properties. More precisely, we
construct an objective functionL, e.g.L ¼ ðν � ν�Þ2, that indicates how far
a property (e.g. ν) is from a target (e.g. ν*), and use Automatic Differ-
entiation (AD)10–12 to calculate the gradient ∇θL of L with respect to the
parameters θ = {σα} ∪ {Bαβ}.∇θL indicates how changes to the parameters
affects the objective, and there are numerous gradient-descent-based
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algorithms13 for using this information to minimize L, thus tuning the
property of interest (Fig. 1b). See “Methods” for more details.

At zero temperature, the N particles arrange themselves into one of
many possible “configurations,” or local minima of the potential energy
landscape. In this paper, we will manipulate material properties first on the
level of individual configurations, meaning we will pick a random config-
uration b and tune the parameters until, e.g., νb= ν*.Wefind that thisworks
surprisingly well all the way to the perfectly auxetic limit ν*→ − 1. Inter-
estingly, the Poisson’s ratio of multiple configurations can also be tuned
precisely and simultaneously, although this becomes more challenging as
more configurations are optimized at the same time. We then consider the
ensemble level, and again find a surprising ability tomanipulate the average
Poisson’s ratio 〈ν〉 within the range 0.2 < 〈ν〉 < 0.7. Importantly, this
approach is highly general, and we use it to tune other properties and even
multiple properties simultaneously.

Results
Training individual configurations
Tobegin, we select a configuration b by placingN particles randomly in a 2d
periodic box and minimizing the energy to the nearest minimum.We then
define the objective L ¼ ðνb � ν�Þ2, where νb is the measured Poisson’s
ratio and ν* is the desired target chosen from between − 1 and 1, which are
the theoretical bounds for isotropic systems in two dimensions. Figure 1c
confirms that our AD-based calculation of ∇θνb accurately predicts the
change in νb over finite changes in the parameters θ. This is shown for a

particular representative examplewhereN=368particles are evenly divided
into nsp = 2 species with initial diameters of 0.8 and 1.0, a number density of
ρ = 1.6, and with constant binding energies Bαβ = 0.1. Before training, we
measure νb ≈ 0.453. Next, we train the system using standard gradient-
descent-based algorithms (see Methods) to iteritively adjust θ before
recalculating νb and ∇θνb. At each step, we reminimize the energy with
respect to the particle positions, allowing us to track the configuration as
parameters change. Figure 1d shows how L and ν change during 1600
iterations. Despite only having 5 parameters, the Poisson’s ratio is tuned
exactly to the target, meaning that the Poisson’s ratio at this configuration is
successfully and accurately controlled.

Figure 1e shows how the parameters evolve during training for
35 successfully trained configurations. Clearly, the final optimized para-
meters depend strongly on the final configuration, which depends both on
the initial configuration and the details of the optimization protocol. In all
cases, the systems remain bidisperse and thus disordered, but there is no
obvious trend in the relative particle diameters nor in the three binding
energies.

For ν* less than approximately 0.2 or greater than approximately 0.7,
the final Poisson’s ratio seems to be dominated by a small localized region.
To see this, we calculate Kij and Gij, which are the contributions of the
interaction between particles i and j to the bulk and shear moduli, respec-
tively, so that K =∑ijKij and G =∑ijGij

1,2. We observe a typical probability
distribution for P(Kij) and P(Gij) when 0.2 < ν < 0.7 (orange data in Fig. 1f),
with no noticeable spatial correlations in the largest positive and negative

Fig. 1 | Tuning the Poisson’s ratio of a single configuration. a A schematic
representation of the interactions between particles. The particles interact via the
harmonic-Morse potential, providing two important design parameters, their dia-
meters σ and binding energy between them B, as discussed in the main text. The
dashed gray line denotes zero. b Schematic of the landscape of the objective function
L in configuration space R and parameter space θ. Colored regions with contour
lines represent the basins of attraction of distinct minima. The black arrow repre-
sents the configuration during the optimization process. c The gradient ∇θνb
accurately predicts changes in the Poisson’s ratio due to small changes in the model
parameters. The red line shows the prediction ∣∇θνb � Δθ∣, where Δθ is the change in
parameters in an arbitrarily chosen direction, and the points show the measured
change in the Poisson’s ratio ∣νbðΔθÞ � νbðΔθ ¼ 0Þ∣measured at Δθ. Data is shown
for a bidisperse system of 368 particles and binding energies 0.1, but the result is
generic. d The evolution of the objectiveL ¼ ðνb � ν�Þ2 and Poisson’s ratio ν for an

example optimization with target ν* = − 0.1. The optimization is successful and
converges in slightly less than 1600 optimization steps. Note: the spike around 1300
optimization steps corresponds to a discontinuous change in the position of the local
minimum due to a structural rearrangement. e The evolution of the parameters for
35 successful optimizations. The thick lines correspond to the example shown in (d).
The number of optimization steps is variable because the process terminates after
convergence. f The distribution of how each pair of particles contributes to the bulk
modulus after training with ν* =− 0.1 (blue) and ν* = 0.35 (orange).When ν* < 0.2
(see Supplementary Fig. 3 for more comprehensive data), the positive and negative
tails of this distribution broaden significantly. The positive and negative values are
shown separately to demonstrate that, in this long tail, P(Kij) ≈ P( − Kij). The inset
shows the packing after training with ν*=− 0.1 and highlights the 10 bonds with the
largest ∣Kij∣, with blue (red) lines indicating positive (negative) Kij. This shows that
the broad tails are spatially localized.
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values. However, for ν < 0.2, the positive and negative tails of P(Kij) widen
considerably (blue data in Fig. 1f) but equally so they largely offset each
other, and we find that the largest values are spatially localized (inset).
Apparently, our training procedure has found a way to harness and exploit
local non-affine response, which is known to influence the Poisson’s
ratio14,15.We hypothesize that the broad tails inP(Kij) enablemore dramatic
tuning of K, allowing K/G to become small and thus ν to become negative.
Conversely, for ν > 0.7, the tails of P(Gij) broaden, enabling K/G to become
large. See Supplementary Fig. 3, 4 for more comprehensive data. While we
donot fully understand the origin of these extreme and localized regions, we
note that the range of ν where they occur coincides with our ability to train
the ensemble average Poisson’s ratio, see below.

Figure 2 shows the probability Psuccess that we are able to successfully
train a configuration of N = 368 particles for various target Poisson’s ratios
and different numbers of species. Training is considered successful if the
objective L decreases below Lthresh ¼ 10�6 within 104 optimization steps.
Not surprisingly, Psuccess increases with the number of species since that
gives access to additional parameters, and with more conservative targets
that are closer to the initial Poisson’s ratio of approximately 0.5.We alsofind
that the range of the attractive interactionmatters, with shorter interactions
making it slightly harder to train.

These results show that we can accurately and precisely control νb over
a wide range. Interestingly, Fig. 3a–b shows that the parameters learned
through this process influence the entire ensemble of configurations even
though only one configurations was considered during training. For
example, the parameters obtained from training a single configuration to
ν*=− 1 results in 〈ν〉= 0.33 ± 0.02, well below the initial untrained value of
〈ν〉 = 0.49. This is a first indication that we can manipulate ensemble
averages.

This effect can be amplified by training on multiple configurations
simultaneously. Specifically, we next choose a set ofm configurations, with
m ranging from 2 to 7, and define the objectiveL ¼ P

b0 ðνb0 � ν�Þ2, where
here the sum is over the m chosen configurations b0. Figure 3c shows that
training becomes harder (less likely to succeed) asm increases, especially for
aggressive targets (ν*< 0).Despite this, however, increasingm does increase
the effect on 〈ν〉, as shown by Fig. 3d.

Training ensemble-average quantities
We now directly consider the ensemble average Poisson’s ratio, 〈ν〉, by
defining the objectiveL ¼ ðhνi � ν�Þ2. Note that this is not the same as the
m→∞ limit of the objective from the previous section because here we are
only concerned with the mean of the Poisson’s ratio, not its value at every
individual configuration.Theother conceptual difference is thatwe canonly
ever estimate 〈ν〉 by averaging over a finite number of (randomly chosen)

configurations, meaning that all calculations of L and ∇θL are necessarily
stochastic. This is analogous to training in many machine learning models,
where data is “batched” and gradients are highly noisy. Importantly, as
demonstrated in Supplementary Fig. 1a, average gradients of 〈ν〉 are pre-
dictive in the same way as in Fig. 1c, allowing the use of stochastic gradient
descent optimization.

Figure 4a showsL during optimization with a target of ν* = 0.35 using
nsp = 2 species. At each step, we average over only 8 systems of sizeN = 368,
leading to large noise in L. This leads to a systematic overestimation of L
whenever the noise is larger than 〈ν〉− ν*. Therefore, in order to ascertain
howwell the training has done, we also perform “validation runs,”wherewe
use thefinal parameters obtained after 5000optimization steps and calculate
〈ν〉 over a fresh set of 2000 configurations. As indicated by the green circle,
Lval≈10

�6,meaning thatwehave trained 〈ν〉 to ν*withanaccuracyof 0.001.
The purple star in Fig. 4a shows an alternative validation where 〈ν〉 is
calculated from 100 configurations of N = 2048 particles each, demon-
strating that even though our results are trained using small systems, the
solution nevertheless applies to much larger systems.

Figure 4b shows the 5 parameters at each optimization step (thick
lines). The decrease in parameter fluctuations is caused by our variable
learning rate (see Supplementary Discussion D), but the lack of sys-
tematic trends over the final 500 optimization steps suggests that the
optimization has converged. Note that all five parameters change non-
trivially over the course of the optimization, and it is unclear if some of
the parameters are “more important” than others. Another way to
address this is to look at the magnitude of the gradients; Supplementary
Fig. 1b hints that the Poisson’s ratio may be more sensitive to the design
of the smaller particle species.

The thin lines in Fig. 4b show the same data for 29 other training runs
that also target ν*=0.35, andall achieve similarly smallLval. Clearly thefinal
parameters are not unique, meaning that the solution is degenerate, but
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Fig. 2 | The ability to successfully train the Poisson’s ratio at a given configuration
depends on the number of species, nsp, and the target Poisson’s ratio, ν*. The
probability of successful training,Psuccess, is close to 1 except forwhennsp < 4 orwhen
ν* < − 0.1. Results are for a medium-ranged attractive potential (a = 5 in Eq. (1)).
Using a shorter-ranged potential (a = 20, yellow dashed line) decreases the ability to
successfully train.

Fig. 3 | Training the Poisson’s ratio at a single configuration, νb, tunes the
ensemble average Poisson’s ratio, 〈ν〉. a 〈ν〉 averaged over 100 randomly chosen
configurations using the final, learned parameters obtained from the nsp = 16 data
from Fig. 2. We call this the “validation data” because, importantly, the Poisson’s
ratio from the configurations used for training were not included in these averages.
The horizontal red line indicates the Poisson’s ratio calculated with the initial
parameters, so the difference between the points and the horizontal line indicates the
amount of change in 〈ν〉. b The full distribution of the validation data for the initial
parameters (red) and the parameters obtained with ν* = − 0.1 (orange). c Psuccess
when targeting the Poisson’s ratio ofmultiple configurations simultaneously. Psuccess
decreases more rapidly for more aggressive ν*. d Training multiple configurations
increases the effect on 〈ν〉, though with diminishing returns above m ≈ 3. m = 0
means that the initial untrained parameters are used. The solid lines use only
parameters after successful optimization, while the dashed lines use parameters after
all optimizations.
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there are still clear trends in the parameters (e.g. small particles bind more
strongly to large particles than to other small particles). These trends
translate to general design principles with direct experimental implications.
To further motivate the experimental relevance of these results, Supple-
mentary Fig. 8 shows that 〈ν〉 remains within 0.01 of ν* even when adding
up to5%polydispersity to theparticle diameters and5%heterogeneity to the
binding energies. Note that incorporating polydispersity and/or hetero-
geneity directly in the training process would enable high accuracy tuning
regardless of magnitude.

Figure 4c shows the final validated 〈ν〉val as a function of the target ν*,
and shows that we are able to successfully tune the Poisson’s ratio between
roughly 0.2 and 0.7. The existence of such bounds in our ability to tune 〈ν〉 is
expected, especially for low ν* as creating low- and negative-Poisson’s ratio
materials is notoriously challenging16,17. We expect that more complicated
systems, for example with non-spherical particles, could expand these
bounds. Notably, this range of roughly 0.2 to 0.7 coincides exactly with the
onset of broad and localized bond-level response observed in Fig. 1f. While
training the Poisson’s ratio of an individual configuration outside of this
range is possible, it appears to rely on configuration-specific structural
motifs that donot generalize to the full ensemble.This is also consistentwith
the observation in Fig. 1e that the final parameters vary dramatically from
one configuration to another.

Unlike for individual configurations, we find that considering more
species does not increase the range over which we can tune the system (blue

triangles in Fig. 4c). Intuitively, increasing the number of species should
increase tunability, but there are no guarantees of this. It is unclear if
improved training methodology could lead to better results with more
species or if these bounds are imposed by physical constraints. Finally,
Fig. 4d shows thefinal parameters after 5000optimization steps for different
ν*, suggesting a general design strategy for tuning 〈ν〉 over the
range 0.2 < 〈ν〉 < 0.7.

Training multiple ensemble-average quantities simultaneously
So far, we have focused on tuning the Poisson’s ratio, but Fig. 5 shows that
we can tune other quantities in exactly the same way, specifically the pres-
sure and a structural order parameter q8, whichmeasures small amounts of
local eightfold symmetry in neighbor orientations (see Supplementary
Discussion F).Nowwe askwhetherwe can tunemultiple average properties
simultaneously. Figure 6a shows the simultaneous optimization of the
Poisson’s ratio (ν* = 0.5) and pressure (p* = 0.4), for which we use a
combined objective function L ¼ ðhνi � ν�Þ2 þ ðhpi � p�Þ2. After 2400
optimization steps, we observe a final validated loss of Lval ¼ 6× 10�4,
demonstrating success.

Not all combinations of (〈p〉, 〈ν〉) can be obtained simultaneously, and
Fig. 6b shows the final (〈p〉val, 〈ν〉val) obtained from a series of systematic
trials with different (p*, ν*) (indicated by light gray dots). This data shows a
well-defined two-dimensional region of tunability, within which simulta-
neous optimization can be obtained.

optimization
validationN=368
validationN=2048

Fig. 4 | Tuning the ensemble. aThe objective (gray line) while optimizing 〈ν〉with a
target of ν* = 0.35 using nsp = 2 species. Only 8 systems are averaged at each step,
making the objective very noisy. Nevertheless, proper validation averages of 〈ν〉
using the parameters obtained after 5000 optimization steps (green and purple
points) show that the Poisson’s ratio has indeed been tuned with very high accuracy.
bThe five parameters evolve in non-trivial ways over the course of optimization. The
thick lines correspond to (a), while the thin lines show the results of 29 other
optimization runs with the same ν* that differ only in the random configurations
that are sampled at each step. All 30 optimization attempts successfully lowered the

objective below 10−5 and lead to similar, but not identical, trends in the final opti-
mized parameters. c The final validated 〈ν〉 after optimization as a function of the
target ν*. We can accurately and precisely tune the Poisson’s ratio over the range
0.2 < 〈ν〉 < 0.7. Interestingly, increasing the number of species does not improve our
ability to train, suggesting that these limitsmight represent a fundamental barrier for
sticky spheres. d The final parameters after optimization show clear trends with ν*,
indicating a general design strategy. The open circles indicate the initial parameters
and Poisson’s ratio before training. The averages are estimated over 10 to 35 suc-
cessful optimizations.

Fig. 5 | Tuning the ensemble-averaged pressure and a structural order parameter
q8. a, b The validated <p> and <q8> after optimization as functions of the target p*
and q�8 respectively. We demonstrate accurate and precise control of pressure
throughout the test range, while fine-tuning q8 within the range of 0.2≤q8≤0.9.
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Discussion
We have shown that the properties of athermal disordered solids can be
inverse designed using Automatic Differentiation (AD) to connect prop-
erties of interest to particle-particle interactions. This can be comparedwith
typical self-assembly paradigms, where one manipulates interactions so
that, for example, a desired crystal structure becomes the thermodynamic
ground state18–23. Instead, our approach targets the statistics of the meta-
stable states. This has the distinct advantage that the assembly protocol
(athermal relaxation in our case) is baked into the calculation of these
statistics, and so we do not need to worry about kinetic traps or other
barriers to assembly.

Importantly, this AD-based approach works “on top of” existing
numerical simulations; in principle, gradients can be propagated through
any simulation or numerical calculation. Therefore, if a particular level of
detail, system size, etc. is necessary for a given application, AD provides a
scalable pathway for optimizing behavior. Recent advances in differentiable
programming ecosystems, including the Python packages JAX and JAX-
MD24 used in this work, make it possible to incorporate AD into many
existing calculations. One notable challenge is optimizing with respect to
relative particle concentrations. This is because in finite systems, particle
concentrations are rounded to determine a whole number of particles of a
given type, and so gradients with respect to concentrations will necessarily
vanish. Important other considerations include the predictiveness of gra-
dients, strategies for avoiding large memory loads, and the importance of
initial parameter guesses.

Wehave chosen a relatively simple systemto demonstrate howADcan
be used to train disordered solids, but this approach is extremely general.
First, we have focused on a particular model of sticky spheres with tunable
species-level interactions that is motivated by DNA-coated colloids6,7. As
discussed above, however, it is straightforward to employ much more
detailed or realistic energetic models. Next, we consider zero temperature
dynamics, which is a common choice when studying, for example, jammed
solids or any case where interaction energies are much larger than thermal
fluctuations. It alsomakes a configuration well defined, and allows us to use
so-called implicit differentiation to increase the numerical stability of gra-
dients (see Methods). Nevertheless, it should be possible to extend our
approach to finite-temperature simulations. Furthermore, our primary
focus is on thePoisson’s ratio, ν, because, as a unitlessmeasure of elasticity, it
cannot be adjusted by trivially changing energy scales. It can also be cal-
culated exactly and efficiently at zero temperature. Finally, our focus on two-
dimensional systems is purely for numerical convenience and, as shown in
the Supplementary Discussion H, we can train three-dimensional systems
just as well.

For this system, we have shown that the ensemble average Poisson’s
ratio, 〈ν〉, can be tuned to anywhere in the range 0.2 < 〈ν〉 < 0.7. Further-
more, we can tune the pressure and local structural order in a similar way.
While other systems exhibit a variable Poisson’s ratio – for example, jam-
med packings of soft spheres display 〈ν〉 → 1 near the unjamming
transition9,25, our work demonstrates a new level of systematic and robust
control. In addition, we have shown that directly connecting objectives to
parameters through the gradient ∇θL enables the targeted design of mul-
tiple properties, which is otherwise challenging. Together, this presents a
scalable approach to inverse design and reveals a direct strategy for the
targeted manipulation of disordered solids.

We have also shown that the Poisson’s ratio of a single configuration
can be tuned with a high success rate anywhere in the range − 1≤ν≤1 (the
theoretical bounds for two-dimensional isotropic systems). This is analo-
gous to the bond-level tuning in refs. 1,4 except it is at the level of species-
species interactions and maintains the constraint of force-balance on every
particle. Figure 1f also hints at an unexpected localized mechanism for
creating auxetic materials. While these individual configurations are likely
difficult to obtain experimentally due to the overwhelming number of
competing structures, this result is important because it demonstrates
extreme tunability at the level of individual configurations. Thus, the lower
boundof 〈ν〉 is inherently a collective effect: at 〈ν〉≈0.2, anyparticular νb can

still be lowered, but doing so necessarily increase the Poisson’s ratio of other
configurations so that 〈ν〉 is unchanged.

This paper has only scratched the surface of how disordered solids can
be designed with Automatic Differentiation, and there are many exciting
ways that this work could be extended. First, our results are obtained with
spherically symmetric particles with very simple, Lennard-Jones-like
interactions. However, there are numerous experimental systems, from
nonspherical colloids26 to colloidal-scale DNA-origami27 to de novo
proteins28,29, that combine controllable interactions with nontrivial shape,
and that could be used to increase designability. Next, AD could be used to
optimized over nontrivial preparation protocols, including temperature
ramps or oscillatory shear. Finally, there are numerous other material
properties that could be (simultaneously) targeted, including thermal
properties, nonlinear stress-strain behavior30,31, density of states, and allos-
teric responses3. Critical to the future success of such extensions will be the
continued integration of differentiable programming ecosystems with
classical molecular dynamics through packages like JAX-MD24.

Methods
Model
We consider a system composed of N particles divided evenly into nsp
species. Particles interact via a “harmonic-Morse”pairwisepotential givenby

VðrÞ ¼
k
2 ðr � �σÞ2 � B; r < �σ

B e�2aðr��σÞ � 2e�aðr��σÞ� �
; r ≥ �σ

(
ð1Þ

where r is the center-center distance between two particles, �σ is the mean of
their diameters, k characterizes the short-ranged repulsions, and B
determines the strength of the medium-range attractions, whose extent is
proportional to 1/a. Unless otherwise stated,weuse k=5.0 and a=5.0 for all
pairs of particles. However, B and �σ depend on the species type of the
particles in question. Specifically, we independently vary the attractive
strength Bαβ for every pair of species α and β (with Bαβ = Bβα), as well as the
particle diameter σα (so that �σαβ ¼ ðσα þ σβÞ=2). We then use the XPLOR
smoothing function to truncate V(r) at a distance rcut ¼ �σ þ 9:9=a. This
model is commonly used to describe, for example, DNA-coated colloids
where diameters and binding affinities can be manipulated at the species
level6,7. Note that we use a harmonic repulsive force to ensure numerical
stability at a random set of initial position, and that the strength k of this
repulsion is decoupled from the attractive forces to allow Bαβ → 0.

For a given set of parameters θ= {σα}∪ {Bαβ}, we obtain stable athermal
structures by using the FIRE algorithm32,33 to minimize the total potential
energy E ¼ P

<ij>VðrijÞ starting from a random set of initial positions. We
always consider an even number of species, and set the initial diameters for
half the species to be 0.8 times that of the other half, with an overall number
density of 1.6. The initial binding strengths are all set to Bαβ = 0.1.

Calculating the Poisson’s ratio
The Poisson’s ratio is expressed in terms of the elements of the elastic
modulus tensor Cijkl, which describe the second order terms of the Taylor
expansion of the energy of a systemwith respect to boundary deformations:

ΔU

V0 ¼ σ0ijϵji þ
1
2
Cijklϵijϵkl þ O ϵ3

� �
; ð2Þ

where σ0 is the stress tensor describing residual stresses in the initial state, ϵ is
the strain tensor, describing boundary deformations,V0 is the volume of the
initial state, and ΔU is the change in energy of the system.

If we choose a particular strain of magnitude γ, i.e. ϵ ¼ ~ϵγ for some ~ϵ,
Eq. (2) becomes

ΔU

V0 ¼ ~σ0γþ 1

2V0

∂2U
∂γ2

� ΞT ðH0Þ�1
Ξ

� �
γ2 þ Oðγ3Þ; ð3Þ
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where ~σ0 ¼ σ ij~ϵji, Ξ ¼ � ∂∇U
∂γ is the derivative of the force on every particle

with respect to γ, and H0 = ∇2U is the Hessian matrix of the energy with
respect to particle positions. Equation (3) is derived elsewhere34,35, and can
be used to back out all elements of Cijkl through appropriate choices of ~ϵij.
Our implementation is part of the core JAXMD library, and more detailed
documentation and explanations can be found there.

Optimization for individual configurations
Theoriginal configurations are generated byquenching randompackings to
local energy minima using the FIRE algorithm. Once an initial energy-
minimized state is reached, the Poisson’s ratio ν is calculated explicitly using
linear response36, and combined with the target Poisson’s ratio ν* to con-
struct the objective function L ¼ ðν � ν�Þ2.

Ourmodel, the energyminimization, and the calculationof ν andL are
performed entirely using the library JAXMD24 and the Automatic Differ-
entiation library JAX37 on which it is built. As a result, the entire calculation
is end-to-end differentiable, allowing us to accurately and efficiently cal-
culate ∇θL. Implicit differentiation, implemented using the JAXOPT
library38, is used to propagate derivatives through the energy minimization
as well as a key step in the linear response calculation, which ensures gra-
dient accuracy and mitigates any extensive memory overhead. We then
employ the RMSProp algorithm (implemented as part of JAX) to iteratively
update the parameters θ based on the gradients. To improve the con-
vergence speed, we dynamically adjust the learning rate using a meta-
learning program that adaptively generates per-step hyperparameters. At
each iteration, we use the final configuration of the previous step for the
initial positions of the next energy minimization process, ensuring that we
consistently track a given energy minimum. Occasionally, the energy
minimum transforms into a saddle point and the system undergoes a
rearrangement. This results in a small spike in L, e.g. see Fig. 1d at around
1300 steps.

Optimization for ensemble-averaged quantities
The primary difference in optimization between individual and ensemble
systems lies in the input configurations. In the optimization process for
ensemble-averaged quantities, we generate 8 new configurations (by
minimizing from random initial positions) at every step. Given our rela-
tively small system size, this is well below the number of configurations
needed to obtain accurate ensemble averages, meaning our estimates of L
and∇θL are highly noisy. However, stochastic optimization algorithms like
RMSProp are well-suited to very noisy gradients and this does not prevent
convergence.

Data availability
The authors declare that the data supporting the findings of this study are
available within the paper and its Supplementary Information files.

Code availability
Computer code is available at https://github.com/MJ-Zu/design-
disordered.
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