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Abstract The Mediterranean region is experiencing pronounced aridification and in certain areas higher
occurrence of intense precipitation. In this work, we analyze the evolution of the precipitation probability
distribution in terms of precipitating days (or “wet‐days”) and all‐days quantile trends, in Europe and the
Mediterranean, using the ERA5 reanalysis. Looking at the form of wet‐days quantile trends curves, we identify
four regimes. Two are predominant: in most of northern Europe the precipitation quantiles all intensify, while in
the Mediterranean the low‐medium quantiles are mostly decreasing as extremes intensify or decrease. The wet‐
days distribution is then modeled by a Weibull law with two parameters, whose changes capture the four
regimes. Assessing the significance of the parameters' changes over 1950–2020 shows that a signal on wet‐days
distribution has already emerged in northern Europe (where the distribution shifts to more intense precipitation),
but not yet in the Mediterranean, where the natural variability is stronger. We extend the results by describing
the all‐days distribution change as the wet‐days’ change plus a contribution from the dry‐days frequency
change, and study their relative contribution. In northern Europe, the wet‐days distribution change is the
dominant driver, and the contribution of dry‐days frequency change can be neglected for wet‐days percentiles
above about 50%. In the Mediterranean, however, the change of precipitation distribution comes from the
significant increase of dry‐days frequency instead of an intensity change during wet‐days. Therefore, in the
Mediterranean the increase of dry‐days frequency is crucial for all‐days trends, even for heavy precipitation.

Plain Language Summary The Mediterranean region is facing increased dryness alongside more
intense rainfall in certain areas. We delved into the change of precipitation frequency and intensity across
Europe and the Mediterranean using ERA5 reanalysis data from 1950 to 2020. Our analysis revealed four
distinct patterns in how rainfall is evolving. In much of northern Europe, heavy rainfall events are becoming
more frequent, while in the Mediterranean, lighter precipitation is decreasing while heavy rain is either
increasing or decreasing. To understand these changes better, we used a mathematical model with two
parameters. This model helped us track the types of changes in precipitation patterns. We found that in northern
Europe, the increase in rainfall intensity is the primary driver of change, while in the Mediterranean, it's more
about the increase of the dry‐days frequency. These findings underscore the importance of considering both the
frequency and intensity of precipitation when studying climate change impacts. By understanding these shifts,
we can better prepare for future weather extremes in these regions and adapt to the changing climate.

1. Introduction
Climate change is known to impact the global water cycle, and to have consequences on total precipitation and
extreme of precipitation. The changes expected on total precipitation are of about+2%− 3% per degree Celsius of
global warming, while for the extreme precipitation, estimates from thermodynamics give at first order a rise in
intensity of about 7%/°C (Allen & Ingram, 2002; Held & Soden, 2006; Trenberth, 1999). However, on regional
scales the changes in mean and extreme precipitation can vary substantially from the global mean, due both to
dynamical aspects and natural variability (Fischer et al., 2013; Fischer & Knutti, 2014; Pendergrass & Hart-
mann, 2014; Pfahl et al., 2017; Trenberth, 2011).

The Mediterranean region, due to its unique position as a transition zone between the wetter Europe and the dryer
desert of the Sahara, is a climate change hotspot in terms of temperature and precipitation changes (Giorgi, 2006;
Urdiales‐Flores et al., 2023). Climate projections predict that the Mediterranean will get drier (more evaporation
and decreased mean precipitation) with global warming (D’Agostino & Lionello, 2020; Drobinski et al., 2020)
and will experience more extreme precipitation, at least on the northern shore (Ali et al., 2022; Drobinski
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et al., 2018; Giorgi et al., 2014; Myhre et al., 2019; Pichelli et al., 2021; Vautard et al., 2014). This simultaneous
decrease in mean precipitation and increase in extreme precipitation is sometimes called a “paradox in the water
cycle change” (Alpert et al., 2002; Brunetti et al., 2000; Brunetti et al., 2004; Zittis et al., 2021). Northern western
and central Europe, on the contrary, are expected to undergo an increase of both total precipitation and extreme
precipitation (Zittis et al., 2021; Intergovernmental Panel On Climate Change, 2023, chapter 8).

Still, the long‐term water cycle changes in the Mediterranean are unclear when looking at historical observations.
In past data, previous studies find a strong and significant signature of increasing evaporation and of drier
conditions, such as droughts or dry spells (Caloiero et al., 2018; Hoerling et al., 2012; Raymond et al., 2016;
Sheffield &Wood, 2012), associated to an increase of dry‐days frequency over the Mediterranean and a decrease
over Europe (Benestad et al., 2019; Brunetti et al., 2000; Brunetti et al., 2004), but the trends of the mean pre-
cipitation are subject to more debate. The 6th Intergovernmental Panel on Climate Change (IPCC) assessment
report (Intergovernmental Panel On Climate Change, 2023, chapter 8) concludes that there is no long‐term trend
of the mean precipitation in the Mediterranean since the pre‐industrial era. Only on shorter time periods of the
order of a few decades or on sub‐regions can some significant trends be derived (Azzopardi et al., 2020; Mariotti
et al., 2015; Sousa et al., 2011; Tanarhte et al., 2012; Zittis, 2018), but they may be driven mainly by natural
variability and not by climate change (Peña‐Angulo et al., 2020).

In this paper, we want to study the whole precipitation distribution over the Mediterranean region. Compared to
droughts and extreme precipitation, which have been extensively studied, the research on the whole precipitation
distribution is relatively less developed. In the few papers that do study the whole range of the precipitation
distribution, two main approaches can be distinguished: non‐parametric and parametric studies. Non‐parametric
studies focus on the changes of frequency of fixed precipitation intensity amounts or on the changes of intensity
for fixed percentile ranks or on the change of contribution from given precipitation amounts to the total pre-
cipitation (Alpert et al., 2002; Berthou et al., 2019, 2020; Brunetti et al., 2004; Klingaman et al., 2017). These
methods are interesting, but when one wants to allow diagnostics or interpretation in terms of a few key pa-
rameters, parametric studies are needed.

Still, very few parametric studies consider the whole precipitation distribution and do not focus only on extreme
precipitation. One of these few studies took a simple exponential law with a single parameter (Benestad
et al., 2019) while another study took a gamma law, which was shown to perform quite well for the low to medium
precipitation (Ben‐Gai et al., 1998; Groisman et al., 1999). A more complex model, tailored for wet‐days pre-
cipitation, has been recently proposed by Naveau et al. (2016) and gives very good results for both the low
precipitation and the extremes (Rivoire et al., 2022; Tencaliec et al., 2020), still with a little more complexity (it
has three parameters compared to two for the gamma law or one for the exponential). In this paper, we choose the
intermediate approach of a Weibull law with two parameters, which, as will be shown below, represents a
minimal framework to model wet‐days distribution and its quantile trends regimes.

In this work, we propose a framework which describes the change over time of the whole distribution of pre-
cipitation: from absence of precipitation to low and moderate precipitation, up to extreme events. We first perform
a description of the wet‐days trends, quantile by quantile. As underlined by Schär et al. (2016), such a method
should consider the change in frequency of non‐precipitating days (or “dry‐days”). Therefore, we also study how
the wet‐days quantile trends can be influenced by the change in dry‐days frequency. We illustrate this meth-
odological framework on the recent past in Europe and the Mediterranean. The main question addressed here is
the following: how does the whole precipitation distribution change across Europe and the Mediterranean region?

The outline of the paper is as follows: Section 2 presents the data set used, then Section 3 presents the different
kinds of regimes that can be observed over Europe and the Mediterranean concerning the wet‐days quantile
trends. Section 4 proposes the Weibull law as a wet‐days distribution to represent the observed regimes, and
analyze them more thoroughly. Section 5 extends this parametric model to the all‐days distribution, with an
application on the trends of the total precipitation and of all‐days quantiles.

2. Precipitation Data Set
We chose to use a single data set in this study to focus on the development of a methodological framework. Yet,
we would like to highlight that the methodology we present in this paper can be applied to any other precipitation
data sets.
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The choice of the data set was driven by the need for a data covering the whole Euro‐Mediterranean region, with
spatially and temporally homogeneous precipitation, as well as covering a period of time long enough to help
detect small changes in the precipitation distribution out of the natural variability.

We used ERA5 reanalysis, the latest global reanalysis provided by the European Center for Medium‐Range
Weather Forecasts (Hersbach et al., 2020) at a resolution of 0.25°, on the period 1950–2020. We computed
the daily accumulated precipitation from ERA5 hourly variable “total precipitation”, which incorporates both
convective and large‐scale precipitation. Our domain covers the area between 25°W and 45°E in longitude, and
between 25°N and 71°N in latitude, enabling the study of both the Mediterranean and Europe.

ERA5 assimilates observations which constrain properties like large scale moisture convergence, and the model is
run at an improved resolution compared to the previous version, ERA‐Interim. Thus it has been argued that ERA5
shows reduced uncertainty in its representation of the convective environment (Taszarek, Allen, et al., 2021;
Taszarek, Pilguj, et al., 2021) and of heavy precipitation (Chinita et al., 2021). ERA5 reanalysis has been shown to
be of very good quality on the pan‐European domain, with a wet‐days frequency spatial pattern well represented,
though it overestimates this frequency, by about 10%–20% over land, and thus the mean precipitation (Bandhauer
et al., 2022; Rivoire et al., 2021). ERA5 wet‐days precipitation intensity has been shown to be in very good
agreement with the reference European station‐based gridded data set E‐OBS (Cornes et al., 2018) over European
lands, especially where E‐OBS is most trusted, that is, where its station density is high (especially in Germany,
Ireland, Sweden, and Finland).

As our results are derived from ERA5 reanalysis only, we are aware of potential temporal inhomogeneities in the
precipitation data: trends might be susceptible to time‐dependent biases, for example, due to the change of
assimilated observations in the reanalysis. Yet, temporal inhomogenities in reanalyses have been mainly noticed
in region with sparse data, such as Africa and more generally the southern hemisphere (Ambrosino & Chan-
dler, 2013; Kistler et al., 2001), usually due to the addition of satellite data (e.g., Krueger et al., 2013 on storms, or
Shangguan et al., 2019 on ozone data), or to an increase in station density mainly before the 1950s (Ferguson &
Villarini, 2012; Pohlmann & Greatbatch, 2006). Therefore, we expect the ERA5 data in Europe and the Medi-
terranean to be much less prone to temporal inhomogenities. Besides, we compared trends in precipitation
standard deviation in ERA5 and in E‐OBS gridded data set, and while we noticed strong temporal biases on E‐
OBS—with very strong non‐physical differences between neighbor countries—such biases were not visible at all
in ERA5 precipitation data.

3. Observed Regimes for the Change of the Wet‐Days Distribution
One way to study the changes of distribution of precipitation is to look at the evolution of the cumulative dis-
tribution function, or equivalently its inverse function, the quantile curve, on which we will focus in this study. In
the following, we designate as trend the absolute change of a given variable between two periods of 31 years,
1950–1980 and 1990–2020. We choose to take periods of three decades to smooth out the natural variability
within those periods when taking the mean statistics. The impact of the choice of the dates on our results is
negligible (see Appendix A). To study the evolution of the quantile curve with time, we thus computed the trends
between the quantile curves of the two time periods: we thus obtain the curve of the intensity change for each wet‐
days percentiles.

A precipitation distribution usually has a high probability of the event 0 mm, corresponding to the many dry‐days,
that is, days with no to very low precipitation accumulation. In this paper, we will look at both the change of
precipitation occurrence and intensity of precipitation (i.e., wet‐days distribution) but also the all‐days distri-
bution. For methodological issues, it is indeed handy to set aside the dry‐days and fit a model on the wet‐days
distribution only (which will be done in the next section). We are conscious that a quantile trend defined on a
wet‐days distribution may be influenced by a change in the frequency of dry‐days, fd, as discussed in detail in
Schär et al. (2016): this aspect will be further developed in Section 5.

We followed the work from Expert Team on Climate Change Detection and Indices, which recommends the use
of 1 mm/day as the threshold for the definition of dry and wet‐days. This value enables to better deal with both the
issues of under‐reporting of small precipitation amounts in observations and the “drizzle problem” of models and
reanalyses—which usually have too many days with weak precipitation (Karl et al., 1999; Zhang et al., 2011). The
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frequency of dry‐days (days with less than 1 mm/day) is far from being negligible in our domain, and can vary
from 20% in northern Europe up to 90% in the Maghreb (and almost 100% in the desert).

We illustrate in Figure 1a the four main qualitatively different regimes which can be found on the domain,
depending on the shape of the wet‐days precipitation quantiles trend curve:

• a regime where nearly all quantiles intensify (for ex. in the UK),
• a regime where nearly all quantiles decrease (for ex. in the North of Portugal, although a few of the most
extremes may have a slightly positive trend),

• a U‐shape regime, consisting in negative trends for low to medium quantiles but positive trends on ex-
tremes, with a certain inversion percentile in between (for ex. in the North of Italy),

• a reversed U‐shape regime, with increasing low to medium percentiles with decreasing extremes (for ex. in
the Mediterranean Sea just North of Libyan coast).

Note that by construction, the trend of the 0% wet‐days percentile will always be zero, as its intensity is by
definition fixed to 1 mm/day.

Figure 1. (a) Illustration of the four types of behaviors for wet‐days quantile trend curve (between 1950–1980 and 1990–2020), at four chosen locations. The quantile
trends ΔQ(p) are plotted in mm/day/decades. (b) Wet‐days category map obtained from the classification algorithm, applied on the trends between 1950–1980 and
1990–2020, with a sliding window of nine grid‐points. Green corresponds to “nearly all quantiles intensify” category, red to “nearly all quantiles decrease”, orange to
“U‐shape” and blue to “reversed U‐shape.” Gray means the category is unclear. White designates desert location (less than 2% of wet‐days). (c) Relative change of

Weibull parameters (Δββ ,
Δα
α2 ) for the wet‐days precipitation distribution, plotted for the whole domain. This Weibull model is defined in 4. Colors indicate as before the

category detected by the classification algorithm. The black thick lines are the theoretic limits between the influence zones of the two Weibull parameters.
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Note that a regime comparable to this “U‐shape”, with a “crossover” or “inversion percentile”, was already
mentioned in literature for the Mediterranean region (Boberg et al., 2010; Colin, 2011).

In order to quantitatively distinguish between those regimes of trends, we developed a simple classification al-
gorithm, which takes in input a list of percentiles and associated quantile trends, looks at the shape of the trend
curve and assesses in which of the four categories it falls into. It uses the signs of the trends for both low to
medium ranks (the “belly” of the curve, for percentiles p ∈ [10%, 60%]) as well as for extreme high ranks (the
“tail” of the curve, for percentiles p ∈ [85%, 99%]). It also uses the slope of the linear regression for percentiles
p ∈ [60%, 99%].

More precisely, the algorithm is the following.

1. If the means of the belly is positive, and the tail has a positive mean and slope, then the category is defined as
“all quantiles intensify.”

2. If the mean of the belly is negative, but the tail has a positive mean and slope, then the category is defined as
“U‐shape.”

3. If the mean of the belly is negative and the tail has a negative mean and slope, then the category is defined as
“all quantiles decrease.”

4. If the mean of the belly is positive while the tail has a negative mean and slope, then the category is defined as
“reversed U‐shape.”

Finally, if the curve doesn't fall into any of these four categories, it is set into the “unknown” category.

This classification algorithm was applied over the whole Mediterranean and European domain, between 1950–
1980 and 1990–2020, giving the category map shown in Figure 1. Note that this map was obtained by
applying the algorithm on a sliding window of nine pixels (which for each grid‐point merges together the
quantiles trends of its eight neighboring grid‐points) to smooth out very local irregularities.

The first thing that becomes manifest on the category map in Figure 1b is a clear North/South pattern: a large
majority of North–West Europe as well as subtropical Atlantic Ocean belongs to the same regime (“all quantiles
intensify”), while the Mediterranean region is mainly in the “U‐shape” regime (i.e., decreasing low to medium
quantiles but increasing extremes) with also a certain amount of “all precipitation quantiles decrease” regime.
This is consistent with what one would expect from a Mediterranean type behavior, with both drying and extreme
precipitation events intensification. In the southern part of the Mediterranean basin, the “all decrease” regime is
more predominant. We remind that the differences between the “all‐decrease” and “U‐shape” categories are
mainly due to their opposite trend signs for very heavy precipitation. We can also observe that for the Medi-
terranean Sea far from the coasts (about 200 km away), the dominant category is the “all quantiles intensify” one.
As for African land equatorward of 30°N, the category map becomes extremely spotty, which could be due to a
higher natural variability in the wet‐days distribution, mainly due to the very small number of wet‐days.
Therefore, we won't look at desert regions, where there is less than 2% of wet‐days.

We also note that the map of categories is much spottier within the Mediterranean region than in northern Europe.
This spottiness seems to stem primarily from a strong natural variability, which may have prevented a clear long‐
term climate change pattern from emerging in the distribution of wet‐days in the Mediterranean. Indeed, as shown
in Appendix A, the agreement between wet‐days category maps computed for different time periods over 1950–
2020 is much lower for the Mediterranean than for northern Europe.

As a sum up, the signal of an intensification in the wet‐day distribution is clear in northern Europe, while the
Mediterranean region does not seem to have yet a signal strong enough to overcome the noise of natural vari-
ability. This is a motivation to try to assess more quantitatively the significance of a signal by taking a parametric
approach.

4. Analytical Model for the Wet‐Days Precipitation Distribution
In order to synthesize the information on each and every quantile trends into a smaller number of parameters, we
turn to a parametric approach.

We first focus on finding a model for the wet‐days distribution. Then in Section 5 we will see how all‐days
quantiles trends can be influenced by the changes of both the wet‐days distribution and the dry‐days frequency.
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4.1. Choice of a Distribution Model

There is no standard model for precipitation's annual distribution in the literature, but different choices depending
on the aim of the study and the data considered.

Benestad et al. (2019) used an exponential law for the wet‐days precipitation distribution, which worked well on
their observational data and gave a good “rule of thumbs” to relate extremes probability or quantile trends to the
wet‐days mean. However, since this wet‐days model has a single parameter (the wet‐days mean), it can only
represent a shift of all quantiles to higher (resp. lower) intensities if the parameter increase (resp. decrease). Thus
this exponential model can not represent the two other quantile trends regimes we observe, the “U‐shape” and
“reversed U‐shape”, which have opposite trends for low and high percentiles. We need at least two parameters in
the wet‐days distribution in order to represent the four regimes presented in 3.

We compared different models with two or three parameters, among some usually‐used models for precipitation
distribution (Gamma, Weibull, Lognormal, Pearson, etc.) on ERA5 precipitation data, using the maximum
likelihood estimation method and two goodness‐of‐fit estimators (Kolmogorov‐Smirnov and Cramer von Mises).
See Appendix B for more details. From this comparison of the different models fitted on ERA5 precipitation data,
we showed that the best model was the 3‐parameters so‐called Naveau distribution (Naveau et al., 2016) seconded
by the 2‐parameters Weibull distribution. For this study, we preferred to work with the Weibull distribution, as its
two parameters are already sufficient to describe the four quantiles regimes, as we show in the following.

4.2. Expression of the Four Regimes Through a Weibull Model

AWeibull distribution is defined by two parameters: a shape parameter (called α) and a scale parameter (called β).
The cumulative distribution function of a Weibull law is expressed as:

g(x) = 1 − e− (x/β)
α

where x is the intensity of precipitation (x > 1 mm/day by definition of wet‐days), and g(x) = p ∈ [0, 1] is the
probability of having a wet‐day with a precipitation inferior or equal to x. Note that p is also the percentile rank
corresponding to an event of precipitation intensity x. Note that α and β are both positive, and α ≤ 1. The scale
parameter β can be thought of as representative of the distribution median and has a unit of mm/day, while the
shape parameter α is linked to the precipitation variance (though it is dimensionless). For a given percentile p, the
quantile intensity Q(p) in mm/day is obtained as the inverse of the cumulative distribution function:

Q( p) = x = β[ln(
1

1 − p
)]

1/α

(1)

In Equation 1 it becomes clear that β is also the intensity of the quantile of rank p = 1 − e− 1 ≈ 0.63, giving β ≈ Q
(63%).We can thus think of the scale parameter β as (quite close to) the wet‐days precipitation median. We finally
note that when α→1, the Weibull model simplifies to an exponential distribution, giving the same expressions as
in Benestad et al. (2019), with the parameter β becoming the wet‐days mean. The values of the Weibull pa-
rameters for ERA5 precipitation data are provided in Appendix C, as well as their trends and the fit uncertainties.

Quantile trend curves like the ones shown in Figure 1 can be expressed analytically as ΔQ(p), Δ denoting the
change between two periods of time (denoted by the subscripts 1 and 2):

ΔQ( p) = Q2( p) − Q1( p) = β2[ln(
1

1 − p
)]

1/α2
− β1[ln(

1
1 − p

)]

1/α1
(2)

This expression is simple and depends on only four parameters: (α1, β1, α2, β2), or equivalently (α1, β1, Δα, Δβ).

We observed (not shown here) that a change in the scale parameter β, keeping α fixed, gives the category “all
precipitation quantiles intensify” for Δβ > 0 and “all precipitation quantiles decrease” for Δβ < 0. In opposition, a
change in the shape parameter α while keeping β fixed gives either a U‐shape for Δα < 0 and a reversed U‐shape

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040413

ANDRÉ ET AL. 6 of 24

 21698996, 2024, 15, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040413 by Institute O
f Science A

nd T
echnology, W

iley O
nline L

ibrary on [18/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



category for Δα > 0. Note that when β is fixed, then the percentile of inversion is also fixed, at a precise rank,
pinv = 1 − e− 1 ≈ 63%.

When both parameters change at the same time, their two effects will add up, with a weight depending on the
relative change of α and β. Considering small relative changes, that is, Δαα ≪ 1 and Δββ ≪ 1, the quantile trends for
a Weibull law can be written, at the first order, as:

∀ p∈ (0,1), ΔQ( p)≈
∂Q
∂α
( p) Δα +

∂Q
∂β
( p) Δβ (3)

with the following expressions for the partial derivatives:

∂Q
∂α
( p) = −

β
α2
ln(ln

1
1 − p

) (ln
1

1 − p
)

1/α

∂Q
∂β
( p) = (ln

1
1 − p

)

1/α

The sensitivity of the trend curve to the two parameters α and β can be expressed as a simple ratio:

⃒
⃒
⃒
⃒
⃒

∂Q
∂α ( p)Δα
∂Q
∂β ( p)Δβ

⃒
⃒
⃒
⃒
⃒
=

β
α2

⃒
⃒
⃒
⃒
Δα
Δβ

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ln(ln

1
1 − p

)

⃒
⃒
⃒
⃒ (4)

The change in α dominates the trend curve if it dominates the trends of at least the low percentiles and the tail.

When plotting the logarithmic function p→ |ln(ln 1
1− p)

⃒
⃒
⃒ on p ∈ [0, 1], we can show that this term is of order unity

(except in the very near vicinity of the extremes percentiles 0 and 1 and of the inversion percentile p = 1 − e− 1).
Thus, we will take the approximation that the logarithmic term is of order unity on the ranks that are of interest for
distinguishing between the four different regimes. Finally, we come to the following result: the change in α
dominates over β in the quantile trend curve when:

⃒
⃒
⃒
⃒
Δα
α2

⃒
⃒
⃒
⃒ ≫

⃒
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒
⃒ (5)

This means that knowing which of the changes of α or β dominates the trend curve boils down to comparing their
normalized changes.

Therefore, in the space (Δββ , Δαα2 ), the two diagonals (
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒ =

⃒
⃒Δα
α2
⃒
⃒) theoretically set the approximate limits between

the four precipitation quantile trend regimes. More precisely, we expect.

• a U‐shape for
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒ ≪

⃒
⃒Δα
α2
⃒
⃒ and Δα < 0

• a reversed U‐shape for
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒ ≪

⃒
⃒Δα
α2
⃒
⃒ and Δα > 0

• all quantiles intensify for
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒ ≫

⃒
⃒Δα
α2
⃒
⃒ and Δβ > 0

• all quantiles decrease for
⃒
⃒
⃒
Δβ
β

⃒
⃒
⃒ ≫

⃒
⃒Δα
α2
⃒
⃒ and Δβ < 0

Therefore, the 2‐parameters Weibull model seems a pertinent representation of the four regimes.

We can validate this theoretical result on ERA5 precipitation data by comparing the theoretical limits from the
Weibull model between the four regimes with the classification obtained by the detection algorithm (which
doesn't make any assumption about a distribution model). In Figure 1c, we plotted all grid‐points of the domain in
the normalized Weibull phase space, and colored them by their category as detected by the classification algo-
rithm. The bottom quadrant of the plot is mainly occupied by “U‐shape” gridpoints (orange), the left quadrant
mainly “all decrease” category (red) and the right one mainly “all quantiles intensify” (green) points.
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Note that the inference uncertainties on α and β parameters have little influence on these results. Indeed, the only
locations which regimes deduced from Weibull parameters can be impacted by the fit errors are those near the
diagonals and the center of the Weibull phase plot, that is, points which lie at the limits between two categories
(see Appendix C). Furthermore, these points are at the same geographical locations where both Δα and Δβ are
small and not significant, therefore where the wet‐days regimes are considered as not robust.

Thus, the Weibull analytical limits from the diagonals are in very good agreement with the empirical categories.

Additionally, we can obtain an expression of the wet‐days inversion percentile rank, pinv, from the changes of α
and β (see Appendix F for more details):

pinv ≈ 1 − exp(− exp(
Δβ
β

α2

Δα
)). (6)

which can be read graphically in the phase space (Δββ ,
Δα
α2 ) , from the angle a point makes with the horizontal.

4.3. Consequences for the Wet‐Days Categories

Since the Weibull distribution enables a description of the four regimes by the relative change of the models' two
parameters α and β, we can obtain information on the significance of the regimes from α and β. We assimilate the
robustness of the wet‐days categories to the statistical significance of Weibull parameters change: a “all quantiles
intensify” and “all quantiles decrease” regimes are considered as robust if Δβ is statistically significant. Similarly,
the “U‐shape” and “reverse U‐shape” regimes are considered as robust if Δα is statistically significant.

The results of the significant test are shown in Figure 5 (more details about the test in Appendix E). It shows that
the Mediterranean region doesn't have a significant signal on wet‐days categories, while in most parts of northern
Europe, the “All quantiles intensify” regime is statistically significant. This result is consistent with our intuition
we had, which was based on the stronger dependence of the Mediterranean regimes with the definition of the two
time periods.

In summary of this section, we have used a Weibull model on the wet‐days precipitation distribution to reduce the
information of the quantile trend curve to only two parameters (α, β) and their changes (Δα, Δβ). These pa-
rameters are enough to separate between the four observed wet‐days regimes, and the statistical significance of
Δα and Δβ indicates the robustness of the wet‐days regimes.

5. Influence of the Changes of Both the Wet‐Days Distribution and Dry‐Days
Frequency
5.1. Impact on Annual Mean

In order to illustrate the importance of taking into account not only the wet‐days distribution but also the change of
the dry‐days frequency, we study their relative contributions to the all‐days mean precipitation (i.e., total annual
precipitation), which is one of the most studied parameters in climate change studies.

The all‐days mean x̄ is the mean of the daily precipitation intensity, and can be equivalently computed as the
product of the wet‐days frequency fw = 1 − fd with the wet‐days precipitation mean μ:

x̄ = (1 − fd) μ

The change of the all‐days mean is due both to the change of dry‐days frequency fd = 1 − fw and to the change of
wet‐days mean:

Δx̄
x̄
= −

Δfd
(1 − fd)

+
Δμ
μ

(7)

Those two terms can either be of the same sign and add up to each other, or be of opposite signs and tend to cancel
each other out. Indeed, there could be more wet‐days but with less intense precipitation, which could result in an
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almost zero trend on the mean precipitation. Conversely, there could be regions with fewer wet‐days but with
higher precipitation intensity, as was shown in future projections by Pierce et al. (2013) for California and by
Polade et al. (2014) for Mediterranean type climates. The relative weight of the two terms is also important to
study. For future projections, Polade et al. (2014) showed that the change in the occurrence term will dominate the
change in intensity for the all‐days mean, in most of the subtropics. However, there is very little literature on the
behavior of these two terms in past data.

For a Weibull distribution, we can further detail the dependency of the wet‐days mean on the shape and scale
parameters. The expression of the Weibull mean is μ = β Γ(1 + 1/α), where Γ denotes the Gamma function.
Taking the logarithmic derivative of the mean, and using the definition of the Digamma function (usually noted ψ)
as the derivative of the log of the Gamma function, we get:

Δμ
μ

≈
Δβ
β
−
Δα
α2

(
d lnΓ
dz

)
z=1+1/α

=
Δβ
β
−
Δα
α2

ψ(1 + 1/α) (8)

Note that the Digamma function is strictly positive for the typical range of the shape parameter for ERA5 pre-
cipitation, thus the sign of the shape parameter contribution is given by − Δα. Its typical values are ψ(1 + 1/
α) ∈ [0.4, 1], for α ∈ [0.5, 1], which is the typical range for Europe and the Mediterranean. Thus, even in regions
with a U‐shape categories, where Δα dominates the wet‐days trend curve as |Δβ|β < |Δα|

α2 , the change in wet‐days
mean is not necessarily dominated by Δα, since the Digamma factor is smaller than 1.

Note that the Weibull model captures most of the signal of the relative change of mean precipitation, with an error
of less than 1% on most parts of the domain, aside from desert (see Appendix D for more details).

Finally, the relative change of the all‐days mean can be decomposed in three contributions, from the relative
changes of fd, α and β:

Δx̄
x̄

≈ −
Δfd

(1 − fd)
+
Δβ
β
−
Δα
α2

ψ(1 + 1/α) (9)

Figure 2 shows the relative contributions of those terms to the all‐days mean change, and the significance of these
changes. We have a clear North–South pattern for the change of total precipitation and of dry‐days occurrence.

For northern Europe, the contributions of occurrence and intensity changes are of same sign (decrease of dry‐days
frequency and more intense precipitation in average), but the all‐days mean change is mainly due to the increase
of the wet‐days mean (the latter being mainly due to the increase of the Weibull scale parameter β). We see also
that the intensity change is significant over a larger region than the occurrence change, in Northern Europe.

For the Mediterranean region, on the contrary, the intensity change is mainly not significant, while the increase of
dry‐days frequency is homogeneous and significant, leading to a significant decrease of all‐days mean. In a
central European band between East France and Poland, the change of occurrence is close to zero, and the change
in wet‐days intensity is the sole contributor to the all‐days mean.

Both in northern Europe and in the Mediterranean (even in U‐shape regions), the changes of the wet‐days mean
are mainly due to the significant change of the scale parameter β, while the term due to the change of the scale
parameter α is smaller in intensity and not significant.

5.2. Influence on All‐Days Quantiles Trends of the Dry‐Days Frequency

In this section, we investigate in more detail the link between all‐ and wet‐days precipitation quantiles. In order to
understand and quantify how looking only at wet‐days can impact the values of the trends for all‐days quantiles,
we follow the framework proposed by Schär et al. (2016), more precisely the derivation made in their first
appendix.

The all‐days precipitation distribution is linked to the wet‐days’ one by the dry‐days frequency fd. More precisely,
the wet‐days percentile p, which denotes the probability of having an event of intensity smaller or equal than
x mm/day, and the all‐days percentile pa for the same precipitation intensity, are linearly linked by fd:

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040413
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pa = (1 − fd) p + fd (10)

Note that this formula is valid for any percentile rank as far as pa ≥ fd. It gives indeed that for p= 0 we have pa= fd
and that the probability of the maximum precipitation value is the same (p = 1 when pa= 1). This simple formula
shows that a wet‐days percentile p is linearly linked to the all‐days percentiles pa.

By definition, the wet‐days quantile Q is equal to the all‐days quantile Qa for percentiles where they are both
defined:

∀ pa ∈ [fd,1],Q( p) = Qa (pa) (11)

We now consider a change between the two time periods, 1 and 2, of the wet‐days precipitation distribution and its
quantilesQ: ΔQ=Q2 − Q1, where Δ denotes again the change. For a fixed wet‐days percentile p, ΔQ is related to
the change of the all‐days rank and quantile intensity, but also to the change in dry‐days frequency. Rewriting with
our notations the Equation A7 from the appendix of Schär et al. (2016) gives:

ΔQ( p) = ΔQa (pa) +
Δfd
1 − fd

(1 − pa)
∂Qa,2
∂pa

(12)

We would like to express analytically the slope of the quantile curve ∂Qa,2
∂p , with the Weibull model developed

earlier. Thus, we come back to the slope of the wet‐days quantiles, by using Equation 11 and the chain rule:

Figure 2. The relative change between 1950–1980 and 1990–2020 of the all‐days precipitation mean x̄, decomposed in its different contributions, from the changes of
dry days frequency fd and the wet‐days mean μ, the latter further decomposed into contributions fromWeibull two parameters, α and β. Every map has the same scale for
the color‐map. The hatches show the zones where the changes are not significant, with bootstrap test at 90% confidence level.
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∂Qa,2 (pa)
∂pa

=
∂Q2( p)
∂pa

=
∂Q2( p)

∂p
∂p
∂pa

Since the percentiles p and pa are linearly linked,
∂p
∂pa
= 1
1− fd

=
1− p
1− pa

, we get the following relationship between the
two quantiles slopes:

(1 − pa)
∂Qa,2
∂pa

= (1 − p)
∂Q2
∂p

Thus, Equation 12 becomes:

ΔQ( p) = ΔQa (pa) +
Δfd
1 − fd

(1 − p)
∂Q2
∂p

(13)

Finally, we can apply the general formula in Equation 13 to a Weibull distribution of shape parameter α and scale
parameter β. Putting all the terms depending on the wet‐days percentile p on the same side, it yields:

ΔQa (pa) = ΔQ( p) −
Δfd

(1 − fd)
β2
α2
[ln(

1
1 − p

)]

1/α2 − 1

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
distorting term

(14)

This equation shows that the quantile trends in all‐days can differ from the wet‐days trends due to the change of
precipitation occurrence, which acts as a weight in front of a distorting term (underlined by a curly brace in
equation Equation 14). Note that the distorting term is growing with p and its form changes with the shape
parameter α, giving even larger additive trends for the heavy precipitation percentiles as α is small. Note that in
the limit case where α→ 1, this distorting term becomes a shift of constant value β2: it is not anymore distorting
the wet‐days trend curve.

5.3. Modified Regimes for All‐Days Quantile Trends

On historical data, it is important to quantify when and where the change of occurrence is large enough, compared
to the wet‐days quantile trends, to create relevant changes on the all‐days quantile curves. We also want to analyze
which percentiles' all‐days trends will be the most impacted by Δfd. We thus need to compare the Δfd term to the
ΔQ(p) term, in Equation 13.

The all‐days trend is given by the wet‐days trend if and only if, ΔQa(pa) ≈ ΔQ(p) that is,

|ΔQ( p)|≫
⃒
⃒
⃒
⃒
Δfd
1− fd

β2
α2[
ln( 1

1− p)]
1/α2 − 1

⃒
⃒
⃒
⃒. At the first order, it is true if and only if:

⃒
⃒
⃒
⃒
∂Q
∂α
( p)Δα +

∂Q
∂β
( p)Δβ

⃒
⃒
⃒
⃒≫

⃒
⃒
⃒
⃒
⃒

Δfd
1 − fd

β
α
[ln(

1
1 − p

)]

1/α− 1
⃒
⃒
⃒
⃒
⃒

where we noted α = (α1 + α2)/2 ≈ α2 and similarly for β. Let's look whether at least one of the two left‐hand side
terms is dominant over the term in Δfd. The term due to the change of the scale parameter of the wet‐days dis-

tribution,
⃒
⃒
⃒
∂Q
∂β ( p)Δβ

⃒
⃒
⃒ , dominates over the change of occurrence term for percentiles p such as:

⃒
⃒
⃒
⃒ln(

1
1 − p

)

⃒
⃒
⃒
⃒≫

⃒
⃒
⃒
⃒
Δfd
1 − fd

β
Δβ

1
α

⃒
⃒
⃒
⃒. (15)

This is verified at least for rank a rank p < 1 since limp→1 ln( 1
1− p ) = +∞. This independence of the maximum

precipitation event trend from the precipitation occurrence was to be expected from Equation 10: p= 1 and pa= 1
both describe the same event in wet‐days and all‐days. In addition, since the function p → ln( 1

1− p ) is strictly
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growing on [0,1] up to infinity, there exists a percentile plim,Δβ above which the function becomes larger
than | Δfd1− fd

β
Δβ|

1
α.

∃plim,Δβ ∈ [0,1],
⃒
⃒
⃒
⃒ln(

1
1 − plim,Δβ

)

⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒
Δfd
1 − fd

β
Δβ

1
α

⃒
⃒
⃒
⃒. (16)

Thus, quantiles of ranks between plim,Δβ and p = 1 (the maximum precipitation event) can be considered as not
impacted by the change of dry‐days.

As for the term due to the change of the shape of the wet‐days distribution, it is only dominant over the change of
occurrence term for percentiles p such as:

⃒
⃒
⃒
⃒ln(

1
1 − p

) ln(ln
1

1 − p
)

⃒
⃒
⃒
⃒≫

⃒
⃒
⃒
⃒
Δfd
1 − fd

α
Δα

⃒
⃒
⃒
⃒. (17)

The left‐hand side function is strictly growing on [1 − e− 1, 1] and tends to infinity at 1, thus there also exists a
percentile rank plim,Δα above which this term becomes larger than |

Δfd
1− fd

α
Δα|.

These two limit percentiles, which we will call plim,Δα and plim,Δβ, can be inverted either analytically or
numerically (e.g., using the segment or tangent methods).

On ERA5 precipitation data, the resulting percentile plim,Δα is very high in both Europe and the Mediterranean
(mostly above 95%, not shown) which means that the term in Δα is almost never dominant compared to the one in
Δfd for the all‐days trend ΔQa(pa).

On the other hand, the limit percentile plim,Δβ can reach lower values and has more spatial variability (see
Figure 3). For the Mediterranean, plim,Δβ is very large (close to 100%). Thus, for the great majority of percentile
ranks in the Mediterranean, the all‐days trends are mainly due to the decrease of dry‐days frequency and not to a
change of intensity when it rains. This is consistent with the low statistical significance of Δα and Δβ over the
Mediterranean on ERA5 data, while Δfd is strong and significant.

Figure 3. Limit percentiles plim,Δβ after which the impact of the precipitation occurrence trend can be neglected for a wet‐days
quantile trends, thanks to the large trend of Weibull parameter β. The thin red contour denotes the value of 50%.
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For most of central and north Europe (aside of the Scandinavia), plim,Δβ reaches much lower values: it is below
50% on about half of these regions' surface, and can go as low as 10%. Thus, in these regions, the influence of the
change of dry‐days frequency can be neglected compared to the change of the wet‐days scale parameter, for wet‐
days percentiles larger than plim,Δβ ≈ 50%.

Let us now study the all‐days trend curves, and how the all‐days categories can differ from the wet‐days’ in the
case of a strong change of occurrence. Figure 4 displays three typical cases, depending on the sign of the
occurrence change.

It shows that in regions where the precipitation occurrence increases strongly enough, some locations with U‐
shape wet‐days regime can become “all‐increase” all‐days regime (provided that the Δfd term is large
enough), while the wet‐days “all‐increase” trends can be even stronger. Similarly, wet‐days “all‐decrease” will
merge with “reversed U‐shape” to give a new all‐days “reversed U‐shape.” Thus, only two main regimes could
exist for such regions in all‐days distribution: “all‐increase” and “reversed U‐shape.”

Figure 4. Illustration of the influence of the dry‐days frequency term on the all‐days quantile trend curves, for the four categories, for different values of the dry‐days
frequency change Δfd: Δfd= − 5% (a), Δfd= 0% (b), Δfd= 5% (c). The values of the wet‐daysWeibull parameters (α, β, Δα and Δβ) are the same for all the subplots and
are given on the top row, and are synthetic.
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In regions where the precipitation occurrence decreases strongly (like in the Mediterranean), the opposite occurs:
the “all‐increase” wet‐days regime will disappear in favor of an all‐days “U‐shape” regime, while wet‐days U‐
shape's inversion percentile will become even larger in all‐days. Similarly, the “reversed U‐shape” will merge
with the “all‐decrease” category. Thus, only two all‐days regimes would be expected in regions with a strong
decrease of fd: “U‐shape” and “all‐decrease.”

Therefore, we expect that the Mediterranean all‐days quantile trend curves will be mainly due to the increase of
dry‐days frequency, leading to a “all‐decrease” category, different from the wet‐days non‐significant categories.

In opposition, for most of northern Europe, all‐days quantile trend curves are expected to be very similar to the
wet‐days’, as the influence of Δβ is dominant over the change of dry‐days there.

We can check this theoretical conclusion again on the all‐days categories maps. We can naturally define an
extension of the detection algorithm from wet‐days quantile curves (as presented in Section 3) to all‐days
quantiles curves. It consists in computing the all‐days quantile trends (from percentiles pa ∈ [0, 1]) and then
applying the algorithm only the right part of the curve: only on the equivalent wet‐days percentiles pw corre-
sponding to pa ∈ [fd, 1], with fd the dry‐days frequency of the reference period (1950–1980). This all‐days
detection algorithm enables to focus on the rainy quantiles, nevertheless incorporating the change of dry‐days
frequency.

Figure 5 shows the results for the all‐days category map, and the already shown wet‐days category map. The maps
are put side by side to better highlight the differences due to the change of dry‐days frequency, which are as we
predicted above. In terms of spatial pattern, the overall North–South pattern of all‐days category map is even
clearer than the wet‐days’, and the map is overall smoother. In all‐days categories, there is a continuous transition
in latitude, from “all increase” in the North to “all decrease” in the South, and “U‐shape” or “Mediterranean
paradox” transition zone in between. Thus, the Mediterranean paradox is found in this transitional zone between
the wetting in northern Europe (due to the increase of both precipitation intensity and occurrence) and the strong
drying in the Mediterranean (due to the decrease of occurrence).

The significance of the wet‐days categories is associated to the one of the Weibull scale parameter change Δβ,
while we consider all‐days categories as significant when either Δβ or Δfd are significant. The significance results
in Figure 5 highlight the fact that the signal of precipitation change in the Mediterranean in the last 70 years is not
due to the change in wet‐days distribution, but to the decrease of the dry‐days frequency (which impacts the whole
all‐days distribution).

Figure 5. Category maps for the 1950–1980 and 1990–2020 periods. As before, green corresponds to “all quantiles intensify” category, red to “all quantiles decrease”,
orange to “U‐shape” and blue to “reversed U‐shape”, while points whose category was unclear are in gray. White designates desert location (less than 2% of wet‐days).
The hatches on the left figure (resp. right figure) denote the location where neither Δα nor Δβ (resp. neither Δα nor Δβ nor Δfd) are significant through a bootstrap test, at
a confidence level of 90%.
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6. Conclusion
Climate change is known to impact greatly the Mediterranean region, which overall becomes warmer and drier,
while the effects on extreme precipitation is still quite debated on historical data (Ali et al., 2022). In this study we
aimed at better understanding how the strong trends of drying of the Mediterranean can influence the distribution
of precipitation, all‐together with the change of the whole wet‐days distribution itself (from the low and medium
percentiles to the most extreme precipitation).

Using the ERA5 reanalysis, we studied the evolution of the wet‐days precipitation distribution in the recent past,
since the 1950s. We showed that it could evolve in four different regimes, defined on the quantiles trends curves:
“all precipitation quantiles intensify,” “all precipitation quantiles decrease,” “U‐shape” and “reversed U‐shape.”
The map of the four regimes computed over Europe and the Mediterranean shows a strong contrast between these
two regions. While in northern Europe all quantiles are intensifying with a clear and robust signal, the Medi-
terranean's regimes are shared between a dominant “U‐shape” regime mixed with “all quantiles decrease,” but are
overall more spotty due to strong natural variability. This suggests that a climate change signal and its impact on
the wet‐days precipitation distribution, shift or distortion, have not (or not yet) emerged in the Mediterranean
region, contrary to northern Europe.

As for the map of regimes for the all‐days distribution, it shows a clearer signal with latitude, from the Medi-
terranean (“all decrease”) with a smooth transition (through a “U‐shape” regime) to northern Europe (“all in-
crease” regime). The greater spatial uniformity of the all‐day regime map in the Mediterranean comes from the
stronger and more robust signal of dry‐days frequency change, which dominates the all‐day distribution trends.

By modeling the wet‐days distribution with a Weibull law, we were able to reduce the information of the quantile
trends to just two parameters, a scale and shape parameters, and their changes (representative of the precipitation
distribution shift and distortion respectively). The categorization in four regimes can be estimated directly from
the ratio and signs of the relative changes of the two Weibull parameters, as can be done for the percentile of
inversion, when it exists. A statistical significance test on the change of the Weibull parameters confirms that a
signal has emerged in Europe, with a strong increase of the scale parameter, that is, a shift of the whole distri-
bution to more intense precipitation, without distortion. In the Mediterranean, only a few small regions have
significant change of scale or shape parameter, reinforcing the argument that a climate change signal on wet‐days
has not yet emerged from natural variability.

Coming back to the whole distribution (including dry‐days), we quantified how much some all‐days important
variables, such as the trends of the annual mean or of quantiles, are influenced by both the change of wet‐days
distribution and of dry‐days frequency (the latter significantly increases in the Mediterranean but decreases in
northern Europe). The two effects can add up (as for the all‐days mean in most of northern Europe) or coun-
terbalance each other (as in southern Italy or in Poland).

The resulting all‐days category map shows a clearer signal in latitude than the wet‐days one: there is mostly “all
precipitation quantiles intensify” in northern Europe, then a transition with “U‐shape” in a thin band of central
Europe, and finally the“all precipitation quantiles decrease” regime in most of the Mediterranean. Note that the so
called Mediterranean paradox, that is, “U‐shape” regime in all‐days, is thus not present in most of Mediterranean
region, while it was dominant over this region when only wet‐days were considered.

One of the key findings of the paper is that the change of dry‐days frequency is predominant for the all‐days trends
of most quantiles in the Mediterranean, while in northern Europe its effect can be neglected compared to the
strong increase of the Weibull scale parameter, for all quantiles with wet‐days rank above about 50%.

In a nutshell, the framework developed in this study establishes a connection between changes in wet‐days
precipitation and a few critical parameters that capture the shift and distortion of the precipitation distribution,
as well as changes in precipitation occurrence. It has the potential to be employed in different geographical re-
gions and time spans. In an upcoming publication, we intend to apply this framework to the future climate
projections for the 21st century, in order to have a stronger and more robust signal over the Mediterranean. It
would also enable to detect the year of emergence of the signal. Another potential application of this framework is
the study of the physical processes that cause the observed changes, both from large‐scale and local effects.
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Appendix A: Influence of the Time Period
In Figure A1, we can see the wet‐days category maps computed for different time periods, covering the 1950–
2020 periods.

• 1950–1970 versus 2000–2020
• 1950–1975 versus 1995–2020
• 1950–1980 versus 1990–2020
• 1950–1985 versus 1985–2020

Figure A1. Category maps for wet‐days quantile trends computed for different couples of time periods over 1950–2020. The
quantile trends values leading to this map have been processed by a smoothing window of nine points. As before, green color
corresponds to “all quantiles intensify” category, red to “all quantiles decrease”, orange to “U‐shape” and blue to “reversed
U‐shape.”
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At a given location, the category of the reference period is considered as robust if at least three of the four pairs of
periods give the same category. This criterion is used to define both for wet‐days and all‐days category's
robustness, which is represented by the gray hatches on Figure A2.

On Figure A2 we see that both the wet‐days and all‐days category map are very robust with the time periods, over
the northern part of Europe. However, in the Mediterranean, most places' categories are not as robust, especially
when at the frontier between different categories. Overall, the North–South pattern of all‐days and wet‐days
categories is robust to the time periods considered.

Appendix B: Comparison of Distribution Models for ERA5 Precipitation
There is no a priory clear choice for a parametric model for the whole wet‐days distribution of daily precipitation
(above threshold, here 1 mm/day). The choice of a particular model may depend a lot on the region considered, on
the origin of the data (station data, spatial interpolation from stations, satellite data, reanalysis, or climate pro-
jections), on its spatial and temporal resolution, etc. We have therefore tested on ERA5 daily precipitation data, a
list of the most common models (as well as the distribution from (Naveau et al., 2016), called Naveau in the
following). To compare the quality of the different models, we used two goodness‐of‐fit estimators, computed on
cumulative distribution functions: Kolmogorov‐Smirnov (a L1 distance) and Cramer von Mises (a L2 distance).
When a location parameter was needed, we set it at the wet‐days threshold (1 mm/day).

The inference is done on the period 1950–1980, pulling all wet‐days of a given location together, irrespective of
their seasonal occurrence. We do not make the assumption of equal distribution of wet‐days precipitation across
season; we simply disregard the potential seasonal variation of the parameters.

Figure A2. Category maps for the 1950–1980 and 1990–2020 periods. As before, green corresponds to “all quantiles intensify” category, red to “all quantiles decrease”,
orange to “U‐shape” and blue to “reversed U‐shape”, while points whose category was unclear are in gray. White designates desert location (less than 2% of wet‐days).
The gray hatches denote places where the category detection is not very robust with regard to changes in the periods considered (cf. Appendix A).
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We found that in average, the best distribution for the Mediterranean region was the Naveau law, followed by the
Weibull law and the Gamma law (Figure B1). As the Naveau model has more complexity (three parameters) than

what we need to capture the quantile trends regimes, we decided not to select this model. We compared Weibull
and Gamma laws pixel‐wise across the whole Europe and Mediterranean. The ratio of the fitting error of Weibull
versus Gamma laws shows that the Weibull model is more suitable than Gamma law, in most of the Mediter-
ranean domain. We therefore choose the Weibull law for our model.

Once we fitted the Weibull law on a time serie and that we got its optimal fit parameters, we used the usual
Kolmogorov‐Smirnov distance as an adjustment test: if this distance is “small enough”, the fit is accepted.
According to empirical tables, for a confidence level of 95%, the Kolmogorov‐Smirnov distance is considered
small enough if falling below 1.36/

̅̅̅̅
N

√
, where N is the number of data points, as far as N > 35 (which is largely

the case since we fit Weibull on daily data on several decades). The mask of where the Weibull fit doesn't pass the
adjustment test is shown by hatches on Figure B1. It shows that Weibull is indeed an acceptable model for most of
the domain (except for some Mediterranean coastal areas and sea area in the Atlantic west of Portugal).

Figure B1. (a) Goodness‐of‐fit estimator for different wet‐days distribution models in the Mediterranean region (as defined by the IPCC) on 1950–1980. Note that we
used a scale factor for the Kolmogorov–Smirnov estimator, which was much smaller than Cramer von Mises estimator. In the x‐axis, the number in parentheses is the
number of parameters of the fit. (b) Map of the ratio of errors (here Cramer von Mises goodness‐of‐fit) between Gamma and Weibull models, across the whole domain,
for the same period. In green are all the location where Weibull model is better suited for the data than Gamma. Black hatches show the locations where the adjustment
test of the Weibull model fails, with a confidence level of 95%.
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Appendix C: Weibull Parameters Values and Uncertainties
Figure C1 shows the values of the Weibull parameters for the wet‐days distribution of ERA5 precipitation data,
their trends and statistical significance (computed by a bootstrap test, as explained in Appendix E) and the un-
certainties of the fit.

The uncertainties on the fit were quantified by the standard errors of each parameter, estimated through the
approximate normality of the log‐likelihood function, as presented in Coles et al. (2001), chapter 2.6. Though the
values of a precipitation time serie are not independent and identically distributed, this method gives us an order of
magnitude of the fit uncertainties. In practice, we used the Python package Reliability Reid (2022) to compute the
standard error of each parameter.

We then checked if the standard errors on α and β parameters could change the category deduced by diagonal
separation. More precisely, we looked at whether the four points around (

Δβ
β ,

Δα
α ) that is, (Δββ ,

Δα ± 2σα
α ) and

(
Δβ ± 2σβ

β , Δαα ) , lie in the same quadrant of theWeibull phase space. If the fit errors make the quadrant change, then
we consider that the diagonal categorization is not robust to the inference uncertainty, for this location.

Figure C1. Results for the Weibull parameters fitted on ERA5 wet‐days precipitation distribution. Top row: Weibull shape parameter α and scale parameter β on the
period 1950–1980. Middle row: absolute changes between 1950–1980 and 1990–2020. The hatches denote the location where the change is not significant through a
bootstrap test, at a confidence level of 90%. Bottom row: standard error of the Weibull parameters, on the period 1950–1980, estimated through the approximate
normality of the log likelihood.
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This happens for pixels which lie close to the diagonals and the center on the Weibull space, as shown in
Figure C2. When this figure is compared to 5, it becomes clear that the places where the uncertainty on fit pa-

rameters interfere with the diagonal category detection are the places where neither Δα nor Δβ is significant, that
is, the locations where the wet‐days categories are considered are not significant. Therefore, the fit uncertainties
do not impact the results presented in this article.

Appendix D: Weibull Estimate of Mean Precipitation Trends
Here, we check how well the first order approximation of Equation 9 and Weibull model enable to capture the
change in all‐days means. We compare the all‐days mean (computed directly from data) to the sum of the fd, α and
β terms in Equation 9, in Figure D1. This figure shows that the Weibull model for the intensity plus the pre-
cipitation occurrence capture most of the features of the all‐days mean.

Figure C2. (a) Categories plotted for locations where diagonal separation method is robust with regard to the inference
uncertainties. (b) These locations are plotted in the Weibull phase space.

Figure D1. Relative change of all‐days mean Δx̄x̄ , between 1950–1980 and 1990–2020, computed directly on data, compared to estimated from theWeibull model, that is,
the three contributions from fd, α and β.
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Except for the lower latitudes where the error can reach 10%, the difference between the direct computation and
the sum term is indeed only of a few percent, in Europe and the Mediterranean.

Appendix E: Statistical Significance Test
We are interested in their statistical significance of different statistics computed on the data, such as the quantile
trends or the Weibull parameters trends. As the precipitation data in the Mediterranean region is spatially and
temporally correlated, we perform a bootstrap test. It consists in comparing the trend of the real data with the
trends that would be obtained on a large number (typically a hundred) of artificial samples presenting a spatial and
temporal variability similar to our original data. Each sample is an artificial time serie created by pulling random
days (and the corresponding precipitation map over the domain) from our 1950–2020 original data. The random
pulling is done with replacement. The artificial time series created have the same length as the original one.

Since the dates have been mixed in the artificial samples, their average linear trends are zero, but their variability
gives us an estimation of the noise in our original data. The trend of the original data is said significant at a given
level, for example, 90%, if the original data lies within the 10% more extreme values of the bootstrap distribution,
meaning that we could have the original data “by chance” from this random distribution only with low probability
(less than 10%).

Appendix F: Inversion Percentile
When the regime is a “U‐shape”, the quantile curve has negative trends up to a certain percentile rank, which we
will define as the “inversion percentile.” After that rank, almost all the following percentiles have positive trends.
We can get an analytical expression for the inversion percentile pinv with the Weibull model, by solving the
equations ΔQ(pinv) = 0 for pinv > 0. This results in the following expression:

pinv = 1 − exp(− (
β2
β1
)

α1α2
α2 − α1

) (F1)

Since the changes of α and β are small for precipitation in ERA5 data (about a few percents), we can simplify this
expression. Let's write Δα = α2 − α1 and α = (α2 + α1)/2, and similarly for β, then we have

β2
β1

≈ 1 + Δβ
β and

α1α2
α2 − α1

≈ α2
Δα, and we can simplify the exponent:

ln(
β2
β1

α1α2
α2 − α1

) =
α1α2

α2 − α1
ln(

β2
β1
) ≈

α2

Δα
ln(1 +

Δβ
β
) ≈

α2

Δα
Δβ
β

where the last approximation is done by taking the development at the first order in Δβ/β. We finally get this
expression for the inversion percentile:

pinv ≈ 1 − exp(− exp(
Δβ
β

α2

Δα
)) (F2)

Geometrically speaking, this means that at first approximation, the angle in the Weibull parameter space

(X,Y) = (
Δβ
β ,

Δα
α2 ) gives the value for the inversion percentile pinv.

We can also derive a lower and upper limit for the inversion percentile. Indeed, the inversion percentile is properly
defined only in the case where the change of α dominates (U‐shape or reversed U‐shape), that is, when |Δαα2

β
Δβ|≫ 1.

The limit cases for this to be true would be when the change in α doesn't dominate anymore, that is, when Δαα2
β
Δβ is

close to − 1 or 1. Those two cases give the minimal and maximal values of pinv for a U‐shape according to the
Weibull law are: p0,min ≈ 1 − e− e− 1 ≈ 30% and p0,max ≈ 1 − e− e1 ≈ 93%. These values are consistent with the
range of inversion percentile observed on the reanalysis (not shown).
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Data Availability Statement
The hourly precipitation variable in ERA5 reanalysis Hersbach et al. (2018) was downloaded from the Copernicus
Climate Change Service (C3S) accessed in July 2022. It is freely available on C3S website. The results contain
modified Copernicus Climate Change Service information 2020. Neither the European Commission nor ECMWF
is responsible for any use that may be made of the Copernicus information or data it contains.
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