
High-dimensional Limits in
Artificial Neural Networks

by

Aleksandr Shevchenko

August, 2024

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Francesco Locatello, Chair

Marco Mondelli
Dan Adrian Alistarh
Christoph Lampert
Emmanuel Abbe

The thesis of Aleksandr Shevchenko, titled High-dimensional Limits in
Artificial Neural Networks, is approved by:

Supervisor: Marco Mondelli, ISTA, Klosterneuburg, Austria

Signature:

Co-supervisor: Dan Adrian Alistarh, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Christoph Lampert, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Emmanuel Abbe, EPFL, Lausanne, Switzerland

Signature:

Defense Chair: Francesco Locatello, ISTA, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Aleksandr Shevchenko, August, 2024
All Rights Reserved

ISTA Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I accept full responsibility for the content and factual accuracy of this work, including the data
and their analysis and presentation, and the text and citation of other work.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Aleksandr Shevchenko
August, 2024

Signed page is on file

Abstract

In the modern age of machine learning, artificial neural networks have become an integral part
of many practical systems. One of the key ingredients of the success of the deep learning
approach is recent computational advances which allowed the training of models with billions
of parameters on large-scale data. Such over-parameterized and data-hungry regimes pose a
challenge for the theoretical analysis of modern models since “classical” statistical wisdom
is no longer applicable. In this view, it is paramount to extend or develop new machinery
that will allow tackling the neural network analysis under new challenging asymptotic regimes,
which is the focus of this thesis.
Large neural network systems are usually optimized via “local” search algorithms, such
as stochastic gradient descent (SGD). However, given the high-dimensional nature of the
parameter space, it is a priori not clear why such a crude “local” approach works so remarkably
well in practice. We take a step towards demystifying this phenomenon by showing that
the landscape of the SGD training dynamics exhibits a few beneficial properties for the
optimization. First, we show that along the SGD trajectory an over-parameterized network
is dropout stable. The emergence of dropout stability allows to conclude that the minima
found by SGD are connected via a continuous path of small loss. This in turn means that
the high-dimensional landscape of the neural network optimization problem is provably not so
unfavourable to gradient-based training, due to mode connectivity. Next, we show that SGD
for an over-parameterized network tends to find solutions that are functionally more “simple”.
This in turn means that the SGD minima are more robust, since a less complicated solution
will less likely overfit the data. More formally, for a prototypical example of a wide two-layer
ReLU network on a 1d regression task we show that the SGD algorithm is implicitly selective in
its choice of an interpolating solution. Namely, at convergence the neural network implements
a piece-wise linear function with the number of linear regions depending only on the amount
of training data. This is in contrast to a “smooth”-like behaviour which one would expect
given such a severe over-parameterization of the model.
Diverging from the generic supervised setting of classification and regression problems, we
analyze an auto-encoder model that is commonly used for representation learning and data
compression. Despite the wide applicability of the auto-encoding paradigm, the theoretical
understanding of their behaviour is limited even in the simplistic shallow case. The related
work is restricted to extreme asymptotic regimes in which the auto-encoder is either severely
over-parameterized or under-parameterized. In contrast, we provide a tight characterization
for the 1-bit compression of Gaussian signals in the challenging proportional regime, i.e., the
input dimension and the size of the compressed representation obey the same asymptotics.
We also show that gradient-based methods are able to find a globally optimal solution and
that the predictions made for Gaussian data extrapolate beyond - to the case of compression
of natural images. Next, we relax the Gaussian assumption and study more structured input
sources. We show that the shallow model is sometimes agnostic to the structure of the data

vii

which results in a Gaussian-like behaviour. We prove that making the decoding component
slightly less shallow is already enough to escape the “curse” of Gaussian performance.

viii

Acknowledgements

I would like to start by thanking my advisors, Marco and Dan, for giving me the freedom to
find and pursue my research interests, and for their unconditional support and guidance during
my PhD journey. I also would like to thank Christoph and Emmanuel for being part of my
thesis committee, and for their valuable feedback on my PhD research. I thank Francesco
Locatello for being the chair of my defence committee.
I was extremely lucky to be part of two research groups at ISTA, and, thus, had a “doubled”
opportunity to hang out with more amazing researchers. I would like to thank every member
of Mondelli and Alistarh groups. I have learned a lot from you and I wish you smooth sailing
during your research careers.
I would like to especially thank Kevin for being an amazing PhD pal and collaborator, and
having similar “brainworms” to myself. Same goes for Simone: I will miss a lot our daily “gym
bro” interactions. I would like to thank Dorsa for alleviating the “nerdiness” of my existence.
I would like to thank Jen: our research nagging sessions helped me not get lost in analysing
abstract spherical horses in a vacuum and not lose connection with practical research questions.
I thank Anastasiya for a lot of pleasant conversations and showing many cool places in Vienna.
I would like to thank my parents and all my friends for being there for me (or at least remotely
:D) during “not-so-bright” times, especially when I was continuously hitting the wall to solve
life and research problems.

Funding resources. This project was partially supported by the 2019 Lopez-Loreta Prize
and by the FWF DK VGSCO, grant agreement number W1260-N35. The candidate would
like to thank the IST Distributed Algorithms and Systems Lab for providing the computational
resources. Furthermore, the candidate acknowledges the support from the Scientific Service
Units of the Institute of Science and Technology Austria through resources provided by Scientific
Computing.

ix

About the Author

Alex obtained his bachelor’s degree in computer science at the Higher School of Economics
(HSE) in Moscow. For one year, he was part of a master’s joint program between HSE and
Skoltech focused on statistical learning theory. During his undergraduate studies, he was also
part of the Bayesian Methods Research group and a research assistant at the Samsung-HSE
laboratory affiliated with the group. He joined ISTA in September 2019 under the joint super-
vision of Marco Mondelli and Dan Adrian Alistarh. During his PhD, he was broadly interested
in the theoretical foundations of machine learning leaning towards the analysis of training
dynamics of over-parameterized models and non-convex optimization in high-dimensional
settings. His work, published in the International Conference on Machine Learning and the
Journal of Machine Learning Research, was focused on developing a theoretical understanding
of various phenomena observed in artificial neural networks under high-dimensional asymptotic
regimes.

x

List of Collaborators and Publications

This thesis is based on the following first-author/equal contribution publications of Aleksandr
Shevchenko. We provide a summary of the contributions of each author, referred to by their
initials.

• Alexander Shevchenko and Marco Mondelli. Landscape connectivity and dropout stability
of SGD solutions for over-parameterized neural networks. International Conference on
Machine Learning, 2020

– Chapter 3 is based on this publication
– MM initially proposed the problem to AS along with related work, supervised AS,

and proposed/made improvements for the formal proofs and suggested additional
experiments

– All authors participated in the discussions which led to the development of the
main results: dropout-stability and mode connectivity in mean-field regime

– AS developed/adapted and wrote the majority of technical bulk of the paper
– AS performed all related numerical simulations
– All authors contributed to the writing and revising of the final manuscript

• Alexander Shevchenko, Vyacheslav Kungurtsev, and Marco Mondelli. Mean-field analysis
of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning
Research, 2022

– Chapter 4 is based on this publication
– All authors participated in the project-related discussions
– MM initially proposed the problem of studying a spline-like behaviour of over-

parameterized shallow models on a 1d regression task along with the related
work

– MM supervised AS throughout the project and proposed improvements regarding
the technical part

– AS developed and wrote the formal bulk of the paper
– AS performed all related numerical simulations
– All authors contributed to the writing and revising of the final manuscript
– VK suggested some of the useful related work

• Aleksandr Shevchenko, Kevin Kögler, Hamed Hassani, and Marco Mondelli. Fundamental
limits of two-layer autoencoders, and achieving them with gradient methods. International
Conference on Machine Learning, 2023

xi

– Chapter 5 is based on this publication
– AS and KK contributed equally to the project
– All authors participated in the project related discussions
– MM, HH and AS proposed to look for an improvement upon random feature

encoding
– AS discovered the linear behaviour of population risk for straight-through 1-bit shal-

low auto-encoding during numerical simulations and KK confirmed the alignment
with vector-AMP prediction, which formally established the project direction

– AS, KK and HH contributed to the development of the lower bound in the case of
isotropic data for rate r ≤ 1

– AS and KK closed the isotropic case for rate r > 1
– AS and KK formulated and proved the convergence result for weight-tied gradient

flow in the case of rate r ≤ 1
– HH came up with a first sketch for GD-min convergence, AS and KK improved

and finished the rigorous version which required overcoming a few major technical
challenges of error control

– AS proposed to look at the block form for the case of non-isotropic data and got
the first preliminary bound for a special case of covariance matrix

– AS and KK discovered the water-filling behaviour of the related block ranks
– AS proposed a KKT-based iterative scheme to get a tight numerical estimate for

the lower bound
– AS and KK established formal guarantees for the KKT scheme
– AS performed all related numerical simulations
– MM supervised AS and KK throughout the project and proposed improvements

regarding the writing of the technical and exposition parts
– All authors contributed to the writing and revising of the final manuscript

• Kevin Kögler, Alexander Shevchenko, Hamed Hassani, and Marco Mondelli. Compression
of structured data with autoencoders: provable benefit of nonlinearities and depth.
International Conference on Machine Learning, 2024

– Chapter 6 is based on this publication
– KK and AS contributed equally to the project
– All authors participated in the project related discussions
– KK and AS discovered that a shallow autoencoder ignores the “structure” of an

i.i.d. signal
– KK developed and wrote the convergence result for GD-min on sparse Gaussian

data
– KK and AS discovered phase transition behaviour in the minimizer, AS computed

the related critical value
– AS translated the RI-GAMP iterates into a suitable decoding network architecture,

and empirically showed that two steps are close enough to the Bayes optimal
performance of vector-AMP

xii

– AS derived and implemented the related vector-AMP state evolution for sparse
Gaussian source

– AS derived and implemented optimal denoisers for non-linear decoding
– AS provided a first version of the main body
– AS performed the majority of the related numerical simulations
– KK implemented a binning scheme for an empirical estimate of the optimal denoiser,

when closed form expression was unavailable
– Throughout the project MM supervised KK and AS and coordinated regular progress

meetings and suggested experimental setups for a better exposition of the paper
main results

– All authors contributed to the writing and revising of the final manuscript

xiii

Table of Contents

Abstract vii

Acknowledgements ix

About the Author x

List of Collaborators and Publications xi

Table of Contents xv

List of Figures xvii

1 Introduction 1

2 Background 5
2.1 Parametric Models and Neural Networks 5
2.2 Mean-field Framework . 14
2.3 Autoencoders and Related Concepts . 18

3 Landscape Connectivity and Dropout Stability of SGD Solutions 26
3.1 Motivation and Outlook . 26
3.2 Related Work . 28
3.3 Dropout Stability and Connectivity for Two-Layer Neural Networks 29
3.4 Dropout Stability and Connectivity for Multilayer Neural Networks 32
3.5 Numerical Results . 35
3.6 Discussion and Future Directions . 38

4 Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks 39
4.1 Motivation and Outlook . 39
4.2 Related Work . 43
4.3 Preliminaries . 43
4.4 Main Results . 46
4.5 Proof of the Main Results . 53
4.6 Knots Inside the Interval . 68
4.7 Numerical Simulations . 72
4.8 Comparison with Related Work . 73
4.9 Concluding Remarks . 74

5 Fundamental Limits of Two-layer Autoencoders 76
5.1 Motivation and Outlook . 76

xv

5.2 Related Work . 78
5.3 Preliminaries . 80
5.4 Main Results . 81
5.5 Extension to General Covariance . 87
5.6 Discussion . 90

6 Autoencoders: Beyond Gaussian Data 92
6.1 Motivation and Outlook . 92
6.2 Related Work . 94
6.3 Preliminaries . 95
6.4 Limitations of a Linear Decoding Layer 95
6.5 Provable Benefit of Nonlinearities and Depth 99
6.6 Conclusions and Future Directions . 105

7 Discussion and Concluding Remarks 107

Bibliography 110

A Appendix for Chapter 3 127
A.1 Proof of Theorem 1 . 127
A.2 Extension to Unbounded Activation – Statement and Proof 131
A.3 Proof of Theorem 2 . 133
A.4 Additional Numerical Results . 146

B Appendix for Chapter 4 150
B.1 Technical Results . 150

C Appendix for Chapter 5 159
C.1 Closed Forms for the Population Risk . 159
C.2 Proofs of Lower Bound on Loss (Section 5.4.1) 162
C.3 Global Convergence of Weight-tied Gradient Flow (Theorem 6) 171
C.4 Global Convergence of Projected Gradient Descent (Theorem 7) 177
C.5 Auxiliary Results . 195
C.6 Proofs for General Covariance . 200
C.7 Details of Experiments and Additional Numerical Results 209

D Appendix for Chapter 6 213
D.1 MSE Characterizations . 213
D.2 Experimental Details and Additional Numerical Results 217

xvi

List of Figures

1.1 Double descent phenomenon . 2

3.1 Comparison of population risk and classification error between the trained network
and the dropout network. 35

3.2 Change in loss after removing half of the neurons from each layer, as a function of
the number of neurons N of the full network. 36

3.3 Classification error along a piecewise linear path that connects two SGD solutions. 36
3.4 Change in classification error after removing half of the neurons from each layer,

as a function of the number of neurons of the full network, at the end of training. 38

4.1 Example of functions learnt by a two-layer ReLU network on different training
data. 41

4.2 Visualization of the functions involved in the approximation of the ReLU activation. 46
4.3 Three different configurations of the polynomials f j(x) and fj(x), together with

the corresponding cluster set. The dark blue curves show the shape of polynomials,
and the red bold intervals indicate the set on which polynomials attain non-positive
value. 47

4.4 Representation of the critical point xc for different configurations of the polynomial
f j and evaluation point x. 48

4.5 Three examples of piecewise linear functions that fit the data with zero squared
error. 50

4.6 Example of the data for which the corresponding two-layer ReLU network imple-
ments a knot. 68

4.7 Functions learnt by a two-layer ReLU network for different values of the temperature
parameter. 72

4.8 Functions learnt by a two-layer ReLU network for different values of the temperature
parameter and regularization. 73

5.1 Compression of the grayscale CIFAR-10 data with a two-layer autoencoder. . . 77
5.2 Compression of a non-isotropic Gaussian source. 89
5.3 Performance comparison for the compression of an isotropic Gaussian source. . 91

6.1 Numerical computation of the rate-distortion function for a sparse Gaussian source
via the Blahut-Arimoto algorithm. We plot the optimal MSE against the rate r
for different values of sparsity p. 97

6.2 Compression of sparse Rademacher data via the two-layer autoencoder in (6.2). 97
6.3 MSE during SGD training of the two-layer autoencoder in (6.2) on sparse Rademacher

data. 98
6.4 Compression of particle physics data [YM21b]. 98
6.5 Compression of masked and whitened CIFAR-10 images of the class “dog” via the

two-layer autoencoder in (6.2). 99

xvii

6.6 Compression of sparse Gaussian data via the autoencoder in (6.4), where f(·) has
the form in (6.15) and its parameters (α1, α2, α3) are optimized via SGD. . . . 100

6.7 Compression of sparse Rademacher data via the autoencoder in (6.4). 102
6.8 Compression of masked and whitened CIFAR-10 images of the class “dog” via the

autoencoder in (6.4). 103
6.9 Compression of sparse Gaussian data for various autoencoder architectures. . . 104
6.10 Block diagram of the decoder in (6.21). 105

A.1 Comparison of population risk and classification error between the trained network
and the dropout network for the classification of isotropic Gaussians. 147

A.2 Change in loss between the full network and the dropout network for the classifi-
cation of isotropic Gaussians, as a function of the number of neurons of the full
network. 147

A.3 Classification error along a piecewise linear path that connects two SGD solutions
for the classification of isotropic Gaussians. 147

A.4 Comparison of population risk and classification error between the trained network
and the dropout network for networks with different number of layers. 148

A.5 Change in loss after removing half of the neurons from each layer for networks
with different number of layers, as a function of the number of neurons of the full
network. 148

A.6 Classification error along a piecewise linear path that connects two SGD solutions
for MNIST classification with a three-layer neural network. 149

C.1 Compression of the whitened CIFAR-10 “dog” class with a two-layer autoencoder. 210
C.2 Compression of the whitened CIFAR-10 “horse” class and “ship” class with a

two-layer autoencoder. 212
C.3 Compression of the whitened MNIST “8” class and “4” class with a two-layer

autoencoder. 212
C.4 Compression of the CIFAR-10 “airplane” class and “deer” class with a two-layer

autoencoder. 212

D.1 Compression of Rademacher data via the autoencoder in (6.2). 219
D.2 Compression of data whose distribution is given by a sparse mixture of Gaussians

via the autoencoder in (6.2). 220
D.3 SGD staircase behaviour for compression of data whose distribution is given by a

sparse mixture of Gaussians via the autoencoder in (6.2). 220
D.4 Compression of data whose distribution is given by a sparse mixture of Beta

distributions via the autoencoder in (6.2). 221
D.5 Compression of data whose distribution is given by a (non-sparse) mixture of

Gaussians via the autoencoder in (6.2). 222
D.6 SGD staircase behaviour for compression of data whose distribution is given by a

(non-sparse) mixture of Gaussians via the autoencoder in (6.2). 222
D.7 Compression of data whose distribution is given by a sparse Laplace distribution

via the autoencoder in (6.2). 223
D.8 Compression of masked and whitened MNIST images that correspond to digit

“zero” via the two-layer autoencoder in (6.2). 224
D.9 Empirical distribution of whitened CIFAR-10 image pixels and its Laplace approxi-

mation. 224
D.10 Compression of sparse Gaussian data for different decoding architectures. . . . 225

xviii

D.11 Compression of sparse Rademacher data via the autoencoder in (6.4) with f of
the form in (D.14). 225

D.12 Optimal denoiser in (6.18) for sparse Rademacher prior. 226
D.13 SGD staircase behaviour for compression of sparse Rademacher data via the

autoencoder in (6.4). 226
D.14 Compression of data whose distribution is given by a sparse mixture of Beta

distributions via the autoencoder in (6.2). 227
D.15 Compression of data whose distribution is given by a sparse mixture of gaussians

via the autoencoder in (6.2). 227
D.16 Compression of data whose distribution is given by a (non-sparse) Gaussian mixture

with aspect ratio via the autoencoder in (6.2). 228
D.17 Compression of data whose distribution is given by a sparse Laplace prior via the

autoencoder in (6.2). 229

xix

CHAPTER 1
Introduction

During the last decade, the field of machine learning experienced a drastic yet fruitful paradigm
shift from classical statistical models, such as linear (kernel) models, to large-scale artificial
neural networks. Such a rapid change, for the most part, was enabled by the advances on
the computational side with the increased availability of graphical processing units (GPUs).
The GPUs made possible training neural networks containing many millions or even billions
of parameters on an extreme amount of data, which was impossible previously. Highly
overparameterized functionally rich models trained on a vast amount of data are a key
ingredient of success of neural networks in the modern age of deep learning.
The aforementioned paradigm allowed network models to achieve remarkable success on
many diverse tasks, to name a few: image recognition [HZRS16, DBK+21], machine transla-
tion [BCB14, VSP+17], generative modeling and representation learning [KW14, GPAM+14,
HJA20, SCS+22] and protein synthesis [JEP+21]. However, despite the tremendous ac-
complishments of deep learning models, one might argue we have never been farther from
understanding the “modus operandi” of systems that are used in practical machine learning
tasks.
The aforementioned paradigm shift to large scale data-hungry systems resulted in a deviation
from the standard asymptotic trade-offs between problem parameters. Namely, for a standard
statistical analysis one usually assumes that the amount of available data is much larger
comparatively to the complexity of the model (i.e., the number of model parameters). However,
modern neural architectures do not operate under such scaling. The number of network
parameters is usually close or even larger than the amount of data available. This difference in
the modeling assumptions turns out to be crucial as a “classical statistical wisdom” no longer
allows for a correct assessment of a neural network model properties. Perhaps the best example
to corroborate the “failure” of the classical statistics approach is the phenomenon of double
descent [BHMM19]. According to a well-established bias-variance trade-off the ability of a
model to generalize beyond the training data is strongly dependent on the model “capacity”.
For simplicity of the exposition one might think of the number of network parameters as
the main factor which determines the model capacity. Figure 1.1 (a) illustrates a U-shaped
curve which encapsulates a classical understanding of the trade-off between generalization
and the number of model parameters. Notably, if the model is too “over-parameterized” its
generalization ability is hindered as too much flexibility will allow the model to overfit the
data which will prevent it from capturing the “true” underlying structure. However, contrary
to this common belief something more peculiar happens in practice for neural architectures.

1

1. Introduction

R
is
k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting

(a) “Classical” statistics view

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

(b) Double descent characterization

Figure 1.1: Model generalization ability control via the capacity of a functional class: “classical” vs
“modern” view. Illustration from [BHMM19].

The curve indeed obeys a U-shaped trend until a certain “interpolation threshold” point at
which the model perfectly interpolates the data (reaching almost zero training error). After
this “’breaking” point, the model generalization ability starts to improve eventually reaching a
better value of the test risk. This is demonstrated in Figure 1.1 (b).

One of the possible explanations of the double descent phenomenon that has gained popularity
recently is benign overfitting [BLLT20]. The high-level gist of benign overfitting may be
summarized as follows: while the model certainly overfits the training data, the manner in
which such overfitting occurs is not harmful to the model’s generalization ability. Namely,
the model overfits the “noise” component of the data which, due to certain data modelling
assumptions, corresponds to the directions in the prediction space that are not important.

A somewhat orthogonal view suggests that when such over-parameterized models are “learned”
via local search algorithms, for instance, stochastic gradient descent (SGD), the optimization
procedure, despite the parameter redundancy, is biased towards more functionally “simple”
and robust parameter configurations (see, e.g., [WTS+19]). Crucially, such configurations
are “easier” to find in the presence of over-parametrization. This is corroborated by the
fact that smaller, “pruned” from the start, models fail to achieve the performance of their
over-parameterized counterparts that are compressed at later stages of training [RFC20]. In
contrast, the dynamic schemes (e.g., [PIVA21]) that allow for enough over-parameterization
“slack” during the training perform remarkably well. These points motivate our study of
over-parameterized models and, in particular, the analysis of the associated stochastic gradient
descent solutions. Namely, we show that SGD solutions for over-parameterized neural networks
exhibit a certain stability property. This property, in turn, implies that the SGD optimization
landscape has a convenient structure, namely, the solutions found by SGD are connected via a
continuous path along which the associated loss barely changes. Such “connectivity” of the
stochastic gradient descent solutions might explain why for such high-dimensional models a
rather simple local search algorithm yields remarkable results. Following up on the implicit
bias of SGD dynamics, we prove that an over-parameterized two-layer ReLU network learns
a much simpler data-interpolating solution than intuition would suggest. In particular, the
network implements a piecewise linear function and the corresponding number of linear regions
scales with the size of the dataset, but is independent of the number of network parameters.

The previously discussed challenges were mainly embedded in the context of supervised learning
tasks, such as classification or regression problems. When it comes to practical applications
of neural networks, unsupervised learning and, in particular, representation learning is hard
to pass by. In this case, the most prominent neural architectural design is auto-encoding.
Auto-encoders have achieved remarkable results in many sub-fields including, but not limited
to, generative modeling [KW14] and data compression [TSCH17, AMT+17]. However, the

2

theoretical understanding of auto-encoder models is quite limited even for shallow architectures
and is usually either limited to the case of linear activations [OSWS20] or extreme asymptotic
regimes [Ngu21, RG22, CZ23]. To fill in the gaps, we study a prototypical problem of 1-bit
compression via shallow auto-encoders, in the proportional regime. Under such regime, the
input dimension and the dimension of the compressed representation obey the same asymptotics.
For the case of Gaussian data we derive a tight lower bound on the compression performance
of such neural architecture. Surprisingly, the predictions under the Gaussian data assumption
go beyond and extrapolate extraordinarily well to the case of natural image data.

To explore further, we analyse a more structured sparse signal. Surprisingly, our theoretical
analysis that is corroborated by numerics shows that, depending on the distribution of inputs,
a shallow model is unaware of the signal structure, which results in Gaussian-like performance.
However, for certain inputs the model indeed achieves better compression results, albeit the
corresponding encoding is rather uninformative: the signal is passed through the encoding
step with no changes (modulo an application of the 1-bit sign(·) function). We characterize
the property of the inputs that determines which of the related minimizers is selected. We
also show that employing a deeper decoder without changing the shallow encoding structure
already allows the model to provably improve upon Gaussian performance.

It is important to note that especially for the proportional (also referred to as “thermodynamic”
in statistical physics) limit regime, the available theoretical understanding is quite scarce. In
this view, the technical machinery developed for the analysis of the autoencoder model in
Chapters 5 and 6 might be of a separate interest to the community.

Given the aforementioned scope of problems, the thesis is organized as follows:

• In Chapter 2, we give a brief outline of relevant machine learning concepts and techniques
while simultaneously covering the existing terminology and notations.

• In Chapter 3, we study the SGD training of an over-parameterized fully-connected
network under the mean-field regime [MMN18, AOY19]. We show that solutions found
by SGD for such over-parameterized model are dropout-stable [KWL+19] which implies
that the related minima are connected. We validate our theoretical findings on the
CIFAR-10 and MNIST classification tasks. The numerical simulations show remarkable
agreement between the proposed theoretical analysis and practical evaluation. This
chapter is based on our published work [SM20].

• In Chapter 4, we study the interpolating solutions of a regression problem for an extremely
over-parameterized two-layer ReLU network found by noisy stochastic gradient descent.
Taking a mean-field view once more, we analyze the properties of the limiting solution
of the SGD dynamics directly via accessing its characterization that has a Gibbs form.
Namely, we show that the curvature of the SGD solution vanishes almost everywhere
except at a specific “cluster” set of points which can be uniquely identified. This
observation in conjunction with the coupling described in [MMN18] allows us to dissect
the functional form of the SGD solution. In particular, the network implements a
piecewise linear function: the number of tangent changes is independent of the network
size and scales linearly with the number of training samples. Remarkably, the described
behaviour is significantly different from related works [WTS+19, BGVV20]. Of separate
interest, with our analysis we provide evidence that examining a Gibbs form directly, in
some cases, might lead to a surprisingly tight characterization. This chapter is based on
our published work [SKM22].

3

1. Introduction

• In Chapter 5, we analyse 1-bit compression of Gaussian signal via a non-linear two-layer
autoencoder model. We provide a tight lower bound (or asymptotically tight) on the
population risk achieved by a shallow autoencoder for the case of isotropic Gaussian data.
We also characterize the related minimizers (or minimizing sequence that saturates the
bound in the thermodynamical limit). Given that empirically the “weight-tied” structure
of encoding-decoding pair is optimal we derive the lower bound and the corresponding
minimizing sequence for non-isotropic data (Gaussian with general covariance). In
addition, we prove that two gradient-based optimization algorithms converge to the
optimal solutions for the case of isotropic data. Validating the “Gaussian prediction” on
natural data (MNIST, CIFAR-10) displays a remarkable agreement between the proposed
lower bounds and the numerical simulation. This chapter is based on our published work
[SKHM23].

• In Chapter 6, we go beyond the Gaussian design and consider the compression of a
more structured signal. For a prototypical example of sparse Gaussian inputs we show
that a shallow auto-encoder model is not capable of capturing the structure (sparsity)
of the input signal. For a general i.i.d. signal, we observe a phase transition in the
optimal solution that depends on a certain statistic of the input. Namely, the optimal
solution switches from random orthogonal design, that results in no improvement upon
Gaussian prediction, to a deterministic sparse solution that corresponds to a permutation
of an identity matrix. We extensively validate our conjecture on a large family of data
distributions. We show that enriching the expressive power of the decoder, by either
adding a suitable non-linearity or adopting a “deeper” decoding architecture, provably
allows to break the “curse” of Gaussian performance. In addition, we corroborate our
findings with numerics on natural MNIST and CIFAR-10 images along with particle
physics dataset from [YM21b]. This chapter is based on our published work [KSHM24].

• Lastly, in Chapter 7 we take a look back at our results and summarize possible directions
for future research.

4

CHAPTER 2
Background

In this chapter, we introduce the basic notation and background for the training of neural
network models. This brief summary will serve as a starting point for the discussions in
the subsequent chapters. We will open with basic terminology for supervised learning and
parametric models, namely, empirical/population risk minimization and how to find the
corresponding minimizers via a local search algorithm, e.g., stochastic gradient descent (SGD).
Later on, we discuss the mean-field framework [MMN18] for the analysis of training dynamics
of neural networks (NNs), focusing on the case of a two-layer network architecture. We also
cover a few related concepts for autoencoder models, including a variation of approximate
message passing algorithms [VKM22], which find wide application in signal recovery (akin
to the decoding step of autoencoding). We will keep the discussion in this chapter mostly
informal and cover the necessary concepts in the subsequent chapters with more rigour if
needed.

2.1 Parametric Models and Neural Networks

2.1.1 Parametric Models
Supervised learning. Supervised learning serves as the backbone of a substantial number of
applied machine learning problems. In this view, it is necessary to establish the basic supervised
learning principles right away. In the supervised learning context, one is given a set of training
examples {(xi,yi)}Mi=1, where xi ∈ Rd are inputs (e.g., a set of atmospheric measurements
for an upcoming date) and yi ∈ RK are the targets (e.g., temperature). The examples
are usually independent and identically distributed (i.i.d.) samples from the underlying data
distribution P supported on Rd ×RK , i.e., (xi,yi) i.i.d.∼ P. The objective is then to recover the
hidden dependence between inputs x and outputs y (e.g., predict temperature given a set of
atmospheric measurements) from the training data {(xi,yi)}Mi=1. To do so, one usually selects
a function f : Rd → RK from a certain functional class H that “fits” the available data in the
best way according to some distance metric ℓ : RK × RK → R. The aforementioned pipeline
is often referred as empirical risk minimization (ERM), and may be formalized as the following
variational problem

f ∗ ∈ arg min
f∈H

{︄
1
M

M∑︂
i=1

ℓ(f(xi),yi)
}︄
, (2.1)

5

2. Background

where f ∗ is the “best fit” candidate from H. As the notation implies, the minimizer in (2.1)
is not necessarily unique.
The most commonly used distances for supervised learning tasks are

• squared loss for regression tasks (whenever the target y is real-valued, akin to the
temperature example):

ℓ(ŷ,y) = 1
K

· ∥ŷ − y∥2
2 = 1

K
·
K∑︂
i=1

(ŷi − yi)2 , (2.2)

here the lower index stands for the i-th coordinate of y and ŷ for the “predicted” value.

• cross-entropy loss for classification tasks (e.g., inputs x are flattened matrices/tensors
which correspond to images of peaches and pears, and y is the correct one-hot encoded
label, i.e., y = (1, 0) for peach and y = (0, 1) for pear):

ℓ(ŷ,y) = −
k∑︂
j=1

yi · log ŷi, (2.3)

where by convention 0 · log 0 = 0 and ŷ stands for the predicted probabilities for each
class, e.g., ŷ = (0.3, 0.7).

Except for a few experimental settings in Chapter 3, we mostly focus on regression-type
problems and, hence, the main distance metric of interest for our purposes is squared loss.
While it is not the focus of the current thesis, it is important to outline a key concept of
measuring the quality of the candidate f ∗, which is usually done in terms of generalization
error. Namely, the generalization error measures how well the ERM candidate f ∗ performs on
unseen data (more precisely on all the data from P), i.e.,

E(x,y)∼P[ℓ̂(f ∗(x),y)], (2.4)

for some distance function ℓ̂ : RK × RK → R, that does not necessarily coincide with the one
of ERM in (2.1) for reasons we will highlight briefly later.
At this point, it is only appropriate to introduce the concept of population risk and the related
population risk minimizer (PRM) which is widely used throughout the current thesis. In certain
cases, by design, the medium has access to the whole data distribution P. In this view, instead
of choosing a predictor based on empirical risk

1
M

M∑︂
i=1

ℓ(f(xi),yi), (2.5)

one should aim to look for the minimizer of the population risk

E(x,y)∼P[ℓ(f(x),y)]. (2.6)

Consequently, the corresponding population risk minimizer f ∗ solves the following variational
problem

f ∗ ∈ arg min
f∈H

E(x,y)∼P[ℓ(f(x),y)]. (2.7)

6

2.1. Parametric Models and Neural Networks

Parametric models and gradient descent. The task of solving the variational problems in
(2.1) and (2.7) in general spaces, e.g., L2, is cumbersome and usually infeasible in the majority
of practical applications. To account for that, one should exploit a family of parametric
functions ŷ(· ,Θ) which suits the application needs and allows for an efficient optimization
(search of an optimal configuration Θ).
To be more concrete, fix some parametric form ŷ(· ,Θ) : Rd → RK and consider a related
ERM problem, i.e.,

1
M

M∑︂
i=1

ℓ(ŷ(xi,Θ),yi) → min
Θ

. (2.8)

The most common way to solve (2.8) is to employ a version of a “local search” algorithm,
such as gradient descent [BBV04] or higher-order Newton’s method [Kel03] (assuming that
(2.8) has the corresponding continuous derivatives). The methods of this type are referred as
‘local search” algorithms since at each iteration k only a “local” information (order derivatives
of (2.8) w.r.t. Θk) is used to get the next estimate Θk+1.
In this thesis, we focus on variations of gradient descent. The vanilla version of the gradient
descent update with step size α > 0 with a given initial choice of Θ0 (e.g., random Gaussian
initialization with constant order in dimension variance) is summarized as follows:

Θk+1 = Θk − α · ∇Θ
(︂
Θk
)︂
, ∇Θ

(︂
Θk
)︂

= ∇Θ

{︄
1
M

M∑︂
i=1

ℓ(ŷ(xi,Θk),yi)
}︄
, (2.9)

where ∇Θ stands for the gradient of the corresponding function. Depending on the choice of
gradient estimate ∇Θ

(︂
Θk
)︂

one can distinguish a few versions of gradient descent:

• (Stochastic gradient descent). The gradient estimate is computed using a single random
training data sample (˜︁xk, ˜︁yk), i.e.,

∇Θ
(︂
Θk
)︂

= ∇Θ
{︂
ℓ(ŷ(˜︁xk,Θk), ˜︁yk)}︂ , (˜︁xk, ˜︁yk) i.i.d.∼ 1

M

M∑︂
j=1

δ(xj ,yj),

here δ(x,y) stands for the delta distribution centered at (x,y).

• (Batch gradient descent). The gradient estimate is averaged across a batch of size B of
the training data i.e.,

∇Θ
(︂
Θk
)︂

= ∇Θ

{︄
1
B

B∑︂
i=1

ℓ(ŷ(˜︁xk,i,Θk), ˜︁yk,i)
}︄
,

{(˜︁xk,i, ˜︁yk,i)}Bi=1
i.i.d.∼ 1

M

M∑︂
j=1

δ(xj ,yj).

The vanilla version in (2.9) is often referred as full-batch gradient descent, as batch size B
is equal to the number of training samples M . There are variations to these schemes which
mainly depend on how the corresponding examples are sampled. In particular, it is a common
approach to substitute the i.i.d. sampling from the training data by doing a whole pass though
the training set, i.e., for SGD:

(˜︁x1, ˜︁y1) = (x1,y1), (˜︁x2, ˜︁y2) = (x2,y2), · · · ,

7

2. Background

and a similar scheme but for the batches of training examples in case of batch GD. A full pass
through the dataset is often referred as an “epoch”. It is also a common practice to randomly
shuffle the order of training samples after each epoch to prevent the model from overfitting
on a particular arrangement.

The main difference between the aforementioned variations of gradient descent is the trade-off
between complexity/memory of the gradient estimate evaluation and its variance. In particular,
one can establish upper bound guarantees (which depend explicitly on the variance) in the case
of a convex (in Θ) ERM objective (2.8) (modulo additional requirements like L-smoothness
and ℓ-strong convexity, which are of no particular interest to the current work, and, thus,
omitted). Namely, assume that the variance of the gradient estimator ∇Θ

(︂
Θk
)︂

is bounded
(uniformly in iterations k ∈ N) as follows:

E

⎡⎣⃦⃦⃦⃦⃦∇Θ
(︂
Θk
)︂

− ∇Θ

{︄
1
M

M∑︂
i=1

ℓ(ŷ(xi,Θk),yi)
}︄⃦⃦⃦⃦
⃦

2

2

⎤⎦ ≤ σ2

(and that (2.8) is L-smooth and ℓ-strongly convex), then after k = O
(︂
ln ∥Θ0−Θ∗∥2

2
ε

)︂
iterations

the following holds (see, for instance, [GLQ+19]):

⃦⃦⃦
Θk − Θ∗

⃦⃦⃦2

2
≤ ε+ σ2

ℓL
, (2.10)

where ε > 0 (required precision) and Θ∗ is the unique minimizer (due to strong convexity) of
the ERM (2.8). In particular, (2.10) suggests that the larger variance of the gradient estimate
σ2 will hinder the convergence speed of the corresponding stochastic gradient method.

In deep learning applications, the mini-batch SGD (mild sizes of batch) is the most common
variation, as it provides a sufficient trade-off and arguably improves generalization compared
to the full-batch version due to the presence of noise.

As mentioned before, it is also important to note that the metric ℓ̂(·, ·) used for generalization
error might differ from the “surrogate” ℓ(·, ·) that is used to obtain an optimal configuration
Θ∗. Namely, a typical choice for a classification problem is the classification error defined as

ℓ̂(ŷ,y) = 1 [ŷ ̸= y] , (2.11)

which checks if the predicted label ŷ matches the ground truth y. In this view, the problem
of employing ℓ∗(·, ·) directly for a gradient-based method is quite apparent - (2.11) is a
non-smooth function of ŷ, and, hence, of the model parameters Θ. That is why, in order to
enable a gradient-based minimization one should employ a differentiable “surogate”, which in
the case of a classification task is typically cross-entropy (2.3).

For the purposes of the current thesis, it is important to highlight two versions of gradient
descent that operate on the population risk (2.6). Namely, for the parametric family ŷ(· ,Θ)
we aim to find the corresponding minimizer of the population risk:

E(x,y)∼P[ℓ(ŷ(x,Θ),y)] → min
Θ

. (2.12)

In these terms, the corresponding version of gradient descent takes form

Θk+1 = Θk − α · ∇Θ
(︂
Θk
)︂
, ∇Θ

(︂
Θk
)︂

= ∇Θ
{︂
E(x,y)∼P[ℓ(ŷ(x,Θ),y)]

}︂
. (2.13)

8

2.1. Parametric Models and Neural Networks

The stochastic counterpart of (2.13) then corresponds to the estimate ∇Θ
(︂
Θk
)︂

that is
obtained using a single sample (x̃k, ỹk) (or a batch of samples) from the data distribution P,
i.e.,

∇Θ
(︂
Θk
)︂

= ∇Θ
{︂
ℓ(ŷ(x̃k,Θk), ỹk)

}︂
, (x̃k, ỹk) ∼ P. (2.14)

In this view, it is quite natural to expect that under some regularity assumptions the scheme
(2.14) should behave similarly to the “full” gradient version in (2.13). The version described
in (2.14) is often referred as online SGD.

2.1.2 Neural Networks
The first occurrence of neural network models dates all the way back to the previous century
[MP43]. However, artificial neural networks gained their popularity only recently with significant
advances on the computation side enabled by graphical processing units (GPUs), which allowed
for the training of deep network models at scale [KSH17] to showcase their capabilities across
different domains [BYAV13, KW14, RMW14]. In this section, we describe a few neural network
architectures of interest along with the relevant nuances.

Fully connected neural networks. We start with the simplest yet pioneering variation - a
feed-forward neural network. In early literature, it is often referred as a multilayer perceptron
(MLP) [Ros58], and, more recently, as a fully connected neural network (FCNN). In a nutshell,
the FCNNs consist of sequential alternating layers of linear and fixed pointwise non-linear
transformations. More formally, let W1 ∈ RN1×d and b1 ∈ RN1 be the weights of the first
“layer”, Wi ∈ RNi×Ni−1 and bi ∈ RNi for each i ∈ {2, . . . , L − 1} be the weights of the
intermediate “layers”, and define by WL ∈ RK×NL−1 with bL ∈ RK the weights of the last
“layer”. Fix an activation function σ : R → R. In these terms, a fully connected neural network
implements the following composition:

ŷ(x,Θ) = WL · σ(WL−1 · σ(. . .W2 · σ(W1x + b1) + b2 . . .) + bL−1) + bL, (2.15)

where Θ stands for the collection of the model parameters {(Wi, bi)}Li=1.
A few remarks regarding (2.15) are in order. First, note that one should choose σ(·) to be a
non-linear function. The contrary will result in (2.15) implementing a linear transformation
of the input x, which is not sufficient to learn more complicated dependencies occurring
in real world data. The importance of non-linear activations (which are also specifically
non-polynomial) is also corroborated by a series of universal approximation results (see, for
example, [Cyb89, Fun89, Bar93, LL20]). The universal approximation property (UAP) implies
that any sufficiently regular function on a compact domain can be approximated arbitrarily
well by a two-layer MLP (the network model in (2.15) with L = 2) once the layer width (N1
in this case) is large enough with respect to the required precision. UAP is one of the main
reasons to consider neural networks as a candidate for a parametric family of choice since it
is capable of implementing (in theory, disregarding the optimal parameter search) practically
any function of interest. It is also important to mention that for some tasks an additional
activation (different from σ) may be applied to the outputs of (2.15). In particular, for a
classification task, the network (2.15) outputs should correspond to the probabilities that are
assigned for each of the K classes given an input x. This means that ŷ(x,Θ) should belong
to a (K − 1)-dimensional simplex, formally:

ŷ(x,Θ) ∈ ∆K−1 :=

⎧⎨⎩u ∈ RK
+ :

K∑︂
j=1

uj = 1

⎫⎬⎭ . (2.16)

9

2. Background

To enforce the simplex condition 2.16, an extra softmax activation is applied

softmaxτ (ŷ(x,Θ)) := e−τ ·ŷ(x,Θ)∑︁K
j=1 e

−τ ·ŷ(x,Θ)j
∈ ∆n−1, (2.17)

where τ > 0 stands for the temperature hyper-parameter, the exponent in the enumerator is
applied entry-wise and ŷ(x,Θ)j stands for the j-th entry of vector ŷ(x,Θ). The temperature
τ regulates how close softmaxτ (·) is to the argmax(·) function. Namely, higher temperature
results in a more uniform distribution, while for small values of τ , softmaxτ (·) puts more
weight on the largest component of ŷ(x,Θ) and

lim
τ→0

softmaxτ (ŷ(x,Θ)) = argmax(ŷ(x,Θ)).

While we do not use (2.17) in the theoretical analysis, it is a useful remark for the classification
experiments considered in Chapter 3.

Backpropagation and residual connections. As discussed previously, the most common
way to obtain an optimal solution for a parametric model fθ is to employ a local search
algorithm such as SGD. The cornerstone of applying any gradient-based method is the
computation of a gradient itself. A particular approach to do so for a neural network model
(or any computational graph, for that matter1) is backpropagation, [RHW86] which is also
referred as backpropagation of error. In a nutshell, backpropagation in this case is just a fancy
name for applying chain-rule of a derivative. Formally, define the each layer outputs in the
iterative fashion as follows:

a1(x) = σ(W1 · x + b1),
aℓ(x) = σ(Wℓ · aℓ−1(x) + bℓ), ℓ ∈ {2, . . . , L− 1},
aL(x) = WL · aL−1(x) + bL = ŷ(x,Θ),

(2.18)

where we suppressed the dependence of ai on the corresponding layer parameters for a notation
convenience. In these terms, we can access the derivatives during the “backward” pass2 as
follows: define the error derivative by

derr(x) := ∂

∂aL
[ℓ(aL(x),y)] ∈ RK (column vector),

then unrolling (2.18) with chain-rule gives

∇WL
= derr(x) · a⊤

L−1(x), ∇bL
= derr(x), ∇aL−1 = W ⊤

L · derr(x)
∇Wℓ

= ∇aℓ
· a⊤

ℓ−1(x), ∇bℓ
= ∇aℓ

, ∇aℓ−1 = W ⊤
ℓ · ∇aℓ

,

∇W1 = ∇a1 · x⊤, ∇b1 = ∇a1 .

(2.19)

It is now quite evident why the scheme in (2.19) is referred as a backpropagation of error,
since the error derivatives derr(x) are propagated from the outputs to the network inputs.
The algorithm in (2.19) can be implemented for any particular type of layer (not exclusive to
the fully connected layer) as long as the corresponding transformation is differentiable, for

1Any left-to-right oriented directed graph without loops, where the leftmost set of nodes corresponds to
the inputs and the rightmost to the outputs.

2So called “forward” pass constitutes in computing the activation quantities in (2.18).

10

2.1. Parametric Models and Neural Networks

instance, convolutional layers in convolutional neural networks (CNNs), which we will discuss
briefly later.
Increasing the depth L of (2.15) results in improved representation capabilities. However, this
comes at a cost. One of the important drawbacks of utilizing a deep MLP network in practice
is the vanishing gradient problem. Namely, for deeper models the norm of the gradients that
the first layers receives tends to be quite small due to multiplicative nature of the updates in
(2.19). This issue is specifically more prominent for networks with hyperbolic activations such
as hyperbolic tangent, i.e.,

tanh(x) = ex − e−x

ex + e−x ,

since after a few iterations of scheme (2.19) the argument values tend to fall in the “flat”
regions of activation, where the derivative is vanishing. [HZRS16] proposes to solve this issue
(among a few others) with a particular modification to the network architecture - a residual
connection. The concept of a residual connection is quite general and applies to any layer
transformation ψ : Rdi → Rdi . Namely, the idea of a residual connection is to modify ψ(·) as
follows ˜︁ψ(a) = ψ(a) + α · a, α ∈ R, (2.20)
where α is either trained or is set to 1. The modification 2.20 aims to alleviate the “vanishing”
gradients issue, since the fraction of signal a is always propagated during the backward pass:

∇a = ∇a [ψ(a)] + α · 1.

One can notice that the dimension of the inputs after the “residual” layer (2.20) remains
unchanged. In residual architectures, a common way of dimensionality reduction is to use
predefined (not trainable) operations such as max/average pooling. Max pooling returns a
maximum element in a sliding window of the input. For instance, consider a vector input
x ∈ R2di to which we apply a max pooling with a sliding window of size 2 and stride 2, where
stride defines by how much the corresponding sliding window is shifted:

max_pool(x) ∈ Rdi , max_pool(x)j = max{x2j−1, x2j}, j ∈ {1, . . . , di}.

If the input size is not odd (or in general not compatible with a window/stride size) it is
common to just “pad” the inputs x with zeros to get the argument of a consistent size.
The working principle for the average pooling operation remains the same modulo the fact
that instead of returning the maximal element it yields an average over the elements in the
sliding window. It is also important to note that instead of fixed operations like the ones
discussed previously one can use an adjustable version, e.g., weighted average for average
pooling or simply another trainable linear transformation W ∈ Rdi+1×di with di+1 < di. Similar
techniques can be used for the upscaling of the input dimension that is commonly used in
generative or decoding architectures [GPAM+14, KW14]. We limit the discussion of the
upscaling since it bares little relevance for the current thesis.
The residual connection (2.20) is commonly used alongside an activation whose derivatives
are less dampened at one of the extremes. A particularly common choice for such activation is
rectified linear unit (ReLU), also know as “hard-plus”:

ReLU(x) = (x)+ = max{0, x}, (2.21)

or its truncated version (usually at value 5, justified by empirics)

ReLU5(x) = 1{x ≤ 5} · ReLU(x) + 1{x > 5} · 5,

11

2. Background

or the “leaky” variation

LeakyReLU(x) = 1{x < 0} · α + 1{x ≥ 0} · x, α < 0.

While activation in (2.21) is strictly speaking non-smooth, a particular choice of the elements
from the sub-gradient, i.e.,

∇x[ReLU(x)] = 1{x ≥ 0},

works well in practice to enable gradient-based optimization.

Convolutional networks. We now briefly highlight the convolutional network architecture
used in a few image data experiments in Chapter 3. We start by defining a two-dimensional
convolution. Let x ∈ Rwidth×height be a matrix-valued input (for instance, a single channel of an
RGB image) and consider convolutional kernel θ ∈ Rkwidth×kheight with strides (swidth, sheight).
Then an application of a convolution Tθ to the input x is formalized as follows:

Tθ(x)i,j :=
kwidth∑︂
k=1

kheight∑︂
ℓ=1

θk,ℓ · x(i−1)·swidth+k,(j−1)·sheight+ℓ. (2.22)

The operation in (2.22) can be intuitively viewed as a weighted average with weights θ
in a sliding window of size kwidth × kheight which moves over the input x with step sizes
(swidth, sheight) in the x and y-axis respectively. Usually, the convolutional layers are applied to
a multi-channel input, i.e., x ∈ Rchannels×width×height. In this case the operation in (2.22) stays
the same channel-wise. However, different channels have different weights, i.e., θ corresponds
to a tensor of size channels × kwidth × kheight, and the result of (2.22) is additionally averaged
over the input channels. Typically, each of the convolutional layers has multiple filters
θ ∈ Rchannels×kwidth×kheight . In this view, each convolutional layer output is a three-dimensional
tensor with the first dimension which corresponds to the number of filters.

It is important to note that a convolution can be implemented as a linear layer with a matrix
of a particular circular structure. However, due to the circular structure, the multiplication by
such a matrix can be implemented much more efficiently than a general linear transformation.
In addition, the number of parameters that a convolution requires is significantly smaller than
that of a fully connected layer of a compatible size. This makes the search space of SGD
much smaller than for a conventional fully connected network, which results in better overall
performance. Nevertheless, it is important to note that such architectural “bias” usually comes
with a strong connection to the structure of data. Namely, convolutional networks are arguably
designed for data with strong local correlations (inline with a local nature of averaging in
(2.22)), for example, image data. In this view, one should not expect such architectural choice
to benefit the data with strong long-distance correlations, e.g., time series. Although, a more
“dilated” version of a convolution may be used in this case. However, it is arguably substantially
different from the (2.22) and bears no particular interest to the current thesis.

To summarize, a convolutional neural network has a compositional nature akin to (2.15) with
sequential application of convolutional layers and non-linearities, and dimension reduction
layers (the discussed earlier pooling operations). Typically, the output of the last convolutional
layer is flattened to a vector format and then passed through the final linear layer responsible
for classification/regression. The outputs of the second to last layer of a neural network are
sometimes referred as “features”.

12

2.1. Parametric Models and Neural Networks

Vision datasets, input preprocessing and augmentation. In the following paragraphs,
we briefly outline natural image datasets used for the experiments in Chapters 3, 5, and 6,
along with common input preprocessing and data augmentation techniques. We start with
the dataset of handwritten digits - MNIST. It contains 60000 training and 10000 validation
binary (0 − 1 valued) images of handwritten digits from 0 to 9 stored in matrix 28 × 28
format. Remarkably, the most famous early exposition of convolutional network capabilities
(LeNet5 [LBBH98]) was demonstrated on the MNIST data. Alongside MNIST, the CIFAR-10
dataset is one of the commonly small-scale baselines used for neural network models. Similarly
to MNIST, it is composed of 60000 training and 10000 validation images. However, the
structure of images itself is less synthetic - CIFAR-10 data corresponds to the downscaled
RGB (real-valued) images of size 32 × 32 of natural objects such as cats, dogs, trucks, etc.
(10 classes in total). A smaller convolutional network, e.g., the aforementioned LeNet5, yields
an unsatisfactory performance on more challenging CIFAR-10 data. It is then more common
to use a variant of [HZRS16] or fully connected classifier stacked on top of pretrained on
ImageNet [DDS+09] “feature” extractor.

A common technique to make a gradient-based training of any parametric model more stable,
and, consequently, more accurate is to use a variant of the data standardization technique.
Here we are going to discuss a variation that is commonly used for vision tasks on MNIST and
CIFAR-10 datasets. Given the training data inputs {xi ∈ Rd}Mi=1 we compute their empirical
mean and variance as follows

µ = 1
Md

·
M,d∑︂
i,j=1

xi,j, σ2 = 1
Md− 1

M,d∑︂
i,j=1

(xi,j − µ)2 (2.23)

where xi,j stands for the j-th coordinate of i-th training sample, and the second fraction
correction Md − 1 is necessary to obtain an unbiased estimate (under i.i.d. hypothesis on
the components of the input). Using the computed statistics (2.23) the inputs xi are then
transformed as such

T (xi)j = xi,j − µ

σ
. (2.24)

For RGB images it is common to collect the related statistics (2.23) channel-wise, and then
apply (2.24) to each channel independently. The same transformation (using training statistics)
is then applied during the testing phase. The transformation (2.24) aims to enforce the data
to have zero mean and unit variance which improves numerical stability (e.g., reduces the
variance in the network activations, and, consequently, the gradient computation).

The parametric models and neural networks especially are known to benefit from more training
data available (e.g., in terms of the generalization error). A popular approach is to artificially
inflate the training data via augmentation techniques. We are going to briefly describe a few of
them that are commonly used for vision tasks. The first one corresponds to a random rotation
of the initial image around its center (with a possible zero padding to preserve the original
image size). The second one is random cropping: a smaller (rectangular) area of the original
image is randomly selected instead of the whole image, and then either padded with zeros or
upscaled to meet the initial input size. Another common input transformation is horizontal
flip. In this case, the original input is reflected along y-axis passing through the image center.
Usually, these augmentations are combined sequentially:

random_crop → random_rotation and/or random_horizontal_flip.

13

2. Background

2.2 Mean-field Framework
In this section, we briefly discuss the framework to describe the gradient dynamics of a two-layer
neural network model in (2.15), which we base our analysis on in Chapters 3 and 4. We start
by rewriting the model in (2.15) for the case of two layers and a single output (i.e., L = 2
and K = 1) in a more convenient form:

ŷN(x,Θ) = 1
N

· W2 · σ(W1 · x + b1)

= 1
N

N∑︂
i=1

w2,i · σ(w⊤
1,i · x + b1,i) = 1

N

N∑︂
i=1

σ∗(x,θi),
(2.25)

where N = N1, Θ = {θi}Ni=1 with θi = (w2,i,w1,i, b1,i) and σ∗ stands for the modified
activation

σ∗(x,θi) := w2,i · σ(w⊤
1,i · x + b1,i). (2.26)

In (2.25) we introduced additional scaling 1/N for reasons that will become apparent later
and omitted the bias term b2 to enable rewriting in the RHS of (2.25). The extra lower index
in ŷ emphasizes the explicit dependence on the number of neurons N .
While the definition in (2.26) is necessary for the connection with the previously discussed
multi-layer network (2.15), from now on we will consider a more generic choice of σ∗ that is
not restricted to (2.26). Formally, we consider σ∗ : Rd × RD → R, where D stands for the
ambient dimension of each neuron parameters θi ∈ RD. To emphasize, θi is not restricted
to the form (w2,i,w1,i, b1,i) described previously. Given this, we can now proceed with the
description of the mean-field framework.
Notice that the RHS of (2.38) bears a strong resemblance to an average. Namely, define the
empirical distribution of the network weights Θ as follows

ρ̂N = 1
N

N∑︂
j=1

δθj
. (2.27)

In these terms, the equation in (2.38) can be further rewritten as an expectation over the
empirical distribution of the network weights (2.27), i.e.,

ŷN(x,Θ) = Eθ∼ρ̂N [σ∗(x,θ)] =
∫︂
σ∗(θ,x)ρ̂N(dθ).

Given that the distribution ρ0 ∈ P(RD) from which the initial weights {θ0
i }

N
i=1 are sampled,

i.e., {︂
θ0
i

}︂N
i=1

i.i.d.∼ ρ0,

is sufficiently regular, one would expect that at the initialization the network output concentrates
to the mean taken with respect to ρ0

ŷN(x,Θ0) = Eθ∼ρ̂N
0

[σ∗(θ,x)] ≈
∫︂
σ∗(θ,x)ρ0(dθ) = yσ

∗

ρ0 (x),

ρ̂N0 = 1
N

N∑︂
j=1

δθ0
j
, Θ0 = {θ0

j}Nj=1,
(2.28)

for a large enough number of weights N (that are samples for a mean estimation in this case).
While this is quite remarkable, the question stands: if such a property is preserved throughout
the network (2.25) gradient-based training and how it could be exploited.

14

2.2. Mean-field Framework

Consider minimizing the regularized squared population risk

E(x,y)∼P

[︂
(ŷN(x,Θ) − y)2

]︂
+ λ

N

N∑︂
i=1

∥θi∥2
2 (2.29)

via the noisy version of online SGD (2.14) with the gradient rescaled by a multiplicative factor
of the number of neurons N :

θk+1
i = (1 − 2λsk) · θki + 2sk · (˜︁yk − ŷN(˜︁xk,Θk)) · ∇θi

(︂
σ∗(˜︁xk,θ

k
i)
)︂

+
√︄

2sk
β

· gki ,

gki
i.i.d.∼ N (0, ID), (˜︁xk, ˜︁yk) i.i.d.∼ P, i ∈ [N] := {1, . . . , N}, k ∈ N,

(2.30)

where sk > 0 is the step size (which, given the notation, possibly depends on the current
iteration index k), β−1 > 0 stands for the intensity of isotropic Gaussian noise N (0, ID)
(often referred to as a temperature) and the term −2λskθki corresponds to the regularization
in (2.25).3

In these terms, one of the main results of mean-field theory for NNs [MMN18] states that
along the trajectory of SGD (2.30) the network weights remain independent as in (2.28). In
statistical physics (in particular, in topics related to large systems of interacting particles) such
a phenomenon is often referred to as propagation of chaos (see, e.g., [Szn91]). In particular,
for some ε > 0, we assume that the step size of the noisy SGD update (2.30) is given by
sk = ε · ξ(εk), where ξ : R≥0 → R≥0 is a sufficiently regular function, meaning:

t ↦→ ξ(t) is bounded Lipschitz, i.e., ∥ξ∥∞, ∥ξ∥Lip ≤ C, with
+∞∫︂
0

ξ(t)dt = ∞. (2.31)

for some universal constant C > 0. Condition (2.31), as a special case, includes the constant
step size, meaning that ξ(t) = const. Let

ρ̂Nk := 1
N

N∑︂
i=1

δθk
i

denote the empirical distribution of weights after k steps of noisy SGD. Then, in [MMN18], it
is proved that the evolution of the empirical distribution of the network weights ρ̂Nk is well
approximated by a certain distributional dynamics ρt. In formulas,

ρ̂N⌊t/ε⌋ ⇀ ρt (2.32)

almost surely along any sequence (N → ∞, εN → 0) such that N/ log (N/εN) → ∞ and
εN log (N/εN) → 0. Here, we have put the subscript N in εN to emphasize that the choice
of the learning rate depends on N , µ ⇀ ν denotes weak L1 convergence of measures and ⌊a⌋
defines the closest integer that is not greater than a ∈ R. Moreover, ρt solves the following
partial differential equation (PDE)

∂tρt = 2ξ(t)∇θ · (ρt∇θΨλ(θ, ρt)) + 2ξ(t)β−1∆θρt,

Ψλ(θ, ρ) : = E(x,y)∼P

[︂(︂
yσ

∗

ρ (x) − y
)︂

· σ∗(x,θ)
]︂

+ λ

2 ∥θ∥2
2,

(2.33)

3Let us point out right away that the additional regularization (2.25) and Gaussian noise in (2.30)
ensures the necessary regularity required for the analysis. However, they are not important for the conceptual
understanding of the mean-field approach.

15

2. Background

where yσ∗
ρt

is defined analogously to yσ∗
ρ0 in (2.28), i.e., define “infinite-width” network with

activation σ∗ and weight distribution ρ : RD → [0,+∞) as follows:

yσ
∗

ρ (x) =
∫︂
σ∗(x,θ)ρ(dθ),

∇θ · v(θ) denotes the divergence of the vector field v(θ) and ∆θ stands for the Laplace
operator, i.e., ∆θg(θ) := ∑︁D

j=1 ∂
2
θj
g(θ) for g : RD → R.

The PDE in (2.33) is often referred to as the continuity equation. We now briefly elaborate
why. Another way to rewrite (2.33) is as follows, for some vector field v(θ):

∂

∂t
ρt = −∇ · (ρtv(θ)). (2.34)

For a regular enough region of space Ω ⊂ RD and its enclosing area ∂Ω (boundary), the law
of mass conservation can then be written as follows:

∂

∂t

∫︂
Ω
ρt(θ)dθ = −

∫︂
δΩ
ρt⟨v,n⟩dσ, (2.35)

where dσ stands for an “infinitesimal” area element and n denotes the normal vector to the
boundary δΩ at the point θ ∈ ∂Ω. In words, the LHS of (2.35) describes the change of mass
(the number of particles) inside the volume Ω, while the RHS of (2.35) defines how many
particles escape Ω through the boundary ∂Ω under the influence of the vector field v(θ). In
these terms, (2.35) acts as a consistency equation: the particles do not magically “teleport”
from the volume without passing the boundary. We now outline why (2.35) is equivalent to
(2.34). This follows from an application of the divergence theorem, namely, integrating (2.34)
over Ω gives (under suitable regularity):

∂

∂t

∫︂
Ω
ρt(θ)dθ = −

∫︂
Ω

∇ · (ρtv(θ))dθ = [Divergence Theorem] = −
∫︂
δΩ
ρt⟨v,n⟩dσ.

For the forthcoming analysis, a certain regularity is required for the weight distribution ρ. In
particular, the weight distribution is restricted to a set of admissible densities

K :=
{︃
ρ : RD → [0,+∞) measurable:

∫︂
ρ(θ)dθ = 1, M(ρ) < ∞

}︃
,

where
M(ρ) :=

∫︂
∥θ∥2

2ρ(θ)dθ

stands for the second moment of distribution ρ. The expected risk attained on the distribution
ρ by the infinite-width network with activation σ∗ is defined by

Rσ∗(ρ) := E(x,y)∼P

[︃(︂
yσ

∗

ρ (x) − y
)︂2
]︃
.

The quantity
H(ρ) := −

∫︂
ρ(θ) log ρ(θ)dθ

stands for the differential entropy of ρ, which is equal to −∞ if the distribution ρ is singular.
In this view, the distributional dynamics (2.33) minimizes the free energy

Fσ∗(ρ) = 1
2 ·Rσ∗(ρ) + λ

2 ·M(ρ) − β−1H(ρ), (2.36)

16

2.2. Mean-field Framework

over the set of admissible densities K. Furthermore, this free energy has a unique minimizer
and the solution of (2.33) converges to it as t → ∞:

ρt ⇀ ρ∗
σ∗ ∈ arg min

ρ′∈K
Fσ∗(ρ′), as t → ∞.

Given the previous discussion on the continuity equation (2.34), we can now define the related
vector field v(θ) more formally. Since the evolution in (2.33) minimizes the free energy, it is
quite natural to expect the dynamics to be governed by a gradient descent on the functional
Fσ∗ . This concept is formalized by the first variation of the functional Fσ∗ . The first variation
∂Fσ∗

∂ρ
: P(RD) × RD → R is defined as a continuous functional such as

lim
ϵ→0

Fσ∗(εν + (1 − ε)ρ) − Fσ∗(ρ)
ϵ

=
∫︂ ∂Fσ∗(ρ)

∂ρ
(θ)d(ν − ρ)(θ)

where ν ∈ P(RD) is an arbitrary perturbation. In these terms, the vector field v(θ) in the
continuity equation (2.34) is simply the gradient ∇θ of the first variation of the free energy
functional.
A few remarks are in order regarding the gradient flow in (2.33). Recall that the Wassertein-2
distance is defined as follows:

W2(µ, ν) :=
(︄

inf
γ∈C(µ,ν)

∫︂ ⃦⃦⃦
θ − θ̂

⃦⃦⃦2

2
γ(dθ, dθ̂)

)︄1/2

,

where C(µ, ν) denotes the space of couplings, i.e., measures on the product space RD × RD

the marginals of which coincide with µ and ν respectively. In this view, the PDE in (2.33)
is viewed as a gradient flow in the space of probability measures endowed with W2 metric.
Namely, heuristically speaking the fact that ρt solves (2.33) is equivalent to, for some small
t′ > 0:

ρt+t′ = arg min
ρ∈P(RD)

{︄
Fσ∗(ρ) + 1

2ξ(t)t′ ·W2(ρ, ρt)
}︄

(2.37)

The variational problem in (2.37) is referred as the JKO scheme, which stands for the first
letter of authors’ names in [JKO98], and, in a nutshell, corresponds to a W2 equivalent of
Euler’s discretization for a gradient flow in RD.
Regarding the minimizer of the free energy (2.36), one could notice that given an integral
form of yσ∗

ρ the functional F(ρ) is convex in ρ. In fact, it is strongly convex in ρ as the
differential entropy H(ρ) is a strongly convex functional. In this view, the minimizer ρ∗

σ∗ of
the free energy (2.36) is unique. Moreover, it has a “pleasant” functional representation often
referred to as Gibbs form:

ρ∗
σ∗(θ) = 1

Zσ∗(β, λ) · exp{−βΨλ(θ, ρ∗
σ∗)}, (2.38)

where Zσ∗(β, λ) stands for the partition function, which ensures that ρ∗
σ∗ is a valid probability

distribution, i.e., ∫︁ ρ∗
σ∗(θ)dθ = 1. A non-rigorous way to see that the functional form (2.38)

corresponds to the correct candidate is to treat distribution the ρ in (2.36) as a “number” and
take the derivative of the corresponding Lagrangian L(ρ), i.e.,

∂

∂ρ
[L(ρ)] = ∂

∂ρ

[︃
F(ρ) − γ

(︃∫︂
ρ(θ)dθ − 1

)︃]︃
= Ψλ(θ, ρ) + β log ρ(θ) + β − γ (2.39)

17

2. Background

where the γ ∈ R term corresponds to the term of the Lagrangian which enforces the constraint∫︁
ρ(θ)dθ = 1. In this view, from (2.39) it is easy to see that ρ∗

σ∗ indeed has the form described
in (2.38):

∂

∂ρ
[L(ρ)] = 0 ⇒ ρ∗

σ∗(θ) ∝ exp{−βΨλ(θ, ρ∗
σ∗)}.

Another way to assert that the minimizer of the free energy (2.36) has the form of Gibbs
distribution is to invoke the “maximum entropy” principle (see, for instance, [GMZ09]). Namely,
the free energy (2.36) is composed of three terms: the approximation error, the second moment
and the entropy of ρ. In this view, fixing the first two terms, which correspond to the expected
value of statistics of the related exponential family distribution, and finding the maximum
entropy distribution given this constraint will exactly yield the form in (2.38).

2.3 Autoencoders and Related Concepts
Lossy compression and autoencoders. We start this section by covering a few funda-
mentals of the lossy compression. Consider the problem of obtaining a lower-dimensional
(compressed) representation of a sequence x ∈ Rd of length d. Namely, we aim to find an
“encoding” mapping E : Rd → Rn such that the related compressed representation z, i.e.,

z = E(x) ∈ Rn,

is more length-efficient and retains as much information about the initial x as possible, given
the rate constraint:

r = n

d
= const.

Namely, for each encoding scheme E(·) one can associate the “decoding” procedure D :
Rn → Rd. In this view, the performance of the compression scheme is then evaluated based
on the distortion measure achieved for a fixed rate r:

distortion(r) = E [dist(x, D(z))] ,

where the expectation is taken of the distribution of the source signal x. The distance measure
dist : Rd × Rd → R between the input x and its reconstruction x̂ = D(z) ∈ Rd is usually
picked based on the nature of the source data itself. For instance, for binary inputs x ∈ {0, 1}d
it is quite natural to consider the Hamming distance, i.e.,

dist(x, x̂) = 1
d

d∑︂
i=1

1{xi ̸= x̂i},

while for a real-valued source x ∈ Rd the common choice is usually squared distortion:

dist(x, x̂) = 1
d

· ∥x − x̂∥2
2.

Given the above discussion a natural question arises: what is the best possible compression
performance one could hope to achieve? This question is addressed via the concept of the
rate-distortion function (see, for example, [CT06]). The rate-distortion function corresponds
to the following variational problem over encoding-decoding pair:

inf
E,D∈Q

r,

Q := {(E,D) : E [dist(x, D(z))] ≤ D̂}.
(2.40)

18

2.3. Autoencoders and Related Concepts

In words, (2.40) corresponds to finding the smallest rate r such that there exists an encoding-
decoding pair for which the associated distortion is not exceeding the critical value D̂.

While the variational problem formulation in (2.40) is quite intuitive, solving it, especially
for finite d, is a challenging task. Luckily, rate-distortion admits another equivalent (under
suitable assumptions) information-theoretic formulation in the asymptotic limit d → ∞ (infinite
sequence length) for an i.i.d. sequence, i.e., xi i.i.d.∼ pX(x). Namely, the following holds

lim
d→∞

r(D̂) = inf
pX̂|X(x̂|x)∈Q

I(X̂,X),

Q := {pX̂|X(x̂|x) : EpX̂|X(x̂|x)pX(x) [dist(x̂, x)] ≤ D̂},
(2.41)

where I(X̂,X) stands for the mutual information between the source signal X ∈ R ∼ pX(x)
and its reconstruction X̂ ∈ R, i.e.,

I(X̂,X) = H(X̂) −H(X̂|X), (2.42)

here H(X̂) denotes the entropy of the distribution of the reconstruction and H(X̂|X) is the
conditional entropy of the reconstruction given the corresponding input X. In formulas,

H(X̂) := −
∫︂
pX̂(x̂) · log2 pX̂(x̂)dx̂,

H(X̂|X) := −
∫︂
pX̂|X(x̂|x)pX(x) · log2 pX̂|X(x̂|x)dx̂dx,

(2.43)

In this formulation, the conditional pX̂|X(x̂|x) is sometimes referred as a test channel.

The advantage of (2.41) over (2.40) (modulo, i.i.d. assumption) is that the mutual information
could be lower-bounded using the RHS of (2.42), and the tightness of the bound could be
assured by constructing a suitable test channel. For instance, using this approach one could
compute the rate-distortion of two common signal instances: for a Bernoulli(p) signal with
Hamming distortion

X ∼ p · δ1 + (1 − p) · δ0

we obtain

r(D̂) =

⎧⎨⎩Hb(p) −Hb(D̂), 0 ≤ D̂ ≤ min{p, 1 − p},
0, D̂ > min{p, 1 − p},

(2.44)

where Hb(a) for a ∈ (0, 1) stands for the binary entropy, i.e.,

Hb(a) := −a · log2 a− (1 − a) · log2(1 − a);

for Gaussian signal X ∼ N (0, σ2) with squared distortion we get

r(D̂) =

⎧⎨⎩
1
2 log2

(︂
σ2

D̂

)︂
, 0 ≤ D̂ ≤ σ2,

0, D̂ > σ2,
(2.45)

Specifically, for a Bernoulli(1/2) signal the rate-distortion yields a natural result, since
such signal has 1-bit of information. Thus, we would expect that for the rates r ≥ 1 the
corresponding compression is lossless, i.e., the associated distortion is vanishing. Compression
of a Gaussian signal is never lossless for finite rate r since one would not expect to be able to
represent a real -valued signal using a discrete form without any precision drawbacks.

19

2. Background

While the rate-distortion function and its particular expression in (2.42) is a highly useful
concept, its closed-form expression is usually unavailable even for sources which are just slightly
more complicated than described above. For instance, there is no closed form expression akin
to (2.44) and (2.45) available for sparse Gaussian data

x ∼ p · N (0, σ2) + (1 − p) · δ0.

However, at least for scalar signals (i.e., i.i.d. sequence) one could access the optimal mutual
information value in (2.41) via numerical simulation, for instance, using Blahut-Arimoto
algorithm [Bla72, Ari72]. Nevertheless, for high-dimensional correlated signals, which are a
common practical scenario, currently there is no known way to evaluate reliably the rate-
distortion (2.40). However, it is important to mention that a considerable effort was made
towards accessing an approximate value of the rate-distortion for natural signals, see, for
example, [YM21a, LHB22].
Given a general rise of deep learning in the recent years, it is no surprise that there was
a substantial effort to adopt neural architectures for compression purposes. A particular
paradigm of auto-encoding stands out as one of the “go-to” options. The high-level idea
of auto-encoding is quite simple - instead of using a predefined scheme for compression,
parameterize an encoding-decoding pair by a suitable neural network and train the whole
system via back-propagation to minimize the reconstruction error. Of particular interest to
the current thesis are the so called “shallow” autoencoders, i.e.,

x̂(x) = A · σ(B · x), A ∈ Rd×n, B ∈ Rn×d, (2.46)

for some scalar processing function σ : R → R. In words, for a model (2.46) the encoding
corresponds to a linear transformation of the initial x and a subsequent elementwise application
of the non-linearity σ(·):

z = σ(B · x) ∈ Rn. (2.47)
The decoding in this case is also quite simple: the compressed representation z of the input x
is linearly mapped back to the initial space with matrix multiplication by A.
Despite the simplicity of a shallow model (2.46) there are not many results available for the
case of a non-linear processing function, while the linear case (σ(x) ∝ x) exhibits a PCA-like
behaviour [KBGS19]. In case of a non-linearity, the analysis is limited to the “extreme”
regimes. Namely, the model is either severely under-parameterized [RG22, CZ23], resulting in
a vanishing rate r → 0, or highly over-parameterized [Ngu21] (r → ∞). In this thesis, we
focus on the challenging proportional regime, for which r = n/d = const (while sometimes
allowing d → ∞ but keeping the ratio fixed), in the context of a one-bit compression problem,
which means that a non-linearity σ(·) is fixed to the sign(·) activation.

Approximate message passing. A shallow encoding scheme described in (2.47) is often
referred to in the statistical literature as a generalized linear model (GLM). This particular
design instance was widely studied in the context of signal recovery. Namely, we are interested
in recovering the signal x ∈ Rd given n of its non-linear projected observations

z = σ(B · x) ∈ Rn.

Notice that the signal recovery problem in this formulation bares striking resemblance to the
decoding procedure. In fact, if the encoding structure is fixed, the problem of recovery is
equivalent to finding a suitable decoding scheme.

20

2.3. Autoencoders and Related Concepts

Before delving into the specifics of the GLM design (2.47), it is useful to briefly introduce the
framework of Bayesian inference (see, for example, [Mur22] for concise but more elaborate
introduction), under which the problems akin to (2.47) are analyzed. The Bayesian statistician
starts with the distributional assumption on the input signal x, that is referred to as a prior
distribution pX(x). A particular choice of prior distribution is usually tailored to the nature of
the problem. For the purposes of the current thesis, the prior distribution is given, since we
are focused on the compression of a known signal. However, Bayesian framework (at least
on a surface level) is quite flexible in imposing the structural assumptions on the inputs by
choosing the prior distribution accordingly, even when the true signal nature is not available.
To illustrate this, consider the weaker version of (2.47), namely recovering x given the set of
its linear observations:

z = Bx ∈ Rn. (2.48)
Assume that we are interested not just in some x but in its “most sparse” version. In this
view, we could formulate the recovery problem as follows (for some sensitivity λ > 0):

arg min
x

{︃1
2 · ∥z − Bx∥2

2 + λ · ∥x∥1

}︃
, (2.49)

which is famously known as the LASSO regression (see, for instance, [BBV04]). The choice of
specific L1 penalty enforces the desired sparsity constraint. While (2.49) makes a lot of sense
given the formulation of the problem, how come it is connected to the Bayesian approach?
For this particular equivalence, assume that the prior distribution follows Laplace law, i.e.,

pX(x) ∝ exp (−λ · ∥x∥1) ,

and consider Gaussian likelihood model:

p(z|B,x) ∝ exp
(︃

−1
2∥z − Bx∥2

2

)︃
.

Given this, Bayesian statistician will aim to access the posterior distribution of the signal

p(x|B, z) ∝ p(z|B,x)pX(x). (2.50)

In this view, picking the mode of (2.50), which is often referred to as maximum a posteriori
(MAP) estimate, will exactly correspond to the LASSO objective (2.49). However, the MAP
estimate is usually sub-optimal as it does not utilize fully the posterior distribution (2.50). In
case of the squared reconstruction error, that appears in the LASSO formulation (2.49), the
Bayes optimal predictor corresponds to the conditional expectation

E[x|B, z] =
∫︂

x · p(x|B, z)dx, (2.51)

which gives the optimal value of the corresponding mean squared error:

arg min
f

EpX(x)
[︂
∥x − f(z)∥2

2

]︂
, (2.52)

where f : Rn → Rd. However, as usual, the devil is in the details. Namely, the computation of
the conditional E[x|B, z] requires knowledge of the normalization constant in (2.50). While
it is possible to approach the problem via generic message passing algorithms [YFW+03], such
approach is prone to scale poorly in the system size (dimensions of B) and does not allow for
a precise theoretical analysis in most cases (the corresponding factor graph structure is not
“tree”-like).

21

2. Background

The salvation lies in the high-dimensional regime and a random design of the matrix B.
In a nutshell, in the high-dimensional limit d → ∞ for the random B (such as Gaussian
or orthogonal ensemble, more on the latter will be described further) the message passing
algorithm simplifies due to the concentration of measure phenomenon. This gives rise to
the family of approximate message passing (AMP) algorithms. AMP is a class of iterative
algorithms that was successfully applied in a number of statistical inference problems such as
linear regression [DMM09, BM11], low-rank matrix estimation [MT13, FR18, MV21], and, of
a particular interest to the current thesis, generalized linear models [SRF16, MV22, VKM22].
One of the key advantages of using AMP algorithm is so called state evolution equations.
Informally, the state evolution provides the characterization of each of the AMP iterates in
the high-dimensional limit d → ∞. This characterization provides the necessary tools to
analyze the AMP iterates, which out-of-the-box message passing algorithm (e.g., “loopy”
belief propagation) is missing. Moreover, via the “replica” ansatz from statistical mechanics
[TCVS13] the state evolution equations may be viewed as a fixed point iteration performed
to optimize the free energy (for the GLM case see [BKM+19]). Quite conveniently, the
free energy may be linked via “I-MMSE” argument (cf. Corollary 4 in [BKM+19]) to the
Bayes optimal MSE (2.52). This link implies that in the high-dimensional limit suitable AMP
algorithm will saturate the conjectured optimal performance, which in turn means that if the
corresponding assumptions hold true approximate message passing is the optimal algorithm
for the job.
Moving to the case of the general linear model (2.47), we will focus on the particular instance
of AMP algorithm for a bi-rotationally invariant sensing design of B - rotationally invariant
generalized AMP (RI-GAMP) [VKM22]. We first describe the specific choice of random
ensemble for the design matrix B. The encoding matrix B is stochastic and restricted to the
bi-rotationally invariant family:

B = O⊤ΛQ, (2.53)
where Λ ∈ Rn×d is a diagonal matrix of the singular values of B, O and Q are independent
Haar matrices (i.i.d. samples from special orthogonal group). The important assumption here,
for further AMP analysis, is that the spectral distribution of B is well behaved in the high-
dimensional limit d → ∞ with r = n/d = const. This means that the empirical distribution
of the singular values converges (in a certain sense) to the fixed spectral distribution ρΛ:

1
n

n∑︂
i=1

δΛi
→ ρΛ, d → ∞.

With these technicalities out of the way we are ready to state the RI-GAMP algorithm. In
essence, the AMP algorithm consists of consecutive iterates that “ping-pong” between the
signal estimates x̂t and the observation refinements ẑt as follows

xt = B⊤ · ẑt −
t−1∑︂
i=1

βt,i · x̂i, x̂t = ft(x1, · · · ,xt),

zt = B · x̂t −
t∑︂
i=1

αt,i · ẑi, ẑt+1 = gt(z1, · · · , zt, ẑ1),
(2.54)

for some choice of denoising functions ft and gt which are applied “row-wise”, i.e.,
x̂ti = ft(x1

i , · · · , xti), i ∈ {1, · · · , d},

and ẑ1 = z. The terms containing βt,i and αt,i are referred as Onsager corrections. In
particular, the correction terms ensure that the aforementioned state-evolution characterization
of the iterates x̂t holds in the high-dimensional limit d → ∞.

22

2.3. Autoencoders and Related Concepts

For the purpose of the upcoming discussion we assume that x has i.i.d. components distributed
according to pX , which is the setting of interest for the current thesis application of the AMP
algorithm. In these terms, the state-evolution characterization allows to access the “statistics”
of iterates in (2.54), in particular, xt, via its 1-dimensional counterpart. More formally, let
ψ : Rt → R be a pseudo-Lipschitz function of order 2, i.e.,

|ψ(a) − ψ(b)| ≤ L · ∥a − b∥2 · (1 + ∥a∥2 + ∥b∥2), a, b ∈ Rt,

for some constant L > 0, then the following holds:

lim
d→∞

1
d

d∑︂
i=1

ψ(x1
i , · · · , xti) = E [ψ(X1, · · · , Xt)] , (2.55)

where the vector X = (X1, · · · , Xt) has the following joint law

X = µt ·X + g, X ∼ pX , g ∼ N (0,Σt)

where g is independent of X and the state-evolution parameters µt ∈ Rt and Σt ∈ Rt×t

can be computed analytically given the choice of denoisers ft(·) and gt(·). In simpler terms,
(2.55) states that for all intents and purposes one could assume that at each iteration xt is a
mixture of the initial signal x and some independent Gaussian noise. In this view, the fact
that ft(·) is referred to as denoising function makes a lot of sense, since it tries to “denoise” a
noisy Gaussian observation of x. Let us remark that the evaluation of a “statistic” in (2.55)
is particularly useful to access the reconstruction error for an autoencoder model analyzed in
Chapter 6, as the squared error is a pseudo-Lipschitz function of order 2.

We also note that RI-GAMP algorithm has quite a few “degrees of freedom” by its design.
Namely, we are free to choose the denoising functions ft and gt and, to achieve the optimal
“encoding”, the spectral distribution of the ensemble Λ. However, such flexibility raises a
natural question: which choice is the best given the problem at hand. The answer might
seem a bit unsatisfactory in this case - it ultimately depends. We now illustrate this with
two particular design examples. Concerning the choice of ρΛ, the work [MXM21] provides
the analysis of the expectation propagation [Min01] algorithm, that is closely related to the
approximate message passing. Namely, the authors characterize the optimal (MSE-wise)
spectral distribution of Λ given the choice of the activation function σ in the GLM design
(2.47). Regarding the denoising, for Gaussian design of B and Gaussian inputs x the denoising
functions in (2.54) simplify as it is optimal to condition only on the immediate past instead of
the whole “history” [FVR+22]. However, for general designs and priors, it is unclear which
choice is optimal. In Chapter 6, we empirically show that using only a subset of the past
and a few AMP iterations could lead to nearly Bayes optimal performance for a specific case.
Nevertheless, it is far from being a universal recipe and one should empirically validate on the
case by case basis which procedure yields the best performance.

Hermite polynomials. We now briefly describe the particular series expansion that comes
in handy for the analysis of one-bit compression of a Gaussian source in Chapters 5 and 6.
The “probabilitic” Hermite polynomial maybe defined via so called Rodrigues’ formula (see,
for instance, [Rad08]):

Hn(x) = (−1)n · e
x2
2 ·

(︄
d

dx

)︄n [︃
e− x2

2

]︃
= (−1)n · e

x2
2 ·Dn

[︃
e− x2

2

]︃
. (2.56)

23

2. Background

It is evident from (2.56) that Hm are indeed polynomials.

Using Rodrigues’s formula it is quite easy to show that {Hn}∞
n=0 forms an orthogonal set with

respect to the standard Gaussian measure µ. Indeed, using (2.56) we can write for m < n∫︂
Hm(x)Hn(x)e− x2

2 dx = (−1)n
∫︂
Hm(x)Dn

[︃
e− x2

2

]︃
dx.

At this point, we can integrate by parts n times and push the derivative every-time in Hm.
Note that every time the term which corresponds to the “boundary” will vanish due to the
exponential decay of e− x2

2 at infinity. Combining these observations gives
∫︂
Hm(x)Hn(x)e− x2

2 dx = (−1)n+m

2n ·
∫︂
Dn [Hm(x)] e− x2

2 dx, (2.57)

which is vanishing since m < n. The RHS of (2.57) also suggests a way to rescale Hn to
make {Hn}∞

n=0 an orthonormal set. From here on, with an abuse of notation, we will use the
normalized version of Hermite polynomials.

A slightly less trivial observation corresponds to the fact that Hermite polynomials are dense
in L2(R, µ), i.e., space of L2 integrable functions with respect to standard Gaussian measure.
This in conjunction with the fact that {Hn}∞

n=0 is an orthonormal set implies that the Hermite
polynomials are a suitable basis in L2(R, µ). Formally, for any f ∈ L2(R, µ) the following
Hermite expansion holds

f(x) =
∞∑︂
ℓ=0

cℓ ·Hℓ(x). (2.58)

The expansion (2.58) is very useful for the upcoming analysis in Chapters 5 and 6 since it
allows to obtain a closed form expression of the reconstruction error for a shallow autoencoder
model (2.46). The corresponding computation relies on the reproducing property of Hermite
polynomials. The reproducing property implies the following:

Ex,y [Hn(x)Hm(y)] = ρn · δn,m (2.59)

for two ρ-correlated Gaussians for ρ ∈ [−1, 1], i.e., x, y ∼ N (0, 1) and E[xy] = ρ, where
δn,m = 0 if n ̸= m and 1 otherwise. This allows to conclude that

Ex,y [f(x)f(y)] =
∞∑︂
ℓ=0

c2
ℓ · ρℓ. (2.60)

For the particular case of f ≡ sign activation, the following Grothendieck’s identity (see, e.g.,
Lemma 3.6.6 in [Ver18]) holds:

E [f(x) · f(y)] = 2
π

· arcsin(ρ).

To show that (2.59) holds, it is useful to note that distributionally (x, y) and

(x, ρ · x+
√︂

1 − ρ2 · g), g ⊥ x, g ∼ N (0, 1)

are equivalent. Now in order to proceed with (2.59) it is useful to study the generating
function of the pair (x, y). This is especially natural since the Hermite expansion is essentially

24

2.3. Autoencoders and Related Concepts

a Fourier transform up to a change of measure, and we are interested in the product of two
basis functions. Let us proceed with the generating function:

E [exp (α · x+ β · y)] = E
[︃
exp

(︃
α · x+ β ·

(︃
ρ · x+

√︂
1 − ρ2 · g

)︃)︃]︃
= E

[︃
exp ((α + βρ) · x) · exp

(︃
β
√︂

1 − ρ2 · g
)︃]︃

= exp
(︃1

2 · (α + βρ)2
)︃

· exp
(︃1

2 · β2 ·
(︂
1 − ρ2

)︂)︃
= exp

(︃1
2 · (α2 + 2αβρ+ β2)

)︃
, (2.61)

where we used that generating function of Gaussian is equal to

E exp(t · x) = exp
(︃1

2 · t2
)︃
.

Dividing (2.61) by exp
(︂

1
2 · (α2 + β2)

)︂
gives:

E
[︃
exp

(︃
α · x− 1

2 · α2
)︃

· exp
(︃
β · y − 1

2 · β2
)︃]︃

= exp(αβρ) =
∞∑︂
ℓ=0

ρℓ

ℓ! · (αβ)ℓ. (2.62)

The neat point of equation (2.62) is that the terms in LHS admit a convenient form of Hermite
series:

exp
(︃
α · x− 1

2 · α2
)︃

=
∞∑︂
ℓ=0

Hℓ(x)√
ℓ!

· αℓ. (2.63)

Hence, rewriting (2.62) gives exactly the product form we need:
∞∑︂

i,j=0

αiβj√
i!j!

· E [Hi(x)Hj(y)] =
∞∑︂
ℓ=0

ρℓ

ℓ! · (αβ)ℓ. (2.64)

Since RHS and LHS of (2.64) are polynomials in (α, β) it remains to make sure that the
coefficients on each of the sides “agree”. This gives

E [Hi(x)Hj(y)] =

⎧⎨⎩ρi, i = j

0, otherwise,
(2.65)

which coincides with (2.59). As one might notice, the proof above also provides with another
way to show “orthonormality” of Hermite polynomials by selecting ρ = 1. Identity in (2.63) is
also useful in many derivations concerning Hermite series.

25

CHAPTER 3
Landscape Connectivity and Dropout

Stability of SGD Solutions

The optimization of multilayer neural networks typically leads to a solution with zero training
error, yet the landscape can exhibit spurious local minima and the minima can be disconnected.
In this chapter, we shed light on this phenomenon: we show that the combination of stochastic
gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural
networks approximately connected and thus more favorable to optimization. More specifically,
we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss
along this path vanishes as the number of neurons grows large. This result is a consequence
of the fact that the parameters found by SGD are increasingly dropout stable as the network
becomes wider. We show that, if we remove part of the neurons (and suitably rescale the
remaining ones), the change in loss is independent of the total number of neurons, and it
depends only on how many neurons are left. Our results exhibit a mild dependence on the
input dimension: they are dimension-free for two-layer networks and require the number of
neurons to scale linearly with the dimension for multilayer networks. We validate our theoretical
findings with numerical experiments for different architectures and classification tasks.

3.1 Motivation and Outlook
The recent successes of deep learning have two elements in common: (i) a local search
algorithm, e.g., stochastic gradient descent (SGD), and (ii) an over-parameterized neural
network. Even though the training problem can have several local minima [AHW96] and is
NP-hard in the worst case [BR89], the optimization of an over-parameterized network via SGD
typically leads to a solution that has small training error and generalizes well. This fact has
led to a focus on the theoretical understanding of neural networks’ optimization landscape
(see, e.g., [LSSS14, DPG+14, SS16, PB17] and the discussion in Section 3.2). However, most
of the existing results either make strong assumptions on the model or do not provide a
satisfactory scaling with respect to the parameters of the problem.

From the empirical viewpoint, it has been observed that, if we connect two minima of SGD
with a line segment, the loss is large along this path [GVS15, KMN+17]. However, if the
path is chosen in a more sophisticated way, one can connect the minima found by SGD via
a piecewise linear path where the loss is approximately constant [GIP+18, DVSH18]. These

26

3.1. Motivation and Outlook

findings suggest that the minima of SGD are not isolated points in parameter space, but rather
they are approximately connected. In the paper [KWL+19], mode connectivity of multilayer
ReLU networks is proved by assuming generic properties of well-trained networks, i.e., dropout
stability and noise stability.
In this work, we consider multilayer neural networks trained by one-pass (or online) SGD with
the square loss. We show that, as the number of neurons increases, (i) the neural network
becomes increasingly dropout stable, and (ii) the optimization landscape becomes increasingly
connected between SGD solutions. We establish quantitative bounds on how much the loss
changes after the dropout procedure and along the path connecting two SGD solutions, and
we relate this change in loss to the total number of neurons, the size of the dropout pattern,
and the input dimension. By doing so, we give a theoretical justification to the empirical
observation that the barriers between local minima tend to disappear as the neural network
becomes larger [DVSH18]. More specifically, our main contributions can be summarized as
follows:
Two-layer networks. We consider the training of a two-layer neural network ŷ(x) =
1
N

aTσ(W x) with N neurons. First, we study the dropout stability of SGD solutions, namely,
we bound the change in loss when N −M neurons are removed from the trained network and
M remaining neurons are suitably rescaled: we show that the change in loss scales at most as√︂

logM/M , and therefore it does not depend on the number of neurons N of the original
network or on the dimension d of the input. Then, we characterize the landscape connectivity
for the parameters obtained via SGD: we show that pairs of SGD solutions are connected via
a piecewise linear path, and the loss along this path is no larger than the loss at the extremes
plus a term that scales as

√︂
logN/N . Let us emphasize that the two solutions of SGD are

obtained by running the algorithm on different samples (from the same data distribution), for
different initializations, and for the different number of iterations.
Multilayer networks. We consider the training of a general model of deep neural network
with L+ 1 ≥ 4 layers, where each hidden layer contains N neurons. This model includes as a
special case ŷ(x) which is equal to

1
N

WL+1σL

(︃
· · ·

(︃ 1
N

W2σ1 (W1x)
)︃

· · ·
)︃

(3.1)

Our results are similar to those for two-layer networks: (i) if we keep at least M neurons in
each layer, the change in loss scales at most as

√︂
(d+ logM)/M ; (ii) pairs of SGD solutions

are connected via a piecewise linear path, along which the loss does not increase more than√︂
(d+ logN)/N . In contrast with the two-layer case, these bounds are not dimension-free.

However, the dependence on the input dimension d is only linear, since the loss change vanishes
as soon as M,N ≫ d. We assume that, during SGD training, the parameters of the first and
last layer are kept fixed, and they are regarded as random features [RR08]. We believe that
this assumption, as well as the requirement of having at least 4 layers, can be removed with
an improved analysis.
The proofs of dropout stability build on recent results concerning the mean-field description of
the SGD dynamics [MMM19, AOY19], see also the discussion in Section 3.2. The proofs of
landscape connectivity use ideas from [KWL+19].
Organization of the Chapter 3. In Section 3.2, we succinctly review related work. In
Section 3.3, we present our rigorous results for two-layer networks: we first assume that the
activation function σ is bounded, and then we provide an extension to unbounded activations.

27

3. Landscape Connectivity and Dropout Stability of SGD Solutions

In Section 3.4, we present our results for multilayer networks. In Section 3.5, we validate our
findings with numerical experiments on fully-connected neural networks trained on MNIST and
CIFAR-10 datasets. Finally, in Section 3.6 we discuss additional connections to the literature
and give directions for future work. All the proofs are deferred to Appendix A, which also
contains additional numerical results.

Notation. We use bold symbols for vectors a, b, and capitalized bold symbols for matrices
A,B. We denote by ∥a∥2 the norm of a, by ∥A∥op the operator norm of A, by ⟨a, b⟩ the
scalar product of a, b, and by a ⊙ b the Hadamard (or entrywise) product of a, b. Given an
integer N and a real number r ≥ 1, we set [N] = {1, . . . , N} and [r] = {1, . . . , ⌊r⌋}. Given
a discrete set A, we denote by |A| its cardinality.

3.2 Related Work
The landscape of several non-convex optimization problems has been studied in recent years,
including empirical risk minimization [MBM18], low rank matrix problems [GJZ17], matrix
completion [GLM16], and semi-definite programs [BVB16]. Motivated by the extraordinary
success of deep learning, a growing literature is focusing on the loss surfaces of neural networks.
Under strong assumptions, in [CHM+15] the loss function is related to a spin glass and it is
shown that local minima are located in a well-defined band. It has been shown that local
minima are globally optimal in various settings: deep linear networks [Kaw16]; fully connected
and convolutional neural networks with a wide layer containing more neurons than training
samples [NH17, NH18]; deep networks with more neurons than training samples and skip
connections [NMH19]. Furthermore, if one of the layers is sufficiently wide, in [Ngu19b] it
is shown that sublevel sets are connected. Similar results are proved for binary classification
in [LSLS18a, LSLS18b]. In [FB17], a two-layer neural networks with ReLU activations is
considered, and it is shown that the landscape becomes approximately connected as the
number of neurons increases. However, the energy gap scales exponentially with the input
dimension. In [VBB19], it is shown that there are no spurious valleys when the number of
neurons is larger than the intrinsic dimension of the networks. However, for many standard
architectures, the intrinsic dimension of the network is infinite.

In this chapter, we take a different view and relate the problem to a recent line of work, which
shows that the behavior of neural networks trained by SGD tends to a mean field limit, as
the number of neurons grows. This phenomenon has been first studied in two-layer neural
networks in [MMN18, RVE18, CB18, SS18b]. In particular, in [MMN18], it is shown that the
SGD dynamics is well approximated by a Wasserstein gradient flow, given that the number
of neurons exceeds the data dimension. Improved and dimension-free bounds are provided in
[MMM19]. Convergence to the global optimum is proved for noisy SGD in [MMN18, CB18],
without any explicit rate. A convergence rate which is exponential and dimension-free is proved
in [JMM20] by exploiting the displacement convexity of the limit dynamics. An argument
indicating convergence in a time polynomial in the dimension is provided in [WLLM18], but for
a different type of continuous flow. Fluctuations around the mean field limit are also studied
in [RVE18, SS19b]. The multilayer case is tackled in [Ngu19a, SS19a, AOY19, NP23]. In
[SS19a], it is considered a (less natural) model where the number of neurons grows one layer at
a time. In [Ngu19a], a formalism is developed to describe the mean field limit, but the results
are not rigorous. Rigorous bounds between the SGD dynamics and a limit stochastic process
are established in [AOY19], where it is assumed that the first and last layer are not trained to
simplify the analysis. A different approach based on the concept of neuronal embedding is put

28

3.3. Dropout Stability and Connectivity for Two-Layer Neural Networks

forward in [NP23]. In [NP23], it is also provided a convergence result for three-layer networks,
later generalized in the companion paper [NP21].

In a nutshell, existing mean-field analyses show that the dynamics of SGD is close to a limit
stochastic process. However, the consequences of this fact remain largely unexplored, since
the limit process is hard to analyze. In this work, we advance the mean-field theory of neural
networks, and we provide the first theoretical guarantees on two phenomena widely observed
in practice: dropout stability and mode connectivity of SGD solutions.

We remark that the mean-field regime considered in this chapter is different from the “lazy
training” regime that has recently received a lot of attention [AZLL19, AZLS19, COB19,
DLL+18, DZPS19, JGH18, LL18, ZCZG20]. In fact, in order to prove convergence of gradient
descent in the lazy regime, it is crucially exploited that the parameters stay bounded in a certain
region. On the contrary, in the mean field regime, the scaling of the gradient (see Eqs. (3.4)
and (3.12)) ensures that the parameters move away from the initialization. The connection
between the mean-field and the lazy regime is investigated in Section 4 of [MMM19] and in
[CCGZ20]. We highlight that neural networks trained in the mean-field regime achieve results
comparable to the state of the art for standard datasets, as demonstrated in the numerical
results of Section 3.5.

3.3 Dropout Stability and Connectivity for Two-Layer
Neural Networks

3.3.1 Setup
We consider a two-layer neural network with N neurons:

ŷN(x,θ) = 1
N

N∑︂
i=1

aiσ(x,wi), (3.2)

where x ∈ Rd is a feature vector, ŷN (x,θ) ∈ R is the output of the network, θ = (θ1, . . . ,θN),
with θi = (ai,wi) ∈ RD+1, are the parameters of the network and σ : Rd × RD → R is an
activation function. We remark that (3.2) is precisely the mean-field version of a two-layer
network model discussed in Chapter 2 and defined as per equation (2.25).

A typical example is σ(x,w) = σ(⟨x,w⟩), for a scalar function σ : R → R. In order to
incorporate a bias term in the hidden layer, one can simply add the feature 1 to x and adjust
the shape of the parameters wi accordingly. We are interested in minimizing the expected
square loss (also known as population risk):

LN(θ) = E
{︃(︂
y − ŷN(x,θ)

)︂2
}︃
, (3.3)

where the expectation is taken over (x, y) ∼ P. To do so, we are given data (xk, yk)k≥0
i.i.d.∼ P,

and we learn the parameters of the network via stochastic gradient descent (SGD) with step
size sk:

θk+1
i = θki − skN · Gradi(θk),

Gradi(θk) = ∇θi

(︂
yk − ŷN(xk,θ

k)
)︂2
,

(3.4)

29

3. Landscape Connectivity and Dropout Stability of SGD Solutions

where θk denotes the parameters after k steps of SGD, and the parameters are initialized
independently according to the distribution ρ0. We consider a one-pass (or online) model,
where each data point is used only once.
Given a neural network with parameters θ and a subset A of [N], the dropout network with
parameters θS is obtained by setting to 0 the outputs of the neurons indexed by [N] \ A and
by suitably rescaling the remaining outputs. Denote by ŷ|A|(x,θS) and L|A|(θS) the output of
the dropout network and its expected square loss, respectively. In formulas,

ŷ|A|(x,θS) = 1
|A|

∑︂
i∈A

aiσ(x,wi),

L|A|(θS) = E
{︃(︂
y − ŷ|A|(x,θS)

)︂2
}︃
.

(3.5)

Let us compare the original network (3.2) with the dropout network (3.5): wi does not change,
ai is rescaled by |A|/|N | and in (3.5) we sum over |A| neurons (while in (3.2) the sum is over
N neurons). This is equivalent to setting |N | − |A| neurons to zero and rescaling the others
by a factor, as in [KWL+19].
We now define the notions of dropout stability and connectivity for network parameters.
Definition 3.3.1 (Dropout stability). Given A ⊆ [N], we say that θ is εD-dropout stable if

|LN(θ) − L|A|(θS)| ≤ εD. (3.6)
Definition 3.3.2 (Connectivity). We say that two parameters θ and θ′ are εC-connected if
there exists a continuous path in parameter space π : [0, 1] → RD×N , such that π(0) = θ and
π(1) = θ′ with

LN(π(t)) ≤ max(LN(θ), LN(θ′)) + εC. (3.7)

3.3.2 Results for Bounded Activations
We make the following assumptions on the learning rate sk, the data distribution (x, y) ∼ P,
the activation function σ, and the initialization ρ0:
(A1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded by K1 and K1-Lipschitz.
(A2) The response variables y are bounded by K2 and the gradient ∇wσ(x,w) is K2 sub-
gaussian when x ∼ P.
(A3) The activation function σ is bounded by K3 and differentiable, with gradient bounded
by K3 and K3-Lipschitz.
(A4) The initialization ρ0 is supported on |a0

i | ≤ K4.
We are now ready to present our results, which are proved in Appendix A.1.
Theorem 1 (Two-layer). Assume that conditions (A1)-(A4) hold, and fix T ≥ 1. Let θk be
obtained by running k steps of the SGD algorithm (3.4) with data {(xj, yj)}kj=0

i.i.d.∼ P and
initialization ρ0. Then, the following results hold:
(A) Pick A ⊆ [N] independent of θk. Then, with probability at least 1 − e−z2 , for all
k ∈ [T/α], θk is εD-dropout stable with εD equal to

KeKT
3

⎛⎝
√︂

log |A| + z√︂
|A|

+
√
α
(︂√︂

D + logN + z
)︂⎞⎠ ,

(3.8)

30

3.3. Dropout Stability and Connectivity for Two-Layer Neural Networks

where the constant K depends only on the constants Ki of the assumptions.

(B) Fix T ′ ≥ 1 and let (θ′)k′ be obtained by running k′ steps of SGD with data {(x′
j, y

′
j)}k

′
j=0

i.i.d.∼
P and initialization ρ′

0 that satisfies (A4). Then, with probability at least 1 − e−z2 , for all
k ∈ [T/α] and k′ ∈ [T ′/α], θk and (θ′)k′ are εC-connected with εC equal to

KeKT
3
max

(︄√
logN + z√

N
+

√
α
(︂√︂

D + logN + z
)︂)︄

,

(3.9)

where Tmax = max(T, T ′). Furthermore, the path connecting θk with (θ′)k′ consists of 7 line
segments.

The result (A) characterizes the change in loss when only |A| neurons remain in the network.
In particular, the change in loss scales as

√︂
log |A|/|A| +

√︂
α(D + logN), where N is the

total number of neurons, D is the dimension of the neurons and α is the step size of SGD.
This quantity vanishes as long as |A| ≫ 1 and α ≪ 1/(D+ logN). Note that the number of
training samples k is such that kα is a constant. Thus, the condition α ≪ 1/(D + logN)
implies that k needs to scale only logarithmically with N . Furthermore, the condition |A| ≫ 1
implies that |A| does not need to scale with N , D. The proof builds on the machinery
developed in [MMM19] to provide a mean-field approximation to the dynamics of SGD. In
[MMM19], it is shown that, as N → ∞ and α → 0, the parameters θk obtained by running
k steps of SGD with step size α are close to N i.i.d. particles that evolve according to a
nonlinear dynamics at time kα. Here, the idea is to show that (i) the parameters θkS are also
close to |A| such i.i.d. particles, and (ii) the quantities LN(θk) and L|A|(θkS) concentrate to
the same limit value, which represents the limit loss of the nonlinear dynamics.

The result (B) shows that we can connect two different solutions of SGD via a simple path.
Note that the two solutions can be obtained by running SGD for the different number of
iterations (k′ ≠ k), for different training datasets ((xj, yj) ̸= (x′

j, y
′
j)) and for different

initializations of SGD (ρ0 ̸= ρ′
0). The proof uses ideas from [KWL+19]. In that work, the

authors consider a multilayer neural network with ReLU activations and show how to find
a piecewise linear path between two solutions that are dropout stable with |A| = N/2. In
fact, εC has a similar scaling to εD after setting |A| = N/2. We are also able to show (and,
consequently, exploit) a more general notion of dropout stability for the trained network. In
fact, [KWL+19] requires the existence of a single dropout pattern, while here we give a bound
for any fixed dropout pattern (as long as it does not depend on SGD).

The bounds in Theorem 1 exhibit an exponential dependence on T . We remark that, in the
mean-field regime, the number of samples k is large, the step size α is small, and T = kα
is a constant. In fact, T is the evolution time of the limit stochastic process (which does
not depend on N , α). Empirically, the value of T needed to achieve good accuracy is quite
small: T = 1 gives < 16% error on CIFAR-10, see Section 3.5. The exponential dependence
on T is common to all existing mean-field analyses, and improving it is an open question.
The assumptions on the learning rate, the data distribution and the initialization are mild
and only require some regularity. The assumptions on the activation function are fulfilled in
several practical settings: σ(x,w) = σ(⟨x,w⟩), where σ : R → R is, e.g., the sigmoid or the
hyperbolic tangent.

31

3. Landscape Connectivity and Dropout Stability of SGD Solutions

3.3.3 Extension to Unbounded Activations
Note that Theorem 1 requires that the activation function is bounded. We can relax this
assumption, at the cost of a less tight dependence on the time T of the evolution. In particular,
assume further that (i) the feature vectors x and the initialization ρ0 are bounded, and that
(ii) the loss at each step of SGD is uniformly bounded, i.e., maxj |yj − ŷN(xj,θ

j)| ≤ K5.
This last requirement is reasonable, since the objective of SGD is to minimize such a loss.
Then, the results of Theorem 1 hold also for unbounded σ, where the term KeKT

3 is replaced
by a generic K(T), which depends on T and on the constants Ki of the assumptions. The
simulation results of Section 3.5 show that such a dependence on T is mild in practical settings.
The formal statement and the proof of this result is contained in Appendix A.2. The idea is to
show that, if the parameters of the neural network are initialized with a bounded distribution,
then they stay bounded for any finite time T of the SGD evolution. Thus, the SGD evolution
does not change if we substitute the unbounded activation function with a bounded one, and
we can apply the results for bounded σ.

3.4 Dropout Stability and Connectivity for Multilayer
Neural Networks

3.4.1 Setup
We consider a neural network with L + 1 ≥ 4 layers, where each hidden layer contains N
neurons. Given the input feature vector x ∈ Rd0 , the first layer activations z

(1)
i1 for i1 ∈ [N]

have the form
σ(0)

(︂
x,θ

(0)
i1

)︂
, θ

(0)
i1 ∈ RD0

the intermediate layer ℓ ∈ [L− 1] activations z
(ℓ+1)
iℓ+1

(x,θ) for iℓ+1 ∈ [N] are defined as follows

1
N

N∑︂
iℓ=1

a
(ℓ)
iℓ,iℓ+1

⊙ σ(ℓ)
(︂
z

(ℓ)
iℓ

(x,θ) ,w(ℓ)
iℓ,iℓ+1

)︂
,

θ
(ℓ)
iℓ,iℓ+1

= (a(ℓ)
iℓ,iℓ+1

,w
(ℓ)
iℓ,iℓ+1

) ∈ RDℓ+dℓ+1 ,

and the output of the network is given by

ˆ︁yN (x,θ) = 1
N

N∑︂
iL=1

a
(L)
iL

⊙ σ(L)
(︂
z

(L)
iL

(x,θ) ,w(L)
iL

)︂
,

θ
(L)
iL

= (a(L)
iL
,w

(L)
iL

) ∈ RDL+dL+1 , iL ∈ [N]. (3.10)

Here, σ(ℓ) : Rdℓ × RDℓ → Rdℓ+1 (ℓ ∈ {0, . . . , L}) are the activation functions, and θ contains
the parameters of the network, which are θ

(0)
i1 , θ

(ℓ)
iℓ,iℓ+1

and θ
(L)
iL

.
Note that (3.10) includes the model (3.1) as a special case. To see this, consider the following
setting: pick D0 = d0 and stack the parameters θ

(0)
i1 ∈ Rd0 into the rows of the matrix

W1 ∈ RN×d0 ; for i ∈ [L− 1], pick Dℓ = 1 and stack the scalar parameters a
(ℓ)
iℓ,iℓ+1

∈ R into
the matrix Wℓ+1 ∈ RN×N ; pick DL = dL+1 and stack the parameters a

(L)
iL

∈ RdL+1 into the
columns of the matrix WL+1 ∈ RdL+1×N ; finally, assume that the activation function σ(ℓ) does
not depend on w

(ℓ)
iℓ,iℓ+1

for ℓ ∈ [L− 1] and that σ(L) does not depend on w
(L)
iL

. Then, in this
setting, (3.10) can be reduced to (3.1).

32

3.4. Dropout Stability and Connectivity for Multilayer Neural Networks

We are interested in minimizing the expected square loss:

LN(θ) = E
{︃⃦⃦⃦

y − ˆ︁yN (x,θ)
⃦⃦⃦2

2

}︃
, (3.11)

where the expectation is taken over (x,y) ∼ P. To do so, we are given data (xk,yk)k≥0
i.i.d.∼ P,

we run SGD with step size sk for the intermediate layers ℓ ∈ [L− 1], and we fix first and last
layer:

θ
(ℓ)
iℓ,iℓ+1

(k + 1) = θ
(ℓ)
iℓ,iℓ+1

(k) − skN
2Grad(ℓ)

iℓ,iℓ+1

(︂
θ(k)

)︂
,

Grad(ℓ)
iℓ,iℓ+1

(︂
θ(k)

)︂
= ∇

θ
(ℓ)
iℓ,iℓ+1

⃦⃦⃦
yk − ˆ︁yN (xk,θ(k))

⃦⃦⃦2

2
,

θ
(0)
i1 (k + 1) = θ

(0)
i1 (k), θ

(L)
iL

(k + 1) = θ
(L)
iL

(k), (3.12)

where θ(k) contains the parameters of the network after k steps of SGD. As in the two-layer
setting, we consider a one-pass model and the parameters are initialized independently, i.e.,
{θ

(0)
i1 (0)}i1∈[N]

i.i.d.∼ ρ
(0)
0 , {θ

(ℓ)
iℓ,iℓ+1

(0)}iℓ,iℓ+1∈[N]
i.i.d.∼ ρ

(ℓ)
0 , for ℓ ∈ [L−1], and {θ

(L)
iL

(0)}iL∈[N]
i.i.d.∼

ρ
(L)
0 .

The gradients of ˆ︁yN with respect to the parameters of the network can be computed via
backpropagation [GBC16]. By doing so (see [AOY19, Section 3.3]), we obtain that θ

(ℓ)
iℓ,iℓ+1

evolves at a time scale of 1/N2. Thus, we multiply the step size sk in (3.12) with the factor N2

in order to avoid falling into the “lazy training” regime. In lazy training, the parameters hardly
vary but the method still converges to zero training loss, and this regime has received a lot
of attention recently [JGH18, LL18, ZCZG20, DLL+18, DZPS19, AZLS19, AZLL19, COB19].
Let us emphasize that the SGD scalings in (3.4) and (3.12) imply that the parameters move
as long as the product of the number of iterations with the step size is non-vanishing.

Note also that the parameters of layers ℓ = 0 and ℓ = L, i.e., {θ
(0)
i1 }i1∈[N] and {θ

(L)
iL

}iL∈[N],
stay fixed to their initial values. This is done for technical reasons. In fact, by computing
the backpropagation equations, one obtains that θ

(0)
i1 and θ

(L)
iL

evolve at a time scale of 1/N ,
which makes it challenging to analyze their trajectories. We regard the parameters θ

(0)
i1 and

θ
(L)
iL

as random features [RR08] close to the input and the output.

Given a neural network with parameters θ and subsets A1, . . . ,AL of [N], the dropout network
with parameters θS is obtained by setting to 0 the outputs of the neurons indexed by [N] \ Ai

at layer i and by suitably rescaling the remaining outputs. With an abuse of notation, denote
by ˆ︁y|A| (x,θS) and L|A|(θS) the output of the dropout network and its expected square loss,
respectively. In formulas, the dropout version of activations z

(ℓ+1)
iℓ+1

(x,θS) of layer ℓ ∈ [L− 1]
for iℓ+1 ∈ Aℓ+1 are given by

1
|Aℓ|

∑︂
iℓ∈Aℓ

a
(ℓ)
iℓ,iℓ+1

⊙ σ(ℓ)
(︂
z

(ℓ)
iℓ

(x,θS) ,w(ℓ)
iℓ,iℓ+1

)︂
,

the output of dropout network ˆ︁y|A| (x,θS) takes the form

1
|AL|

∑︂
iL∈AL

a
(L)
iL

⊙ σ(L)
(︂
z

(L)
iL

(x,θS) ,w(L)
iL

)︂
,

33

3. Landscape Connectivity and Dropout Stability of SGD Solutions

and, consequently, the expected square loss is defined by

L|A|(θS) = E
{︃⃦⃦⃦

y − ˆ︁y|A| (x,θS)
⃦⃦⃦2

2

}︃
,

where z
(1)
i1 (x,θS) = z

(1)
i1 (x,θ) for i1 ∈ A1. The definitions of dropout stability and connec-

tivity are analogous to those for two-layer networks: (i) θ is εD-dropout stable if (3.6) holds;
and (ii) θ and θ′ are εC-connected if they are connected by a continuous path in parameter
space such that (3.7) holds.

3.4.2 Results
We make the following assumptions on the learning rate sk, the data distribution (x,y) ∼ P,
the activation functions σ(ℓ), and the initializations ρ(ℓ)

0 :
(B1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded by K1 and K1-Lipschitz.
(B2) The response variables y are bounded by K2.
(B3) For ℓ ∈ {0, . . . , L}, the activation function σ(ℓ) is bounded by K3, with Fréchet derivative
bounded by K3 and K3-Lipschitz.
(B4) The initializations {ρ(ℓ)

0 }Lℓ=0 have finite first moment and they are supported on
∥a

(ℓ)
iℓ,iℓ+1

(0)∥2 ≤ K4 for ℓ ∈ [L− 1], and ∥a
(L)
iL

(0)∥2 ≤ K4.
We are now ready to present our results, which are proved in Appendix A.3.

Theorem 2 (Multilayer). Assume that conditions (B1)-(B4) hold, let θ(k) be obtained by
running k steps of the SGD algorithm (3.12) with data {(xj,yj)}kj=0

i.i.d.∼ P and initializations
{ρ(ℓ)

0 }Lℓ=0, and define T = kα > 0. Then, the following results hold:
(A) Pick A1, . . . ,AL ⊆ [N] independent of θ(k). Then, with probability at least 1 − e−z2 ,
θ(k) is εD-dropout stable with εD equal to

K(T, L)
⎛⎝√

d+ z√
Amin

+
√︄

logN
N

+
√
α
(︂√︂

d+ logN + z
)︂⎞⎠

(3.13)

where Amin = mini∈[L] |Ai|, d = maxℓ∈{0,...,L+1} dℓ and the constant K(T, L) depends on
T, L and on the constants Ki of the assumptions.
(B) Let θ′(k′) be obtained by running k′ steps of the SGD algorithm (3.12) with data
{(x′

j,y
′
j)}k

′
j=0

i.i.d.∼ P and initializations {(ρ(ℓ)
0)′}Lℓ=0 that satisfy (B4), and define T ′ = k′α > 0.

Then, with probability at least 1 − e−z2 , θ(k) and θ′(k′) are εC-connected with εC equal

K(Tmax, L)
(︄√

d+ logN + z√
N

+
√
α
(︂√︂

d+ logN + z
)︂)︄

(3.14)

where Tmax = max(T, T ′).

The results are similar in spirit to those of Theorem 1, but the analysis is more involved. We
remark that, differently from the two-layer case, the ideal particles are not independent, see
Remark 5.6 of [AOY19]. We exploit a bound on the norm of the weights during training (see

34

3.5. Numerical Results

0 1 2 3
log10(iteration)

0.0

0.5

1.0

1.5

2.0

2.5
Population risk (N= 800)

0 1 2 3
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 800)

0 1 2 3 4
log10(iteration)

0.0

0.5

1.0

1.5

2.0

Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0.00

0.15

0.30

0.00

0.05

0.10

0.000

0.075

0.150

0.000

0.025

0.050

original dropout

(a) MNIST, two-layer

0 1 2 3 4
log10(iteration)

0.5

1.0

1.5

2.0

Population risk (N= 800)

0 1 2 3 4
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 800)

0 1 2 3 4
log10(iteration)

0.5

1.0

1.5

2.0

Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0.4

0.7

1.0

0.10

0.25

0.40

0.4

0.5

0.6

0.130

0.165

0.200

original dropout

(b) CIFAR-10, three-layer

Figure 3.1: Comparison of population risk and classification error between the trained network (blue
dashed curve) and the dropout network (orange curve). In the full scale plot, we show the average
values, and in the zoomed version we also provide the error bar.

Lemma A.3.1 in Appendix A.3.1) and a bound on the maximum distance between SGD weights
and weights of ideal particles. Our analysis improves upon [AOY19], where the bound is on
the average distance between SGD and ideal-particle weights (compare (A.56) in Appendix
A.3.1 and (10.1) in [AOY19]). This improvement is essential to show dropout stability. In
fact, dropout stability requires dropping all weights associated to a subnetwork (and not just
a given fraction of weights). The stronger guarantee on the distance to ideal particles leads
to an extra logN in our bounds (compare Theorem 2 in this chapter and (5.1) in [AOY19]).
As concerns the proof of connectivity, we generalize the approach of [KWL+19], in order to
analyze the model (3.10).

The bounds in Theorem 2 are not dimension-free (as in the two-layer case), but the dependence
on the dimension d is only linear. In fact, the loss change in (3.13) vanishes as long as Amin ≫ d,
and α ≪ 1/(d+ logN). The condition Amin ≫ d implies that Amin needs to scale at least
linearly with d, but does not scale with N . Furthermore, as in the two-layer case, the condition
α ≪ 1/(d+ logN) implies that the number of samples k needs to scale only logarithmically
with N .

Compared to the two-layer case where there is no assumption on the initialization for wi, here
we require a mild condition (finite first moment for ρ(ℓ)

0) in order to simplify the proof.

3.5 Numerical Results
We consider two supervised learning tasks: (a) MNIST classification with the two-layer neural
network (3.2); and (b) CIFAR-10 classification with the three-layer neural network (3.1). For
MNIST, the input dimension is d = 28 × 28 = 784 and we normalize pixel values to have zero
mean and unit variance. For CIFAR-10, the input is given by VGG-16 features of dimension
d = 4 × 4 × 512 = 8192. These features are computed by the convolutional layers of the
VGG-16 network [SZ15] pre-trained on the ImageNet dataset [RDS+15]. More specifically, we
rescale the images to size 128 × 128, we rescale pixel values into the range [−1, 1], and we

35

3. Landscape Connectivity and Dropout Stability of SGD Solutions

100 200 400 800 1600 3200 6400 12800
Number of neurons

101

100

10−1

10−2

10−3

|L
N
(θ

)−
L N

(θ
S)

|
0.00⋅T
0.70⋅T
1.00⋅T

(a) MNIST, two-layer

100 200 400 800 1600 3200 6400 12800
Number of neurons

100

10−1

10−2

10−3

10−4

10−5

|L
N
(θ

)−
L N

/2
(θ

)|

0.00⋅T
0.65⋅T
1.00⋅T

(b) CIFAR-10, three-layer

Figure 3.2: Change in loss after removing half of the neurons from each layer, as a function of the
number of neurons N of the full network.

−10 0 10
θ1 (bimodal init)

100

102

104

106

−10 0 10
θ2 (unimodal init)

100

102

104

106

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cl
as

sif
ica

tio
n

er
ro

r

error on path
upper bound

(a) MNIST, two-layer

−25 0 25
θ1 (bimodal init)

100

103

106

−25 0 25
θ2 (unimodal init)

100

103

106

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

er
ro

r

error on path
upper bound

(b) CIFAR-10, three-layer

Figure 3.3: Classification error along a piecewise linear path that connects two SGD solutions θ1 and
θ2, with N = 3200. As predicted by the theory, the error along the path (blue curve) is no larger
than the error of the two SGD solutions plus the change in loss due to the dropout of half of the
neurons (red dashed curve).

feed them to the pre-trained VGG-16 network to extract the features. Qualitatively similar
results (with larger classification error) are obtained by using fully connected networks directly
on CIFAR-10 images.

For both tasks, the neural networks have ReLU activation functions, SGD aims at minimizing
the cross-entropy loss, and the gradients are averaged over mini-batches of size 100. In contrast
with the setting of Section 3.4, all the layers of the neural network are trained. The scaling
of the gradient updates follows (3.4) and (3.12): for the first and last layer, the gradient of
the loss function is multiplied by a factor of N ; for the middle layers, the gradient of the loss
function is multiplied by a factor of N2. This scaling ensures that the term in front of the
learning rate sk does not depend on N , i.e., it is Θ(1) as N goes large. The learning rate

36

3.5. Numerical Results

sk = αξ(kα) does not depend on the time of the evolution, i.e., ξ(t) = 1. Furthermore, we
set α = α0/N , where α0 is a constant independent of N . We also set the number of training
epochs to k0 ·N , where k0 is a constant independent of N . In this way, the product between
the learning rate and the number of training epochs is the constant T = k0 · α0, which does
not depend on N . The initializations of the parameters of the neural network are i.i.d. and
do not depend on N , as in the setting described for the theoretical results. The population
risk and the classification error are obtained by averaging over the test dataset. To measure
statistics in the plots, i.e., average value and error bar at 1 standard deviation, we perform 20
independent trials of each experiment.

Figure 3.1 compares the performance of the trained network (blue dashed curve) and of the
dropout network (orange curve), which is obtained by removing the second half of the neurons
from each layer (and by suitably rescaling the remaining neurons). On the left, we report the
results for MNIST, and on the right for CIFAR-10. For each classification task, we plot the
population risk and the classification error for N = 800 and N = 3200. The networks are
trained until the training loss has reached a plateau (0.062 for MNIST and 0.415 for CIFAR-10
when N = 3200). As expected, the performance of the dropout network improves with N ,
and it is very close to that of the trained network. For N = 3200, the classification error of
the trained network is < 2% for MNIST and < 14% on CIFAR-10, and the classification error
of the dropout network is ≈ 3% on MNIST and < 16% on CIFAR-10.

Figure 3.2 plots the change in loss when only half of the neurons remain in the network, as a
function of the total number of neurons N . For each classification task, we plot the change in
loss at the beginning of training (0 · T), at an intermediate point where the population risk
is still not too small ({0.65, 0.7} · T), and at the end of training (1 · T), where T stands for
the product of the learning rate and the total number of training epochs. The dependence
between the change in loss and N is essentially linear in log-log scale, as demonstrated by our
theoretical results. Furthermore, the dependence on the time of the dynamics is quite mild.

Figure 3.3 shows that the optimization landscape is approximately connected when N = 3200.
We plot the classification error along a piecewise linear path that connects two SGD solutions
θ1 and θ2 initialized with different distributions: the initial distribution of θ1 is bimodal, while
the initial distribution of θ2 is unimodal. We also show the histograms of θ1 and θ2, in order
to highlight that one SGD solution cannot be obtained as a permutation of the other. As
expected, the classification error along the path is roughly constant, since the network is
dropout stable. More specifically, the error along the path (blue curve) is upper bounded by
the error at the extremes plus the change in loss after dropping out half of the neurons of the
network (red dashed curve).

Figure 3.4 plots the degradation in classification error due to the removal of half of the neurons
from each layer. We consider neural networks at the end of training (1 · T) and we report
the performance degradation as a function of the number of neurons N of the full network.
We compare different architectures (two-layer, three-layer and four-layer neural networks) and
classification tasks (MNIST and CIFAR-10). In all the cases considered, the performance
degradation rapidly decreases, as the width of the network grows. When N = 12800, the
classification error increases only (i) by 0.35% for a two-layer network trained on MNIST, (ii)
by 0.4% for a three-layer network trained on MNIST, (iii) by 1% for a three-layer network
trained on CIFAR-10, and (iv) by 3.6% for a four-layer network trained on CIFAR-10.

Additional experiments are presented in Appendix A.4 for the following learning tasks: classifi-
cation of isotropic Gaussians with the two-layer neural network (3.2); MNIST classification

37

3. Landscape Connectivity and Dropout Stability of SGD Solutions

100 200 400 800 1600 3200 6400 12800
Number of neurons

100

10−1

10−2

10−3

|E
rr
or

N
(θ

)−
Er
ro
r N

/2
(θ

)|

MNIST (L= 2)
MNIST (L= 3)
CIFAR-10 (L= 3)
CIFAR-10 (L= 4)

Figure 3.4: Change in classification error after removing half of the neurons from each layer, as a
function of the number of neurons N of the full network, at the end of training.

with the three-layer neural network (3.1); CIFAR-10 classification with the four-layer neural
network (3.1).

3.6 Discussion and Future Directions
The optimization landscape of neural networks can exhibit spurious local minima [YSJ18,
SS18a], and its minima can be disconnected [FB17, VBB19, KWL+19]. In this work, we show
that these problematic scenarios are ruled out with SGD training and over-parametrization.
In particular, we prove that the optimization landscape of SGD solutions is increasingly
connected as the number of neurons grows. The explanation to this phenomenon has been
hypothesized by some recent work: the SGD solutions have degrees of freedom to spare
[DVSH18] or, equivalently, they are dropout stable [KWL+19]. We give theoretical grounding
to this conjecture by proving that SGD solutions are dropout stable, i.e., that the loss does not
change much when we remove even a large amount of neurons. In order to have meaningful
bounds, the number of neurons does not need to be of the same order of the number of
samples (cf. [NH17, NH18, NMH19, Ngu19b]). Furthermore, our bounds are dimension-free
for two-layer networks and they scale linearly with the dimension for multilayer networks (cf.
[FB17]). Our analysis builds on a recent line of work showing that the dynamics of SGD tends
to a mean field limit as the number of neurons increases [MMN18, MMM19, AOY19]. We
believe that with these tools one could prove similar results also for noisy SGD and projected
SGD.
The notion of dropout stability is closely related to the fact that neural networks have
many redundant connections, and therefore they can be pruned with little performance loss,
see, e.g., [GYC16, MAV17, FC19, LSZ+19]. However, it is difficult even to compare the
relative merits of the different pruning techniques [GEH19], let alone to understand the
fundamental reasons leading to sparsity in neural networks. Thus, it would be interesting
to investigate whether mean field approaches provide a more principled way of pruning deep
neural networks.

38

CHAPTER 4
Mean-field Analysis of Piecewise Linear

Solutions for Wide ReLU Networks

Understanding the properties of neural networks trained via stochastic gradient descent (SGD)
is at the heart of the theory of deep learning. In this chapter, we take a mean-field view,
and consider a two-layer ReLU network trained via noisy-SGD for a univariate regularized
regression problem. Our main result is that SGD with vanishingly small noise injected in the
gradients is biased towards a simple solution: at convergence, the ReLU network implements a
piecewise linear map of the inputs, and the number of “knot” points – i.e., points where the
tangent of the ReLU network estimator changes – between two consecutive training inputs
is at most three. In particular, as the number of neurons of the network grows, the SGD
dynamics is captured by the solution of a gradient flow and, at convergence, the distribution
of the weights approaches the unique minimizer of a related free energy, which has a Gibbs
form. Our key technical contribution consists in the analysis of the estimator resulting from
this minimizer: we show that its second derivative vanishes almost everywhere, except at some
specific locations which represent the “knot” points. We also provide empirical evidence that
knots at locations distinct from the data points might occur, as predicted by our theory.

4.1 Motivation and Outlook
We start with a quick recap of the motivation discussed in the introductory chapter of the
thesis and continue with the specifics related to the current chapter analysis.

Neural networks are the key ingredient behind many recent advances in machine learning. They
achieve state-of-the-art performance on various practical tasks, such as image classification
[HZRS16] and synthesis [BDS19], natural language processing [VSP+17] and reinforcement
learning [SHM+16]. However, these results would not be possible without computational
advances which enabled the training of highly overparameterized models with billions of
weights. Such complex networks are capable of extracting more sophisticated patterns from
the data than their less parameter-heavy counterparts. Nonetheless, in the view of classical
learning theory, models with a large number of parameters are prone to over-fitting [VLS11].
Contrary to the conventional statistical wisdom, overparameterization turns out to be a rather
desirable property for neural networks. This was even observed in a classical paper by [Bar98],
which demonstrated that in the overparameterized setting, the size of the network is less

39

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

important than the magnitude of the weights. More recently, phenomena such as double
descent [BHMM19, SGd+19, NKB+20] and benign overfitting [BLLT20, LZG21, BMR21]
suggest that understanding the generalization properties of overparameterized models lies
beyond the scope of the usual control of capacity via the size of the parameter set [NTS15].

One way to explain the generalization capability of large neural networks lies in characterizing
the properties of solutions found by stochastic gradient descent (SGD). In other words,
the question is whether the optimization procedure is implicitly selective, i.e., it finds the
functionally simple solutions that exhibit superior generalization ability in comparison to other
candidates with roughly the same value of the empirical risk. For instance, [CB20] consider
shallow networks minimizing the logistic loss, and show that SGD converges to a max-margin
classifier on a certain functional space endowed with the variation norm. In the machine
learning literature, it has been suggested that large margin classifiers inherently exhibit better
performance on unseen data [BMR21, CV95].

Constraints on the functional class of network solutions can also be imposed explicitly, e.g., via
ℓ2 regularization or by adding label noise. In some cases, it has been shown that the presence
of parameter penalties or noise results in surprising implications. Depending on the regime,
it biases optimization to find smooth solutions [SPD+22, JM23, SESS19] or piecewise linear
functions [BGVV20, EP21]. The study by [BB18] proposes an alternative to conventional ℓp
regularization inspired by max-affine spline operators. It enforces a neural network to learn
orthogonal representations, which significantly improves the performance and does not require
any modifications of the network architecture.

In this chapter, we develop a novel approach towards understanding the implicit bias of gradient
descent methods applied to overparameterized neural networks. In particular, we focus on the
following key questions:

Once stochastic gradient descent has converged, how does the distribution
of the weights of the neural network look like? What functional properties
of the resulting solution are induced by this stationary distribution? Can we
quantitatively characterize the trade-off between the complexity of the solution
and the size of the training data in the overparameterized regime?

To answer these questions, we consider training a wide two-layer ReLU (rectified linear unit)
network for univariate regression, and we focus on the mean-field regime [MMN18, RVE18,
CB18, SS20]. In this regime, the idea is that, as the number of neurons of the network grows,
the weights obtained via SGD are close to i.i.d. samples coming from the solution of a certain
Wasserstein gradient flow. As a consequence, the output of the neural network approaches
the following quantity:

yσ
∗

ρ (x) =
∫︂
σ∗(x,θ)ρ(θ)dθ.

Here, x is the input, σ∗ denotes the activation function, and ρ is the solution of the Wasserstein
gradient flow minimizing the free energy

F(ρ) = 1
2 E(x,y)∼P

{︂
(y − yσ

∗

ρ (x))2
}︂

+ λ

2

∫︂
∥θ∥2

2ρ(θ)dθ + β−1
∫︂
ρ(θ) log ρ(θ)dθ. (4.1)

The first term corresponds to the expected squared loss (under the data distribution P); the
second term comes from the ℓ2 regularization; the differential entropy term is linked to the

40

4.1. Motivation and Outlook

4 2 0 2 4 6
0

1

2

3

4

5
network
training data

(a)

2 3 4 5 6 7 8

2

1

0

1

2 network
training data

(b)

2 3 4 5 6 7 8

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 network
training data

(c)

Figure 4.1: Example of functions learnt by a two-layer ReLU network with N = 1000 neurons on
different training data. Solutions (a)-(b) are obtained with no regularization and label noise, i.e.,
λ = 0 and β = +∞, while in (c) we have a sufficiently large regularization coefficient, which does
not allow the network to fit the training data perfectly. Note that the piecewise linear solution
exhibits tangent changes also at points different from the training data. Furthermore, the number of
“knot” points may differ from the minimum required to fit the data: for instance, in (a) the minimum
amount of tangent changes is 1, but the solution has two of them.

noise introduced into the SGD update, and it penalizes non-uniform solutions. The coefficient
β is often referred to as inverse temperature. In [MMN18], it is also shown that the minimizer
of the free energy, call it ρ∗, has a Gibbs form for a sufficiently regular activation function σ∗.
We reviewed the connection between the dynamics of gradient descent and the solution ρ of
the Wasserstein gradient flow in Chapter 2 of the current thesis. For the purposes of the this
chapter analysis, we point out the differences between the more general setup discussed in
Chapter 2 and the current one-dimensional regression problem in the subsequent Section 4.3.

A number of works has exploited this connection to provide a rigorous justification to various
phenomena attributed to neural networks. [MMN18, MMM19] give global convergence
guarantees for two-layer networks by studying the energy dissipation along the trajectory of
the flow. The paper by [CB18] takes a different route and exploits a lifting property enabled
by a certain type of initialization and regularization, and [JMM20] put forward an argument
based on displacement convexity. [NP23] and [AOY19] tackle the multi-layer case, and,
in particular, [NP23] establish convergence guarantees for a three-layer network. [FLYZ21]
introduce a mean-field dynamics capturing the evolution of the features (instead of the network
parameters) and show global convergence of ResNet type of architectures. In Chapter 3, we
prove two properties commonly observed in practice (see e.g. [GIP+18, DVSH18, KWL+19]),
namely dropout stability and mode connectivity, for multi-layer networks trained under the
mean-field regime. [DBDFS20] consider different scalings of the step size of SGD, and identify
two regimes under which different mean-field limits are obtained. [WTS+19] show that the
gradient flow for unregularized objectives forces the neurons of a two-layer ReLU network to
concentrate around a subset of the training data points.

In this chapter, similarly to Chapter 3, we take a mean-field view to show that SGD is biased
towards functionally simple solutions, namely, piecewise linear functions. Our idea is to analyze
the stationary distribution ρ∗ minimizing the free energy (4.1). We show that, in the low
temperature regime (β → ∞), the estimator’s curvature vanishes everywhere except for a
certain cluster set. More precisely, for each interval between two consecutive training inputs,
aside for a set of small measure, the second derivative vanishes, i.e.,

∂2

∂x2 y
σ∗

ρ∗ (x) → 0, as β → ∞.

41

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Furthermore, we provide a characterization of the cluster set and show that its measure
vanishes while it concentrates around at most 3 points per interval. Ultimately, this analysis
guarantees that, in the regime of decreasing temperature (corresponding to a small noise
injected in the gradient updates), the solution found by SGD is piecewise linear. Our main
contribution can be summarized in the following informal statement:

Theorem (Informal). Under the low temperature regime, i.e., β → ∞, the estimator obtained
by training a two-layer ReLU network via noisy-SGD converges to a piecewise linear solution.
Furthermore, the number of “knot” points – i.e., points at which distinct linear pieces connect
– between two consecutive training inputs is at most 3.

Let us remark on a few important points. In the overparameterized regime, the number of
neurons N is significantly larger than the number of training samples M , i.e., N ≫ M . The
output of the two-layer ReLU network is a linear combination of N ReLU units, hence the
function implemented by the network is clearly piecewise linear with O(N) knot points. Here,
we show that the number of knot points is actually O(M) ≪ O(N). Our analysis applies for
both constant (λ → λ̄ > 0) and vanishing (λ → 0) regularization, and it does not require a
specific form for the initialization of the parameters of the networks (as long as some mild
technical conditions are satisfied).

In a nutshell, we establish a novel technique that accurately characterizes the solution to
which gradient descent methods converge, when training overparameterized two-layer ReLU
networks. Our analysis unveils a behaviour which is qualitatively different from that described
in recent works [WTS+19, BGVV20, EP21] (see also a detailed comparison in Section 4.8):
knot points are not necessarily allocated at the training points, or in a way that results in a
function with the minimum number of tangent changes required to fit the data. We provide
also numerical simulations to validate our findings (see Section 4.7 and Figure 4.1 above). We
suggest that this novel behaviour is likely due to the difference in settings and the additional
ℓ2 regularization (including of the bias parameters).

Organization of Chapter 4. The rest of the chapter is organized as follows. In Section
4.2, we review the related work and a more detailed comparison is deferred to Section 4.8. In
Section 4.3, we provide some preliminaries, including a background on the mean-field analysis
in Section 4.3.1. Our main results are stated in Section 4.4 and proved in Section 4.5. In
Section 4.6, we provide an example of a dataset for which the estimator found by SGD has a
knot at a location different from the training inputs. We validate our findings with numerical
simulations for different regression tasks in Section 4.7. We conclude and discuss some future
directions in Section 4.9. Some of the technical lemmas and the corresponding proofs are
deferred to Appendix B.1.

Notation. We use bold symbols for vectors a, b, and plain symbols for real numbers a, b. We
use capitalized bold symbols to denote matrices, e.g., Θ. We denote the ℓ2 norm of vectors
a, b by ∥a∥2, ∥b∥2. Given an integer N , we denote [N] = {1, . . . , N}. Given a discrete set A,
|A| is its cardinality. Similarly, given a Lebesgue measurable set B ⊂ Rd its Lebesgue measure
is given by |B|. Given a sequence of distributions {ρn}n≥0, we write ρn ⇀ ρ to denote the
weak L1 convergence of the corresponding measures. For a sequence of functions {fn}n≥0 we
denote by fn → f the pointwise convergence to a function f . Given a real number x ∈ R,
the closest integer that is not greater than x is defined by ⌊x⌋.

42

4.2. Related Work

4.2 Related Work
The line of works [WTS+19, JM23] shows that, in the lazy training regime [COB19, JGH18]
and for a uniform initialization, SGD converges to a cubic spline interpolating the data.
Furthermore, for multivariate regression in the lazy training regime, [JM23] proved that
the optimization procedure is biased towards solutions minimizing the 2-norm of the Radon
transform of the fractional Laplacian. Similar results (although without the connection to
the training dynamics) are obtained in [SESS19, OWSS20], which analyze the solutions with
zero loss and minimum norm of the parameters. [EP21] develop a convex analytic framework
to explain the bias towards simple solutions. In particular, an explicit characterization of the
minimizer is provided, which implies that an optimal set of parameters yields linear spline
interpolation for regression problems involving one dimensional or rank-one data. [CFW+21]
show that, for overparameterized models, the lower degree spherical harmonics are easier to
learn. This observation comes from the fact that, in the lazy training regime, the convergence
occurs faster along the directions given by the top eigenfunctions of the neural tangent kernel.
Classification with linear networks on separable data is considered in [SHN+18], where it is
shown that gradient descent converges to the max-margin solution. This max-margin behavior
is demonstrated in [CB20] for non-linear wide two-layer networks using a mean-field analysis.
In particular, in the mean-field regime, optimizing the logistic loss is equivalent to finding the
max-margin classifier in a certain functional space. The paper by [ZXLM20] focuses on the
lazy training regime, and it shows that the optimization procedure finds a solution that fits
the data perfectly and is closest to the starting point of the dynamics in terms of Euclidean
distance in the parameter space. [WZBG21] characterize the directional bias of GD and SGD
in the case of moderate (but annealing) learning rate.

The behavior of SGD with label noise near the zero-loss manifold is studied in [BGVV20].
Here, it is shown that the training algorithm implicitly optimizes an auxiliary objective, namely,
the sum of squared norms of the gradients evaluated at each training sample. This allows the
authors of [BGVV20] to show that SGD with label noise for a two-layer ReLU network with
skip-connections is biased towards a piecewise linear solution. In particular, this piecewise linear
solution has the minimum number of tangent changes required to fit the data. [WTS+19]
consider the Wasserstein gradient flow on a certain space of reduced parameters (in polar
coordinates), and show that the points where the solution changes tangent are concentrated
around a subset of training examples. A trade-off between the scale of the initialization and
the training regime is also provided in [WTS+19, SPD+22]. [MBG18] prove that the gradient
flow enforces the weight vectors to concentrate at a small number of directions determined
by the input data. Through the lens of spline theory, [PN20b] explain that a number of best
practices used in deep learning, such as weight decay and path-norm, are connected to the
ReLU activation and its smooth counterparts. [NLB+19] suggest a novel complexity measure
for neural networks that provides a tighter generalization for the case of ReLU activation.

4.3 Preliminaries

4.3.1 Mean-field Framework
We now elaborate on a few differences between the multi-dimensional mean-field setup, i.e.,
x ∈ Rd, discussed in Chapter 2 and the current chapter unidimensional regression problem
given the finite data.

43

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

We consider a regression problem for a dataset {(xj, yj)}Mj=1 containing M points, here both
inputs and outputs are unidimensional, i.e., xi ∈ R and yi ∈ R. This means that in all the
related definitions and equations presented in Chapter 2 one should substitute bold font vector
x with the regular font scalar x. We assume that the inputs are sorted in increasing order, i.e.,

xj < xj+1 ∀j ∈ [M − 1].

However, it is necessary to point out that we do not tackle the case of duplicate inputs, i.e.,

there exists i ̸= j ∈ [M] such that xi = xj.

In the view of finite data size M , we have that the data distribution P, that appears in the
population risk (2.29) and a few related quantities such as potential Ψλ(θ, ρ) in (2.33), has
the following form

P := 1
M

M∑︂
j=1

δ(xj ,yj),

where, δ(a,b) stands for a delta distribution centered at (a, b) ∈ R2. This means that the
quantities that involve the expectation over P can now be rewritten using the summation over
the training data. For example, the population risk (2.29) will take the form

1
M

M∑︂
i=1

[︂
(ŷN(xi,Θ) − yi)2

]︂
+ λ

N

N∑︂
i=1

∥θi∥2
2.

The summation form is later used for the Gibbs minimizers (4.4) and (4.5), and population
risks that correspond to different approximations of the activation σ∗ that we discuss in the
subsequent Section (4.3.2).
We also point out the generic regularity conditions (2.31) imposed on the step size sk scaling
ξ(t) are assumed to hold throughout the current chapter. In this view, we permit ourselves a
leisure to not explicitly mention this mild condition in the statements of the formal results.

4.3.2 Approximation of the ReLU Activation
Let us elaborate on the properties which σ∗ should satisfy so that the results described in
Chapter 2 hold. First, the distributional dynamic (2.33) is known to be well-defined for a
smooth and bounded potential Ψλ. In particular, it suffices to choose a bounded, Lipschitz σ∗

with Lipschitz gradient, see assumptions A2-A3 in [MMN18]. Furthermore, the minimizer of
the free energy (2.36) exists and has a Gibbs form even for non-smooth potentials and, in
particular, it suffices that σ∗ is bounded and Lipschitz (this allows the first derivative to be
discontinuous), see Lemmas 10.2-10.4 in [MMN18].
In the case of a ReLU activation, the corresponding σ∗ has the following form

σ∗(x,θ) = a(wx+ b)+ = amax{0, wx+ b}, θ = (a, w, b) ∈ R3,

which does not satisfy some of the aforementioned conditions. The first salient problem is
the lack of continuity of the derivative at zero. This issue can be dealt with by considering a
soft-plus activation with scale τ :

(x)τ := log(1 + eτx)
τ

.

44

4.3. Preliminaries

Notice that, as τ grows large, we have that (·)τ → (·)+. Another issue is that the function
σ∗(x,θ) is not Lipschitz in the parameters θ, and it is unbounded. This problem can be solved
by an appropriate truncation applied to the parameter a of the activation. The truncation
should be Lipschitz and smooth for the dynamics to be well-defined.
In this view, we now provide the details of the approximation of the ReLU activation. For a
parameter v ∈ R, we denote by vm its m-truncation defined as

vm := 1{|v|>m} ·m · sign(v) + 1{|v|≤m} · v.

Notice that the function f(v) = vm is Lipschitz continuous and bounded. For a parameter
v ∈ R, we denote by vτ,m its τ -smooth m-truncation defined as follows: vτ,m converges
pointwise to vm as τ → ∞, vτ,m = v inside the ball {v ∈ R : |v| < m − 1

τ
}, and the map

v ↦→ vτ,m is odd and belongs to C4(R). For a visualization of vm and vτ,m, see Figure 4.2a.
We define the smooth m-truncation (·)m+ of the ReLU activation as

(x)m+ := 1{x≤m2}(x)+ + 1{x>m2}ϕm(x),

where ϕm is chosen so that the following holds: (x)m+ ∈ C4(R), (x)m+ ≤ (x)+ for all x ∈ R,
and |ϕ′′

m(x)| ≤ 1
m2 for x > m. Note that these conditions imply that ϕm(m2) = m2 and

ϕ′
m(m2) = 1. Furthermore, in order to enforce the bound on ϕ′′

m, we pick ϕm so that
limx→+∞ ϕm(x) = 2m2, and limx→+∞ ϕ′

m(x) = limx→+∞ ϕ′′
m(x) = 0. For a visualization of

(·)m+ , see Figure 4.2b.
Finally, we define the smooth m-truncation (·)mτ of the softplus activation as

(x)mτ := 1{x≤xm}(x)τ + 1{x>xm}ϕτ,m(x), (4.2)

where xm ∈ R is such that (xm)τ = m2. As in the truncation of ReLU, we choose ϕτ,m
so that (x)mτ ∈ C4(R) and |ϕ′′

τ,m(x)| ≤ 1
m2 for x > xm. Furthermore, we require that (·)mτ

converges pointwise to (·)m+ as τ → ∞ (which we can guarantee since (·)τ → (·)+, as τ → ∞).
To enforce these conditions, we pick ϕτ,m so that ϕτ,m(xm) = m2, ϕ′

τ,m(xm) = (x)′
τ

⃓⃓⃓
x=xm

,
limx→+∞ ϕτ,m(x) = 2m2, and limx→+∞ ϕ′

τ,m(x) = limx→+∞ ϕ′′
τ,m(x) = 0. For a visualization

of (·)mτ , see Figure 4.2c.
Notice that, for τ ≥ 1, the soft-plus activation can be sandwiched as follows:

(x)+ − 1
τ

≤ (x)τ ≤ (x)+ + 1
τ
.

In order to establish the continuity of a certain limit and smoothness properties, we also pick
ϕτ,m such that the smooth m-truncation of soft-plus activation satisfies a similar bound:

(x)+ − 1
τ

≤ (x)mτ ≤ (x)+ + 1
τ
. (4.3)

At this point, we remark that the activation (θ, x) ↦→ aτ,m(wτ,mx + b)mτ satisfies all the
conditions necessary for the results of Section 4.3.1 to hold. In what follows, we will also use
the activation (θ, x) ↦→ am(wmx+ b)mτ as an auxiliary object. This map is not smooth, but it
satisfies all the assumptions required for the existence of a free energy minimizer ρ∗

σ∗ . We also
note that the truncation of the parameter w might seem unnatural (we are truncating the
ReLU activation anyway), but it simplifies our analysis. In particular, it allows us to establish

45

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

0

vm

vτ,m

m − 1
τ

m − 1
τ

1/τ

(a) vm and vτ,m

0

m2

2m2

m2

(⋅)+
(⋅)m+ = (⋅)mτ=∞

(b) (·)+ and (·)m
+

0

m2

2m2

(⋅)+
(⋅)mτ

(c) (·)+ and (·)m
τ

Figure 4.2: Visualization of the functions involved in the approximation of the ReLU activation.

a connection between the derivatives (w.r.t. the input x) of the predictor implemented by the
solution of the flow (2.33) and the same quantity evaluated on the minimizer, as t grows large.
We will use the following notation for the values of the risks corresponding to different
activations

Rτ,m
i (ρ) := − 1

M

(︃
yi −

∫︂
aτ,m(wτ,mxi + b)mτ ρ(θ)dθ

)︃
, Rτ,m(ρ) := M

M∑︂
i=1

(Rτ,m
i (ρ))2 ,

Rm
i (ρ) := − 1

M

(︃
yi −

∫︂
am(wmxi + b)m+ρ(θ)dθ

)︃
, Rm(ρ) := M

M∑︂
i=1

(Rm
i (ρ))2 ,

and for the related free-energies

F τ,m(ρ) := 1
2R

τ,m(ρ) + λ

2M(ρ) − β−1H(ρ),

Fm(ρ) := 1
2R

m(ρ) + λ

2M(ρ) − β−1H(ρ).

Here, Rτ,m
i and Rm

i represent the rescaled error on the i-th training sample, and Rτ,m and
Rm are the standard expected square losses. In this way, we can write the Gibbs minimizers in
a compact form, namely,

ρ∗
τ,m(θ) = Z−1

τ,m(β, λ) exp
{︄

−β
[︄
M∑︂
i=1

Rτ,m
i (ρ∗

τ,m) · aτ,m(wτ,mxi + b)mτ + λ

2 ∥θ∥2
2

]︄}︄
, (4.4)

ρ∗
m(θ) = Z−1

m (β, λ) exp
{︄

−β
[︄
M∑︂
i=1

Rm
i (ρ∗

m) · am(wmxi + b)m+ + λ

2 ∥θ∥2
2

]︄}︄
, (4.5)

where Zτ,m(β, λ) and Zm(β, λ) denote the partition functions.

4.4 Main Results
Before presenting the main results, let us introduce the notion of a cluster set. This set allows
us to identify the locations of the knot points of an estimator function that is implemented by
the neural network. In particular, we consider the second derivative of the predictor evaluated
at the Gibbs distribution with activation (θ, x) ↦→ aτ,m(wτ,mx+ b)mτ , for large τ , i.e.,

lim
τ→∞

∂2

∂x2

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ. (4.6)

46

4.4. Main Results

xj xj+1

fj(x)

f j(x)
(a)

xj xj+1

fj(x)

f j(x)

(b)

xj xj+1

fj(x)f j(x)

(c)

Figure 4.3: Three different configurations of the polynomials f j(x) and fj(x), together with the
corresponding cluster set. The dark blue curves show the shape of polynomials, and the red bold
intervals indicate the set on which polynomials attain non-positive value.

Then, the cluster set is associated to the inputs on which the quantity (4.6) might grow
unbounded in absolute value, in the low temperature regime (β−1 → 0). Intuitively, this
indicates that on some points of the cluster set, the tangent of the predictor changes abruptly,
resulting in “knots”. We denote the cluster set by Ω(m,β, λ), and we define it below.
Let I be the set of prediction intervals, i.e.,

I =
{︃

[x0 := −L, x1], [x1, x2], · · · , [xM−1, xM], [xM , xM+1 := L]
}︃
,

where L > max{|x1|, · · · , |xM |} is any fixed positive constant independent of (τ,m, β, λ).
For each Ij := [xj, xj+1] ∈ I, the intersection of the cluster set with the prediction interval Ij
is denoted by Ωj(m,β, λ), i.e.,

Ωj(m,β, λ) = Ω(m,β, λ) ∩ Ij. (4.7)

Thus, in order to define the cluster set Ω(m,β, λ), it suffices to give the definition of
Ωj(m,β, λ). To do so, consider the second-degree polynomials f j(x) and fj(x) given by

f j(x) := 1 + x2 − (Ajx− Bj)2,

fj(x) := 1 + x2 − (Ajx− Bj)2,
(4.8)

with coefficients

Aj := 1
λ

M∑︂
i=j+1

Rm
i (ρ∗

m), Aj := 1
λ

j∑︂
i=1

Rm
i (ρ∗

m),

Bj := 1
λ

M∑︂
i=j+1

Rm
i (ρ∗

m)xi, Bj := 1
λ

j∑︂
i=1

Rm
i (ρ∗

m)xi. (4.9)

Here, if the summation set is empty (e.g., for A0), the corresponding coefficient is equal
to zero. Then, the set Ωj(m,β, λ) is defined as the union of the non-positive sets of the
second-degree polynomials f j(x) and fj(x):

Ωj(m,β, λ) = Ωj(m,β, λ) ∪ Ωj(m,β, λ), (4.10)

where

Ωj(m,β, λ) := {x ∈ Ij : f j(x) ≤ 0},
Ωj(m,β, λ) := {x ∈ Ij : fj(x) ≤ 0}. (4.11)

47

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

x xc = xminxj xj+1

(a)

x xc = xj+1xj

(b)

xxcxj xj+1

(c)

xj xj+1xc x xmax

(d)

xc = xj+1xxmaxxj

(e)

xcx

xmin
xj xj+1

(f)

Figure 4.4: Representation of the critical point xc for different configurations of the polynomial f j
and evaluation point x. The red dot indicates the location of the critical point. The dashed line
indicates the value of f j attained at the corresponding point. The dark blue curve shows the shape
of the polynomial f j .

We now provide an informal explanation on how the non-positive sets of the second-degree
polynomials f j(x) and fj(x) come into play. A central object of interest in our analysis is the
second derivative of the estimator implemented by the neural network, and our strategy is
to bound its magnitude by a particular Gaussian-like integral. This integral does not diverge
as long as the corresponding covariance matrix is non-degenerate, i.e., it has strictly positive
eigenvalues. In this view, the non-positive sets of the polynomials f j(x) and fj(x) precisely
characterize the inputs x for which this covariance matrix is degenerate. Hence, for such
inputs x, this upper bound on the second derivative of the estimator diverges, which implies
that the predictor may have a “knot”.
Since f j(x) and fj(x) are second-degree polynomials, the set Ωj(m,β, λ) can be always
written as the union of at most 3 intervals. Moreover, Ωj(m,β, λ) depends only on the errors
of the estimator at the training points and on the penalty parameter λ. Thus, if one has access
to the value of the errors at each training point for the optimal estimator, i.e., Rm

i (ρ∗
m), an

explicit expression for the cluster set can be readily obtained. Figure 4.3 shows three different
configurations of the polynomials f j(x) and fj(x), together with the corresponding cluster
set.
The size of the set Ωj(m,β, λ) can be controlled explicitly as a function of the parameters
(m,β, λ). More formally, in Lemma 4.5.3, we show that the Lebesgue measure of Ωj(m,β, λ)
can be upper bounded as

|Ωj(m,β, λ)| ≤ eCβ

m2 , (4.12)

where C > 0 denotes a numerical constant independent of (τ,m, β, λ) and we have made the
following assumption:

B1. τ ≥ 1, β ≥ max
{︃
C1,

1
λ
, 1
λ

log 1
λ

}︃
, m > C2 and λ < C3 for some numerical constants

48

4.4. Main Results

C1, C2, C3 > 0.

In particular, (4.12) implies that the cluster set vanishes as β → ∞ and m = eΘ(β). Therefore,
as Ωj(m,β, λ) is the union of at most 3 intervals, the cluster set concentrates on at most 3
points per prediction interval.

We note that our use of B1 throughout the sequel is with the flexibility of C1, C2, and C3 in
mind; we are interested in the behavior as m and β grow large, so we permit liberty in the
determination of the constants implying the formal statements we intend to show.

A key step of our analysis (cf. Theorem 3) consists in showing that, outside the cluster set,
the absolute value of the second derivative vanishes. Our bound on this absolute value is
connected to the speed of decay to zero of the polynomials f j(x) and fj(x), as the input x
approaches the cluster set. In order to establish a quantitative bound for such a decay, we
introduce an auxiliary quantity, namely, a critical point, that is associated to each input point
outside of the cluster set. Given the polynomial f j(·) and the input x ∈ Ij \ Ωj(m,β, λ), the
critical point xc associated to x is defined below.

Definition 4.4.1 (Critical point). If fj(x̃) = 0 has no solutions for x̃ ∈ R, then the critical
point xc associated to x and Ij \ Ωj(m,β, λ) is defined to be the minimizer of fj(·) on Ij , i.e.,
xc = arg minx̃∈Ij

fj(x̃). In case of multiple minimizers, e.g., (a, b) = (1, 0), we set xc = xj+1.
If fj(x̃) = 0 has at least one solution for x̃ ∈ R, then we let xr be the root of fj (in R and
not necessarily in the segment Ij) which is the closest in Euclidean distance to x, and we
define the critical point xc to be the closest point to xr in Ij, i.e., xc = xr if xr ∈ Ij and xc
is one of the two extremes of the interval otherwise.

Figure 4.4 provides a visualization of the critical point associated to x for several configurations
of f j. For the polynomial fj(·) and an input x ∈ Ij \ Ωj(m,β, λ), the critical point x̄c is
defined in a similar fashion. In this view, we show in Lemma 4.5.5 that the following lower
bounds on f j, fj hold for x ∈ Ij \ Ω(m,β, λ),

Cj(x) := γ1(x− xc)2 + γ2 ≤ f j(x), Cj(x) := γ3(x− x̄c)2 + γ4 ≤ fj(x). (4.13)

The coefficients γ1, γ2, γ3, γ4 > 0 satisfy the following condition: either γ1 > ε or γ2 > ε, and
either γ3 > ε or γ4 > ε, where ε > 0 is a numerical constant independent of the choice of
(m,β, λ).

At this point, we are ready to state our upper bound on the second derivative outside the
cluster set.

Theorem 3 (Vanishing curvature). Assume that condition B1 is satisfied and that m >
eK1β for some numerical constant K1 > 0 independent of (τ,m, β, λ). Then, for each
x ∈ Ij \ Ωj(m,β, λ), the following upper bound on the second derivative holds

lim
τ→+∞

⃓⃓⃓⃓
⃓⃓ ∂2

∂x2

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ

⃓⃓⃓⃓
⃓⃓ ≤ O

⎛⎝ 1
mλ

+ 1
βλ7/4(C̄j(x))2

⎞⎠ , (4.14)

where the coefficient C̄j(x) is defined as

C̄
j(x) = min

{︂
Cj(x), Cj(x), 1

}︂
, (4.15)

49

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

x1 x2 x3 x4 x5

(a)

x1 x2 x3 x4 x5

(b)

x1 x2 x3 x4 x5

(c)

Figure 4.5: Three examples of piecewise linear functions that fit the data with zero squared error.
Dashed black line indicates the y value for each training input. Red dots are located at points where
the function changes its tangent. (a) and (b) illustrates two admissible piecewise linear solutions,
while (c) is not admissible due to the location of break points on interval [x2, x3].

with Cj(x) and Cj(x) given by (4.13). Furthermore, the following upper-bound on the size of
the cluster set holds

|Ω(m,β, λ)| ≤ K2

m
, (4.16)

for some numerical constant K2 > 0 independent of (τ,m, β, λ).

Some remarks are in order. First, the inequality (4.14) shows that, in the low temperature
regime, the curvature vanishes outside the cluster set, and it also provides a decay rate. Second,
we will upper bound the measure of the cluster set as in (4.12), thus the condition m > eK1β

ensures that the upper bound (4.16) holds. Finally, the presence of the coefficient C̄j(x) is
due to the fact that the second derivative can grow unbounded for points approaching the
cluster set. Let us highlight that this growth is solely dictated by the distance to the cluster
set, and it does not depend on (m,β, λ). In fact, (4.13) holds, where one of the coefficients
in {γ1, γ2} and in {γ3, γ4} is lower bounded by a strictly positive constant independent of
(m,β, λ).
From Theorem 3, we conclude that, as mλ → ∞ and βλ7/4 → ∞, the second derivative
vanishes for all x ∈ Ij \ Ωj(m,β, λ). Furthermore, for m > eCβ and β → ∞, the cluster
set concentrates on at most 3 points per interval. Therefore, the estimator ∫︁ aτ,m(wτ,mx+
b)mτ ρ∗

τ,m(θ)dθ is piecewise linear with “knot” points given by the cluster set (cf. Theorem 4).
To formalize this result, we define the notion of an admissible piecewise linear solution.

Definition 4.4.2 (Admissible piecewise linear solution). Given a set of prediction intervals I,
a function f : R → R is an admissible piecewise linear solution if f is continuous, piecewise
linear and has at most 3 knot points (i.e., the points where a change of tangent occurs) per
prediction interval Ij ∈ I. Moreover, the only configuration possible for 3 knots to occur is the
following: two knots are located strictly at the end points of the interval, and the remaining
point lies strictly in the interior of the interval.

Figure 4.5 provides some examples of piecewise linear solutions: (a) and (b) are admissible
(in the sense of Definition 4.4.2), while (c) is not admissible, since it has two knots in the
interior of the prediction interval and one located at the right endpoint. As mentioned before,
the location of the knot points is associated with the limiting behaviour of the corresponding
polynomials f j(x) and fj(x). For instance, consider the prediction interval [x2, x3] ∈ I. Then,
the configuration of Figure 4.5a corresponds to the case described in Figure 4.3a. In fact,
f j has a negative leading coefficient, and its roots are converging to the end points of the

50

4.4. Main Results

interval. Moreover, fj has positive curvature and the minimizer is located inside the interval.
The same parallel can be drawn between Figure 4.5b and Figure 4.3c. Furthermore, one can
verify that the situation described in Figure 4.5c cannot be achieved for any configuration of
f j(x) and fj(x).
We are now ready to state our result concerning the structure of the function obtained from
the Gibbs distribution ρ∗

τ,m.

Theorem 4 (Free energy minimizer solution is increasingly more piecewise linear). Assume
that condition B1 is satisfied and that m > eK1β, where K1 > 0 is a constant independent of
(τ,m, β, λ). Then, given a set of prediction intervals I, there exists a family of admissible
piecewise linear solutions {fm,β,λ} as per Definition 4.4.2, such that, for any I ∈ I and x ∈ I,
the following convergence result holds

lim
βλ7/4→+∞

lim
τ→+∞

⃓⃓⃓⃓
⃓⃓fm,β,λ(x) −

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ

⃓⃓⃓⃓
⃓⃓ = 0.

In words, Theorem 4 means that the solution resulting from the minimization of the free energy
(2.36) approaches a piecewise linear function, as the noise vanishes. Let us highlight that our
result tackles both the regularized case in which λ approaches a fixed positive constant and
the un-regularized one in which λ vanishes (as long as its vanishing rate is sufficiently slow to
ensure that βλ7/4 → ∞). We also note that that the family {fm,β,λ} is well-behaved, i.e., on
each linear region the function fm,β,λ has the following representation: fm,β,λ = ux+ v for
some u, v ∈ R, and the coefficients |u|, |v| are uniformly bounded in (m,β, λ).
The proof of Theorem 4 crucially relies on the fact that the second moment of ρ∗

τ,m is uniformly
bounded along the sequence βλ7/4 → ∞. In fact, the uniform bound on the second moment
implies that the first derivatives of the predictors w.r.t. the input are uniformly bounded (even
for points inside the cluster set), and therefore the sequence of predictors is equi-Lipschitz.
This, in particular, allows us to show that the limit is well-behaved, as function changes can
be controlled via Lipschitz bounds.
Let us clarify that Theorem 4 does not establish the uniqueness of the limit in (m,β, λ), i.e.,
that the limiting piecewise linear function is the same regardless of the subsequence. Our
numerical results reported in Figures 4.1, 4.6b, 4.7 and 4.8 suggest that the limit is unique.
However, a typical line of argument (see e.g. [JKO98]) would require the lower-semicontinuity
of the free energy (which does not hold for m = ∞). Furthermore, even the uniqueness of
the minimizer for β = ∞ remains unclear in our setup. Nevertheless, let us point out that the
sequence {ρ∗

τ,m} is tight, since the second moments are uniformly bounded by Lemma B.1.6,
and Proposition 2.3 in [HRŠS21] suggests that at least the cluster points of the sequence
{ρ∗

τ,m} as β → ∞ coincide with the set of minimizers of the limiting objective (β = ∞).
Another piece of evidence comes from the fact that the annealed dynamics converges to the
minimizers of the noiseless objective [Chi22]. We leave for future work the resolution of these
issues.
We remark that providing a quantitative bound on the parameter τ appears to be challenging.
The current analysis relies on a dominated convergence argument which does not lead to an
explicit convergence rate. Obtaining such a rate requires understanding the trade-off between
the terms in the free energy (2.36) for varying τ , and it is also left for future work.
Finally, by combining Theorem 4 with the mean-field analysis in [MMN18], we obtain the
desired result on finite-width networks trained via noisy SGD in the low temperature regime.

51

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Corollary 4.4.3 (Noisy SGD solution is increasingly more piecewise linear). Assume that
condition B1 holds and that m > eK1β, where K1 > 0 is a constant independent of (τ,m, β, λ).
Let ρ0 be absolutely continuous and K0 sub-Gaussian, where K0 > 0 is some numerical
constant. Assume also that M(ρ0) < ∞ and H(ρ0) > −∞. Let σ∗(x,θ) = aτ,m(wτ,mx+b)mτ
be the activation function, and let θk be obtained by running k = ⌊t/ε⌋ steps of the noisy
SGD algorithm (2.30) with data (x̃k, ỹk)k≥0

i.i.d.∼ P and initialization ρ0. Then, given a set of
prediction intervals I, there exists a family of admissible piecewise linear solutions {fm,β,λ}
as per Definition 4.4.2, such that, for any I ∈ I and x ∈ I, the following convergence result
holds almost surely:

lim
βλ7/4→+∞

lim
τ→+∞

lim
t→+∞

lim
ε→0
N→∞

⃓⃓⃓⃓
⃓⃓fm,β,λ(x) − 1

N

N∑︂
i=1

σ∗(x,θki)

⃓⃓⃓⃓
⃓⃓ = 0,

where the limit in N, ε is taken along any subsequence {(N, ε = εN)} with N/ log (N/εN) →
∞ and εN log (N/εN) → 0.

In words, Corollary 4.4.3 means that, at convergence, the estimator implemented by a wide
two-layer ReLU network approaches a piecewise linear function, in the regime of vanishingly
small noise. In fact, as τ,m → ∞, the activation function σ∗(x,θ) = aτ,m(wτ,mx + b)mτ
converges pointwise to the ReLU activation a(wx+ b)+. We also remark that our result holds
for any initialization of the weights of the network, as long as some mild technical conditions
are fulfilled (absolute continuity, sub-Gaussian tails, finite second moment and entropy).

Let us clarify some technical aspects of the statement of Corollary 4.4.3. The result holds for
a particular sequence of minimizers, since some of the limits (t → ∞, (N, ε−1) → ∞, and
β → ∞) are not interchangeable. Furthermore, it appears to be difficult to prove the same
statement directly for the noiseless case (β = ∞). We also point out that the stochasticity of
the gradient descent algorithm does not play a role in our analysis, since its impact is seen
to be inconsequential by the usual concentration argument [MMN18] when passing to its
non-stochastic counterpart.

As concerns the limit in t, describing the dependence of the mixing time of the diffusion
dynamics (2.33) on the temperature parameter β is a cumbersome task. In particular,
[GBEK04] show that an exponentially bad dependence could occur if the target function
has multiple small risk regions. However, some recent studies show an exponentially fast
convergence of the noisy dynamics under some reasonable but particular conditions on the
objective landscape [Chi22, NWS22].

As concerns the limit in (N, ε), the analyses in [MMN18, MMM19] lead to an upper bound
on the error term that, with probability at least 1 − e−z2 , is given by

CeCt
√︂

1/N ∨ ε ·
[︃√︂

1 + log(N(t/ε ∨ 1)) + z
]︃
, (4.17)

where a ∨ b denotes the maximum between a and b. The exponential dependence of (4.17)
in the time t of the dynamics is a common drawback of existing mean-field analyses, and
improving it is an open problem which lies beyond the scope of this work. Let us conclude
by mentioning that the numerical results presented in Section 4.7 suggest that, in practical
settings, the convergence to the limit occurs rather quickly in the various parameters.

52

4.5. Proof of the Main Results

4.5 Proof of the Main Results
4.5.1 Roadmap of the Argument
We start by providing an informal outline of the proof for the main statements. In Section
4.5.2, we show that, in the low temperature regime, the curvature of the predictor evaluated
at the Gibbs distribution ρ∗

τ,m vanishes everywhere except at a small neighbourhood of at most
three points per prediction interval Ij ∈ I (Theorem 3). This is done in a few steps. First, in
Lemma 4.5.1, we show that, as τ → ∞, the density ρ∗

τ,m acts similarly to a delta distribution
supported on the lower-dimensional linear subspace {b ∈ R : b = −wmx}, namely,

lim
τ→∞

∂2

∂x2

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ ≈
∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw. (4.18)

To do so, in Lemma B.1.4 we prove that, as τ → ∞, the sequence ρ∗
τ,m(θ) of minimizers of

the free energy F τ,m converges pointwise for all θ to a minimizer ρ∗
m(θ) of the free energy

Fm with truncated ReLU activation. Then, a dominated convergence argument allows us to
obtain (4.18). Next, in Lemma 4.5.7 we show that, as β → ∞, the absolute value of the
integral ∫︂

am(wm)2ρ∗
m(a, w,−wmx)dadw (4.19)

can be made arbitrary small for all x except those in the cluster set. The idea is that the
absolute value of (4.19) can be bounded by a certain Gaussian integral, and the corresponding
covariance matrix is well-defined everywhere except in the cluster set (see Lemmas 4.5.4 and
4.5.5). The definition of the cluster set (see (4.7)-(4.11)) together with the fact that the
partition function of ρ∗

m is uniformly bounded in m (see Lemma 4.5.2) allows us to show that
the cluster set concentrates on at most three points per interval as β → ∞.
In Section 4.5.3, we show that the predictor evaluated at the Gibbs distribution ρ∗

τ,m can be
approximated arbitrarily well by an admissible piecewise linear solution (Theorem 4). First,
via a Taylor argument, since the curvature vanishes, the estimator can be approximated by a
linear function on each interval of I \ Ω(m,β, λ). Since the cluster set vanishes concentrating
on at most three points per prediction interval, the predictor converges to an admissible
piecewise linear solution. However, there is one technical subtlety to consider before reaching
this conclusion. Namely, we must consider the possibility that the sequence of predictors
experiences unbounded oscillations inside the cluster set, which might ultimately result in
a discontinuous limit. Fortunately, this scenario is ruled out because the sequence ρ∗

τ,m has
uniformly bounded second moments. This fact in conjunction with the structure of the first
derivative of the predictor yields the conclusion that the sequence of predictors is equi-Lipschitz,
and therefore the limit is well-behaved.
Finally, the proof of Corollary 4.4.3 follows from similar arguments together with the application
of the result established in [MMN18]. More specifically, first, the truncation of the parameter
w ensures that, as t → ∞, the curvature of the predictor evaluated on the solution ρt of the
flow (2.33) converges pointwise in x to the corresponding evaluation on the Gibbs distribution
ρ∗
τ,m. Next, following [MMN18], we couple the weights obtained after ⌊t/ε⌋ steps of the SGD

iteration (2.30) with N i.i.d. particles with distribution ρt, thus obtaining that the curvature
of the SGD predictor converges to the curvature of the flow predictor. By using this coupling
again, together with the fact that along the trajectory of the flow M(ρt) < C (see [MMN18]
or [JKO98]), we obtain a uniform bound on the second moment of the empirical distribution
ρ̂N⌊t/ε⌋ of the SGD weights. The final result then follows from the same Lipschitz argument
described above.

53

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

4.5.2 Proof of Theorem 3
Let us start with the proof of the vanishing curvature phenomenon. The quantity

∂2

∂x2

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ (4.20)

is hard to analyze directly due to the presence of the τ -smoothing in the soft-plus activation.
However, the structure of the activation (·)mτ alongside with the pointwise convergence of the
minimizers ρ∗

τ,m to ρ∗
m (cf. Lemma B.1.4) allows us to infer the properties of (4.20) through

the analysis of the auxiliary object:∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw. (4.21)

Formally, we show that the approximation result below holds.

Lemma 4.5.1 (Convergence to delta). Assume that condition B1 holds. Let ρ∗
τ,m and ρ∗

m be
the minimizers of the free energy for truncated softplus and ReLU activations, respectively, as
defined in (4.4)-(4.5). Then,

lim
τ→∞

⃓⃓⃓⃓
⃓ ∂2

(∂x)2

∫︂
aτ,m [(wτ,mx+ b)mτ] ρ∗

τ,m(θ)dθ −
∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw
⃓⃓⃓⃓
⃓ ≤ C

mλ
,

where C is a constant independent of (m, τ, β, λ).

Proof of Lemma 4.5.1. First, we show that

lim
τ→∞

⃓⃓⃓⃓
⃓⃓ ∫︂ aτ,m

[︄
∂2

(∂x)2 (wτ,mx+ b)mτ
]︄
ρ∗
τ,m(θ)dθ

−
∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw

⃓⃓⃓⃓
⃓⃓ ≤ C

mλ
.

(4.22)

Recall the definition of the activation (·)τm provided in (4.2). We can decompose the integral
into two pieces with respect to the domain of truncation and obtain

∫︂
aτ,m

[︄
∂2

(∂x)2 (wτ,mx+ b)mτ
]︄
ρ∗
τ,m(θ)dθ

=
∫︂
wτ,mx+b≤xm

aτ,m
[︄
∂2

(∂x)2 (wτ,mx+ b)τ
]︄
ρ∗
τ,m(θ)dθ

+
∫︂
wτ,mx+b>xm

aτ,m(wτ,m)2

⎡⎣ ∂2

(∂u)2ϕτ,m(u)

⃓⃓⃓⃓
⃓⃓
u=wτ,mx+b

⎤⎦ ρ∗
τ,m(θ)dθ. (4.23)

Let us focus on the first term in the RHS of (4.23). The second derivative has the following
form

∂2

(∂x)2 (wτ,mx+ b)τ = (wτ,m)2 · τeτ(wτ,mx+b)

(eτ(wτ,mx+b) + 1)2 > 0.

54

4.5. Proof of the Main Results

Thus, the following chain of equalities holds∫︂
wτ,mx+b≤xm

aτ,m
[︄
∂2

(∂x)2 (wτ,mx+ b)τ
]︄
ρ∗
τ,m(θ)dθ

=
∫︂
wτ,mx+b≤xm

aτ,m(wτ,m)2 · τeτ(wτ,mx+b)

(eτ(wτ,mx+b) + 1)2ρ
∗
τ,m(θ)dθ

=
∫︂
1{y≤τxm} · aτ,m(wτ,m)2 · ey

(ey + 1)2ρ
∗
τ,m

(︃
a, w,

y

τ
− wτ,mx

)︃
d(a, w, y),

where in the last step we have performed the change of variables y = τ (wτ,mx+b). By Lemma
B.1.4, we have that, as τ → ∞, ρ∗

τ,m(θ) converges to ρ∗
m(θ) pointwise in θ. Furthermore, as

τ → ∞, aτ,m converges to am for any a, and wτ,m converges to wm for any w. Thus, as the
Gibbs distributions ρ∗

τ,m(θ) and ρ∗
m(θ) are continuous with respect to θ, we have that

lim
τ→∞

[︄
1{y≤τxm} · aτ,m(wτ,m)2 · ey

(ey + 1)2ρ
∗
τ,m

(︃
a, w,

y

τ
− wτ,mx

)︃]︄

= am(wm)2 · ey

(ey + 1)2ρ
∗
m (a, w,−wmx) .

Furthermore, combining (B.4) and (B.5) from Lemma B.1.2, we get the following bound

ρ∗
τ,m(θ) ≤ C ′ exp

(︄
−βλ∥θ∥2

2
2

)︄
, (4.24)

for some constant C ′ > 0 independent of θ and τ . Thus, we have

|aτ,m|(wτ,m)2 · ey

(ey + 1)2ρ
∗
τ,m

(︃
a, w,

y

τ
− wτ,mx

)︃

≤C ′m3 · ey

(ey + 1)2 · exp
(︄

−βλ(a2 + w2)
2

)︄
,

which is integrable in (y, a, w). Hence, by using the Dominated Convergence theorem and
integrating out y using Tonelli’s theorem, we have

lim
τ→∞

⃓⃓⃓⃓
⃓⃓ ∫︂
wτ,mx+b≤xm

aτ,m
[︄
∂2

(∂x)2 (wτ,mx+ b)τ
]︄
ρ∗
τ,m(θ)dθ

−
∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw

⃓⃓⃓⃓
⃓⃓ = 0.

(4.25)

Now, by triangle inequality, it remains to show that the absolute value of the second term in
the RHS of (4.23) can be upper bounded by O

(︂
1
mλ

)︂
as τ → ∞. Recall that, by construction,

|ϕ′′
τ,m(x)| ≤ 1

m2 , |aτ,m| ≤ m, |wτ,m| ≤ |w|,

for any x > xm and any (a, w) ∈ R2. Thus, the following upper bound holds

lim
τ→∞

∫︂
wτ,mx+b>xm

|aτ,m|(wτ,m)2

⃓⃓⃓⃓
⃓⃓ ∂2

(∂u)2ϕτ,m(u)

⃓⃓⃓⃓
⃓⃓
u=wτ,mx+b

⃓⃓⃓⃓
⃓⃓ ρ∗

τ,m(θ)dθ

≤ 1
m

lim
τ→∞

∫︂
w2ρ∗

τ,m(θ)dθ. (4.26)

55

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

In addition, we have the following pointwise convergence of the integrand

lim
τ→∞

w2ρ∗
τ,m(θ) = w2ρ∗

m(θ).

Furthermore, by using (4.24), we conclude that the integrand can be dominated by an integrable
function. Hence, an application of the Dominated Convergence theorem gives that

1
m

lim
τ→∞

∫︂
w2ρ∗

τ,m(θ)dθ = 1
m

∫︂
w2ρ∗

m(θ)dθ ≤ C ′′

mλ
, (4.27)

where the last inequality follows from Lemma B.1.2, which gives that M(ρ∗
m) < C ′′/λ for

some C ′′ > 0 that is independent of (m,λ). By combining (4.23), (4.25), (4.26) and (4.27),
we conclude that (4.22) holds. Finally, by using a standard line of arguments, i.e., Mean Value
theorem and Dominated Convergence, the derivative can be pushed inside the integral sign,
which finishes the proof.

Next, we study the set on which (4.21) might grow unbounded. In particular, in Lemma 4.5.3,
we provide an upper bound on the measure of the set Ωj(m,β, λ) defined in (4.10)-(4.11).
To do so, we will first show that the partition function of ρ∗

m is uniformly bounded in m, as
stated and proved below.

Lemma 4.5.2 (Uniform bound on partition function). Consider σ∗(θ, x) = aτ,m(wτ,mx+ b)mτ
or σ∗(θ, x) = am(wmx+ b)m+ , and let ρ∗

σ∗ be the Gibbs distribution with activation σ∗. Then,
the following upper bound holds for its partition function Zσ∗(β, λ):

lnZσ∗(β, λ) ≤ βC + 1 + 3 log 8π
βλ

,

where C > 0 is a constant independent of (m, τ, β, λ).

Proof of Lemma 4.5.2. Let Rσ∗
i (ρ∗

σ∗) be defined as follows

Rσ∗

i (ρ∗
σ∗) := − 1

M

(︂
yi − yσ

∗

ρ∗
σ∗

(xi)
)︂
.

By substituting the form (2.38) of the Gibbs distribution into the free energy functional (2.36),
we have that

Fσ∗(ρ) = 1
2M

M∑︂
i=1

(︂
yi − yσ

∗

ρ∗
σ∗

(xi)
)︂2

+ λ

2M(ρ∗
σ∗)

−
∫︂ M∑︂

i=1

[︂
Rσ∗

i (ρ∗
σ∗) · σ∗(xi,θ)

]︂
ρ∗
σ∗(θ)dθ − λ

2

∫︂
∥θ∥2

2ρ
∗
σ∗(θ)dθ − 1

β
lnZσ∗(β, λ).

Note that, by Fubini’s theorem, we can interchange summation and integration in the first
integral, since the activation and the labels are bounded. By using also the definition of

56

4.5. Proof of the Main Results

Rσ∗
i (ρ∗

σ∗), we have that

Fσ∗(ρ) = 1
2M

M∑︂
i=1

y2
i + 1

2M

M∑︂
i=1

(︂
yσ

∗

ρ∗
σ∗

(xi)
)︂2

− 1
M

M∑︂
i=1

yi · yσ∗

ρ∗
σ∗

(xi) + λ

2M(ρ∗
σ∗)

− 1
M

M∑︂
i=1

(︂
yσ

∗

ρ∗
σ∗

(xi)
)︂2

+ 1
M

M∑︂
i=1

yi · yσ∗

ρ∗
σ∗

(xi) − λ

2M(ρ∗
σ∗) − 1

β
lnZσ∗(β, λ)

= − 1
β

lnZσ∗(β, λ) − 1
2M

M∑︂
i=1

(︂
yσ

∗

ρ∗
σ∗

(xi)
)︂2

+ 1
2M

M∑︂
i=1

y2
i

≤ − 1
β

lnZσ∗(β, λ) + 1
2M

M∑︂
i=1

y2
i

≤ − 1
β

lnZσ∗(β, λ) + C,

where C > 0 is independent of (m, τ, β, λ). From Lemma 10.2 in [MMN18], we obtain that,
for any ρ ∈ K,

F(ρ) ≥ 1
2R(ρ) + λ

4M(ρ) − 1
β

[︄
1 + 3 log 8π

βλ

]︄
≥ − 1

β

[︄
1 + 3 log 8π

βλ

]︄
,

where the last inequality follows from non-negativity of R(ρ) and M(ρ). Combining the upper
and lower bounds gives

− 1
β

lnZσ∗(β, λ) + C ≥ − 1
β

[︄
1 + 3 log 8π

βλ

]︄
.

After a rearrangement, we have

lnZσ∗(β, λ) ≤ βC + 1 + 3 log 8π
βλ

,

which concludes the proof.

In order to bound the measure of Ωj(m,β, λ), the idea is to combine the upper bound on the
partition function of Lemma 4.5.2 with a lower bound that diverges in m unless |Ωj(m,β, λ)|
vanishes. In particular, we derive a lower bound with the structure of a Gaussian integral which
grows unbounded for a certain set of inputs. This set of inputs corresponds to the scenario
when the Gaussian covariance has non-positive eigenvalues, and it can be expressed as the set
in which the polynomials fj and f j defined in (4.8) are non-negative. For brevity, we suppress
the dependence of Ωj and Ωj on (m,β, λ) in the proofs below.

Lemma 4.5.3 (Bound on measure of cluster set). Assume that condition B1 holds. For
j ∈ {0, . . . ,M}, let Ωj and Ωj be defined as in (4.11). Then,

|Ωj|, |Ωj| ≤ K1
eβK2

m2 , (4.28)

where K1, K2 > 0 is independent of (m,β, λ).

Proof of Lemma 4.5.3. We start with the proof for Ωj. For j = M , the corresponding
polynomial fM(x) is equal to 1 + x2 and therefore |ΩM | = 0. Let us now consider the case
j ̸= M , and assume that µ(Ωj) > 0. (If that’s not the case, the claim trivially holds.)

57

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Note that, as f j(x) is a polynomial of degree at most two in x, Ωj is the union of at most
two intervals. Then, the following set has a non-zero Lebesgue measure in R2:

Ω := {(w, b) ∈ R+ × R : b = −wmx, 0 < w < m, x ∈ Ωj}.

Now, we can lower bound the partition function as

Zm(β, λ) ≥
∫︂

{|a|<m}×Ω
exp

{︄
−βλ

2

[︄
2
λ

M∑︂
i=1

Rm
i (ρ∗

m) · am(wmxi + b)m+ + ∥θ∥2
2

]︄}︄
dθ

=
∫︂

{|a|<m}×Ω
exp

⎧⎨⎩−βλ

2

⎡⎣2
λ

M∑︂
i=j+1

Rm
i (ρ∗

m) · am(wmxi + b) + ∥θ∥2
2

⎤⎦⎫⎬⎭ dθ.

(4.29)

Here, the equality in the second line follows from the following observation: if i ∈ [j] and
(w, b) ∈ Ω, then wmxi + b ≤ 0 and therefore (wmxi + b)m+ = 0; if i > j and (w, b) ∈ Ω, then
0 < wmxi+b < m2 (|x|, |xi| ≤ L, hence |xi−x| ≤ m, as L is a numerical constant independent
of m and m is sufficiently large by assumption B1) and therefore (wmxi + b)m+ = wmxi + b
for all (w, b) ∈ Ω. Thus, after the change of variables (a, w, b) ↦→ (a, w,−wmx) and an
application of Tonelli’s theorem, the RHS in (4.29) reduces to∫︂

x∈Ωj

∫︂
{|a|<m}×{0<w<m}

w · exp
{︄

−βλ

2
[︂
2aw(Bj − Ajx) + a2 + w2(1 + x2)

]︂}︄
d(a, w)dx.

(4.30)
Here the coefficients Aj and Bj are defined as per (4.9). The term under the exponent can
be rewritten as

2aw(Bj − Ajx) + a2 + w2(1 + x2) =
[︂
a w

]︂
Σ−1

[︄
a
w

]︄
,

with
Σ−1 =

[︄
1 (Bj − Ajx)

(Bj − Ajx) 1 + x2

]︄
.

By definition of Ωj in conjunction with Sylvester’s criterion, we have that Σ−1 has a non-positive
eigenvalue with corresponding eigenvector

λ− = 1
2

(︃
−
√︂

4(Bj − Ajx)2 + x4 + x2 + 2
)︃

≤ 0, v− =
⎛⎝−

x2 +
√︂

4(Bj − Ajx)2 + x4

2(Bj − Ajx) , 1
⎞⎠ .

Furthermore, the other eigenvalue with corresponding eigenvector is given by

λ+ = 1
2

(︃√︂
4(Bj − Ajx)2 + x4 + x2 + 2

)︃
> 0, v+ =

⎛⎝−
x2 −

√︂
4(Bj − Ajx)2 + x4

2(Bj − Ajx) , 1
⎞⎠ .

Note that v− and v+ are orthogonal, and consider the following change of variables for the
integral

z =
[︄
z1
z2

]︄
=
[︄
v−/∥v−∥2
v+/∥v+∥2

]︄ [︄
a
w

]︄
= QT

[︄
a
w

]︄
⇔ Qz =

[︄
a
w

]︄
⇔
[︄
a(z)
w(z)

]︄
:= Qz.

As the matrix Q is unitary, the quantity in (4.30) can be rewritten as∫︂
x∈Ωj

∫︂
{|a(z)|<m}×{0<w(z)<m}

w(z) · exp
{︄

−βλ

2
[︂
λ−z

2
1 + λ+z

2
2

]︂}︄
dzdx,

58

4.5. Proof of the Main Results

as the determinant of the Jacobian is 1 for any unitary linear transformation. As λ− ≤ 0, this
quantity is lower bounded by∫︂

x∈Ωj

∫︂
{|a(z)|<m}×{0<w(z)<m}

w(z) · exp
{︄

−βλ

2
[︂
λ+z

2
2

]︂}︄
dzdx. (4.31)

Notice that ∥v−∥ ≥ 1, ∥v+∥ ≥ 1 and w(z) = z1/∥v−∥2 + z2/∥v+∥2. Thus, picking z1 ∈
(0,m/2] and z2 ∈ (0,m/2] ensures that 0 < w(z) < m. Furthermore, these conditions on z
do not violate the requirement on a(z), since |a(z)| ≤ |z1| + |z2| ≤ m. Consequently, as the
integrand is non-negative, the integral in (4.31) is lower bounded by∫︂

x∈Ωj

∫︂
{0<z1<m/2}×{0<z2<m/2}

w(z) · exp
{︄

−βλ

2
[︂
λ+z

2
2

]︂}︄
dzdx. (4.32)

By Lemma B.1.5, |Rm
i (ρ∗

m)| is bounded by a constant independent of (m,β, λ), since λ < C3
from condition B1. Hence, λ|Ajx − Bj| is also uniformly bounded in (m,β, λ). This, in
particular, implies that

λ · λ+ ≤ K1,

where K1 > 0 is independent of (m,β, λ). Furthermore, by definition of Ωj , |Bj − Ajx| > 1,
which implies that ∥v+∥2 and ∥v−∥2 are also upper bounded by a constant K2 > 0 independent
of (m,β, λ), and therefore

w(z) ≤ z1 + z2

K2
.

With this in mind, we can then further lower bound the integral in (4.32) by∫︂
x∈Ωj

∫︂
{0<z1<m/2}×{0<z2<m/2}

1
K2

(z1 + z2) · exp
{︄

−K1β

2 · z2
2

}︄
dzdx

= |Ωj|
∫︂

{0<z1<m/2}×{0<z2<m/2}

1
K2

(z1 + z2) · exp
{︄

−K1β

2 · z2
2

}︄
dz

≥ |Ωj|
∫︂

{0<z1<m/2}×{0<z2<m/2}

1
K2

z1 · exp
{︄

−K1β

2 · z2
2

}︄
dz

= |Ωj|
K2

[︄
m2

8

√︄
π

2K1β
erf

(︄
m

√
K1β

2
√

2

)︄]︄

≥ |Ωj|K3 m
2

√
β

,

(4.33)

where K3 > 0 is independent of (m,β, λ) and in the last passage we have used that
erf

(︃
m

√
K1β

2
√

2

)︃
≥ 1/10 for sufficiently large m and β. By combining (4.33) with the upper

bound on the partition function given by Lemma 4.5.2, the desired result immediately follows
and the proof for Ωj is complete.
In regards to the argument for Ωj, for j = 0 the result trivially holds, since f0(x) = 1 + x2

and, thus, |Ω0| = 0. For j > 0, the partition function can be lower bounded by
∫︂

{|a|<m}×Ω
exp

⎧⎨⎩−βλ

2

⎡⎣2
λ

j∑︂
i=1

Rm
i (ρ∗

m) · am(wmxi + b) + ∥θ∥2
2

⎤⎦⎫⎬⎭ dθ, (4.34)

where the set Ω is defined on non-positive w and x ∈ Ωj, i.e.,

Ω := {(w, b) ∈ R+ × R : b = −wmx, −m < w < 0, x ∈ Ωj}.

59

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

The rest of the argument remains the same by noting that with the change of variable

(a, w, b) ↦→ (−a,−w,wmx)

the quantity in (4.34) is equal to∫︂
x∈Ωj

∫︂
{|a|<m}×{0<w<m}

w · exp
{︄

−βλ

2
[︂
2aw(Bj − Ajx) + a2 + w2(1 + x2)

]︂}︄
d(a, w)dx,

which is exactly as in (4.30), but with x ∈ Ωj and the polynomial (Bj − Ajx) in place of
x ∈ Ωj and the polynomial (Bj − Ajx).

In order to control the magnitude of (4.21), it is also necessary to understand the behavior of
the polynomials defined in (4.8). The worst case scenario, in terms of presenting a challenge
to bounding the curvature, corresponds to f j or fj being arbitrarily close to zero on the whole
area outside of cluster set. In fact, this would imply that the Gaussian-like integral arising in
the computation of (4.21) has arbitrary small eigenvalues. More specifically, our plan is to
exploit the following bound for x ∈ Ij \ Ωj(m,β, λ):

|(4.21)| ≤ C
∫︂

|a|w2

⎡⎣ exp
{︄

−βλ

2 · f j(x) · (a2 + w2)
}︄

+ exp
{︄

−βλ

2 · fj(x) · (a2 + w2)
}︄⎤⎦dθ.

(4.35)

Now, the RHS of (4.35) diverges (and, therefore, the bound is useless), if either of the
polynomials is arbitrarily close to zero outside of the cluster set. Fortunately, we are able to
prove that this cannot happen: in Lemma 4.5.5 we show that f j(x) and fj(x) can be small
only when x approaches the cluster set, i.e.,

f j(x), fj(x) ≥ min{Cj(x), Cj(x), 1},

where Cj(x), Cj(x) are defined in (4.13) and, because of the condition on their coefficients
{Ki}4

i=1, they cannot be arbitrarily close to 0 in any interval Ij.
As a preliminary step towards the proof of Lemma 4.5.5, we show an auxiliary result for
polynomials of a certain form. Fix some interval I = [Il, Ir] ⊂ R. Given two quantities
a, b ∈ R, consider the following polynomial of degree at most two

P2(x) := (1 − a2) · x2 + 2ab · x+ (1 − b2), x ∈ I, (4.36)

where we suppress the dependence on (a, b), i.e., P2(x; a, b) = P2(x), for more compact
notation. In addition, let Ω+ be the subset of I on which P2 is strictly positive, i.e.,

Ω+ := {x ∈ I : P2(x) > 0}.

For a fixed small constant CΩ > 0, define the set of admissible coefficients as follows

U := {(a, b) ∈ R2 : |Ω+| ≥ CΩ}. (4.37)

Given (a, b) ∈ U and x ∈ Ω+, we define the critical point xc of the polynomial P2 associated
with x and Ω+ in the same fashion as in Definition 4.4.1, after replacing f j(·) with P2(·) and
Ij \ Ωj(m,β, λ) with Ω+. Notice that, since Ω+ has strictly positive Lebesgue measure for
(a, b) ∈ U , the critical point is well-defined and, in particular, xc ∈ I always holds.

60

4.5. Proof of the Main Results

Lemma 4.5.4 (Lower bound on polynomial). Fix some CΩ such that U , as defined in (4.37),
is of positive measure. Pick some interval (a, b) ∈ U . Let x ∈ Ω+ and xc be the critical point
associated to x. Then, the following holds

P2(x) ≥ α2(x− xc)2 + α1|x− xc| + α0, (4.38)
where α0, α1, α2 ≥ 0 and at least one of them is lower bounded by a strictly positive constant
depending on CΩ but independent of the choice of (a, b) ∈ U .

We defer the proof of Lemma 4.5.4 to Appendix B.1.3. Recall the definition of the polynomial
f j(x) given in (4.8), and notice that expression can be rearranged such that f j(x) is in the
form of (4.36), namely

f j(x) = 1 + x2 − (Ajx− Bj)2 = (1 − (Aj)2)x2 + 2AjBjx+ (1 − (Bj)2).

In this view, the following result follows from Lemma 4.5.4.

Lemma 4.5.5 (Well-defined quadratic form). Assume that (Aj, Bj) ∈ U , i.e., |Ij \ Ωj| is
lower bounded by a positive constant. Given x ∈ Ij \ Ωj , let xc be the critical point associated
to x. Then, we have that

f j(x) ≥ Cj(x) := γ1(x− xc)2 + γ2, (4.39)
where γ1, γ2 > 0 and either γ1 > ε or γ2 > ε for some ε > 0 that is independent of (Aj, Bj)
but depending on CΩ as appearing in the definition of U .

Proof of Lemma 4.5.5. Note that Ij \ Ωj is the set in which f j is strictly positive. Hence,
since |Ij \ Ωj| is lower bounded by a positive constant independent of Aj, Bj, we can apply
Lemma 4.5.4 to get

f j(x) ≥ α2(x− xc)2 + α1|x− xc| + α0,

where α0, α1, α2 ≥ 0 and at least one of them is lower bounded by a strictly positive constant
independent of (Aj, Bj). Thus, since each term of the RHS above is non-negative, we get

f j(x) ≥ αi|x− xc|i + α0,

where i = arg maxj∈{1,2} αj. Furthermore, as |x− xc| ≤ |Ij|, we have

f j(x) ≥ αi
|Ij|2−i |x− xc|2 + α0.

Now, either αi or α0 as well as 1/|Ij| are lower bounded by strictly positive constants
independent of (Aj, Bj). Thus, taking γ1 = αi/|Ij|2−i and γ2 = α0 concludes the proof.

Let us point out that, although ε does not depend on the values of (Aj, Bj) ∈ U , the position
of a critical point xc depends on (Aj, Bj).
In a similar fashion, we define Ū to be the set of admissible (Aj, Bj) as in (4.37), and given
x ∈ Ij \ Ωj, we let x̄c be the critical point associated to x and Ωj. Then, a result analogous
to Lemma 4.5.5 holds for fj(x):

fj(x) ≥ Cj(x) := γ3(x− x̄c)2 + γ4, (4.40)
where γ3, γ4 > 0 and either γ3 > ε or γ4 > ε for some ε > 0 that is independent of the choice
of (Aj, Bj) ∈ Ū .
The last ingredient for the proof of the vanishing curvature phenomenon is the control of the
decay of the partition function Zm(β, λ) as β → 0.

61

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Lemma 4.5.6 (Lower bound on partition function independent of m). Assume that condition
B1 holds. Then,

Zm(β, λ) ≥ C√︂
β3λ3/2

,

for some C > 0 that is independent of (m,β, λ).

The proof of Lemma 4.5.6 is deferred to Appendix B.1.2. At this point, we are ready to
provide an upper bound on the magnitude of (4.21).

Lemma 4.5.7 (Integral upper bound). Assume that condition B1 holds. Furthermore,
assume that m > eβK2 , where K2 is given in (4.28). Fix j ∈ {0, . . . ,M}. Then, for any
x ∈ Ij \ (Ωj ∪ Ωj),⃓⃓⃓⃓∫︂

am(wm)2ρ∗
m(a, w,−wmx)dadw

⃓⃓⃓⃓
≤ K

βλ7/4(C̄j(x))2
,

where K > 0 is independent of (m,β, λ), C̄j(x) := min {Cj(x), Cj(x), 1}, and Cj(x), Cj(x)
are given by (4.39) and (4.40), respectively.

Proof of Lemma 4.5.7. Note that the following upper bound holds⃓⃓⃓⃓∫︂
am(wm)2ρ∗

m(a, w,−wmx)dadw
⃓⃓⃓⃓
≤ I(x) :=

∫︂
|am|(wm)2ρ∗

m(a, w,−wmx)dadw.

Let us now decompose the integral I(x) depending on the sign of w, i.e.,

Zm(β, λ) · I(x) = Ij(x) + Ij(x),

where

Ij(x) :=
∫︂

{a∈R}×{w≥0}
|am|(wm)2 exp

{︂
−βΨj(a, w, ρ∗

m)
}︂

dadw,

Ij(x) :=
∫︂

{a∈R}×{w<0}
|am|(wm)2 exp {−βΨj(a, w, ρ∗

m)} dadw,

and, recalling the form of ρ∗
m(a, w,−wmx) from (4.5), the corresponding potentials are given

by

Ψj(a, w, ρ) =
M∑︂

i=j+1
Rm
i (ρ) · amwm(xi − x) + λ

2
{︂
a2 + w2 + (wm)2x2

}︂
,

Ψj(a, w, ρ) =
j∑︂
i=1

Rm
i (ρ) · amwm(xi − x) + λ

2
{︂
a2 + w2 + (wm)2x2

}︂
.

By recalling from (4.9) the definitions of Aj, Aj, Bj and Bj, we obtain the following upper
bounds.

Ij(x) ≤ 2
∫︂

{a≥0}×{w≥0}
aw2 exp

{︄
−βλ

2
[︂
−2awm|Bj − Ajx| + a2 + w2 + (wm)2x2

]︂}︄
dadw,

(4.41)

Ij(x) ≤ 2
∫︂

{a≥0}×{w<0}
aw2 exp

{︄
−βλ

2
[︂
2awm|Bj − Ajx| + a2 + w2 + (wm)2x2

]︂}︄
dadw.

(4.42)

62

4.5. Proof of the Main Results

Let us analyze the RHS of (4.41). This term can be rewritten as

2
∫︂

{a≥0}×{w≥0}
aw2 exp

{︄
−βλ

2
[︂
−2awm|Ajx− Bj| + a2 + (wm)2(Ajx− Bj)2

]︂}︄

· exp
{︄

−βλ

2
[︂
w2 + (wm)2x2 − (wm)2(Ajx− Bj)2

]︂}︄
dadw.

(4.43)

Note that
|Ωj| ≤ K1 e

βK2

m2 ≤ K1

eβK2
,

where the first inequality follows from Lemma 4.5.3, and the second inequality uses that
m > eβK2 . Therefore, for sufficiently large β, |Ωj| is smaller than |Ij|/2, and therefore
|Ij \ Ωj| is lower bounded by |Ij|/2. At this point, we can apply Lemma 4.5.5 which gives that
1 + x2 − (Ajx − Bj)2 ≥ Cj(x) ≥ C̄

j(x) := min {Cj(x), Cj(x), 1}. Thus, (4.43) is upper
bounded by

2
∫︂

{a≥0}×{w≥0}
aw2 exp

{︄
−βλ

2
(︂
a− |Bj − Ajx|wm

)︂2
}︄

· exp
{︄

−βλ

2
[︂
w2 − (wm)2(1 − C̄

j(x))
]︂}︄

dadw

= 2
∫︂

{w≥0}
w2 exp

{︄
−βλ

2
[︂
w2 − (wm)2(1 − C̄

j(x))
]︂}︄√︄ 2π

βλ
E [(A)+] dw,

(4.44)

where A ∼ N (|Bj − Ajx|wm, (βλ)−1). Furthermore, the following chain of inequalities hold:

E [(A)+] ≤ E [|A|] ≤
√︂
E [A2] =

√︄
|Bj − Ajx|2(wm)2 + 1

βλ
, (4.45)

where the second passage follows from Jensen’s inequality. By using (4.45), the RHS of (4.44)
is upper bounded by

2
√

2π√
βλ

∫︂
{w≥0}

√︄
(Bj − Ajx)2(wm)2 + 1

βλ

· w2 exp
{︄

−βλ

2
[︂
w2 − (wm)2(1 − C̄

j(x))
]︂}︄

dw.

Applying Lemma 4.5.5 again to obtain (Ajx− Bj)2 ≤ 1 + x2 − C̄
j(x) ≤ 1 + x2 and noting

by definition that (wm)2 ≤ w2, we now upper bound this last term by

2
√

2π
∫︂

{w≥0}

√︄
w2(1 + x2)

βλ
+ 1
β2λ2 · w2 exp

{︄
−βλ

2
[︂
w2 − (wm)2(1 − C̄

j(x))
]︂}︄

dw

≤ 2
√

2π
∫︂

{w∈R}

√︄
w2(1 + x2)

βλ
+ 1
β2λ2 · w2 exp

{︄
−βλ

2
[︂
C̄
j(x) · w2

]︂}︄
dw

≤ 2
√

2π
∫︂

{w∈R}

⎛⎝√︄w2(1 + x2)
βλ

+
√︄

1
β2λ2

⎞⎠ · w2 exp
{︄

−βλ

2
[︂
C̄
j(x) · w2

]︂}︄
dw,

(4.46)

where in the second line we use that 1 − C̄
j(x) ≥ 0 and again that (wm)2 ≤ w2, and in the

third line we use that
√
u+ v ≤

√
u+

√
v.

63

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Finally, computing explicitly the last integral gives the following upper bound on the RHS of
(4.41) and consequently on Ij(x):

Ij(x) ≤ 4π
√︄

1
β2λ2 ·

⌜⃓⃓⎷ 1
(C̄j(x))3β3λ3

+ 2
√

2π
√︄

1 + x2

βλ

⌜⃓⃓⎷ 1
(C̄j(x))4β4λ4

.

By following the similar passages, we obtain the same upper bound for Ij(x). By using the
lower bound on the partition function shown in Lemma 4.5.6, we conclude that

I(x) = Ij(x) + Ij(x)
Zm(β, λ) ≤ K

βλ7/4(C̄j(x))2
,

where K > 0 is independent of (m,β, λ), and the proof is complete.

The proof of Theorem 3 is an immediate consequence of the results presented so far.

Proof of Theorem 3. The proof of (4.14) follows from Lemmas 4.5.1 and 4.5.7, and the proof
of (4.16) follows from Lemma 4.5.3.

4.5.3 Proof of Theorem 4
To summarize, at this point we have shown that as β → ∞ the second derivative of the
predictor vanishes outside the cluster set, and that the size of the cluster set shrinks to
concentrate on at most 3 points per prediction interval. With these results in mind, we are
ready to provide the proof for Theorem 4.

Proof of Theorem 4. The predictor evaluated at the Gibbs distribution is given by

yn(x) =
∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ,

where n = (τ,m, β, λ) denotes the aggregated index and we suppress the dependence on
(β, λ) in ρ∗

τ,m for convenience. By Lemma B.1.6, there exists τ(m,β, λ) such that, for any
τ > τ(m,β, λ),

M(ρ∗
τ,m) ≤ C, (4.47)

for some C > 0 independent of (τ,m, β, λ). We start by showing that the family of predictors
{yn} is equi-Lipschitz for ∞ > τ > τ(m,β, λ). First, note that

∂

∂x
yn(x) =

∫︂ ∂

∂x

[︃
aτ,m(wτ,mx+ b)mτ

]︃
ρ∗
τ,m(θ)dθ, (4.48)

since the derivative can be pushed inside by the same line of arguments as given in the proof
of Lemma 4.5.1. Next, we have that, by construction of the activation, the following holds∫︂ ∂

∂x

[︃
aτ,m(wτ,mx+ b)mτ

]︃
ρ∗
τ,m(θ)dθ ≤ C1

∫︂
|aτ,mwτ,m|ρ∗

τ,m(θ)dθ,

where, from here on, C1 > 0 denotes a generic constant which might change from line to line,
but is independent of (τ,m, β, λ). By construction, for any u ∈ R, it holds that |uτ,m| ≤ |u|.
Thus, we have that∫︂ ∂

∂x

[︃
aτ,m(wτ,mx+ b)mτ

]︃
ρ∗
τ,m(θ)dθ ≤ C1

∫︂
|aw|ρ∗

τ,m(θ)dθ.

64

4.5. Proof of the Main Results

Using the Cauchy-Schwartz inequality and (4.47), we obtain that∫︂ ∂

∂x

[︃
aτ,m(wτ,mx+ b)mτ

]︃
ρ∗
τ,m(θ)dθ ≤ C1M(ρ∗

τ,m) ≤ C1. (4.49)

By combining (4.48) and (4.49), we have shown that the family {yn} for τ > τ(m,β, λ) is
equi-Lipschitz, as the derivatives are uniformly bounded. By using a similar argument, we
can show that the same result holds for the predictor itself, i.e., for all x ∈ ⋃︁M

j=0 Ij, yn(x) is
uniformly bounded.
Note that Theorem 3 considers the curvature of points outside the cluster set, and it gives
an upper bound which diverges when C̄j(x) approaches 0 for some j ∈ [M]. Thus, our next
step is to develop the analytical machinery to make this scenario impossible. Let us recall
Definitions (4.13) and (4.15). Then, by Lemma 4.5.5, we have that

C̄
j(x) ≥ min{γ1(x− xc)2 + γ2, γ3(x− x̄c)2 + γ4},

where γ1, γ2, γ3, γ4 > 0 and min{max{γ1, γ2},max{γ3, γ4}} > ε, for some ε > 0 that is
independent of (m,β, λ). Let us focus on the term γ1(x−xc)2 +γ2. If γ2 = 0 or it approaches
0 (as m,β → ∞), then we extend Ωj(m,β, λ) as

extδ(Ωj(m,β, λ)) :=
{︄
x ∈ Ij : min

x′∈Ωj(m,β,λ)∪{xc}
|x− x′| < δ

}︄
.

Note that adding the singleton {xc} to the argument of the min allows us to also cover
the case in which Ωj(m,β, λ) is empty. Otherwise, i.e., if γ2 > ε for some ε > 0 that is
independent of (m,β, λ), the upper bound on the curvature does not diverge and we set
extδ(Ωj(m,β, λ)) := Ωj(m,β, λ). In a similar fashion, we define the extension of Ωj(m,β, λ)
by extδ(Ωj(m,β, λ)).

Let Ω̄j

ext be the union of extδ(Ωj(m,β, λ)) and extδ(Ωj(m,β, λ)), where we drop the explicit
dependence of Ω̄j

ext on (δ,m, β, λ) for convenience. Then, since f j and fj are polynomials of
degree two, the extended set Ω̄j

ext (just like Ω̄j) is the union of at most three disjoint open
intervals, i.e.,

Ω̄j

ext = Aj1 ∪ Aj2 ∪ Aj3,

where {Aji}3
i=1 denote such (possibly empty) open intervals. Furthermore, Ij \ Ω̄j

ext is the
union of at most three disjoint closed intervals, i.e.,

Ij \ Ω̄j

ext = Bj
1 ∪Bj

2 ∪ Bj
3,

where {Bj
i }3
i=1 denote such (possibly empty) closed intervals.

At this point, we are ready to show that, for all closed intervals {Bj
i }3
i=1, the predictor yn can

be approximated arbitrarily well by a linear function (which may be different in different closed
intervals). Note that yn is twice continuously differentiable for τ < ∞, and fix x̃ ∈ Bj

i . Then,
by combining Taylor’s theorem with the result of Theorem 3, we obtain that, for any x ∈ Bj

i ,

lim
τ→∞

|yn(x) − yn(x̃) − y′
n(x̃)(x− x̃)| ≤ O

(︄
1
mλ

+ 1
δ4 · βλ7/4

)︄
, (4.50)

where we use that |x− xc| ≥ δ by construction of the extended set Ω̄j

ext. Let us define

f in(x) = yn(x̃) − y′
n(x̃)(x− x̃).

65

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

Then, by picking a sufficiently small δ, (4.50) implies that, as mλ → ∞ and βλ7/4 → ∞, for
all x ∈ Bj

i ,
|yn(x) − f in(x)| → 0. (4.51)

We remark that, as shown previously, the coefficients yn(x̃) and y′
n(x̃) are uniformly bounded

in absolute value.

Let us now consider the open intervals {Aji}3
i=1. For any x ∈ Aji , let

x′ = arg min
y ̸∈Aj

i

|x− y|,

and note that, by definition, x′ ∈ Bj
ı̃ for some ı̃ ∈ {1, 2, 3}. By picking the linear approximation

f in that corresponds to Bj
i and by using the triangle inequality, we obtain that

|yn(x) − f in(x)| ≤ |yn(x) − yn(x′)| + |yn(x′) − f in(x′)| + |f in(x′) − f in(x)|
≤ O

(︂
|x− x′| + |yn(x′) − f in(x′)|

)︂
, (4.52)

where the second inequality is due to the fact that the families {yn} and {f in} are equi-
Lipschitz. From (4.51) the second term in the RHS in (4.52) vanishes. As for the first term,
by construction of the extension, together with the result of Lemma 4.5.3, we have that

|x− x′| ≤ O
(︄
eβK2

m2 + δ

)︄
,

for some K2 > 0 independent of (m,β, λ). Thus, by picking a sufficiently small δ and
m > eβK2 , we conclude that the first term in the RHS in (4.52) also vanishes.

So far, we have showed that, both inside and outside of the extension of the cluster set, the
predictor yn is well approximated by linear functions. It remains to prove that the linear pieces
connect, i.e., there exists x̂ ∈ Ω̄j

ext such that, for two neighboring linearities f in and f i+1
n

(possibly belonging to different intervals), the following holds

f in(x̂) − f i+1
n (x̂) = 0.

This claim follows from Lipschitz arguments similar to those presented above, and the proof is
complete.

4.5.4 Proof of Corollary 4.4.3
At this point, we have proved a result about the structure of the predictor coming from the
minimizer of the free energy (2.36). By using the mean-field analysis in [MMN18], we finally
show that this structural result holds for the predictor obtained from a wide two-layer ReLU
network.

Proof of Corollary 4.4.3. First, we show that, as t → ∞, the second derivative of the predictor
evaluated on the solution ρt of the flow (2.33) converges to the same quantity evaluated on
the Gibbs minimizer ρ∗

τ,m. To do so, we decompose the integral involving ρt as in Lemma

66

4.5. Proof of the Main Results

4.5.1 (cf. (4.23)):
∫︂
aτ,m

[︄
∂2

(∂x)2 (wτ,mx+ b)mτ
]︄
ρt(θ)dθ

=
∫︂
wτ,mx+b≤xm

aτ,m
[︄
∂2

(∂x)2 (wτ,mx+ b)τ
]︄
ρt(θ)dθ

+
∫︂
wτ,mx+b>xm

aτ,m(wτ,m)2

⎡⎣ ∂2

(∂u)2ϕτ,m(u)

⃓⃓⃓⃓
⃓⃓
u=wτ,mx+b

⎤⎦ ρt(θ)dθ. (4.53)

Next, we show that a technical condition bounding the free energy at initialization appearing
in the statement of Theorem 4 in [MMN18] is satisfied under the assumption M(ρ0) < ∞ and
H(ρ0) > −∞. Recalling the sandwich bound for the truncated soft-plus activation (4.3) and
the fact that that τ ≥ 1 by condition B1, an application of Cauchy-Schwarz inequality gives

Rτ,m(ρ0) < CM(ρ0) + C ′ < ∞,

where C,C ′ > 0 are some numerical constants independent of (τ,m). This readily implies
that

F τ,m(ρ0) < ∞,

since λ and β−1 are upper-bounded by assumption B1.

Now we can apply Theorem 4 in [MMN18] to conclude that, as t → ∞,

ρt ⇀ ρ∗
τ,m.

Thus, as the terms inside the integrals in (4.53) are all bounded for fixed (τ,m, β, λ), by
definition of weak convergence, we get that, as t → ∞,

∫︂
aτ,m

[︄
∂2

(∂x)2 (wτ,mx+ b)mτ
]︄
ρt(θ)dθ →

∫︂
aτ,m

[︄
∂2

(∂x)2 (wτ,mx+ b)mτ
]︄
ρ∗
τ,m(θ)dθ.

Consequently, since the derivative operator can be pushed inside by the same arguments as in
Lemma 4.5.1, we have that, as t → ∞, the following pointwise convergence holds

∂2

(∂x)2

∫︂
aτ,m(wτ,mx+ b)mτ ρt(θ)dθ → ∂2

(∂x)2

∫︂
aτ,m(wτ,mx+ b)mτ ρ∗

τ,m(θ)dθ. (4.54)

Next, we show that the second derivative of the predictor obtained from the two-layer ReLU
network also converges to the same limit. Recall that σ∗(x,θ) = aτ,m(wτ,mx+ b)mτ . Then, by
Theorem 3 in [MMN18], we have that, almost surely, as N → ∞, εN → 0

∂2

(∂x)2

[︄
1
N

N∑︂
i=1

σ∗
(︂
x,θ

⌊t/ε⌋
i

)︂]︄
→ ∂2

(∂x)2

∫︂
aτ,m(wτ,mx+ b)mτ ρt(θ)dθ (4.55)

along any sequence {εN} such that εN log(N/εN) → 0 and N/ log(N/εN) → ∞. By
combining (4.54) and (4.55), we obtain that the desired convergence result holds for the LHS
of (4.54).

67

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

ε1
ε2

(a)

10 5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5 network (= 0)
training data

(b)

Figure 4.6: (a) The orange curve represents the function f∗(x) which interpolates the training data
(red dots) and exhibits a knot at the point (0, 0); the blue dashed curve is linear in the interval
between the training points (ε1 = −0.2, ε2 = 0.2). (b) We run noiseless SGD (β = ∞) with no
regularization (λ = 0) for a two-layer ReLU network with N = 500 neurons, trained on the dataset
(4.57). The resulting estimator (in blue) approaches the piecewise linear function f∗(x) with a knot
between the two training data points.

Another application of Theorem 3 of [MMN18], together with the fact that the second moment
of the flow solution ρt is uniformly bounded along the sequence t → ∞ (cf. Lemma 10.2 in
[MMN18], following Proposition 4.1 in [JKO98]), gives that the gradients

∂

∂x

[︄
1
N

N∑︂
i=1

σ∗
(︂
x,θ

⌊t/ε⌋
i

)︂]︄

are almost surely uniformly bounded. This fact, in turn, implies that the corresponding
predictor is almost surely equi-Lipschitz. In a similar fashion, we also have that the predictor
itself is almost surely uniformly bounded in absolute value.

At this point, the desired result follows from the same line of arguments as in the proof of
Theorem 4.

4.6 Knots Inside the Interval
In this section, we provide an explicit example of a 2-point dataset such that the SGD solution
exhibits a change of tangent (or “knot”) inside the training interval. To do so, we will show
that neural networks implementing a linear function without knots on the prediction interval
cannot minimize the free energy (2.36). To simplify the analysis, throughout the section we
omit the limits in (τ,m), i.e., we consider directly ReLU activations (this corresponds to taking
τ = m = ∞). Similar arguments apply to the case of sufficiently large parameters τ and m.

4.6.1 Noiseless Regime
We start with the case of noiseless SGD training, i.e., β = +∞. Here, the free energy has no
entropy penalty and it can be expressed as

F∞(ρ) = 1
2R(ρ) + λ

2M(ρ). (4.56)

68

4.6. Knots Inside the Interval

We consider the following dataset which consists of two points:

D = {(−x̄, ȳ), (x̄, ȳ)} = {(−10, 2), (10, 2)}. (4.57)

Let f ∗(x) be the piecewise linear function that interpolates the training data {(−x̄, ȳ), (x̄, ȳ)}
and passes through the point (0, 0), where it exhibits a knot (see the orange curve in Figure
4.6a). Note that

f ∗(x) =
∫︂
a(wx+ b)+ρ

∗(a, w, b)dadwdb,

where

ρ∗(a, b, w) = 1
2

⎡⎣δ(︂√
2 ȳ

x̄
,−

√
2 ȳ

x̄
,0
)︂(a, w, b) + δ(︂√

2 ȳ
x̄
,
√

2 ȳ
x̄
,0
)︂(a, w, b)

⎤⎦ , (4.58)

and δ(a0,w0,b0) denotes the Dirac delta function centered at (a0, w0, b0). Note that R(ρ∗) = 0
and M(ρ∗) = 2

5 . Thus, the free energy is given by

F∞(ρ∗) = 1
2R(ρ∗) + λ

2M(ρ∗) = λ

5 . (4.59)

Let f(x) be a linear function on the interval [−x̄, x̄] such that f(−x̄) = ȳ+ε1 and f(x̄) = ȳ+ε2
(see the blue dashed line in Figure 4.6a), and let ρ be the corresponding distribution of the
parameters, i.e.,

f(x) =
∫︂
a(wx+ b)+ρ(a, w, b)dadwdb. (4.60)

In the rest of this section, we will show that, for all λ ≤ 1,

min
ε1,ε2

F∞(ρ) > F∞(ρ∗). (4.61)

In words, the minimizer of the free energy cannot be a linear function on the interval [−x̄, x̄].
As f is linear, we have that

f(x) = ε2 − ε1

2x̄ (x− x̄) + ȳ + ε2,

which implies that

f(0) = ȳ + ε1 + ε2

2 =
∫︂
a(b)+ρ(a, b)dadb. (4.62)

First, we consider the case f(0) = 0. From (4.62), we have that ε1 + ε2 = −2ȳ. Hence,

F∞(ρ) ≥ 1
2R(ρ) = 1

4(ε2
1 + ε2

2) ≥ 1
8(ε1 + ε2)2 = ȳ2

2 = 2. (4.63)

By combining (4.63) and (4.59), we conclude that (4.61) holds for all λ ≤ 1 (under the
additional restriction f(0) = 0).
Next, we consider the case f(0) ̸= 0. By using (4.62) and applying Cauchy-Schwarz inequality,
we have that

|f(0)| =
⃓⃓⃓⃓∫︂

a(b)+ρ(a, b)dadb
⃓⃓⃓⃓
= |E[a(b)+]| ≤

√︂
E[a2]E[(b)2

+] =⇒ E[a2] ≥ (f(0))2

E[(b)2
+] .

69

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

With this in mind, we can lower bound the regularization term as

M(ρ) ≥ E[a2] + E[b2] ≥ (f(0))2

E[(b)2
+] + E[b2] ≥ (f(0))2

E[(b)2
+] + E[(b)2

+] ≥ 2|f(0)| = 2
⃓⃓⃓⃓
ȳ + ε1 + ε2

2

⃓⃓⃓⃓
,

where the last inequality follows from the fact that g(t) = (f(0))2/t + t is minimized over
t ≥ 0 by taking t = |f(0)|. Therefore, we have that

F∞(ρ) ≥ 1
4(ε2

1 + ε2
2) + λ

⃓⃓⃓⃓
ȳ + ε1 + ε2

2

⃓⃓⃓⃓
.

Note that, for a fixed value of the sum ε1 + ε2, the quantity ε2
1 + ε2

2 is minimized when ε1 = ε2.
Thus, by recalling that ȳ = 2, we have

F∞(ρ) ≥ min
ε

{︃1
2ε

2 + λ|2 + ε|
}︃
. (4.64)

One can readily verify that, for any λ ≤ 2, the minimizer is given by ε∗ = −λ. Thus,

F∞(ρ) ≥ 2λ− λ2

2 ≥ 3λ
2 >

λ

5 = F∞(ρ∗), (4.65)

where the first inequality uses (4.64) and that the minimizer is ε∗ = −λ, and the next two
inequalities use that λ ≥ 1. Merging two cases regarding f(0), we conclude that (4.61) holds,
as desired.

4.6.2 Low Temperature Regime
We now focus on the case of noisy SGD with temperature β−1. Here, the free energy can be
expressed as

Fβ(ρ) = 1
2R(ρ) + λ

2M(ρ) − β−1H(ρ). (4.66)

We consider the two-point dataset (4.57) and we recall that f ∗(x) has a knot inside the
training interval. In this section we will show that the following two results hold for all λ ≤ 1:

(i) There exists a sequence of distributions {ρ∗
β}β such that, for any x ∈ [−x̄, x̄],

lim
β→∞

∫︂
a(wx+ b)+ρ

∗
β(a, w, b)dadwdb = f ∗(x), (4.67)

and
lim sup
β→∞

Fβ(ρ∗
β) ≤ λ

5 . (4.68)

(ii) Let ρ be a distribution such that the function f(x) given by (4.60) is linear in the
interval [−x̄, x̄]. Pick a sequence of distributions {ρβ}β such that ρβ ⇀ ρ and for any
x ∈ [−x̄, x̄],

lim
β→∞

∫︂
a(wx+ b)+ρβ(a, w, b)dadwdb = f(x). (4.69)

Then, we have that
lim inf
β→∞

Fβ(ρβ) > λ

5 . (4.70)

70

4.6. Knots Inside the Interval

Combining these two results gives that, for sufficiently large β, the minimizer of the free energy
(4.66) cannot yield a linear estimator on the interval between the two data points. In Figure
4.6b, we represent the function obtained by training via SGD a two-layer ReLU network with
500 neurons on the dataset (4.57). Clearly, the blue curve approaches the piecewise linear
function f ∗(x), which contains a knot inside the interval [−10, 10]. The plot represented in
the Figure corresponds to the case with no regularization (λ = 0), but similar results are
obtained for small (but non-zero) regularization.

Proof of (i). Let ρ∗
β be defined as

ρ∗
β = 1

2

⎡⎣N

⎛⎝⎡⎣√︄2 ȳ
x̄
,−
√︄

2 ȳ
x̄
, 0
⎤⎦ , β−1I3×3

⎞⎠+ N

⎛⎝⎡⎣√︄2 ȳ
x̄
,

√︄
2 ȳ
x̄
, 0
⎤⎦ , β−1I3×3

⎞⎠⎤⎦ ,
where N (µ,Σ) denotes the multivariate Gaussian distribution with mean µ and covariance Σ.
As β → ∞, we have that ρ∗

β ⇀ ρ∗, where ρ∗ is given by (4.58). However, weak convergence
does not suffice for pointwise convergence of the corresponding estimators, since the function
σ∗(x) = a(wx + b)+ is unbounded (in x). To solve this issue, we observe that the fourth
moment of ρ∗

β is uniformly bounded as β → ∞. Thus, by the de la Vallée Poussin criterion
(see e.g. [HR11]), we have that the sequence of random variables {∥Xβ∥2

2}β is uniformly
integrable, with Xβ ∼ ρ∗

β. Consider a ball Br = {v ∈ R3 : ∥v∥2 ≤ r}, for r >
√︂

4ȳ/x̄. Then,
we have ⃓⃓⃓⃓

⃓⃓ ∫︂
R3
a(wx+ b)+(ρ∗

β(a, w, b) − ρ∗(a, w, b))dadwdb

⃓⃓⃓⃓
⃓⃓

≤

⃓⃓⃓⃓
⃓⃓ ∫︂
Br

a(wx+ b)+(ρ∗
β(a, w, b) − ρ∗(a, w, b))dadwdb

⃓⃓⃓⃓
⃓⃓

+
⃓⃓⃓⃓
⃓
∫︂
R3\Br

a(wx+ b)+ρ
∗
β(a, w, b)dadwdb

⃓⃓⃓⃓
⃓ ,

(4.71)

where we have used that the support of ρ∗ lies inside the ball Br. The first term in the RHS
of (4.71) vanishes as β → ∞ by weak convergence, since the function a(wx+ b)+ is bounded
inside Br. For the second term, we have that, for any x ∈ [−x̄, x̄],⃓⃓⃓⃓

⃓
∫︂
R3\Br

a(wx+ b)+ρ
∗
β(a, w, b)dadwdb

⃓⃓⃓⃓
⃓ ≤

∫︂
R3\Br

(|aw| · |x| + |ab|)ρ∗
β(a, w, b)dadwdb

≤ C
∫︂
R3\Br

(a2 + b2 + w2)ρ∗
β(a, w, b)dadwdb,

where C > 0 is a constant independent of (β, r). Since the sequence {∥Xβ∥2
2}β is uniformly

integrable, we can make the RHS arbitrary small by picking a sufficiently large r (uniformly
for all β). As a result, (4.67) readily follows. Note that (4.67) immediately implies that,
as β → ∞, R(ρ∗

β) → R(ρ∗) = 0. Furthermore, with similar arguments we obtain that,
as β → ∞, M(ρ∗

β) → M(ρ∗). By convexity of the differential entropy, we have that
H(1

2ρ1 + 1
2ρ2) ≥ 1

2H(ρ1) + 1
2H(ρ2). Hence, H(ρ∗

β) ≥ C log(2πe/β), where C > 0 is
independent of β. By combining these bounds on R(ρ∗

β), M(ρ∗
β) and H(ρ∗

β), we conclude
that

lim sup
β→∞

Fβ(ρ∗
β) ≤ F∞(ρ∗),

which, combined with (4.59), completes the proof of (4.68).

71

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

2 3 4 5 6 7 8
2

1

0

1

2 network
training data

(a) β−1 = 0.005

2 3 4 5 6 7 8

2

1

0

1

2 network
training data

(b) β−1 = 0.0001

2 3 4 5 6 7 8

2

1

0

1

2 network
training data

(c) β−1 = 0

Figure 4.7: Functions learnt by a two-layer ReLU network with N = 500 neurons, for different values
of the temperature parameter β−1. The regularization coefficient λ is set to zero.

Proof of (ii). From (4.69), we obtain that limβ→∞ R(ρβ) = R(ρ). As the second moment
is lower-semicontinuous and bounded from below, we have that lim infβ→∞ M(ρβ) ≥ M(ρ).
Furthermore, Lemma 10.2 in [MMN18] implies that

Fβ(ρβ) ≥ 1
2R(ρβ) + λ

4M(ρβ) − β−1(1 + 3 log 8π) + β−1 log(βλ).

By combining these bounds, we have that

lim inf
β→∞

Fβ(ρβ) ≥ 1
2R(ρ) + λ

4M(ρ). (4.72)

By replicating the argument leading to (4.65) (but now with regularization coefficient λ/2
instead of λ), we obtain that the RHS of (4.72) can be lower bounded as

1
2R(ρ) + λ

4M(ρ) ≥ λ− λ2

8 ≥ 7λ
8 >

λ

5 , (4.73)

for all λ ≤ 1. Then, the desired result follows from (4.72) and (4.73).

4.7 Numerical Simulations
We consider training the two-layer neural network (2.25) with N neurons and ReLU activation
functions, i.e., σ∗(x,θ) = a(wx+ b)+, with θ = (a, w, b). We run the SGD iteration (2.30)
(no momentum or weight decay, batch size equal to 1), and we plot the resulting predictor
once the algorithm has converged. The results for two different unidimensional datasets are
reported in Figures 4.7 and 4.8. In these experiments, we set N = 500 and we remark that the
plots for wider networks (N ∈ {1000, 2000, 5000}) look identical. We also point out that the
shape of the predictor does not change for different runs of the SGD algorithm (with different
initializations, and order of the training samples). This is in agreement with the mean-field
predictions when β < ∞, λ > 0 and the variance of the initialization does not depend on N .
The same setup is employed to obtain the numerical results of Figure 4.1 and 4.6b, discussed
in Section 4.1 and 4.6, respectively.
In Figure 4.7, we plot the shape of the function learnt by the network for different values of
the temperature parameter β−1. The learning rate is sk = 1, the total number of training
epochs required for SGD to converge is roughly 5 × 104, and no ℓ2 regularization is enforced
(λ = 0). As predicted by our theoretical findings, the predictor approaches a piecewise linear

72

4.8. Comparison with Related Work

1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.0

0.2

0.4

0.6

0.8

1.0 network
training data

(a) β−1 = 0.01, λ = 0.003

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0 network
training data

(b) β−1 = 0.001, λ = 0

1.0 1.5 2.0 2.5 3.0 3.5
0.2

0.0

0.2

0.4

0.6

0.8

1.0 network
training data

(c) β−1 = 0, λ = 0.003

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0 network
training data

(d) β−1 = 0, λ = 0

Figure 4.8: Functions learnt by a two-layer ReLU network with N = 500 neurons, for different values
of the temperature parameter β−1 and the regularization coefficient λ.

function whose number of tangent changes (or knots) is proportional to the number of training
samples (and not to the width of the network): if β−1 = 0.005, the predictor is still rather
smooth; if β−1 = 10−4, the predictor sharpens, except for a smoother tangent change in the
interval [4, 5]; and finally if β = 0, the predictor is piecewise linear. Let us highlight that the
knots sometimes do not coincide with the training data points, as suggested by the results of
Section 4.4 and demonstrated in the example of Section 4.6.

In Figure 4.8, we consider another dataset and plot the neural network predictor for four
different pairs of (β−1, λ). By comparing (a) with (b) and with the bottom plots (c)-(d),
it is clear that the solution becomes increasingly piecewise linear as the noise decreases.
Furthermore, the effect of regularization can be noticed by comparing plots (a)-(c) on the left
with plots (b)-(d) on the right: adding an ℓ2 penalty implies that the network does not fit the
data and therefore the location of the knots changes.

4.8 Comparison with Related Work
The line of works [SESS19, EP21, OWSS20, PN20a] studies the properties of the minimizers
of certain optimization objectives, and therefore these results are not directly connected to
the dynamics of gradient descent algorithms. On the contrary, the goal of this chapter is to
understand the implicit bias due to gradient descent, namely, to characterize the structure of
the neural network predictor once the algorithm has converged. Another important difference
lies in the fact that our ℓ2 regularization involves all the parameters, including the bias b,
while existing work does not regularize the biases of the network. This fact may lead to the
qualitatively different behavior unveiled by our study. Going into detail, [EP21] show that the
network that minimizes a regularized objective implements a linear spline. In contrast, our
analysis suggests that the knots (i.e., abrupt changes in the tangent of the predictor) can
occur at points different from the training samples. Let us also mention that [SESS19] and

73

4. Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks

[OWSS20] give an explicit form of the functional regularizer of the neural network solution, but
it is not clear how to characterize the function class to which the solution belongs, e.g., whether
the function implemented by the neural network is a cubic or linear spline. Furthermore, the
upper bound on the number of knot points appearing in [PN20a] depends on the null space of
a certain operator, and computing the dimension of this null space explicitly appears to be
difficult.

The work by [WTS+19] considers a noiseless setting with no regularization, and it studies
the properties of gradient flow on the space of reduced parameters. In particular, the initial
ReLU neurons depending on three parameters (a, b and w, in our notation) are mapped to a
two-dimensional space, where each neuron is defined by its magnitude and angle. Then, it is
proven that the Wasserstein gradient flow on this reduced space drives the activation points
of the ReLU neurons to the training data. As a consequence, the solution found by SGD is
piecewise linear and the knot points are located at a subset of the training samples. [BGVV20]
consider SGD with label noise and no regularization, and show that, once the squared loss
is close to zero, the algorithm minimizes an auxiliary quantity, i.e., the sum of the squared
norms of the gradients evaluated at each training point. By instantiating this result in the
case of a two-layer ReLU network with a skip connection, the authors show that the solution
found by SGD is piecewise linear with the minimum amount of knots required to fit the data.

While our result shares some similarities with [WTS+19] and [BGVV20], let us highlight some
crucial differences. First, we note that [BGVV20] consider a two-layer network with a skip
connection which fits the training data perfectly. In contrast, our two-layer model is standard
(no skip connections) and the analysis does not require a perfect fit of the data, as we allow for
non-vanishing ℓ2 regularization. Furthermore, even when the regularization term is vanishing,
our characterization does not lead to the minimum number of knots required to fit the data [as
in BGVV20], and the knots are not necessarily located at the training points [as in WTS+19].
In fact, our theoretical results suggest the presence of additional knot points, a feature that is
confirmed in numerical simulations. The novel behavior that we unveil appears to be due to
the differences in the setting and to the addition of (a possibly vanishing) ℓ2 regularization
term in the optimization. Concerning the proof techniques, the work by [BGVV20] exploits an
Ornstein-Uhlenbeck like analysis, while this work tackles the increasingly popular mean-field
regime. Our key technical contribution is to analyze the Gibbs minimizer of a certain free
energy, while [WTS+19] consider the gradient flow on reduced parameters and connect it
to the flow on the full parameters via a specific type of initialization. Our analysis directly
establishes a result for the full parameters, and it requires mild technical assumptions on the
initialization. Finally, let us point out that it is an open problem to extend the approach of
[WTS+19] to a regularized objective, because of the non-injectivity of the mapping to the
canonical parameters.

4.9 Concluding Remarks
We develop a new technique to characterize the implicit bias of gradient descent methods used
to train overparameterized neural networks. In particular, we consider training a wide two-layer
ReLU network via SGD for a univariate regression task and, by taking a mean field view, we
show that the predictor obtained at convergence has a simple piecewise linear form. Our results
hold in the regime of vanishingly small noise added to the SGD gradients, and handle both
constant and vanishing ℓ2 regularization. The analysis leads to an exact characterization of
the number and location of the tangent changes (or knots) in the predictor: on each interval

74

4.9. Concluding Remarks

between consecutive training inputs, the number of knots is at most three. To obtain the
desired result, we relate the distribution of the weights of the network once SGD has converged
to the minimizer of a certain free energy. Then, we prove that the curvature of the predictor
resulting from this minimizer vanishes everywhere except in a cluster set, which concentrates
on at most three points per prediction interval. This novel strategy opens the way to several
interesting directions. We discuss them below.
We focus on ReLU networks. However, only the following two properties of the activation
appear to be crucial for the analysis: (i) its second derivative behaves like a Dirac delta, and
(ii) its growth is at most linear. In fact, the first property reduces the computation of the
curvature to an integral over a lower-dimensional subspace; and the second property leads
to a uniform bound on the second moment of the network parameters. Hence, our approach
may be extendable to a more general class of piecewise linear activations, although this would
come at the cost of a more intricate structure for the cluster set containing the location of
the tangent changes.
We focus on univariate regression. The natural ordering on one-dimensional features allows
for a convenient characterization of the activation regions that correspond to each input
conditioned on the sign of w. For larger input dimension, such a characterization appears to
be cumbersome, as the structure of these regions is induced by the intersection of hyperplanes.
Furthermore, in the setting considered in this work, the cluster set is the union of intervals
where certain second-degree polynomials are non-positive. For multivariate regression, we
expect the cluster set to be connected to the non-positive set of quadratic forms. Hence,
the structure of the cluster set may be highly non-linear, and its concentration can occur on
subspaces which are hard to define explicitly. Moreover, a naive estimate would suggest that
in the higher-dimensional case the corresponding bound on the curvature of the predictor
described in Theorem 3 should worst-case scale exponentially in the dimension of the inputs.
This is suggested by the combinatorial complexity of the intersection of hyperplanes. However,
it is important to note that the evidence [EP23] indicates that the exponential estimate is
overly pessimistic. In particular, the corresponding bounds might actually behave polynomially
in the effective dimension (rank) of the data.
We provide an upper bound on the number of tangent changes of the predictor. The numerical
simulations of Section 4.6 suggest that one and two knots between consecutive training inputs
can occur. Showing whether our theoretical bound of three knots is tight by providing an
explicit example, or by proving a tighter bound of two, is an open question for possible future
work. We also remark that, given the errors Ri of the neural network estimator at the data
points, one can deduce the location of the knot points. Such implicit characterization is similar
in spirit to the attractive/repulsive condition on the training points of [WTS+19].
In conclusion, in this work we demonstrate how to exploit the Gibbs form of the minimizer
in order to accurately characterize a functional property of the predictor learnt by the neural
network using limiting arguments of the training process. The general spirit of this technique
could potentially be informative in additional ways. For instance, utilizing the properties of
the Gibbs distribution reached at convergence may be of additional interest for future study.
We conjecture that this could yield insight into the stability of the predictor with respect to
perturbations in the training data at finite temperature β.

75

CHAPTER 5
Fundamental Limits of Two-layer

Autoencoders

Autoencoders are a popular model in many branches of machine learning and lossy data
compression. However, their fundamental limits, the performance of gradient methods and the
features learnt during optimization remain poorly understood, even in the two-layer setting.
In fact, earlier work has considered either linear autoencoders or specific training regimes
(leading to vanishing or diverging compression rates). This chapter addresses this gap by
focusing on non-linear two-layer autoencoders trained in the challenging proportional regime
in which the input dimension scales linearly with the size of the representation. Our results
characterize the minimizers of the population risk, and show that such minimizers are achieved
by gradient methods; their structure is also unveiled, thus leading to a concise description
of the features obtained via training. For the special case of a sign activation function, our
analysis establishes the fundamental limits for the lossy compression of Gaussian sources via
(shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical
simulations on standard datasets display the universality of the theoretical predictions.

5.1 Motivation and Outlook
Autoencoders represent a key building block in many branches of machine learning [KW14,
RMW14], including generative modeling [BYAV13] and representation learning [TBL18].
Prompted by the fact that autoencoders learn succinct representations, neural autoencoding
techniques have achieved remarkable success in lossy data compression, even outperforming
classical methods, such as jpeg [BLS17, TSCH17, AMT+17]. However, despite the large body
of empirical work on neural autoencoders and compressors, basic theoretical questions remain
poorly understood even in the shallow case:

What are the fundamental performance limits of autoencoders? Can we
achieve such limits with gradient methods? What features does the opti-
mization procedure learn?

Prior work has focused either on linear autoencoders [BH89, KBGS19, GBLJ19], on the severely
under-parameterized setting in which the input dimension is much larger than the number of
neurons [RG22], or on specific training regimes (lazy training [NWH21] and mean-field regime

76

5.1. Motivation and Outlook

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

Figure 5.1: Left plot. Compression (σ ≡ sign) of the grayscale CIFAR-10 “airplane” class with a
two-layer autoencoder. The data is whitened so that Σ = I: on top, an example of a grayscale
image; on the bottom, the corresponding whitening. The blue dots are the population risk obtained
via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 5 and
Proposition 5.4.2. Right plot. Compression (σ ≡ sign) of the grayscale CIFAR-10 “cat” class with
a two-layer autoencoder. The data is not whitened (Σ ̸= I). The blue dots are the SGD population
risk, and they are close to the lower bound of Theorem 8.

with a polynomial number of neurons [Ngu21]), see Section 5.2. In contrast, in this paper
we consider non-linear autoencoders trained in the challenging proportional regime, in which
the number of inputs to compress scales linearly with the size of the representation. More
specifically, we consider the prototypical model of a two-layer autoencoder

x̂(x) := x̂(x,A,B) = Aσ(Bx). (5.1)

Here, x ∈ Rd is the input to compress, x̂ ∈ Rn the reconstruction, B ∈ Rn×d the encoding
matrix, and A ∈ Rd×n the decoding matrix; the activation σ : R → R is applied element-wise.
We aim at minimizing the population risk

R(A,B) := d−1Ex ∥x − x̂(x)∥2
2 , (5.2)

where the expectation is taken over the distribution of the input x. Our focus is on Gaussian
input data, i.e., x ∼ N (0,Σ). When σ is the sign function, the encoder σ(Bx) can be
interpreted as a compressor, namely, it compresses the d-dimensional input signal into n bits.
The problem (5.2) of compressing a Gaussian source with quadratic distortion has been studied
in exquisite detail in the information theory literature [CT06], and the optimal performance for
general encoder/decoder pairs is known via the rate-distortion formalism which characterizes
the lowest achievable distortion in terms of the rate r = n/d. Here, we focus on encoders and
decoders that form the two-layer autoencoder (5.1): we study the fundamental limits of this
learning problem, as well as the performance achieved by commonly used gradient descent
methods.
Main contributions. Taken all together, our results show that, for two-layer autoencoders,
gradient descent methods achieve a global minimizer of the population risk: this is rigorously
proved in the isotropic case (Σ = I) and corroborated by numerical simulations for a general
covariance Σ. Furthermore, we unveil the structure of said minimizer: for Σ = I, the optimal
decoder has unit singular values; for general covariance, the spectrum of the decoder exhibits
the same block structure as Σ, and it can be explicitly obtained from Σ via a water-filling
criterion; in all cases, weight-tying is optimal, i.e., A is proportional to B⊤. Specifically, our
technical results can be summarized as follows.

• Section 5.4.1 characterizes the minimizers of the risk (5.2) for isotropic data: Theorem 5
provides a tight lower bound, which is achieved by the set (5.7) of weight-tied orthogonal

77

5. Fundamental Limits of Two-layer Autoencoders

matrices, when the compression rate r = n/d ≤ 1; for r > 1, Propositions 5.4.2 and 5.4.3
give a lower bound, which is approached (as d → ∞) by the set (5.12) of weight-tied
rotationally invariant matrices.

• Section 5.4.2 shows that the above minimizers are reached by gradient descent methods for
r ≤ 1: Theorem 6 shows linear convergence of gradient flow for general initializations, under
a weight-tying condition; Theorem 7 considers a Gaussian initialization and proves global
convergence of the projected gradient descent algorithm, in which the encoder matrix B is
optimized via a gradient method and the decoder matrix A is obtained directly via linear
regression.

• Section 5.5 focuses on data with general covariance Σ ̸= I. We observe that experimentally
weight-tying is optimal and then derive the corresponding lower bound (see Theorem 8),
which is also asymptotically achieved (as d → ∞) by rotationally invariant matrices with a
carefully designed spectrum (depending on Σ), see Proposition 5.5.2.

When σ ≡ sign, our analysis characterizes the fundamental limits of the lossy compression of a
Gaussian source via two-layer autoencoders. Remarkably, if we restrict to a certain class of linear
encoders for compression, two-layer autoencoders achieve optimal performance [TCVS13],
which can be generally obtained via a message passing decoding algorithm [RSF19]. However,
for general encoder/decoder pairs, shallow autoencoders fail to meet the information-theoretic
bound given by the rate-distortion curve, see Section 5.6.
Going beyond the Gaussian assumption on the data, we provide numerical validation to
our theoretical predictions on standard datasets, both in the isotropic case and for general
covariance (Figure 5.1). Additional numerical results – together with the details of the
experimental setting – are in Appendix C.7.
Proof techniques. The lower bound on the population risk of Theorem 5 comes from a
sequence of relaxations of the objective function, which eventually allows to apply a trace
inequality. For r ≥ 1, Proposition 5.4.2 crucially exploits an inequality for the Hadamard
product of PSD matrices [Kha21], and the asymptotic achievability of Proposition 5.4.3 takes
advantage of concentration-of-measure tools for orthogonal matrices. The key quantity in
the analysis of gradient methods is the encoder Gram matrix at iteration t, i.e., B(t)B(t)⊤.
In particular, for gradient flow (Theorem 6), due to the weight-tying condition, tracking
log det B(t)B(t)⊤ leads to a quantitative convergence result. However, when the weights are
not tied, this quantity does not appear to increase along the optimization trajectory. Thus,
for projected gradient descent (Theorem 7), the idea is to decompose B(t)B(t)⊤ into (i)
its value at the optimum (given by the identity), (ii) the contribution due to the spectrum
evolution (keeping the eigenbasis fixed), and (iii) the change in the eigenbasis. Via a sequence
of careful approximations, we are able to show that the term (iii) vanishes. Hence, we can
study explicitly the evolution of the spectrum and obtain the desired convergence.

5.2 Related Work
Theory of autoencoders. A popular line of work has focused on two-layer linear autoen-
coders: [OSWS20] analyze the loss landscape; [KBGS19] show that the minimizers of the
regularized loss recover the principal components of the data and, notably, the correspond-
ing autoencoder is weight-tied; [BLSG20] prove that stochastic gradient descent – after a
slight perturbation – escapes the saddles and eventually converges; [GBLJ19] characterize

78

5.2. Related Work

the time-steps at which the network learns different sets of features. [RMB+18, NWH19]
prove local convergence for weight-tied two-layer ReLU autoencoders. [NWH21] focus on the
lazy training regime [COB19, JGH18] and bound the over-parameterization needed for global
convergence. [RBU20] show that over-parameterized autoencoders learn solutions that are
contractive around the training examples. The latent spaces of autoencoders are studied in
[JRU21], where it is shown that such latent spaces can be aligned by stretching along the left
singular vectors of the data. More closely related to our work, [Ngu21] and [RG22] track the
gradient dynamics of non-linear two-layer autoencoders via the mean-field PDE and a system
of ODEs, respectively. However, these analyses are restricted to diverging and vanishing rates:
[Ngu21] considers weight-tied autoencoders with polynomially many neurons in the input
dimension (so that r → ∞); [RG22] consider the other extreme regime in which the input
dimension diverges (so that r → 0).

Neural compression. In recent years, compressors based on neural networks have outper-
formed traditional schemes on real-world data in terms of minimizing distortion and producing vi-
sually pleasing reconstructions at reasonable complexity [BLS17, TSCH17, AMT+17, BCM+21].
These methods typically use an autoencoder architecture with quantization of the latent vari-
ables, which is trained over samples drawn from the source. More recently, other architectures
such as attention or diffusion-based models have been incorporated into neural compressors
[CSTK20, LCG+19, YM23, TSHM22], and improvements have been observed. We refer to
[YMT22] for a detailed review on this topic. Given the remarkable success of neural com-
pressors, it is imperative to understand the fundamental limits of compression using neural
architectures. In this regard, [WB21] consider a highly-structured and low-dimensional random
process, dubbed the sawbridge, and show numerically that the rate-distortion function is
achieved by a compressor based on deep neural networks trained via stochastic gradient
descent. In contrast, our work considers Gaussian sources, which are high-dimensional in
nature, and provides the fundamental limits of compression for two-layer autoencoders. Our
results also imply that two-layer autoencoders cannot achieve the rate-distortion limit on
Gaussian data, see Section 5.6.

Rate-distortion formalism. Lossy compression of stationary sources is a classical problem in
information theory, and several approaches have been proposed, including vector quantization
[Gra84], or the usage of powerful channel codes [KU10, CMZ06, WMM10]. The rate-distortion
function characterizes the optimal trade-off between error and size of the representation for the
compression of an i.i.d. source [Sha48, Sha59, CT06]. However, computing the rate-distortion
function is by itself a challenging task. The Blahut-Arimoto scheme [Bla72, Ari72] provides a
systematic approach, but it suffers from the issue of scalability [LHB22]. Consequently, to
compute the rate-distortion of empirical datasets, approximate methods based on generative
modeling have been proposed [YM21b, LHB22].

Non-linear inverse problems. The task of estimating a signal x from non-linear mea-
surements y = σ(Bx) has appeared in many areas, such as 1-bit compressed sensing where
σ(z) = sign(z) [BB08], or phase retrieval where σ(z) = |z| [CSV13, CLS15]. While the focus
of these problems is different from ours (e.g., compressed sensing has often an additional
sparsity assumption), the ideas and proof techniques developed in this paper might be beneficial
to characterize the fundamental limits and the performance of gradient-based methods for
general inverse reconstruction tasks, see e.g. [MXM21, MM22].

79

5. Fundamental Limits of Two-layer Autoencoders

5.3 Preliminaries
Notations. We use plain symbols for real numbers (e.g., a, b), bold symbols for vectors
(e.g., a, b), and capitalized bold symbols for matrices (e.g., A,B). We let [n] = {1, . . . , n},
I be the identity matrix and 1 the column vector containing ones. Given a matrix A, we
denote its operator norm by ∥A∥op and its Frobenius norm by ∥A∥F . Given two matrices A
and B of the same shape, we denote their element-wise (Hadamard/Schur) product by A ◦ B
and the k-th element-wise power by A◦k. We write L2(R, µ) for the space of L2 integrable
functions on R w.r.t. the standard Gaussian measure µ and hk(x) for the k-th normalized
Hermite polynomial (see e.g. [O’D14]).
Setup. We consider the two-layer autoencoder (5.1) and aim at minimizing the population
risk (5.2) for a given rate r = n/d. In particular, we provide tight lower bounds on the
minimum of the population risk computed on Gaussian input data with covariance Σ, i.e.,

ˆ︂R(r) := min
A,B

R(A,B). (5.3)

In the isotropic case (Σ = I), our results hold for any odd activation σ ∈ L2(R, µ) after
restricting the rows of the encoding matrix B to have unit norm. We remark that, when
σ(x) = sign(x), the restriction is unnecessary since the activation is homogeneous.1 We also
note that restricting the norms of the rows of B prevents the model from entering the “linear”
regime. In fact, when ∥B∥F ≈ 0, by linearizing the activation around zero, (5.1) reduces to
the linear model x̂(x) ≈ ABx, which exhibits a PCA-like behaviour. For general covariance
Σ, we consider odd homogeneous activations, which includes the sign function and monomials
of arbitrary odd degree.
Any function σ ∈ L2(R, µ) can be expanded in terms of Hermite polynomials. This allows
to perform Fourier analysis in the Gaussian space L2(R, µ), and it provides a natural tool
because of the Gaussian assumption on the data. In particular, for odd σ, only odd Hermite
polynomials occur, i.e.,

σ(x) = ∑︁∞
ℓ=0c2ℓ+1h2ℓ+1(x), (5.4)

where {cℓ}ℓ∈N denote the Hermite coefficients of σ. We also consider the following auxiliary
quantity ˜︂R(r) := min

A,∥(BD)i,:∥2=1
R(A,B), (5.5)

that defines a minimum of the population risk for the autoencoder (5.1) with a certain norm
constraint on the encoder weights B. Here, D contains the square roots of the eigenvalues
of Σ (i.e., Σ = UD2U⊤ for an orthogonal matrix U), and (BD)i,: stands for the i-th row
of the matrix BD. A few remarks about the restricted population risk (5.5) are in order.
First of all, if σ is homogeneous, the minimum of the restricted population risk (5.5) and
of the unconstrained one (5.3) coincide (see Lemma 5.4.1 and Lemma 5.5.1). Thus, in this
case, the analysis of ˜︁R(r) directly provides results on the quantity of interest, i.e., ˆ︂R(r). The
technical advantage of analysing (5.5) over (5.3) comes from fact that the expectation with
respect to the Gaussian inputs, which arises in the constrained objective, can be explicitly
computed via the reproducing property of Hermite polynomials (see, e.g., [O’D14]). To exploit
this reproducing property, it is crucial that the inner products ⟨Bi,:,x⟩ have the same scale,
which is ensured by picking ∥(BD)i,:∥2 = 1. The sole dependence of the constraint on the
spectrum D (and, not on a particular choice of U) stems from the rotational invariance of
the isotropic Gaussian distribution.

1We say that a function σ is homogeneous if there exists an integer k s.t. σ(αx) = αkσ(x) for all α ̸= 0.

80

5.4. Main Results

5.4 Main Results
In this section, we consider isotropic Gaussian data, i.e., Σ = D = I. First, we derive a
closed form expression for the population risk in Lemma 5.4.1. Then, in Theorem 5 we give
a lower bound on the population risk for r ≤ 1 and provide a complete characterization
of the autoencoder parameters (A,B) achieving it. Surprisingly, the minimizer exhibits
a weight-tying structure and the corresponding matrices are rotationally invariant. Later,
in Proposition 5.4.2 we derive an analogous lower bound for r > 1. While it is hard to
characterize the minimizer structure explicitly for a finite input dimension d (and r > 1),
we provide a sequence {(Ad,Bd)}d∈N that meets the lower bound in the high-dimensional
limit (d → ∞), see Proposition 5.4.3. Notably, the elements of this sequence share the key
features (weight-tying, rotational invariance) of the minimizers for r ≤ 1. In Section 5.4.2
we describe gradient methods that provably achieve the optimal value of the population risk.
Specifically, we consider gradient flow under a weight-tying constraint and projected (on the
sphere) gradient descent with Gaussian initialization. The corresponding results are stated in
Theorem 6 and Theorem 7.

We start by expanding σ in a Hermite series to obtain a closed-form expression for the
population risk.

Lemma 5.4.1. Consider any odd σ ∈ L2(R, µ) and its Hermite expansion given by (5.4).
Then, ˜︂R(r) is equivalent to

min
A,∥Bi,:∥2=1

1
d

(︂
Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1 · Tr [BA]

)︂
+ 1, (5.6)

where f(x) := ∑︁∞
ℓ=0(c2ℓ+1)2x2ℓ+1 is applied element-wise. In particular, if σ(x) = sign(x),

then f(x) = c2
1 · arcsin(x) and c1 =

√︂
2/π. Moreover, for any homogeneous σ, we have thatˆ︂R(r) = ˜︂R(r).

The proof of the lemma above is contained in Appendix C.1. Note that, if c1 = 0, it is easy
to see that the minimum of ˜︁R(r) equals 1 and it is attained when A⊤A is the zero-matrix.
Furthermore, if ∑︁∞

ℓ=1(c2ℓ+1)2 = 0, then σ(x) = c2
1x and we fall back into the simpler case of

a linear autoencoder [BH89, KBGS19, GBLJ19]. Thus, for the rest of the section, we will
assume that c1 ̸= 0 and ∑︁∞

ℓ=1(c2ℓ+1)2 ̸= 0.

5.4.1 Fundamental Limits: Lower Bound on Risk
We begin by providing a tight lower bound for r ≤ 1, which is uniquely achieved on the set of
weight-tied orthogonal matrices Hn,d defined as

Hn,d :=
{︄˜︂A, ˜︂B⊤∈ Rd×n : ˜︂A = c1

f(1) · ˜︂B⊤, ˜︂B˜︂B⊤ = I

}︄
. (5.7)

Theorem 5. Consider any odd σ ∈ L2(R, µ) and fix r ≤ 1. Then, the following holds

˜︂R(r) ≥ LBr≤1(I) := 1 − c2
1

f(1) · r,

and equality is achieved iff (A,B) ∈ Hn,d.

81

5. Fundamental Limits of Two-layer Autoencoders

We note that the minimizers Hn,d of ˜︂R(r) do not directly correspond to the minimizers
of the unconstrained population risk ˆ︂R(r), since in general ˜︂R(r) ̸= ˆ︂R(r). However, if
σ is homogeneous, the “inverse” mapping can be readily obtained. For instance, when
σ(x) = sign(x), rescaling the norms of the rows of B does not affect the compression,
i.e., sign(Bx) = sign(SBx) for any diagonal S with positive entries. Hence, to obtain a
minimizer, it suffices that the rows of B form any set of orthogonal (not necessarily normalized)
vectors. In contrast, note that A is still defined with respect to the row-normalized version of
B. Similar arguments hold for homogeneous activations.
We also note that the weight-tying structure (5.7) observed in the minimizers of the population
risk is related to the early representation learning literature [VLBM08, HS06].
It is also worth noting that the optimal value of the population risk in Theorem 5 is attained
by a simple quantization scheme that processes the coordinates of the d-dimensional input x
independently. In particular, it means that the performance of a two-layer model (5.1) is far
from being optimal (see discussion in Section 5.6 and Figure 5.3), since the optimal scheme
will take advantage of compressing the coordinates of the inputs jointly. We now describe
the quantization scheme mentioned before. In a nutshell, each of the input’s coordinates is
mapped to the particular value that depends on the sign of the coordinate, namely:

qa(xi) := a · sign(xi), i ∈ [d],

for some positive quantization center a. In order to pick the optimal center a∗, we minimize
the MSE directly, i.e.,

a∗ = arg min
a

E
[︂
(xi − qa(xi))2

]︂
,

which gives a∗ =
√︂

2/π. It is then a simple substitution to check that the corresponding
population risk will exactly coincide with the value in Theorem 5 (since r < 1 the coordinates
that do not “fit” in the hidden representation are set to 0).
We now provide a proof sketch for Theorem 5 and defer the full argument to Appendix C.2.1.
Proof sketch of Theorem 5. Using the series expansion of f(·), we can write

Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1 · Tr [BA]

=
∞∑︂
ℓ=0
c2

2ℓ+1

⎛⎝Tr
[︃
A⊤A

(︂
BB⊤

)︂◦2ℓ+1
]︃
−2 c1

f(1)Tr [BA]
⎞⎠.

Thus, the minimization problem in Lemma 5.4.1 can be reduced to analysing each Hadamard
power individually:

min
A,∥Bi,:∥2=1

Tr
[︂
A⊤A(BB⊤)◦ℓ

]︂
− 2c1

f(1) · Tr [BA] . (5.8)

The crux of the argument is to provide a suitable sequence of relaxations of (5.8). The first
relaxation gives

Tr
[︂
(A⊤A ◦ Q)(BB⊤ ◦ Q)

]︂
− 2c1

f(1) · Tr [BA] , (5.9)

where Q is any PSD matrix with unit diagonal. Using the properties of the SVD of Q, (5.9)
can be further relaxed to

n∑︂
i,j=1

Tr
[︂
AjA

⊤
j BjB

⊤
j

]︂
− 2c1

f(1) ·
n∑︂
i=1

Tr [BiAi] , (5.10)

82

5.4. Main Results

where now Ai,B
⊤
i ∈ Rd×n are arbitrary matrices. The key observation is that
n∑︂
i=1

⃦⃦⃦⃦
⃦ c1

f(1) ·
√

X
−1

A⊤
i −

√
XBi

⃦⃦⃦⃦
⃦

2

F

= (5.10) + c2
1

(f(1))2 · n,

with X = ∑︁n
i=1 A⊤

i Ai. As each relaxation lower bounds (5.8) and the Frobenius norm is
positive, this argument leads to the lower bound on ˜︁R(r). The fact that the lower bound is
met for any (A,B) ∈ Hn,d can be verified via a direct calculation. The uniqueness follows by
taking the intersection of the minimizers of (5.8) for different values of ℓ.
Next, we move to the case r > 1.

Proposition 5.4.2. Consider any odd σ ∈ L2(R, µ) and fix r > 1, then the following holds:

˜︂R(r) ≥ LBr>1(I) := 1 − r

r +
(︂
f(1)
c2

1
− 1

)︂ .
The key difference with the proof of the lower bound in Theorem 5 is that the term
Tr
[︂
A⊤ABB⊤

]︂
requires a tighter estimate. This is due to the fact that the matrix BB⊤

is no longer full-rank when r > 1. We obtain the desired tighter bound by exploiting the
following result by [Kha21]:

A⊤A ◦ BB⊤ ⪰ 1
d

· Diag(BA)Diag(BA)⊤, (5.11)

where Diag(BA) stands for the vector containing the diagonal entries of BA. The full
argument is contained in Appendix C.2.2.
As for r ≤ 1, the bound is met (here, in the limit d → ∞) by considering weight-tied matrices:

B̂
⊤

=
√
r · [Id,0d,n−d]U⊤, bi = b̂i

∥b̂i∥2
, A = βB⊤, (5.12)

where β = c1
c2

1r+f(1)−c2
1

and U is uniformly sampled from the group of rotation matrices. The
idea behind the choice (5.12) is that, as d → ∞, (BB⊤)◦2ℓ for ℓ ≥ 2 is close to the identity
matrix, and (5.11) is attained exactly. The formal statement is provided below and proved in
Appendix C.2.2.

Proposition 5.4.3. Consider any odd σ ∈ L2(R, µ) and fix r > 1. Let A,B be defined as in
(5.12). Then, for any ϵ > 0 the following holds

|R(A,B) − LBr>1(I)| ≤ Cd− 1
2 +ϵ,

with probability 1 − c/d2. Here, the constants c, C depend only on r and ϵ.

Degenerate isotropic Gaussian data. All the arguments of Section 5.4.1 directly apply
for x ∼ N (0, σ2I), the only differences being the scaling of the term Tr [BA] (which is
additionally multiplied by σ) and the constant variance term σ2 (in place of 1) in (5.6).
Our results can be also easily extended to the case of degenerate isotropic Gaussian data,
i.e., x ∼ N (0,Σ) with λi(Σ) = σ2 for i ≤ d − k and λi(Σ) = 0 for i > d − k, where
λi(Σ) stands for the i-th eigenvalue of Σ in non-increasing order. In fact, by the rotational
invariance of the Gaussian distribution, we can assume without loss of generality that x =
[x1, · · · , xd−k, 0, · · · , 0], where (xi) i.i.d.∼ N (0, σ2). Hence, by considering A ∈ R(d−k)×n and
B ∈ Rn×(d−k) and substituting d with d− k where suitable, analogous results follow.

83

5. Fundamental Limits of Two-layer Autoencoders

5.4.2 Gradient Methods Achieve the Lower Bound
In this section, we discuss the achievability of the lower bound obtained in the previous section
via gradient methods. We study two procedures which find the minimizer of the population
risk R(A,B) under the constraint ∥Bi,:∥2 = 1. Namely, we analyse (i) weight-tied gradient
flow on the sphere and (ii) its discrete version (with finite step size) without weight-tying, i.e.,
projected gradient descent.
The optimization objective in Lemma 5.4.1 is equivalent (up to a scaling independent of
(A,B)) to

min
A,∥Bi,:∥2=1

Tr
[︂
A⊤A · f(BB⊤)

]︂
− 2 · Tr [BA] , (5.13)

where we have rescaled the function f by 1/c2
1. This follows from the fact that the multiplicative

factor c1 can be pushed inside A. Note that such scaling does not affect the properties of
gradient-based algorithms (modulo a constant change in their speed). Hence, without loss of
generality, we will state and prove all our results for the problem (5.13).

Weight-tied gradient flow. We start with the weight-tied setting, in which

A = βB⊤, β ∈ R. (5.14)

This is motivated by the fact that the lower bounds on the population risk are approached by
weight-tied matrices (see Theorem 5 and Proposition 5.4.3). Under the weight-tying constraint
(5.14), the objective (5.13) has the following form

Ψ(β,B) := β2 · Tr
[︂
B⊤B · f(BB⊤)

]︂
− 2βn

= β2 ·
n∑︂

i,j=1
⟨bi, bj⟩ · f (⟨bi, bj⟩) − 2βn,

(5.15)

where ∥bi∥2 = 1 for all i. Note that the optimal β∗ can be found exactly, since (5.15) is a
quadratic polynomial in β. In this view, to optimize (5.15), we perform a gradient flow on
{bi}ni=1, which are regarded as vectors on the unit sphere, and pick the optimal β∗ at each
time t. Formally,

β(t) = n∑︁n
i,j=1 ⟨bi, bj⟩ · f (⟨bi, bj⟩)

,

∂bi(t)
∂t

= −Ji(t)∇bi
Ψ(β(t),B(t)),

(5.16)

where Ji(t) := I − bi(t)bi(t)⊤ projects the gradient ∇bi
Ψ(β(t),B(t)) onto the tangent space

at the point bi(t) (see (C.45) in Appendix C.3 for the closed form expression). This ensures
that ∥bi(t)∥2 = 1 along the gradient flow trajectory. The described procedure can be viewed
as Riemannian gradient flow, due to the projection of the gradient ∇bi

Ψ(β(t),B(t)) on the
tangent space of the unit sphere.

Theorem 6. Fix r ≤ 1. Let B(t) be obtained via the gradient flow (5.16) applied to Ψ
defined in (5.15). Let the initialization B(0) have unit-norm rows and rank(B(0)) = n.
Then, as t → ∞, B(t)B(t)⊤ converges to I, which is the unique global optimum of (5.15).
Moreover, define the residual

ϕ(t) = Tr
[︂
(B(t)B(t)⊤ − I) · f(B(t)⊤B(t))

]︂
≥ 0, (5.17)

84

5.4. Main Results

which vanishes at the minimizer, and let T be the first time such that ϕ(T) = δ. Then,

T ≤ − 1{ϕ(0) > nf(1)} · f(1) · log det(B(0)B(0)⊤)

− 1{δ ≤ nf(1)} · 2f 2(1)
δ

· log det(B(0)B(0)⊤).
(5.18)

In words, if the residual at initialization is bigger than nf(1), then it takes at most constant
time to reach the regime in which the convergence is linear in the precision δ. We also note
that by choosing the optimal β∗, the function ϕ can be related to the objective (5.15) by
Ψ(β∗,B(t)) = − n

f(1)+ ϕ(t)
n

. Hence, (5.18) gives a quantitative convergence in terms of the
objective function as well. We give a sketch of the argument below and defer the complete
proof to Appendix C.3.
Proof sketch of Theorem 6. It can be readily shown that BB⊤ = I is a minimizer of (5.15)
and a stationary point of the gradient flow (5.16). However, if the gradient flow (5.16) ends
up in points for which rank(B) < n, such subspaces are never escaped (see Lemma C.3.1) and
the procedure fails to converge to the full-rank global minimizer. Thus, our strategy is to show
that, if at initialization rank(B) = n, the gradient flow will never collapse to rank(B) < n.
To do so, the key intuition is to track the quantity log det (B(t)B(t)⊤) during training. In
particular, we show in Lemma C.3.2 that

∂ log det (B(t)B(t)⊤)
∂t

≥ ϕ(t) ≥ 0. (5.19)

The inequality (5.19) implies that the determinant is non-decreasing and, hence, the smallest
eigenvalue of B(t)B(t)⊤ is bounded away from 0 (uniformly in t), which gives the desired
full-rank property. The convergence speed also follows from (5.19) by a careful integration in
time (see Lemma C.3.3).
We remark that Theorem 6 holds for any d and for all full-rank initializations.

Projected gradient descent. We now move to the setting where the encoder and decoder
weights are not weight-tied. In this case, we consider the commonly used Gaussian initialization
and prove a result for sufficiently large d. The Gaussian initialization allows us to relax the
requirement on f : we only need c2 = 0, as opposed to the previous assumption that c2ℓ = 0
for any ℓ ∈ N (see the statement of Lemma 5.4.1). Specifically, we consider the following
algorithm to minimize (5.13):

A(t) = B(t)⊤
(︂
f(B(t)B(t)⊤)

)︂−1

B′(t) := B(t) − η∇B(t), B(t+ 1) := proj(B′(t)),
(5.20)

where A(t) is the optimal matrix for a fixed B(t) and ∇B(t) (see (C.62) in Appendix C.4) is
the projected gradient of the objective (5.13) with respect to B(t). Furthermore, proj(B′(t))
rescales all the rows to have unit norm. It will become apparent from the proof of Theorem
7 that the inversion in the definition of A(t) is indeed well defined. We remark that (5.20)
can be viewed as the discrete counterpart of the Riemannian gradient flow (5.16) (with the
optimal A(t) in place of the weight-tying), where the application of proj(·) keeps the rows of
B(t) of unit norm. In the related literature, this procedure is often referred to as Riemannian
gradient descent (see, e.g., [AMS09]). Alternatively, (5.20) may be viewed as coordinate
descent [Wri15] on the objective (5.13), where the step in A is performed exactly.

85

5. Fundamental Limits of Two-layer Autoencoders

Our main result is that the projected gradient descent (5.20) converges to the global optimum
of (5.13) for large enough d (with high probability). We give a sketch of the argument and
defer the complete proof to Appendix C.4.

Theorem 7. Consider the projected gradient descent (5.20) applied to the objective (5.13)
for any f of the form f(x) = x+∑︁

ℓ=3 c
2
ℓx

ℓ, where ∑︁ℓ=3 c
2
ℓ < ∞. Initialize the algorithm with

B(0) equal to a row-normalized Gaussian, i.e., B′
i,j(0) ∼ N (0, 1/d), B(0) = proj(B′(0)).

Let the step size η be Θ(1/
√
d). Then, for any r < 1 and sufficiently large d, with probability

at least 1 − Ce−cd, we have that B(t)B(t)⊤ converges to I, which is the unique global
optimum of (5.13). Moreover, defining t = T/η, we have the following bound on the rate of
convergence ⃦⃦⃦

B(t)B(t)⊤ − I
⃦⃦⃦
op

≤ C(1 − c)T ,

where C > 0 and c ∈ (0, 1] are universal constants depending only on r and f .

Proof sketch of Theorem 7. Let B(0)B(0)⊤ = UΛ(0)U⊤ be the singular value decomposition
(SVD) of the encoder Gram matrix. Then, the idea is to decompose B(t)B(t)⊤ at each step
of the projected gradient descent dynamics as

B(t)B(t)⊤ = I + Z(t) + X(t), (5.21)

where Z(t) = U(Λ(t) − I)U⊤. Here, I is the global optimum towards which we want to
converge; Z(t) captures the evolution of the eigenvalues while keeping the eigenbasis fixed,
as U comes from the SVD at initialization; and X(t) is the remaining error term capturing
the change in the eigenbasis. The update on Λ(t) is given by Λ(t + 1) = g(Λ(t)), where
g : Rn → Rn admits an explicit expression. Hence, in light of this explicit expression, if we
had X(t) ≡ 0, then the desired convergence would follow from the analysis of the recursion
for Λ(t) (see Lemma C.5.3).

The main technical difficulty lies in carefully controlling the error term X(t). In particular,
we will show that X(t) decays for large enough d, which means that dynamics (5.21) is well
approximated by I + Z(t). The proof can be broken down in four steps. In the first step, we
compute the leading order term of ∇B(t) (see Lemma C.4.1 and C.4.2). This simplifies the
formula for ∇B(t), which can then be expressed as an explicit nonlinear function of Z(t) and
X(t). In the second step, we perform a Taylor expansion of ∇B(t), seen as a matrix-valued
function in Z(t) and X(t) (see Lemma C.4.3). The intuition for this expansion comes from
the fact that X(t) is a small quantity, and also ∥Z(t)∥op → 0 as t → ∞. In the third step,
we show that the norm of ∇B(t) vanishes sufficiently fast (see Lemma C.4.4), which implies
that the projection step B(t+ 1) := proj(B′(t)) has a negligible effect (see Lemma C.4.5).
After doing these estimates, we finally obtain an explicit recursion for X(t). In the fourth
step, we analyse this recursion (see Lemma C.4.6): first, we show that the error does not
amplify too strongly (as in Gronwall’s inequality); then, armed with this worst-case estimate,
we can prove an exponential decay for X(t), which suffices to conclude the argument.

Scaling of the learning rate. Theorem 7 is stated for η = Θ(1/
√
d), as this corresponds

to the biggest learning rate for which our argument works (thus requiring the least amount of
steps for convergence). The same result can be proved for η = Θ(d−κ) with κ ≥ 1/2. The
only piece of the proof affected by this change is the third part of Lemma C.5.2 (in particular,
the chain of inequalities (C.163)), which continues to hold as long as η is polynomial in d−1.

86

5.5. Extension to General Covariance

Assumptions on compression rate r. We expect an analog of Theorem 6 to hold for
r > 1, as long as d is sufficiently large. In fact, for a fixed d, it appears to be difficult to even
characterize the global minimizer: the choice (5.12) approaches the lower bound LBr>1(I)
only as d → ∞, see Proposition 5.4.3. We also expect Theorem 7 to hold for r ≥ 1. Here, an
additional challenge is that the minimizer has non-zero off-diagonal entries. In combination
with the lack of an exact characterization of the minimizer, this leads to an additional error
term that would be difficult to control with the current tools. At the same time, the restriction
r < 1 is likely to be an artifact of the proof as experimentally (see, for instance, Figure 5.3)
the algorithm still converges to the global optimum for r ≥ 1.

Gaussian initialization in Theorem 7. The Gaussian initialization ensures that, with high
probability, the off-diagonal entries of B(t)B(t)⊤ are small. This allows us to approximate
higher-order Hadamard powers of B(t)B(t)⊤ with I. However, in experiments the Gaussian
assumption seems to be unnecessary, and we expect the convergence result to hold for all
(non-degenerate) initializations.

5.5 Extension to General Covariance
In this section, we consider a Gaussian source with general covariance structure, i.e., Σ =
UD2U⊤. Without loss of generality, the matrix D can be written as

D = Diag([D1, · · · , D1⏞ ⏟⏟ ⏞
×k1

| · · · |DK , · · · , DK⏞ ⏟⏟ ⏞
×kK

]), (5.22)

where ∑︁K
i=1 ki = d, ki ≥ 1 and Di > Di+1 ≥ 0. We start by deriving a closed-form expression

for the population risk, similar to that of Lemma 5.4.1. Its proof is given in Appendix C.1.

Lemma 5.5.1. Let σ ∈ L2(R, µ) be an odd homogeneous activation, then ˜︂R(r) is equal to
the minimum of

1
d

(︂
Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1 · Tr [BDA] + Tr

[︂
D2

]︂)︂
(5.23)

under the constraint ∥Bi,:∥2 = 1. Moreover, ˆ︂R(r) = ˜︂R(r).

The result of Lemma 5.5.1 can be extended to any odd σ ∈ L2(R, µ) at the cost of losing the
equivalence between the objectives ˆ︂R(r) and ˜︂R(r).

We restrict the theoretical analysis to proving a lower bound on (5.23) in the weight-tied
setting (5.14). This lower bound can be achieved via a careful choice of the matrices A,B
(see Proposition 5.5.2), and we provide numerical evidence (see Figure 5.2) that gradient
descent saturates the bound without the weight-tying constraint. Thus, we expect our lower
bound to hold also for general (not necessarily weight-tied) matrices.

The lower bound is given by the minimum

1
d

⎛⎝g(1)
c2

1n

(︄
K∑︂
i=1

βi

)︄2

+
K∑︂
i=1

(︄
c2

1
β2
i

si
− 2c1Diβi +D2

i

)︄⎞⎠ (5.24)

87

5. Fundamental Limits of Two-layer Autoencoders

over all βi ≥ 0 and ⎧⎨⎩0 ≤ si ≤ min{ki, n},
1 ≤ ∑︁K

i=1 si ≤ min{d, n}.
(5.25)

Here g(x) = f(x) − c2
1x, and we use the convention that 02

0 = 0 and c
0 = +∞ for c > 0.

We can also explicitly characterize the optimal si, βi. The optimal si are obtained via a
water-filling criterion:

⎧⎪⎪⎨⎪⎪⎩
s = [n, 0, · · · , 0], n ≤ k1,

s = [k1, k2, · · · , kK], d ≤ n,

s = [k1, · · · , kid(n)−1, res(n), 0, · · · , 0] otherwise,
(5.26)

where s = [s1, · · · , sk], id(n) denotes the first position at which min{n, d} −∑︁id(n)
i=1 ki < 0,

and the residual is defined by res(n) := min{n, d} −∑︁id(n)−1
i=1 ki. The βi can also be expressed

explicitly in terms of f, si, Di. This is summarized in the following theorem.

Theorem 8. Consider the objective (5.23) under the weight-tied constraint (5.14). Then,

(5.23) ≥ LB(D) := min
si,βi

(5.24), (5.27)

where βi ≥ 0 and the si satisfy (5.25). Furthermore, the minimizers of (5.24) are the si
obtained via the water-filling criterion (5.26) and

βi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
si

c1
·

⎛⎝ g(1)
c2
1n

∑︁M∗

j=1 sj∆j+D1

g(1)
c2
1n

∑︁M∗
j=1 sj+1

− ∆i

⎞⎠ if i ≤ M∗,

0 otherwise,
(5.28)

where ∆j = D1 −Dj and M∗ is smallest index such that

g(1)
c2

1n

M∗+1∑︂
j=1

sj(DM∗+1 −Dj) +DM∗+1 ≤ 0.

If no such index exists, then M∗ = K.

We give a high-level overview of the proof below, and the complete argument is provided in
Appendix C.6.

Proof sketch of Theorem 8. In the first step, we show that (5.27) holds. Consider the following
block decomposition of B having the same block structure as D:

B = [Γ1B1| · · · |ΓKBK], (5.29)

where Bj ∈ Rn×kj with ∥(Bj)i,:∥2 = 1 and {Γj}Kj=1 are diagonal matrices with ∑︁K
j=1 Γ2

j = I.
Each Bi will play a similar role to the B in the isotropic case. The crucial bound for this step
comes from Theorem A in [Kha21]:

(ΓiBiB
⊤
i Γi)◦2 ⪰ 1

si
· Diag(Γ2

i)Diag(Γ2
i)⊤,

88

5.5. Extension to General Covariance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Po

pu
la

tio
n

Ri
sk

Lower Bound
PRM
SGD

2.5

2.0

1.5

1.0

0.5

0.0

Lo
we

r B
ou

nd
 D

er
iv

at
iv

e
Va

lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Po
pu

la
tio

n
Ri

sk

Lower Bound
PRM
SGD

2.5

2.0

1.5

1.0

0.5

0.0

Lo
we

r B
ou

nd
 D

er
iv

at
iv

e
Va

lu
e

Figure 5.2: Compression (σ ≡ sign) of a non-isotropic Gaussian source, whose covariance matrix is
obtained by taking k = (20, 20, 35, 25) and (D1, D2, D3, D4) = (2, 1.5, 1, 0.8) for the left plot, and
k = (30, 40, 30) and (D1, D2, D3) = (2, 1, 0.7) for the right plot. The blue crosses (Population Risk
Minimizer, PRM) are obtained by optimizing (5.23) via GD. The green triangles are obtained by
training an autoencoder via SGD on Gaussian samples with the given covariance structure. The red
solid line plots the derivative of the population risk computed using a finite differences scheme. Note
that the derivative jumps when the corresponding blocks are getting filled, although this may not
happen in general, see Appendix C.7. A similar behavior can be observed in the isotropic case at
r = 1, as there is only one block to fill (see Figure 5.3).

where si = rank(BiB
⊤
i). Now, ignoring the (PSD) cross-terms for i ̸= j we can proceed as

in the proof of Proposition 5.4.2 to arrive at the lower bound
1
d

(︄
β2
(︄
g(1) · n+

K∑︂
i=1

γ2
i

si

)︄
− 2β ·

K∑︂
i=1

Diγi +
K∑︂
i=1

D2
i

)︄
, (5.30)

where, with an abuse of notation, we have re-defined g(x) := g(x)/c2
1 and β := c1β. Note

that for D = I one can easily find an expression for the minimum of (5.30) in terms of r and
verify that it coincides with the previous bounds in Theorem 5 and Proposition 5.4.2. Now by
choosing βi := βγi and using that ∑︁K

i=1 γi = n, the objective (5.30) is seen to be equivalent
to (5.24), hence (5.27) holds.
Next, the optimal si are water-filled as defined in (5.26), which follows from the standard
convex analysis argument of Lemma C.6.1. Finally, given the form of the optimal si, it remains
to find the optimal βi. This is done by considering a slightly more general problem in Lemma
C.6.2. In fact, the problem of minimizing (5.24) is of the form:

(5.24) = min
mi≥0

f

(︄
K∑︂
i=1

mi

)︄
+

K∑︂
i=1

fi(mi),

where importantly f and {fi}Ki=1 are strictly convex differentiable functions. The proof is
based on techniques from convex analysis. The explicit calculations for our case are then
carried out in Lemma C.6.3.

Asymptotic achievability. We show that the lower bound in Theorem 8 can be asymptoti-
cally (i.e, as d → ∞) achieved by using the block form (5.29), after carefully picking Bi for
each block. Specifically, first we generate a matrix U ∈ Rn×n which is sampled uniformly from
the group of orthogonal matrices. Next, we choose each Bi such that B̂iB̂

⊤
i = n

ki
UDiU

⊤,
where Di is a diagonal matrix with

(Di)v,v =

⎧⎨⎩1, if ∑︁i−1
j=1 kj < v ≤ ∑︁i

j=1 kj,

0, otherwise,

89

5. Fundamental Limits of Two-layer Autoencoders

and the rows of B are composed of normalized b̂i, i.e., bi = b̂i

∥b̂i∥2
. Furthermore, we pick

Γ2
i = γi

n
I and A = βB⊤. The scalings γi and β are chosen to be the minimizers of (5.30)

for si as in (5.25). This is formalized in the following proposition.

Proposition 5.5.2. Assume A,B are constructed as described above and fix r > 0. Also
assume that, for all i, ki

n
converges to a strictly positive number as d → ∞. Then, for any

ϵ > 0 with probability 1 − c
d2 , the following holds

|R(A,B) − LB(D)| ≤ Cd− 1
2 +ϵ,

where LB(D) is defined in (5.27), and the constants c, C only depend on r, ϵ and limd→∞
ki

n
.

The proof of this lemma is similar to that of Proposition 5.4.3, and it is provided in Appendix
C.6. We remark that Proposition 5.5.2 can be extended to Di being sampled from a compactly
supported measure, at the price of a worse rate of convergence. This is due to the fact that
we can approximate compact measures with discrete measures. We omit the details here.

Taken together, Proposition 5.5.2 and Theorem 8 show that the optimal B exhibits the block
structure (5.29), which agrees with the block structure (5.22) of the covariance matrix of the
data. The individual blocks are orthogonal in the sense that B⊤

i ΓiΓjBj = 0. Furthermore,
each block has the same form as the minimizers in the isotropic case, up to some scaling.
Such a structure is also confirmed by the numerical experiments: for instance, it is observed
in the settings considered for Figure 5.2.

5.6 Discussion
Population vs. empirical loss. All our results hold for the optimization of the population
loss. Extending them to the empirical loss is an interesting direction for future research. One
possible way forward is to exploit progress towards relating the landscape of empirical and
population losses, see e.g. [MBM18]. We remark that, in the simulations of gradient descent,
we always use the tempered straight-through estimator of the sign activation (see Appendix
C.7 for details). Thus, another promising direction is to show that, in the low-temperature
regime (i.e., when the differentiable approximation of the sign becomes almost perfect), the
gradient-based scheme converges to the minimizer of the population risk.

Optimality of two-layer autoencoders. In this chapter we characterize the minimizers
of the expected ℓ2 error incurred by two-layer autoencoders, and show that the minimum
error is achieved, under certain conditions, by gradient-based algorithms. Thus, for the
special case in which σ ≡ sign, a natural question is to what degree the model (5.1) is
suitable for data compression. Let us fix the encoder to be a rotationally invariant matrix, i.e.,
B = UΛV ⊤ with U ,V independent and distributed according to the Haar measure and Λ
having bounded entries. Then, the information-theoretically optimal reconstruction error can
be computed via the replica method from statistical mechanics [TCVS13] and, in a number
of scenarios, it coincides with the error of a Vector Approximate Message Passing (VAMP)
algorithm [RSF19, SRF16]. Furthermore, it is also possible to optimize the spectrum Λ to
minimize the error, which leads to the singular values of B being all 1 [MXM21].2 Surprisingly,

2More specifically, [MXM21] consider an expectation propagation (EP) algorithm [Min01, OWJ05,
FSARS16, HWJ17], which has been related to various forms of approximate message passing [MP17, RSF19].

90

5.6. Discussion

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
Ri

sk

Lower Bound
PRM
SGD
VAMP
Rate Distortion Function

Figure 5.3: Performance comparison for the com-
pression of an isotropic Gaussian source.

for a compression rate r ≤ 1, the optimal er-
ror found in [MXM21] coincides with the mini-
mizer of the population loss given by Theorem 5.
Hence, two-layer autoencoders are optimal com-
pressors under two conditions: (i) r ≤ 1, and
(ii) fixed encoder given by a rotationally invari-
ant matrix. Both conditions are sufficient and
also necessary. For r > 1, VAMP outperforms
the two-layer autoencoder. Moreover, for a
general encoder/decoder pair, the information-
theoretically optimal reconstruction error is
given by the rate-distortion function, which out-
performs two-layer autoencoders for all r > 0.
This picture is summarized in Figure 5.3: the blue curve represents the lower bound of Theorem
5 (for r ≤ 1) and Proposition 5.4.2 (for r > 1), which is met by either running GD on the
population risk (blue crosses) or SGD on samples taken from a isotropic Gaussian (green
triangles) when d = 100;3 this lower bound meets the performance of VAMP (red curve) if and
only if r ≤ 1; finally, the rate distortion function (orange curve) provides the best performance
for all r > 0.

Universality of Gaussian predictions. Figure 5.3 (and also Figure 5.2 in Appendix C.7)
show that gradient descent achieves the minimum of the population risk for the compression
of Gaussian sources. Going beyond Gaussian inputs, to real-world datasets, Figure 5.1
(as well as those in Appendix C.7) show an excellent agreement between our predictions
(using the empirical covariance of the data) and the performance of autoencoders trained on
standard datasets (CIFAR-10, MNIST). As such, this agreement provides a clear indication
of the universality of our predictions. In this regard, a flurry of recent research (see e.g.
[HMRT22, HL22, LGC+21, GLR+22, DSL22, MS22, WZF24]) has proved that the Gaussian
predictions actually hold in a much wider range of models. While none of the existing works
exactly fits the setting considered in this paper, this gives yet another indication that our
predictions should remain true more generally. The rigorous characterization of this universality
is left for future work.

The choice of the activation function. The sign activation function constitutes an
important special case of our analysis. However, our results hold for a broader class of
activations. In particular, under the restriction that the rows of the encoder B lie on the
unit sphere, all the results apply for any odd activation. The reason to fix the norm of the
rows of the encoder is to prevent the network from entering the linear regime (e.g., by scaling
B → ϵB and A → 1

ϵ
A). In fact, in the linear regime, perfect recovery can be achieved and

this case has been well studied, see e.g. [BH89, KBGS19, GBLJ19]. We also note that, if
the activation function is homogeneous, the restriction on the norm of the rows of B can be
lifted, as the norm can be scaled out. Extending our analysis to activation functions that are
not odd (e.g., ReLU) is an exciting avenue for future research. To achieve this goal, we expect
that novel ideas will be needed, since our current approach relies on the fact that the Hermite
expansion of the activation function (5.4) has only odd monomials.

3For further details on the experimental setup, see Appendix C.7.

91

CHAPTER 6
Autoencoders: Beyond Gaussian Data

In the previous chapter we discussed the compression of Gaussian data via shallow two-layer
autoencoding. However, the Gaussian inputs lack any structure and may be viewed as the least
“informative” distributionally. In this chapter, we ask the following question: to what degree
does a shallow autoencoder capture the structure of the underlying data distribution? For the
prototypical case of the 1-bit compression of sparse Gaussian data, we prove that gradient
descent converges to a solution that completely disregards the sparse structure of the input.
Namely, the performance of the algorithm is the same as if it was compressing a Gaussian
source – with no sparsity. For general data distributions, we give evidence of a phase transition
phenomenon in the shape of the gradient descent minimizer, as a function of the data sparsity:
below the critical sparsity level, the minimizer is a rotation taken uniformly at random (just
like in the compression of non-sparse data); above the critical sparsity, the minimizer is the
identity (up to a permutation). Finally, by exploiting a connection with approximate message
passing algorithms, we show how to improve upon Gaussian performance for the compression
of sparse data: adding a denoising function to a shallow architecture already reduces the loss
provably, and a suitable multi-layer decoder leads to a further improvement. We validate our
findings on image datasets, such as CIFAR-10 and MNIST, along with particle physics dataset
from [YM21b].

6.1 Motivation and Outlook
In this chapter, we continue the analysis of the shallow (GLM) encoding structure, however, for
certain upcoming analysis the decoding map is no longer restricted to a linear transformation.
In this view, it is beneficial to define a standalone notation for the encoding stage. Formally,
we consider the encoding of x ∈ Rd given by

z = σ(Bx), B ∈ Rn×d, z ∈ Rn, (6.1)

where the non-linear activation σ(·) is applied component-wise. The ratio r = n/d is referred
to as the compression rate. Recall that, for a shallow (two-layer) autoencoder, the decoding
consists of a single linear transformation A ∈ Rd×n:

x̂Θ(x) = Az = Aσ(Bx). (6.2)

The optimal set of parameters Θ = {A,B} minimizes the mean-squared error (MSE)

92

6.1. Motivation and Outlook

R(Θ) := d−1E
[︂
∥x − x̂Θ(x)∥2

2

]︂
, (6.3)

where the expectation is taken over the data distribution x. The model described in (6.2)
is a natural extension of linear autoencoders (σ(x) = α · x for some α ̸= 0), which were
thoroughly studied over the past years [KBGS19, GBLJ19, BLSG20]. In an effort to go beyond
the linear setting, a number of recent works have considered the non-linear model (6.2).
Specifically, [RG22, Ngu21] study the training dynamics under specific scaling regimes of the
input dimension d and the number of neurons n, which lead to either vanishing or diverging
compression rates. In the previous chapter we focus on the proportional regime in which d
and n grow at the same speed, but our analysis relies heavily on Gaussian data assumptions.
In contrast with Gaussian data that lacks any particular structure, real data often exhibits
rich structural properties. For instance, images are inherently sparse, and this property has
been exploited by various compression schemes such as jpeg. In this view, it is paramount to
go beyond the analysis of unstructured Gaussian data and address the following fundamental
questions:

Does gradient descent training of the two-layer autoencoder (6.2) capture the
structure in the data? How does increasing the expressivity of the decoder
impact the performance?

To address these questions, we consider the compression of structured data via the non-linear
autoencoder (6.1) with σ ≡ sign (1-bit compressed sensing, [BB08]) and show how the
data structure is captured by the architecture of the decoder. Let us explain the choice of
σ ≡ sign. Apart from the connection to classical information and coding theory [CT06], its
scale invariance prevents the model from entering the linear regime (see the details in Section
5.6 discussion on the choice of the activation function and in Section 5.3 setup paragraph).
Thus, sign is a natural candidate to tackle the non-linear setting of interest in applications
and, in fact, hard-thresholding activations are common in large-scale models [VDOV+17].
Our main results can be summarized as follows:

• Theorem 9 proves that the linear decoder in (6.2) may be unable to exploit the sparsity in
the data: when x has a Bernoulli-Gaussian (or “sparse Gaussian”) distribution, both the
gradient descent solution and the MSE coincide with those obtained for the compression
of purely Gaussian data (with no sparsity).

• Going beyond Gaussian data, we give evidence of the emergence of a phase transition
in the structure of the optimal matrices A,B in (6.2), as the sparsity level p ∈ (0, 1)
varies: Proposition 6.4.1 locates the critical value of p such that the minimizer stops
being a random rotation (as for purely Gaussian data), and it becomes the identity (up a
permutation); numerical simulations for gradient descent corroborate this phenomenology
and display a “staircase” behavior of the loss function.

• While for the compression of sparse Gaussian data the linear decoder in (6.2) does
not capture the sparsity, we show in Section 6.5 that increasing the expressivity of the
decoder improves upon Gaussian performance. First, we post-process the output of
(6.2), i.e., we consider

x̂Θ(x) = f(Az) = f(Asign(Bx)), (6.4)
where f is applied component-wise, and we prove that a suitable f leads to a smaller
MSE. In other words, adding a nonlinearity to the linear decoder in (6.2) provably helps.

93

6. Autoencoders: Beyond Gaussian Data

Finally, we further improve the performance by increasing the depth and using a multi-
layer decoder. Our analysis leverages a connection between multi-layer autoencoders
and the iterates of the RI-GAMP algorithm proposed by [VKM22], which may be of
independent interest.

Experiments on syntethic data confirm our findings, and similar phenomena are displayed
when running gradient descent to compress CIFAR-10/MNIST images and particle physics
data [YM21b]. Taken together, our results show that, for the compression of structured data,
a more expressive decoding architecture provably improves performance. This is in sharp
contrast with the compression of unstructured, Gaussian data where, as discussed in Section 6
of [SKHM23], multiple decoding layers do not help.

6.2 Related Work
Theoretical results for autoencoders. For the detailed related work regarding the theory of
autoencoding we refer to the previous discussion in Section 5.2. The only addition corresponds
to the results reported in the previous chapter. To recap briefly, we consider the compression of
Gaussian data with a two-layer autoencoder when the compression rate r is fixed and show that
gradient descent methods achieve a minimizer of the MSE. We provide a tight lower bound on
mean squared error achieved by the model and characterize the corresponding SGD training
dynamics in the case of isotropic data for r ≤ 1. We also indicate a universality of Gaussian
predictions on natural data that is closely related to inability of two-layer autoencoders to
capture of certain input structure which we outline for sparse Gaussian and sparse Rademacher
signals with a certain sparsity thresholds later on.

Incremental learning and staircases in the training dynamics. Phenomena similar to
the staircase behavior of the loss function that we exhibit in Figure 6.3 have drawn significant
attention. For parity learning, the line of works [ABAB+21, AAM22, AAM23] shows that
parities are recovered in a sequential fashion with increasing complexity. A similar behaviour
is observed in transformers with diagonal weight matrices at small initialization [ABBA+23]:
gradient descent progressively learns a solution of increasing rank. For a single index model,
[BMZ23] show a separation of time-scales at which the training dynamics follows an alternating
pattern of plateaus and rapid decreases in the loss. Evidence of incremental learning in deep
linear networks is provided by [Ber23, PF23, SKZ+23, JGŞ+21, MKAA21]. The recent work by
[SBGG23] shows that the cumulants of the data distribution are learnt sequentially, revealing
a sample complexity gap between neural networks and random features.

Approximate Message Passing (AMP). AMP refers to a family of iterative algorithms
developed for a variety of statistical inference problems [FVR+22]. Such problems include
the recovery of a signal x from observations z of the form in (6.1), namely, a Generalized
Linear Model [MN89], when the encoder matrix B is Gaussian [Ran11, MV22] or rotationally-
invariant [RSF19, SRF16, MP17, Tak19]. Of particular interest for our work is the RI-GAMP
algorithm by [VKM22]. In fact, RI-GAMP enjoys a computational graph structure that can be
mapped to a suitable neural network, and it approaches the information-theoretically optimal
MSE. The optimal MSE was computed via the replica method by [TUK06, TCVS13], and
these predictions were rigorously confirmed for the high-temperature regime by [LFSW23]. For
the complimentary details also see Section 2.3 of Chapter 2.

94

6.3. Preliminaries

6.3 Preliminaries
Notation. We use plain symbols a, b for scalars, bold symbols a, b for vectors, and capitalized
bold symbols A,B for matrices. Given a vector a, its ℓ2-norm is ∥a∥2. Given a matrix A,
its operator norm is ∥A∥op. We denote a unidimensional Gaussian distribution with mean µ
and variance σ2 by N (µ, σ2). We use the shorthand x̂ for x̂Θ. Unless specified otherwise,
function are applied component-wise to vector/matrix-valued inputs. We denote by C, c > 0
universal constants, which are independent of n, d.

Data distribution and MSE. For p ∈ (0, 1], a sparse Gaussian distribution SG1(p) is
equal to N (0, 1/p) with probability p and is 0 otherwise. The scaling of the variance of
the Gaussian component ensures a unit second moment for all p. We use the notation
x ∼ SGd(p) to denote a vector with i.i.d. components distributed according to SG1(p).
Decreasing p makes x ∼ SGd(p) more sparse: for p = 1 one recovers the isotropic Gaussian,
i.e., SGd(1) ≡ N (0, I), while p = 0 implies that x = 0.
In Chapter 5, we consider Gaussian data x ∼ SGd(1) and the two-layer autoencoder with
linear decoder in (6.2). Our analysis unveils that, for a compression rate r ≤ 1, the MSE
obtained by minimizing (6.3) over Θ = {A,B} is given by

RGauss := 1 − 2
π

· r. (6.5)

The set of minimizers (A,B) has a weight-tied orthogonal structure, i.e., BB⊤ = I and
A ∝ B⊤, and gradient-based optimization schemes reach a global minimum.

6.4 Limitations of a Linear Decoding Layer
Our main technical result is that a two-layer autoencoder with a single linear decoding layer does
not capture the sparse structure of the data. Specifically, we consider the autoencoder in (6.2)
with Gaussian data x ∼ SGd(p) trained via gradient descent. We show that, when n, d are
both large (holding the compression rate r = n/d fixed), the trajectory of the algorithm is the
same as that obtained from the compression of non-sparse data, i.e., x ∼ SGd(1) ≡ N (0, I).
As a consequence, the minimizer has a weight-tied orthogonal structure (BB⊤ = I, A ∝ B⊤),
and the MSE at convergence is given by RGauss as defined in (6.5).
We now go into the details. Since the optimization objective is convex in A, we consider the
following alternating minimization version of Riemannian gradient descent:

A(t+ 1) = arg min
A

R(A,B(t)),

B(t+ 1) := proj
(︂
B(t) − η

(︂
∇B(t) + G(t)

)︂)︂
.

(6.6)

In fact, due to the convexity in A of the MSE R(·, ·) in (6.3), we can compute in closed
form arg minA R(A,B(t)). Here, Riemannian refers to the space of matrices with unit-norm
rows, ∇B(t) is a shorthand for the gradient ∇B(t)R(A(t),B(t)), and proj normalizes the
rows of a matrix to have unit norm. The projection step (and, hence, the Riemannian nature
of the optimization) is due to the scale-invariance of sign, and it ensures numerical stability.
The term G(t) corresponds to Gaussian noise of arbitrarily small variance, which acts as a
(probabilistic) smoothing for the discontinuity of sign at 0 and, therefore, implies that the
gradient is well-defined along the trajectory of the algorithm. (Note that G(t) is not needed
in experiments, as we use a straight-through estimator, see Appendix D.2.1).

95

6. Autoencoders: Beyond Gaussian Data

Theorem 9 (Gradient descent does not capture the sparsity). Consider the gradient descent
algorithm in (6.6) with x ∼ SGd(p) and (G(t))i,j ∼ N (0, σ2), where d−γg ≤ σ ≤ C/d
for some fixed 1 < γg < ∞. Initialize the algorithm with B(0) equal to a row-normalized
Gaussian, i.e., B′

i,j(0) ∼ N (0, 1/d), B(0) = proj(B′(0)), and let B(0) = US(0)V ⊤ be its
SVD. Let the step size η be Θ(1/

√
d). Then, for any fixed r < 1 and Tmax ∈ (0,∞), with

probability at least 1 − Cd−3/2, the following holds for all t ≤ Tmax/η

B(t) = US(t)V ⊤ + R(t),⃦⃦⃦
S(t)S(t)⊤ − I

⃦⃦⃦
op

≤ C exp (−cηt) ,

lim
d→∞

sup
t∈[0,Tmax/η]

∥R(t)∥op = 0,
(6.7)

where C, c are universal constants depending only on p, r and Tmax. Moreover, we have that,
almost surely,

lim
t→∞

lim
d→∞

R(A(t),B(t)) = RGauss, (6.8)

lim
d→∞

sup
t∈[0,Tmaxmax/η]

∥B(t) − BGauss(t)∥op = 0, (6.9)

where RGauss is defined in (6.5) and BGauss(t) is obtained by running (6.6) with x ∼ N (0, I).

In words, (6.7) gives a precise characterization of the gradient descent trajectory: throughout
the dynamics, the eigenbasis of B(t) does not change significantly (i.e., it remains close to
that of B(0)) and, as t grows, all the singular values of B(t) approach 1. As a consequence,
(6.8) gives that, at convergence, the MSE achieved by (6.6) with x ∼ SGd(p) approaches
RGauss, which corresponds to the compression of standard Gaussian data x ∼ N (0, I). In
fact, a stronger result holds: (6.9) gives that the whole trajectory of (6.6) for x ∼ SGd(p) is
the same as that obtained for x ∼ N (0, I).
The fact that the autoencoder model in (6.2) is not able to exploit the signal structure is quite
surprising, especially since information-theoretically a sparse Gaussian source is more suitable
for compression than its non-sparse counterpart. Namely, for sparse Gaussian data, one can
compute rate-distortion function, which is the information-theoretically optimal MSE that
can be achieved for a given compression rate. This is done via the Blahut-Arimoto algorithm
[Bla72, Ari72] in Figure 6.1. We observe that as sparsity increase, the optimal MSE decreases,
so the data is easier to compress.

Beyond Gaussian data: Phase transitions, staircases in the learning dynamics,
and image data. For general distributions of the data x, we empirically observe that the
minimizers of the model in (6.2) found by stochastic gradient descent (SGD) either (i) coincide
with those obtained for standard Gaussian data, or (ii) are equivalent to (suitably sub-sampled)
permutations of the identity. Up to a permutation of the neurons, these two candidates can
be expressed as:

x̂Haar(x) = αHaar · B⊤sign(Bx),

x̂Id(x) = αId ·
[︄

In
0(d−n)×n

]︄
sign([In,0n×(d−n)]x),

(6.10)

where B is obtained by subsampling a Haar matrix (i.e., a matrix taken uniformly from the
group of rotations), 0(d−n)×n is a (d − n) × n matrix of zeros, and (αHaar, αId) are scalar
coefficients. The losses of these two candidates can be expressed in a closed form as derived
below.

96

6.4. Limitations of a Linear Decoding Layer

0.0 0.5 1.0 1.5 2.0
rate

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Gaussian Rate-Distortion
Sparse Gaussian Rate-Distortion (p=0.4) (Blahut-Arimoto)
Sparse Gaussian Rate-Distortion (p=0.2) (Blahut-Arimoto)
Sparse Gaussian Rate-Distortion (p=0.05) (Blahut-Arimoto)

Figure 6.1: Numerical computation of the rate-distortion function for a sparse Gaussian source via
the Blahut-Arimoto algorithm. We plot the optimal MSE against the rate r for different values of
sparsity p.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

SGD
Theoretical prediction
Gaussian performance
pcrit = 2/

Figure 6.2: Compression of sparse Rademacher data via the two-layer autoencoder in (6.2). We set
d = 200 and r = 1. Left. MSE achieved by SGD at convergence, as a function of the sparsity level p.
The empirical values (dots) match our theoretical prediction (blue line): for p < pcrit, the loss is equal
to the value obtained for Gaussian data, i.e., RGauss = 1 − 2r/π; for p ≥ pcrit, the loss is smaller,
and it is equal to 1 − r · (E|x1|)2 = 1 − r ·p. Center. Encoder matrix B at convergence of SGD when
p = 0.3 < pcrit: the matrix is a random rotation. Right. Encoder matrix B at convergence of SGD
when p = 0.7 ≥ pcrit: the negative sign in part of the entries of B is cancelled by the corresponding
sign in the entries of A; hence, B is equivalent to a permutation of the identity.

Proposition 6.4.1 (Candidate comparison). Let r ≤ 1 and let x have i.i.d. components
with zero mean and unit variance. Then, we have that, almost surely, the MSE of x̂Haar(·)
coincides with the Gaussian performance RGauss in (6.5), i.e.,

min
αHaar∈R

lim
d→∞

1
d

· Ex

[︂
∥x̂Haar(x) − x∥2

2

]︂
= 1 − 2

π
· r . (6.11)

Furthermore, we have that, for any d,

min
αId∈R

1
d

· Ex

[︂
∥x̂Id(x) − x∥2

2

]︂
= 1 − r · (E|x1|)2 , (6.12)

where x1 is the first component of x. This implies that x̂Id(·) is superior to x̂Haar(·) in terms
of MSE whenever

E|x1| >
√︂

2/π = Eg∼N (0,1)|g|. (6.13)

97

6. Autoencoders: Beyond Gaussian Data

0 1 2 3 4 5 6 7
Iteration 1e7

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

SGD
Gaussian performance: 1 2/
Global minimum: 1 p

Figure 6.3: Compression of sparse Rademacher
data via the two-layer autoencoder in (6.2). We
set d = 200, r = 1 and p = 0.8. The MSE is
plotted as a function of the number of iterations
and, as p > pcrit, it displays a staircase behavior.

The MSE of x̂Id(·) in (6.12) is obtained via
a direct calculation. To evaluate the MSE of
x̂Haar(·) in (6.11), we relate this estimator to
the first iterate of the RI-GAMP algorithm
proposed by [VKM22]. Then, the high dimen-
sional limit of ∥αHaar · B⊤sign(Bx) − x∥2

2
follows from the state evolution analysis of
RI-GAMP. A similar strategy will be used also
in Section 6.5 to analyze different decoding
architectures. The complete proof is in Ap-
pendix D.1.1.
As mentioned above, our numerical results
lead us to conjecture that SGD recovers either
of the candidates in (6.10), depending on
which achieves a smaller loss. Specifically, if
condition (6.13) is met, the SGD predictor converges to x̂Id(·) and improves upon the Gaussian
loss RGauss; otherwise, it converges to x̂Haar(·) and its MSE is equal to RGauss.

For sparse Gaussian data, condition (6.13) is never satisfied, as Ex1∼SG1(p)|x1| =
√︂

2p/π ≤√︂
2/π. In fact, as proved in Theorem 9, the SGD solution approaches x̂Haar(·) and its MSE

matches RGauss.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Gaussian performance
SGD

Figure 6.4: Compression of whitened physics par-
ticle data [YM21b] via the two-layer autoencoder
in (6.2). The SGD loss at convergence (dots)
matches the solid line, which corresponds to the
prediction in (6.5) for the compression of standard
Gaussian data (with no sparsity).

For sparse Rademacher data1, condition
(6.13) reduces to p > pcrit := 2/π ≈ 0.64,
and Figure 6.2 shows a phase transition in the
structure of the minimizers found by SGD:

• For p < pcrit, SGD converges to a solu-
tion s.t. B is a uniform rotation (cen-
tral heatmap) and the MSE is close to
RGauss = 1 − 2r/π, see (6.11).

• For p > pcrit, SGD converges to a solu-
tion s.t. B is equivalent to a permuta-
tion of the identity (right heatmap) and
the MSE is close to 1 − r · (E|x1|)2 =
1 − r · p, see (6.12). In both cases,
A ∝ B⊤.

If there is an improvement upon RGauss (i.e.,
p > pcrit), the SGD dynamics exhibits a stair-
case behavior. This phenomenon is displayed in Figure 6.3, which plots the error as a function
of the number of SGD iterations for p = 0.8 > pcrit: first, the MSE rapidly converges to
RGauss; then, there is a plateau; finally, the global minimum 1 − r · p is reached. We also
remark that, as p approaches pcrit, the time needed by SGD to escape the plateau increases.
A possible explanation is that, as p decreases, the noise due to masking increases, which
increases the variance of the gradient. This makes it harder for B to find a direction towards
a permutation of the identity (i.e., the global minimum). Additional evidence of both the

1Each i.i.d. component is equal to 0 w.p. 1 − p and to ±1/√p w.p. p/2, which ensures a unit second
moment for all p ∈ [0, 1].

98

6.5. Provable Benefit of Nonlinearities and Depth

0.0 0.2 0.4 0.6 0.8 1.0
r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Gaussian performance
SGD

Figure 6.5: Compression of masked and whitened CIFAR-10 images of the class “dog” via the
two-layer autoencoder in (6.2). First, the data is whitened so that it has identity covariance (as in
the setting of Theorem 9). Then, the data is masked by setting each pixel independently to 0 with
probability p = 0.7. An example of an original image is on the top right, and the corresponding
masked and whitened image is on the bottom right. The SGD loss at convergence (dots) matches
the solid line, which corresponds to the prediction in (6.5) for the compression of standard Gaussian
data (with no sparsity).

phase transition and the staircase behavior of SGD is in Appendix D.2.2, where Figure D.1
considers Rademacher data, Figures D.2-D.3 data coming from a sparse mixture of Gaussians,
Figure D.4 data sampled from a sparse mixture of Beta distributions, Figures D.5 and D.6
data distributed according to a (non-sparse) mixture of Gaussians with varying aspect ratio,
and Figure D.7 sparse Laplace data.

The proof strategy of Theorem 9 could be useful to track SGD until it reaches the plateau.
However, characterizing the time-scale needed to escape the plateau likely requires new tools,
and it provides an exciting research direction.

Finally, Figure 6.5 shows that our theory predicts well the behavior of the compression of
CIFAR-10 images via the two-layer autoencoder in (6.2). We let x1 be the empirical distribution
of the image pixels after whitening and masking2, and we verify that condition (6.13) does
not hold. Then, as expected, the autoencoder is unable to capture the structure coming from
masking part of the pixels, and the loss at the end of SGD training equals RGauss. Similar
results hold for MNIST, see Figure D.8 in Appendix D.2.3, and particle physics data [YM21b],
see Figure 6.4.

6.5 Provable Benefit of Nonlinearities and Depth

In this section, we prove that more expressive decoders than the linear one in (6.2) capture
the sparsity of the data and, therefore, improve upon the Gaussian loss RGauss.

2The whitening makes the data have isotropic covariance, as required by our theory; the masking makes
the data sparse.

99

6. Autoencoders: Beyond Gaussian Data

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ob

je
ct

iv
e

Va
lu

e
d 1 ||BB I||2F
d 1 ||BA I||2F

0.2 0.4 0.6 0.8 1.0
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Theoretical prediction
SGD
Gaussian performance

Figure 6.6: Compression of sparse Gaussian data via the autoencoder in (6.4), where f has the form
in (6.15) and its parameters (α1, α2, α3) are optimized via SGD. We set d = 100 and p = 0.4. Left.
Distance between B̂B̂

⊤, B̂Â and the identity, as a function of the number of iterations, where B̂,
Â denote the row-normalized versions of B, A. ∥B̂B̂

⊤ − I∥F and ∥B̂Â − I∥F decrease and tend
to 0, meaning that (up to a rescaling of the rows) BA and BB⊤ approach the identity. Here, we
take r = 1. Right. MSE achieved by SGD at convergence, as a function of the compression rate r.
The empirical values (dots) match the characterization of Proposition 6.5.1 for f = f∗ in (6.18)
(blue line), and they outperform the MSE (6.5) obtained by compressing standard Gaussian data
(orange dashed line).

6.5.1 Provable Benefit of Nonlinearities
First, we apply a nonlinearity at the output of the linear decoding layer, as in (6.4). The ResNet-
like denoising architecture analyzed in [CZ23] suggests a suitable choice of the non-linearity.
The corresponding denoising network has the following form:

x · α + Θ1 · tanh(Θ2 · x). (6.14)

To map (6.14) to a scalar denoising function, we fix Θ1,Θ2 ∝ I (or a row-subsampled version
of an identity matrix for r < 1). Specifically, we take

f(x) = α1x+ α2tanh(α3x), (6.15)

and run SGD on the weight matrices (A,B) and on the trainable parameters (α1, α2, α3) in f .
Figure 6.6 shows that, at convergence, the minimizers have the same weight-tied orthogonal
structure as obtained for Gaussian data (BB⊤ = I, A ∝ B⊤), see the left plot. However, in
sharp contrast with Gaussian data, the loss is smaller than RGauss, see the blue dots on the
right plot and compare them with the orange dashed curve. This empirical evidence motivates
us to analyze the performance of autoencoders of the form (6.4), where B is obtained by
subsampling a Haar matrix of appropriate dimensions and A = B⊤.

Proposition 6.5.1 (MSE characterization). Let r ≤ 1 and x have i.i.d. components with
zero mean and unit variance. Consider the autoencoder x̂(x) in (6.4), where B is obtained
by subsampling a Haar matrix, A = B⊤, and f is a Lipschitz function. Then, we have that,
almost surely,

lim
d→∞

1
d

· Ex∥x − x̂(x)∥2
2 = Ex1,g|x1 − f(µx1 + σg)|22, (6.16)

where x1 is the first entry of x, g ∼ N (0, 1) and independent of x1, and the parameters (µ, σ)
are given by

µ = r

√︄
2
π
, σ2 = r

(︃
1 − r · 2

π

)︃
> 0. (6.17)

100

6.5. Provable Benefit of Nonlinearities and Depth

Proposition 6.5.1 is a generalization of Proposition 6.4.1, which corresponds to taking a linear
f . The idea is to relate f(B⊤sign(Bx)) to the first iterate of a suitable RI-GAMP algorithm,
so that the characterization in (6.16) follows from state evolution. The details are in Appendix
D.1.2.

Armed with Proposition 6.5.1, one can readily establish the function f that minimizes the
MSE for large d. This in fact corresponds to the f that minimizes the RHS of (6.16), i.e.,

f ∗(y) = E[x1|µx1 + σg = y], (6.18)

as long as the latter is Lipschitz (so that Proposition 6.5.1 can be applied). Sufficient
conditions for f ∗ to be Lipschitz are that either (i) x1 has a log-concave density, or (ii) there
exist independent random variables u0, v0 s.t. u0 is Gaussian, v0 is compactly supported and
x1 is equal in distribution to u0 + v0, see Lemma 3.8 of [FVR+22]. The expression of f ∗ for
distributions of x1 considered in the experiments (sparse Gaussian, Laplace, and Rademacher)
is derived in Appendix D.1.4.

The blue curve in the right plot of Figure 6.6 evaluates the RHS of (6.16) for the optimal
f = f ∗, when x1 ∼ SG1(p). Two observations are in order:

1. The blue curve matches the blue dots, obtained by optimizing via SGD the matrices
A,B and f in the parametric form (6.15). This means that the SGD performance
is accurately tracked by plugging the optimal function (6.18) into the prediction of
Proposition 6.5.1.

2. The blue curve improves upon the Gaussian loss RGauss (orange dashed line). This
means that, while the two-layer autoencoder in (6.2) is stuck at the MSE in orange (as
proved by Theorem 9), by incorporating a nonlinearity, the autoencoder in (6.4) does
better. In fact, as shown in Figure D.10 in Appendix D.2.5, the MSE achieved by the
autoencoder in (6.4) with the optimal choice of f (namely, the RHS of (6.16) with
f = f ∗) is strictly lower than RGauss for any p ∈ (0, 1).

Beyond Gaussian data: Phase transitions, staircases in the learning dynamics,
and image data. For general data x with i.i.d. zero-mean unit-variance components, the
autoencoder in (6.4) displays a behavior similar to that described in Section 6.4 for the
autoencoder in (6.2): the SGD minimizers of the weight matrices A,B either exhibit a
weight-tied orthogonal structure (BB⊤ = I, A ∝ B⊤), or come from permutations of the
identity. This leads to a phase transition in the structure of the minimizer (and in the MSE
expression), as the sparsity p varies. To quantify the critical value of p at which the minimizer
changes, one can compare the MSE when B is subsampled (i) from a Haar matrix, and (ii)
from the identity. The former is readily obtained from Proposition 6.5.1 where f is given by
(6.18), and the latter is given by the result below, which is proved in Appendix D.1.3.

Proposition 6.5.2. Let x have i.i.d. components with zero mean, unit variance and a
symmetric distribution (i.e., the law of x1 is the same as that of −x1). Define x̂Id(x) as in
(6.10), and fix r ≤ 1. Then, we have that, for any d,

min
f

1
d

· Ex

[︂
∥f(x̂Id(x)) − x∥2

2

]︂
= 1 − r · (E|x1|)2. (6.19)

Figure 6.7 displays the phase transition for the compression of sparse Rademacher data:

101

6. Autoencoders: Beyond Gaussian Data

0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

M
SE

SGD
1 p (Proposition 5.2)
Theoretical prediction
Gaussian performance
pcrit 0.67

Figure 6.7: Compression of sparse Rademacher data via the autoencoder in (6.4). We set d = 200
and r = 1. The MSE achieved by SGD at convergence is plotted as a function of the sparsity level p.
The empirical values (blue dots) match our theoretical prediction (blue line). For p < p̃crit, the MSE
is given by Proposition 6.5.1 for B sampled from the Haar distribution; for p ≥ p̃crit, the MSE is
given by Proposition 6.5.2 for B equal to the identity.

• For p < p̃crit ≈ 0.67, SGD converges to a solution with MSE given by the RHS of (6.16)
with f = f ∗. Furthermore, B is a uniform rotation (see the central heatmap in Figure
D.11 of Appendix D.2.6).

• For p > p̃crit, SGD converges to a solution with MSE given by the RHS of (6.19).
Furthermore, B is equivalent to a permutation of the identity (see the right heatmap in
Figure D.11 of Appendix D.2.6).

By comparing the blue dots/curve with the orange dashed line in Figure 6.7, we also conclude
that, for all p, the MSE of the autoencoder in (6.4) improves upon the Gaussian performance
RGauss. This is in contrast with the behavior of the autoencoder in (6.2) which remains
stuck at RGauss for p < 2/π (see Figure 6.2), and it demonstrates the benefit of adding the
nonlinearity f .

For p > p̃crit, the learning dynamics exhibits again a staircase behavior in which the MSE
first gets stuck at the value given by the RHS of (6.16) with f = f ∗, and then reaches the
optimal value of 1 − r · (E|x1|)2. This is reported for p = 0.9 > p̃crit ≈ 0.67 in Figure D.13 of
Appendix D.2.6.

Additional numerical simulations to demonstrate both phase transition and staircase behaviour
for the autoencoder in 6.4 are presented in Appendix D.2.6. Namely, Figure D.14 corresponds
to data coming from a sparse mixture of Beta distributions, Figure D.15 considers sparse
Gaussian mixture data, Figure D.16 considers the setting of (non-sparse) Gaussian mixture
with varying aspect ratio, and Figure D.17 illustrates the results achieved on sparse Laplace
data.

Finally, Figure 6.8 shows that the key features we unveiled for the autoencoder in (6.4) are still
present when compressing sparse CIFAR-10 data. The empirical distribution of the image pixels
after whitening is well approximated by a Laplace random variable (see Figure D.9 in Appendix
D.2.4), thus we denote by x1 the corresponding sparse Laplace distribution (see (D.7) in
Appendix D.1.4 for a formal definition). The encoder matrix B is obtained by subsampling

102

6.5. Provable Benefit of Nonlinearities and Depth

0.2 0.4 0.6 0.8 1.0
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

Laplace prediction (p = 1)
Sparse Laplace prediction (p = 0.4)
SGD, CIFAR (p = 1)
SGD, sparse Laplace (p = 0.4)
SGD, masked CIFAR (p = 0.4)

Figure 6.8: Compression of masked and whitened CIFAR-10 images of the class “dog” via the
autoencoder in (6.4). We plot the MSE as a function of the compression rate r. Dots are obtained by
training the decoder matrix A and the parameters (α1, α2, α3) via SGD on masked (p = 0.4, green)
or original (p = 1, blue) CIFAR-10 images. Continuous lines refer to the predictions of Proposition
6.5.1 for the optimal f = f∗ in (6.18), where x1 has a Laplace distribution (p = 1, blue) or a sparse
Laplace distribution (p = 0.4, orange). These curves match well the corresponding values obtained
via SGD. Orange dots are obtained by training the matrices A,B and the parameters (α1, α2, α3)
via SGD when x has i.i.d. sparse Laplace entries with p = 0.4.

a Haar matrix, and it is fixed; the decoder matrix A and the parameters (α1, α2, α3) in the
definition (6.15) of f are obtained via SGD training. Two observations are in order:

1. The autoencoder in (6.4) captures the sparsity: the MSE achieved on sparse data
(p = 0.4, green dots) is lower than the MSE on non-sparse data (p = 1, blue dots).

2. For both values of p, the SGD performance matches the RHS of (6.16) (continuous
lines) with f = f ∗. As expected, this MSE is smaller than 1 − r · (E|x1|)2, and it
coincides with that obtained for compressing synthetic data with i.i.d. Laplace entries
(orange dots).

6.5.2 Provable Benefit of Depth
We conclude by showing that the MSE can be further reduced by considering a multi-layer
decoder. Our design of the decoding architecture is inspired by the RI-GAMP algorithm
[VKM22], which iteratively estimates x from an observation of the form σ(Bx) via

xt = B⊤ẑt −
t−1∑︂
i=1

βt,ix̂
i, x̂t = ft(x1, · · · ,xt),

zt = Bx̂t −
t∑︂
i=1

αt,iẑ
i, ẑt+1 = gt(z1, · · · , zt, ẑ1).

(6.20)

Here, ft, gt are Lipschitz and applied component-wise, and the initialization is ẑ1 = sign(Bx).
The coefficients {βt,i} and {αt,i} are chosen so that, under suitable assumptions on B,3 the
empirical distribution of the iterates is tracked via a low-dimensional recursion, known as state
evolution. This in turn allows to evaluate the MSE limd→∞

1
d
∥x − x̂t∥2

2.
3B has to be bi-rotationally invariant in law, namely, the matrices appearing in its SVD are sampled from

the Haar distribution.

103

6. Autoencoders: Beyond Gaussian Data

0.2 0.4 0.6 0.8 1.0
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Gaussian performance
Prediction, decoder + non-linearity
Bayes-optimal
SGD, linear decoder
SGD, decoder + non-linearity
SGD, deep decoder

Figure 6.9: Compression of sparse Gaussian data x ∼ SGd(p) for p = 0.3 and d = 500. We plot the
MSE as a function of the compression rate r for various autoencoder architectures. The architecture
in (6.21) (orange dots) outperforms the autoencoders in (6.2) (green dots) and in (6.4) (blue dots),
and it approaches the Bayes-optimal MSE (orange line).

The results of Proposition 6.4.1 and 6.5.1 follow from relating the autoencoders in (6.2)-
(6.4) to RI-GAMP iterates in (6.20). More generally, x̂t is obtained by multiplications with
B,B⊤, linear combinations of previous iterates, and component-wise applications of Lipschitz
functions. As such, it can be expressed via a multi-layer decoder with residual connections.
The numerical results in [VKM22] show that taking ft, gt as posterior means (as in (6.18))
leads to Bayes-optimal performance, having fixed the encoder matrix B. Thus, this provides a
proof-of-concept of the optimality of multi-layer decoders.
In fact, Figure 6.9 shows that an architecture with three decoding layers is already near-optimal
when x ∼ SGd(p). The decoder output is x̂2 computed as (see also the block diagram in
Figure 6.10)

ẑ1 = sign(Bx), x1 = W1ẑ
1, x̂1 = f1(x1),

ẑ2 = g1(V1x̂
1 ⊕1 ẑ1),

x2 = x̂1 ⊕2 W2ẑ
2, x̂2 = f2(x1 ⊕3 x2).

(6.21)

Here, f1(·), f2(·), g1(·) are trainable parametric functions of the form in (6.15) and, for
i ∈ {1, 2, 3}, a ⊕i b = βia + γib, where {βi, γi} are also trained. The plot demonstrates the
benefit of employing more expressive decoders:

1. The green dots are obtained via SGD training of the autoencoder in (6.2) and, as proved
in Theorem 9, they match the Gaussian performance RGauss.

2. The blue dots are obtained via SGD training of the autoencoder in (6.4) and they match
the prediction of Proposition 6.5.1 with f = f ∗ in (6.18).

3. The orange dots are obtained by using the decoder in (6.21) where W1 = W2 =
B⊤, V1 = B are subsampled Haar matrices and the parameters in the functions
f1, f2, g1, {⊕i}3

i=1 are trained via SGD. Similar results are obtained by training also
W1,W2,V1, although at the cost of a slower convergence.

104

6.6. Conclusions and Future Directions

σ(Bx) ×W1 x1
f1(⋅)

x̂1

̂z1

× V1

⊕1
g1(⋅)

̂z2

⊕2

×W2

x2 ⊕3
f2(⋅)

x̂2

Figure 6.10: Block diagram of the decoder in (6.21).

In summary, the architecture in (6.21) improves upon those in (6.2)-(6.4), and it approaches
the orange curve which gives the Bayes-optimal MSE achievable by fixing a rotationally
invariant encoder matrix B [MXM21]. Additional details are deferred to Appendix D.2.7.
We also note that considering a deep fully-connected decoder in place of the architecture
in (6.21) does not improve upon the autoencoder in (6.4). In fact, while sufficiently wide
and deep models have high expressivity, their SGD training is notoriously difficult, due to
e.g. vanishing/exploding gradients [GB10, HZRS16]. In addition to that, we would like to
point out that training with quantized activations (such as sign) which utilize variants of
the straight-through estimator introduces challenges for the optimization. This has led to
the extensive usage of heuristics to make training more stable, such as “clipping” (see, e.g.,
[HCS+18]).

6.6 Conclusions and Future Directions
Let us summarize the key points of our analysis presented in this chapter. Motivated by
the Gaussian universality of the (shallow) two-layer model (6.2) demonstrated on MNIST
and CIFAR-10 data in Chapter 5, we studied the behaviour of the shallow model on a more
structured sparse Gaussian source. Our analysis (Theorem 9) of the gradient-based optimization
scheme unveils that the shallow autoencoder model is incapable of capturing the structure of
the data (sparsity) and recovers the Gaussian performance (6.5). Going beyond sparse Gaussian
data, we derive a conjecture for a general i.i.d. input distribution. The conjecture states
that the shallow autoencoder differentiates between two parameter configurations (6.10): the
sparse deterministic permutation of identity and the random Haar design. The condition which
guides this choice corresponds to the comparison between the first absolute moment of the
input distribution and the analogous quantity evaluated for Gaussian signal (Proposition 6.4.1).
We empirically validate that the aforementioned holds for more general data: MNIST and
CIFAR-10 natural images, and particle physics data [YM21b]. Moreover, when the transition
from random to deterministic design takes place, the SGD training dynamics (see, for instance,
Figure 6.3) shows a “staircase” behaviour.
In Section 6.5.1, we indicate that a similar behaviour is observed for a more expressive decoding
model (6.4) that utilizes an extra non-linearity for general i.i.d. priors. In Section 6.5.2, we
conclude with an AMP-based neural decoder architecture that is able to achieve performance
close to the Bayes optimal one (given the rotationally invariant Haar design) at the cost of
only three extra layers and parametric non-linearities. We also indicate that the “intelligent”

105

6. Autoencoders: Beyond Gaussian Data

design of the decoder is essential as empirically a “straight-forward” MLP decoder does not
improve upon a single non-linearity (6.4).
The above summary quite evidently suggests a number of exciting directions for future
research. First, proving formally the observed “staircase” phenomenon would be an interesting
and challenging result by itself, since the technical machinery, developed for the analysis in
Theorems 9 and 7, is no longer applicable to the second “sparse” phase, due to a lack of
the concentration provided by the Haar design. Thus, tackling this problem will require the
development of new technical machinery, which will be of separate interest.
Another interesting direction corresponds to analysing more rich encoding schemes, since the
GLM design of the encoder is clearly sub-optimal even in the presence of the best possible
decoder (compare Figures 6.9 and 6.1 for the sparse Gaussian case, and see Figure 5.3
for Gaussian data). Furthermore, for the theoretical analysis we consider data with i.i.d.
components. Consequently, it would be interesting to obtain results similar to the non-isotropic
Gaussian case presented in Chapter 5 for a more general class of inputs with correlated
components. For instance, we expect similar in flavour results might be obtained (with enough
effort) for the following class of inputs

x = P · ˜︁x, P ∈ Rd×d, ˜︁x ∈ Rd,

for some PSD matrix P and where the i.i.d. “latent” ˜︁x has some structure, i.e., sparsity. A
more exciting (albeit more challenging) direction would be to consider data with “effective”
dimension less than d. To be more concrete, one may consider the “hidden manifold” data
model (see, for example, [GMKZ20]) which could be formalized as the following general
relation:

x = ψ(˜︁x), ˜︁x ∈ Rd′
, d′ < d,

where ψ : Rd′ → Rd is some (possibly non-linear) mapping from the lower-dimensional latent
representation of x to the space of inputs. In particular, it would be interesting to derive
any quantitative result which suggests that a suitable autoencoder model is able to, vaguely
speaking, capture the lower-dimensional structure of the signal. For instance, a satisfactory
analysis would imply that the population risk bounds akin to the ones described in Theorem 5
and Proposition 5.4.2 would implicitly depend not on the ambient dimension d but on the
dimension of the “latent” d′ (and most likely on some complexity measure of the transformation
ψ itself).

106

CHAPTER 7
Discussion and Concluding Remarks

In this thesis, we study the phenomenology that emerges in artificial neural networks under
various asymptotic regimes. Utilizing “high-dimensions”, we provably show that there are a
few properties specific to over-parameterized models and, armed with the asymptotic analysis,
provide a sharp characterization of the neural network behaviour.

Thesis Summary and Contributions
In Chapter 3 and 4, we take the mean-field view [MMN18, AOY19] to study over-parameterized
neural networks in the supervised learning (regression and classification) context. Inspired
by the empirically observed phenomenon of mode connectivity [GIP+18, DVSH18] and the
related theoretical property of dropout stability [KWL+19], in Chapter 3 we provide a rigorous
proof along with quantitative bounds for this observation. Crucially, the analysis heavily relies
on the over-parameterization of the neural architecture at hand. In this view, our results also
provide a theoretical basis for the practical success of the family of “local search” algorithms,
such as stochastic gradient descent (SGD), as in this case the model’s optimization landscape
is more well-behaved due to mode connectivity, contrary to what the worst case scenario might
suggest.
The practical success of gradient-based methods is sometimes attributed to the implicit bias
of the optimization procedure itself. Namely, it is conjectured and proven in certain cases
(e.g., [WTS+19, BGVV20]) that the learning algorithm is implicitly selective, i.e., it finds
functionally simple solutions that exhibit superior generalization ability in comparison to other
candidates with roughly the same value of the empirical risk. In Chapter 4, we capitalize
on the mean-field characterization of the training dynamics once more to show that SGD
on an over-parameterized ReLU neural network is attracted to a relatively simple solution.
In particular, the network implements a piecewise linear function: the number of tangent
changes is independent of the network size and scales linearly with the number of training
samples. Remarkably, the described behaviour is significantly different from related works
[WTS+19, BGVV20]. In addition to that our proof technique directly utilizes the functional
form of the Gibbs minimizer. In this view, the fact that it allows for such a tight analysis is
quite surprising and might be of separate interest to the community.
In Chapter 5 and 6, we divert from the supervised setting and analyse the autoencoding
paradigm that showed remarkable success on various unsupervised tasks such as representation
learning [TBL18] and generative modeling [KW13]. Despite their wide practical spread, the

107

7. Discussion and Concluding Remarks

theoretical understanding of such models is quite limited even in the simplistic shallow case.
Precisely, the existing analysis is either restricted to linear autoencoders which yield PCA-like
behaviour [KBGS19, OSWS20], or extreme compression rate regimes [Ngu21, RG22]. In
Chapter 5, we aim to bridge this gap and consider a shallow autoencoder (AE) for 1-bit
compression of Gaussian inputs in the challenging proportional regime (the compression rate is
fixed to a constant, i.e., it is neither vanishing nor diverging in contrast to the results described
in [Ngu21, RG22]). We provide lower bounds on the reconstruction error of the AE under such
setting. Importantly, the tightness of the bounds is once more ensured by the “blessing” of
high-dimensions. It also allows to provide rigorous guarantees for the convergence of a certain
gradient-based scheme to the global minimizer. Surprisingly, we discover that the predictions
made under the Gaussian assumption translate extremely well to the case of natural data,
such as MNIST and CIFAR-10 images.

In Chapter 6, we investigate this “universality” property further. In particular, we ask the
question whether the data is indeed more Gaussian than it appears or it is the specific flaw of
the shallow design which disables the model from seeing beyond such crude approximation
of the input signal. To start with, we consider a prototypical example of a more “structured”
signal - sparse Gaussian data - which at least information-theoretically is more amenable to
compression. However, we prove that the gradient-based scheme fails to recover the sparsity
of the inputs, and that at convergence a shallow autoencoder model is incapable to capture
the structure, which is explained by the resulting Gaussian performance. Digging into the issue
deeper, we focus on the case of general i.i.d. source. We conjecture that depending on a certain
data statistic the model chooses between two candidates of different but equally simplistic
nature. Namely, the optimal encoder design is either rotationally invariant or deterministic
and sparse (permutation of identity). Notably, when the rotationally invariant encoding
is not the optimal choice, the training dynamics of the autoencoder exhibits a “staircase”
behaviour [ABAB+21, AAM22, AAM23, PF23]. We also provide both empirical and theoretical
evidence that the “curse” of Gaussian performance can be alleviated by enriching the decoding
architecture.

Future Directions
In this thesis we extensively demonstrated that taking a high-dimensional view is beneficial from
both analytical, i.e., making the problem at hand tractable, and phenomenological perspectives,
i.e., that certain properties (e.g., dropout stability) occur naturally under sufficient over-
parameterization. However, there are a few fundamental questions related to the results
presented in the current thesis which remain unanswered, especially concerning the second
part of the thesis focused on the autoencoding paradigm. In the following paragraphs, we
summarize the future directions which were previously discussed in the corresponding sections
of the current thesis and also mention a few (mostly on the technical side) that were omitted.

Loss landscape and implicit bias. We start by highlighting a few directions in which
the results presented in Chapter 3 can be extended. In particular, we focus on the remarks
concerning the multi-layer case presented in Section 3.4. First, we would like to note that the
restriction on the first and last layer parameters to stay fixed during the SGD training for the
theoretical analysis could be alleviated by considering a more recent and refined version of the
corresponding mean-field coupling [NP23]. However, let us point out that incorporating bias
terms in the intermediate layers might still prove to be a challenge. This stems from the fact
that in the absence of bias terms the corresponding limit admits significant simplifications

108

(see the more detailed discussion in Section 5 of [NP23]). Let us also briefly mention that the
exponential in time coupling in the main theorems of Chapter 3 could potentially be fixed via
novel uniform in time propagation of chaos results, see, for example, [SNW23].
With regards to the implicit bias results presented in Chapter 4, the natural direction of the
extension corresponds to translating the current analysis to the case of multidimensional
regression. However, the straight-forward way would imply a number of “knots” which is
exponential in the input dimension. In this case, “knots” are multidimensional and correspond
to the intersection of the hyperplanes which define the activation region of each ReLU neuron.
Thus, we do not expect to see a relatively trivial extension without the need to change the
nature of the argument itself or adding extra assumptions on the input data. On more technical
side, let us remark that the uniqueness of the limit on the approximating sequence (i.e., that
the piecewise linear solution structure does not change by selecting a different subsequence) is
left without proof. However, we do present sufficient empirical evidence that the uniqueness
in fact holds. Establishing the formal proof might require considerable effort since morally it
would correspond to providing an extra “continuity” argument (e.g., uniform integrability on
the sequence).

Autoencoders and feature learning. Let us now proceed with highlighting possible future
directions for the analysis of autoencoders in Chapters 5 and 6. To start, given the direct
comparison with the shallow model (see, for instance, Figure 5.3), it is quite evident that the
shallow architecture is quite far off from the optimal encoding-decoding scheme. In this view,
it would be exciting to find a suitable deeper neuronal architecture which could get closer or,
best case, saturate the rate-distortion prediction.
It would be also interesting to obtain quantitative results akin to the lower bounds discussed
in Chapter 5 for the case of more structured input data. Namely, assuming that the source
signal is supported on a certain lower-dimensional space, is it possible to derive the population
risk bound which would explicitly depend on this effective dimension in a non-trivial way?
Along the same lines but more towards explicitly quantifying the “feature learning” aspect of
the autoencoders, given a higher order structural correlation in the inputs (e.g., triplets of
input coordinates have a strong dependency) which features does the encoding extract from
the data? In the case of signals considered in Chapters 5 and 6 (lower order) the features
themselves are not very informative (either Haar matrix or no features at all, which corresponds
to the permutation of identity), except the case with covariance, discussed in Section 5.5,
when the encoding learns the correct eigenspaces of the data. For a more technical discussion,
we also refer the reader to Section 6.6 of the current thesis.
In conclusion, in this thesis we explored how high-dimensional regimes both naturally explain
the emergent properties in modern machine learning systems while simultaneously paving the
way for the related theoretical analysis. We hope that the results presented in the current thesis
together with the developed methodology would give a new perspective on understanding
practical high-dimensional regimes for large scale artificial neural networks, and provide novel
theoretical machinery for analysing many particle systems in general.

109

Bibliography

[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-
staircase property: a necessary and nearly sufficient condition for SGD learning
of sparse functions on two-layer neural networks. Conference on Learning Theory,
2022.

[AAM23] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. SGD learning
on neural networks: leap complexity and saddle-to-saddle dynamics. Conference
on Learning Theory, 2023.

[ABAB+21] Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and
Dheeraj Nagaraj. The staircase property: How hierarchical structure can guide
deep learning. Advances in Neural Information Processing Systems, 2021.

[ABBA+23] Emmanuel Abbe, Samy Bengio, Enric Boix-Adserà, Etai Littwin, and Joshua M
Susskind. Transformers learn through gradual rank increase. Advances in Neural
Information Processing Systems, 2023.

[AHW96] Peter Auer, Mark Herbster, and Manfred KK Warmuth. Exponentially many local
minima for single neurons. Advances in Neural Information Processing Systems,
1996.

[AMS09] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

[AMT+17] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu
Timofte, Luca Benini, and Luc V Gool. Soft-to-hard vector quantization for
end-to-end learning compressible representations. Advances in Neural Information
Processing Systems, 2017.

[AOY19] Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for
certain deep neural networks. arXiv preprint, 2019.

[Ari72] S. Arimoto. An algorithm for computing the capacity of arbitrary discrete
memoryless channels. IEEE Transactions on Information Theory, 1972.

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. Advances in Neural
Information Processing Systems, 2019.

[AZLS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep
learning via over-parameterization. International Conference on Machine Learning,
2019.

110

[Bar93] Andrew R Barron. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information theory, 1993.

[Bar98] Peter Bartlett. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the network.
IEEE Transactions on Information Theory, 1998.

[BB08] Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. Confer-
ence on Information Sciences and Systems, 2008.

[BB18] Randall Balestriero and Richard Baraniuk. A spline theory of deep learning.
International Conference on Machine Learning, 2018.

[BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. International Conference on
Learning Representations, 2014.

[BCM+21] Johannes Ballé, Philip A. Chou, David Minnen, Saurabh Singh, Nick Johnston,
Eirikur Agustsson, Sung Jin Hwang, and George Toderici. Nonlinear transform
coding. IEEE Transactions on Special Topics in Signal Processing, 2021.

[BDS19] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training
for high fidelity natural image synthesis. International Conference on Learning
Representations, 2019.

[Ber23] Raphaël Berthier. Incremental learning in diagonal linear networks. Journal of
Machine Learning Research, 2023.

[BGVV20] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization
for deep neural networks driven by an Ornstein-Uhlenbeck like process. Conference
on Learning Theory, 2020.

[BH89] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 1989.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings
of the National Academy of Sciences, 2019.

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zde-
borová. Optimal errors and phase transitions in high-dimensional generalized
linear models. Proceedings of the National Academy of Sciences, 2019.

[Bla72] R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE
Transactions on Information Theory, 1972.

[BLLT20] Peter Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign
overfitting in linear regression. Proceedings of the National Academy of Sciences,
2020.

111

[BLS17] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized
image compression. International Conference on Learning Representations, 2017.

[BLSG20] Xuchan Bao, James Lucas, Sushant Sachdeva, and Roger B Grosse. Regularized
linear autoencoders recover the principal components, eventually. Advances in
Neural Information Processing Systems, 2020.

[BM11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on
dense graphs, with applications to compressed sensing. IEEE Transactions on
Information Theory, 2011.

[BMR21] Peter Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: A
statistical viewpoint. Acta Numerica, 2021.

[BMZ23] Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in
two-layers neural networks. arXiv preprint, 2023.

[BR89] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is NP-
complete. Advances in Neural Information Processing Systems, 1989.

[BVB16] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-
monteiro approach works on smooth semidefinite programs. Advances in Neural
Information Processing Systems, 2016.

[BYAV13] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized
denoising auto-encoders as generative models. Advances in Neural Information
Processing Systems, 2013.

[CB18] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent
for over-parameterized models using optimal transport. Advances in Neural
Information Processing Systems, 2018.

[CB20] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide
two-layer neural networks trained with the logistic loss. Conference on Learning
Theory, 2020.

[CCGZ20] Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. Mean-field analysis
of two-layer neural networks: Non-asymptotic rates and generalization bounds.
arXiv preprint, 2020.

[CFW+21] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards
understanding the spectral bias of deep learning. International Joint Conference
on Artificial Intelligence, 2021.

[Chi22] Lénaïc Chizat. Mean-field langevin dynamics: Exponential convergence and
annealing. Transactions on Machine Learning Research, 2022.

[CHM+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. The loss surfaces of multilayer networks. International Conference
on Artificial Intelligence and Statistics, 2015.

[CLS15] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval
via wirtinger flow: Theory and algorithms. IEEE Transactions on Information
Theory, 2015.

112

[CMZ06] Stefano Ciliberti, Marc Mézard, and Riccardo Zecchina. Message-passing algo-
rithms for non-linear nodes and data compression. ComPlexUs, 2006.

[COB19] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 2019.

[CSTK20] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image
compression with discretized gaussian mixture likelihoods and attention modules.
Conference on Computer Vision and Pattern Recognition, 2020.

[CSV13] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift:
Exact and stable signal recovery from magnitude measurements via convex
programming. Communications on Pure and Applied Mathematics, 2013.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
1995.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 1989.

[CZ23] Hugo Cui and Lenka Zdeborová. High-dimensional asymptotics of denoising
autoencoders. Advances in Neural Information Processing Systems, 2023.

[DBDFS20] Valentin De Bortoli, Alain Durmus, Xavier Fontaine, and Umut Simsekli. Quanti-
tative propagation of chaos for SGD in wide neural networks. Advances in Neural
Information Processing Systems, 2020.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. International Conference on Learning Representations,
2021.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. Conference on Computer Vision and
Pattern Recognition, 2009.

[DLL+18] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient
descent finds global minima of deep neural networks. International Conference
on Machine Learning, 2018.

[DMM09] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algo-
rithms for compressed sensing. Proceedings of the National Academy of Sciences,
2009.

[dPG95] Guido E del Pino and Hector Galaz. Statistical applications of the inverse gram
matrix: A revisitation. Brazilian Journal of Probability and Statistics, 1995.

[DPG+14] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. Advances in Neural Information
Processing Systems, 2014.

113

[DPS20] Alex Dytso, H Vincent Poor, and Shlomo Shamai Shitz. A general derivative
identity for the conditional mean estimator in gaussian noise and some applications.
IEEE International Symposium on Information Theory, 2020.

[DSL22] Rishabh Dudeja, Subhabrata Sen, and Yue M Lu. Spectral universality of
regularized linear regression with nearly deterministic sensing matrices. arXiv
preprint, 2022.

[DVSH18] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Es-
sentially no barriers in neural network energy landscape. International Conference
on Machine Learning, 2018.

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent
provably optimizes over-parameterized neural networks. International Conference
on Learning Representations, 2019.

[EP21] Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized
neural networks. Journal of Machine Learning Research, 2021.

[EP23] Tolga Ergen and Mert Pilanci. The convex landscape of neural networks: Char-
acterizing global optima and stationary points via lasso models. arXiv preprint,
2023.

[FB17] C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified
network optimization. International Conference on Learning Representations,
2017.

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. International Conference on Learning
Representations, 2019.

[FLYZ21] Cong Fang, Jason Lee, Pengkun Yang, and Tong Zhang. Modeling from features:
a mean-field framework for over-parameterized deep neural networks. Conference
on Learning Theory, 2021.

[FR18] Alyson K Fletcher and Sundeep Rangan. Iterative reconstruction of rank-one
matrices in noise. Information and Inference: A Journal of the IMA, 2018.

[FRS18] Alyson K Fletcher, Sundeep Rangan, and Philip Schniter. Inference in deep
networks in high dimensions. IEEE International Symposium on Information
Theory, 2018.

[FSARS16] Alyson Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, and Philip Schniter.
Expectation consistent approximate inference: Generalizations and convergence.
In IEEE International Symposium on Information Theory, 2016.

[Fun89] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural Networks, 1989.

[FVR+22] Oliver Y Feng, Ramji Venkataramanan, Cynthia Rush, Richard J Samworth, et al.
A unifying tutorial on approximate message passing. Foundations and Trends®
in Machine Learning, 2022.

114

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. International Conference on Artificial Intelligence
and Statistics, 2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[GBEK04] Véronique Gayrard, Anton Bovier, Michael Eckhoff, and Markus Klein. Metasta-
bility in reversible diffusion processes I: Sharp asymptotics for capacities and exit
times. Journal of the European Mathematical Society, 2004.

[GBLJ19] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization
of discrete gradient dynamics in linear neural networks. Advances in Neural
Information Processing Systems, 2019.

[GEH19] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural
networks. arXiv preprint, 2019.

[GIP+18] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and
Andrew G Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns.
Advances in Neural Information Processing Systems, 2018.

[GJZ17] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank
problems: A unified geometric analysis. International Conference on Machine
Learning, 2017.

[GLM16] Rong Ge, Jason Lee, and Tengyu Ma. Matrix completion has no spurious local
minimum. Advances in Neural Information Processing Systems, 2016.

[GLQ+19] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin,
and Peter Richtárik. SGD: General analysis and improved rates. International
Conference on Machine Learning, 2019.

[GLR+22] Sebastian Goldt, Bruno Loureiro, Galen Reeves, Florent Krzakala, Marc Mézard,
and Lenka Zdeborová. The gaussian equivalence of generative models for learning
with shallow neural networks. Mathematical and Scientific Machine Learning,
2022.

[GMKZ20] Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling
the influence of data structure on learning in neural networks: The hidden manifold
model. Physical Review X, 2020.

[GMZ09] Bogdan Grechuk, Anton Molyboha, and Michael Zabarankin. Maximum entropy
principle with general deviation measures. Mathematics of Operations Research,
2009.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks. Advances in Neural Information Processing Systems, 2014.

[Gra84] Robert Gray. Vector quantization. IEEE ASSP Magazine, 1984.

115

[GVS15] Ian Goodfellow, Oriol Vinyals, and Andrew Saxe. Qualitatively characterizing
neural network optimization problems. International Conference on Learning
Representations, 2015.

[GYC16] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient
DNNs. Advances In Neural Information Processing Systems, 2016.

[HCS+18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Quantized neural networks: Training neural networks with low precision
weights and activations. Journal of Machine Learning Research, 2018.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems, 2020.

[HL22] Hong Hu and Yue M Lu. Universality laws for high-dimensional learning with
random features. IEEE Transactions on Information Theory, 2022.

[HMRT22] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Sur-
prises in high-dimensional ridgeless least squares interpolation. Annals of Statistics,
2022.

[HR11] Tien-Chung Hu and Andrew Rosalsky. A note on the de La Vallée Poussin
criterion for uniform integrability. Statistics & Probability Letters, 2011.

[HRŠS21] Kaitong Hu, Zhenjie Ren, David Šiška, and Łukasz Szpruch. Mean-field langevin
dynamics and energy landscape of neural networks. Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques, 2021.

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 2006.

[HWJ17] Hengtao He, Chao-Kai Wen, and Shi Jin. Generalized expectation consistent
signal recovery for nonlinear measurements. IEEE International Symposium on
Information Theory, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. Conference on Computer Vision and Pattern Recognition,
2016.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. Highly accurate protein structure prediction with alphafold.
Nature, 2021.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. Advances in Neural Information
Processing Systems, 2018.

[JGŞ+21] Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel.
Saddle-to-saddle dynamics in deep linear networks: Small initialization training,
symmetry, and sparsity. arXiv preprint, 2021.

[JKO98] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation
of the Fokker–Planck equation. SIAM Journal on Mathematical Analysis, 1998.

116

[JM23] Hui Jin and Guido Montúfar. Implicit bias of gradient descent for mean squared
error regression with wide neural networks. Journal of Machine Learning Research,
2023.

[JMM20] Adel Javanmard, Marco Mondelli, and Andrea Montanari. Analysis of a two-layer
neural network via displacement convexity. Annals of Statistics, 2020.

[JRU21] Saachi Jain, Adityanarayanan Radhakrishnan, and Caroline Uhler. A mechanism
for producing aligned latent spaces with autoencoders. arXiv preprint, 2021.

[Kaw16] Kenji Kawaguchi. Deep learning without poor local minima. Advances in Neural
Information Processing Systems, 2016.

[KBGS19] Daniel Kunin, Jonathan Bloom, Aleksandrina Goeva, and Cotton Seed. Loss land-
scapes of regularized linear autoencoders. International Conference on Machine
Learning, 2019.

[Kel03] Carl T Kelley. Solving nonlinear equations with Newton’s method. SIAM, 2003.

[Kha21] Apoorva Khare. Sharp nonzero lower bounds for the schur product theorem.
Proceedings of the American Mathematical Society, 2021.

[KMN+17] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization
gap and sharp minima. International Conference on Learning Representations,
2017.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 2017.

[KSHM24] Kevin Kögler, Alexander Shevchenko, Hamed Hassani, and Marco Mondelli. Com-
pression of structured data with autoencoders: provable benefit of nonlinearities
and depth. International Conference on Machine Learning, 2024.

[KU10] Satish Babu Korada and Rüdiger L Urbanke. Polar codes are optimal for lossy
source coding. IEEE Transactions on Information Theory, 2010.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint, 2013.

[KW14] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Interna-
tional Conference on Learning Representations, 2014.

[KWL+19] Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu,
Sanjeev Arora, and Rong Ge. Explaining landscape connectivity of low-cost
solutions for multilayer nets. Advances in Neural Information Processing Systems,
2019.

[Lau15] Philippe Laurençot. Weak compactness techniques and coagulation equations.
Evolutionary Equations with Applications in Natural Sciences, 2015.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 1998.

117

[LCG+19] Haojie Liu, Tong Chen, Peiyao Guo, Qiu Shen, Xun Cao, Yao Wang, and Zhan
Ma. Non-local attention optimized deep image compression. arXiv preprint, 2019.

[LFSW23] Yufan Li, Zhou Fan, Subhabrata Sen, and Yihong Wu. Random linear estimation
with rotationally-invariant designs: Asymptotics at high temperature. IEEE
Transactions on Information Theory, 2023.

[LGC+21] Bruno Loureiro, Cedric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala,
Marc Mezard, and Lenka Zdeborová. Learning curves of generic features maps for
realistic datasets with a teacher-student model. Advances in Neural Information
Processing Systems, 2021.

[LHB22] Eric Lei, Hamed Hassani, and Shirin Saeedi Bidokhti. Neural estimation of the
rate-distortion function for massive datasets. IEEE International Symposium on
Information Theory, 2022.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via
stochastic gradient descent on structured data. Advances in Neural Information
Processing Systems, 2018.

[LL20] Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural
networks for expressing probability distributions. Advances in Neural Information
Processing Systems, 2020.

[LSLS18a] Shiyu Liang, Ruoyu Sun, Jason D Lee, and Rayadurgam Srikant. Adding one
neuron can eliminate all bad local minima. Advances in Neural Information
Processing Systems, 2018.

[LSLS18b] Shiyu Liang, Ruoyu Sun, Yixuan Li, and Rayadurgam Srikant. Understanding the
loss surface of neural networks for binary classification. International Conference
on Machine Learning, 2018.

[LSSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency
of training neural networks. Advances in Neural Information Processing Systems,
2014.

[LSZ+19] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Re-
thinking the value of network pruning. International Conference on Learning
Representations, 2019.

[LZG21] Zhu Li, Zhi-Hua Zhou, and Arthur Gretton. Towards an understanding of benign
overfitting in neural networks. arXiv preprint, 2021.

[MAV17] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout
sparsifies deep neural networks. International Conference on Machine Learning,
2017.

[MBG18] Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes
ReLU network features. arXiv preprint, 2018.

[MBM18] Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for
non-convex losses. Annals of Statistics, 2018.

118

[Mec19] Elizabeth S Meckes. The random matrix theory of the classical compact groups,
volume 218. Cambridge University Press, 2019.

[Min01] Thomas P Minka. Expectation propagation for approximate bayesian inference.
Conference on Uncertainty in Artificial Intelligence, 2001.

[MKAA21] Paolo Milanesi, Hachem Kadri, Stéphane Ayache, and Thierry Artières. Implicit
regularization in deep tensor factorization. IEEE International Joint Conference
on Neural Networks, 2021.

[MM22] Namiko Matsumoto and Arya Mazumdar. Binary iterative hard thresholding
converges with optimal number of measurements for 1-bit compressed sensing.
IEEE Annual Symposium on Foundations of Computer Science, 2022.

[MMM19] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of
two-layers neural networks: dimension-free bounds and kernel limit. Conference
on Learning Theory, 2019.

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 2018.

[MN89] P. McCullagh and J. A. Nelder. Generalized linear models. Monographs on
Statistics and Applied Probability, 1989.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics, 1943.

[MP17] Junjie Ma and Li Ping. Orthogonal amp. IEEE Access, 2017.

[MS22] Andrea Montanari and Basil N Saeed. Universality of empirical risk minimization.
Conference on Learning Theory, 2022.

[MT13] Ryosuke Matsushita and Toshiyuki Tanaka. Low-rank matrix reconstruction and
clustering via approximate message passing. Advances in Neural Information
Processing Systems, 2013.

[Mur22] Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press,
2022.

[MV21] Andrea Montanari and Ramji Venkataramanan. Estimation of low-rank matrices
via approximate message passing. Annals of Statistics, 2021.

[MV22] Marco Mondelli and Ramji Venkataramanan. Approximate message passing
with spectral initialization for generalized linear models. Journal of Statistical
Mechanics: Theory and Experiment, 2022.

[MXM21] Junjie Ma, Ji Xu, and Arian Maleki. Analysis of sensing spectral for signal recovery
under a generalized linear model. Advances in Neural Information Processing
Systems, 2021.

[Ngu19a] Phan-Minh Nguyen. Mean field limit of the learning dynamics of multilayer neural
networks. arXiv preprint, 2019.

119

[Ngu19b] Quynh Nguyen. On connected sublevel sets in deep learning. International
Conference on Machine Learning, 2019.

[Ngu21] Phan-Minh Nguyen. Analysis of feature learning in weight-tied autoencoders via
the mean field lens. arXiv preprint, 2021.

[NH17] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural
networks. International Conference on Machine Learning, 2017.

[NH18] Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of
deep CNNs. International Conference on Machine Learning, 2018.

[NKB+20] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever. Deep double descent: Where bigger models and more data hurt.
International Conference on Learning Representations, 2020.

[NLB+19] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan
Srebro. Towards understanding the role of over-parametrization in generalization
of neural networks. International Conference on Learning Representations, 2019.

[NMH19] Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the
loss landscape of a class of deep neural networks with no bad local valleys.
International Conference on Learning Representations, 2019.

[NP21] Phan-Minh Nguyen and Huy Tuan Pham. Global convergence of three-layer
neural networks in the mean field regime. International Conference on Learning
Representations, 2021.

[NP23] Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean
field limit of multilayer neural networks. Mathematical Statistics and Learning,
2023.

[NTS15] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real
inductive bias: On the role of implicit regularization in deep learning. Workshop
Contribution at International Conference on Learning Representations, 2015.

[NWH19] Thanh V Nguyen, Raymond KW Wong, and Chinmay Hegde. On the dynamics
of gradient descent for autoencoders. International Conference on Artificial
Intelligence and Statistics, 2019.

[NWH21] Thanh V Nguyen, Raymond KW Wong, and Chinmay Hegde. Benefits of
jointly training autoencoders: An improved neural tangent kernel analysis. IEEE
Transactions on Information Theory, 2021.

[NWS22] Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Convex analysis of the mean
field langevin dynamics. International Conference on Artificial Intelligence and
Statistics, 2022.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014.

[OSWS20] Reza Oftadeh, Jiayi Shen, Zhangyang Wang, and Dylan Shell. Eliminating the
invariance on the loss landscape of linear autoencoders. International Conference
on Machine Learning, 2020.

120

[OWJ05] Manfred Opper, Ole Winther, and Michael J Jordan. Expectation consistent
approximate inference. Journal of Machine Learning Research, 2005.

[OWSS20] Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function
space view of bounded norm infinite width ReLU nets: The multivariate case.
International Conference on Learning Representations, 2020.

[PB17] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces
via random matrix theory. International Conference on Machine Learning, 2017.

[PF23] Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal
linear networks. Advances in Neural Information Processing Systems, 2023.

[PIVA21] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc:
Alternating compressed/decompressed training of deep neural networks. Advances
in Neural Information Processing Systems, 2021.

[PN20a] Rahul Parhi and Robert Nowak. Banach space representer theorems for neural
networks and ridge splines. Journal of Machine Learning Research, 2020.

[PN20b] Rahul Parhi and Robert D Nowak. The role of neural network activation functions.
IEEE Signal Processing Letters, 2020.

[Rad08] Vicentiu Radulescu. Rodrigues-type formulae for hermite and laguerre polynomials.
Analele Stiintifice ale Universitatii Ovidius Constanta, 2008.

[Ran11] Sundeep Rangan. Generalized approximate message passing for estimation with
random linear mixing. IEEE International Symposium on Information Theory,
2011.

[RBU20] Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Overpa-
rameterized neural networks implement associative memory. Proceedings of the
National Academy of Sciences, 2020.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 2015.

[RFC20] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and
fine-tuning in neural network pruning. International Conference on Learning
Representations, 2020.

[RG22] Maria Refinetti and Sebastian Goldt. The dynamics of representation learning in
shallow, non-linear autoencoders. International Conference on Machine Learning,
2022.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation, parallel distributed processing, explorations
in the microstructure of cognition, ed. de rumelhart and j. mcclelland. vol. 1.
1986. Biometrika, 1986.

121

[RMB+18] Akshay Rangamani, Anirbit Mukherjee, Amitabh Basu, Ashish Arora, Tejaswini
Ganapathi, Sang Chin, and Trac D Tran. Sparse coding and autoencoders. In
IEEE International Symposium on Information Theory, 2018.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In International
Conference on Machine Learning, 2014.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 1958.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
Advances in Neural Information Processing Systems, 2008.

[RSF19] Sundeep Rangan, Philip Schniter, and Alyson K Fletcher. Vector approximate
message passing. IEEE Transactions on Information Theory, 2019.

[RVE18] Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting
particle systems: Asymptotic convexity of the loss landscape and universal scaling
of the approximation error. Advances in Neural Information Processing Systems,
2018.

[San17] Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an
overview. Bulletin of Mathematical Sciences, 2017.

[SBGG23] Eszter Székely, Lorenzo Bardone, Federica Gerace, and Sebastian Goldt. Learning
from higher-order statistics, efficiently: hypothesis tests, random features, and
neural networks. arXiv preprint, 2023.

[SCS+22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim
Salimans, et al. Photorealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing Systems, 2022.

[SESS19] Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite
width bounded norm networks look in function space? Conference on Learning
Theory, 2019.

[SGd+19] Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli,
and Matthieu Wyart. A jamming transition from under- to over-parametrization
affects generalization in deep learning. Journal of Physics A: Mathematical and
Theoretical, 2019.

[Sha48] C. E. Shannon. Mathematical theory of communication. The Bell System
Technical Journal, 1948.

[Sha59] C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion.
IRE National Convention Record, 1959.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 2016.

122

[SHN+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan
Srebro. The implicit bias of gradient descent on separable data. Journal of
Machine Learning Research, 2018.

[SKHM23] Aleksandr Shevchenko, Kevin Kögler, Hamed Hassani, and Marco Mondelli.
Fundamental limits of two-layer autoencoders, and achieving them with gradient
methods. International Conference on Machine Learning, 2023.

[SKM22] Alexander Shevchenko, Vyacheslav Kungurtsev, and Marco Mondelli. Mean-field
analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine
Learning Research, 2022.

[SKZ+23] James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetter-
man, and Joshua Albrecht. On the stepwise nature of self-supervised learning.
International Conference on Machine Learning, 2023.

[SM20] Alexander Shevchenko and Marco Mondelli. Landscape connectivity and dropout
stability of SGD solutions for over-parameterized neural networks. International
Conference on Machine Learning, 2020.

[SNW23] Taiji Suzuki, Atsushi Nitanda, and Denny Wu. Uniform-in-time propagation of
chaos for the mean-field gradient langevin dynamics. International Conference
on Learning Representations, 2023.

[SPD+22] Justin Sahs, Ryan Pyle, Aneel Damaraju, Josue Ortega Caro, Onur Tavaslioglu,
Andy Lu, and Ankit Patel. Shallow univariate ReLU networks as splines: initial-
ization, loss surface, hessian, & gradient flow dynamics. Frontiers in Artificial
Intelligence, 2022.

[SRF16] Philip Schniter, Sundeep Rangan, and Alyson K Fletcher. Vector approximate
message passing for the generalized linear model. Asilomar Conference on Signals,
Systems and Computers, 2016.

[SS16] Itay Safran and Ohad Shamir. On the quality of the initial basin in overspecified
neural networks. International Conference on Machine Learning, 2016.

[SS18a] Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer
ReLU neural networks. International Conference on Machine Learning, 2018.

[SS18b] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural
networks. arXiv preprint, 2018.

[SS19a] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep
neural networks. arXiv preprint, 2019.

[SS19b] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural
networks: A central limit theorem. Stochastic Processes and their Applications,
2019.

[SS20] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural
networks: A law of large numbers. SIAM Journal on Applied Mathematics, 2020.

123

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. International Conference on Learning Representa-
tions, 2015.

[Szn91] Alain-Sol Sznitman. Topics in propagation of chaos. Ecole d’été de probabilités
de Saint-Flour XIX—1989, 1991.

[Tak19] Keigo Takeuchi. Rigorous dynamics of expectation-propagation-based signal
recovery from unitarily invariant measurements. IEEE Transactions on Information
Theory, 2019.

[TBL18] Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in
autoencoder-based representation learning. Workshop on Bayesian Deep Learning
at Advances in Neural Information Processing Systems, 2018.

[TCVS13] Antonia M Tulino, Giuseppe Caire, Sergio Verdú, and Shlomo Shamai. Support
recovery with sparsely sampled free random matrices. IEEE Transactions on
Information Theory, 2013.

[TSCH17] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy
image compression with compressive autoencoders. International Conference on
Learning Representations, 2017.

[TSHM22] Lucas Theis, Tim Salimans, Matthew D Hoffman, and Fabian Mentzer. Lossy
compression with gaussian diffusion. arXiv preprint, 2022.

[TUK06] Koujin Takeda, Shinsuke Uda, and Yoshiyuki Kabashima. Analysis of CDMA
systems that are characterized by eigenvalue spectrum. Europhysics Letters,
2006.

[VBB19] Luca Venturi, Afonso Bandeira, and Joan Bruna. Spurious valleys in two-layer
neural network optimization landscapes. Journal of Machine Learning Research,
2019.

[VDOV+17] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.
Advances in Neural Information Processing Systems, 2017.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications
in data science, volume 47. Cambridge University Press, 2018.

[Vil09] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[Vis00] George Visick. A quantitative version of the observation that the hadamard
product is a principal submatrix of the kronecker product. Linear Algebra and Its
Applications, 2000.

[VKM22] Ramji Venkataramanan, Kevin Kögler, and Marco Mondelli. Estimation in
rotationally invariant generalized linear models via approximate message passing.
International Conference on Machine Learning, 2022.

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. Interna-
tional Conference on Machine Learning, 2008.

124

[VLS11] Ulrike Von Luxburg and Bernhard Schölkopf. Statistical learning theory: Models,
concepts, and results. Handbook of the History of Logic, 2011.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in Neural Information Processing Systems, 2017.

[WB21] Aaron B. Wagner and Johannes Ballé. Neural networks optimally compress the
sawbridge. Data Compression Conference, 2021.

[Win12] Andreas Winkelbauer. Moments and absolute moments of the normal distribution.
arXiv preprint, 2012.

[WLLM18] Colin Wei, Jason Lee, Qiang Liu, and Tengyu Ma. On the margin theory of
feedforward neural networks. arXiv preprint, 2018.

[WMM10] Martin J Wainwright, Elitza Maneva, and Emin Martinian. Lossy source com-
pression using low-density generator matrix codes: Analysis and algorithms. IEEE
Transactions on Information Theory, 2010.

[Wri15] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming,
2015.

[WTS+19] Francis Williams, Matthew Trager, Claudio Silva, Daniele Panozzo, Denis Zorin,
and Joan Bruna. Gradient dynamics of shallow univariate ReLU networks. Ad-
vances in Neural Information Processing Systems, 2019.

[WZBG21] Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu. Direction
matters: On the implicit bias of stochastic gradient descent with moderate
learning rate. International Conference on Learning Representations, 2021.

[WZF24] Tianhao Wang, Xinyi Zhong, and Zhou Fan. Universality of approximate message
passing algorithms and tensor networks. Annals of Applied Probability, 2024.

[YFW+03] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Understanding belief
propagation and its generalizations. Exploring Artificial Intelligence in the New
Millennium, 2003.

[YLZ+19] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack
Xin. Understanding straight-through estimator in training activation quantized
neural nets. International Conference on Learning Representations, 2019.

[YM21a] Yibo Yang and Stephan Mandt. Lower bounding rate-distortion from samples.
Workshop on Neural Compression: From Information Theory to Applications at
International Conference on Learning Representations, 2021.

[YM21b] Yibo Yang and Stephan Mandt. Towards empirical sandwich bounds on the
rate-distortion function. International Conference on Learning Representations,
2021.

[YM23] Ruihan Yang and Stephan Mandt. Lossy image compression with conditional
diffusion models. Advances in Neural Information Processing Systems, 2023.

125

[YMT22] Yibo Yang, Stephan Mandt, and Lucas Theis. An introduction to neural data
compression. arXiv preprint, 2022.

[YSJ18] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. A critical view of global optimality
in deep learning. International Conference on Learning Representations, 2018.

[ZCZG20] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent
optimizes over-parameterized deep relu networks. Machine Learning, 2020.

[ZXLM20] Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. A type of generalization
error induced by initialization in deep neural networks. Mathematical and Scientific
Machine Learning, 2020.

126

APPENDIX A
Appendix for Chapter 3

A.1 Proof of Theorem 1
A.1.1 Part (A)
Given θ = (a,w) ∈ RD, let σ⋆(x,θ) = aσ(x,w). Given ρ ∈ P(RD), we define the limit
loss as

L̄(ρ) = E
{︄(︃

y −
∫︂
σ⋆(x,θ)ρ(dθ)

)︃2
}︄
, (A.1)

where the expectation is taken over (x, y). For i ∈ [N] and t ≥ 0, we consider the following
nonlinear dynamics:

d
dt θ̄

t

i = 2ξ(t)
∫︂

E
{︂
∇σ⋆(x, θ̄

t

i) (y − σ⋆(x,θ′))
}︂
ρt(dθ′), (A.2)

where ∇ denotes the gradient with respect to θ̄
t

i and θ̄
t

i ∼ ρt. We initialize (A.2) with
{θ̄

0
i }Ni=1

i.i.d.∼ ρ0.
In [MMM19], it is considered the two-layer neural network (3.2) with N neurons and bounded
activation function σ, and it is studied the evolution under the SGD algorithm (3.4) of the
parameters θk. In particular, it is shown that, under suitable assumptions, (i) the solution of
(A.2) exists and it is unique, (ii) the N i.i.d. ideal particles {θ̄

t

i}Ni=1 are close to the parameters
θk obtained after k steps of SGD with step size α, with t = kα, and (iii) the loss LN(θk)
concentrates to the limit loss L̄(ρt), where ρt is the law of θ̄

t

i.
Let us now provide the proof of Theorem 1, part (A).

Proof of Theorem 1, part (A). Without loss of generality, we can assume that θkS contains
the first |A| elements of θk, i.e., θkS = (θk1 ,θk2 , . . . ,θk|A|). In fact, the subset A is independent
of the SGD algorithm. Thus, by symmetry, the joint distribution of {θki }i∈A depends only on
|A| (and not on the set A itself). By Definition 3.3.1, we need to show that, with probability
at least 1 − e−z2 ,

sup
k∈[T/α]

|LN(θk) − L|A|(θkS)| ≤ KeKT
3

⎛⎝
√︂

log |A| + z√︂
|A|

+
√
α
(︂√︂

D + logN + z
)︂⎞⎠ . (A.3)

127

Let θ̄
kα = (θ̄kα1 , . . . , θ̄

kα

N) be the solution of the nonlinear dynamics (A.2) at time kα, with
θ̄
kα

i ∼ ρkα. By triangle inequality, we have that

|LN(θk) − L|A|(θkS)| ≤ |LN(θk) − L̄(ρkα)| + |L|A|(θkS) − L̄(ρkα)|

≤ |LN(θk) − L̄(ρkα)| + |L|A|(θkS) − L|A|(θ̄
kα

S)| + |L|A|(θ̄
kα

S) − L̄(ρkα)|,
(A.4)

where L̄ is defined in (A.1) and θ̄
kα

S = (θ̄kα1 , θ̄
kα

2 , . . . , θ̄
kα

|A|) denotes the vector containing the
first |A| elements of θ̄

kα.
Let us consider the first term in the RHS of (A.4). Note that, without loss of generality,
we can assume that α ≤ 1/(C(D + logN + z2)eCT 3), for some constant C depending only
on the constants Ki of the assumptions (A1)-(A4). Let us explain why this is the case. If
α > 1/(C(D + logN + z2)eCT 3), then the RHS of (A.3) is lower bounded by a constant
depending only on Ki. Furthermore, y and σ are bounded, and by Proposition 8 of [MMM19],
we have that, with probability at least 1 − e−z2 ,

sup
k∈[T/α]

max
i∈[N]

|aki | ≤ C3(1 + T). (A.5)

Thus, if α > 1/(C(D + logN + z2)eCT 3), then the result is trivially true. Consequently, we
can apply Theorem 1 of [MMM19] and we have that, with probability at least 1 − e−z2 ,

sup
k∈[T/α]

|LN(θk) − L̄(ρkα)| ≤ C1e
C1 T 3

(︄√
logN + z√

N
+

√
α
(︂√︂

D + logN + z
)︂)︄

, (A.6)

where C1 depends only on Ki. In what follows, the Ci are constants that depend only on Ki.
Let us now consider the second term in the RHS of (A.4). After some manipulations, we have
that

|L|A|(θkS) − L|A|(θ̄
kα

S)| ≤ 2 max
i∈A

⃓⃓⃓
akiE

{︂
yσ(x,wk

i)
}︂

− ākαi E
{︂
yσ(x, w̄kα

i)
}︂⃓⃓⃓

+ max
i,j∈A

⃓⃓⃓
aki a

k
jE{σ(x,wk

i)σ(x,wk
j)} − ākαi ā

kα
j E{σ(x, w̄kα

i)σ(x, w̄kα
j)}

⃓⃓⃓
≤ C2

(︃
max
i∈A

(︂
1 + max(|aki |, |ākαi |)

)︂)︃2
max
i∈A

∥θki − θ̄
kα

i ∥2

≤ C2

(︄
max
i∈[N]

(︂
1 + max(|aki |, |ākαi |)

)︂)︄2

max
i∈[N]

∥θki − θ̄
kα

i ∥2,

(A.7)

where θki = (aki ,wk
i), θ̄

kα

i = (ākαi , w̄kα
i), and in the second inequality we use that y, σ and

the gradient of σ are bounded. By using Lemma 7 of [MMM19], we have that

sup
t∈[0,T]

max
i∈[N]

|āti| ≤ C3(1 + T). (A.8)

Furthermore, by using Propositions 6-7-8 of [MMM19], we have that, with probability at least
1 − e−z2 ,

sup
k∈[T/α]

max
i∈[N]

∥θki − θ
kα

i ∥2 ≤ C4e
C4T 3

(︄√
logN + z√

N
+

√
α
(︂√︂

D + logN + z
)︂)︄

. (A.9)

128

As a result, by combining (A.5), (A.8) and (A.7), we conclude that, with probability at least
1 − e−z2 ,

sup
k∈[T/α]

|L|A|(θkS) − L|A|(θ̄
kα

S)| ≤ C5e
C5T 3

(︄√
logN + z√

N
+

√
α
(︂√︂

D + logN + z
)︂)︄

. (A.10)

Finally, let us consider the third term in the RHS of (A.4). By triangle inequality, we have that

|L|A|(θ̄
kα

S) − L̄(ρkα)| ≤
⃓⃓⃓⃓
L|A|(θ̄

kα

S) − Eρ0

{︃
L|A|(θ̄

kα

S)
}︃⃓⃓⃓⃓

+
⃓⃓⃓⃓
Eρ0

{︃
L|A|(θ̄

kα

S)
}︃

− L̄(ρkα)
⃓⃓⃓⃓
,

(A.11)
where the notation Eρ0 emphasizes that the expectation is taken with respect to θ̄

0
i ∼ ρ0.

Recall that L̄ is defined in (A.1) and that

L|A|(θS) = E(x,y)

⎧⎪⎨⎪⎩
⎛⎝y − 1

|A|

|A|∑︂
i=1

σ⋆(x,θi)
⎞⎠2
⎫⎪⎬⎪⎭ , (A.12)

where the notation E(x,y) emphasizes that the expectation is taken with respect to (x, y) ∼ P.
Furthermore, note that {θ̄

kα

i }|A|
i=1

i.i.d.∼ ρkα. Thus, after some manipulations, we can rewrite
the second term in the RHS of (A.11) as⃓⃓⃓⃓
L|A|(θ̄

kα

S) − Eρ0

{︃
L|A|(θ̄

kα

S)
}︃⃓⃓⃓⃓

= 1
|A|

⃓⃓⃓⃓∫︂
E(x,y)

{︃(︂
σ⋆(x,θ)

)︂2
}︃
ρkα(dθ) −

∫︂
E(x,y) {σ⋆(x,θ1)σ⋆(x,θ2)} ρkα(dθ1)ρkα(dθ2)

⃓⃓⃓⃓
.

(A.13)

As σ is bounded by assumption (A3) and supk∈[T/α] maxi∈[N] |ākαi | is bounded by (A.8), we
deduce that

sup
k∈[T/α]

⃓⃓⃓⃓
L|A|(θ̄

kα

S) − Eρ0

{︃
L|A|(θ̄

kα

S)
}︃⃓⃓⃓⃓

≤ C6 (1 + T)2

|A|
. (A.14)

Let θ and θ′ be two parameters that differ only in one component, i.e., θ = (θ1, . . . ,θi, . . . ,θ|A|)
and θ′ = (θ1, . . . ,θ

′
i, . . . ,θ|A|), and such that maxi∈|A| |ai| ≤ C(1 + T) and maxi∈|A| |a′

i| ≤
C(1 + T). Then, ⃓⃓⃓

L|A|(θ) − L|A|(θ′)
⃓⃓⃓
≤ C7 (1 + T)2

|A|
. (A.15)

As maxi∈[N] |āti| is bounded by (A.8), by applying McDiarmid’s inequality, we obtain that

P
(︂⃓⃓⃓
L|A|(θ̄

t

S) − Eρ0

{︂
L|A|(θ̄

t

S)
}︂⃓⃓⃓
> δ

)︂
≤ exp

(︄
− |A|δ2

C8(1 + T)4

)︄
. (A.16)

Furthermore, we have that
⃓⃓⃓
L|A|(θ̄

t

S) − L|A|(θ̄
s

S)
⃓⃓⃓
≤ C9

(︄
max
i∈[N]

(︂
1 + max(|āti|, |āsi |)

)︂)︄2

max
i∈[N]

∥θ̄
t

i − θ̄
s

i∥2

≤ C10(1 + T)4|t− s|,
(A.17)

where in the first inequality we use passages similar to those of (A.7), and in the second
inequality we use (A.8) and Lemma 9 of [MMM19]. Consequently,⃓⃓⃓

|L|A|(θ̄
t

S) − Eρ0{L|A|(θ̄
t

S)}| − |L|A|(θ̄
s

S) − Eρ0{L|A|(θ̄
s

S)}|
⃓⃓⃓
≤ C11(1 + T)4|t− s|. (A.18)

129

By taking a union bound over s ∈ [T/ν] and bounding the difference between time in the
interval grid, we deduce that

P
(︄

sup
t∈[0,T]

⃓⃓⃓
L|A|(θ̄

t

S) − Eρ0

{︂
L|A|(θ̄

t

S)
}︂⃓⃓⃓

≥ δ + C11(1 + T)4ν

)︄
≤ T

ν
exp

(︄
− |A|δ2

C8(1 + T)4

)︄
.

(A.19)
Pick ν = 1/

√︂
|A| and δ = C8(1 + T)2(

√︂
log(|A|T) + z)/

√︂
|A|. Thus, with probability at

least 1 − e−z2 , we have that

sup
k∈[T/α]

⃓⃓⃓⃓
L|A|(θ̄

T

S) − Eρ0

{︃
L|A|(θ̄

T

S)
}︃⃓⃓⃓⃓

≤ C12 (1 + T)3

√︂
log |A| + z√︂

|A|
. (A.20)

By combining (A.14) and (A.20), we conclude that, with probability at least 1 − e−z2 ,

sup
k∈[T/α]

|L|A|(θ̄
T

S) − L̄(ρT)| ≤ C13 (1 + T)3

√︂
log |A| + z√︂

|A|
. (A.21)

Finally, by combining (A.4), (A.6), (A.10) and (A.21), the result readily follows.

A.1.2 Part (B)
The proof of part (B) is obtained by combining part (A) with the following lemma.

Lemma A.1.1 (Dropout stability implies connectivity – two-layer). Consider a two-layer neural
network with N neurons, as in (3.2). Given A = [N/2], let θ and θ′ be ε-dropout stable as
in Definition 3.3.1. Then, θ and θ′ are ε-connected as in Definition 3.3.2. Furthermore, the
path connecting θ with θ′ consists of 7 line segments.

Proof of Lemma A.1.1. Let θ = ((a1,w1), (a2,w2), . . . , (aN ,wN)) and

θ′ = ((a′
1,w

′
1), (a′

2,w
′
2), . . . , (a′

N ,w
′
N)).

For the moment, assume that N is even. Consider the piecewise linear path in parameter
space that connects θ to θ′ via the following intermediate points:

θ1 = ((2a1,w1), (2a2,w2), . . . , (2aN/2,wN/2), (0,wN/2+1), (0,wN/2+2), . . . , (0,wN)),
θ2 = ((2a1,w1), (2a2,w2), . . . , (2aN/2,wN/2), (0,w′

1), (0,w′
2), . . . , (0,w′

N/2)),
θ3 = ((0,w1), (0,w2), . . . , (0,wN/2), (2a′

1,w
′
1), (2a′

2,w
′
2), . . . , (2a′

N/2,w
′
N/2)),

θ4 = ((0,w′
1), (0,w′

2), . . . , (0,w′
N/2), (2a′

1,w
′
1), (2a′

2,w
′
2), . . . , (2a′

N/2,w
′
N/2)),

θ5 = ((2a′
1,w

′
1), (2a′

2,w
′
2), . . . , (2a′

N/2,w
′
N/2), (0,w′

1), (0,w′
2), . . . , (0,w′

N/2)),
θ6 = ((2a′

1,w
′
1), (2a′

2,w
′
2), . . . , (2a′

N/2,w
′
N/2), (0,w′

N/2+1), (0,w′
N/2+2), . . . , (0,w′

N)).
(A.22)

We will now show that the loss along this path is upper bounded by max(LN (θ), LN (θ′)) + ε.
Consider the path that connects θ to θ1. As θ is ε-dropout stable, we have that LN(θ1) ≤
LN(θ) + ε. As the loss is convex in the weights of the last layer, the loss along this path is
upper bounded by LN(θ) + ε. Similarly, the loss along the path that connects θ6 to θ′ is
upper bounded by LN(θ′) + ε.

130

Consider the path that connects θ1 to θ2. Here, we change w’s only when the corresponding
a’s are 0. Thus, the loss does not change along the path. Similarly, the loss does not change
along the path that connects θ3 to θ4 and θ5 to θ6.
Consider the path that connects θ2 to θ3. Note that LN(θ3) = LN(θ5). As the loss
is convex in the weights of the last layer, the loss along this path is upper bounded by
max(LN(θ), LN(θ′)) + ε.
Finally, consider the path that connects θ4 to θ5. Here, we are interpolating between two
equal subnetworks. Thus, the loss along this path does not change. This concludes the proof
for even N .
If N is odd, a similar argument can be carried out. The differences are that (i) the ⌈N/2⌉-th
parameter of θ1, θ2 and θ3 is (0,wN/2) and the ⌈N/2⌉-th parameter of θ4, θ5 and θ6 is
(0,w′

N/2), and (ii) the constant 2 in front of the ai is replaced by N/⌊N/2⌋.

A.2 Extension to Unbounded Activation – Statement
and Proof

We modify the assumptions (A2), (A3) and (A4) of Section 3.3.2 as follows:
(A2’) The feature vectors x and the response variables y are bounded by K2, and the gradient
∇wσ(x,w) is K2 sub-gaussian when x ∼ P.
(A3’) The activation function σ is differentiable, with gradient bounded by K3 and K3-
Lipschitz.
(A4’) The initialization ρ0 is supported on ∥θ0

i ∥2 ≤ K4.
We are now ready to present our results for unbounded activations in the two-layer setting.

Theorem 10 (Two-layer, unbounded activation). Assume that conditions (A1), (A2’), (A3’)
and (A4’) hold, and fix T ≥ 1. Let θk be obtained by running k steps of the SGD algorithm
(3.4) with data {(xj, yj)}kj=0

i.i.d.∼ P and initialization ρ0. Assume further that the loss at
each step of SGD is uniformly bounded, i.e., maxj∈{0,...,k} |yj − ŷN (xj,θ

j)| ≤ K5. Then, the
results of Theorem 1 hold, with

εD = K(T)
⎛⎝
√︂

log |A| + z√︂
|A|

+
√
α
(︂√︂

D + logN + z
)︂⎞⎠ ,

εC = K(max(T, T ′))
(︄√

logN + z√
N

+
√
α
(︂√︂

D + logN + z
)︂)︄

.

(A.23)

where the constant K(T) depends on T and on the constants Ki of the assumptions.

To prove the result, we crucially rely on the following bound on the norm of the parameters
evolved via SGD.

Lemma A.2.1 (Bound on norm of SGD parameters). Under the assumptions of Theorem 10,
we have that

sup
s∈[T/α]

max
i∈[N]

∥θsi ∥2 ≤ KeK T , (A.24)

where the constant K depends only on the constants Ki of the assumptions.

131

Proof of Lemma A.2.1. The SGD update at step j + 1 gives:

aj+1
i = aji + 2α ξ(jα) · (yj − fN(xj,θ

j)) · σ(xj,w
j
i),

wj+1
i = wj

i + 2α ξ(jα) · (yj − fN(xj,θ
j)) · aji∇wi

σ(xj,w
j
i).

(A.25)

We bound the absolute value of the increment |aj+1
i − aji | as

|aj+1
i − aji | ≤ 2αξ(jα) · |yj − fN(xj,θ

j)| · |σ(xj,w
j
i)|

(a)
≤ αC1|σ(xj,w

j
i)|

(b)
≤ αC2(∥wj

i ∥2 + 1),

(A.26)

where the constant Ci depends only on Ki, in (a) we use that ξ is bounded by K1 and
|yj − fN(xj,θ

j)| ≤ K5, in (b) we use that ∥σ∥Lip ≤ K2 and ∥xj∥2 ≤ K2. Similarly, we
bound the absolute value of the increments ∥wj+1

i − wj
i ∥2 as

∥wj+1
i − wj

i ∥2 ≤ αC3|aji |. (A.27)

By combining (A.26) and (A.27), we get

∥θj+1
i − θji ∥2 ≤ ∥wj+1

i − wj
i ∥2 + |aj+1

i − aji | ≤ αC4(∥θji ∥2 + 1). (A.28)

By triangle inequality, we also obtain that

∥θsi ∥2 ≤
s−1∑︂
j=0

∥θj+1
i − θji ∥2 + ∥θ0

i ∥2. (A.29)

As ∥θ0
i ∥2 is bounded, by combining (A.28) and (A.29), we have that

∥θsi ∥2 ≤ C5 + C5 sα + C5α
s−1∑︂
j=0

∥θji ∥2. (A.30)

By using a discrete version of Gronwall’s inequality, the result follows.

Finally, let us present the proof of Theorem 10.

Proof of Theorem 10. Since the activation function σ satisfies assumption (A3’), we can
construct σ̃ : Rd × RD−1 → R that satisfies the following two properties:

(i) σ̃(x,w) coincides with σ(x,w) for ∥x∥2 ≤ K2 and ∥w∥2 ≤ KeK T , where K2 is the
constant of assumption (A2’) and KeK T is the bound of Lemma A.2.1;

(ii) σ̃(x,w) is bounded, differentiable, with bounded and Lipschitz continuous gradient.

Recall that θk is obtained by running k steps of the SGD algorithm (3.4) with initial condition
θ0, data {xj, yj}kj=0 and activation function σ. Let θ̃

k be obtained by running k steps of SGD
with initial condition θ0, data {xj, yj}kj=0 and activation function σ̃. By combining Lemma
A.2.1, assumption (A2’) and property (i) of σ̃, we immediately deduce that

θk = θ̃
k
. (A.31)

132

Furthermore, we have that

E
{︄(︃

y − 1
N

N∑︂
i=1

aiσ(x,wi))
)︃2
}︄

= E
{︄(︃

y − 1
N

N∑︂
i=1

aiσ̃(x,wi))
)︃2
}︄
, (A.32)

namely the loss of θk computed with respect to the activation function σ is the same as the
loss of θk computed with respect to the activation function σ̃.

Note that ∥σ̃∥∞ ≤ C1(T) for some C1(T) that depends on T and on the constants Ki of
the assumptions. Thus, σ̃ satisfies assumptions (A2) and (A3), with K3 depending on time
T of the evolution. Consequently, by Theorem 1, with probability at least 1 − e−z2 , for all
k ∈ [T/α], θ̃

k is εD-dropout stable, with

εD = K(T)
⎛⎝√︄ logN

N
+

√︂
log |A| + z√︂

|A|
+

√
α
(︂√︂

D + logN + z
)︂⎞⎠ . (A.33)

By using (A.31) and (A.32), we conclude that, with probability at least 1 − e−z2 , for all
k ∈ [T/α], θk is εD-dropout stable. Similarly, with probability at least 1 − e−z2 , for all
k′ ∈ [T ′/α], (θ′)k′ is εD-dropout stable. Thus, by Lemma A.1.1, the proof is complete.

A.3 Proof of Theorem 2

A.3.1 Part (A)
Let D = ∑︁L

i=0 Di and let ρ be a probability measure over RD ∼= RD0 ×RD1 × · · · ×RDL . For
i ∈ {0, . . . , L}, we denote by ρ(i) the marginal of ρ over the i-th factor RDi of the Cartesian
product. For i ∈ {0, . . . , L− 1}, we denote by ρ(i,i+1) the marginal of ρ over the i-th and the
i+ 1-th factors. Furthermore, we denote by ρ(i|i+1)(· | θ(i+1)) the conditional distribution of
the i-th factor given that the i+ 1-th factor is equal to θ(i+1).

Given a feature vector x ∈ Rd0 and a probability measure ρ over RD, we define

z̄(2) (x, ρ) =
∫︂
σ(1)

(︂
σ(0)

(︂
x,θ(0)

)︂
,θ(1)

)︂
dρ(0,1)(θ(0),θ(1)),

z̄(ℓ) (x, ρ) =
∫︂
σ(ℓ−1)

(︂
z̄(ℓ−1) (x, ρ) ,θ(ℓ−1)

)︂
dρ(ℓ−1)(θ(ℓ−1)), ℓ ∈ {3, . . . , L− 1},

z̄(L)
(︂
x, ρ,θ(L)

)︂
=
∫︂
σ(L−1)

(︂
z̄(L−1) (x, ρ) ,θ(L−1)

)︂
dρ(L−1|L)(θ(L−1) | θ(L)),

ȳ (x, ρ) = σ(L+1)
(︃∫︂

σ(L)
(︂
z̄(L)

(︂
x, ρ,θ(L)

)︂
,θ(L)

)︂
dρ(L)(θ(L))

)︃
,

(A.34)

where σ(ℓ) : Rdℓ × RDℓ → Rdℓ+1 , with ℓ ∈ {0, . . . , L}, and σ(L+1) : RdL+1 → RdL+1 . We
remark that z̄(L) is defined in terms of the conditional distribution ρ(L−1|L). We also define
the limit loss as

L̄(ρ) = E
{︂
∥y − ȳ (x, ρ)∥2

2

}︂
, (A.35)

where the expectation is taken over (x,y). Given a probability measure ρ0 over RD and
activation functions σ(ℓ) (ℓ ∈ {0, . . . , L + 1}), we denote by ρ⋆[0,T] the probability measure
over C([0, T],RD) which solves the McKean-Vlasov DNN problem with initial condition ρ0,

133

according to Definition 4.4 of [AOY19]. We also denote by ρ⋆t the marginal of ρ⋆[0,T] at time
t ∈ [0, T].

In [AOY19], it is considered a model of neural network with L + 1 ≥ 4 layers, where each
hidden layer contains N neurons. This model can be obtained from (3.10) by setting to
one the parameters {aℓiℓ,iℓ+1

}ℓ∈[L−1],iℓ,iℓ+1∈[N] and {a
(L)
iL

}iL∈[N], and by applying the bounded
activation function σ(L+1) to the output ˆ︁yN . Then, it is studied the evolution under the SGD
algorithm (3.12) of the parameters θ(k) of this multilayer neural network. In particular, it is
shown that, under suitable assumptions, (i) the solution of the McKean-Vlasov DNN problem
exists and it is unique, (ii) the parameters θ(k) obtained after k steps of SGD with step size
α are close to particles θ̄(t) at time t = kα, whose trajectories are distributed according to
ρ⋆t , and (iii) the loss LN(θ(k)) concentrates to the limit loss L̄(ρ⋆t).

In order to prove Theorem 2, we will use the following bound on the norm of the parameters
{a

(ℓ)
iℓ,iℓ+1

}ℓ∈[L−1],iℓ,iℓ+1∈[N] evolved via SGD.

Lemma A.3.1 (Bound on norm of a
(ℓ)
iℓ,iℓ+1

). Under the assumptions of Theorem 2, we have
that

max
ℓ∈[L−1]

sup
s∈[T/α]

max
iℓ,iℓ+1∈[N]

∥a
(ℓ)
iℓ,iℓ+1

(s)∥2 ≤ K(T, L), (A.36)

where the constant K depends only on T , L and on the constants Ki of the assumptions.

Proof. For ℓ ∈ [L− 1], the SGD update at step j + 1 gives:

a
(ℓ)
iℓ,iℓ+1

(j+1) = a
(ℓ)
iℓ,iℓ+1

(j)+2αξ(jα)N2 (yj − ˆ︁yN (xj,θ(j)))T D
a

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j)) , (A.37)

where D
θ

(ℓ)
iℓ,iℓ+1

ˆ︁yN ∈ RdL+1 × RDℓ+dℓ+1 denotes the Jacobian of ˆ︁yN with respect to θ
(ℓ)
iℓ,iℓ+1

.

Recall that by assumptions (B2)-(B3) the response variables yj and the activation σ(L) are
bounded. Moreover, as the final layer of the network is not trained, i.e., a

(L)
iL

(k+ 1) = a
(L)
iL

(k)
for any k, and a

(L)
iL

(0) is initialized with a distribution supported on ∥a
(L)
iL

(0)∥2 ≤ K4, we get
that a

(L)
iL

is bounded along the whole SGD trajectory. Thus, we are able to conclude that
∥yj − ˆ︁yN (xj,θ(j))∥2 ≤ K5, for some constant K5.

We bound the absolute value of the increment ∥a
(ℓ)
iℓ,iℓ+1

(j + 1) − a
(ℓ)
iℓ,iℓ+1

(j)∥2 as

∥a
(ℓ)
iℓ,iℓ+1

(j + 1) − a
(ℓ)
iℓ,iℓ+1

(j)∥2 ≤ 2α ξ(jα)N2 ∥yj − ˆ︁yN (xj,θ(j))∥2

·
⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

≤ αN2 C1

⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

,

(A.38)

where we use that ξ is bounded by K1 and ∥yj − ˆ︁yN (xj,θ(j))∥2 ≤ K5. Consequently,

max
iℓ,iℓ+1∈[N]

∥a
(ℓ)
iℓ,iℓ+1

(j+1)−a
(ℓ)
iℓ,iℓ+1

(j)∥2 ≤ αN2 C1 max
iℓ,iℓ+1∈[N]

⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

. (A.39)

134

Let us now focus on the operator norm of the Jacobian. First, we write⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

=
⃦⃦⃦⃦
⃦Dz

(ℓ+1)
iℓ+1

ˆ︁yN (x,θ(j)) · D
a

(ℓ)
iℓ,iℓ+1

z
(ℓ+1)
iℓ+1

(x,θ(j))
⃦⃦⃦⃦
⃦
op

≤
⃦⃦⃦⃦
⃦Dz

(ℓ+1)
iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

·
⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

z
(ℓ+1)
iℓ+1

(x,θ(j))
⃦⃦⃦⃦
⃦
op

,

(A.40)

where the inequality uses the fact that the operator norm is sub-multiplicative. Note that

D
a

(ℓ)
iℓ,iℓ+1

z
(ℓ+1)
iℓ+1

(x,θ(j)) = diag
(︃ 1
N
σ(ℓ)

(︂
z

(ℓ)
iℓ

(x,θ) ,w(ℓ)
iℓ,iℓ+1

(j)
)︂)︃

, (A.41)

where we denote by diag(v) the diagonal matrix containing v on the diagonal. As σ(ℓ) is
bounded by assumption (B3), we have that⃦⃦⃦⃦

⃦Da
(ℓ)
iℓ,iℓ+1

z
(ℓ+1)
iℓ+1

(x,θ(j))
⃦⃦⃦⃦
⃦
op

≤ C2

N
. (A.42)

Furthermore, the Jacobian D
z

(ℓ+1)
iℓ+1

ˆ︁yN (x,θ(j)) is given by

D
z

(L)
iL

ˆ︁yN (x,θ(j)) = 1
N

M
(L)
iL

(x,θ(j)), iL ∈ [N],

D
z

(ℓ)
iℓ

ˆ︁yN (x,θ(j)) = 1
NL−ℓ+1

∑︂
pL

ℓ+1∈[N]L−ℓ

M
(ℓ)
iℓ,p

L
ℓ+1

(x,θ(j)), ℓ ∈ [L− 1], iℓ ∈ [N],

(A.43)

where pLℓ+1 denotes the multi-index (pℓ+1, . . . , pL), [N]L−ℓ denotes the (L− ℓ)-fold Cartesian
product of [N] and the matrices M

(ℓ)
pL

ℓ
(x,θ(j)) are defined recursively as

M (L)
pL

(x,θ(j)) = D
z

(L)
pL

(︂
a(L)
pL

(j) ⊙ σ(L)
(︂
z(L)
pL

(x,θ(j)),w(L)
pL

(j)
)︂)︂

= diag(a(L)
pL

(j)) · D
z

(L)
pL

σ(L)
(︂
z(L)
pL

(x,θ(j)),w(L)
pL

(j)
)︂
,

M
(ℓ)
pL

ℓ
(x,θ(j)) = M

(ℓ+1)
pL

ℓ+1
(x,θ(j)) · D

z
(ℓ)
pℓ

(︂
a(ℓ)
pℓ,pℓ+1

(j) ⊙ σ(ℓ)
(︂
z(ℓ)
pℓ

(x,θ(j)),w(ℓ)
pℓ,pℓ+1

(j)
)︂)︂

= M
(ℓ+1)
pL

ℓ+1
(x,θ(j)) · diag(a(ℓ)

pℓ,pℓ+1
(j)) · D

z
(ℓ)
pℓ

σ(ℓ)
(︂
z(ℓ)
pℓ

(x,θ(j)),w(ℓ)
pℓ,pℓ+1

(j)
)︂
.

(A.44)

Note that a(L)
pL

(j) = a(L)
pL

(0) and recall that ∥a(L)
pL

(0)∥2 is bounded by assumption (B4).
Furthermore, σ(ℓ) has bounded Fréchet derivative by assumption (B3). Thus, we deduce that⃦⃦⃦

M (L)
pL

(x,θ(j))
⃦⃦⃦
op

≤ C3, (A.45)

and ⃦⃦⃦⃦
M

(ℓ)
pL

ℓ
(x,θ(j))

⃦⃦⃦⃦
op

≤ C4(L)
L−1∏︂
m=ℓ

∥a(m)
pm,pm+1(j)∥2

≤ C4(L)
L−1∏︂
m=ℓ

max
im,im+1∈[N]

∥a
(m)
im,im+1(j)∥2.

(A.46)

135

Consequently, we have that⃦⃦⃦⃦
D

z
(L)
iL

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
op

≤ C3

N
,

⃦⃦⃦⃦
D

z
(ℓ)
iℓ

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
op

≤ C4(L)
N

L−1∏︂
m=ℓ

max
im,im+1∈[N]

∥a
(m)
im,im+1(j)∥2.

(A.47)

By combining (A.40), (A.42) and (A.47), we obtain that⃦⃦⃦⃦
D

a
(L−1)
iL−1,iL

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
op

≤ C5

N2 ,⃦⃦⃦⃦
⃦Da

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(j))
⃦⃦⃦⃦
⃦
op

≤ C6(L)
N2

L−1∏︂
m=ℓ+1

max
im,im+1∈[N]

∥a
(m)
im,im+1(j)∥2, ℓ ∈ [L− 2].

(A.48)

By using also (A.39), we have that

max
iL−1,iL∈[N]

∥a
(L−1)
iL−1,iL(j + 1) − a

(L−1)
iL−1,iL(j)∥2 ≤ αC7,

max
iℓ,iℓ+1∈[N]

∥a
(ℓ)
iℓ,iℓ+1

(j + 1) − a
(ℓ)
iℓ,iℓ+1

(j)∥2 ≤ αC8(L)
L−1∏︂

m=ℓ+1
max

im,im+1∈[N]
∥a

(m)
im,im+1(j)∥2,

(A.49)

where ℓ ∈ [L− 2].
By triangle inequality, we also obtain that, for ℓ ∈ [L− 1] and iℓ, iℓ+1 ∈ [N],

∥a
(ℓ)
iℓ,iℓ+1

(s)∥2 ≤
s−1∑︂
j=0

∥a
(ℓ)
iℓ,iℓ+1

(j + 1) − a
(ℓ)
iℓ,iℓ+1

(j)∥2 + ∥a
(ℓ)
iℓ,iℓ+1

(0)∥2. (A.50)

As ∥a
(ℓ)
iℓ,iℓ+1

(0)∥2 and ∥a
(L)
iL

(0)∥2 are bounded, by combining (A.49) and (A.50), we have that

max
s∈[k]

max
iL−1,iL∈[N]

∥a
(L−1)
iL−1,iL(s)∥2 ≤ C + C7 T,

max
s∈[k]

max
iℓ,iℓ+1∈[N]

∥a
(ℓ)
iℓ,iℓ+1

(s)∥2 ≤ C + C8(L)T
L−1∏︂

m=ℓ+1
max
s∈[k]

max
im,im+1∈[N]

∥a
(m)
im,im+1(s)∥2,

(A.51)

where ℓ ∈ [L − 2] and we have used that T = kα. By doing a step of induction on
ℓ ∈ {L− 2, L− 3, . . . , 1}, the proof is complete.

We are now ready to provide the proof of Theorem 2, part (A).

Proof of Theorem 2, part (A). For ℓ ∈ [L], we construct σ̃(ℓ) : Rdℓ × RDℓ+dℓ+1 → Rdℓ+1 that
satisfies the following two properties:

(i) σ̃(ℓ)(z, (w,a)) coincides with a ⊙ σ(ℓ)(z,w) for all (z,w) ∈ Rdℓ × RDℓ and for ∥a∥2 ≤
K(T, L), where K(T, L) is the bound of Lemma A.3.1;

(ii) σ̃(ℓ) is bounded, with Fréchet derivatives bounded and Lipschitz.

Similarly, we construct σ̃(L+1) : RdL+1 → RdL+1 that satisfies the following two properties:

136

(i) σ̃(L+1)(z) = z for ∥z∥2 ≤ K3 K4, where K3 is the bound on σ(L) and K4 is the bound
on ∥a

(L)
iL

(0)∥2 (see assumptions (B3)-(B4));

(ii) σ̃(L+1) is bounded, with Fréchet derivatives bounded and Lipschitz.

Define

(z(1)
i1)′ (x,θ) = σ(0)

(︂
x,θ

(0)
i1

)︂
, i1 ∈ [N],

(z(ℓ+1)
iℓ+1

)′ (x,θ) = 1
N

N∑︂
iℓ=1

σ̃(ℓ)
(︂
(z(ℓ)

iℓ
)′ (x,θ) ,θ(ℓ)

iℓ,iℓ+1

)︂
, ℓ ∈ [L− 1], iℓ+1 ∈ [N],

ˆ︁y′
N (x,θ) = σ̃(L+1)

⎛⎝ 1
N

N∑︂
iL=1

σ̃(L)
(︂
(z(L)

iL
)′ (x,θ) ,θ(L)

iL

)︂⎞⎠ ,
(A.52)

and
L′
N(θ) = E

{︃⃦⃦⃦
y − ˆ︁y′

N (x,θ)
⃦⃦⃦2

2

}︃
. (A.53)

Let θ′(k) be obtained by running k steps of the SGD algorithm (3.12) with ˆ︁yN (x,θ) replaced
by ˆ︁y′

N (x,θ). Recall that a
(ℓ)
iℓ,iℓ+1

(s) is bounded by Lemma A.3.1, a
(L)
iL

(s) is bounded by
assumption (B4) and σ(ℓ) is bounded by assumption (B3). Thus, we have that θ′(k) = θ(k)
and L′

N(θ′(k)) = LN(θ(k)). To simplify notation, in the rest of the proof we will drop the
symbol ′ from θ and LN . By definition of dropout stability, the proof is completed by showing
that, with probability at least 1 − e−z2 ,

|LN(θ(k)) − L|A|(θS(k))| ≤ K(T, L)
(︄√

d+ z√
N

+
√
α
(︂√

d+ z
)︂)︄

. (A.54)

By construction, the activation functions {σ̃(ℓ)}ℓ∈[L+1] are bounded, with Fréchet derivatives
that are bounded and Lipschitz. Thus, the technical assumptions of [AOY19] are fulfilled. Let
ρ⋆[0,T] denote the unique solution to the McKean-Vlasov DNN problem with initial condition ρ0

and activation functions σ(0) and σ̃(ℓ), with ℓ ∈ {0, . . . , L+ 1}. Furthermore, let θ̄(t), with
t ∈ [0, T], be the associated ideal particles. Furthermore, let θ̄S(t) be obtained from θ̄(t) in
the same way in which θS(k) is obtained from θ(k). By triangle inequality, we have that

|LN(θ(k)) − L|A|(θS(k))| ≤ |LN(θ(k)) − L̄(ρ⋆T)| + |L|A|(θS(k)) − L̄(ρ⋆T)|
≤ |LN(θ(k)) − LN(θ̄(T))| + |L|A|(θS(k)) − L|A|(θ̄S(T))|

+ |LN(θ̄(T)) − L̄(ρ⋆T)| + |L|A|(θ̄S(T)) − L̄(ρ⋆T)|,
(A.55)

where ρ⋆T denotes the marginal of ρ⋆[0,T] at time T and L̄ is defined in (A.35).

Given a vector of parameters θ containing Nℓ neurons in layer ℓ (ℓ ∈ [L]), we define the norm

∥θ∥∞ = max
(︄

sup
i1∈[N1]

⃦⃦⃦
θ

(0)
i1

⃦⃦⃦
2
, sup
ℓ∈[L−1],iℓ∈[Nℓ],iℓ+1∈[Nℓ+1]

⃦⃦⃦
θ

(ℓ)
iℓ,iℓ+1

⃦⃦⃦
2
, sup
iL∈[NL]

⃦⃦⃦
θ

(L)
iL

⃦⃦⃦
2

)︄
. (A.56)

As a preliminary result, we provide a bound on ∥θ(k) − θ̄(T)∥∞.

137

Consider the continuous time gradient descent process θ̃(t), defined as

θ̃
(0)
i1 (t) = θ̃

(0)
i1 (0),

θ̃
(ℓ)
iℓ,iℓ+1

(t) = θ̃
(ℓ)
iℓ,iℓ+1

(0) + 2
∫︂ t

0
αξ(s)N2E

{︄(︂
y − ˆ︁yN (︂x, θ̃(s)

)︂)︂T
D

θ̃
(ℓ)
iℓ,iℓ+1

ˆ︁yN (︂x, θ̃(s)
)︂}︄

ds,

θ̃
(L)
iL

(t) = θ̃
(L)
iL

(0),
(A.57)

with the initialization θ̃
(0)
i1 (0) = θ

(0)
i1 (0), θ̃

(ℓ)
iℓ,iℓ+1

(0) = θ
(ℓ)
iℓ,iℓ+1

(0) and θ̃
(L)
iL

(0) = θ
(L)
iL

(0). By
triangle inequality, we have that

∥θ(k) − θ̄(T)∥∞ ≤ ∥θ(k) − θ̃(T)∥∞ + ∥θ̃(T) − θ̄(T)∥∞. (A.58)

In order to bound the first term in the RHS of (A.58), we follow a strategy similar to that of
Proposition 10.1 in [AOY19]. From formula (10.8) of [AOY19], we have that⃦⃦⃦⃦

θ
(ℓ)
iℓ,iℓ+1

(m) − θ̃
(ℓ)
iℓ,iℓ+1

(mα)
⃦⃦⃦⃦

2
≤ α

⃦⃦⃦
Mrt(ℓ)

iℓ,iℓ+1
(m)

⃦⃦⃦
2

+

m∑︂
r=1

∫︂ rα

(r−1)α
E

⎧⎨⎩
⃦⃦⃦⃦
αξ((r − 1)α) (y − ˆ︁yN (x,θ(r − 1)))T D

θ
(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(r − 1))

− αξ(s)
(︂
y − ˆ︁yN (︂x, θ̃(s)

)︂)︂T
D

θ̃
(ℓ)
iℓ,iℓ+1

ˆ︁yN (︂x, θ̃(s)
)︂ ⃦⃦⃦⃦

2

⎫⎬⎭ds,

(A.59)

where

Mrt(ℓ)
iℓ,iℓ+1

(m) =
m∑︂
r=1

αξ((r − 1)α)
(︄

(yr−1 − ˆ︁yN (xr−1,θ(r − 1)))T D
θ

(ℓ)
iℓ,iℓ+1

ˆ︁yN (xr−1,θ(r − 1))

− E
{︃

(y − ˆ︁yN (x,θ(r − 1)))T D
θ

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(r − 1))
}︃)︄

(A.60)

is a martingale with respect to the filtration {Fm, m ∈ N} with

Fm = σ
(︃

θ(0), (x0,y0), . . . , (xm−1,ym−1)
)︃
.

By taking the sup on both sides, we have that

sup
ℓ∈[L−1],iℓ,iℓ+1∈[N]

⃦⃦⃦⃦
θ

(ℓ)
iℓ,iℓ+1

(m) − θ̃
(ℓ)
iℓ,iℓ+1

(T)
⃦⃦⃦⃦

2
≤

(I)⏟ ⏞⏞ ⏟
α sup
ℓ∈[L−1],iℓ,iℓ+1∈[N]

⃦⃦⃦
Mrt(ℓ)

iℓ,iℓ+1
(m)

⃦⃦⃦
2

+

(II)⏟ ⏞⏞ ⏟
m∑︂
r=1

∫︂ rα

(r−1)α
E

⎧⎨⎩ sup
ℓ∈[L−1],iℓ,iℓ+1∈[N]

⃦⃦⃦⃦
αξ((r − 1)α) (y − ˆ︁yN (x,θ(r − 1)))T D

θ
(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ(r − 1))

− αξ(s)
(︂
y − ˆ︁yN (︂x, θ̃(s)

)︂)︂T
D

θ̃
(ℓ)
iℓ,iℓ+1

ˆ︁yN (︂x, θ̃(s)
)︂ ⃦⃦⃦⃦

2

⎫⎬⎭ds.

(A.61)

138

Given two parameters θ1 and θ2, by following the argument of Lemma B.17 of [AOY19], we
have that⃦⃦⃦⃦
⃦(y − ˆ︁yN (x,θ1))T D

θ
(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ1) − (y − ˆ︁yN (x,θ2))T D
θ

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ2)
⃦⃦⃦⃦
⃦

2

≤ C1∥θ1 − θ2∥∞.

(A.62)

In what follows, the Ci are constants that depend on L, T , and on the constants Ki of the
assumptions.
Consequently, we can bound the second term in the RHS of (A.61) as

(II) ≤ C2

m∑︂
r=1

∫︂ rε

(r−1)ε

(︃
|(r − 1)ε− s| + ∥θ(r − 1) − θ̃(s)∥∞

)︃
ds, (A.63)

where we have used that the quantity

(y − ˆ︁yN (x,θ))T D
θ

(ℓ)
iℓ,iℓ+1

ˆ︁yN (x,θ) (A.64)

is bounded for all θ. By using also that the process t → θ̃(t) is Lipschitz in time, we obtain
the bound

(II) ≤ C3 αT + C3 α
m−1∑︂
r=0

⃦⃦⃦
θ(r) − θ̃(r)

⃦⃦⃦
∞
. (A.65)

By combining (A.65) with (A.61) and by applying a discrete Gronwall inequality, we have that

⃦⃦⃦
θ(k) − θ̃(T)

⃦⃦⃦
∞

≤ α eC3 T

⎛⎝ sup
m∈[k]

∥Mrt(m)∥∞ + C3 T

⎞⎠, (A.66)

where we have defined

∥Mrt(m)∥∞ = sup
ℓ∈[L−1],iℓ,iℓ+1∈[N]

⃦⃦⃦
Mrt(ℓ)

iℓ,iℓ+1
(m)

⃦⃦⃦
2
. (A.67)

Note that eζ∥Mrt(m)∥∞ is a submartingale. By using a Cramér-Chernoff argument, we have that

P
(︄

sup
m∈[k]

∥MrtN(m)∥∞ > u

)︄
≤ inf

ζ∈R+
e−ζ·uE

{︂
eζ∥Mrt(τ)∥∞

}︂
≤ inf

ζ∈R+
e−ζ·uE

{︂
eζ∥Mrt(k)∥∞

}︂
,

(A.68)
where τ = inf{m ≤ k, ∥MrtN(m)∥∞ > u}∧k is a stopping time, and in the second inequality
we have applied the optional stopping theorem to the submartingale eζ∥Mrt(m)∥∞ . Furthermore,
for any ζ > 0, we have that

E
{︂
eζ∥Mrt(k)∥∞

}︂
≤

L∑︂
ℓ=1

N∑︂
iℓ,iℓ+1=1

E

⎧⎨⎩eζ
⃦⃦⃦

Mrt(ℓ)
iℓ,iℓ+1

(k)
⃦⃦⃦

2

⎫⎬⎭ . (A.69)

Note that the martingale Mrt(ℓ)
iℓ,iℓ+1

(k) has bounded increments. Thus, by using a modification
of Hoeffding’s Lemma and an ε-net argument (cf. Lemma A.3 of [AOY19]), we obtain that

E

⎧⎨⎩eζ
⃦⃦⃦

Mrt(ℓ)
iℓiℓ+1

(k)
⃦⃦⃦

2

⎫⎬⎭ ≤ 5d · eC4kζ2
, (A.70)

139

with d = max
i∈[L−1]

di. By combining (A.68), (A.69) and (A.70), we deduce that

P
(︄

sup
m∈[k]

∥MrtN(m)∥∞ > u

)︄
≤ LN25d inf

ζ∈R+
e−ζ u+C4kζ2

. (A.71)

By optimizing over ζ, we have that, with probability at least 1 − e−z2 ,

sup
m∈[k]

∥MrtN(m)∥∞ ≤ C5

√︄
1
α

(︃√︂
d+ logN + z

)︃
. (A.72)

Finally, by combining (A.72) with (A.66), we conclude that, with probability at least 1 − e−z2 ,⃦⃦⃦
θ(k) − θ̃(T)

⃦⃦⃦
∞

≤ C6
√
α(
√︂
d+ logN + z). (A.73)

Let us bound the second term in the RHS of (A.58). By following the strategy of Lemma
12.2 in [AOY19], we have that, with probability at least 1 − e−u2 ,

⃦⃦⃦⃦
θ̃

(ℓ)
iℓ,iℓ+1

(t) − θ
(ℓ)
iℓ,iℓ+1

(t)
⃦⃦⃦⃦

2
≤ C7

∫︂ t

0

⃦⃦⃦
θ̃(s) − θ(s)

⃦⃦⃦
∞

ds+ C7
u+

√
d√

N
. (A.74)

By doing a union bound over iℓ, iℓ+1 ∈ [N] and ℓ ∈ [L− 1], we deduce that, with probability
at least 1 − e−z2 ,

⃦⃦⃦
θ̃(t) − θ(t)

⃦⃦⃦
∞

≤ C7

∫︂ t

0

⃦⃦⃦
θ̃(s) − θ(s)

⃦⃦⃦
∞

ds+ C8
z +

√
d+ logN√
N

. (A.75)

By Gronwall lemma, we conclude that, with probability at least 1 − e−z2 ,
⃦⃦⃦
θ̃(T) − θ(T)

⃦⃦⃦
∞

≤ C8e
C7T

z +
√
d+ logN√
N

. (A.76)

By combining (A.73) and (A.76), we have that, with probability at least 1 − e−z2 ,

∥θ(k) − θ̄(T)∥∞ ≤ C9

(︄
z +

√
d+ logN√
N

+
√
α(
√︂
d+ logN + z)

)︄
. (A.77)

At this point, we are ready to bound the various terms in the RHS of (A.55). In order to
bound the first term, note that LN is Lipschitz with ∥ · ∥∞. Thus, we obtain that, with
probability at least 1 − e−z2 ,

|LN(θ(k)) − LN(θ̄(T))| ≤ C10

(︄
z +

√
d+ logN√
N

+
√
α(
√︂
d+ logN + z)

)︄
. (A.78)

In order to bound the second term in the RHS of (A.55), note that

∥θS(k) − θ̄S(T)∥∞ ≤ ∥θ(k) − θ̄(T)∥∞. (A.79)

As L|A| is Lipschitz with ∥ · ∥∞, by combining (A.77) and (A.79), we obtain the bound

|L|A|(θS(k)) − L|A|(θ̄S(T))| ≤ C11

(︄
z +

√
d+ logN√
N

+
√
α(
√︂
d+ logN + z)

)︄
, (A.80)

140

with probability at least 1 − e−z2 .

Finally, let us consider the remaining two terms in the RHS of (A.55). Fix x ∈ Rd0 . Then, by
Lemma 11.4 of [AOY19], we have that, for ζ > 0,

logE
{︃
eζ∥ˆ︁yN(x,θ̄(T))−ȳ(x,ρ⋆

T)∥2

}︃
≤ C12

(︄
d+ ζ2

N

)︄
. (A.81)

By using similar arguments, we also have that, for ζ > 0,

logE
{︃
eζ∥ˆ︁y|A|(x,θ̄S(T))−ȳ(x,ρ⋆

T)∥2

}︃
≤ C13

(︄
d+ ζ2

Amin

)︄
. (A.82)

Thus, by applying Markov inequality and optimizing over ζ, we deduce that

∥ ˆ︁yN (︂x, θ̄(T)
)︂

− ȳ(x, ρ⋆T)∥2 ≤ C14

√
d+ z√
N

,

∥ ˆ︁y|A|
(︂
x, θ̄S(T)

)︂
− ȳ(x, ρ⋆T)∥2 ≤ C14

√
d+ z√
Amin

,

(A.83)

with probability at least 1 − e−z2 . By using that y, ˆ︁yN (︂x, θ̄(T)
)︂
, ˆ︁y|A|

(︂
x, θ̄S(T)

)︂
and

ȳ(x, ρ⋆T) are bounded, we conclude that

|LN(θ̄(T)) − L̄(ρ⋆T)| ≤ C15

√
d+ z√
N

,

|L|A|(θ̄S(T)) − L̄(ρ⋆T)| ≤ C15

√
d+ z√
Amin

,

(A.84)

with probability at least 1 − e−z2 . By combining (A.78), (A.80) and (A.84), the proof is
complete.

A.3.2 Part (B)
The proof of part (B) is obtained by combining part (A) with the following result, which
extends Lemma A.1.1 to the multilayer case.

Lemma A.3.2 (Dropout stability implies connectivity – multilayer). Consider a neural network
with L + 1 ≥ 4 layers, where each hidden layer contains N neurons, as in (3.10). For any
k ∈ [L], assume that θ and θ̄ are ε-dropout stable given Ai = [N/2] for i ∈ {k, . . . , L}.
Then, θ and θ̄ are ε-connected.

Given a vector of parameters θ, it is helpful to write it as

θ(L) =
{︃[︂

a
(L)
iL

]︂
iL∈[N]

,
[︂
w

(L)
iL

]︂
iL∈[N]

}︃
,

θ(ℓ) =
{︃[︂

a
(ℓ)
iℓ+1,iℓ

]︂
iℓ+1,iℓ∈[N]

,
[︂
w

(ℓ)
iℓ+1,iℓ

]︂
iℓ+1,iℓ∈[N]

}︃
, ℓ ∈ [L− 1],

θ(0) =
[︂
θ

(0)
i0

]︂
i0∈[N]

.

(A.85)

141

In words, we stack the parameters θ(ℓ) of layer ℓ into a matrix, and the (i, j)-th element of
this matrix contains the parameter θ

(ℓ)
j,i = (a(ℓ)

j,i ,w
(ℓ)
j,i) connecting the j-th neuron of layer ℓ

with the i-th neuron of layer ℓ+ 1. Furthermore, let us partition the parameters θ as

θ(L) =
{︂[︂

a
(L)
t a

(L)
b

]︂
,
[︂

w
(L)
t w

(L)
b

]︂}︂
,

θ(ℓ) =

⎧⎨⎩
⎡⎣ a

(ℓ)
t,t a

(ℓ)
t,b

a
(ℓ)
b,t a

(ℓ)
b,b

⎤⎦ ,
⎡⎣ w

(ℓ)
t,t w

(ℓ)
t,b

w
(ℓ)
b,t w

(ℓ)
b,b

⎤⎦⎫⎬⎭ , ℓ ∈ [L− 1],

θ(0) =
⎡⎣ θ

(0)
t

θ
(0)
b

⎤⎦ .
(A.86)

In words, θ
(ℓ)
t,t = (a(ℓ)

t,t ,w
(ℓ)
t,t) contains the parameters connecting the top half neurons of layer ℓ

with the top half neurons of layer ℓ+ 1; θ
(ℓ)
t,b = (a(ℓ)

t,b,w
(ℓ)
t,b) contains the parameters connecting

the bottom half neurons of layer ℓ with the top half neurons of layer ℓ+ 1; θ
(ℓ)
b,t = (a(ℓ)

b,t,w
(ℓ)
b,t)

contains the parameters connecting the top half neurons of layer ℓ with the bottom half
neurons of layer ℓ+ 1; and θ

(ℓ)
b,b = (a(ℓ)

b,b,w
(ℓ)
b,b) contains the parameters connecting the bottom

half neurons of layer ℓ with the bottom half neurons of layer ℓ+ 1. The partition for the first
and the last layer is similarly defined.

At this point, we are ready to present the proof of Lemma A.3.2.

Proof of Lemma A.3.2. For the moment, assume that N is even. Let θS,k be obtained from
θ by keeping only the top half neurons at layer ℓ ∈ {k, . . . , L}. With an abuse of notation,
we can partition the parameters θS,k as

θ
(L)
S,k =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ
(ℓ)
S,k =

{︄[︄
2a

(ℓ)
t,t 0

0 0

]︄
,

[︄
w

(ℓ)
t,t 0
0 0

]︄}︄
, ℓ ∈ {k, . . . , L− 1},

θ
(ℓ)
S,k =

⎧⎨⎩
⎡⎣ a

(ℓ)
t,t a

(ℓ)
t,b

a
(ℓ)
b,t a

(ℓ)
b,b

⎤⎦ ,
⎡⎣ w

(ℓ)
t,t w

(ℓ)
t,b

w
(ℓ)
b,t w

(ℓ)
b,b

⎤⎦⎫⎬⎭ , ℓ ∈ [k − 1],

θ
(0)
S,k =

⎡⎣ θ
(0)
t

θ
(0)
b

⎤⎦ ,

(A.87)

and the corresponding loss is given by LN(θS,k). We now prove by induction that θ is
connected to θS,k via a piecewise linear path in parameter space, such that the loss along the
path is upper bounded by LN(θ) + ε.

Base step: from θ to θS,L. As θ is ε-dropout stable, we have that LN(θS,L) ≤ LN(θ) + ε.
Note that if a

(L)
t = b0, then the value of w

(L)
t does not affect the loss. Hence, we can

interpolate from {[2a
(L)
t | 0], [w

(L)
t | 0]} to {[2a

(L)
t | 0], [w

(L)
t | w

(L)
b]} with no

change in loss. Furthermore, the loss is convex in a(L). Thus, we can interpolate from
{[a

(L)
t | a

(L)
b], [w

(L)
t | w

(L)
b]} to {[2a

(L)
t | b0], [w

(L)
t | w

(L)
b]} while keeping the loss

upper bounded by LN(θ) + ε.

Induction step: from θS,k to θS,k−1. We construct the path by passing through the following

142

intermediate points in parameter space:

θ
(L)
1 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ
(i)
1 =

{︄[︄
2a

(i)
t,t 0

0 0

]︄
,

[︄
w

(i)
t,t 0
0 0

]︄}︄
, i ∈ {k, . . . , L− 1},

θ
(k−1)
1 =

⎧⎨⎩
⎡⎣ a

(k−1)
t,t a

(k−1)
t,b

a
(k−1)
b,t a

(k−1)
b,b

⎤⎦ ,
⎡⎣ w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
b,t w

(k−1)
b,b

⎤⎦⎫⎬⎭ .

θ
(L)
2 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ
(i)
2 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2a
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {k, . . . , L− 1},

θ
(k−1)
2 =

⎧⎨⎩
⎡⎣ a

(k−1)
t,t a

(k−1)
t,b

2a
(k−1)
t,t 0

⎤⎦ ,
⎡⎣ w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
t,t 0

⎤⎦⎫⎬⎭ .

θ
(L)
3 =

{︂[︂
b0 2a

(L)
t

]︂
,
[︂

b0 w
(L)
t

]︂}︂
,

θ
(i)
3 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2a
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {k, . . . , L− 1},

θ
(k−1)
3 =

⎧⎨⎩
⎡⎣ a

(k−1)
t,t a

(k−1)
t,b

2a
(k−1)
t,t 0

⎤⎦ ,
⎡⎣ w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
t,t 0

⎤⎦⎫⎬⎭ .

θ
(L)
4 =

{︂[︂
b0 2a

(L)
t

]︂
,
[︂

b0 w
(L)
t

]︂}︂
,

θ
(i)
4 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2a
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {k, . . . , L− 1},

θ
(k−1)
4 =

⎧⎨⎩
⎡⎣ 2a

(k−1)
t,t b0

2a
(k−1)
t,t 0

⎤⎦ ,
⎡⎣ w

(k−1)
t,t b0

w
(k−1)
t,t 0

⎤⎦⎫⎬⎭ .

θ
(L)
5 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ
(i)
5 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2a
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {k, . . . , L− 1},

θ
(k−1)
5 =

⎧⎨⎩
⎡⎣ 2a

(k−1)
t,t b0

2a
(k−1)
t,t 0

⎤⎦ ,
⎡⎣ w

(k−1)
t,t b0

w
(k−1)
t,t 0

⎤⎦⎫⎬⎭ .

θ
(L)
6 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ
(i)
6 =

{︄[︄
2a

(i)
t,t 0

0 0

]︄
,

[︄
w

(i)
t,t 0
0 0

]︄}︄
, i ∈ {k − 1, . . . , L− 1}.

143

As we do not change the parameters in layer ℓ ∈ [k − 2], we have omitted them in the
definitions above.
From θ1 to θ2. The loss is not affected by the values in the bottom right quadrant of θ

(k−1)
1 ,

since the bottom neurons of layer k are not active (a(k)
t,b = a

(k)
b,b = b0). Consequently, we can

interpolate from a
(k−1)
b,b to b0 and from w

(k−1)
b,b to b0 with no change in loss. Similarly, the

loss is not affected by the values in the bottom right quadrant of θ
(i)
1 for i ∈ {k, . . . L− 1},

since the bottom neurons of layer i+ 1 are not active (a(i+1)
t,b = a

(i+1)
b,b = b0 and a

(L)
b = b0).

Consequently, for i ∈ {k, . . . L − 1}, we can successively interpolate from b0 to 2a
(i)
t,t and

from b0 to 2w
(i)
t,t with no change in loss.

From θ5 to θ6. We use the same reasoning as for θ1 → θ2 and go in reverse layer order (i.e.,
from layer L− 1 to layer k − 1). The loss is not affected by the values in the bottom right
quadrant of θ

(i)
5 , since the bottom neurons of layer i+ 1 are not active. Consequently, we can

interpolate from 2a
(i)
t,t to b0 and from w

(i)
t,t to b0 with no change in loss. Similarly, the loss is

not affected by the values in the bottom left quadrant of θ
(k−1)
5 , since the bottom neurons of

layer k are not active. Consequently, we can interpolate from 2a
(k−1)
t,t to b0 and from w

(k−1)
t,t

to b0 with no change in loss.
From θ4 to θ5. Note that the parameters of θ4 and θ5 are the same except for layer L.
Furthermore, the structure of these parameters implies that the output of layer L − 1 is
obtained by stacking the output of two identical sub-networks. In formulas, let z(L−1) be the
output of layer L− 1. Then, z(L−1) = [z̄ | z̄] for some z̄. Consequently, we can interpolate
between θ4 and θ5 with no change in loss.
From θ3 to θ4. By using the same reasoning as for θ5 → θ6, we interpolate from 2a

(i)
t,t to b0

and from w
(i)
t,t to b0 in the top left corner of θ

(i)
3 with no change in loss, for i = L− 1, . . . , k.

Then, we interpolate from θ
(k−1)
3 to θ

(k−1)
4 with no change in loss, since the top neurons of

layer k are not active. Finally, we restore sequentially 2a
(i)
t,t and w

(i)
t,t in the top left corner of

the corresponding parameter matrices with no change in loss, by using the same reasoning as
for θ1 → θ2.
From θ2 to θ3. From the previous arguments, we have that LN (θ2) = LN (θ1) and LN (θ3) =
LN(θ6). Furthermore, θ is ε-dropout stable, which implies that |LN(θ1) − LN(θ6)| ≤ ε.
Consequently, we have that |LN(θ2) − LN(θ3)| ≤ ε. Note that if a

(L)
t = b0, then the value

of w
(L)
t does not affect the loss. Hence, we can interpolate from {[2a

(L)
t | 0], [w

(L)
t | 0]}

to {[2a
(L)
t | 0], [w

(L)
t | w

(L)
t]} with no change in loss. Similarly, we can interpolate from

{[b0 | 2a
(L)
t], [b0 | w

(L)
t]} to {[b0 | 2a

(L)
t], [w

(L)
t | w

(L)
t]} with no change in loss.

Furthermore, the loss is convex in a(L). Thus, we can interpolate from {[2a
(L)
t | 0], [w

(L)
t |

w
(L)
t]} to {[b0 | 2a

(L)
t], [w

(L)
t | w

(L)
t]} while keeping the loss upper bounded by LN (θ)+ε.

As a result, we are able to connect θ with θS,1 via a piecewise linear path, where the loss is
upper bounded by LN(θ) + ε. Similarly, let θ̄S,k be obtained from θ̄ by keeping only the top
half neurons at layer ℓ ∈ {k, . . . , L}. Then, we can connect θ̄ with θ̄S,1 via a piecewise linear
path, where the loss is upper bounded by LN(θ̄) + ε.
In order to complete the proof, it remains to connect θS,1 with θ̄S,1 via a piecewise linear
path, where the loss is upper bounded by max(LN (θ), LN (θ̄)) + ε. We construct the path by
passing through the following intermediate points in parameter space:

144

θ̃
(L)
1 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ̃
(i)
1 =

{︄[︄
2a

(i)
t,t 0

0 0

]︄
,

[︄
w

(i)
t,t 0
0 0

]︄}︄
, i ∈ {1, . . . , L− 1},

θ̃
(0)
1 =

⎡⎣ θ
(0)
t

θ
(0)
b

⎤⎦ .

θ̃
(L)
2 =

{︂[︂
2a

(L)
t 0

]︂
,
[︂

w
(L)
t 0

]︂}︂
,

θ̃
(i)
2 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2ā
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w̄

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {1, . . . , L− 1},

θ̃
(0)
2 =

⎡⎣ θ
(0)
t

θ̄
(0)
t

⎤⎦ .

θ̃
(L)
3 =

{︂[︂
0 2ā

(L)
t

]︂
,
[︂

b0 w̄
(L)
t

]︂}︂
,

θ̃
(i)
3 =

⎧⎨⎩
⎡⎣ 2a

(i)
t,t 0

0 2ā
(i)
t,t

⎤⎦ ,
⎡⎣ w

(i)
t,t 0
0 w̄

(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {1, . . . , L− 1},

θ̃
(0)
3 =

⎡⎣ θ
(0)
t

θ̄
(0)
t

⎤⎦ .

θ̃
(L)
4 =

{︂[︂
0 2ā

(L)
t

]︂
,
[︂

b0 w̄
(L)
t

]︂}︂
,

θ̃
(i)
4 =

⎧⎨⎩
⎡⎣ 2ā

(i)
t,t 0

0 2ā
(i)
t,t

⎤⎦ ,
⎡⎣ w̄

(i)
t,t 0

0 w̄
(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {1, . . . , L− 1},

θ̃
(0)
4 =

⎡⎣ θ̄
(0)
t

θ̄
(0)
t

⎤⎦ .

θ̃
(L)
5 =

{︂[︂
2ā

(L)
t 0

]︂
,
[︂

w̄
(L)
t b0

]︂}︂
,

θ̃
(i)
5 =

⎧⎨⎩
⎡⎣ 2ā

(i)
t,t 0

0 2ā
(i)
t,t

⎤⎦ ,
⎡⎣ w̄

(i)
t,t 0

0 w̄
(i)
t,t

⎤⎦⎫⎬⎭ , i ∈ {1, . . . , L− 1},

θ̃
(0)
5 =

⎡⎣ θ̄
(0)
t

θ̄
(0)
t

⎤⎦ .

θ̃
(L)
6 =

{︂[︂
2ā

(L)
t 0

]︂
,
[︂

w̄
(L)
t b0

]︂}︂
,

θ̃
(i)
6 =

{︄[︄
2ā

(i)
t,t 0

0 b0

]︄
,

[︄
w̄

(i)
t,t 0

0 b0

]︄}︄
, i ∈ {1, . . . , L− 1},

θ̃
(0)
6 =

⎡⎣ θ̄
(0)
t

θ̄
(0)
b

⎤⎦ .
145

The arguments to connect θ̃j with θ̃j+1 are analogous to those previously used to connect θj
with θj+1. We briefly outline them below for completeness.

From θ̃1 to θ̃2. First, we interpolate from θ
(0)
b to θ̄

(0)
t with no loss change. Then, for

i = 1, . . . , L− 1, we successively interpolate from b0 to w̄
(i)
t,t and from b0 to 2ā

(i)
t,t with no

loss change.
From θ̃5 to θ̃6. For i = L− 1, . . . , 1, we successively interpolate from 2ā

(i)
t,t to b0 and from

w̄
(i)
t,t to b0 with no loss change. Finally, we interpolate from θ̄

(0)
t to θ̄

(0)
b with no loss change.

From θ̃4 to θ̃5. The output of layer L− 1 is obtained by stacking the output of two identical
sub-networks. Thus, we can interpolate between θ̃4 and θ̃5 with no change in loss.
From θ̃3 to θ̃4. For i = L − 1, . . . , 1, we interpolate from 2a

(i)
t,t to b0 and from w

(i)
t,t to

b0 with no change in loss. Then, we interpolate from θ
(0)
t to θ̄

(0)
t with no change in loss.

Finally, for i = 1, . . . , L− 1, we restore sequentially 2ā
(i)
t,t and w̄

(i)
t,t in the top left corner of

the corresponding parameter matrices with no change in loss.
From θ̃2 to θ̃3. From the previous arguments, we have that LN (θ̃2) = LN (θ̃1) ≤ LN (θ) + ε

and LN(θ̃3) = LN(θ̃6) ≤ LN(θ̄) + ε. First, we interpolate from {[2a
(L)
t | 0], [w

(L)
t | 0]}

to {[2a
(L)
t | 0], [w

(L)
t | w̄

(L)
t]} with no change in loss. Similarly, we interpolate from {[b0 |

2ā
(L)
t], [b0 | w̄

(L)
t]} to {[b0 | 2ā

(L)
t], [w

(L)
t | w̄

(L)
t]} with no change in loss. Furthermore,

as the loss is convex in a(L), we interpolate from {[2a
(L)
t | 0], [w

(L)
t | w̄

(L)
t]} to {[b0 |

2ā
(L)
t], [w

(L)
t | w̄

(L)
t]} while keeping the loss upper bounded by max(LN(θ), LN(θ̄)) + ε.

A.4 Additional Numerical Results
In Figures A.1, A.2 and A.3, we consider the problem of classifying isotropic Gaussians. This
is an artificial dataset considered in [MMN18]. The label y is chosen uniformly at random
between −1 and 1, i.e., y ∼ Unif({−1, 1}). Given y, the feature vector x is a d-dimensional
isotropic Gaussian with covariance matrix (1 + y∆)2Id, i.e., x ∼ N (b0, (1 + y∆)2Id). We
set d = 32 and ∆ = 0.5, and we run the one-pass (or online) SGD algorithm (3.4) on the
two-layer neural network (3.2) with sigmoid activation function (σ(x) = 1/(1 + e−x)). We
estimate the population risk and the classification error on 104 independent samples. Figure
A.1 compares the performance of the trained network (blue dashed curve) and of the dropout
network (orange curve) obtained by removing half of the neurons. We plot the population risk
and the classification error for N = 800 and N = 6400. As expected, the performance of the
dropout network improves with N , and it is very close to that of the trained network already
for N = 800. In fact, for N = 800 the classification error of the dropout network is < 0.4%.
Figure A.2 plots the change in loss between the full and the dropout network, as a function of
the number of neurons of the full network N . The change in loss decreases steadily with N
for all the values of T taken into account. Finally, Figure A.3 shows that the optimization
landscape is approximately connected when N = 3200.
In Figures A.4, A.5 and A.6, we consider MNIST classification with a three-layer neural network
and CIFAR-10 classification with a four-layer neural network. The results are qualitatively
similar to those of Figures 3.1, 3.2 and 3.3 in Section 3.5.

146

0 1 2 3 4 5
log10(iteration)

0.00

0.05

0.10

0.15

0.20

0.25
Population risk (N= 800)

0 1 2 3 4 5
log10(iteration)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Classification error (N= 800)

0 2 4 6
log10(iteration)

0.00

0.05

0.10

0.15

0.20

0.25
Population risk (N= 6400)

0 2 4 6
log10(iteration)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Classification error (N= 6400)

0

4e-2

8e-2

0

25e-3

50e-3

0

4e-2

8e-2

0

25e-3

50e-3

original dropout

Figure A.1: Comparison of population risk and
classification error between the trained network
(blue dashed curve) and the dropout network (or-
ange curve) for the classification of isotropic Gaus-
sians.

50 100 200 400 800 1600 3200 6400 12800
Number of neurons

101

100

10−1

10−2

10−3

10−4

10−5

10−6

|L
N
(θ

)−
L N

(θ
S)

|

0.00⋅T
0.70⋅T
1.00⋅T

Figure A.2: Change in loss between the full
network and the dropout network for the clas-
sification of isotropic Gaussians, as a function
of the number of neurons N of the full net-
work.

−10 0 10
θ1 (bimodal init)

100

102

104

−10 0 10
θ2 (unimodal init)

100

102

104

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Po
pu

la
tio

n
ris

k

risk on path
upper bound

Figure A.3: Classification error along a piecewise linear path that connects two SGD solutions θ1 and
θ2 for the classification of isotropic Gaussians with N = 3200. The two SGD solutions are initialized
with different distributions, and we show their histograms to highlight that θ1 cannot be obtained by
permuting θ2.

147

0 1 2 3
log10(iteration)

0

1

2

3

4
Population risk (N= 800)

0 1 2 3
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 800)

0 1 2 3 4
log10(iteration)

0.0

0.5

1.0

1.5

2.0

2.5
Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0.0

0.3

0.6

0.0

0.1

0.2

0.0

0.1

0.2

0.00

0.03

0.06

original dropout

(a) MNIST, three-layer

0 1 2 3 4
log10(iteration)

0.5

1.0

1.5

2.0

2.5

3.0
Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0 1 2 3 4 5
log10(iteration)

0.5

1.0

1.5

2.0

2.5
Population risk (N= 12800)

0 1 2 3 4 5
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 12800)

0.45

0.70

0.95

0.14

0.27

0.40

0.45

0.60

0.75

0.14

0.22

0.30

original dropout

(b) CIFAR-10, four-layer

Figure A.4: Comparison of population risk and classification error between the trained network (blue
dashed curve) and the dropout network (orange curve).

100 200 400 800 1600 3200 6400 12800
Number of neurons

101

100

10−1

10−2

10−3

|L
N
(θ

)−
L N

(θ
S)

|

0.00⋅T
0.65⋅T
1.00⋅T

(a) MNIST, three-layer

50 100 200 400 800 1600 3200 6400
Number of neurons

101

100

10−1

10−2

|L
N
(θ

)−
L N

(θ
S)

|

0.00⋅T
0.70⋅T
1.00⋅T

(b) CIFAR-10, four-layer

Figure A.5: Change in loss after removing half of the neurons from each layer, as a function of the
number of neurons N of the full network.

148

−50 0 50
θ1 (bimodal init)

100

103

106

−50 0 50
θ2 (unimodal init)

100

103

106

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

er
ro

r

error on path
upper bound

Figure A.6: Classification error along a piecewise linear path that connects two SGD solutions θ1
and θ2 for MNIST classification with a three-layer neural network with N = 3200.

149

APPENDIX B
Appendix for Chapter 4

B.1 Technical Results
In this appendix, we prove a few technical results which are used in the arguments of Section
4.5.2. More specifically, in Section B.1.1 we show that, as τ → ∞, the minimizer ρ∗

τ,m(θ) of
the free energy F τ,m converges pointwise in θ to the minimizer ρ∗

m(θ) of the free energy Fm.
This pointwise convergence is needed to establish the result of Lemma 4.5.1. In Section B.1.2,
we derive upper bounds on the risk of the minimizer (used in Lemma 4.5.3) and on its second
moment (which implies that the sequence of predictors is equi-Lipschitz), and we also prove
the lower bound on the partition function in Lemma 4.5.6. Finally, in Section B.1.3 we give
the proof of Lemma 4.5.4, which lower bounds the growth of the polynomials f j and fj.

B.1.1 Convergence of Minimizers
Lemma B.1.1 (Convergence of densities). Let {ρn}n be a sequence of densities in K with
uniformly bounded truncated entropy, that is∫︂

max {ρn(θ) log ρn(θ), 0} dθ ≤ C, ∀n,

for some C > 0 that is independent of n, and uniformly bounded second moment, i.e.,
M(ρn) ≤ C for all n. Then, there exists a subsequence {ρn′}n′ of {ρn}n and ρ ∈ K such
that ρn′ ⇀ ρ and

C ≥ lim inf
n′→∞

M(ρn′) ≥ M(ρ) ≥ 0.

Proof of Lemma B.1.1. Since z ↦→ max{z log z, 0}, z ∈ [0,+∞), has super-linear growth,
this result in conjunction with the de la Vallée Poussin criterion (see for instance [HR11])
guarantees that the sequence of densities {ρn}n is uniformly integrable. By Dunford-Pettis
Theorem (for σ-finite measure spaces, see for instance [Lau15]), relative weak compactness in
L1 is equivalent to uniform integrability. Hence, there exists a density ρ and a subsequence
{ρn′}n′ of {ρn}n such that ρn′ ⇀ ρ.

As M(·) is lower-semicontinuous with respect to the topology of weak convergence in L1 and
bounded from below, we have that lim infn′→∞ M(ρn′) ≥ M(ρ). Furthermore, as M(ρn) ≤ C,
we get that M(ρ) ≤ C and, thus, ρ ∈ K.

150

Lemma B.1.2 (Uniformly bounded M(ρ∗
τ,m) and limit of ρ∗

τ,m). Assume that condition B1
holds. Consider the sequence of minimizing Gibbs distributions {ρ∗

τ,m}τ . The following results
hold:

1. M(ρ∗
τ,m) is uniformly bounded in (τ,m). Moreover, if βλ > 1,

M(ρ∗
m), M(ρ∗

τ,m) ≤ C3

λ
, ∀τ ∈ (0,+∞),

where C3 > 0 is independent of (τ,m, β, λ).

2. Given any m consistent with B1, there exists ρm ∈ K and a subsequence {ρ∗
τ ′,m}τ ′

(which with an abuse of notation we identify with {ρ∗
τ,m}τ) such that ρ∗

τ,m ⇀ ρm as
τ → ∞.

3. Given any m consistent with B1, limτ→∞ Rτ,m
i (ρ∗

τ,m) = Rm
i (ρm) for all i ∈ [M], and

lim infτ→∞ F τ,m(ρ∗
τ,m) ≥ Fm(ρm).

Proof of Lemma B.1.2. We provide the proof of the first result for ρ∗
τ,m. The arguments for

ρ∗
m are the same after changing the notation from ρ∗

τ,m to ρ∗
m. Let ρ = N (0, I3×3). Then, we

have that
Rτ,m(ρ) = 1

M

M∑︂
i=1

y2
i , M(ρ) = 3, H(ρ) = 3

2 ln(2πe). (B.1)

Note that for this ρ, Rτ,m(ρ), in fact, does not depend on (τ,m, β, λ).
From Lemma 10.2 in [MMN18], since ρ∗

τ,m is the unique minimizer of the free energy F τ,m,
we have that the following inequalities hold

F τ,m(ρ) ≥ F τ,m(ρ∗
τ,m) ≥ Rτ,m(ρ∗

τ,m) + λ/4 ·M(ρ∗
τ,m) − 1/β · [1 + 3 · log(8π/(βλ))]. (B.2)

Furthermore, by using (B.1) and the fact that β > C1 and λ < C2, we obtain

F τ,m(ρ) ≤ K1 +K1λ− β−1K1 ≤ K2, (B.3)

for some K1, K2 > 0 that are independent of (τ,m, β, λ). By combining (B.3) and (B.2) and
using that Rτ,m(ρ∗

m) ≥ 0, we conclude that

λ ·M(ρ∗
τ,m) ≤ K3 + 1/β · [1 + 3 · log(8π/(βλ))],

where K3 > 0 is independent of (τ,m, β, λ). As βλ > 1, the first claim immediately follows.
Since the activation and the labels are uniformly bounded in τ and {i}i∈[M] is finite, |Rτ,m

i (ρ∗
τ,m)|

is uniformly bounded in (τ, i). Hence, the following lower bound on the partition function
Zτ,m(β, λ) holds

Zτ,m(β, λ) =
∫︂

exp
{︄

−β
[︄
M∑︂
i=1

Rτ,m
i (ρ∗

τ,m) · aτ,m(wτ,mxi + b)mτ + λ

2 ∥θ∥2
2

]︄}︄
dθ

≥
∫︂

exp
{︄

−β
[︄
M∑︂
i=1

|Rτ,m
i (ρ∗

τ,m)| · 2m3 + λ

2 ∥θ∥2
2

]︄}︄
dθ

≥ K4

∫︂
exp

{︄
−βλ

2 ∥θ∥2
2

}︄
dθ = K5√

β3λ3 ≥ K6, (B.4)

151

for some K4, K5, K6 > 0 independent of τ (but dependent on (m,β, λ)). In the same way,
one can upper bound ρ∗

τ,m · Zτ,m(β, λ) as

exp
{︄

−β
[︄
M∑︂
i=1

Rτ,m
i (ρ∗

τ,m) · aτ,m(wτ,mxi + b)mτ + λ

2 ∥θ∥2
2

]︄}︄
≤ K7 exp

{︄
−βλ

2 ∥θ∥2
2

}︄
, (B.5)

where K7 > 0 is independent of τ (but dependent on (m,β, λ)). Notice that we can increase
K7 to be arbitrarily large and still satisfy (B.5), and in particular, increase it to satisfy
K7/K6 > 1. Thus, by combining (B.4) and (B.5), we get∫︂

max{ρ∗
τ,m(θ) ln ρ∗

τ,m(θ), 0}dθ

≤
∫︂

max
{︄
K7

K6
exp

{︄
−βλ

2 ∥θ∥2
2

}︄
·
(︄

ln K7

K6
− βλ

2 ∥θ∥2
2

)︄
, 0
}︄

dθ

=
∫︂

Ω

K7

K6
exp

{︄
−βλ

2 ∥θ∥2
2

}︄
·
(︄

ln K7

K6
− βλ

2 ∥θ∥2
2

)︄
dθ ≤

∫︂
Ω

K7

K6
ln K7

K6
dθ,

where
Ω =

{︄
θ ∈ R3 : ∥θ∥2

2 ≤ ln
(︃
K7

K6

)︃ 2
βλ

}︄
.

Since vol(Ω) < K8 for some K8 ≥ 0 independent of τ , we get that∫︂
max{ρ∗

τ,m(θ) ln ρ∗
τ,m(θ), 0}dθ ≤ K8 · K7

K6
· ln K7

K6
,

where the RHS is independent of τ . As M(ρ∗
τ,m) is uniformly bounded in τ , we can invoke

Lemma B.1.1 to finish the proof of the second statement.
We now prove the third statement. By the triangle inequality, we have that, for all i ∈ [M],

lim
τ→∞

⃓⃓⃓⃓∫︂
aτ,m(wτ,mxi + b)mτ ρ∗

τ,m(θ)dθ −
∫︂
am(wmxi + b)m+ρm(dθ)

⃓⃓⃓⃓
≤ lim
τ→∞

⃓⃓⃓⃓∫︂
aτ,m(wτ,mxi + b)mτ ρ∗

τ,m(θ)dθ −
∫︂
am(wmxi + b)m+ρ∗

τ,m(θ)dθ
⃓⃓⃓⃓

+ lim
τ→∞

⃓⃓⃓⃓∫︂
am(wmxi + b)m+ρ∗

τ,m(θ)dθ −
∫︂
am(wmxi + b)m+ρm(dθ)

⃓⃓⃓⃓
:= A1 + A2.

By upper bounding ρ∗
τ,m as in (B.4)-(B.5), we have

A1 ≤ K9 lim
τ→∞

∫︂
|aτ,m(wτ,mxi + b)mτ − am(wmxi + b)m+ | exp

{︄
−βλ

2 ∥θ∥2
2

}︄
dθ,

where K9 > 0 is independent of τ . Thus, an application of the Dominated Convergence
theorem gives that the term A1 vanishes. Furthermore, the term A2 vanishes by weak
convergence of ρ∗

τ,m to ρm. This proves that, as τ → ∞, yσ∗
ρ∗

τ,m
(xi) → yσ

∗
ρm

(xi) and so
Rτ,m
i (ρ∗

τ,m) → Rm
i (ρm).

Note that −H(·) and M(·) are lower-semicontinuous in K. Furthermore, M(·) is lower
bounded and −H(·) is lower bounded by Lemma 10.1 in [MMN18] on the subsequence
{ρ∗

τ,m}τ , as M(ρ∗
τ,m) is uniformly bounded in τ . Hence, as ρ∗

τ,m converges weakly to ρm ∈ K,
we conclude that

lim inf
τ→∞

−H(ρ∗
τ,m) ≥ −H(ρm), lim inf

τ→∞
M(ρ∗

τ,m) ≥ M(ρm),

which, combined with Rτ,m
i (ρ∗

τ,m) → Rm
i (ρm), implies the desired result.

152

Lemma B.1.3 (Pointwise convergence of free-energies). Fix some distribution ρ ∈ K, then
we have the following pointwise convergence:

lim
τ→∞

F τ,m(ρ) = Fm(ρ).

Proof of Lemma B.1.3. By construction, we have that (x)mτ converges to (x)m+ , for all x ∈ R.
It is clear that

|aτ,m|(wτ,mx+ b)mτ ρ(θ) ≤ 2m3ρ(θ),
and the RHS is integrable. Thus, an application of the Dominated Convergence theorem gives
that

lim
τ→∞

Rτ,m(ρ) = Rm(ρ).

This concludes the proof since M(ρ) and H(ρ) are independent of τ .
Lemma B.1.4 (Pointwise convergence of minimizers). Assume that condition B1 holds and
consider any satisfactory m. Then, as τ → ∞, the minimizer ρ∗

τ,m of the free energy F τ,m

converges pointwise in θ to the minimizer ρ∗
m of the free energy Fm, i.e.,

lim
τ→∞

ρ∗
τ,m(θ) = ρ∗

m(θ), ∀ θ ∈ R3.

Proof of Lemma B.1.4. From Lemma B.1.2, we have that there exists a subsequence {ρ∗
τ,m ∈

K} and ρm ∈ K such that the following holds
lim inf
τ→∞

F τ,m(ρ∗
τ,m) ≥ Fm(ρm). (B.6)

Since ρ∗
τ,m ∈ K minimizes F τ,m, we have

F τ,m(ρ∗
τ,m) ≤ F τ,m(ρ∗

m).

By taking the liminf on both sides, using Lemma B.1.3 and (B.6), we have
Fm(ρm) ≤ lim inf

τ→∞
F τ,m(ρ∗

τ,m) ≤ lim inf
τ→∞

F τ,m(ρ∗
m) = Fm(ρ∗

m).

Since ρ∗
m is the unique minimizer of Fm (see Lemma 10.2 of [MMN18]), ρ∗

m and ρm coincide
almost everywhere, which implies that

Rm
i (ρm) = Rm

i (ρ∗
m).

Hence, by Lemma B.1.2, we have that
lim
τ→∞

Rτ,m
i (ρ∗

τ,m) = Rm
i (ρ∗

m).

Recall that, by construction, for any parameter v ∈ R, the τ -smooth m-truncation vτ,m

converges to vm as τ → ∞. Furthermore, as τ → ∞, the smooth m-truncation (·)mτ of
the softplus activation converges pointwise to the smooth m-truncation (·)m+ of the ReLU
activation. Thus,

lim
τ→∞

Ψτ (θ) = lim
τ→∞

M∑︂
i=1

Rτ,m
i (ρ∗

τ,m)·aτ,m(wτ,mxi+b)mτ =
M∑︂
i=1

Rm
i (ρ∗

m)·am(wmxi+b)m+ = Ψ(θ),

where the convergence is intended to be pointwise in θ. Note that Ψτ (θ) is uniformly bounded
in τ , hence

lim
τ→∞

exp
{︄

−βΨτ (θ) − βλ

2 ∥θ∥2
2

}︄
= exp

{︄
−βΨ(θ) − βλ

2 ∥θ∥2
2

}︄
,

which implies that Zτ,mρ∗
τ,m(θ) converges pointwise to Zmρ∗

m(θ). Furthermore, as τ → ∞,
Zτ,m converges to Zm by Dominated Convergence, which concludes the proof.

153

B.1.2 Bounds on Risk of Minimizer, Second Moment and Partition
Function

Lemma B.1.5 (Bound on risk of the minimizer). Assume that condition B1 holds. Then,

Rm(ρ∗
m) ≤ Cλ,

where C > 0 is a constant independent of (m,β, λ). In addition, for any ε > 0, there exists
τ̄(ε,m, β, λ) such that for any τ > τ̄(ε,m, β, λ) we have

Rτ,m(ρ∗
τ,m) ≤ Cλ+ ε.

Proof of Lemma B.1.5. Consider a “saw-tooth” function centered at xi with height yi and
width ε > 0, namely,

STxi,yi
(x) :=

⎧⎪⎪⎨⎪⎪⎩
0, x < xi − ε or x > xi + ε,
yi

ε
(x− xi + ε), xi − ε ≤ x ≤ xi,

yi

ε
(xi − x+ ε), xi < x ≤ xi + ε,

Notice that this function can be implemented by the following ρ̂i:

ρ̂i = 1
3

(︃
δ(3yi

ε
,1,ε−xi) + δ(− 6yi

ε
,1,−xi) + δ(3yi

ε
,1,−ε−xi)

)︃
,

in the sense that
STxi,yi

(x) =
∫︂
a(wx+ b)+ρ̂i(dθ),

where δθ stands for a delta distribution centered at the point θ = (a, w, b) ∈ R3. Let us pick
ε such that ε < mini∈[M−1] {|xi − xi+1|/2}. This condition on ε guarantees that{︃

x ∈ R :
∫︂
a(wx+ b)+ρ̂i(dθ) ̸= 0

}︃
∩
{︃
x ∈ R :

∫︂
a(wx+ b)+ρ̂j(dθ) ̸= 0

}︃
= ∅, ∀i ̸= j,

which ensures that the “saw-tooth” functions are not intersecting. Define

ρ̂ = 1
3M

M∑︂
i=1

[︃
δ(3Myi

ε
,1,ε−xi) + δ(− 6Myi

ε
,1,−xi) + δ(3Myi

ε
,1,−ε−xi)

]︃
.

Then, one immediately has that, for all i ∈ [M],∫︂
a(wxi + b)+ρ̂(dθ) = yi.

Furthermore, by taking a sufficiently large m, in particular, taking m > maxi{6M |yi|/ε} +
3|xM | + 3|x1| + 2 suffices, we get that, for all x ∈ [x1, xM],∫︂

am(wmx+ b)m+ ρ̂(dθ) =
∫︂
a(wx+ b)+ρ̂(dθ),

which implies that Rm(ρ̂) = 0.
Let N (µ, σ2) denote a Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R,
and let U(µ, σ2) denote the uniform distribution with mean µ and variance σ2/12. Given
(µ1, µ2, µ3) ∈ R3 and σ2 ∈ R, let ρ((µ1,µ2,µ3),σ2) denote the following product distribution

ρ((µ1,µ2,µ3),σ2) := U(µ1, σ
2) × N (µ2, σ

2) × N (µ3, σ
2),

154

and define

ρ̃ = 1
3M

M∑︂
i=1

[︃
ρ((3Myi

ε
,1,ε−xi),σ2) + ρ((− 6Myi

ε
,1,−xi),σ2) + ρ((3Myi

ε
,1,−ε−xi),σ2)

]︃
. (B.7)

Note that, for σ2 < 1 and m chosen sufficiently large as mentioned previously,∫︂
am(wmx+ b)m+ ρ̃(dθ) =

∫︂
a(wmx+ b)m+ ρ̃(dθ).

Thus, by computing the integral w.r.t. a, we have that∫︂
am(wmx+ b)m+ ρ̂(dθ) −

∫︂
am(wmx+ b)m+ ρ̃(dθ)

=
M∑︂
i=1

[︃
yi
ε

(︃∫︂
(wmx+ b)m+δ(1,ε−xi)(dw db) −

∫︂
(wmx+ b)m+ρ((1,ε−xi),σ2)(dw db)

)︃]︃

−
M∑︂
i=1

[︃2yi
ε

(︃∫︂
(wmx+ b)m+δ(1,−xi)(dw db) −

∫︂
(wmx+ b)m+ρ((1,−xi),σ2)(dw db)

)︃]︃

+
M∑︂
i=1

[︃
yi
ε

(︃∫︂
(wmx+ b)m+δ(1,−ε−xi)(dw db) −

∫︂
(wmx+ b)m+ρ((1,−ε−xi),σ2)(dw db)

)︃]︃
, (B.8)

where, with an abuse of notation, we denote by ρ((µ2,µ3),σ2) the marginal of ρ((µ1,µ2,µ3),σ2) with
respect to the last two components. By applying to Kantorovich-Rubinstein theorem (see, for
instance, [Vil09]), we have that

K ·W1(p, q) = sup
∥f∥Lip≤K

|Ex∼pf(x) − Ey∼qf(y)|, (B.9)

for two densities p and q, where W1 is the 1-Wasserstein distance and ∥f∥Lip denotes the
Lipschitz constant of f . Notice that (wmx+ b)m+ is Lipschitz in (w, b) with Lipschitz constant
upper bounded by max(|x|, 1). Hence, combining (B.8) and (B.9), we have that

(︃∫︂
am(wmx+ b)m+ ρ̂(dθ) −

∫︂
am(wmx+ b)m+ ρ̃(dθ)

)︃2

≤ K1

(︄
M∑︂
i=1

W1(δ(1,ε−xi), ρ((1,ε−xi),σ2)) +W1(δ(1,−xi), ρ((1,−xi),σ2))

+W1(δ(1,−ε−xi), ρ((1,−ε−xi),σ2))
)︄2

,

(B.10)

where K1 > 0 is a constant independent of m. Recalling the form of the 2-Wasserstein
distance between a delta and a Gaussian distribution, we have that

W 2
2 (δ(w,b), ρ((w,b),σ2)) ≤ K2σ

2, (B.11)

for some constant K2 > 0. As the W1 distance is upper bounded by the W2 distance (via
Hölder’s inequality), by combining (B.10) and (B.11), we conclude that

(︃∫︂
am(wmx+ b)m+ ρ̂(dθ) −

∫︂
am(wmx+ b)m+ ρ̃(dθ)

)︃2
≤ K3σ

2,

155

where K3 > 0 is a constant independent of m. Hence, by taking σ2 = min(λ, 1/2), we have

Rm(ρ̃) ≤ K4λ,

where K4 > 0 is a constant independent of m.

Now recall that the differential entropy is a concave function of the distribution. Hence, by
using the fact that ρ((µ1,µ2,µ3),σ2) is a product distribution and by explicitly computing the
entropy of a Gaussian and a uniform random variable, we conclude that

H(ρ̃) ≥ K5(−1 + log λ),

where K5 > 0 is a constant independent of m. As M(ρ̃) is upper bounded by a constant
independent of m, we conclude that

Fm(ρ̃) ≤ K6λ+ K5

β
(1 − log λ), (B.12)

with K6 > 0 independent of m. Hence, since ρ∗
m is the minimizer of the free energy, by using

the bound from Lemma 10.2 in [MMN18], we get that

1
2R

m(ρ∗
m) ≤ K6λ+ K5

β
(1 − log λ) + 1

β

[︄
1 + 3 log 8π

βλ

]︄
. (B.13)

Since β > − 1
λ

log λ and βλ > 1, (B.13) implies that

Rm(ρ∗
m) ≤ K7λ, (B.14)

for K7 > 0 independent of (m,β, λ). This finishes the proof of the first part of the statement.
The second part of the statement follows by combining (B.14) with Lemma B.1.4.

Lemma B.1.6 (Second moment is uniformly bounded). Assume that condition B1 holds. It
holds that there exists τ (m,β, λ) such that for any τ > τ (m,β, λ) the following upper bound
holds:

M(ρ∗
τ,m) ≤ C,

for some C > 0 that is independent of (τ,m, β, λ).

Proof of Lemma B.1.6. Let ρ̃ be defined as in (B.7). Then, by combining (B.12) with Lemma
B.1.3, we have that, for τ > τ(m,β, λ),

F τ,m(ρ̃) ≤ K1λ+ K2

β
(1 − log λ),

where K1, K2 > 0 are independent of m. Hence, by using (B.2) with ρ̃ in place of ρ and by
recalling that Rτ,m(ρ∗

τ,m) ≥ 0 and the existence of constants C1 and C2 such that β > C1
and λ < C2, the result readily follows.

We conclude this part of the appendix by providing the proof of Lemma 4.5.6.

156

Proof of Lemma 4.5.6. Consider the following lower bound

Zm(λ, β) ≥
∫︂

exp
{︄

−β
[︄
M∑︂
i=1

|Rm
i (ρ∗

m)| · |am|(wmxi + b)m+ + λ

2 ∥θ∥2
2

]︄}︄
dθ

≥
∫︂

exp
{︄

−β
[︄
M∑︂
i=1

|Rm
i (ρ∗

m)| · |a|(wmxi + b)+ + λ

2 ∥θ∥2
2

]︄}︄
dθ

≥
∫︂

exp
{︄

−β
[︄
M∑︂
i=1

|xiRm
i (ρ∗

m)| · |aw| +
M∑︂
i=1

|Rm
i (ρ∗

m)| · |ab| + λ

2 ∥θ∥2
2

]︄}︄
dθ.

(B.15)

Define A = ∑︁M
i=1 |xiRm

i (ρ∗
m)| and B = ∑︁M

i=1 |Rm
i (ρ∗

m)|. By Lemma B.1.5, |Rm
i (ρ∗

m)| ≤ K1
√
λ,

where K1 > 0 is independent of (m,β, λ, i). Therefore, |A|, |B| ≤ K2
√
λ for some K2 > 0

independent of (m,β, λ). Using the inequalities 2|aw| ≤ a2 + w2 and 2|ab| ≤ a2 + b2, the
RHS of (B.15) can be lower bounded by

∫︂
R3

exp
{︄

−β

2
[︂
(2K2

√
λ+ λ) · a2 + (K2

√
λ+ λ) · w2 + (K2

√
λ+ λ) · b2

]︂}︄
dθ.

By explicitly computing the integral above, the desired result immediately follows.

B.1.3 Lower Bound on Polynomials
Proof of Lemma 4.5.4. We start by rewriting P2 as

P2(x) = (1 − a2) · (x− xc)2 +
[︂
2(1 − a2)xc + 2ab

]︂
· (x− xc)

+ (1 − a2)x2
c + 2abxc + 1 − b2

= 1
2P

′′
2 (xc) · (x− xc)2 + P ′

2(xc) · (x− xc) + P2(xc). (B.16)

By definition of xc, one can immediately verify that P2(xc) ≥ 0. Notice that, if P ′′
2 (xc) is close

to 0, then a2 is close to 1, which implies that (since xc ∈ I and, thus, bounded in absolute
value) |P ′

2(xc)| is close to 2|b| and P2(xc) is close to sign(a) · 2bxc + 1 − b2. Therefore, at
least one of the coefficients P2(xc), |P ′

2(xc)|, |P ′′
2 (xc)| is lower bounded by a constant that is

independent of (a, b).

Next, we distinguish two cases depending on the sign of P ′′
2 (xc). First, assume that P ′′

2 (xc) ≥ 0.
We now show that P ′

2(xc) · (x− xc) ≥ 0.

In case of a degenerate polynomial, i.e., P ′′
2 (xc) = 0, we distinguish two sub-cases: either

P ′
2(xc) > 0 or P ′

2(xc) < 0 holds. (The case corresponding to P ′
2(xc) = 0 is trivial.) If

P ′
2(xc) > 0, then by definition of xc and the fact that x ∈ Ω+ by assumption, we have that

(x − xc) > 0. In fact, recalling the definition of xr in Definition 4.4.1, as Ω+ has non-zero
Lebesgue measure, xc is either the left extreme of I (i.e., xc = inf

x̃∈I
x̃) or xc = xr ∈ I (i.e.,

in the interior) and, hence, Ω+ = (xr, Ir] with xr < Ir. This gives that P ′
2(xc)(x− xc) ≥ 0.

The case P ′
2(xc) < 0 follows from similar arguments.

Now assume that P ′′
2 (xc) > 0 and let xmin be the minimizer of P2 on the interval I. If

x ≥ xmin then, by definition of a critical point, xc ≥ xmin which means that xc is located
on the right branch of the parabola and, hence, P ′

2(xc) ≥ 0. Furthermore, x belongs to the

157

interval [xc, Ir] by definition of xc. These facts imply that P ′
2(xc) · (x − xc) ≥ 0. The case

x < xmin is treated in a similar fashion.
As it was shown, at least one of the coefficients P2(xc), |P ′

2(xc)|, P ′′
2 (xc) is lower bounded by

a constant that is independent of (a, b), and P ′
2(xc)(x− xc) ≥ 0, hence, choosing

α2 = P ′′
2 (xc), α1 = |P ′

2(xc)|, α0 = P2(xc),

concludes the proof for the case of non-negative curvature.
Assume now that P ′′

2 (xc) < 0. As |Ω+| is lower bounded by a strictly positive constant, we
can pick x̃ ∈ Ω+ such that |x̃− xc| = C, for some C > 0 which is independent of (a, b). As
x̃ ∈ Ω+, we have that P2(x̃) ≥ 0. Furthermore, by rewriting P2(x̃) as in (B.16), we obtain
that

1
2P

′′
2 (xc) · (x̃− xc)2 + P ′

2(xc) · (x̃− xc) + P2(xc) ≥ 0,

which implies that

|P ′
2(xc)||x̃− xc| + P2(xc) ≥ −1

2P
′′
2 (xc)(x̃− xc)2. (B.17)

As |x̃− xc| = C, (B.17) is equivalent to

|P ′
2(xc)| · C + P2(xc) ≥ −1

2P
′′
2 (xc) · C2. (B.18)

Now, if both |P ′
2(xc)| and P2(xc) are close to 0, then (B.18) immediately implies that P ′′

2 (xc)
is also close to 0. However, following the argument above, it is not possible that −P ′′

2 (xc),
|P ′

2(xc)| and P2(xc) are simultaneously close to 0. This proves that max(|P ′
2(xc)|, P2(xc)) is

lower bounded by a constant that is independent of (a, b).
Let xmax be the maximizer of P2 and, without loss of generality, assume that xc < xmax (the
case xc ≥ xmax is handled in a similar way). Note that, by definition of xc, the point x lies
in the interval [xc, xmax]. To show this, let us assume the contrary, i.e., x > xmax (the case
x < xc < xmax is ruled out by the assumption that x ∈ Ω+). Then, the root of P2 which is
the closest in Euclidean distance to x is located to the right of xmax, hence xc < xmax cannot
be a critical point for x, which leads to a contradiction. This proves that x lies in the interval
[xc, xmax] and in particular, x ≤ xmax. Furthermore, by concavity, the parabola P2(x̃) is lower
bounded by the line that connects (xc, P2(xc)) and (xmax, P2(xmax)) for x̃ ∈ [xc, xmax]. By
the focal property of the parabola, this line has angular coefficient |P ′

2(xc)|/2. Therefore,

P2(x̃) ≥ (x̃− xc) · |P ′
2(xc)|/2 + P2(xc), x̃ ∈ [xc, xmax].

Picking x̃ = x and
α2 = 0, α1 = |P ′

2(xc)|/2, α0 = P2(xc),

gives the desired result in the case P ′′
2 (xc) < 0 and concludes the proof.

158

APPENDIX C
Appendix for Chapter 5

C.1 Closed Forms for the Population Risk
For the proofs of Lemmas 5.4.1 and 5.5.1 in the current section, we assume that the rows of
B have non-zero norm, hence, in particular, they may be chosen to have unit norm. In the
end of the section, we elaborate on why this assumption holds true.

Let us also mention that we call σ odd in L2 sense. For this particular case, it means that
σ(x) = σ(−x) for x ≠ 0 and |σ(0)| < C, where C is some universal constant. This concern is
purely technical, since the main application of our results is 1-bit compression. Namely, we do
not set σ(0) = sgn(0) = 0. In fact, this would mean that the compressed sequence can take
values in {−1, 0, 1}, which would not result in 1-bit compression, but rather in log2(3)-bits
compression. It is safe to ignore this technicality and intuitively assume that σ(0) = 0.

Proof of Lemma 5.4.1. Opening up the two-norm gives

E∥x − Aσ(Bx)∥2
2 = E∥x∥2

2 + E∥Aσ(Bx)∥2
2 − 2E⟨x,Aσ(Bx)⟩. (C.1)

Since x ∼ N (0, I), we get
E∥x∥2

2 = d. (C.2)
Let B⊤ = [b1, . . . , bn] ∈ Rd×n and A = [a1, . . . ,an] ∈ Rd×n, with ∥bi∥2 = ∥Bi,:∥ = 1.
Rewriting the second term in (C.1) gives

E∥Aσ(Bx)∥2
2 =

n∑︂
i,j=1

⟨ai,aj⟩ · E [σ(⟨bi,x⟩) · σ(⟨bj,x⟩)] . (C.3)

Using the reproducing property of Hermite coefficients (see, e.g., Chapter 11 in [O’D14]),
since the random variables ⟨bi,x⟩ and ⟨bj,x⟩ are ⟨bi, bj⟩-correlated, we have

E [h2ℓ+1(⟨bi,x⟩) · h2ℓ+1(⟨bj,x⟩)] = ⟨bi, bj⟩2ℓ+1, E [h2ℓ+1(⟨bi,x⟩) · h2k+1(⟨bj,x⟩)] = 0,

for k ̸= ℓ. This gives that

E [σ(⟨bi,x⟩) · σ(⟨bj,x⟩)] =
∞∑︂
ℓ=0

(c2ℓ+1)2⟨bi, bj⟩2ℓ+1 = f(⟨bi, bj⟩),

159

and, hence, using (C.3) we arrive to

E∥Aσ(Bx)∥2
2 =

n∑︂
i,j=1

⟨ai,aj⟩ · f(⟨bi, bj⟩) = Tr
[︂
A⊤A · f(BB⊤)

]︂
. (C.4)

Rearranging the last term in (C.1) gives

E⟨x,Aσ(Bx)⟩ =
d∑︂
i=1

n∑︂
j=1

aij · E[xiσ(⟨bj,x⟩)], (C.5)

where aij stands for the i-th coordinate of the vector aj and xi stands for the i-th coordinate
of the vector x. Let us now compute the inner expected value for each pair (i, j). Notice
that the random variables ⟨bj,x⟩ and xi are jointly Gaussian with zero mean and covariance
matrix ˜︁Σ ∈ R2×2:

˜︁Σ21 = ˜︁Σ12 = Exi⟨bj,x⟩ = Ebijx2
i = bij,

˜︁Σ11 = E⟨bj,x⟩2 = ∥bj∥2
2 = 1, ˜︁Σ22 = Ex2

i = 1.

Hence, the random vectors (⟨bj,x⟩, xi) and(︃
y1, b

i
j · y1 +

√︂
1 − (bij)2 · y2

)︃
, with (y1, y2) ∼ N (0, I)

are identically distributed. In this view, we obtain

E[xiσ(⟨bj,x⟩)] = E
[︃(︃
bij · y1 +

√︂
1 − (bij)2 · y2

)︃
σ(y1)

]︃
= bij · E[y1σ(y1)] +

√︂
1 − (bij)2 · E[y2] · E[σ(y1)] = c1 · bij,

(C.6)

where we applied the reproducing property to conclude that E[y1σ(y1)] = c1. Consequently,
by combining (C.5) and (C.6), we get that

E⟨x,Aσ(Bx)⟩ = c1 ·
d∑︂
i=1

n∑︂
j=1

aijb
i
j = c1 · Tr [BA] . (C.7)

By combining (C.1), (C.2), (C.4) and (C.7), we obtain the desired expression for ˜︁R(r).

Assume now that σ is homogeneous. Then, in (C.3) and (C.5), the norm of bi can be pushed
into the corresponding ai and, hence, we obtain

min
A,B

E∥x − Aσ(Bx)∥2
2 = min

A,∥Bi∥2=1
E∥x − Aσ(Bx)∥2

2,

which proves that ˆ︂R(r) = ˜︂R(r).

Finally, consider the case σ(x) = sign(x). Then, Grothendieck’s identity (see, e.g., Lemma
3.6.6 in [Ver18]) gives

Eσ(⟨bi,x⟩)σ(⟨bj,x⟩) = 2
π

arcsin(⟨bi, bj⟩) ⇒ f(x) = 2
π

arcsin(x).

Recalling that the first Hermite coefficient of σ(x) = sign(x) is equal to
√︂

2
π

finishes the
proof.

160

Proof of Lemma 5.5.1. The proof of Lemma 5.5.1 follows from similar arguments as that
of Lemma 5.4.1. Given this, we only explain the key differences. We first show that it is
enough to consider Σ = D2. Given the SVD Σ = UD2U⊤, we have x = UDx̃, where
x̃ ∼ N (0, I). Now, we can push the rotation U in A,B:

∥x − Aσ(Bx)∥2 =
⃦⃦⃦
Dx̃ − U⊤Aσ(BUDx̃)

⃦⃦⃦
2
.

Thus, after replacing A with U⊤A and B with BU , we may assume that x = Dx̃.

We again open up the two-norm

E∥x − Aσ(Bx)∥2
2 = E∥x∥2

2 + E∥Aσ(Bx)∥2
2 − 2E⟨x,Aσ(Bx)⟩. (C.8)

For the first term, we clearly have

E∥x∥2
2 = Tr

[︂
D2

]︂
.

Now, for the second term we write

E∥Aσ(Bx)∥2
2 = E∥Aσ(BDx̃)∥2

2,

where x̃ ∼ N (0, I) . Thus, as in the proof of Lemma 5.4.1, we have

E∥Aσ(BDx̃)∥2
2 = Tr

[︂
A⊤A · f(BD2B⊤)

]︂
.

Similarly, for the last term we obtain

E⟨x,Aσ(Bx)⟩ = E⟨x̃,DAσ(BDx̃)⟩ = c1Tr [DABD] .

Finally, since σ is homogeneous, by abuse of notation we can replace BD by any B with
unit-norm rows. This follows from the fact that, similarly to the proof of Lemma 5.4.1 (namely,
equations (C.3) and (C.5)), we have that

E∥Aσ(BDx̃)∥2
2 =

n∑︂
i,j=1

⟨ai,aj⟩ · E [σ(⟨(BD)i,:, x̃⟩) · σ(⟨(BD)j,:, x̃⟩)] ,

E⟨x̃,DAσ(BDx̃)⟩ =
d∑︂
i=1

n∑︂
j=1

aij · E[(Di,i · x̃i) · σ(⟨(BD)j,:, x̃⟩)],
(C.9)

which, by homogeneity, readily gives that the norm of (BD)i,: can be pushed into the
corresponding ai.

As a result, the statement of Lemma 5.5.1 readily follows by comparing the terms.

Rows of B are non-zero. We show that the assumption holds true by contradiction. Without
loss of generality, assume that the first n′ ≤ n rows of B are zero vectors. Hence, from (C.9)

161

we can see that the following holds:

E∥Aσ(BDx̃)∥2
2 =

n∑︂
i,j=n′+1

⟨ai,aj⟩ · E [σ(⟨(BD)i,:, x̃⟩) · σ(⟨(BD)j,:, x̃⟩)]

+
∑︂

i≤n′ ∧ j>n′
⟨ai,aj⟩ · E [σ(0) · σ(⟨(BD)j,:, x̃⟩)]

+
∑︂

i>n′ ∧ j≤n′
⟨ai,aj⟩ · E [σ(0) · σ(⟨(BD)i,:, x̃⟩)] +

∑︂
i,j≤n′

⟨ai,aj⟩ · σ(0)2

=
n∑︂

i,j=n′+1
⟨ai,aj⟩ · E [σ(⟨(BD)i,:, x̃⟩) · σ(⟨(BD)j,:, x̃⟩)]

+
∑︂
i,j≤n′

⟨ai,aj⟩ · σ(0)2

≥
n∑︂

i,j=n′+1
⟨ai,aj⟩ · E [σ(⟨(BD)i,:, x̃⟩) · σ(⟨(BD)j,:, x̃⟩)] ,

(C.10)

where in the fourth line we used that for x̃ ∼ N (0, I), as σ is odd, the following identity
holds:

E [σ(⟨(BD)j,:, x̃⟩)] = 0,

and the last inequality follows from the fact that for the Gram matrix M of the vectors
{ai}n

′
i=1: ∑︂

i,j≤n′
⟨ai,aj⟩ · σ(0)2 = σ(0)2 · ⟨1,M1⟩ ≥ 0.

Similarly, one can verify that

E⟨x̃,DAσ(BDx̃)⟩ =
d∑︂
i=1

n∑︂
j=n′+1

aij · E[(Di,i · x̃i) · σ(⟨(BD)j,:, x̃⟩)]. (C.11)

Combining (C.10) and (C.11), and recalling the population risk form in (C.8), we conclude
that

R(A,B) ≥ R(A:,n′+1:,Bn′+1:,:),

where A:,n′+1: and Bn′+1:,: are obtained by removing the zero columns/rows from A and B,
respectively. This means that considering a matrix B with zero rows is equivalent to looking
at a smaller rate r′ < r. We show in Theorem 5, Proposition 5.4.2 and Theorem 8 that the
population risk is monotone in the rate. Thus, having zero rows in B is clearly sub-optimal.

C.2 Proofs of Lower Bound on Loss (Section 5.4.1)
C.2.1 Case r ≤ 1
Lower bound on ˜︁R(r)

Lemma C.2.1. Let A = [a1, . . . ,an] ∈ Rd×n and B⊤ = [b1, . . . , bn] ∈ Rd×n, with ∥bi∥2 = 1
for i ∈ [n]. Let c1 and f(·) be defined as per Lemma 5.4.1. Then, the following bound holds:

Ll(A,B) := Tr
[︂
A⊤A · (BB⊤)◦(2ℓ+1)

]︂
− 2c1

f(1) · Tr [BA] ≥ − c2
1

(f(1))2 · n. (C.12)

162

Proof of Lemma C.2.1. For any symmetric P ,Q,T ∈ Rn×n, a direct computation readily
gives that

Tr [P · (Q ◦ T)] = Tr [(P ◦ Q) · T)] . (C.13)
Thus, by taking P = A⊤A, Q = (BB⊤)◦ℓ and T = (BB⊤)◦(ℓ+1), we obtain

Tr
[︂
A⊤A · (BB⊤)◦(2ℓ+1)

]︂
= Tr

[︂
(A⊤A ◦ (BB⊤)◦ℓ) · (BB⊤ ◦ (BB⊤)◦ℓ)

]︂
.

Note that BB⊤ is PSD and, therefore, (BB⊤)◦ℓ is also PSD by Schur product theorem.
Furthermore, as the rows of B have unit norm, (BB⊤)◦ℓ has unit diagonal. As a result, if we
show that, for any PSD matrix Q with unit diagonal entries,

Tr
[︂
(A⊤A ◦ Q) · (BB⊤ ◦ Q)

]︂
− 2c1

f(1) · Tr [BA] ≥ − c2
1

(f(1))2 · n, (C.14)

then the claim (C.12) immediately follows.
As Q is a PSD matrix with unit diagonal, it admits the following decomposition

Q =
n∑︂
i=1

uiu
⊤
i , Di = Diag(ui),

n∑︂
i=1

D2
i = I. (C.15)

In this view, defining
Ai = ADi, Bi = DiB,

we can rewrite the LHS of (C.14) in a more convenient form for further analysis. In particular,
for the second term we deduce the following

Tr [BA] = Tr [AB] = Tr
[︄
A ·

(︄
n∑︂
i=1

D2
i

)︄
· B

]︄
=

n∑︂
i=1

Tr
[︂
A · D2

i · B
]︂

=
n∑︂
i=1

Tr [(ADi) · (DiB)] =
n∑︂
i=1

Tr [AiBi] .

Let us now rearrange the first term of (C.14). Notice that

(A⊤A ◦ Q)i,j =
n∑︂
k=1

⟨ai,aj⟩ · uiku
j
k =

n∑︂
k=1

⟨ai · uik,aj · ujk⟩

=
n∑︂
k=1

((ADk)⊤ · (ADk))i,j =
n∑︂
k=1

(A⊤
k Ak)i,j.

In the same fashion we get

(BB⊤ ◦ Q)i,j =
n∑︂
k=1

(BkB
⊤
k)i,j,

from which we deduce that

Tr
[︂
(A⊤A ◦ Q) · (BB⊤ ◦ Q)

]︂
=

n∑︂
i,j=1

Tr
[︂
A⊤
i AiBjB

⊤
j

]︂
.

Therefore, the proof of (C.14) can be obtained by proving that, for any matrices A1, . . . ,An ∈
Rd×n and B1, . . . ,Bn ∈ Rn×d,

n∑︂
i,j=1

Tr
[︂
A⊤
i AiBjB

⊤
j

]︂
− 2c1

f(1) ·
n∑︂
i=1

Tr [AiBi] + c2
1

(f(1))2 Tr [I] ≥ 0. (C.16)

163

To show the last claim, let us define the following matrices

X =
n∑︂
i=1

A⊤
i Ai, Y =

n∑︂
i=1

BiB
⊤
i , Z =

n∑︂
i=1

BiAi,

which allows us to rewrite the statement of (C.16) as

Tr
[︄
XY − 2c1

f(1) · Z + c2
1

(f(1))2 · I

]︄
≥ 0. (C.17)

Note that X is PSD, hence it has a symmetric square root, which we denote by
√

X. Using
the continuity of the quantities involved in the LHS of (C.17), we can assume without loss of
generality that X is invertible. In fact, the following quantities are continuous: trace, matrix
product, matrix transpose. In addition, we can always introduce a small perturbation to Ai’s
which makes X full-rank. Thus, it suffices to show that (C.17) holds for Ai’s such that X is
invertible.
In this view, for any matrix T ∈ Rn×n, we have

0 ≤
n∑︂
i=1

⃦⃦⃦⃦
⃦ c1

f(1) · T A⊤
i −

√
XBi

⃦⃦⃦⃦
⃦

2

F

=
n∑︂
i=1

Tr
[︄(︄

c1

f(1) · T A⊤
i −

√
XBi

)︄
·
(︄
c1

f(1) · AiT
⊤ − B⊤

i

√
X

)︄]︄

=
n∑︂
i=1

Tr
[︄

c2
1

(f(1))2 · T A⊤
i AiT

⊤ − 2c1

f(1)
√

XBiAiT
⊤ + XBiB

⊤
i

]︄

= Tr
[︄

c2
1

(f(1))2 · T XT ⊤ − 2c1

f(1)
√

XZT ⊤ + XY

]︄
, (C.18)

where in the second line we used that Tr [M] = Tr
[︂
M⊤

]︂
for any M , and Tr [MN] =

Tr [NM] for any M ,N .
As X is invertible, its square root

√
X is invertible. As X is also PSD, its inverse, i.e., X−1,

is PSD and, hence, it has a symmetric square root, i.e.,
√

X−1. In this view, we get that
√

X−1 = (
√

X)−1.

Thus, by picking T = (
√

X)−1, we obtain

T ⊤T = T 2 = X−1, T ⊤
√

X = T
√

X = I.

Using these observations, we deduce that the RHS of (C.18) is equal to the LHS of (C.17),
which concludes the proof.

Matrices in Hn,d Are the Only Minimizers

Lemma C.2.2. Let A ∈ Rd×n and B⊤ = [b1, . . . , bn] ∈ Rd×n, with ∥bi∥2 = 1 for i ∈ [n].
Let c1 and f(·) be defined as per Lemma 5.4.1. Then, we have that the set of minimizers of

Tr
[︂
A⊤A · f(BB⊤)

]︂
− 2c1 · Tr [BA] (C.19)

coincides with the set Hn,d of weight-tied orthogonal matrices .

164

Proof of Lemma C.2.2. A direct computation immediately shows that the lower bound (C.12)
is achieved for all ℓ ∈ N by matrices (A,B) that belong to the set Hd,n. Define the sets of
minimizers of (C.12) as follows

Mℓ : = arg min
A,B:∥bi∥2=1

Lℓ(A,B)

=
{︄

(AB,B) : AB ∈ arg min
A

Lℓ(A,B), B ∈ arg min
B:∥bi∥2=1

Lℓ(AB,B)
}︄
.

We will now show that ∞⋂︂
l=0

Mℓ = Hn,d. (C.20)

As the Taylor coefficients of f(·) are non-negative, (C.20) readily gives that the set of
minimizers of (C.19) coincides with Hn,d. Futher, recall that c1 ̸= 0 and ∑︁∞

ℓ=1(c2ℓ+1)2 ̸= 0
and, hence, (C.20) is the union of the linear term (ℓ = 0) and at least one non-linear (ℓ > 0)
term.
We first prove that it is enough to consider the case r = 1. Thus, assume that the result holds
for n = d and consider now n < d. We have that, for any orthogonal matrix O ∈ Rd×d,

Ex ∥x − Aσ(Bx)∥2
2 = Ex ∥Ox − Aσ(BOx)∥2

2

= Ex

⃦⃦⃦
x − O⊤Aσ(BOx)

⃦⃦⃦2

2
,

(C.21)

where in the first step we have used the rotational invariance of x, and in the second step we
have multiplied the argument of the norm by the orthogonal matrix O⊤. Thus, (C.21) gives
that (A,B) ∈ Hn,d if and only if (O⊤A,BO) ∈ Hn,d.
Let us write the SVD of B as UDV ⊤, where U ∈ Rn×n,V ∈ Rd×d are orthogonal matrices
and D ∈ Rn×d is a (rectangular) diagonal matrix. Thus, by taking O = V , one can assume
that B has the form (B1:n,1:n,01:n,1:d−n), where B1:n,1:n denotes the left n × n sub-matrix
of B and 01:n,1:d−n denotes a n× (d− n) matrix of 0’s. We also write the decompositions
A = ((A1:n,1:n)⊤, (An+1:d,1:n)⊤)⊤ and x = (x1:n,xn+1:d), where A1:n,1:n (resp. An+1:d,1:n)
denotes the top n× n (resp. bottom (d− n) × n) sub-matrix of A, and x1:n (resp. xn+1:d)
denotes the first n (resp. last d − n) components of x. Hence, the objective (5.2) can be
expressed (up to the constant multiplicative factor d−1) as the sum of

R1(A,B) = E
[︂
∥x1:n − A1:n,1:nσ(B1:n,1:nx1:n)∥2

]︂
and

R2(A,B) = E
[︂
∥xn+1:d − An+1:d,1:nσ(B1:n,1:nx1:n)∥2

]︂
.

As xn+1:d has zero mean and it is independent from x1:n, we have that

R2(A,B) = d− n+ E
[︂
∥An+1:d,1:nσ(B1:n,1:nx1:n)∥2

]︂
,

which is minimized by setting An+1:d,1:n to 0. Note that R1 depends only on A1:n,1:n,B1:n,1:n
(and not on An+1:d,1:n), hence its minimizers are (A1:n,1:n,B1:n,1:n) ∈ Hn,n by our as-
sumption on the r = 1 case. As a result, by using that (A,B) ∈ Hd,n if and only if
(O⊤A,BO) ∈ Hd,n, we conclude that all the minimizers of the desired objective have the
form O((A1:n,1:n)⊤, (01:n−d,1:n)⊤)⊤ and (B1:n,1:n,01:n,1:d−n)O⊤, i.e., they form the set Hn,d

defined in (5.7).

165

It remains to prove the result for r = 1. First, consider ℓ = 0. In this case, we have

L0(A,B) = Tr
[︂
A⊤ABB⊤

]︂
− 2c1

f(1) · Tr [BA]

= Tr
[︂
B⊤A⊤AB

]︂
− 2c1

f(1) · Tr [AB]

= ∥AB∥2
F − 2c1

f(1) · Tr [AB] , (C.22)

where we have used that the trace is invariant under cyclic permutation. Notice that the
minimizer of (C.22) is clearly AB = c1

f(1)Id.
Consider some ℓ ≥ 1. As AB = c1

f(1)Id and A,B are square matrices, B is invertible and
A⊤A = c2

1
(f(1))2 · (BB⊤)−1. Thus,

Lℓ(A,B) = Tr
[︂
A⊤A(BB⊤)◦(2ℓ+1)

]︂
− 2c1

f(1) · Tr [BA]

= c2
1

(f(1))2 · Tr
[︂
(BB⊤)−1(BB⊤)◦(2ℓ+1)

]︂
− 2c2

1
(f(1))2 · n.

(C.23)

Let P = BB⊤. Note that P is symmetric and, hence, also its inverse is symmetric. Then,
by using (C.13), we have that

Tr
[︂
P −1P ◦(2ℓ+1)

]︂
= Tr

[︂
(P −1 ◦ P)P ◦2ℓ

]︂
. (C.24)

An application of Theorem 5 in [Vis00] gives that

P ◦ P −1 ⪰ I, (C.25)

where ⪰ denotes majorization in the PSD sense. We now show that P ◦ P −1 = I. To do so,
suppose by contradiction that

P ◦ P −1 = I + R,

for some R ⪰ 0 such that R ̸= 0. Hence,

Tr
[︂
(P −1 ◦ P)P ◦2ℓ

]︂
= Tr

[︂
P ◦2ℓ

]︂
+ Tr

[︂
RP ◦2ℓ

]︂
= n+ Tr

[︂
RP ◦2ℓ

]︂
, (C.26)

where in the last equality we use that P (and, consequently, P ◦2ℓ) has unit diagonal. By the
Schur product theorem, P ◦2ℓ ≻ 0 and, hence, it admits a square root. Thus, we get

Tr
[︂
RP ◦2ℓ

]︂
= Tr

[︂√
P ◦2ℓ · R ·

√
P ◦2ℓ

]︂
.

It is easy to see that the matrix
√

P ◦2ℓ · R ·
√

P ◦2ℓ is PSD and, thus,

Tr
[︂√

P ◦2ℓ · R ·
√

P ◦2ℓ
]︂

≥ 0,

where the inequality is strict if and only if the corresponding matrix has only zero eigenvalues.
However, for any non-zero v ∈ Rn, we have that

uv :=
√

P ◦2ℓ · v ̸= 0,

since
√

P ◦2ℓ is strictly positive definite (as P ◦2ℓ ≻ 0) and, thus, it does not have 0 eigenvalues.
Hence, if

v⊤ ·
√

P ◦2ℓ · R ·
√

P ◦2ℓ · v = u⊤
v Ruv = 0,

166

then uv ̸= 0 is an eigenvector of R corresponding to a zero eigenvalue. In this view, if√
P ◦2ℓ · R ·

√
P ◦2ℓ has all zero eigenvalues, then all eigenvalues of R are zero. As R cannot

be the zero matrix, by using (C.26), we conclude that

Tr
[︂
(P −1 ◦ P)P ◦2ℓ

]︂
> n. (C.27)

By combining (C.23), (C.24) and (C.27), we have that Lℓ(A,B) > −c2
1n/(f(1))2, which

contradicts with the fact that (A,B) is a minimizer (since any (A′,B′) ∈ Hn,d achieves the
value of −c2

1n/(f(1))2). Therefore, we conclude that P ◦ P −1 = I.
At this point, we show that P ◦ P −1 = I implies that P = I. Note that P is a Gram matrix,
and let its basis be {b1, · · · , bn}. Define

b′
i = bi − b̃i,

where b̃i is orthogonal projection of bi onto the space spanned by {bj}nj ̸=i. From a well-known
result (see, for instance, Theorem 2.1 in [dPG95]) we have that

P −1
ii = 1

∥b′
i∥2

2
. (C.28)

Hence, we obtain that
∥b′

i∥2 ≤ ∥bi∥2 = 1, (C.29)
where the inequality is sharp only if bi is orthogonal to all {bj}nj ̸=i. Then, from (C.28), we
deduce

n = Tr [I] = Tr
[︂
P ◦ P −1

]︂
=

n∑︂
i=1

∥bi∥2
2 · 1

∥b′
i∥2

2
=

n∑︂
i=1

1
∥b′

i∥2
2
. (C.30)

By combining (C.29) and (C.30), we conclude that {bi}i∈[n] form an orthonormal basis, and,
hence, P = I. This means that (C.20) holds for r = 1 since

(C.19) =
∞∑︂
ℓ=1

(c2ℓ+1)2 · Lℓ(A,B),

which concludes the proof.

Proof of Theorem 5. It follows by combining the results of Lemma C.2.1 and C.2.2.

C.2.2 Case r > 1
Lower bound on ˜︁R(r)

Proof of Proposition 5.4.2. An application of Theorem A in [Kha21] gives that

Tr
[︂
A⊤ABB⊤

]︂
= ⟨1, (A⊤A ◦ BB⊤)1⟩

≥ 1
d

⟨1, (Diag(BA)Diag(BA)⊤)1⟩ = 1
d

(Tr [BA])2 ,

where Diag(BA) ∈ Rn stands for the vector with entries corresponding to the diagonal of
the matrix BA. Hence, we have

Tr
[︂
A⊤A · f(BB⊤)

]︂
− 2c1 · Tr [BA]

≥ c2
1
d

(Tr [BA])2 +
∞∑︂
ℓ=1

(c2ℓ+1)2 · Tr
[︂
A⊤A · (BB⊤)◦2ℓ+1

]︂
− 2c1 · Tr [BA] .

(C.31)

167

Define α := f(1) − c2
1. Then, for any β ∈ [0, 1], we can rewrite the RHS of (C.31) as⎡⎣c2

1
d

(Tr [BA])2 − 2(1 − β)c1 · Tr [BA]
⎤⎦

+
∞∑︂
ℓ=1

(c2ℓ+1)2 ·
(︄

Tr
[︂
A⊤A · (BB⊤)◦2ℓ+1

]︂
− 2βc1

α
· Tr [BA]

)︄
.

(C.32)

The first term in (C.32) is a quadratic polynomial in Tr [BA]. Hence, we have that[︄
c2

1
d

(Tr [BA])2 − 2(1 − β)c1 · Tr [BA]
]︄

≥ −d(1 − β)2. (C.33)

Define Be := [B,01:n,1:n−d] and A⊤
e := [A⊤,01:n,1:n−d]. One can readily verify that the

traces in the second term of (C.32) remain unchanged if we replace A and B with Ae and
Be, respectively. Note that Ae,Be are square matrices, hence we can apply Lemma C.2.1
(which readily generalizes to a different scaling in front of the second trace) to get

∞∑︂
ℓ=1

(c2ℓ+1)2 ·

⎛⎝Tr
[︂
A⊤A · (BB⊤)◦2ℓ+1

]︂
− 2βc1

α
· Tr [BA]

⎞⎠
≥ −

∞∑︂
ℓ=1

(c2ℓ+1)2 · β
2c2

1
α2 n = −β2c2

1
α

n.

(C.34)

By combining (C.31), (C.32), (C.33) and (C.34), we obtain that
1
d

(︂
Tr
[︂
A⊤A · f(BB⊤)

]︂
− 2 · Tr [AB]

)︂
+ 1 ≥ 1 − (1 − β)2 − β2c2

1
α

r. (C.35)

By taking β = α/(c2
1r + α) and re-arranging the RHS of (C.35), the desired result readily

follows.

Asymptotic Achievability of the Lower Bound

Lemma C.2.3. Let A,B be defined as in (5.12). Then, for any ϵ > 0, we have that, with
probability at least 1 − c/d2,⃓⃓⃓(︂

Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1Tr [AB]

)︂
−
(︂
β2c2

1rn+ β2αn− 2c1βn
)︂⃓⃓⃓

≤ Cn
1
2 +ϵ.

Thus, choosing β = c1
c2

1r+α
the loss approaches 1 − r

r+ α

c2
1

, i.e., with the same probability,
⃓⃓⃓⃓
⃓⃓(︃1 + 1

d

(︂
Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1Tr [AB]

)︂)︃
−

⎛⎝1 − r

r + α
c2

1

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ Cd− 1
2 +ϵ.

Here, the constants c, C depend only on r and ϵ.

We start by proving the following.

Lemma C.2.4. Let B̂,B be defined as in (5.12). Then, for any ϵ > 0, we have that, with
probability at least 1 − c/d2,

max
i,j

⃓⃓⃓⃓
⃓⃓(BB⊤)i,j
(B̂B̂

⊤
)i,j

− 1

⃓⃓⃓⃓
⃓⃓ ≤ Cn− 1

2 +ϵ.

Here, the constants c, C depend only on r and ϵ.

168

Proof. If U ∈ Rn×n is sampled uniformly from SO(n), then it follows from rotational invariance
that any fixed row or column is uniformly distributed on the n-dimensional sphere Sn−1. Thus,
any fixed row of U is distributed as g/ ∥g∥2, where g ∼ N (0, I/n). Now, it follows from the
concentration of ∥g∥2 (see e.g. Theorem 3.1.1 in [Ver18]) that ∥∥g∥2 − 1∥ψ2

≤ Cn− 1
2 , where

∥·∥ψ2
denotes the sub-Gaussian norm. Denote by gd ∈ Rd the first d components of gd. Then,

by the same reasoning, it holds that ∥
√
r ∥gd∥2 − 1∥ψ2

≤ cd− 1
2 . Looking at the definition of

B̂, we have that, for any fixed i, the distribution of its rows is given by b̂i ∼
√
rgd/ ∥g∥2.

Furthermore, for any pair of indices i, j, we have that

(BB⊤)i,j
(B̂B̂

⊤
)i,j

= 1
∥b̂i∥2 · ∥b̂j∥2

.

Hence,

P

⎛⎝⃓⃓⃓⃓⃓⃓(BB⊤)i,j
(B̂B̂

⊤
)i,j

− 1

⃓⃓⃓⃓
⃓⃓ ≤ n− 1

2 +ϵ

⎞⎠ = P
(︄⃓⃓⃓⃓
⃓ 1
∥b̂i∥2 · ∥b̂j∥2

− 1
⃓⃓⃓⃓
⃓ ≤ n− 1

2 +ϵ
)︄

≤ C exp
(︄

−dϵ

C

)︄
.

Now a simple union bound over all rows gives us

P
(︄

max
i,j

⃓⃓⃓⃓
⃓ 1
∥b̂i∥2 · ∥b̂j∥2

− 1
⃓⃓⃓⃓
⃓ ≤ n− 1

2 +ϵ
)︄

≤ Cn exp
(︄

−dϵ

C

)︄
≤ C

d2 ,

which implies the desired result.

Next, we bound the traces of the terms BB⊤(BB⊤)◦(2ℓ+1). We start with the case ℓ = 0.

Lemma C.2.5. Let B be defined as in (5.12). Then, for any ϵ > 0, with probability at least
1 − c/d2, ⃓⃓⃓

Tr
[︂
BB⊤(BB⊤)

]︂
− rn

⃓⃓⃓
≤ Cd

1
2 +ϵ.

Here, the constants c, C depend only on r and ϵ.

Proof. Note that

Tr
[︂
BB⊤(BB⊤)

]︂
=
∑︂
i,j

(︂
(BB⊤)i,j

)︂2

=
∑︂
i,j

⎛⎜⎜⎜⎝
(︂
(BB⊤)i,j

)︂2

(︃
(B̂B̂

⊤
)i,j
)︃2 − 1

⎞⎟⎟⎟⎠
(︃

(B̂B̂
⊤

)i,j
)︃2

+ Tr
[︃
B̂B̂

⊤
(B̂B̂

⊤
)
]︃
.

Thus, an application of Lemma C.2.4 gives that, with probability at least 1 − c/d2,⃓⃓⃓⃓
Tr
[︂
BB⊤(BB⊤)

]︂
− Tr

[︃
B̂B̂

⊤
(B̂B̂

⊤
)
]︃⃓⃓⃓⃓

≤ Tr
[︃
B̂B̂

⊤
(B̂B̂

⊤
)
]︃

· Cd− 1
2 +ϵ. (C.36)

Since the trace is invariant under cyclic permutation, we readily have that

Tr
[︃
B̂B̂

⊤
(B̂B̂

⊤
)
]︃

= rn. (C.37)

By combining (C.36) and (C.37), the desired result follows.

169

Finally, we consider the higher order terms for ℓ ≥ 1.

Lemma C.2.6. Let B be defined as in (5.12). Then, for any ϵ > 0, we have that, with
probability at least 1 − c/d2,

sup
ℓ≥1

⃓⃓⃓
Tr
[︂
BB⊤(BB⊤)◦(2ℓ+1)

]︂
− n

⃓⃓⃓
≤ C log2 n.

Here, the constants c, C depend only on r and ϵ.

Proof. We first observe that

Tr
[︂
BB⊤(BB⊤)◦(2ℓ+1)

]︂
=
∑︂
i,j

(︂
(BB⊤)i,j

)︂2ℓ+2
= n+

∑︂
i ̸=j

(︂
(BB⊤)i,j

)︂2ℓ+2
.

An application of Lemma C.2.4 gives that, with probability 1 − c/d2,

sup
ℓ≥1

∑︂
i ̸=j

(︂
(BB⊤)i,j

)︂2ℓ+2
≤ sup

ℓ≥1

∑︂
i ̸=j

(︃
(1 + Cd−1/2+ϵ) · (B̂B̂

⊤
)i,j
)︃2ℓ+2

. (C.38)

Furthermore, by using the first part of Lemma C.5.2 with A = B̂B̂
⊤, we have that, with

probability at least 1 − 1/n2, the RHS of (C.38) is lower bounded by

sup
ℓ≥1

∑︂
i ̸=j

⎛⎝(1 + Cd−1/2+ϵ) · C
√︄

log n
n

⎞⎠2ℓ+2

≤ C log2 n,

which implies the desired result.

At this point, we are ready to give the proof of Lemma C.2.3.

Proof of Lemma C.2.3. Recall that {(c2ℓ+1)2}∞
ℓ=0 denote the Taylor coefficients of f(x). By

using that A = βB⊤, our objective becomes

Tr
[︂
A⊤Af(BB⊤)

]︂
− 2c1Tr [AB] = β2Tr

[︂
BB⊤f(BB⊤)

]︂
− 2c1βn

= β2
∞∑︂
ℓ=0

(c2ℓ+1)2Tr
[︂
BB⊤(BB⊤)◦(2ℓ+1)

]︂
− 2c1βn

= β2c2
1rn+ β2

∞∑︂
ℓ=1

(c2ℓ+1)2n− 2c1βn

+ β2c2
1

(︂
Tr
[︂
BB⊤(BB⊤)

]︂
− rn

)︂
+ β2

∞∑︂
ℓ=1

(c2ℓ+1)2
(︂
Tr
[︂
BB⊤(BB⊤)◦(2ℓ+1)

]︂
− n

)︂
.

Then, by bounding the last two terms with Lemma C.2.5 and Lemma C.2.6, the desired result
follows.

Proof of Proposition 5.4.3. The proof is a direct application of Lemma C.2.3.

170

C.3 Global Convergence of Weight-tied Gradient Flow
(Theorem 6)

We start by giving a recap of the weight-tied gradient flow considered in Section 5.4.2. Under
the weight-tying constraint (5.14), the objective (5.13) has the following form

Ψ(β,B) := β2 · Tr
[︂
B⊤B · f(BB⊤)

]︂
− 2βn

= β2 ·
n∑︂

i,j=1
⟨bi, bj⟩ · f (⟨bi, bj⟩) − 2βn,

(C.39)

where ∥bi∥2 = 1 for all i. Note that the optimal β∗ can be found exactly, since (C.39) is a
quadratic polynomial in β. In this view, to optimize (C.39), we perform a gradient flow on
{bi}ni=1, which are regarded as vectors on the unit sphere, and pick the optimal β∗ at each
time t. Formally,

β(t) = n∑︁n
i,j=1 ⟨bi, bj⟩ · f (⟨bi, bj⟩)

,

∂bi(t)
∂t

= −Ji(t)∇bi
Ψ(β(t),B(t)),

(C.40)

where Ji(t) := I − bi(t)bi(t)⊤ projects the gradient ∇bi
Ψ(β(t),B(t)) onto the tangent space

at the point bi(t) (see (C.45) for the closed form expression). This ensures that ∥bi(t)∥2 = 1
along the gradient flow trajectory. The described procedure can be viewed as Riemannian
gradient flow, due to the projection of the gradient ∇bi

Ψ(β(t),B(t)) on the tangent space of
the unit sphere. We now recap the statement of Theorem 6.

Theorem 11. Fix r ≤ 1. Let B(t) be obtained via the gradient flow (C.40) applied to Ψ
defined in (C.39). Let the initialization B(0) have unit-norm rows and rank(B(0)) = n.
Then, as t → ∞, B(t)B(t)⊤ converges to I, which is the unique global optimum of (C.39).
Moreover, define the residual

ϕ(t) = Tr
[︂
(B(t)B(t)⊤ − I) · f(B(t)⊤B(t))

]︂
≥ 0,

which vanishes at the minimizer, and let T be the first time such that ϕ(T) = δ. Then,

T ≤ − 1{ϕ(0) > nf(1)} · f(1) · log det(B(0)B(0)⊤) (C.41)

− 1{δ ≤ nf(1)} · 2f 2(1)
δ

· log det(B(0)B(0)⊤). (C.42)

We now are ready to present the proof of Theorem 11. Let B⊤ = [b1, · · · , bn]. Recall that,
under the weight-tying (5.14), the objective in (5.13) can be re-written as

β2 ·
n∑︂

i,j=1
⟨bi, bj⟩ · f (⟨bi, bj⟩) − 2βn. (C.43)

By the definition in Theorem 11, the residual ϕ(t) is given by

ϕ(t) :=
n∑︂
i ̸=j

⟨bi, bj⟩ · f (⟨bi, bj⟩) . (C.44)

171

In this view, in accordance with (C.40), we study the following gradient flow:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂bk(t)
∂t

= −β2(t) ·
[︂
Jk(t)

∑︁
i ̸=j bj(t) · g(⟨bk(t), bj(t)⟩)

]︂
,

β(t) = n

nf(1) + ϕ(t) ,

∥bk(0)∥2 = 1,

(C.45)

where g(x) := x · f ′(x) + f(x), and we have rescaled the time of the dynamics by a factor 2
to omit the factor 2 in front of β2(t). From here on, we will suppress the time notation when
it is clear from the context, for the sake of simplicity. Note that one of the terms is absent in
the summation, due to the fact that by definition of the operator Jk:

Jkbk = 0.

In addition, since Jk defines the projection of the gradient on the tangent space at the point
bk of the unit sphere, along the trajectory of the gradient flow (C.45) we have that ∥bk∥2 = 1.

The gradient flow (C.45) is well-defined (i.e., its solution exists and it is unique) when its
RHS is Lipschitz continuous (see, for instance, [San17]). It suffices to check the Lipschitz
continuity of g(·). Note that both xf ′(x) and f(x) are Lipschitz continuous on any interval
[−1 + δ, 1 − δ] for some δ > 0. Hence, the RHS of (C.45) is Lipschitz continuous, if

max
i ̸=j

|⟨bi, bj⟩| ≤ 1 − δ, (C.46)

where δ is bounded away from 0 uniformly in t.

Recall that, by the assumption of Theorem 11, we have that rank(B(0)B(0)⊤) = n, hence
det(B(0)B(0)⊤) ≥ ε1 for some ε1 > 0. Thus, from the result in Lemma C.3.2, we obtain
that

det(B(t)B(t)⊤) ≥ ε1. (C.47)

Let 0 < λ1 < λ2 < . . . < λn denote the eigenvalues of B(t)B(t)⊤ in increasing order. Then,
(C.47) directly gives that

λ1

n∏︂
i=2

λi ≥ ε1 > 0.

Since B(t)B(t)⊤ has unit diagonal, we have that ∑︁n
i=1 λi = n. Hence, the smallest possible

value of λ1 during the gradient flow dynamics can be inferred from

λ1 ≥ ε1∏︁n
i=2 λi

,

by picking the largest possible ∏︁n
i=2 λi given the constraint ∑︁n

i=2 λi ≤ n. This is achieved by
taking

λi = n

n− 1 , ∀i ∈ {2, · · · , n},

which gives
n∏︂
i=2

λi =
(︃

n

n− 1

)︃n−1
=
(︃

1 + 1
n− 1

)︃n−1
≤ C,

where C is a universal constant, since the RHS converges from below to Euler’s number as n
increases. This proves that λ1 is bounded away from zero uniformly in t. As a result, we can

172

readily conclude that (C.46) holds. To see this last claim, consider a vector v which has 1 on
position i and −sign⟨bi, bj⟩ on position j. Hence, we have that

2λ1 = λ1 · ∥v∥2
2 ≤ v⊤(B(t)B(t)⊤)v = 2 − 2 · |⟨bi, bj⟩| ⇒ |⟨bi, bj⟩| ≤ 1 − λ1.

Notice that
ϕ(t) ≤ (n2 − n)f(1),

since xf(x) ≤ f(1) for |x| ≤ 1. Hence, we have that β(t) ≥ 1
nf(1) > 0. In this view, along the

trajectory of the gradient flow (C.45), the quantity ϕ(t) is strictly decreasing until convergence,
by the property of gradient flow.

Lemma C.3.1 (Characterization of stationary points). Consider the gradient flow (C.45).
Then, the following holds:

(A) Any orthogonal set of bi is a stationary point and a global minimizer.
(B) The gradient flow (C.45) never escapes any subspace spanned by a set of linearly

dependent bi. However, for each such subspace there exists a direction in which (C.43)
can be improved.

Proof of Lemma C.3.1. Recall that β(t) > 0 and {bi}ni=1. Then, the stationary point condition
can be expressed as

Jk
∑︂
j ̸=k

bj · g (⟨bk, bj⟩) = 0, ∀k ∈ [n]. (C.48)

Thus, any orthogonal set of vectors is clearly a stationary point by definition of g(·). Moreover,
(C.43) is minimized iff BB⊤ = I as xf(x) is an even function since f(·) is odd.
Note that the kernel of the operator Jk is spanned by the vector bk. Thus, the condition
(C.48) is equivalent to ∑︂

j ̸=k
bj · g (⟨bk, bj⟩) = γk · bk,

for some γk ∈ R. One can readily verify that g(x) = 0 if and only if x = 0. Thus, either
(i) bk is orthogonal to bj for all j ̸= k and γk = 0, or (ii) bk lies in the span of {bj}j ̸=k. If
condition (i) holds for all k ∈ [n], then {bi}ni=1 form an orthogonal set of vectors and we fall
in category (A). If condition (ii) holds for some k ∈ [n], then we fall in category (B).
Now, let us show that, if {bi}ni=1 spans a sub-space of dimension smaller than n, then there is
a direction along which the value of (C.43) can be improved. Since the {bi}ni=1 are linearly
dependent, there exists u of unit norm such that

⟨u, bj⟩ = 0, ∀j ∈ [n]. (C.49)

For some k ∈ [n], consider the perturbation

b̂k = 1√
1 + λ2

· (bk + λ · u),

which has unit norm as ⟨bk,u⟩ = 0. Recall that (C.43) can be expressed as

β2

⎛⎝2 ·
n∑︂
j ̸=k

⟨︂
b̂k, bj

⟩︂
f
(︂⟨︂

b̂k, bj
⟩︂)︂

+ π

2 +
n∑︂

i,j ̸=k
⟨bi, bj⟩ f (⟨bi, bj⟩)

⎞⎠− 2βn. (C.50)

173

Here, β is chosen to be the minimizer of the quantity (C.50) having fixed {bj}j ̸=k and b̂k.
Thus, in order to prove that the population risk gets smaller by replacing bk with b̂k for any
λ > 0, it suffices to show that the following quantity

n∑︂
j ̸=k

⟨︂
b̂k, bj

⟩︂
f
(︂⟨︂

b̂k, bj
⟩︂)︂
, (C.51)

is decreasing with λ. This last claim follows from the chain of inequalities below:

(C.51) = 1√
1 + λ2

∑︂
j ̸=k

⟨bk, bj⟩ · f
(︄

1√
1 + λ2

⟨bk, bj⟩
)︄

(C.52)

= 1√
1 + λ2

∑︂
j ̸=k

⟨bk, bj⟩ ·
∞∑︂
ℓ=0

(︃
c2ℓ+1

c1

)︃2
·
(︄

1√
1 + λ2

)︄2ℓ+1

· ⟨bk, bj⟩2ℓ+1 (C.53)

≤
(︄

1√
1 + λ2

)︄2 ∑︂
j ̸=k

⟨bk, bj⟩ ·
∞∑︂
ℓ=0

(︃
c2ℓ+1

c1

)︃2
· ⟨bk, bj⟩2ℓ+1 (C.54)

= 1
1 + λ2

∑︂
j ̸=k

⟨bk, bj⟩ · f (⟨bk, bj⟩) <
∑︂
j ̸=k

⟨bk, bj⟩ · f (⟨bk, bj⟩) , (C.55)

where in the second line we substitute the Taylor expansion of f(·), the inequality in the third
line uses that the coefficients {c2

2ℓ+1}∞
ℓ=0 are all non-negative, and the last inequality follows

from the fact that λ > 0.

Finally, we show that the gradient flow (C.45) does not escape the degenerate sub-space. If
dim(span({bi}ni=1)) < n, then there exists u ∈ Rd such that (C.49) holds. By projecting the
gradient expression (C.48) onto u, we have⟨︄

u,Jk
∑︂
j ̸=k

bj · g (⟨bk, bj⟩)
⟩︄

= 0.

Hence, for any k ∈ [n], the directional derivative of bk in the direction of u is equal to zero,
and the gradient flow does not escape the low-rank sub-space, which concludes the proof.

In next lemma we show that, if at initialization {bi}ni=1 spans a sub-space of dimension n,
then it will never get stuck in a low-rank sub-space.

Lemma C.3.2 (Linearly independent {bi}ni=1 stay linearly independent). Consider the gradient
flow (C.45) with full rank initialization, i.e., rank(B(0)B(0)⊤) = n. Then, the following
holds

∂

∂t
log det(B(t)B(t)⊤) ≥ 2β(t)2 · ϕ(t) ≥ 0,

where B(t)⊤ = [b1(t), · · · , bn(t)] and ϕ(t) is defined in (C.44). In particular, this implies
that {bi}ni=1 stay full-rank along the gradient flow trajectory.

Proof of Lemma C.3.2. Applying the chain rule and using that the time derivative of B is
given by the gradient flow (C.45) implies that

∂

∂t
log det(BB⊤) = Tr

[︄
(BB⊤)−1 ·

(︄
∂B

∂t
· B⊤ + B · ∂B⊤

∂t

)︄]︄
,

174

where
∂bk
∂t

= −β(t)2 ·

⎛⎝Jk
∑︂
j ̸=k

bj · g (⟨bk, bj⟩)
⎞⎠ .

Let us compute the quantity ⟨︄
∂bk
∂t

, bℓ

⟩︄
=
(︄
∂B

∂t
· B⊤

)︄
k,ℓ

.

By definition of Jk, we have that

Jk
∑︂
j ̸=k

bj · g (⟨bk, bj⟩) =
∑︂
j ̸=k

bj · g (⟨bk, bj⟩) −
∑︂
j ̸=k

bk · ⟨bk, bj⟩ · g (⟨bk, bj⟩) .

Note that⟨︄∑︂
j ̸=k

bk · ⟨bk, bj⟩ · g (⟨bk, bj⟩) , bℓ
⟩︄

=
[︂
Diag

[︂
1⊤((BB⊤ − I) ◦ g(BB⊤))

]︂
· BB⊤

]︂
k,ℓ
,

and that ⟨︄∑︂
j ̸=k

bj · g (⟨bk, bj⟩) , bℓ
⟩︄

=
[︂
g(BB⊤) · BB⊤

]︂
k,ℓ

− g(1) · [BB⊤]k,ℓ.

By combining these last four equations, we conclude that
∂B

∂t
· B⊤ = −β(t)2

(︂
g(BB⊤) · BB⊤ − g(1) · BB⊤

− Diag
[︂
1⊤((BB⊤ − I) ◦ g(BB⊤))

]︂
· BB⊤

)︂
.

Furthermore,

B · ∂B⊤

∂t
=
(︄
∂B

∂t
· B⊤

)︄⊤

= −β(t)2
(︂
BB⊤ · g(BB⊤) − g(1) · BB⊤

− BB⊤ · Diag
[︂
1⊤((BB⊤ − I) ◦ g(BB⊤))

]︂)︂
.

Hence, by using the cyclic property of the trace, we get that
∂

∂t
log det(BB⊤) = 2β(t)2 · Tr

[︂
Diag

[︂
1⊤((BB⊤ − I) ◦ g(BB⊤))

]︂]︂
− 2β(t)2 · Tr

[︂
g(BB⊤) − g(1) · I

]︂
= 2β(t)2 ·

n∑︂
i ̸=j

⟨bi, bj⟩ · g (⟨bi, bj⟩) + 0,

Now, note that
xg(x) = x2f ′(x) + xf(x) ≥ 0,

since x2f ′(x) and xf(x) are non-negative functions, which concludes the proof.

The result of Lemma C.3.2 gives that det(BB⊤) is non-decreasing. Hence, if λmin(BB⊤) >
δ > 0 at initialization, then this quantity will be bounded away from zero during the gradient
flow dynamics and the gradient flow will not get stuck in a low-rank solution. Therefore, by
Lemma C.3.1, the gradient flow converges to a global minimum, in which the rows of B are
orthogonal vectors with unit norm. The speed at which this happens is characterized by the
next lemma.

175

Lemma C.3.3 (Rate of convergence). Consider the gradient flow (C.45) with full rank
initialization, i.e., rank(B(0)B(0)⊤) = n. Let T be the time at which ϕ(T) hits the value
δ > 0. Then, the following holds

T ≤ − det(B(0)B(0)⊤) ·
(︄
f(1) · 1{ϕ(0) > n · f(1)} + 2f 2(1)

δ
· 1{δ ≤ n · f(1)}

)︄
. (C.56)

Proof of Lemma C.3.3. For all t, we have that Tr
[︂
B(t)B(t)⊤

]︂
= n, which implies that

det(B(t)B(t)⊤) ≤ 1 and, as a consequence, that log det(B(t)B(t)⊤) ≤ 0. From Lemma
C.3.2, we know that

∂

∂t
log det(B(t)B(t)⊤) ≥ 2β(t)2 · ϕ(t).

In this view, using the exact expression (C.45) for β(t), we get

− log det(B(0)B(0)⊤) ≥ log det(B(t)B(t)⊤) − log det(B(t)B(t)⊤)

≥
∫︂ t

0

2(︂
f(1) + ϕ(s)

n

)︂2 · ϕ(s)ds. (C.57)

Stage 1. Assume that ϕ(0) > n · f(1), and let T1 be such that ϕ(T1) = n · f(1). Recall that
the function ϕ(t) is decreasing and note that x/(1 + x)2 is decreasing for x ∈ [1,+∞). In
this view, we can lower bound the integrand in the RHS of (C.57) for all t ≤ T1 by

2 · ϕ(0)(︂
f(1) + ϕ(0)

n

)︂2 ≥ 2(n− 1)
nf(1) ≥ 1

f(1) , (C.58)

where the first inequality follows from the definition (C.44) of ϕ(·), which readily implies that
ϕ(0) ≤ f(1) · n(n− 1). Hence, by combining (C.57) with the lower bound (C.58), we get

T1 ≤ −f(1) · log det(B(0)B(0)⊤).

Stage 2. Assume that ϕ(0) ≤ n · f(1). Let δ ∈ (0, n · f(1)] be the desired precision which
should be reached during the gradient flow, and let T2 be such that ϕ(T2) = δ. As ϕ(t) is
decreasing, we have that

1(︂
f(1) + ϕ(t)

n

)︂2 ≥ 1(︂
f(1) + ϕ(0)

n

)︂2 ≥ 1
4f 2(1) , (C.59)

where in the last step we use that ϕ(0) ≤ n · f(1). Hence, by combining (C.57) with the
lower bound (C.59), we get

− log det(B(0)B(0)⊤) ≥ 1
2f 2(1) · T2δ,

which implies that
T2 ≤ −2f 2(1) · log det(B(0)B(0)⊤)

δ
.

By combining the results of both stages, the desired result (C.56) readily follows.

Proof of Theorem 11. Theorem 11 is a compilation of the results presented in current section.

176

C.4 Global Convergence of Projected Gradient Descent
(Theorem 7)

Recall from statement of Theorem 7 that

f(x) = x+
∞∑︂
ℓ=3

c2
ℓx

ℓ,

with ∑︁∞
ℓ=3 c

2
ℓ < ∞. We also define α = ∑︁∞

ℓ=3 c
2
ℓ , and we assume that α > 0. In fact, if α = 0,

then the algorithm trivially converges after one step. We denote by C, c uniform positive
constants (depending only on r and α) the value of which might change from term to term.
To make the notation lighter we will also but the time t as a subscript (for example B(t)
becomes Bt).

We analyze the following projected gradient descent procedure for minimizing the population
risk

n∑︂
i,j=1

⟨ai,aj⟩ · f
(︄⟨︄

bi
∥bi∥2

,
bj

∥bj∥2

⟩︄)︄
− 2

n∑︂
i=1

⟨︄
ai,

bi
∥bi∥2

⟩︄
. (C.60)

Given unit-norm initial {bi}i∈[n], at each step we pick the optimal value of A given B

At = B⊤
t

(︂
f(BtB

⊤
t)
)︂−1

. (C.61)

Then, we update Bt with a gradient step and a projection on the sphere to keep the unit
norm:

B′
t := Bt − η∇Bt , Bt+1 := proj(B′

t).

Here, the operator proj(M) normalizes the rows of M to be of unit norm and each row of
∇Bt is defined as the corresponding row of the gradient of Bt, i.e.,

(∇Bt)k,: = −2Jkak + 2
∑︂
j ̸=k

⟨ak,aj⟩Jkbj⏞ ⏟⏟ ⏞
:=∇1

Bt
(part 1)

+
∞∑︂
l=3

ℓc2
ℓ

∑︂
j ̸=k

⟨ak,aj⟩⟨bk, bj⟩l−1Jkbj⏞ ⏟⏟ ⏞
:=∇2

Bt
(part 2)

, (C.62)

where Jk := I − bkb
⊤
k and we have omitted the iteration number t on {aj, bj}j∈[n] to

keep notation light. Note that in (C.62) the norms ∥bi∥2, ∥bj∥2 no longer appear as the
projection step enforces ∥bi∥2 = 1. At each step of the projected gradient descent dynamics,
we decompose BtB

⊤
t as follows:

BtB
⊤
t = I + Zt + Xt, (C.63)

where B0B
⊤
0 = UΛ0U

⊤, Zt = U(Λt − I)U⊤ and Λt+1 = g(Λt) for some function
g : Rn → Rn which defines the spectrum evolution. Here, U is an orthogonal matrix that
importantly does not depend on t and Λt is the diagonal matrix containing the eigenvalues
(i.e., UΛtU

⊤ is the SVD). We also define XD
t := Diag(Xt) and XO

t := Xt − XD
t .

For now we will make the following assumptions, which will be proved later in the argument.
There exist universal constants C,CX > 0 and δ ∈ (0, 1) (depending only on r) such that,

177

with probability at least 1 − Ce−cd,

inf
t≥0

λmin(Zt) ≥ −1 + δr,

sup
t≥0

∥Zt∥op ≤ C,

sup
t≥0

∥Xt∥op ≤ CX
poly(log d)√

d
,

∥Λt − I∥op ≤ C e−cηt.

(C.64)

Here, poly(log d) is used to denote polynomial powers of log d, i.e., (log d)C for some universal
constant C. In the assumptions (C.64), we specifically distinguish the constant CX in the
bound on ∥Xt∥op from the others. This important distinction between C and CX will be
apparent later to show that assumptions (C.64) indeed hold. Note also that, for sufficiently
large d, (C.64) implies that

sup
t≥0

∥Xt∥op ≤ 1. (C.65)

We are now ready to give the proof Theorem 7. For the convenience of the reader we restate
it here.

Theorem 12. Consider the projected gradient descent algorithm as described above applied
to the objective (5.13) for any f of the form f(x) = x + ∑︁

ℓ=3 c
2
ℓx

ℓ, where ∑︁ℓ=3 c
2
ℓ < ∞.

Initialize the algorithm with B0 equal to a row-normalized Gaussian, i.e., (B′
0)i,j ∼ N (0, 1/d),

(B0)i, : = ProjSd−1 ((B′
0)i,:). Let the step size η be Θ(1/

√
d). Then, for any r < 1, we have

that at any time t = T/η, with probability at least 1 − Ce−cd,⃦⃦⃦
BtB

⊤
t − I

⃦⃦⃦
op

≤ C(1 − c)T ,

where C > 0 and c ∈ (0, 1] are universal constants depending only on r and f .

Let Et := E(Xt,Zt) ∈ Rn×n be a generic matrix whose operator norm is upper bounded by

⃦⃦⃦
Et
⃦⃦⃦
op

≤ C

(︄
poly(log d)√

d
· ∥Zt∥1/2

op + ∥Xt∥2
op + ∥Xt∥op∥Zt∥1/2

op

)︄
. (C.66)

We highlight that the constant in front of the upper-bound on the error term Et is independent
of CX and t.

Lemma C.4.1 (Bound for the matrix inverse). Assume that (C.64) holds. Then, for all
sufficiently large n, with probability at least 1 − 1/d2, jointly for all t ≥ 0 and ℓ ≥ 3, the
following bounds hold

∥(BtB
⊤
t − I)◦ℓ∥op ≤ ∥Et∥op, (C.67)

∥
(︂
f(BtB

⊤
t)
)︂−1

− (αI + BtB
⊤
t)−1∥op ≤ ∥Et∥op, (C.68)

where α was defined as α = ∑︁∞
ℓ=3 c

2
ℓ .

Proof of Lemma C.4.1. Note that, for any square matrices R,S ∈ Rn×n,

∥R ◦ S∥op ≤
√
n∥S∥op max

i,j
|Ri,j|. (C.69)

178

Thus, for ℓ ≥ 3,⃦⃦⃦
(BtB

⊤
t − I)◦ℓ

⃦⃦⃦
op

≤
√
n
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

max
i,j

|((BtB
⊤
t − I)◦3)i,j|

=
√
n
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

max
i ̸=j

|((BtB
⊤
t − I)◦3)i,j|

=
√
n
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

max
i ̸=j

|((Zt + Xt)◦3)i,j|,

(C.70)

where in the first line we use (C.69), in the second line we use that ((BtB
⊤
t − I)◦3)i,i = 0 for

i ∈ [n] and in the third line we use the decomposition (C.63).
Let us bound the off-diagonal entries of Xt via (C.64) and the off-diagonal entries of Zt via
Lemma C.5.2. This gives that, with probability at least 1 − 1/d2, jointly for all t ≥ 0,

max
i ̸=j

|((Zt + Xt)◦3)i,j| ≤ (C + CX)3
(︄

poly(log d)
d

)︄3/2

. (C.71)

We will condition on this event (without explicitly mentioning it every time) for the reminder
of the argument. By combining (C.70) and (C.71), we have that

⃦⃦⃦
(BtB

⊤
t − I)◦ℓ

⃦⃦⃦
op

≤
√
n

⎡⎣(C + CX)3
(︄

poly(log d)
d

)︄3/2
⎤⎦ ⃦⃦⃦(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

≤
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

(C.72)

where the last inequality holds for all sufficiently large n. Note that, for any square matrices
R, S, an application of Theorem 1 in [Vis00] gives that

∥R ◦ S∥op ≤ ∥R∥op∥S∥op. (C.73)

Hence,
∥(BtB

⊤
t − I)◦ℓ∥op ≤

⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

∥(BtB
⊤
t − I)◦3∥op. (C.74)

Now, by using again (C.73) and the assumptions (C.64), we have that, for ℓ ∈ [3],

∥(BtB
⊤
t − I)◦ℓ∥op ≤ C. (C.75)

Thus, by combining (C.72) and (C.75), we obtain that
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−3)

⃦⃦⃦
op

is uniformly
bounded in ℓ, which together with (C.74) gives that

∥(BtB
⊤
t − I)◦ℓ∥op ≤ C∥(BtB

⊤
t − I)◦3∥op. (C.76)

We remark here that C is independent of l and CX . This means that it suffices to prove the
claim (C.67) for ℓ = 3.
To do so, define H := 11⊤ − I, hence, since BtB

⊤
t has unit diagonal, we have that

(BtB
⊤
t − I)◦3 = (BtB

⊤
t − I)◦3 ◦ H = (U (Λt − I)U⊤ + XO

t + XD
t)◦3 ◦ H

= (Zt ◦ H + XO
t ◦ H + XD

t ◦ H)◦3 = (Zt ◦ H + XO
t)◦3

= (Zt ◦ H)◦3 + 3(Zt ◦ H)◦2 ◦ XO
t + 3(Zt ◦ H) ◦ (XO

t)◦2 + (XO
t)◦3.

Using again (C.73) and that, by Lemma C.5.1 for any R ∈ Rn×n,

∥R ◦ H∥op = ∥R − diag(R)∥op ≤ C∥R∥op,

179

we get

∥(BtB
⊤
t − I)◦3∥op ≤ C

(︂
∥(Zt ◦ H)◦3∥op + ∥Zt∥2

op∥XO
t ∥op + ∥Zt∥op∥XO

t ∥2
op + ∥XO

t ∥3
op

)︂
≤ C

(︂
∥(Zt ◦ H)◦3∥op + ∥Zt∥1/2

op ∥XO
t ∥op + ∥XO

t ∥2
op

)︂
,

(C.77)

where the second step holds since
⃦⃦⃦
XO

t

⃦⃦⃦
op

≤ 1 and ∥Zt∥op ≤ C by (C.64)-(C.65). Another
application of (C.69) gives that

∥(Zt ◦ H)◦3∥op = ∥(Zt ◦ H)◦2 ◦ Zt∥op ≤
√
n · max

i ̸=j
|(Zt)i,j|2 · ∥Zt∥op

≤ C
log d√
d

· ∥Zt∥op ≤ C
log d√
d

· ∥Zt∥1/2
op ,

(C.78)

where the second passage follows from Lemma C.5.2 and the last from ∥Zt∥op ≤ C. By
combining (C.77) and (C.78), the proof of (C.67) for ℓ = 3 is complete.
To prove (C.68), define the following quantity

Y :=
∞∑︂
ℓ=3

c2
ℓ(BtB

⊤
t − I)◦ℓ.

By definition of f(·) we have that

f(BtB
⊤
t) = αI + BtB

⊤
t + Y ,

which implies that(︂
f(BtB

⊤
t)
)︂−1

= (αI + BtB
⊤
t + Y)−1

= (I + Y (αI + BtB
⊤
t)−1)−1(αI + BtB

⊤
t)−1

=
(︄

I +
∞∑︂
k=1

(−1)k(Y (αI + BtB
⊤
t)−1)k

)︄
(αI + BtB

⊤
t)−1.

(C.79)

By definition (C.66), we have that ∥Et∥op ≤ 1/2 under assumptions (C.64) for sufficiently
large d. Hence, by the result (C.67) we have just proved, ∥(BtB

⊤
t − I)◦ℓ∥op ≤ 1/2, which

implies that ∑︁∞
ℓ=3 c

2
ℓ∥(BtB

⊤
t − I)◦ℓ∥op ≤ α/2. Thus, we have

∥Y (BtB
⊤
t + αI)−1∥op ≤ ∥Y ∥op∥(BtB

⊤
t + αI)−1∥op ≤ α

2 · 1
α

≤ 1
2 . (C.80)

Therefore, we can conclude that

∥
(︂
f(BtB

⊤
t)
)︂−1

− (αI + BtB
⊤
t)−1∥op ≤ ∥(αI + BtB

⊤
t)−1∥op ·

∞∑︂
k=1

∥Y (αI + BtB
⊤
t)−1∥kop

≤ 1
α

· ∥Y (αI + BtB
⊤
t)−1∥op

1 − ∥Y (αI + BtB⊤
t)−1∥op

≤ 2
α

· ∥Y ∥op∥(αI + BtB
⊤
t)−1∥op

≤ 2
α2 · ∥Y ∥op,

(C.81)

where the third inequality uses (C.80). By bounding ∥Y ∥op via (C.67), the proof of (C.68) is
complete.

180

Lemma C.4.2 (Bound for the Schur product with A⊤A). Assume that (C.64) holds, and let
At be given by (C.61). Then, we have that, with probability at least 1 − 1/d2, jointly for all
t ≥ 0 and ℓ ≥ 2, ⃦⃦⃦

A⊤
t At ◦ (BtB

⊤
t − I)◦ℓ

⃦⃦⃦
op

≤ ∥Et∥op. (C.82)

Proof of Lemma C.4.2. We have that

∥A⊤
t At ◦ (BtB

⊤
t − I)◦ℓ∥op ≤ ∥A⊤

t At ◦ (BtB
⊤
t − I)◦2∥op

⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−2)

⃦⃦⃦
op

≤ C||A⊤
t At ◦ (BtB

⊤
t − I)◦2∥op,

(C.83)

where the first inequality uses (C.73) and the second inequality uses that
⃦⃦⃦
(BtB

⊤
t − I)◦(ℓ−2)

⃦⃦⃦
op

is uniformly bounded in l, which follows from (C.72) and (C.75).
Let us now focus on bounding the RHS of (C.83). An application of Lemma C.4.1 gives that(︂

f(BtB
⊤
t)
)︂−1

= (αI + BtB
⊤
t)−1 + E1,

where
∥E∥op ≤

⃦⃦⃦
Et
⃦⃦⃦
op
.

Hence, by using (C.61), we get that

A⊤
t At = ((αI + BtB

⊤
t)−1Bt + E⊤

1 Bt)(B⊤
t (αI + BtB

⊤
t)−1 + B⊤

t E1)
= BtB

⊤
t (αI + BtB

⊤
t)−2 + E⊤

1 BtB
⊤
t (αI + BtB

⊤
t)−1

+ (αI + BtB
⊤
t)−1BtB

⊤
t E1 + E⊤

1 BtB
⊤
t E1,

(C.84)

where we rearranged the first term in (C.84) using that BtB
⊤
t and (αI + BtB

⊤
t)−1 commute.

By using the assumptions (C.64), we have that

∥BtB
⊤
t ∥op ≤ C, ∥E1∥op ≤ 1/2, ∥(αI + BtB

⊤
t)−1∥op ≤ 1

α
.

Hence, we can upper bound the operator norm of the last three terms in (C.84) as⃦⃦⃦
E⊤

1 BtB
⊤
t (αI + BtB

⊤
t)−1 + (αI + BtB

⊤
t)−1BtB

⊤
t E1 + E⊤

1 BtB
⊤
t E1

⃦⃦⃦
op

≤ C∥E1∥op.
(C.85)

Let us now take a closer look at the first term in (C.84). Recall that

BtB
⊤
t = UΛtU

⊤ + Xt.

As the operator norm is sub-multiplicative, we have that

∥Xt · (αI + BtB
⊤
t)−2∥op ≤ C∥Xt∥op. (C.86)

Furthermore,

UΛtU
⊤(αI + UΛtU

⊤ + Xt)−2

= UΛtU
⊤
(︂
(I + Xt(αI + UΛtU

⊤)−1)(αI + UΛtU
⊤)
)︂−2

= UΛtU
⊤T −1

1 T −1
2 T −1

1 T −1
2 ,

(C.87)

181

where we have defined

T1 = αI + UΛtU
⊤, T2 = I + Xt(αI + UΛtU

⊤)−1.

By expanding T −1
2 as in (C.79)-(C.81), we get

∥T −1
2 − I∥op ≤ C∥Xt∥op,

or equivalently
T −1

2 = I + E2,

with ∥E2∥op ≤ C∥Xt∥op. In this view, looking at (C.87) we have

UΛtU
⊤T −1

1 T −1
2 T −1

1 T −1
2 = UΛtBU⊤T −1

1 (I + E2)T −1
1 (I + E2).

All the terms which involve E2 can be controlled. We provide the analysis for two terms of
different nature, the rest follows from similar arguments. As ∥T −1

1 ∥op ≤ 1/α and ∥Λt∥op ≤ C,
we have that

∥UΛtU
⊤T −1

1 E2T
−1
1 E2∥op ≤ ∥T −1

1 ∥2
op∥E2∥2

op ≤ C

α2 ∥Xt∥2
op ≤ C

α2 ∥Xt∥op,

∥UΛtU
⊤T −1

1 IT −1
1 E2∥op ≤ ∥T −1

1 ∥2
op∥E2∥op ≤ C

α2 ∥Xt∥op,

where we have also used that ∥Xt∥op is bounded via assumptions (C.64). Furthermore, a
simple manipulation gives

UΛtU
⊤T −2

1 = UΛtU
⊤(αI + UΛtU

⊤)−2 = UΛt(αI + Λt)−2U⊤ = Uϕ(Λt)U⊤,

where ϕ(x) = x
(α+x)2 . As a result,
⃦⃦⃦
UΛtU

⊤T −1
1 T −1

2 T −1
1 T −1

2 − Uϕ(Λt)U⊤
⃦⃦⃦
op

≤ C ∥Xt∥op ,

which implies that

∥BtB
⊤
t (αI + BtB

⊤
t)−2 − Uϕ(Λt)U⊤∥op ≤ C∥Xt∥op. (C.88)

By combining (C.84), (C.85) and (C.88), we have that

∥A⊤
t At − Uϕ(Λt)U⊤∥op ≤ C

(︂
∥Xt∥op + ∥E1∥op

)︂
. (C.89)

At this point, we are ready to analyze the operator norm of ∥A⊤
t At ◦ (BtB

⊤
t − I)◦2∥op:

A⊤
t At ◦ (BtB

⊤
t − I)◦2 = (Uϕ(Λt)U⊤ + E3) ◦ (U (Λt − I)U⊤ + Xt)◦2 ◦ H

= (Uϕ(Λt)U⊤ + E3) ◦ ((U (Λt − I)U⊤)◦2 + X◦2
t

+ 2(U (Λt − I)U⊤) ◦ Xt) ◦ H ,

(C.90)

where we have defined H := 11⊤ − I and ∥E3∥op ≤ C
(︂
∥Xt∥op + ∥E1∥op

)︂
. We now

decompose the quantity into three terms:

A⊤
t At ◦ (BtB

⊤
t − I)◦2 = S1 + S2 + S3,

182

where

S1 = (Uϕ(Λt)U⊤ ◦ U (Λt − I)U⊤ ◦ H) ◦ U (Λt − I)U⊤,

S2 = H ◦ E3 ◦ ((U (Λt − I)U⊤)◦2 + X◦2
t + 2(U (Λt − I)U⊤) ◦ Xt),

S3 = H ◦ Uϕ(Λt)U⊤ ◦ (X◦2
t + 2(U (Λt − I)U⊤) ◦ Xt).

We proceed to bound each of these terms separately.
We start with S1. As ϕ(x) is differentiable for x ≥ 0, the derivative of ϕ(x) is bounded for
any compact interval I ⊆ R+. Hence, ϕ(x) is locally Lipschitz on I with Lipschitz constant
CI > 0, which implies that

|ϕ(x) − ϕ(1)| =
⃓⃓⃓⃓
⃓ϕ(x) − 1

(1 + α)2

⃓⃓⃓⃓
⃓ ≤ CI |x− 1|.

By assumption (C.64), we have that Λt ≻ 0 and ∥Λt∥op ≤ C, hence⃦⃦⃦⃦
⃦Uϕ(Λt)U⊤ − 1

(1 + α)2 I

⃦⃦⃦⃦
⃦
op

≤ CI · ∥Zt∥op. (C.91)

Hence, an application of Lemma C.5.2 gives that, with probability at least 1 − 1/d2,

sup
t≥0

m

(︄
Uϕ(Λt)U⊤ − 1

(1 + α)2 I

)︄
≤ c

√︄
log d
d

, (C.92)

where c > 0 is a universal constant. Another application of Lemma C.5.2 also gives that, with
the same probability,

sup
t≥0

m
(︂
U (Λt − I)U⊤

)︂
≤ c

√︄
log d
d

. (C.93)

As a result, we obtain the bound

∥S1∥op = ∥([Uϕ(Λt)U⊤ − 1/(1 + α)2I] ◦ U (Λt − I)U⊤ ◦ H) ◦ U (Λt − I)U⊤∥op

≤ C
log d√
d

∥Zt∥op.

(C.94)

Here, the first equality is due to the fact that we are taking the Hadamard product with
the matrix H which has 0 on the diagonal, hence we can add multiples of the identity to
Uϕ(Λt)U⊤; and the second inequality uses (C.69) with R = [Uϕ(Λt)U⊤ − 1/(1 + α)2I] ◦
U (Λt − I)U⊤ ◦ H and S = U (Λt − I)U⊤ in combination with (C.92)-(C.93).
Next, we bound ∥S2∥op. We inspect the terms appearing in the expression for S2 one by one.
First note that we can omit H in the expression since, by Lemma C.5.1 for any square matrix
R

∥R ◦ H∥op ≤ C∥R∥op. (C.95)
Hence, by using (C.73), we get

∥H ◦ E3 ◦ ((U (Λt − I)U⊤)◦2∥op ≤ C∥E3∥op∥Zt∥2
op

∥H ◦ E3 ◦ X◦2
t ∥op ≤ C∥E3∥op∥Xt∥2

op

∥H ◦ E3 ◦ 2(U (Λt − I)U⊤) ◦ Xt)∥op ≤ C∥E3∥op∥Xt∥op∥Zt∥op,

183

which leads to the bound

∥S2∥op ≤ C∥E3∥op
(︂
∥Xt∥2

op + ∥Zt∥2
op + ∥Xt∥op∥Zt∥op

)︂
. (C.96)

Finally, we bound ∥S3∥op. Consider the term

∥[H ◦ Uϕ(Λt)U⊤ ◦ 2(U (Λt − I)U⊤] ◦ Xt∥op.

Then, by using (C.95) and (C.91), we have

∥H ◦ Uϕ(Λt)U⊤∥op =
⃦⃦⃦⃦
⃦H ◦ [Uϕ(Λt)U⊤ − 1

(1 + α)2 I]
⃦⃦⃦⃦
⃦
op

≤ C

⃦⃦⃦⃦
⃦Uϕ(Λt)U⊤ − 1

(1 + α)2 I

⃦⃦⃦⃦
⃦
op

≤ C∥Zt∥op.
(C.97)

Hence, in conjunction with (C.73), we get

∥H ◦ Uϕ(Λt)U⊤ ◦ 2U (Λt − I)U⊤∥op ≤ C · ∥Zt∥2
op,

which invoking (C.73) one more time gives

∥[H ◦ Uϕ(Λt)U⊤ ◦ 2(U (Λt − I)U⊤] ◦ Xt∥op ≤ C∥Zt∥2
op∥Xt∥op.

Furthermore, by combining (C.73) and (C.97), we get

∥[H ◦ Λϕ(Λt)Λ⊤] ◦ X◦2
t ∥op ≤ C∥Zt∥op∥Xt∥2

op.

Thus,
∥S3∥op ≤ C(∥Zt∥2

op∥Xt∥op + ∥Zt∥op∥Xt∥2
op). (C.98)

Recall that, from assumptions (C.64)-(C.65), ∥Xt∥op , ∥Zt∥op ≤ C. Then, by combining the
bounds in (C.94), (C.96) and (C.98), the desired result readily follows.

By exploiting the above lemmas, we are able to make the following approximation for the
gradient.

Lemma C.4.3 (Gradient approximation). Assume that (C.64) holds, and let ∇Bt be given
by (C.62). Further define γ = 1 + α and F (x) = 1+x

(γ+x)2 . Then, for all sufficiently large n,
with probability 1 − 1/d2, jointly for all t ≥ 0,

⃦⃦⃦⃦
⃦1

2∇BtB
⊤
t + αF (Zt) − αDiag (F (Zt)) (I + Zt) − 2α

γ3 XO
t − α

γ2 XD
t

⃦⃦⃦⃦
⃦
op

≤ ∥Et∥op. (C.99)

Proof of Lemma C.4.3. We start by showing that, with probability 1 − 1/d2, jointly for all
t ≥ 0,⃦⃦⃦⃦1

2∇Bt + α(αI + BtB
⊤
t)−2Bt − αDiag

(︂
(αI + BtB

⊤
t)−2(BtB

⊤
t)
)︂

Bt

⃦⃦⃦⃦
op

≤ ∥Et∥op.

(C.100)

184

Let us first consider the term ∇1
Bt

, which can be equivalently expressed as

∇1
Bt

= 2
(︂

− A⊤
t + Diag(BtAt)Bt + T Bt − Diag(T (BtB

⊤
t))Bt

)︂
,

where T = A⊤
t At − Diag(A⊤

t At). It is then easy to verify that
1
2∇1

Bt
= −A⊤

t + A⊤
t AtBt + Diag(BtAt)Bt − Diag(A⊤

t AtBtB
⊤
t)Bt. (C.101)

Using Lemma C.4.1, we get

A⊤
t At = ((αI + BtB

⊤
t)−1 + E1)BtB

⊤
t ((αI + BtB

⊤
t)−1 + E1), (C.102)

where ∥E1∥op ≤ ∥Et∥op. It follows from (C.64) that ∥BtB
⊤
t ∥op ≤ C. Hence, using that

BtB
⊤
t and (αI + BtB

⊤
t) commute in conjunction with ∥(αI + BtB

⊤
t)−1∥op ≤ 1/α we get

A⊤
t At = BtB

⊤
t (αI + BtB

⊤
t)−2 + E2, (C.103)

where ∥E2∥op ≤ ∥Et∥op. Noting that 1
α+x − α

(α+x)2 = x
(α+x)2 and using the spectral theorem

for the symmetric matrix BtB
⊤
t , we can further rewrite (C.103) as

A⊤
t At = (αI + BtB

⊤
t)−1 − α(αI + BtB

⊤
t)−2 + E2. (C.104)

With similar arguments, by Lemma C.4.1, we can write

BtAt = BtB
⊤
t (αI + BtB

⊤
t)−1 + E3, (C.105)

where ∥E3∥op ≤ ∥Et∥op. Noting that 1 − α
α+x = x

α+x , again by the spectral theorem for
BtB

⊤
t , we get

BtAt = I − α(αI + BtB
⊤
t)−1 + E3, (C.106)

and, consequently, we obtain

Diag(BtAt)Bt = Bt − αDiag((αI + BtB
⊤
t)−1)Bt + E4, (C.107)

where ∥E4∥op ≤ ∥Et∥op. Using (C.104) and 1 − α
α+x = 1

x+α , we get

Diag(A⊤
t AtBtB

⊤
t)Bt = Diag((αI + BtB

⊤
t)−1BtB

⊤
t)Bt

− αDiag((αI + BtB
⊤
t)−2BtB

⊤
t)Bt + E5

= Bt − αDiag((αI + BtB
⊤
t)−1)Bt

− αDiag((αI + BtB
⊤
t)−2BtB

⊤
t)Bt + E5,

(C.108)

where ∥E5∥op ≤ ∥Et∥op.
With this in mind, we get back to (C.101). Combining the results of (C.104), (C.107) and
(C.108) we get

∇1
Bt

= −(αI + BtB
⊤
t)−1Bt⏞ ⏟⏟ ⏞

−A⊤
t

+ (αI + BtB
⊤
t)−1Bt − α(α + BtB

⊤
t)−2Bt⏞ ⏟⏟ ⏞

A⊤
t AtBt

+ Bt − αDiag((αI + BtB
⊤
t)−1)Bt⏞ ⏟⏟ ⏞

Diag(BtAt)Bt

−Bt + αDiag((αI + BtB
⊤
t)−1)Bt + αDiag((αI + BtB

⊤
t)−2BtB

⊤
t)Bt⏞ ⏟⏟ ⏞

−Diag(A⊤
t AtBtB⊤

t)Bt

+E6

= −α(αI + BtB
⊤
t)−2Bt + αDiag((αI + BtB

⊤
t)−2BtB

⊤
t)Bt + E6,

(C.109)

185

where ∥E6∥op ≤ ∥Et∥op.
Let us now analyze the second part of the gradient which involves terms of the form below for
ℓ ≥ 3:

∇2,k,ℓ
Bt

:= c2
ℓ · ℓ ·

∑︂
j ̸=k

⟨ak,aj⟩⟨bk, bj⟩(ℓ−1)Jkbj.

Now, from the fact that
Jk = I − bkb

⊤
k ,

we can write

c2
ℓ · ℓ ·

∑︂
j ̸=k

⟨ak,aj⟩⟨bk, bj⟩(ℓ−1)Jkbj = c2
ℓ · ℓ ·

∑︂
j ̸=k

⟨ak,aj⟩⟨bk, bj⟩(ℓ−1)(bj −⟨bk, bj⟩bk). (C.110)

The second term of the RHS gives the following contribution to the Bt update

Diag(A⊤
t At(BtB

⊤
t − I)◦ℓ)Bt.

By recalling that ∥A⊤
t At∥op ≤ C and ∥Bt∥op ≤ C, we have

∥Diag(A⊤
t At(BtB

⊤
t − I)◦ℓ)Bt∥op ≤ C∥A⊤

t At(BtB
⊤
t − I)◦ℓ∥op∥Bt∥op

≤ C∥(BtB
⊤
t − I)◦ℓ∥op.

(C.111)

Now, for ℓ < 5, we upper bound the RHS of (C.111) via Lemma C.4.1, which gives that

∥Diag(A⊤
t At(BtB

⊤
t − I)◦ℓ)Bt∥op ≤ C∥Et∥op. (C.112)

Furthermore, if we follow passages analogous to (C.70)-(C.71) (the only difference being that
we exchange the roles of the Hadamard powers 3 and ℓ− 3), we have that, with probability at
least 1 − 1/d2, jointly for all t ≥ 0 and ℓ ≥ 5,

∥Diag(A⊤
t At(BtB

⊤
t − I)◦ℓ)Bt∥op ≤ C

√
n∥Et∥op

(︄
poly(log d)

d

)︄(ℓ−3)/2

≤ C∥Et∥op
(︄

poly(log d)
d

)︄(ℓ−4)/2

,

(C.113)

for sufficiently large d.
Define the following quantity:

Y = (A⊤
t At) ◦ (BtB

⊤
t − I)◦(ℓ−1). (C.114)

In this view, the first term in (C.110) can be written as Y Bt. For l < 5, by Lemma C.4.2 we
have that ∥Y ∥op ≤ ∥Et∥op, hence ∥Y Bt∥op ≤ C∥Et∥op as ∥Bt∥op ≤ C. Furthermore, with
probability at least 1 − 1/d2, jointly for all t ≥ 0 and ℓ ≥ 5, we have

∥Y Bt∥op ≤ C∥Y ∥op = C
√
n∥(A⊤

t At) ◦ (BtB
⊤
t − I)◦2∥op max

i,j
|(BtB

⊤
t − I)i,j|ℓ−3

≤
√
n∥Et∥op max

i,j
|(BtB

⊤
t − I)i,j|ℓ−3

≤
√
n∥Et∥op

⎡⎣(C + CX)ℓ−3
(︄

poly(log d)
d

)︄(ℓ−3)/2
⎤⎦

≤ (C + CX)ℓ−3∥Et∥op
(︄

poly(log d)
d

)︄(ℓ−4)/2

.

(C.115)

186

Here, in the second line we use Lemma C.4.2; and in the third line we bound the off-diagonal
entries of Xt via (C.64) and the off-diagonal entries of Zt via Lemma C.5.2. Hence, by
combining (C.113) and (C.115), we conclude that

⃦⃦⃦
∇2

Bt

⃦⃦⃦
op

≤ C∥Et∥op + ∥Et∥op
∞∑︂
ℓ=5

(C + CX)ℓ−3c2
ℓ ℓ

(︄
poly(log d)√

d

)︄ℓ−4

≤ C∥Et∥op, (C.116)

where we used that the series ∑︁∞
ℓ=5(C +CX)ℓ−3c2

ℓ ℓ
(︂

(poly(log d)√
d

)︂ℓ−4
converges to a finite value

for all sufficiently large d, since (C + CX)poly(log d)√
d

< 1. This finishes the proof of (C.100).

We now further analyse the gradient in (C.100). Defining F (x) = 1+x
(γ+x)2 , with γ = 1 + α, we

can write
1
2∇BtB

⊤
t = −αF (Zt+Xt)+αDiag (F (Zt + Xt)))+αDiag (F (Zt + Xt))) (Zt+Xt)+Et.

(C.117)
By a slight abuse of notation, we will denote by F (l)(0) the l-th derivative of the unidimensional
function F (x) = 1+x

(γ+x)2 computed at x = 0. Here, F (Zt + Xt) is defined by the spectral
theorem (note that indeed Zt + Xt = BtB

⊤
t − I is symmetric).

We will now compute the error we incur if in (C.117) we replace F (Xt + Zt) by F (Zt). We
first consider the case when ∥Zt∥op >

γ
3 . In this case, we have that

⃦⃦⃦
F (Zt + Xt) − F (Zt) − F (1)(0)Xt

⃦⃦⃦
op

≤ C ∥Xt∥op ≤ C ∥Zt∥op ∥Xt∥op . (C.118)

Here, the second inequality trivially holds since ∥Zt∥op >
γ
3 . To prove the first inequality, let

DF be the derivative of the matrix-valued function F (M) = (I + M)(γI + M)−2. Then,
by evaluating this derivative for M = Zt in the direction of Xt, we obtain

DF (Zt) Xt = − (I + Zt)(γI + Zt)−1Xt(γI + Zt)−2

− (I + Zt)(γI + Zt)−2Xt(γI + Zt)−1 + Xt(γI + Zt)−2.
(C.119)

To verify this expression we first note that the derivative of the function G(M) = M−1 in the
direction of X is given by DG(M)X = −M−1XM−1. Now, (C.119) easily follows from
the product rule applied to F (Z) = (I + Z)(γI + Z)−1(γI + Z)−1. By the assumptions in
(C.64), we have that Zt, (γI + Zt)−1 are uniformly bounded, hence the map DF is uniformly
bounded as well. This implies that

∥F (Zt + Xt) − F (Zt)∥op ≤ C ∥Xt∥op .

As
⃦⃦⃦
F (1)(0)Xt

⃦⃦⃦
op

≤ C ∥Xt∥op, we readily obtain (C.118).

Now we consider the case where ∥Zt∥op ≤ γ
3 . First note that, by (C.64), ∥Xt∥op ≤ γ

3 . Hence,

F (Zt + Xt) =
∞∑︂
ℓ=0

F (ℓ)(0)(Zt + Xt)ℓ

ℓ! .

The series above converges absolutely since F (ℓ)(0) scales as ℓ!
γℓ poly(ℓ). To see this, first we

note that, if h(x) = 1
(γ+x)2 , then h(ℓ)(0) = (−1)ℓ(ℓ + 1)! 1

γℓ+2 . Thus, by the product rule,

187

F (ℓ)(0) = (−1)ℓ(ℓ + 1)! 1
γℓ+2 + (−1)ℓ−1ℓ! 1

γℓ+1 which has the desired asymptotic behaviour.
Expanding the brackets and applying the triangle inequality yields⃦⃦⃦⃦
⃦F (Zt + Xt) −

∞∑︂
ℓ=0

F (ℓ)(0)Zℓ
t

ℓ! − F (1)(0)Xt

⃦⃦⃦⃦
⃦
op

≤
∞∑︂
ℓ=2

F (ℓ)(0)
∥Xt∥ℓop
ℓ!

+
∞∑︂
ℓ=2

F (ℓ)(0) 1
ℓ!

ℓ−1∑︂
i=1

(︄
ℓ

i

)︄
∥Zt∥iop ∥Xt∥ℓ−iop .

As ∥Zt∥op , ∥Xt∥op ≤ γ
3 , we have

∞∑︂
ℓ=2

F (ℓ)(0)
∥Xt∥ℓop
ℓ! ≤ ∥Xt∥2

op

∞∑︂
ℓ=2

F (ℓ)(0)
(︃
γ

3

)︃ℓ−2 1
ℓ! ≤ C ∥Xt∥2

op ,

and
∞∑︂
ℓ=2

F (ℓ)(0) 1
ℓ!

ℓ−1∑︂
i=1

(︄
ℓ

i

)︄
∥Zt∥iop ∥Xt∥ℓ−iop ≤

∞∑︂
ℓ=2

F (ℓ)(0) 1
ℓ!2

ℓ
(︃
γ

3

)︃ℓ−2
∥Zt∥op ∥Xt∥op

≤ C ∥Zt∥op ∥Xt∥op .

By combining the last three expressions and using that

F (Zt) =
∞∑︂
ℓ=0

F (ℓ)(0)Zℓ
t

ℓ! ,

we obtain⃦⃦⃦
F (Xt + Zt) − F (Zt) − F (1)(0)Xt

⃦⃦⃦
op

≤ C
(︂
∥Xt∥op ∥Zt∥op + ∥Xt∥2

op

)︂
. (C.120)

As the map DF is uniformly bounded, we have
∥F (Zt) − F (0)I∥op ≤ C ∥Zt∥op . (C.121)

By combining (C.120), (C.121) and (C.117), we obtain
1
2∇BtB

⊤
t = −αF (Zt) + αDiag (F (Zt)) (I + Zt) − αF (1)(0)Xt

+ αDiag
(︂
XtF

(1)(0)
)︂

+ αXtF (0) + Et.
(C.122)

Using that F (0) = 1
γ2 and F (1)(0) = 1

γ2 (1 − 2
γ
), we finally obtain

1
2∇BtB

⊤
t = −αF (Zt) + αDiag (F (Zt)) (I + Zt) + 2α

γ3 XO
t + α

γ2 XD
t + Et, (C.123)

which concludes the proof.

Now let us return to the update equation of BtB
⊤
t during the gradient step

B′
tB

′⊤
t = (Bt − η∇Bt)(Bt − η∇Bt)⊤

= BtB
⊤
t − η · ∇BtB

⊤
t − η · Bt(∇Bt)⊤ + η2 · ∇Bt(∇Bt)⊤.

(C.124)

Note that we can control the terms Bt(∇Bt)⊤ and ∇BtB
⊤
t via Lemma C.4.3. In this view,

it remains to argue that the contribution of the term η2 · ∇Bt(∇Bt)⊤ and of the projection
step are of order η ∥Et∥op. For convenience of the upcoming lemmas we define the following
quantity:˜︂∇Bt := 2

(︂
−α(αI + BtB

⊤
t)−2Bt + αDiag

(︂
(αI + BtB

⊤
t)−2(BtB

⊤
t)
)︂

Bt

)︂
. (C.125)

188

Lemma C.4.4. Assume that (C.64) holds, and let ∇Bt be given by (C.62) with η ≤ C/
√
d.

Then, for all sufficiently large n, with probability 1 − 1/d2, jointly for all t ≥ 0:

η2
⃦⃦⃦
∇Bt(∇Bt)⊤

⃦⃦⃦
op

≤ η
⃦⃦⃦
Et
⃦⃦⃦
op
.

Proof of Lemma C.4.4. We start by showing that

∥˜︂∇Bt∥op ≤ C(∥Xt∥op + ∥Zt∥op). (C.126)

Recall that ∥Bt∥op, ∥(αI + BtB
⊤
t)−2∥op ≤ C. Hence, the following chain of inequalities holds

∥˜︂∇Bt∥op ≤ ∥Bt∥op ·
⃦⃦⃦
−α(αI + BtB

⊤
t)−2 + αDiag

(︂
(αI + BtB

⊤
t)−2(BtB

⊤
t)
)︂⃦⃦⃦

op

≤ C ·
⃦⃦⃦

− α(αI + BtB
⊤
t)−2(I − BtB

⊤
t + BtB

⊤
t)

+ αDiag
(︂
(αI + BtB

⊤
t)−2(BtB

⊤
t)
)︂ ⃦⃦⃦

op

≤ C
(︃ ⃦⃦⃦

(αI + BtB
⊤
t)−2(Zt + Xt)

⃦⃦⃦
op

+
⃦⃦⃦
(αI + BtB

⊤
t)−2BtB

⊤
t − Diag

(︂
(αI + BtB

⊤
t)−2(BtB

⊤
t)
)︂⃦⃦⃦

op

)︃
≤ C (∥Xt∥op + ∥Zt∥op + ∥F (Xt + Zt) − Diag(F (Xt + Zt))∥op) ,

(C.127)

where we recall the definition F (x) = 1+x
(γ+x)2 , with γ = 1 + α. By combining (C.120) and

(C.121) (in the proof of Lemma C.4.3), we have

∥F (Xt + Zt) − F (0)I∥op ≤ C(∥Xt∥op + ∥Zt∥op),

As ∥Diag(M)∥op ≤ C∥M∥op for any matrix M , we also have that

∥Diag(F (Xt + Zt)) − F (0)I∥op ≤ C(∥Xt∥op + ∥Zt∥op).

Hence,

∥F (Xt + Zt) − Diag(F (Xt + Zt))∥op ≤ C(∥Xt∥op + ∥Zt∥op),

which finishes the proof of (C.126).
At this point, recall from (C.100) and (C.125) that⃦⃦⃦

∇Bt −˜︂∇Bt

⃦⃦⃦
op

≤
⃦⃦⃦
Et
⃦⃦⃦
op
. (C.128)

Thus, ⃦⃦⃦
∇Bt∇⊤

Bt

⃦⃦⃦
op

≤ 2
⃦⃦⃦˜︂∇BtE

t
⃦⃦⃦
op

+
⃦⃦⃦˜︂∇Bt(˜︂∇Bt)⊤

⃦⃦⃦
op

+
⃦⃦⃦
(Et)2

⃦⃦⃦
op
.

Recalling the previous bound on ∥˜︂∇Bt∥op in (C.126) and using the assumptions in (C.64), we
get that ⃦⃦⃦˜︂∇BtE

t
⃦⃦⃦
op
,
⃦⃦⃦
Et
⃦⃦⃦2

op
≤ C∥Et∥op,

and
η2∥˜︂∇Bt∥2

op ≤ Cη(∥Xt∥2
op + ∥Xt∥op ∥Zt∥op) + Cη2 ∥Zt∥2

op

≤ Cη

(︄
1√
d

∥Zt∥op + ∥Xt∥2
op + ∥Xt∥op ∥Zt∥op

)︄
≤ Cη

⃦⃦⃦
Et
⃦⃦⃦
op
,

(C.129)

where we have also used that η ≤ C/
√
d. This concludes the proof.

189

The next lemma controls the contribution of the projection step.

Lemma C.4.5 (Projection step). Assume that (C.64) holds and η ≤ C/
√
d. Then, for all

sufficiently large n, with probability 1 − 1/d2, jointly for all t ≥ 0:

∥proj(B′
t) − B′

t∥op ≤ η
⃦⃦⃦
Et
⃦⃦⃦
op
,

which implies that, by differentiability of the bilinear form,

∥proj(B′
t)proj(B′

t)⊤ − B′
t(B′

t)⊤∥op ≤ η
⃦⃦⃦
Et
⃦⃦⃦
op
.

Proof of Lemma C.4.5. Recall that the objective (C.60) does not depend on the norm of
{bi}ni=1, hence (∇Bt)i,: is orthogonal to (Bt)i,:, which implies that

proji(B′
t) = (Bt)i,: − η(∇Bt)i,:√︂

1 + η2∥(∇Bt)i,:∥2
.

Let us define

Dt := Diag
⎛⎝ 1√︂

1 + η2∥(∇Bt)1,:∥2
, . . . ,

1√︂
1 + η2∥(∇Bt)n,:∥2

⎞⎠ .
Then, we obtain the following compact form:

proj(B′
t) = Dt(Bt − η∇Bt) = DtB

′
t.

In this view, it remains to bound ∥Dt − I∥op. In more details, by (C.126) and (C.128), we
have

∥∇Bt∥op ≤ ∥˜︂∇Bt∥op + ∥Et∥op ≤ C(∥Xt∥op + ∥Zt∥op + ∥Et∥op) ≤ C ′,

where C ′ > 0 is a universal constant (independent of CX , n, d). Hence, by recalling that
∥Bt∥op ≤ C by assumption (C.64), we have

∥proj(B′
t) − B′

t∥op = ∥(Dt − I)(Bt − η∇Bt)∥op ≤ C ∥Dt − I∥op .

Note that function 1/
√

1 + x is differentiable at 0, hence, we have that for small enough η
(which follows from η ≤ C/

√
d):⃓⃓⃓⃓

⃓⃓ 1√︂
1 + η2∥(∇Bt)i,:∥2

− 1

⃓⃓⃓⃓
⃓⃓ ≤ Cη2∥(∇Bt)i,:∥2.

In this view, we have

∥Dt − I∥op ≤ Cη2∥∇Bt∥2
op ≤ Cη2∥˜︂∇Bt∥2

op + Cη2∥˜︂∇Bt∥∥Et∥op + Cη2∥Et∥2.

Inspecting each term one by one and applying (C.126) in conjunction with η ≤ C/
√
d gives

that

η2
⃦⃦⃦
Et
⃦⃦⃦2

op
≤ Cη

⃦⃦⃦
Et
⃦⃦⃦
op
,

η2∥˜︂∇Bt∥∥Et∥op ≤ Cη∥Et∥op,
η2∥˜︂∇Bt∥2

op ≤ Cη
⃦⃦⃦
Et
⃦⃦⃦
op
,

where in the last step we have used (C.129). This concludes the proof.

190

In this view, using (C.124) and Lemmas C.4.3, C.4.4 and C.4.5, we obtain

I + Zt+1 + Xt+1 = Bt+1B
⊤
t+1 = I + Zt + Xt + 4ηαF (Zt) − 2ηαDiag(F (Zt))(I + Zt)

− 2ηα(I + Zt)Diag(F (Zt)) − 8αη
γ3 XO

t − 4αη
γ2 XD

t + ηEt.

(C.130)

Furthermore, we have that

Diag(F (Zt))(I + Zt) = (Diag(F (Zt) − F (0)I) + F (0)I) (I + Zt)

= 1
γ2 (I + Zt) + (Diag(F (Zt) − F (0)I)) (I + Zt)

= 1
γ2 (I + Zt) +

(︃ 1
n

Tr [F (Zt) − F (0)I] + D′
t

)︃
(I + Zt),

(C.131)

where D′
t is a diagonal matrix such that, with probability at least 1 − 1/d2, its entries are

upper bounded in modulus by C log d√
d

∥Zt∥1/2
op . The last passage follows from Lemma C.5.2.

Note that 1
γ2 (I + Zt) = 1

n
Tr [F (0)I] and recall that ∥Zt∥op ≤ C. Hence, (C.131) implies

that

Diag(F (Zt))(I + Zt) = 1
n

Tr [F (Zt)] (I + Zt) + Et. (C.132)

Similarly, we have that

(I + Zt)Diag(F (Zt)) = 1
n

Tr [F (Zt)] (I + Zt) + Et. (C.133)

By combining (C.132)-(C.133) with (C.130) and using that Xt = XO
t + XD

t , we get

Zt+1 + Xt+1 =
(︄

1 − 8α
γ3 η

)︄
XO

t +
(︄

1 − 4α
γ2 η

)︄
XD

t + Zt + 4ηαF (Zt)

− 4ηα 1
n

Tr [F (Zt)] (I + Zt) + ηEt.

(C.134)

Hence, we can write the following system capturing the dynamics of the spectrum Zt and of
the errors (XO

t ,X
D
t)

Zt+1 = Zt + 4ηαF (Zt) − 4ηα 1
n

Tr [F (Zt)] (I + Zt), (C.135)

XD
t+1 =

(︄
1 − 4α

γ2 η

)︄
XD

t + ηEt, (C.136)

XO
t+1 =

(︄
1 − 8α

γ3 η

)︄
XO

t + ηEt. (C.137)

Here, the operator norm of Et is upper bounded as in (C.66), where we recall that the constant
C is uniformly bounded in t.

In the view of (C.135), one can readily see that the updates on the spectrum of Zt follow the
one described in Lemma C.5.3 and, thus, converges exponentially. This means that the set of
assumptions on Zt in (C.64) is satisfied by suitably picking C.

191

Now it only remains to take care of Xt. If we write xDt =
⃦⃦⃦
XD

t

⃦⃦⃦
op
, xOt =

⃦⃦⃦
XO

t

⃦⃦⃦
op
, zt =

∥Zt∥1/2
op , then recalling the definition of Et in (C.66), (C.136), (C.137) we have that

xDt+1 ≤
(︄

1 − 4α
γ2 η

)︄
xDt + ηCD

(︄
poly(log d)√

d
· zt + (xDt + xOt)2 + (xDt + xOt)zt

)︄
(C.138)

xOt+1 ≤
(︄

1 − 8α
γ3 η

)︄
xOt + ηCO

(︄
poly(log d)√

d
· zt + (xDt + xOt)2 + (xDt + xOt)zt

)︄
. (C.139)

Since both of these recursive bounds are monotone in xDt , x
O
t , we can dominate them as

follows. If we recursively define xt by

xt+1 =
(︄

1 − ηmin
{︄

4α
γ2 ,

8α
γ3

}︄)︄
xt

+ ηmax{CD, CO}
(︄

poly(log d)√
d

· zt + (xt + xt)2 + (xt + xt)zt
)︄
,

(C.140)

then by monotonicity max{xDt , xOt } ≤ xt. Thus, we only need to analyse the recursion
(C.140), which we do in the following lemma. Note that the condition zt ≤ Ce−ctη required
by Lemma C.4.6 holds by (C.64).

Lemma C.4.6 (Error decay). Let {zt}∞
t=0 be a non-negative exponentially decaying sequence,

i.e., zt ≤ Cze
−ηczt, and consider a non-negative sequence {xt}∞

t=0 such that at each time-step
t the following condition holds for η = Θ(1/

√
d) and sufficiently large d:

xt+1 = (1 − ηc1)xt + ηC2 · zt · xt + ηC3x
2
t + ηC4 · poly(log d)√

d
· zt, (C.141)

with x0 = 0. Then, the following holds

xt ≤ C
poly(log d)√

d
· Te−cT , (C.142)

where T = tη.

Proof of Lemma C.4.6. We proceed in two parts. In the first part, we show that our recursion
does not blow up in t = K/η steps. In the second part, zt ≤ Cz exp(−czK) will be small,
which allows us to deduce (C.142).

Error does not blow up in finite time. Let t = K/η where K is such that K/η ∈ N. We
start by analysing the simpler recursion

xt+1 = (1 − ηc1)xt + ηC2 · zt · xt + ηC4 · poly(log d)√
d

· zt.

By hypothesis, zt ≤ Cz. Hence, we arrive to

xt+1 = (1 − ηc1)xt + ηC2Cz · xt + ηC4Cz
poly(log d)√

d
.

192

Writing C5 = C2Cz − c1, unrolling the recursion on the RHS and using x0 = 0 gives

xt+1 = ηC4Cz
poly(log d)√

d

t∑︂
j=0

(1 + ηC5)j

≤ ηC4Cz
poly(log d)√

d

K/η∑︂
j=0

eηC5j

= ηC4Cz
poly(log d)√

d
· eC5K

K/η∑︂
j=0

e−C5η(t−j)

≤ ηC4Cz
poly(log d)√

d
· eC5K

1 − e−ηC5
,

where the inequality holds for t ≤ K/η and we have used 1 + x ≤ ex. For small enough η, we
have that

η

1 − e−C5η
≤ 2
C5
,

hence, for all t ≤ K/η,

xt+1 ≤ 2poly(log d)√
d

C4Cz
C5

exp(C5K). (C.143)

Let us now go back to our original recursion (C.141), which contains the term x2
t . We claim

that this recursion satisfies a bound like (C.143). Assume by contradiction that it exceeds the
bound

xt ≤ 4poly(log d)√
d

C4Cz
C5

exp(C5K) (C.144)

for the first time at step t′. Then, for all t < t′, (C.144) holds. Noting that x2
t ≤

4poly(log d)√
d

C4Cz

C5
exp(C5K)xt we define C ′

5 = C2Cz + 4C3
poly(log d)√

d
C4Cz

C5
exp(C5K) − c1. By

unrolling the recursion exactly as before, we obtain

xt+1 ≤ 2poly(log d)√
d

C4Cz
C ′

5
exp(C ′

5K) ≤ 3poly(log d)√
d

C4Cz
C5

exp(C5K), (C.145)

for d large enough. Here, the second inequality follows for large d, since it is clear from the
definitions that |C5 − C ′

5| vanishes for large d. This shows that we cannot violate (C.144),
thus (C.145) holds for all t ≤ K/η.

Convergence of errors xt to zero. We now choose K large enough so that

zt = Cze
−ηczt <

c1

2C2
, ∀t ≥ K/η.

Hence, the term corresponding to ηC2ztxt can be pushed inside the (1 − ηc1)xt term.
Consequently, we can equivalently study the following dynamics

xt+1 = (1 − ηc′
1)xt + ηC3x

2
t + ηC4Cz

poly(log d)√
d

e−ηczt, (C.146)

where c′
1 = c1/2. Here, we initialize again at t = 0, but now starting at

x0 = C6
poly(log d)√

d
,

193

where C6 = 4C4Cz

C5
exp(C5K), corresponding to the bound in (C.144). Rearranging we have

xt+1 = xt + η

(︄
−c′

1xt + C3x
2
t + C4Cz

poly(log d)√
d

e−ηczt

)︄
. (C.147)

As the last term inside the brackets vanishes when d → ∞, we have two roots of the polynomial
inside the brackets, corresponding to the fixed points of the iteration. The left root rl scales as

rl ≤ Cl
poly(log d)√

d
e−ηczt,

and the right root rr as
rr ≥ c′

1
C3

− C
poly(log d)√

d
e−ηczt.

In addition, it is easy to see that both roots are non-negative.
Next, we prove that xt ≤ C poly(log d)√

d
for all t. We will show this by contradiction. At

initialization we have
x0 = C6

poly(log d)√
d

.

Choose A,B as follows:
A := max{Cl, C6}, B = C7A.

We first note that, for small enough η and large enough d, we can choose C7 such that xt̃ ≤
Apoly(log d)√

d
implies xt̃+1 ≤ B poly(log d)√

d
. We now show that xt ≤ B poly(log d)√

d
for all t. To do so,

assume by contradiction that xt+1 > B poly(log d)√
d

. Then xt ∈ [Apoly(log d)√
d

, B poly(log d)√
d

] ⊆ [rl, rr],
thus

−c′
1xt + C3x

2
t + C4Cz

poly(log d)√
d

e−ηczt < 0.

Hence, from (C.147) it follows that

xt+1 ≤ xt ≤ B
poly(log d)√

d
,

which gives us the desired contradiction.
Thus, for all t,

x2
t ≤ B

poly(log d)√
d

xt.

This allows us to push the second term in (C.146) into the first one (for d large enough),
which reduces the recursion to

xt+1 = (1 − ηc′′
1) xt + ηC4Cz

poly(log d)√
d

e−ηczt,

where c′′
1 ≥ c′

1/2. By unrolling this last recursion and using x0 = C6
poly(log d)√

d
, we have that,

for t ≥ 1,

xt = C6
poly(log d)√

d
(1 − ηc′′

1)t + ηC4Cz
poly(log d)√

d

t∑︂
ℓ=1

(1 − ηc′′
1)t−ℓe−ηczℓ (C.148)

≤ C6
poly(log d)√

d
exp(−ηc′′

1t) + ηC4Cz
poly(log d)√

d

t∑︂
ℓ=1

e−η(czℓ+c′′
1 (t−ℓ)), (C.149)

194

where the inequality follows from 1 − x ≤ e−x. Since the term in the exponents of the sum is
a linear function in ℓ, its maximum value is attained in the endpoints. Thus,

xt ≤ C6
poly(log d)√

d
exp(−ηc′′

1t) + ηC4Cz
poly(log d)√

d
tmax{e−ηczt, e−ηc′′

1 t},

which implies (C.142).

By Lemma C.4.6 we know that

∥Xt∥op ≤ C√
d

· Te−cT ,

where C is independent of CX by definition. Hence, we can pick CX such that, for sufficiently
large d, the assumptions on Xt in (C.64) are satisfied. With this in mind, we can use Lemma
C.5.3 to bound the dynamics involving Zt and Lemma C.4.6 to claim that the error Xt

vanishes at least geometrically fast. This concludes the proof of Theorem 12.

C.5 Auxiliary Results
Lemma C.5.1. For any R ∈ Rn×n the following holds

∥R − diag(R)∥op ≤ C ∥R∥op .

Proof. By definition of the operator norm we have that

∥R∥op = sup
∥x∥2=1

∥Rx∥2 .

Note that by Cauchy-Schwarz, the following holds for ∥y∥2 = 1:

⟨y,Rx⟩ ≤ ∥Rx∥2 ,

and the inequality is met when y is aligned with Rx. Hence, we get

sup
∥y∥2=1

⟨y,Rx⟩ = ∥Rx∥2 ,

and, thus, the operator norm can be rewritten as

∥R∥op = sup
∥x∥2=1

∥Rx∥2 = sup
∥x∥2=∥y∥2=1

⟨y,Rx⟩.

Note also that ∥diag(R)∥op is equal to the maximal diagonal element (in absolute value).
Hence, by letting ei be the i-th element of the canonical basis, we get

∥diag(R)∥op = sup
i

|Ri,i| ≤ sup
i

|⟨ei,Rei⟩| ≤ sup
∥x∥2=∥y∥2=1

⟨y,Rx⟩ = ∥R∥op .

In this view, an application of triangle inequality, i.e.,

∥R − diag(R)∥op ≤ ∥R∥op + ∥diag(R)∥op ≤ 2 ∥R∥op ,

finishes the proof.

195

Lemma C.5.2. Consider the matrix At = UΛtU
⊤, where the matrix U is distributed

according to the Haar measure and it is independent from the diagonal matrix Λt. Further,
assume that all the diagonal entries of Λt are bounded in absolute value by a constant. Then,
the following results hold.

1. We have that, with probability at least 1 − 1/d2,

max
i ̸=j

|(At)i,j| ≤ c

√︄
log d
d

, (C.150)

for some absolute constant c > 0.

2. Let Dt = diag(At). Then,
Dt = αI + D′

t,

where
α = 1

n
Tr(Λt),

and D′
t is a diagonal matrix such that, with probability at least 1 − 1/d2,

max
i∈[n]

|(D′
t)i,i| ≤ c

log d√
d
. (C.151)

3. Assume that, for all t ∈ N,
∥Λt∥op ≤ Ce−cηt, (C.152)

where c, C > 0 are absolute constants and η = Θ(1/
√
d). Then, with probability at

least 1 − 1/d2,

sup
t≥0

max
i ̸=j

|(At)i,j| ≤ c

√︄
log d
d

, (C.153)

sup
t≥0

max
i∈[n]

|(D′
t)i,i| ≤ c

log d√
d
. (C.154)

Proof. We start by proving (C.150). Consider the metric measure space (SO(d), ∥ · ∥F ,P).
Here, SO(d) denotes the special orthogonal group containing all d× d orthogonal matrices
with determinant 1 (i.e., all rotation matrices), and P is the uniform probability measure on
SO(d), i.e., the Haar measure. Given a diagonal matrix Λt and two indices i, j ∈ [d], define
f : SO(d) → R as

f(M) = (MΛtM
⊤)i,j. (C.155)

Note that

|f(M) − f(M ′)| = |(MΛtM
⊤)i,j − (M ′Λt(M ′)⊤)i,j|

≤ |(MΛtM
⊤)i,j − (M ′ΛtM

⊤)i,j|
+ |(M ′ΛtM

⊤)i,j − (M ′Λt(M ′)⊤)i,j|
≤ |((M − M ′)ΛtM

⊤)i,j| + |(M ′Λt(M − M ′)⊤)i,j|
≤ ∥(M − M ′)ΛtM

⊤∥F + ∥M ′Λt(M − M ′)⊤∥F
≤ 2∥M − M ′∥F∥Λt∥op∥M∥op ≤ 2∥M − M ′∥F∥Λt∥op,

(C.156)

196

where in the fourth inequality we use that, for any two matrices A and B, ∥AB∥F ≤
∥A∥op∥B∥F , and in the fifth inequality we use that ∥M∥op = 1 as M ∈ SO(d). Hence, f
has Lipschitz constant upper bounded by 2∥Λt∥op and an application of Theorem 5.2.7 of
[Ver18] gives that

P(|f(U) − E[f(U)]| ≥ u) ≤ 2 exp
(︄

−c1
du2

2∥Λt∥op

)︄
, (C.157)

where c1 is a universal constant.
Let ui denote the i-th row of U . Then,

f(U) = ⟨ui,Λtuj⟩. (C.158)

Suppose that i ̸= j. Since U is distributed according to the Haar measure, ui is uniform on the
unit sphere and uj is uniformly distributed on the unit sphere in the orthogonal complement
of ui (see Section 1.2 of [Mec19]). Thus, (ui,uj) has the same distribution as (−ui,uj),
which implies that, whenever i ̸= j

E[f(U)] = 0. (C.159)

By combining (C.157)-(C.159) with a union bound over i, j, we have that

P(max
i ̸=j

|(UΛtU
⊤)i,j| ≥ u) ≤ 2d2 exp

(︄
−c1

du2

2∥Λt∥op

)︄
. (C.160)

As ∥Λt∥op is upper bounded by a universal constant, the result (C.150) readily follows.
For the second part, note that

(Dt)i,i = ⟨ui,Λtui⟩. (C.161)
Furthermore, the following chain of equalities hold

E[(Dt)i,i] = 1
n

n∑︂
i=1

E[(Dt)i,i] = E
[︄

1
n

n∑︂
i=1

(Dt)i,i
]︄

= 1
n

Tr(Dt), (C.162)

where the first equality uses that the ui’s have the same (marginal) distribution, and the last
term does not contain an expectation since Tr(Dt) = Tr(At) = ∑︁d

i=1(Λt)i,i, which does not
depend on U . Therefore, by using (C.157) and by performing a union bound over i ∈ [n], the
result (C.151) follows.
For the third part, by performing a union bound over t ≥ 0 in (C.160), we have that (C.153)
holds with probability at least

2
∞∑︂
t=0

exp
(︄

−c1
du2

2∥Λt∥op

)︄
≤ 2

∞∑︂
t=0

exp
(︂
−c2 d u

2 eCηt
)︂

≤ 2
∞∑︂
t=0

exp
(︂
−c2 d u

2 eC⌊ηt⌋
)︂

≤ 2
⌈︄

1
η

⌉︄ ∞∑︂
t=0

exp
(︂
−c2 d u

2 eCt
)︂

≤ C
√
d

∞∑︂
t=0

exp
(︂
−c2 d u

2 eCt
)︂
,

(C.163)

197

where the first inequality follows from (C.152) and the last one from η = Θ(1/
√
d). Choosing

u = c log d√
d

we can get that b := exp (−c2 d u
2) < 1 and, hence, the following holds

∞∑︂
t=0

exp
(︂
−c2 d u

2
)︂eCt

≤
∞∑︂
t=0

exp
(︂
−c2 d u

2
)︂Ct+1

= b

1 − bC
≤ 1
d3 ,

where the first inequality uses that et ≥ 1 + t and the second inequality follows from the
definition of b. This concludes the proof of (C.153). The proof of (C.154) uses an analogous
union bound on t ≥ 0.

Lemma C.5.3. Let λ0 = {λ0
1, · · · , λ0

n} be a set of numbers in R such that

λ0
min := min

i∈[n]
λ0
i ≥ δ > 0, λ0

max := max
i∈[n]

λ0
i ≤ M < +∞,

n∑︂
j=1

λ0
j = n.

Let the values {λti}ni=1 be updated according to the equation below

λt+1
i = λti + η

⎛⎝F (λti) − λti · 1
n

n∑︂
j=1

F (λtj)
⎞⎠ = G(λti, λt), (C.164)

where F (·) is defined as per Lemma C.4.3, η = Θ
(︂
1/

√
d
)︂

and λt := {λt1, · · · , λtn}. Then,
for large enough d, we have ⃓⃓⃓

λt+1
i − 1

⃓⃓⃓
≤ (1 − cδ · η)

⃓⃓⃓
λti − 1

⃓⃓⃓
and thus after t iterations⃓⃓⃓

λti − 1
⃓⃓⃓
≤ max{(M − 1), (1 − δ)} exp(−cδ · ηt),

where c, C > 0 are constants.

Proof. We first show by induction that
n∑︁
i=1

λti = n holds for all t. In fact,

n∑︂
i=1

λt+1
i =

n∑︂
i=1

λi + η

⎛⎝ n∑︂
i=1

F (λti) −
n∑︂
i=1

λti · 1
n

n∑︂
j=1

F (λtj)
⎞⎠

= n+ η

⎛⎝ n∑︂
i=1

F (λti) −
n∑︂
j=1

F (λtj)
⎞⎠ = n.

Now, we will show the convergence of λtmin and λtmax. To do so, we assume that λtmax ≤ M
and λtmin ≥ δ holds at time step t (we will verify this later). Define the function g : R → R as

g(x) := x+ η (F (x) − x · C) . (C.165)

By taking the derivative, we have that, for sufficiently large d,

g′(x) = 1 + η (F ′(x) − C) > 0,

as ∥F ′∥∞ ≤ C. This implies that g(·) is a monotone increasing function, which gives that

max
i∈[n]

g(λti) = g(λtmax),

min
i∈[n]

g(λti) = g(λtmin).
(C.166)

198

Note that the updates on λti in (C.164) have a common part for all i ∈ [n], i.e.,⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
j=1

F (λtj)

⃓⃓⃓⃓
⃓⃓ ≤ C,

where we used that ∥F∥∞ ≤ C. In this view, by definition of g and (C.166), we have

λt+1
max = G(λtmax, λt),
λt+1
min = G(λtmin, λt),

(C.167)

which means that the min/max value at the previous step are mapped to the min/max value
at the next step of (C.164). Using that 1

n

n∑︁
i=1

λti = 1 we can write

λt+1
i = λti + η

⎛⎝ 1
n

n∑︂
j=1

λtj · F (λti) − λti · 1
n

n∑︂
j=1

F (λtj)
⎞⎠

= λti + η

⎛⎝ 1
n

n∑︂
j=1

[︄
λtjλ

t
i

(α + λti)2 −
λtiλ

t
j

(α + λtj)2

]︄⎞⎠
= λti + η

⎛⎝ 1
n

n∑︂
j=1

λtiλ
t
j

(︄
(2α + λti + λtj)(λtj − λti)

(α + λti)2(α + λtj)2

)︄⎞⎠ .
(C.168)

Recall that we assumed λtmax ≤ M and λtmin ≥ δ. In this view, we get the following bound

λtmaxλ
t
j

(︄
(2α + λtmax + λtj)(λtmax − λtj)

(α + λtmax)2(α + λtj)2

)︄
≥ (λtmax − λtj) · 2αδ

(α +M)4 , (C.169)

which is justified as follows

λtmaxλ
t
j

(︄
(2α + λtmax + λtj)(λtmax − λtj)

(α + λtmax)2(α + λtj)2

)︄
= (λtmax − λtj) ·

(︄
(2α + λtmax + λtj)λtmaxλtj

(α + λtmax)2(α + λtj)2

)︄

≥ (λtmax − λtj) · 2α · 1 · δ
(α +M)2(α +M)2 ,

where we used that λtmax ≥ 1 since ∑︁n
i=1 λ

t
i = n. Hence, using the previous observation about

mapping of extremes in (C.167) and the observation above, we get from (C.168) that

λt+1
max ≤ λtmax − η · 1

n

n∑︂
j=1

[︄
(λtmax − λtj) · 2αδ

(α +M)4

]︄
, (C.170)

which leads to

λt+1
max − 1 ≤ λtmax − 1 − η · 1

n

n∑︂
j=1

[︄
(λtmax − λtj) · 2αδ

(α +M)4

]︄

= λtmax − 1 − η ·
[︄
(λtmax − 1) · 2αδ

(α +M)4

]︄

= (λtmax − 1)
(︄

1 − η · 2αδ
(α +M)4

)︄
= (λtmax − 1)(1 − cδ · η),

(C.171)

199

where we used that
n∑︁
j=1

λtj = n in the first equality. Hence, using that λtmax ≥ 1 as ∑︁n
j=1 λ

t
j = n

we have
|λt+1
max − 1| = λt+1

max − 1 ≤ |λtmax − 1| · (1 − cδ · η). (C.172)
Similarly to the previous bound, we get that

λtminλ
t
j

(︄
(2α + λtmin + λtj)(λtmin − λtj)

(α + λtmin)2(α + λtj)2

)︄
≤ λtj(λtmin − λtj)

2αδ
(α +M)4 ,

since λtmin ≤ λt. Hence, using the previous observation about mapping of extremes in (C.167)
and the observation above, we deduce from (C.168) that

λt+1
min − 1 ≥ (λtmin − 1) − η · 1

n

n∑︂
j=1

[︄
λtj(λtmin − λtj)

2αδ
(α +M)4

]︄

= (λtmin − 1) − η · λtmin · 2αδ
(α +M)4 + η · 2αδ

(α +M)4 · 1
n

t∑︂
j=1

(︂
λti
)︂2

≥ (λtmin − 1) − η · (λtmin − 1) · 2αδ
(α +M)4

= (λtmin − 1) · (1 − cδ · η),

(C.173)

where in the second inequality we used Jensen’s inequality for x2 as ∑︁n
j=1 λ

t
j = n. Hence, we

get the following

|λt+1
min − 1| = 1 − λt+1

min ≤ |λtmin − 1| · (1 − cδ · η), (C.174)

since λtmin ≤ 1 as ∑︁n
j=1 λ

t
j = n.

In this view, the assumptions λtmax ≤ M and λtmin ≥ δ follow from (C.172) and (C.174) since
the extremes are getting closer to one after each iteration. Recalling that by the assumption
on initialization

max
i

|λ0
i − 1| ≤ max{(M − 1), (1 − δ)},

the claim follows.

C.6 Proofs for General Covariance
Lemma C.6.1. Assume that {γ̂i}i∈[K], {ŝi}i∈[K] minimize

−

(︂∑︁K
i=1 Diγi

)︂2(︃
g(1) · n+∑︁K

i=1
γ2

i

si

)︃ . (C.175)

Then, for any i < j, we must have ŝi = min{ŝi + ŝj, ki}.

Proof of Lemma C.6.1. Since the {γ̂i}i∈[K], {ŝi}i∈[K] are optimal, if we fix two indices i < j
the corresponding γ̂i, γ̂j, ŝi, ŝj are optimal among all γi, γj, si, sj satisfying⎧⎨⎩0 < γi + γj = γ := γ̂i + γ̂j ≤ n,

0 < si + sj = s := ŝi + ŝj ≤ min{n, ki + kj}.
(C.176)

200

Thus, we proceed by analysing the solution for two fixed indices under the constraints (C.176)
(keeping all other γ̂l, ŝl for l /∈ {i, j} fixed). Note that, for each fixed (γi, γj) satisfying the
constraints (C.176), the following objective

γ2
i

si
+
γ2
j

sj
→ min

si,sj

s.t. si ≤ ki, sj ≤ kj, si + sj = s

(C.177)

is equivalent to finding optimal ranks for (C.175). Importantly, in (C.177) we consider
continuous (si, sj). This relaxation has the same minimum, since we will show that the
optimal si, sj have integer values. We may also assume that γj > 0 as otherwise clearly
si = min{s, ki} is optimal.
Since (C.177) is strictly convex (on the domain given by the constraints), we can find its
unique minimizer by finding a solution to the KKT conditions:

−γ2
i

s2
i

+ (λ+ µi) = 0, −
γ2
j

s2
j

+ (λ+ µj) = 0,

µi, µj ≥ 0, µi(si − ki) = 0, µj(sj − kj) = 0, s = si + sj.

If si = ki or sj = 0, then the claim is readily obtained. We will now prove that, if this is not
the case, then we can find new ˜︁si, ˜︁sj, ˜︁γi,˜︂γj which achieve a better value.
We first show that for si < ki, 0 < sj < kj

γ2
i

si
+
γ2
j

sj
= γi

γ

s
+ γj

γ

s
= γ2

s
. (C.178)

Note that, in this case, µi = µj = 0, so the first two KKT conditions imply
γi
si

=
√
λ = γj

sj
.

Thus, we have
γi
si

= γj
sj

= γi + γj
si + sj

= γ

s
, (C.179)

from which (C.178) is immediate.
For the case sj = kj and si < ki, we have that µj ≥ µi = 0, hence

γi
si

=
√︂
λ+ µi ≤

√︂
λ+ µj = γj

sj
.

From the previous case, we know that without the constraints on ki, kj the optimal value in
(C.177) is γ2

s
. Thus,

γ2
i

si
+
γ2
j

sj
≥ γ2

s
.

Now, for ϵ > 0, define ˜︁si = si + ϵ, ˜︁sj = sj − ϵ. Note that, as si < ki and sj > 0, we can
choose ϵ small enough such that 0 < ˜︁si < ki, 0 < ˜︁sj < kj . At this point, let us simply choose˜︁γi, ˜︁γj such that ˜︁γi˜︁si =

˜︁γj˜︁sj
201

which as in (C.178), (C.179) implies that

˜︁γ2
i˜︁si +

˜︁γ2
j˜︁sj = γ2

s
≤ γ2

i

si
+
γ2
j

sj
. (C.180)

We also have ˜︁γi > γi, as otherwise

˜︁γi˜︁si < γi
si

≤ γj
sj
<
˜︁γj˜︁sj

would be a contradiction. This gives that

Diγi +Djγj < Di˜︁γi +Dj˜︁γj,
which implies that our new choice achieves a lower value for (C.175), thus giving the desired
contradiction.

Lemma C.6.2. Assume that f, fi are differentiable strictly convex functions on R such that

f ′
i(0) < f ′

j(0) < 0, i < j, lim
mi→+∞

f ′
i(mi) = +∞, lim

mi→−∞
f ′
i(mi) = −∞, (C.181)

and
f(0) = f ′(0) = 0, lim

m→+∞
f ′(m) = +∞. (C.182)

Then, the objective given by

min
mi≥0

f (m) +
K∑︂
i=1

fi(mi), m =
K∑︂
i

mi (C.183)

has a unique minimizer. It is uniquely characterised by being of the form (m1, . . . ,mM , 0, . . . , 0)
and satisfying

m =
M∑︂
i=1

(︂
(−f ′

i)
−1 ◦ f ′

)︂
(m), mi =

(︂
(−f ′

i)
−1 ◦ f ′

)︂
(m) ≥ 0, f ′(m)+f ′

i(mi) ≥ 0, i ∈ [M].

(C.184)
Furthermore, it can be obtained via binary search by finding the largest index M , such that
the corresponding mi are all strictly positive.

While the assumptions of this theorem might seem technical, most of them can be relaxed.
However, we note that all such assumptions are fulfilled by the setting being studied and
relaxing them would come at the cost of the readability of the proof of Lemma C.6.2.

Proof of Lemma C.6.2. We start by showing that (C.183) has a unique minimizer. Recall that
f and fi are strictly convex functions, and, hence, their derivatives f ′ and f ′

i are increasing.
From (C.182), we also obtain that limm→+∞ f ′(m) = +∞. By monotonicity, we have
f ′
i(mi) ≥ f ′

i(0). Therefore,

lim
m→+∞

f ′(m) +
K∑︂
i=1

f ′
i(mi) = +∞,

202

and thus
lim

m→+∞
f(m) +

K∑︂
i=1

fi(mi) = +∞.

As a consequence, the objective achieves its infimum. Therefore, as f(m) +∑︁K
i=1 fi(mi) is

strictly convex, the minimum is unique.

Notice that Slater’s condition is satisfied, since the feasible set of (C.183) has an interior
point. Hence, {mi}Ki=1 is a unique minimizer of (C.183) if and only if it satisfies the following
KKT conditions (for the “if and only if” statement, see for instance page 244 in [BBV04]):

1. Stationary condition: f ′(m) + f ′
i(mi) − λi = 0.

2. Primal feasibility: mi ≥ 0.

3. Complementary slackness: λimi = 0.

4. Dual feasibility: λi ≥ 0.

In particular, the uniqueness of the minimizer implies that the KKT conditions have a unique
solution. Thus, we only need to show that the mi found by this procedure satisfy the above
equations.

We now show that the active set A := {i : mi > 0} for the optimal mi is monotone, meaning
that A = [M] for some M ≤ K. We prove the statement by contradiction. Assume that
there exists mi = 0 and mj > 0 where i < j. Recall that f ′

j is strictly increasing, which by
the ordering condition (C.181) implies that

f ′
i(0) + f ′

(︄
K∑︂
ℓ=1

mℓ

)︄
< f ′

j(mj) + f ′
(︄

K∑︂
ℓ=1

mℓ

)︄
.

Hence, taking some sufficiently small mass from mj and redistributing it in mi will decrease
the objective value in (C.183), which concludes the proof.

Fix M ≤ K. We now show that the solution of the following system of equations

f ′(m) + f ′
i(mi) = 0, ∀i ≤ M (C.185)

exists and unique. Note that this system comes from the 1. and 3. KKT conditions.

As f ′
i is strictly monotone, its inverse exists and, hence, from (C.185) we get

mi = (−f ′
i)−1(f ′(m)), (C.186)

which gives

m =
M∑︂
i=1

(−f ′
i)−1(f ′(m)). (C.187)

Let us argue the existence and uniqueness of the solution of equation (C.187) for a fixed
M . Recall that f ′

i is increasing and, thus, −f ′
i is decreasing. The inverse of a decreasing

function is decreasing, hence (−f ′
i)−1 is decreasing. Recalling that f ′ is increasing and

that the composition of an increasing and a decreasing function is decreasing, it follows

203

that (−f ′
i)−1(f ′(m)) is decreasing. By assumption f ′

i(0) < 0 and f ′
i is increasing such that

limmi→+∞ fi(mi) = +∞, therefore the value (−f ′
i)−1(0) is well-defined and

(−f ′
i)−1(0) > 0.

Thus, we have that

gM(m) =
M∑︂
i=1

(−f ′
i)−1(f ′(m)) −m

is a strictly decreasing function with

lim
m→+∞

gM(m) = −∞, gM(0) > 0.

In this view, the solution of (C.187) exists and unique.
Next, we elaborate on why (C.186) is well-defined given the solution of (C.187). Note that,
by our assumptions,

lim
mi→+∞

f ′
i(mi) = +∞, lim

mi→−∞
f ′
i(mi) = −∞,

hence, the same holds for (−f ′
i)−1, and, thus, due to continuity the quantity

(−f ′
i)−1(x)

is well-defined for any x ∈ R. Given this, we readily have that the solution of the system
(C.185) exists and unique. Furthermore, this solution can be found using (C.187) and (C.186).
Note also that (C.187) and (C.186) agree with (C.184).
We now show that the following procedure finds the optimal active set A∗ = [M∗]. Let
mi(M), i ≤ M be a solution of (C.185) for fixed value of M ≤ K, and define m(M) :=∑︁M
i=1 mi(M). Using (C.187) and (C.186) find the smallest M such that the corresponding

mM (M) is non-negative, then M∗ = M − 1 if M ≥ 1, otherwise, m = mi = 0, ∀i ∈ [K]. If
no such M was found, M∗ = [K]. To show that the described procedure in fact gives the
optimal active set A∗ = [M∗], we need to prove that

1. If M < M∗, then mi(M) ≥ 0.

2. If M > M∗, then mM(M) ≤ 0.

Clearly, these two conditions imply that the active set of the minimizer is given by [M∗], and
it can be found via binary search.
We start by proving the first property. Note that, by the KKT conditions on the optimizer
M∗, we have that

mi(M∗) ≥ 0.

First assume that m(M) > m(M∗). By monotonicity, it follows from (C.186) that

mi(M) < mi(M∗),

but

m(M∗) =
M∑︂
i=1

mi(M∗) +
M∗∑︂

i=M+1
mi(M∗) ≥

M∑︂
i=1

mi(M∗) >
M∑︂
i=1

mi(M) = m(M),

204

where we have used that mi(M∗) ≥ 0, which is a contradiction. Thus, we have that
m(M) ≤ m(M∗). Again, by (C.186) and monotonicity,

mi(M) ≥ mi(M∗),

and, hence, all mi(M) are non-negative.
We finally argue the second property. We start by proving a weaker statement, i.e., there
exists i ≥ M∗ + 1 such that mi(M) < 0. Assume that m(M) < m(M∗). By (C.186) and
monotonicity

mi(M) > mi(M∗),

hence, the following holds:

m(M) =
M∑︂
i=1

mi(M) =
M∗∑︂
i=1

mi(M) +
M∑︂

i=M∗+1
mi(M) >

M∗∑︂
i=1

mi(M∗) +
M∑︂

i=M∗+1
mi(M)

= m(M∗) +
M∑︂

i=M∗+1
mi(M),

which since m(M) < m(M∗) implies that ∑︁M
i=M∗+1 mi(M) is a negative quantity. Thus,

there exists i ≥ M∗ + 1 such that mi(M) < 0. Assume now that m(M) ≥ m(M∗). Recall
that only the minimizer satisfies the KKT conditions, thus

f ′(m(M∗)) + f ′
M(0) ≥ 0,

which, as f ′ is increasing, implies that

f ′(m(M)) + f ′
M(0) ≥ 0.

By construction of mM(M), we know that

f ′(m(M)) + f ′
M(mM(M)) = 0,

thus, by monotonicity of f ′
M we have mM(M) ≤ 0.

It remains to show that it suffices to check mM(M) ≤ 0 and not an arbitrary mi(M) for
i ≥ M∗ + 1. Assume that mi(M) ≤ 0 for some i ≤ M . Recall that by assumption

f ′
i(0) < f ′

M(0) < 0,

and by construction we have

f ′
i(mi(M)) = f ′

M(mM(M)) = −f ′(m(M)).

Since f ′
i is a decreasing function, we get that −f ′(m(M)) < f ′

i(0). Recalling that f ′
i(0) <

f ′
M(0), we get −f ′(m(M)) < f ′

M(0) and, hence, by monotonicity of f ′
M we obtain that

mM(M) ≤ 0, which concludes the proof.

Lemma C.6.3. The minimizer of (5.24) can be computed in log(K) steps via binary search
by finding the smallest index M∗ such that

g(1)
c2

1n

M∗+1∑︂
j=1

sj(DM∗+1 −Dj) +DM∗+1 ≤ 0. (C.188)

205

Then, the optimal active set has the form A = [M∗] and corresponding non-zero βi , for
i ≤ M∗, are computed as

βi = si
c1

·

⎛⎝ g(1)
c2

1n

∑︁
j∈A sj∆j +D1

g(1)
c2

1n

∑︁
j∈A sj + 1

− ∆i

⎞⎠ , (C.189)

where ∆j = D1 −Dj.

Proof of Lemma C.6.3. By rescaling g(x) as g(x)
c2

1
and βi as c1βi, we may without loss of

generality assume that c1 = 1. From the results of Lemma C.6.2, by a direct computation, we
get that for A = [M]

βj(M) = mj(M) = sj ·

⎛⎝ g(1)
n

∑︁M
i=1 si∆i +D1

g(1)
n

∑︁M
i=1 si + 1

− ∆j

⎞⎠ , ∀j ≤ M,

thus, applying the described binary search procedure to find M∗ such that M∗ + 1 =
min (arg minM 1[mM(M) > 0]) finishes the proof.
We now elaborate on the computations. For the compactness of the notation, we omit the
dependence on active set in mi’s and m. We apply Lemma C.6.2 with

f(x) = g(1)
n

· x2, fi(x) = x2

si
− 2Dix,

which gives
f ′(x) = 2g(1)

n
· x, f ′

i(x) = 2x
si

− 2Di.

Hence, we obtain that
(−f ′

i)−1(x) = si · (2Di − x)
2 ,

and, thus, by (C.187) we obtain

m =
M∑︂
i=1

(−f ′
i)−1(f ′(m)) = −f ′(m) ·

M∑︂
i=1

si
2 +

M∑︂
i=1

Disi = −g(1)
n

·m ·
M∑︂
i=1

si +
M∑︂
i=1

Disi.

In this view, we get
m =

∑︁M
i=1 Disi

g(1)
n

∑︁M
i=1 si + 1

,

and, hence, since by (C.186) the following holds

mj = (−f ′
j)−1(f ′(m)),

we get

mj = sj · 2Dj − f ′(m)
2 = sj ·

2Dj

(︂
g(1)
n

∑︁M
i=1 si + 1

)︂
− 2g(1)

n
·∑︁M

i=1 Disi

2 ·
(︂
g(1)
n

∑︁M
i=1 si + 1

)︂
= sj ·

g(1)
n

∑︁M
i=1 Djsi +Dj − g(1)

n

∑︁M
i=1 Disi + g(1)

n

∑︁M
i=1 D1si − g(1)

n

∑︁M
i=1 D1si −D1 +D1

g(1)
n

∑︁M
i=1 si + 1

= sj ·

⎛⎝ g(1)
n

∑︁M
i=1 si∆i +D1

g(1)
n

∑︁M
i=1 si + 1

− ∆j

⎞⎠ ,
206

where ∆j = D1 −Dj. It is easy to verify that the condition

g(1)
n

M∗+1∑︂
j=1

sj(DM∗+1 −Dj) +DM∗+1 ≤ 0

described in the statement of the lemma is equivalent to βM∗+1(M∗+1) = mM∗+1(M∗+1) ≤ 0,
which concludes the proof.

Proof of Theorem 8. We start by showing how the lower bound reduces to the objective in
(5.24). Consider the following block decomposition of B in accordance with D as in (5.29)

B = [Γ1B1| · · · |ΓKBK],

where Bj ∈ Rn×kj with ∥(Bj)i,:∥2 = 1 and {Γj}Kj=1 are diagonal matrices.
Since we require ∥Bi,:∥2 = 1, the Γi must satisfy

K∑︂
j=1

Γ2
j = I. (C.190)

Thus, up to a multiplicative factor 1/d and an additive term Tr [D2], the objective (5.23) can
be written as:

β2 (Tr [Mf(M)]) − 2c1β ·
K∑︂
i=1

Di · Tr
[︂
Γ2
i

]︂
, (C.191)

where M = ∑︁K
i=1 Mi := ∑︁K

i=1 ΓiBiB
⊤
i Γi. Recall that f(x) = c2

1x + g(x), where g is the
sum of odd monomials. Hence, we will be able to lower bound the terms in the first trace of
(C.191) in a similar fashion to Proposition 5.4.3. Note that

Tr
[︂
M 2

i

]︂
= ⟨1,M ◦2

i 1⟩,

so applying Theorem A in [Kha21] gives that

(ΓiBiB
⊤
i Γi)◦2 ⪰ 1

si
· Diag(Γ2

i)Diag(Γ2
i)⊤,

where si = rank(BiB
⊤
i). Thus, we have the bound

Tr
[︂
M 2

i

]︂
≥ 1
si

(︂
Tr
[︂
Γ2
i

]︂)︂2

Since xg(x) ≥ 0, we can lower bound the rest of the terms with the identity, i.e.,

Tr [Mg(M)] = ⟨1,M ◦ g(M)1⟩ ≥ g(1) · n

as Diag(M) = I. Consequently, neglecting the cross-terms Tr [MiMj] (as the trace of the
product of PSD matrices is non-negative) we arrive at

Tr [Mf(M)] ≥ g(1) · n+ c2
1 ·

K∑︂
i=1

1
si

(︂
Tr
[︂
Γ2
i

]︂)︂2
.

Defining γi := Tr [Γ2
i] ≥ 0, we arrive at the following lower bound on (C.191):

β2
(︄
g(1) · n+

K∑︂
i=1

γ2
i

si

)︄
− 2β ·

K∑︂
i=1

Diγi, (C.192)

207

where, with an abuse of notation, we rescale g(1) := g(1)/c2
1 and β := c1β. Now, by choosing

βi := βγi and using that ∑︁K
i=1 γi = n due to (C.190), the objective (C.192) is seen to be

equivalent to (5.24). This shows that (5.23) ≥ LB(D). We now give a brief outline of how
one can obtain the optimal si and βi for (5.24).
For finding the optimal si, it is more natural to still consider (C.192). Due to the block form
(5.29), the si have to satisfy the constraints in (5.25). Note that (C.192) evaluated at the
optimal β is equal to

(C.192) ≥ −

(︂∑︁K
i=1 Diγi

)︂2(︃
g(1) · n+∑︁K

i=1
γ2

i

si

)︃ . (C.193)

The optimal si for this objective are water-filled, i.e.,⎧⎪⎪⎨⎪⎪⎩
s = [n, 0, · · · , 0], n ≤ k1,

s = [k1, k2, · · · , kK], d ≤ n,

s = [k1, · · · , kid(n)−1, res(n), 0, · · · , 0] otherwise,
(C.194)

where s = [s1, · · · , sk] and id(n) denotes the first position at which

min{n, d} −
id(n)∑︂
i=1

ki < 0,

and

res(n) = min{n, d} −
id(n)−1∑︂
i=1

ki.

This follows directly from Lemma C.6.1. It only remains to show that the optimal βi can be
obtained via (5.28), which is done in Lemma C.6.3. This concludes the proof.

Proof of Proposition 5.5.2. Except for terms of the form Tr
[︂
BiB

⊤
i BjB

⊤
j

]︂
, all the other

terms can be estimated as in the proof of Proposition 5.4.3. The only technical difference is
that all the constants now depend on the ratios ki

n
.

We will show that, with probability at least 1 − c exp (−cdϵ), for all i ̸= j,

Tr
[︂
BiB

⊤
i BjB

⊤
j

]︂
≤ n

1
2 +ϵ. (C.195)

Thus, by a simple union bound, we have that, with probability at least 1 − c
d2 , this bound

holds jointly for all pairs Bi,Bj . It follows as in the proof of Lemma C.2.3 that we can write

BiB
⊤
i = PiUDiU

⊤Pi,

where by abuse of notation we pushed the factor n
ki

in Di (which will only affect the constants
c, C). Here, Pi is a diagonal matrix such that, for any ϵ > 0, with probability at least
1 − c exp (−cdϵ), we have that

∥Pi − I∥op ≤ n− 1
2 +ϵ.

To see this, first observe that Θ : (Rn×n)4 ↦→ R given by

Θ(X1,X2,X3,X4) = Tr
[︂
X1UDiU

⊤X2X3UDjU
⊤X4

]︂
208

is differentiable (as it is the composition of the trace function with 4-linear form). Since by
construction

Tr
[︂
UDiU

⊤UDjU
⊤
]︂

= Tr [0] = 0,
this implies that, with probability at least 1 − c

d2 ,

0 ≤ Tr
[︂
BiB

⊤
i BjB

⊤
j

]︂
= Tr

[︂
PiUDiU

⊤PiPjUDjU
⊤Pj

]︂
= Tr

[︂
PiUDiU

⊤PiPjUDjU
⊤Pj

]︂
− Tr

[︂
UDiU

⊤UDjU
⊤
]︂

≤ Cnn− 1
2 +ϵ,

where in the last step we used that the derivative of the trace function is bounded by n · ∥·∥op.
Thus, (C.195) holds.
By construction, the sum of all the cross terms is of the form∑︂

i ̸=j
Tr [MiMj] ,

where Mi = ΓiBiB
⊤
i Γi, Γ2

i = γi

n
I and ∑︁K

i=1 γi = n. We have⃓⃓⃓⃓
⃓⃓∑︂
i ̸=j

Tr [MiMj]

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓∑︂
i ̸=j

γiγj
n2 Tr

[︂
BiB

⊤
i BjB

⊤
j

]︂⃓⃓⃓⃓⃓⃓
≤
∑︂
i ̸=j

γiγj
n2

⃓⃓⃓
Tr
[︂
BiB

⊤
i BjB

⊤
j

]︂⃓⃓⃓
≤ C

∑︂
i ̸=j

γiγj
n2 n

1
2 +ϵ

≤ Cn
1
2 +ϵ,

where in the third step we used a union bound on (C.195) and in the last step we used∑︁K
i=1

γi

n
= 1.

C.7 Details of Experiments and Additional Numerical
Results

We first describe the training details and the whitening procedure that is used to preprocess
natural images for MNIST (Figure C.3) and CIFAR-10 (Figures 5.1, C.1 and C.2). Next,
we give some remarks about the experiments concerning VAMP (Figure 5.3) and about the
discontinuous behaviour of the derivative of the lower bound highlighted in Figure 5.2. In
addition, we present additional numerical experiments which cover extra classes of natural
images.
Activation function and weight parameterization. Note that the derivative of the sign
activation is zero almost everywhere (except one point, which is the origin). In this view, we
cannot use conventional gradient-based algorithms to find the optimal set of parameters for
an autoencoder with the sign activation. We tackle this issue by using a straight-through
estimator (see, for instance, [YLZ+19]) of the sign activation. During the forward pass the
activations of the first layer are computed for σ(x) = sign(x), while during the backward pass

209

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0
Po

pu
la

tio
n

Ri
sk

Lower Bound
SGD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

Figure C.1: Compression (σ ≡ sign) of the CIFAR-10 “dog” class with a two-layer autoencoder.
The data is whitened so that Σ = I: on top, an example of a grayscale image; on the bottom, the
corresponding whitening. The blue dots are the population risk obtained via SGD, and they agree
well with the solid line corresponding to the lower bounds of Theorem 5 and Proposition 5.4.2. Here,
the effect of the number of augmentations used per image is shown. For the left plot each image
was augmented 10 times, while for the right plot each image was augmented 15 times.

σ(x) = tanh(x/τ) is used. Here, the temperature parameter τ > 0 controls how well the
differentiable surrogate tanh(x/τ) approximates sign(x), as

lim
τ→0

tanh(x/τ) = sign(x), ∀x ∈ R \ {0}.

More precisely, the differentiable approximation becomes more accurate for smaller values of τ .
However, we also note that extremely small values of τ might cause numerical issues, since the
derivative of the differentiable surrogate diverges at the origin as τ → 0. For the numerical
experiments, we pick τ ∈ [0.01, 0.2], with the exact value depending on the specific setting.

Note that the constraint on the encoder weights ∥Bi,:∥2 = 1 can be enforced via a simple
reparameterization that forces the rows of B to lie on the unit sphere Sd−1. More precisely,
we use the following classical differentiable reparameterization of B⊤ = [b1, · · · , bn], where
bi = b̂i

∥b̂i∥2
, with {b̂i}ni=1 being the trainable parameters. We note that it is not clear a priori

whether we need to impose the constraints directly for the straight-through estimator, since
during the forward pass we use the norm-agnostic sign function.

Augmentation and whitening. For the experiments on natural images, we augment the
data of each class 15 times. This is done to emulate the optimization of the population risk,
since the amount of initial data (approximately 5000 samples per class) leads to a gap between
empirical and population risks, especially for high rates. The effect of the data augmentation
is represented in Figure C.1 for a whitened CIFAR-10 class. It can be seen that a mild amount
of augmentation, i.e., ×10 and ×15, is already enough for our purposes, and the difference
between the two plots is rather small. Notably, this amount of augmentation brings the
dataset to the scale of the original data when all classes are considered (around 50000 training
examples).

The whitening procedure used in the experiments concerning isotropic data is performed
as follows: given the centered augmented data X ∈ Rnsamples×d, we compute its empirical
covariance matrix given by

Σ̂ = 1
nsamples − 1 ·

nsamples∑︂
i=1

Xi,:X
⊤
i,:,

210

and then we multiply each input by the inverse square root of it, i.e.,

X̂ i,: = Σ̂
− 1

2 Xi,:.

The resulting whitened images are represented in Figures 5.1, C.1 and C.3.
In the experiments concerning non-isotropic data (Figures 5.1 (right plot) and C.4), we center
the data with the empirical mean and divide by a scalar empirical variance computed across
all the pixels, which is the standard preprocessing procedure widely used for computer vision
tasks.
VAMP experiments. For the VAMP experiments, we implement the State Evolution (SE)
recursion which exactly characterizes the limiting performance of VAMP as d → ∞, see
[SRF16, RSF19] for an overview. We then plot the fixed point of said SE recursion. A concrete
description for VAMP is provided by Algorithm 2 in [FRS18], which however covers a more
general multi-layer setting.
“Jumps” of the lower bound derivative. The derivative switch described in Figure 5.2 does
not necessarily happen precisely at the point when the block is filled. A switch may occur at
a later point since, even if si > 0, the corresponding optimal βi may be 0. Intuitively, this
phenomenon occurs in cases when it is still better to put more mass in the block where the
rank is utilized to the fullest (sj = kj). This corresponds to the following condition on the
derivatives of the objective (5.24):

∂(5.24)
∂βi

(0) > ∂(5.24)
∂βj

(β∗
j),

where β∗
i stands for the optimal βi and j denotes the first index at which β∗

j > 0. This
behaviour occurs when the spectrum D has a large variation in scale, e.g.,

D = [5, 0.02, 0.01].

In this case, the last components will be utilized for n significantly larger than k1 (n = k1
precisely characterizes the point where the rank of the first block of B, i.e., B1, is the
maximum possible). Note that, for this choice of D, the plot of the derivative analogous
to Figure 5.2 will not indicate such prominent “jumps”. In fact, the contribution of the last
components to the derivative value is less significant in comparison to the analogous quantity
evaluated for the top-most eigenvalues.
Additional experimental data. We also provide additional numerical simulations, similar to
those presented in the body of the paper. In particular, we provide more class variations for
the natural data experiments (MNIST and CIFAR-10).

211

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

Figure C.2: Compression (σ ≡ sign) of the CIFAR-10 “horse” class (left) and “ship” class (right) with
a two-layer autoencoder. The data is whitened so that Σ = I: on top, an example of a grayscale
image; on the bottom, the corresponding whitening. The blue dots are the population risk obtained
via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 5
and Proposition 5.4.2. Here, in both cases the amount of augmentations per image is equal to 15.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

Figure C.3: Compression (σ ≡ sign) of the MNIST “8” class (left) and “4” class (right) with a
two-layer autoencoder. The data is whitened so that Σ = I: on top, an example of a grayscale
image; on the bottom, the corresponding whitening. The blue dots are the population risk obtained
via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 5
and Proposition 5.4.2. Here, in both cases the amount of augmentations per image is equal to 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
pu

la
tio

n
Ri

sk

Lower Bound
SGD

Figure C.4: Compression (σ ≡ sign) of the CIFAR-10 “airplane” class (left) and “deer” class (right)
with a two-layer autoencoder. The data is not whitened (Σ ̸= I). The blue dots are the SGD
population risk, and they are close to the lower bound of Theorem 8. Here, in both cases the amount
of augmentations per image is equal to 15.

212

APPENDIX D
Appendix for Chapter 6

D.1 MSE Characterizations
D.1.1 Proof of Proposition 6.4.1
Denote by x1 the first iterate of the RI-GAMP algorithm [VKM22], as in (6.20). Then, by
taking σ to be the sign, one can readily verify that

x1 = B⊤sign(Bx).

Note that B is bi-rotationally invariant in law and, as x has i.i.d. components, its empirical
distribution converges in Wasserstein-2 distance to a random variable whose law is that of the
first component of x, denoted by x1. Therefore, the assumptions of Theorem 3.1 in [VKM22]
are satisfied. Hence, for any ψ pseudo-Lipschitz of order 2,1 we have that, almost surely,

lim
d→∞

1
d

d∑︂
i=1

ψ((x1)i, (x)i) = E[ψ(µx1 + σg, x1)],

where g ∼ N (0, 1) is independent of x1 and the state evolution parameters (µ, σ) for r ≤ 1
can be computed as

µ = r ·
√︄

2κ2

π
= r ·

√︄
2
π
, σ2 = r ·

(︃
κ2 + κ4 · 2

πκ2

)︃
= r ·

(︃
1 − r · 2

π

)︃
, (D.1)

that is equation (11) in [VKM22]. Here, {κ2k}k∈N denote the rectangular free cumulants of
the constant random variable equal to 1 (since all the singular values of B are equal to 1 by
assumption). Noting that ψ(x, y) = (x− α · y)2 is pseudo-Lipschitz of order 2, we get that,
almost surely,

lim
d→∞

1
d

· ∥x − α · B⊤sign(B⊤x)∥2
2 = Ex1,g[|x1 − α(µx1 + σg)|22],

which implies that

lim
d→∞

1
d

· Ex∥x − α · B⊤sign(B⊤x)∥2
2 = Ex1,g[|x1 − α(µx1 + σg)|22].

1We recall that ψ : R2 → R is pseudo-Lipschitz of order 2 if, for all a, b ∈ R2, |ψ(a) − ψ(b)| ≤
L∥a − b∥2(1 + ∥a∥2 + ∥b∥2) for some constant L > 0.

213

By expanding the RHS of the last equation and using that x1 has unit second moment by
assumption, we get

Ex1,g[|x1 − α(µx1 + σg)|22] = (1 − αµ)2 · E[x2
1] + α2σ2 · E[g2] = (1 − αµ)2 + α2σ2

= 1 − 2αµ+ α2(µ2 + σ2) = 1 − 2α · r
√︄

2
π

+ α2r.

Thus, by minimizing over α, we have

min
α

Ex1,g[|x− α(µx+ σg)|22] = 1 − 2
π

· r,

which concludes the proof of (6.11).
To prove (6.12), a direct calculation gives

1
d

· Ex

⃦⃦⃦⃦
⃦x − α ·

[︄
In

0(d−n)×n

]︄
sign([In,0n×(d−n)]x)

⃦⃦⃦⃦
⃦

2

2
= 1 − r + r · E[(x1 − αsign(x1))2]

= 1 − r + r · (E[x2
1] − 2α · E[|x1|]

+ α2 · E[sign2(x1)])
= 1 − r + r · (1 − 2α · E[|x1|] + α2)
= 1 + r · (α2 − 2α · E[|x1|]).

The RHS is minimized by α = E[|x1|], which gives

min
α

1
d

· Ex

⃦⃦⃦⃦
⃦x − α ·

[︄
In

0(d−n)×n

]︄
sign([In,0n×(d−n)]x)

⃦⃦⃦⃦
⃦

2

2
= 1 − r · (E[|x1|])2,

and the proof is complete.

D.1.2 Proof of Proposition 6.5.1
Let x̂1 be an iterate of the RI-GAMP algorithm [VKM22], as in (6.20). Then, by taking σ to
be the sign and ft = f , one can readily verify that

x̂1 = f(B⊤sign(Bx)),

which is exactly the form of the autoencoder in (6.4) that we wish to analyze. Thus, as f is
Lipschitz, the assumptions of Theorem 3.1 in [VKM22] are satisfied and, following the same
passages as in the proof of Proposition 6.4.1, we have

lim
d→∞

1
d

· Ex∥x − f(B⊤sign(Bx))∥2
2 = Ex1,g[|x1 − f(µx1 + σg)|22], (D.2)

where x1 is the first entry of x, g ∼ N (0, 1) is independent of x1, and (µ, σ) are given by
(D.1) (which coincides with (6.17)). This concludes the proof.

D.1.3 Proof of Proposition 6.5.2
A direct calculation gives

1
d

· Ex

⃦⃦⃦⃦
⃦x − f

(︄[︄
In

0(d−n)×n

]︄
sign([In,0n×(d−n)]x)

)︄⃦⃦⃦⃦
⃦

2

2
= (1 − r) · E

[︂
(x1 − f(0))2

]︂
+ r · E

[︂
(x1 − f(sign(x1)))2

]︂
,

(D.3)

214

where x1 is the first entry of x. The first term in (D.3) is minimized when f(0) = E[x] = 0.
Hence, we obtain that, at the optimum,

(1 − r) · E
[︂
(x1 − f(0))2

]︂
= 1 − r,

as E[x2] = 1. As for the second term in (D.3), we rewrite

E
[︂
(x1 − f(sign(x1)))2

]︂
= µx1({0}) · 1

2 · (f(1)2 + f(−1)2) + E[1x1>0(x1 − f(1))2]

+ E[1x1<0(x1 − f(−1))2],
(D.4)

where µx1 stands for the measure that corresponds to the distribution of x1, and we use that
sign(0) is a Rademacher random variable by convention. As the distribution of x1 is the same
as that of −x1, (D.4) is minimized by taking f(1) = −f(−1). Thus, we have that

min
f

(D.4) = min
u∈R

E[(x1 − u · sign(x1))2].

The RHS of this last expression can be further rewritten as

min
u∈R

E[(x1 − u · sign(x1))2] = E[x2
1] + min

u∈R

{︂
u2 − 2u · E|x1|

}︂
= 1 − (E|x1|)2,

which concludes the proof.

D.1.4 Computation of f ∗

Sparse Gaussian. Using Bayes rule, the conditional expectation can be expressed as

E[x|µx+ σg = y] = Ex [x · P (µx+ σg = y|x)]
Ex [P (µx+ σg = y|x)] = Ex [x · P (µx+ σg = y|x)]

P (µx+ σg = y) . (D.5)

Given that x ∼ SG1(p), with probability p we have that µx + σg ∼ N (0, µ2/p + σ2) as
x ∼ N (0, 1/p), and with probability (1 − p) we have that x = 0, and, hence, µx + σg =
σg ∼ N (0, σ2). Combining gives

P (µx+σg = y) = p·
√
p√︂

2π(µ2 + pσ2)
·exp

(︄
− py2

2(µ2 + pσ2)

)︄
+(1−p)· 1√

2πσ2
·exp

(︄
− y2

2σ2

)︄
.

Note that due to sparsity, we have that

Ex [x · P (µx+ σg = y|x)] = p · Ex∼N (0,1/p) [x · P (µx+ σg = y|x)] , (D.6)

and, in this case, we conclude that

µx+ σg|x ∼ N (µx, σ2).

Thus, the RHS of (D.6) is a Gaussian integral, which is straight-forward to calculate by
“completing a square”. The computation gives

Ex∼N (0,1/p) [x · P (µx+ σg = y|x)] =
√︃
p

2π · µy · exp
(︄

− py2

2(µ2 + pσ2)

)︄
· 1

(µ2 + pσ2)3/2 .

Note that, when p = 1, i.e., x is an isotropic Gaussian vector, f ∗ is just a rescaling by a
constant factor, i.e., f ∗(y) = const(µ, σ) · y.

215

Sparse Laplace. The sparse Laplace distribution with sparsity level (1 − p) has the following
law

(1 − p) · δ0 + p ·
√︃
p

2 · exp
(︂
−

√
2p · |x|

)︂
, (D.7)

where δ0 stands for the delta distribution centered at 0. The scaling for different p is chosen
to ensure a unit second moment.
First, we derive the expression for the conditional expectation for p = 1. For p ̸= 1 we
elaborate later how a simple change of variables allows to obtain closed-form expressions of
the corresponding expectations via the case p = 1. For p = 1, the denominator in (D.5) is
equivalent to∫︂

R
p(x)p(µx+ σg = y|x)dx = 1√

4πσ2

∫︂
R

exp
(︂
−

√
2 · |x|

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx. (D.8)

By considering two cases, i.e., x < 0 and x ≥ 0, for the limits of integration and for each of
them “completing a square”, we obtain∫︂

R+
exp

(︂
−

√
2 · x

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx

=
(︄

1 + erf
(︄√

2µy − 2σ2

2µσ

)︄)︄
· exp

(︄
σ2 −

√
2µy

µ2

)︄
·
√︃
π

2 · σ
µ
,

∫︂
R−

exp
(︂√

2 · x
)︂

exp
(︄

−(y − µx)2

2σ2

)︄
dx

= erfc
(︄√

2µy + 2σ2

2µσ

)︄
· exp

(︄
σ2 +

√
2µy

µ2

)︄
·
√︃
π

2 · σ
µ
,

where erf(·) stands for the Gaussian error function, and erfc(·) for its complement. For the
case of p ̸= 1, we get that the RHS of (D.8) becomes

(1 − p) · 1√
2πσ2

· exp
(︄

− y2

2σ2

)︄
+ p ·

√︃
p

4πσ2 ·
∫︂
R

exp
(︂
−

√
2p · |x|

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx.

The change in normalization constant of the second term is then trivial. For the integral itself,
consider the change of variables x̃ = x · √

p:∫︂
R

exp
(︂
−

√
2p · |x|

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx

= 1
√
p

·
∫︂
R

exp
(︂
−

√
2 · |x̃|

)︂
exp

⎛⎝−
(y − µ√

p
· x̃)2

2σ2

⎞⎠ dx̃

= 1
√
p

·
∫︂
R

exp
(︂
−

√
2 · |x̃|

)︂
exp

(︄
−(y − µ̃ · x̃)2

2σ2

)︄
dx̃,

which is exactly the previous integral in (D.8) but with µ̃ = µ/
√
p and an additional scaling

factor in front.
Consider the numerator of (D.5) for p = 1. For this case, the computation reduces to
evaluating:∫︂

R
x · p(x)p(µx+ σg = y|x)dx = 1√

4πσ2

∫︂
R
x · exp

(︂
−

√
2 · |x|

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx.

(D.9)

216

Reducing to cases again and “completing a square” gives∫︂
R+
x · exp

(︂
−

√
2 · x

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx

= exp
(︄

− y2

2σ2

)︄
·

⎡⎢⎢⎣σ2

µ2 +
√
πσ · (

√
2µy − 2σ2) · e

(µy−
√

2σ2)2

2µ2σ2 ·
(︂
1 + erf

(︂
y√
2σ − σ

µ

)︂)︂
2µ3

⎤⎥⎥⎦ ,
∫︂
R−
x · exp

(︂√
2 · x

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx

= exp
(︄

− y2

2σ2

)︄
·

⎡⎢⎢⎣−σ2

µ2 +
√
πσ · (

√
2µy + 2σ2) · e

(µy+
√

2σ2)2

2µ2σ2 · erfc
(︂

y√
2σ + σ

µ

)︂
2µ3

⎤⎥⎥⎦ .
The derivation for the case p ̸= 1 can be obtained analogously, by noting that (D.9) in this
case is written as

p ·
√︃

p

4πσ2 ·
∫︂
R
x · exp

(︂
−

√
2p · |x|

)︂
exp

(︄
−(y − µx)2

2σ2

)︄
dx.

Sparse Rademacher. The sparse Rademacher distribution with sparsity level (1 − p) has
the following law

(1 − p) · δ0 + p

2 ·
(︂
δ1/√

p + δ−1/√
p

)︂
.

The denominator in (D.5) reduces to

(1−p)· 1√
2πσ2

·exp
(︄

− y2

2σ2

)︄
+p2 · 1√

2πσ2
·
[︄
exp

(︄
−

(y − µ/
√
p)2

2σ2

)︄
+ exp

(︄
−

(y + µ/
√
p)2

2σ2

)︄]︄
.

Moreover, it is easy to see that the enumerator of (D.5) reduces to
√
p

2 ·
[︄
exp

(︄
−

(y − µ/
√
p)2

2σ2

)︄
− exp

(︄
−

(y + µ/
√
p)2

2σ2

)︄]︄
.

Numerical Denoising. For sparse Beta mixture (D.12), Gaussian mixture with aspect ratio
(D.13) and sparse Gaussian mixture (D.10) distributions it is cumbersome to get a closed
form expression for the optimal denoiser (6.18) in order to compute performance given a Haar
design (6.16). We, thus, employ a typical binning in conjunction with Monte-Carlo to estimate
the value of the conditional expectation in (6.18).

D.2 Experimental Details and Additional Numerical
Results

D.2.1 Numerical Setup
Activation function and reparameterization of the weight matrix B. Since the sign
activation has derivative zero almost everywhere, it is not directly suited for gradient-based
optimization. To overcome this issue for SGD training of the models described in the main
body, we use a “straight-through” (see for example [YLZ+19]) approximation of it. In details,

217

during the forward pass the activation of the network σ(·) is treated as a sign activation.
However, during the backward pass (gradient computation) the derivatives are computed as if
instead of σ(·) its relaxed version is used, namely, the tempered hyperbolic tangent:

στ (x) = tanh
(︃
x

τ

)︃
.

We also note that such approximation is pointwise consistent except zero:

lim
τ→0

= σ(x), ∀ x ∈ R \ {0}.

For the experiments we fix the temperature τ to the value of 0.1. Refining the approximation
further, i.e., making τ smaller, does not affect the end result, but it makes numerics a bit less
stable due to the increased variance of the derivative.
To ensure consistency of the “straight-though” approximation, we enforce the condition
Bi,: ∈ Sd−1 via a simple differentiable reparameterization. Let B ∈ Rn×d be trainable network
parameters, then

B̂i,: = Bi,:

∥Bi,:∥2
.

It should be noted that it is not clear whether this constraint is necessary, since during the
forward pass we use directly σ(·), which is agnostic to the row scaling of B.

Augmentation and whitening. For the natural image experiments in Figures 6.5, 6.8
and D.8, we use data augmentation to bring the amount of images per class to the initial
dataset scale. This step is crucial to simulate the minimization of the population risk and not
the empirical one, when the number of samples per class is insufficient. We augment each
image 15 times for CIFAR-10 data and 10 times for MNIST data. We note that the described
amount of augmentation is sufficient: increasing it further does not change the results of the
numerical experiments and only increases computational cost.
The whitening procedure corresponds to the matrix multiplication of each image by the inverse
square root of the empirical covariance of the data. This is done to ensure that the data is
isotropic (to be closer to the i.i.d. data assumption needed for the theoretical analysis). More
formally, let X ∈ Rnsamples×d be the augmented data that is centered, i.e., the data mean is
subtracted. Its empirical covariance is then given by

Σ̂ = 1
nsamples − 1 ·

nsamples∑︂
i=1

Xi,:X
⊤
i,:.

In this view, the whitened data X̂ ∈ Rnsamples×d is obtained from the initial data X as follows

X̂ i,: = Σ̂
− 1

2 Xi,:,

where Xi,: defines the i-th data sample.

D.2.2 Phase Transition and Staircase in the Learning Dynamics for
the Autoencoder in (6.2)

First, we provide an additional numerical simulation similar to the one in Figure 6.3 for the
case of non-sparse Rademacher data, i.e., p = 1. Since condition (6.13) holds, we expect

218

the minimizer to be a permutation of the identity, and the corresponding SGD dynamics to
experience a staircase behaviour, as discussed in Section 6.4. Namely, the SGD algorithm first
finds a random rotation that achieves Gaussian performance (indicated by the orange dashed
line). Next, it searches a direction towards a sparse solution given by a permutation of the
identity, and the corresponding loss remains at the plateau. Finally, the correct direction is
found, and SGD quickly converges to the optimal solution.

0 1 2 3 4 5 6 7
Iteration 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

SGD
Gaussian performance: 1 2/
Global minimum: 1 p

Figure D.1: Compression of Rademacher data (p = 1) via the autoencoder in (6.2). We set d = 200
and r = 1. The MSE is plotted as a function of the number of iterations, and it displays a staircase
behavior.

Sparse Gaussian mixture. Next, we consider the compression of x with i.i.d. components
distributed according to the following sparse mixture of Gaussians:

xi ∼ p ·
(︄

1
2 · N

(︄
1, 1 − p

p

)︄
+ 1

2 · N
(︄

−1, 1 − p

p

)︄)︄
+ (1 − p) · δ0. (D.10)

It is easy to verify that E[x2
i] = 1. In order to compute the transition point we need to access

the first absolute moment of xi, i.e., E|xi|. Using the result in [Win12], we are able to claim
that

Ex∼N (±1,σ2)|x| = σ

√︄
2
π

· Φ
(︃

−1
2 ,

1
2 ,−

1
2σ2

)︃
, (D.11)

where Φ(a, b, c) stands for Kummer’s confluent hypergeometric function:

Φ(a, b, c) =
∞∑︂
n=1

an

bn
· c

n

n! ,

with xn denoting the rising factorial, i.e.,

xn = z · (z + 1) · · · · · (z + n− 1), n ∈ N0.

We use scipy.special.hyp1f1 to evaluate numerically Φ
(︂
−1

2 ,
1
2 ,−

1
2σ2

)︂
, where σ2 =

(1 − p)/p. Likewise, to find pcrit at which E|xi| =
√︂

2
π

we rely on numerics. The results are
presented in Figure D.2.

219

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

0.10

0.15

0.20

0.25

0.30

0.35
M

SE

SGD
Theoretical prediction
Gaussian performance
pcrit 0.79

Figure D.2: Compression of data whose distribution is given by a sparse mixture of Gaussians via
the autoencoder in (6.2). We set d = 100 and r = 1. Left. MSE achieved by SGD at convergence,
as a function of the sparsity level p. The empirical values (dots) match our theoretical prediction
(blue line): for p < pcrit, the loss is equal to the value obtained for Gaussian data, i.e., 1 − 2r/π;
for p > pcrit, the loss is smaller, and it is equal to 1 − r · (E|x1|)2. Center. Encoder matrix B at
convergence of SGD when p = 0.6 < pcrit: the matrix is a random rotation. Right. Encoder matrix
B at convergence of SGD when p = 0.9 ≥ pcrit. The negative sign in part of the entries of B is
cancelled by the corresponding sign in the entries of A. Hence, B is equivalent to a permutation of
the identity.

We remark that the first absolute moment can always be estimated via Monte-Carlo sampling
if a functional expression such as (D.11) is out of reach. We also note that the behaviour
of the predicted curve after the transition point pcrit can be arbitrary. In particular, it is not
always linear like in the case of sparse Rademacher data in Figure 6.2. For instance, in the
case of the sparse Gaussian mixture of Figure D.2, the shape is clearly of non-linear nature.

0 1 2 3 4
Iteration 1e7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

SGD
Gaussian performance: 1 2/
Global minimum: 1 (|x1|)2

Figure D.3: Compression of data whose distribution is given by a sparse mixture of Gaussians via the
autoencoder in (6.2). We set d = 100, r = 1, and p = 0.9. The MSE is plotted as a function of the
number of iterations and, as p > pcrit, it displays a staircase behavior.

In Figure D.3, we provide an experiment similar to that of Figure 6.3, but for the compression
of a sparse mixture of Gaussians with p = 0.9 at r = 1. We can clearly see that Figure D.3
again indicates the emergent staircase behaviour of the SGD loss for p > pcrit.

220

0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

M
SE

Permutation of identity performance
Gaussian performance (Haar)
SGD
pcrit 0.835

Figure D.4: Compression of data whose distribution is given by a sparse mixture of Beta distributions
via the autoencoder in (6.2). We set d = 100 and r = 1. MSE achieved by SGD at convergence,
as a function of the sparsity level p. The empirical values (dots) match our theoretical prediction
(blue line): for p < pcrit, the loss is equal to the value obtained for Gaussian data, i.e., 1 − 2r/π; for
p > pcrit, the loss is smaller, and it is equal to 1 − r · (E|x1|)2.

Sparse Beta mixture. Next, we consider the compression of x with i.i.d. components
distributed according to the sparse mixture of Beta distributions with sparsity (1 − p). The
mixture is defined via the following sampling procedure:

x̂i ∼ Beta(2, 5),
x̂i ↦→ scale · m̂i · x̂i, m̂i ∼ Rademacher(0.5), (zero mean),

where scale is such that Var(x̂i) = 1. The final step of sampling is the addition of sparsity:

xi = 1
√
p

· x̂i ·mi, mi ∼ Bernoulli(p), (D.12)

where 1/√p factor ensures Var(xi) = 1.

In this case, there is a phase transition at pcrit ≈ 0.835: for p < pcrit, condition in (6.13)
is not satisfied and GD converges to Haar weights giving the Gaussian MSE; for p > pcrit,
condition (15) is satisfied and GD converges to a sub-sampled permutation of the identity,
which improves upon the Gaussian MSE. This is reported in the Figure D.4. To estimate the
first absolute moment, i.e., E|x1|, for the corresponding permutation of identity performance
plot, we use Monte-Carlo estimate over 107 samples.

Gaussian mixture with variable aspect ratio. Next, we consider the compression of x
with i.i.d. components distributed according to the Gaussian mixture with varying aspect ratio
γ. The mixture is defined via the following sampling procedure:

µ = 1, σ = µ · γ

xi = 1√
µ2 + σ2 ·mi · x̂i, x̂i ∼ N (µ, σ2), m̂i ∼ Rademacher(0.5).

(D.13)

221

0.0 0.5 1.0 1.5 2.0 2.5 3.0
aspect ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Identity performance
Gaussian performance (Haar)
SGD

Figure D.5: Compression of data whose distribution is given by a (non-sparse) mixture of Gaussians
via the autoencoder in (6.2). We set d = 200 and r = 1. MSE achieved by SGD at convergence, as
a function of the aspect ratio γ. The empirical values (dots) match our theoretical prediction (blue
line): 1 − r · (E|x1|)2, which corresponds to the permutation of identity minimizer.

0 50000 100000 150000 200000 250000 300000
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

SGD
Gaussian performance
Identity performance (1 (|xi|)2)

Figure D.6: Compression of data whose distribution is given by a (non-sparse) mixture of Gaussians
via the autoencoder in (6.2). We set d = 200, r = 1, and aspect ratio γ = 0.5. The MSE is plotted
as a function of the number of iterations and, as condition 6.13 is satisfied, it displays a staircase
behavior.

Condition (6.13) is satisfied for all levels of γ and, as conjectured, SGD converges to a
sub-sampled permutation of the identity, which improves upon the Gaussian MSE. This is
reported in the Figure D.5.

Furthermore, the training loss exhibits a staircase behaviour: first the MSE rapidly converges
to the Gaussian MSE (corresponding to Haar weights); then, there is a plateau; finally, the
global minimum (corresponding to the permutation of identity weights) is reached. This is
reported in Figure D.6.

222

0.2 0.4 0.6 0.8 1.0
r

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

Gaussian performance
SGD on Sparse Laplace (p = 0.6)

Figure D.7: Compression of data whose distribution is given by a sparse Laplace distribution via
the autoencoder in (6.2). We set d = 400 and p = 0.6. The MSE is plotted as a function of the
compression rate r and, as condition 6.13 is never satisfied, it displays Gaussian performace for all
rates r ≤ 1.

Sparse Laplace distribution. Next, we consider the compression of x with i.i.d. components
distributed according to the sparse Laplace distribution (D.7). In this case, the condition
(6.13) is never met regardless of the sparsity level p. In other words, the SGD will always
converge to the Haar minimizer. We report the corresponding numerical values on Figure D.7
for different compression rates r, d = 400 and p = 0.6.

D.2.3 MNIST Experiment
In this subsection, we provide additional numerical evidence complementing the results presented
in Figure 6.5. Namely, we provide a similar evaluation on Bernoulli-masked whitened MNIST
data. As for the experiment in Figure 6.5, the sparsity level p is set to 0.7.

Note that the eigen-decomposition of the covariance of MNIST data has zero eigenvalues. In
this case, we need to apply the lower bound from [SKHM23] that accounts for a degenerate
spectrum. The corresponding result is stated in Theorem 5.2 of [SKHM23]. In particular,
the number of zero eigenvalues n0 is equal to 179, which means that at the value of the
compression rate r given by

r = d− n0

d
= 282 − 179

282 ≈ 0.77

the derivative of the lower bound experiences a jump-like behavior, as described in [SKHM23].

D.2.4 CIFAR-10: Laplace Approximation of Pixel Distribution
Figure D.9 demonstrates the quality of the Laplace approximation for whitened CIFAR-10
images. Namely, we note that the empirical distribution of the image pixels after whitening is
well approximated by a Laplace random variable with unit second moment.

223

0.2 0.4 0.6 0.8 1.0
r

0.3

0.4

0.5

0.6

0.7

M
SE

Gaussian performance
SGD

Figure D.8: Compression of masked and whitened MNIST images that correspond to digit “zero” via
the two-layer autoencoder in (6.2). First, the data is whitened so that it has identity covariance (as
in the setting of Theorem 9). Then, the data is masked by setting each pixel independently to 0
with probability p = 0.7. An example of an original image is on the top right, and the corresponding
masked and whitened image is on the bottom right. The SGD loss at convergence (dots) matches
the solid line, which corresponds to the prediction in (6.5) for the compression of standard Gaussian
data (with no sparsity)..

10 5 0 5 100.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure D.9: Empirical distribution of whitened CIFAR-10 image pixels (blue histogram), and its
approximation via a Laplace distribution with unit second moment (orange curve).

D.2.5 Provable Benefit of Nonlinearities for the Compression of
Sparse Gaussian Data

Figure D.10 considers the compression of sparse Gaussian data, and it shows that the MSE
achieved by the autoencoder in (6.4) with the optimal choice of f (namely, the RHS of (6.16)
with f = f ∗) is strictly lower than the MSE (6.5) achieved by the autoencoder in (6.2), for
any sparsity level p ∈ (0, 1). The conditional expectation E[x1|µx1 + σg] (cf. the definition of
f ∗ in (6.18)) is computed numerically via a Monte-Carlo approximation.

D.2.6 Phase Transition and Staircase in the Learning Dynamics for
the Autoencoder in (6.4)

Sparse Rademacher. For sparse Rademacher data, the optimal f ∗ given by (6.18) is
computed explicitly in Appendix D.1.4 and plotted in Figure D.12. We note that functions

224

0.2 0.4 0.6 0.8 1.0
p

0.15

0.20

0.25

0.30

0.35

M
SE

Prediction, decoder + non-linearity
Gaussian performance

Figure D.10: Compression of sparse Gaussian data. We set r = 1. The solid blue line corresponds to
the MSE in (6.16) with f = f∗ (defined in (6.18)), for different values of p; the dashed orange line
corresponds to the Gaussian performance in (6.5), which is achieved by the autoencoder in (6.2).

0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

M
SE

SGD
1 p (Proposition 5.2)
Theoretical prediction
Gaussian performance
pcrit 0.67

Figure D.11: Compression of sparse Rademacher data via the autoencoder in (6.4) with f of the
form in (D.14). We set d = 200 and r = 1. Left. MSE achieved by SGD at convergence, as a
function of the sparsity level p. The empirical values (dots) match our theoretical prediction (blue
line). For p < pcrit, the loss is given by Proposition 6.5.1 for B sampled from the Haar distribution;
for p ≥ pcrit, the loss is given by Proposition 6.5.2 for B equal to the identity. Center. Encoder
matrix B at convergence of SGD when p = 0.3 < pcrit: the matrix is a random rotation. Right.
Encoder matrix B at convergence of SGD when p = 0.7 ≥ pcrit. The negative sign in part of the
entries of B is cancelled by the corresponding sign in the entries of A. Hence, B is equivalent to a
permutation of the identity.

of the form in (6.15) are unable to approximate f ∗ well. Thus, in the experiments we use a
different parametric function for f given by the following mixture of hyperbolic tangents:

f(x) = 1x≥0 · (γ1 · tanh(ε1 · x− α1) + β1) + 1x<0 · (γ2 · tanh(ε2 · x− α2) + β2). (D.14)

The numerical evaluation of the autoencoder in (6.4) with f of the form in (D.14) for the
compression of sparse Rademacher data is provided in Figure D.11. We set r = 1 and d = 200.
The solid blue line corresponds to the prediction of Proposition 6.5.1, obtained for random
Haar B; the solid orange line corresponds to the prediction of Proposition 6.5.2, obtained
for B equal to the identity. The blue dots correspond to the performance of SGD, and they
exhibit the transition in the learnt B from a random Haar matrix (p < pcrit) to a permutation
of the identity (p > pcrit). The critical value pcrit is obtained from the intersection between
the blue curve and the orange curve. For all values of p, the autoencoder in (6.4) outperforms

225

4 2 0 2 4

2

1

0

1

2

Figure D.12: Optimal f∗ in (6.18) when x1 is a sparse Rademacher random variable. We set r = 1
and p = 0.2.

the Gaussian MSE (6.5) (green dashed line) and, hence, it is able to exploit the structure in
the data.
For p > pcrit, the staircase behavior of the SGD training dynamics is presented in Figure D.13.

0 20000 40000 60000 80000 100000 120000
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

SGD
Haar encoder (Proposition 5.1)
Global minimum: 1-p

Figure D.13: Compression of sparse Rademacher data via the autoencoder in (6.4). We set d = 200,
r = 1, and p = 0.9. The MSE is plotted as a function of the number of iterations and, as p > pcrit,
it displays a staircase behavior.

Sparse Beta mixture. The numerical evaluation of the autoencoder in (6.4) for the data
which comes from sparse Beta mixture (D.12) is illustrated on Figure D.14. As predicted by
our theory, depending on the value of p, the optimal encoding corresponds either to a Haar
design or a permutation of identity. The phase transition between two minimizers happens at
the intersection of solid green and blue curves which correspond to the MSE of the respective
minimizers. As discussed in Section D.1.4, in order to obtain values for the green curve, we
use numerical estimate for the conditional expectation (6.18).

Sparse Gaussian mixture. The numerical evaluation of the autoencoder in (6.4) for the
data which comes from sparse Gaussian mixture (D.10) is illustrated on Figure D.15. As
predicted by our theory, depending on the value of p, the optimal encoding corresponds either
to a Haar design or a permutation of identity. The phase transition between two minimizers

226

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

M
SE

Permutation of identity performance
Gaussian Performance
Denoising (Haar)
SGD
pcrit 0.839

Figure D.14: Compression of data whose distribution is given by a sparse mixture of Beta distributions
via the autoencoder in (6.2). We set d = 200 and r = 1. MSE achieved by SGD at convergence, as
a function of the sparsity level p. The empirical values (dots) match our theoretical prediction (blue
line). For p < pcrit, the loss is given by Proposition 6.5.1 for B sampled from the Haar distribution;
for p ≥ pcrit, the loss is given by Proposition 6.5.2 for B equal to the permutation of identity.

happens at the intersection of solid green and blue curves which correspond to the MSE of the
respective minimizers. As discussed in Section D.1.4, in order to obtain values for the green
curve, we use numerical estimate for the conditional expectation (6.18).

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Permutation of identity performance
Gaussian Performance
Denoising (Haar)
SGD
pcrit 0.795

Figure D.15: Compression of data whose distribution is given by a sparse mixture of gaussians via
the autoencoder in (6.2). We set d = 200 and r = 1. MSE achieved by SGD at convergence, as a
function of the sparsity level p. The empirical values (dots) match our theoretical prediction (blue
line). For p < pcrit, the loss is given by Proposition 6.5.1 for B sampled from the Haar distribution;
for p ≥ pcrit, the loss is given by Proposition 6.5.2 for B equal to the permutation of identity.

Gaussian mixture with aspect ratio. The numerical evaluation of the autoencoder in
(6.4) for the data which comes from sparse Gaussian mixture (D.13) is illustrated on Figure
D.16 for d = 200 and r = 1. As predicted by our theory, in this case, independently of aspect

227

ratio value γ SGD converges to the minimizer which corresponds to a matrix B which is a
permutation of identity, since the MSE value for Haar design 6.5.1 (dashed orange curve) is
always inferior to the corresponding value achieved by permutation of identity 6.5.2 (solid blue
curve). As discussed in Section D.1.4, in order to obtain values for the dashed orange curve,
we use numerical estimate for the conditional expectation (6.18).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
aspect ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Identity performance
Denosing (Haar)
SGD

Figure D.16: Compression of data whose distribution is given by a (non-sparse) Gaussian mixture
with aspect ratio via the autoencoder in (6.2). We set d = 200 and r = 1. MSE achieved by SGD at
convergence, as a function of the sparsity level p. The empirical values (dots) match our theoretical
prediction (blue line) and the loss is given by Proposition 6.5.2 for B equal to a permutation of
identity.

Sparse Laplace. The numerical evaluation of the autoencoder in (6.4) for the data which
comes from sparse Laplace distribution (D.7) is illustrated on Figure D.17 for d = 512 and
r = 1. As predicted by our theory, in this case, independently of sparsity level p, SGD converges
to the minimizer which corresponds to an orthogonal matrix B, since the MSE value for
Haar design 6.5.1 (orange curve) is always superior to the corresponding value achieved by
permutation of identity 6.5.2 (solid blue line). As discussed in Section D.1.4, in order to obtain
values for the solid orange curve, we use numerical estimate for the conditional expectation
(6.18).

D.2.7 Discussion on Multi-layer Decoder
First, let us elaborate on some design points for the network in (6.21). The merging operations
⊕2 and ⊕3 play the role of the correction terms −∑︁t−1

i=1 βt,ix̂
i and −∑︁t

i=1 αt,iẑ
i in the RI-

GAMP iterates in (6.20). Furthermore, the composition of ⊕3 and f2(·) in x̂2 approximates
taking the posterior mean in (6.20). We note that the network (6.21) can be generalized
to emulate more RI-GAMP iterations, at the cost of additional layers and skip connections
(induced by the merging operations ⊕k).

In the rest of this appendix, we discuss how to obtain the orange curve in the right plot
of Figure 6.9, which corresponds to the Bayes-optimal MSE when B is sampled from the
Haar distribution. This optimal MSE is achieved by the fixed point of the VAMP algorithm
proposed in [RSF19]. Thus, we implement the state evolution recursion from [RSF19], in

228

0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

Identity prediction
Haar prediction
SGD

Figure D.17: Compression of data whose distribution is given by a sparse Laplace prior via the
autoencoder in (6.2). We set d = 512 and r = 1. MSE achieved by SGD at convergence, as a
function of the sparsity level p. The empirical values (dots) match our theoretical prediction (solid
orange line) and the loss is given by Proposition 6.5.1 for B sampled from the Haar distribution.

order to evaluate the fixed point. As the specific setting considered here (x ∼ SGd(p), B a
Haar matrix, and a generalized linear model with sign activation) is not considered in [RSF19],
we provide explicit expressions for the recursion leading to the desired MSE.

First state evolution function - E1(γ1). We start with the state evolution function that is
equal to the following expected value of the derivative of the conditional expectation

E1(γ1) = ER1

[︄
∂

∂R1
E[X|R1 = X + P]

]︄
, X ∼ SG1(p), P ∼ N (0, γ−1

1). (D.15)

For completeness, we note that the quantity

∂

∂R1
E[X|R1 = X + P]

is in fact the conditional variance Var[X|R1 = X + P] up to a scaling [DPS20], which is
related to the optimal MSE.

Modulo the scalings, the computation of E[X|R1 = X + P] is similar to the computation
performed in Section D.1.4. For brevity, we just state the final result:

E[X|R1 = X + P] =
p · R1√

2πp−1
· exp

(︃
− pR2

1
2(pγ−1

1 +1)

)︃
· 1

(pγ−1
1 +1)3/2

p · 1√
2π(p−1+γ−1

1)
· exp

(︃
− pR2

1
2(pγ−1

1 +1)

)︃
+ (1 − p) · 1√

2πγ−1
1

· exp
(︃

− R2
1

2γ−1
1

)︃
: = E(R1)

p(R1)
.

(D.16)

229

Taking the partial derivative in R1 and substituting in (D.15) yields:

E1(γ1) = γ−1
1

∫︂
R

∂

∂R1
E[X|R1 = X + P] · p(R1)dR1

= γ−1
1

∫︂
R

E ′(R1)p(R1) − E(R1)p′(R1)
p2(R1)

p(R1)dR1

= γ−1
1

∫︂
R

(︄
E ′(R1) − E(R1) · ∂

∂R1
log p(R1)

)︄
dR1.

(D.17)

We can readily verify that

∫︂
R
E ′(R1)dR1 = lim

ext→∞
E(R1)

⃓⃓⃓⃓
⃓⃓
+ext

−ext

= 0.

An integration by parts for the remaining term in (D.17) gives:

E1(γ1) = γ−1
1 lim

ext→∞
E(R1) log p(R1)

⃓⃓⃓⃓
⃓⃓
+ext

−ext

− γ−1
1

∫︂
R
E ′(R1) log p(R1)dR1

= −γ−1
1

∫︂
R
E ′(R1) log p(R1)dR1.

(D.18)

The RHS of (D.18) is then evaluated via numerical integration. For completeness, the
derivative E ′(R1) has the following form:

E ′(R1) = p · 1√
2πp−1 · exp

(︄
− pR2

1
2(pγ−1

1 + 1)

)︄
· 1

(pγ−1
1 + 1)3/2

− p2 · R2
1√

2πp−1 · exp
(︄

− pR2
1

2(pγ−1
1 + 1)

)︄
· 1

(pγ−1
1 + 1)5/2 .

Second state evolution function - E2(τ2, γ2). This function is defined in terms of spectrum
of B⊤B ∈ Rd×d. Namely, for r ≤ 1, the distribution of the eigenvalues of B⊤B obeys the
following law

ρS = r · δ1 + (1 − r) · δ0.

The state evolution function E2(τ2, γ2) is then defined as follows

E2(τ2, γ2) := ES∼ρS

[︄
1

τ2 · S2 + γ2

]︄
= r · 1

τ2 + γ2
+ (1 − r) · 1

γ2
.

Third state evolution function - B2(τ2, γ2). The computation is similar to the case of
the second state evolution function. Namely, the third state evolution function is defined as
follows:

B2(τ2, γ2) = 1
r

· ES∼ρS

[︄
τ2S

2

τ2S2 + γ2

]︄
= 1
r

· r · τ2

τ2 + γ2
= τ2

τ2 + γ2
.

Fourth state evolution function - B1(τ1). The last state evolution function is defined
similarly to E1(γ1), namely

B1(τ1) = EP1,Y

[︄
∂

∂P1
E[Z|P1, Y]

]︄
. (D.19)

230

Here, Z ∼ N (0, 1) has variance one (since the spectrum of B has unit variance), Y = sign(Z)
and P1 = b · Z + a ·G, where G ∼ N (0, 1) is independent of Z and

b = 1 − τ−1
1 , a =

√︂
b · (1 − b).

The outer expectation in (D.19) is estimated via Monte-Carlo. We now compute the conditional
expectation. First note that the following decomposition (depending on the sign of Y) holds:

E[Z|P1, Y] = E[Z ′|P ′
1], (D.20)

where Z ′ = 1ZY≥0 · Z and P ′
1 = b · Z ′ + a ·G. Using Bayes formula, we get that

E[Z ′|P ′
1] =

∫︁
ZY≥0 Z exp

(︂
−Z2

2

)︂
exp

(︂
− (P1−bZ)2

2a2

)︂
dZ∫︁

ZY≥0 exp
(︂
−Z2

2

)︂
exp

(︂
− (P1−bZ)2

2a2

)︂
dZ

. (D.21)

Completing the square in the exponents gives

Z2a2 + (P1 − bZ)2

2a2 = bZ2 − 2bZP1 + P 2
1

2b(1 − b) = (Z − P1)2

2(1 − b) + P 2
1

2b ,

which after substitution in (D.21) results in

E[Z ′|P ′
1] =

∫︁
ZY≥0 Z exp

(︃
− (Z−P1)2

2τ−1
1

)︃
dZ∫︁

ZY≥0 exp
(︃

− (Z−P1)2

2τ−1
1

)︃
dZ

. (D.22)

Note that the denominator of (D.22) is easy to access via the standard Gaussian CDF Ψ(·) as
follows

1√︂
2πτ−1

1

∫︂
ZY≥0

exp
(︄

−(Z − P1)2

2τ−1
1

)︄
dZ = 1Y≥0 ·

[︄
1 − Ψ

(︄
− P1

τ
−1/2
1

)︄]︄
+ 1Y <0 · Ψ

(︄
− P1

τ
−1/2
1

)︄

= Ψ
(︄
Y P1

τ
−1/2
1

)︄
,

(D.23)

where for the last equality we use that Ψ(x) = 1 − Ψ(−x) and Y ∈ {−1,+1}. For the
numerator of (D.22), we get

1√︂
2πτ−1

1

∫︂
1Y Z≥0 · Z exp

(︄
−(Z − P1)2

2τ−1
1

)︄
dZ. (D.24)

Let us denote the PDF of N (µ, σ2) by ρµ,σ2 , and use the shorthand ρ(·) for ρ0,1(·). Note that
ρx,σ2(0) = σ−1ρ(x/σ). Then, by Stein’s identity, we have

E [1Y Z≥0 · (Z − P1)] = τ−1
1 · E[Y · δ0(Z)] = Y τ−1

1 · ρP1,τ
−1
1

(0) = Y τ
−1/2
1 · ρ

(︄
P1

τ
−1/2
1

)︄
,

as the weak derivative of 1Y Z≥0 is well-defined and equal to Y · δ0(Z). Noting that similarly
to (D.23)

E [1Y Z≥0 · P1] = P1 · Ψ
(︄
Y P1

τ
−1/2
1

)︄
,

231

we conclude that

(D.24) = P1 · Ψ
(︄
Y P1

τ
−1/2
1

)︄
+ Y τ

−1/2
1 · ρ

(︄
P1

τ
−1/2
1

)︄
. (D.25)

Combining the results gives

E[Z ′
1|P ′

1] =
P1 · Ψ

(︃
Y P1
τ

−1/2
1

)︃
+ Y τ

−1/2
1 · ρ

(︃
P1

τ
−1/2
1

)︃
Ψ
(︃

Y P1
τ

−1/2
1

)︃ = P1 + Y τ
−1/2
1 ·

ρ
(︃

P1
τ

−1/2
1

)︃
Ψ
(︃

Y P1
τ

−1/2
1

)︃ . (D.26)

It now remains to take the derivative in P1. We get that

B1(τ1) = 1 −
Y P1

√
τ1 · ρ

(︃
P1

τ
−1/2
1

)︃
· Ψ

(︃
Y P1
τ

−1/2
1

)︃
+ ρ

(︃
P1

τ
−1/2
1

)︃2

Ψ
(︃

Y P1
τ

−1/2
1

)︃2 , (D.27)

where we used that Y 2 = 1 and that ∂
∂x

Ψ(x) = ρ(x).

State evolution recursion. At this point, we are ready to present the state evolution
recursion, which reads

γ2,k = γ1,k · 1 − E1(γ1,k)
E1(γ1,k)

,

τ2,k = τ1,k · 1 − B1(τ1,k)
B1(τ1,k)

,

γ1,k+1 = γ2,k · 1 − E2(τ2,k, γ2,k)
E2(τ2,k, γ2,k)

= γ2,k · r · τ2,k

(1 − r) · τ2,k + γ2,k
,

τ1,k+1 = τ2,k · 1 − B2(τ2,k, γ2,k)
B2(τ2,k, γ2,k)

= γ2,k.

(D.28)

The initialization γ1,0 and τ1,0 can be set to a small strictly positive number. For the
experiments, we choose the value of 10−6.

MSE from the state evolution parameter γ1,k+1. The MSE after k steps of the recursion
can be accessed via the function previously computed in (D.16). Namely, let x ∼ SGd(p) and
r1 = x + p, where p has i.i.d. entries with distribution N (0, γ−1

1,k+1). Define
g(r1) = E[x|r1 = x + p].

By the tower property of the conditional expectation, we claim that the following holds
E[E[X|Y] ·X] = E[E[E[X|Y] ·X|Y]] = E

[︂
(E[X|Y])2

]︂
,

where we use that E[X|Y] is measurable w.r.t. Y . Thus, we have that

E⟨g(r1),x⟩ = d · E
[︂
(g(r1)1)2

]︂
,

where g(r1)1 denotes the first entry of the vector g(r1). Finally, the desired MSE after k steps
of the recursion is equal to

d−1 · E∥x − g(r1)∥2
2 = 1 − E

[︂
(g(r1)1)2

]︂
. (D.29)

We evaluate (D.29) for k large enough, so that the MSE has converged. For the experiment
in Figure 6.9, we use k = 15, as for k ≥ 15 the MSE value in (D.29) is stable.

232

	Abstract
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	Introduction
	Background
	Parametric Models and Neural Networks
	Mean-field Framework
	Autoencoders and Related Concepts

	Landscape Connectivity and Dropout Stability of SGD Solutions
	Motivation and Outlook
	Related Work
	Dropout Stability and Connectivity for Two-Layer Neural Networks
	Dropout Stability and Connectivity for Multilayer Neural Networks
	Numerical Results
	Discussion and Future Directions

	Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
	Motivation and Outlook
	Related Work
	Preliminaries
	Main Results
	Proof of the Main Results
	Knots Inside the Interval
	Numerical Simulations
	Comparison with Related Work
	Concluding Remarks

	Fundamental Limits of Two-layer Autoencoders
	Motivation and Outlook
	Related Work
	Preliminaries
	Main Results
	Extension to General Covariance
	Discussion

	Autoencoders: Beyond Gaussian Data
	Motivation and Outlook
	Related Work
	Preliminaries
	Limitations of a Linear Decoding Layer
	Provable Benefit of Nonlinearities and Depth
	Conclusions and Future Directions

	Discussion and Concluding Remarks
	Bibliography
	Appendix for Chapter 3
	Proof of Theorem 1
	Extension to Unbounded Activation – Statement and Proof
	Proof of Theorem 2
	Additional Numerical Results

	Appendix for Chapter 4
	Technical Results

	Appendix for Chapter 5
	Closed Forms for the Population Risk
	Proofs of Lower Bound on Loss (Section 5.4.1)
	Global Convergence of Weight-tied Gradient Flow (Theorem 6)
	Global Convergence of Projected Gradient Descent (Theorem 7)
	Auxiliary Results
	Proofs for General Covariance
	Details of Experiments and Additional Numerical Results

	Appendix for Chapter 6
	MSE Characterizations
	Experimental Details and Additional Numerical Results

