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Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an 
exponential re-weighting of rewards. We study ERisk for the first time in the context 
of turn-based stochastic games with the total reward objective. This gives rise to an 
objective function that demands the control of systems in a risk-averse manner. We show 
that the resulting games are determined and, in particular, admit optimal memoryless 
deterministic strategies. This contrasts risk measures that previously have been considered 
in the special case of Markov decision processes and that require randomization and/or 
memory. We provide several results on the decidability and the computational complexity 
of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. 
Furthermore, an approximation algorithm for the optimal value of ERisk is provided.
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1. Introduction

Modern hardware and software systems have reached a level of complexity that makes it nigh impossible for humans to 
develop and analyze such systems without tools tailored for this task. Due to interactions with an unknown environment, 
concurrency, the possible failure of components, etc., such systems might exhibit non-deterministic as well as probabilistic
behavior. In the area of formal verification and synthesis, such systems are modeled mathematically in order to solve anal-
ysis and synthesis tasks algorithmically on the mathematical model. A fundamental stochastic model are Markov decision 
processes (MDPs) [2], which extend purely stochastic Markov chains (MCs) with non-determinism to represent an agent in-
teracting with a stochastic environment. Stochastic games (SGs) [3–5] in turn generalize MDPs by introducing an adversary, 
modeling the case where two agents (or, equivalently, two antagonistic coalitions of agents) engage in adversarial interac-
tion in the presence of a stochastic environment. SGs are a useful tool to formalize synthesis problems. Notably, SGs can 
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also be used to conservatively model MDPs where transition probabilities are not known precisely [6,7]. See also [8,9,2] and 
[10,11] for further applications of MDPs and SGs in computer science. In addition, the formal analysis of stochastic models 
is ubiquitous across further disciplines of science, such as biology [12], epidemiology [13], and chemistry [14], to name a 
few.

Strategies and objectives In MDPs and SGs, the recipes to resolve choices are called strategies (or policy, or scheduler). 
Qualitative objectives in an SG require the agent to maximize – by choosing a strategy – the probability that the resulting 
play satisfies a given property against all possible strategies of the adversary. In contrast, quantitative objectives require the 
optimization of a payoff function against all possible strategies of the adversary. One of the most fundamental quantitative 
objectives studied in the context of MDPs and SGs is the optimization of total rewards (and the related stochastic shortest 
path problem [15]). Here, every state (or, equivalently, transition) of the stochastic model is assigned a cost or reward. These 
costs or rewards can be used to model quantitative aspects of a system such as resource consumption, time or utility. For 
the total reward objective, the payoff of a trajectory is the total sum of rewards appearing along the path. The goal of the 
agent is then to maximize the expected value of the total reward. MDPs and SGs with total reward objectives provide an 
appropriate model to study a wide range of applications, such as traffic optimization [16], verification of stochastic systems 
[17,18], or navigation and probabilistic planning [19].

Risk-ignorance of expectation Once both players fixed a strategy, the trajectory in a stochastic game and hence the payoff 
are determined purely probabilistically. When the goal of the players is to maximize and to minimize the expected value 
of the payoff, respectively, most aspects of the resulting probability distribution of payoffs are ignored. In particular, it is 
not taken into account whether bad outcomes for the agent might occur with relatively high probability of how bad the 
bad outcomes can be: An expectation maximizing agent accepts a one-in-a-million chance of extremely high rewards over 
a slightly worse, but guaranteed outcome. Such a behavior might be undesirable in a lot of situations. Consider a one-shot 
lottery where with a chance of 10−6 we win 2 · 106 times our stake and otherwise lose everything – a two-times increase 
in expectation. The optimal strategy w.r.t. expectation would bet all available assets, ending up broke in nearly all outcomes. 
Expectation of a payoff function as objective leads to ignorance of the agent towards the involved risk.

Risk-aware alternatives To address this issue, risk-aware objectives create incentives to prefer slightly smaller performance 
in terms of expectation in exchange for a more “stable” behavior. To this end, several variants have been studied in the 
verification literature of which we name a few in the sequel. First, the variance-penalized expected payoff [20,21] combines 
the expected value with a penalty for the variance of the resulting probability distribution. So, an agent is incentivized 
to achieve a high overall performance in terms of the expected value while simultaneously keeping the probability of 
outliers far from the expected value low. By varying the penalty factor for the variance, the degree of risk-aversion can be 
adjusted. Also, explicit trade-offs of the expectation and variance (and related notions) have been studied. Here, the agent is 
required to maximize the expectation while keeping the variance below a given threshold or to minimize the variance while 
keeping the expectation above a threshold [22,23]. Furthermore, quantiles have been studied in the context of risk-aversion 
[18]. Quantiles quantify how bad the worst outcomes are: For a given probability value p, a quantile for the total reward 
provides the smallest bound b such that p of the outcomes lie below the bound b. In finance, quantiles are also referred 
to as value-at-risk. Finally, the conditional value-at-risk (CVaR) [24,25] refines the value-at-risk by measuring the average of 
the worst p outcomes, which lie below the value-of-risk.

All of these risk-aware alternatives, however, suffer from the following three drawbacks:

1. The above studies focus on the second moment (variance) along with the first moment (mean), but do not incorporate 
other moments of the payoff distribution.

2. All approaches are studied only for MDPs; none of them have been extended to SGs.
3. Even in MDPs, the above problems require complicated strategies. For example, trade-offs between expectation and 

variance require memory and randomization [23,22], while optimizing variance-penalized expected payoffs, quantiles, 
or the CVaR of the total reward require exponential memory [20,26,27,24].

Entropic risk In this paper, we investigate the notion of entropic risk [28] with the goal to overcome these drawbacks. 
Entropic risk has been widely studied in finance and operation research, see e.g. [29,30]. Informally, instead of weighing 
each outcome uniformly and then aggregating it (as in the case for regular expectation), entropic risk re-weighs outcomes 
by an exponential function, then computes the expectation, and finally re-normalizes the value. Formally, for a random 
variable X , the entropic risk measure with parameter λ > 0 is defined as

ERiskγ (X) := − 1
γ logb(E[b−γ X ])

where b is a fixed basis such as 2 or e. We illustrate this in the following example.

Example 1.1. Consider a random variable X that takes values x1 = 1, x2 = 2, x3 = 4, and x4 = 5 with probability 1/4 each. 
Fig. 1 illustrates how the entropic risk measure of X with base e is obtained for some risk aversion factor γ : The values xi
2
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Fig. 1. Illustration of the entropic risk measure. The random variable X takes values x1 to x4 uniformly with probability 1
4 each. Expectation considers the 

average of xi , while entropic risk yields the (normalized logarithm of the) average of yi = e−γ xi .

Table 1
Overview of the decidability and complexity results for SGs, MDPs and MCs.

threshold problem optimal value

general 
instances 
(Theorem 4.12)

algebraic 
instances 
(Theorem 5.2)

small algebraic 
instances (Theorem 5.8)

computation for 
small algebraic instances 
(Theorem 5.12)

approximation with small 
rewards and risk 
aversion factor (Theorem 6.1)

SGs decidable 
subject to 
Shanuel’s 
conjecture

in PSPACE 
(in ∃R)

in NP ∩ coNP in polynomial 
space

in polynomial space

MDPs
in PTIME in polynomial time

MCs in polynomial time

are depicted on the x-axis. We now map the values xi to values yi = e−γ xi on the y-axis. Then, the expected value of e−γ X

can be obtained as the arithmetic mean of the values yi . The result is mapped back to the x-axis via y �→ − 1
γ log(y), the 

inverse of x �→ e−γ x , and we obtain ERiskγ (X).

The entropic risk always takes at most the expected value of a random variable. Due to the exponential reweighing, 
however, low outcomes have a stronger influence on the entropic risk than high outcomes. So, when trying to optimize 
the entropic risk of some quantity in a stochastic environment, one has to achieve a relatively high expected value while 
keeping the probability of low outcomes small. Hence, we can think of the entropic risk as a risk-adjusted performance 
measure.

Advantages Aside from satisfying many desirable properties of risk measures established in finance, entropic risk brings 
several crucial advantages in our specific setting, of which we list a few: In contrast to variance minimization, it is bene-
ficial to increase the probability of extremely good outcomes (which would increase variance). Moreover, the entropic risk 
incorporates all moments of the distribution. In particular, even if the expectation is infinite, entropic risk still provides 
meaningful values (opposed to both expectation and variance). Note that the expected total reward objective is often ad-
dressed under additional assumptions excluding the case of infinite expected values [31,17]. Additionally, entropic risk is a 
time-consistent risk measure. In our situation, this means that the risk evaluation at a state is the same for any history. This 
is in stark contrast to, e.g., quantile and CVaR optimal strategies, which after a series of unfortunate events start behav-
ing recklessly (e.g., expectation optimal). Due to these advantages, ERisk has already been studied in the context of MDPs 
[32,33]. However, to the best of our knowledge, neither the arising computational problems nor the more general setting of 
SGs have been addressed.

1.1. Our results

In this work we consider the notion of entropic risk in the context of SGs as well as the special cases of MCs and MDPs. 
For an overview of our complexity results, see Table 1.

1. Determinacy and Strategy Complexity. We establish several basic results, in particular that SGs with the entropic risk 
objective are determined and that pure memoryless optimal strategies exist for both players. This stands in contrast to 
other notions of risk, where even in MDPs strategies require memory and/or randomization.

2. Exact Computation. When allowing Euler’s number e as the basis of exponentiation, the threshold problem, i.e. asking 
whether the optimal entropic risk lies above a given bound, is decidable subject to Shanuel’s conjecture. If the basis of 
exponentiation and all other numbers in the input are rational, then all numbers resulting from the involved exponen-
tiation are shown to be algebraic. We obtain a reduction to the existential theory of the reals and thus a PSPACE upper 
bound in this case.
Furthermore, we identify a notion of small algebraic instance in which all occurring numbers are not only algebraic, but 
have a small representation and are contained in algebraic extensions of Q of low degree. The threshold problem for 
small algebraic instances of MCs and MDPs can efficiently be solved by explicit computations in an algebraic extension 
of Q. We obtain polynomial-time algorithms for MCs and MDPs, and conclude that the threshold problem lies in NP 
3
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∩ co-NP for SGs in this case. For small algebraic instances, we furthermore show that an explicit closed form of the 
optimal value can be computed (a) in polynomial time for MCs; and consequently (b) in polynomial space for SGs.

3. Approximate Computation. We provide an effective way to compute an approximation, i.e. determine the optimal entropic 
risk up to a given precision of ε > 0. To this end, we show that in the general case, by considering enough bits of arising 
irrational numbers, we can bound the incurred error. In MDPs and MCs, the optimal value can be approximated in time 
polynomial in the size of the model, in − log(ε), and in the magnitude of the rewards. For SGs, this implies the existence 
of a polynomial-space approximation algorithm.

1.2. Related work

The entropic risk objective has been studied before in MDPs: An early formulation can be found in [32] under the name 
risk-sensitive MDPs focusing on the finite-horizon setting. The paper [34] considers an exponential utility function applied to 
discounted rewards and optimal strategies are shown to exist, but not to be memoryless in general. In [35], the entropic risk 
objective is considered for MDPs with a general Borel state space and in [33] a generalization of this objective is studied 
on such MDPs. To the best of our knowledge, however, all previous work in the context of MDPs focuses on optimality 
equations and general convergence results of value iteration, while the resulting algorithmic problems for finite-state MDPs 
have not been investigated. Furthermore, we are not aware of work on the entropic risk objective in SGs.

For other objectives capturing risk-aversion, algorithmic problems have been analyzed on finite-state MDPs: Variance-
penalized expectation has been studied for finite-horizon MDPs with terminal rewards in [36] and for infinite-horizon 
MDPs with discounted rewards and mean payoffs [21], and total rewards [20]. For total rewards, optimal strategies require 
exponential memory and the threshold problem is in NEXPTIME and EXPTIME-hard [20].

In [22], the optimization of expected accumulated rewards under constraints on the variance is studied for finite-horizon 
MDPs. Possible tradeoffs between expected value and variance of mean payoffs and other notions of variability have been 
studied in [23].

To control the chance of bad outcomes, the problem to maximize or minimize the probability that the accumulated 
weight lies below a given bound w has been addressed in MDPs [26,37]. Similarly, quantile queries ask for the minimal 
weight w such that the weight of a path stays below w with probability at least p for the given value p under some or 
all schedulers [38,39]. Both of these problems have been addressed for MDPs with non-negative weights and are solvable 
in exponential time in this setting [38,26]. Optimal strategies require exponential memory and the decision version of these 
problems is PSPACE-hard [26].

The conditional value-at-risk (CVaR), a prominent risk-measure, has been investigated for mean payoff and weighted 
reachability in MDPs in [25] as well as for total rewards in MDPs [27,24]. The optimal CVaR of the total reward in MDPs 
with non-negative weights can be computed in exponential time and optimal strategies require exponential memory [27,24]. 
The threshold problem for optimal CVaR of total reward in MDPs with integer weights is at least as hard as the Positivity-
problem for linear recurrence sequences, a well-known problem in analytic number theory whose decidability status is, 
since many decades, open [27].

For all these objectives capturing risk-aversion in some sense, we are not aware of any work addressing the resulting 
algorithmic problems on SGs.

Finally, we want to mention that there are connections of stochastic games with the entropic risk objective applied to 
total rewards and entropy games [40–42]. An entropy game is played on a graph where each node is controlled by one of 
two players. The outgoing edges from each node are labeled with a finite set of action labels. Among the transitions with 
the chosen label, a non-deterministic half-player “People” chooses the transition that is taken. The goal of one player is 
to maximize the growth rate of the number of plays of length n that People can choose as n tends to ∞, while the other 
player tries to minimize this growth rate. Entropy games can be seen as a special case of matrix multiplication games where 
two players take turns in choosing matrices from a finite set of matrices while one of the players tries to maximize – and 
the other player to minimize – the growth rate of the matrix product. As we will see, in stochastic games with entropic risk 
applied to the total reward, the auxiliary notion of negative exponential utility (see Section 3.2) also behaves multiplicatively 
along a play. However, the objective we are interested is applied to total rewards. The growth rate as objective in entropic 
games, in contrast, can be seen as a mean-payoff-like objective. Furthermore, the stochastic games with entropic risk as 
objective and entropy games are given in quite a different format. While a presentation in terms of matrix multiplications 
is possible in both cases, the resulting matrices are of different types (integer matrices in the case of entropy games and 
matrices with algebraic or transcendental entries in our case).

1.3. Outline

In Section 2, we introduce our notations for stochastic games, some commonly used objectives, and a brief overview 
of notions for algebraic field extensions we need later on. Section 3 formally introduces the notion of entropic risk in the 
setting of stochastic games. In Section 4, we establish general results on entropic risk in stochastic games. In particular, 
we show that the games are determined and that both players have optimal memoryless deterministic strategies. Section 5
addresses the case of rational inputs, which allows to treat the entropic risk in stochastic games via computations over 
4
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algebraic numbers. Finally, Section 6 provides a method to approximate the value of a stochastic game with the entropic 
risk objective. We end with concluding remarks in Section 7.

2. Preliminaries

In this section, we recall the basics of (turn-based) SGs and relevant objectives. For further details, see, e.g., [2,43,17,11]. 
We assume familiarity with basic notions of probability theory (see, e.g., [44]). We write D(X) to denote the set of all 
probability distributions over a countable set X , i.e. mappings d : X → [0, 1] such that 

∑
x∈X d(x) = 1. The support of a 

distribution d is supp(d) := {x ∈ X | d(x) > 0}. For a set S , S� and Sω refer to the set of finite and infinite sequences of 
elements of S , respectively.

2.1. Markov chains, MDPs, and stochastic games

A Markov chain (MC) (e.g. [43]), is a tuple M = (S, δ), where S is a set of states, and δ : S → D(S) is a transition function
that for each state s yields a probability distribution over successor states. We write δ(s, s′) instead of δ(s)(s′) for the 
probability to move from s to s′ for s, s′ ∈ S . A (infinite) path in an MC is an infinite sequence s0, s1, . . . of states such 
that for all i, we have δ(si, si+1) > 0. We denote the set of infinite paths by PathsM . Together with a state s, an MC M
induces a unique probability distribution PrM,s over the set of all infinite paths PathsM starting in s. For a random variable 
f : PathsM →R, we write EM,s( f ) for the expected value of f under the probability measure PrM,s .

A turn-based stochastic game (SG) (e.g. [4]) is a tuple (Smax, Smin, A, �), where Smax and Smin are finite, disjoint sets of 
Maximizer and Minimizer states, inducing the set of states S = Smax ∪ Smin, A denotes a finite set of actions, furthermore 
overloading A to also act as a function assigning to each state s a set of non-empty available actions A(s) ⊆ A, and � :
S × A →D(S) is the transition function that for each state s and (available) action a ∈ A(s) yields a distribution over successor 
states. For convenience, we write �(s, a, s′) instead of �(s, a)(s′). Moreover, opts

a∈A(s) refers to maxa∈A(s) if s ∈ Smax and 
mina∈A(s) if s ∈ Smin, i.e. the preference of either player in a state s. We omit the superscript s where clear from context. 
Given a function f : S → R assigning values to states, we write �(s, a)〈 f 〉 := ∑

s′∈S �(s, a, s′) · f (s′) for the weighted sum 
over the successors of s under a ∈ A(s). A Markov decision process (MDP) (e.g. [2]) can be seen as an SG with only one player, 
i.e. Smax = ∅ or Smin = ∅.

The semantics of SGs is given in terms of resolving choices by strategies inducing an MC with the respective probability 
space over infinite paths. Intuitively, a stochastic game is played in turns: In every state s, the player to whom it belongs 
chooses an action a from the set of available actions A(s) and the play advances to a successor state s′ according to the 
probability distribution given by �(s, a). Starting in a state s0 and repeating this process indefinitely yields an infinite 
sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω such that for every i ∈N0 we have ai ∈ A(si) and �(si, ai, si+1) > 0. We refer to such 
sequences as (infinite) paths or plays and denote the set of all infinite paths in a given game G by PathsG . Furthermore, we 
write ρi to denote the i-th state in the path ρ . Finite paths or histories FPathsG are finite prefixes of a play, i.e. elements of 
(S × A)� × S consistent with A and �.

The decision-making of the players is captured by the notion of strategies. Strategies are functions mapping a given 
history to a distribution over the actions available in the current state. For this paper, memoryless deterministic strategies 
(abbreviated MD strategies, also called positional strategies) are of particular interest. These strategies choose a single action 
in each state, irrespective of the history, and can be identified with functions σ : S → A. Since we show that these strategies 
are sufficient for the discussed notions, we define the semantics of games only for these strategies and refer the interested 
reader to the mentioned literature for further details. We write �G for the set of all strategies and �MD

G for memoryless 
deterministic ones. We call a pair of strategies a strategy profile, written π = (σ , τ ). We identify a profile with the induced 
joint strategy π(s) := σ(s) if s ∈ Smax and τ (s) otherwise.

Given a profile π = (σ , τ ) of MD strategies for a game G, we write Gπ for the MC obtained by fixing both strategies. 
So, Gπ = (S, ̂δ), where δ̂(s) := �(s, π(s)). Together with a state s, the MC Gπ induces a unique probability distribution 
PrπG,s over the set of all infinite paths PathsG . For a random variable over paths f : PathsG → R, we write Eπ

G,s[ f ] for the 
expected value of f under the probability measure PrπG,s .

2.2. Objectives

Usually, we are interested in finding strategies that optimize the value obtained for a particular objective. We introduce 
some objectives of interest.

Reachability A reachability objective is specified by a set of target states T ⊆ S . We define ♦T = {ρ | ∃i.ρi ∈ T } the set 
of all paths eventually reaching a target state. Given a strategy profile π and a state s, the probability for this event is 
given by PrπG,s[♦T ]. On games, we are interested in determining the value ValG,♦T (s) := maxσ∈�MD

G
minτ∈�MD

G
Prσ ,τ

G,s [♦T ] of a 
state s, which intuitively is the best probability we can ensure against an optimal opponent. Generally, one would consider 
supremum and infimum over strategies instead maximum and minimum over MD strategies. However, for reachability we 
know that these values coincide and the game is determined, i.e. the order of max and min does not matter [5]. Finally, we 
know that the value ValG,♦T is a solution of the following set of equations
5
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v(s) = 0 for s ∈ S0, v(s) = 1 for s ∈ T ,

and v(s) = opta∈A(s) �(s,a)〈v〉 otherwise, (1)

where S0 is the set of states that cannot reach T against an optimal Minimizer strategy [45].

Total reward The total reward objective is specified by a reward function r : S → R≥0, assigning non-negative rewards 
to every state. The total reward obtained by a particular path is defined as the sum of all rewards seen along this path, 
TR(ρ) := ∑∞

i=1 r(ρi). Note that since we assume r(s) ≥ 0, this sum is always well-defined. Classically, we want to optimize 
the expected total reward, i.e. determine ValG,ETR(s) := maxσ∈�MD

G
minτ∈�MD

G
Eσ ,τ

G,s [TR]. This game is determined and MD 
strategies suffice [46]. (To be precise, that work considers a more general formulation of total reward, our case is equivalent 
to the case � = c and T = ∅ (Def. 3) and the quantitative rPATL formula 〈〈{1}〉〉Rr

max=?[Fcff].)
2.3. Vector spaces and field extensions

We assume some familiarity with the algebraic field extensions. We introduce the main concepts briefly and provide our 
notation. For more details, see, e.g., [47].

Vectors For a vector v ∈ Kn of a field K, we denote its components by v0, . . . , vn−1. Whenever comparing two vectors 
x and y over an ordered field by x ≤ y or taking their max or min, this is understood point-wise. We often encounter 
functions assigning values to (finitely many) states; for convenience, we assume an implicit (arbitrary but fixed) numbering 
of each set of states and identify such functions with the corresponding vectors.

Field extensions Given a complex number α, the smallest field extension F of Q containing α, i.e. with α ∈ F , is denoted 
by Q(α). The number α is called algebraic if there is a non-constant rational polynomial P ∈ Q[X] with P (α) = 0. A 
complex number that is not algebraic is called transcendental. The degree of an algebraic number α is the smallest degree 
of a non-zero polynomial P with P (α) = 0. There is a unique non-zero polynomial P with P (α) = 0 of minimal degree 
with leading coefficient 1, which is called the minimal polynomial of α. For an algebraic number α of degree q, Q(α) is a 
Q-vector space of dimension q. One basis is given by (α0, . . . , αq−1). For any basis B = (b0, . . . , bq−1) of Q(α) as Q-vector 
space and any number β ∈Q(α), there is a unique vector v ∈Qq such that β = ∑q−1

i=0 vi · bi . We call v the representation 
of β in basis B . Vice versa, given a vector v ∈Qq , we denote the number 

∑q−1
i=0 vi · bi it represents in basis B by [v]B .

3. Entropic risk

As hinted in the introduction, for classical total reward we optimize the expectation and disregard other properties of 
the actual distribution of obtained rewards. This means that an optimal strategy may accept arbitrary risks if they yield 
minimal improvements in terms of expectation. To overcome this downside, we consider the entropic risk:

Definition 3.1. Let b > 1 a basis, X a random variable, and γ > 0 a risk aversion factor. The entropic risk (of X with base b and 
factor γ ) (see, e.g., [48]) is defined as

ERiskγ (X) := − 1
γ logb(E[b−γ X ]).

One often chooses b = e. Nevertheless, we also consider rational values for b, which allows us to apply techniques from 
algebraic number theory to arising computational problems.

The definition ensures that deviations to lower values are penalized, i.e. taken into consideration more strongly, by this 
risk measure (see also Example 1.1). For a different perspective, we can also consider the Taylor expansion of ERisk w.r.t. γ , 
which is ERiskγ (X) = E[X] − γ

2 · Var[X] + O(γ 2) (see, e.g., [49]). The terms hidden in O(γ 2) comprise all moments of X
and exhibit an asymmetry such that ERisk is roughly the expected value minus a penalty for deviations to lower values.

3.1. Entropic risk in SGs

We are interested in the case X = TR, i.e. optimizing the risk for total rewards. We write

ERiskγ

G,ŝ
(π) := − 1

γ logb(E
π
G,ŝ[b−γ X ])

to denote the entropic risk of the total reward achieved by the strategy profile π when starting in state ŝ, omitting sub- and 
superscripts where clear from context. Clearly, this is well defined for any profile: We have that b−γ TR(ρ) = b−γ

∑∞
i=1 r(ρi) =∏∞

i=1 b−γ r(ρi) and each factor lies between 0 and 1, thus the product converges (possibly with limit 0).
We also give an insightful characterization for integer rewards. If r(s) ∈N , we have

ERiskγ
(π) = − 1

γ logb

(∑∞
Prπ ˆ[TR = n] · b−γ n

)
. (2)
G,ŝ n=0 G,s

6
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s1,2 s2,2

s3,0s4,4

safe

0.5

0.5

risk

Fig. 2. Our running example to demonstrate several properties of entropic risk. For ease of presentation, the system actually is an MDP, where all states 
belong to Maximizer. States are denoted by boxes and their reward is written next to the state name. Transition probabilities are written next to the 
corresponding edges, omitting probability 1.

Naturally, our goal is to optimize the entropic risk. In this work, we mainly consider the corresponding decision variant, 
which we call the entropic risk threshold problem:

Entropic risk threshold problem: Given an SG G, state ŝ, reward function r, risk parameter γ , risk basis b, and 
threshold t , decide whether there exists a Maximizer strategy σ such that for all Minimizer strategies τ we have 
ERiskγ

G,ŝ
((σ , τ )) ≥ t .

Note that (for now) we do not assume any particular encoding of the input. For example, the reward function r could 
be given symbolically, describing irrational numbers. A second variant of the threshold problem asks whether the optimal 
value

ERiskγ ∗
G,s := supσ∈�G

infτ∈�G ERiskγ
G,s((σ , τ )) (3)

is at least t for a given threshold t . We will see that SGs with the entropic risk as objective function are determined and 
hence the two variants are equivalent. Before proceeding with our solution approaches, we provide an illustrative example.

Example 3.2. Consider the MDP of Fig. 2. The optimal total reward is obtained by choosing action risk in state s1: Then, 
we actually obtain an infinite total reward through state s2. In comparison, choosing action safe would yield a reward of 6
in total. Now, consider the entropic risk. When choosing action risk, we obtain a total reward of 2 and ∞ with probability 
1
2 each, while action safe yields 6 with probability 1. Let b = 2. First, we consider the case γ = 1 for simplicity. Then, we 
obtain an entropic risk of − log2(

1
2 2−2 + 1

2 2−∞) = 3 under action risk and − log2(2−6) = 6 for safe. Thus, action safe
is preferable.

Let us now take a look how the risk aversion factor influences the decision. For risk aversion factor γ > 0, we obtain 
an entropic risk of − 1

γ log2(
1
2 2−2γ + 1

2 2−∞) = 1
γ log2(22γ +1) = 2 + 1

γ under action risk and still − 1
γ log2(2−6γ ) = 6 for 

safe. So, for small risk aversion factors γ < 1
4 , the action risk is preferred. When increasing the risk aversion factor to 

γ > 1
4 , action safe is preferred.

Remark 3.3. As hinted above, entropic risk is finite whenever a finite reward is obtained with non-zero probability, i.e. for 
any strategy profile π , ERiskγ

G,ŝ
(π) = ∞ iff Prπ

G,ŝ
[TR = ∞] = 1. In contrast, expectation is infinite whenever there is a non-

zero chance of infinite reward, i.e. Eπ
G,ŝ

[TR] = ∞ iff Prπ
G,ŝ

[TR = ∞] > 0. So, entropic risk allows us to meaningfully compare 
strategies which yield infinite total reward with some positive probability.

3.2. Exponential utility

Observe that the essential part of the entropic risk is the inner expectation. Thus, we consider the negative exponential 
utility

NegUtilγ
G,ŝ

(π) := Eπ
G,ŝ[b−γ TR].

We have ERiskγ

G,ŝ
(π) = − 1

γ logb(NegUtilγ
G,ŝ

(π)). Observe that in our case 0 ≤ NegUtilγ
G,ŝ

(π) ≤ 1 for any π , as 0 ≤ TR ≤ ∞. 
Moreover, ERiskγ

G,ŝ
(π) ≥ t iff NegUtilγ

G,ŝ
(π) ≤ b−γ ·t , thus, a risk-averse agent (in our case Maximizer) wants to minimize 

NegUtil. The optimal value is

NegUtilγ ∗
G,s := infσ∈�G supτ∈�G

Eσ ,τ
G,s [b−γ TR]. (4)

We again omit sub- and superscripts where clear from context. We show later that games with NegUtil or ERisk as payoff 
functions are determined. Thus, the order of sup and inf in the above definition does not matter. We call a Maximizer-
strategy σ optimal if ERiskγ ∗ = infτ∈�G ERiskγ

((σ , τ )) and analogously for Minimizer-strategies.
G,s G,s

7
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4. Basic properties and decidability

In this section, we establish several results for SGs with entropic risk as objective functions concerning determinacy, 
strategy complexity, and decidability in the general case. We mainly work on games with NegUtil as payoff function. As 
ERisk can be obtained from NegUtil via the monotone function − 1

γ log(·), most results, such as determinacy or strategy 
complexity, will transfer directly to games with ERisk as objective function. However, note that in particular computability 
results do not immediately transfer since, in general, log(a) is not a rational number for a rational input a and vice versa.

First, we show that the games are determined, i.e. the order of sup and inf in Equation (3) and Equation (4) can be 
switched. Then, we show that games with NegUtil as payoff function can be seen as reachability games via a reduction 
that introduces irrational transition probabilities in general. We conclude that considering only MD strategies is sufficient 
to obtain the optimal value, i.e. sup and inf can be replaced with a max and min over MD strategies. From this, we derive 
a system of inequalities that has a solution if and only if the optimal value satisfies ERisk∗ ≥ t for a given threshold t . We 
conclude this section by observing that the satisfiability of this system of inequalities can be expressed as a sentence in the 
language of the reals with exponentiation. In this way, we obtain the conditional decidability of the entropic risk threshold 
problem in SGs subject to Shanuel’s conjecture.

Throughout this section, fix a game G, reward function r, state ŝ, risk parameter γ , and risk basis b.

4.1. Determinacy and optimality equation

Lemma 4.1. Stochastic games with NegUtil as payoff function are determined, i.e.

infσ∈�G supτ∈�G
Eσ ,τ

G,s [b−γ TR] = supτ∈�G
infσ∈�GE

σ ,τ
G,s [b−γ TR].

Proof. This follows from the classical result on determinacy of Borel games [50], see [51] for a concrete formulation for 
stochastic games. In particular, the game is zero-sum and NegUtil is a bounded, Borel-measurable function. �

As ERisk is obtained from NegUtil via a monotone function, also games with ERisk as payoff function are determined. 
While ERisk∗ is difficult to tackle directly due to its non-linearity, we can derive the following optimality equation for 
NegUtil∗:

Lemma 4.2. The optimal utility NegUtil∗ is a solution of the following system of constraints:

v(s) = b−γ r(s) · opts
a∈A(s) ·

∑
s′∈S

�(s,a, s′) · v(s′), (5)

where opts is min for a Maximizer state s and max for a Minimizer state.

Proof. Fix an arbitrary Maximizer state s (the statement follows analogous for Minimizer states). Let π = (σ ∗, τ ∗) an 
optimal strategy profile, ensuring a value of NegUtil∗ in s. Observe that

NegUtil∗(s) = Eπ
G,s[b−γ TR] =

∫
ρ∈PathsG

b−γ
∑∞

i=1 r(ρi) dPrπG,s.

We can rewrite b−γ
∑∞

i=1 r(ρi) = b−γ r(ρ1) · b−γ
∑∞

i=2 ρi . Inserting this equality in the above equation, splitting the set of paths 
by the action taken and the successor state, and shifting indices by 1 in the integral, we get

Eπ
G,s[b−γ TR] = b−γ r(s)

∑
a∈A(s),s′∈S

�(s,a, s′) ·Eπ(s,a)

G,s′ [b−γ TR],

where π(s,a) is the strategy profile both players follow after seeing (s, a). Now, observe that Eπ(s,a)

G,s′ [b−γ TR] = NegUtil∗(s′) for 
any s′ where �(s, a, s′) > 0: If it were different, the respective player could employ a better strategy in this particular case, 
ensuring a different value in s. Thus,

NegUtil∗(s) = b−γ r(s)
∑

a∈A(s),s′∈S
�(s,a, s′) · NegUtil∗(s′).

Now, it immediately follows that taking any optimal action ensures the best outcome, proving the result. �
Unfortunately, NegUtil is not the unique and not even the pointwise smallest or largest fixed point of this equation 

system. Consider the case where r ≡ 0, i.e. b−γ r(s) = 1. Here, every constant vector is a fixed point, however NegUtil∗ ≡ 1. 
More generally, as the equations are purely multiplicative, for any fixed point v , every multiple λ · v is a fixed point, too.
8
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Example 4.3. Again consider the example of Fig. 2 with b = 2 and γ = 1. The (simplified) equations we get are:

v1 = 2−2 · min{ 1
2 v2 + 1

2 v3, v4} v2 = 2−2 · v2 v3 = v3 v4 = 2−4 · v3,

where vi corresponds to the value of si . First, for v2, we observe that v2 = 0 is the only valid assignment. Then, we have 
that v1 = 2−2 · min{ 1

2 0 + 1
2 v3, 2−4 v3} = 2−3 · min{v3, 2−3 v3}. Clearly, this system is underdetermined and we obtain a 

distinct solution for any value of v3.

To solve these issues, we need to define “anchors” of the equation. We observe the resemblance of classical fixed point 
equations for stochastic systems. In particular, for r ≡ 0, Equation (5) is the same as for reachability, Equation (1).

4.2. Reduction to reachability

We define

S0 = {s | maxσ minτ Prσ ,τ
G,s [TR > 0] = 0} and

S∞ = {s | maxσ minτ Prσ ,τ
G,s [TR = ∞] = 1}

the set of states in which Maximizer cannot obtain a total reward of more than 0 with positive probability against an 
optimal opponent strategy or ensure infinite reward with probability 1, respectively. We show later on that these sets are 
simple to compute and MD strategies are sufficient. Since r(s) ≥ 0, all states in s ∈ S0 necessarily have r(s) = 0. Observe that 
S0 may be empty, but then S = S∞ and so NegUtil∗ = 0, ERisk∗ = ∞. Through these sets, we can connect optimizing the 
utility to a reachability objective.

Lemma 4.4. For any state s in the game G, the optimal utility NegUtil∗ is equal to the minimal probability of reaching the set S0
from s in game GR , defined as follows: We add a designated sink state s (which may belong to either player and only has a self-loop 
back to itself) and define �R(s, a, s′) = b−γ r(s′) · �(s, a, s′) for s, s′ ∈ S, a ∈ A(s) and �R(s, a, s) = (1 − b−γ r(s)). There is a direct 
correspondence between optimal strategies.

Sketch. We first provide a brief proof sketch. Essentially, we first show that S0 and S∞ are “sinks” of the play, i.e. that any 
optimal strategy can and will keep the play inside either set once it is reached. Moreover, they are the only sinks in that 
sense, i.e. under any optimal strategy either of them is reached with probability one.

The remainder of the proof then shows that the “discounted” reachability (achieved by the transitions to s) corresponds 
to the negative utility and that optimal strategies correspond. From G to GR , we split all paths that reach S0 by their prefix, 
observing that the total reward obtained by the path equals that of the prefix (since once in S0 no more reward is obtained), 
and all other paths obtain a reward of ∞ with probability 1, meaning they reach s with probability 1, too. From GR to G, 
we again split the paths reaching S0 by their prefix and notice that the probability of those prefixes exactly corresponds to 
the discounted total reward they would achieve in G. �
Proof. Before we tackle the actual statement, we discuss some important properties of S0.

Properties of S0 and S∞: We first show that S0 represents a “sink” of the play, in the sense that any optimal Minimizer 
strategy will keep the play inside S0. Moreover, this also proves that such a strategy always exists. Observe that by definition 
there exists a (memoryless deterministic) strategy of Minimizer ensuring that Maximizer can only obtain a total reward of 
0 for any state in S0 and consequently a utility of 1. This already shows that by keeping the play inside S0, Minimizer acts 
optimally (there is no better outcome). One can also show that remaining inside S0 is the only optimal play, however we 
do not require this statement. We analogously show a similar property for S∞ , i.e. an optimal strategy of the Maximizer can 
always keep the play in S∞ . We note that these strategies are rather simple to obtain, indeed for any state s ∈ S0 we can 
just take any action a ∈ A(s) with supp(�(s, a)) ⊆ S0, dually for S∞ . In particular, they are memoryless and deterministic.

Finally, we show that S0 and S∞ are the only two sinks, i.e. Prπ
∗

G,ŝ
[♦(S0 ∪ S∞)] = 1 for any utility optimal strategy profile 

π∗ . (Recall that both sets are absorbing for optimal strategies.) Suppose there exists some set of states S ′ disjoint from both 
S0 and S∞ in which paths remain forever with positive probability under π∗ . There necessarily exists a subset of S ′ which 
are visited infinitely often with probability 1 under π , let S ′ equal this subset. If all states in S ′ have a reward of 0, then 
necessarily S ′ ⊆ S0: Since π∗ is optimal but nevertheless a reward of 0 is obtained in S ′ , the Minimizer can ensure a total 
reward of 0 in S ′ . Dually, if there is some state with non-zero reward in S ′ , this state occurs infinitely often with probability 
1, ensuring an infinite expected reward, i.e. S ′ ⊆ S∞ .

To summarize, we have that S0 and S∞ are the unique “sinks” of the game under optimal strategies. With this in place, 
we can proceed with the main proof.

We need to show equivalence of optimal values and a correspondence between strategies. In particular, we shall prove 
that any optimal strategy profile in G is directly equivalent to an optimal strategy in GR , and for the other direction we 
only need to modify the decisions of Minimizer on S0 to keep the play inside. We note a subtlety: We first prove that 
9
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any optimal strategy in G achieves a reachability probability of NegUtil∗ in GR . This alone does not yet show that NegUtil∗
is the optimal reachability probability. We then also prove that optimal strategies for reaching S0 on GR correspond to a 
strategy achieving NegUtil∗ on G. In the following, we slightly abuse notation and identify strategies on G with strategies 
on GR , extended by the meaningless choice in s.

From G to GR : We start with the forward direction. Let π∗ = (σ ∗, τ ∗) be utility-optimal strategies in G. We shall argue 
that NegUtil∗ = NegUtil(π∗) = Prπ

∗
GR ,ŝ

[♦S0]. To this end, we investigate the set ♦S0 more closely. Every path which reaches 
a set does so after finitely many steps. Thus, we split this set by the finite prefix after which paths reach their respective 
destination (a countable set). Formally, for a prefix �, we write ♦� S0 to denote the set of all paths which begin with � and 
reach S0 exactly at the end of �. For simplicity, we define this set to be empty if � does not end in S0 or already reached 
S0 earlier. This way, we have in general that ♦S0 = ⋃

� ♦� S0 and the sets are pairwise disjoint. The probability of reaching 
S0 in GR thus can be written as 

∑
� Prπ

∗
GR ,ŝ

[♦� S0], the probability of all finite paths reaching S0 (observe the similarity to 
the general proof of measurability for ♦T ). By inserting the definition of transition probabilities in GR and reordering, we 
obtain 

∏|�|
i=1 b−γ r(�i) · Prπ

∗
G,ŝ

[♦� S0]. Note that s is absorbing and thus cannot occur on any path in ♦� S0.
Recall that no rewards are obtained once a path reaches S0 (since τ ∗ is optimal), thus the total reward of any path 

ρ ∈ ♦� S0 exactly equals TR(ρ) = ∑|�|
i=1 r(�i). Since NegUtil is defined as expectation, we can similarly split up the set of all 

runs in G in a linear manner first into ♦S0 and ♦S0 and then further split up ♦S0 as above. Together, we obtain

NegUtil∗ = Eπ∗
G,ŝ[b−γ TR] =

∑
�

b−γ TR(�) · Prπ
∗

G,ŝ[♦� S0] +
∫

ρ∈♦S0

b−γ TR(ρ) dPrπ
∗

G,ŝ.

Observe that the left hand side exactly equals the probability of ♦S0 in GR as we argued above. It thus remains to show 
that the remaining integral has a value of zero. Here, we need to exploit the optimality of σ ∗ . Recall that in this case almost 
all paths which do not reach S0, i.e. ♦S0, instead reach S∞ . Thus, for all these paths the Maximizer ensures an infinite total 
reward, corresponding to a utility of 0.

In summary, every optimal strategy profile π∗ for G reaches S0 in GR with probability NegUtil∗ .
From GR to G: Let π∗ = (σ ∗, τ ∗) be (memoryless deterministic) reachability-optimal strategies in GR . Note that transi-

tion probabilities on S0 are the same for G and GR , since r(s) = 0 on all these states. Thus, there exists a Minimizer strategy 
which keeps the play inside S0 in GR and we assume w.l.o.g. that τ ∗ behaves in this way. This clearly does not influence 
the probability of reaching S0 in the first place and thus τ ∗ remains an optimal strategy. Moreover, for S∞ observe that 
there exists a Maximizer strategy in G ensuring that an infinite reward is obtained with probability 1. Then, following this 
strategy on S∞ in GR ensures that s is reached almost surely. This means that once S∞ is reached, Maximizer can ensure 
that S0 is never reached, since s is absorbing.

We divide the set of all possible infinite paths in GR into three groups, namely (i) those which reach S0, (ii) those which 
reach s, and (iii) all others (which, as we will show, turn out to be a null set). Note that for (ii) considering those which 
reach S∞ would be wrong, since s can also be reached from other states (to be precise, from any state with r(s) > 0). 
For the first kind, we apply the same reasoning as above, obtaining that Prπ

∗
GR ,ŝ

[♦� S0] = ∏|�|
i=1 b−γ r(�i) · Prπ

∗
G,ŝ

[♦� S0]. For the 
second case, observe there is no direct equivalent of ♦{s} in G. Instead, we show that the set of states for which the optimal 
probability to reach S0 is 0 exactly is S∞ ∪{s}. As argued above, this certainly is true for all states in S∞ ∪{s}. Thus, choose 
some state s ∈ S \ (S0 ∪ S∞). For this state, there exists a Minimizer strategy in G ensuring that a finite total reward is 
obtained with non-zero probability (otherwise, s would belong to S∞). This can only be the case if S0 is reached with 
non-zero probability under this strategy in G. By replicating this strategy on GR , Minimizer can as well ensure a non-zero 
probability of reaching S0, since every path in G also is possible in GR (only with a potentially decreased probability). We 
now want to argue that the third kind has measure zero. Consider the Markov chain M induced by π∗ (which is finite since 
π∗ is memoryless). If M had any BSCC containing states in neither S0 nor S∞ ∪ {s}, we could adapt the Minimizer strategy 
to follow the previous strategy in this BSCC, increasing the probability to reach S0. Recall that Minimizer wants to maximize 
the probability of reaching S0, so this contradicts the optimality of π∗ . Consequently, the induced Markov chain only has 
BSCCs which are subsets of either S0 or S∞ ∪ s, meaning almost all paths reach either of these. Together we obtain the 
result, i.e. that π∗ obtains a utility of NegUtil∗ = Prπ

∗
GR ,ŝ

[♦� S0] in G.
Combining the results: From the first part, we get that any utility optimal strategy obtains a reachability probability of 

NegUtil∗ in GR . From the second part, we dually get that the optimal reachability probability in GR equals NegUtil∗ and 
the optimal strategies for the reachability correspond to strategies obtaining NegUtil∗ in GR . Consequently, memoryless 
deterministic strategies are sufficient to optimize utility and we can obtain both the optimal utility as well as optimal 
strategies by solving the reachability game GR . �

We note that reachability games can also be reduced to our case:

Lemma 4.5. For any game G and (absorbing) reachability goal T , we have ValG,♦T (s) = 1 − NegUtil∗G(s) with reward r(s) = 1T (s)
and γ = 1.
10
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Proof. We assume w.l.o.g. that all states of T are absorbing in G (which can be achieved in linear time without changing 
the reachability probability). Now, observe that the transition structure of GR completely agrees with G except on T , where 
every state has a self-loop and a transition to s. As we argued in the proof before, under optimal strategies almost all runs 
either reach S0 or S∞ ∪ s in GR . Thus, since Maximizer is minimizing the probability to reach S0, the probability to reach 
S∞ ∪ s is maximized. To conclude, observe that (i) T ⊆ S∞ , in particular S∞ additionally exactly contains all states from 
which the Maximizer can force the play into T with probability one, and (ii) s cannot be reached without reaching S∞ first. 
Hence, the optimal probability of reaching S∞ ∪ s in GR equals the probability to reach S∞ which in turn is the optimal 
probability to reach T in G. �

We highlight that this reduction from entropic risk games to reachability games is not an effective reduction in the 
computational sense, since GR comprises irrational transition probabilities even for entirely rational inputs. We discuss how 
to tackle this in the next section and first proceed to derive some useful properties from this correspondence.

Lemma 4.6. The optimal utility NegUtil∗ is the pointwise smallest solution of

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0, and

v(s) = opts
a∈A(s)b

−γ r(s) · �(s,a)〈v〉 otherwise
(6)

Proof. Follows directly from Lemma 4.4 combined with standard result on reachability for stochastic games [45]. Note that 
maximizing and minimizing reachability in stochastic games is equivalent, since we can simply swap the players. �
4.3. Uniqueness of fixed points

There might be multiple fixed points to the system of equations 4.6. This is to be expected, since already reachability on 
MDPs exhibits this problem [52]. We identify a condition on G which ensures the reachability game GR being “stopping” 
[3] (or “halting”), which implies that the fixed point is unique.

Lemma 4.7. Equation (6) has a unique solution if for every strategy profile π and state s, we have PrπG,s[♦(S0 ∪ {s | r(s) > 0})] > 0, 
i.e. S0 or a state that yields some non-zero reward is always reached with some positive probability.

Proof. Under the assumption, the reachability game GR is stopping, i.e. no matter what either player does, the game eventu-
ally stops with probability 1. Uniqueness of the equations for reachability on GR follows from standard results on reachability 
[3].

Intuitively, given the assumptions, the reachability game GR will reach S0 ∪ {s} with positive probability from any state 
(since there is a positive probability to directly transition to s in GR for any state with r(s) > 0). Now, observe that any set 
can only be reached with positive probability if there exists a path of length at most |S| to it. This implies that every |S|
steps, there is some probability of reaching those states. If we repeat this ad infinitum, these states will be reached with 
probability 1. One can prove that the fixed point iteration corresponding to Equation (6) applied |S| times is a contraction 
and thus has a unique fixed point. �

However, we hardly can expect to find a necessary condition: Since our problem is essentially equivalent to reachability, 
the remarks of [53] transfer to our case. In particular, they give an if and only if condition for uniqueness of fixed points 
together with reasoning why we cannot easily decide this condition through graph analysis. On the positive side, we can 
efficiently compute both S0 and S∞ as well as check the stopping criterion directly on G.

Lemma 4.8. The sets S0 and S∞ as well as the property of Lemma 4.7 can be obtained / checked in time quadratic w.r.t. the number of 
states and transitions (assuming that the set {s | r(s) > 0} can be determined in at most quadratic time).

Proof. Decidability of such qualitative properties is well-known (e.g. through attractor computations on the game graph). 
For completeness, we rephrase the problems in terms of [54]. Observe that S0 is equivalent to the condition “at every step 
we have r(s) = 0 with probability 1” and S∞ means “we infinitely often see r(s) > 0 with probability 1”, i.e. a sure safety
and sure Buchi condition, respectively. Similarly, for the condition of Lemma 4.7, consider its negation: We ask if there exists 
a strategy under which the probability to reach S0 ∪ {s | r(s) > 0} is zero – a sure safety query. All three queries can be 
easily answered using the approaches of [54].

We note that all computations only require knowledge of the transition structure of the underlying (hyper-)graph and 
the set of states with r(s) > 0 (which we assumed to be computable in quadratic time). �
11
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4.4. Strategy complexity

By Lemma 4.4, the optimal negative exponential utility is obtained by reachability-optimal strategies in GR . With the 
known results on reachability [4], this yields:

Theorem 4.9. MD strategies are sufficient to optimize the negative exponential utility and thus also entropic risk. More precisely, for all 
SGs G, there is an MD strategy σ for the Maximizer such that ERiskγ ∗

G,s = infτ∈�G ERiskγ
G,s((σ , τ )) and analogously for the Minimizer.

Remark 4.10. We highlight that this means that this notion of risk is history independent: Which actions are optimal does 
not depend on what has already “gone wrong”, but purely on the potential future consequences. This is in stark contrast to, 
e.g., conditional value-at-risk optimal strategies for total reward, which require exponential memory and switch to a purely 
expectation maximizing (i.e. risk-ignorant) behavior after “enough” went wrong [24].

4.5. System of inequalities

The problem we want to solve is deciding whether the Maximizer can ensure an entropic risk of at least t . Unfortunately, 
the reachability game GR is not directly computable, since even for rational rewards b−γ r(s) may be irrational. As such, 
we cannot use this transformation directly to prove decidability or complexity results and need to take a different route. 
Analogous to the classical solution to reachability, we first convert the problem to a system of inequalities. Intuitively, we 
replace every max with ≥ for all options and dually min with ≤ (again, recalling that Maximizer wants to minimize the 
value in GR ). Formally, we consider the following:

v(ŝ) ≤ b−γ t, v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) ≤ b−γ r(s) · �(s,a)〈v〉 for s ∈ Smax, a ∈ A(s),

v(s) ≥ b−γ r(s) · �(s,a)〈v〉 for s ∈ Smin, a ∈ A(s), and∨
a∈A(s)

v(s) = b−γ r(s) · �(s,a)〈v〉 for s ∈ S

(7)

Observe that this essentially is the decision variant to the standard quadratic program for reachability applied to GR [5].

Lemma 4.11. The system of equations (7) has a solution if and only if ERisk∗ ≥ t.

Proof. If: In this case, i.e. ERisk∗ ≥ t , we have NegUtil∗ ≤ b−γ t . Thus, NegUtil∗ , which is a solution to Equation (5), immedi-
ately satisfies all equations.

Only If: Observe that the first four equations ensure that any solution actually solves Equation (6). Since NegUtil∗ is the 
pointwise smallest solution by Lemma 4.6, having a vector v which satisfies the last inequality ensures that NegUtil∗ does 
so, too. We conclude by noticing the equivalence of the first four equations to optimal solutions of the quadratic program 
for reachability, see e.g. [5] for further information. �
4.6. Decidability subject to Shanuel’s conjecture

From Equation (7), we obtain a conditional decidability result for the general case:

Theorem 4.12. Let all quantities, i.e. rewards, transition probabilities, the risk-aversion factor γ , and the basis b be given as formulas 
in the language of reals with exponentiation (i.e. with functions +, ·, and exp : x �→ ex). Then, the entropic risk threshold problem for 
SGs is decidable subject to Schanuel’s conjecture.

Proof. In this case, the existence of a solution to Equation (7) can also be expressed as a sentence in the language of the 
reals with exponentiation. The corresponding theory is known to be decidable subject to Shanuel’s conjecture (see e.g. [55]) 
as shown by [56], and decidability of this theory is equivalent to the so-called “weak Schanuel’s conjecture”. �

In particular, this allows us to treat instances with basis b = e. Yet, even if all rewards, transition probabilities, and 
γ are given as rational values, but the basis b equals e, we do not know how to check the satisfiability of Equation (7)
without relying on the theory of the reals with exponentiation. Note, however, that we do not need the “full power” of 
the exponential function: All values appearing in an exponent in Equation (7) are constants. So, the restricted exponential 
function that agrees with exp on a closed interval [a1, a2] and is zero outside of this interval is sufficient. The theory of 
the reals with restricted exponentiation has some additional nice properties compared to the theory of the reals with full 
exponentiation: For example, it allows for quantifier elimination by [57] and related works. Nevertheless, this does not allow 
us to immediately obtain an unconditional decidability result.
12
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5. The algebraic case

If all occurring values are rational, then all numbers of the system of inequalities Equation (7) are algebraic. The results 
of this section establish that the threshold problem for such instances is decidable. First, we will address the general 
algebraic case (Section 5.1). Afterwards, we will proceed to identify special cases of algebraic instances that ensure that the 
computations can be carried out efficiently using arithmetic on algebraic numbers (Section 5.2 and Section 5.3). We will 
conclude this section with a brief analysis of the case that γ · rew(s) is an integer for all states s (Section 5.4). An overview 
of the complexity results can also be found in Table 1.

5.1. General algebraic case

Formally, we define:

Definition 5.1. An algebraic instance of the entropic risk threshold problem is an instance where all occurring values, i.e. the 
transition probabilities of the game G, all rewards assigned by the reward function r, the risk-aversion parameter γ , the 
basis b, and the threshold t , are rational and encoded as the fraction of co-prime integers in binary.

In general, for algebraic instances, there is a reduction of our problem to the existential theory of the reals, leading to the 
following result where ∃R denotes the complexity class of problems that are polynomial-time reducible to the existential 
theory of the reals:

Theorem 5.2. For algebraic instances, the entropic risk threshold problem is decidable in ∃R and thus in PSPACE.

More precisely, the existence of a solution of Equation (7) for an algebraic instance of our problem can be expressed as 
an existential sentence in the language of the reals without exponentiation. Let us first illustrate this with a brief example.

Example 5.3. For the MDP depicted in Fig. 2, the set S∞ is {s2} and the set S0 is {s3}. So, Equation (7) results in the 
following set of constraints for basis b = 2, risk aversion factor γ = 1 and for a threshold t = 4:

v(s1) ≤ 2−4, v(s2) = 0, v(s3) = 1,

v(s1) ≤ 2−2 · ( 1
2 v(s2) + 1

2 v(s3)), v(s1) ≤ 2−2 · v(s4), v(s4) ≤ 2−4 · v(s3),

v(s1) = 2−2 · ( 1
2 v(s2) + 1

2 v(s3)) ∨ v(s1) = 2−2 · v(s4),

v(s4) = 2−4 · v(s3).

(8)

The satisfiability of these constraints can now easily be expressed by existentially quantifying the values v(si) for i =
1, 2, 3, 4. In the sequel, we show why exponentiation is not necessary to express this as a first-order sentence exploiting 
that all expressions using exponentiations are constants.

In general, all occurring constants are algebraic numbers of the form c · b
p
q with p, q ∈N and c ∈Q in this case. These 

can be represented in linear space using exponentiation by repeated squaring as shown in the following lemma.

Lemma 5.4. Let b = u
v ∈Q a rational number where u, v ∈N \ {0}. Given p ∈Z and q ∈N \ {0}, we can define b

p
q by an existential 

sentence in the language of the reals using O(log p + log q + log u + log v) symbols.

Proof. We provide a formula defining x such that x = b
p
q . Let p and q > 0 be natural numbers with binary representations 

p = ∑P
i=0 pi · 2i and q = ∑Q

i=0 qi · 2i where pi, qi ∈ {0, 1} for all 0 ≤ i ≤ P and Q , respectively. The formula x = b
p
q with free 

variable x is equivalent to xq = bp . Using d0 = b as abbreviation for v · d0 = u, the formula xq = bp can then be written as

∃c0, . . . , cQ ,d0, . . . ,dP .c0 = x ∧
∧Q

i=1
(ci = ci−1 · ci−1)∧

d0 = b ∧
∧P

i=1
(di = di−1 · di−1)∧∏

{i|pi=1}di =
∏

{i|qi=1}ci

This formula is uniquely satisfied by assigning ci = x2i
and di = b2i

. Observe that q = ∑Q
i=0 2iqi , and consequently 

xq = ∏Q
i=0 x2i ·qi = ∏

{i|qi=1} x2i
, and similar for bp . For the size bound, observe that Q = �log2 q� and P = �log2 p�, thus 

the conjunctions and multiplication require O(log p + log q) symbols. Finally, v · d0 = u requires O(log v + log u) space to 
specify. �
13
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Consequently, an existential sentence in the language of the reals expressing the satisfiability of Equation (7) can be 
computed in polynomial time from G, b, and γ . This shows Theorem 5.2.

Remark 5.5. We note that already in simple MCs, solutions might not be rational. Consider a MC yielding a distribution 
over total rewards of {0 �→ 1

2 , 1 �→ 1
2 }. For b = 2 and γ = 1, ERisk∗ equals − log2(

1
2 · 20 + 1

2 · 2−1) = log2(
4
3 ) = 2 − log2(3), 

an irrational number. Note that the input comprises only small, rational values. The threshold problem for the negative 
exponential utility suffers from the same issue: For b = 2 and γ = 1

2 , NegUtil∗ on the same MC equals 1
2 · 20 + 1

2 · 2− 1
2 =

1
2(1+√

2)
, again an irrational number.

On the one hand, this indicates that already for MCs, there is no obvious improvement of the complexity upper bound. 
Although the negative exponential utility is the solution to a linear system of equations in the MC case, the main obstacle for 
efficient computations is the complicated form of the occurring numbers. On the other hand, the “bottleneck” for complexity 
lies already in the MC case: If C is the threshold problem for MCs, the problem for SGs can be solved in (�P

2 )C ∩ (�P
2 )C , 

where (�P
2 )C and (�P

2 )C denote the respective complexity classes with access to an oracle for C , due to determinacy 
and optimality of MD strategies: In a game G, we have ERisk∗

G ≥ t if, for all MD-strategies for the Minimizer, there is an 
MD-strategy for the Maximizer such that in the resulting MC ERisk ≥ t , or equivalently, if there is an MD-strategy for the 
Maximizer such that for all MD-strategies for the Minimizer ERisk ≥ t in the resulting MC. This puts the problem into (�P

2 )C

and (�P
2 )C .

5.2. Threshold problem in algebraic extensions of low degree

For Theorem 5.2, we use the standard decision procedure for the existential theory of the reals as a “black box” and do 
not make use of the special form of our problem. To exploit the specific structure of the system of inequalities, we note that 
for explicit computations on algebraic numbers the following two quantities are relevant for the resulting computational 
complexity: Firstly, the degree of the field extension of Q in which the computation can be carried out. Secondly, the 
bitsize of the coefficients of the minimal polynomials of the involved algebraic numbers (see, e.g., [58,59]). Alternatively, 
the bitsize of the representations of the algebraic numbers in a fixed basis of the field extension in which the computations 
can be carried out can be used. Note that the size of the basis is precisely the degree of that field extension. Motivated by 
these observations, we consider small algebraic instances, which allow us to prove that all occurring algebraic numbers have 
a sufficiently small representation.

Definition 5.6. A small algebraic instance of the entropic risk threshold problem consists of a SG G with rational transition 
probabilities, an integer reward function r, a rational risk-aversion parameter γ , a rational basis b, and a rational threshold 
t . Moreover, the rewards, γ , and t are encoded in unary, and as the fraction of co-prime integers encoded in unary, respec-
tively. The remaining rational numbers are encoded as the fraction of co-prime integers in binary. If G is an MDP or a MC, 
we call the instance a small algebraic instance of an MDP or a MC.

Remark 5.7. For simplicity, we assume for small algebraic instances that all rewards are in N . If this is not the case, we can 
multiply all rewards with the least common multiple D of the denominators of the rewards and use a new risk-aversion 
parameter γ ′ = γ /D . The resulting negative exponential utility is not affected by this transformation. The change of the 
optimal entropic risk by a factor of D can be addressed by also rescaling the threshold t′ = t · D . Nevertheless, note that this 
affects the encoding size of the risk-aversion factor γ .

Relying on algorithms for explicit computations in algebraic numbers, we will obtain the following result.

Theorem 5.8. For small algebraic instances, the entropic risk threshold problem: (a) belongs to NP ∩ coNP for SGs; and (b) can be 
solved in polynomial time for MDPs or MCs.

Before we begin with the proof, we show that despite the restrictions on the encoding of the input, our problem for 
the entropic risk in SGs is still at least as hard as for general reachability games. So, we cannot expect a polynomial-time 
algorithm for SGs without solving long-standing open problems.

Proposition 5.9. The threshold problem for stochastic reachability games is polynomial-time reducible to the entropic risk threshold 
problem on small algebraic instances of SGs.

Proof. This follows from Lemma 4.5: For each stochastic reachability game G, we can construct an SG G′ with rewards 0
and 1, basis b = 2, and γ = 1 in polynomial time such that the reachability value in G equals the optimal entropic risk in 
G′ . Clearly, this is a small algebraic instance. �
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The remainder of this section is devoted to the proof of Theorem 5.8. We consider the case of MDPs. The result for SGs 
will be a simple consequence afterwards. In MDPs, we will see that solving the threshold problem boils down to checking 
the solvability of a linear system of inequalities. Throughout this section, fix a small algebraic instance of an MDP M =
(S, A, �) with γ = p/q and initial state ŝ. All coefficients occurring in Equation (7) now are of the form �(s, a, t) · b−r(s)·p/q

for a rational probability �(s, a, t), a natural reward r(s), and the rational basis b. Consequently, all coefficients are contained 
in the field extension Q(b1/q).

We now determine the degree and the minimal polynomial of b1/q . Let b = b1/b2 for co-prime natural numbers b1 and 
b2. Now, let d be the greatest divisor of q such that b1 and b2 have integral d-th roots d1 and d2. Then, we can rewrite 
b1/q = (d1/d2)

d/q . We now define q′ = q/d and b′ = d1/d2. Thus, (b′)1/q′ = b1/q and q′ is a natural number smaller or equal 
to q. Now, q′ has no divisor d′ such that b′ has a rational d′th root. By [60, Thm 8.1.6], we conclude that xq′ −b′ is irreducible 
and hence the minimal polynomial of b1/q .

In fact, we can switch to the risk aversion factor γ ′ = p/q′ and the basis b′ instead of γ and b′ without affecting the 
negative exponential utility. The entropic risk is changed by the integral factor d ≤ q by this switch. Hence, we from now 
on work with the following assumption:

Assumption 5.10. In a small algebraic instance with risk aversion factor γ = p/q and basis b, we can assume w.l.o.g. that 
xq − b is irreducible over Q.

In case of an MDP in which all states belong to the Minimizer, i.e. NegUtil is maximized, we obtain the following system 
of linear inequalities from Equation (7):

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) ≥ b−γ r(s) · �(s,a)〈v〉 for s ∈ Smin, a ∈ A(s),

v(ŝ) ≤ b−γ t .

(9)

Note that we can drop the disjunction from Equation (7) as the point-wise least solution to Equation (9) always satisfies this 
disjunction. However, if instead all states belong to the Maximizer we cannot drop the disjunction directly. Nevertheless, we 
consider the following linear program

Maximize v(ŝ) subject to

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) ≤ b−γ r(s) · �(s,a)〈v〉 for s ∈ Smax, a ∈ A(s).

(10)

Then, in the optimal solution, we have to check whether v(ŝ) ≤ b−γ t ; or in other words, all solutions to the constraints have 
to satisfy v(ŝ) ≤ b−γ t . By considering the dual linear program instead, we can transform this linear program into one where 
the objective function has to be minimized and has the same optimal value v(ŝ). Here, comparing this optimal value to the 
threshold by v(ŝ) ≤ b−γ t boils down to finding one solution that satisfies all constraints and the threshold condition again. 
So, for both Maximizer- and Minimizer-MDPs, the entropic risk threshold problem boils down to checking the feasibility of 
a linear program, i.e. the satisfiability of a system of linear inequalities.

In [58,59], it is shown that the feasibility of a linear program over algebraic numbers can be checked in time polynomial 
in the size of the representations of the occurring algebraic numbers and in the degree of a field extension of Q that 
contains all coefficients. The representation of algebraic numbers used in [58,59] is the following: An algebraic number α
is represented by its minimal polynomial P over Q together with a rational interval (a, b) containing only the zero α of P . 
The size of the representation is the bitsize of coefficients of P and the interval bounds of a and b as fractions of (co-prime) 
integers.

By Assumption 5.10, the degree of the field extension containing all occurring numbers is q and hence at most linear in 
the input size since q is given in unary. For the following lemma, we show that the coefficients in the minimal polynomials 
of all constants in the linear program of interest are small as well. Then, the mentioned polynomial-time algorithms for the 
feasibility of linear systems of inequalities over algebraic numbers from [58,59] are applicable.

Lemma 5.11. Let M be a small algebraic instance of an MDP. We can decide whether ERisk∗
M ≥ t and whether ERisk∗

M ≤ t in polyno-
mial time. Furthermore, for a rational threshold t′ given in binary, we can decide whether NegUtil∗M ≤ t′ and whether NegUtil∗M ≥ t′
in polynomial time.

Proof. In order to rely on the polynomial algorithms from [58,59], we have to show that we can obtain small representa-
tions of all coefficients in Equations (9) and (10). The coefficients have the form �(s, a, s′) · b−r(s)·p/q where �(s, a, s′) and b
given in binary and r(s), p, and q in unary.

First of all, we note that it is sufficient to find a small representation for b−r(s)·p/q . As shown in [58,59], from this 
representation, a representation of �(s, a, s′) · b−r(s)·p/q can be found in polynomial time. So, let n = r(s) · p. We rewrite 
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n = k · q + ℓ for some natural number ℓ < q. The numerical values of k and ℓ are polynomial in the size of the original 
input as r(s), p and q are given in unary. Now, b−n/q = b−k · b−ℓ/q . The number b−k is a rational whose size in binary 
representation is linear in the size of the binary representation of b and in k. So, b−k can be obtained in polynomial time 
and by the same argument as before, it is sufficient to find a small representation for b−ℓ/q .

The algebraic number b−ℓ/q is a zero of the polynomial xq −b−ℓ . Furthermore, it is the only positive real zero of this poly-
nomial and it lies between 0 and 1. Consequently, the minimal polynomial of b−ℓ/q has only one zero in the interval (0, 1), 
too, which yields the interval for the representation. In order to find the minimal polynomial, note that b−0/q , b−1/q , . . . , 
b−(q−1)/q are linearly independent over Q by Assumption 5.10. Let m = q/ gcd(ℓ, q). Now, the remainders of 0, ℓ, 2ℓ, 3ℓ, . . .
are periodic modulo q with period m. This means that b−0ℓ/q , b−ℓ/q , . . . , b−(m−1)ℓ/q are linearly independent over Q and 
consequently the degree of b−ℓ/q is at least m. But (b−ℓ/q)m is a rational as ℓ · m is an integer multiple of q. Together, 
xm − (b−m·ℓ/q) is the minimal polynomial of b−ℓ/q . As ℓ · m/q is a natural number smaller than q, the rational coefficient 
b−ℓ·m/q can be computed in polynomial time. Hence, the representation of b−ℓ/q in terms of this minimal polynomial and 
the interval (0, 1) can be obtained from M in polynomial time.

As the threshold t on the entropic risk in a small algebraic instance is given in unary, we can similarly obtain a small rep-
resentation for the corresponding threshold b−γ ·t on the negative utility. If we directly want to compare the negative utility 
to a rational threshold t′ instead, this threshold can be given in binary. Now, the polynomial time algorithms of [58,59] for 
checking the feasibility of linear programs with algebraic coefficients are applicable after computing the representations of 
all constants occurring in Equations (9) and (10) in polynomial time. �

For SGs, this result allows us to non-deterministically guess a strategy for one of the players and check the threshold 
condition in the resulting MDP in polynomial time. By guessing a strategy for Maximizer, we can check whether ERisk∗

G ≥ t
in NP, by guessing a strategy for the Minimizer, we obtain a coNP-upper bound analogously, finishing the proof of The-
orem 5.8. Note that for a rational threshold t′ given in binary, the problem to decide whether NegUtil∗G ≥ t′ for a small 
algebraic instance G of an SG is in NP ∩ coNP as well by analogous reasoning and Lemma 5.11.

5.3. Optimal solution in algebraic extensions of low degree

While the mentioned results concern the threshold problem, we can even go a step further in small algebraic instances 
of MCs. Here, the system of inequalities simplifies to a linear system of equations, which we can solve explicitly in the 
algebraic numbers. For small algebraic instances, this is possible in polynomial time yielding the following main result of 
this section.

Theorem 5.12. For small algebraic instances, an explicit representation of NegUtil∗ can be computed in: (a) polynomial time for MCs; 
and (b) in polynomial space for SGs and MDPs.

To prove this result, we take a closer look at how the equation system we obtain for MCs can be solved with compu-
tations in the algebraic numbers. In the end, we state the complexity-theoretic consequences for SGs that we obtain from 
this solution for MCs.

Let M = (S, δ) be a small algebraic instance of a MC with reward function r : S → N , initial state ŝ, γ = p/q ∈ Q a 
risk-aversion parameter for co-prime integers p and q, and b ∈Q a basis. Again, we work with Assumption 5.10 as justified 
in the previous section. The following lemma makes the statement of Theorem 5.12 about MCs more precise.

Lemma 5.13. A representation of the negative exponential utility NegUtil∗ in M in the basis B = (1, b1/q, b2/q, . . . , bq−1/q) of Q(b1/q)

can be computed in polynomial time.

In the sequel, we prove this lemma using a sequence of further lemmata below. The first step to compute an explicit 
representation of NegUtil∗ in M is the computation of sets S0 and S∞ of states from which reward 0 or ∞, respectively, is 
received almost surely. This can be done by the analysis of bottom strongly connected components and the computation of 
reachability probabilities in MCs in polynomial time, but of course it is also a special case of the analogous computation of 
such sets in games above. The system of inequalities Equation (7) simplifies to

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) =
∑

t∈S
b−γ ·r(s) · δ(s, t) · v(t) for s ∈ S \ (S0 ∪ S∞).

(11)

This is a linear equation system Ax = v where the entries of A and v are of the form c · b−γ w for rational c and natural 
numbers w . Due to pre-processing of S0 and S∞ , we know that Ax = v has a unique solution and that this solution contains 
the negative exponential utility from each state.

As we assume that all rewards are natural numbers, all entries in A and v are elements of the number field Q(b1/q). 
By Assumption 5.10, Q(b1/q) is a q-dimensional Q-vector space. The tuple B = (1, b1/q, b2/q, . . . , b(q−1)/q) forms a basis of 
Q(b1/q). So, each element a ∈Q(b1/q) can be represented by a vector z ∈Qq with [z]B = ∑q−1 zi · bi/q = a.
i=0
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Now, our goal is to compute an explicit representation of the value v(ŝ) in the unique solution of Equation (11), i.e. a 
vector z ∈Qq such that [z]B = v(ŝ). For this purpose, we solve Equation (11) via Gaussian elimination by explicit computa-
tions in Q(b1/q) using representations in the basis B . The following three technical results show how this can be done and 
prove Lemma 5.13.

Lemma 5.14. For a number of the form c ·b−n/q with c ∈Q and n ∈N we can compute its representation in basis B in time polynomial 
in the length of the binary representation of c, and polynomial in the numerical values of n and q.

Proof. We can write −n/q as −k + ℓ/q for natural numbers k and ℓ with ℓ < q. Then, c · b−n/q = c · b−k · bℓ/q which has the 
representation c · b−k · eℓ in Qq where eℓ is the ℓ-th standard basis vector. The coefficient c · b−k can be computed in time 
polynomial in the representation of c and in the numerical value of k which is bounded by the numerical value of n. �
Lemma 5.15. Given two representations z, z′ ∈ Qq in basis B of numbers y = [z]B and y′ = [z′]B in Q(b1/q), we can compute the 
representation of y · y′ in time polynomial in the size of the binary representations of z and z′ . Furthermore, we can compute the 
representation of y−1 in time polynomial in the size of the binary representations of z.

Proof. Multiplication is a bi-linear map. Thus, in order to determine a representation of [z]B · [z′]B for given z, z′ ∈Qq , it is 
sufficient to know the q2-many representations mℓ,h of [eℓ]B · [eh]B for standard basis vectors eℓ and eh with 0 ≤ ℓ, h ≤ q −1. 
The representation of [z]B · [z′]B can then be computed as the sum∑

0≤ℓ,h≤q−1
zℓ · z′

h · mℓ,h, (12)

where the vectors mℓ,h are the representations of b(ℓ−1)/q · bh/q = b(ℓ+h)/q . If ℓ + h < q, the representation is mℓ,h = eℓ+h . If 
q ≤ ℓ + h < 2q, the value is b · bℓ+h−q and its representation is b · eℓ+h−q . This proves the first claim.

To compute the representation of the inverse y−1, we take a vector of variables x. The equation∑
0≤ℓ,h≤q−1

zℓ · xh · mℓ,h = e0

yields a rational equation system with q variables which has a unique solution as the inverse is unique. Given z, the system 
can be constructed in polynomial time using the q2-many vectors mℓ,h . Consequently, the representation in basis B of y−1

can be computed in time polynomial in the binary representation of z, proving the second claim. �
Lemma 5.16. Using Gaussian elimination on Ax = v, we obtain a representation of x in the basis B in time polynomial in the encoding 
size of the given small algebraic instance of a MC.

Proof. We perform Gaussian elimination on the matrix A and vector v in a way that ensures that all intermediate numbers 
have a small representation. In A and v , we write representations from Qq at every entry. Writing down the system with 
representations can be done in polynomial time by Lemma 5.14. In [61], it is shown that it is possible to perform Gaussian 
elimination in a way such that all numbers occurring during the computation are determinants of a submatrix of the original 
input. If the problem dimension is n, this means that all numbers occurring during the computation are sums of n! products 
of at most n numbers from the original input. In our case, n is the number of states of the Markov chain M .

Let d be the least common multiple of all denominators of numbers in A and v . The bit size of d is linear in the bit 
sizes of the denominators. Generalizing Equation (12) in the proof of Lemma 5.15, we obtain that the product of n numbers 
given as representations xi ∈Qq for 1 ≤ i ≤ n is

y =
∑

0≤ℓi≤q−1
1≤i≤n

n∏
i=1

(xi)ℓi · b�∑n
i=1(xi)ℓi /q� · e(

∑n
i=1(xi)ℓi mod q).

If m is the maximal absolute value of any entry in one of the xi ∈ Qq for 1 ≤ i ≤ n, each component of this vector y has 
absolute value less than qn · mn · bn . Furthermore, if b = b1/b2, each component of y is an integer multiple of 1/(bn

2 · d). So, 
each component yi is the fraction of an integer less than qn · mn · bn · bn

2 · d and an integer less than bn
2 · d. The bit size of 

these numbers is bounded by n · (log2(q) + log2(m) + log2(b) + log2(b2)) + log2(d). Thus, the bit size of all components of y
is at most polynomial in the bit sizes of the entries of the vectors xi ∈Qq for 1 ≤ i ≤ n.

Together, any product of n entries of A and v has a representation in basis B of polynomial size. Furthermore, all 
numbers that can occur are integer multiples of 1/(bn

2 · d). Consequently, if we want to add n!-many such numbers, we can 
rewrite all rational numbers to denominator 1/(bn

2 · d) and afterwards add the integer enumerators component-wise. This 
increases the bit size by a factor of at most log2(n!) < log2(n) · n. So, all intermediate numbers that occur when performing 
Gaussian elimination as in [61] have a representation whose bit size is bounded by a polynomial in the input size. As 
Ax = v has a unique solution, the Gaussian elimination produces this solution in polynomially many steps and all necessary 
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multiplications and divisions can be carried out in polynomial time by Lemma 5.15 and the fact that all intermediate 
numbers occurring have a polynomially large representation. �

Put together, this finishes the proof of Lemma 5.13. So, on small algebraic instances of MCs, we can compute and explicit 
representation of the negative exponential utility in polynomial time. This allows us to conclude that on a small algebraic 
instance of an SG, an explicit representation of ERisk∗ can be computed in polynomial space: In polynomial space, we can 
go through all MD-strategies σ for the Maximizer. For each strategy σ , we compute a representation of NegUtil for each 
Minimizer MD-strategy τ in the resulting MC and compare it to the least value we have seen so far that the Minimizer 
can enforce against σ . To compare the explicit representations computed in the process, we can rely on the algorithms in 
[58,59] to compare algebraic numbers. Once we have found the value the Maximizer can enforce with σ , we consider the 
next strategy of the Maximizer and keep track of the best value found so far. This concludes the proof of Theorem 5.12.

5.4. Integer exponents

To conclude, we consider the special case that b is a rational number and γ · r(s) is an integer for all states s. Then, the 
transition probabilities b−γ r(s) are rational. In this case, we can directly compute GR , requiring space linear in the numerical 
values γ · r(s). Then, we can apply standard methods to decide whether the Maximizer can ensure a reachability probability 
of at most b−γ t . In particular, for a fixed upper bound on γ · r(s), this yields a polynomial procedure for MCs and MDPs. 
Note that even if γ t is not an integer, we could compute the optimal reachability precisely and then check whether this 
(rational) value is larger or smaller than the threshold by computing sufficiently many digits of b−γ t .

6. Approximation algorithms

The results of the previous section suggest, depending on the form of the input, a polynomial-space algorithm or even 
worse in the general case. Clearly, this is somewhat unsatisfactory for practical applications. Recall that the difficulties are 
due to the occurring irrational transition probabilities. In the hope that we can work with approximations of these numbers, 
we now aim to identify an approach which allows us to approximate the correct answer, i.e. compute a value close to the 
optimal entropic risk that the Maximizer can ensure. Again, fix an SG G, reward function r, risk parameter γ , and risk basis 
b throughout this section. Then, given precision ε > 0, we aim to compute a value v such that |ERisk∗ − v| < ε, i.e. an 
approximation with small absolute error.

Since entropic risk is the logarithm of utility, we need to obtain an approximation of NegUtil∗ to a sufficiently small 
relative error. Concretely, we need to compute a value vU such that b−γ ε ≤ vU / NegUtil∗ ≤ bγ ε . Then, v = − 1

γ logb(vU )

yields an approximation, since

ERisk∗ − v = − 1
γ logb(NegUtil∗) + 1

γ logb(vU ) = 1
γ logb(vU /NegUtil∗)

and so

ERisk∗ − v ≥ 1
γ logb(b

−γ ε) = −ε and ERisk∗ − v ≤ 1
γ logb(b

γ ε) = ε.

(When we are interested in a concrete value for v , we need to determine vU with a slightly higher precision and then 
approximate logb(vU ) sufficiently.) Now, in order to approximate NegUtil∗ , we still need to deal with a system comprising 
potentially irrational transition probabilities. We argue that the occurring values b−γ r(s) can be “rounded” to a sufficient 
precision while keeping the overall relative error small.

Using techniques from [62], we will provide an effective way to compute a game G≈ , which behaves “similarly” to the 
reachability game GR from Lemma 4.4. Once G≈ is computed, we can employ classical solution methods, such as linear 
equation solving for MCs, linear programming for MDPs, or, e.g., quadratic programming for SGs leading to the following 
result:

Theorem 6.1. In MCs and MDPs, the optimal value ERisk∗ can be approximated up to an absolute error of ε in time polynomial in 
the size of the system, − log(ε), log b, γ · rmax , and 1/(γ · rmin), where rmax and rmin are the largest and smallest occurring non-zero 
rewards, respectively. For SGs, this is possible in polynomial space.

In particular, for fixed b and γ , and bounded rewards (both from above and below), we obtain a PTIME solution for MC 
and MDP. In general, the procedure is exponential for SG. Alternatively, we can also apply different approaches such as value 
iteration [63].

Remark 6.2. We note the connection to the small algebraic case: The “limiting factor” in both cases is the (size of the) 
product of γ and the state rewards. If these are fixed or given in unary, respectively, the complexity of our proposed 
algorithms is significantly reduced.
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Furthermore, recall that we do not assume γ or the transition probabilities to be rational. We only require that we 
can expand their binary representation to arbitrary precision. Then, we can conservatively approximate their logarithm to 
evaluate the required rounding precision and approximate the transition probabilities of G≈ in the same way.

Robustness for structurally equivalent games As mentioned before, in the following we require some tools of [62]. Intuitively, 
we want to show that only slightly changing each transition of a game does not change its overall value too much. This 
allows us to prove that “rounding” irrational transition probabilities only incur a bounded error.

The exact definitions are rather technical, we present a summary of relevant concepts here and refer to [62] for a more 
complete picture. We note that the results of [62] apply to concurrent stochastic games with parity objective, which are a 
significant generalization of turn-based stochastic games with reachability objective. We rephrase the definitions relative to 
our model.

To begin, we introduce the notion of structurally equivalent games. Intuitively, this means that the states, actions, and 
supports of transitions are equivalent; in other words, the induced graphs are the same. For such equivalent games G1
and G2 one can define the relative difference distR(G1, G2), which refers to the largest quotient of the probabilities of two 
corresponding transitions minus 1. In turn, this distance bounds the difference in reachability values.

For a formal definition, fix two SGs G1 = (S1
max, S1

min, A1, �1) and G2 = (S2
max, S2

min, A2, �2). We say that these 
two games are structurally equivalent if they induce the same graph, formally S1

max = S2
max, S1

min = S2
min, A1 = A2, and 

supp(�1(s, a)) = supp(�2(s, a)) for all s ∈ S1
max ∪ S1

min and a ∈ A1(s). Since the set of states and actions is equal, we omit 
the subscripts in the following. Moreover, let S = S1

max ∪ S2
min = S2

max ∪ S2
min.

We define the distance between two structurally equivalent games as

distR(G1,G2) := max

{
�1(s,a, t)

�2(s,a, t)
,
�2(s,a, t)

�1(s,a, t)
| s ∈ S,a ∈ A(s), t ∈ supp(�1(s,a, t))

}
− 1.

Since the games are structurally equivalent, the fractions are always well defined. Moreover, the value is always non-negative 
and it is equal to zero if and only if the two games are equal.

With this, we can state our desired robustness result.

Lemma 6.3. Let G1 , G2 two structurally equivalent games together with a reachability objective T . Set 0 ≤ d = distR(G1, G2). Then

(1 + d)−2|S| ≤ Val(G1, T )

Val(G2, T )
≤ (1 + d)2|S|.

Proof. We modify proofs of [62] as follows.
A useful tool employed there is the mean-discounted time, which we also recall. For a state s, discount vector λ : S →R, 

and infinite path ρ , this refers to the discounted time the path is in that state, formally

MDT(λ, s)(ρ) :=
∑∞

j=0(
∏ j

i=0 λ(ρi)) · 1s(ρ j)∑∞
j=0(

∏ j
i=0 λ(ρi))

.

The starting point to proving the result in [62] then is to show that for Markov chains the expected mean-discounted 
time can be expressed by a rational function comprising polynomials of bounded degree. In consequence, it is shown that 
for two Markov chains which are “close” w.r.t. distR the difference between the expected mean-discounted time can be 
bounded, too. The result follows by the known result that reachability (and parity) can be obtained as limit of mean-
discounted time by taking the values of λ to 1.

To obtain our result, we only need to adapt the proofs of [62] slightly. First, consider [62, Lem. 3]: During the proof, we 
get that

(1 + d)−2|S| ≤ Val(M1,MDT(λ, r))(s)

Val(M2,MDT(λ, r))(s)
≤ (1 + d)2|S|,

where M1 and M2 are two structurally equivalent Markov chains and d = distR(M1, M2) their relative difference.
Continuing with [62, Thm. 4], we obtain through [62, Thm. 2] that the same inequality also holds for the value of parity 

objectives and, as a special case, for reachability. By then applying the reasoning of [62, Thm. 5], i.e. considering the Markov 
chain obtained by fixing two optimal memoryless deterministic strategies, the inequality transfers to games. �
Proof of Theorem 6.1 With these notions at hand, the remainder of this section presents the proof of Theorem 6.1. Let GR the 
reachability game from Lemma 4.4. We define a new game G≈ , only multiplicatively changing the transition probabilities 
of GR . In particular, we have �≈(s, a, t) = �R(s, a, t) · (1 + δs) ∈ Q and |δs| is small. We intuitively see that Lemma 6.3 is 
applicable in this case, and, by choosing this factor δs small enough, the value of the rounded game will not deviate too 
much from the original value. However, note that we have two competing goals here: We want to find a factor δs such that 
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on the one hand b−γ r(s) · (1 + δs) is rational and, in particular, has a sufficiently small denominator to be computationally 
viable, and, on the other hand, the obtained value is not changed too much.

Lemma 6.4. Fix a precision requirement ε > 0, let rmin and rmax equal the minimal and maximal occurring non-zero rewards, respec-
tively, N = |S| the number of states, and pmin the smallest occurring non-zero transition probability.

Then, there exists a rounded game G≈ such that (i) the reachability probability in G≈ relatively differs from GR by at most bγ ε and 
(ii) all transition probabilities are rational quantities with a denominator of bit size

− log2 pmin − min(log2 b−γ rmax , log2(1 − b−γ rmin)) − log2 γ − log2 ε + log2 N − log2 log b.

Proof. We want to show that

b−γ ε ≤ Val(GR , T )/Val(G≈, T ) ≤ bγ ε.

By Lemma 6.3, this holds if the transition probabilities have a relative difference d with

b−γ ε ≤ (1 + d)−2|S| and (1 + d)2|S| ≤ bγ ε.

Or, rearranged, 1 + d ≤ bγ ε/(2|S|) (and 0 ≤ d). To ease notation, we define z = γ ε/(2|S|).
Fix some state s ∈ S . Recall that the reachability game GR features two kinds of transition probabilities in each state. 

First, transition probabilities of the original game multiplied by b−γ r(s) , and second the transition to the introduced trap 
state, multiplying by (1 − b−γ r(s)).

Let us focus on the first kind and suppose the transition probability is given by b−γ r(s) · p and assume that r(s) �= 0. 
We want to show that there exists a rational number with a sufficiently small representation in the neighborhood of this 
transition probability, i.e. in the interval I = [b−γ r(s) p · b−z, b−γ r(s) p · bz]. Such a number necessarily exists if this interval is 
sufficiently large. Thus, consider bz − b−z . By change of base, we obtain

bz − b−z = ez·log b − e−z·log b = 2 sinh(z log b) ≥ 2z log b,

using that sinh(x) ≥ x. Thus, the interval has at least size |I| ≥ b−γ r(s) p · 2z log b. Now, if n satisfies 2−n ≤ |I|, then for some 
m we have that m

2n ∈ I . In other words, n is an upper bound on the bit size of the smallest denominator that can be found 
in that interval. Taking log2 and inserting z, we arrive at

n ≥ − log2 b−γ r(s) − log2 γ − log2 ε + log2 p + log2|S| + 1 − log2 log b.

Thus, I contains a rational number with a denominator of that bit size. For the other type of transition, observe that the 
interval of concern is centered around 1 − b−γ r and we similarly get

n ≥ − log2(1 − b−γ r(s)) − log2 γ − log2 ε + log2 p + log2|S| + 1 − log2 log b.

Recall that we assumed r(s) �= 0. If instead we have r(s) = 0 and p is rational, we are done, since the transition proba-
bilities from this state in GR are equal to those of the original game G, i.e. rational and of size − log2 p. In case p ∈R \Q, 
observe that we only need to round the first kind of transitions (since the second kind is zero). However, here we can apply 
the same reasoning and analogously obtain the first inequality, noting that log b−γ r(s) = 0 in this case.

Taking the maximum of all inequalities over all states yields the result. �
Observe that Theorem 6.1 follows directly: The representation size of G≈ is polynomial in the given quantities. If G is an 

MC or MDP, so is G≈ , and this rounded system can be solved in PTIME by standard means, i.e. solving an equation system or 
linear program. This also yields a PSPACE algorithm by trying out all memoryless strategies and solving the induced system 
(recall that memoryless strategies are sufficient by Theorem 4.9).

Remark 6.5. For practical application, note that we do not (and cannot) compute the concrete factor b−γ r(s) or the rounding 
δs . Instead, we determine as many digits of b−γ r(s) as required by the inequality in the proof. This guarantees that an 
appropriate δs exists, or, in other words, the obtained value is within the required interval I . For “reasonable” encodings of 
b, γ , and r(s), these digits can be efficiently obtained through standard means.

For example, with |S| = 10,000, ε = 10−4, pmin = 0.01, b = 2, γ = 2, rmin = 0, and rmax = 5, we require an approximation 
to 43 bit precision, which is easily achieved by regular IEEE 754 64 bit doubles and associated mathematical functions.
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7. Conclusion

We applied the entropic risk to total rewards in SGs to capture risk-averse behavior in these games. The objective 
forces agents to achieve a good overall performance while keeping the chance of particularly bad outcomes small. We 
showed that SGs with the entropic risk as payoff function are determined and admit optimal MD-strategies. This reflects 
the time-consistency of entropic risk and makes entropic risk an appealing objective as, in contrast, the optimization of 
other risk-averse objective functions that have been studied on MDPs in the literature require strategies with large memory 
or complicated randomization.

Computationally, difficulties arise due to the involved exponentiation leading to irrational or even transcendental num-
bers. For the general case, we obtained decidability of the threshold problem only subject to Shanuel’s conjecture while for 
purely rational inputs, the problem can be solved via a reduction to the existential theory of the reals. Additional restrictions 
on the encoding of the input allowed us to obtain better upper bounds. Further, we provided an approximation algorithm 
for the optimal value. For an overview of the results, see Table 1.

A question that is left open is whether the entropic risk threshold problem for algebraic instances of MCs can be solved 
more efficiently than by the polynomial-time reduction to the existential theory of the reals. This case constitutes a bot-
tleneck in the complexity. Furthermore, we worked with non-negative rewards, which made a reduction from games with 
the entropic risk objective to reachability games possible. Dropping the restriction to non-negative rewards constitutes an 
interesting direction of future research, in which additional difficulties arise and a reduction to reachability is not possible 
any more. A further direction for future work is the experimental evaluation of the proposed algorithms to assess their 
practical applicability as well as to investigate the behavior of the resulting optimal strategies by implementing the overall 
approach into existing model checkers such as PRISM [64]. In particular, it might be interesting to investigate the “cost” of 
risk-awareness, namely how much the expected total reward of a risk-aware strategy differs from a purely expectation max-
imizing one on realistic systems. Additionally, due to the specific shape of the reachability game (usually, every action has 
a non-zero probability to reach an absorbing state), partial exploration approaches as described in [65] and implemented in 
PET [66] might further enhance practical applicability.
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