
Certifying Phase Abstraction

Nils Froleyks1(B), Emily Yu2, Armin Biere3, and Keijo Heljanko4,5

1 Johannes Kepler University, Linz, Austria
N.froleyks@gmail.com

2 Institute of Science and Technology Austria, Klosterneuburg, Austria
3 Albert–Ludwigs–University, Freiburg, Germany

4 University of Helsinki, Helsinki, Finland
5 Helsinki Institute for Information Technology, Helsinki, Finland

Abstract. Certification helps to increase trust in formal verification of
safety-critical systems which require assurance on their correctness. In
hardware model checking, a widely used formal verification technique,
phase abstraction is considered one of the most commonly used prepro-
cessing techniques. We present an approach to certify an extended form of
phase abstraction using a generic certificate format. As in earlier works our
approach involves constructing a witness circuit with an inductive invari-
ant property that certifies the correctness of the entire model checking
process, which is then validated by an independent certificate checker. We
have implemented and evaluated the proposed approach including certifi-
cation for various preprocessing configurations on hardware model check-
ing competition benchmarks. As an improvement on previous work in this
area, the proposed method is able to efficiently complete certification with
an overhead of a fraction of model checking time.

1 Introduction

Over the past few decades, symbolic model checking [2,22,23] has been put
forward as one of the most effective techniques in formal verification. A lot
of trust is placed into model checking tools when assessing the correctness of
safety-critical systems. However, model checkers themselves and the symbolic
reasoning tools they rely on, are exceedingly complex, both in the theory of
their algorithms and their practical implementation. They often run for multiple
days, distributed across hundreds of interacting threads, ultimately yielding a
single bit of information signaling the verification result. To increase trust in
these tools, several approaches have attempted to implement fully verified model
checkers in a theorem proving environment such as Isabelle [1,27,54]. However,
the scalability as well as versatility of those tools is often rather limited. For
example, a technique update tends to require the entire tool to be re-verified.

An alternative is to make model checkers provide machine-checkable proofs
as certificates that can be validated by independent checkers [8–10,31,32,39,
42,47], which is already a successful approach in SAT [34,35], i.e., proofs are
mandatory in the SAT competition since 2016 [3], and they are a very hot topic
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 284–303, 2024.
https://doi.org/10.1007/978-3-031-63498-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-63498-7_17

Certifying Phase Abstraction 285

in SMT [4,5,36,51] and beyond [4]. Crucially, these certificates need to be simple
enough to allow the implementation of a fully verified proof checker [33,37,41],
and preferably verifiable “end-to-end”, i.e., certifying all stages of the model
checking process, including all forms of preprocessing steps.

The approach in [15,56,57] introduces a generic certificate format that can be
directly generated from hardware model checkers via book-keeping. More specifi-
cally, the certificate is in the form of a Boolean circuit that comes with an inductive
invariant, such that it can be verified by six simple SAT checks. So far, it has shown
to be effective across several model checking techniques, but has not covered phase
abstraction [16]. The experimental results from [15,56,57] also show performance
challenges with more complex model checking problems. In this paper, we focus on
refining the format for smaller certificates while accommodating additional tech-
niques such as cone-of-influence analysis reduction [22].

Phase abstraction [16] is a popular preprocessing technique which tries to
simplify a given model checking problem by detecting and removing periodic
signals that exhibit clock-like behaviors. These signals are essentially the clocks
embedded in circuit designs, often due to the design style of multi-phase clock-
ing [46]. Phase abstraction helps reduce circuit complexity therefore making the
backend model checking task easier. Differently from [6,7] where the concept
was first suggested, requiring syntactic analysis and user inputs, phase abstrac-
tion [16] makes use of ternary simulation to automatically identify a group of
clock-like latches. Beside this, ternary simulation has also been utilized in the
context of temporal decomposition [20] for detecting transient signals.

In industrial settings, due to the use of complex reset logic as well as circuit
synthesis optimizations, clock signals are sometimes delayed by a number of ini-
tialization steps [19]. To further optimize the verification procedure we extend
phase abstraction by exploiting the power of ternary simulation to capture dif-
ferent classes of periodic signals including those that are considered partially as
clocks as well as equivalent signals [26]. An optimal phase number is computed
based on globally extracted patterns, which then is used to unfold the circuit
multiple times. The resulting unfolded circuit further undergoes rewriting and
cone-of-influence reduction, before it is passed on to a base model checker for
final verification. To summarize our contributions are as follows:

1. We formalize, revisit and extend the original phase abstraction [16] by intro-
ducing periodic signals, that are then identified and removed for circuit reduc-
tion. Our technique also subsumes temporal decomposition [20].

2. Building upon [15,56,57], we propose a refined certificate format for hardware
model checking based on a new restricted simulation relation. We demonstrate
how to build such a certificate for extended phase abstraction.

3. We present mc2, a certifying model checker that implements our proposed
preprocessing technique and generates certificates for the entire model check-
ing process. We show empirically that the approach requires small certification
overhead in contrast to [15,56,57].

After background in Sect. 2, Sect. 3 introduces the notion of periodic signals.
In Sect. 4 we present an extended variant of phase abstraction that simplifies

286 N. Froleyks et al.

the original model with periodic signals. In Sect. 5 we define a refined certificate
format and present a general certification approach for phase abstraction. In
Sect. 6 we describe the implementation of mc2 and then show the effectiveness
of our new certification approach in Sect. 7.

2 Background

Given a set of Boolean variables V, a literal l is either a variable v ∈ V or its
negation ¬v. A cube is considered to be a non-contradictory set of literals. Let c
be such a cube over a set of variables L and assume L′ are copies of L, i.e., each
l ∈ L corresponds bijectively to an l′ ∈ L′. Then we write c(L′) to denote the
resulting cube after replacing the variables in c with its corresponding variables
in L′. For a Boolean formula f , we write f |l and f |¬l to denote the formula after
substituting all occurrences of the literal l with � and ⊥ respectively. We use
equality symbols � [24] and ≡ to denote syntactic and semantic equivalence and
similarly → and ⇒ to denote syntactic and semantic logical implication.

Definition 1 (Circuit). A circuit C is represented by a quintuple (I, L,R, F,
P), where I and L are (finite) sets of input and latch variables. The reset func-
tions are given as R = {rl(I, L) | l ∈ L} where the individual reset function
rl(I, L) for a latch l ∈ L is a Boolean formula over inputs I and latches L.
Similarly the set of transition functions is given as F = {fl(I, L) | l ∈ L}.
Finally P (I, L) denotes a safety property corresponding to set of good states
again encoded as a Boolean formula over the inputs and latches.

This notion can be extended to more general circuits involving for instance
word-level semantics or even continuous variables by replacing in this definition
Boolean formulas by corresponding predicates and terms in first-order logic mod-
ulo theories. For simplicity of exposition we focus in this work on Boolean seman-
tics, which matches the main application area we are targeting, i.e., industrial-
scale gate-level hardware model checking. We claim that extensions to “circuits
modulo theories” are quite straightforward.

A concrete state is an assignment to variables I ∪L. Therefore the set of reset
states of a circuit is the set of satisfying assignments to R(L) =

∧

l∈L

(l � rl(I, L)).

Note the use of syntactic equality “�” in this definition.
As in previous work [15] we assume acyclic reset functions. Therefore R(L)

is always satisfiable. A circuit with acyclic reset functions is called stratified.
As in bounded model checking [11], with Ii and Li “temporal” copies of I

and L at time step i, the unrolling of a circuit up to length k is expressed as:

Uk =
∧

i∈[0,k)

(Li+1 � F (Ii, Li)).

Cube simulation [57] subsumes ternary simulation such that a lasso found by
ternary simulation can also be found via cube simulation. A cube simulation is
a sequence of cubes c0, . . ., cδ, . . ., cδ+ω over latches L such that (1) R(L) ⇒ c0;

Certifying Phase Abstraction 287

(2) ci ∧ (L′ � F (I, L)) ⇒ c′
i+1 for all i ∈ [0, δ + ω), where c′

i+1 is the primed
copy of ci+1. It is called a cube lasso if cδ+ω ∧ (L′ � F (I, L)) ⇒ c′

δ. In which
case δ is the stem length and ω is the loop length. For δ = 0, the initial cube is
already part of the loop and for ω = 0, the lasso ends in a self-loop.

3 Periodic Signals

In sequential hardware designs, signals that eventually stabilize to a constant,
i.e., to � or ⊥, after certain initialization steps are called transient signals
[20,57], whereas oscillating signals have clock-like or periodic behaviors. A sim-
plest example of a clock is a latch that always oscillates between � and ⊥.

Since hardware designs typically consist of complex initialization logic, there
are occurrences of delayed oscillating signals, like clocks that start ticking after
several reset steps, with a combination of transient and clock behaviours. We
generalize this concept to categorize latches as periodic signals associated with
a duration (i.e., the number of time steps for which a signal is delayed) and
a phase number (i.e., the period length in a periodic behavior). Moreover, our
generalization also captures equivalent and antivalent signals [26], as well as
those that exhibit partial periodic behaviours. See Fig. 1 for an example.

Fig. 1. An example of a cube lasso over the latches l ∈ L = {a, b, c, d}. In the example
the tall rectangles represent cubes as partial assignments, i.e., the second cube from
the left is (¬a) ∧ b ∧ d. Phase 0 and 1 are marked on top of the cubes. As shown,
duration d = 1 and phase number n = 2 yield a high number of useful signals for this
cube lasso. Each latch l is associated with a periodic pattern λl on the right describing
its behaviors for phase 0 and 1. If a latch is missing from a cube for a certain phase, it
has no constraint thus we use the equality of the latch to itself in the signal. Latch a
turns out to be a simple clock delayed by one step. Latches b and d behave clock-like
but only in phase 0. Latch c always has the opposite value of latch b in phase 1. Note
that we could also have ¬c in phase 1 of signal λb but choosing a single representative
for a set of equivalent signals is beneficial for the following simplification steps.

Definition 2 (Periodic Signal). Given a circuit C = (I, L,R, F, P) and a
cube lasso c0, . . .cδ, . . ., cδ+ω. A periodic signal λl for a latch l ∈ L is defined
as λl = (d, [v0, . . ., vn−1]) where d ∈ N, n ∈ N

+ and vi is a latch literal or
a constant, with d ≤ δ. We further require that there exist k0, k1 ∈ N

+ with

288 N. Froleyks et al.

k0 · n + d = δ and k1 · n = ω + 1 such that for all i ∈ [0, n) and j ∈ [0, k0 + k1)
we have ci+j·n ⇒ (l � vi).

For a signal λl = (d, [v0, . . ., vn−1]) we will write λi
l to refer to the i-th element

of [v0, . . ., vn−1], which we refer to as its phase. See Fig. 1 for an example where
k0 = 1 and k1 = 2.

Fig. 2. Circuit transformation using phase abstraction.

4 Extending Phase Abstraction

In this section, we revisit and extend phase abstraction by defining it as a
sequence of preprocessing steps, as illustrated in Fig. 2. Differently from the
approach in [16], we present phase abstraction as part of a compositional frame-
work, that handles a more general class of periodic signals. As our approach
subsumes temporal decomposition adopted from the framework in [57], we first
apply circuit forwarding [57] for duration d (i.e., unrolling the reset states of a
circuit by d steps) before unfolding is performed.

Figure 2 illustrates the flow of phase abstraction. The process begins by using
cube simulation to identify a set of periodic signals as defined in Sect. 3 and
computing an optimal duration and phase number based on a selected cube
lasso. Once the circuit is unfolded n times, factoring is performed by assigning
constant values to the clock-like signals as well as replacing latches with their
equivalent or antivalent representative latches in each phase. Next, the property
is rewritten by applying structural rewriting techniques and the circuit is further
simplified using cone-of-influence reduction. Finally, the simplified circuit (Cn+4

in Fig. 2) is checked using a base model checking approach such as IC3/PDR [17]
or continue to be preprocessed further.

In Fig. 3, we show intuitively an example of a circuit with 4-bit states repre-
senting 0,...,9 and so on, where the initial state is 0. After forwarding the circuit
by one step (d = 1), the initial state becomes 1. Subsequently with an unfolding
of n = 3, every state (marked with rectangles) in the unfolded circuit consists of
three states from the original circuit. We introduce the formal definitions below.

Unfolding a circuit simply means to copy the transition function multiple
times to compute n steps of the original circuit at once. Each copy of the transi-
tion function only has to deal with a single phase and can therefore be optimized.

Definition 3 (Unfolded circuit). Given a circuit C = (I, L,R, F, P) and a
phase number n ∈ N

+. The unfolded circuit C ′ = (I ′, L′, R′, F ′, P ′) is:

Certifying Phase Abstraction 289

Fig. 3. An example of a forwarded (d = 1) and unfolded (n = 3) circuit. The circles
denote states in the original circuit (0 is the initial state). The rectangle are states in
the unfolded circuit.

1. I ′ = I0 ∪ · · · ∪ In−1; L′ = L0 ∪ · · · ∪ Ln−1.
2. R′ = {r′

l | l ∈ L′} : for l ∈ L0, r′
l = rl;

for i ∈ (0, n), li ∈ Li, r′
li = F (Ii, Li−1).

3. F ′ = {f ′
l | l ∈ L′} : for l ∈ L0, f ′

l = fl(I0, Ln−1);
for i ∈ (0, n), li ∈ Li, f ′

li = fli(Ii, Li−1).
4. P ′ =

∧

i∈[0,n)

P (Ii, Li).

We obtain a simplified circuit by replacing the periodic signals with constants
and equivalent/antivalent latches in the unfolded circuit.

Definition 4 (Factor circuit). For a fixed duration d and phase number n,
given a d-forwarded and n-unfolded circuit C = (I, L,R, F, P) and a periodic
signal with duration d and phase number n for each latch, the factor circuit
C ′ = (I, L,R′, F ′, P) is defined by:

R′ = {r′
l | l ∈ L} :

– r′
li = λi

l, if λi
l ∈ {⊥,�};

– r′
li = rλi

l
, if λi

l ∈ L.

– r′
li = ¬r¬λi

l
, otherwise.

F ′ = {f ′
l | l ∈ L} :

– f ′
li = λi

l, if λi
l ∈ {⊥,�};

– f ′
li = fλi

l
, if λi

l ∈ L.

– f ′
li = ¬f¬λi

l
, otherwise.

Replaced latches will be removed by a combination of rewriting and cone-
of-influence reduction introduced in the following definitions. There are various
rewriting techniques also including SAT sweeping [30,38,43–45,59].

Definition 5 (Rewrite circuit). Given a circuit C = (I, L,R, F, P), a rewrite
circuit C ′ = (I, L,R, F, P ′) satisfies P ≡ P ′.

For a given circuit, we apply cone-of-influence reduction to obtain a reduced
circuit such that latches and inputs outside the cone of influence are removed.

Definition 6 (Reduced circuit). Given a circuit C = (I, L,R, F, P). The
reduced circuit C ′ = (I ′, L′, R′, F ′, P) is defined as follows:
– I ′ = I ∩ coi(P);
– R′ = {rl | l ∈ L′};

– L′ = L ∩ coi(P);
– F ′ = {fl | l ∈ L′},

where the cone of influence of the property coi(P) ⊆ (I ∪ L) is defined as
the smallest set of inputs and latches such that vars(P) ⊆ coi(P) as well as
vars(rl) ⊆ coi(P) and vars(fl) ⊆ coi(P) for all latches l ∈ coi(P).

290 N. Froleyks et al.

5 Certification

We define a revised certificate format that allows smaller and more optimized cer-
tificates. We then propose a method for producing certificates for phase abstrac-
tion. The proofs for our main theorems can be found in the Appendix.

5.1 Restricted Simulation

In the following, we define a new variant of the stratified simulation relation [15],
which we call restricted simulation, that considers the intersection of latches
shared between two given circuits as a common component.

Definition 7 (Restricted Simulation). Given stratified circuits C ′ and C
with C ′ = (I ′, L′, R′, F ′, P ′) and C = (I, L,R, F, P). We say C ′ simulates C
under the restricted simulation relation iff

1. For l ∈ (L ∩ L′), rl(I, L) ≡ r′
l(I

′, L′).
2. For l ∈ (L ∩ L′), fl(I, L) ≡ f ′

l (I
′, L′).

3. P ′(I ′, L′) ⇒ P (I, L).

This new simulation relation differs from [15,56], where inputs were required
to be identical in both circuits (I = I ′), and latches in C had to form a subset of
latches in C ′ (L ⊆ L′). Therefore, under those previous “combinational” [56] or
“stratified” [15] simulation relations the simulating circuit C ′ cannot have fewer
latches than L. This is a feature we need for instance when incorporating cer-
tificates for cone-of-influence reduction [22], a common preprocessing technique.
It opens up the possibility to reduce certificate sizes substantially.

Still, as for stratified simulation, restricted simulation can be verified by
three simple SAT checks, i.e., separately for each of the three requirements in
Definition 7.

Definition 8 (Semantic independence). Let V be a set of variables and v ∈
V. Then a formula f(V) is said to be semantically independent of v iff

f(V)|v ≡ f(V)|¬v.

Semantic dependency [28,40,49,53] allows us to assume that a formula only
depends on a subset of variables, which without loss of generality simplifies proofs
used for the rest of this section. The stratified assumption for reset functions
entails no cyclic dependencies thus R′(L′) is satisfiable. A reset state in a circuit
is simply a satisfying assignment to the reset predicate R(L). Based on the reset
condition (Definition 7.1), it is however necessary to show that for every reset
state in C it can always be extended to a reset state in C ′, while the common
variables have the same assignment in both circuits. This is stated in the lemma
below, and the proofs can be found in the Appendix.

Lemma 1. Let C = (I, L,R, F, P) and C ′ = (I ′, L′, R′, F ′, P ′) be two stratified
circuits satisfying the reset condition defined in Definition 7.1. Then R′(L ∩ L′)
is semantically dependent only on their common variables.

Certifying Phase Abstraction 291

In fact, semantic independence is a direct consequence of restricted simula-
tion; thus no separate check is required. We make a further remark that if the
reset function is dependent on an input variable, then it has to be an input
variable common to both circuits.

Based on this, we conclude with the main theorem for restricted simulation
such that C is safe if C ′ is safe (i.e., no bad state that violates the property is
reachable from any initial state).

Theorem 1. Let C = (I, L,R, F, P) and C ′ = (I ′, L′, R′, F ′, P ′) be two strati-
fied circuits, where C ′ simulates C under restricted simulation.
If C ′ is safe, then C is also safe.

Intuitively, if there is an unsafe trace in C, Definition 7.1 together with
Lemma 1 allow us to find a simulating reset state and transition it with Defini-
tion 7.2 to a simulating state also violating the property in C ′ by Definition 7.3.
Here a state in C ′ simulates a state in C if they match on all common variables.
Building on this, we present witness circuits as a format for certificates. Verifying
the restricted simulation relation requires three SAT checks, and another three
SAT checks are needed for validating the inductive invariant [56]. Therefore cer-
tification requires in total six SAT checks as well as a polynomial time check for
reset stratification.

Definition 9 (Witness circuit). Let C = (I, L,R, F, P) be a stratified circuit.
A witness circuit W = (J,M, S,G,Q) of C satisfies the following:

– W simulates C under the restricted simulation relation.
– Q is an inductive invariant in W .

The witness circuit format subsumes [15,57], thus every witness circuit in
their format is also valid under Definition 9.

Fig. 4. Certification for (extended) phase abstraction. Base model checking is per-
formed on circuit Cn+4, which produces a witness circuit Wn+2, that certifies
Cn+2, Cn+3, and Cn+4. We construct step-wise to obtain W0, which is a certificate
for the entire model checking procedure.

5.2 Certifying Phase Abstraction

The certificate format is generic, subsumes [57], and is designed to potentially be
used as a standard in future hardware model checking competitions. We proceed

292 N. Froleyks et al.

to demonstrate how a certificate can be constructed for a model checking pipeline
that includes phase abstraction. The theorems in this section state that this
construction guarantees that a certificate will be produced. We illustrate our
certification pipeline in Fig. 4. After phase abstraction and base model checking,
we can build a certificate backwards based on the certificate produced by the
base model checker. The following theorem states that the witness circuit of the
reduced circuit serves as a witness circuit for the original circuit too.

Theorem 2. Given a circuit C = (I, L,R, F, P) and its reduced circuit C ′ =
(I ′, L′, R′, F ′, P ′). A witness circuit of C ′ is also a witness circuit of C.

The outcome of rewriting is a circuit with a simplified property that main-
tains semantic equivalence with the original property. Therefore in our frame-
work, the certificate for the simplified property is also valid for the original
property. Furthermore, certificates can be optimized by rewriting at any stage.
We summarize this in the following proposition.

Proposition 1. Given a circuit C and its rewrite circuit C ′. A witness circuit
of C ′ is also a witness circuit of C.

We define the composite witness circuit to combine the certificates for cube
simulation and the factor circuit.

Definition 10 (Composite witness circuit). Given a stratified circuit C =
(I, L,R, F, P) and its factor circuit C ′ = (I ′, L′, R′, F ′, P ′), and the unfolded loop
invariant φ = ∨i∈[0,m) ∧j∈[0,n) ci∗n+j+d, with m = (δ + ω − d + 1)/n, obtained
from the cube lasso. Let W ′ = (J ′,M ′, S′, G′, Q′) be a witness circuit of C ′. The
composite witness circuit W = (J,M, S,G,Q) is defined as follows:
1. J = I ∪ J ′.
2. M = L ∪ (M ′\L′).
3. S = {sl | l ∈ M}:

(a) for l ∈ L, sl = rl;
(b) for l ∈ M ′\L′, sl = s′

l.

4. G = {gl | l ∈ M}:
(a) for l ∈ L, gl = fl;
(b) for l ∈ M ′\L′, gl = g′

l.

5. Q = φ(L) ∧ Q′(J ′,M ′).

Theorem 3. Given circuit C = (I, L,R, F, P), and factor circuit C ′ = (I ′, L′,
R′, F ′, P ′). Let W ′ = (J ′,M ′, S′, G′, Q′) be a witness circuit of C ′, and W =
(J,M, S,G,Q) constructed as in Definition 10. Then W is a witness circuit of
C.

Fig. 5. Every fully initialized state of a 3-folded witness circuit contains 3 original
states that form an unfolded state. Two consecutive 3-folded states contain either the
same unfolded states or two states consecutive in the unfolded circuit.

Certifying Phase Abstraction 293

In the construction of an n-folded witness circuit from the unfolded witness
W ′, a single instance of W ′’s latches (N), yet multiples of the original latches
L are used. As illustrated in Fig. 5, these L record a history, contrasting with
their role in the unfolded circuit where they calculate multi-step transitions.

Definition 11 (n-folded witness circuit). Given a circuit C = (I, L,R, F, P)
with a phase number n ∈ N

+, and its unfolded circuit C ′ = (I ′, L′, R′, F ′, P ′).
Let W ′ = (J ′,M ′, S′, G′, Q′) be the witness circuit of C ′. The n-folded witness
circuit W = (J,M, S,G,Q) is defined as follows:

1. J = I0 ∪ J0, where I0 and J0 are I and J ′ respectively.
2. M = I1 · · · Im ∪ L0 · · · Lm ∪ N ∪ J1 ∪ {b0 · · · bm, e0 · · · en−2},

where m = 2 × n − 2, N = M ′ \ L′, and Ii, Li are copies of I and L, and J1

is a copy of J ′.
3. S = {sl | l ∈ M}:

(a) sb0 = �;
(b) For i ∈ (0,m], sbi = ⊥.
(c) For i ∈ [0, n − 1), sei = ⊥.
(d) For l ∈ L0, sl = r′

l.
(e) For l ∈ (I1 · · · Im ∪ L1 · · · Lm ∪ J1), sl = l.
(f) For l ∈ N, sl = s′

l.
4. G = {gl | l ∈ M}:

(a) gb0 = �.
(b) For i ∈ [1,m], gbi = bi−1.
(c) ge0 = bn−1 ∧ ¬en−2.
(d) For i ∈ [1, n − 1), gei = ei−1 ∧ ¬en−2.
(e) For l ∈ L0, gl = fl.
(f) For l1 ∈ J1, gl1 = l0.
(g) For i ∈ [1,m], li ∈ (Ii ∪ Li), gli = li−1.
(h) For l ∈ N,

gl = ite(en−2, g′
l(J

1,M ′ ∩ (Im−n+1 · · · Im · · · Lm−n+1 · · · Lm ∪ N)), l).
5. Q =

∧

i∈[0,6]

qi :

(a) q0 = P (I0, L0).
(b) q1 = b0.
(c) q2 =

∧

i∈[1,m]

(bi → bi−1).

(d) q3 =
∧

i∈[1,m]

(bi → (Li � F (Ii−1, Li−1))).

(e) q4 =
∧

i∈[1,m]

((¬bi ∧ bi−1) → (R(Li−1) ∧ S′(N))).

(f) q5 = bm → (
∨

i∈[0,n)

((
∧

j∈[i,n−1)

¬ej) ∧ (
∧

j∈[0,i)

ej)∧

Q′(J0,M ′ ∩ (Li · · · ∪ Li+n−1 ∪ N))).
(g) q6 =

∧

i∈[1,n−2]

(ei → ei−1).

(h) q7 =
∧

i∈[0,n−2]

(ei → bn+i).

294 N. Froleyks et al.

(i) q8 =
∧

i∈[0,n−2)

((¬bm ∧ bn+i) → ei).

The bis are used for encoding initialization. So that inductiveness is ensured
when not all copies are initialized. The n − 1 bits ei are used to determine
which set of n consecutive original states form an unfolded state (a state in the
unfolded circuit). This information is used to determine on which copies the
unfolded property needs to hold and to transition the latches in N (the part of
the witness circuit added by the backend model checker) once every n steps.

Theorem 4. Given a circuit C = (I, L,R, F, P) with a phase number n ∈
N

+, its unfolded cicuit C ′ = (I ′, L′, R′, F ′, P ′) with a witness circuit W ′ =
(J ′,M ′, S′, G′, Q′). Let W = (J,M, S,G,Q) be the circuit constructed as in
Definition 11. Then W is a witness circuit of C.

After the witness circuit has been folded, the same construction from [57]
can be used to construct the backward witness. With that, the pipeline outlined
in Fig. 4 is completed. If phase abstraction is the first technique applied by the
model checker, a final witness is obtained. Otherwise, further witness processing
steps still need to be performed. An example of the entire process is illustrated
in Fig. 6.

6 Implementation

In this section, we present mc2, a certifying model checker implementing phase
abstraction and IC3. We implement our own IC3 since no existing model checker
supports reset functions or produces certificates in the desired format. We used
fuzzing to increase trust in our tool. The version of mc2 used for the evaluation,
was tested on over 25 million randomly generated circuits [14] in combination
with random parameter configurations. All produced certificates where verified.

To extract periodic signals we perform ternary simulation [52] while using a
forward-subsumption algorithm based on a one-watch-literal data structure [58]
to identify supersets of previously visited cubes, and thereby a set of cube lassos.
For each cube lasso we consider every factor of the loop length ω as a phase
number candidate n. We also consider every duration d, that renders the leftover
tail length (δ − d) divisible by n. To keep the circuit sizes manageable, we limit
both n and d to a maximum of 8. We call each pair (d, n) an unfolding candidate
and compute the corresponding periodic signal (Definition 2) for each latch.

For each phase, equivalences are identified by inserting a bit string corre-
sponding to the signs of each latch into a hash table. After identifying the sig-
nals, forwarding and unfolding are performed on a copy of the circuit, followed
by rudimentary rewriting. Currently the rewriting does not include structural
hashing and is mostly limited to constant propagation. Afterwards a sequential
cone-of-influence analysis starting from the property is performed. After per-
forming these steps for each candidate, we pick the duration-phase pair that
yields a circuit with the fewest latches and give it to a backend model checker.

Certifying Phase Abstraction 295

Fig. 6. A concrete example of the model checking and certification pipeline. The origi-
nal circuit has two latches; the bottom latch alternates and the top copies the previous
value of this clock. The property is that at least one bit is unset. Bad states are marked
gray. After unfolding with phase number two, the size of the state space is squared.
Since the bottom bit is periodic, we can replace it with a constant in each phase (fac-
tor). On this circuit terminal model checking is performed, since the property is already
inductive (no transition from good to bad), the circuit serves as its own witness. To
produce the final witness circuit, the clock is added back as a latch, and the property
is extended with the loop invariant asserting that the clock has the correct value for
each phase. Lastly, the circuit is folded to match the speed of the original circuit. Three
initialization bits bi are introduced and one additional bit e0 that determins which pair
of consecutive states need to fulfill the property (0 for the right pair and 1 for the left).
This check is only part of the property once full initialization is reached. For this final
witness circuit, only the good states are depicted. Also, the first two states represent
sets of good states with the same behavior.

We evaluated the preprocessor on three backend model checkers: the open-
source k-induction-based model checker McAiger [12](Kind in the following),
the state-of-the-art IC3 implementation in ABC [18] and our own version of
IC3 that supports reset functions and produces certificates. Since ABC does not
support reset functions, it is not able to model check any forwarded circuit (note
that implementing this feature on ABC is also a non-trivial task), therefore for
this configuration we only ran phase abstraction without forwarding thus no
temporal decomposition.

Our IC3 implementation on mc2 does feature cube minimization via ternary
simulation [25], however it is missing proof-obligation rescheduling. In fact, we
currently use a simple stack of proof obligations as opposed to a priority queue.
Despite using one SAT solver instance per frame, we also do not feature cones-
on-demand, but instead always translate the entire circuit using Tseitin [55].

Lastly, we also modified the open source implementation of Certifaiger [21]
to support certificates based on restricted simulation. For a witness circuit C ′ of

296 N. Froleyks et al.

C, the new certificate checker encodes the following six checks as combinatorial
AIGER circuits and then uses the aigtocnf to translate them to SAT:

A The property of C ′ holds in all initial states.
B The property of C ′ implies the property for successor states.
C The property of C ′ holds in all good states.
D The reset functions of common latches are equivalent. (Definition 7.1)
E The transition functions of common latches are equivalent. (Definition 7.2)
F The property of C ′ implies the property of C. (Definition 7. 3)

The first three checks are unchanged and encode the standard check for P ′

being an inductive invariant in C ′. Since P ′ is both the inductive invariant and
the property we are checking, C can technically be omitted. However, in our
implementation, the inductiveness checker is an independent component from
the simulation checker and would also works for scenarios where the inductive
invariant is a strengthening of the property in C ′.

7 Experimental Evaluation

This section presents experimental results for evaluating the impact of prepro-
cessing on the different backends, as well as the effectiveness of our proposed
certification approach. The experiments were run in parallel on a cluster of 32
nodes. Each node was equipped with two 8-core Intel Xeon E5-2620 v4 CPUs
running at 2.10 GHz and 128 GB of main memory. We allocated 8 instances to
each node, with a timeout of 5000 s for model checking and 10 000 s for certificate
checking. Memory is limit to 8 GB per instance in both cases.

The benchmarks are obtained from HWMCC2010 [13] which contains a good
number of industrial problems. As we observe from the experiments in general,
prepossessing is usually fast. Ignoring one outlier in our benchmark set, it com-
pletes within an average of 0.07 seconds and evaluates no more than 17 unfold-
ing candidates per benchmark. Interestingly, for the outlier “bobsmnut1”, 3019
unfoldings are computed for 179 different cube lassos within 34 seconds.

Table 1 presents the effect of our preprocessing on different backends, further
illustrated in Fig. 7. Our preprocessor was able to improve the performance of the
sophisticated IC3/PDR implementation in ABC, allowing us to solve five more
instances, all from the intel family. For each benchmark from this family, our
heuristic computed an optimal phase number of 2. A likely explanation for this is
that the real-world industrial designs tend to contain strict two-phase clocks [6].
The positive effect of phase abstraction is also clear in combination with the k-
induction (Kind) backend. Circuit forwarding provides a further improvement,
that is especially notable on the prodcell benchmarks. These also illustrate how
forwarding enables more successful unfolding. Without forwarding, preprocessing
only unfolds 61 out of the 818 benchmarks with an average phase number of 2,
with forwarding 152 circuits are unfolded with an average of 4.

Even though our prototype implementation of IC3 is missing a number of
important features present in ABC, it still solves a large number of benchmarks.

Certifying Phase Abstraction 297

Table 1. We presents the effect of preprocessing in combination with different backend
engines on model checking time. We compare no preprocessing to only phase abstrac-
tion without forwarding (PA) and full preprocessing (Full). Note that, ABC does not
support reset functions and can therefore not be combined with full preprocessing.
For each model we present the phase number without forwarding n for PA and the
duration d and phase number n corresponding to Full. Models where the property
holds are marked as safe. The first two rows present the number of solved instances
and the PAR2 score [29] over all 818 benchmarks. The table shows all instances where
preprocessing had either a positive or negative impact on model checking success, with
the exception of those instances rendered unsolvable for our IC3 implementation by
forwarding.

Model ABC Our IC3 Kind

Safe n d n PA PA Full PA Full

Solved 740 745 715 715 604 533 538 544

PAR2 996 941 1357 1351 2699 3533 3472 3399

abp4p2ff � 1 1 1 1.12 1.08 6.35 6.23 6.18 2.50 2.50

bjrb07 3 0 3 0.12 0.10 0.11 0.03 0.07 0.03 0.04

nusmvb5p2 5 0 5 0.12 0.10 0.01 0.01 0.01 0.01 0.01

nusmvb10p2 5 0 5 0.22 0.13 0.10 0.03 0.04 0.02 0.02

prodcell0 � 1 5 8 26.97 27.07 228.46 243.73 49.76 2.37

prodcell0neg � 1 5 8 16.36 15.93 230.57 230.67 36.62 2.39

prodcell1 � 1 7 8 23.45 23.38 654.21 665.86 59.67 4.43

prodcell1neg � 1 7 8 28.36 28.33 681.11 738.61 61.74 4.48

prodcell2 � 1 7 8 24.98 24.58 661.71 663.37 56.74 4.43

prodcell2neg � 1 7 8 20.23 20.28 778.39 768.75 56.14 4.47

bc57sen0neg � 1 1 1 503.61 494.55 910.72 906.87 1760.41 830.92

abp4ptimo � 1 1 1 4.14 4.13 28.93 29.91 6.32 608.55

boblivea 1 2 1 3.70 3.68 7.85

bobsm5378d2 1 8 1 4.04 4.12 88.36

bobsmnut1 8 5 8 10.95 40.08 2504.07

prodcell3neg � 2 2 8 27.88 10.86 310.22 837.43 2.73

prodcell4neg � 2 2 8 44.31 9.90 404.12 26.04 2.77

prodcell3 � 2 2 8 23.45 11.24 320.23 1103.29 19.22 2.48

prodcell4 � 2 2 8 31.40 10.08 398.83 29.71 18.67 2.68

pdtvisvsar29 1 2 5 1523.73 0.36 0.29 0.40

intel042 � 1 3 2 3876.04 4061.38

intel022 2 2 2 1852.29

intel021 2 2 2 2752.86 651.56

intel023 2 2 2 2257.94 3728.38

intel029 2 2 2 2550.14 3437.64

intel024 2 2 2 167.96 676.64 4526.60

intel019 2 2 2 2716.40

However, as opposed to ABC it does lose a number of benchmarks with phase
abstraction. This can be explained by the lack of sophisticated rewriting that
can exploit the unfolded circuits structure. The addition of forwarding is highly

298 N. Froleyks et al.

Fig. 7. Comparison of model checking performance. We compare four pairs of config-
urations; the three backend engines with and without phase abstraction (with fixed
duration 0) and for Kind we present the effect of additionally allowing forwarding. The
size of the markers represents n + d. The dots represent instances where the prepro-
cessing heuristic decided not to alter the circuit. The red lines mark the timeout of
5000 s. Markers beyond that line represent instances solved by one configuration but
not the other. (Color figure online)

detrimental to performance, losing 115 instances. This is due to our implemen-
tation following the PDR design outlined in [25]. It requires any blocked cube
not to intersect the initial states after generalization. If only a single reset state
exists this check is linear in the size of the cube. However, in the presence of reset
functions it is implemented with a SAT call. While also slower the main problem
however is that the reset-intersection check is also more likely to block general-
ization. On the 115 lost benchmarks generalization failed 96% of the time, while
it only failed in 1.8% of the cases without forwarding. We keep the optimization
of our IC3 implementation in the presence of reset functions for future work.

Figure 8 displays certification results on mc2 in comparison to model check-
ing time. IC3 provides certificates that are easily verifiable, as confirmed by
our experiments with cumulative overhead of only 3%. The addition of phase
abstraction (i.e., including constructing n-folded witnesses as in Fig. 4, without
witness back-warding) does not bring significant additional overhead. When for-
warding is allowed, the certification overhead increases to 10%. The run time of
certificates generation and encoding to SAT is negligible for all configurations.
The certification time is dominated by the SAT solving time for the transition
(Definition 7.2) and consecution check. Overall, this is a significant improvement
over related work from [57] which reported 1154% overhead on the same set of
benchmarks using a k-induction engine as the backend.

Certifying Phase Abstraction 299

Fig. 8. Certification vs. model checking time for three configurations of our IC3 engine.
The legend shows the cumulative overhead of including certification for all solved
instances. The size of the markers represents n+d. The dots represent instances where
preprocessing did not alter the circuit.

8 Conclusion

In this paper, we present a certificate format that can be effectively validated by
an independent certificate checker. We demonstrate its versatility by applying
it to an extended version of phase abstraction, which we introduce as one of
the contributions of this paper. We have implemented the proposed approach
on a new certifying model checker mc2. The experimental results on HWMCC
instances show that our approach is effective and yields very small certification
overhead, as a vast improvement over related work. Our certificate format allows
for smaller certificates and is designed to be possibly used in hardware model
checking competitions as a standardized format.

Beyond increasing trust in model checking, certificates can be utilized in
many other scenarios. For instance, such certificates will allow the use of
model checkers as additional hammers in interactive theorem provers such as
Isabelle [48] via Sledgehammer [50], with the potential of significantly reducing
the effort needed for using theorem provers in domains where model checking
is essential, such as formal hardware verification, our main application of inter-
est. Currently in Isabelle, Sledgehammer allows to encode the current goal for
automatic theorem provers or SMT solvers and then call one of many tools
to solve the problem. The tool then provides a certificate which is lifted to a
proof that can be replayed in Isabelle. We plan to add our model checker as an
additional hammer to increase the automatic proof capability of Isabelle. This
further motivates us to investigate certificate trimming via SAT proofs.

300 N. Froleyks et al.

Acknowledgements. This work is supported by the Austrian Science Fund (FWF)
under the project W1255-N23, the LIT AI Lab funded by the State of Upper Austria,
the ERC-2020-AdG 101020093, the Academy of Finland under the project 336092 and
by a gift from Intel Corporation.

References

1. Amjad, H.: Programming a symbolic model checker in a fully expansive theorem
prover. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 171–187.
Springer, Heidelberg (2003). https://doi.org/10.1007/10930755 11

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Balyo, T., Heule, M.J.H.: Proceedings of SAT competition 2016 – solver and bench-

mark descriptions. Department of Computer Science Series of Publications B, vol.
B-2016-1. University of Helsinki (2016)

4. Barbosa, H., et al.: Generating and exploiting automated reasoning proof certifi-
cates. Commun. ACM 66(10), 86–95 (2023). https://doi.org/10.1145/3587692

5. Barbosa, H., et al.: Flexible proof production in an industrial-strength SMT solver.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 15–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6 3

6. Baumgartner, J., Heyman, T., Singhal, V., Aziz, A.: Model checking the IBM
gigahertz processor: an abstraction algorithm for high-performance netlists. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 72–83. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 9

7. Baumgartner, J., Heyman, T., Singhal, V., Aziz, A.: An abstraction algorithm for
the verification of level-sensitive latch-based netlists. Formal Methods Syst. Des.
23, 39–65 (2003)

8. Beyer, D., Chien, P., Lee, N.: Bridging hardware and software analysis with Btor2C:
a word-level-circuit-to-C translator. In: Sankaranarayanan, S., Sharygina, N. (eds.)
TACAS 2023. LNCS, vol. 13994, pp. 152–172. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30820-8 12

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: SIGSOFT FSE, pp. 326–337. ACM
(2016)

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022)

11. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 739–764. IOS Press (2021). https://doi.
org/10.3233/FAIA201002

12. Biere, A., Brummayer, R.: Consistency checking of all different constraints over
bit-vectors within a SAT solver. In: FMCAD, pp. 1–4. IEEE (2008)

13. Biere, A., Claessen, K.: Hardware model checking competition 2010 (2010). http://
fmv.jku.at/hwmcc10/

14. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report,
FMV Reports Series, Inst. FMV, JKU Linz, Austria (2011)

15. Biere, A., Yu, E., Froleyks, N.: Stratified certification for k-induction. In: FMCAD,
vol. 3, p. 59. TU Wien Academic Press (2022)

16. Bjesse, P., Kukula, J.H.: Automatic generalized phase abstraction for formal veri-
fication. In: ICCAD, pp. 1076–1082. IEEE Computer Society (2005)

https://doi.org/10.1007/10930755_11
https://doi.org/10.1145/3587692
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/3-540-48683-6_9
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
http://fmv.jku.at/hwmcc10/
http://fmv.jku.at/hwmcc10/

Certifying Phase Abstraction 301

17. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

18. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

19. Case, M.L., Baumgartner, J., Mony, H., Kanzelman, R.: Approximate reachabil-
ity with combined symbolic and ternary simulation. In: FMCAD, pp. 109–115.
FMCAD Inc. (2011)

20. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by
temporal decomposition. In: FMCAD, pp. 17–24. IEEE (2009)

21. Certifaiger: Certifaiger (2021). http://fmv.jku.at/certifaiger
22. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model Checking,

2nd edn. MIT Press, Cambridge (2018)
23. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model

Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8
24. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In:

Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2
volumes), pp. 611–706. Elsevier and MIT Press (2001)

25. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. FMCAD Inc. (2011)

26. van Eijk, C.A.J., Jess, J.A.G.: Exploiting functional dependencies in finite state
machine verification. In: ED&TC, pp. 9–14. IEEE Computer Society (1996)

27. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 31

28. Fleury, M., Biere, A.: Mining definitions in Kissat with Kittens. Formal Methods
Syst. Des. 1–24 (2023)

29. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: Sat competition 2020.
Artif. Intell. 301, 103572 (2021)

30. Fujita, M.: Toward unification of synthesis and verification in topologically con-
strained logic design. Proc. IEEE 103(11), 2052–2060 (2015)

31. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for LTL model checking. In:
FMCAD, pp. 1–9. IEEE (2018)

32. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for SAT-based model check-
ing. Formal Methods Syst. Des. 57(2), 178–210 (2021)

33. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 18

34. Heule, M.J.: Proofs of unsatisfiability. In: Handbook of Satisfiability, pp. 635–668.
IOS Press (2021)

35. Heule, M.J., Biere, A.: Proofs for satisfiability problems. In: All About Proofs,
Proofs for All, vol. 55, no. 1, pp. 1–22 (2015)

36. Hoenicke, J., Schindler, T.: A simple proof format for SMT. In: Déharbe, D.,
Hyvärinen, A.E.J. (eds.) Proceedings of the 20th Internal Workshop on Satisfia-
bility Modulo Theories co-located with the 11th International Joint Conference on
Automated Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference
(FLoC 2022), Haifa, Israel, 11–12 August 2022. CEUR Workshop Proceedings,
vol. 3185, pp. 54–70. CEUR-WS.org (2022)

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
http://fmv.jku.at/certifaiger
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18

302 N. Froleyks et al.

37. Kaufmann, D., Fleury, M., Biere, A., Kauers, M.: Practical algebraic calculus and
nullstellensatz with the checkers pacheck and pastèque and nuss-checker. Formal
Methods Syst. Des. 1–35 (2022)

38. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 21(12), 1377–1394 (2002)

39. Kuismin, T., Heljanko, K.: Increasing confidence in liveness model checking results
with proofs. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
32–43. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 3

40. Lagniez, J.M., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell.
281, 103229 (2020)

41. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020)

42. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: FMCAD, pp. 117–124. IEEE (2016)

43. Mishchenko, A., Chatterjee, S., Brayton, R.K.: Dag-aware AIG rewriting a fresh
look at combinational logic synthesis. In: DAC, pp. 532–535. ACM (2006)

44. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combi-
national equivalence checking. In: ICCAD, pp. 836–843. ACM (2006)

45. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: a unifying
representation for logic synthesis and verification. Technical report, ERL Technical
Report (2005)

46. Mony, H., Baumgartner, J., Aziz, A.: Exploiting constraints in transformation-
based verification. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 269–284. Springer, Heidelberg (2005). https://doi.org/10.1007/
11560548 21

47. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4 2

48. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

49. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une intro-
duction logique à une theorie déductive quelconque. In: Bibliothèque du Congrès
international de philosophie, vol. 3, pp. 309–365 (1901)

50. Paulson, L., Nipkow, T.: The sledgehammer: let automatic theorem provers write
your isabelle scripts (2023)

51. Schurr, H., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: towards a generic SMT
proof format (extended abstract). In: Keller, C., Fleury, M. (eds.) Proceedings
Seventh Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg,
PA, USA, 11 July 2021. EPTCS, vol. 336, pp. 49–54 (2021). https://doi.org/10.
4204/EPTCS.336.6

52. Seger, C.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods Syst. Des. 6(2), 147–189 (1995)

53. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications
to QBF preprocessing. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 508–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 24

54. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054171

https://doi.org/10.1007/978-3-319-03077-7_3
https://doi.org/10.1007/11560548_21
https://doi.org/10.1007/11560548_21
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/BFb0054171

Certifying Phase Abstraction 303

55. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970,
pp. 466–483 (1983)

56. Yu, E., Biere, A., Heljanko, K.: Progress in certifying hardware model checking
results. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 363–
386. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 17

57. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Towards compositional hardware
model checking certification. In: FMCAD (2023)

58. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 42

59. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.L.: SAT sweeping
with local observability don’t-cares. In: DAC, pp. 229–234. ACM (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.1007/11499107_42
http://creativecommons.org/licenses/by/4.0/

	Certifying Phase Abstraction
	1 Introduction
	2 Background
	3 Periodic Signals
	4 Extending Phase Abstraction
	5 Certification
	5.1 Restricted Simulation
	5.2 Certifying Phase Abstraction

	6 Implementation
	7 Experimental Evaluation
	8 Conclusion
	References

