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ABSTRACT

As a discrete analogue of Kac’s celebrated question on ‘hearing the shape of a drum’ and towards a practical 
graph isomorphism test, it is of interest to understand which graphs are determined up to isomorphism by 
their spectrum (of their adjacency matrix). A striking conjecture in this area, due to van Dam and Haemers, 
is that ‘almost all graphs are determined by their spectrum’, meaning that the fraction of unlabelled n-vertex 
graphs which are determined by their spectrum converges to 1 as n → ∞.

In this paper, we make a step towards this conjecture, showing that there are exponentially many n-vertex 
graphs which are determined by their spectrum. This improves on previous bounds (of shape ec

√
n). We also 

propose a number of further directions of research.

1 . I N T R O D U CT I O N
A classical question, popularized in 1966 by Kac [26], is whether one can ‘hear the shape of a drum’: 
if we know the ‘spectrum’ of a planar domain D ⊆ ℝ2 (formally, the eigenfrequencies of the wave 
equation on D, with Dirichlet boundary conditions), is this enough information to reconstruct D up 
to isometry? Famously (and perhaps surprisingly), the answer to this question is ‘no’: in 1992, Gordon, 
Webb and Wolpert [17] managed to construct two different ‘drums’ with the same spectrum.

A much shorter version of this story also took place in graph theory. In 1956, in a paper studying 
connections between graph theory and chemistry, Günthard and Primas [18] asked whether one can 
reconstruct a graph up to isomorphism given the eigenvalues of its adjacency matrix. (The adjacency 
matrix of a (simple) graph G, with vertices v1,… , vn, is the zero-one matrix A(G) ∈ {0, 1}n×n whose 
(i, j)-entry is 1 if and only if G has an edge between vi and vj.) Due to the discrete nature of this ques-
tion, the search for counterexamples is much easier than for Kac’s question: only 1 year later, Collatz 
and Sinogowitz [8] exhibited a pair of graphs with the same spectrum. This has some rather impor-
tant practical consequences: if it were the case that all graphs were determined by their spectrum, 
this would give rise to a very simple graph isomorphism test. It is an open problem to find a prov-
ably efficient graph isomorphism test, and spectral information is often used to distinguish graphs in 
practice.
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870 • I. KOVAL AND M. KWAN

A striking conjecture due to van Dam and Haemers [19, 33, 34] (also suggested somewhat later 
and seemingly independently by Vu [35]) is that graphs which cannot be uniquely identified by their 
spectrum are extremely rare, in the following natural asymptotic sense.

Definition 1.1 The spectrum of a graph is the multiset of eigenvalues of its adjacency matrix. 
A graph G is determined by its spectrum (DS for short) if there is no other graph 
(non-isomorphic to G) which has the same spectrum as G.

Conjecture 1.2 The fraction of unlabelled n-vertex graphs which are determined by their 
spectrum converges to 1 as n → ∞. Equivalently [16], the number of (unlabelled) n-vertex graphs 
determined by their spectrum is

(1 − o(1)) 2n(n−1)/2

n!
.

(The number of labelled graphs on a particular set of n vertices is 2n(n–1)/2, and it is well known 
(see [16, Lemma 2.3.2]) that all but a vanishingly small fraction of these have a trivial automorphism 
group.)

Remark 1.3 To elaborate on the attribution here: for a very long time, it has been an 
important question in spectral graph theory to understand the asymptotic proportion of 
graphs which are DS (for example, Schwenk [30] conjectured the opposite of Conjecture 1.2 
in 1973, and Godsil and McKay [15] described this general question as ‘one of the 
outstanding unsolved problems in the theory of graph spectra’). The possibility that 
Conjecture 1.2 might hold (supported by mounting computational evidence) was first 
suggested by van Dam and Haemers [33] in 2003 (also later in [34]), though they did not 
explicitly make a conjecture. It seems that Conjecture 1.2 first appeared explicitly in a paper 
of Haemers [19]. Vu seems to have arrived at Conjecture 1.2 via quite a different pathway: in 
[35], he presents it as a graph-theoretic variant of a similar conjecture in random matrix 
theory. We also remark that Garijo, Goodall and Nešetřil [14] and Noy [28] situated 
Conjecture 1.2 in (different) general frameworks which include a number of other questions 
about reconstructing graphs from various types of information.

Conjecture 1.2 is rather bold, on account of the fact that there are very few known examples of DS 
graphs. Indeed, to show that a graph G is DS (without exhaustively computing the spectra of all other 
graphs on the same number of vertices), it seems necessary to somehow translate information about 
the spectrum of G into information about the combinatorial structure of G. Spectral graph theory has 
a number of different tools along these lines, but all of them are rather crude, and essentially all known 
examples of DS graphs have very special structure. (For example, to prove that complete graphs are 

DS, one uses the fact that the n-vertex complete graph is the only n-vertex graph with exactly (n
2)

edges.)
To the best of our knowledge, the best lower bounds on the number of DS graphs are all of the form 

ec
√
n for some constant c > 0. Such a bound was first observed by van Dam and Haemers [33, Propo-

sition 6], who proved that G is DS whenever every connected component of G is a complete subgraph 
(the number of graphs of this form is precisely the number of integer partitions of n, which is approxi-
mately ec

√
n for c = 𝜋

√
2/3 by the Hardy–Ramanujan theorem [23]). Several other families of graphs, 

similarly enumerated by integer partitions, have since been discovered (see [32, 38]). On the other 
hand, there has been much more progress in the opposite direction to Conjecture 1.2, proving lower 
bounds on the number of graphs which are not DS. For example, a famous result of Schwenk [30] 
says that only a vanishingly small fraction of trees are DS (meaning that almost all of the exponentially 
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EXPONENTIALLY MANY GRAPHS ARE DETERMINED BY THEIR SPECTRUM • 871

many unlabelled n-vertex trees are non-DS), and, using an operation that is now known as Godsil–
McKay switching, Godsil and McKay [15] (see also [20]) proved that the number of n-vertex graphs 
which are not DS is at least 

(1 − o(1)) n2

12 ⋅ 2n ⋅ 2
(

n
2

)

n!
.

In this paper we prove the first exponential lower bound on the number of DS graphs, finally breaking 
the ‘ec

√
n barrier’ (and thereby answering a question of van Dam and Haemers [33]).

Theorem 1.4 The number of (unlabelled) n-vertex graphs determined by their spectrum is at least 
ecn for some constant c > 0.

Remark 1.5 Our proof shows that we can take c = 0.01 for large n, but we made no serious 
attempt to optimize this.

We will outline our proof strategy in Section 2, but to give a quick impression: we consider an explicit 
family of ‘nice graphs’, each consisting of a long cycle with leaves attached in various carefully cho-
sen ways. Then, we consider a family of n-vertex graphs 𝒬n obtained by combining complete graphs 
with line graphs of nice graphs, in such a way that certain inequalities and number-theoretic properties 
are satisfied. (The line graph line(G) of a graph G has a vertex for each edge of G, and two vertices in 
line(G) are adjacent if the corresponding edges of G share a vertex). We then prove that there are expo-
nentially many graphs in 𝒬n and that all graphs in 𝒬n are determined by their spectrum. We remark 
that there is an essential tension in the choice of 𝒬n: in order to prove a strong lower bound we would 
like our families of graphs to be as ‘rich’ as possible, containing graphs with a wide variety of struc-
ture, but in order to reconstruct a graph using the limited information that is (legibly) available in its 
spectrum, we can only work with graphs with very special structure.

1.1. Further directions
It seems that significant new ideas would be required to go beyond the exponential bound in Theo-
rem 1.4. Indeed, if we consider all the known combinatorial parameters that can be extracted from 
the spectrum of an n-vertex graph, then we end up with a list of about 2 n integers (most notably, the 
first n spectral moments describe the number of closed walks of each length, and the n non-leading 
coefficients of the characteristic polynomial can be interpreted as certain weighted sums of subgraph 
counts). In order to use this combinatorial information to reconstruct say exp(n1+𝜀) different graphs, 
we would need to use a huge amount of information from each of the integers in our list: roughly 
speaking, the variation in each integer must correspond to about exp(n𝜀) different graphs. It is hard 
to imagine a natural combinatorial argument that could reconstruct so many different graphs from a 
single integer of information.

Instead, it seems that non-constructive methods may be necessary in order to prove Conjecture 1.2 or 
even to make much progress beyond Theorem 1.4. Is there some algebraic criterion which describes 
whether a graph is DS, without necessarily providing a combinatorial procedure to reconstruct the 
graph. (Some progress in this direction was made by Wang [36], who found an arithmetic criterion 
for a graph to be determined by its so-called “generalised spectrum”). Can one somehow show that 
the DS property is ‘generic’ without describing which graphs are DS?

We would also like to propose a number of other questions related to Conjecture 1.2.

• Consider two different n-vertex graphs G, G′, chosen uniformly at random, and let Q n be the prob-
ability that G and G′ have the same spectrum. How large is this probability? It seems that one can 
obtain an exponential upper bound 

Qn ≤ ℙ[det(G) = det(G′)] ≤ sup
d∈ℝ

ℙ[det(G) = d] ≤ e−cn
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872 • I. KOVAL AND M. KWAN

for some c > 0, using powerful techniques in random matrix theory (see [7]).
• Conjecture 1.2 is equivalent to the statement that among all n-vertex graphs, there are 

(1 − o(1)) 2
(

n
2

)

n!

different spectra. What lower bounds can we prove on the number of different spectra realizable 
by n-vertex graphs? There are several different ways to prove an exponential lower bound: in par-
ticular, such a bound follows from Theorem 1.4, from the above bound Qn ≤ e−cn or from results 
on the range of possible determinants of n × n binary matrices (see [31]).

• Although it is known [30] that almost all trees are not DS, it would still be interesting to prove 
lower bounds on the number of DS trees. Could it be that there are exponentially many?

• In the continuous setting (‘hearing the shape of a drum’), the spectral rigidity conjecture of Sar-
nak (see [29]) suggests that despite the fact that there are drums with the same spectrum, such 
drums are always ‘isolated’ from each other: for any drum, making a sufficiently small change to 
the shape of the drum always changes its spectrum. One can also ask similar questions for graphs. 
For example, as a weakening of Conjecture 1.2, we conjecture that for a (1 − o(1))-fraction of 
labelled graphs on n vertices, any nontrivial addition/deletion of at most (1/2 − 𝜀)n edges (for 
any constant 𝜀 > 0) results in a graph with a different spectrum. If this were true it would be best 
possible: for almost all n-vertex graphs G, one can exchange the roles of two vertices by adding 
and removing about n/2 edges (obtaining a graph which is isomorphic to G and therefore has the 
same spectrum).

• Apart from the adjacency matrix, there are several other matrices which can be associated with a 
graph. Perhaps the best-known examples are the Laplacian matrix and the signless Laplacian matrix 
(which are both actually used in this paper; see Definition 2.1). Such matrices give us different 
notions of graph spectra, with which we can ask variations on all the questions discussed so far. 
Actually, the Laplacian analogue of Theorem 1.4 has already been proved, taking advantage of the 
fact that the Laplacian spectrum is much better-behaved with respect to complements: Hammer 
and Kelmans [21] showed that all 2n of the threshold graphs on n vertices (i.e., all n-vertex graphs 
which can be constructed from the empty graph by iteratively adding isolated vertices and taking 
complements) are determined by their Laplacian spectrum. In the course of proving Theorem 1.4, 
we actually end up giving new proofs of the analogous result for Laplacian and signless Laplacian 
spectra. It is still open (and not obviously easier or harder than for the adjacency spectrum) to 
prove better-than-exponential lower bounds on the number of n-vertex graphs determined by their 
Laplacian or signless Laplacian spectrum.

2 . P R O O F OV E RV I E W
We start by defining the Laplacian matrix and the signless Laplacian matrix, two variations on the 
adjacency matrix.

Definition 2.1 Consider a (simple) graph G with vertices v1,… , vn. Let D(G) be the diagonal 
matrix whose (i, i)-entry is the degree of vi and recall the adjacency matrix A(G) of G.

• The Laplacian matrix is defined as L(G) = D(G) −A(G).
• The signless Laplacian matrix is defined as |L(G)| = D(G) +A(G).

We sometimes refer to the spectra of A(G), L(G) and |L(G)| as the adjacency spectrum, 
Laplacian spectrum and signless Laplacian spectrum of G, respectively. We say that a graph G is 
determined by its Laplacian spectrum (respectively, determined by its signless Laplacian 
spectrum) if there is no other graph (non-isomorphic to G) which has the same Laplacian 
spectrum (respectively, signless Laplacian spectrum) as G.
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While the adjacency matrix is the simplest and most natural way to associate a matrix to a graph, 
all three of the above notions of spectrum contain slightly different information about G, which can 
be useful for different purposes. For this paper, the crucial fact about the Laplacian spectrum is that 
it determines the number of spanning trees of a graph, via Kirchhoff ’s celebrated matrix-tree theorem
(Theorem 3.13). In particular, the Laplacian spectrum tells us whether a graph is connected or not.

Fortunately, there are some connections between the above three notions of spectrum, which we 
will heavily rely on in this paper. For example, two simple observations are that:

• if a graph is bipartite, then its signless Laplacian spectrum is the same as its Laplacian spectrum 
(Fact 3.1);

• if two graphs have the same signless Laplacian spectrum, then their line graphs have the same 
adjacency spectrum (Proposition 3.15).

Unfortunately, there are some limitations to these connections. In general, neither the Laplacian spec-
trum nor the signless Laplacian spectrum of a graph contain enough information to actually determine 
whether the graph is bipartite (and it is not true that for a bipartite graph to be determined by its Lapla-
cian spectrum is the same as for it to be determined by its signless Laplacian spectrum). Also, if a graph 
Q  has the same adjacency spectrum as the line graph of some graph G, it does not necessarily follow 
that Q  is the line graph of some graph with the same signless Laplacian spectrum as G (it does not 
even follow that Q  is a line graph at all, though a deep structure theorem of Cameron, Goethals, Sei-
del and Shult [6], building on a previous slightly weaker theorem of Hoffman [25], shows that every 
connected graph which has the same adjacency spectrum as a line graph must be a so-called generalized 
line graph, with finitely many exceptions).

Despite these limitations, in our proof of Theorem 1.4, it is nonetheless extremely useful to move 
between the three different notions of graph spectra. Roughly speaking, our proof of Theorem 1.4 
can be broken down into three parts. First, we describe an explicit family of graphs (‘nice graphs’) 
and prove that they are determined by their Laplacian spectrum (making crucial use of the matrix-
tree theorem). Second, we prove that any graph which has the same signless Laplacian spectrum as a 
bipartite nice graph must be bipartite (from which we can deduce that in fact every bipartite nice graph 
is determined by its signless Laplacian spectrum). Finally, we define a family 𝒬n of exponentially many 
n-vertex graphs (which are essentially line graphs of bipartite nice graphs, with some small adjustments 
for number-theoretic reasons) and use the Cameron–Goethals–Seidel–Shult theorem to show that if a 
graph has the same adjacency spectrum as a graph in 𝒬n, then both graphs must have been constructed 
from line graphs with the same signless Laplacian spectrum. Putting everything together, we see that 
all of the exponentially many graphs in 𝒬n are determined by their adjacency spectrum.

We next outline each of the above three parts of the proof of Theorem 1.4 in more detail.

2.1. Nice graphs and the Laplacian spectrum
First, we define nice graphs and outline how to prove that they are determined by their Laplacian 
spectrum.

Definition 2.2 Say that a graph is sun-like if it is connected, and deleting all degree-1 vertices 
yields a cycle. (The reason for this terminology is that the name “sun graph” is sometimes 
used in the literature to describe a graph obtained from a cycle by adding a leaf to each 
vertex). Equivalently, a sun-like graph can be constructed by taking a cycle C and attaching 
some leaves to some vertices of C. If a vertex of C has i leaves attached to it (equivalently, if 
the vertex has degree i + 2), we call it an i-hub. We simply call a vertex a hub if it is an i-hub for 
some i ≥ 1 (equivalently, if its degree is at least 3).

For (integer) parameters k ≥ 1 and ℓ ≥ max(12k, 15), say that a graph G is (ℓ, k)-nice if:

• G is a sun-like graph;
• the unique cycle C in G has length ℓ;
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• there are exactly k + 1 hubs, one of which is a 1-hub and the others of which are 2-hubs;
• we can fix an orientation of C such that the following holds. Imagine starting at the 

1-hub and walking clockwise around C. We should meet our first 2-hub after walking a 
distance of 4. Then, the second 2-hub should appear at distance 4 or 6 after the first. The 
third 2-hub should appear at distance 4 or 6 after the second, the fourth should appear 
at distance 4 or 6 after the third, and so on. (This freedom between 4 and 6 at each step 
is crucial; it ensures that there are many different nice graphs.)

See Figure 1 for an illustration of a (46, 3)-nice graph. We simply say that a graph is nice if it is 
(ℓ, k)-nice for some k,ℓ (satisfying k ≥ 1 and ℓ ≥ max(12k, 15)). We remark that the 
restriction ℓ ≥ 12k is to ensure that all 2-hubs are closer to the 1-hub in the clockwise 
direction than the counterclockwise direction.

Lemma 2.3 Every nice graph is determined by its Laplacian spectrum.

We will prove Lemma 2.3 in full detail in Section 4. As a brief outline: the first step in the proof of 
Lemma 2.3 is to prove that any graph G′ with the same Laplacian spectrum as a nice graph G is itself 
nice (with the same parameters ℓ, k). This ‘localizes’ the problem: if we only have to consider nice 
graphs, we can give a much more explicit combinatorial meaning to certain spectral statistics (most 
crucially, we can give a combinatorial interpretation of the Laplacian spectral moments in terms of 
closed walks around the unique cycle C). This localization step crucially uses the matrix-tree theo-
rem to show that G′ is connected (once we know that G′ is connected, certain spectral inequalities on 
various degree statistics allow us to deduce that G′ has a single cycle, then that it is sun-like and then 
that it is nice). We remark that similar ideas were previously used by Boulet [4] to prove that so-called 
‘sun graphs’ are determined by their Laplacian spectrum.

After localizing the problem, the second step is to show how to ‘decode’ a specific nice graph using 
spectral information: i.e., assuming that G′ is nice, we use spectral information to discover which nice 
graph it is. The idea for this step is to ‘inductively explore the graph around its 1-hub’ using spectral 
moments: assuming we know the positions of all the 2-hubs up to distance d of the 1-hub, we can use 
the (2d + 2)th spectral moment to see whether there is a 2-hub at distance d + 1 from the 1-hub. Very 
roughly speaking, the reason this is possible is that the spectral moments can be interpreted as certain 
weighted sums over closed walks on C. If a closed walk ‘interacts with 2-hubs’ i times, then the weight 
of the walk is divisible by 2, so parity considerations allow us to distinguish closed walks involving the 
1-hub from closed walks which only involve 2-hubs.

Remark 2.4 For this ‘decoding’ step, there is no advantage of the Laplacian spectrum over the 
adjacency spectrum. In fact, it would have been much more convenient to work with the 
adjacency spectrum, as the spectral moments of the adjacency matrix have a much more 
direct combinatorial interpretation than the spectral moments of the Laplacian matrix. 
Indeed, the ith spectral moment of the adjacency matrix simply counts the number of closed 
walks of length i. For a nice graph, every nontrivial closed walk can be obtained by starting 
with a closed walk in the unique cycle C and then choosing some hubs in the walk at which 
we go in and out of a leaf. Every time we go in and out of a leaf at a 2-hub, we have an even 

Figure 1. An example of a (46, 3)-nice graph. There is one 1-hub v0 and three 2-hubs v1, v2 and v3. The distances 
between v0 and v1, between v1 and v2 and between v2 and v3 are 4, 6 and 4, respectively.
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number of choices, whereas every time we go in and out of a leaf at a 1-hub, we have an odd 
number of choices.

Remark 2.5 There are some parallels between our 2-step strategy to prove Lemma 2.3 and a 
similar 2-step strategy that was recently applied with great success in the continuous case (i.e., 
in the ‘hearing the shape of a drum’ setting). Indeed, a recent breakthrough result of Hezari 
and Zelditch [24] is that ellipses with low eccentricity are determined by their spectrum. In 
their proof, the first step is to use certain spectral inequalities to ‘localize’ the problem, 
showing that any domain whose spectrum matches a low-eccentricity ellipse must be ‘almost 
circular’. Then, the second step is to pin down the precise shape of the domain, taking 
advantage of the fact that the spectrum determines certain information about closed billiard 
trajectories inside the domain, and applying powerful results due to Avila, De Simoi and 
Kaloshin [2] to study such trajectories. There is some similarity between closed walks in 
graphs and closed billiard trajectories in a domain; it is not clear to us whether this 
connection runs deeper.

2.2. The signless Laplacian spectrum
As outlined, the next step is to prove an analogue of Lemma 2.3 for the signless Laplacian spectrum: 
we are able to do this with a mild condition on the length of the cycle ℓ, as follows.

Lemma 2.6 Let G be an (ℓ, k)-nice graph with ℓ ≡ 2 (mod 4). Then, G is determined by its 
signless Laplacian spectrum.

Note that an (ℓ, k)-nice graph is bipartite if and only if ℓ is even, and as we have discussed, for bipartite 
graphs, the signless Laplacian spectrum is the same as the Laplacian spectrum. So, given Lemma 2.3, 
in order to prove Lemma 2.6, we just need to show that if ℓ ≡ 2 (mod 4), then every graph with the 
same signless Laplacian spectrum as an (ℓ, k)-nice graph must be bipartite.

The full details of the proof of Lemma 2.6 appear in Section 5, but to give a brief idea: the only 
spectral information we need is the product of nonzero eigenvalues. We observe that for every non-
bipartite graph the product of nonzero eigenvalues is divisible by 4 and that the assumption ℓ ≡ 2
(mod 4) guarantees that the product of nonzero eigenvalues of G is not divisible by 4. For both of 
these facts, we use an explicit combinatorial description of the coefficients of the characteristic func-
tion of the signless Laplacian matrix, due to Cvetković, Rowlinson and Simić [10]. (These coefficients 
can be expressed as sums of products of eigenvalues via Vieta’s formulas; in particular the nonzero 
coefficient with lowest degree tells us the product of nonzero eigenvalues.)

Remark 2.7 Lemma 2.6 implies that if n is odd, then there are exponentially many n-vertex 
graphs which are determined by their signless Laplacian spectrum. However, there is no 
bipartite nice graph on an even number of vertices, so the analogous result for even n is not 
completely obvious. With a bit more work, we were nonetheless able to prove such a result, 
yielding a version of Theorem 1.4 for the signless Laplacian, as follows.

Theorem 2.8 The number of (unlabelled) n-vertex graphs determined by their signless Laplacian 
spectrum is at least ecn for some constant c > 0.

To prove Theorem 2.8, we combine Lemma 2.6 with some of the ideas described in the next 
subsection; the details appear in the appendix of the arXiv version of this paper.

2.3. Exponentially many graphs determined by their adjacency spectrum
As briefly mentioned earlier in this outline, there is a close connection between the signless Laplacian 
spectrum of a graph and the adjacency matrix of its line graph. To be a bit more specific, the nonzero 
eigenvalues of |L(G)| are in correspondence with the eigenvalues of A(line(G)) different from −2. 
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One might (naively) hope that line(G) being determined by its adjacency spectrum is equivalent to 
G being determined by its signless Laplacian spectrum. If this were true, it would be easy to complete 
the proof of Theorem 1.4, by considering the family of all n-vertex graphs which are the line graph of 
some nice graph as in Lemma 2.6.

Unfortunately, this is too much to hope for in general, but quite some theory has been developed 
in this direction, and we are able to leverage this theory in the special case where G has a large prime 
number of vertices.

Lemma 2.9 There is a constant n0 such that the following holds. Let G be an (ℓ, k)-nice graph with 
ℓ ≡ 2 (mod 4), let n = ℓ + 2k + 1 be its number of vertices, and suppose that n is a prime 
number larger than n0. Then, line(G) is determined by its adjacency spectrum.

The proof of Lemma 2.9 appears in Section 6. To give a rough idea of the strategy of the proof: recalling 
Lemma 2.6, in order to prove Lemma 2.9, it suffices to show that if a graph Q  has the same (adjacency) 
spectrum as line(G), then

(1) Q = line(H) for some H, and
(2) H has the same signless Laplacian spectrum as G.

For (1), we have the Cameron–Goethals–Seidel–Shult theorem at our disposal, which we can use 
to show that Q  is a so-called generalized line graph (except possibly for some ‘exceptional’ connected 
components with at most 36 vertices). Our main task is to rule out generalized line graphs which are 
not line graphs. For (2), our task is to show that in the signless Laplacian spectra of G and H, the 
multiplicities of the zero eigenvalue are the same (all nonzero eigenvalues are guaranteed to be the 
same). This amounts to showing that G and H have the same number of vertices.

For the first of these two tasks, we observe that if a generalized line graph is not a true line 
graph, then its adjacency matrix has a zero eigenvalue. So, it suffices to prove that line(G) does not 
have a zero eigenvalue, i.e., its adjacency matrix has nonzero determinant. We accomplish this by 
directly computing the determinant of line(G) (this is a little involved but comes down to a certain 
recurrence).

For the second of these two tasks, we recall that the adjacency spectrum of a line graph tells us the 
nonzero eigenvalues of the signless Laplacian spectrum and, in particular, tells us the product of these 
nonzero eigenvalues (this product was already discussed in Section 2.2). Via a direct computation on 
G, we observe that this product is divisible by n. For each connected component of H, the contribution 
to this product is always an integer, so if n is a prime number then there must be a single connected 
component which is ‘responsible for the factor of n’. We are then able to deduce that this component 
has exactly n vertices and n edges, via a careful case analysis involving a combinatorial interpretation 
of the multiplicity of the eigenvalue −2.

Of course, even after proving Lemma 2.9, we are not yet done: every nice graph has the same num-
ber of edges as vertices, so Lemma 2.9 can only be directly used to prove Theorem 1.4 when n is 
prime. For general n, we consider graphs with two connected components, one of which is the line 
graph of a nice graph on a prime number of vertices and the other of which is a complete graph. The 
parameters of the nice graph and the size of the complete graph need to satisfy certain inequalities and 
number-theoretic properties; the details are a bit complicated and we defer the precise specification 
to Section 7.

In order to show that all relevant inequalities and number-theoretic properties can be simulta-
neously satisfied (by exponentially many graphs), we use a quantitative strengthening of Dirichlet’s 
theorem on primes in arithmetic progressions. To actually show that all these graphs are determined 
by their adjacency spectrum, we proceed similarly to Lemma 2.9, but the details are more compli-
cated. Roughly speaking, we identify the complete graph component using its single large eigenvalue 
and some number-theoretic considerations, and then we apply Lemma 2.9.
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3 . P R E L I M I N A R I E S
In this section, we collect a number of general tools and results that will be used throughout the paper. 
Where possible, we cite the original sources of each of these results, but we remark that many of these 
results can be found together in certain monographs on algebraic graph theory or graph spectra (see [3,
5, 9, 11, 16]).

3.1. Basic observations
First, in Section 2, we have already mentioned that the signless Laplacian and the Laplacian spectra 
coincide for bipartite graphs.

Fact 3.1 ([33, Section 2.3])  If a graph is bipartite, then its signless Laplacian spectrum is the 
same as its Laplacian spectrum.

Also, we record the near-trivial fact that for all notions of spectrum discussed so far, the spectrum of a 
graph can be broken down into the spectra of its connected components.

Fact 3.2 For any graph G, the spectrum of G (with respect to the adjacency, Laplacian or signless 
Laplacian matrix) is the multiset union of the spectra of the connected components of G.

3.2. Spectral inequalities
Spectral graph theory provides a range of powerful inequalities on various combinatorial parameters, 
usually in terms of the largest, second-largest or smallest eigenvalue of the adjacency or Laplacian 
matrix. In this paper, we will only need some simple inequalities concerning the numbers of vertices 
and edges and the degrees.

Lemma 3.3 ([11, Section 3.2] and [37])  Consider a graph G with n vertices, m edges and 
maximum degree Δ. Let 𝜆max be the largest eigenvalue of the adjacency matrix A(G). Then

(1) 𝜆max ≤ Δ,
(2) 𝜆max ≤

√
2m − n + 1.

Lemma 3.4 ([13, Theorem 3.7] and [1, Theorem 2])  Let G be a graph, write V and E for its sets 
of vertices and edges and Δ for its maximum degree. Let 𝜌max be the largest eigenvalue of the 
Laplacian matrix L(G). Then

(1) 𝜌max > Δ,
(2) 𝜌max ≤ max{deg(u) + deg(v) : uv ∈ E}.

3.3. Combinatorial interpretation of the spectral moments
As briefly mentioned in Section 2, in this paper, we use the term spectral moments to refer to sums of 
powers of eigenvalues.

Definition 3.5 For a matrix M ∈ ℝn×n with spectrum 𝜎, the sth spectral moment of M is 

∑
𝜆∈𝜎

𝜆s = trace(Ms) =
n

∑
i1=1

…
n

∑
is=1

Mi1,i2
Mi2,i3

Mi3,i4
…Mis−1,is

Mis,i1
.

If M is the adjacency matrix of a graph G, then the product Mi1,i2
Mi2,i3

Mi3,i4
…Mis−1,is

Mis,i1
 is nonzero 

if and only if there is a closed walk in G running through the vertices indexed by i1,… , is (in which 
case this product is exactly 1). So, spectral moments simply count closed walks of various lengths. For 
example, the second spectral moment is the number of closed walks of length 2, which is precisely 
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twice the number of edges in G (a closed walk of length 2 simply runs back and forth along an edge, 
starting at one of its two endpoints).

In our proof of Lemma 2.3, we will need to carefully study Laplacian spectral moments, which can 
also be interpreted in combinatorial terms (albeit in a more complicated way):

Definition 3.6 An s-route in a graph is a sequence of vertices ⃗v = (v1,… , vs), such that for 
each index j, either vjvj+1 is an edge or vj = vj+1 (where the subscripts should be interpreted 
modulo s). That is to say, a route consists of a sequence of s steps: at each step we may either 
walk along an edge or wait at the current vertex. Letting t be the number of ‘waiting steps’ in 
the s-route ⃗v, we also define w( ⃗v) to be the product of deg(vj) over all waiting steps j, times 
(−1)s−t .

Fact 3.7 For any graph G, let ℛs be the set of all s-routes in G. Then, the sth spectral moments of 
L(G) and |L(G)| are 

∑
⃗v∈ℛs

w( ⃗v) and ∑
⃗v∈ℛs

|w( ⃗v)|,

respectively.

We will repeatedly use Fact 3.7 (for many different s) in our proof of Lemma 2.3. For now, we just 
record some simple observations for s ≤ 3, which can be straightforwardly proved by considering all 
possible cases for a route of length s.

Proposition 3.8 Consider any graph G with n vertices and m edges, and write V for its set of 
vertices. Let M = L(G) or M = |L(G)|, and let 𝜇s be the sth spectral moment of M. Then

(1) 𝜇0 = n;
(2) 𝜇1 = ∑

v∈V
deg(v) = 2m;

(3) 𝜇2 = ∑
v∈V

deg(v)2 + 2m;

(4) If G has no triangles, then 𝜇3 = ∑
v∈V

deg(v)3 + 3∑
v∈V

deg(v)2.

In particular, if we know that G has no triangles, then the spectrum of M is enough information 
to determine ∑v∈V deg(v)s for s ∈ {0, 1, 2, 3}.

3.4. Combinatorial interpretation of the characteristic coefficients
In addition to spectral moments, another very rich way to extract combinatorial structure from the 
spectrum is to consider the coefficients of the characteristic polynomial of our matrix of interest.

Definition 3.9 Consider a matrix M ∈ ℝn×n with spectrum 𝜎, and write its characteristic 
polynomial det(xI − M) = ∏𝜆∈𝜎(x − 𝜆) ∈ ℝ[x] in the form ∑n

i=0(−1)i𝜁ix
n−i. Then, we 

define the ith characteristic coefficient to be 

𝜁i = ∑
Λ⊆𝜎:|Λ|=i

∏
𝜆∈Λ

𝜆

(here we have used Vieta’s formulas for the coefficients of a polynomial in terms of its roots).

Note that the nth characteristic coefficient 𝜁n is the determinant of M. More generally, if we consider 
the largest s for which 𝜁s is nonzero, then 𝜁s is the product of nonzero eigenvalues of M. Recalling the 
definition det(xI − M) of the characteristic polynomial, we also have the following observation.
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Fact 3.10 If M is an integer matrix, then its characteristic coefficients are all integers.

Now, the characteristic coefficients of the Laplacian, signless Laplacian and adjacency matrices all 
have different combinatorial interpretations, as follows.

Definition 3.11 A connected graph is unicyclic if it has exactly one cycle (equivalently, if it 
has the same number of edges as vertices). If the length of this cycle is even it is even-unicyclic; 
otherwise, it is odd-unicyclic. Now, consider any graph G.

(1) A spanning forest F in G is a subgraph of G which is spanning (i.e., contains all the 
vertices of G) and whose connected components are trees. (Some authors define a 
spanning forest of G to have the same number of conected components as G. Here 
we have no such requirement.) Let 𝛼(F) be the product of the numbers of vertices 
in these trees.

(2) A TU-subgraph H of G is a spanning subgraph whose connected components are 
trees or odd-unicyclic. Generalizing the definition of 𝛼 above, let 𝛼(H) = 4c ∏s

i=1 ns, 
where c is the number of odd-unicyclic components in H, and the numbers of 
vertices in the tree components are n1,… , ns.

(3) An elementary subgraph X of G is a (not necessarily spanning) subgraph whose 
connected components are cycles and individual edges. Let 𝛽(X) = (−1)c(−2)d, 
where c and d are the number of edge-components and cycle-components in X, 
respectively.

Let Φi(G), Ψi(G) and Ξi(G) be the sets of spanning forests with i edges, TU-subgraphs 
with i edges and elementary subgraphs with i vertices, respectively, in G.

Theorem 3.12 ([3, Theorem 7.5], [10, Theorem 4.4] and [22, Theorem 3])  For any graph G, 
the i and A(G) are 

∑
F∈Φi(G)

𝛼(F), ∑
H∈Ψi(G)

𝛼(H) and ∑
X∈Φi(G)

(−1)i𝛽(X),

respectively.

An immediate corollary (in the Laplacian case, considering the nth and (n − 1)th characteristic 
coefficients) is Kirchhoff ’s celebrated matrix-tree theorem, as follows.

Theorem 3.13 ([27])  For any n-vertex graph G, the Laplacian L(G) has a zero eigenvalue with 
multiplicity at least 1. G is connected if and only if the multiplicity of the zero eigenvalue is exactly 
1, in which case the number of spanning trees in G is precisely the product of the nonzero 
eigenvalues divided by n.

(One does not really need to make a connectedness case distinction here. Indeed, the matrix-tree 
theorem can be formulated as the statement that the number of spanning trees is equal to any cofactor 
of the Laplacian matrix; this number may be zero.)

Another corollary is as follows. (A very similar observation appears as [10, Proposition 2.1].)

Proposition 3.14 For any connected graph G:

(1) If G is bipartite, then |L(G)| has a zero eigenvalue with multiplicity 1.
(2) If G is not bipartite, then the determinant of |L(G)| is a positive integer divisible by 4.
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Proof. Let n be the number of vertices of G, so the determinant of |L(G)| (i.e., its product of 
eigenvalues) is its nth characteristic coefficient. Note that a tree on at most n vertices has at 
most n − 1 edges, so in the description in Theorem 3.12, the only possible contributions to 
the nth characteristic coefficient of |L(G)| come from spanning odd-unicyclic subgraphs. If 
G is bipartite, then clearly there is no such subgraph. On the other hand, if G is not bipartite 
then it has an odd cycle, and a suitable spanning odd-unicyclic subgraph can be found by 
iteratively removing edges outside this cycle. Each spanning odd-unicylic subgraph H has 
𝛼(H) = 4.

Since every connected graph has a spanning tree, the (n − 1)th characteristic coefficient of 
G is always nonzero (so zero can never be an eigenvalue with multiplicity more than 1). �

3.5. Line graphs
In Section 2, we mentioned a correspondence between the Laplacian spectrum of a graph G and 
the adjacency spectrum of its line graph line(G). To elaborate on this: for a graph with vertices 
v1,… , vn and edges e1,… , em, consider the incidence matrix N(G) ∈ {0, 1}n×m, where the (i, j)-entry 
is 1 if and only if vi ∈ ej. Then, it is not hard to see that |L(G)| = N(G)N(G)T  and A(line(G)) =
N(G)TN(G) − 2I. Since the nonzero eigenvalues of N(G)N(G)T  are the same as the nonzero 
eigenvalues of N(G)TN(G) (including multiplicities), we have the following.

Proposition 3.15 Consider any graph G and any 𝜆 ≠ 0. Then, 𝜆 is an eigenvalue of |L(G)| with 
multiplicity m if and only if 𝜆 − 2 is an eigenvalue of A(line(G)) with multiplicity m.

If we know the signless Laplacian spectrum of a graph G, then Proposition 3.15 tells us the spectrum 
of A(line(G)), except the multiplicity of the eigenvalue −2. In order to determine this multiplicity, we 
just need to know the sum of multiplicities of all eigenvalues of line(G), i.e., the number of vertices of 
line(G), i.e., the number of edges of G. We have already seen that this information can be recovered 
from the signless Laplacian spectrum (Proposition 3.8(2)). So, the signless Laplacian spectrum of G
fully determines the adjacency spectrum of line(G). Unfortunately, as discussed in Section 2, it is not 
quite so easy to go in the other direction: there are examples of line graphs which share their adjacency 
spectrum with non-line-graphs, and there are examples of graphs G, G′ which have different numbers 
of vertices (therefore different signless Laplacian spectra) but for which line(G) and line(G′) have 
the same adjacency spectrum.

In this subsection, we collect a few results related to Proposition 3.15. First, |L(G)| = N(G)N(G)T

is a positive semidefinite matrix, so we have the following corollary of Proposition 3.15.

Fact 3.16 For any graph G, the eigenvalues of A(line(G)) are all at least −2.

Also, Proposition 3.14 gives us a combinatorial description of the multiplicity of the zero eigen-
value of G. Together with Proposition 3.15, this can be used to give a combinatorial description of the 
multiplicity of −2 as an eigenvalue of A(line(G)).

Lemma 3.17 ([9, Theorem 2.2.4])  Let H be a connected graph with v vertices and e edges, and let 
𝜇−2 be the multiplicity of the eigenvalue −2 in A(line(H)). Then 

𝜇−2 = {e − v + 1 if H is bipartite,
e − v if H is not bipartite.

Finally, we state the Cameron–Goethals–Seidel–Shult theorem mentioned in Section 2: all but 
finitely many connected graphs which share their adjacency spectrum with a line graph are so-called 
generalized line graphs.
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Definition 3.18 Let Kn be the complete graph on n vertices. A perfect matching in K2m is a 
collection of m disjoint edges (covering all the vertices of K2m). The cocktailparty graph
CP(m) is the graph obtained from K2m by removing a perfect matching.

For a graph G with vertices v1,… , vn and nonnegative integers a1,… , an, the generalized line 
graph line(G; a1,… , an) is defined as follows. First, consider the disjoint union of the graphs 

line(G), CP(a1),… , CP(an).

(i.e., we include each of the above graphs as a separate connected component). Then, for 
each i, add all possible edges between the vertices of CP(ai) and the vertices of line(G)
corresponding to edges of G incident to vi (this means 2aideg(vi) added edges for each i).

Note that for any graph G we have line(G; 0,… , 0) = line(G).

Theorem 3.19 ([6, Theorem 4.3 and 4.10])  Suppose Q is a connected graph on more than 36 
vertices, all of whose adjacency eigenvalues are at least −2. Then, Q is a generalized line graph.

3.6. Primes in arithmetic progressions
As mentioned in Section 2, we will need a quantitative version of Dirichlet’s theorem, counting primes 
in a given arithmetic progression.

Theorem 3.20 Fix coprime integers a, d ≥ 1, and let 𝜑(d) > 0 be the number of integers up to d 
which are relatively prime to d. Let 𝜋a,d(n) be the number of primes up to n which are congruent to 
a (mod d). Then 

lim
n→∞

(
𝜋a,d(n)

n/ logn
) = 1

𝜑(d)
.

Theorem 3.20 was first proved by de la Vallée Poussin [12]. All we will need from Theorem 3.20 is 
the following (immediate) corollary.

Corollary 3.21 Fix 𝜀 > 0 and coprime integers a, d ≥ 1. For any sufficiently large n, there is a 
prime number between (1 − 𝜀)n and (1 + 𝜀)n which is congruent to a (mod d).

4 . D I ST I N G U I S H I N G N I C E G R A P H S BY T H E I R L A P L AC I A N 
S P ECT RU M

In this section, we prove Lemma 2.3: nice graphs are determined by their Laplacian spectrum. As 
discussed in Section 2.1, the first step is to ‘localize’ the problem, showing that any graph with the 
same Laplacian spectrum as a nice graph is itself nice. First, we adapt some ideas of Boulet [4, Theo-
rem 9] to prove the following lemma, which provides some approximate structure (though does not 
yet completely determine niceness). Recall the definition of a sun-like graph from Definition 2.2.

Lemma 4.1 Let G be an (ℓ, k)-nice graph, and let H be a graph with the same Laplacian spectrum 
as G. Then H is a sun-like graph whose cycle has length ℓ. Moreover, H has exactly one 1-hub, k 
different 2-hubs, and no i-hubs for any i > 2.

Proof. Let n = ℓ + 2k + 1 be the number of vertices and edges in G. First of all, by 
Proposition 3.8(1) and (2), H also has n vertices and n edges, and by Kirchhoff ’s matrix-tree 
theorem (Theorem 3.13), H is connected. So, H is unicyclic. In a unicyclic graph, the 
number of spanning trees is equal to the length of the cycle, so by Kirchhoff ’s theorem again, 
the cycle in H has length ℓ.
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Next, we study the degrees of vertices of H. Writing E for the set of edges of G, recall from 
Lemma 3.4(2) that the largest Laplacian eigenvalue 𝜌max is at most max{deg(u) + deg(v),
uv ∈ E} ≤ 6 (in a nice graph, every hub has degree at most 4, every non-hub has degree at 
most 2, and no two hubs are adjacent). By Lemma 3.4(1), the maximum degree of H is 
strictly less than 𝜌max, so H can only have vertices of degree 1, 2, 3, 4 or 5.

Let ni be the number of vertices of degree i in H. Since the definition of a nice graph 
includes the assumption that ℓ > 12k ≥ 3, there are no triangles in H, so by Proposition 3.8, 
the Laplacian spectrum determines the number of vertices, the sum of degrees, the sum of 
squares of degrees and the sum of cubes of degrees. In G, the numbers of vertices with 
degrees 1, 2, 3 and 4 are 2k + 1, ℓ − k − 1, 1 and k, respectively, so we have 

n1 + n2 + n3 + n4 + n5 = n = ℓ + 2k + 1, (4.1)

n1 + 2n2 + 3n3 + 4n4 + 5n5 = 2n = 2ℓ + 4k + 2,

n1 + 4n2 + 9n3 + 16n4 + 25n5 = (2k + 1) + 4(ℓ − k − 1) + 9 + 16k = 4ℓ + 14k + 6,

n1 + 8n2 + 27n3 + 64n4 + 125n5 = (2k + 1) + 8(ℓ − k − 1) + 27 + 64k = 8ℓ + 58k + 20.

This system of equations has a one-parameter family of solutions, given by 

n2 = −4n1 + ℓ + 7k + 3

n3 = 6n1 − 12k − 5

n4 = −4n1 + 9k + 4

n5 = n1 − 2k − 1. (4.2)

Equations (4.1) and (4.2) together imply that n2 + n3 + n4 + n5 = ℓ − n5 (i.e., there are 
ℓ − n5 ≤ ℓ vertices with degree at least 2). But H has a cycle of length ℓ, and all the vertices 
on that cycle have degree at least 2, so we must have n5 = 0 and all the vertices with degree at 
least 2 must lie on the cycle. This implies that H is sun-like.

There was only one degree of freedom in our system of equations: knowing that n5 = 0
allows us to deduce the values of all ni, and in particular n3 = 1 and n4 = k. That is to say, there 
is one 1-hub, k different 2-hubs and no i-hubs for i > 2, as desired. �

4.1. Decorated routes
Recall the definition of a route from Definition 3.6. The remainder of the proof of Lemma 2.3 pro-
ceeds by carefully studying routes in sun-like graphs. In this subsection, we introduce a convenient 
framework for working with such routes.

Definition 4.2 Let G be a sun-like graph. A decorated s-route R consists of a route 
⃗v = (v1,… , vs) together with a label ‘look’ or ‘wait’ assigned to each j for which vj = vj+1 and vj

is a hub (here arithmetic is mod s). That is to say, recalling that we previously imagined a 
route ⃗v as a closed walk with some ‘waiting steps’, we are now reinterpreting some of the 
waiting steps as steps where we ‘look at a hub’.

For a hub v, if vj = vj+1 = v and j has the label ‘look’, or if vj = v and vj+1 is one of the leaves 
attached to j, then we say that the decorated route interacts with v at step j (i.e., interacting 
with a hub means looking at it or entering one of the leaves attached to it).

For a decorated s-route R, define its multiplicity mult(R) to be the number of different 
decorated routes that can be obtained by cyclically shifting or reversing R. For example, if R
is a trivial route that repeatedly waits at a single vertex, then mult(R) = 1, but in general 
mult(R) can be as large as 2 s.

Consider a decorated s-route R. Suppose that in this decorated route there are r1 steps 
where we wait at leaf vertices, and r2 steps where we wait at cycle vertices (not counting steps 
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in which we look at a hub). Suppose that for each i, there are t i steps where we look at an 
i-hub. Then, we define the weight of R as 

w(R) = 2r2

∞

∏
i=1

iti .

That is to say, we accumulate a factor of 2 whenever we wait at some vertex on the cycle (not 
when we wait at a leaf vertex), and we accumulate a factor of i whenever we look at an i-hub.

Example 4.3 Recall the (46, 3)-nice graph in Figure 1. Write a, b, c for the three vertices 
between the 1-hub v0 and the 2-hub v1, and let x be one of the leaf vertices attached to v1. 
Then, an example of a route is 

⃗v = (v0, v0, a, b, c, v1, v1, x, x, v1, c, b, c, b, a, v0).

This route has four ‘waiting steps’ (in the first and last steps we wait at v0, at the sixth step we 
wait at v1 and at the eighth step we wait at x).

In order to make this route into a decorated route, for each of the steps where we wait at a 
hub (i.e., the first, sixth and last step) we need to decide whether to reinterpret this step as a 
step where we ‘look at the hub’. For example, say we label the first step as ‘look’ (and the sixth 
and last steps are labelled as ‘wait’). This route interacts with v0 and v1, once each (we look at 
v0, and enter a leaf attached to v1). The weight of this decorated route is 22 ⋅ 1 = 4 (we wait 
twice at cycle vertices and look at a 1-hub once).

We then have the following consequence of Fact 3.7.

Lemma 4.4 Consider any sun-like graph G whose cycle has length ℓ. For s < ℓ, let 𝒟s be the set of all 
decorated s-routes in G. Then, the sth spectral moment of L(G) is 

∑
R∈𝒟s

w(R).

Proof. In undecorated routes (as in Definition 3.6) we accumulate a factor of deg(v) = i + 2
each time we wait at a 2-hub v. For our decorated routes, we have simply broken this down 
into ‘waiting’ and ‘looking’; waiting accumulates a factor of 2 (just as it does for a non-hub 
vertex on the cycle) and looking contributes a factor of i.

Also, recall that in an undecorated route we accumulate a factor of −1 for each step we 
walk along an edge. We can ignore this factor if we only consider routes less than ℓ: such 
routes cannot make it all the way around the cycle so must ‘retrace their steps’ and therefore 
have an even number of ‘walking steps’. �

The reason we have introduced the notion of a decorated route is that if we know the hub distribution 
of a graph, this is enough information to determine the contribution to the sth spectral moment from 
routes which interact with at most one hub. (So, we can focus on routes which interact with multiple 
hubs, which are key to understanding how the hubs are distributed around the cycle.)

Lemma 4.5 Let G be a sun-like graph whose cycle has length ℓ, and let ki be the number of i-hubs in 
G. Let 𝒟*

s  be the set of decorated s-routes which interact with at most one hub (any number of 
times). Then, ∑R∈𝒟*

s
w(R) only depends on ℓ and (ki)

∞
i=1.

Proof. Consider two different graphs G, H with the same statistics ℓ and (ki)
∞
i=1. We will show 

that the sum of weights under consideration is the same with respect to G and H. Roughly 
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speaking, the key observation will be that for any route involving a single hub in G, we can 
‘rotate the route around the cycle’ to find a corresponding route in H.

The cycles CG and CH  in G both have the same length ℓ, so we can fix an isomorphism 
𝜙 : CG → CH . Fixing an orientation of CH , let 𝜒 : CH → CH  be the automorphism that 
‘rotates one step clockwise around CH ’. Since G, H have the same hub distribution, we can 
also fix an bijection 𝜓 : CG → CH  such that v is an i-hub if and only if 𝜓(v) is an i-hub. For 
each v in CG, there is a unique j ∈ ℤ/ℓℤ such that 𝜓(v) = 𝜒(j)(𝜙(v)) (i.e., we ‘make 𝜓(v) line 
up with 𝜙(v)’ by rotating it j steps around the cycle). Let 𝜙v = 𝜒(j) ∘ 𝜙 for this j, so 𝜙v is an 
isomorphism CG → CH  with 𝜙v(v) = 𝜓(v).

• Clearly, 𝜙 gives us a correspondence between decorated s-routes that do not interact with any hubs 
in G, and decorated s-routes that don’t interact with any hub in H.

• For any i-hub v in CG, the isomorphism 𝜙v (together with a bijection between the i leaves attached 
to v in CG and the i leaves attached to 𝜓(v) in CH) gives us a correspondence between decorated 
s-routes which interact with the single hub v in G and s-routes which interact with the single hub 
𝜓(v) in H.

The above correspondences are weight-preserving, so the desired result follows. �

4.2. Localizing to nice graphs
Our first application of the framework in Section 4.1 is to finish the ‘localization step’ in the proof of 
Lemma 2.3: every graph with the same spectrum as a nice graph is itself nice. Given Lemma 4.1, this 
basically comes down to studying distances between hubs.

Lemma 4.6 Let H be a graph with the same spectrum as an (ℓ, k)-nice graph G. Then H is an 
(ℓ, k)-nice graph.

Proof. In this proof, we will omit the word ‘decorated’ (we will have no reason to consider 
undecorated routes). First, we apply Lemma 4.1 to see that H is a sun-like graph whose cycle 
has length ℓ, with one 1-hub, k 2-hubs and no i-hubs for i > 2.

Let 𝜂s(H) and 𝜂s(G) be the sum of weights of s-routes which interact with at least 2 hubs 
(with respect to H and G, respectively). By Lemmas 4.4 and 4.5 and the fact that ℓ ≥ 15
from Definition 2.2, we have 𝜂s(H) = 𝜂s(G) for all s ≤ 14 (so, we mostly just write ‘𝜂s’ to 
indicate this common value).

Now, we use the parameters 𝜂s to study the structure of H. We break this down into a 
sequence of claims. �

Claim 4.7 In H, the closest pair of hubs is at distance 4.

Proof. Note that 𝜂2d+2 > 0 if and only if there are two hubs whose distance is at most d. Indeed, 
the shortest way for a route to interact with two hubs is to look at one hub, walk d steps to the 
next hub, look at it, and walk back; this takes 1 + d + 1 + d = 2d + 2 steps.

The closest pair of hubs in G are at distance 4, so the same is true in H. (Note that 
2 ⋅ 4 + 2 ≤ 14.) �

Claim 4.8 In H:

(1) the 1-hub has distance 4 from exactly one other hub, and
(2) the number of pairs of hubs at distance 4 from each other is the same in G and H.

Proof. The only routes that contribute to 𝜂10 are those routes which walk back and forth 
between two different hubs at distance 4, looking once at each hub along the way. Each such 
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route contributes a weight of 4, unless one of the hubs is a 1-hub, in which case the route 
contributes a weight of 2. Also, each such route has multiplicity 10 (all 10 cyclic shifts yield 
different routes, but reversing the order does not yield any further routes).

So, 𝜂10/20 can be interpreted as the number of hubs at distance 4 from the 1-hub plus two 
times the number of pairs of 2-hubs at distance 4 from each other.

In G, there is exactly one hub at distance 4 from the 1-hub. So, 𝜂10(G)/20 = 𝜂10(H)/20 is 
odd, meaning that there must be an odd number of hubs at distance 4 from the 1-hub in H. 
The only possible odd number here is 1, because there is simply no room to put three or 
more hubs at distance 4 from the 1-hub.

Then, in H and in G, the number of pairs of 2-hubs at distance 4 from each other is 
(𝜂10/20 − 1)/2. �

Now, Claims 4.7 and 4.8 show that the contributions to 𝜂s(H) and 𝜂s(G) from routes which inter-
act with two hubs within distance at most 4 (and no other hubs) are the same. (Formally, this can be 
proved in a similar way to Lemma 4.5, considering a bijection between the set of pairs of hubs at dis-
tance 4 in G, and the set of pairs of hubs at distance 4 in H). Let 𝜂′

s (H) and 𝜂′
s (G) be obtained from 

𝜂s(H) and 𝜂s(G) by subtracting these contributions, so 𝜂′
s (H) = 𝜂′

s (G) for s ≤ 14.

Claim 4.9 In H, there are no hubs at distance 5 from each other.

Proof. The only routes which can contribute to 𝜂′
12 are routes which interact with two different 

hubs at distance 5 from each other. (By Claim 4.7, every pair of hubs is at distance at least 4 
from each other, so routes of length 12 are much too short to interact with three different 
hubs.) Since G has no pair of hubs at distance 5, the same is true for H. �

Claim 4.10 In H:

(1) the 1-hub does not have distance 6 from any other hub, and
(2) the number of pairs of hubs at distance 6 from each other is the same in G and H.

Proof. Given Claim 4.9, the only routes which can contribute to 𝜂′
14 are routes which interact 

with two different hubs at distance 6. (Routes of length 14 are still too short to interact with 
three different hubs.)

The same considerations as for Claim 4.8 show that 𝜂′
14/28 can be interpreted as the 

number of hubs at distance 6 from the 1-hub, plus two times the number of pairs of 2-hubs at 
distance 6 from each other.

In G, there is no hub at distance 6 from the 1-hub. So, 𝜂′
14(G)/28 = 𝜂′

14(H)/28 is even, 
meaning that there are an even number of hubs at distance 6 from the 1-hub v* in H. The only 
possible even number here is zero, because if there were two hubs at distance 6 from v* (one 
on either side), one of these 2-hubs would be at distance 2 from the hub guaranteed by 
Claim 4.8(1) at distance 4 from v*, and this is ruled out by Claim 4.7.

Then, in H and in G, the number of pairs of 2-hubs at distance 6 from each other is 
(𝜂′

14/28)/2. �

Now, Claims 4.7 to 4.10 together imply that H is a (k,ℓ)-nice graph. Indeed, imagine walking around 
the cycles of G and H and consider the distances between each pair of consecutive hubs. By Claims 4.7 
and 4.9, these distances are either 4 or at least 6. By Claims 4.8(2) and 4.10(2), the number of con-
secutive pairs of hubs in H which are at distance 4 or 6 is the same as the number of consecutive pairs 
of hubs in G which are at distance 4 or 6; this number is exactly k. Recalling that H and G both have 
exactly k + 1 hubs, it follows that in H we can start from some hub v0 and walk along the cycle, encoun-
tering a new hub every 4 or 6 steps until we reach a final hub vk. By Claims 4.8(1) and 4.10(1), the 
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1-hub is either v0 or vk (with distance exactly 4 to its closest 2-hub). We have established that H is 
(ℓ, k)-nice.

4.3. Decoding a nice graph
Now, we complete the proof of Lemma 2.3, showing that we can decode a specific nice graph using its 
Laplacian spectrum.

 Proof of Lemma 2.3 As in the proof of Lemma 4.6, we will omit the word ‘decorated’ (we will 
again have no reason to consider undecorated routes).

Suppose we know that G is an (ℓ, k)-nice graph (for some k ≥ 1 and ℓ > 12k), and 
suppose we know the spectrum of G. We will show how to use this information to determine 
exactly which (ℓ, k)-nice graph G is (this suffices to prove Lemma 2.3, by Lemma 4.6).

Specifically, it suffices to determine, for each q ≤ 3k − 1, whether there is a hub at distance 
2 q from the 1-hub v*. (In a nice graph, every hub is at even distance from v*, and the furthest 
possible distance between hubs is 4 + 6(k − 1) = 6k − 2.)

We proceed by induction. For some q ≤ 3k − 1, suppose we know the positions of all hubs 
within distance 2q − 1 of v*. We would like to determine whether there is a hub at distance 
2 q from v*.

Let 𝜂s be the sum of weights of s-routes which interact with at least 2 hubs. By Lemma 4.5, 
we have enough information to determine 𝜂s for s < ℓ. We can refine this further: let 𝜂′

s  be 
obtained from 𝜂s by subtracting the contribution from all routes which interact only with 
hubs within distance 2q − 1 of v*. Since our inductive assumption is that we know the 
positions of all hubs within distance 2q − 1 of v*, we have enough information to determine 
𝜂′

s  (for s < ℓ).
We focus in particular on the quantity 𝜂′

4q+2 (note that 4q + 2 ≤ 4(3k − 1) + 2 < 12k < ℓ, 
so we have enough information to determine this quantity). We break down 𝜂′

4q+2 further:

• Let 𝛼4q+2 be the contribution to 𝜂′
4q+2 from routes which interact with v*, and

• Let 𝛽4q+2(t) be the contribution to 𝜂′
4q+2 from routes which do not interact with v* and interact 

with 2-hubs t times.

Note that 𝜂′
4q+2 = 𝛼4q+2 + ∑∞

t=2 𝛽4q+2(t). �

Claim 4.11 We have 

𝛼4q+2 = {8q + 4 if there is a hub at distance 2q from v*

0 otherwise

Proof. If there is no hub at distance 2 q from v*, then a route of length 4q + 2 is simply too short 
to interact with v* and with one of the 2-hubs that is not within distance 2q − 1 of v*.

If there is a hub v at distance 2 q from v*, the only routes which contribute to 𝛼4q+2 are 
those routes which walk back and forth between v and v*, looking once at v and v* along the 
way. All these routes are cyclic shifts of each other (so, there are 4q + 2 of them), and each 
such route contributes a weight of 2. �

Claim 4.12 𝛽4q+2(t) is divisible by 8 for all t.

Proof. Consider a 2-hub v, and write x, y for the leaves attached to v. Consider a route R which 
at some step j enters x from v (then waits at x for some number of steps before returning to 
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v). We can slightly modify R by simply entering y instead of x at step j (and then waiting at y
for the same number of steps before returning to v).

Say that two routes are equivalent if they can be obtained from one another by a sequence 
of modifications of this type. So, routes in an equivalence class have essentially the same 
structure, but they may visit different leaves. Now, consider a route R which looks at 2-hubs a
times and enters leaves attached to 2-hubs b times (so, R interacts with 2-hubs a + b times). 
The equivalence class of R has size 2b, and the weight of each route in this equivalence class is 
divisible by 2a. So, the total weight of this equivalence class is divisible by 2a+b.

It immediately follows that 𝛽4q+2(t) is divisible by 2t , so if t ≥ 3 then 𝛽4q+2(t) is divisible 
by 8. It remains to consider 𝛽4q+2(2) in more detail.

The routes that contribute to 𝛽4q+2(2) are the routes which interact once each with two 
different 2-hubs u, v (and do not interact with v*). Fix such a route R. As above, the 
equivalence class of R contributes weight divisible by 4, so we just need an additional factor 
of 2. This comes from the fact that mult(R) is equal to 4q + 2 or 8q + 4 (both of which are 
divisible by 2). Indeed, all 4q + 2 cyclic shifts of R yield different routes, because there is a 
unique interaction-with-u step whose position changes with each cyclic shift. Reversing the 
order of R may or may not yield 4q + 2 additional routes. �

Finally, given Claims 4.11 and 4.12, we can determine whether there is a 2-hub at distance 2 q from v*

simply by checking whether 𝜂′
4q+2 is divisible by 8 or not. This completes the inductive step.

5 . D ET E R M I N I N G BI PA RT I T E N E S S W I T H T H E S I G N L E S S 
L A P L AC I A N S P ECT RU M

In this section, we prove Lemma 2.6. This proof mostly comes down to the following two lemmas.

Definition 5.1 For any graph G, let f|L|(G) be the product of nonzero eigenvalues of |L(G)|.

Lemma 5.2 If G is not bipartite, then f|L|(G) is divisible by 4.

Proof. Let G1,… , Gc be the connected components of a non-bipartite graph G, and suppose 
without loss of generality that G1 is non-bipartite. By Fact 3.10, each f|L|(Gi) is an integer, 
and by Fact 3.2 we have f|L|(G) = f|L|(G1)… f|L|(Gc). By Proposition 3.14(2), f|L|(G1) is 
divisible by 4. �

Lemma 5.3 If G is a connected bipartite unicyclic graph with n vertices, whose cycle has length ℓ, 
then f|L|(G) = nℓ.

Proof. Since G is bipartite, its signless Laplacian spectrum is the same as its Laplacian spectrum 
(by Fact 3.1), so by Kirchhoff ’s matrix tree theorem (Theorem 3.13), f|L|(G) is n times the 
number of spanning trees in G (which is ℓ, as we have already observed in the proof of 
Lemma 4.1). �

Now, we are ready to prove Lemma 2.6.

 Proof of Lemma 2.6 Let G be an (ℓ, k) nice graph, for ℓ ≡ 2 (mod 4), and let H be a graph 
with the same signless Laplacian spectrum as G. As discussed in Section 2.2, given 
Lemma 2.3 and Fact 3.1, we just need to prove that H is bipartite.

Let n = ℓ + 2k + 1 be the number of vertices in G. By Lemma 5.3, we have f|L|(G) = nℓ. 
Since ℓ ≡ 2 (mod 4) and n = ℓ + 2k + 1 is odd, f|L|(G) is not divisible by 4. Since G and H
have the same spectrum, we have f|L|(G) = f|L|(H), so Lemma 5.2 implies that H is bipartite. �
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6 . T H E P R I M E C A S E O F T H E M A I N T H EO R E M
In this section, we prove Lemma 2.9. As outlined in Section 2.3, we will use the Cameron–
Goethals–Seidel–Shult theorem (Theorem 3.19), together with the following fact. Recall the defi-
nition of a generalized line graph from Definition 3.18.

Lemma 6.1 If a generalized line graph is not a line graph, then its adjacency matrix has a zero 
eigenvalue.

Proof. Let G be a generalized line graph that is not a line graph. We will show that G has two 
vertices with the same set of neighbours, meaning that A(G) has two equal rows so is not 
invertible and therefore has a zero eigenvalue.

By the definition of a generalized line graph, G contains a cocktailparty graph CP(a) for 
some a ≥ 1. This cocktailparty graph can be thought of as a complete graph K2a with a 
perfect matching removed. Consider one of the edges of this removed perfect matching, and 
let u and v be its endpoints. Then, u and v have the same neighbourhood (in G), as desired. �

Now, crucially, line graphs of nice graphs as in Lemma 2.9 do not have zero eigenvalues.

Lemma 6.2 Let G be an (ℓ, k)-nice graph with ℓ ≡ 2 (mod 4). Then, A(line(G)) does not have 
a zero eigenvalue.

We will prove Lemma 6.2 by explicitly computing the determinant of A(line(G)) using Theorem 3.12. 
We defer this computation to Section 6.1, as it is a little involved; first, we show how to use it to prove 
Lemma 2.9 (after stating a definition that will be used in the proofs of Lemma 2.9 and Theorem 1.4).

Definition 6.3 For any graph G, let fA(G) be the product of nonzero eigenvalues of 
A(G) + 2. Equivalently, writing 𝜎 for the adjacency spectrum of G, 

fA(G) = ∏
𝜆∈𝜎
𝜆≠−2

(𝜆 + 2).

 Proof of Lemma 2.9 assuming Lemma 6.2 Consider ℓ, k with ℓ ≡ 2 (mod 4), and let 
n = ℓ + 2k + 1. Define 

n0 = max{f|A|(Q ) : Q  is a graph on at most 36 vertices}, (6.1)

and suppose n is a prime number larger than n0.
Let G be an (ℓ, k)-nice graph, and suppose that Q  is a graph with the same adjacency 

spectrum as line(G). Our objective is to prove that Q = line(H) for some graph H with n
vertices. Indeed, if we are able to prove this, it will follow from Proposition 3.15 that H has 
the same nonzero signless Laplacian eigenvalues as G, and since H and G have the same 
number of vertices, the multiplicity of the zero eigenvalue will also be the same in H and G. It 
will then follow that H and G are isomorphic (hence Q  and line(G) are isomorphic) by 
Lemma 2.6.

Write Q1,… , Qc for the connected components of Q. By Fact 3.10, each fA(Qi) is an 
integer, and by Fact 3.2, we have fA(Q1)… fA(Qc) = fA(Q ). On the other hand, by 
Proposition 3.15 and Lemmas 5.3, 

fA(Q ) = fA(line(G)) = f|L|(G) = nℓ. (6.2)
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Recalling that n is a prime number, some fA(Qi) must be divisible by n. Suppose without loss 
of generality that 

fA(Q1) is divisible by n. (6.3)

By the Cameron–Goethals–Seidel–Shult theorem (Theorem 3.19), Lemma 6.2 and our 
assumption n > n0 from the start of the proof, Q 1 is a line graph. We write Q1 = line(H1) for 
some (connected) graph H1, with v1 vertices and e1 edges. Note that 

e1 ≤ n, (6.4)

because Q 1 has e1 vertices and is a connected component of Q, which has n vertices (note 
that Q  has the same number of vertices as line(G), which is n because G has n edges).

Now, by Proposition 3.15, we have fA(Q1) = f|L|(H1). This cannot be divisible by 4, 
because fA(Q ) = nℓ is not divisible by 4 (here we are recalling (6.2), and using that n is odd 
and ℓ ≡ 2 (mod 4)). So, by Lemma 5.2, H1 is bipartite.

By Lemma 3.17, A(Q ) has −2 as an eigenvalue with multiplicity 1, so (using Fact 3.2), 
either −2 is not an eigenvalue of A(Q1) or it is an eigenvalue with multiplicity 1.
Case 1: −2 is not an eigenvalue of A(Q1). In this case, Lemma 3.17 says that e1 = v1 − 1, 
and H1 is a tree. The largest TU-subgraph of H1 is H1 itself, so by Theorem 3.12 and 
Proposition 3.15 we have fA(Q1) = f|L|(H1) = v1. Then, (6.3) says that v1 is divisible by n. 
(6.4) says that v1 − 1 ≤ n, so we must have v1 = n. It follows that Q1 = line(H1) has 
e1 = n − 1 vertices, meaning that Q  only has room for one other component Q 2, consisting 
of a single isolated vertex. We then compute fA(Q2) = 1, so fA(Q ) = fA(Q1)fA(Q2) = v1 = n. 
This is not consistent with the fact that fA(Q ) = nℓ (as we observed in (6.2)), so this case 
cannot actually occur.
Case 2: −2 is an eigenvalue of A(Q1). In this case, Lemma 3.17 says that e1 = v1, and H1 is 
an even-unicyclic graph. Let ℓ1 be the length of the cycle in H1, so by Lemma 5.3 we have 
fA(Q1) = f|L|(H1) = v1ℓ1.

By (6.4), we have ℓ1 ≤ v1 ≤ n, and (6.3) says that v1ℓ1 is divisible by the prime number n. 
So, we must have v1 = n. Since Q1 = line(H1) has e1 = v1 = n vertices, there is no room for 
any other components: we have proved that Q = Q1 = line(H1) for some H1 with n vertices, 
as desired. �

6.1. Computing the determinant of the line graph of a nice graph
In this subsection, we prove Lemma 6.2. First, we need some definitions that allow us to discuss the 
structure of the line graph of a nice graph.

Definition 6.4 Let uv be an edge in a graph Q. To add an i-house to uv is to add a set S of i new 
vertices to Q, and to add all possible edges between vertices in S ∪ {u, v}. Then, we say that 
the subgraph induced by S ∪ {u, v} (which is a complete graph on i + 2 vertices) is an i-house. 
The vertices u, v are internal and the vertices in S are external.

Note that the line graph of every (ℓ, k)-nice graph (as defined in Definition 2.2) can be obtained 
by starting with a cycle of length ℓ, then adding a 1-house to one edge and adding 2-houses to k
other edges. The distances between pairs of consecutive i-houses are always 3 or 5 (except one longer 
distance around the cycle). See Figure 2 for an illustration.

Now, our objective is to compute the determinant of the line graph of a nice graph. We will be able 
to reduce this to computing the determinant of a slightly simpler type of graph, which can be studied 
recursively.

Recall from Definition 3.11 that a spanning elementary subgraph of a graph G is a spanning sub-
graph (covering all vertices) consisting of vertex-disjoint edges and cycles. For such a subgraph X, 
recall that 𝛽(X) accumulates a factor of −1 for each edge-component, and a factor of −2 for each 
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cycle-component. By Theorem 3.12, the determinant of A(G) is (up to sign) the sum of 𝛽(X) over all 
spanning elementary subgraphs X of G.

Definition 6.5 Consider r ≥ 0 and k ≥ 0 and 1 ≤ a1 ≤ ⋯ ≤ ak ≤ r satisfying ai − ai−1 ≥ 2
for each 2 ≤ i ≤ k. The graph Q (r; a1,… , ak) is defined by starting with a path of length r
and adding a 2-house on the aith edge of this path for each i. (See Figure 3 for an 
illustration.) Let q(r; a1,… , ak) be the sum of 𝛽(X) over all spanning elementary subgraphs 
X of Q (r; a1,… , ak).

Lemma 6.6 Let r, k, a1,… , ak be as in Definition 6.5. For inductive reasons, it is convenient to 
additionally allow r = −1 (in which case Q(r) is the graph with no vertices).

(1) Taking k = 0, we have q(−1) = 1 and q(0) = 0.
(2) If r − ak ≥ 2 (or if r ≥ 2 and k = 0), then q(r; a1,… , ak) = −q(r − 2; a1,… , ak).
(3) If r − ak = 1 then q(r − 2; a1,… , ak−1) + 2q(r − 3; a1,… , ak−1).
(4) If r = ak then q(r; a1,… , ak−1) = −2q(r − 1; a1,… , ak−1) − 3q(r − 2; a1,… , ak−1).

Proof. First, (1) is an immediate observation.
If ak < r (or if r ≥ 1 and k = 0), then the final vertex in Q (r; a1,… , ak) has degree 1. In an 

elementary spanning subgraph, this final vertex can only be contained in an 
edge-component, consisting of the final two vertices of Q (a1,… , ak).

In particular, if r − ak ≥ 2 (or if r ≥ 2 and k = 0), the spanning elementary subgraphs of 
Q (a1,… , ak) can be obtained by taking a spanning elementary subgraph of Q (a1,… , ak − 2), 
and adding a single edge-component (see Figure 4). We deduce (2), recalling that each 
edge-component contributes a weight of −1.

If r − ak = 1, then the aforementioned edge-component covers one of the internal vertices 
of the final 2-house. There are two different ways to cover the two external vertices in this 
2-house by a spanning elementary subgraph: either we can cover them with a single edge or 
we can cover them, in addition to the remaining internal vertex, with a 3-cycle (see Figure 4). 
In the first case, we accumulate a factor of −2, and the remaining vertices of the spanning 
elementary subgraph can be interpreted as a spanning elementary subgraph of 
Q (r − 2; a1,… , ak−1). In the second case, we accumulate a factor of −1, and the remaining 
vertices of the spanning elementary subgraph can be interpreted as a spanning elementary 
subgraph of Q (r − 3; a1,… , ak−1). So, 

q(r; a1,… , ak−1) = (−1)2q(r − 2; a1,… , ak−1) + (−1)(−2)q(r − 3; a1,… , ak−1),

yielding (3).
If r = ak, then the final vertex of Q (r; a1,… , ak) is an internal vertex of the final 2-house, 

and does not have degree 1. There are a few different ways to cover the final vertex and the 
two external vertices of the final house by a spanning elementary subgraph: we could cover 
just these three vertices with a 3-cycle, or we could cover the entire 2-house (there are three 
different ways to do this with two disjoint edges and three different ways to do this with a 

Figure 2. The line graph of the (46, 3)-nice graph in Figure 1.
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Figure 3. An illustration of the graph Q (13; 3, 7, 13), with 2-houses on the third, seventh and thirteenth edges of the 
underlying path.

Figure 4. All the possible ways to cover the final vertex (and possibly the external vertices in the final 2-house) in a 
spanning elementary subgraph of a graph Q (r; a1,… , ak).

4-cycle; see Figure 4). Similar considerations as above yield 

q(r; a1,… , ak−1) = −2q(r − 1; a1,… , ak−1) + (3(−1)2 + 3(−2))q(r − 2; a1,… , ak−1),

yielding (4). �

The recurrences described in Lemma 6.6 are sufficient to compute any q(r; a1,… , ak), but the general 
formulas are rather complicated. We consider a restricted class of choices of a1,… , ak, which will be 
sufficient for the proof of Lemma 6.2.

Corollary 6.7 Suppose a1,… , ak are odd integers. Then 

q(r; a1,… , ak) = {2k(−1)r/2+1 if r is even,
(2k + 1)(−1)(r+1)/2 if r is odd.

Proof. We proceed by induction on k.
First, iterating Lemma 6.6(2), starting with Lemma 6.6(1), yields 

q(a1 − 2) = (−1)(a1−1)/2, q(a1 − 1) = 0.
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So, Lemma 6.6(3) and (4) give 

q(a1 + 1; a1) = 2(−1)(a1−1)/2 = 2(−1)(a1+1)/2+1, q(a1; a1) = −3(−1)(a1−1)/2 = 3(−1)(a1+1)/2,

respectively. Iterating Lemma 6.6(2) again yields the desired result for k = 1.
Now, consider k ≥ 2 and assume that the desired statement holds for smaller k. Then, 

recalling that ak is odd, our inductive assumption together with Lemma 6.6(3,4) yields 

q(ak; a1,… , ak) = −2q(ak − 1; a1,… , ak−1) − 3q(ak − 2; a1,… , ak−1)

= −2(2k − 2)(−1)(ak−1)/2+1 − 3(2k − 1)(−1)(ak−1)/2

= (2k + 1)(−1)(ak+1)/2,

q(ak + 1; a1,… , ak) = q(ak − 1; a1,… , ak−1) + 2q(ak − 2; a1,… , ak−1)

= (2k − 2)(−1)(ak−1)/2+1 + 2(2k − 1)(−1)(ak−1)/2

= 2k(−1)(ak+1)/2+1.

Iterating Lemma 6.6(2) proves the desired statement. �

Now, we are ready to prove Lemma 6.2.

 Proof of Lemma 6.2 Let b1 < ⋯ < bk be the distances of the 2-hubs from the 1-hub in G (so in 
particular b1 = 4, and all bi are even). Let D be the sum of 𝛽(X) over all spanning elementary 
subgraphs X of line(G).

Let u* be the tip of the 1-house in line(G). There are four ways for an elementary 
subgraph to cover u* (pictured in Figure 5):

(1) u* could be covered by a long cycle that runs all the way around the nice graph.
(2) u* could be covered by a 3-cycle covering the entire 1-house.
(3) u* could be covered by a single edge, whose other vertex is at distance 3 from the 2-house.
(4) u* could be covered by a single edge, whose other vertex is at distance 4 from the 2-house.

Let D1, D2, D3 aand D4 be the contributions to D from spanning elementary subgraphs 
that cover u* in each of the above four ways (in that order). First, D2, D3 and D4 can be 
handled with Corollary 6.7, as follows. Recall that ℓ ≡ 2 (mod 4).

For D2: apart from the 3-cycle covering the 1-house, the rest of a spanning elementary 
subgraph corresponds to a spanning elementary subgraph of Q (ℓ − 3; b1 − 1,… , bk − 1), so 

D2 = −2q(ℓ − 3; b1 − 1,… , bk − 1) = −2(2k + 1) = −4k − 2. (6.5)

For D3: apart from the edge covering the tip of the 1-house, the rest of a spanning elementary 
subgraph corresponds to a spanning elementary subgraph of Q (ℓ − 2; b1 − 1,… , bk − 1), so 

D3 = −q(ℓ − 2; b1 − 1,… , bk − 1) = −(−2k) = 2k. (6.6)

For D4: apart from the edge covering the tip of the 1-house, the rest of a spanning elementary 
subgraph corresponds to a spanning elementary subgraph of 

Q (ℓ − 2; 2, b1,… , bk) ≅ Q (ℓ − 2;ℓ − bk − 1,ℓ − bk−1 − 1… ,ℓ − b1 − 1)

(we can describe the graph in ‘two different directions’). Note that ℓ − bk is even (as the 
difference of two even numbers), so 

D4 = −q(ℓ − 2;ℓ − bk − 1,ℓ − bk−1 − 1… ,ℓ − b1 − 1) = −(−2k) = 2k. (6.7)
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Figure 5. Four possible ways to cover the tip of the 1-house.

It remains to consider D1. Suppose we have an elementary spanning subgraph which 
contains a long cycle C covering u* and going around the ℓ-cycle of line(G). There are three 
different ways that C can interact with each 2-house of line(G) (all of which are pictured at 
the top of Figure 5). Specifically, there are two ways for C to pass through all 4 vertices of the 
2-house, or alternatively C can simply pass through the internal vertices of the 2-house, 
leaving the remaining two external vertices to be covered by an edge-component.

So, there are 3k spanning elementary subgraphs that contribute to D1. To compute the 
weight of each such subgraph: first, start with a base weight of −2. For each 2-house, we have 
three choices; the first two (incorporating the 2-house in the cycle) do not affect the weight, 
but the third (leaving the external vertices for an edge-component) accumulates a factor of 
−1. So, 

D1 = (−2)(1 + 1 − 1)k = −2. (6.8)

Combining (6.5) to (6.8), we see that D = −4, so by Theorem 3.12, the determinant of 
A(line(G)) is nonzero (it has absolute value 4). �

7 . AU G M E N T I N G T H E P R I M E C A S E
In this section, we show how to use line graphs of nice graphs to define a family of exponentially many 
graphs that are determined by their adjacency spectrum. This definition includes a number of inequal-
ities and number-theoretic properties which will be used in a somewhat delicate case analysis in the 
proof of Theorem 1.4 (to rule out various possibilities for graphs which have the same spectrum as 
one of our graphs of interest, but have different structure).

Definition 7.1 The star graph K1,n consists of n leaves attached to a single vertex. Note that 
line(K1,n) is the complete graph Kn on n vertices.

Let 𝒢n be the family of graphs G satisfying the following properties.

G1 G has two components. One of these components is an (ℓ, k)-nice graph G1 (for 
some parameters ℓ, k satisfying ℓ ≤ max(12k, 15)), and the other of these 
components is a star graph K1,n2

 (with some number of edges n2).
G2 Writing n1 = ℓ + 2k + 1 for the number of edges and vertices of G1, we have 

n1 + n2 = n (i.e., G has n edges).
G3 n1 is a sufficiently large prime number (larger than n0 from (6.1)).
G4 ℓ = 2p for a sufficiently large prime number p (larger than n0 from (6.1)).
G5 n2 ≢ 3 (mod 4).
G6 n1 < n2.
G7 2n1 + p − 2 > n.
G8 2n1 − ℓ + 2 < n2 − 1.
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(Note that G3 and G4 imply that G1 satisfies the properties in Lemma 2.9). Let 
𝒬n = line(𝒢n) be the family of line graphs of graphs in 𝒢n.

Then, the following two lemmas imply Theorem 1.4.

Lemma 7.2 There is a constant c > 0 such that |𝒬n| ≥ ecn for every sufficiently large n.

Lemma 7.3 Every graph in 𝒬n is determined by its (adjacency) spectrum.

It remains to prove these lemmas. First, Lemma 7.2 follows quite simply from Corollary 3.21.

 Proof of Lemma 7.2 For sufficiently large n, Corollary 3.21 guarantees the existence of prime 
numbers p, n1 such that n − n1 ≢ 3 (mod 4) and such that 

|n1 − 0.45n| ≤ 0.001n, |p − 0.2n| ≤ 0.001n.

Let ℓ = 2p, let k = (n1 − ℓ − 1)/2 (which is an integer since n1 is an odd prime and ℓ is even), 
and let n2 = n − n1. Then, it is easy to check that ℓ ≤ max(12k, 15) (this is the condition for 
a nice graph in Definition 2.2), and that G3 to G8 all hold. We claim that there are 
exponentially many graphs in 𝒬n with this specific choice of parameters.

To see this, first note that different (ℓ, k)-nice graphs have different line graphs (as 
depicted in Figure 2, the ℓ-cycle in a nice graph G corresponds to an ℓ-cycle in line(G), and 
1-hubs and 2-hubs in G correspond to 1-houses and 2-houses in line(G)). So, it suffices to 
prove that there are exponentially many graphs in 𝒢n with our specific choice of parameters.

An (ℓ, k)-nice graph is specified by a sequence of k − 1 binary choices (every pair of 
consecutive 2-hubs can be at distance 4 or 6). Each of the different ways to make these 
binary choices lead to different (non-isomorphic) graphs. So, there are 2k−1 different 
(ℓ, k)-nice graphs, meaning that 

|𝒬n| ≥ 2k ≥ 2((0.45−0.001)n−2(0.2+0.001)n−1)/2 ≥ e0.01n.
�

Then, to prove Lemma 7.3, we need a more sophisticated version of the arguments used to prove 
Lemma 2.9. In particular, we will need the following more detailed version of the case distinction in 
the proof of Lemma 2.9.

Lemma 7.4 Let n0 be as in (6.1) and let Q be a connected graph with more than n0 vertices, such 
that all eigenvalues of A(Q ) are at least −2, and such that zero is not an eigenvalue of A(Q ). 
Then, we can write Q = line(H) for some connected H.

1. If −2 is not an eigenvalue of A(Q ), then one of the following holds.
A. H is an odd-unicyclic graph, and fA(Q ) = 4.
B. H is a tree, and fA(Q ) is the number of vertices of H.

2. If −2 is an eigenvalue of A(Q ) with multiplicity 1, and if fA(Q ) is not divisible by 8, then 
H is an even-unicyclic graph (with v vertices and a cycle of length ℓ, say), and fA(Q ) = vℓ.

Proof. The initial part of the lemma (that Q  is a line graph) follows from Theorem 3.19, 
Lemma 6.1. Then, the structural descriptions in 1A and 1B follow from Proposition 3.14 
(specifically, A corresponds to the case where H is not bipartite, and B corresponds to the 
case where H is bipartite), and the statements about fA(Q ) are immediate consequences of 
Theorem 3.12.

For 2, we can similarly apply Proposition 3.14, considering the cases where H is or is not 
bipartite. We see that either H is an even-unicyclic graph (in which case the statement about 
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fA(Q ) follows from Lemma 5.3) or H is a non-bipartite graph whose number of edges is one 
more than its number of vertices. We need to rule out this latter case (showing that whenever 
it occurs, fA(Q ) is divisible by 8).

So, suppose that H is non-bipartite and its number of edges is one more than its number 
of vertices. Let H′ be the 2-core of H; its largest subgraph with minimum degree at least 2. 
One can obtain the 2-core by iteratively peeling off leaf vertices (in any order) until no leaves 
remain. There are two possibilities for the structure of H′:

I. H′ consists of two edge-disjoint cycles with a single path between them (this path may have 
length zero), or

II. H′ is a ‘theta graph’, consisting of two vertices with three internally disjoint paths between them.

Case I. In the first case, write C1 and C2 for the two cycles, and let ℓ1 and ℓ2 be their 
lengths. For H to be non-biparitite, at least one of ℓ1 and ℓ2 must be odd (suppose without 
loss of generality that ℓ1 is odd).

• If ℓ2 is even, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by 
deleting a single edge from C2. So, by Theorem 3.12, we have f|L|(H) = 4ℓ2, which is divisible by 
8.

• If ℓ2 is odd, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by 
deleting a single edge from C1 or C2 and the disconnected subgraphs (with two odd-unicyclic 
components) obtained by deleting an edge on the unique path between C1 and C2. Writing ℓ3 for 
the length of the path between C1 and C2, by Theorem 3.12, we have f|L|(H) = 4(ℓ1 + ℓ2) + 42ℓ3, 
which is divisible by 8.

Case II. In the second case, write P1, P2 and P3 for the three internally disjoint paths, and 
let ℓ1,ℓ2 and ℓ3 be their lengths. For H to be non-biparitite, it cannot be the case that ℓ1,ℓ2
and ℓ3 all have the same parity. Suppose without loss of generality that ℓ1 is even and ℓ2 is 
odd.

• If ℓ3 is even, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by 
deleting a single edge from P1 or P3. So, by Theorem 3.12 we have f|L|(H) = 4(ℓ1 + ℓ3), which is 
divisible by 8.

• If ℓ3 is odd, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by 
deleting a single edge from P2 or P3. So, by Theorem 3.12, we have f|L|(H) = 4(ℓ2 + ℓ3), which 
is divisible by 8.

�

We also need the following consequence of Lemma 3.3(2), allowing us to recognize a complete 
graph by its number of vertices and its largest eigenvalue.

Lemma 7.5 Let G be a graph with n vertices, such that A(G) has n − 1 as an eigenvalue. Then, G is 
a complete graph.

Proof. Let e be the number of edges of G, and let 𝜆max be the largest eigenvalue of A(G). Then, 
Lemma 3.3(2) implies that n − 1 ≤ 𝜆max ≤

√
2e − n + 1 or equivalently that e ≥ n(n − 1)/2; 

the only graph with this many edges is a complete graph. �

Now, we prove Lemma 7.3, completing the proof of Theorem 1.4.

 Proof of Lemma 7.3 Let G ∈ 𝒢n (with parameters ℓ, k, n2, n1, p as in Definition 7.1), and let Q
be a graph with the same adjacency spectrum as line(G). Our objective is to prove that Q
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has the complete graph Kn2
 as a connected component. Indeed, if we are able to prove this, 

then we can apply Lemma 2.9 to the graph that remains after removing this Kn2
 component 

(here we are using Fact 3.2 to see that removing this Kn2
 component has a predictable effect 

on the spectrum).
As is well known (see [5, Section 1.4.1]), the eigenvalues of a complete graph Kn2

 are −1 
(with multiplicity n2 − 1) and n2 − 1 (with multiplicity 1). So (by Fact 3.2), as in the proof of 
Lemma 2.9, we can see that in the spectrum of A(Q ) there is no zero eigenvalue and −2 
appears as an eigenvalue with multiplicity 1. Also, by Fact 3.2, Proposition 3.15 and 
Lemma 5.3, we have 

fA(Q ) = (n2 + 1)n1ℓ = 2(n2 + 1)n1p. (7.1)

Recalling (7.1) and G5, we see that fA(Q ) is not divisible by 8 (so by Fact 3.2, fA(Qi) is not 
divisible by 8 for any connected component Q i of Q )

Now, Fact 3.2 tells us that some connected component Q 2 of Q  must have n2 − 1 as an 
eigenvalue. Let Δ2 be the maximum degree of Q 2, so by Lemma 3.3(1) we have 

Δ2 ≥ n2 − 1. (7.2)

In particular, Q 2 has at least Δ2 + 1 ≥ n2 vertices, so by Lemma 7.4 and the assumptions 
n1 > n2 ≥ n0 from G3 and G6, we can write Q2 = line(H2) for some graph H2. Let v2 be the 
number of vertices in H2.

Now, we consider the cases in Lemma 7.4 (1A, 1B and 2) for the structure of H2. We will 
show that all these cases lead to contradiction except 1B (i.e., H2 is a tree), and in that case 
we will prove that v2 = n2 + 1 vertices (so H2 has n2 edges and Q 2 has n2 vertices; this suffices 
to show that Q 2 is our desired Kn2

 component, by Lemma 7.5).
Case 1A: H2 is odd-unicyclic. In this case, we have fA(Q2) = 4. Since fA(Q ) is divisible by 
the prime number n1, there must be some component Q1 ≠ Q2 such that fA(Q1) is divisible 
by n1. Recall from (7.1) that fA(Q ) is not divisible by 8, so fA(Q1) must be odd.

By Lemma 7.4 (and the assumption n1 > n0 from G3), we can write Q1 = line(H1) for 
some graph H1. Let v1 be the number of vertices in H1. Considering all cases of Lemma 7.4, 
the only possibility that leads to fA(Q1) being odd is the case where H1 is a tree (whose 
number of vertices v1 is odd and divisible by n1). Now, we can proceed similarly to Case 1 in 
the proof of Lemma 2.9.

Note that Q 1 has v1 − 1 vertices and Q 2 has v2 ≥ Δ2 + 1 ≥ n2 vertices (for the latter 
inequality, we used (7.2)). So, v1 − 1 + n2 ≤ n, or equivalently v1 ≤ n1 + 1. Since v1 is 
divisible by n1, we must have v1 = n1, so Q  only has room for one other component Q 3
(other than Q 1 and Q 2), consisting of a single isolated vertex. If this component exists, it has 
fA(Q3) = 1. We then compute fA(Q ) = fA(Q1)fA(Q2) = 4n1, which is not consistent with 
(7.1). So, this case is impossible.
Case 1B: H2 is a tree. In this case, fA(Q2) = v2. Our objective is to prove that H2 has n2 + 1
vertices (this suffices, by Lemma 7.5). We need to carefully consider various possibilities for 
the connected components which are responsible for the large prime factors n1 and p of 
fA(Q ). The details will be a bit delicate.

First, note that Q 2 has v2 − 1 vertices; recalling (7.2), we have 

v2 − 1 ≥ Δ2 + 1 ≥ n2. (7.3)

Now, suppose that v2 is divisible by n1 (we will show that this leads to contradiction). By 
(7.3) and G6, we have v2 > n1 + 1, so in order for n1 to divide v2 we must have v2 ≥ 2n1. It 
cannot be the case that v2 is divisible by p as well as n1 (this would cause v2 to be far too large, 
noting that Q 2 has v2 − 1 ≤ n vertices), so there must be some component Q * ≠ Q2 such 
that fA(Q *) is divisible by p. Considering all cases in Lemma 7.4, we see that this is only 
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possible if Q * has at least p − 1 vertices (as the line graph of a graph with at least p − 1 edges). 
But then Q * and Q 2 together have at least (2n1 − 1) + (p − 1) vertices, which contradicts G7.

So, v2 cannot be divisible by n1, and there must be some component Q1 ≠ Q2 such that 
fA(Q1) is divisible by n1. By Lemma 7.4, we can write Q1 = line(H1) for some graph H1.

Next, suppose that H1 is a tree (we will show that this leads to contradiction). By (7.3), 
there are at most n1 vertices in components other than Q 2. Since v1 is divisible by n1, we 
must have v1 = n1, meaning that Q 1 has n1 − 1 vertices. So, Q  only has room for one other 
component Q 3 (other than Q 1 and Q 2), consisting of a single isolated vertex, and 
fA(Q ) = fA(Q1)fA(Q2) = n1v2 ≤ n1(n2 + 2) (here we used that Q 2 has at most n2 + 1
vertices, so v2 ≤ n2 + 2). This contradicts (7.1).

So, Q 1 is not the line graph of a tree. Considering all other cases in Lemma 7.4, we see that 
the only way for fA(Q1) to be divisible by n1 is for Q 1 to have at least n1 vertices. Recalling 
(7.3), we deduce that Q 2 has exactly n2 vertices, as desired.
Case 2: H2 is even-unicyclic. Let ℓ2 = 2q be the length of the cycle in H2, so fA(Q2) = v2ℓ2. 
We will again need to consider various possibilities for the connected components which are 
responsible for the large prime factors n1 and p of fA(Q ) (in each case we need to reach a 
contradiction), but the details will be even more delicate.

• First, suppose that v2 is divisible by n1. Note that Q 2 has v2 vertices. Recalling (7.2) and G6, we 
have v2 ≥ Δ2 + 1 ≥ n2 > n1, and we also have v2 ≤ n < 3n1 by G7, so in order for n1 to divide v2
we must have v2 = 2n1. We consider possibilities for the prime factor p.
– Similarly to Case 1B, it cannot be the case that v2 is divisible by p as well as n1 (this would cause 

v2 to be too large).
– Also, similarly to Case 1B, it cannot be the case that there is another component Q * ≠ Q2 such 

that fA(Q *) is divisible by p (then Q * would have to have at least p − 1 vertices by Lemma 7.4, 
and Q * and Q 2 together would have at least 2n1 + (p − 1) vertices, contradicting G7).

– Recalling that fA(Q2) = 2v2q, the remaining case is that q is divisible by p. In this case we have 
ℓ2 ≥ ℓ, i.e., the cycle in H2 has length at least ℓ. Each of the v2 edges in H2 can be incident to 
at most two of the edges of this cycle, so Δ2 ≤ v2 − ℓ + 2 = 2n1 − ℓ + 2. But then (7.2) and G8
are inconsistent with each other.

• So, v2 is not divisible by n1. Suppose next that q is divisible by n1, so the cycle of H2 has length 
at least 2n1 and Δ2 ≤ v2 − 2n1 + 2 ≤ n − 2n1 + 2. But then (7.2) implies p ≤ n1 ≤ n2 − 1 ≤ n −
2n1 + 2 (using G6), which is inconsistent with G7.

• The only remaining possibility is that there is some component Q1 ≠ Q2 such that fA(Q1) is divis-
ible by n1. By Lemma 7.4, Q 1 has at least n1 − 1 vertices, meaning that there are only n2 + 1 vertices 
left for Q 2. By (7.2), Q 2 must have at least Δ2 + 1 ≥ n2 vertices.
– If Q 2 has n2 vertices, then some vertex in Q 2 is adjacent to all the other vertices in Q 2, meaning 

that some edge of H2 is incident to all the other edges in H2. This is not possible, recalling that 
H2 is an even-unicyclic graph.

– The only other possibility is that H2 has n2 + 1 vertices, meaning that Q 1 has n1 − 1 vertices 
(and Q 1 and Q 2 are the only components of Q ). This is only possible if H1 is an n1-vertex tree, 
recalling the cases in Lemma 7.4. Then, some vertex in Q 2 is adjacent to all but one of the other 
vertices in Q 2, meaning that some edge of H2 is incident to all but one of the other edges in H2. 
This can only happen if ℓ2 = 4. We deduce that fA(Q ) = fA(Q1)fA(Q2) = n1 ⋅ 4(n2 + 1), which 
is not consistent with (7.1).

�
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