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ABSTRACT

We study the Fröhlich polaron model in R3, and prove a lower bound on its ground state energy as a function of
the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper
bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately
parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the
parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as α4 for large coupling constant α.

1. Introduction and main results

This is the second part of a study of the Fröhlich polaron [5] in the regime of
strong coupling between the electron and the phonons, which are the optical modes of a
polar crystal. Our goal is to quantify the heuristic picture that the mass of an electron in a
polarizable medium effectively increases due to an emerging phonon cloud attached to it.
We are going to verify that the energy-momentum relation of a polaron is asymptotically
given by the semi-classical formula E(P) − E(0) = |P|2

2α4m
, which agrees with the energy-

momentum relation of a particle having mass α4m, where α4m is the asymptotic formula
conjectured by Landau and Pekar [7] for the mass of a polaron in the regime where the
coupling parameter α goes to infinity.

Following the notation of the first part [1], where a second order expansion for
the absolute ground state energy of a polaron was verified, we are going to use creation
and annihilation operators satisfying the semi-classical rescaled canonical commutation
relations [a(f ), a†(g)] = α−2 〈f |g〉 for f , g ∈ L2(R3), in order to introduce the Fröhlich
Hamiltonian acting on the Fock space L2(R3) ⊗F(L2(R3)) as

H := −�x − a(wx) − a†(wx) +N ,

where wx(x
′) := π− 3

2 |x′ − x|−2 and the (rescaled) particle number operator N equals
N :=∑∞

n=1 a†(ϕn)a(ϕn) for an orthonormal basis {ϕn : n ∈ N} of L2(R3). The Fröhlich
Hamiltonian H commutes with the components (P1,P2,P3) of the total momentum op-
erator

P := 1
i
∇ + α2

∫

R3
k a

†
k akdk ,

where we use the standard notation
∫

R3 f (k)a
†
k akdk as a symbolic expression for the

operator
∑∞

n,m=1〈ϕn|f ( 1
i
∇)|ϕm〉a†(ϕn)a(ϕm). Hence we can study their joint spectrum

σ(P,H) ⊆ R4, and define the ground state energy Eα(P) of H at total momentum P
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as Eα(P) := inf{E : (P,E) ∈ σ(P,H)}. Our main result below is the proof of the asymp-
totic energy-momentum relation

Eα(P) = Eα(0) + min
{ |P|2

2α4m
, α−2

}

+ Oα→∞
(
α−(2+ε)

)
,(1.1)

where ε > 0 is a suitable constant and m is the conjectured constant by Landau and
Pekar. In order to provide an explicit expression for m, let us first define the Pekar func-
tional FPek(ϕ) := ‖ϕ‖2 + infσ(−� + Vϕ) for ϕ ∈ L2(R3), where we define the potential
Vϕ := −2(−�)− 1

2Reϕ. If follows from the analysis in [9] that there exists a unique radial
minimizer ϕPek of the functional FPek. With this minimizer at hand, we can introduce the
constant m := 2

3‖∇ϕPek‖2 in Eq. (1.1).
In order to formulate our main Theorem 1.1, let us further introduce the minimal

Pekar energy ePek := infϕ FPek(ϕ) as well as the Hessian HPek of FPek at the minimizer
ϕPek restricted to real-valued functions ϕ ∈ L2

R(R3), i.e. we define HPek as the unique
self-adjoint operator on L2(R3) satisfying

〈ϕ∣∣HPek
∣
∣ϕ〉 = lim

ε→0

1
ε2

(
FPek
(
ϕPek + εϕ

)− ePek
)

for all ϕ ∈ L2
R(R3). With this notation at hand, we can state our main new result in

Theorem 1.1. It provides a sharp asymptotic lower bound on the ground state energy
Eα(P) of the operator H as a function of the total momentum P.

Theorem 1.1. — There exists a constant ε > 0 such that

Eα(P) ≥ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ min

{ |P|2
2α4m

, α−2

}

− α−(2+ε)(1.2)

for all P ∈ R3 and for all α ≥ α0, where α0 is a suitable constant.

That the lower bound in Eq. (1.2) is indeed sharp follows from the corresponding
asymptotic upper bound established in [10], given by

Eα(P) ≤ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ min

{ |P|2
2α4m

, α−2

}

+ Cκα
− 5

2 +κ,(1.3)

where κ > 0 is arbitrary and Cκ a suitable constant. In combination with Eq. (1.2) this
shows that

Eα(P) = ePek − 1
2α2

Tr
[
1 − √

HPek
]+ min

{ |P|2
2α4m

, α−2

}

+ Oα→∞
(
α−(2+ε)

)
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for all P ∈ R3, which in particular proves Eq. (1.1). Note that α−2 corresponds to the
continuum threshold; i.e., σ(P,H) ⊃ R3 × [Eα(0) + α−2,∞), the latter corresponding
to states describing free phonons on top of the polaron ground state [6, 11].

In particular, Eα(P) has an approximate parabolic shape below the continuum
threshold, i.e., for |P| <

√
2mα. The Landau–Pekar formula for the effective mass ap-

pears in the limit α → ∞ as the semi-latus rectum of the parabola, in the sense that for
any 0 < |P| < √

2m

m = lim
α→∞ α−4 |αP|2

2(Eα(αP) − Eα(0))
.(1.4)

It is common the define the polaron’s effective mass for fixed α as

Meff(α) := lim
P→0

|P|2
2(Eα(P) − Eα(0))

.

The quantity on the right hand side of Eq. (1.4) is clearly related to the large α limit of
α−4Meff(α), with the difference being that the limit P → 0 is taken before the limit α →
∞. While it is not clear at this point how to obtain the lower bound limα→∞ α−4Meff(α) ≥
m, we can make use of the inequality Eα(P) ≤ Eα(0) + |P|2

2Meff(α)
recently proved in [14] in

order to verify the upper bound limα→∞ α−4Meff(α) ≤ m. In fact, by applying Eq. (1.1) in
the special case of P satisfying |P| = √

2mα we have

Eα(0) + 1
α2

+ Oα→∞
(
α−(2+ε)

)= Eα(P) ≤ Eα(0) + mα2

Meff(α)
,

which yields the claimed upper bound on Meff(α). We formulate it as the subsequent
Corollary.

Corollary 1.2. — There exists a constant ε > 0 such that

Meff(α) ≤ α4m + Oα→∞
(
α4−ε
)
.

The remainder of this paper contains the proof of Theorem 1.1. In order to guide
the reader, we start with a short explanation of the main strategy.

Proof strategy of Theorem 1.1. — Since (P,Eα(P)) is an element of the joint spectrum
of the operator pair (P,H), there clearly exist states 	α satisfying P	α ≈ P	α and
H	α ≈ Eα(P)	α. In order to verify Theorem 1.1, it is therefore enough to show that
〈	α|H|	α〉 is bounded from below by the right hand side of Eq. (1.2). For this to hold
it is crucial to use the additional information P	α ≈ P	α on the momentum, since in
general H, as an operator, is not bounded from below by the right hand side of Eq. (1.2).
It is not possible to transform the constrained minimization problem to a global one by
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the usual method of Lagrange multipliers, since the operators P are not bounded relative
to H. More precisely, while clearly

Eα(P) ≥ infσ
(
H + λ(P − P)

)
(1.5)

for any λ ∈ R3, such a bound is insufficient as the right hand side is −∞ for λ �= 0, which
follows easily from the fact that Eα(P) is bounded uniformly in P (compare with Eq. (1.1)).

In order to improve the lower bound in Eq. (1.5), we introduce a wavenumber cut-
off � in the Hamiltonian H as well as in the momentum operator P, leading to the study
of the ground state energy Eα,�(P) of the truncated Hamiltonian H� as a function of
the truncated momentum P�. As we will show in the subsequent Section 2, it is enough
to prove Eq. (1.2) for the modified energy Eα,�(P) in order to verify our main Theorem
1.1. By introducing the cut-off we manually exclude the radiative regime where a single
phonon carries the total momentum, which is responsible for the (approximately) flat
energy-momentum relation Eα(P) above the threshold |P| = √

2mα and the resulting
collapse of the quadratic approximation Eα(P) − Eα(0) ≈ |P|2

2α4m
above this threshold.

In contrast, in the presence of the cut-off, it turns out that we can apply the method
of Lagrange multiplies. We shall follow the strategy developed in the first part [1], and
construct approximate eigenstates 	α to the joint eigenvalue (P,Eα,�(P)) of the opera-
tor pair (P�,H�), which in addition satisfy (complete) Bose–Einstein condensation with
respect to the minimizer ϕPek of the Pekar functional FPek. In this context we call 	α an
approximate eigenstate in case

〈	α

∣
∣(P� − P)2

∣
∣	α〉 = Oα→∞

(
α2−r
)
,

Eα,�(P) ≥ 〈	α|H�|	α〉 + Oα→∞
(
α−(2+r)

)

for some r > 0. In order to verify that Eα,�(P) is bounded from below by the right hand
side of Eq. (1.2), it is consequently enough to show that

〈
	
∣
∣H� + λ(P − P�)

∣
∣	
〉≥ ePek − 1

2α2
Tr
[
1 − √

HPek
]

(1.6)

+ λP − α4m|λ|2
2

− α−(2+ε)

for all states 	 satisfying (complete) Bose–Einstein condensation with respect to the min-
imizer ϕPek, providing the desired lower bound for the optimal choice λ = P

mα4 , with the

term α4m|λ|2
2 in Eq. (1.6) arising naturally as the Legendre transformation of the quadratic

approximation |P|2
2α4m

.
Since Eq. (1.6) claims a global lower bound, i.e. there is no constraint on the mo-

mentum of 	 , we can utilize the methods developed in the first part [1], where a lower
bound on the total minimum Eα = infσ(H) was established. The basic idea is that we can
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find, up to a unitary transformation, a lower bound on the operator H� + P
mα4 (P − P�)

of the form

ePek + |P|2
2α4m

+ Q� + Oα→∞
(
α−(2+r)

)
,(1.7)

where Q� is a system of harmonic oscillators, which holds when tested against states sat-
isfying (complete) Bose–Einstein condensation. The operator Q� is bounded from below
in the presence of a (suitable) wavenumber cut-off � and the ground state energy of Q�

can be computed explicitly, giving rise to the quantum correction − 1
2α2 Tr[1 − √

HPek ] in
Eq. (1.2).

Finally, we note that it would be a natural idea to study the right hand side of the
following Eq. (1.8)

Eα(P) ≥ infσ
(

H + μ

α4
(P − P)2

)

,(1.8)

in the limit μ → ∞, which, in contrast to Eq. (1.5), would be sharp enough to yield
the desired lower bound even without a wavenumber cut-off �. However, in order to
establish a lower bound on H + μ

α4 (P − P)2 of the form

ePek + |P|2
2α4m

+ Q + Oα→∞
(
α−(2+r)

)
,

where Q is a semi-bounded system of harmonic oscillators, we believe it is still a necessity
to include a wavenumber cut-off �. For technical reasons we therefore prefer to work
with Eq. (1.5) due to the presence of the (typically) small parameter α2λ = |P|

mα2 in front of
the operator 1

α2 (P − P). �

Outline. The paper is structured as follows. In Section 2 we shall show that it
is sufficient to prove Eq. (1.2) for a model including a suitable ultraviolet wavenumber
cut-off in order to verify our main Theorem 1.1. In the subsequent Section 3, we will
construct approximate eigenstates for the truncated model defined in Section 2, which in
addition satisfy (complete) Bose–Einstein condensation with respect to the state ϕPek. Sec-
tion 4 is then devoted to the proof of our main technical Theorem 2.1, where we use the
method of Lagrange multipliers in order to get rid of the momentum constraint. Finally,
Appendix A contains auxiliary results on commutator estimates as well as properties of
the Pekar minimizer ϕPek, which get used in the proof.

2. Reduction to bounded wavenumbers

In this section we shall introduce the truncated Hamiltonian H�, which includes a
wavenumber restriction |k| ≤ �, and we are going to state our main technical Theorem



276 MORRIS BROOKS, ROBERT SEIRINGER

2.1, which provides an analogue of Theorem 1.1 for the truncated model. While the
proof of Theorem 2.1 is the content of Sections 3 and 4, we will verify in this Section
that Theorem 1.1 is a consequence of Theorem 2.1, i.e. we will explain why it is enough
to prove Eq. (1.2) for a model including a wavenumber regularization. The quantum
nature of our system, and in particular the discrete spectrum σ(N ) = {0, 1

α2 ,
2
α2 , . . . } of

the number operator N , is essential for this argument to work. In contrast, in the classical
case the effective mass is infinite since there nothing prevents a priori the wavenumber
from escaping to infinity without an energy penalty, and one has to introduce a suitable
regularization in order to observe the expected asymptotics Meff = α4m + oα→∞(α4), see
[3].

Before formulating Theorem 2.1, we shall introduce some useful notation. Follow-
ing [1], we define for a function f : X −→ R, ε ≥ 0 and −∞ ≤ a ≤ b ≤ ∞, the function
χε(a ≤ f ≤ b) : X −→ [0,1] as

χε
(
a ≤ f (x) ≤ b

) :=
{

α(
f (x)−b

ε
)β(

f (x)−a

ε
), for ε > 0

1[a,b](f (x)), for ε = 0,
(2.1)

where α,β : R −→ [0,1] are given C∞ functions such that α2 + β2 = 1, supp(α) ⊂
(−∞,1) and supp(β) ⊂ (−1,∞). Similarly we define the operator

χε(a ≤ T ≤ b) :=
∫

χε(a ≤ t ≤ b)dE,

where T is a self-adjoint operator and E the corresponding spectral measure. Further-
more let us write χ(a ≤ f ≤ b) in case ε = 0 and χε(· ≤ b), respectively χε(a ≤ ·), in case
a = −∞ or b = ∞, respectively. With this notation at hand, we define the Hamiltonian
H� with wavenumber cut-off � ≥ 0 as

H� := −�x − a
(
χ
(|∇| ≤ �

)
wx

)− a†
(
χ
(|∇| ≤ �

)
wx

)+N .(2.2)

Theorem 2.1. — Let Eα,�(P) be the ground state energy of the operator H� as a function of

the (one-component of the) truncated total momentum

P� := 1
i
∇x1 + α2

∫

χ 1
(
�−1|k1| ≤ 2

)
k1 a

†
k akdk

and let � = α
4
5 (1+σ) with 0 < σ < 1

9 . Then there exists a constant ε > 0 such that for all C > 0,

|P| ≤ Cα and α ≥ α0(σ,C)

Eα,�(P) ≥ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ |P|2

2α4m
− α−(2+ε),(2.3)

where α0(σ,C) is a suitable constant.
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For technical reasons we use here the smooth cut-off χ 1(�−1|k1| ≤ 2) instead of
the sharp cut-off χ(�−1|k1| ≤ 1) in the definition of the momentum operator P�. Note
also that the momentum cut-off appears in (2.2) only in the interaction term, and not in
the field energy N . In the following we shall argue that, as a consequence of Theorem
2.1, Eq. (2.3) is also valid with P� replaced by

P′
1 := 1

i
∇x1 + α2

∫

|k|≤�

kj a
†
k akdk

having the sharp cut-off, and with H� replaced by the fully restricted Hamiltonian

H′
� := H� −

∫

|k|>�

a
†
k akdk.

In order to see this, observe that P′
1 and H′

� are the restrictions (in the sense of opera-
tors) of P� and H� to states of the form 	 ′ ⊗ �, where 	 ′ is an element of the space
L2(R3,F(ranχ(|∇| ≤ �))) and � is the vacuum in F(ranχ(|∇| > �)). Hence

σ
(
P′

1,H′
�

)⊆ σ(P�,H�),

and therefore we obtain as an immediate consequence of the previous Theorem 2.1 that

E ≥ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ |P|2

2α4m
− α−(2+ε)(2.4)

for all (P,E) ∈ σ(P′
1,H′

�) with |P| ≤ Cα and α ≥ α0(σ,C). In the proof of Theorem 1.1
below it will be useful to have Eq. (2.4) for P′

1 and H′
�, instead of Eq. (2.3) for P� and

H�.
In order to verify Theorem 1.1, it is convenient to introduce the ground state en-

ergy E∗
α,�(P) of the operator H� as a function of P. Note that in contrast to Eα,�(P), we

do not use a wavenumber cut-off in the momentum operator here, while we still have
the cut-off in the Hamiltonian H�. In the following Lemma 2.2 we are going to utilize
the results in [4, 13], where the energy cost of introducing a wavenumber cut-off in the
Hamiltonian is quantified, in order to compare E∗

α,�(P) with Eα(P).

Lemma 2.2. — Let � = α
4
5 (1+σ) for σ > 0. Then there exists a constant C′ > 0, such that

for all P ∈ R3 and α large enough

Eα(P) ≥ E∗
α,�(P) − C′α−2(1+σ).

Proof. — By the results in [4, 13], there exists a C > 0 such that for α large enough

H� ≤ H + Cα−2(1+σ)
(
H2 + 1

)
.(2.5)
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This was first shown in [4] for a confined polaron model on a bounded domain, but the
method extends in a straightforward way to the model on R3, as shown in [13] (see also
[2] for the corresponding result for a polaron model on a torus). In the following, let 	ε

be a state satisfying χ(
∑3

j=1(Pj − Pj)
2 ≤ ε2)	ε = 	ε and 〈	ε|(H − Eα(P))2|	ε〉 ≤ ε2,

where ε > 0. By Eq. (2.5) we therefore have

〈	ε|H�|	ε〉 ≤ Eα(P) + Cα−2(1+σ)
(〈	ε

∣
∣H2
∣
∣	ε〉 + 1

)+ ε

≤ Eα(P) + Cα−2(1+σ)
(
2Eα(P)2 + 2ε2 + 1

)+ ε

≤ Eα(P) + C′α−2(1+σ) + ε

for 0 < ε ≤ 1 and a suitable C′, where we used that Eα(P) is uniformly bounded for
P ∈ R3 and α ≥ 1 in the last inequality. Hence

χ
(
H� ≤ Eα(P) + C′α−2(1+σ) + ε

)
	ε �= 0.

Using χ(
∑3

j=1(Pj − Pj)
2 ≤ ε2)	ε = 	ε , we obtain

Aε := σ(P,H�) ∩ (Bε(P) × (−∞,Eα(P) + C′α−2(1+σ) + ε]) �= ∅.

Since H� is bounded from below, (Aε)0<ε≤1 is a monotone sequence of non-empty com-
pact sets, i.e. Aε1 ⊆ Aε2 for ε1 ≤ ε2, and consequently

σ(P,H�) ∩ ({P} × (−∞,Eα(P) + C′α−2(1+σ)])=
⋂

0<ε≤1

Aε �= ∅,

which is equivalent to E∗
α,�(P) ≤ Eα(P) + C′α−2(1+σ). �

Given Theorem 2.1 we can now give a proof of Theorem 1.1.

Proof of Theorem 1.1. — In the first step of the proof, we are going to verify Eq. (1.2)
for |P| ≤ √

2mα. Due to the rotational symmetry, we can assume w.l.o.g. that P =
(P1,0,0), and by Lemma 2.2 we know that

Eα(P) + C′α−2(1+σ) ≥ inf
{
E : (P1,0,0,E) ∈ σ(P1,P2,P3,H�)

}
(2.6)

≥ inf
{
E : (P1,E) ∈ σ(P1,H�)

}
.

Making use of the fact that the operators P′
1, H′

�, P1 − P′
1 and H� − H′

� are pairwise
commuting and that P′

1, H′
� and P1 − P′

1, H� − H′
� act on different factors in the tensor

product L2(R3,F(ranχ(|∇| ≤ �))) ⊗ F(ranχ(|∇| > �)), their joint spectrum is well-
defined and satisfies

σ
(
P′

1,H′
�,P1 − P′

1,H� − H′
�

)= σ
(
P′

1,H′
�

)× σ
(
P1 − P′

1,H� − H′
�

)
.
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Hence we can rewrite the right hand side of Eq. (2.6) as

inf
P′

1+P̃1=P1

{
E′ + Ẽ : (P′

1,E′) ∈ σ
(
P′

1,H′
�

)
,

(̃P1, Ẽ) ∈ σ
(
P1 − P′

1,H� − H′
�

)}
.

In order to verify that E′ + Ẽ is bounded from below by the right hand side of Eq. (1.2)
for a suitable ε > 0 and |P1| ≤ √

2mα, let us first consider the case Ẽ ≥ α−2. Since E′ ∈
σ(H′

�), we have E′ ≥ infσ(H′
�) ≥ infσ(H) = Eα and therefore

E′ + Ẽ ≥ Eα + α−2 ≥ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ α−2 − α−(2+ε′)

for a suitable ε ′ > 0, where we have used [1, Theorem 1.1]. Regarding the other case
Ẽ < α−2, note that we have

(̃P1, Ẽ) ∈ σ
(
P1 − P′

1,H� − H′
�

)= {(0,0)
}∪

∞⋃

ℓ=1

R ×
{

ℓ

α2

}

,

and therefore Ẽ = 0 and P̃1 = 0. Hence |P′
1| = |P1| ≤

√
2mα and consequently

E′ + Ẽ = E′ ≥ ePek − 1
2α2

Tr
[
1 − √

HPek
]+ |P′

1|2
2α4m

− α−(2+ε)

= ePek − 1
2α2

Tr
[
1 − √

HPek
]+ |P1|2

2α4m
− α−(2+ε),

where we have used (P′
1,E′) ∈ σ(P′

1,H′
�) together with Eq. (2.4). This concludes the

proof of Eq. (1.2) for |P| ≤ √
2mα.

In order to verify Eq. (1.2) for |P| >
√

2mα, we are going to use the fact that
P �→ Eα(P) is a monotone radial function, as recently shown in [14], and consequently
Eα(P) ≥ Eα(

√
2m P

|P|) for |P| ≥ √
2mα. This reduces the problem to the previous case, and

hence concludes the proof of Theorem 1.1. �

3. Construction of a condensate

This section is devoted to the construction of approximate p ground states 	α

satisfying complete condensation in ϕPek, which we will utilize in order to prove Theorem
2.1 in Section 4. In this context, we call 	α an approximate p ground state in case

〈	α|H�|	α〉 = Eα,�

(
α2p
)+ Oα→∞

(
α−(2+ε)

)
,

〈
	α

∣
∣(ϒ� − p)2

∣
∣	α

〉
� α−(2+ε),
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with ε > 0, where Eα,�(α2p) and H� are defined in, respectively above, Theorem 2.1,
and we define the (rescaled and truncated) phonon momentum operator

ϒ� :=
∫

χ 1
(
�−1|k1| ≤ 2

)
k1 a

†
k akdk .

Similarly to H�, it also depends on α due to the rescaled canonical commutation rela-
tions [a(f ), a†(g)] = α−2 〈g|f 〉 but we suppress the α dependence for the sake of readabil-
ity. Here and in the following, we write X � Y in case there exist constants C, α0 > 0
such that X ≤ C Y for all α ≥ α0. It is clear that there exist states 	α that satisfy
both 〈	α|H�|	α〉 − Eα,�(α2p) � α−(2+ε) and 〈	α|(α−2 P� − p)2|	α〉 � α−(2+ε), since
(p,Eα,�(α2p)) is a point in the joint spectrum of (α−2 P�,H�). As part of the subsequent
Lemma 3.1 we are going to show that the contribution of 1

iα2 ∇x1 in α−2 P� = 1
iα2 ∇x1 +ϒ�

is negligibly small, i.e., we shall show that it does not matter whether one uses ϒ� or
α−2 P� in the definition of approximate ground states. In particular, this will imply the
existence of approximate p ground states. We will choose 	α such that supp(	α) ⊆ BL(0)

for a suitable L, where we define the support using the identification

L2
(
R3
)⊗F

(
L2
(
R3
))∼= L2

(
R3,F

(
L2
(
R3
)))

in order to represent elements 	 ∈ L2(R3) ⊗ F(L2(R3)) as functions x �→ 	(x) with
values in F(L2(R3)), i.e. supp(	) refers to the support of the electron.

In the rest of this paper, we will always assume that α ≥ 1. Most of the results
in this Section include Eα,�(α2p) ≤ Eα + C|p|2 as an assumption for an arbitrary, but
fixed, constant C > 0, where Eα denotes the ground state energy of H. For the purpose
of proving Theorem 2.1 this is not a restriction, since we can always pick C ≥ 1

2m
and

therefore Eα,�(α2p) > Eα + C|p|2 immediately implies the statement of Theorem 2.1

Eα,�

(
α2p
)
> Eα + C|p|2 ≥ ePek − 1

2α2
Tr
[
1 − √

HPek
]+ |p|2

2m
− α−(2+ε),

where we used Eα ≥ ePek − 1
2α2 Tr[1 − √

HPek ] − α−(2+ε) by [1, Theorem 1.1].

Lemma 3.1. — Given 0 < σ < 1
4 , let � = α

4
5 (1+σ) and L = α1+σ , and assume p satisfies

|p| ≤ C
α

and Eα,�(α2p) ≤ Eα + C|p|2 for a given C > 0, where Eα is the ground state energy of H.

Then there exist states 	•
α satisfying

〈	•
α|H�|	•

α〉 − Eα,�

(
α2p
)
� α−2(1+σ),

〈
	•

α

∣
∣(ϒ� − p)2

∣
∣	•

α

〉
� α2σ−4,

as well as supp(	•
α) ⊆ BL(0).
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Proof. — Since (p,Eα,�(α2p)) is an element of the joint spectrum σ( 1
iα2 ∇x1 +

ϒ�,H�), there exist states 	0
α satisfying 〈	0

α|( 1
iα2 ∇x1 + ϒ� − p)2|	0

α〉 ≤ α−4 and

〈	0
α|H�|	0

α〉 ≤ Eα,�

(
α2p
)+ 1

2
α−2(1+σ).(3.1)

From [1, Lemma 2.4] we know that 〈	0
α| − �x|	0

α〉 ≤ 2 〈	0
α|H�|	0

α〉 + d for a suitable
constant d > 0, which implies that 〈	0

α| − �x|	0
α〉 � 1 due to Eq. (3.1) and our assump-

tion Eα,�(α2p) ≤ Eα + C|p|2 ≤ C|p|2 ≤ C3

α2 , and hence

〈
	0

α

∣
∣(ϒ� − p)2

∣
∣	0

α

〉≤ 2
〈

	0
α

∣
∣
∣
∣

(
1

iα2
∇x1 + ϒ� − p

)2∣∣
∣
∣	

0
α

〉

(3.2)

− 2α−4
〈
	0

α|�x|	0
α

〉

≤ cα−4

for a suitable c > 0.
Let η : R3 −→ [0,∞) be a smooth function that is supported on B1(0) and satisfies∫

η2 = 1. With this at hand we define 	y(x) := L− 3
2 η(L−1(x − y))	0

α(x) and Zy := ‖	y‖,
as well as the set S ⊆ R3 containing all y satisfying

〈	y|H�|	y〉 > Z2
y

(
Eα,�

(
α2p
)+ (1 + ‖∇η‖2

)
α−2(1+σ)

)
.

Making use of the IMS identity we obtain

〈	0
α|H�|	0

α〉 =
∫

〈	y|H�|	y〉dy − L−2‖∇η‖2

≥
∫

S
Z2

y dy
(
Eα,�

(
α2p
)+ (1 + ‖∇η‖2

)
α−2(1+σ)

)

+
(

1 −
∫

S
Z2

y dy

)

Eα − L−2‖∇η‖2,

where we have used 〈	y|H�|	y〉 ≥ Eα for y /∈ S and
∫

Z2
y dy = 1. Using Eq. (3.1) and

L−2 = α−2(1+σ) therefore yields

(
Eα,�

(
α2p
)− Eα+

(
1 + ‖∇η‖2

)
α−2(1+σ)

)
∫

S
Z2

y dy

≤ Eα,�

(
α2p
)− Eα +

(
1
2

+ ‖∇η‖2

)

α−2(1+σ),
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and consequently
∫

S Z2
y dy ≤ 1−γα with γα := 1

2
α−2(1+σ)

Eα,�(α2p)−Eα+(1+‖∇η‖2)α−2(1+σ) . Let us further
define S′ ⊆ R3 as the set of all y satisfying

〈
	y

∣
∣(ϒ� − p)2

∣
∣	y

〉
> Z2

y

2c

γα

α−4.

Clearly we have, using Eq. (3.2),

2c

γα

α−4

∫

S′
Z2

y dy ≤
∫
〈
	y

∣
∣(ϒ� − p)2

∣
∣	y

〉
dy = 〈	0

α

∣
∣(ϒ� − p)2

∣
∣	0

α

〉≤ cα−4,

and hence
∫

S′ Z2
y dy ≤ γα

2 . Consequently
∫

S∪S′
Z2

y dy ≤
∫

S
Z2

y dy +
∫

S′
Z2

y dy ≤ 1 − γα

2
< 1.

Since
∫

Z2
y dy = 1, this means in particular that there exists a y /∈ S ∪ S′ with Zy > 0, i.e.

	•
α := Z−1

y 	y satisfies

〈	•
α|H�|	•

α〉 ≤ Eα,�

(
α2p
)+ (1 + ‖∇η‖2

)
α−2(1+σ),

〈
	•

α

∣
∣(ϒ� − p)2

∣
∣	•

α

〉≤ 2c

γα

α−4 � α2σ−4,

where we have used Eα,�(α2p)−Eα � |p|2 � α−2 in the last estimate. Moreover, we clearly
have supp(	•

α) ⊆ BL(y). By the translation invariance of H� and ϒ�, we can assume
w.l.o.g. that y = 0, which concludes the proof. �

In the following Lemmas 3.2 and 3.4, we will use localization methods in order to
construct approximate p ground states with useful additional properties, which we will use
in Lemma 3.6, together with an additional localization procedure, in order to show the
existence of approximate p ground states satisfying complete condensation. In Theorem
3.7 we will then apply a final localization step in order to obtain complete condensation
in a stronger sense, following the argument in [8].

In order to formulate our various localization results, we follow [1] and define for
a function F : M(R3) −→ R, where M(R3) is the set of all finite (Borel) measures on
R3, the operator F̂ on F(L2(R3)) =⊕∞

n=0 L2
sym(R3×n) as

F̂
∞⊕

n=0

	n :=
∞⊕

n=0

	∗
n(3.3)

with 	∗
n (x

1, . . . , xn) := Fn(x1, . . . , xn)	n(x
1, . . . , xn), where

Fn
(
x1, . . . , xn

) := F

(

α−2
n∑

k=1

δxk

)

,(3.4)
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and F̂0 := F(0), i.e. F̂ acts component-wise on
⊕∞

n=0 L2
sym(R3×n) by multiplication with

the real-valued function (x1, . . . , xn) �→ F(α−2
∑n

k=1 δxk).
With this notation at hand, we define for given positive c−, c+ and ε ′ the function

F∗(ρ) := χε′
(c− + ε ′ ≤ ∫ dρ ≤ c+ − ε ′) and the states

	 ′
α := Z−1

α F̂∗	•
α,(3.5)

with normalization constants Zα := ‖̂F∗	•
α‖, where 	•

α is the sequence constructed in
Lemma 3.1. Since N = Ĝ with G(ρ) := ∫ dρ, it is clear that the states 	 ′

α are localized
to a region where the (scaled) number operator N is between c− and c+, i.e. χ(c− ≤N ≤
c+)	 ′

α = 	 ′
α . The following Lemma 3.2 quantifies the energy and momentum error of

this localization procedure. The subsequent results in Lemmas 3.2, 3.4 and 3.6 as well
as Theorem 3.7, which quantify the energy and momentum error of specific localization
procedures, are generalizations of the corresponding results in [1], where only the energy
cost of such localization procedures is discussed. In the following we will usually refer
to the respective results in [1] when it comes to quantifying the energy error, and only
discuss the localization error of the momentum operator ϒ�.

Lemma 3.2. — Given 0 < σ < 1
4 , let � = α

4
5 (1+σ) and L = α1+σ , and assume p satisfies

|p| ≤ C
α

and Eα,�(α2p) ≤ Eα + C|p|2 for a given C > 0. Then there exist constants c−, c+ and ε ′,
such that the states 	 ′

α defined in Eq. (3.5) satisfy

〈	 ′
α|H�|	 ′

α〉 − Eα,�

(
α2p
)
� α−2(1+σ),

〈
	 ′

α

∣
∣(ϒ� − p)2

∣
∣	 ′

α

〉
� α2σ−4.

Proof. — By our assumptions we clearly have Ẽα − Eα � α− 4
29 with Ẽα :=

〈	•
α|H�|	•

α〉, and therefore we can apply [1, Lemma 3.4], which tells us that we can
choose c−, c+ and ε ′, such that 〈	 ′

α|H�|	 ′
α〉 − Eα,�(α2p) � α−2(1+σ), and furthermore

Zα −→
α→∞ 1. Since F̂∗ commutes with ϒ�, we obtain with 	̃α :=

√
1−F̂2∗
1−Z2

α
	•

α

Z2
α

〈
	 ′

α

∣
∣(ϒ� − p)2

∣
∣	 ′

α

〉+ (1 − Z2
α

)〈
	̃α

∣
∣(ϒ� − p)2

∣
∣	̃α

〉

= 〈	•
α

∣
∣(ϒ� − p)2

∣
∣	•

α

〉

Hence 〈	 ′
α|(ϒ� − p)2|	 ′

α〉 ≤ Z−2
α 〈	•

α|(ϒ� − p)2|	•
α〉 � α2σ−4. �

When it comes to localizations with respect to more complicated functions F
compared to the one used in Eq. (3.5), we first need to introduce some tools in or-
der to quantify the localization error of the momentum operator. Given a function
F :M(R3) −→ R, � ⊆M(R3) and λ > 0, let us define

‖F‖2
�,λ := sup

1≤n≤λα2

sup
x∈�n

∥
∥
(
Fn,x̄
)′∥∥2 = sup

1≤n≤λα2

sup
x∈�n

∫

R

∣
∣
∣
∣

d
dt

Fn(t, x̄)

∣
∣
∣
∣

2

dt,(3.6)
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where x = (x1, . . . , xn) ∈ R3×n with xk = (xk
1, xk

2, xk
3) and x̄ := (x1

2, x1
3, x2, . . . , xn) ∈ R3×n−1,

i.e. we define x̄ such that x = (x1
1, x̄), �n is the set of all x such that α−2

∑n

j=1 δxj ∈ � and
Fn,y : R −→ R is defined as Fn,y(t) := Fn(t, y) for y ∈ R3×n−1, where Fn is as in Eq. (3.4).

Lemma 3.3. — Given λ > 0, there exists a constant T > 0 such that we have for all quadratic

partitions of unity P = {Fj : M(R3) −→ R : j ∈ J}, i.e. families of functions satisfying 0 ≤ Fj ≤ 1
and
∑

j∈J F2
j = 1, � > 0, |p| ≤ �, � ⊆M(R3) and states 	 satisfying χ(N ≤ λ)	 = 	 and

1̂�	 = 	

∣
∣
∣
∣

∑

j∈J

〈	j

∣
∣(ϒ� − p)2

∣
∣	j〉 − 〈	∣∣(ϒ� − p)2

∣
∣	〉
∣
∣
∣
∣≤ T�

∑

j∈J

‖Fj‖2
�,λ,

where we define 	j := F̂j	 with F̂j being introduced in Eq. (3.3).

Proof. — Using the IMS identity we can write
∑

j∈J

〈	j

∣
∣(ϒ� − p)2

∣
∣	j〉 − 〈	∣∣(ϒ� − p)2

∣
∣	〉

= −1
2

∑

j∈J

〈
	
∣
∣
[[

(ϒ� − p)2, F̂j

]
, F̂j

]∣
∣	
〉
.

Hence it suffices to show that

±〈	∣∣[[(ϒ� − p)2, F̂
]
, F̂
]∣
∣	
〉
� �‖F‖2

�,λ

for any bounded F :M(R3) −→ R and state satisfying χ(N ≤ λ)	 = 	 and 1̂�	 = 	 .
Let us start by estimating

±[[(ϒ� − p)2, F̂
]
, F̂
]= ±2[ϒ�, F̂]2 ± {ϒ� − p,

[[ϒ�, F̂], F̂
]}

≤ −2[ϒ�, F̂]2 + ‖F‖2
�,λ

�
(ϒ� − p)2

+ �

‖F‖2
�,λ

[[ϒ�, F̂], F̂
]2

,

where {A,B} := AB + BA. By the definition of ϒ� it is clear that

‖F‖2
�,λ

�
(ϒ� − p)2 � �‖F‖2

�,λ(N + 1)2

for |p| ≤ �, and consequently ±〈	| ‖F‖2
�,λ

�
(ϒ� − p)2|	〉 � �‖F‖2

�,λ. Using that 	 is a
function with values in F≤λα2(L2(R3)) :=⊕n≤λα2 L2

sym(R3×n), we are going to represent
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it as 	 =⊕n≤λα2 	n where 	n(z, x1, . . . , xn) is a function of the electron variable z and
the n phonon coordinates xj ∈ R3 satisfying 	n(z, x1, . . . , xn) = 0 for all (x1, . . . , xn) /∈ �n.
In order to simplify the notation, we will suppress the dependence on the electron variable
z. We have

[ϒ�, F̂]	 =
⊕

1≤n≤λα2

α−2n	∗
n

with 	∗
n := 1

n

∑n

j=1[g( 1
i
∇

x
j

1
),Fn]	n, where g(k) := χ 1(�−1|k| ≤ 2)k for k ∈ R. Hence

〈
	
∣
∣−[ϒ�, F̂]2

∣
∣	
〉= ∥∥[ϒ�, F̂]	∥∥2

=
∑

1≤n≤λα2

α−4n2
∥
∥	∗

n

∥
∥2 ≤ λ2

∑

1≤n≤λα2

∥
∥	∗

n

∥
∥2

,

and ‖	∗
n ‖ ≤ 1

n

∑n

j=1 ‖[g( 1
i
∇

x
j

1
),Fn]	n‖ = ‖[g( 1

i
∇x1

1
),Fn]	n‖, where we have used the per-

mutation symmetry of 	n. By Lemma A.1 we know that
∥
∥
∥
∥

[

g

(
1
i
∇x1

1

)

,Fn

]

	n

∥
∥
∥
∥≤ sup

x∈supp(	n)

∥
∥
∥
∥

[

g

(
1
i

d
dt

)

,Fn,x̄

]∥
∥
∥
∥

op

‖	n‖

�
√

� sup
x∈�n

∥
∥
(
Fn,x̄
)′∥∥‖	n‖,

and therefore
〈
	
∣
∣−[ϒ�, F̂]2

∣
∣	
〉≤ λ2� sup

1≤n≤λα2,x∈�n

∥
∥
(
Fn,x̄
)′∥∥2 ∑

n≤λα2

‖	n‖2 = λ2�‖F‖2
�,λ.

In order to estimate the expectation value of [[ϒ�, F̂], F̂]2 we proceed similarly, by writing

[[ϒ�, F̂], F̂
]
	 =

⊕

n≤λα2

α−2n	̃n

with 	̃n = 1
n

∑n

j=1[[g( 1
i
∇

x
j

1
),Fn],Fn]	n, and estimating

〈
	
∣
∣
[[ϒ�, F̂], F̂

]2∣∣	
〉≤ λ2

∑

n≤λα2

‖	̃n‖2

as well as

‖	̃n‖ ≤ sup
x∈supp(	n)

∥
∥
∥
∥

[[

g

(
1
i

d
dt

)

,Fn,x̄

]

,Fn,x̄

]∥
∥
∥
∥

op

‖	n‖ ≤ sup
x∈�n

∥
∥
(
Fn,x̄
)′∥∥2‖	n‖,

where we have again applied Lemma A.1. This concludes the proof. �
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With the subsequent localization step in Eq. (3.7), we want to restrict the state 	 ′
α

to phonon density configurations ρ which have a sharp concentration of their mass. To
be precise, for given R and ε, δ > 0, let us define

KR(ρ) : =
∫∫

χε
(
R − ε ≤ |x − y|)dρ(x)dρ(y),

FR(ρ) : = χ
δ
3

(

KR(ρ) ≤ 2δ

3

)

,(3.7)

	 ′′
α : = Z−1

R,αF̂R	 ′
α,

where 	 ′
α is as in Lemma 3.2 and ZR,α := ‖̂FR	 ′

α‖. Clearly 1̂�	 ′′
α = 	 ′′

α where � is the
set of all ρ satisfying

∫∫
|x−y|≥R dρ(x)dρ(y) ≤ δ. In the following Lemma 3.4 we are going

to quantify the energy and momentum cost of this localization procedure.

Lemma 3.4. — Given 0 < σ < 1
4 , let � = α

4
5 (1+σ) and L := α1+σ , and assume p satisfies

|p| ≤ C
α

and Eα,�(α2p) ≤ Eα + C|p|2 for a given C > 0. Then for any ε, δ > 0, there exists a

constant R > 0, such that the states 	 ′′
α defined in Eq. (3.7) satisfy

〈	 ′′
α |H�|	 ′′

α〉 − Eα,�

(
α2p
)
� α−2(1+σ),

〈
	 ′′

α

∣
∣(ϒ� − p)2

∣
∣	 ′′

α

〉
� α

4
5 σ− 16

5 .

Proof. — By the results in [1, Lemma 3.5], there exists a constant R > 0 such that
〈	 ′′

α |H�|	 ′′
α〉 − Eα,�(α2p) � α−2(1+σ) and ZR,α −→

α→∞ 1. Applying Lemma 3.3 yields

〈̂FR	 ′
α

∣
∣(ϒ� − p)2

∣
∣̂FR	 ′

α〉 + 〈ĜR	 ′
α

∣
∣(ϒ� − p)2

∣
∣ĜR	 ′

α〉(3.8)

� α2σ−4 + α
4
5 (1+σ)
(‖FR‖2

M(R3),c+ + ‖GR‖2
M(R3),c+

)

with GR :=√1 − F2
R, where we used 〈	 ′

α|(ϒ� − p)2|	 ′
α〉 � α2σ−4 and χ(N ≤ c+)	 ′

α =
	 ′

α . In order to estimate ‖FR‖M(R3),c+ , let us define the functions g(s) := χ
δ
3 (s ≤ 2δ

3 ) and
h(s) := χε(R − ε ≤ √

s). Then Fn
R(x) = g(α−4

∑n

i,j=1 h(|xi − xj|2)) and therefore

Fn,y

R (t) = g

(

α−4
n∑

i=2

h
((

t − y
j

1

)2 + δi
y

)+ μy

)

with δi
y := (y1

2 − yi
2)

2 + (y1
3 − yi

3)
2 and μy := α−4

∑n

i,j=2 h(|yi − yj|2). Hence

∥
∥
(
Fn,y

R

)′∥∥≤ 4α−4
∥
∥g′∥∥

∞

n∑

i=2

√∫

R
|t|2∣∣h′(t2 + δi

y

)∣
∣2dt

≤ 4α−4
∥
∥g′∥∥

∞(n − 1)
∥
∥h′∥∥

∞

√
2R3

3
,
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where we have used supp(h′) ⊆ [0,R2) in the second inequality. Consequently

‖FR‖M(R3),c+ = sup
1≤n≤c+α2

sup
x∈R3×n

∥
∥
(
Fn,x̄

R

)′∥∥� α−2.

Similarly we have ‖GR‖M(R3),c+ � α−2. In combination with Eq. (3.8) we obtain
〈
	 ′′

α

∣
∣(ϒ� − p)2

∣
∣	 ′′

α

〉

� Z−2
R,α

(
α2σ−4 + α

4
5 (1+σ)
(‖FR‖2

M(R3),c+ + ‖GR‖2
M(R3),c+

))

� α
4
5 σ− 16

5 . �

Before we come to our next localization step in Lemma 3.6, we need to define the
regularized median of a measure ν ∈ M(R), see also [1, Definition 3.8], and derive a
useful estimate for it in the subsequent Lemma 3.5. In the following let xκ(ν) := sup{t :∫ t

−∞ dν ≤ κ
∫

dν} denote the κ-quantile, where we use the convention that boundaries are

included in the domain of integration
∫ b

a
f dν := ∫[a,b] f dν, and let us define for 0 < q < 1

2
and ν �= 0

mq(ν) := 1
∫

Kq(ν)
dν

∫

Kq(ν)

h dν(h),(3.9)

where Kq(ν) := [x 1
2 −q(ν), x

1
2 +q(ν)], and mq(0) := 0. Furthermore we will denote the

marginal measures of ρ ∈ M(R3) as ρi , i.e. ρi(A) := ρ([xi ∈ A]), where A ⊆ R is mea-
surable and i ∈ {1,2,3}.

Lemma 3.5. — Let us define �reg as the set of all ρ ∈ M(R3) satisfying
∫

xi=t
dρ(x) ≤

α−2 for t ∈ R and i ∈ {1,2,3}, and � as the set of all ρ ∈ �reg satisfying c ≤ ∫ dρ and
∫∫

|x−y|≥R dρ(x)dρ(y) ≤ δ for given R, c, δ > 0. Furthermore let q be a constant satisfying q+ α−2

c
≤

1
2 − δ

c2 . Then we have for any n ≥ 1 and function of the form F(ρ) = f (mq(ρ1)) the estimate

supx∈�n

∥
∥
(
Fn,x̄
)′∥∥≤ α−2 ‖f ′‖∞

2qc

√
2R,(3.10)

where mq is defined in Eq. (3.9) and �n below Eq. (3.6).

Proof. — Given x ∈ �n, let us define νt := α−2(δt +∑n

j=2 δ
x

j

1
), which allows us

to rewrite Fn,x̄(t) = f (mq(νt)). Let us first compute the derivative d
dt

mq(νt) for t ∈
R \ {x2

1, . . . , xn
1}. For such t, there clearly exists an ε > 0 such that (t − ε, t + ε) ⊂

R \ {x2
1, . . . , xn

1}. It will be useful in the following that the set Y := {x2
1, . . . , xn

1} ∩ Kq(νs)

is independent of s ∈ (t − ε, t + ε), with Kq(ν) being defined below Eq. (3.9). Fur-
thermore we have for s ∈ (t − ε, t + ε) that s ∈ Kq(s) if and only if t ∈ Kq(t). There-
fore α2

∫
Kq(vs)

h dνs(h) = ∑h∈Y h + s1Kq(s)(s) = ∑h∈Y h + s1Kq(t)(t) and α2
∫

Kq(vs)
dνs =
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|Y| + 1Kq(s)(s) = α2
∫

Kq(vt)
dνt for s ∈ (t − ε, t + ε), and consequently we obtain for

t ∈ R \ {x2
1, . . . , xn

1}
d
dt

mq(νt) = α−2 d
ds

|s=t

∑
h∈Y h + s1Kq(t)(t)∫

Kq(vt)
dνt

= α−2 1Kq(t)(t)∫
Kq(vt)

dνt

.

Note that due to our assumption ρ ∈ �reg, mq(νt) can be continuously extended from R \
{x2

1, . . . , xn
1} to all of R, and therefore d

dt
mq(νt) = α−2 1Kq(t)(t)

∫
Kq(vt )

dνt
in the sense of distributions.

Since
∫

Kq(vt)
dνt ≥ 2qc we conclude |(Fn,x̄)′(t)| ≤ α−2 ‖f ′‖∞

2qc
1Kq(t)(t) for almost every t. In

order to obtain from this the upper bound on the L2(R)-norm in Eq. (3.10), we are
going to verify that the support of t �→ 1Kq(t)(t) is contained in an interval of the form
(ξ − R, ξ + R) for a suitable ξ ∈ R. Let us start by verifying that

xκ(νt1) ≥ xκ− α−2
c (νt2)(3.11)

for 0 < κ < 1 and t1, t2 ∈ R. Note that any y ∈ R satisfying the inequality
∫ y

−∞ dνt2 ≤
(κ − α−2

c
)
∫

dνt2 , also satisfies
∫ y

−∞
dνt1 ≤ α−2 +

∫ y

−∞
dνt2 ≤ α−2 +

(

κ − α−2

c

)∫

dνt2

≤ κ

∫

dνt2 = κ

∫

dνt1,

where we have used α−2 ≤ α−2

c

∫
dνt2 , and therefore y ≤ xκ(νt1). Using that xκ− α−2

c (νt2)

is the supremum over all such y, we conclude with the desired Eq. (3.11). Furthermore
observe that νt0 = ρ1 with t0 := x1

1 and ρ := α−2
∑n

j=1 δxj ∈ �, and therefore we know by

[1, Lemma 3.9] that there exists a ξ ∈ R such that ξ −R ≤ x
1
2 −q′

(νt0) ≤ x
1
2 +q′

(νt0) ≤ ξ +R
for q′ ≤ 1

2 − δ

c2 . By our assumptions, q′ := q + α−2

c
satisfies this condition, and therefore

we obtain using Eq. (3.11) with t1 := t, t2 := t0 and κ := 1
2 − q, respectively t1 := t0, t2 := t

and κ := 1
2 + q + α−2

c
, that

ξ − R ≤ x
1
2 −q(νt) ≤ x

1
2 +q(νt) ≤ ξ + R

for all t ∈ R, and consequently 1Kq(t)(t) = 0 for |t − ξ | > R. �

Lemma 3.6. — Given 0 < σ < 1
9 and C > 0, let � = α

4
5 (1+σ) and L = α1+σ , and assume

p satisfies |p| ≤ C
α

and Eα,�(α2p) ≤ Eα + C|p|2 for a given C > 0. Then there exist r′, c+ > 0 and

states 	 ′′′
α with

〈	 ′′′
α |H�|	 ′′′

α 〉 − Eα,�

(
α2p
)
� α−(2+r′),



THE FRÖHLICH POLARON AT STRONG COUPLING: PART II 289

〈
	 ′′′

α

∣
∣(ϒ� − p)2

∣
∣	 ′′′

α

〉
� α−(2+r′),

as well as supp(	 ′′′
α ) ⊆ B4L(0) and χ(N ≤ c+)	 ′′′

α = 	 ′′′
α , such that

〈
	 ′′′

α

∣
∣W−1

ϕPek NWϕPek

∣
∣	 ′′′

α

〉
� α−r′,(3.12)

where WϕPek is the Weyl operator corresponding to the Pekar minimizer ϕPek, characterized by

W−1
ϕPeka(f )WϕPek = a(f ) − 〈f |ϕPek〉 for all f ∈ L2(R3).

Proof. — For u > 0, let us define the functions fℓ(y) := χ
1
2 (ℓ− 1

2 < αuy ≤ ℓ+ 1
2) for

ℓ ∈ Z satisfying |ℓ| ≤ 3
2α

uL, as well as f−∞(y) := χ
1
2 (αuy ≤ −� 3

2α
uL� − 1

2) and f∞(ρ) :=
χ

1
2 (� 3

2α
uL�+ 1

2 < αuy). With these functions at hand we define for i ∈ {1,2,3} and v > 0
the partitions Pi := {Fℓ,i : ℓ ∈ A}, where

Fℓ,i(ρ) := fℓ
(
mα−v (ρi)

)
,

A :=
{

−∞,−
⌊

3
2
αuL
⌋

,−
⌊

3
2
αuL
⌋

+ 1, . . . ,

⌊
3
2
αuL
⌋

,∞
}

⊆ Z ∪ {−∞,∞},
as well as P := {Fz : z ∈ A3} with Fz := Fz3,3Fz2,2Fz1,1. In the following let 	 ′′

α be as in

Lemma 3.4 with δ <
c2−
2 and let �reg and � be the sets from Lemma 3.5 with δ and R as

in Lemma 3.4, q := α−v and c := c−. Due to the straightforward result [1, Lemma 3.6] we
have 1̂�reg	

′′
α = 	 ′′

α , and by the definition of 	 ′′
α in Eq. (3.7) it is clear that we furthermore

have 1̂�	 ′′
α = 	 ′′

α . Therefore we can apply Lemma 3.3 together with Eq. (3.10) in order
to obtain

∑

z1∈A

〈
F̂z1,1	

′′
α

∣
∣(ϒ� − p)2

∣
∣̂Fz1,1	

′′
α

〉

≤ 〈	 ′′
α

∣
∣(ϒ� − p)2

∣
∣	 ′′

α〉 + Tα
4
5 (1+σ)

∑

z1∈A

α−4 ‖f ′
z1
‖2

∞
2α−2vc2−

R

� α
4
5 σ− 16

5 + α
4
5 σ− 16

5 +2v sup
z1∈A

∥
∥f ′

z1

∥
∥2

∞
∑

z1∈A

1 � α
9
5 σ+2v+3u− 1

5 α−2

for all α large enough such that α−v + α−2

c− < 1
2 − δ

c2−
, where we have used supz1∈A ‖f ′

z1
‖ �

αu, as well as
∑

z1∈A 1 ≤ 3(αuL + 1) � αu+1+σ . Since the functions Fn
ℓ,i are independent

of x1
1 for i ∈ {2,3}, we furthermore obtain

〈
F̂z1,1	

′′
α

∣
∣(ϒ� − p)2

∣
∣̂Fz1,1	

′′
α

〉

=
∑

z2,z3∈A

〈
F̂z3,3̂Fz2,2̂Fz1,1	

′′
α

∣
∣(ϒ� − p)2

∣
∣̂Fz3,3̂Fz2,2̂Fz1,1	

′′
α

〉
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and therefore
∑

z∈A3

Z2
z 〈	z

∣
∣(ϒ� − p)2

∣
∣	z〉 � α

9
5 σ+2v+3u− 1

5 α−2(3.13)

with 	z := Z−1
z F̂z	

′′
α and Zz := ‖̂Fz	

′′
α‖.

Regarding the localization error of the energy, we obtain by [1, Lemma 3.3] and
[1, Lemma 3.10] (see also the proof of [1, Eq. (3.22)]) that

∑

z∈A3

Z2
z 〈	z|H�|	z〉 ≤ 〈	 ′′

α |H�|	 ′′
α〉 + Oα→∞

(
α−3
)

(3.14)

≤ Eα,�

(
α2p
)+ Cα−2(1+σ)

for a suitable constant C > 0, as long as u + v ≤ 1
2 . In the following, let S be the set of all

z ∈ A3 such that

〈	z|H�|	z〉 > Eα,�

(
α2p
)+ α−(2+ε)

for a given ε > 0, and define M :=∑z∈S Z2
z . By Eq. (3.14), we have

M
(
Eα,�

(
α2p
)+ α−(2+ε)

)+ (1 − M)Eα ≤ Eα,�

(
α2p
)+ Cα−2(1+σ),

and therefore 1 − M ≥ α−(2+ε)−Cα−2(1+σ)

Eα,�(α2p)−Eα+α−(2+ε) ≥ C1α
−ε for ε < 2σ , α large enough and a

suitable constant C1, where we have used the assumption Eα,�(α2p) − Eα � |p|2 � α−2.
Moreover, let us define S′ as the set containing all z ∈ A3, such that

〈	z

∣
∣(ϒ� − p)2

∣
∣	z〉 > α

1
2 ( 9

5 σ+2v+3u− 1
5 )α−2

and M′ :=∑z∈S′ Z2
z . By Eq. (3.13) we see that M′ ≤ C2α

1
2 ( 9

5 σ+2v+3u− 1
5 ) for a suitable con-

stant C2. Consequently
∑

z/∈S∪S′
Z2

z ≥ 1 − M − M′ ≥ C1α
−ε − C2α

1
2 ( 9

5 σ+2v+3u− 1
5 )

for α large enough. Since σ < 1
9 , we can take u, v and ε small enough, such that 2ε +

9
5σ + 2v + 3u < 1

5 , and consequently
∑

z/∈S∪S′ Z2
z > 0 for α large enough, which implies

the existence of a z∗ /∈ S ∪ S′ with Zz∗ > 0, i.e.

〈	z∗ |H�|	z∗〉 ≤ Eα,�

(
α2p
)+ α−(2+ε),

〈	z∗
∣
∣(ϒ� − p)2

∣
∣	z∗〉 ≤ α

1
2 ( 9

5 σ+2v+3u− 1
5 )−2.

In order to rule out that one of the components z∗
i is infinite, let us verify

that 〈	z|H�|	z〉 > Eα,�(α2p) + α−(2+ε) for α large enough in case there exists an
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i ∈ {1,2,3} with zi = ±∞. Note that ρ ∈ supp(F−∞,i) implies mα−v (ρi) < − 3
2L and

therefore
∫

|x|> 3
2 L dρ ≥ ∫ − 3

2 L
−∞ dρi ≥ ∫ mα−v (ρi)

−∞ dρi ≥ ( 1
2 − α−v)

∫
dρ. Similarly

∫
|x|> 3

2 L dρ ≥
( 1

2 − α−v)
∫

dρ for ρ ∈ supp(F∞,i). Consequently we have for any z with zi = ±∞ for
some i ∈ {1,2,3}

〈	z|NR3\B 3
2 L

(0)|	z〉 ≥
(

1
2

− α−v

)

〈	z|N |	z〉 ,

where NR3\B 3
2 L

(0) := Ĝ with G(ρ) := ∫|x|> 3
2 L dρ. Therefore [1, Corollary B.7] together

with the fact that supp(	z) ⊂ supp(	 ′′
α) ⊂ BL(0), yields

〈	z|H�|	z〉 ≥ Eα +
(

1
2

− α−v

)

〈	z|N |	z〉 −
√

D
3
2L − L

≥ Eα +
(

1
2

− α−v

)

c− − √
2Dα−(1+σ)

= Eα,�

(
α2p
)+ 1

2
+ Oα→∞

(
α−v
)

> Eα,�

(
α2p
)+ α−(2+ε)

for a suitable constant D > 0 and α large enough. Hence we obtain that all components
z∗

i are finite, i.e. mα−v (ρ) ∈ B√
3α−u(α−uz∗) ⊆ R3 for ρ ∈ supp(Fz∗

3,3Fz∗
2,2Fz∗

1,1).
Let 	 ′′′

α := T−α−uz∗	z∗ , where Tz is a joint translation in the electron and phonon
component, i.e. (Tz	)(x) := Uz	(x − z) with Uz being defined by U−1

z a(f )Uz = a(fz)

and fz(y) := f (y − z). Using the fact that

〈	z∗|H�|	z∗〉 ≤ Eα,�

(
α2p
)+ α−(2+ε) � Eα + α− 2

29

as well as 1�∗	 ′′′
α = 	 ′′′

α , where �∗ is the set of all ρ satisfying
∫

dρ ≤ c+ and mα−v (ρ) ∈
B√

3α−u(0), we can apply [1, Lemma 3.11], which yields

〈
	 ′′′

α

∣
∣W−1

ϕPek NWϕPek

∣
∣	 ′′′

α

〉
� α− 2

29 + α−u + α−v.

By taking r′ > 0 small enough such that r′ ≤ 1
2(

1
5 − 9

5σ − 2v − 3u), r′ ≤ ε and
r′ ≤ min{ 2

29 , u, v}, we conclude that 〈	 ′′′
α |W−1

ϕPek NWϕPek |	 ′′′
α 〉 � α−r′ . Since supp(	 ′′′

α ) ⊂
BL(−α−uz∗) ⊂ BL+α−u|z∗|(0) ⊂ B4L(0), this concludes the proof. �

In the following Theorem 3.7, which is the main result of this section, we will
lift the (weak) condensation from Eq. (3.12) to a strong one without introducing a large
energy penalty, using an argument in [8]. We will verify that the momentum error due to
the localization is negligibly small as well.
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Theorem 3.7. — Given 0 < σ < 1
9 and C > 0, let � = α

4
5 (1+σ) and L = α1+σ , and

assume p satisfies |p| ≤ C
α

and Eα,�(α2p) ≤ Eα + C|p|2 for a given C > 0. Then there exists a

r > 0 and states 	α with

〈	α|H�|	α〉 − Eα,�

(
α2p
)
� α−(2+r),

〈
	α

∣
∣(ϒ� − p)2

∣
∣	α

〉
� α−(2+r)

and supp(	α) ⊆ B4L(0), such that

χ
(
W−1

ϕPek−iξ
NWϕPek−iξ ≤ α−r

)
	α = 	α,(3.15)

where ξ := p

m
∇̃x1ϕ

Pek with ∇̃x1 := χ 1(�−1|∇x1| ≤ 2)∇x1 .

Note that ξ is small in magnitude, ‖ξ‖ � |p| � α−1. The statement of Theorem 3.7
is also valid for ξ = 0, i.e., in case we conjugate by the Weyl transformation WϕPek instead
of WϕPek−iξ . For technical reasons, it will however be useful in the proof of Theorem
2.1 to use ϕPek − iξ ≈ ϕPek − i

p

m
∇x1ϕ

Pek as a reference state, since the latter satisfies the
momentum constraint

〈

ϕPek − i
p

m
∇x1ϕ

Pek

∣
∣
∣
∣
1
i
∇
∣
∣
∣
∣ϕ

Pek − i
p

m
∇x1ϕ

Pek

〉

= p.

Proof. — Let 	 ′′′
α be as in Lemma 3.6 and let us define for 0 < ε < 1

2 and 0 < h <

min{r′, 1
4}

	α := Z−1
α χε

(

αhW−1
ϕPek−iξ

NWϕPek−iξ ≤ 1
2

)

	 ′′′
α ,

where Zα := ‖χε(αhW−1
ϕPek−iξ

NWϕPek−iξ ≤ 1
2)	

′′′
α ‖ is a normalization constant. Clearly the

states 	α satisfy Eq. (3.15) for r ≤ h. Let us furthermore define

	̃α := 1
√

1 − Z2
α

χε

(
1
2

≤ αhW−1
ϕPek−iξ

NWϕPek−iξ

)

	 ′′′
α

An application of [1, Lemma 3.3] yields

Z2
α 〈	α|H�|	α〉 + (1 − Z2

α

) 〈	̃α|H�|	̃α〉
≤ 〈	 ′′′

α |H�|	 ′′′
α 〉 + C0α

2h− 7
2 〈	 ′′′

α |√N + 1|	 ′′′
α 〉

≤ Eα,�

(
α2p
)+ C1α

−(2+r′′)
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for suitable constants C0,C1 > 0 and r′′ := min{r′, 3
2 − 2h} > 0. We have

1 − Z2
α =
〈

	 ′′′
α

∣
∣
∣
∣χ

ε

(
1
2

≤ αhW−1
ϕPek−iξ

NWϕPek−iξ

)2∣∣
∣
∣	

′′′
α

〉

≤ 2αh

1 − 2ε

〈
	 ′′′

α

∣
∣W−1

ϕPek−iξ
NWϕPek−iξ

∣
∣	 ′′′

α

〉

≤ 4αh

1 − 2ε

〈
	 ′′′

α

∣
∣W−1

ϕPekNWϕPek

∣
∣	 ′′′

α

〉+ 4αh‖ξ‖2

1 − 2ε

� 1
1 − 2ε

(
αh−r′ + αh−2

) −→
α→∞ 0,

where we used Eq. (3.12) and the inequalities

W−1
ϕPek−iξ

NWϕPek−iξ ≤ 2
(
W−1

ϕPekNWϕPek + ‖ξ‖2
)
,

‖ξ‖2 ≤ |p|2∥∥∇ϕPek
∥
∥2 � α−2.

Making use of 〈	̃α|H�|	̃α〉 ≥ Eα and Eα,�(α2p) − Eα � |p|2 � α−2, we therefore obtain

〈	α|H�|	α〉 − Eα,�

(
α2p
)

≤ Z−2
α

(
C1α

−(2+r′′) + (1 − Z2
α

)(
Eα,�

(
α2p
)− Eα

))

� α−(2+r′′) + (αh−r′ + αh−2
)(

Eα,�

(
α2p
)− Eα

)
� α−(2+r′′′)

with r′′′ := min{r′′, r′ − h,2 − h} > 0.
In order to estimate 〈	α|(ϒ� − p)2|	α〉, let us apply the IMS identity

Z2
α

〈
	α

∣
∣(ϒ� − p)2

∣
∣	α

〉+ (1 − Z2
α

)〈
	̃α

∣
∣(ϒ� − p)2

∣
∣	̃α

〉
(3.16)

= 〈	 ′′′
α

∣
∣(ϒ� − p)2

∣
∣	 ′′′

α

〉− 〈	 ′′′
α |X|	 ′′′

α

〉
,

where we define X := 1
2 [[(ϒ� − p)2,A1],A1]+ 1

2 [[(ϒ� − p)2,A2],A2] using the operators
A1 := f1(W−1

ϕPek−iξ
NWϕPek−iξ ) and A2 := f2(W−1

ϕPek−iξ
NWϕPek−iξ ) with f1(x) := χε(αhx ≤ 1

2)

and f2 := χε( 1
2 ≤ αhx). In the following let us compute
[[

(ϒ� − p)2,Aj

]
,Aj

]

= W−1
ϕPek−iξ

[[(
WϕPek−iξϒ�W−1

ϕPek−iξ
− p
)2

, fj(N )
]
, fj(N )

]
WϕPek−iξ

= W−1
ϕPek−iξ

[[(
ϒ� − p̃ + 2Re a†(ϕ)

)2
, fj(N )

]
, fj(N )

]
WϕPek−iξ

where ϕ := 1
i
∇̃x1(ϕ

Pek − iξ) and

p̃ := p −
〈

ϕPek − iξ

∣
∣
∣
∣
1
i
∇̃x1

∣
∣
∣
∣ϕ

Pek − iξ

〉

= p

(

1 − 2
m

∥
∥∇̃x1ϕ

Pek
∥
∥2
)

.
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We have |̃p| ≤ |p| ≤ C
α

since m = 2
3‖∇ϕPek‖2 = 2‖∇x1ϕ

Pek‖2 ≥ 2‖∇̃x1ϕ
Pek‖2. Defining the

discrete derivative δfj(x) := α2(fj(x + α−2) − fj(x)), we can further write

[[(
ϒ� − p̃ + 2Re a†(ϕ)

)2
, fj(N )

]
, fj(N )

]

= 8
[
Re a†(ϕ), f (N )

]2

+ 2
{
ϒ� − p̃ + 2Re a†(ϕ),

[[
Re a†(ϕ), fj(N )

]
, fj(N )

]}

= −8α−4
(
Im
(
a†(ϕ)δfj(N )

))2

+ 2α−4
{
ϒ� − p̃ + 2Rea†(ϕ),Re

(
a†(ϕ)(δfj)

2(N )
)}

where we used
[
ϒ� − p̃ + 2Re a†(ϕ), fj(N )

]= 2
[
Re a†(ϕ), fj(N )

]
,

[
Re a†(ϕ), fj(N )

]= α−2iIm
(
a†(ϕ)δfj(N )

)
,

[[
Re a†(ϕ), fj(N )

]
, fj(N )

]= α−4
Re
(
a†(ϕ)(δfj)

2(N )
)
.

Hence

− [[(ϒ� − p̃ + 2Re a†(ϕ)
)2

, fj(N )
]
, fj(N )

]
(3.17)

≤ 8α−4
Im
(
a†(ϕ)δfj(N )

)2

+ 4α−3
Re
(
a†(ϕ)(δfj)

2(N )
)2 + α−5

(
ϒ� − p̃ + 2Re a†(ϕ)

)2

≤ 2‖ϕ‖2
(
2α−4‖δfj‖2

∞ + 2α−3‖δfj‖4
∞ + 3α−5

)(
2N + α−2

)

+ 27α−3N 2 + 3α−5|̃p|2,
where we have applied multiple Cauchy–Schwarz estimates and used ϒ2

� ≤ 9α2N 2. Note
that the expression in the last line of Eq. (3.17) is of order α4h−3(N + 1)2, since ‖δfj‖∞ �
αh and ‖ϕ‖ � 1. Using W−1

ϕPek−iξ
(N + 1)2WϕPek−iξ � (N + 1)2 we therefore obtain

−X = −1
2

2∑

j=1

[[
(ϒ� − p)2,Aj

]
,Aj

]
� α4h−3(N + 1)2.

Using this together with Eq. (3.16) and 〈	̃α|(ϒ� − p)2|	̃α〉 ≥ 0, yields
〈
	α

∣
∣(ϒ� − p)2

∣
∣	α

〉≤ Z−2
α

(〈
	 ′′′

α

∣
∣(ϒ� − p)2

∣
∣	 ′′′

α

〉− 〈	 ′′′
α |X|	 ′′′

α

〉)

� α−(2+r′) + α4h−3
〈
	 ′′′

α

∣
∣(N + 1)2

∣
∣	 ′′′

α

〉

� α−(2+r′) + α4h−3.
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Since h < 1
4 we have min{r′,1−4h} > 0, and therefore we can choose r > 0 small enough

such that r ≤ min{r′,1 − 4h}, r ≤ r′′′ and r ≤ h, which concludes the proof. �

4. Proof of Theorem 2.1

In this section we shall prove the main technical Theorem 2.1, using the results of
the previous sections as well as the results in the previous part of this paper series [1].
Before we do this let us recall some definitions from [1].

Definition 4.1 (Finite dimensional Projection �). — Given σ > 0, let � := α
4
5 (1+σ) and

ℓ := α−4(1+σ), and let us introduce the cubes

Cz := [z1 − ℓ, z1 + ℓ) × [z2 − ℓ, z2 + ℓ) × [z3 − ℓ, z3 + ℓ)

for z = (z1, z2, z3) ∈ 2ℓZ3. Then we define � as the orthogonal projection onto the subspace spanned

by the functions x �→ ∫Cz

ei k·x
|k| dk for z ∈ 2ℓZ3 \ {0} satisfying Cz ⊂ B�(0). Furthermore, let

ϕ1, . . . , ϕN be a real orthonormal basis of �L2(R3), such that ϕn = �∇xnϕPek

‖�∇xnϕPek‖ for n ∈ {1,2,3}.
Definition 4.2 (Coordinate Transformation τ ). — Let ϕPek

x (y) := ϕPek(y − x) and let t �→ xt

be the local inverse of the function x �→ (〈ϕn|ϕPek
x 〉)3

n=1 ∈ R3 defined for t ∈ Bδ∗(0) with a suitable

δ∗ > 0. Note that we can take Bδ∗(0) as the domain of the local inverse, since 〈ϕn|ϕPek
0 〉 = 0 for all

n ∈ {1,2,3} due to the fact that ϕPek and � respect the reflection symmetry yn �→ −yn. Then we define

f : R3 −→ �L2(R3) as

f (t) := χ
(|t| < δ∗

)
(

�ϕPek
xt

−
3∑

n=1

tnϕn

)

and the transformation τ : �L2(R3) −→ �L2(R3) as

τ(ϕ) := ϕ − f
(
tϕ
)

with tϕ := (〈ϕ1|ϕ〉 , 〈ϕ2|ϕ〉 , 〈ϕ3|ϕ〉) ∈ R3.

Definition 4.3 (Quadratic Approximation Jt,γ ). — Let us first define the operators

KPek := 1 − HPek = 4(−�)− 1
2 ψPek 1 − |ψPek〉 〈ψPek|

−� + VPek − μPek
ψPek(−�)− 1

2 ,(4.1)

LPek := 4(−�)− 1
2 ψPek(1 − �)−1ψPek(−�)− 1

2 ,(4.2)

where VPek := −2(−�)− 1
2 ϕPek, μPek := ePek − ‖ϕPek‖2 and ψPek is the, non-negative, ground state

of the operator −�+ VPek. Furthermore let Tx be the translation operator, i.e. (Txϕ)(y) := ϕ(y − x),
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and let KPek
x := TxKPekT−x and LPek

x := TxLPekT−x. Then we define

Jt,γ := π
(
1 − (1 + γ )

(
KPek

xt
+ γ LPek

xt

))
π

for |t| < γ and γ < δ∗, where δ∗ and xt are as in Definition 4.2 and π : L2(R3) −→ L2(R3) is the

orthogonal projection on the space spanned by {ϕ4, . . . , ϕN} with ϕn as in Definition 4.1. Furthermore

we define Jt,γ := π for |t| ≥ γ and we will use the shorthand notation Jt,γ [ϕ] := 〈ϕ|Jt,γ |ϕ〉.
Recall the definition of Eα,� in Theorem 2.1. In the following we will assume that

p satisfies the assumption Eα,�(α2p) ≤ Eα + C|p|2 of Theorem 3.7 with C ≥ 1
2m

, which
we can do w.l.o.g., since Eα,�(α2p) > Eα + C|p|2 immediately implies the statement of
Theorem 2.1 (compare with the comment above Lemma 3.1). We shall also assume in
the following that |p| ≤ C

α
. Due to these assumptions we can apply Theorem 3.7, which

yields the existence of a sequence 	α with

〈	α|H�|	α〉 − Eα,�

(
α2p
)
� α−(2+r),

〈
	α

∣
∣(ϒ� − p)2

∣
∣	α

〉
� α−(2+r),

and supp(	α) ⊆ B4L(0) with L = α1+σ , such that 	̃α := W−iξ	α with ξ = p

m
∇̃x1ϕ

Pek sat-
isfies condensation with respect to ϕPek, i.e.

χ
(
W−1

ϕPekNWϕPek ≤ α−r
)
	̃α = 	̃α.(4.3)

Using p

m
(p − ϒ�) ≤ α− r

2
|p|2
4m2 + α

r
2 (p − ϒ�)2 and |p| ≤ C

α
, we therefore have

Eα,�

(
α2p
)≥
〈

	α

∣
∣
∣
∣H� + p

m
(p − ϒ�)

∣
∣
∣
∣	α

〉

+ Oα→∞
(
α−(2+ r

2 )
)
,(4.4)

where p

m
formally acts as a Lagrange multiplier for the minimization of H� subject to the

constraint ϒ� = p. In the rest of this Section we will verify that

H� + p

m
(p − ϒ�)

is bounded from below by the right hand side of Eq. (2.3) when tested against a state 	

satisfying supp(	) ⊆ B4L(0) and complete condensation with respect to ϕPek − iξ (where
we find it convenient to use ϕPek − iξ instead of ϕPek for technical reasons). The momen-
tum constraint on 	 will not be needed for this; i.e., we have transformed our original
constrained minimization problem into a global one, which we handle similarly as in the
previous part [1] concerning a lower bound on the global minimum Eα = infσ(H). As
already stressed in the Section 1, it is essential to work with the truncated Hamiltonian
H� and the truncated momentum ϒ� here, since in contrast to H� + p

m
(p − ϒ�) the

operator H + p

m
(p − P) is not bounded from below for p �= 0.



THE FRÖHLICH POLARON AT STRONG COUPLING: PART II 297

Following [1], we will identify F(�L2(R3)) with L2(RN) using the representation
of real-valued functions ϕ =∑N

n=1 λnϕn by points

λ = (λ1, . . . , λN) ∈ RN.

With this identification, we can represent the annihilation operators an := a(ϕn) as an =
λn + 1

2α2 ∂λn
, where λn is the multiplication operator by the function λ �→ λn on L2(RN). Let

us also use for functions ϕ �→ g(ϕ) depending on elements ϕ ∈ �L2(R3) the convenient
notation g(λ) := g(

∑N
n=1 λnϕn), where λ ∈ RN.

It is essential for our proof that 	̃α satisfies complete condensation in ϕPek, see
Eq. (4.3), since it allows us to apply [1, Lemma 6.1] which states that in terms of the
quadratic operator Jt,γ and the transformation τ on �L2(R3) in Definitions 4.3 and 4.2
we have

〈	̃α|H�|	̃α〉 ≥ ePek +
〈

	̃α

∣
∣
∣
∣
∣
− 1

4α4

N∑

n=1

∂2
λn

+ Jtλ,α−s

[
τ(λ)
]+N>N

∣
∣
∣
∣
∣
	̃α

〉

(4.5)

− N
2α2

+ Oα→∞
(
α−(2+ε)

)

for suitable ε, s0 > 0 and any 0 < s < s0, where we define

N>N :=N −
N∑

k=1

a
†
k ak

and tϕ is defined as in Definition 4.2 such that tλ = (λ1, λ2, λ3) ∈ R3. Furthermore it is
shown in [1, Lemma 6.1], that there exists a β > 0, such that

〈	̃α|1 − B|	̃α〉 ≤ e−βα2−2s

(4.6)

for all 0 < s < s0, where B is the multiplication operator by the function λ �→ χ(|tλ| <

α−s). In the following we will always choose s < 1. We will use the symbol w for a generic,
positive constant, which is allowed to vary from line to line.

4.1. Quasi-quadratic lower bound. — In order to find a good lower bound on
〈

	α

∣
∣
∣
∣H� + p

m
(p − ϒ�)

∣
∣
∣
∣	α

〉

,

and therefore on Eα,�(α2p), it is natural to conjugate H�+ p

m
(p−ϒ�) with the Weyl trans-

formation WϕPek−iξ = WϕPekW−iξ , since ϕPek − iξ is close to the minimizer ϕPek − i
p

m
∇x1ϕ

Pek

of the corresponding classical problem, see [3]. Since iξ is purely imaginary, the inter-
action term in H� is invariant under the transformation W−iξ , i.e. W−iξRe[a(χ(|∇| ≤
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�)wx)]W−1
−iξ = Re[a(χ(|∇| ≤ �)wx)], and furthermore

W−iξϒ�W−1
−iξ = ϒ� − 2Re

[

a

(
1
i
∇̃x1 iξ

)]

+
〈

iξ

∣
∣
∣
∣
1
i
∇̃x1

∣
∣
∣
∣iξ

〉

(4.7)

= ϒ� − 2Re
[
a(∇̃x1ξ)

]
,

where we have used 〈iξ | 1
i
∇̃x1|iξ〉 = 0 (since 〈h| 1

i
∇̃x1|h〉 = 0 for any real-valued or

imaginary-valued function h ∈ L2(R3)). Therefore conjugating H� + p

m
(p − ϒ�) with

W−iξ yields

〈

	α

∣
∣
∣
∣H� + p

m
(p − ϒ�)

∣
∣
∣
∣	α

〉

=
〈

	̃α

∣
∣
∣
∣H� − p

m
ϒ� + 2Re

[

a

(
p

m
∇̃x1ξ − iξ

)]∣
∣
∣
∣	̃α

〉

+ |p|2
m

+ ‖ξ‖2

≥ ePek +
〈

	̃α

∣
∣
∣
∣
∣
− 1

4α4

N∑

n=1

∂2
λn

+ Jtλ,α−s

[
τ(λ)
]+N>N − p

m
ϒ�

∣
∣
∣
∣
∣
	̃α

〉

− N
2α2

+ 2Re

〈

	̃α

∣
∣
∣
∣a

(
p

m
∇̃x1ξ − iξ

)∣
∣
∣
∣	̃α

〉

+ |p|2
m

+ ‖ξ‖2 + Oα→∞
(
α−(2+ε)

)
,

where we have used Eq. (4.5). In the next step we apply the Weyl transformation WϕPek ,
which satisfies WϕPekλW−1

ϕPek = λ + λPek and hence

WϕPek
p

m
ϒ�W−1

ϕPek = p

m
ϒ� + 2Re

[

a

(
p

im
∇̃x1ϕ

Pek

)]

= p

m
ϒ� − 2Re

[
a(iξ)
]
,

WϕPekRe

[

a

(
p

m
∇̃x1ξ − iξ

)]

W−1
ϕPek = Re

[

a

(
p

m
∇̃x1ξ − iξ

)]

− ‖ξ‖2,

where we have used Re 〈ϕPek| p

m
∇̃x1ξ − iξ 〉 = 〈ϕPek| p

m
∇̃x1ξ〉 = −‖ξ‖2. Furthermore

WϕPek tλW−1
ϕPek = (λ1 + λPek

1 , λ2 + λPek
2 , λ3 + λPek

3

)= (λ1, λ2, λ3) = tλ

with λPek := (〈ϕn|�ϕPek〉)N
n=1. Therefore defining

	∗
α := WϕPek	̃α = WϕPek−iξ	α
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and conjugating with WϕPek yields the lower bound
〈

	α

∣
∣
∣
∣H� + p

m
(p − ϒ�)

∣
∣
∣
∣	α

〉

(4.8)

≥ ePek +
〈

	∗
α

∣
∣
∣
∣
∣
− 1

4α4

N∑

n=1

∂2
λn

+ Jtλ,α−s

[
τ
(
λ + λPek

)]

+ WϕPekN>NW−1
ϕPek − p

m
ϒ�

∣
∣
∣
∣
∣
	∗

α

〉

− N
2α2

+ 2Re

〈

	∗
α

∣
∣
∣
∣a

(
p

m
∇̃x1ξ

)∣
∣
∣
∣	

∗
α

〉

+ |p|2
m

− ‖ξ‖2 + Oα→∞
(
α−(2+ε)

)
.

The advantage of conjugating with the Weyl transformation WϕPek−iξ = WϕPekW−iξ

stems from the observation that we have an almost complete cancellation of linear
terms, i.e., as we will verify below, the term linear in creation and annihilation op-
erators Re〈	∗

α|a( p

m
∇̃x1ξ)|	∗

α〉 in Eq. (4.8) is of negligible order, and the function λ �→
Jtλ,α−s[τ(λ + λPek)] vanishes quadratically at λ = 0. The latter follows from the fact that
τ(λPek) = 0. Utilizing the inequalities 〈	∗

α|N |	∗
α〉 = 〈	α|W−1

ϕPek−iξ
NWϕPek−iξ |	α〉 ≤ α−r ,

see Eq. (3.15), and ‖ p

m
∇̃x1ξ‖ � |p|2, where we have used that ϕPek ∈ H2(R3), see [9, 12],

we obtain that

2Re

〈

	∗
α

∣
∣
∣
∣a

(
p

m
∇̃x1ξ

)∣
∣
∣
∣	

∗
α

〉

� α− r
2 |p|2 � α−(2+ r

2 )(4.9)

is indeed negligible small. Furthermore we can estimate, up to a term of order α−(2+ 2
5 ),

WϕPekN>NW−1
ϕPek from below by a proper quadratic expression

WϕPekN>NW−1
ϕPek =N>N + a

(
(1 − �)ϕPek

)
(4.10)

+ a†
(
(1 − �)ϕPek

)+ ∥∥(1 − �)ϕPek
∥
∥2

≥ 1
2
N>N − 2

∥
∥(1 − �)ϕPek

∥
∥2

= 1
2
N>N + Oα→∞

(
α−(2+ 2

5 )
)
,

where we have used ‖(1 − �)ϕPek‖2 � α−(2+ 2
5 ), see [1, Lemma A.1]. In the following

let us use the convenient notation ePek
p := ePek + |p|2

2m
. Combining Eq. (4.8) with Eq. (4.9),
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Eq. (4.10) and the observation that |p|2
m

− ‖ξ‖2 ≥ |p|2
2m

, and using the fact that

Eα,�

(
α2p
)≥
〈

	α

∣
∣
∣
∣H� + p

m
(p − ϒ�)

∣
∣
∣
∣	α

〉

+ Oα→∞
(
α−(2+ r

2 )
)
,

see Eq. (4.4), we obtain

Eα,�

(
α2p
)≥ ePek

p +
〈

	∗
α

∣
∣
∣
∣
∣
− 1

4α4

N∑

n=1

∂2
λn

+ Jtλ,α−s

[
τ
(
λ + λPek

)]
(4.11)

+ 1
2
N>N − p

m
ϒ�

∣
∣
∣
∣
∣
	∗

α

〉

− N
2α2

+ Oα→∞
(
α−(2+ε)

)
.

The right hand side of Eq. (4.11) is up to a coordinate transformation in the argument
of Jtλ,α−s quadratic in creation and annihilation operators. In the next subsection we will
apply a unitary transformation in order to arrive at a proper quadratic expression.

4.2. Conjugation with the unitary U . — In order to get rid of the coordinate
transformation τ in the argument of Jtλ,α−s , let us define the unitary operator U on
F(�L2(R3)) ∼= L2(RN) as

U(	)(λ) := 	
(
�(λ)
)
,

where � : RN −→ RN is defined as

�(λ) := τ
(
λ + λPek

) ∈ �L2
(
R3
)∼= RN.

Note that the inverse of τ is simply given by τ−1(ϕ) = ϕ + f (tϕ) where f : R3 −→
�L2(R3) is defined in Definition 4.2, which can be checked easily using the fact that
〈ϕn|f (t)〉 = 0 for n ∈ {1,2,3} and consequently tτ(ϕ) = tϕ . Hence

U−1λn U = 〈ϕn|τ−1(λ)〉 − λPek
n = λn + 〈ϕn|f

(
tλ
)〉 − λPek

n(4.12)

and therefore

U−1tλ U = (〈ϕ1|τ−1(λ)〉 − λPek
1 , . . . , 〈ϕ3|τ−1(λ)〉 − λPek

3

)

= (λ1, . . . , λ3) = tλ.

Defining the matrix (Jt,γ )n,m := 〈ϕn|Jt,γ |ϕm〉 we furthermore have

U−1Jtλ,α−s

[
τ
(
λ + λPek

)]
U = Jtλ,α−s[λ] =

N∑

n,m=4

(Jtλ,α−s)n,mλnλm
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as well as U−1i∂λn
U = i∂λn

for 3 < n ≤ N, which immediately follows from the observation
that � is a tλ = (λ1, λ2, λ3)-dependent shift. In the following let us extend {ϕ1, . . . , ϕN}
to an orthonormal basis {ϕn : n ∈ N} of L2(R3) and introduce an := a(ϕn) for all n ∈ N,
and let us extend the action of U to all of F(L2(R3)) such that U−1an U = an for n > N.
Defining

	 ′
α := U−1	∗

α,

we obtain by Eq. (4.11)

Eα,�

(
α2p
)≥ ePek

p +
〈

	 ′
α

∣
∣
∣
∣
∣
− 1

4α4

3∑

n=1

U−1∂2
λn
U − 1

4α4

N∑

n=4

∂2
λn

(4.13)

+
N∑

n,m=4

(Jtλ,α−s)n,mλnλm + 1
2
N>N − U−1 p

m
ϒ�U

∣
∣
∣
∣
∣
	 ′

α

〉

− N
2α2

+ Oα→∞
(
α−(2+ε)

)
.

Using Eq. (4.12) and U−1i∂λn
U = i∂λn

for 3 < n ≤ N, we further obtain the transforma-
tion law U−1an U = an + 〈ϕn|f (tλ) − �ϕPek〉 for all n > 3.

In order to express U−1 p

m
ϒ� U , let us introduce the operators cn defined as

cn := 1
2α2

U−1∂λn
U

for n ∈ {1,2,3} and cn := an for n > 3, as well as

g(t) := f (t) − �ϕPek +
3∑

n=1

tnϕn ∈ �L2
(
R3
)

and gn(t) := 〈ϕn|g(t)〉. With these definitions at hand we obtain

U−1an U = U−1

(
1

2α2
∂λn

+ λn

)

U = 1
2α2

U−1∂λn
U + λn

= cn + gn

(
tλ
)
, for 1 ≤ n ≤ 3,

U−1an U = an + 〈ϕn|f
(
tλ
)− �ϕPek〉 = cn + gn

(
tλ
)
, for 4 ≤ n ≤ N

and U−1an U = cn = cn + gn(t
λ) for n > N, and therefore

U−1an U = cn + gn

(
tλ
)

for all n ∈ N. In the following we want to think of cn as being a variable of magnitude
α−1 and tλ as being of order α−r for some r > 0, and consequently we think of gn(t

λ) as
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being of order α−r as well, since g(0) = 0. While the former will be a consequence of
the proof presented below, the control on tλ follows from our assumption that we have
condensation with respect to the state ϕPek.

In the following we want to show that for suitable ε ′ > 0, p

m
ϒ� is bounded by

β(− 1
4α4

∑3
n=1 U−1∂2

λn
U +∑N

n=4 a†
nan + N>N) with β = α−ε′

, up to a term of negligible
magnitude, see Eq. (4.16). Since − 1

4α4

∑3
n=1 U−1∂2

λn
U and N>N appear in the expression

on the right hand side of Eq. (4.13) as well, and since they are non-negative, this will leave
us with the study of

− 1
4α4

N∑

n=4

∂2
λn

+
N∑

n,m=4

(Jtλ,α−s)n,mλnλm − β

N∑

n=4

a†
nan

for a lower bound on the expression on the right hand side of Eq. (4.13). Using the
representation

p

m
ϒ� =

∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉

a†
nam,

we obtain

U−1 p

m
ϒ� U =

∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉
(
cn + gn

(
tλ
))†(

cm + gm

(
tλ
))

(4.14)

=
∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉

c†
n cm

+
∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉
(
c†
n gm

(
tλ
)+ gn

(
tλ
)

cm

)
,

where we have used
∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉

gn

(
tλ
)
gm

(
tλ
)=
〈

g
(
tλ
)
∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣g
(
tλ
)
〉

= 0,

see the comment below Eq. (4.7). Using the bound on the operator norm
∥
∥
∥
∥

p

m
∇̃x1

∥
∥
∥
∥

op

≤ |p|
m

3� = |p|
m

3α
4
5 (1+σ) � α

4
5 (1+σ)−1

yields

±
∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉

c†
n cm � α

4
5 (1+σ)−1

∞∑

n=1

c†
n cn.(4.15)



THE FRÖHLICH POLARON AT STRONG COUPLING: PART II 303

For the bound in Eq. (4.15) it is essential that we are using the truncated momentum ϒ�

defined in terms of the bounded operator ∇̃x1 instead of the unbounded operator ∇x1 .
Defining the coefficients

hn(t) :=
∞∑

m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉

gm(t)

and applying Cauchy–Schwarz furthermore yields for all β > 0

±
∞∑

n,m=1

〈

ϕn

∣
∣
∣
∣

p

i m
∇̃x1

∣
∣
∣
∣ϕm

〉
(
c†
n gm

(
tλ
)+ gn

(
tλ
)

cm

)

= ±
∞∑

n=1

(
c†
n hn

(
tλ
)+ hn

(
tλ
)
cn

)

≤ β

∞∑

n=1

c†
n cn + β−1

∞∑

n=1

∣
∣hn

(
tλ
)∣
∣2 = β

∞∑

n=1

c†
n cn + β−1

∥
∥
∥
∥

p

m
∇̃x1g
(
tλ
)
∥
∥
∥
∥

2

.

Note that ‖ p

m
∇̃x1g(t)‖ ≤ |p|

m
‖∇g(t)‖. Making use of ∇g(t) = ∇�η(t) with

η(t) := χ
(|t| < δ∗

)(
ϕPek

xt
− ϕPek

)

+ χ
(
δ∗ ≤ |t|)

(
3∑

n=1

tn
∇xn

ϕPek

‖�∇xn
ϕPek‖ − ϕPek

)

,

we obtain ‖∇g(t)‖ � ‖∇η(t)‖ + α−4(1+σ)‖η(t)‖ by Lemma A.3. Using again ϕPek ∈
H2(R3), we have ‖η(t)‖ + ‖∇η(t)‖ � 1 + |t|, as well as

∥
∥∇η(t)

∥
∥= ∥∥∇ϕPek

xt
− ∇ϕPek

∥
∥≤ |xt|

∥
∥�ϕPek

∥
∥� |t|

for |t| < δ∗. Consequently, ‖ p

m
∇̃x1g(t)‖ ≤ C0|p|(|t| + α−4(1+σ)(1 + |t|)) for a suitable con-

stant C0. The choice β := α−min{ r
2 ,1} yields for α large enough

±U−1 p

m
ϒ� U ≤ α−ε′

∞∑

n=1

c†
n cn(4.16)

+ C0C2
(
α−2αmin{ r

2 ,1}∣∣tλ
∣
∣2 + α−5−4σ

(
1 + ∣∣tλ∣∣)2)
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with ε ′ < min{ r

2 ,1 − 4
5(1 + σ)}. In the following let α be large enough such that ε ′ ≤ 1

2 .
Then we have

α−ε′ ∑

n/∈{4,...,N}
c†
n cn = α−ε′

(
∑

n>N

a†
nan − 1

4α4

3∑

n=1

U−1∂2
λn
U
)

≤ 1
2
N>N − 1

4α4

3∑

n=1

U−1∂2
λn
U .

Using Eq. (4.13), Eq. (4.16) and

〈	 ′
α

∣
∣
∣
∣tλ
∣
∣2
∣
∣	 ′

α〉 = 〈	̃α

∣
∣
∣
∣tλ
∣
∣2
∣
∣	̃α〉 ≤ 〈	̃α|N |	̃α〉 + 3

2α2
≤ α−r + 3

2α2
,

see Theorem 3.7 for the last estimate, we obtain for a suitable ε > 0

Eα,�

(
α2p
)≥ ePek

p +
〈

	 ′
α

∣
∣
∣
∣
∣
− 1

4α4

N∑

n=4

∂2
λn

+
N∑

n,m=4

(Jtλ,α−s)n,mλnλm

− α−ε′
N∑

n=4

a†
nan

∣
∣
∣
∣
∣
	 ′

α

〉

− N
2α2

+ Oα→∞
(
α−(2+ε)

)

= ePek
p + (1 − α−ε′)

〈

	 ′
α

∣
∣
∣
∣Q

α−ε′
tλ,α−s − N

2α2

∣
∣
∣
∣	

′
α

〉

+ Oα→∞
(
α−(2+ε)

)

with

Qκ
t,γ := − 1

4α4

N∑

n=4

∂2
λn

+ 1
1 − κ

N∑

n,m=4

(
(Jt,γ )n,m − κδn,m

)
λnλm,

where we used the fact that
∑N

n=4 a†
nan = − 1

4α4

∑N
n=4 ∂2

λn
+∑N

n=4 λ2
n − N−3

2α2 .

4.3. Properties of the harmonic oscillators Qκ
t,γ . — Let π be the projection from Defini-

tion 4.3 and note that Jt,γ ≥ c π for suitable c > 0, γ small enough and α large enough by
[1, Lemma B.5]. Therefore Qα−ε′

t,α−s ≥ 0 for α large enough. Since Jt,γ ≤ 1, we furthermore
have

(1 − κ) infσ
(
Qκ

t,γ

)≤ N
2α2

� α−2

(
�

ℓ

)3

≤ αq

for a suitable exponent q, see Definition 4.1. Combining this with the estimate

〈	 ′
α|1 − B|	 ′

α〉 = 〈	̃α|1 − B|	̃α〉 ≤ e−βα2−2s
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for a suitable β > 0, where B := χ(|tλ| < α−s), see Eq. (4.6), yields

inf
|t|<α−s

infσ
(
Qα−ε′

t,α−s

) 〈	α|B|	α〉 ≥ inf
|t|<α−s

infσ
(
Qα−ε′

t,α−s

)+ Oα→∞
(
αqe−βα2−2s)

.

Therefore we obtain for a suitable ε > 0

Eα,�

(
α2p
)

(4.17)

≥ ePek
p + (1 − α−ε′)

〈

	 ′
α

∣
∣
∣
∣Q

α−ε′
tλ,α−sB − N

2α2

∣
∣
∣
∣	

′
α

〉

+ Oα→∞
(
α−(2+ε)

)

≥ ePek
p + (1 − α−ε′)

(

inf
|t|<α−s

infσ
(
Qα−ε′

t,α−s

) 〈	α|B|	α〉 − N
2α2

)

+ Oα→∞
(
α−(2+ε)

)

≥ ePek
p + (1 − α−ε′)

(

inf
|t|<α−s

infσ
(
Qα−ε′

t,α−s

)− N
2α2

)

+ Oα→∞
(
α−(2+ε)

)
.

Since Qκ
t,γ is a harmonic oscillator, we can write its ground state energy explicitly as

infσ
(
Qκ

t,γ

)= 1
2α2

Tr�L2(R3)

√
Jt,γ − κπ

1 − κ

= infσ
(
Q0

t,γ

)+ 1
2α2

Tr�L2(R3)

[√
Jt,γ − κπ

1 − κ
−√Jt,γ

]

.

Using Jt,γ π = Jt,γ , and therefore [Jt,γ , π ] = 0, and again the fact that Jt,γ ≥ c π for γ

small enough and α large enough, as well as |√x − √
y| ≤ 1√

c
|x − y| for x ≥ 0 and y ≥ c,

we obtain for such γ , α, and κ ≤ c

± Tr�L2(R3)

[√
Jt,γ − κπ

1 − κ
−√Jt,γ

]

≤ 1√
c
Tr�L2(R3)

∣
∣
∣
∣
Jt,γ − κπ

1 − κ
− Jt,γ

∣
∣
∣
∣

= κ√
c(1 − κ)

Tr|Jt,γ − π |

= κ(1 + γ )√
c(1 − κ)

Tr
[
KPek + γ LPek

]
� κ

1 − κ
,

where we have used that KPek and LPek defined in Definition 4.3 are trace-class. Combin-
ing what we have so far with the bound

infσ
(
Q0

t,γ

)≥ N
2α2

− 1
2α2

Tr
[
1 − √

HPek
]− D

(
α−2γ + α−(2+ 1

5 )
)
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for small γ , |t| < γ and large α, and a suitable D > 0, see [1, Lemma B.5], yields

inf
|t|<α−s

infσ
(
Qα−ε′

t,α−s

)− N
2α2

+ 1
2α2

Tr
[
1 − √

HPek
]

� −(α−(2+s) + α−(2+ 1
5 ) + α−(2+ε′)).

In combination with Eq. (4.17) we therefore obtain for a suitable ε > 0

Eα,�

(
α2p
)≥ ePek

p − 1
2α2

Tr
[
1 − √

HPek
]+ Oα→∞

(
α−(2+ε)

)
,

which concludes the proof of Eq. (2.3).

Appendix A: Auxiliary results

Lemma A.1. — Let g(k) := χ 1(K−1|k| ≤ 2)k for k ∈ R. Then there exists a constant C > 0
such that for any bounded function f : R → R with f ′ ∈ L2(R) and K > 0, the double commutator is

bounded by

∥
∥
∥
∥

[[

g

(
1
i

d
dt

)

, f (t)

]

, f (t)

]∥
∥
∥
∥

op

≤ C
∥
∥f ′∥∥2

,(A.1)

where we write f (t) for the multiplication operator with respect to the function t �→ f (t). Furthermore

we can choose the constant C > 0 such that

∥
∥
∥
∥

[

g

(
1
i

d
dt

)

, f (t)

]∥
∥
∥
∥

op

≤ C
√

K
∥
∥f ′∥∥.(A.2)

Proof. — Let us denote with Tzφ(y) := φ(y + z) the translation operator on L2(R)

and let us write F(·) for the Fourier transformation. Then

[[

g

(
1
i

d
dt

)

, f (t)

]

, f (t)

]

=
∫

R
F−1(g)(z)Tz

[
f (t + z) − f (t)

]2
dz.

Using the Sobolev inequality

∣
∣f (t + z) − f (t)

∣
∣2 ≤ ∥∥f ′∥∥2|z|
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and the fact that F−1(g)(z) = K2F−1(g∗)(Kz), where g∗(k) := χ 1(|k| ≤ 2)k is a K-
independent smooth function with compact support, therefore yields

∥
∥
∥
∥

[[

g

(
1
i

d
dt

)

, f (t)

]

, f (t)

]∥
∥
∥
∥

op

≤
∫

R

∣
∣F−1(g)(z)

∣
∣ sup

t∈R

∣
∣f (t + z) − f (t)

∣
∣2dz

≤ K2
∥
∥f ′∥∥2

∫

R

∣
∣F−1(g∗)(Kz)

∣
∣|z|dz

= ∥∥f ′∥∥2
∫

R

∣
∣F−1(g∗)(z)

∣
∣|z|dz.

Since
∫

R |F−1(g∗)(z)||z|dz < ∞, this concludes the proof of Eq. (A.1). Regarding
Eq. (A.2), we obtain in a similar fashion

∥
∥
∥
∥

[

g

(
1
i

d
dt

)

, f (t)

]∥
∥
∥
∥

op

≤ K2
∥
∥f ′∥∥
∫

R

∣
∣F−1(g∗)(Kz)

∣
∣
√|z|dz

≤ √
K
∥
∥f ′∥∥
∫

R

∣
∣F−1(g∗)(z)

∣
∣
√|z|dz. �

Lemma A.2. — For K > 0 we have the estimate ‖χ(|∇| > K)∇ϕPek‖ � 1√
K

.

Proof. — We can write ϕPek = 4
√

π(−�)− 1
2 |ψPek|2, where ψPek is as in Definition

4.3. Hence the Fourier transform of ∇ϕPek reads

F
(∇ϕPek

)
(k) = ik

|k|F
(∣
∣ψPek
∣
∣2
)
(k),

and therefore
∥
∥χ
(|∇| > K

)∇ϕPek
∥
∥2 =
∫

|k|>K

∣
∣F
(∣
∣ψPek
∣
∣2
)
(k)
∣
∣2dk

≤ ∥∥|k|2F(∣∣ψPek
∣
∣2
)
(k)
∥
∥2

∞

∫

|k|>K

1
|k|4 dk � 1

K
,

where we used ψPek ∈ H2(R3) and consequently ‖|k|2F(|ψPek|2)(k)‖∞ < ∞. �

Lemma A.3. — With � the projection defined in Definition 4.1, we have
∥
∥
[|∇|,�]∥∥

op
� α−4(1+σ).

Proof. — Using the Fourier transformation, we can write

F(�ϕ)(k) =
N∑

n=1

〈fn|F(ϕ)〉 fn(k),
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with the help of non-negative functions fn having pairwise disjoint support, which addi-
tionally satisfy ‖fn‖ = 1 and supp(fn) ⊂ B√

3α−4(1+σ)(zn) for some zn ∈ R3. Therefore

F
([|∇|,�]ϕ)(k) =

N∑

n=1

(〈fn|F(ϕ)〉 |k| − 〈fn|F
(|∇|ϕ)〉)fn(k)

=
N∑

n=1

∫

fn
(
k′)F(ϕ)

(
k′)(|k| − ∣∣k′∣∣)dk′fn(k).

Using that the functions fn have disjoint support, as well as the fact that ||k| − |k′|| ≤
2
√

3α−4(1+σ) for k, k′ ∈ supp(fn), we obtain furthermore

∥
∥
[|∇|,�]ϕ∥∥2 =

N∑

n=1

∫ ∣
∣
∣
∣

∫

fn
(
k′)F(ϕ)

(
k′)(|k| − ∣∣k′∣∣)dk′

∣
∣
∣
∣

2∣
∣fn(k)
∣
∣2dk

≤ 12α−8(1+σ)

N∑

n=1

∣
∣
∣
∣

∫

fn
(
k′)
∣
∣
∣
∣F(ϕ)

(
k′)∣∣dk′∣∣2

≤ 12α−8(1+σ)
∥
∥
∣
∣F(ϕ)

∣
∣
∥
∥2 = 12α−8(1+σ)‖ϕ‖2,

where we have used that fn is an orthonormal system. �
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