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I N TRODUC TION

Langerhans cells (LCs) were discovered in 1868 and origi-
nally thought to be neurons,1 until they were recognized to 
be antigen- presenting cells (APCs).2–4 For a long time, LCs 
were thought to be prototypical dendritic cells (DCs) and 
much of the early research into DCs was done with LCs. 
However, over time it became clear that LCs are a special 
type of cell.

Langerhans cells were initially characterized ultrastruc-
turally by their tennis racket- shaped organelles composed 
of superimposed and zippered membranes, the so- called 
Birbeck granules (BG; Figure  1a).5 These structures were 
later identified as expressing Langerin (CD207). Of note, 

ectopic expression of Langerin in fibroblasts leads to forma-
tion of BG in these cells.6 CD207 is helpful for identification 
of LCs by immunohistology or flow cytometry (Figure 1b). 
Human LCs are located in the basal and suprabasal layer 
of the epidermis and can extend their dendrites through 
tight junctions into the stratum corneum. This enables an-
tigen recognition and capture both within the skin and on 
the skin surface.7 Recognition of antigen can result in LC 
activation and migration towards the nearest lymph node 
(LN). Considerable numbers of LCs have been found in skin 
draining LN but not in mesenteric LN.8

In healthy epidermis, LCs are the most abundant im-
mune cells, comprising 2%–5% of all cells in the epidermis.9 
Of note, females have more LCs than males.10 In both sexes, 
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Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease 
worldwide. AD is a highly complex disease with different subtypes. Many elements 
of AD pathophysiology have been described, but if/how they interact with each other 
or which mechanisms are important in which patients is still unclear. Langerhans 
cells (LCs) are antigen- presenting cells (APCs) in the epidermis. Depending on the 
context, they can act either pro-  or anti- inflammatory. Many different studies have 
investigated LCs in the context of AD and found them to be connected to all major 
mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and 
shape the immune response, especially adaptive immunity via polarization of T cells. 
As sentinel cells, LCs are primary sensors of the skin microbiome and are important 
for the decision of immunity versus tolerance. LCs are also involved with the integ-
rity of the skin barrier by influencing tight junctions. Finally, LCs are important cells 
in the neuro- immune crosstalk in the skin. In this review, we provide an overview 
about the many different roles of LCs in AD. Understanding LCs might bring us 
closer to a more complete understanding of this highly complex disease. Potentially, 
modulating LCs might offer new options for targeted therapies for AD patients.
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LC numbers decline with age.11 Langerin- expressing DCs 
can also be found in the nasal, oral and cervical mucosa, in 
the foreskin, tonsils, tongue, the upper respiratory tract and 
the intestine.12,13 However, mucosal LCs are of different ori-
gin and phenotype than epidermal LCs. Similarities and dif-
ferences between mucosal and epidermal LCs were recently 
reviewed by Brand et al.14

Langerhans cells are radio- resistant, therefore they are 
not depleted by irradiation in bone marrow chimera exper-
iments. Otherwise, LCs are extremely sensitive. They can 
mature and emigrate upon contact with antigen, but LCs 
migrate also upon exposure to UV radiation, temperature- , 
mechanical-  and even psychological stress.15 In fact, the 
emigration of LCs upon UV exposure is so robust that in 
previously published studies ‘UV depletion’ of LCs was an 
accepted protocol. Of note, ‘UV depletion’ is not a depletion 
as we use the term today. Clean animal models of LC deple-
tion use for example the Langerin- DTR system. Therefore, 
one must be careful when reading selected literature about 
LCs and comparing their findings to newer data with mod-
ern experimental models.

The sensitivity of LCs to UV is of great interest in the field 
of phototherapy. While UV can ameliorate AD, the under-
lying mechanisms remain incompletely understood. In a 
mouse model of contact hypersensitivity, UV acts immuno-
suppressive and LCs are required for the generation of regu-
latory T cells (TREG).16 Results from a similar model showed 
that indeed epidermal LCs, not CD207+dDCs, are important 
for the anti- inflammatory effects of UV treatment.17

LC M A R K ER S

In-vivo experiments are key in researching the immunopa-
thology of diseases. The most common animal model for LC 
research is the mouse. However, although similar, there are 
differences between human and murine skin.18 Very basi-
cally, human epidermis and dermis are much thicker than 
murine, human skin is more firmly attached to underlying 
tissue and mice have a much higher hair density on the body 
than men.

In human skin, LCs comprise the vast majority of CD207- 
expressing cells. Mouse skin contains a second population 
of CD207- expressing APCs: CD207+ dermal DCs (dDCs). 
These cells, in contrast to epidermal LCs, are derived from 
bone marrow and not self- renewing. They are CD103+XCR1+ 
and are excellent cross- presenters. Thus, they can be seen as 
Type- 1 conventional dendritic cells. Markers for identify-
ing human and mouse LCs and CD207+dDCs are shown in 
Table 1.

Of note, in mice LCs and CD207+dDCs have dif-
ferent functions. Epidermal LCs seem to be more anti- 
inflammatory/tolerogenic, while dermal CD207+dDCs seem 
to be more pro- inflammatory. Different protocols for delet-
ing LCs affect either one or both of these populations. The 
overlaps and differences between these two cell populations 
are the reason for much confusion in the literature.

LC ontogeny

Epidermal LCs are an embryonically derived, self- renewing, 
bone marrow- independent cell population.19 Originally, 
they were classified as DCs, but they also display similarities 
with macrophages (Mac).20 Patients with GATA2 or IRF8 
mutations show normal amounts of LCs. As these mutations 
affect DC numbers, LC development and maintenance are 
separate from plasmacytoid and conventional DCs (pDCs/
cDCs).21 Lineage tracing studies in mice19,22 have shown that 
LCs express both Zbtb46 and Mafb, giving them a dual iden-
tity of DCs and Mac.23

Langerhans cells share their origin with alveolar macro-
phages, microglia and Kupffer cells: Precursors from the em-
bryonic yolk sac and the fetal liver seed the epidermis during 
embryogenesis. LC precursors can be observed in developing 
mouse skin as early as embryonic day 10.5.19 Between Days 
2 and 7 after birth, these cells undergo a proliferative burst 
and form the LC network. LCs fully differentiate and upreg-
ulate MHC- II, CD11c and finally CD207.24 The network set-
tles to adult morphology around 3 weeks after birth.25

In the steady state, adult epidermal LCs have a half- life 
of about 2 months. Even in homeostasis, LCs constantly 
mature and migrate to the draining LN in low amounts. 
The network is maintained by proliferation of LCs in situ. 
Normally, about 5% of LCs are proliferating at any given 
time.24 This self- renewal is one of the defining features 
of LCs and has been demonstrated in multiple models. In 
parabiosis experiments, LCs remain of donor origin.26–28 In 
human allografts, LCs have been found to still be of donor 

Key points

Why was the study undertaken?

• This review aims to provide an overview about 
the current knowledge of the role of Langerhans 
cells in atopic dermatitis.

What does this study add?

• Here, we review the contribution of LCs to the 
different pathophysiological mechanisms under-
lying AD, such as immune response modulation, 
microbiome sensing, skin barrier integrity and 
neuro- immune communication, highlighting 
their dual pro-  and anti- inflammatory functions.

What are the implications of this study for 
disease understanding and/or clinical care?

• Understanding the central role of LCs in AD might 
offer new ways to treat this very heterogeneous dis-
ease. We also point out, where our understanding 
is still lacking and further research is needed.
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origin 10 years after transplantation.29 This sets LCs apart 
from DCs, which have a higher turnover rate and arise from 
bone marrow precursors.30 Mucosal CD207+DCs (and in 
mouse CD207+dermal DCs) are also bone marrow- derived 
and not self- renewing.14

In case of mass emigration of LCs, like in acute inflamma-
tions, the LC network is re- constituted from blood monocytes. 
These short- lived monocyte- derived LCs are replaced by long- 
lived, non- monocyte- derived LCs over the course of 3 weeks. 
In case of a total depletion of LCs, the LC network can also be 
reconstituted from an as- yet unidentified non- monocyte bone 
marrow precursor in an ID2- dependent manner.31

Langerhans cells depend in their development on the cy-
tokine TGF- β1.32,33 However, active TGF- β1 only appears 
in the epidermis after birth. Therefore, LC precursors seed 
the epidermis independently of TGF- β1.34 The emergence of 
TGF- β1 coincides with the proliferative burst and expression 
of CD207. While TGF- β1 is absent, the prenatal and imme-
diately postnatal epidermis does contain other proteins of 
the TGF- β- superfamily, most notably BMPs. In vitro exper-
iments show that BMP7 can stimulate differentiation of LCs 

from human CD34+ cord blood stem cells, just like TGF- 
β1. However, BMP7- generated LCs show a different phe-
notype than TGF- β1- LCs. Most notably, BMP7- LCs show 
active proliferation, altered expression of surface markers 
and no BG. In adult epidermis, both cytokines are present: 
The basal layer of the epidermis shows high levels of BMP7, 
while active TGF- β1 is confined to the suprabasal layers. 
Proliferating LCs are only found in the BMP7- dominated 
areas. Therefore, it is hypothesized that BMP7- LCs repre-
sent the self- renewing LCs, which then migrate upwards 
into the TGF- β- rich strata for terminal differentiation.35

LC function

The primary function of LCs is the recognition and pres-
entation of antigen. As professional APCs, they express an 
extensive repertoire of pattern recognition receptors (PRRs), 
mostly C- type lectins (CLRs) and toll- like receptors (TLRs). 
CLRs detect glycans, including those expressed by commen-
sal and pathogenic bacteria. The main CLR expressed by 
LCs is Langerin (CD207). Other CLRs like mannose recep-
tor (CD206) are only expressed under special conditions.35 
CLR expression, glycan specificity and bacteria recognition 
have been thoroughly reviewed by Mnich et al.36

Toll- like receptors are a large family of PRRs. TLRs 1, 2, 
4, 5 and 6 detect extracellular molecular patterns such as li-
popeptides, lipopolysaccharide, mannan, phospholipids, 
flagellin, zymosan and viral envelope proteins. TLRs 3 and 
7–10 are expressed on endosomal membranes and recognize 
different forms of nucleic acids, for example dsRNA or CPG 
DNA.37 Human LCs have been described to express TLRs 1 
through 10,38 but different publications report very different 
findings.39–41 A reason for these differences in the literature 
could be different types of LCs used (epidermal, mucosal or 
monocyte- derived LCs), different methods of analysis (RNA- 
Seq and flow cytometry) or different conditions (steady state 
and disease models). Interestingly, all studies comparing LCs 
to cDCs find significant differences in expressed TLRs. Flacher 
et al, combining qPCR with functional experiments, demon-
strate that LCs functionally express TLRs 1, 2, 3, 5, 6 and 10, 
but not 4, 7 or 8. This specific expression pattern suggests that 
LCs might be specializing in defence against gram- positive 
bacteria, but are less active against gram- negative bacteria.42

As professional APCs, LCs can present antigen via MHC- I 
and MHC- II, as well as CD1a. Intracellular antigen is presented 
via MHC- I to CD8+ T cells. Extracellular antigen is presented 
via MHC- II to CD4+ T cells. LCs can also cross- present, that 
is, present extracellular antigen to CD8+ T cells.43,44

Upon contact with antigen, LCs may ‘mature’. In APCs, 
maturation means a series of phenotypical and functional 
alterations: they reduce their adhesion to the surrounding 
tissue and become highly mobile. They downregulate adhe-
sion molecules, upregulate CCR7 and downregulate CCR6.45 
This allows for their migration out of the tissue and to the 
next draining LN. LC maturation with the switch from epi-
thelial to mesenchymal characteristics is often compared to 

F I G U R E  1  Human LCs in health and AD. (a) Electron microscopy 
image of cytoplasm of a Langerhans cell with arrows pointing at Birbeck 
granules. (b) Immunofluorescence image of healthy skin stained 
with anti- CD207 (Langerin) antibody and Hoechst nucleic acid stain 
showing CD207+ Langerhans cells within the epidermis. The dotted 
line highlights the epidermal–dermal junction. (c, d) Representative 
immunohistochemistry images of healthy skin (c) and atopic dermatitis 
(d) stained with anti- CD1a antibody. In healthy skin, epidermal 
CD1a + DCs are LCs. In AD skin, CD1a also stains infiltrating IDECs. 
AD, atopic dermatitis; LC, Langerhans cells; IDEC, inflammatory 
dendritic epidermal cells.
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the epithelial- to- mesenchymal transition (EMT) observed 
in metastasizing cancer cells.46

Mature LCs downregulate phagocytosis, but upregulate 
MHC- II and the co- stimulatory molecules CD40, CD80, 
CD86 and CD83. This allows for antigen presentation and 
immune activation.47 Activated, mature LCs can promote 
inflammation by secreting pro- inflammatory cytokines, ac-
tivating naïve T cells and re- stimulating already primed T 
cells. LCs are able to polarize T cells towards Th1, Th2, Th17 
or Th22 depending on the context.48–50

Langerhans cells are important for defence against patho-
gens. With their dendrites extending through tight junc-
tions, LCs constantly survey the skin surface. Application of 
Staphylococcus aureus (S. aureus) exfoliating toxin (ET) to 
mouse skin did not compromise the epidermis and ET did not 
penetrate through tight junctions. Still, exposed mice devel-
oped neutralizing IgG against ET and were protected in subse-
quent intraperitoneal injections of ET. Mice depleted of LCs did 
not develop immunity after patch immunization. Therefore, 
LCs can establish adaptive immune defences against patho-
gens which have not even penetrated the body yet.51

Langerhans cells are especially important for the defence 
against viral infections. Their signature molecule CD207/
Langerin can capture viral particles and internalize them 
for degradation in their BG.52 In several mouse models of 
viral infection, deletion of LCs leads to decreased cyto-
toxic T- cell responses, higher viral loads and increased le-
thality.53,54 Similarly, in Langerin- DTR mice the immune 
response to leishmaniasis is impaired. However, Brewig 
et al.55 demonstrated that in this case the critical cells are 
CD207+dDCs.

Langerhans cells also have important anti- inflammatory 
functions. In in- vivo models of contact hypersensitivity, 

deletion of epidermal LCs exacerbates inflammation, while 
deletion of CD207+dDCs ameliorates inflammation.56 
Here, epidermal LCs are mostly anti- inflammatory/pro- 
tolerogenic, while CD207+dDCs are pro- inflammatory. 
Further research revealed that LCs can induce immunolog-
ical tolerance to haptens by pushing allergen- specific CD8+ 
T cells into anergy or deletion and expanding TREGs. Loss of 
LCs breaks this immunological tolerance and can result in 
inflammatory diseases.57,58

Steady- state LCs are highly phagocytic. Via the TAM- 
kinase Axl, LCs silently clear apoptotic cells, preventing 
immune activation and autoimmunity.59 Deletion of TAM 
kinases results in a loss of epidermal LCs followed by spon-
taneous skin inflammation.60 In a mouse model of lupus, de-
letion of LCs leads to increased levels of auto- antibodies and 
accelerated dermatitis.61 LCs are also important for main-
taining tolerance towards skin commensals. In the steady 
state, LCs strongly favour induction of TREGs over induction 
of anti- bacterial effector T cells.62

Therefore, LCs can act both pro-  and anti- inflammatory, 
depending on the situation.

ATOPIC DER M ATITIS

Atopic dermatitis (AD) is the most common chronic inflam-
matory skin disease worldwide. Approximately 80% of cases 
begin in infancy or childhood, the rest develop in adulthood. 
The point prevalence in children varies from 2.7% to 20.1% 
in different countries and in adults from 2.1% to 4.9%.63

Risk factors for AD include exposure to lower tempera-
tures, lower humidity, tobacco and air pollutants. These ef-
fects were more pronounced in children younger than 7 years 

T A B L E  1  LC markers in situ.

Markers Synonyms Human Mouse Mouse Mouse

Epidermal LCs Epidermal LCs Dermal cDC1 Dermal cDC2

CD1a + No mouse equivalent No mouse equivalent No mouse equivalent

CD1c + No mouse equivalent No mouse equivalent No mouse equivalent

CD11b +/− + − +

CD11c + + + +

CD24 − + + −

C103 − − + −

CD172a SIRP- alpha + + − +

CD205 DEC- 205 + + + +

CD207 Langerin + + + −

CD209 DC- SIGN − + − +

CD324 E- Cadherin + + + + (low?)

CD326 EpCAM + + − −

CLEC9a DNGR- 1 − − + −

F4/80 Not tested + − +

MHC- II + + + +

XRC1 − − + −

Abbreviation: LCs, Langerhans cells.
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and in women.64 These findings are of concern, especially in 
regard to rising urbanization and climate change.

Clinical manifestations of AD are sensitive and dry skin 
and localized or disseminated eczematous lesions, usually 
accompanied by severe pruritus.65 AD belongs to the spec-
trum of atopic diseases, which also includes food allergies, 
allergic asthma and allergic rhino- conjunctivitis. All these 
atopic diseases may occur in different combinations.63,66,67 
Patients with AD have a significantly increased risk of ar-
thritis, Sjögren syndrome, Crohn's disease, vitiligo, alopecia 
areata, pernicious anaemia, ulcerative colitis, rheumatoid 
arthritis and hypothyroidism.68

Atopic dermatitis is a very heterogeneous disease and can 
be divided into different phenotypes and clinical manifes-
tations defined by ethnicity, disease onset, disease severity, 
chronic versus acute, intrinsic versus extrinsic (IgE level), 
paediatric versus adult and inflammatory signature.69 This 
variety of endotypes makes it difficult to uncover a common 
pathophysiology and to develop therapies according to the 
one- size- fits- all model.

Mild and moderate forms of AD are mainly treated top-
ically, with emollients, pH- adjusted moisturizers and anti- 
inflammatory drugs like corticosteroids.70 Moderate and 
severe forms are treated systemically with biologics or JAK 
inhibitors aiming at the Th2- immune response. Finally, AD 
can be treated successfully with phototherapy. Current and 
upcoming therapies have been reviewed in Bieber et al.63

Pathophysiology of AD

The pathophysiology of AD is very complex and although 
many factors and processes are known, not all of these are 
present in all endotypes of AD. Genetic predisposition is a 
major risk factor for AD. It has been estimated that up to 
90% of AD cases in Europe are inherited.71 Mutations asso-
ciated with AD are related to the skin barrier and to immune 
regulation. Of note, although the clinical manifestations are 
similar, risk genes of AD differ substantially between co-
horts from different ethnicities.72

Atopic dermatitis is a distinctly T- cell- driven disease 
with a strong IL- 13 signature.73 AD was originally viewed as 
a Th2- driven disease, but recent data show a more complex 
picture. In European and American patients, Th2 and Th22 
dominate the acute phase with Th1 following in the chronic 
phase of AD. Asian patients show higher levels of Th17 and 
Th22 responses, while African patients show almost no Th1 
and Th17 and lower levels of Th22 involvement.74 Lesional 
AD skin also contains increased amounts of basophils, mast 
cells (MC), DCs, eosinophils and macrophages.75–77 Most 
cases of AD show high levels of specific IgE to foreign and 
self- antigen, indicating an involvement of the humoral arm 
of the adaptive immune system.78 Indeed, systemic anti- 
allergic therapy can ameliorate some forms of AD.79

Atopic dermatitis is furthermore associated with a compro-
mised skin barrier. In AD patients, even non- lesional skin shows 
increased trans- epidermal water loss (TEWL).80 Mutations in 

filaggrin and claudin, key components of the skin barrier, are 
among the alleles with the strongest association with AD.81,82

Whether it is a consequence or a cause of the compro-
mised skin barrier, AD is associated with significant changes 
in the skin microbiome. Most prominently, AD skin displays 
an overgrowth of S. aureus.83 Not all patients with AD do 
have S. aureus colonization of their skin, but levels of S. au-
reus correlate with disease severity and AD patients without 
S. aureus colonization have less severe skin symptoms.84 Of 
note, just like the barrier disruption, the microbiome in AD 
patients is also changed in non- lesional skin.85 Treatment 
with corticosteroids ameliorates skin lesions and leads to 
decreased microbial dysbiosis.86 On the other hand, nor-
malizing the microbiome can lead to an amelioration of the 
disease.87,88 Therefore, microbial dysbiosis is both a conse-
quence of AD and a driver of the disease.

Neuro- immune crosstalk is an important element of 
many diseases.89 Especially AD is associated with increased 
innervation of the skin.90 In mouse models, amelioration 
of AD correlates with reduced skin innervation.91 In AD 
lesions, the density of nerves in the epidermis is increased 
with nerves displaying altered morphology.92 Fitting to this 
observation, AD skin contains higher levels of nerve growth 
factor (NGF).93 In a mouse model of AD, blockade of NGF 
reduces the innervation of the skin and improves dermatitis 
and scratching behaviour.94

How all these factors connect and if all of them are im-
portant in all forms of AD is currently still unclear. A full 
understanding of the pathophysiology of AD will still re-
quire much research.

LCs in AD

The prominence of LCs in the skin, as well as their dual 
function as potentially strong pro-  and anti- inflammatory 
cells, makes them cells of great interest in inflammatory 
skin diseases. Furthermore, genome- wide association stud-
ies have found mutations in the gene encoding for CD207 
to be strongly associated with risk of AD.72 LCs in AD show 
greater activation and maturation95 and increased prolif-
eration24 (Figure  1c,d). In several different mouse models, 
deletion of LCs protects from AD.96 Xiao et  al. elegantly 
demonstrated that specifically deletion of monocyte- derived 
LCs, but not CD207+dDCs, ameliorates AD.97

It is assumed that LCs are actively involved in the patho-
physiology of AD. They may however also be involved in 
anti- inflammatory pathways ameliorating the disease. As 
of yet, the definitive role of LCs in AD remains unclear. 
However, LCs are involved in many key processes of AD, 
giving them a central role in this disease.

LCs and immunology in AD

T cells are key players in the pathophysiology of AD, as 
exemplified by current treatments blocking T- cell- derived 
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cytokines. Th2- polarized helper T cells secrete the cy-
tokines IL- 4 and IL- 13. Blockade of these cytokines or 
their receptors, for example with dupilumab, is a highly 
efficient treatment for AD.98 While T cells are strong ef-
fector cells, their activation, recruitment and polarization 
depend on APCs. LCs are the most common APCs in the 
skin and have been shown to be able to polarize T cells 
towards Th2, making them the obvious drivers of the Th2- 
shift in AD.

Lesional skin of patients with AD contains high levels 
of the cytokine thymic stromal lymphopoietin (TSLP), 
produced by keratinocytes. In mice, overexpression of 
TSLP leads to an AD- like disease. Interestingly, de-
pletion of LCs abolishes AD in this model. Therefore, 
TSLP induces AD via LCs. Specifically, TSLP- primed 
LCs recruit T cells to the skin via secretion of chemok-
ines like CCL17 and CCL22 and polarize them towards a 
Th2- phenotype.96,99,100

The best studied mode of activation for T cells is via 
MHC- I and MHC- II, presenting peptide antigen. However, 
T cells can also be activated by lipid antigen presented by 
CD1a. In AD, CD1a- reactive T cells are strongly increased.101 
CD1a is highly expressed on LCs.102 Therefore, LCs may 
drive AD pathogenesis via CD1a- dependent activation of 
T cells.

One important downstream effect of Th2- polarization 
is the induction of B- cell differentiation towards IgE- 
producing plasma cells. In mouse models, deletion of LCs 
leads to reduced levels of IgE, both in a model of OVA sensi-
tization and in the steady state.103 AD has long been associ-
ated with high levels of IgE.104,105 LCs bind IgE via different 
structures such as the low- affinity receptor FcɛRII/CD23 
and the high- affinity receptor FcɛRI. Both receptors are ex-
pressed on LCs in AD.106,107 FcɛRI expression on CD1a+ cells 
correlates with serum IgE levels in patients.108 Activation of 
IgE- bound FcɛRI on LCs leads to secretion of chemokines 
such as IL- 16, which recruit more helper T cells, precursors 
of inflammatory dendritic epidermal cells (IDECs) and eo-
sinophils.109 IDECs bind IgE via FcɛRI, but FcɛRI- activated 
IDECs polarize T cells in a different direction, namely to-
wards Th1.110

Therefore, there exists a feedback loop in the patho-
genesis of AD: LCs initiate a Th2- response, which leads to 
IgE- production, which is in turn bound by the LCs. Their 
activation upon IgE ligation leads to the recruitment of fur-
ther immune cells. IgE on IDECs, as a spin off of this loop, 
polarizes naïve T cells towards Th1, explaining the switch 
form Th2 in acute to Th1 in chronic AD lesions.

Another important cell type infiltrating the skin in AD 
are eosinophils.111 In-vivo, disruption of the skin barrier and 
immune activation with peptidoglycan cause eosinophil in-
filtration in the skin. This is dependent on secretion of the 
chemokine CCL5 by LCs.112 In another mouse model of der-
matitis, Langerin- DTR depletion of LCs leads to reduced 
levels of eosinophils.113

Therefore, LCs play an important part in recruiting and 
polarizing immune cells, driving the pathogenesis of AD.

LCs and skin barrier in AD

Atopic dermatitis skin is characterized by a genetically and 
inflammation- driven disrupted skin barrier. AD skin also 
contains higher numbers of more active LCs. In several dif-
ferent mouse models, disruption of skin barrier led to in-
creased numbers of LCs.114 Yoshida et al. suggested that due 
to their ability to penetrate tight junctions, LC may contrib-
ute to formation of skin lesions by having access to environ-
mental allergens.115,116

Mice with a deletion of EGFR in the epidermis (EGFRΔep) 
develop a phenotype resembling severe AD. This phenotype 
is rescued when the mice are kept under germ- free condi-
tions. Therefore, the skin inflammation in EGFRΔepmice is 
caused by invading microbes. Importantly, even germ- free, 
non- inflamed mice have a compromised skin barrier. In this 
model, skin barrier integrity loss is the initiating event of the 
disease, allowing for infection of bacteria into the skin and 
leading to the persistent inflammation.117 In EGFRΔepmice, 
the disease starts when hair follicles erupt through the skin. 
Normal closure of the skin barrier after this disruption is 
impaired in these mice.

In AD patients, numbers of LCs with dendrites reach-
ing into the stratum corneum are increased fivefold.115 In 
normal skin, tight junctions close around LC dendrites to 
maintain the skin barrier.7 However, AD is very prominently 
associated with mutations in genes coding for skin barrier 
components. Therefore, an increased penetration of the tight 
junctions by LC- dendrites, coupled with a defect in closing 
tight junctions, may be a contributing factor in the pathol-
ogy of AD. A compromised skin barrier might attract more 
LCs, which might further compromise the barrier, leading to 
a vicious cycle driving the disease.

However, data from Lee et  al. suggest an opposite hy-
pothesis: in both Langerin- DTA and Langerin- DTR mice, 
two genetic models for deletion of LCs, the skin barrier is 
disturbed. Even in the steady state, the transepidermal water 
loss (TEWL) in these mice is higher than in WT controls. 
Also, mice without LCs show impaired skin barrier closure 
after tape stripping.118 According to these results, LCs con-
tribute to the maintenance and repair of the skin barrier. 
The increased amount of LC- dendrites in the tight junction 
area may be an attempt to ‘plug the holes’ in a compromised 
skin barrier.119

An intact skin barrier is essential for the tolerogenic 
function of LCs. Luo et al. injected OVA into the subcutis 
of mice, eliciting an anti- OVA immune response. If OVA 
was applied topically to intact skin before the injection, 
the anti- OVA response was attenuated significantly. This 
effect was lost in Langerin- DTA mice. Therefore, topi-
cal application of an antigen can lead to immunological 
tolerance in an LC- dependent manner. Cutaneous appli-
cation of OVA on tape- stripped skin also failed to elicit 
immunological tolerance.120 Therefore, the critical point 
of cutaneous tolerance is antigen sensing by immature 
LCs through an intact skin barrier. The disturbed skin 
barrier in AD may deprive the patient of an important 
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immunoregulatory mechanism. This may continue to 
drive the disease or contribute to the emergence of allergic 
comorbidities.

Uncovering the exact connections between LCs and the 
skin barrier in human AD will still need further research, 
but modifying LCs might present a way to restore the skin 
barrier and ameliorate the disease.

LCs and microbiome in AD

Microbial dysbiosis is very important in AD.121 The skin 
and its microbiome constantly interact with each other via 
cell–cell interactions, structural components or secreted 
bioactive molecules.122 This interaction goes both ways: 
Comparing germ- free to SPF mice revealed over 2800 differ-
entially regulated genes in the skin, demonstrating the enor-
mous effect the microbiome has on the skin even in steady 
state.123 Conversely, changes in the immune system lead to 
alterations of the microbiome, even in the steady state.124 In 
healthy mice, depletion of LCs does not affect the composi-
tion of the skin microbiome.125 Germ- free mice, compared 
to SPF mice, display reduced numbers of LCs in the epider-
mis.126 Therefore, LCs may be sensors of the microbiome, 
but not directly influence it.

In healthy skin, LCs induce TREGs. When activated, 
however, LCs expand effector and memory T cells and de-
crease TREGs.

127 Metabolites from skin commensals can act 
on LCs and induce an anti- inf lammatory programme with 
secretion of IL- 10 and IDO. Such LCs can further suppress 
helper T- cell proliferation and induce IL- 10 secretion in 
T cells.128

In AD, the skin is often colonized by an overabundance of 
S. aureus, while other species like Staphylococcus epidermidis 
(S. epidermidis) are reduced. As yet unpublished data from 
our group show that LCs primed with S. epidermidis lead 
to IL- 10- secreting T cells, while LCs primed with S. aureus 
lead to proliferating T cells secreting pro- inflammatory cy-
tokines. Pathogens like S. aureus can drive T- cell- mediated 
inflammation via LCs. At the same time, LC- translated anti- 
inflammatory functions of skin commensals like S. epider-
midis are lacking.

Iwamoto et al report that in AD LCs display significant 
downregulation of TLR2 and are therefore unresponsive to 
TLR2 ligands. Pam3Cys- stimulated LCs from AD patients 
produce less IL- 6 and IL- 10, but more IL- 18.129 Therefore, in 
AD LCs react to the microbiome in an atypical way.

Not only the bacterial, but also the fungal skin microbi-
ome is dysregulated in AD. Especially species of Malassezia 
have been associated with more severe AD.75 Of note, 
skin- resident fungi are strong inducers of IgE responses.130 
FcɛR1- activated LCs secrete chemokines attracting T cells 
and IDEC precursors.110 This may contribute to the perpet-
uation of AD. The pathogenicity of fungi depends on the 
pH of the surroundings. AD skin is less acidic than healthy 
skin. This leads to increased release of allergens from skin- 
resident fungi,131 leading to more IgE production. Changes 

in the fungal microbiome could very well be the basis of the 
AD- specific expression of IgE receptors in LCs.

Taken together, both the presence of pro- inflammatory 
microbes, as well as the absence of commensals which would 
induce tolerogenic programmes in LCs, are important fac-
tors in AD. Transplantation of healthy microbiome can 
ameliorate AD in mice.88 Clinical studies with microbiome 
transplantation in AD patients are already under way.132

LCs and neuro- immunology in AD

Skin inflammation often correlates with psychosomatic dis-
orders. Psychological stress often leads to worsening of skin 
diseases.133–137 Chronic skin conditions in turn often cause 
stress, via self- perceived unattractiveness of the patient or 
via the sensation of pain and itch. This vicious cycle contrib-
utes to persistence and worsening of chronic skin diseases.

In mice, deletion of LCs can reduce the number of spe-
cific nerve fibres.138,139 In humans, demyelinating diseases 
or spinal cord injuries lead to loss of skin innervation, which 
in turn reduces numbers of LCs.140,141 Thus, nerves and LCs 
in the skin are dependent on each other.

Zhang et al. demonstrated that long- term loss of LCs leads 
to reduction of specific nerve fibres. This in turn leads to in-
creased MC degranulation, which aggravates in-vivo mod-
els of skin inflammation. However, depletion of skin nerves 
did not aggravate experimental AD. In other models, the 
opposite effect occurs: depletion of skin nerves ameliorates 
inflammation.142 Neuro- immunology of the skin is very 
complex and will require more research to fully understand.

In AD patients, innervation of the epidermis is increased. 
This has been connected especially with the sensations of 
itch and pain.143 Depletion of these nerves ameliorates AD.94

In both animal models and patients, AD is associated 
with a dysregulation of neuropeptides. Specifically, in AD 
the levels of substance P (SP) are increased and the levels of 
calcitonin gene- related peptide (CGRP) are decreased.144,145 
CGRP acts on LCs and impairs their ability to present an-
tigen.146 Injection of CGRP downregulates inflammation  
in-vivo.147 SP also acts on LCs,148 but acts pro- inflammatory 
by enhancing LC activation, migration and antigen presen-
tation, leading to enhanced T- cell reactions and increased 
productions of immunoglobulins.149 In AD, SP levels cor-
relate with NGF levels and with disease severity.150

Thus, inflammatory LCs may increase the innervation 
of the skin. Inflammatory nerves in turn may polarize LCs 
towards a pro- inflammatory phenotype, thus creating an 
inflammation- driving feedback loop.

CONCLUSIONS

LCs play an important part in skin immunity. In the steady 
state, they maintain tissue homeostasis and immunological 
tolerance. At the same time, they provide immunity against 
invading and skin surface microbes. LCs are connected to 
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all major events of AD pathophysiology. However, their 
net effect in this disease is still unclear. LCs might be driv-
ers of AD or they might attempt to counteract the disease. 
Moreover, LCs may play different roles in different subtypes 
and stages of AD. The literature on this topic is challenging 
to understand; many different models have been used and 
the role of LCs may vary with the exact model. Different 
groups use epidermal LCs, CD207+dDCs or monocyte- 
derived LCs. Moreover, in  vitro experiments do not repli-
cate the microenvironment of the skin and the microbiome, 
which are critical for LCs. Therefore, in vitro data may not 
reflect the in-vivo situation very well.

More work is needed in order to deepen the understand-
ing of LCs in the pathophysiology of AD. Studies about LC 
function in patients with different subtypes and stages of 
AD would be key to better understand their putative role 
in distinct subforms of AD. Hence, the behaviour of LCs in 
AD patients of different ethnicities and different dominant 
cytokine axes would be interesting to explore. Besides all 
challenges of investigation, LCs, as key players in the regu-
latory networks in AD, offer the opportunity to develop new 
treatment strategies and options, for example, by developing 
drugs modifying their function and shift them away from 
pro- inflammatory action.
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