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Abstract
Let 𝐹 be a diagonal cubic form over ℤ in six variables.
From the dual variety in the delta method of Duke–
Friedlander–Iwaniec and Heath-Brown, we uncondi-
tionally extract a weighted count of certain special
integral zeros of𝐹 in regions of diameter𝑋 → ∞. Heath-
Brown did the same in four variables, but our analysis
differs and captures some novel features. We also put
forth an axiomatic framework for more general 𝐹.
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1 INTRODUCTION

Let 𝐹 ∈ ℤ[𝒙] = ℤ[𝑥1, … , 𝑥𝑚] be a cubic form in𝑚 ⩾ 4 variables. Let 𝑉 be the hypersurface 𝐹 = 0
in ℙ𝑚−1

ℚ
. Let 𝑤∶ ℝ𝑚 → ℝ be a smooth, compactly supported function. Let Supp𝑤 be the closure

of the set {𝒙 ∈ ℝ𝑚 ∶ 𝑤(𝒙) ≠ 0} in ℝ𝑚. Assume that 𝑉 is smooth and (for convenience) that 𝟎 ∉
Supp𝑤. For reals 𝑋 ⩾ 1, let

𝑁𝐹,𝑤(𝑋) ∶=
∑

𝒙∈ℤ𝑚∶𝐹(𝒙)=0

𝑤(𝒙∕𝑋). (1.1)

Let Υ be the set of vector spaces 𝐿 ⊆ ℚ𝑚 over ℚ of dimension ⌊𝑚∕2⌋ with 𝐹|𝐿 = 0. The “Hardy–
Littlewood model” for 𝑁𝐹,𝑤(𝑋) can fail via Υ if 𝑚 ⩽ 6.† But based on [17, Conjecture 2], [11, 24,
Appendix], [21], and so on, one may conjecture

𝑁𝐹,𝑤(𝑋) −
∑

𝒙∈ℤ𝑚∶𝒙∈
⋃
𝐿∈Υ 𝐿

𝑤(𝒙∕𝑋) = (𝑐𝐹,𝑤 + 𝑜𝑋→∞(1)) ⋅ 𝑋
𝑚−3(log𝑋)𝑟−1+𝟏𝑚=4 (1.2)

† For singular 𝑉, a similar failure can occur for larger𝑚; see [4] for a nice example with𝑚 = 8.
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for a certain predicted constant 𝑐𝐹,𝑤 ∈ ℝ and integer 𝑟 ⩾ 1, where 𝑟 = 1 if 𝑚 ⩾ 5. Here, 𝑟 is the
rank of the Picard group of 𝑉.
For further discussion and references on (1.2), see [3, §2] or [25, §6.5]. The natural analog of (1.2)

for rational points is closely related to (1.2), and is, in fact, equivalent when𝑚 ⩾ 5, but the precise
sieve-theoretic relationship is delicate when𝑚 = 4; cf. [14, paragraph preceding Corollary 2] and
[14, Theorem 8 vs. Corollary 2] on quadrics.
In the present paper, we seek to organically detect, within the delta method of [6, 14], the locus⋃
𝐿∈Υ 𝐿 featured in (1.2). In the deltamethod, as in [20]’s circlemethod, one averages over numera-

tors to a given denominator (modulus), and often then invokes Poisson summation. Set𝑌 ∶= 𝑋3∕2
as on [15, p. 676]; then(

1 + 𝑂𝐴
(
𝑌−𝐴

))
⋅𝑁𝐹,𝑤(𝑋) = 𝑌

−2
∑
𝑛⩾1

∑
𝒄∈ℤ𝑚

𝑛−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛) (1.3)

(for all 𝐴 > 0) by [14, Theorem 2, (1.2), up to easy manipulations from §3], where

𝐼𝒄(𝑛) ∶= ∫𝒙∈ℝ𝑚 𝑑𝒙𝑤(𝒙∕𝑋)ℎ(𝑛∕𝑌, 𝐹(𝒙)∕𝑌
2)𝑒(−𝒄 ⋅ 𝒙∕𝑛) (1.4)

for a certain fixed smooth function ℎ∶ (0,∞) × ℝ → ℝ usually left in the background (see [15,
(2.3)] for the precise definition of ℎ), and where

𝑆𝒄(𝑛) ∶=
∑

1⩽𝑎⩽𝑛∶ gcd(𝑎,𝑛)=1

∑
1⩽𝒙⩽𝑛

𝑒𝑛(𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙). (1.5)

Here, 𝒄 ⋅ 𝒙 ∶= 𝑐1𝑥1 +⋯ + 𝑐𝑚𝑥𝑚, and in 𝑆𝒄(𝑛), the variable 𝒙 runs over 1 ⩽ 𝑥1, … , 𝑥𝑚 ⩽ 𝑛. See
Proposition 5.1 for the basic analytic properties of 𝐼𝒄(𝑛).
Given 𝒄 ∈ ℤ𝑚, the sum 𝑆𝒄(𝑛) is multiplicative in 𝑛, and roughly governed by the solutions to

𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0 over ℤ∕𝑛ℤ. Let 𝑉𝒄 be the intersection 𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0 in ℙ𝑚−1ℚ
. There is a clas-

sical discriminant polynomial 𝐹∨ ∈ ℤ[𝒄] associated to the family 𝒄 ↦ 𝑉𝒄. The equation 𝐹∨(𝒄) = 0
cuts out the projective dual variety 𝑉∨ of 𝑉. See §2 for details on 𝐹∨, 𝑉∨.
It is natural to analyze the right-hand side of (1.3) separately over 𝐹∨(𝒄) ≠ 0 and 𝐹∨(𝒄) =

0. In another paper [28], we conditionally address 𝐹∨(𝒄) ≠ 0 for certain 𝐹, 𝑤. In the present
(self-contained) paper, we focus on 𝐹∨(𝒄) = 0. From this locus in (1.3), our main theorem
unconditionally isolates

⋃
𝐿∈Υ 𝐿, for certain 𝐹:

Theorem 1.1. Suppose that 𝐹 is diagonal and𝑚 ∈ {4, 6}. For 𝑌 = 𝑋3∕2 as above, we have

𝑌−2
∑

𝒄∈ℤ𝑚∶𝐹∨(𝒄)=0, 𝒄≠𝟎
∑
𝑛⩾1

𝑛−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛) = 𝑂𝐹,𝑤,𝜖(𝑋
𝑚∕2−1∕4+𝜖) +

∑
𝐿∈Υ

∑
𝒙∈𝐿∩ℤ𝑚

𝑤(𝒙∕𝑋). (1.6)

For 𝑚 = 4, Theorem 1.1 follows from [15, Lemmas 7.2 and 8.1], with a better error of
𝑂𝐹,𝑤,𝜖(𝑋

3∕2+𝜖). As we will explain in §8, the case𝑚 = 6 seems to present new difficulties, perhaps
most easily resolved using our new, more geometric, strategy. But [15] does bound the left-hand
side of (1.6) by 𝑂𝐹,𝑤,𝜖(𝑋3+𝜖) for 𝑚 = 6, giving us a good foundation to build on. In view of [13],
one might also hope to adapt our results to function fields.†

†Very recently, our work has largely been extended to function fields [1].
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Ourmain results assume that𝐹 is diagonal, but we do also discuss nonsingular𝐹 to a nontrivial
extent. In particular, we will isolate explicit technical ingredients (listed in Remark 1.6) that — if
true more generally — would allow one to generalize Theorem 1.1.
If 2 ∣ 𝑚 (as in Theorem 1.1), the set Υ is known to be finite for general reasons (recalled in §3

below). Furthermore, we can relate (1.6) to (1.2) by inclusion-exclusion:∑
𝐿∈Υ

∑
𝒙∈𝐿∩ℤ𝑚

𝑤(𝒙∕𝑋) = 𝑂𝐹,𝑤(𝑋
𝑚∕2−1) +

∑
𝒙∈ℤ𝑚∶𝒙∈

⋃
𝐿∈Υ 𝐿

𝑤(𝒙∕𝑋).

For each 𝐿 ∈ Υ, if we define 𝜎∞,𝐿⟂,𝑤 as in (4.1), we also have (for all 𝐴 > 0)∑
𝒙∈𝐿∩ℤ𝑚

𝑤(𝒙∕𝑋) = 𝜎∞,𝐿⟂,𝑤𝑋
𝑚∕2 + 𝑂𝐿,𝑤,𝐴(𝑋

−𝐴). (1.7)

If 𝐹 is diagonal, Υ has an explicit classical description: see Proposition 3.6. In general, lin-
ear subvarieties of cubics are closely tied to the ℎ-invariant introduced by [8, 9]. (See [7,
Lemma 1.1] for a more general relationship.) In fact, the present §7 relies on a convenient choice
of “ℎ-decompositions of 𝐹” corresponding to the elements of Υ.
We believe that with enough work, the power saving 1∕4 in Theorem 1.1 could be improved. It

would be very interesting to go past 1∕2 for𝑚 = 4.
Theorem 1.1 has the following corollary, which we need for subsequent work [28].

Corollary 1.2. Let𝑚 = 6. Define 𝜎∞,𝐹,𝑤 ,𝔖𝐹 as in §6. Then, in the setting of Theorem 1.1,

𝑌−2
∑

𝒄∈ℤ𝑚∶𝐹∨(𝒄)=0

∑
𝑛⩾1

𝑛−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛) = 𝑂𝐹,𝑤,𝜖(𝑋
2.75+𝜖) + 𝜎∞,𝐹,𝑤𝔖𝐹𝑋

3 +
∑
𝐿∈Υ

𝜎∞,𝐿⟂,𝑤𝑋
3.

Proof. Combine (1.6) (on 𝒄 ≠ 𝟎) with (6.5) (on 𝒄 = 𝟎). Note that𝑚∕2 = 𝑚 − 3 = 3. □

Theorem 1.1 and Corollary 1.2 are completely unconditional. When 𝑚 = 6 and 𝐹 is diagonal,
these results let us reformulate the conjecture (1.2) as a statement purely about cancelation in the
sum

∑
𝒄∈ℤ𝑚∶𝐹∨(𝒄)≠0

∑
𝑛⩾1 𝑛

−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛). A similar reformulation might be possible much more
generally. But at least when𝑚 = 4, subtleties in the constant 𝑐𝐹,𝑤 in (1.2) would likely demand a
recipe beyond “restriction to 𝐹∨ = 0” in (1.3).
Before proceeding, we make some convenient definitions. Let

𝑆♮𝒄(𝑛) ∶= 𝑛
−(1+𝑚)∕2𝑆𝒄(𝑛); (1.8)

then, in particular, 𝑛−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛) = 𝑛(1−𝑚)∕2𝑆
♮
𝒄(𝑛)𝐼𝒄(𝑛). The following is also convenient.

Definition 1.3. Given a vector space 𝐿 ⊆ ℚ𝑚 over ℚ, let 𝐿⟂ be the orthogonal complement of 𝐿
with respect to 𝒄 ⋅ 𝒙. Then, let Λ ∶= 𝐿 ∩ ℤ𝑚 and Λ⟂ ∶= 𝐿⟂ ∩ ℤ𝑚.

We now sketch the proof of Theorem 1.1. The proof starts generally, observing that 𝐹∨|𝐿⟂ = 0
for all 𝐿 ∈ Υ (see Proposition 3.1). Conversely, at least for diagonal 𝐹, most 𝒄’s on the left-hand
side of (1.6) are, in fact, linear, in the sense of the following definition.
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4 of 35 WANG

Definition 1.4. Call a solution 𝒄 ∈ ℤ𝑚 to 𝐹∨(𝒄) = 0 linear if 𝒄 ∈
⋃
𝐿∈Υ Λ

⟂.

We expect “typical” linear 𝒄’s to be the simplest. Proposition 3.1(2), which establishes a
vanishing baseline for the jets 𝑗∙𝐹∨ over

⋃
𝐿∈Υ 𝐿

⟂, thus inspires the following definition.

Definition 1.5. Call 𝐹∨ unsurprising if uniformly over reals 𝐶 ⩾ 1, the box [−𝐶, 𝐶]𝑚 contains at
most 𝑂𝜖(𝐶𝑚∕2−1+𝜖) points in the union of the following two sets:

1 ∶= {
𝒄 ∈ ℤ𝑚 ∶ 𝐹∨(𝒄) = 0

}
⧵
⋃
𝐿∈Υ

Λ⟂, 2 ∶=
{
𝒄 ∈

⋃
𝐿∈Υ

Λ⟂ ∶ 𝑗2
𝑚∕2−1

𝐹∨(𝒄) = 𝟎

}
. (1.9)

We prove (in §8) that when 𝐹 is diagonal, 𝐹∨ is unsurprising, so that if Υ ≠ ∅, then almost all
solutions to 𝐹∨ = 0 are linear with nonzero 2𝑚∕2−1-jet.† A weaker version of Definition 1.5, with
𝐶𝑚∕2−𝛿 in place of 𝐶𝑚∕2−1+𝜖, would suffice for qualitative purposes.
For the “least degenerate” linear 𝒄’s, Lemma 7.11 isolates an explicit positive bias

𝑆♮𝒄(𝑝
𝑙) =

[
𝐴𝑝𝑙 (𝒄) + 𝑂(𝑝

−𝑙∕2)
]
⋅ (1 − 𝑝−1) ⋅ 𝑝𝑙∕2 (1.10)

for most primes 𝑝, with 𝐴𝑝(𝒄) = 1 and 𝐴𝑝𝑙 (𝒄) ≪ 1. The resulting reduction in arithmetic com-
plexity of 𝑆𝒄(𝑛) lets us dramatically simplify

∑
𝒄∈Λ⟂ 𝑆𝒄(𝑛)𝐼𝒄(𝑛) by Poisson summation over various

individual residue classes 𝒄 ≡ 𝒃 mod 𝑛0Λ⟂ with 𝑛0 ≪ 𝑛∕𝑋 dividing 𝑛. When𝑚 = 6, wemust also
carefully separate 𝒄 = 𝟎 from 𝒄 ≠ 𝟎; we use Lemma 6.1 (decay of the singular series over large
moduli). Eventually, 𝜎∞,𝐿⟂,𝑤𝑋𝑚∕2 appears, yielding (1.6).
As the positivity of 𝑆𝒄(𝑛) for linear 𝒄’s might suggest, we do not need cancelation over 𝑛 in

(1.6). The deepest result we use on 𝐿-functions (when 𝑚 = 6) is the (purely local) Weil bound
for hyperelliptic curves of genus ⩽ 2. However, it might be possible to improve the error term in
Theorem 1.1 using deeper results on 𝐿-functions.
The following remark proposes axioms that would let us go beyond diagonal 𝐹.

Remark 1.6. In general, (1.6) holds, provided𝑚 ∈ {4, 6, 8} and (1)–(4) hold:

(1) 𝐹∨ is unsurprising (in the sense of Definition 1.5).
(2) Supp𝑤 ⊆ {𝒙 ∈ ℝ𝑚 ∶ det(Hess 𝐹(𝒙)) ≠ 0}.
(3) There exists a homogeneous polynomial𝑊 ∈ ℤ[𝒄], satisfying{

𝒄 ∈
⋃
𝐿∈Υ

Λ⟂ ∶ 𝑊(𝒄) = 0

}
⊆ {𝒄 ∈ ℤ𝑚 ∶ 𝑗2

𝑚∕2−1
𝐹∨(𝒄) = 𝟎}, (1.11)

such that uniformly over integers 𝐶, 𝑛 ⩾ 1, we have∑
𝒄∈[−𝐶,𝐶]𝑚∶𝐹∨(𝒄)=0, 𝑊(𝒄)≠0

𝑛−1
|||𝑆♮𝒄(𝑛)|||2 ≪𝜖 (𝐶𝑛)

𝜖
(
𝐶𝑚∕2 + 𝑛𝑚∕6

)
, (1.12)

∑
𝒄∈[−𝐶,𝐶]𝑚∶𝐹∨(𝒄)=0, 𝑊(𝒄)=0

𝑛−1∕2
|||𝑆♮𝒄(𝑛)|||≪𝜖 (𝐶𝑛)

𝜖
(
𝐶(𝑚−1)∕2𝑛1∕6 + 𝑛𝑚∕6

)
. (1.13)

†An amusing corollary is that the Gauss map 𝛾∶ 𝑉 → 𝑉∨ introduced in §2 can be far from surjective on ℚ-points, since
𝛾−1([𝒄]) ∩ 𝑉(ℚ)may be empty for a typical nonzero 𝒄 ∈

⋃
𝐿∈Υ 𝐿

⟂.
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 5 of 35

(4) In Lemma 7.11, the formula for 𝑆𝒄(𝑝) and upper bound for 𝑆𝒄(𝑝⩾2) remain true, provided that
𝑝 exceeds some constant depending on𝑚 and 𝐹.

(There could be alternatives to (3), but (3) would be convenient. See §5 and §8 for details.)

In Remark 1.6, we expect (4) to be themost tractable in general out of (1), (3), and (4). In fact, [1,
27] alreadymake progress on (4). Also, [22] could be helpful for (1), at least if𝑚 = 4. Furthermore,
the casewhere𝑚 = 8 and𝐹 is diagonalmight be fully accessible, andmight provide insight on sec-
ondary terms in the circle method. This would be similar in spirit to [12], where secondary terms
were obtained for quadrics in an even number of variables. The most mysterious axiom might be
(3), but it does at least hold for diagonal 𝐹, and could plausibly follow from some undiscovered
geometric stratification.

Proposition 1.7. Suppose that 𝐹 is diagonal, and𝑚 ⩾ 4 is arbitrary. Then, 1.6(3) holds.

Proof sketch. Let 𝑊 ∶= 𝑐1⋯ 𝑐𝑚. One can prove (1.12) and (1.13) using (5.2). (See [26, §7]; (1.12)
holds with 𝐶𝑚∕2 in place of 𝐶𝑚∕2 + 𝑛𝑚∕6.) Also, Observation 3.10 implies (1.11). □

Remark 1.8. It would be interesting to extend our analysis to𝑚 = 5, even just for diagonal 𝐹. See
[3, §3] for a discussion of the potentially infinite family of lines on 𝑉 ⊆ ℙ4 if 𝑚 = 5. Can one see
these lines via 𝑉∨ (cf. Proposition 3.1)? It is conceivable that for 𝑚 = 5, one might have to look
past the locus 𝐹∨ = 0 in (1.3), and perhaps include all 𝒄 for which 𝑉𝒄 has Picard rank ⩾ 2. The
“bias” philosophy behind (1.10) may shed some light here.

We now outline the rest of the paper.
§2 collects some classical algebraic geometry used as a black box in parts of §3.
§3 suggests a geometric backbone in (1.3) for the eventual harmonic detection of Υ.
§4 proves some identities to be used in §8 to obtain the expected “main terms” in (1.6).
§5 provides general upper bounds to be used at several points in §8.
§6 analyzes the 𝒄 = 𝟎 contribution in (1.3), while also proving Lemma 6.1.
§7 proves some new asymptotic formulas for 𝑆𝒄(𝑝𝑙) (see (1.10) and Lemma 7.11).
§8 uses Lemmas 6.1 and 7.11, plus results from §§3–5 and [15], to prove Theorem 1.1.

1.1 Conventions

We let disc(𝐹) denote the discriminant of 𝐹, so that disc(𝐹) ≠ 0 if and only if 𝑉 is smooth. We
always assume that 𝑉 is smooth, unless specified otherwise.
We define 𝟏𝐸 to be 1 if𝐸 holds, and 0 if𝐸 does not hold.We let 𝑒(𝑡) ∶= 𝑒2𝜋𝑖𝑡, and 𝑒𝑟(𝑡) ∶= 𝑒(𝑡∕𝑟).

Also, we use the following notation for integrals:

∫𝑋 𝑑𝑥 𝑓(𝑥) ∶= ∫𝑋 𝑓(𝑥) 𝑑𝑥, ∫𝑋×𝑌 𝑑𝑥 𝑑𝑦 𝑓(𝑥, 𝑦) ∶= ∫𝑋 𝑑𝑥
(
∫𝑌 𝑑𝑦 𝑓(𝑥, 𝑦)

)
.

We let 𝔼𝑏∈𝑆[𝑓(𝑏)] ∶= |𝑆|−1∑𝑏∈𝑆 𝑓(𝑏) (if 𝑆 is finite and nonempty).
If 𝐹 = 𝐹1𝑥31 +⋯ + 𝐹𝑚𝑥

3
𝑚, then we assume (after scaling 𝐹

∨ if necessary) that

𝐹∨ ∈ ℤ[𝒄] and gcd(coefficients of 𝐹∨) = (6𝑚)!𝐹1⋯𝐹𝑚. (1.14)
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6 of 35 WANG

For a vector space 𝑈, we let ℙ𝑈 denote the projectivization of 𝑈.
We let Hess 𝐹 = Hess 𝐹(𝒙) denote the usual𝑚 ×𝑚 Hessian matrix of 𝐹.
We let ℤ⩾0 ∶= {𝑛 ∈ ℤ ∶ 𝑛 ⩾ 0}. We let 𝜕𝑥 ∶= 𝜕∕𝜕𝑥; we let 𝜕𝒓𝒄 ∶= 𝜕

𝑟1
𝑐1
⋯ 𝜕

𝑟𝑚
𝑐𝑚

(for 𝒓 ∈ ℤ𝑚
⩾0
) and|𝒃| ∶= ∑

𝑖∈𝑆 𝑏𝑖 (for 𝒃 ∈ ℤ𝑆). We let

𝑗𝑟𝐹∨ ∶= (𝜕𝒓𝒄𝐹
∨)𝒓∈ℤ𝑚

⩾0
∶ |𝒓|⩽𝑟 (1.15)

denote the 𝑟-jet of 𝐹∨, recording all partial derivatives of 𝐹∨ of order ⩽ 𝑟.
We write 𝑓 ≪𝑆 g , or g ≫𝑆 𝑓, to mean “|𝑓| ⩽ 𝐵g for some real 𝐵 = 𝐵(𝑆) > 0.” We let 𝑂𝑆(g)

denote a quantity that is≪𝑆 g . We write 𝑓 ≍𝑆 g if 𝑓 ≪𝑆 g ≪𝑆 𝑓.
When making estimates, we think of𝑚, 𝐹, 𝑤 as fixed constants.

2 ALGEBRAIC GEOMETRY BACKGROUND

We do algebraic geometry in the language of schemes, with the symbols = and ⊆ interpreted
scheme-theoretically unless specified otherwise. We call a reduced, locally closed subscheme of
projective space over a field a variety. Ultimately, geometry lets us cut out subsets ofℤ𝑚, and count
points over finite rings, in rigorous ways (see, e.g., the key Lemma 7.11). Most of our work can be
interpreted classically, in terms of points over algebraically closed fields.
The rest of this section reviews the geometry of the gradient map

∇𝐹 = (𝜕𝐹∕𝜕𝑥1, … , 𝜕𝐹∕𝜕𝑥𝑚).

For diagonal 𝐹, a more explicit analysis is possible (see §3.2).
Since 𝑉 is smooth (and 3𝐹 = 𝒙 ⋅∇𝐹), the gradient ∇𝐹 defines a morphism [∇𝐹]∶ ℙ𝑚−1 →

(ℙ𝑚−1)∨. (We will often identify the dual projective space (ℙ𝑚−1)∨ with ℙ𝑚−1, using 𝑐1, … , 𝑐𝑚 as
projective coordinates.) The map [∇𝐹], known as the polar map of 𝑉, is finite surjective of degree
2𝑚−1, by dimension and intersection theory; cf. [10, p. 29]. Since ℙ𝑚−1 is smooth, [∇𝐹]must then
be flat (by “miracle flatness”).

Definition 2.1. Let 𝑉∨ ⊆ (ℙ𝑚−1
ℚ

)∨ be the scheme-theoretic image of 𝑉 under [∇𝐹].

Since 𝑉 is a smooth projective hypersurface, 𝑉∨ is the dual variety of 𝑉. Upon restricting [∇𝐹]
to 𝑉, we get the finite surjective Gauss map 𝛾∶ 𝑉 → 𝑉∨.
Here, 𝑉 is geometrically irreducible, so 𝑉∨ = im𝛾 must be too. Since 𝛾 is finite, 𝑉∨ must

therefore be a geometrically integral hypersurface, that is, the zero scheme of some absolutely
irreducible form 𝐹∨ ∈ ℚ[𝒄]. The definition of 𝑉∨ then implies that if 𝒄 ∈ ℂ𝑚 ⧵ {𝟎}, then 𝐹∨(𝒄) = 0
if and only if the projective scheme 𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0 over ℂ is singular.
(At least for diagonal 𝐹, one can explicitly compute 𝐹∨; see (3.3) in §3.2.)

Remark 2.2. There are many equivalent ways to define 𝑉∨. For example, 𝑉∨ is the locus of zeros
𝒄 of a certain polynomial disc(𝐹, 𝒄) in 𝑐1, … , 𝑐𝑚 and the coefficients of 𝐹; see, for example, [27,
Proposition 4.4]. It should also be possible to interpret𝑉∨ as a norm of𝑉 under [∇𝐹], in the sense
of [23, Tag 0BD2 ].

The polar map [∇𝐹∨]∶ ℙ𝑚−1 ⤏ ℙ𝑚−1 of 𝑉∨ is a rational map defined away from Sing(𝑉∨), the
set of singular points of 𝑉∨. (Here, Sing(𝑉∨) is a proper closed subset of 𝑉∨. It is known that 𝑉∨ is
singular, since deg𝐹 ⩾ 3; see, e.g., [27, Proposition 4.4].)
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 7 of 35

The reflexivity theorem says that (𝑉∨)∨ = 𝑉. The biduality theorem says that if [𝒙] ∈ 𝑉 and
[𝒄] ∈ 𝑉∨ are smooth points, then [∇𝐹(𝒙)] = [𝒄] if and only if [∇𝐹∨(𝒄)] = [𝒙]. (Both facts are on
[10, p. 30].) For us, 𝑉 is smooth, so biduality implies that the polar maps [∇𝐹], [∇𝐹∨] restrict to
inverse morphisms between 𝑉 ⧵ [∇𝐹]−1(Sing(𝑉∨)) and 𝑉∨ ⧵ Sing(𝑉∨).
It is known that deg𝐹∨ = 3 ⋅ 2𝑚−2 [10, p. 33, (1.47)].
Since [∇𝐹]∶ ℙ𝑚−1 → (ℙ𝑚−1)∨ is a finite surjective morphism of smooth varieties (and in par-

ticular, is generically étale), its ramification theory is well behaved. Following [23, Tag 0BWJ ],
let 𝑅[∇𝐹] be the closed subscheme of ℙ𝑚−1 cut out by the different ideal𝔇[∇𝐹] ⊆ ℙ𝑚−1 of [∇𝐹].
Following [23, Tag 0BW8 and Tag 0BWA ], let 𝐵[∇𝐹] be the norm of 𝑅[∇𝐹] (or equivalently, the
discriminant of [∇𝐹]). In our setting, 𝑅[∇𝐹] is an effective Cartier divisor in ℙ𝑚−1, and 𝐵[∇𝐹] is
thus an effective Cartier divisor in (ℙ𝑚−1)∨.
The points of 𝑅[∇𝐹] are precisely those 𝑥 ∈ ℙ𝑚−1 at which [∇𝐹] is unramified. Furthermore,

we have a set-theoretic equality 𝐵[∇𝐹] = [∇𝐹](𝑅[∇𝐹]).

Definition 2.3. Call 𝑅[∇𝐹] and 𝐵[∇𝐹] the ramification divisor and branch divisor of [∇𝐹], respec-
tively. Let 𝐻𝑅 ∈ ℤ[𝒙] and 𝐻𝐵 ∈ ℤ[𝒄] be homogeneous polynomials defining 𝑅[∇𝐹] in ℙ𝑚−1 and
𝐵[∇𝐹] in (ℙ𝑚−1)∨, respectively.

Since deg𝐹 ⩾ 3, one can show that 𝑅[∇𝐹] and 𝐵[∇𝐹] are nonempty, and thus hypersurfaces.
In fact, by [10, p. 29, Proposition 1.2.1], 𝑅[∇𝐹] = hess(𝑉), where hess(𝑉) denotes the subscheme
det(Hess 𝐹(𝒙)) = 0 of ℙ𝑚−1.

Proposition 2.4. Say we let 𝐹 vary over the locus disc(𝐹) ≠ 0. Then, one can choose 𝐹∨ and𝐻𝐵 to
be polynomials in 𝑐1, … , 𝑐𝑚 and the coefficients of 𝐹.

Proof. This is possible by standard “universal” constructions compatible with our definitions of
𝑉∨ and 𝐵[∇𝐹]. For 𝐵[∇𝐹], one can appeal to [23, Tag 0BD2 ]; norms respect base change (and thus
vary nicely in families). For 𝑉∨, see, for example, Remark 2.2. □

It is known that 𝑉 ⊈ hess(𝑉) [19, Lemma 1]. How about after applying [∇𝐹]?

Question 2.5. Is it necessarily true that 𝑉∨ ⊈ 𝐵[∇𝐹]?

Question 2.5 comes up in Proposition 3.1, but we happen to be able to sidestep it there.

3 MAXIMAL LINEAR SUBVARIETIES UNDER DUALITY

Fix a smooth cubic 𝑉∕ℚ as in §1. The reader only interested in diagonal 𝐹 can skim forwards to
§3.2, which explicitly analyzes Υ through the lens of 𝐹∨.

3.1 A preliminary general analysis

If 𝐿 ∈ Υ, then differentiating 𝐹 along 𝐿 implies 𝐿 ⟂ ∇𝐹(𝒙) for all 𝒙 ∈ 𝐿. So, the restriction 𝛾|ℙ𝐿 =
[∇𝐹]|ℙ𝐿 maps into ℙ𝐿⟂.
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8 of 35 WANG

Since deg𝐹 ⩾ 3, it is also known by [5, Lemma 3] (or Starr [2, Appendix]) that if𝑚 is even, then
Υ is finite. We would like to understand Υ in terms of (1.3). Proposition 3.1 suggests one plausible
starting route: duality (i.e., detecting 𝐿⟂ through 𝐹∨).

Proposition 3.1. Suppose 2 ∣ 𝑚 ⩾ 4, and fix 𝐿 in Υ.

(1) 𝛾|ℙ𝐿 is a finite flat surjective morphism ℙ𝐿 → ℙ𝐿⟂ of degree 2𝑚∕2−1 ⩾ 2.
(2) The jet 𝑗2𝑚∕2−1−1𝐹∨, defined as in (1.15), vanishes over ℙ𝐿⟂.

For diagonal 𝐹, we provide an explicit proof of Proposition 3.1 in §3.2. For more general 𝐹,
we instead rely on §2, plus some progress on Question 3.2. We would not be surprised if better
technique allowed one to answer Question 3.2 in general.

Question 3.2. Let 𝑦 = [𝒄] ∈ (ℙ𝑚−1)∨. If the scheme-theoretic fiber ℙ𝑚−1 ×[∇𝐹] 𝑦 of [∇𝐹] over 𝑦
has degree 𝑑, is it necessarily true that 𝑗𝑑−1𝐹∨(𝒄) = 𝟎?

We now begin the proof of Proposition 3.1. Since [∇𝐹] is finite, the restriction 𝛾|ℙ𝐿 ∶ ℙ𝐿 → ℙ𝐿⟂

is itself finite, and thus surjective by dimension theory. So, ℙ𝐿⟂ ⊆ im𝛾|ℙ𝐿 ⊆ im𝛾 ⊆ 𝑉∨.
Proof of (1). Since 𝛾|ℙ𝐿 is finite surjective and ℙ𝐿, ℙ𝐿⟂ are smooth, “miracle flatness” implies
flatness of 𝛾|ℙ𝐿. Also, 𝛾|ℙ𝐿 has degree 2𝑚∕2−1 (cf. [10, top of p. 29]), since it is a morphism given
by quadratic polynomials, between projective spaces of dimension𝑚∕2 − 1. □

Proposition 3.1(2) is inspired by the factorization of𝐹∨ overℚ[𝒄1∕2]when𝐹 is diagonal (see (3.3)
in §3.2 below). However, giving a rigorous “factorization” of 𝐹∨ seems to require a bit of setup,
since themap [∇𝐹] presumably need not be Galois in general. Furthermore, our factorizationwill
only be useful for (2) if

ℙ𝐿⟂ ⊈ 𝐵[∇𝐹] (or equivalently, 𝐻𝐵|𝐿⟂ ≠ 0). (3.1)

Question 3.3. Is ℙ𝐿⟂ ⊆ 𝐵[∇𝐹] possible (if 𝑉 is smooth and 𝐿 ∈ Υ)?

We do not know the answer to Question 3.3. Fortunately, if we fix 𝑚 and 𝐿, then the set 𝒰
of all 𝑚-variable cubic forms 𝑃∕ℚ with disc(𝑃) ≠ 0 and 𝑃|𝐿 = 0 is a dense open set in a copy of
𝔸
𝑁(𝑚)
ℚ

, where𝑁(𝑚) =
(𝑚+2

3

)
−
(𝑚
2
+2

3

)
. Furthermore, Proposition 2.4 implies that 3.1(2) is a closed

condition on 𝐹 ∈ 𝒰, and that (3.1) is an open condition on 𝐹 ∈ 𝒰. Since (3.1) holds when 𝐿 is
𝑥1 + 𝑥2 = 𝑥3 + 𝑥4 = 𝑥5 + 𝑥6 = 0 (as we may assume, by a linear change of variables) and 𝐹 is
𝑥3
1
+⋯ + 𝑥3

6
, it thus suffices to prove 3.1(2) assuming (3.1).

Hence, for the rest of §3.1, we assume (3.1), though (3.1) will only come into play after some
initial work. Consider the hypersurface complements 𝑆 ∶= ℙ𝑚−1 ⧵ 𝐵[∇𝐹] and 𝑋 ∶= [∇𝐹]−1𝑆 ⊆
ℙ𝑚−1. Then, [∇𝐹]|𝑋 ∶ 𝑋 → 𝑆 is finite étale of degree 2𝑚−1. Write 𝜙 ∶= [∇𝐹]|𝑋 . By Grothendieck’s
Galois theory, there exists a finite étale Galois cover 𝜋∶ 𝑋′ → 𝑋 with 𝑋′ connected and
𝜙◦𝜋∶ 𝑋′ → 𝑆 (finite étale) Galois. Let 𝐺 ∶= Aut𝑆(𝑋′) and𝐻 ∶= Aut𝑋(𝑋

′).
The group 𝐺 acts transitively on 𝑋′. So, for any geometric points [𝒄] ∈ 𝑆(ℚ) and 𝑝 ∈ 𝑋′

[𝒄]
, we

can characterize the fiber 𝑋[𝒄] as the set {𝜋(g𝑝) ∶ g ∈ 𝐻∖𝐺} ⊆ 𝑋(ℚ).
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 9 of 35

3.1.1 Constructing a product “divisible” by 𝐹∨

View 𝐹 = 𝐹(𝒙) as a section of 𝑋(3). Consider the 𝐺-equivariant line bundle  ∶=⨂
g∈𝐻∖𝐺 g∗(𝜋∗𝑋(3)) on 𝑋′. The product

𝛼 ∶=
∏

g∈𝐻∖𝐺

(g∗𝜋∗𝐹) (3.2)

defines a 𝐺-invariant section of  on 𝑋′. (A 𝐺-invariant section 𝛼 ∈ Γ(𝑋′,) is equivalent in data
to a 𝐺-equivariant morphism 𝛼∶ 𝑋′ → .)
For every geometric point 𝑝 ∈ 𝑋′(ℚ)with 𝜙𝜋(𝑝) ∈ 𝑆 ∩ 𝑉∨, there exists g ∈ 𝐻∖𝐺 with 𝜋(g𝑝) ∈

𝑋 ∩ 𝑉, so that (g∗𝜋∗𝐹)(𝑝) = 𝐹(𝜋g𝑝) = 0. So,

𝛼|(𝜙𝜋)−1(𝑆∩𝑉∨) = 0.
Therefore, by Galois descent (in the form of an equivalence of categories), there exist a line bundle
 on 𝑆 with ≅ (𝜙𝜋)∗, and a section 𝛿 ∈ Γ(𝑆,) vanishing along 𝑆 ∩ 𝑉∨, with 𝛼 = (𝜙𝜋)∗𝛿. Let
 ∶= 𝜙∗ and 𝛽 ∶= 𝜙∗𝛿 ∈ Γ(𝑋,); then  ≅ 𝜋∗ and 𝛼 = 𝜋∗𝛽.
But 𝑆, 𝑋 are hypersurface complements in ℙ𝑚−1, so Pic(ℙ𝑚−1) → Pic(𝑆) and Pic(ℙ𝑚−1) →

Pic(𝑋) are surjective and we may identify  ,  with suitable powers of 𝑋(1), 𝑆(1), respec-
tively. Then, up to a choice of nonzero constant factors, we may view 𝛽, 𝛿 as homogeneous
rational functions (i.e., ratios of homogeneous 𝑚-variable polynomials) satisfying 𝐹∨(𝒄) ∣ 𝛿 on
𝑆 and 𝐹∨(∇𝐹(𝒙)) = 𝜙∗𝐹∨ ∣ 𝛽 on 𝑋. Here, we interpret divisibility of two sections on a scheme to
mean that their ratio is a global section of the obvious “tensor-quotient” line bundle.

3.1.2 “Factoring” 𝐹∨

By the definition of𝑉∨ and𝐹∨ in §2, we have𝐹(𝒙) ∣ 𝐹∨(∇𝐹(𝒙)) inℚ[𝒙]. So𝐹 ∣ 𝜙∗𝐹∨ on𝑋. By (3.2),
it follows that𝛼 ∣ (𝜋∗𝜙∗𝐹∨)|𝐻∖𝐺| on𝑋′, since g∗𝜋∗𝜙∗𝐹∨ = 𝜋∗𝜙∗𝐹∨ for all g ∈ 𝐺. Since𝛼 = 𝜋∗𝜙∗𝛿,
it follows (by Galois descent) that 𝛿 ∣ (𝐹∨)|𝐻∖𝐺| on 𝑆. Since 𝐹∨ ∣ 𝛿 on 𝑆, and 𝐹∨ is prime in ℚ[𝒄],
we conclude that there exists an integer 𝑒 ⩾ 1 satisfying (𝐹∨)𝑒 ∣ 𝛿 and 𝛿 ∣ (𝐹∨)𝑒 on 𝑆.
We need to restrict to 𝑉∨. Luckily, (3.1) and ℙ𝐿⟂ ⊆ 𝑉∨ imply that 𝑆 ∩ 𝑉∨ ≠ ∅ (but see Ques-

tion 2.5). Furthermore, 𝑉∨ is geometrically reduced, so 𝑉∨ ⧵ Sing(𝑉∨) is a dense open subvariety
of 𝑉∨ (by “generic smoothness”). Thus, (𝑆 ∩ 𝑉∨) ⧵ Sing(𝑉∨) ≠ ∅.
Choose a geometric point [𝒄] of (𝑆 ∩ 𝑉∨) ⧵ Sing(𝑉∨). Biduality furnishes a unique point [𝒙] ∈

𝑋[𝒄] with 𝐹(𝒙) = 0. So, if 𝑝 ∈ 𝑋′[𝒙] and g ∈ 𝐺, then the section g∗𝜋∗𝐹 on 𝑋′ evaluates to 0 at 𝑝
if and only if g ∈ 𝐻. Thus, 𝜋∗𝐹 ∤

∏
[1]≠g∈𝐻∖𝐺(g∗𝜋∗𝐹) on 𝑋′. It follows that (𝜋∗𝐹)2 ∤ 𝛼, whence

𝐹2 ∤ 𝛽; whence (𝐹∨)2 ∤ 𝛿.
Thus, 𝑒 = 1. In particular, 𝛿 ∣ 𝐹∨ on 𝑆, so 𝛼 ∣ (𝜙𝜋)∗𝐹∨ on 𝑋′.

3.1.3 Differentiating the product

Using (3.1) one last time (more seriously than before), we will now complete the proof of the
second part of Proposition 3.1.
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10 of 35 WANG

Proof of (2). By (3.1), 𝑆 ∩ ℙ𝐿⟂ ≠ ∅. Yet, 𝜙|𝑋∩ℙ𝐿 = 𝛾|𝑋∩ℙ𝐿 ∶ 𝑋 ∩ ℙ𝐿 → 𝑆 ∩ ℙ𝐿⟂ is finite étale of
degree 2𝑚∕2−1, by part (1) and the definition of 𝑆. Let [𝒄] ∈ (𝑆 ∩ ℙ𝐿⟂)(ℚ), and fix 𝑝 ∈ 𝑋′

[𝒄]
. Then,

there exist at least 2𝑚∕2−1 cosets g ∈ 𝐻∖𝐺 with𝜋g𝑝 ∈ (𝑋 ∩ ℙ𝐿)(ℚ) ⊆ 𝑉(ℚ). Applying the Leibniz
rule to (3.2), after restricting to a small affine neighborhood of 𝑝, we thus get 𝑗𝑟𝑝𝛼(𝑝) = 𝟎 for 𝑟 ∶=
2𝑚∕2−1 − 1, where 𝑗𝑟 ∶ → 𝐽𝑟 denotes the 𝑟th-order jet map “along”  (from  to its 𝑟th jet
bundle 𝐽𝑟).
Since 𝛼 ∣ (𝜙𝜋)∗𝐹∨, Leibniz then implies 𝑗𝑟𝑝(𝜙𝜋)

∗𝐹∨(𝑝) = 𝟎 “along” the pullback line bundle
(𝜙𝜋)∗𝑆(deg 𝐹∨). But 𝜙𝜋∶ 𝑋′ → 𝑆 is étale at 𝑝 ∈ 𝑋′, so 𝑗𝑟

[𝒄]
𝐹∨([𝒄]) = 𝟎 “along”𝑆(deg 𝐹∨) itself,

over all points [𝒄] ∈ (𝑆 ∩ ℙ𝐿⟂)(ℚ). Finally, 𝑆 ∩ ℙ𝐿⟂ is dense in ℙ𝐿⟂, so the vanishing of the 𝑟th-
order jet section 𝑗𝑟𝐹∨ extends to all points [𝒄] ∈ ℙ𝐿⟂, as desired. □

Remark 3.4. In the friendly setting above, our étale morphisms (such as 𝜙𝜋∶ 𝑋′ → 𝑆), after base
change to an algebraically closed field, always induce isomorphisms on completed local rings. So,
we could do calculus purely in terms of formal power series.

3.2 The diagonal case

Say𝑚 is even and 𝐹 is diagonal, and write 𝐹 = 𝐹1𝑥31 +⋯ + 𝐹𝑚𝑥
3
𝑚. Then, we can explicitly verify

all the theory above. Here, [∇𝐹]∶ [𝒙] ↦ [3𝐹1𝑥
2
1
, … , 3𝐹𝑚𝑥

2
𝑚] is multiquadratic Galois of degree

2𝑚−1. We proceed by studying Υ and 𝐹∨ combinatorially.
For combinatorial purposes, let [𝑛] ∶= {1, 2, … , 𝑛} for each integer 𝑛 ⩾ 1.

Definition 3.5. Let  = ( (𝑘))𝑘∈ denote an ordered set partition of [𝑚]: a list of pairwise
disjoint nonempty sets  (𝑘) ⊆ [𝑚] covering [𝑚], indexed by a set ∈ {[1], [2], [3], …}.

(1) Call  ,  ′ equivalent if they define the same unordered partition of [𝑚] (i.e., if  = ′ and
{ (𝑘) ∶ 𝑘 ∈ } = { ′(𝑘) ∶ 𝑘 ∈ ′}).

(2) Call  a pairing if | (𝑘)| = 2 for all 𝑘 ∈ .
(3) Call  permissible if for all 𝑘 ∈  and 𝑖, 𝑗 ∈  (𝑘), we have 𝐹𝑗∕𝐹𝑖 ∈ (ℚ×)3. For a permissible

 , let  ∶= {𝒄 ∈ ℤ𝑚 ∶ if𝑘 ∈ and𝑖, 𝑗 ∈  (𝑘), then𝑐𝑖∕𝐹1∕3𝑖
= 𝑐𝑗∕𝐹

1∕3
𝑗
}; and given 𝒄 ∈  ,

define 𝑐∶ → ℝ so that if 𝑘 ∈  and 𝑖 ∈  (𝑘), then 𝑐𝑖∕𝐹1∕3𝑖
= 𝑐(𝑘).

Wenow recall thewell-known construction of the 𝑚
2
-dimensional vector spaces𝐿∕ℂwith𝐹|𝐿 =

0. Each equivalence class of pairings yields 3𝑚∕2 distinct 𝐿∕ℂ, obtained by setting𝐹𝑖𝑥3𝑖 + 𝐹𝑗𝑥
3
𝑗
=

0 for each part  (𝑘) = {𝑖, 𝑗}. Over ℚ, we must set 𝑥𝑖 + (𝐹𝑗∕𝐹𝑖)1∕3𝑥𝑗 = 0— which is valid when
𝐹𝑖 ≡ 𝐹𝑗 mod (ℚ×)3. The vectors spaces 𝐿∕ℂ and 𝐿∕ℚ thus constructed are known to be the only
possibilities [25, Remark 6.3.8]. Hence, the following holds.

Proposition 3.6. There is a canonical bijection, between Υ and the set of equivalence classes of
permissible pairings  , characterized by 𝐿 ∩ ℤ𝑚 = ⟂ (an equality of sublattices of ℤ𝑚).

Next, we turn to 𝐹∨. For convenience, fix square roots 𝐹1∕2
𝑖

∈ ℚ
×
. For some constant 𝛽𝐹1,…,𝐹𝑚 ∈

ℚ×, the polynomial 𝐹∨(𝒄) factors in ℚ[𝒄1∕2] as follows:

𝐹∨(𝒄) = 𝛽𝐹1,…,𝐹𝑚 ⋅
∏
𝝐

(
𝜖1𝐹

−1∕2
1

𝑐
3∕2
1

+ 𝜖2𝐹
−1∕2
2

𝑐
3∕2
2

+⋯ + 𝜖𝑚𝐹
−1∕2
𝑚 𝑐

3∕2
𝑚

)
∈ ℚ[𝒄], (3.3)
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 11 of 35

with the product taken over 𝝐 = (𝜖1, … , 𝜖𝑚)with 𝜖1 = 1 and 𝜖2, … , 𝜖𝑚 = ±1. (This classical formula
is a simple consequence of Definition 2.1 and the Jacobian criterion.)
Let ℒ𝝐 ∶= 𝜖1𝐹

−1∕2
1

𝑐
3∕2
1

+⋯ + 𝜖𝑚𝐹
−1∕2
𝑚 𝑐

3∕2
𝑚 ∈ ℚ[𝒄1∕2]. For each 𝒄 ∈ ℚ𝑚 ⧵ {𝟎}, fix square roots

𝑐
1∕2
𝑖

∈ ℚ. Using formal power series calculus over variables 𝑐𝑖 ≠ 0 (by Remark 3.4, adapted to
𝔸1
ℚ
→ 𝔸1

ℚ
, 𝑡 ↦ 𝑡2 away from the origin), we will prove the following result, which precisely

characterizes the order of vanishing of 𝐹∨ at 𝒄:

Proposition 3.7. Fix 𝑟 ⩾ 0 and 𝒄 ∈ ℚ𝑚 ⧵ {𝟎}. Then, the following are equivalent: (1) 𝑗𝑟𝐹∨ vanishes
at 𝒄 and (2) there exist at least 𝑟 + 1 distinct 𝝐 withℒ𝝐 = 0.

Proof. We first prove (1)⇒(2), by induction on 𝑟 ⩾ 0. The base case 𝑟 = 0 follows directly from
(3.3). Now fix 𝑟 ⩾ 1, and assume the implication (1)⇒(2) holds for 𝑟 − 1. Suppose that (1) holds;
we wish to prove that (2) holds.
By the inductive hypothesis,#{𝝐 ∶ℒ𝝐 = 0} ⩾ 𝑟. To rule out the possibility that#{𝝐 ∶ℒ𝝐 = 0} =

𝑟, we work with “pure” derivatives 𝜕⩽𝑟𝑐𝑖 , for just a single index 𝑖 with 𝑐𝑖 ≠ 0. For example, if 𝑐1 ≠ 0,
and #{𝝐 ∶ℒ𝝐 = 0} = 𝑟, then the product rule and (3.3) imply

𝜕𝑟𝑐1
𝐹∨(𝒄) = 𝛽𝐹1,…,𝐹𝑚 ⋅ 𝑟! ⋅

(
3

2
𝐹
−1∕2
1

𝑐
1∕2
1

)𝑟 ∏
𝝐∶ℒ𝝐≠0

ℒ𝝐 ≠ 0,

contradicting (1). Thus, #{𝝐 ∶ℒ𝝐 = 0} ⩾ 𝑟 + 1. This completes the induction.
It remains to prove (2)⇒(1). To avoid confusion, rename our given 𝒄 to 𝝃 . Say 𝜉𝑖 = 0 for 𝑖 ∈ 𝐼,

and 𝜉𝑖 ≠ 0 for 𝑖 ∈ [𝑚] ⧵ 𝐼. We must take extra care over 𝑖 ∈ 𝐼.
Let 𝒯𝐼 be the set of triples (𝒂, 𝒃, 𝐸), with (𝒂, 𝒃) ∈ ℤ𝐼⩾0 × ℤ

[𝑚]⧵𝐼 and 𝐸 ⊆ {𝝐 ∈ {±1}𝑚 ∶ 𝜖1 = 1},
such that for each 𝑖 ∈ 𝐼, the set 𝐸 ∪ (−𝐸) is invariant under the flip 𝜖𝑖 ↦ −𝜖𝑖 . Consider the
following “formal analytic functions” (inspired by (3.3)), indexed by (𝒂, 𝒃, 𝐸) ∈ 𝒯𝐼 :(∏

𝑖∈𝐼

𝑐
𝑎𝑖
𝑖

)(∏
𝑖∉𝐼

𝑐
𝑏𝑖∕2

𝑖

)(∏
𝝐∈𝐸

ℒ𝝐

)
∈ ℚ[𝑐𝑖]𝑖∈𝐼

[
𝑐
1∕2
𝑖
, 𝑐
−1∕2
𝑖

]
𝑖∉𝐼
. (3.4)

The functions (3.4) span a vector space over ℚ that contains 𝐹∨ and is closed under differ-
entiation in 𝒄. In fact, differentiating (3.4) in 𝑐𝑖 leads to terms with 𝑎𝑖 ↦ 𝑎𝑖 − 1 or (𝑎𝑖, |𝐸|) ↦
(𝑎𝑖 + 2, |𝐸| − 2) if 𝑖 ∈ 𝐼, and to terms with 𝑏𝑖 ↦ 𝑏𝑖 − 2 or (𝑏𝑖, |𝐸|) ↦ (𝑏𝑖 + 1, |𝐸| − 1) if 𝑖 ∉ 𝐼. In
each case, applying 𝜕𝑐𝑖 decreasesmin𝒂,𝒃,𝐸(|𝒂| + |𝐸|) by at most 1.
Now suppose (2) holds, and fix 𝒓 ∈ ℤ𝑚

⩾0
with |𝒓| ⩽ 𝑟. Then, 𝜕𝒓𝒄𝐹∨ is a ℚ-linear combination

of functions (3.4) indexed by triples (𝒂, 𝒃, 𝐸) ∈ 𝒯𝐼 with |𝒂| + |𝐸| ⩾ 2𝑚−1 − 𝑟 (and thus, |𝐸| ⩾
2𝑚−1 − 𝑟 or |𝒂| ⩾ 1). By (2), each such function must vanish at our original given point 𝒄 = 𝝃 .
Thus, 𝜕𝒓𝒄𝐹

∨(𝝃 ) = 0. So, (1) holds. □

Remark 3.8. A short computation yields the equality

#{𝝐 ∶ℒ𝝐 = 0} =
∑

[𝒙]∈𝛾(ℚ)−1([𝒄])

2#{𝑖∈[𝑚]∶ 𝑥𝑖=0}, (3.5)

where 𝛾(ℚ)−1([𝒄]) ∶= {[𝒙] ∈ 𝑉(ℚ) ∶ [∇𝐹(𝒙)] = [𝒄]} = {singularℚ − points of𝑉𝒄}. (Here, 𝑥𝑖 corre-
sponds to 𝜖𝑖𝐹

−1∕2
𝑖

𝑐
1∕2
𝑖

, with some ambiguity or “multiplicity” in 𝜖𝑖 when 𝑥𝑖 = 0.) Using (3.5), one
can formulate Proposition 3.7 more geometrically, without reference to 𝝐 ’s. Does this geometric
formulation extend somehow to more general 𝐹?
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12 of 35 WANG

Finally, we analyze the interaction betweenΥ, 𝐹∨. Fix 𝐿 ∈ Υ. By Proposition 3.6, 𝐿 corresponds
to some permissible pairing  . Proposition 3.7 has the following corollary.
Corollary 3.9. For 𝐿 as above, we have (𝑗2𝑚∕2−1−1𝐹∨)|𝐿⟂ = 𝟎.
Proof. For each part  (𝑘) = {𝑖, 𝑗}, there are exactly two choices of signs (𝜖𝑖, 𝜖𝑗) ∈ {±1}2—or only
one choice if 1 ∈  (𝑘) — such that 𝜖𝑖𝐹

−1∕2
𝑖

𝑐
3∕2
𝑖

+ 𝜖𝑗𝐹
−1∕2
𝑗

𝑐
3∕2
𝑗

vanishes over all 𝒄 ∈ 𝐿⟂ ∩ ℤ𝑚 =
 lying in a given orthant of ℝ𝑚. So, given 𝒄 ∈ 𝐿⟂ ⧵ {𝟎}, we can apply Proposition 3.7(2)⇒(1)
with 𝑟 ∶= 2𝑚∕2−1 − 1. Since 𝐿⟂ ⧵ {𝟎} is dense in 𝐿⟂, the vanishing of 𝑗𝑟𝐹∨ then extends to all
of 𝐿⟂. □

Thus, we have explicitly verified the conclusion of Proposition 3.1. The next result shows that,
in fact, 𝐹∨ generally does not vanish to higher order along 𝐿⟂ (and furthermore, 3.10(1) gives us a
simple description of when higher vanishing occurs). Let 𝑠 ∶ ℚ → ℚ, 𝑞 ↦ 𝑞2.

Observation 3.10. Given 𝐿,  as above, fix 𝒄 ∈ 𝐿⟂ ∩ ℤ𝑚 =  . Define 𝑐(𝑘) as in Definition 3.5.
For each 𝑘 ∈ , fix a square root 𝑐(𝑘)3∕2 ∈ ℚ of 𝑐(𝑘)3. Then, the following hold.

(1) 𝑗2𝑚∕2−1𝐹∨(𝒄) = 𝟎 if and only if there exist 𝑙 ⩾ 1 distinct indices 𝑘1, … , 𝑘𝑙 ∈  such that
𝑐(𝑘1)

3∕2 ±⋯ ± 𝑐(𝑘𝑙)
3∕2 = 0 holds for some choice of signs.

(2) If 𝑗2𝑚∕2−1𝐹∨(𝒄) = 𝟎, then 𝑐(𝑘1)3𝑐(𝑘2)3 ∈ 𝑠(ℚ) for some distinct 𝑘1, 𝑘2 ∈ .
Proof.

(1) If 𝒄 = 𝟎, then 𝑗2𝑚∕2−1𝐹∨(𝒄) = 𝟎 (since deg𝐹∨ = 3 ⋅ 2𝑚−2 ⩾ 1 + 2𝑚∕2−1), and 𝑐(𝑘)3 = 0 for all
𝑘 ∈ . If 𝒄 ≠ 𝟎, apply Proposition 3.7(1)⇔(2) with 𝑟 ∶= 2𝑚∕2−1 (and then “simplify” the
condition 3.7(2) using the fact that  is a pairing).

(2) Suppose 𝑗2𝑚∕2−1𝐹∨(𝒄) = 𝟎. Apply (1); choose 𝑘1, … , 𝑘𝑙 ∈  with 𝑙 minimal. We now do
casework on 𝑙, making use of minimality if 𝑙 ⩾ 2.
∙ If 𝑙 = 1, then 𝑐(𝑘)3 = 0 for some 𝑘 ∈ .
∙ If 𝑙 = 2, then 𝑐(𝑘1)3 = 𝑐(𝑘2)3 ∈ ℚ× for some distinct 𝑘1, 𝑘2 ∈ .
∙ If 𝑙 ⩾ 3, then 𝑐(𝑘𝑡)3 ∈ ℚ× for all 𝑡 ∈ [𝑙], and bymulti-quadratic field theory in characteristic
0, the square classes 𝑐(𝑘1)3, … , 𝑐(𝑘𝑙)3 mod (ℚ×)2 must all coincide. (In fact, say we fix 𝑖𝑡 ∈ (𝑘𝑡) for 𝑡 ∈ [𝑙]. Then, 𝑐𝑖𝑡 ∕𝐹𝑖𝑡 = 𝑥2𝑖𝑡𝑑 for some 𝑑, 𝑥𝑖𝑡 ∈ ℚ× such that𝐹𝑖1𝑥3𝑖1 +⋯ + 𝐹𝑖𝑙𝑥

3
𝑖𝑙
= 0.

So, 𝑐(𝑘𝑡)3 = 𝐹2𝑖𝑡𝑥
6
𝑖𝑡
𝑑3.)

In each case, 𝑐(𝑘1)3𝑐(𝑘2)3 ∈ 𝑠(ℚ) holds for some distinct 𝑘1, 𝑘2 ∈ . □

Remark 3.11. Though written in characteristic 0, the main results of §3.2 carry over to arbitrary
fields of characteristic 𝑝 ∤ (6𝑚)!𝐹1⋯𝐹𝑚, under (1.14). Such extensions of Proposition 3.7, (3.5),
Corollary 3.9, and Observation 3.10(1) to 𝔽𝑝 will prove useful in §7.

4 POISSON SUMMATION FOR THE ENDGAME

Suppose 2 ∣ 𝑚. Fix 𝐿 ∈ Υ, and recall Definition 1.3. Then, 𝐹|Λ = 0, and Λ, Λ⟂ are primitive rank-
𝑚

2
sublattices of ℤ𝑚. Now choose bases 𝚲, 𝚲⟂ of Λ, Λ⟂, respectively. Identify 𝚲, 𝚲⟂ with 𝑚 × 𝑚

2
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 13 of 35

and 𝑚

2
× 𝑚 integer matrices, respectively, so that Λ = 𝚲ℤ𝑚∕2 and Λ⟂ = ℤ𝑚∕2𝚲⟂ (where we view

Λ as a “column space” and Λ⟂ as a “row space”).
We seek to prove Lemma 4.6 and Proposition 4.7 below, about certain averages over a given

shifted dilate of Λ⟂ (for the “endgame” of §8).
For the rest of §4, let 𝒙, 𝒉, 𝒙′ denote column vectors and 𝒄, 𝒃, 𝒗 row vectors. In particular, the

dot product 𝒄 ⋅ 𝒙 then coincides with standard matrix multiplication.

4.1 Preliminaries

We have Λ = (Λ⟂)⟂, that is, Λ = {𝒙 ∈ ℤ𝑚 ∶ 𝚲⟂𝒙 = 𝟎}. Let

𝜎∞,𝐿⟂,𝑤 ∶= lim
𝜖→0

(2𝜖)−𝑚∕2 ∫𝚲⟂�̃�∈[−𝜖,𝜖]𝑚∕2 𝑑�̃� 𝑤(�̃�). (4.1)

Then, the formula (1.7) holds, by Poisson summation over 𝐿 ∩ ℤ𝑚 = Λ (or, at least morally, by the
circle method applied to 𝚲⟂𝒙 = 𝟎). In particular, 𝜎∞,𝐿⟂,𝑤 does not depend on the choice of 𝚲⟂.
For an alternative interpretation of 𝜎∞,𝐿⟂,𝑤, see the second part of Lemma 4.6.
For calculations to come, it will help to extend 𝚲⟂ to a basis of ℤ𝑚.

Definition 4.1. By primitivity of Λ⟂, choose Γ (itself primitive) such that ℤ𝑚 = Λ⟂ ⊕ Γ. Then,
choose a 𝑚

2
× 𝑚 basis matrix 𝚪 so that Γ = ℤ𝑚∕2𝚪.

The rows of the𝑚 ×𝑚matrix
[
𝚲⟂
𝚪

]
form a basis of ℤ𝑚. Therefore,

det [ 𝚲⟂𝚪 ] = ±1. (4.2)

Let 𝑅 denote a ring, for example, ℝ or ℤ∕𝑛ℤ. Given a ℤ-module 𝐴, let 𝐴𝑅 ∶= 𝐴 ⊗ 𝑅. To study
Fourier transforms over 𝒙 ∈ 𝑅𝑚 at 𝒄 ∈ Λ⟂, it will help to rewrite 𝒄 ⋅ 𝒙.

Definition 4.2. Using the definition of 𝚲⟂ as a basis matrix, let 𝜓∶ Λ⟂ → ℤ𝑚∕2 be the ℤ-
linear isomorphism 𝒄 ↦ 𝒄⋆ defined by the equation 𝒄 = 𝒄⋆𝚲⟂. Let 𝜓𝑅 ∶= 𝜓 ⊗ 𝑅 be the 𝑅-linear
isomorphism (Λ⟂)𝑅 → 𝑅𝑚∕2 induced by 𝜓.

For each 𝒙 ∈ 𝑅𝑚, let
[
𝒉
𝒙′
]
∶=

[
𝚲⟂
𝚪

]
𝒙. Equivalently, let

𝒉 ∶= 𝚲⟂𝒙 ∈ 𝑅𝑚∕2, 𝒙′ ∶= 𝚪𝒙 ∈ 𝑅𝑚∕2. (4.3)

Example 4.3. If 𝐹 = 𝑥3
1
+⋯ + 𝑥3𝑚 and Λ⟂ =  (in the notation of Proposition 3.6), then we

can choose 𝚲⟂ so that ℎ𝑘 =
∑
𝑖∈ (𝑘) 𝑥𝑖 for all 𝑘 ∈ .

We need two more algebraic propositions. Over 𝑅, let 𝒄 ⋅ 𝒙∶ (Λ⟂)𝑅 × 𝑅𝑚 → 𝑅 denote the
“obvious” 𝑅-bilinear map induced by the usual dot product 𝒄 ⋅ 𝒙∶ Λ⟂ × ℤ𝑚 → ℤ.

Proposition 4.4. If 𝒄 ∈ (Λ⟂)𝑅 and 𝒙 ∈ 𝑅𝑚, then 𝒄 ⋅ 𝒙 = 𝜓𝑅(𝒄) ⋅ 𝒉.

Proof. By 𝑅-linearity properties, reduce to the case 𝑅 = ℤ, which is trivial. □
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14 of 35 WANG

Let Λ ⋅ 𝑅 ⊆ 𝑅𝑚 be the 𝑅-module generated by Λ (via the composite map Λ → ℤ𝑚 → 𝑅𝑚).

Proposition 4.5. Let 𝒙 ∈ 𝑅𝑚. Then, 𝒉 = 𝟎 if and only if 𝒙 ∈ Λ ⋅ 𝑅.

Proof. The multiplication map 𝚲⟂∶ ℤ𝑚 → ℤ𝑚∕2 (given by 𝒙 ↦ 𝚲⟂𝒙) is surjective by (4.2), and
thus defines an exact sequence Λ → ℤ𝑚 → ℤ𝑚∕2 → 0. The right exact functor⊗𝑅 therefore gives
an exact sequence Λ𝑅 → 𝑅𝑚 → 𝑅𝑚∕2 → 0. So,

ker(𝚲⟂∶ 𝑅𝑚 → 𝑅𝑚∕2) = im(Λ𝑅 → 𝑅𝑚).

But im(Λ𝑅 → 𝑅𝑚) = Λ ⋅ 𝑅, since Λ𝑅 is 𝑅-linearly generated by Λ. □

4.2 Averaging the oscillatory integrals

Recall 𝐼𝒄(𝑛) from (1.4). Let 𝑅 ∶= ℝ in (4.3). Since 𝒙 ↦ (𝒉, 𝒙′) is unimodular by (4.2), we have

𝐼𝒄(𝑛) = ∫(𝒉,𝒙′)∈ℝ𝑚 𝑑𝒉𝑑𝒙
′ 𝑤(𝒙∕𝑋)ℎ(𝑛∕𝑌, 𝐹(𝒙)∕𝑌2)𝑒(−𝒄 ⋅ 𝒙∕𝑛), (4.4)

an integral in which we view 𝒙 as a function of (𝒉, 𝒙′). For each 𝒉 ∈ ℤ𝑚∕2, let

𝐽(𝒉; 𝑛) ∶= ∫𝒙′∈ℝ𝑚∕2 𝑑𝒙
′ 𝑤(𝒙∕𝑋)ℎ(𝑛∕𝑌, 𝐹(𝒙)∕𝑌2).

(The integral 𝐽(𝒉; 𝑛) corresponds to the integral 𝐽𝑞(𝒋) on [15, p. 692]. But in the present paper, we
do not make any serious use of 𝐽(𝒉; 𝑛) for 𝒉 ≠ 𝟎.)
Lemma 4.6. Suppose 𝑛 = 𝑛0𝑛1 (where 𝑛0, 𝑛1 ⩾ 1 are integers) and 𝒃 ∈ Λ⟂. Then,

𝑛
−𝑚∕2
1

∑
𝒄∈𝒃+𝑛0Λ

⟂

𝐼𝒄(𝑛) =
∑

𝒉∈𝑛1ℤ
𝑚∕2

𝑒𝑛(−𝒃
⋆ ⋅ 𝒉)𝐽(𝒉; 𝑛). (4.5)

Here, 𝐽(𝟎; 𝑛) = 𝜎∞,𝐿⟂,𝑤𝑋𝑚∕2 ⋅ ℎ(𝑛∕𝑌, 0). Furthermore, if 𝑛1 ⩾ 𝑀1𝑋 for a sufficiently large positive
real𝑀1 ≪𝚲⟂,𝑤 1, then 𝐽(𝒉; 𝑛) = 0 for all nonzero 𝒉 ∈ 𝑛1ℤ𝑚∕2.

Proof. Write 𝒄 = 𝒃 + 𝑛0𝒗 for 𝒗 ∈ Λ⟂. Define 𝒄⋆, 𝒃⋆, 𝒗⋆ ∈ ℤ𝑚∕2 using Definition 4.2. Proposi-
tion 4.4 then delivers the equality 𝒄 ⋅ 𝒙∕𝑛 = 𝒄⋆ ⋅ 𝒉∕𝑛 = 𝒃⋆ ⋅ 𝒉∕𝑛 + 𝒗⋆ ⋅ 𝒉∕𝑛1. So, by (4.4), the
integral 𝐼𝒄(𝑛) = 𝐼𝒃+𝑛0𝒗(𝑛) is the Fourier transform at 𝒗⋆∕𝑛1 ∈ ℝ𝑚∕2 of the function

ℝ𝑚∕2 → ℝ, 𝒉 ↦ 𝑒(−𝒃⋆ ⋅ 𝒉∕𝑛)𝐽(𝒉; 𝑛).

Poisson summation over 𝒉 ∈ 𝑛1ℤ𝑚∕2 hence yields∑
𝒉∈𝑛1ℤ

𝑚∕2

𝑒(−𝒃⋆ ⋅ 𝒉∕𝑛)𝐽(𝒉; 𝑛) = 𝑛−𝑚∕2
1

∑
𝒗⋆∈ℤ𝑚∕2

𝐼𝒃+𝑛0𝒗(𝑛),

which implies (4.5) (upon recalling the correspondence between 𝒗⋆ ∈ ℤ𝑚∕2 and 𝒗 ∈ Λ⟂).

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12975 by Institute O

f Science A
nd T

echnology, W
iley O

nline L
ibrary on [20/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 15 of 35

We now compute 𝐽(𝟎; 𝑛). Let �̃� ∶= 𝒙∕𝑋. Since 𝐹|Λ⋅ℝ = 0, we have
𝐽(𝟎; 𝑛) = 𝑋𝑚∕2 ⋅ ℎ(𝑛∕𝑌, 0) ⋅ ∫(�̃�,�̃�′)∈{𝟎}×ℝ𝑚∕2 𝑑�̃�

′ 𝑤(�̃�).

But an 𝜖-thickening in �̃�, followed by an application of (4.1), yields

∫(�̃�,�̃�′)∈{𝟎}×ℝ𝑚∕2 𝑑�̃�
′ 𝑤(�̃�) = lim

𝜖→0∫(�̃�,�̃�′)∈ℝ𝑚 𝑑�̃� 𝑑�̃�
′ 𝑤(�̃�) ⋅

𝟏�̃�∈[−𝜖,𝜖]𝑚∕2

(2𝜖)𝑚∕2
= 𝜎∞,𝐿⟂,𝑤.

Finally, suppose 𝒉 ∈ 𝑛1ℤ𝑚∕2 and 𝐽(𝒉; 𝑛) ≠ 0. Take 𝒙′ ∈ ℝ𝑚∕2 with 𝑤(𝒙∕𝑋) ≠ 0. If 𝑛1 ⩾ 𝑀1𝑋,
then 𝑛1 ∣ 𝒉 = 𝚲⟂𝒙 ≪ 𝑋, so 𝒉 = 𝟎 if𝑀1 is sufficiently large. □

4.3 Vertically averaging the exponential sums

Recall 𝑆𝒄(𝑛) from (1.5), for each tuple 𝒄 ∈ ℤ𝑚 and integer 𝑛 ⩾ 1. Let 𝜙(𝑛) denote Euler’s totient
function.

Proposition 4.7. The quantity 𝑆𝒄(𝑛) is a function of 𝑛 and 𝒄 mod 𝑛. If 𝒋 ∈ ℤ𝑚∕2, then

𝔼𝒄∈Λ⟂∕𝑛Λ⟂[𝑆𝒄(𝑛)𝑒𝑛(−𝒄
⋆ ⋅ 𝒋)] =

∑
1⩽𝑎⩽𝑛∶ gcd(𝑎,𝑛)=1

∑
1⩽𝒙⩽𝑛

𝑒𝑛(𝑎𝐹(𝒙)) ⋅ 𝟏𝑛∣𝒉−𝒋 (4.6)

(where the left-hand side is well defined). In particular, 𝔼𝒄∈Λ⟂∕𝑛Λ⟂[𝑆𝒄(𝑛)] = 𝜙(𝑛)𝑛𝑚∕2.

Proof. The first sentence is clear by definition of 𝑆𝒄(𝑛). (Here, 𝒄 mod 𝑛 refers to 𝒄 mod 𝑛ℤ𝑚.)
A priori, if 𝒄 ∈ Λ⟂, then 𝒄 mod 𝑛Λ⟂ determines 𝒄 mod 𝑛. So, (4.6) makes sense. Since Λ⟂ is

primitive, one can say more about “congruence modulo 𝑛”, but we need not do so.
Now fix 𝒋 ∈ ℤ𝑚∕2. Let 𝑅 ∶= ℤ∕𝑛ℤ. Via the map 𝜓𝑅 from Definition 4.2, elements 𝒄 ∈

Λ⟂∕𝑛Λ⟂ = (Λ⟂)𝑅 correspond isomorphically to 𝒄⋆ ∈ 𝑅𝑚∕2 = (ℤ∕𝑛ℤ)𝑚∕2, so that if 𝒙 ∈ 𝑅𝑚, then
𝒄 ⋅ 𝒙 = 𝒄⋆ ⋅ 𝒉 by Proposition 4.4. By (1.5), it follows that

𝔼𝒄∈Λ⟂∕𝑛Λ⟂[𝑆𝒄(𝑛)𝑒𝑛(−𝒄
⋆ ⋅ 𝒋)] =

∑
𝑎∈𝑅×

∑
𝒙∈𝑅𝑚

𝑒𝑛(𝑎𝐹(𝒙)) ⋅ 𝔼𝒄⋆∈𝑅𝑚∕2[𝑒𝑛(𝒄
⋆ ⋅ 𝒉 − 𝒄⋆ ⋅ 𝒋)].

Summing over 𝒄⋆ gives (4.6). Furthermore, if we take 𝒋 = 𝟎, then by Proposition 4.5 and the
identity 𝐹|Λ⋅𝑅 = 0, the right-hand side of (4.6) simplifies to 𝜙(𝑛)𝑛𝑚∕2. □

Let 𝑇(𝒋; 𝑛) denote the right-hand side of (4.6). Then, 𝑇(𝒋; 𝑛) corresponds to the sum 𝑇𝑞(𝒋) on
[15, p. 692]. It would be interesting to better understand 𝑇(𝒋; 𝑛) in general. The sums 𝑇(𝒋; 𝑛) are
multiplicative in 𝑛, and related to the singular series of certain 𝑚

2
-variable affine quadrics varying

with 𝒋. Below, however, we only make use of the 𝒋 = 𝟎 case of (4.6).

5 GENERAL UPPER BOUNDS

We first recall some background on (1.3). Let ‖𝒄‖ ∶= max(|𝑐1|, … , |𝑐𝑚|). Recall (1.8).
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16 of 35 WANG

Proposition 5.1 See, e.g., [25, §3.1], or [15, (2.3)–(3.7)]. The following hold:

(1) 𝐼𝒄(𝑛) vanishes over 𝑛 ⩾ 𝑀2𝑌, for some positive𝑀2 ≪𝐹,𝑤 1 independent of 𝒄 ∈ ℤ𝑚.
(2) For any fixed 𝜖, 𝐴 > 0, we have 𝐼𝒄(𝑛) ≪𝐹,𝑤,𝜖,𝐴 𝑋

−𝐴 over ‖𝒄‖ ⩾ 𝑋1∕2+𝜖.
(3) We have ∑

𝑛⩾1

∑
𝒄∈ℤ𝑚

𝑛(1−𝑚)∕2
|||𝑆♮𝒄(𝑛)𝐼𝒄(𝑛)||| =∑

𝑛⩾1

∑
𝒄∈ℤ𝑚

𝑛−𝑚|𝑆𝒄(𝑛)𝐼𝒄(𝑛)| < ∞.
Now fix a set  ⊆ {𝒄 ∈ ℤ𝑚 ∶ 𝐹∨(𝒄) = 0} and a real 𝛿 ⩾ 0. Suppose  ∩ [−𝐶, 𝐶]𝑚 has size

𝑂(𝐶𝑚∕2−𝛿) for all reals 𝐶 ⩾ 1. Let

𝑓() ∶= 𝑌−2 ∑
𝒄∈⧵{𝟎}

∑
𝑛⩾1

|𝐼𝒄(𝑛)| ⋅ 𝑛1−𝑚∕2 ⋅ ∑
𝑛⋆∣𝑛

𝑛
−1∕2
⋆

|||𝑆♮𝒄(𝑛⋆)||| . (5.1)

At several points in §8, Lemma 5.2 will let us cleanly discard 𝑓() for various choices of  .
Lemma 5.2. Assume that 𝐹 is diagonal. Suppose {𝑞𝒄 ∶ (𝑞, 𝒄) ∈ ℚ× × } ∩ ℤ𝑚 =  . Assume𝑚 ⩽ 6

and 𝛿 ⩽ 1

2
(𝑚 − 2). Then 𝑓() ≪𝜖 𝑋

(𝑚−𝛿)∕2+𝜖.

Thework [15, pp. 688–689] proves a simplified version of Lemma 5.2with (𝑚, 𝛿) ∈ {(4, 1), (6, 0)},
and with 𝟏𝑛⋆=𝑛 instead of

∑
𝑛⋆∣𝑛

. The method of [15] should directly extend to Lemma 5.2. How-
ever, we transpose Heath-Brown’s argument a bit in order to highlight an intermediate result that
one may hope to generalize: Proposition 5.3. Proposition 5.3 offers a potential partial alternative
to axiom (3) in Remark 1.6.
Let 𝑣𝑝(−) denote the usual 𝑝-adic valuation. For integers 𝑐 ≠ 0, let sq(𝑐) ∶=∏

𝑝2∣𝑐 𝑝
𝑣𝑝(𝑐) and

cub(𝑐) ∶=
∏
𝑝3∣𝑐 𝑝

𝑣𝑝(𝑐); and for convenience, let sq(0) ∶= 0 and cub(0) ∶= 0. A positive integer
𝑛 is said to be square-full if 𝑛 = sq(𝑛), and cube-full if 𝑛 = cub(𝑛). In the absence of a deeper
algebro-geometric understanding of 𝑆𝒄, one relies heavily on the following bound of Hooley and
Heath-Brown, valid for diagonal 𝐹 (for all 𝑛 ⩾ 1 and 𝒄 ∈ ℤ𝑚):

𝑛−1∕2𝑆♮𝒄(𝑛) ≪𝐹,𝜖 𝑛
𝜖

∏
1⩽𝑗⩽𝑚

gcd
(
cub(𝑛)2, gcd(cub(𝑛), sq(𝑐𝑗))

3
)1∕12

. (5.2)

(See [26, Proposition 4.9] or [25, Proposition 3.3.3] for precise references.)
Suppose 𝑚 ⩽ 6, and assume that 𝐹 is diagonal. Let 𝐶,𝑁 ∈ {1, 2, 4, 8, …}. For each 𝑖 ∈ [𝑚], the

𝑐
deg𝐹∨

𝑖
coefficient of the homogeneous polynomial 𝐹∨ ∈ ℤ[𝒄] is nonzero, by (3.3). Suppose 𝒄 ∈ 

with 𝐶 ⩽ ‖𝒄‖ < 2𝐶; then |𝑐𝑖|≫ 𝐶 for at least two indices 𝑖 ∈ [𝑚]. In particular,

𝐼𝒄(𝑛) ≪𝜖 𝑋
𝑚+𝜖(𝑋𝐶∕𝑁)(2−𝑚)∕4, (5.3)

by [15, p. 688, (7.3)]. We also have the following result (for 𝒄, 𝑁 as above).

Proposition 5.3. Here,
∑
𝑁⩽𝑛<2𝑁

∑
𝑛⋆∣𝑛

𝑛
−1∕2
⋆ |𝑆♮𝒄(𝑛⋆)|≪𝜖 (𝐶𝑁)

𝜖 cub(gcd(𝒄))1∕6𝑁.

Proof. Let𝑀𝐹 ∶=
∏
1⩽𝑖⩽𝑚 𝐹𝑖 . Write 𝒄 = g𝒄′ with g ∶= gcd(𝒄) > 0, so that 𝒄′ is primitive. For each

prime 𝑝, the equation 𝐹∨(𝒄′) = 0 implies, via (3.3), that #{𝑖 ∈ [𝑚] ∶ 𝑣𝑝(𝑐′𝑖 ) ⩽ 𝑣𝑝(𝑀𝐹)} ⩾ 2. The
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 17 of 35

bound (5.2) for 𝑛⋆ ∣ 𝑛 now implies∑
𝑛⋆∣𝑛

𝑛
−1∕2
⋆

|||𝑆♮𝒄(𝑛⋆)|||≪𝜖 𝑛
𝜖 cub(𝑛)(𝑚−2)∕6 gcd(cub(𝑛), sq(𝑀𝐹 ⋅ g))2∕4

(since cub(𝑛⋆) ∣ cub(𝑛), and 𝑣𝑝(sq(𝑐𝑖)) ⩽ 𝑣𝑝(sq(𝑀𝐹 ⋅ g)) whenever 𝑣𝑝(𝑐′𝑖 ) ⩽ 𝑣𝑝(𝑀𝐹)). Thus,∑
𝑁⩽𝑛<2𝑁

∑
𝑛⋆∣𝑛

𝑛
−1∕2
⋆

|||𝑆♮𝒄(𝑛⋆)|||≪𝜖

∑
𝑑∣sq(𝑀𝐹 ⋅g)

∑
𝑞<2𝑁∶𝑞=cub(𝑞)

(𝑁∕𝑞) ⋅ 𝑞(𝑚−2)∕6𝑑1∕2𝟏𝑑∣𝑞. (5.4)

However, for any integer 𝑑 ⩾ 1 and real 𝜖 > 0, the sum
∑
𝑞<2𝑁∶𝑞=cub(𝑞)(2𝑁)

−𝜖𝑞−1∕3𝑑1∕2𝟏𝑑∣𝑞 is

⩽
∑

𝑞⩾1∶ 𝑞=cub(𝑞)

𝑑1∕2𝟏𝑑∣𝑞

𝑞1∕3+𝜖
=

(∏
𝑝∣𝑑

𝑂(𝑝𝑣𝑝(𝑑)∕2)

𝑝max(1,𝑣𝑝(𝑑)∕3)

)∏
𝑝∤𝑑

(1 + 𝑂(𝑝−1−3𝜖)) ≪𝜖 𝑑
𝜖 cub(𝑑)1∕6.

Since (𝑚 − 2)∕6 ⩽ 2∕3, the right-hand side of (5.4) is therefore ≪𝜖 (𝐶𝑁)
𝜖 cub(𝑀𝐹 ⋅ g)1∕6𝑁. But

cub(𝑀𝐹 ⋅ g) ∣ 𝑀3
𝐹
cub(g), so Proposition 5.3 follows. □

Proof of Lemma 5.2. By Proposition 5.1, (5.3), Proposition 5.3, and dyadic decomposition of ‖𝒄‖, 𝑛,
the quantity 𝑓() (see (5.1)) is

≪𝜖,𝐴 𝑋
−𝐴 + 𝑌−2𝑋𝑚+𝜖

∑
𝐶,𝑁∈{1,2,4,8,…}∶

1⩽𝐶⩽𝑋1∕2+𝜖, 1⩽𝑁⩽𝑀2𝑌

(𝑋𝐶∕𝑁)(2−𝑚)∕4𝑁2−𝑚∕2
∑
𝒄∈∶

𝐶⩽‖𝒄‖<2𝐶
cub(gcd(𝒄))1∕6.

Our hypotheses on  imply∑
𝒄∈∶𝐶⩽‖𝒄‖<2𝐶 cub(gcd(𝒄))

1∕6 ⩽
∑
g<2𝐶

cub(g)1∕6 ⋅ (2𝐶∕g)𝑚∕2−𝛿. (5.5)

But the Dirichlet series
∑

g⩾1 cub(g)
1∕6g−𝑠 converges absolutely forℜ(𝑠) > 1. Since𝑚∕2 − 𝛿 ⩾ 1,

the right-hand side of (5.5) is therefore≪𝜖 𝐶
𝑚∕2−𝛿+𝜖. So,

𝑓() ≪𝜖,𝐴 𝑋
−𝐴 + 𝑌−2𝑋𝑚+2𝜖

∑
𝐶,𝑁∈{1,2,4,8,…}∶

1⩽𝐶⩽𝑋1∕2+𝜖, 1⩽𝑁⩽𝑀2𝑌

(𝑋𝐶∕𝑁)(2−𝑚)∕4𝑁2−𝑚∕2𝐶𝑚∕2−𝛿. (5.6)

The total exponent of𝑁 in (5.6) is 𝑚−2
4
+ 2 − 𝑚

2
= 6−𝑚

4
⩾ 0, and the total exponent of 𝐶 in (5.6)

is 2−𝑚
4
+ 𝑚

2
− 𝛿 = 𝑚+2

4
− 𝛿 ⩾ 0 (since 𝑚+2

4
⩾
𝑚−2

2
for𝑚 ⩽ 6). It follows that

𝑓() ≪𝜖 𝑌
−2𝑋𝑚+3𝜖(𝑋3∕2+𝜖∕𝑌)(2−𝑚)∕4𝑌2−𝑚∕2(𝑋1∕2+𝜖)𝑚∕2−𝛿.

Since 𝑌 = 𝑋3∕2, we get 𝑓() ≪𝜖 𝑋
𝑚+𝑂(𝑚𝜖)𝑋−3𝑚∕4𝑋𝑚∕4−𝛿∕2 = 𝑋𝑚∕2−𝛿∕2+𝑂(𝑚𝜖). □

Now drop the earlier assumptions “𝑚 ⩽ 6” and “𝐹 is diagonal.” The axioms in Remark 1.6
would allow us to prove a version of Lemma 5.2 without assuming that 𝐹 is diagonal.

Lemma 5.4. Assume 1.6(2)–(3). Say 𝛿 ⩽ min(1, 2
3
(10 − 𝑚)). Then 𝑓() ≪𝜖 𝑋

𝑚∕2−𝛿∕4+𝜖.
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18 of 35 WANG

When 𝑚 ⩽ 9, this beats the square-root threshold 𝑋𝑚∕2, corresponding to linear subspaces.
(Some degenerate ranges of 𝒄, 𝑛 seem to prevent us from handling𝑚 ⩾ 10.)

Proof sketch for Lemma 5.4. Under 1.6(2), it is known that

𝐼𝒄(𝑛) ≪𝜖 𝑋
𝑚+𝜖(1 + 𝑋‖𝒄‖∕𝑛)1−𝑚∕2; (5.7)

see, for example, [16, p. 252, (31)]. It is also known that if 𝑛 is cube-free, then

𝑛−1∕2𝑆♮𝒄(𝑛) ≪𝜖 𝑛
𝜖; (5.8)

see, for example, [16, Lemmas 8–9]. Fix 𝜖 > 0. For integers 𝐶,𝑁 ⩾ 1, let

𝐵(𝐶,𝑁) ∶= (𝐶𝑚∕2−𝛿)1∕2(𝐶𝑚∕2 + 𝑁𝑚∕6)1∕2 + (𝐶(𝑚−1)∕2𝑁1∕6 + 𝑁𝑚∕6).

By (1.13), plus Cauchy on (1.12) over  , it follows that if 𝑋 is sufficiently large, then

𝑓() ≪𝜖 𝑌
−2𝑋𝑚+𝜖(1 + 𝑋𝐶∕𝑁)1−𝑚∕2𝑁1−𝑚∕2(𝑁∕𝑁⋆) ⋅𝑁

1∕3
⋆ 𝐵(𝐶,𝑁⋆)

for some choice of𝐶,𝑁,𝑁⋆ ∈ {1, 2, 4, 8, …}with𝐶 ⩽ 𝑋1∕2+𝜖 and𝑁⋆ ⩽ 𝑁 ⩽ 𝑌. Optimizing𝑁⋆ over
1 ⩽ 𝑁⋆ ⩽ 𝑁 yields 𝑓() ≪𝜖 𝑋

𝑚−3+𝜖(𝑁 + 𝑋𝐶)1−𝑚∕2(𝑁 ⋅ 𝐵(𝐶, 1) + 𝑁1∕3 ⋅ 𝐵(𝐶,𝑁)). But 𝐵(𝐶, 1) ≪
𝐶𝑚∕2−𝛿∕2 (since 𝛿 ⩽ 1) and 𝐵(𝐶,𝑁) ≪ (𝐶1∕2 + 𝑁1∕6)𝑚, so

𝑓() ≪𝜖 𝑋
𝑚−3+𝜖(𝑁 + 𝑋𝐶)1−𝑚∕2(𝑁𝐶𝑚∕2−𝛿∕2 + 𝑁1∕3𝐶𝑚∕2 + 𝑁1∕3+𝑚∕6).

Let𝑀 ∶= 𝑁 + 𝑋𝐶, and plug in the bounds 𝑁 ⩽ 𝑀 and 𝐶 ⩽ 𝑀∕𝑋, to get

𝑓()∕𝑋𝑚−3+𝜖 ≪𝜖 𝑀
2−𝛿∕2∕𝑋𝑚∕2−𝛿∕2 + 𝑀4∕3∕𝑋𝑚∕2 +𝑀4∕3−𝑚∕3.

But 𝑋 ⩽ 𝑀 ⩽ 2𝑋3∕2+𝜖, so 𝑓() ≪𝜖 𝑋
3𝜖(𝑋𝑚∕2−𝛿∕4 + 𝑋𝑚∕2−1 + 𝑋2𝑚∕3−5∕3). Here, 𝑚

2
− 1 ⩽ 𝑚

2
− 𝛿

4

and 2𝑚

3
− 5

3
⩽
𝑚

2
− 𝛿

4
, since 𝛿 ⩽ min(1, 2

3
(10 − 𝑚)). □

6 ESTIMATES AT THE CENTER

In this section, we collect some standard facts we need about the quantities 𝐼𝟎(𝑛), 𝑆𝟎(𝑛) defined
in (1.4) and (1.5). By [14, Lemma 16], we have

𝐼𝟎(𝑛) ≪ 𝑋𝑚. (6.1)

By (6.1) and [14, Lemma 13], we have (uniformly over 𝑋, 𝑛 ⩾ 1)

𝑋−𝑚𝐼𝟎(𝑛) = 𝜎∞,𝐹,𝑤 + 𝑂𝐴((𝑛∕𝑌)
𝐴) (6.2)

(for all 𝐴 > 0), where

𝜎∞,𝐹,𝑤 ∶= lim
𝜖→0

(2𝜖)−1 ∫|𝐹(𝒙)|⩽𝜖 𝑑𝒙𝑤(𝒙) ≪𝐹,𝑤 1. (6.3)
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 19 of 35

Aside from the real density 𝜎∞,𝐹,𝑤, we also have the singular series

𝔖𝐹 ∶=
∑
𝑛⩾1

𝑛−𝑚𝑆𝟎(𝑛) =
∑
𝑛⩾1

𝑛(1−𝑚)∕2𝑆♮
𝟎
(𝑛), (6.4)

which converges absolutely for𝑚 ⩾ 5 (as one can show using Lemma 6.1, for instance).

Lemma 6.1. Assume𝑚 ⩾ 4. If𝑁 ∈ {1, 2, 4, 8, …}, then∑
𝑁⩽𝑛<2𝑁

𝑛1−𝑚∕2
∑
𝑑∣𝑛

𝑑−1∕2
|||𝑆♮𝟎(𝑑)|||≪𝜖 𝑁

(4−𝑚)∕3+𝜖.

Proof. We have 𝑆♮
𝟎
(𝑑) ≪𝜖 𝑑

1∕2+𝜖 cub(𝑑)𝑚∕6 by (5.2) for diagonal 𝐹, and by [19, p. 95, (170)] in
general. Thus,

∑
𝑑∣𝑛 𝑑

−1∕2|𝑆♮
𝟎
(𝑑)|≪𝜖 𝑛

𝜖 cub(𝑛)𝑚∕6. But

∑
𝑁⩽𝑛<2𝑁

cub(𝑛)𝑚∕6 ≪
∑

𝑛3<2𝑁∶𝑛3=cub(𝑛3)

𝑛
𝑚∕6
3

⋅ (𝑁∕𝑛3) ≪𝜖 𝑁 ⋅𝑁𝑚∕6−2∕3+𝜖
∑

𝑛3=cub(𝑛3)

𝑛
−1∕3−𝜖
3

,

since𝑚∕6 − 2∕3 ⩾ 0. Observe that
∑
𝑛3=cub(𝑛3)

𝑛
−1∕3−𝜖
3

≪𝜖 1, and multiply by 𝑁1−𝑚∕2+𝜖. □

Since 𝐼𝟎(𝑛) = 0 for 𝑛 ⩾ 𝑀2𝑌 (by Proposition 5.1), a routine calculation† using (6.2), Lemma 6.1,
and (6.4) gives, for𝑚 ⩾ 5, the equality

𝑌−2
∑
𝑛⩾1

𝑛−𝑚𝑆𝟎(𝑛)𝐼𝟎(𝑛) = 𝜎∞,𝐹,𝑤𝔖𝐹𝑋
𝑚−3 + 𝑂𝜖(𝑋

𝑚∕2−1+𝜖). (6.5)

Remark 6.2. The presence of
∑
𝑑∣𝑛 in Lemma 6.1 is not important for (6.5) (where 𝟏𝑑=𝑛 would

suffice in place of
∑
𝑑∣𝑛), but rather for Lemma 8.12 (to help separate 𝒄 = 𝟎 from 𝒄 ≠ 𝟎).

7 ESTABLISHING BIAS IN EXPONENTIAL SUMS

In this section, we will realize (1.10) from §1. We will start with general theory, and gradually
impose restrictions. It will be convenient to work over the 𝑝-adic integers, ℤ𝑝.
Let 𝑝 be a prime. Certain hyperplane sections govern the behavior of 𝑆𝒄(𝑝𝑙) for 𝑙 ⩾ 1, as 𝒄 ranges

over ℤ𝑚 or more generally, ℤ𝑚𝑝 .
‡ Let  and 𝒄 denote the closed subschemes of ℙ𝑚−1ℤ𝑝

defined by
the equations 𝐹(𝒙) = 0 and 𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0, respectively. Throughout the present §7 only, let
𝑉 ∶= 𝔽𝑝 and 𝑉𝒄 ∶= (𝒄)𝔽𝑝 , so that 𝑉 and 𝑉𝒄 live over 𝔽𝑝 (not ℚ).
We now recall some standard background recorded (with references) in [25, §3.2]. Let 𝑚∗ ∶=

𝑚 − 3. In terms of the point counts |𝑉(𝔽𝑝)| and |𝑉𝒄(𝔽𝑝)| over 𝔽𝑝, let
𝐸(𝑝) ∶= |𝑉(𝔽𝑝)| − (𝑝𝑚−1 − 1)∕(𝑝 − 1), 𝐸𝒄(𝑝) ∶= |𝑉𝒄(𝔽𝑝)| − (𝑝𝑚−2 − 1)∕(𝑝 − 1).

†With the same numerics as the diagonal treatment in [26, §6].
‡ The formula for 𝑆𝒄(𝑝𝑙) in (1.5) still makes sense for 𝒄 ∈ ℤ𝑚𝑝 , because 𝒄 mod 𝑝

𝑙 ∈ ℤ∕𝑝𝑙ℤ.
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20 of 35 WANG

Then, let𝐸♮(𝑝) ∶= 𝑝−(𝑚∗+1)∕2𝐸(𝑝) and𝐸♮𝒄(𝑝) ∶= 𝑝−𝑚∗∕2𝐸𝒄(𝑝). ByDeligne’s resolution of theWeil
conjectures,

𝐸♮(𝑝) ≪𝐹 1. (7.1)

Furthermore, whenever 𝑝 ∤ 𝒄, we have 𝑆𝒄(𝑝) = 𝑝2𝐸𝒄(𝑝) − 𝑝𝐸(𝑝), or equivalently,

𝑆♮𝒄(𝑝) = 𝐸
♮
𝒄(𝑝) − 𝑝

−1∕2𝐸♮(𝑝). (7.2)

For prime powers 𝑝𝑙 with 𝑙 ⩾ 2, a different flavor of geometry, based on Hensel lifting, comes
into play; cf. [18, pp. 65–66]. For the sake of otherwork [28], we provemore thanwe presently need;
we encourage the reader to skip ahead to Corollary 7.5 on a first reading. We start by identifying
a clean source of cancelation in (1.5). For each integer 𝑑 ⩾ 0, let

𝒮(𝒄, 𝑝𝑑) ∶=
⋃
𝜆∈ℤ×𝑝

{
𝒙 ∈ ℤ𝑚𝑝 ∶ 𝑝

𝑑 ∣ ∇𝐹(𝒙) − 𝜆𝒄
}
. (7.3)

Lemma 7.1. Let 𝒄, 𝒙0 ∈ ℤ𝑚𝑝 . Let 𝑙 ⩾ 2 and 𝑑 ∈ [0, (𝑙 + 𝟏𝑝∣𝒙0)∕2]. Then, 𝑑 ⩽ 𝑙 − 1, and∑
1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙⩽𝑝𝑙

𝟏𝒙≡𝒙0 mod 𝑝𝑙−𝑑 ⋅ 𝟏𝒙∉𝒮(𝒄,𝑝𝑑) ⋅ 𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙) = 0. (7.4)

Proof. If 𝑙 = 2, then 𝑑 ⩽ 1 ⩽ 2𝑙∕3; if 𝑙 ⩾ 3, then 𝑑 ⩽ (𝑙 + 1)∕2 ⩽ 2𝑙∕3. Thus, 𝑑 ⩽ ⌊2𝑙∕3⌋ ⩽ 𝑙 − 1.
On the left-hand side of (7.4), write 𝒙 = 𝒙0 + 𝑝𝑙−𝑑𝒓 (with 𝒓 ∈ ℤ𝑚𝑝 running over a complete set

of residues modulo 𝑝𝑑). Trivially, 𝒄 ⋅ 𝒙 ≡ 𝒄 ⋅ 𝒙0 + 𝒄 ⋅ 𝑝𝑙−𝑑𝒓 mod 𝑝𝑙. Also, since 𝐹 is homogeneous
of degree 3, Taylor expansion (usingmin(𝟏𝑝∣𝒙0 + 2(𝑙 − 𝑑), 3(𝑙 − 𝑑)) ⩾ 𝑙) gives

𝐹(𝒙) ≡ 𝐹(𝒙0) + ∇𝐹(𝒙0) ⋅ 𝑝𝑙−𝑑𝒓 mod 𝑝𝑙.
Furthermore,∇𝐹(𝒙) ≡ ∇𝐹(𝒙0) mod 𝑝𝑑 (since∇𝐹 is “homogeneous of degree 2,” andmin(𝟏𝑝∣𝒙0 +
(𝑙 − 𝑑), 2(𝑙 − 𝑑)) ⩾ 𝑑), whence 𝟏𝒙∉𝒮(𝒄,𝑝𝑑) = 𝟏𝒙0∉𝒮(𝒄,𝑝𝑑) (by (7.3)).
If 𝒙0 ∈ 𝒮(𝒄, 𝑝𝑑), then the left-hand side of (7.4) directly vanishes. Now suppose 𝒙0 ∉ 𝒮(𝒄, 𝑝𝑑).

Then, for each 𝑎 in (7.4), we have 𝑝𝑑 ∤ 𝑎∇𝐹(𝒙0) + 𝒄, whence the sum of 𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙) over
𝒙 ≡ 𝒙0 mod 𝑝𝑙−𝑑 (i.e., over 𝒓 mod 𝑝𝑑) vanishes. Summing over 𝑎 gives (7.4). □

We now show that to understand 𝑆𝒄(𝑝𝑙) for 𝑙 ⩾ 2, it suffices to understand

𝑆′𝒄(𝑝
𝑙) ∶=

∑
1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙⩽𝑝𝑙∶ 𝑝∤𝒙

𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙). (7.5)

Before proceeding, note that by (1.5), (7.5), we have

𝑆𝒄(𝑝
𝑙) − 𝑆′𝒄(𝑝

𝑙) =
∑

1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙⩽𝑝𝑙∶ 𝑝∣𝒙

𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙). (7.6)

Lemma 7.2. Fix a tuple 𝒄 ∈ ℤ𝑚𝑝 and an integer 𝑙 ⩾ 2. Then, 𝑆𝒄(𝑝𝑙) − 𝑆′𝒄(𝑝
𝑙) equals

(1) 𝟏𝑝∣𝒄 ⋅ 𝜙(𝑝2)𝑝𝑚 if 𝑙 = 2, and
(2) 𝟏𝑝2∣𝒄 ⋅ [𝜙(𝑝𝑙)∕𝜙(𝑝𝑙−3)] ⋅ 𝑝2𝑚 ⋅ 𝑆𝒄∕𝑝2(𝑝

𝑙−3) if 𝑙 ⩾ 3.

In particular, if 𝑝 ∤ 𝒄, then 𝑆𝒄(𝑝𝑙) = 𝑆′𝒄(𝑝
𝑙).
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 21 of 35

Proof. Let 𝑑 ∶= min(2, ⌊(𝑙 + 1)∕2⌋); then Lemma 7.1 applies whenever𝑝 ∣ 𝒙0. Summing (7.4) over
{1 ⩽ 𝒙0 ⩽ 𝑝

𝑙−𝑑 ∶ 𝑝 ∣ 𝒙0}, we get (by (7.6))

𝑆𝒄(𝑝
𝑙) − 𝑆′𝒄(𝑝

𝑙) =
∑

1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙⩽𝑝𝑙∶ 𝑝∣𝒙

𝟏𝒙∈𝒮(𝒄,𝑝𝑑) ⋅ 𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙).

Here, 𝑝2 ∣ ∇𝐹(𝒙), and 𝑑 ⩽ 2, so 𝟏𝒙∈𝒮(𝒄,𝑝𝑑) = 𝟏𝑝𝑑∣𝒄 (by (7.3)). So, if 𝑝𝑑 ∤ 𝒄, then 𝑆𝒄(𝑝𝑙) − 𝑆′𝒄(𝑝
𝑙) = 0,

which suffices (since 𝑑 = 1 if 𝑙 = 2, and 𝑑 = 2 if 𝑙 ⩾ 3). Now suppose 𝑝𝑑 ∣ 𝒄.
If 𝑙 = 2, then 𝑝𝑙 ∣ 𝐹(𝒙), 𝒄 ⋅ 𝒙, so 𝑆𝒄(𝑝𝑙) − 𝑆′𝒄(𝑝

𝑙) = 𝜙(𝑝𝑙)
∑
1⩽𝒙⩽𝑝𝑙∶ 𝑝∣𝒙 1 = 𝜙(𝑝

2)𝑝𝑚.
Now suppose 𝑙 ⩾ 3. Then 𝑑 = 2, and 𝒄′ ∶= 𝒄∕𝑝2 ∈ ℤ𝑚𝑝 . Now write 𝒙 = 𝑝𝒙′ to get

𝑆𝒄(𝑝
𝑙) − 𝑆′𝒄(𝑝

𝑙) =
∑

1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙′⩽𝑝𝑙−1

𝑒𝑝𝑙 (𝑎𝑝
3𝐹(𝒙′) + 𝑝3𝒄′ ⋅ 𝒙′).

Now let 𝑙′ ∶= 𝑙 − 3 ⩾ 0. Then 𝑒𝑝𝑙 (−) is determined by (𝑎, 𝒙′) mod 𝑝𝑙
′ . Therefore,

𝑆𝒄(𝑝
𝑙) − 𝑆′𝒄(𝑝

𝑙) = [𝜙(𝑝𝑙)∕𝜙(𝑝𝑙
′
)] ⋅ 𝑝2𝑚 ⋅

∑
1⩽𝑎⩽𝑝𝑙′ ∶ 𝑝∤𝑎

∑
1⩽𝒙′⩽𝑝𝑙′

𝑒𝑝𝑙′ (𝑎𝐹(𝒙
′) + 𝒄′ ⋅ 𝒙′),

which equals [𝜙(𝑝𝑙)∕𝜙(𝑝𝑙′ )] ⋅ 𝑝2𝑚 ⋅ 𝑆𝒄′(𝑝
𝑙′ ) by (1.5). This completes the proof. □

The general study of 𝑆′𝒄(𝑝
𝑙) needs some setup. For any vector 𝒃 ∈ ℤ𝑚𝑝 , let 𝑣𝑝(𝒃) ∶=

𝑣𝑝(gcd(𝑏1, … , 𝑏𝑚)) ∈ [0,∞]. Given 𝒄 ∈ ℤ𝑚𝑝 ⧵ {𝟎} and integers 𝑟, 𝑠, 𝑑 ⩾ 0, let

𝑟,𝑠(𝒄, 𝑑) ∶= {𝒙 ∈ ℤ𝑚𝑝 ∩𝒮(𝒄, 𝑝𝑑) ∶ 𝑝 ∤ 𝒙, 𝑝𝑟 ∣ 𝐹(𝒙), 𝑝𝑠+𝑣𝑝(𝒄) ∣ 𝒄 ⋅ 𝒙},

∗𝑟,𝑠(𝒄, 𝑑) ∶= {𝒙 ∈ 𝑟,𝑠(𝒄, 𝑑) ∶ 𝑣𝑝(∇𝐹(𝒙)) = 𝑣𝑝(𝒄)}.
(7.7)

Let 𝜇𝑝 denote the usual Haar measure on ℤ𝑚𝑝 , so that for all 𝑙 ⩾ max(1, 𝑟, 𝑠, 𝑑), we have

𝜇𝑝(𝑟,𝑠(𝒄, 𝑑)) = 𝑝−𝑙𝑚 ⋅ |{𝒙 ∈ 𝒮(𝒄, 𝑝𝑑) ∶ 1 ⩽ 𝒙 ⩽ 𝑝𝑙, 𝑝 ∤ 𝒙, 𝑝𝑟 ∣ 𝐹(𝒙), 𝑝𝑠+𝑣𝑝(𝒄) ∣ 𝒄 ⋅ 𝒙}|. (7.8)

Lemma 7.3. Suppose 𝒄 ∈ ℤ𝑚𝑝 ⧵ {𝟎} and g = 𝑣𝑝(𝒄). Let 𝑢, 𝑣 ⩾ 1 and 𝑑 ⩾ g be integers. Then,

𝜇𝑝(𝑢,𝑣(𝒄, 𝑑)) = 𝑝𝑢−𝑣 ⋅ 𝜇𝑝(𝑢,𝑢(𝒄, 𝑑)), if 𝑣 ⩾ 𝑑 and 𝑑 ⩽ 𝑢 ⩽ g + 𝑣; (7.9)

𝜇𝑝(∗𝑢,𝑣(𝒄, 𝑑)) = 𝑝−1 ⋅ 𝜇𝑝(∗𝑢−1,𝑣(𝒄, 𝑑)), if 𝑢 − 1 − g ⩾ max(1 + g , 𝑑, 𝑣). (7.10)

Proof. Let 𝑟, 𝑠 ⩾ 1 be integers. Using (7.7) and the congruence

𝐹(𝒙 + 𝑝max(𝑑,𝑟−g)𝒉) ≡ 𝐹(𝒙) + ∇𝐹(𝒙) ⋅ 𝑝max(𝑑,𝑟−g)𝒉 mod 𝑝𝑟
(valid since 2max(𝑑, 𝑟 − g) ⩾ 2max(g , 𝑟 − g) ⩾ 𝑟), we find that

(1) 𝑟,𝑠(𝒄, 𝑑) is invariant under addition by any element of 𝑝max(𝑑,𝑟−g ,𝑠)ℤ𝑚𝑝 (since 𝑝g ∣ ∇𝐹(𝒙) for
all 𝒙 ∈ 𝑟,𝑠(𝒄, 𝑑), by (7.3)), and therefore

(2) ∗𝑟,𝑠(𝒄, 𝑑) is invariant under 𝑝max(1+g ,𝑑,𝑟−g ,𝑠)ℤ𝑚𝑝 .
Case 1: 𝑣 ⩾ 𝑑 and 𝑑 ⩽ 𝑢 ⩽ g + 𝑣 Then,max(𝑑, 𝑢 − g , 𝑣) = 𝑣 andmax(𝑑, 𝑢 − g , 𝑢) = 𝑢.
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22 of 35 WANG

∙ If 𝑢 ⩽ 𝑣, then the inclusion 𝑢,𝑣(𝒄, 𝑑) → 𝑢,𝑢(𝒄, 𝑑) descends to a map 𝑢,𝑣(𝒄, 𝑑)∕𝑝𝑣ℤ𝑚𝑝 →
𝑢,𝑢(𝒄, 𝑑)∕𝑝𝑢ℤ𝑚𝑝 ; and this map has fibers of size 𝑝(𝑚−1)(𝑣−𝑢), so (7.9) holds.

∙ If 𝑢 ⩾ 𝑣, then the inclusion 𝑢,𝑢(𝒄, 𝑑) → 𝑢,𝑣(𝒄, 𝑑) descends to a map 𝑢,𝑢(𝒄, 𝑑)∕𝑝𝑢ℤ𝑚𝑝 →
𝑢,𝑣(𝒄, 𝑑)∕𝑝𝑣ℤ𝑚𝑝 ; and this map has fibers of size 𝑝(𝑚−1)(𝑢−𝑣), so (7.9) holds.
Case 2: 𝑢 − 1 − g ⩾ max(1 + g , 𝑑, 𝑣). Then, 𝑢 ⩾ 2, andmax(1 + g , 𝑑, 𝑟 − g , 𝑣) = 𝑟 − g for all 𝑟 ⩾

𝑢 − 1. So, the inclusion ∗𝑢,𝑣(𝒄, 𝑑) → ∗
𝑢−1,𝑣

(𝒄, 𝑑) descends to a map

∗𝑢,𝑣(𝒄, 𝑑)∕𝑝𝑢−gℤ𝑚𝑝 → ∗𝑢−1,𝑣(𝒄, 𝑑)∕𝑝𝑢−g−1ℤ𝑚𝑝 .
Thismap has fibers of size𝑝𝑚−1, since for all𝒙0 ∈ ∗

𝑢−1,𝑣
(𝒄, 𝑑) and 𝒓 ∈ ℤ𝑚𝑝 , we have 𝑣𝑝(∇𝐹(𝒙0)) =

g and the “lifting congruence”

𝐹(𝒙0 + 𝑝
𝑢−g−1𝒓) ≡ 𝐹(𝒙0) + ∇𝐹(𝒙0) ⋅ 𝑝𝑢−g−1𝒓 mod 𝑝𝑢.

(This congruence holds because 2(𝑢 − g − 1) ⩾ 𝑢.) Thus, (7.10) holds. □

The next result synthesizes a lot of old and new Hensel work.

Proposition 7.4. Let 𝒄 ∈ ℤ𝑚𝑝 ⧵ {𝟎}, and let g = 𝑣𝑝(𝒄). Let 𝑑 ⩾ g if 𝑉 is smooth, and let 𝑑 ⩾ 1 + g if
𝑉 is singular. Let 𝑙 ⩾ max(2 + 2g , 2𝑑). Then,

𝑝−𝑙𝑚𝜙(𝑝𝑙)𝑆′𝒄(𝑝
𝑙) = 𝑝2𝑙+g𝜇𝑝(𝑙,𝑙(𝒄, 𝑑)) − 𝑝2𝑙−2+g𝜇𝑝(𝑙−1,𝑙−1(𝒄, 𝑑)). (7.11)

Proof. Lemma 7.1 applies, since 𝑑 ⩽ 𝑙∕2. Summing (7.4) over {1 ⩽ 𝒙0 ⩽ 𝑝𝑙−𝑑 ∶ 𝑝 ∤ 𝒙0} gives

𝑆′𝒄(𝑝
𝑙) =

∑
1⩽𝑎⩽𝑝𝑙∶ 𝑝∤𝑎

∑
1⩽𝒙⩽𝑝𝑙∶ 𝑝∤𝒙

𝟏𝒙∈𝒮(𝒄,𝑝𝑑) ⋅ 𝑒𝑝𝑙 (𝑎𝐹(𝒙) + 𝒄 ⋅ 𝒙).

Replacing 𝒄 with 𝜆𝒄 for 𝜆 ∈ ℤ×𝑝 , and summing over 𝜆, we get (via the scalar symmetries 𝑆
′
𝒄(𝑝

𝑙) =

𝑆′
𝜆𝒄
(𝑝𝑙) and 𝒮(𝒄, 𝑝𝑑) = 𝒮(𝜆𝒄, 𝑝𝑑) that follow from (7.5) and (7.3), respectively)

𝑝−𝑙𝑚𝜙(𝑝𝑙)𝑆′𝒄(𝑝
𝑙) =

∑
1⩽𝜆⩽𝑝𝑙∶ 𝑝∤𝜆

𝑝−𝑙𝑚𝑆′
𝜆𝒄
(𝑝𝑙) =

∑
𝑙−1⩽𝑢,𝑣⩽𝑙

(−𝑝)𝑢+𝑣𝜇𝑝(𝑢,𝑣−g (𝒄, 𝑑)), (7.12)

by a short calculation using
∑
1⩽𝑏⩽𝑝𝑙∶ 𝑝∤𝑏 =

∑
1⩽𝑏⩽𝑝𝑙 −

∑
1⩽𝑏⩽𝑝𝑙∶ 𝑝∣𝑏 (for 𝑏 = 𝑎, 𝜆) and (7.8).

Let 𝑟, 𝑠 ⩾ 1. Before proceeding, we prove (by casework) that

∗𝑟,𝑠(𝒄, 𝑑) = 𝑟,𝑠(𝒄, 𝑑). (7.13)

Case 1:𝑑 = g ⩾ 1. Then,𝑉 is smooth, so {𝒙 ∈ ℤ𝑚𝑝 ∶ 𝑝 ∤ 𝒙, 𝑝 ∣ 𝐹(𝒙), 𝑝 ∣ ∇𝐹(𝒙)} = ∅. Since𝑝 ∣ 𝒄,
we conclude by (7.3), (7.7) that 1,1(𝒄, 1) = ∅. So, both sides of (7.13) are empty.
Case 2: 𝑑 = g = 0. Then 𝑉 is smooth, and 𝑝 ∤ 𝒄. So, by (7.7), we have (7.13).
Case 3: 𝑑 ⩾ g + 1. Then, 𝑣𝑝(∇𝐹(𝒙)) = g for all 𝒙 ∈ 𝒮(𝒄, 𝑝𝑑). So, by (7.7), we have (7.13).
Having established (7.13) in all cases, we now return to (7.12). Since 𝑑 ⩾ g and 𝑙 ⩾ max(2 +

2g , 1 + g + 𝑑, 𝑙), we may apply (7.10) (with 𝑢 = 𝑙 and 𝑣 = 𝑙 − 1 − g) and (7.13) to get

𝜇𝑝(𝑙,𝑙−1−g (𝒄, 𝑑)) = 𝑝−1 ⋅ 𝜇𝑝(𝑙−1,𝑙−1−g (𝒄, 𝑑)).
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 23 of 35

But since 𝑑 ⩾ g and 𝑙 − 1 − g ⩾ max(1, 𝑑), we may use (7.9) to get

𝜇𝑝(𝑢,𝑣(𝒄, 𝑑)) = 𝑝𝑢−𝑣 ⋅ 𝜇𝑝(𝑢,𝑢(𝒄, 𝑑))
for all (𝑢, 𝑣) ∈ {𝑙 − 1, 𝑙} × {𝑙 − 1 − g , 𝑙 − g} such that 𝑢 ⩽ g + 𝑣. Thus, the right-hand side of (7.12)
equals 𝑝𝑙+𝑙+g ⋅ 𝜇𝑝(𝑙,𝑙(𝒄, 𝑑)) − (𝑝𝑙+(𝑙−1)−1+g + 𝑝(𝑙−1)+𝑙+(g−1) − 𝑝(𝑙−1)+(𝑙−1)+g) ⋅ 𝜇𝑝(𝑙−1,𝑙−1(𝒄, 𝑑)),
which simplifies to the right-hand side of (7.11). So, (7.12) implies (7.11). □

Corollary 7.5. Suppose 𝒄 ∈ ℤ𝑚𝑝 ⧵ {𝟎} is primitive and 𝑉 is smooth. Let 𝑙 ⩾ 2. Then,

𝑆𝒄(𝑝
𝑙) = 𝑝2𝑙|𝒄(ℤ∕𝑝𝑙ℤ)| − 𝑝2𝑙+𝑚∗ |𝒄(ℤ∕𝑝𝑙−1ℤ)|.

Proof. Here 𝑣𝑝(𝒄) = 0, so (7.8) implies 𝜇𝑝(𝑢,𝑢(𝒄, 0)) = 𝑝−𝑢𝑚𝜙(𝑝𝑢)|𝒄(ℤ∕𝑝𝑢ℤ)| for 𝑢 ⩾ 1. Plug
this into Proposition 7.4 (with 𝑑 = g = 0); then note that 𝑆𝒄(𝑝𝑙) = 𝑆′𝒄(𝑝

𝑙) by Lemma 7.2. □

Now fix𝐿 ∈ Υ.Wewill build up to Lemma 7.11 (realizing (1.10) from§1). AsRemark 1.6 suggests,
Lemma 7.11 might extend to more general 𝐹. But to maximize the accessibility of §7, we focus on
the diagonal case. We will use an ad hoc change of coordinates, highlighting specific features (of
diagonal forms) that may be of independent interest.
So, for the rest of §7, assume that 𝐹 is diagonal with𝑚 ∈ {4, 6}. Let  be a permissible pairing

corresponding to 𝐿 in Proposition 3.6. Since is permissible, there exist unique cube-free integers
𝐹(𝑘) (for 𝑘 ∈ ) such that 𝐹𝑖∕𝐹(𝑘) is an integer cube for all 𝑘 ∈  and 𝑖 ∈  (𝑘).
Suppose 𝒄 lies in Λ⟂ or more generally, Λ⟂ ⊗ ℤ𝑝. Assume

𝑝 ∤ 𝑗2
𝑚∕2−1

𝐹∨(𝒄). (7.14)

In particular, by (1.14), we have

𝑝 ∤ (6𝑚)!𝐹1⋯𝐹𝑚. (7.15)

Proposition 7.6. Under (7.14) and (7.15), the following hold.

(1) Each 𝑐(𝑘)3 lies in ℤ𝑝 .
(2) If𝑘1 <⋯ < 𝑘𝑡 , then𝑝 ∤

∏
(𝑐(𝑘1)

3∕2 ±⋯ ± 𝑐(𝑘𝑡)
3∕2). In particular,𝑝 ∤ 𝑐(𝑘)3, hence 𝑐(𝑘)3 ∈ ℤ×𝑝 ,

for each 𝑘. Also, 𝑝 ∤ 𝑐(𝑖)3 − 𝑐(𝑗)3 when 𝑖 ≠ 𝑗.
(3) 𝑉𝒄 has exactly 2𝑚∕2−1 singular 𝔽𝑝-points.

Proof.

(1) By Definition 3.5, 𝑐(𝑘)3 = 𝑐3
𝑖
∕𝐹𝑖 for all 𝑖 ∈  (𝑘). Here, 𝑝 ∤ 𝐹𝑖 by (7.15).

Next, we use some results of §3.2, carried over from ℚ to 𝔽𝑝 via Remark 3.11.
(2) Use (7.14) and the 𝔽𝑝-analog of Observation 3.10(1).
(3) 𝑝 ∣ 𝑗2𝑚∕2−1−1𝐹∨(𝒄) by Corollary 3.9, carried over to 𝔽𝑝. But 𝑝 ∤ 𝑗2

𝑚∕2−1
𝐹∨(𝒄) by (7.14). So by the

𝔽𝑝-analogs of Proposition 3.7 and (3.5), the scheme 𝑉𝒄 has at least, but also at most, 2𝑚∕2−1

singular 𝔽𝑝-points. (Note that each singular 𝔽𝑝-point of𝑉𝒄 has all coordinates nonzero, by the
Jacobian criterion, since 𝑝 ∤ 𝑐1⋯ 𝑐𝑚 by (2).) □

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12975 by Institute O

f Science A
nd T

echnology, W
iley O

nline L
ibrary on [20/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 of 35 WANG

Assume, until further notice, that

𝐹𝑖 = 𝐹(𝑘) (7.16)

for all 𝑘 ∈  and 𝑖 ∈  (𝑘). For convenience, assume  (𝑘) = {𝑘, 𝑘 + 𝑚∕2} for each 𝑘 ∈  =

[𝑚∕2]. Then, 𝒄 ∈ Λ⟂ ⊗ ℤ𝑝 implies 𝑐𝑘 = 𝑐𝑘+𝑚∕2. Let 𝑐⋆𝑘 ∶= 𝑐𝑘 = 𝑐𝑘+𝑚∕2, so that

𝑐(𝑘)3 = (𝑐⋆
𝑘
)3∕𝐹(𝑘). (7.17)

Now consider the equations 𝐹(𝒙) = 0 and 𝒄 ⋅ 𝒙 = 0 defining 𝒄. These equations become∑
1⩽𝑘⩽𝑚∕2

𝐹(𝑘) ⋅ ℎ[𝑘]𝑦[𝑘]
2 = −3

∑
1⩽𝑘⩽𝑚∕2

𝐹(𝑘) ⋅ ℎ[𝑘]
3 and

∑
1⩽𝑘⩽𝑚∕2

𝑐⋆
𝑘
⋅ ℎ[𝑘] = 0 (7.18)

after a linear change of variables over ℤ[1∕6]. Explicitly, if  (𝑘) = {𝑖, 𝑗} with 𝑖 < 𝑗, then we take
ℎ[𝑘] ∶= 𝑥𝑖 + 𝑥𝑗 and 𝑦[𝑘] ∶= 3(𝑥𝑖 − 𝑥𝑗), so that the equation ℎ[1] = ⋯ = ℎ[𝑚∕2] = 0 cuts out
Λ⊗ ℤ𝑝. (We use the letter “ℎ” in analogywith van der Corput orWeyl differencing. The definition
of 𝒉 ∶= (ℎ[𝑘])1⩽𝑘⩽𝑚∕2 is compatible with that in §4.)
Geometrically, over 𝐾 ∶= 𝔽𝑝, the space {[𝒉] ∈ ℙ𝑚∕2−1 ∶ 𝒄⋆ ⋅ 𝒉 = 0} ≅ ℙ𝑚∕2−2 parameterizes

projective 𝑚

2
-planes ℙ𝐻 ⊆ ℙ𝒄⟂ ≅ ℙ𝑚−2 containing the fixed (𝑚

2
− 1)-plane ℙΛ𝐾 . Over this

[𝒉]-space, we have the “quadratic fibration” (related to the blow-up of 𝑉𝒄 along ℙΛ𝐾)

𝑉𝒄 ⧵ ℙΛ𝐾 → ℙ[𝒄⋆]⟂ ≅ ℙ𝑚∕2−2, [𝒙] ↦ [𝒉].

Concretely, each slice 𝑉𝒄 ∩ ℙ𝐻 consists of ℙΛ𝐾 and a (possibly singular) quadric hypersurface
𝑄𝐻 ⊆ ℙ𝐻 of dimension𝑚∕2 − 1, where 𝑄𝐻 ⧵ ℙΛ𝐾 is the fiber of 𝑉𝒄 ⧵ ℙΛ𝐾 over ℙ𝐻.
Below, let ( 𝑟

𝑝
) denote the Legendre symbol (if 𝑝 is odd), and write 𝜒(𝑟) ∶= ( 𝑟

𝑝
).

Lemma 7.7. Under (7.14), (7.15), and (7.16), we have 𝐸♮𝒄(𝑝) = 𝑝1∕2 + 𝑂(1).

Proof. Let 𝐶(𝑉𝒄) denote the affine cone of 𝑉𝒄: the subscheme 𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0 of 𝔸𝑚.
Then, |𝐶(𝑉𝒄)(𝔽𝑝)| = 1 + (𝑝 − 1)|𝑉𝒄(𝔽𝑝)|. We must show that |𝐶(𝑉𝒄)(𝔽𝑝)| = 𝑝𝑚−2 + 𝑝𝑚∕2 +
𝑂(𝑝(𝑚−1)∕2).
We count solutions to 𝐹(𝒙) = 𝒄 ⋅ 𝒙 = 0 using the (𝒉, 𝒚) coordinates in (7.18). The locus 𝒉 = 𝟎

contributes |Λ∕𝑝Λ| = 𝑝𝑚∕2 solutions to (7.18). Let
𝑈 = 𝑉𝒄 ∩ {𝒉 ≠ 𝟎}, 𝑈′ = 𝑉𝒄 ∩

{∏
ℎ[𝑘] ≠ 0} , 𝑍𝑘 = 𝑈 ∩ {ℎ[𝑘] = 0},

and by slight abuse of notation, define the corresponding cones with origins removed:

𝐶(𝑈) = 𝐶(𝑉𝒄) ∩ {𝒉 ≠ 𝟎}, 𝐶(𝑈′) = 𝐶(𝑉𝒄) ∩
{∏

ℎ[𝑘] ≠ 0} , 𝐶(𝑍𝑘) = 𝐶(𝑈) ∩ {ℎ[𝑘] = 0}.

Recall (7.17). Since 𝑝 ∤ 𝑐⋆
𝑘
for all 𝑘 ∈ [𝑚∕2] (by Proposition 7.6(2)), the equation 𝒄⋆ ⋅ 𝒉 = 0 implies

that 𝑈 = 𝑈′ if𝑚 = 4, and that 𝑍1, 𝑍2, 𝑍3 are pairwise disjoint if𝑚 = 6.
Suppose first that 𝑚 = 4. Then, 𝑈 = 𝑈′ is covered by a single affine chart, say with ℎ[2] = 𝑐⋆

1
and ℎ[1] = −𝑐⋆

2
. The (remaining) defining equation 𝐹(𝒙) = 0 becomes

−𝐹(1) ⋅ 𝑐
⋆
2 ⋅ 𝑦[1]2 + 𝐹(2) ⋅ 𝑐

⋆
1 ⋅ 𝑦[2]2 = 3

[
𝐹(1) ⋅ (𝑐

⋆
2 )
3 − 𝐹(2) ⋅ (𝑐

⋆
1 )
3
]
.
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 25 of 35

Since 𝑝 ∤ 𝑐(2)3 − 𝑐(1)3 (by Proposition 7.6(2)), we get |𝑈(𝔽𝑝)| = 𝑝 − 𝜒(𝑐(1)3𝑐(2)3) by compar-
ing 𝑈 with ℙ1. Thus, |𝐶(𝑈)(𝔽𝑝)| = (𝑝 − 1)|𝑈(𝔽𝑝)| = 𝑝2 + 𝑂(𝑝). So, |𝐶(𝑉𝒄)(𝔽𝑝)| = |Λ∕𝑝Λ| +|𝐶(𝑈)(𝔽𝑝)| = 𝑝𝑚−2 + 𝑝𝑚∕2 + 𝑂(𝑝), which is better than satisfactory.
Suppose next that 𝑚 = 6. Plugging ℎ[𝑘] = 0 into (7.18) identifies 𝐶(𝑍𝑘) as the product of 𝔸1

(with coordinate 𝑦[𝑘]) with a cone of the shape “𝐶(𝑈) for 𝑚 = 4” (which has 𝑝2 + 𝑂(𝑝) points
by the previous paragraph). Thus, |𝐶(𝑍𝑘)(𝔽𝑝)| = 𝑝3 + 𝑂(𝑝2) for each 𝑘, and |⋃𝑘 𝐶(𝑍𝑘)(𝔽𝑝)| =∑
𝑘 |𝐶(𝑍𝑘)(𝔽𝑝)| = 3𝑝3 + 𝑂(𝑝2) in total over 1 ⩽ 𝑘 ⩽ 𝑚∕2.
For 𝑈′(𝔽𝑝), first consider an individual 𝒉 ∈ 𝔽

𝑚∕2
𝑝 with

∏
ℎ[𝑘] ≠ 0. The equation 𝐹(𝒙) = 0 (a

ternary quadratic in 𝒚) has 𝒩𝒉 = 𝑝2 + 𝑝 ⋅ 𝜒
(
𝐹(1)ℎ[1]⋯𝐹(3)ℎ[3] ⋅ 3

∑
𝐹(𝑘)ℎ[𝑘]

3
)
solutions 𝒚 ∈

𝔽
𝑚∕2
𝑝 . Indeed, if

∑
𝐹(𝑘)ℎ[𝑘]

3 = 0, then {𝒚 ∈ 𝔸3 ∶ 𝐹(𝒙) = 0} is an affine cone over a smooth
conic 𝑄 ≅ ℙ1; otherwise, {𝒚 ∈ 𝔸3 ∶ 𝐹(𝒙) = 0} is a nondegenerate affine quadric (and is thus the
complement of a smooth conic in a smooth quadric in ℙ3).
Now identify 𝑈′ with its affine chart ℎ[3] = 1. The equation 𝒄⋆ ⋅ 𝒉 = 0 becomes ℎ[2] =

−(𝑐⋆
2
)−1(𝑐⋆

1
⋅ ℎ[1] + 𝑐⋆

3
). Thus, |𝑈′(𝔽𝑝)| equals the sum of 𝒩𝒉 over 𝑡 ∶= ℎ[1] ∈ 𝔽×𝑝 ⧵ {−𝑐

⋆
3
∕𝑐⋆
1
}

(where we restrict 𝑡 so that ℎ[1] ⋅ ℎ[2] ≠ 0):
−

∑
𝑡∈{0,−𝑐⋆

3
∕𝑐⋆
1
}

𝒩𝒉 +
∑
𝑡∈𝔽𝑝

𝒩𝒉 = −2𝑝
2 + 𝑝3 + 𝑝 ⋅

(
#{(𝑧, 𝑡) ∈ 𝔽2𝑝 ∶ 𝑧

2 = 𝑃𝒄(𝑡)} − 𝑝
)
, (7.19)

where 𝑃𝒄(𝑡) ∶= −3𝐹(1)𝐹(2)𝐹(3)
(
𝑐⋆
2

)−1
⋅ 𝑡 ⋅

(
𝑐⋆
1
⋅ 𝑡 + 𝑐⋆

3

)
⋅ [𝐹(1)𝑡

3 − 𝐹(2)
(
𝑐⋆
2

)−3 (
𝑐⋆
1
⋅ 𝑡 + 𝑐⋆

3

)3
+

𝐹(3)]. The count |𝐶(𝑈′)(𝔽𝑝)| is 𝑝 − 1 times the right-hand side of (7.19).
Here, deg𝑡 𝑃𝒄 = 5, since 𝑝 ∤ 𝑐(1)3 − 𝑐(2)3 by Proposition 7.6(2). By a routine computer calcu-

lation, the discriminant of the quintic polynomial 𝑃𝒄(𝑡) simplifies — up to a harmless “unit
monomial” in 3±1, 𝐹±1

(𝑘)
, (𝑐⋆

𝑘
)±1 — to [𝑐(1)3 − 𝑐(3)3]2 ⋅ [𝑐(2)3 − 𝑐(3)3]2 ⋅

∏
[𝑐(1)3∕2 ± 𝑐(2)3∕2 ±

𝑐(3)3∕2], which lies in ℤ×𝑝 (by Proposition 7.6(2)). Thus, 𝑧
2 = 𝑃𝒄(𝑡) defines an affine hyperelliptic

curve over 𝔽𝑝 of genus 2. All in all, we have (by the Weil bound for 𝑧2 = 𝑃𝒄(𝑡))

|𝐶(𝑉𝒄)(𝔽𝑝)| = |Λ∕𝑝Λ| + (3𝑝3 + 𝑂(𝑝2)) − 2(𝑝3 − 𝑝2) + (𝑝4 − 𝑝3) + (𝑝2 − 𝑝) ⋅ 𝑂(𝑝1∕2),
which simplifies to |Λ∕𝑝Λ| + 𝑝4 + 𝑂(𝑝5∕2) = 𝑝𝑚−2 + 𝑝𝑚∕2 + 𝑂(𝑝(𝑚−1)∕2), as desired. □

Remark 7.8. By Lang–Weil for curves, we only need 𝑧2 = 𝑃𝒄(𝑡) to be absolutely irreducible over 𝔽𝑝
— not necessarily smooth. However, 𝑝 ∤ 𝑐(𝑘)3 and 𝑝 ∤ 𝑐(𝑖)3 − 𝑐(𝑗)3 remain essential throughout
the proof of Lemma 7.7; without them, the bias could increase.

Lemma 7.9. Let 𝑙 ⩾ 2 be an integer. Under (7.14), (7.15), and (7.16), we have

𝑆♮𝒄(𝑝
𝑙) = 𝟏𝜒(𝑐(1)3)=⋯=𝜒(𝑐(𝑚∕2)3) ⋅ 2

𝑚∕2−1𝜙(𝑝𝑙)𝑝−𝑙∕2. (7.20)

Proof. By (1.8), the desired formula (7.20) is equivalent to

𝑝−2𝑙𝑆𝒄(𝑝
𝑙) = 𝟏𝜒(𝑐(1)3)=⋯=𝜒(𝑐(𝑚∕2)3) ⋅ 2

𝑚∕2−1(𝑝 − 1)𝑝𝑙(𝑚−2)∕2−1. (7.21)

By Proposition 7.6 and (7.17), we have 𝑝 ∤ 𝑐(𝑘)3 = (𝑐⋆
𝑘
)3∕𝐹(𝑘) for all 𝑘 ∈ [𝑚∕2]. In particular,

𝑝 ∤ 𝒄, so Corollary 7.5 applies, since 𝑉 is smooth by (7.15). Consider the map

𝒄(ℤ∕𝑝𝑙ℤ) → 𝒄(ℤ∕𝑝𝑙−1ℤ). (7.22)
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26 of 35 WANG

Whenever [𝒙] ∈ 𝒄(ℤ∕𝑝𝑙−1ℤ) lies over a smooth point of 𝑉𝒄, the fiber of (7.22) over [𝒙] has size
exactly 𝑝𝑚∗ (by Hensel’s lemma). Therefore, Corollary 7.5 simplifies to

𝑝−2𝑙𝑆𝒄(𝑝
𝑙) = |′(𝑙)| − 𝑝𝑚∗ |′(𝑙 − 1)|, (7.23)

where ′(𝑣) denotes the subset of 𝒄(ℤ∕𝑝𝑣ℤ) lying over the singular locus of 𝑉𝒄.
If 𝜒(𝑐(𝑖)3) ≠ 𝜒(𝑐(𝑗)3), that is, 𝜒(𝑐⋆

𝑖
∕3𝐹(𝑖)) ≠ 𝜒(𝑐⋆𝑗 ∕3𝐹(𝑗)), for some 𝑖, 𝑗 ∈ , then ′(1) = ∅: in

fact, there are no 𝒙 ∈ 𝔽𝑚𝑝 ⧵ {𝟎} with ∇𝐹(𝒙), 𝒄 linearly dependent over 𝔽𝑝. So, unless

𝜒(𝑐(1)3) = ⋯ = 𝜒(𝑐(𝑚∕2)3) (7.24)

holds, we have 𝑆𝒄(𝑝𝑙) = 0 by (7.23). So, from now on, assume that (7.24) holds.
By the conditions (7.24) and 𝑝 ≠ 2, there exists 𝜆 ∈ ℤ×𝑝 such that 𝜆 ⋅ 𝑐⋆

𝑘
∕𝐹(𝑘) ∈ (ℤ

×
𝑝)
2 for all

𝑘 ∈ [𝑚∕2]. Say 𝜆 ⋅ 𝑐⋆
𝑘
= 𝐹(𝑘)𝑑(𝑘)

2 for some choices 𝑑(𝑘) ∈ ℤ×𝑝 ; write 𝑑𝑖 = 𝑑(𝑘) when 𝑖 ∈  (𝑘).
Then, ′(1) is the set of 𝔽𝑝-points [𝒙] = [±𝑑𝑖]𝑖∈[𝑚] with 𝐹(𝒙) = 0. But by Proposition 7.6(3), the
scheme 𝑉𝒄 has exactly 2𝑚∕2−1 singular points [𝒙] ∈ 𝑉𝒄(𝔽𝑝), which — by the Jacobian criterion,
and the fact that ±𝑑𝑖 ∈ 𝔽𝑝 for all 𝑖 ∈ [𝑚]—must all lie in ′(1). Explicitly, these 2𝑚∕2−1 points
[𝒙] arise from the sign choices for which 𝒙 ∈ Λ⊗ 𝔽𝑝.
We now seek to count ′(𝑙) for 𝑙 ⩾ 2. Recall (7.18), expressing 𝒄 in terms of the (𝒉, 𝒚) coor-

dinates. Fix a point [𝒙] ∈ ′(1), say given in (𝒉, 𝒚) coordinates by 𝒉 ≡ 𝟎 mod 𝑝 and 𝑦[𝑘] ≡
𝑑(𝑘) mod 𝑝. Upon writing 𝑐⋆

𝑘
= 𝐹(𝑘)𝑑(𝑘)

2∕𝜆, the system (7.18) modulo 𝑝𝑙 becomes∑
1⩽𝑘⩽𝑚∕2

𝐹(𝑘)ℎ[𝑘]𝑦[𝑘]
2 ≡𝑝𝑙 −3

∑
1⩽𝑘⩽𝑚∕2

𝐹(𝑘)ℎ[𝑘]
3,

∑
1⩽𝑘⩽𝑚∕2

𝐹(𝑘)𝑑(𝑘)
2ℎ[𝑘] ≡𝑝𝑙 0. (7.25)

Let ′
𝒅
(𝑙) be the set of solutions (𝒉, 𝒚) to (7.25) lying over our fixed [𝒙] ∈ ′(1).

Fix an affine chart (i.e., representatives in ′
𝒅
(𝑙)) by setting 𝑦[𝑚∕2] = 𝑑(𝑚∕2) identically over

ℤ𝑝.Writeℎ[𝑘] = 𝑝𝑠ℎ𝑠[𝑘] and 𝑦[𝑘] = 𝑑(𝑘) + 𝑝𝑠𝑦𝑠[𝑘] (with 𝑠 = 1 for now, but all 𝑠 ⩾ 1 to be relevant
below), so 𝑦𝑠[𝑚∕2] = 0. Then, (7.25) becomes∑
𝑘≠𝑚∕2

𝐹(𝑘)ℎ𝑠[𝑘](2𝑑(𝑘)𝑦𝑠[𝑘] + 𝑝
𝑠𝑦𝑠[𝑘]

2) ≡𝑝𝑙−2𝑠 −3𝑝𝑠
∑
𝑘

𝐹(𝑘)ℎ𝑠[𝑘]
3,

∑
𝑘

𝐹(𝑘)𝑑(𝑘)
2ℎ𝑠[𝑘] ≡𝑝𝑙−𝑠 0.

So, |′
𝒅
(𝑙)| = 𝑝𝑚−2|1(𝑙 − 2)|, where𝑠(𝑙) is the (nonhomogeneous, affine) system∑

𝑘≠𝑚∕2
𝐹(𝑘)ℎ𝑠[𝑘](2𝑑(𝑘)𝑦𝑠[𝑘] + 𝑝

𝑠𝑦𝑠[𝑘]
2) ≡𝑝𝑙 −3𝑝𝑠

∑
𝑘

𝐹(𝑘)ℎ𝑠[𝑘]
3,

∑
𝑘

𝐹(𝑘)𝑑(𝑘)
2ℎ𝑠[𝑘] ≡𝑝𝑙 0.

Fix 𝑠 ⩾ 1. Clearly, |𝑠(0)| = 1, while 𝑠(1) is isomorphic to a cone over a smooth† quadric in
𝑚 − 2 variables (i.e., in ℙ𝑚∗ , of even dimension 𝑚∗ − 1) with discriminant in (−1)𝑚∕2−1(𝔽×𝑝)

2,
so |𝑠(1)| = 𝑝𝑚∗ + (𝑝 − 1)𝑝(𝑚∗−1)∕2. For 𝑙 ⩾ 2, the origin of the cone 𝑠(1) contributes
𝑝𝑚−2|𝑠+1(𝑙 − 2)| points to 𝑠(𝑙), while points away from the origin (i.e., smooth points!) lift
uniformly to a total of (|𝑠(1)| − 1) ⋅ 𝑝(𝑙−1)𝑚∗ points of𝑠(𝑙). Thus,

|𝑠(𝑙)| = 𝑝𝑚∗+1|𝑠+1(𝑙 − 2)| + (|𝑠(1)| − 1) ⋅ 𝑝(𝑙−1)𝑚∗ (7.26)

† ℎ𝑠[𝑚∕2] is determined by the remaining ℎ𝑠[𝑘], and
∑
𝑘≠𝑚∕2 𝐹(𝑘)𝑑(𝑘) ⋅ ℎ𝑠[𝑘]𝑦𝑠[𝑘] = 0 is smooth.
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 27 of 35

for 𝑠 ⩾ 1 and 𝑙 ⩾ 2. (The same holds for 𝑙 = 1, provided that we interpret |𝑠(−1)| ∶= 𝑝−(𝑚∗+1).)
By induction on 𝑙 ⩾ 0 (with base cases 𝑙 = 0, 1), we immediately find that |𝑠(𝑙)| is independent
of the choice of 𝜆 and the 𝑝-adic square roots 𝑑(𝑘); furthermore, |𝑠(𝑙)| = |1(𝑙)| for all 𝑠 ⩾ 1,
that is, there is no 𝒅-dependence or 𝑠-dependence!
Finally, by symmetry, |′(𝑙)| = 2𝑚∕2−1|′

𝒅
(𝑙)| = 2𝑚∕2−1𝑝𝑚−2|1(𝑙 − 2)| for all 𝑙 ⩾ 1. (For 𝑙 = 1,

recall |1(−1)| ∶= 𝑝−(𝑚∗+1) = 𝑝−(𝑚−2).) Thus, (7.23) gives
𝑝−2𝑙𝑆𝒄(𝑝

𝑙) = |′(𝑙)| − 𝑝𝑚∗ |′(𝑙 − 1)| = 2𝑚∕2−1𝑝𝑚−2(|1(𝑙 − 2)| − 𝑝𝑚∗ |1(𝑙 − 3)|)
for 𝑙 ⩾ 2. To prove (7.21), it remains to show that

|1(𝑙)| − 𝑝𝑚∗ |1(𝑙 − 1)| = (𝑝 − 1)𝑝𝑙(𝑚−2)∕2−1 = (𝑝 − 1)𝑝𝑙(𝑚∗+1)∕2−1
for 𝑙 ⩾ 0. To this end, we compute |1(𝑙)| − 𝑝𝑚∗ |1(𝑙 − 1)| (using (7.26) if 𝑙 ⩾ 2) to get
(1) 1 − 𝑝𝑚∗ ⋅ 𝑝−(𝑚∗+1) = 1 − 𝑝−1, that is, (𝑝 − 1)𝑝−1, for 𝑙 = 0;
(2) [𝑝𝑚∗ + (𝑝 − 1)𝑝(𝑚∗−1)∕2] − 𝑝𝑚∗ ⋅ 1 = (𝑝 − 1)𝑝(𝑚∗−1)∕2, that is, (𝑝 − 1)𝑝(𝑚∗+1)∕2−1, for 𝑙 = 1;
(3) 𝑝𝑚∗+1(|1(𝑙 − 2)| − 𝑝𝑚∗ |1(𝑙 − 3)|) for 𝑙 ⩾ 2, since 𝑝(𝑙−1)𝑚∗ = 𝑝𝑚∗ ⋅ 𝑝(𝑙−2)𝑚∗ .
By induction on 𝑙 ⩾ 0, we are done, since 𝑝𝑚∗+1 ⋅ 𝑝(𝑙−2)(𝑚∗+1)∕2−1 = 𝑝𝑙(𝑚∗+1)∕2−1. □

Remark 7.10. By induction on 𝑙 ⩾ 0 (with base cases 𝑙 = 0, 1), one could prove the explicit formula|𝑠(𝑙)| = 𝑝𝑙𝑚∗ + (𝑝 − 1)𝑝𝑙(𝑚∗+1)∕2−1(𝑝𝑙(𝑚∗−1)∕2 − 1)∕(𝑝(𝑚∗−1)∕2 − 1) (also valid for 𝑙 = −1).
One could then explicitly compute |′

𝒅
(𝑙)| = 𝑝𝑚∗+1|1(𝑙 − 2)| for 𝑙 ⩾ 1.

For the rest of the paper, drop the assumption (7.16). We can finally state and prove the main
result of §7. Let ℤ×

(𝑝)
∶= {𝑞 ∈ ℚ× ∶ 𝑣𝑝(𝑞) = 0} = ℤ×𝑝 ∩ ℚ.

Lemma 7.11. Assume that 𝐹 is diagonal, with𝑚 ∈ {4, 6}. Let 𝒄 ∈ Λ⟂. Assume (7.14). Then,

𝑆♮𝒄(𝑝) = 𝜙(𝑝)𝑝
−1∕2 + 𝑂(1). (7.27)

Also, 𝑐(𝑘)3 ∈ ℤ×
(𝑝)

for all 𝑘 ∈ . Finally,

𝑆♮𝒄(𝑝
𝑙) = 𝜙(𝑝𝑙)𝑝−𝑙∕2 ⋅

∏
1⩽𝑘⩽𝑚∕2−1

(
1 + 𝜒

(
𝑐(𝑘)3𝑐(𝑘 + 1)3

))
≪ 𝜙(𝑝𝑙)𝑝−𝑙∕2 (7.28)

for all integers 𝑙 ⩾ 2. The implied constants in (7.27) and (7.28) depend only on𝑚.

Proof. Aswenoted earlier, (7.14) implies (7.15). Now consider the unique invertibleℤ[1∕𝐹1⋯𝐹𝑚]-
linear map 𝒙 ↦ 𝒙′ such that 𝐹𝑖𝑥3𝑖 = 𝐹(𝑘)(𝑥

′
𝑖
)3 for all 𝑘 ∈  and 𝑖 ∈  (𝑘). This map transforms

𝐹(𝒙) into 𝐹′(𝒙′) = 𝐹′
1
(𝑥′
1
)3 +⋯ + 𝐹′𝑚(𝑥

′
𝑚)
3, where 𝐹′

𝑖
= 𝐹(𝑘) for all 𝑘 ∈  and 𝑖 ∈  (𝑘). If we let

𝒄 ↦ 𝒄′ denote the dual linear map, then the following hold:

∙ if 𝑝 ∤ 𝐹1⋯𝐹𝑚, then 𝑆𝒄(𝑝𝑙), defined using 𝐹 as in (1.5), equals 𝑆𝒄′(𝑝𝑙), defined using 𝐹′ in place
of 𝐹;

∙ one can define the polynomial (𝐹′)∨(𝒄′) to be 𝐹∨(𝒄) times a power of 𝐹1⋯𝐹𝑚;
∙ the vector space 𝐿′ corresponding to 𝐿 is still associated to  ; and
∙ we have 𝑐3

𝑖
∕𝐹𝑖 = (𝑐

′
𝑖
)3∕𝐹′

𝑖
for all 𝑖 ∈ [𝑚].

By (7.15), we may thus assume (7.16) (when proving Lemma 7.11).
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28 of 35 WANG

The claim (7.27) now follows uponplugging Lemma 7.7 and (7.1) into (7.2). For the claim 𝑐(𝑘)3 ∈
ℤ×
(𝑝)
, see Proposition 7.6(1)–(2). Finally, Lemma 7.9 implies (7.28) for 𝑙 ⩾ 2. □

Remark 7.12. Since 𝔼𝒄∈Λ⟂∕𝑛Λ⟂[𝑆
♮
𝒄(𝑛)] = 𝜙(𝑛)𝑛

−1∕2 (for all 𝑛 ⩾ 1) by Proposition 4.7, we have
chosen to formulate Lemma 7.11 using 𝜙(𝑛)𝑛−1∕2, not 𝑛1∕2.

8 MAIN DELTA-METHOD ANALYSIS

Fix 𝐹 in Theorem 1.1. For each 𝐿 ∈ Υ, recallΛ,Λ⟂ fromDefinition 1.3. By Proposition 3.1, 𝐹∨(𝒄) =
0 for all 𝒄 ∈

⋃
𝐿∈Υ Λ

⟂. (Recall, from Definition 1.4, that we call such 𝒄’s linear.)
Since 𝐹 is diagonal, Proposition 3.6 characterizes the linear 𝒄’s via certain pairings introduced

in Definition 3.5. More precisely, the identification Λ⟂ =  defines a bijection between Υ and
the set of equivalence classes of permissible pairings  of [𝑚].
Consider the left-hand side of (1.6). Recall the sets 1, 2 from (1.9).

Proposition 8.1. For reals 𝐶 ⩾ 1, we have |1 ∩ [−𝐶, 𝐶]𝑚|≪𝜖 𝐶
𝑚∕2−1+𝜖.

Proof. This follows from the combinatorics of [15, p. 687]. (In Heath-Brown’s notation, any
exponent

∑
𝑘
𝑒𝑘
2
coming from 1 must lie in { 22 } if𝑚 = 4, and in { 4

2
, 3
2
, 2+2
2
, 2
2
} if𝑚 = 6.) □

Proposition 8.2. For reals 𝐶 ⩾ 1, we have |2 ∩ [−𝐶, 𝐶]𝑚|≪𝜖 𝐶
𝑚∕2−1+𝜖.

Proof. Let 𝑠 ∶ ℚ → ℚ, 𝑞 ↦ 𝑞2. Let 𝑀 ∶= max(|𝐹1|, … , |𝐹𝑚|). Suppose 𝐿 ∈ Υ and 𝒄 ∈ 2 ∩ Λ⟂.
Then, by Observation 3.10(2), there exist distinct 𝑘1, 𝑘2 ∈  with 𝑐(𝑘1)3𝑐(𝑘2)3 ∈ 𝑠(ℚ). Fix 𝑖 ∈ (𝑘1) and 𝑗 ∈  (𝑘2); then (𝑐3𝑖 ∕𝐹𝑖)(𝑐3𝑗∕𝐹𝑗) ∈ 𝑠(ℚ). So (𝐹𝑖𝑐𝑖)(𝐹𝑗𝑐𝑗) ∈ 𝑠(ℤ), whence there exists
𝑎 ∈ ℤ with 0 < |𝑎| ⩽ 𝑀𝐶 such that 𝐹𝑖𝑐𝑖∕𝑎 ∈ 𝑠(ℤ) and 𝐹𝑗𝑐𝑗∕𝑎 ∈ 𝑠(ℤ). Since || = 𝑚∕2, it fol-
lows (upon summing over all possibilities for  , 𝑘1, 𝑘2, 𝑖, 𝑗) that 2 ∩ [−𝐶, 𝐶]𝑚 has size ≪𝑚

𝐶𝑚∕2−2
∑
0<|𝑎|⩽𝑀𝐶(𝑀𝐶∕|𝑎|)1∕2 ⋅ (𝑀𝐶∕|𝑎|)1∕2 ≪𝑀 𝐶𝑚∕2−1 log(2 + 𝐶). □

Propositions 8.1 and 8.2 imply that𝐹∨ is unsurprising (in the sense of Definition 1.5). Lemma 5.2
then gives the useful bound 𝑓(1 ∪ 2) ≪𝜖 𝑋

(𝑚−1)∕2+𝜖. (Recall 𝑓() from (5.1).)

Corollary 8.3. The equality (1.6) holds, provided that for each 𝐿 ∈ Υ, we have

𝑌−2
∑

𝒄∈Λ⟂⧵2

∑
𝑛⩾1

𝑛(1−𝑚)∕2𝑆♮𝒄(𝑛)𝐼𝒄(𝑛) = 𝑂𝜖(𝑋
𝑚∕2−1∕4+𝜖) + 𝜎∞,𝐿⟂,𝑤𝑋

𝑚∕2. (8.1)

Proof. Assume (8.1) for 𝐿 ∈ Υ. Since 𝑓(2) ≪𝜖 𝑋
(𝑚−1)∕2+𝜖, the relation (8.1) implies

𝑌−2
∑

𝒄∈Λ⟂⧵{𝟎}

∑
𝑛⩾1

𝑛(1−𝑚)∕2𝑆♮𝒄(𝑛)𝐼𝒄(𝑛) = 𝑂𝜖(𝑋
𝑚∕2−1∕4+𝜖) + 𝜎∞,𝐿⟂,𝑤𝑋

𝑚∕2.

Upon summing over the finite set Υ (handling intersections using Lemma 5.2), we obtain

𝑌−2
∑

𝒄∈
⋃
𝐿∈Υ Λ

⟂⧵{𝟎}

∑
𝑛⩾1

𝑛(1−𝑚)∕2𝑆♮𝒄(𝑛)𝐼𝒄(𝑛) = 𝑂𝜖(𝑋
𝑚∕2−1∕4+𝜖) +

∑
𝐿∈Υ

𝜎∞,𝐿⟂,𝑤𝑋
𝑚∕2.

By (1.7), (1.8), and the bound 𝑓(1) ≪𝜖 𝑋
(𝑚−1)∕2+𝜖, the desired (1.6) follows. □
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 29 of 35

So, (8.1) would imply Theorem 1.1. The rest of §8 is devoted to the proof of (8.1). Fix 𝐿 ∈ Υ, and
recall Proposition 3.6. We first explain why Heath-Brown’s approach for 𝑚 = 4 in [15] does not
seem to directly extend to𝑚 = 6; we then describe our approach.
Using Lemma 4.6 (with 𝑛0 = 𝑛 and 𝑛1 = 1) and Proposition 4.7, one can show that (in terms of

certain quantities 𝑇(𝒋; 𝑛), 𝐽(𝒋; 𝑛) we briefly discussed in §4)

𝑋−3
∑
𝒄∈

∑
𝑛⩾1

𝑛−𝑚𝑆𝒄(𝑛)𝐼𝒄(𝑛) = 𝑋
−3

∑
𝑛⩾1

𝑛−𝑚∕2
∑

𝒋∈ℤ𝑚∕2

𝑇(𝒋; 𝑛)𝐽(𝒋; 𝑛); (8.2)

cf. [15, p. 692, Poisson summation underlying Lemma 8.2]. When 𝑚 = 4, Heath-Brown proves
that 𝒋 = 𝟎 in (8.2) captures the “ -diagonal” contribution to (1.1), and that the locus 𝒋 ≠ 𝟎 in
(8.2) forms an “error term” of≪𝜖 𝑋

3∕2+𝜖.
When𝑚 = 4 and 𝜎∞,𝐿⟂,𝑤 ≠ 0, the  -diagonal in (1.1) strictly dominates the 𝒄 = 𝟎 contribution

to (8.2). When 𝑚 = 6 and 𝜎∞,𝐹,𝑤 ⋅ 𝜎∞,𝐿⟂,𝑤 ≠ 0, however, 𝒄 = 𝟎 in (8.2) is comparable in size to
the  -diagonal in (1.1), so that 𝒋 ≠ 𝟎 in (8.2) is likely no longer an error term. Perhaps for typical
𝒋 ≠ 𝟎, the sums 𝑇(𝒋; 𝑛) can be analyzed in terms of 𝐿-functions, but it is not clear where the
𝒄 = 𝟎 contribution to (8.2) would arise for𝑚 = 6. To push (8.2) further— perhaps by considering
small and large 𝑛 separately — thus seems technical and possibly delicate, though it could be
enlightening.†
Our approach to (8.1) delays Poisson summation to the “endgame,” thus sidestepping (8.2). Con-

sider the left-hand side of (8.1). We open not with Poisson summation over 𝒄 ∈ Λ⟂, but with local
geometry (Lemma 7.11). Lemma 7.11 exposes a uniform bias in 𝑆𝒄(𝑝𝑙) over 𝒄 ∈ Λ⟂ ⧵ 2, allowing
us to decompose 𝑆𝒄(𝑛) into simpler pieces (see (8.11)). Even then, tricky issues remain (especially
regarding the excised loci {𝟎} and 2 ⧵ {𝟎}), but Lemma 7.11 is undoubtedly the driving force in
our argument. (However, if we could compute 𝐼𝒄(𝑛) to greater precision when 𝒄 ∈ Λ⟂ ⧵ 2, that
might reduce our reliance on Lemma 7.11.)
For 𝒄 ∈ Λ⟂, consider the Dirichlet series Φ(𝒄, 𝑠) ∶=

∑
𝑛⩾1 𝑛

−𝑠𝑆♮𝒄(𝑛). Let

Ψ(𝑠) ∶=
∑
𝑛⩾1

𝑛−𝑠𝜙(𝑛)𝑛−1∕2 = 𝜁(𝑠 + 1∕2)−1 ⋅ 𝜁(𝑠 − 1∕2)

be the Dirichlet series for 𝜙(𝑛)𝑛−1∕2. By Lemma 7.11, Φ(𝒄, 𝑠) should typically resemble Ψ(𝑠), to
leading order. So, divide Φ(𝒄, 𝑠) by Ψ(𝑠) to define the “error series”∑

𝑛⩾1

𝑛−𝑠𝑆♮
𝒄,0
(𝑛) ∶= Φ(𝒄, 𝑠)∕Ψ(𝑠) = 𝜁(𝑠 − 1∕2)−1 ⋅ 𝜁(𝑠 + 1∕2) ⋅ Φ(𝒄, 𝑠). (8.3)

Since 𝜁(𝑠)−1 =
∑
𝑛⩾1 𝑛

−𝑠𝜇(𝑛) and 𝜁(𝑠) =
∑
𝑛⩾1 𝑛

−𝑠, it follows from (8.3) that

𝑆♮
𝒄,0
(𝑛) =

∑
𝑑0𝑑1𝑑2=𝑛

𝜇(𝑑0)𝑑
1∕2
0

⋅ 𝑑−1∕2
1

⋅ 𝑆♮𝒄(𝑑2). (8.4)

For convenience, let 𝑆𝒄,0(𝑛) ∶= 𝑛(1+𝑚)∕2𝑆
♮
𝒄,0
(𝑛). The multiplicativity of 𝑆𝒄(𝑛), 𝜙(𝑛) in 𝑛 leads to

Euler products for Φ, Ψ, and then to multiplicativity of 𝑆𝒄,0(𝑛).
We will need some basic properties of 𝑆𝒄,0(𝑛) as a function of 𝒄 ∈ Λ⟂ and 𝑛 ⩾ 1.

†Heath-Brown’s argument for 𝑚 = 4 is already challenging, and the geometry involved might become even more
complicated as𝑚 grows (though the parity of𝑚∕2may also play some role).
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30 of 35 WANG

Proposition 8.4. The quantity 𝑆𝒄,0(𝑛) is a function of 𝑛 and 𝒄 mod 𝑛. Also,

𝔼𝒄∈Λ⟂∕𝑛Λ⟂
[
𝑆♮
𝒄,0
(𝑛)

]
= 𝟏𝑛=1. (8.5)

Proof. By the first sentence of Proposition 4.7, 𝑆𝒄(𝑛) depends at most on 𝑛 and 𝒄 mod 𝑛. But
𝑆𝒄,0(𝑛) depends at most on the list of values (𝑆𝒄(𝑑2))𝑑2∣𝑛, hence at most on 𝑛 and 𝒄 mod 𝑛. Yet,
by (8.3), the Dirichlet series identity

∑
𝑛⩾1 𝑛

−𝑠𝑆♮𝒄(𝑛) = Ψ(𝑠)
∑
𝑛⩾1 𝑛

−𝑠𝑆♮
𝒄,0
(𝑛) holds for any 𝒄 ∈ Λ⟂.

Averaging formally (coefficient-wise) over 𝒄 ∈ Λ⟂, we get∑
𝑛⩾1

𝑛−𝑠𝔼𝒄∈Λ⟂∕𝑛Λ⟂[𝑆
♮
𝒄(𝑛)] = Ψ(𝑠)

∑
𝑛⩾1

𝑛−𝑠𝔼𝒄∈Λ⟂∕𝑛Λ⟂
[
𝑆♮
𝒄,0
(𝑛)

]
. (8.6)

But by the final sentence of Proposition 4.7, the left-hand side of (8.6) equalsΨ(𝑠). So, (8.5) follows
formally by division. □

We now provide some bounds on 𝑆𝒄,0(𝑛) for 𝒄 ∈ Λ⟂. By (8.4), we have

𝑛−1∕2𝑆♮
𝒄,0
(𝑛) =

∑
𝑑0𝑑1𝑑2=𝑛

𝜇(𝑑0) ⋅ 𝑑
−1
1 ⋅ 𝑑−1∕2

2
𝑆♮𝒄(𝑑2). (8.7)

Let 𝜏3(𝑛) ∶=
∑
𝑑0𝑑1𝑑2=𝑛

1. For any 𝑛 ⩾ 1, the triangle inequality on (8.7), followed by an
application of (5.8) to cube-free divisors of 𝑛, yields

|||𝑆♮𝒄,0(𝑛)||| ⩽ 𝜏3(𝑛)𝑛1∕2 ⋅max𝑑∣𝑛
𝑑−1∕2

|||𝑆♮𝒄(𝑑)|||≪𝜖 𝜏3(𝑛)𝑛
1∕2+𝜖 ⋅ max

𝑑∈⩾(3)∶ 𝑑∣𝑛
𝑑−1∕2

|||𝑆♮𝒄(𝑑)||| . (8.8)

If 𝑝 ∤ 𝑗2𝑚∕2−1𝐹∨(𝒄) and 𝑙 ⩾ 2, then (8.8) and (7.28) imply

|||𝑆♮𝒄,0(𝑝𝑙)|||≪ 𝜏3(𝑝
𝑙)𝑝𝑙∕2. (8.9)

If 𝑝 ∤ 𝑗2𝑚∕2−1𝐹∨(𝒄), then (8.4) and (7.27) imply

𝑆♮
𝒄,0
(𝑝) = −𝑝1∕2 + 𝑝−1∕2 + 𝑆♮𝒄(𝑝) = 𝑂(1). (8.10)

The bounds (8.8), (8.9), (8.10) are most useful in conjunction with multiplicativity. Let

 𝒄 ∶= {𝑛 ⩾ 1 ∶ 𝑝 ∣ 𝑛 ⇒ 𝑝 ∤ 𝑗2
𝑚∕2−1

𝐹∨(𝒄)}, 𝒄 ∶= {𝑛 ⩾ 1 ∶ 𝑝 ∣ 𝑛 ⇒ 𝑝 ∣ 𝑗2
𝑚∕2−1

𝐹∨(𝒄)}

for each 𝒄 ∈ Λ⟂. For each integer 𝑡 ⩾ 1, let

⩽(𝑡) ∶= {𝑛 ⩾ 1 ∶ 𝑝 ∣ 𝑛 ⇒ 𝑣𝑝(𝑛) ⩽ 𝑡}, ⩾(𝑡) ∶= {𝑛 ⩾ 1 ∶ 𝑝 ∣ 𝑛 ⇒ 𝑣𝑝(𝑛) ⩾ 𝑡}.

Lemma 8.5 Cf. [26, Lemma 3.4]. Let 𝑁, 𝑡 ⩾ 1 be integers. Then |{𝑁 ⩽ 𝑛 < 2𝑁 ∶ 𝑛 ∈⩾(𝑡)}|≪𝑡

𝑁1∕𝑡 . Also, if 𝒄 ∈ Λ⟂ ⧵ 2, then |{𝑁 ⩽ 𝑛 < 2𝑁 ∶ 𝑛 ∈𝒄}|≪𝜖 𝑁
𝜖‖𝒄‖𝜖.

Proof. The first bound is familiar. It remains to prove the second. Say 𝒄 ∈ Λ⟂ ⧵ 2. Then, the vector
𝑗2
𝑚∕2−1

𝐹∨(𝒄) is nonzero, and thus, has a nonzero coordinate 𝑅. But #{𝑁 ⩽ 𝑛 < 2𝑁 ∶ 𝑛 ∣ 𝑅∞} ≪𝜖

(𝑅𝑁)𝜖 (by Rankin’s trick), and 𝑅 ≪ ‖𝒄‖deg 𝐹∨ . □
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SPECIAL CUBIC ZEROS AND THE DUAL VARIETY 31 of 35

Lemma 8.6. Let 𝒄 ∈ Λ⟂ ⧵ 2 and𝑁 ∈ {1, 2, 4, 8, …}. Suppose ‖𝒄‖ ⩽ 𝑋10. Then,
∑

𝑁⩽𝑛<2𝑁

|||𝑆♮𝒄,0(𝑛)|||≪𝜖 (𝑋𝑁)
𝜖 ⋅𝑁

∑
𝑑<2𝑁∶𝑑∈⩾(3)∩𝒄

𝑑−1
|||𝑆♮𝒄(𝑑)||| .

Proof. Any integer 𝑛 ⩾ 1 can be written (uniquely) as 𝑛1𝑛2𝑛3, where 𝑛1, 𝑛2, 𝑛3 are pair-
wise coprime integers satisfying 𝑛1 ∈ 𝒄 ∩⩽(1), 𝑛2 ∈ 𝒄 ∩⩾(2), 𝑛3 ∈𝒄. Upon writing
𝑆𝒄,0(𝑛) =

∏
1⩽𝑖⩽3 𝑆𝒄,0(𝑛𝑖), and applying (8.10) to primes 𝑝 ∣ 𝑛1, (8.9) to primes 𝑝 ∣ 𝑛2, and (8.8) to

𝑛3, we get (by dyadic summation over 𝑛1, 𝑛2, 𝑛3)∑
𝑁⩽𝑛<2𝑁

|||𝑆♮𝒄,0(𝑛)|||≪𝜖

∑
𝑁1,𝑁2,𝑁3∣2𝑁∶

𝑁∕4<𝑁1𝑁2𝑁3<2𝑁

𝑁𝜖
∑

𝑛1,𝑛2⩾1∶
𝑁1⩽𝑛1<2𝑁1,

𝑁2⩽𝑛2<2𝑁2, 𝑛2∈⩾(2)

𝑛
1∕2
2

∑
𝑛3,𝑑⩾1∶

𝑁3⩽𝑛3<2𝑁3, 𝑛3∈𝒄,
𝑑∈⩾(3), 𝑑∣𝑛3

(𝑛3∕𝑑)
1∕2 |||𝑆♮𝒄(𝑑)||| .

Upon summing over 𝑛1, 𝑛2, 𝑛3 (for each fixed 𝑑), we get, by Lemma 8.5,∑
𝑁⩽𝑛<2𝑁

|||𝑆♮𝒄,0(𝑛)|||≪𝜖

∑
𝑁1,𝑁2,𝑁3∣2𝑁∶
𝑁1𝑁2𝑁3<2𝑁

𝑁𝜖𝑁1𝑁2
∑

𝑑<2𝑁3∶
𝑑∈𝒄∩⩾(3)

(𝑁3‖𝒄‖)𝜖(𝑁3∕𝑑)1∕2 |||𝑆♮𝒄(𝑑)||| .

But (𝑁3∕𝑑)1∕2 ≪ 𝑁3∕𝑑 for 𝑑 < 2𝑁3. And ‖𝒄‖ ⩽ 𝑋10. So, Lemma 8.6 follows. □

Given 𝑛 in (8.1), we may use (8.3) to decompose 𝑆♮𝒄(𝑛) as a Dirichlet convolution:

𝑆♮𝒄(𝑛) =
∑

𝑛0𝑛1=𝑛

𝑆♮
𝒄,0
(𝑛0) ⋅ 𝜙(𝑛1)𝑛

−1∕2
1

. (8.11)

We will study the ranges 𝑛1 ⩾ 𝑌∕𝑃 and 𝑛1 < 𝑌∕𝑃 separately, for a parameter 𝑃 to be chosen in
(8.16). We first handle the range 𝑛1 < 𝑌∕𝑃, using Lemma 8.6. It turns out we will not need the full
strength of Lemma 8.6 (which might, however, still be useful in the future).

Definition 8.7. For a real number 𝐾 > 0 and a set  ⊆ ℤ𝑚, let

Σ<𝐾(𝑋,  ) ∶= 𝑌−2
∑
𝒄∈

∑
𝑛⩾1

𝑛(1−𝑚)∕2𝐼𝒄(𝑛)
∑

𝑛0𝑛1=𝑛∶
𝑛1<𝐾

𝑆♮
𝒄,0
(𝑛0) ⋅ 𝜙(𝑛1)𝑛

−1∕2
1

.

Similarly, define Σ⩾𝐾(𝑋,  ) (by replacing 𝑛1 < 𝐾 with 𝑛1 ⩾ 𝐾).

Using (8.11), one may rewrite the left-hand side of (8.1) as

Σ<𝑌∕𝑃(𝑋,Λ
⟂ ⧵ 2) + Σ⩾𝑌∕𝑃(𝑋,Λ⟂) − Σ⩾𝑌∕𝑃(𝑋, 2). (8.12)

Lemma 8.8. Uniformly over reals 𝑋, 𝑃 ⩾ 1, we have

Σ<𝑌∕𝑃(𝑋,Λ
⟂ ⧵ 2) ≪𝜖 𝑋

𝑚∕2+𝜖𝑃−1∕2. (8.13)
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32 of 35 WANG

Proof. We proceed somewhat crudely. By Proposition 5.1, the absolute value of the left-hand side
of (8.13) is at most 𝑂𝜖,𝐴(𝑋−𝐴) plus the quantity

𝑌−2
∑

𝒄∈Λ⟂⧵2∶‖𝒄‖⩽𝑋1∕2+𝜖
∑

𝑛0𝑛1<𝑀2𝑌∶
𝑛1<𝑌∕𝑃

(𝑛0𝑛1)
(1−𝑚)∕2|𝐼𝒄(𝑛0𝑛1)| ⋅ 𝑛1∕21

|||𝑆♮𝒄,0(𝑛0)||| . (8.14)

We now examine an individual 𝒄 ∈ Λ⟂ ⧵ 2. By Observation 3.10(1), 𝑐1⋯ 𝑐𝑚 ≠ 0. So,
𝐼𝒄(𝑛) ≪𝜖 𝑋

𝑚+𝜖(𝑋‖𝒄‖∕𝑛) ∏
1⩽𝑖⩽𝑚

(𝑋|𝑐𝑖|∕𝑛)−1∕2 (8.15)

by [15, Lemma3.2].Upon inserting (8.15) into (8.14), dyadically decomposing𝑛0, and then applying
Lemma 8.6, we find that the quantity (8.14) is

≪𝜖

∑
𝒄∈Λ⟂⧵2∶‖𝒄‖⩽𝑋1∕2+𝜖

∑
𝑁0𝑛1<𝑀2𝑌∶

𝑁0∈{1,2,4,8,…}, 𝑛1<𝑌∕𝑃

𝑌−2𝑋𝑚+𝜖𝑋1−𝑚∕2‖𝒄‖
(𝑁0𝑛1)

1∕2|𝑐1⋯ 𝑐𝑚|1∕2 ⋅ 𝑛1∕2
1

⋅𝑁0
∑

𝑑<2𝑁0∶
𝑑∈⩾(3)

𝑑−1
|||𝑆♮𝒄(𝑑)||| .

But (5.2) yields 𝑆♮𝒄(𝑑) ≪𝜖 𝑑
1∕2+𝜖∏

1⩽𝑖⩽𝑚 sq(𝑐𝑖)
1∕4 (when 𝑐1⋯ 𝑐𝑚 ≠ 0). Plugging this in, and noting

that
∑
𝑑∈⩾(3)

𝑑−1∕2 ≪ 1 by Lemma 8.5, we find that (8.14) is

≪𝜖

∑
𝒄∈Λ⟂⧵2∶ ‖𝒄‖⩽𝑋1∕2+𝜖

∑
𝑛1<𝑌∕𝑃

𝑌−2𝑋1+𝑚∕2+𝜖‖𝒄‖ ⋅ (𝑀2𝑌∕𝑛1)
1∕2

∏
𝑘∈

sq(𝑐min (𝑘))1∕2|𝑐min (𝑘)| ,

in the notation of Definition 3.5. But
∑
0<|𝑐|⩽𝐶 sq(𝑐)1∕2∕|𝑐|≪𝜖 𝐶

𝜖 by Lemma 8.5 (or a calculation
with Euler products). So, (8.14) is

≪𝜖

∑
𝑛1<𝑌∕𝑃

𝑌−2𝑋1+𝑚∕2+𝜖𝑋1∕2+𝜖 ⋅ (𝑌∕𝑛1)
1∕2 ≪ 𝑌−2𝑋3∕2+𝑚∕2+2𝜖𝑌1∕2(𝑌∕𝑃)1∕2.

Plugging in 𝑌 = 𝑋3∕2 leads to (8.13). □

Remark 8.9. We have used diagonality of 𝐹. In general (leaving details to the interested reader),
one can prove (8.13) for 𝑚 ⩽ 11 under the axioms 1.6(2)–(3), by replacing (8.15) with (5.7), then
using (1.11), (1.12) instead of (5.2), and then verifying the inequality

𝑌−2𝑋𝑚+𝜖𝑁
1∕2
0
𝑁1𝑃

1∕2

(𝑋𝐶 + 𝑁0𝑁1)
𝑚∕2−1

∑
𝑑<2𝑁0∶ 𝑑∈⩾(3)

𝐶𝑚∕4(𝐶𝑚∕4 + 𝑑𝑚∕12)

𝑑1∕2
≪𝜖 𝑋

𝑚∕2+𝑂(𝜖)

over reals 𝐶, 𝑃,𝑁0,𝑁1 ⩾ 1 with 𝐶 ⩽ 𝑋1∕2+𝜖 and 𝑁0, 𝑃 ⩽ 100(1 +𝑀2)𝑌∕𝑁1.

In terms of𝑀1 from Lemma 4.6, let

𝑃 = 𝑃𝑋 ∶= 𝑀
−1
1 𝑋

1∕2. (8.16)

We now turn to the range 𝑛1 ⩾ 𝑌∕𝑃 in (8.12). Recall Σ⩾𝐾(𝑋,  ) from Definition 8.7.
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Lemma 8.10. Uniformly over reals 𝑋 ⩾ 1, we have

Σ⩾𝑌∕𝑃(𝑋,Λ
⟂) = 𝜎∞,𝐿⟂,𝑤𝑋

𝑚∕2(1 + 𝑂(𝑃−1)). (8.17)

Proof. Suppose𝑛, 𝑛0, 𝑛1 ⩾ 1 are integerswith𝑛1 ⩾ 𝑌∕𝑃. By the first part of Proposition 8.4,𝑆𝒄,0(𝑛0)
only depends on 𝒄 mod 𝑛0. Because 𝑛1 ⩾ 𝑌∕𝑃 = 𝑀1𝑋, Lemma 4.6 therefore implies∑

𝒄∈Λ⟂

𝑆♮
𝒄,0
(𝑛0) ⋅ 𝐼𝒄(𝑛) =

∑
𝒃∈Λ⟂∕𝑛0Λ

⟂

𝑆♮
𝒃,0
(𝑛0) ⋅ 𝑛

𝑚∕2
1

⋅ 𝜎∞,𝐿⟂,𝑤𝑋
𝑚∕2ℎ(𝑛∕𝑌, 0).

By (8.5) and the equality |Λ⟂∕𝑛0Λ⟂| = 𝑛𝑚∕20
, we conclude that

∑
𝒄∈Λ⟂

𝑆♮
𝒄,0
(𝑛0) ⋅ 𝐼𝒄(𝑛) = 𝑛

𝑚∕2 ⋅ 𝜎∞,𝐿⟂,𝑤𝑋
𝑚∕2ℎ(𝑛∕𝑌, 0) ⋅ 𝟏𝑛0=1.

The left-hand side of (8.17) (see Definition 8.7) thus simplifies to

𝑌−2
∑
𝑛⩾𝑌∕𝑃

𝜎∞,𝐿⟂,𝑤𝑋
𝑚∕2ℎ(𝑛∕𝑌, 0) ⋅ 𝜙(𝑛),

which equals 𝜎∞,𝐿⟂,𝑤𝑋𝑚∕2(1 + 𝑂(𝑃−1)) by Proposition 8.11 (below). □

Proposition 8.11.
∑
𝑛⩾𝑌∕𝑃 𝜙(𝑛)ℎ(𝑛∕𝑌, 0) = 𝑌

2(1 + 𝑂(𝑃−1)).

Proof. By [15, final paragraph on p. 692, and second paragraph on p. 676], we have (in terms of the
function 𝜔 defined on [15, p. 676])∑

𝑛⩾1

𝜙(𝑛)ℎ(𝑛∕𝑌, 0) = 𝑌
∑
𝑛⩾1

𝜔(𝑛∕𝑌) = 𝑌2(1 + 𝑂𝐴(𝑌
−𝐴)).

Furthermore, ℎ(𝑥, 0) ≪ 𝑥−1 by [14, Lemma 4], so∑
𝑛<𝑌∕𝑃

𝜙(𝑛)ℎ(𝑛∕𝑌, 0) ≪
∑

𝑛<𝑌∕𝑃

𝜙(𝑛) ⋅ 𝑌∕𝑛 ⩽
∑

𝑛<𝑌∕𝑃

𝑌 ≪ 𝑌2∕𝑃.

Proposition 8.11 follows upon writing
∑
𝑛⩾𝑌∕𝑃 =

∑
𝑛⩾1 −

∑
𝑛<𝑌∕𝑃. □

Lemma 8.12. Uniformly over reals 𝑋 ⩾ 1, we have

Σ⩾𝑌∕𝑃(𝑋, 2) ≪𝜖 𝑋
(𝑚−1)∕2+𝜖. (8.18)

Proof. The main subtlety here is that we must treat 𝒄 ≠ 𝟎 and 𝒄 = 𝟎 separately.
First, given 𝑛, the bound (8.8), applied directly to 𝑆𝒄,0(𝑛0) for each 𝑛0 ∣ 𝑛, implies∑

𝑛0𝑛1=𝑛∶
𝑛1⩾𝑌∕𝑃

|||𝑆♮𝒄,0(𝑛0)||| ⋅ 𝜙(𝑛1)𝑛−1∕21
≪𝜖 𝟏𝑛⩾𝑌∕𝑃 ⋅ 𝑛

1∕2+𝜖 ⋅max
𝑑∣𝑛

𝑑−1∕2
|||𝑆♮𝒄(𝑑)||| . (8.19)
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34 of 35 WANG

Inserting (8.19) into Σ⩾𝑌∕𝑃(𝑋, 2 ⧵ {𝟎}) (see Definition 8.7), and recalling (5.1), we get
Σ⩾𝑌∕𝑃(𝑋, 2 ⧵ {𝟎}) ≪𝜖 𝑌

−2
∑

𝒄∈2⧵{𝟎}
∑
𝑛⩾1

𝑛1−𝑚∕2+𝜖|𝐼𝒄(𝑛)| ⋅max
𝑑∣𝑛

𝑑−1∕2
|||𝑆♮𝒄(𝑑)|||≪𝜖 𝑌

𝜖𝑓(2),

where 𝑓(2) ≪𝜖 𝑋
(𝑚−1)∕2+𝜖 by Proposition 8.2 and Lemma 5.2. Similarly, (8.19) gives

Σ⩾𝑌∕𝑃(𝑋, {𝟎}) ≪𝜖 𝑌
−2

∑
𝑛⩾𝑌∕𝑃

𝑛1−𝑚∕2+𝜖|𝐼𝟎(𝑛)| ⋅max
𝑑∣𝑛

𝑑−1∕2
|||𝑆♮𝟎(𝑑)||| ,

which is ≪𝜖 𝑌
−2𝑋𝑚+𝜖(𝑌∕𝑃)(4−𝑚)∕3 ≍ 𝑋𝑚−3+(4−𝑚)∕3+𝜖 by (6.1) and Lemma 6.1 (summed over

𝑁 ∈ {1, 2, 4, 8, …}). But𝑚 − 3 + (4 − 𝑚)∕3 ⩽ (𝑚 − 1)∕2, since 4 ⩽ 𝑚 ⩽ 7. □

Remark 8.13. We have used diagonality of 𝐹. In general, under 1.6(1)–(3), one can prove
Σ⩾𝑌∕𝑃(𝑋, 2) ≪𝜖 𝑋

𝑚∕2−1∕4+𝜖 (by using Lemma 5.4 in place of Lemma 5.2).

By (8.13), (8.16), (8.17), and (8.18), the quantity (8.12) simplifies to

𝑂𝜖(𝑋
𝑚∕2−1∕4+𝜖) + 𝜎∞,𝐿⟂,𝑤𝑋

𝑚∕2,

matching the right-hand side of (8.1). So (8.1) holds, thus concluding §8.
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