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Abstract

Large language models (LLMs) have made tremendous progress in the past few years, from
being able to generate coherent text to matching or surpassing humans in a wide variety of
creative, knowledge or reasoning tasks. Much of this can be attributed to massively increased
scale, both in the size of the model as well as the amount of training data, from 100s of
millions to 100s of billions, or even trillions. This trend is expected to continue, which,
although exciting, also raises major practical concerns. Already today’s 100+ billion parameter
LLMs require top-of-the-line hardware just to run. Hence, it is clear that sustaining these
developments will require significant efficiency advances.
Historically, one of the most practical ways of improving model efficiency has been compression,
especially in the form of sparsity or quantization. While this has been studied extensively in
the past, existing accurate methods are all designed for models around 100 million parameters;
scaling them up to ones literally 1000× larger is highly challenging. In this thesis, we introduce a
new unified sparsification and quantization approach OBC, which through additional algorithmic
enhancements leads to GPTQ and SparseGPT, the first techniques fast and accurate enough to
compress 100+ billion parameter models to 4- or even 3-bit precision and 50% weight-sparsity,
respectively. Additionally, we show how weight-only quantizion does not just bring space
savings but also up to 4.5× faster generation speed, via custom GPU kernels.
In fact, we show for the first time that it is possible to develop an FP16 times INT4 mixed-
precision matrix multiplication kernel, called Marlin, which comes close to simultaneously
maximizing both memory and compute utilization, making weight-only quantization highly
practical even for multi-user serving. Further, we demonstrate that GPTQ can be scaled to
widely overparametrized trillion-parameter models, where extreme sub-1-bit compression rates
can be achieved without any inference slow-down, by co-designing a bespoke entropy coding
scheme together with an efficient kernel.
Finally, we also study compression from the perspective of someone with access to massive
amounts of compute resources for training large models completely from scratch. Here the
key questions evolve around the joint scaling behavior between compression, model size, and
amount of training data used. Based on extensive experimental results for both vision and text
models, we introduce the first scaling law which accurately captures the relationship between
weight-sparsity, number of non-zero weights and data. This further allows us to characterize
the optimal sparsity, which we find to increase the longer a fixed cost model is being trained.
Overall, this thesis presents contributions to three different angles of large model efficiency:
affordable but accurate algorithms, highly efficient systems implementations, and fundamental
scaling laws for compressed training.
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CHAPTER 1
Introduction

Since their initial image recognition breakthrough in 2011 [KSH12], deep neural networks
have lead to tremendous progress in many domains. Nowadays, the most accurate approaches
for understanding audio [RKX+23], detecting objects in videos [RDGF16] and classifying text
[DCLT19] are all based on machine learning. Yet, perhaps the most astonishing advancements
have happened only in the past few years, in the area of generative models. Kickstarted in
2020 by GPT3 [BMR+20], a model capable of producing novel text basically indistinguishable
from human writing, researchers have been developing more and more powerful such Large
Language Models (LLMs). Their most recent variants cannot just generate coherent content
about virtually any topic, but also write working code and even match or outperform humans in
a wide variety of knowledge, logic or reasoning tasks [AAA+23, RST+24]. These abilities stem
from Transformer models [VSP+17], a particularly robust type of neural network architecture,
trained at absolutely enormous scale: trillions of parameters [FZS22] fitted on trillions of
data points [TMS+23]. That not enough, current evidence strongly suggests that capabilities
will keep improving by increasing the scale even further [CND+23]. While this is an exciting
prospect, it is also somewhat worrying from a practical perspective. Such LLMs will quickly
become basically impossible to run for individuals without access to top-of-the-line hardware,
and even large companies with massive compute resources will struggle to serve these models
to users in an economic manner. These are not just futuristic problems: already today’s
state-of-the-art models require 100s of GBs of expensive GPU memory to use, and they are
being served to 100s of millions of people. Consequently, it is clear that improving the efficiency
of such models will be a highly important research direction going forward.

How to make machine learning models more efficient has already been extensively studied
long before the rise of LLMs [HABN+21, GKD+21]. Amongst the most successful set of
related techniques is the field of compression, where networks are made smaller and faster by
removing various kinds of redundancies. Two of the most popular such approaches are sparsity
and quantization. The former aims to remove model components and the latter reduces
numerical precision, while trying to minimize accuracy loss as much as possible. This can be
highly effective: for instance, one can remove up to 90% of model parameters in classical
vision models with almost no impact on model function [SA20, PIVA21]. Corresponding highly
compressed models can bring major memory and speedup benefits in practice [EDGS20], e.g.,
up to 10× acceleration in some cases [XZC22]. This makes compression techniques a very
promising direction for counteracting the ever-increasing size of modern language models.
However, only very little is known about the compressibility of LLMs [DLBZ22]. Does their
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1. Introduction

massive size make them more compressible, or are they potentially less compressible due to be
trained on huge quantities of data?

One major roadblock when it comes to applying compression to LLMs is that existing
techniques have been designed to work with models up to around a few 100 million parameters.
Consequently, many of these techniques, especially the most accurate ones, are complex and
expensive, featuring for example long (re-)training of the models to be made less redundant
[EGM+20, PIVA21]. Applying the same set of approaches to networks literally 1000× or more
larger is computationally infeasible. This issue is amplified by the fact that the individuals
which would benefit the most from compression are precisely those without access to major
compute resources. All together, this suggests that the development of compression algorithms
targeting specifically extremely large models is a highly relevant research direction. Further,
the most useful such methods would not just be accurate, but also affordable enough to be
applied with limited resources.

Another significant difference between research on compressing small and compressing large
models is that the former is often more theoretical in nature, focusing on highly idealized
performance metrics like FLOP counts [KRS+20]. In contrast, LLMs exist, are widely used,
and need to be made more efficient right now. Thus, it is more important than ever that
theoretical compression actually leads to real gains. Achieving this in practice requires solving
numerous systems challenges. Foremost among them lies the development of highly efficient
low-level GPU kernels, which achieve close to optimal hardware utilization. This is particularly
tricky as most current accelerators have been designed and heavily optimized for uncompressed
model execution. Additionally, other major systems problems arise from the sheer scale of the
models that should be compressed.

Lastly, compression is just as relevant for people with massive compute clusters as it is for
those with only limited resources. Though, key requirements may differ: the primary concern
in this setting is how much a model can be compressed, while the cost of doing so is generally
only secondary, at least as long as it can be recouped by the corresponding reduction in the
cost of serving millions of users. In this context, highly expensive training-based compression
techniques are most promising. However, once compute-intensive training is introduced around
LLMs, key questions move from compressing one particular model in isolation to overall
scaling behavior across an entire network family: specifically, how compression interacts with
model size and the amount of training data. Ideally, this can be captured, similar to standard
training, by an approximate formula, a so called scaling law [KMH+20, HBM+22], which
enables accurate extrapolation from mid- to very-large-scale experiments.

This thesis makes progress in all three major research directions outlined above: algorithms,
systems and scaling laws. Overall, it is structured as follows:

• First, Chapter 2 provides an overview about the most important concepts underlying the
work in this thesis. This includes topics like the Transformer architecture, compression
formats, or GPU programming.

• Next, we introduce a new highly accurate post-training compression algorithm, which
also unifies sparsity and quantization, in Chapter 3. This approach is then extended
towards GPTQ and SparseGPT, the first algorithms fast and accurate enough to perform
successful low-bit quantization and sparsification, respectively, of 100+ billion parameter
models.

2



• Chapter 4 begins by discussing how to write a peak efficiency mixed-precision GPU
kernel to unlock the full benefits of GPTQ quantization in practice. Additionally, it also
covers how to scale compression techniques to even larger trillion-parameter models
and introduces a bespoke extreme sub-1-bit compression format, co-designed with a
practical inference kernel.

• Chapter 5 discusses the first scaling law, in the context of Transformers trained on massive
datasets, characterizing the relationship between weight-sparsity, non-zero parameter
count and amount of training data, eventually leading to the concept of optimal sparsity.

• Finally, all main results are summarized in Chapter 6, followed by an outline of several
promising avenues for future work.

3





CHAPTER 2
Background

This chapter provides an overview of the most important machine learning and systems
concepts underlying the work in this thesis. Concretely, it covers Transformer models, neural
network compression techniques and accelerator programming. It is intended as a summary of
key aspects, while providing references to more complete coverage.

2.1 Transformers
Following their inception in 2017 [VSP+17], models based on the Transformer architecture,
or simply Transformers, have quickly become the most dominant family of neural network
architectures, especially for natural language processing [RWC+19, BMR+20] applications,
but also in other domains like computer vision [DBK+21].

2.1.1 Core Architecture
On a high level, a Transformer model M is a function “transforming” a sequence of T input
vectors xt into a sequence of T output vectors yt, usually all of the same dimensionality E.
For convenience and practical efficiency, these sequences are generally organized as RT ×E

matrices X and Y, respectively. The overall transformation is then carried out by sequentially
applying L block functions Lℓ to the inputs, i.e. calculating Y = LL(LL−1(. . . (L1(X))).
Typically, all Lℓ are identical in nature, and are defined as follows (or some minor variation):

H = X + att(norm(X))WO (2.1)
Y = H + act(norm(H)WU)WD, (2.2)

where norm(·) denotes a per-vector normalization function, nowadays most commonly root-
mean-square normalization [ZS19], act(·) an element-wise non-linearity like relu(x) = max(0, x)
and att(·) the attention function, the heart of the Transformer. The function att(X) is
computed by first calculating queries Q = XWQ, keys K = XWK and values V = XWV

and then returning the output O as

O = softmax
(︃ QK⊤√︂

E/H

)︃
V⊤, (2.3)
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where softmax(·) is the soft maximum function [f(z)]i = ezi/
∑︁n

j=1 ezj , applied row-wise.
Intuitively, attention combines the values corresponding to input vectors in the sequence
for which queries and keys are highly similar. Importantly, this is the only operation in the
Transformer in which information can flow across sequence elements—all other sub-functions
operate on each (sequence) element independently. An important technical detail is that
attention is typically executed with H so called heads. This means Q, K and V are first split
into segments of consecutive Ehead = E/H elements (common values of Ehead are 64 or 128),
then Equation 2.3 is applied to each type of segment separately, the results of which are finally
concatenated again, followed by mixing via a multiplication with the output projection WO.

Lℓ, as introduced above, is parametrized by six matrices, WQ, WK, WV, WO ∈ RE×E,
WU ∈ RE×F and WD ∈ RF ×E, where F is usually several times larger than E, with a
common value being F = 4E. WU and WD are also sometimes respectively called up- and
down-projection as they expand and then contract the main vector dimension E, comprising
the fully-connected part of a Transformer block. Summing the number of elements in all
matrices of all blocks gives a total trainable parameter count of

#parameters(M) ≈ L · (4E2 + 2EF ). (2.4)

Correspondingly, the overall number of necessary floating point operations (FLOPs) for
evaluating M can be approximated as

#FLOPs(M) ≈ 2 · L · (4E2T + 2ET 2 + 2EFT ), (2.5)

where the initial 2 follows from the convention of counting multiply and accumulate as two
separate operations. Crucially, it scales with the square of the sequence length T since the
attention operation “attends” every token with every other. This gives the Transformer a lot
of modelling power, but comes at high computational cost for long sequences.

2.1.2 Embeddings
The previous section introduced the Transformer as a function operating on sequences of
(high-dimensional) vectors, but this is generally not a natural representation of real-world data.
For instance, to process language data, we first need to map text to vectors and finally vectors
back to text (e.g., via [SHB16]). This is typically done by first tokenizing input text, that is
mapping words, sub-words or common-phrases to some index in a vocabulary of predefined
size V , followed by selecting the corresponding rows in a RV ×E input embedding matrix. The
inverse operation can be performed by first multiplying Y by an output embedding matrix
of shape RE×V and then applying row-wise softmax(·) to get a probability distribution over
the token vocabulary at each position. Importantly, such embedding matrices do not need
to be constructed manually but can simply be learned together with the other Transformer
parameters. It is also possible to tokenize other, potentially non-discrete, modalities like images,
e.g., via a quantized variational auto-encoder [VDOVK17]. On larger models, embedding
matrices typically make up only a small fraction of the Transformer’s overall compute and
memory cost and can thus often be disregarded to simplify efficiency considerations.

2.1.3 Training
Transformers are commonly trained (or pretrained, to be more precise) in unsupervised manner,
requiring a massive dataset as well as a suitable training objective. Nowadays, the most popular
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loss function is autoregressive next-token-prediction [RWC+19]. The main idea of this is to
make the model predict a probability distribution over the next token for any given sequence
prefix. This probability distribution should be as close as possible to the training data, i.e.,
the probabilty of the next token that is actually observed should be high. Importantly, this
means that all target labels are directly given by the text and no further (human) annotation
is necessary. To be more precise, let x1, x2, . . . , xT denote a sequence of tokens, then its
corresponding autoregressive prediction loss is defined as

T∑︂
t=1

log PM(xt | xt−1, xt−2, . . . , x1), (2.6)

where PM(·) is the probability assigned to token xt by the model given the corresponding
sequence prefix. The log-sum comes from equivalently transforming the product of all
probabilities, the joint probability of the entire sequence, for better numerical behavior during
optimization. From an efficiency perspective, it is key that all terms of the above sum can be
computed in just a single evaluation of M by adding an autoregressive mask, [M ]ij = −∞
if i > j and 0 otherwise, to the result of QK⊤ in Equation (2.3). This guarantees that
attention is only ever computed between each token and its predecessors (−∞ leads to
zero post softmax), thus no information contained in future tokens is ever mixed into the
next-token-prediction at each position. Exponentiating the average of Equation (2.6) over
many tokens and sequences also yields a popular quality measure of a trained model, called
perplexity. The lower this value, the better the network is at modelling natural text.

Practical training of Transformers involves repeatedly sampling B sequences from the training
dataset and packing them together into batches (potentially introducing padding to ensure
uniform lengths). The model then operates on tensors of shape B × T ×E, fully parallelizing
across the first dimension, which typically yields much improved compute utilization. The
actual objective optimization happens by continuously moving model parameters into the
direction of Equation (2.6)’s gradient, computed via backpropagation [RHW86]. A more
detailed description of this process can be found in, for example, [GBC16]. One particularly
important aspect of the gradient calculation is that it requires temporarily storing the inputs
to (almost) all model layers, in order to efficiently perform backpropagation. For large models,
this can quickly lead to huge memory requirements, thus rendering even short training, often
called finetuning, very expensive. In contrast, whenM is merely evaluated, a layer’s input can
generally be dropped as soon as its corresponding output is calculated, thus needing much
less memory overall. This large discrepancy in storage costs between forward passes (model
evaluations) and backward passes (gradient calculations) is a strong motivation for developing
model processing techniques for which just the former suffice.

2.1.4 Inference
Unlike other families of machine learning models, language Transformers are generally used
quite differently during inference, the process of actually applying existing models, relative
to how they are trained. This is because they are generative models that can be used for
generating new text as follows: first, the model is applied to some starting sequence of length
Tstart, the prompt, to produce a probability distribution from which the first response token
xTstart+1 is sampled. Next, this token is appended to the prompt and the model is run once
more on this now length Tstart + 1 sequence, yielding xTstart+2. This process is repeated either
until a length limit is hit or the model outputs a special end-of-response token. In this way, a
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well trained language Transformer can respond to free-form questions, execute instructions or
even solve math problems.
However, a naive execution of this one-at-a-time sampling strategy is hopelessly inefficient.
Generating T tokens, for simplicity assuming a prompt of length of 1, would require approxi-
mately (1 + 2 + · · ·+ T ) ·#FLOPs(M) ≈ O(T 2 ·#FLOPs(M)) compute. In other words,
the runtime of all layers scales quadratically in the sequence length T as every token is run
through the network again and again for each successive generation. In contrast, during
training, all prefixes are known in advance and thus all next-token probabilities can be predicted
in parallel, with quadratic scaling only in the attention operation. Fortunately, this severe
inference bottleneck can be completely resolved with two observations [Sha19]:

1. All intermediate states of a sequence prefix remain identical in all subsequent forward
passes due to the causal design of attention (see Section 2.1.3).

2. The state of token j interacts with the states of previous tokens i < j only in the
attention operation.

Consequently, it is possible to reuse cached keys and values of earlier tokens for predicting
later ones, making the overall compute cost of sequential one-at-a-time generation equivalent
to parallel prediction (as used during training). In each forward pass, only the intermediate
states for the most recent token must be calculated. It should be noted that the original
generation prompt is fully known and can thus be processed in parallel. This operation is often
called the prefill which populates the initial key- and value-caches (KV-cache for short).

2.1.5 Scaling
Perhaps the key behind the enormous success of Transformer models are their exceptional
scaling properties [KMH+20, BMR+20]. Training larger and larger networks on more a more
data consistently improves their capabilities. Importantly, this trend has been shown to hold
over many orders of magnitude, to the point where training models with trillions (that is
> 1012) of parameters [FZS22, ABG+22] on trillions of tokens [TLI+23, TMS+23] can be
justified despite enormous costs. Nowadays, such models produce text very close to human
writing [BMR+20] and exhibit strong performance across a very wide ranges of tasks, in some
cases even outperforming human experts [AAA+23, RST+24].
Underlying these developments has been the discovery that Transformers do not just keep
continuously improving with increased compute, but that they do so in a highly predictable
manner [KMH+20, HBM+22]. In fact, it is possible to determine scaling law formulas based on
medium cost training runs, which relatively accurately predict the capabilities of much larger,
and consequently much more expensive, models. Understanding the precise relationships
between higher-level properties, like model size or the amount training data used, is not
just interesting from a scientific point of view, but also helps to significantly reduce risks
of very-large-scale experiments with tens of thousands of accelerators, costing hundreds of
millions of dollars.

2.2 Model Compression
Improving the efficiency of neural networks is a research direction with a long history [LDS89,
HSW93]. While the focus of this area used to lie on making networks suitable for real-time
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or mobile settings, similar techniques are nowadays critical to make massive state-of-the-art
models run at all on anything that is not the very top-end hardware [DLBZ22], as well as for
improving the economics of serving such models to huge user-bases.
One particularly successful area of efficiency research is model compression. Trained networks
generally do not make optimal use of every model parameter. Thus, it is often possible to
significantly reduce a model’s resource consumption by removing redundancies at no, or only
very little, impact on the function/accuracy. In other words, the model representation is
compressed. This can be accomplished in various different ways, ranging from structural
reshaping of the model architecture to fine-grained changes in the bit-representation of
individual parameters. This thesis focuses on two forms of compression that have been shown
to be highly practical [HABN+21, GKD+21]: sparsity and quantization.

2.2.1 Sparsity
The main idea behind sparsity is to set as many parameters as possible in the (large) weight
matrices of neural networks to exactly zero. Such weights can be considered “deleted” and
may be skipped during computation, as a multiplication with zero always results in zero. At
the same time, this can also reduce memory costs, for instance, by storing only non-zero
values and their corresponding matrix indices. This form of compression is motivated by the
empirical observation that many weight values tend to have very small magnitude and their
complete removal thus has only minimal effect on a model’s output.
More formally, given a model with parameters w ∈ Rd, the goal of sparsification, or pruning,
is to find a new set of weights w′(w) ∈ Rd together with a sparsity mask m ∈ {0, 1}d, where
a 1 indicates that the corresponding weight w′

i is non-zero. w′ and m should minimize the
task loss L(·), while achieving sparsity S:

argminw′(w),m L(w′(w)⊙m) s.t. 1−
d∑︂

i=1
mi ≥ S. (2.7)

Crucially, the post-sparsification weights w′(w) may be derived from the original ones, but
can also differ significantly if this is beneficial to compensate for accuracy drops caused by
the removal of a large fraction of parameters. In some scenarios [EGM+20], an initial set of
weights w is not available, meaning that w′ and m must be found from scratch, potentially
rendering the problem even more difficult.
Sparsity can be applied at differing levels of granularity. On the one extreme lies completely
unstructured removal, where weights may be deleted in whatever pattern is most favorable to
preserve accuracy. On the other, there is structured pruning, where large groups of weights, for
instance entire rows or columns, must either be removed completely or not at all. Unstructured
pruning is ideal from an accuracy standpoint due to maximum flexibility, at the disadvantage
of making practical acceleration quite challenging because of the highly irregular weight
access patterns caused by essentially random sparsity masks. Nevertheless, it is possible to
achieve substantial, although usually less than ideal, speedups on CPUs [KKG+20, EDGS20]
or older GPUs [GZYE20] in practice, via clever algorithms and systems engineering. In
contrast, structured pruning is usually trivial to accelerate with close to ideal speedups, even
on dedicated neural network accelerators, but maintaining accuracy is challenging, as fully
deleting large structures is often quite destructive to a model’s function. More recently,
semi-structured formats, which trade off imposing some structure for significantly improved
acceleration capabilities, are gaining in popularity. The most prominent such format is n:m
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Figure 2.1: Compression at different levels of granularity. (top) structured, semi-structured (2:4)
and unstructured sparsity. (bottom) per-matrix and per-row quantization.

sparsity [MLP+21, PY21], a pattern where each m consecutive weights contain exactly n
non-zero values. Its 2:4 variant has dedicated hardware support on modern NVIDIA GPUs,
allowing up to 2× speedup relative to state-of-the-art dense matrix multiplies. Figure 2.1 (top)
illustrates different types of sparsity.

2.2.2 Quantization
Quantization, meaning to reduce the numerical precision of storage and/or computation, is
probably the most popular type of model compression in practice. More precisely, a weight
matrix is considered to be quantized if each element is from a (small) discrete set of possible
values Q.
In principle, Q can have arbitrary structure. However, for practical purposes, it is common to
pick a bit-width b and fix Q = {0, 1, . . . , 2b − 1}. This unsigned grid of 2b integer values can
be moved closer to a given weight distribution via a linear transformation q′ = sq− z involving
a scale s and a zero-point z. Crucially, given two linearly quantized matrices s1Q1 − z1 and
s2Q2 − z2 where Q1, Q2 ∈ Qd×d, multiplication can be rearranged as follows:

(s1Q1 − z1)(s2Q2 − z2) = (s1s2)Q1Q2 − (z1s2)1Q2 − (z2s1)1Q1 − z1z2, (2.8)

where 1 denotes a d-dimensional vector of all ones and scalars are assumed to be broadcasted
onto relevant matrices. This means, the computationally dominating part of this calculation,
the O(d3) matrix multiply Q1Q2, can be fully executed at lower precision, which can be well
accelerated on hardware. Notably, this trick relies on the linearity of the quantization grid.
A simple strategy of deriving s and z for some set of weights is via minimum and maximum
observed values. Finding the closest sq − z to some weight vector w, can be accomplished
by simple nearest rounding. Putting everything together, quantizing weights w ∈ Rd can be
accomplished via (assuming w contains at least one positive and one negative value):

s = max(w)−min(w)
2b − 1 , z = −min(w), q = s · round

(︃w + z

s

)︃
− z. (2.9)
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Since s and z are constant between many weights, they can be stored separately in standard
precision, while each quantized weight value is exactly a b-bit number, thus reducing overall
memory (and potentially compute) costs by essentially the decrease in bit-width. Nowadays,
weights are almost always stored in 16-bit precision per default, hence quantizing to, e.g.,
4-bit yields a 4× reduction in size.

Similar to sparsity (see Section 2.2.1), quantization can also be applied at varying levels of
granularity. Instead of sharing s and z over full weight matrices, one can maintain scales
and zeros for each layer output, or even more fine-grained, for each group of g consecutive
weights. As long as g is not too small, this approach still achieves very good compression: for
instance, at 4-bit with groupsize 128, 4d bits are required to store the quantized weights and
(16 + 16)d/128 bits to store all scales and zeros at 16-bit precision, averaging out to 4.25 bits
per parameter. While fine-grained quantization also causes some computational overhead, it is
generally nowhere near as problematic as fully unstructured sparsity, since enough regularity
in the representation remains. Although, there is one critical detail: groups must be formed
across the reduction axis of the matrix multiply; otherwise, the technique in Equation 2.8 is
not applicable. Finally, it should be noted that achieving computational speedups through
quantization on current hardware requires both matmul operands (weights and activations) to
be quantized. This is unlike sparsity, where compressing just the weight matrices suffices, in
principle. Nevertheless, in specific instances, as this thesis will show, there can also be major
performance benefits from quantizing just the weights.

2.2.3 Training-Based vs. Post-Training
Compression methods can be broadly categorized into training-based [EGM+20, SA20] and
post-training [HCI+21, NAVB+20], or also sometimes called one-shot methods. The former
involve significant amounts training or re-training: for example, gradual magnitude pruning
(GMP) [ZG17] periodically removes a small fraction of weights with lowest absolute value,
while training or finetuning a model. Importantly, a training-based sparsification approach
must not necessarily start from a randomly initialized model like [PIVA21], but may also be
bootstrapped with an existing checkpoint [SA20]. In contrast, post-training techniques are
characterized by compressing a pretrained model in a single step, without any kind of retraining.
While no-training methods may be a better name for this category, we stick to the by now
rather established, albeit slightly confusing, term post-training.

Generally, training-based methods are most powerful, producing the most accurate models
at the highest compression rates. However, they are often also quite expensive, with the
best results achieved only with considerably extended training times [EGM+20, PIVA21] and
after careful hyper-parameter tuning [KA22]. Meanwhile, post-training methods are usually
not nearly as accurate, but therefore very cheap and robust. They can often achieve decent
compression rates, essentially “at-the-push-of-a-button”, with minimal compute resources.
This has made them quite popular recently, especially in the context of inference engines or
serving platforms, where existing models should be accelerated but only little compute and/or
training data is available for compression. Nevertheless, training-based methods are currently
most widespread.

2.2.4 Large Models
Although model compression is a well studied area, essentially all existing research has focused
on neural networks up to at most a few hundred million parameters, with a trend towards
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developing increasingly complex and expensive methods for pushing compression rates further
and further. At the same time, some of the most exciting new models, with breakthrough
language understanding capabilities, are becoming extremely large in size, up to hundreds
of billions [BMR+20] or even trillions of parameters [FZS22, ABG+22]. While such models
used to be available only to a small handful of institutions, recent efforts [ZRG+22, SFA+22]
have released similarly large networks to the wider research and practitioner community. As
those 100+ billion parameter models are really unwieldy to run on all but the very top end
hardware, significantly compressing them seems particularly appealing. Unfortunately, this is a
challenging endeavor.

First of all, training-based methods are essentially infeasible to run on those models for most
people, and even those select few in possession of massive compute clusters may not want to
risk expensive compression experiments that eventually fail due to finicky hyper-parameter
tuning. This moves the spotlight onto the previously rather niche post-training approaches.
These are generally orders of magnitude cheaper to run, making them seem a significantly
more promising pathway towards affordable compression of super large models. However,
simple and trivially scalable approaches [DLBZ22] may not preserve accuracy at significant
compression, while existing accurate techniques designed for 100 million parameter models
[NAVB+20, LGT+21] may not be fast enough to run at literally 1000× larger scale.

Enormous parameter count is not the only challenge brought by modern language models. Most
standard pruning benchmarks like ResNet50/ImageNet [ZG17] or BERT/SQuAD [SWR20]
feature datasets with tens of thousands to a few million samples, which are all seen many times
during training. By contrast, LLMs are typically trained on many orders of magnitude more
data, so much, that processing every token just once suffices for good training [BMR+20]. It
is unclear, whether or how this affects any prior observations on model compressibility. Are
such models harder to compress as they need to memorize more data, or are they actually
easier to compress because they are much larger and thus even more overparameterized?

2.3 Hardware Accelerators

Perhaps the main driver behind deep learning progress in general [KSH12], and large language
models in particular, has been advances in computing hardware, specialized to precisely the
operations most critical for machine learning. Dedicated accelerators like (NVIDIA) GPUs or
TPUs [JYP+17] are orders of magnitude faster and more energy efficient at executing relevant
training and inference workloads, relative to general purpose CPUs. The latter are designed
for mostly sequential execution with potentially many branching decisions, while the former
are specialized to massively parallelizable tasks, such as matrix-matrix multiplications, the
workhorse of modern neural networks.

This section introduces the key components of NVIDIA GPUs, the most widely used type of
ML accelerator, from a software perspective. An NVIDIA GPU is programmed in the C++
dialect CUDA, where the part of the code which is actually run on the accelerator is usually
referred to as a kernel. Developing kernels differs from regular software engineering by being
very low-level, often taking into account aspects like cache levels or register assignments, and
generally prioritizing performance above all else.
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2.3.1 Parallelization Hierarchy
On a high-level, a GPU is designed to run potentially tens of thousands of threads in parallel.
This can only be achieved by making individual threads relatively weak and adhering to various
parallelization restrictions and trade-offs, eventually leading to a hierarchical parallelization
structure.
On the highest level, most GPUs have between 50 to 100 Streaming Multiprocessors (SMs),
essentially separate computing cores. They can run fully independently, which is also why
communication between them is quite expensive. On each SM, there may reside up to between
32− 64 so called warps, that is groups of exactly 32 threads each. In a single cycle, all threads
in a warp must always execute the same instruction (but potentially on different data). If some
threads in a warp do not participate in a particular instruction (e.g., by a branching decision),
they must necessarily idle in this cycle and cannot compute anything else. Shuffling around
data within a warp using dedicated instructions is by far the fastest form of communication
on a GPU. While an SM can, in principle, run dozens of warps “in parallel”, it can only
issue instructions of at most a small handful of warps in each cycle. However, GPUs follow
an asynchronous computation model. If one warp is reading data from global memory, a
time-consuming operation, other warps may perform actual computation. Further, even the
same warp that is reading data may continue executing operations that do not require the
result of the initial data read; only once such a dependency is hit, the warp must stall. Almost
all instructions have a certain latency of at least a few cycles. To hide that, computation
is realized via pipelines to which warps submit instructions, receiving the results once they
are actually executed. There are also different pipelines (integer arithmetic, floating point
arithmetic, data loading, etc.) which may be engaged simultaneously, provided that they are
fed with sufficiently many instructions by different warps.
Kernel programs are organized as thread blocks, that is, grid assignments which partition a
problem across SMs, warps and threads. How efficiently a GPU can solve a task is heavily
dependent on how well it can be mapped onto the existing parallelization hierarchy. Ideally,
there will be no communication between SMs, some communication between warps and the
most communication within a warp. A perfect example of a well supported operation is a
matrix-matrix multiply: each element of the output is fully independent of one another.

2.3.2 Memory Hierarchy
A problem being well parallelizable across a huge number of threads is a necessary but not a
sufficient condition for being well suited to GPU computation. Another critical factor is given
by memory access patterns. Modern GPUs have such high compute throughput that they can
be easily bottlenecked by memory reads, if those cannot properly utilize the memory hierarchy.
First, to use a GPU, all data must be transferred from CPU system memory (RAM) to
GPU main memory (DRAM). This is very slow and initiating such transfers during a GPU
computation should only be a last resort workaround if it is impossible to store all data in
DRAM. While CPU servers may easily have a few TBs of RAM, even the most expensive
top-end GPUs have less than 100 GB of DRAM, which is why efficiently running very large
models often requires splitting weights across several GPUs. Although GPU DRAM is at least
an order of magnitude faster than CPU RAM, reading from this global memory is still very
slow compared to any arithmetic operations and should be minimized as much as possible. In
addition to the global DRAM, every SM also has a few MBs of shared memory, located in
SRAM, which is more than 10× faster compared to DRAM. Every warp can access exactly
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the shared memory of the SM that it lives on; warp-to-warp communication is also generally
realized via shared memory. Finally, like on other computing hardware, the actual computation
happens within registers that bring no extra memory access costs. Compared to CPUs, GPUs
have a very large number of registers (up to 65K per SM) to support very large thread counts.
Peak efficiency kernels often utilize almost all of the available registers to avoid much slower
shared memory (or worse, global) reads and writes as much as possible.
In addition to explicitly controlled global and shared memory, GPUs also feature L1 and L2
caches. The former is located in SRAM and thus behaves exactly like shared memory, although
not explicitly managed. The latter is much larger (10s of MBs) and shared between all SMs,
while being 2 − 4× faster than global memory. To maximize global memory bandwidth, it
is critical that threads access consecutive memory locations, as this can often be coalesced
into a single access. Further, each thread may read data vectors of up to 16 bytes in a single
transaction. In contrast, shared memory is organized into 32 banks, requiring each thread in
a warp to read from a different bank for maximum efficiency. This happens for consecutive
locations, but can, with some care, also be achieved for other access patterns. Finally, it
should be noted again that memory access and compute can and should be overlapped (see
also Section 2.3.2), which sometimes requires explicit software pipelining or register buffering.

2.3.3 Tensor Cores
Graphics Processing Units (GPUs) were, as the name suggests, originally created for graphics
applications. While their massively parallel design is very well suited for matrix multiplications,
significant further gains can be made with hardware features designed for this particular
operation. The introduction of tensor cores, dedicated units for accelerating matmuls, has
probably brought the biggest leap in machine learning compute in recent years.
A tensor core is a hardware circuit which is able to execute D = AB + C for small matrices
(shapes differ between GPU generations and data types) in a single cycle. For example, on
Ampere-class devices, tensor cores can multiply a 16 × 16 and a 16 × 8 matrix in a single
cycle, that is 16 · 16 · 8 = 2048 FP16 multiply-accumulates. The input and output matrices
are held in registers distributed across all threads in a warp, hence a tensor core operation
always involves a complete warp. A very useful feature of tensor cores is that the accumulators
D and C can have higher precision (e.g., FP32) than the operands A and B (e.g., FP16),
at no performance penalty. This is relevant to avoid numerical issues in large matmuls. One
downside of tensor cores is that they are so fast that any other additional operations, even
sometimes index calculations, can easily slow down throughput if they cannot be perfectly
overlapped. In the context of compression, this makes it challenging to utilize tensor cores
well in many formats, which is however a necessity to remain competitive in terms of speed
with standard uncompressed execution.
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CHAPTER 3
Algorithms

This chapter introduces several new post-training compression algorithms, in particular ones
specifically targeting extremely large models. It begins by first developing a highly accurate
layer-wise compression approach which unifies quantization and pruning in Section 3.1. This
algorithm, initially developed for small models of ≈ 100 million parameters, is then adapted
and optimized in major ways to eventually yield GPTQ and SparseGPT, the first methods
that are fast and accurate enough to perform low-bit compression and nontrivial sparsification
of models up to 100+ billion parameters, respectively.

Section 3.1 is based on the NeurIPS 2022 paper “Optimal Brain Compression: A Framework
for Accurate Post-Training Quantization and Pruning” [FSA22], Section 3.2 on the ICLR 2023
paper “OPTQ: Accurate Post-Training Quanitzation for Generative Pretrained Transformers”
[FAHA23], and Section 3.3 on the ICML 2023 paper “SparseGPT: Massive Language Models
Can be Accurately Pruned in One-Shot” [FA23].

3.1 Optimal Brain Compression: Accurate Post-Training
Quantization and Pruning

3.1.1 Motivation & Overview
Motivated by the growing parameter counts and computational costs of state-of-the-art
ML models, hundreds of pruning and quantization approaches have been proposed and
analyzed [HABN+21, GKD+21], with the general goal of obtaining efficient variants of deep
neural nets (DNNs) which would preserve accuracy while maximizing compression. Despite
impressive progress, compression is still a laborious process: the pruning and quantization
stages are often done independently, and recovering model accuracy after compression often
requires partial or even full retraining of the compressed model.

An alternative but challenging scenario is the post-training compression setup [NAVB+20,
LGT+21, HNH+21, LGW+21], in which we are given a trained but uncompressed model,
together with a small amount of calibration data, and must produce an accurate compressed
model in one shot, i.e. a single compression step, without retraining, and with limited
computational costs. This is motivated by practical scenarios such as the MLPerf Inference
Benchmark [RCK+20], and is the setting we focus on in this chapter.
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Compression via weight pruning started with seminal work by LeCun et al. [LDS89], comple-
mented by Hassibi and Stork [HSW93], who proposed a mathematical framework called the
Optimal Brain Surgeon (OBS), for choosing the set of weights to remove from a trained neural
network, by leveraging second-order information. Recent advances, e.g. [DCP17, WGFZ19,
SA20, FKA21] showed that OBS can lead to state-of-the-art compression at DNN scale, by
introducing numerical methods which can approximate the second-order information needed
by OBS at the massive parameter counts of modern models. However, these approaches do
not apply to the post-training setting, as they require gradual pruning, as well as significant
retraining, to recover good accuracy.
An alternative approach, which is standard in the context of post-training compression, has
been to break the compression task into layer-wise sub-problems, identifying a compressed
weight approximation for each layer, given a sub-sample of the layer’s inputs and outputs
based on calibration data. This line of work, e.g. [WCHC20, NAVB+20, HNH+21], introduced
elegant solvers for the resulting layer-wise weight quantization problem, which achieve state-
of-the-art results for post-training quantization. Recently, AdaPrune [HCI+21] showed that
this approach can also be effective for post-training weight pruning.
In this context, a natural question is whether existing approaches for pruning and quantization
can be unified in order to cover both types of compression in the post-training setting, thus
making DNN compression simpler and, hopefully, more accurate. This question is also of
practical importance, since both GPU and CPU platforms now jointly support sparse and
quantized formats [MLP+21, Neu22], and, as we illustrate experimentally, the resulting models
could be executed with compound speedups.

Contribution. In this work, we provide a mathematical framework for compression via
pruning or quantization, which leads to state-of-the-art accuracy-versus-compression trade-offs
in the challenging post-training compression setup. Our framework starts from the layer-wise
compression problem described above, by which the global compression task, defined either for
pruning or quantization, is first split into layer-wise sub-problems, based on the layer behavior
on the calibration data. Specifically, given a layer ℓ defined by weights Wℓ, and layer inputs
Xℓ, we aim to find a compressed version of the weights ˆ︂Wℓ which minimizes the output
difference relative to the uncompressed layer, measured via the squared error between the
original and compressed layer, acting on the sample input ||WℓXℓ − ˆ︂WℓXℓ||22, under a fixed
compression constraint on ˆ︂Wℓ.
Although solving this problem optimally for sparsity or quantization constraints is NP-
hard [BD08, NAVB+20], it is a key step in all state-of-the-art post-training compression
methods, both for pruning [HCI+21, FA22] and for quantization [NAVB+20, HCI+21, LGT+21].
Once this is solved per layer, a solution to the global problem can be obtained by combining layer-
wise solutions, which is handy especially for non-uniform compression, e.g. [HLL+18, FA22].
Thus, several approximations for this problem have been proposed [NAVB+20, HNH+21,
HCI+21].
We show that there still is significant room for improvement when solving the layer-wise
compression problem. Roughly, our approach is to specialize the OBS framework to the
squared error formulation above: in this case, the framework can in theory produce an exact
greedy solution, but a direct implementation would have infeasible Θ(d4) computational cost,
where d is the layer dimension. Our main technical contribution is a series of algorithms
which reduce this computational cost, without any approximations, to O(d · d2

col) where dcol is
the column dimension of the weight matrix. In practice, these improvements are significant
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enough to allow us to implement the exact OBS greedy solution, which prunes one weight at
a time, and updates all remaining weights after each step, at the scale of modern DNNs with
tens of millions of parameters, within reasonable time, on a single GPU. We provide efficient
implementations of our methods at https://github.com/IST-DASLab/OBC.

In turn, this algorithmic development allows us to apply the OBS approach to quantization. The
resulting algorithm, called the Optimal Brain Quantizer (OBQ), quantizes weights iteratively
one-at-a-time, depending on their impact on the loss increase, after which it applies a closed-
form update to the remaining unquantized weights, further reducing the loss. This solves the
two problems efficiently, and in a unified manner—we call the unified framework the Optimal
Brain Compressor (OBC).

Experimental Results. We apply OBC to standard tasks and models covering image
classification, object detection, and language modelling applications. We first show that our
framework yields significantly better solutions for the layer-wise compression problem, which
leads to higher-accuracy end-to-end compressed models for both pruning and quantization,
relative to the corresponding state-of-the-art techniques, often by significant margins. Second,
we show that our pruning and quantization approaches can be compounded, with surprisingly
strong results: we obtain a 12× reduction in theoretical operations with a 2% accuracy drop
for GPU-supported compound compression [MLP+21], and a 4× speedup in actual runtime
with only 1% accuracy drop for a CPU-based sparsity-aware runtime [Neu22]. Together, these
results suggest for the first time that post-training compression can be competitive with full
retraining.

3.1.2 Related Work
Optimal Brain Surgeon (OBS). The classic OBS framework [LDS89, HSW93] was
originally applied to networks with hundreds of weights; more recently, methods such as
WoodFisher [SA20] rendered the approach computationally feasible for DNNs by using a
block-diagonal Fisher approximation of the Hessian, while follow-up methods introduced more
efficient and general algorithms for handling the inverse Fisher matrix [FKA21], or customize
this approximation to specific model families [KCN+22]. Earlier work called Layer-wise OBS (L-
OBS) [DCP17] was inspired by the K-FAC approximation [MG15, GM16]: L-OBS approximates
the OBS framework not for the global objective, but for a quadratic per-layer loss, while also
pruning all weights based on a single Hessian computation. At a high level, our approach is
similar, in that we apply OBS layer-wise; however, we apply OBS exactly, that is, pruning
one weight at a time, and exactly recomputing the Hessian after every pruning step. This
is made computationally tractable by several new algorithmic ideas, and yields significantly
improved results relative to L-OBS. This prior work on pruning considered settings with
extensive finetuning. By contrast, we will focus on the post-training setting, where only a
small amount of calibration data is available.

Post-Training Quantization. This setting has been primarily considered for quantization,
and most state-of-the-art methods work by performing layer-wise compression. Specifically,
BitSplit [DCP17] optimizes the quantized weights bit by bit, while AdaRound [NAVB+20]
finds a weight rounding policy through gradient based optimization with an annealed penalty
term that encourages weights to move towards points on the quantization grid. AdaQuant
[HNH+21] relaxes the AdaRound constraint, allowing weights to change during quantization-
aware optimization, via straight-through estimation [NFA+21]. BRECQ [LGT+21] suggested
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that accuracy can be improved further by integrating second-order information into the
layer-wise losses and by jointly optimizing hand-crafted blocks of related layers.

A key step of AdaRound, AdaQuant and BRECQ is to quantize layers incrementally, in
sequential order, so that errors accumulated in earlier layers can be compensated by weight
adjustments in later ones. This significantly improves performance, but reduces flexibility, as
the entire process may need to be re-done whenever we wish to change compression parameters
of one layer. We instead target independent compression of each layer, allowing the end model
to be simply “stitched” together from layer-wise results. Despite operating independently
on each layer, we find that, after correcting basic statistics such as batchnorm, our method
performs on par to sequential ones for uniform quantization.

Post-Training Sparsification. The layer-wise approach was shown to also be effective for
post-training pruning by AdaPrune [HCI+21], which pruned weights to the GPU-supported
N:M pattern [ZMZ+21]. AdaPrune first drops parameters according to their magnitude [ZG17]
and then reoptimizes the remaining weights to reconstruct the pre-compression calibration set
output. This is similar to [HZS17, ELRCB18] which also perform layer-wise reoptimization
of the remaining weights. Follow-up work [FA22] noted that the results of AdaPrune can be
improved further by performing more frequent pruning/optimization steps. Our algorithm
pushes this idea to the limit, performing full reoptimization after every single pruned weight,
while remaining computationally tractable. We further use a more sophisticated weight
selection metric which incorporates second-order information. Finally, [FA22] also introduces
global AdaPrune, a more expensive global optimization step applied on top of the layer-wise
AdaPrune results, which can bring additional accuracy gains. This can also be applied to our
pruned models.

Non-Uniform Compression. An orthogonal practical question is how to compress different
layers to maximize accuracy under a given resource constraint, such as latency or energy
consumption. Existing methods can be roughly categorized into search-based and solver-based
approaches. The former, e.g. AMC [HLL+18] or HAQ [WLL+19], search for a layer-wise
compression policy directly via, for example, reinforcement learning or genetic programming
[YGZL20], whereas the latter, e.g. HAWQv3 [YDZ+21] or AdaQuant [HNH+21], construct
a relaxed version of the overall problem that is then solved exactly. We focus here on
solver-based approaches, as they can rapidly adapt to different scenarios when combined with
accurate independent layer-wise compression schemes; however, our techniques could be of
interest for search-based methods as well. Concretely, we use the problem formulation of
AdaQuant [HNH+21] to which we apply the DP algorithm of SPDY [FA22] to achieve fast
solving times even with a large number of possible choices per layer.

3.1.3 Problem Definition and Background
The Layerwise Compression Problem. Following prior work on post-training compression,
e.g. [NAVB+20, HNH+21], we define the problem as follows. Mathematically, we model a
layer ℓ as a function fℓ(Xℓ, Wℓ) acting on inputs Xℓ, parametrized by weights Wℓ. The goal
of layer-wise compression is to find a “compressed” version of Wℓ that performs as similarly as
possible to the original weights. More formally, the compressed weights ˆ︂Wℓ should minimize
the expected layer output change as measured by some loss L while at the same time satisfying
a generic compression constraint, which we denote by C(ˆ︂Wℓ) > C, which will be customized
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depending on the compression type:

argmin ˆ︁Wℓ
EXℓ
L(fℓ(Xℓ, Wℓ), fℓ(Xℓ, ˆ︂Wℓ)) subject to C(ˆ︂Wℓ) > C. (3.1)

The expectation over the layer inputs Xℓ is usually approximated by taking the mean over
a small set of N input samples. This low-data setting is one of the primary applications
of layer-wise compression. Further, most works [WCHC20, NAVB+20, HNH+21] focus on
compressing linear and convolutional layers, which can be unfolded into linear ones, as these
are prevalent in practice, and use the squared loss to measure the approximation error. This
definition of the loss can be motivated, via a sequence of approximations, from second-order
information: please see [NAVB+20] for a precise derivation. Furthermore, this approximation
approach has been shown to work well in many applications [NAVB+20, HNH+21, FA22].
We follow these conventions as well, and work with the specific layer-wise compression problem
stated formally below, where the weights Wℓ are a drow × dcol matrix (for conv-layers dcol
corresponds to the total number of weights in a single filter), and the input Xℓ has dimensions
dcol ×N .

argminˆ︂Wℓ
||WℓXℓ − ˆ︂WℓXℓ||22 s.t. C( ˆ︂Wℓ) > C. (3.2)

The Optimal Brain Surgeon (OBS) Framework. The OBS framework [LDS89, HSW93]
considers the problem of accurately pruning a trained dense neural network. It starts from the
Taylor approximation at the given point (assumed to have negligible gradient), and provides
explicit formulas for the optimal single weight to remove, as well as the optimal update of the
remaining weights which would compensate for the removal. More precisely, let H denote the
Hessian matrix of the loss at the given (dense) model. Then the weight to prune wp which
incurs the minimal increase in loss and the corresponding update of the remaining weights δp

can be calculated as follows:

wp = argminwp

w2
p

[H−1]pp

, δp = − wp

[H−1]pp

·H−1
:,p , (3.3)

where [H−1]pp denotes the pth diagonal entry of the inverse Hessian, and H−1
:,p is its pth

column.

OBS for Layer-Wise Pruning. We will now instantiate this framework for the layer-wise
pruning problem, defined above. First, the loss in equation (3.2) is quadratic and since our
starting point is given by the dense weights achieving the minimal loss of 0, the assumptions of
the OBS framework are fully met, meaning that its formulas are exact for this specific problem
formulation. Thus, iterating the OBS framework to remove one weight at a time would yield
an exact greedy solution for the layer-wise pruning problem, as it takes the (locally) optimal
decision at each step. While this greedy approach does not guarantee convergence to a global
optimum, such approaches can be very effective for dealing with problem instances that are
too large to be handled by exact methods.

3.1.4 An Optimal Greedy Solver for Sparsity
The obvious challenge is that applying the OBS framework in its true form, i.e. pruning a
single weight at a time using the exact formulas in (3.3), is computationally very demanding.
The Hessian H is a d × d matrix where d = drow · dcol, which is already expensive to store
and compute with. Additionally, this matrix needs to be updated and inverted at each of the
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O(d) steps with a computational complexity of Θ(d3). Clearly, an O(d4) total runtime is too
inefficient for pruning most layers of modern neural networks, as d is usually ≥ 105 or even
≥ 106 for several layers. However, as we will now show, it is actually possible to reduce the
overall costs of this process to O(drow · d3

col) time and Θ(d2
col) memory, making it efficient

enough to prune, e.g., all layers of a medium-sized model such as ResNet50 in a bit more
than one hour on a single NVIDIA RTX 3090 GPU. We emphasize that the techniques we
introduce are exact; unlike prior work [DCP17, SA20], we do not rely on any approximations.

The ExactOBS Algorithm. In the following, we introduce our efficient instantiation of
the OBS framework, for the layer-wise compression problem, which we call ExactOBS, in
step-by-step fashion. We start by rewriting the matrix squared error in (3.2) as the sum of
the squared errors for each row in the weight matrix. As we are always dealing with a fixed
layer ℓ, we drop the subscript ℓ to simplify notation. The objective is then equivalent to∑︁drow

i=1 ||Wi,:X− ˆ︂Wi,:X||22.

This way of writing the error makes it clear that removing a single weight [W]ij only affects the
error of the corresponding output row Yi,: = Wi,:X. Hence, there is no Hessian interaction
between different rows and so it suffices to work only with the individual dcol × dcol Hessians
corresponding to each of the drow rows. Further, as the dense layer output Y = WX is
fixed, the objective for each row has standard least squares form and its Hessian is given by
H = 2XX⊤.
Although this observation already reduces computational complexity, two key challenges remain:
(a) applying OBS to each row still costs O(dcol · d3

col) time, which is too slow for large layers,
and (b) we need fast access to the Hessian inverses of all drow rows, since we want to prune the
minimum score weight of the whole matrix rather than just per row in each step. In particular,
(b) requires O(drow · d2

col) GPU memory, which is likely to be infeasible.

Step 1: Handling a Single Row. We first describe how to efficiently prune weights from a
single row with dcol parameters. For simplicity, we denote such a row by w with corresponding
Hessian H. The full algorithm for this procedure is given in Algorithm 3.1; in the following,
we provide a detailed description. The key idea is to avoid having to do the full Θ(N · d2

col)
calculation and Θ(d3

col) inversion of H in each step. The former is easy, as the weights
themselves do not enter the calculation of H = 2XX⊤, and the Hessian for the weights
with pruning mask M denoted by HM is thus simply comprised of the corresponding rows
and columns in the fully dense version H. Hence, we only have to compute H (which is
actually the same for all rows) once, from which we can then extract the rows and columns
corresponding to M as needed.
Critically, this trick is not applicable to the inverse, as (HM )−1 ̸= (H−1)M . However, using the
fact that the removal of one parameter p simply drops the corresponding row and column from
H, we can actually update the inverse to remove parameter p directly using a single step of
Gaussian elimination, with cost Θ(d2

col). The following result, whose proof is in Appendix A.1.1,
formalizes this.

Lemma 1 (Row & Column Removal). Given an invertible dcol × dcol matrix H and its inverse
H−1, we want to efficiently compute the inverse of H with row and column p removed, which
we denote by H−p. This can be accomplished through the following formula:

H−1
−p =

(︃
H−1 − 1

[H−1]pp

H−1
:,p H−1

p,:

)︃
−p

, (3.4)
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which corresponds to performing Gaussian elimination of row and column p in H−1 followed
by dropping them completely. This has Θ(d2

col) time complexity.

The resulting pseudocode is shown in Algorithm 3.1, where we avoid constantly resizing H−1

(and correspondingly changing indices) by utilizing the fact that row and column p have no
effect on any future calculations after they have been eliminated by Lemma 1 as they are 0 (and
the non-zero diagonal element is never accessed again). One can check that this algorithm
applies OBS to a single row of W with a per-step cost of Θ(d2

col), and thus Θ(k · d2
col) overall

time for pruning k weights.

Algorithm 3.1: Prune k ≤ dcol weights from row w
with inverse Hessian H−1 = (2XX⊤)−1 according to
OBS in O(k · d2

col) time.
M = {1, . . . , dcol}
for i = 1, . . . , k do

p← argminp∈M
1

[H−1]pp
· w2

p

w← w−H−1
:,p

1
[H−1]pp

· wp

H−1 ← H−1 − 1
[H−1]pp

H−1
:,p H−1

p,:
M ←M − {p}

end for

Step 2: Jointly Considering All Rows. Applying the OBS framework to the full weight
matrix W rather than just to each row independently requires fast access to all drow row-wise
inverse Hessians, in order to select the weight with the smallest overall pruning score in each
step. However, storing drow matrices of size dcol × dcol each in GPU memory can be too
expensive; while it would be possible to offload some Hessians to main memory, this could
result in a large number of expensive memory transfers. However, since there is no Hessian
interaction between rows, the final compressed weights of each row only depend on the total
number of parameters that were pruned in it. Similarly, the change in loss incurred by pruning
some weight only depends on the previously pruned weights in the same row, which also means
that the order in which weights are pruned in each row is fixed.
The consequence of these insights is that we can process each row independently, pruning all
weights in order while always recording the corresponding change in loss δLp = w2

p/[H−1]pp.
At the end, we know δLp for all d weights and can then simply determine the global mask that
would be chosen by OBS on the full matrix by selecting the weights with the lowest values in
order, requiring only Θ(d) extra memory. We note that once the per-row masks Mi are known,
we can directly solve for the optimal update of the remaining weights via the corresponding
group OBS formula [KCN+22] δMi

= H−1
:,Mi

((H−1)Mi
)−1wMi

. This will be considerably faster
in practice than simply rerunning the iterative pruning process in Algorithm 3.1. Alternatively,
if enough CPU memory is available, one can keep the full pruning trace of each row, that
is, the full weight vector after every individual pruning step, in CPU memory and ultimately
simply reload the entries corresponding to the global mask. This requires O(drow · d2

col) extra
CPU memory but avoids a second computation pass to reconstruct the not pruned weights
and will therefore be faster. Figure 3.1 visualizes both options just discussed.

Implementation Details. In practice, the matrix H might not always be invertible for
reasons such as using too few data samples or dead / linearly dependent inputs. The former
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Figure 3.1: Efficient global OBS using the row-wise results.

can usually be addressed by extending the calibration dataset with augmentations (additional
augmented samples only need to be accumulated into the Hessian once and are thus very
cheap to include) and the latter can be prevented by adding a small diagonal dampening term
to the Hessian before inverting it. Second, a direct GPU implementation of Algorithm 3.1 will
perform a large number of small CUDA calls, which can be expensive. This overhead can be
removed by using batch operations to process multiple matrix rows simultaneously—for more
details please see our sample implementation. Finally, when applied to an already sparse weight
matrix, the complexity of our algorithm can scale cubicly with the row-density by working
with a dense version of the weights / Hessians consisting only of the non-zero elements and
mapping the pruning result back at the end.

N:M Sparsity. Our method can be easily extended to various forms of semi-structured
sparsity. This includes, for example, the N:M sparsity pattern [ZMZ+21], which enforces
exactly N non-zero values in each block of M consecutive weights, and is becoming popular
due to support on newer NVIDIA hardware [MLP+21]. Adapting our algorithm to this pattern
requires only one simple change: instead of selecting the weight with the smallest change in
loss, we select the weight with the smallest change in loss that is in a block with < N pruned
weights. We note that all rows have exactly the same sparsity 1−N/M in the N:M pattern
and so we can terminate per-row pruning as soon as this target sparsity value is reached. For
the same reason, there is no need for the global mask selection step described earlier. Thus,
our method will be even more efficient in this case.

Block-Sparsity. Another practically relevant pruning pattern, particularly in the context of
CPU acceleration [EDGS20, KKG+20], is block-pruning, where zeros appear only in consecutive
blocks of size c, which is typically a small number like 4 or 8. We follow recent work [KCN+22]
that extends the OBS framework to pruning small groups of connected weights in order to
account for the correlation between them, using the following formulas for the target block
and weight update, respectively:

wP = argminwP
w⊤

P ((H−1)P )−1wP , δP = −H−1
:,P ((H−1)P )−1wP , (3.5)

where P denotes the set of indices corresponding to one block. Algorithm 3.1 can easily be
adapted to operate on blocks using the above equations and applying the update of H−1 via
Lemma 1 successively for all p ∈ P . Although there are now only dcol/c steps per row, each
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update of H−1 also takes O(c · d2
col) time and so the overall asymptotic runtime stays the

same. Additional practical overhead only comes from the extra O(c2 · d2
col) terms that are the

result of computing and multiplying with the c× c matrices ((H−1)P )−1.

3.1.5 The Optimal Brain Quantizer (OBQ)
Although the classical OBS framework [LDS89, HSW93] has inspired a long line of work
on pruning methods for DNNs [SA20, FKA21, LZK+21], so far it has not been used for
quantization. We now show that our results from the previous section can in fact be extended
to quantization in an effective and accurate way, via a method which we call the Optimal
Brain Quantizer (OBQ), in the spirit of [LDS89, HSW93].

The Quantization Order and Update Derivations. Under the standard assumption that
the gradient at the current point w is negligible, the OBS formulas for the optimal weight to
be pruned wp and the corresponding update δp can be derived by writing the locally quadratic
problem under the constraint that element p of δp is equal to −wp, which means that wp is
zero after applying the update to w. This problem has the following Lagrangian:

L(δp, λ) = δ⊤
p Hδp + λ(e⊤

p δp − (−wp)), (3.6)

where H denotes the Hessian at w and ep is the pth canonical basis vector. The optimal
solution is then derived by first finding the optimal solution to δp via setting the derivative
∂L/∂δp to zero and then substituting this solution back into L and solving for λ; please see
e.g. [HSW93, SA20] for examples.
Assume a setting in which we are looking to quantize the weights in a layer on a fixed grid
of width ∆ while minimizing the loss. To map OBS to a quantized projection, we can set
the target of the Lagrangian constraint in (3.6) to (quant(wp)− wp), where quant(wp) is the
weight rounding given by quantization; then wp = quant(wp) after the update.
Assuming we wish to quantize weights iteratively, one-at-a-time, we can derive formulas for
the “optimal” weight to quantize at a step, in terms of minimizing the loss increase, and for
the corresponding optimal update to the unquantized weights, in similar fashion as discussed
above:

wp = argminwp

(quant(wp)− wp)2

[H−1]pp

, δp = −wp − quant(wp)
[H−1]pp

·H−1
:,p . (3.7)

In fact, since −wp is a constant during all derivations, we can just substitute it with
(quant(wp) − wp) in the final result. We note that the resulting formulas are a general-
ization of standard OBS for pruning, if quant(·) always “quantizes” a weight to 0, then we
recover the original form.

Quantizing Full Layers. At first glance, OBQ might appear curious since one usually
quantizes all weights in a layer, leaving no more weights to update. At the same time,
the weight selection metric influences only the quantization order, but not the quantization
value. However, this view changes when considering OBQ in the context of our efficient
one-weight-at-a-time pruning algorithm described in the previous section. Specifically, using
OBQ, we can greedily quantize the currently “easiest” weight by the above metric, and then
adjust all the remaining unquantized weights to compensate for this loss of precision, thus
changing their value. We then choose the next weight to quantize, and so on. This can result
in quantization assignments that are different from the ones that would have been chosen by
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rounding initially, and in better overall quantization results. Concretely, to realize this, we can
plug (3.7) into Algorithm 3.1 in order to iteratively quantize weights for a given layer, leading
to the similar Algorithm in Appendix A.1.2, thus essentially unifying pruning and quantization.

Quantization Outliers. One practical issue with this greedy scheme can occur especially
when applied to quantization grids that permit some outliers in order to achieve a lower error
on the majority of weights, which are currently standard [CKYK19, NCB+21]. Since these
outliers can have high quantization error, they will usually be quantized last, when there are
only few other unquantized weights available that may be adjusted to compensate for the large
error incurred by quantizing the outliers. This effect can become worse when some weights
are pushed even further outside the grid by intermediate updates. We prevent this with a
simple but effective heuristic: we quantize outliers, e.g. weights with a quantization error
> ∆/2 where ∆ is the distance between quantized values, as soon as they appear (which
typically happens only a few times per layer). With this heuristic, OBQ yields a highly effective
layer-wise quantization scheme, as our experiments in the next section demonstrate. Finally,
we note that the OBQ version of the techniques discussed in Section 3.1.4 has all the same
runtime and memory characteristics (barring the global step in Figure 3.1, which is unnecessary
for quantization).

3.1.6 Experiments
Objectives, Models & Datasets. To demonstrate the effectiveness and flexibility of our
method, we consider several different standard post-training compression scenarios [NAVB+20,
HNH+21, HCI+21]. We begin with settings where only a single type of compression is applied:
concretely, we consider unstructured pruning for given FLOP targets, global 2:4 and 4:8
pruning, as well as uniform weight quantization. Additionally, we also study two practical
tasks that feature joint pruning and quantization: a GPU scenario where quantization and
N:M pruning are combined, as well as a CPU scenario combining quantization and block
pruning. We work with variants of the following models and tasks: ResNet [HZRS16] for
image classification on Imagenet [RDS+15], YOLOv5 [Joc22] for object detection on COCO
[LMB+14] and BERT [DCLT19] for question answering on SQuAD [RZLL16]. Our smaller
BERT models denoted by BERT3 and BERT6 correspond to the smaller 3 and 6 layer variants
of BERT-base, respectively, trained by [KCN+22]. Appendix A.1.3 detailed runtime information
on our algorithms.

Experimental Setup. All of our calibration datasets consist of 1024 random training
samples. For ImageNet, where we use roughly 0.1% of the training data, we additionally apply
standard flipping and cropping augmentations to artificially increase the size of this dataset
by 10×; other tasks do not use any augmentations. While the effect of augmentations is
typically minor, they are very cheap to include for our method. For ResNet models, batchnorm
statistics are reset using 100 batches of 128 samples from the calibration set with standard
augmentations. For other models, we apply mean and variance correction [NBBW19, BNS19]
after all normalization layers (so that the correction parameters can be easily merged and incur
no extra cost) on a single batch of samples of size 128 (for YOLO) and 512 (for BERT). We
found this to be more effective than batchnorm tuning for YOLO, and the BERT models have
no batchnorm layers.

When compressing to a given FLOP or timing constraint, we need to solve the problem
of identifying per-layer compression targets, which match the constraint, while maximizing
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accuracy. To identify these non-uniform targets, we follow the approach of [FKA21]: we first
collect a “model database” containing for each compression level (e.g. bit-width or sparsity
setting) the corresponding (independently) compressed version of each layer. For building a
joint sparse and quantized database we simply sparsify layers first and then apply quantization
to the remaining weights. Next, similarly to [HNH+21], we compute the layer-wise calibration
losses (without augmentations) for all compression levels, corresponding to the models with
exactly one layer compressed to a certain level. Then, given layer-wise FLOP or timing
information, we set up a constrained layer-wise compression problem of the form described in
AdaQuant [HNH+21] and solve it with the dynamic programming algorithm of SPDY [FKA21].
This returns an optimal per-layer assignment of compression levels, for which we can then
easily produce the corresponding model, via a two-step process: we first stitch together layers
at the corresponding compression levels from the database, and then perform the discussed
statistics correction to recover some extra accuracy [HNH+21].

Unstructured Sparsity. We begin our experiments with unstructured sparsity, comparing
against global magnitude pruning (GMP) [ZG17], the approximate layer-wise OBS method
L-OBS [DCP17], and the post-training pruning state-of-the-art method AdaPrune [HCI+21].
As a sanity check, we examine in Figure 3.2 whether our method provides better results in
terms of layer-wise squared error, pruning the first layer of a ResNet18 (RN18) model to several
sparsities. In this metric, ExactOBS performs best by a wide margin ahead of AdaPrune, which
significantly outperforms the other two methods.
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Figure 3.2: RN18 squared error.

Next, in Table 3.1, we turn our attention to the practical problem of pruning various models to
achieve a given FLOP reduction of 2×–4×, applying the per-layer target sparsity optimization
technique described above. Our ExactOBS generally performs best (except for YOLOv5l 2×
where all methods perform similarly in terms of mAP@0.5) and at 4× FLOP reduction even
with a > 1% gap to the next best method. Interestingly, on the hard-to-prune BERT model,
ExactOBS appears to be the only method which still produces reasonable results at higher
reduction targets. For BERT 3× and 4×, where the performance drop of all methods is > 2%,
we additionally assess the compatibility of our results with the more powerful (but also more
expensive) post processing method global AdaPrune [FKA21]. While this global optimization
technique is able to recover lost accuracy, the ExactOBS models still maintain a > 0.5% and
> 2% F1 advantage, respectively (see Table 3.2).
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Method ResNet50 – 76.13 YOLOv5l – 66.97 BERT – 88.53
2× 3× 4× 2× 3× 4× 2× 3× 4×

GMP 74.86 71.44 64.84 65.83 62.30 55.09 65.64 12.52 09.23
L-OBS 75.48 73.73 71.24 66.21 64.47 61.15 77.67 3.62 6.63
AdaPrune 75.53 74.47 72.39 66.00 64.88 62.71 87.12 70.32 18.75
ExactOBS 75.64 75.01 74.05 66.14 65.35 64.05 87.81 85.87 82.10

Table 3.1: Unstructured pruning for different FLOP reduction targets.

Methods BERT
3× 4×

gAP + AdaPrune 86.99 84.10
gAP + ExactOBS 87.57 86.42

Table 3.2: Further improving results in Table 3.1 with > 3% performance drops through more
expensive post-processing via global AdaPrune (gAP).

N:M Sparsity. Next, we study the performance of our method for semi-structured sparsity
via the N:M pattern. Specifically, we compare against the 4:8 results of AdaPrune with
batchnorm tuning [HCI+21] on ResNet models (see Table 3.3) in addition to a 2:4 comparison
on BERT models (see Table 3.4). We highlight that ExactOBS matches or even slightly
exceeds the 4:8 results of AdaPrune with the considerably more stringent 2:4 pattern, which
is already well supported on NVIDIA hardware. Furthermore, in a 2:4 comparison on BERT
models, ExactOBS achieves 1–2% higher F1 scores.

Model Dense AdaPrune ExactOBS
4:8 2:4 4:8

ResNet18 69.76 68.63 68.81 69.18
ResNet34 73.31 72.36 72.66 72.95
ResNet50 76.13 74.75 74.71 75.20

Table 3.3: Semi-structured N:M pruning (+ batchnorm tuning) of all layers except the first
and the last.

Model Dense AdaPrune ExactOBS
BERT3 84.66 82.75 83.54
BERT6 88.33 85.02 86.97
BERT 88.53 85.24 86.77

Table 3.4: Semi-structured 2:4 pruning of all layers except the embeddings.

Quantization. Additionally, we compare OBQ’s independent performance (after batchnorm
tuning) with the state-of-the-art sequential post-training methods AdaQuant [HNH+21],
AdaRound [NAVB+20] and BRECQ [LGT+21]. We perform standard asymmetric per-channel
quantization of all weights, using the authors’ implementations. We rerun all methods on
Torchvision [MR10] ResNets to ensure a uniform baseline. The quantization grids for OBQ as
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well as AdaRound are determined with the same LAPQ [NCB+21] procedure that is used by
BRECQ. Surprisingly, we find that, despite optimizing layers independently, OBQ achieves very
similar (sometimes even slightly better) accuracies as existing non-independent methods for 4
and 3 bits. This suggests that it should be well-suited for mixed precision applications where
one needs to quickly generate many non-uniform models optimized for different constraints.
(However, we note that ExactOBS can also be applied sequentially.)

Method Lw. Ind. ResNet18 – 69.76 ResNet50 – 76.13
4bit 3bit 2bit 4bit 3bit 2bit

AdaRound yes no 69.34 68.37 63.37 75.84 75.14 71.58
AdaQuant yes no 68.12 59.21 00.10 74.68 64.98 00.10
BRECQ no no 69.37 68.47 64.70 75.88 75.32 72.41
OBQ (ours) yes yes 69.56 68.69 64.04 75.72 75.24 70.71

Table 3.5: Comparison with state-of-the-art post-training methods for asymmetric per-channel
weight quantization of all layers. We mark whether methods are Layer-wise (Lw.) or
Independent (Ind.).

BOP-Constrained Mixed GPU Compression. We now consider a practical setting where
we are given a trained model together with some calibration data and want to compress this
model for efficient inference on an NVIDIA GPU which supports 8-bit and 4-bit arithmetic,
also in combination with 2:4 sparsity. Thus, there are 4 possible compression choices per layer:
8bit weights + 8bit activations (8w8a), 4w4a, 8w8a + 2:4 and 4w4a + 2:4. Unlike in the
previous section, we do symmetric per-channel quantization of the weights as it has better
hardware support; activations are quantized asymmetrically per-tensor. We then generate
mixed precision configurations for various BOP (number of bits times FLOPs) reduction
targets and visualize the resulting compression-accuracy trade-off curves in Figure 3.3. In
summary, at the cost of a ≈ 2.5% relative performance drop, we can achieve a 12− 14× BOP
reduction for ResNets and a 7 − 8× reduction for the more challenging YOLO and BERT
models (relative to the compute in compressible layers). To the best of our knowledge, we are
the first to consider joint N:M pruning and quantization in a post-training setting. Recent
work [CHBS23] also studies joint 4w4a + 2:4 compression for ResNet18 but with 90 epochs of
(sparse) Quantization-Aware Training (QAT) on the full dataset and report 67.33% accuracy.
Although not perfectly comparable (we keep the first layer dense and their dense baseline has
0.94% higher accuracy and uses 4:8 sparse activations), we achieve similar 67.20% accuracy
for 4w4a + 2:4 post training, which emphasizes the effectiveness of our methods for joint
sparsification and quantization.

Time-Constrained CPU Compression. Lastly, we explore a similar scenario, but targeting
actual CPU inference speedup on a 12-core Intel Xeon Silver 4214 CPU using the DeepSparse
inference engine [Neu22, KKG+20], which provides acceleration for joint 8-bit quantization
and block-sparsity with blocksize 4. In this case, we work with real layer-wise timing data
(for batchsize 64), as in [FA22]. There are 30 available block-sparsity targets per-layer, in
steps of pruning 10% of the remaining weights, all of which are further quantized to 8 bits.
The base acceleration of the dense 8 bit model is ≈ 2.7× on top of which sparsity speedup
acts roughly multiplicatively. Figure 3.4 shows results for ResNet50 and several (real-time)
speedup targets—we achieve 4× and 5× (actual) speedup with 1% and 2% accuracy loss,
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Figure 3.3: Mixed quantization and 2:4 pruning for various BOP reduction targets.

respectively. These are the first full post-training results in this setting (the authors of [FKA21]
only performed 4-block pruning post-training, followed by 5 epochs of QAT on the entire
ImageNet dataset), and they show very encouraging accuracy-speedup trade-offs.
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Figure 3.4: Joint block-pruning and quantization for CPU inference time speedups.
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3.1.7 Conclusions & Future Work
We have presented a new efficient and accurate approach for solving the layer-wise compression
problem, and built on it to obtain state-of-the-art post-training compression solutions for
both pruning and quantization. Our framework should be naturally extensible to structured
pruning, which in fact should allow for further optimizations, and should also be compatible
with further compression via unstructured pruning and quantization. Our results suggest that
post-training compression may be able to reach comparable accuracies to much more expensive
retraining methods. The next section will investigate this, in particular in the context of more
resource-intensive models, such as very large-scale language models.

3.2 GPTQ: Post-Training Quantization for Generative
Pre-Trained Transformers

3.2.1 Motivation & Overview
Pre-trained generative models from the Transformer [VSP+17] family, commonly known as
GPT or OPT [RWC+19, BMR+20, ZRG+22], have shown breakthrough performance for
complex language modelling tasks, leading to massive academic and practical interest. One
major obstacle to their usability is computational and storage cost, which ranks among the
highest for known models. For instance, the best-performing model variants, e.g. GPT3-175B,
have in the order of 175 billion parameters and require tens-to-hundreds of GPU years to
train [ZRG+22]. Even the simpler task of inferencing over a pre-trained model, which is our
focus in this section, is highly challenging: for instance, the parameters of GPT3-175B occupy
326GB (counting in multiples of 1024) of memory when stored in a compact float16 format.
This exceeds the capacity of even the highest-end single GPUs, and thus inference must be
performed using more complex and expensive setups, such as multi-GPU deployments.

Although a standard approach to eliminating these overheads is model compression, e.g.
[HABN+21, GKD+21], surprisingly little is known about compressing such models for infer-
ence. One reason is that more complex methods for low-bitwidth quantization or model pruning
usually require model retraining, which is extremely expensive for billion-parameter models.
Alternatively, post-training methods [NAVB+20, WCHC20, HNH+20, NCB+21], which com-
press the model in one shot, without retraining, would be very appealing. Unfortunately, the
more accurate variants of such methods [LGT+21, HNH+21] (and Section 3.1) are complex
and challenging to scale to billions of parameters [YAZ+22]. To date, only basic variants of
round-to-nearest quantization [YAZ+22, DLBZ22] have been applied at the scale of GPT-175B;
while this works well for low compression targets, e.g., 8-bit weights, they fail to preserve
accuracy at higher rates. It therefore remains open whether one-shot post-training quantization
to higher compression rates is generally-feasible.

Contribution. In this section, we present a new post-training quantization method, called
GPTQ1, which is efficient enough to execute on models with hundreds of billions of parameters
in at most a few hours, and precise enough to compress such models to 3 or 4 bits per
parameter without significant loss of accuracy. For illustration, GPTQ can quantize the largest

1This merges the name of the GPT model family with the abbreviation for post-training quantization
(PTQ).
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Figure 3.5: Quantizing OPT models to 4 and BLOOM models to 3 bit precision, comparing
GPTQ with the FP16 baseline and round-to-nearest (RTN) [YAZ+22, DLBZ22].

publicly-available models, OPT-175B and BLOOM-176B, in approximately four GPU hours,
with minimal increase in perplexity, known to be a very stringent accuracy metric.

Further, we show that our model can also provide robust results in the extreme quantization
regime, in which models are quantized to 2 bits per component, or even ternary values. On
the practical side, we develop an execution harness which allows us to execute the resulting
compressed models efficiently for generative tasks. Specifically, we are able to run the
compressed OPT-175B model for the first time on a single NVIDIA A100 GPU, or using only
two more cost-effective NVIDIA A6000 GPUs. We also implement bespoke GPU kernels which
are able to leverage compression for faster memory loading, resulting in speedups of ≈ 3.25×
when using A100 GPUs, and 4.5× when using A6000 GPUs.

To our knowledge, we are the first to show that extremely accurate language models with
hundreds of billions of parameters can be quantized to 3-4 bits/component: prior post-training
methods only remain accurate at 8 bits [YAZ+22, DLBZ22], while prior training-based tech-
niques have only tackled models that are smaller by one to two orders of magnitude [WYZ+22].
This high degree of compression may appear natural, as these networks are overparametrized;
yet, as we discuss in our detailed analysis of results, compression induces non-trivial tradeoffs
between the accuracy of the language modeling (perplexity), bit-width, and the size of the
original model.

We hope that our work will stimulate further research in this area, and can be a further
step towards making these models available to a wider audience. In terms of limitations,
our method currently does not provide speedups for the actual multiplications, due to the
lack of hardware support for mixed-precision operands (e.g. FP16 x INT4) on mainstream
architectures. Moreover, our current results do not include activation quantization, as they
are not a significant bottleneck in our target scenarios; however, this can be supported using
orthogonal techniques [YAZ+22].

3.2.2 Related Work
Quantization methods fall broadly into two categories: quantization during training, and post-
training methods. The former quantize models during typically extensive retraining and/or
finetuning, using some approximate differentiation mechanism for the rounding operation
[GKD+21, NFA+21]. By contrast, post-training (“one-shot”) methods quantize a pretrained
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model using modest resources, typically a few thousand data samples and a few hours of
computation. Post-training approaches are particularly interesting for massive models, for
which full model training or even finetuning can be expensive. We focus on this scenario here.

Post-training Quantization. For an overview of prior post-training quantization work,
please see Section 3.1.2. Most existing methods of this kind have focused on vision models,
whereas we focus on language here. Further, while these approaches can produce good results
for models up to ≈ 100 million parameters in a few GPU hours, scaling them to networks
orders of magnitude larger is challenging.

Large-model Quantization. With the recent open-source releases of language models
like BLOOM [SFA+22] or OPT-175B [ZRG+22], researchers have started to develop af-
fordable methods for compressing such giant networks for inference. While all existing
works—ZeroQuant [YAZ+22], LLM.int8() [DLBZ22], and nuQmm [PPK+22]—carefully select
quantization granularity, e.g., vector-wise, they ultimately just round weights to the nearest
(RTN) quantization level, in order to maintain acceptable runtimes for very large models.
ZeroQuant further proposes layer-wise knowledge distillation, similar to AdaQuant, but the
largest model it can apply this approach to has only 1.3 billion parameters. At this scale,
ZeroQuant already takes ≈ 3 hours of compute; GPTQ quantizes models 100× larger in ≈ 4
hours. LLM.int8() observes that activation outliers in a few feature dimensions break the
quantization of larger models, and proposes to fix this problem by keeping those dimensions in
higher precision. Lastly, nuQmm develops efficient GPU kernels for a specific binary-coding
based quantization scheme.

Relative to this line of work, we show that a significantly more complex and accurate quantizer
can be implemented efficiently at large model scale. Specifically, GPTQ more than doubles
the amount of compression relative to these prior techniques, at similar accuracy.

3.2.3 The GPTQ Algorithm
Background. Similar to Section 3.1, GPTQ operates in the layer-wise quantization framework
(see Section 3.1.3 for details). Our approach is based on the Optimal Brain Quantization (OBQ)
method introduced in Section 3.1.5 for solving this layer-wise problem, to which we perform
a series of major modifications, which allow it to scale to large language models, providing
more than three orders of magnitude computational speedup. We note that OBQ can achieve
reasonable runtimes on medium-sized models: for instance, it can fully quantize the ResNet-50
model (25M parameters) in ≈ 1 hour on a single GPU, which is roughly in line with other
post-training methods achieving state-of-the-art accuracy (Appendix A.1.3). However, the
fact that OBQ’s runtime for a drow × dcol matrix W has cubic input dependency O(drow · d3

col)
means that applying it to models with billions of parameters is extremely expensive.

Step 1: Arbitrary Order Insight. As explained in Section 3.1.5, OBQ quantizes weights
in greedy order, i.e. it always picks the weight which currently incurs the least additional
quantization error. Interestingly, we find that, while this quite natural strategy does indeed
seem to perform very well, its improvement over quantizing the weights in arbitrary order is
generally small, in particular on large, heavily-parametrized layers. Most likely, this is because
the slightly lower number of quantized weights with large individual error is balanced out by
those weights being quantized towards the end of the process, when only few other unquantized
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weights that can be adjusted for compensation remain. As we will now discuss, this insight
that any fixed order may perform well, especially on large models, has interesting ramifications.

Inverse Layer Hessian
(Cholesky Form)

computed initially block i quantized recursively
column-by-column

Weight Matrix / Block

unquantized weights
that are updatedquantized weights

Figure 3.6: GPTQ quantization procedure. Blocks of consecutive columns (bolded) are
quantized at a given step, using the inverse Hessian information stored in the Cholesky
decomposition, and the remaining weights (blue) are updated at the end of the step. The
quantization procedure is applied recursively inside each block: the white middle column is
currently being quantized.

The original OBQ method quantizes rows of W independently, in a specific order defined by
the corresponding errors. By contrast, we will aim to quantize the weights of all rows in the
same order, and will show that this typically yields results with a final squared error that is
similar to the original solutions. As a consequence, the set of unquantized weights F and
similarly H−1

F is always the same for all rows (see Figure 3.6 for an illustration). In more detail,
the latter is due to the fact that HF depends only on the layer inputs XF , which are the same
for all rows, and not on any weights. Therefore, we have to perform the update of H−1

F given
by Equation (3.4) only dcol times, once per column, rather than drow · dcol times, once per
weight. This reduces the overall runtime from O(drow · d3

col) to O(max {drow · d2
col, d3

col}), i.e.,
by a factor of min {drow, dcol}. For larger models, this difference consists of several orders of
magnitude. However, before this algorithm can actually be applied to very large models in
practice, two additional major problems need to be addressed.

Step 2: Lazy Batch-Updates. First, a direct implementation of the scheme described
previously will not be fast in practice, because the algorithm has a relatively low compute-to-
memory-access ratio. For example, Equation (3.4) needs to update all elements of a potentially
huge matrix using just a few FLOPs for each entry. Such operations cannot properly utilize the
massive compute capabilities of modern GPUs, and will be bottlenecked by the significantly
lower memory bandwidth.

Fortunately, this problem can be resolved by the following observation: The final rounding
decisions for column i are only affected by updates performed on this very column, and so
updates to later columns are irrelevant at this point in the process. This makes it possible
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to “lazily batch” updates together, thus achieving much better GPU utilization. Concretely,
we apply the algorithm to B = 128 columns at a time, keeping updates contained to those
columns and the corresponding B ×B block of H−1 (see also Figure 3.6). Only once a block
has been fully processed, we perform global updates of the entire H−1 and W matrices using
the multi-weight versions of Equations (3.7) and (3.4) given below, with Q denoting a set
of indices, and H−1

−Q denoting the inverse matrix with the corresponding rows and columns
removed:

δF = −(wQ − quant(wQ))([H−1
F ]QQ)−1(H−1

F ):,Q, (3.8)

H−1
−Q =

(︃
H−1 −H−1

:,Q([H−1]QQ)−1H−1
Q,:

)︃
−Q

. (3.9)

Although this strategy does not reduce the theoretical amount of compute, it effectively
addresses the memory-throughput bottleneck. This provides an order of magnitude speedup
for very large models in practice, making it a critical component of our algorithm.

Step 3: Cholesky Reformulation. The final technical issue we have to address is given by
numerical inaccuracies, which can become a major problem at the scale of existing models,
especially when combined with the block updates discussed in the previous step. Specifically, it
can occur that the matrix H−1

F becomes indefinite, which we notice can cause the algorithm to
aggressively update the remaining weights in incorrect directions, resulting in an arbitrarily-bad
quantization of the corresponding layer. In practice, we observed that the probability of this
happening increases with model size: concretely, it almost certainly occurs for at least a few
layers on models that are larger than a few billion parameters. The main issue appears to
be the repeated applications of Equation (3.9), which accumulate various numerical errors,
especially through the additional matrix inversion.

For smaller models, applying dampening, that is adding a small constant λ (we always choose
1% of the average diagonal value) to the diagonal elements of H appears to be sufficient to
avoid numerical issues. However, larger models require a more robust and general approach.

To address this, we begin by noting that the only information required from H−1
Fq

, where
Fq denotes the set of unquantized weights when quantizing weight q, is row q, or more
precisely, the elements in this row starting with the diagonal. The consequence is that we could
precompute all of these rows using a more numerically-stable method without any significant
increase in memory consumption. Indeed, the row removal via (3.4) for our symmetric H−1

essentially corresponds to taking a Cholesky decomposition, except for the minor difference
that the latter divides row q by ([H−1

Fq
]qq)1/2. Hence, we can leverage state-of-the-art Cholesky

kernels to compute all information we will need from H−1 upfront. In combination with mild
dampening, the resulting method is robust enough to execute on huge models without issues.
As a bonus, using a well-optimized Cholesky kernel also yields further speedup. We detail all
small changes necessary for the Cholesky version of the algorithm next.

The Full Algorithm. Finally, we present the full pseudocode for GPTQ in Algorithm 3.2,
including the optimizations discussed above.
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Algorithm 3.2: Quantize W given inverse Hessian H−1 = (2XX⊤ + λI)−1 and
blocksize B.

Q← 0drow×dcol // quantized output
E← 0drow×B // block quantization errors
H−1 ← Cholesky(H−1)⊤ // Hessian inverse information
for i = 0, B, 2B, . . . do

for j = i, . . . , i + B − 1 do
Q:,j ← quant(W:,j) // quantize column
E:,j−i ← (W:,j −Q:,j) / [H−1]jj // quantization error
W:,j:(i+B) ←W:,j:(i+B) −E:,j−i ·H−1

j,j:(i+B) // update weights in block
end for
W:,(i+B): ←W:,(i+B): −E ·H−1

i:(i+B),(i+B): // update all remaining weights
end for

3.2.4 Experimental Validation

Overview. We begin our experiments by validating the accuracy of GPTQ relative to
other accurate-but-expensive quantizers, on smaller models, for which these methods provide
reasonable runtimes. Next, we examine GPTQ’s runtime scaling for very large models. Then,
we present 3- and 4-bit quantization results for the entire BLOOM and OPT model families,
evaluated via perplexity on challenging language generation tasks. In addition, we show that
our method is also stable for 2-bit quantization when the granularity is reduced to small blocks
of consecutive weights. To complement this perplexity analysis, we also evaluate the resulting
quantized models on a series of standard zero-shot tasks. Finally, we focus on the two largest
(and interesting) openly-available models, Bloom-176B and OPT-175B, where we perform a
detailed evaluation on several tasks. For these models, we also present practical improvements,
namely reducing the number of GPUs required for inference as well as end-to-end speedups
for generative tasks.

Setup. We implemented GPTQ in PyTorch [PGM+19] and worked with the HuggingFace
integrations of the BLOOM [LSW+22] and OPT [ZRG+22] model families. We quantized
all models (including the 175 billion parameter variants) using a single NVIDIA A100 GPU
with 80GB of memory. Our entire GPTQ calibration data consists of 128 random 2048 token
segments from the C4 dataset [RSR+20a], i.e., excerpts from randomly crawled websites,
which represents generic text data. We emphasize that this means that GPTQ does not see
any task-specific data, and our results thus remain actually “zero-shot”. We perform standard
uniform per-row asymmetric quantization on the min-max grid, similar to [DLBZ22].

To ensure that the entire compression procedure can be performed with significantly less GPU
memory than what would be required to run the full precision model, some care must be
taken. Specifically, we always load one Transformer block, consisting of 6 layers, at a time
into GPU memory and then accumulate the layer-Hessians and perform quantization. Finally,
the current block inputs are sent through the fully quantized block again to produce the new
inputs for the quantization of the next block. Hence, the quantization process operates not
on the layer inputs in the full precision model but on the actual layer inputs in the already
partially quantized one. We find that this brings noticeable improvements at negligible extra
cost.
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Baselines. Our primary baseline, denoted by RTN, consists of rounding all weights to the
nearest quantized value on exactly the same asymmetric per-row grid that is also used for
GPTQ, meaning that it corresponds precisely to the state-of-the-art weight quantization of
LLM.int8(). This is currently the method of choice in all works on quantization of very
large language models [DLBZ22, YAZ+22, PPK+22]: its runtime scales well to networks with
many billions of parameters, as it simply performs direct rounding. As we will also discuss
further, more accurate methods, such as AdaRound [NAVB+20] or BRECQ [LGT+21], are
currently too slow for models with many billions of parameters, the main focus of this work.
Nevertheless, we also show that GPTQ is competitive with such methods for small models,
while scaling to huge ones like OPT-175B as well.

Quantizing Small Models. As a first ablation study, we compare GPTQ’s performance
relative to state-of-the-art post-training quantization (PTQ) methods, on ResNet18 and
ResNet50, which are standard PTQ benchmarks, in the same setup as in Section 3.1.6. As
can be seen in Table 3.6, GPTQ performs on par at 4-bit, and slightly worse than the most
accurate methods at 3-bit. At the same time, it significantly outperforms AdaQuant, the
fastest amongst prior PTQ methods. Further, we compare against the full greedy OBQ
method on two smaller language models: BERT-base [DCLT19] and OPT-125M. The results
are shown in Table 3.7. At 4 bits, both methods perform similarly, and for 3 bits, GPTQ
surprisingly performs slightly better. We suspect that this is because some of the additional
heuristics used by OBQ, such as early outlier rounding, might require careful adjustments for
optimal performance on non-vision models. Overall, GPTQ appears to be competitive with
state-of-the-art post-training methods for smaller models, while taking only < 1 minute rather
than ≈ 1 hour. This enables scaling to much larger models.

Method RN18 – 69.76 % RN50 – 76.13%
4bit 3bit 4bit 3bit

AdaRound 69.34 68.37 75.84 75.14
AdaQuant 68.12 59.21 74.68 64.98
BRECQ 69.37 68.47 75.88 75.32
OBQ 69.56 68.69 75.72 75.24
GPTQ 69.37 67.88 75.71 74.87

Table 3.6: Comparison with state-of-the-art post-training methods for vision models.

Method BERT-base OPT-125M
88.53 F1 ↑ 27.66 PPL ↓
4bit 3bit 4bit 3bit

OBQ 88.23 85.29 32.52 69.32
GPTQ 88.18 86.02 31.12 53.85

Table 3.7: Comparison of GPTQ relative to OBQ on BERT-base/SQuAD and OPT-
125M/WikiText2.

Runtime. Next we measure the full model quantization time (on a single NVIDIA A100
GPU) via GPTQ; the results are shown in Table 3.8. As can be seen, GPTQ quantizes 1-3
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billion parameter models in a matter of minutes and 175B ones in a few hours. For reference,
the straight-through based method ZeroQuant-LKD [YAZ+22] reports a 3 hour runtime (on
the same hardware) for a 1.3B model, which would linearly extrapolate to several hundred
hours (a few weeks) for 175B models. Adaptive rounding-based methods typically employ a
lot more SGD steps and would thus be even more expensive [NAVB+20, LGT+21].

OPT 13B 30B 66B 175B
Runtime 20.9m 44.9m 1.6h 4.2h
BLOOM 1.7B 3B 7.1B 176B
Runtime 2.9m 5.2m 10.0m 3.8h

Table 3.8: GPTQ runtime for full quantization of the 4 largest OPT and BLOOM models.

Language Generation. We begin our large-scale study by compressing the entire OPT
and BLOOM model families to 3- and 4-bit. We then evaluate those models on several
language tasks including WikiText2 [MXBS17] (see Figure 3.5 as well as Tables 3.9 and
3.10), Penn Treebank (PTB) [MKM+94] and C4 [RSR+20a] (both in Appendix A.2.1). We
focus on these perplexity-based tasks, as they are known to be particularly sensitive to model
quantization [YAZ+22]. On OPT models, GPTQ clearly outperforms RTN, by significant
margins. For example, GPTQ loses only 0.03 perplexity at 4-bit on the 175B model, while
RTN drops 2.2 points, performing worse than the 10× smaller full-precision 13B model. At
3-bit, RTN collapses completely, while GPTQ can still maintain reasonable perplexity, in
particular for larger models. BLOOM shows a similar pattern: the gaps between methods are
however usually a bit smaller, indicating that this model family might be easier to quantize.
One interesting trend (see also Figure 3.5) is that larger models generally (with the exception
of OPT-66B2) appear easier to quantize. This is good news for practical applications, as these
are the cases where compression is also the most necessary.

OPT Bits 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 175B
full 16 27.65 22.00 14.63 12.47 10.86 10.13 9.56 9.34 8.34
RTN 4 37.28 25.94 48.17 16.92 12.10 11.32 10.98 110 10.54
GPTQ 4 31.12 24.24 15.47 12.87 11.39 10.31 9.63 9.55 8.37
RTN 3 1.3e3 64.57 1.3e4 1.6e4 5.8e3 3.4e3 1.6e3 6.1e3 7.3e3
GPTQ 3 53.85 33.79 20.97 16.88 14.86 11.61 10.27 14.16 8.68

Table 3.9: OPT perplexity results on WikiText2.

175 Billion Parameter Models. We now examine BLOOM-176B and OPT-175B, the
largest dense openly-available models. Table 3.11 summarizes results across Wikitext-2, PTB,
C4. We observe that, at 4 bits, GPTQ models reach only ≤ 0.25 lower perplexity than
the full-precision versions, with a large gap to RTN results on OPT-175B. At 3-bit, RTN
collapses, while GPTQ is still able to maintain good performance on most tasks, losing only
0.3 − 0.6 points for more than 5× compression. We note that GPTQ’s accuracy can be

2Upon closer inspection of the OPT-66B model, it appears that this is correlated with the fact that this
trained model has a significant fraction of dead units in the early layers, which may make it harder to compress.
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BLOOM Bits 560M 1.1B 1.7B 3B 7.1B 176B
full 16 22.42 17.69 15.39 13.48 11.37 8.11
RTN 4 25.90 22.00 16.97 14.76 12.10 8.37
GPTQ 4 24.03 19.05 16.48 14.20 11.73 8.21
RTN 3 57.08 50.19 63.59 39.36 17.38 571
GPTQ 3 32.31 25.08 21.11 17.40 13.47 8.64

Table 3.10: BLOOM perplexity results for WikiText2.

further improved via finer-granularity grouping [PPK+22]: group-size 1024 (≈ 0.02 extra
bits) improves perplexities by about 0.2 on average and group-size 128 (≈ 0.15 extra bits)
by another 0.1, which is only 0.1− 0.3 off from the uncompressed accuracy. We note that
grouping interacts very well with GPTQ, as the group parameters can be determined during
the quantization process of each layer, always using the most current updated weights.

Method Bits OPT-175B BLOOM-176B
Wiki2 PTB C4 LAMB. ↑ Wiki2 PTB C4 LAMB. ↑

Baseline 16 8.34 12.01 10.13 75.59 8.11 14.59 11.71 67.40
RTN 4 10.54 14.22 11.61 71.34 8.37 15.00 12.04 66.70

GPTQ 4 8.37 12.26 10.28 76.80 8.21 14.75 11.81 67.71
RTN 3 7.3e3 8.0e3 4.6e3 0 571. 107. 598. 0.17

GPTQ 3 8.68 12.68 10.67 76.19 8.64 15.57 12.27 65.10
GPTQ 3/g1024 8.45 12.48 10.47 77.39 8.35 15.01 11.98 67.47
GPTQ 3/g128 8.45 12.37 10.36 76.42 8.26 14.89 11.85 67.86

Table 3.11: Results summary for OPT-175B and BLOOM-176B. “g1024” and “g128” denote
results with groupings of size 1024 and 128, respectively.

Practical Speedups. Finally, we study practical applications. As an interesting use-case,
we focus on the OPT-175B model: quantized to 3 bits, this model takes approximately
63GB of memory, including the embeddings and the output layer, which are kept in full FP16
precision. Additionally, storing the complete history of keys and values for all layers, a common
optimization for generation tasks, consumes another ≈ 9GB for the maximum of 2048 tokens.
Hence, we can actually fit the entire quantized model into a single 80GB A100 GPU, which
can be executed by dynamically dequantizing layers as they are required during inference
(the model would not fully fit using 4 bits). For reference, standard FP16 execution requires
5x80GB GPUs, and the state-of-the-art 8bit LLM.int8() quantizer [DLBZ22] requires 3 such
GPUs.

Next, we consider language generation, one of the most appealing applications of these models,
with the goal of latency reduction.Unlike LLM.int8(), which reduces memory costs but has the
same runtime as the FP16 baseline, we show that our quantized models can achieve significant
speedups for this application. For language generation, the model processes and outputs one
token at-a-time, which for OPT-175B can easily take a few 100s of milliseconds per token.
Increasing the speed at which the user receives generated results is challenging, as compute is
dominated by matrix-vector products.Unlike matrix-matrix products, these are primarily limited
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by memory bandwidth. We address this problem by developing a quantized-matrix full-precision-
vector product kernel which performs a matrix vector product by dynamically dequantizing
weights when needed. Most notably, this does not require any activation quantization. While
dequantization consumes extra compute, the kernel has to access a lot less memory, leading to
significant speedups, as shown in Table 3.12. We note that almost all of the speedup is due to
our kernels, as communication costs are negligible in our standard HuggingFace-accelerate-like
setting (see Appendix A.2.2 for details).

GPU FP16 3bit Speedup GPU reduction
A6000 – 48GB 589ms 130ms 4.53× 8→ 2
A100 – 80GB 230ms 71ms 3.24× 5→ 1

Table 3.12: Average per-token latency (batch size 1) when generating lenght 128 sequences.

For example, using our kernels, the 3-bit OPT-175B model obtained via GPTQ running on a
single A100 is about 3.25× faster than the FP16 version (running on 5 GPUs) in terms of
average time per token. More accessible GPUs, such as the NVIDIA A6000, have much lower
memory bandwidth, so this strategy is even more effective: executing the 3-bit OPT-175B
model on 2x A6000 GPUs reduces latency from 589 milliseconds for FP16 inference (on 8
GPUs) to 130 milliseconds, a 4.5× latency reduction.

Zero-Shot Tasks. While our focus is on language generation, we also evaluate the perfor-
mance of quantized models on some popular zero-shot tasks, namely LAMBADA [PKL+16],
ARC (Easy and Challenge) [BPM+18] and PIQA [TP03]. Figure 3.7 visualizes model per-
formance on LAMBADA (and see also “Lamb." results in Table 3.11). We observe similar
behavior as before: the outliers are that 1) quantization appears “easier” across the whole
spectrum of models at 4-bit, where even RTN performs relatively well, and 2) at 3-bit, RTN
breaks down, while GPTQ still provides good accuracy.
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Figure 3.7: The accuracy of OPT and BLOOM models post-GPTQ, measured on LAMBADA.

Additional Tricks. While our experiments so far have focused exclusively on vanilla row-
wise quantization, we want to emphasize that GPTQ is compatible with essentially any
choice of quantization grid. For example, it is easily combined with standard grouping
[AGL+17, PPK+22], i.e. applying independent quantization to groups of g consecutive
weights. As shown in the last rows of Table 3.11, this can bring noticeable extra accuracy for
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the largest models at 3-bit. Further, as visualized in Figure 3.8, it significantly reduces the
accuracy losses for medium sized models at 4-bit precision.
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Figure 3.8: GPTQ at 4-bit with different group-sizes on medium sized OPT models.

Extreme Quantization. Lastly, grouping also makes it possible to achieve reasonable
performance for extreme quantization, to around 2-bits per component on average. Table 3.13
shows results on WikiText2 when quantizing the biggest models to 2-bit with varying group-
sizes. At ≈ 2.2 bit (group-size 128; using FP16 scale and 2-bit zero point per group) the
perplexity increase is already less than 1.5 points, while dropping to 0.6 - 0.7 at ≈ 2.6 bit
(group-size 32), which is only slightly worse than vanilla 3-bit and might be interesting for
practical kernel implementations. Further, if we reduce group size to 8, we can apply ternary
(-1, 0, +1) quantization, which achieves 9.20 WikiText2 PPL on OPT-175B, a less than 1
point drop. While this leads to worse compression on average relative to the 2-bit numbers
above, this pattern could be efficiently implemented on custom hardware such as FPGAs. In
summary, these results are an encouraging first step towards pushing highly-accurate one-shot
compression of very large language models, even lower than 3 bits per value on average.

Model FP16 g128 g64 g32 3-bit
OPT-175B 8.34 9.58 9.18 8.94 8.68
BLOOM 8.11 9.55 9.17 8.83 8.64

Table 3.13: 2-bit GPTQ quantization results with varying group-sizes; perplexity on WikiText2.

3.2.5 Summary and Limitations
We have presented GPTQ, an approximate second-order method for quantizing truly large
language models. GPTQ can accurately compress some of the largest publicly-available
models down to 3 and 4 bits, which leads to significant usability improvements, and to
end-to-end speedups, at low accuracy loss. We hope that our method will make these models
accessible to more researchers and practitioners. At the same time, we emphasize some
significant limitations: On the technical side, our method obtains speedups from reduced
memory movement, and does not lead to computational reductions. In addition, our study
focuses on generative tasks, and does not consider activation quantization. These are natural
directions for future work, and we believe this can be achieved with carefully-designed GPU
kernels and existing techniques [YAZ+22, WYZ+22].
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3.3 SparseGPT: Massive Language Models Can Be
Accurately Pruned

3.3.1 Motivation & Overview
A complementary compression approach to quantization, which we considered in Section 3.2,
is pruning, removing network elements, from individual weights (unstructured pruning) to
higher-granularity structures such as rows/columns of the weight matrices (structured pruning).
Pruning has a long history [LDS89, HSW93], and has been applied successfully in the case
of vision and smaller-scale language models [HABN+21]. Yet, the best-performing pruning
methods require extensive retraining of the model to recover accuracy. In turn, this is
extremely expensive for GPT-scale models. While some accurate one-shot pruning methods
exist, like [HCI+21] or the OBC approach outlined in Section 3.1, compressing a model
without retraining, unfortunately even they become very expensive when applied to models
with billions of parameters. Thus, to date, there is essentially no work on accurate pruning of
billion-parameter models.

Overview. In this section, we propose SparseGPT, the first accurate one-shot pruning
method which works efficiently at the scale of models with 10-100+ billion parameters.
SparseGPT works by reducing the pruning problem to a set of extremely large-scale instances
of sparse regression. It then solves these instances via a new approximate sparse regression
solver, which is efficient enough to execute in a few hours on the largest openly-available GPT
models (175B parameters), on a single GPU. At the same time, SparseGPT is accurate
enough to drop negligible accuracy post-pruning, without any fine-tuning. For example,
when executed on the largest publicly-available generative language models (OPT-175B and
BLOOM-176B), SparseGPT induces 50-60% sparsity in one-shot, with minor accuracy loss,
measured either in terms of perplexity or zero-shot accuracy.
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Figure 3.9: Sparsity-vs-perplexity comparison of SparseGPT against magnitude pruning on
OPT-175B, when pruning to different uniform per-layer sparsities.

Our experiments, from which we provide a snapshot in Figures 3.9 and 3.10, lead to the following
observations. First, as shown in Figure 3.9, SparseGPT can induce uniform layer-wise sparsity
of up to 60% in e.g. the 175-billion-parameter variant of the OPT family [ZRG+22], with
minor accuracy loss. By contrast, the only known one-shot baseline which easily extends to
this scale, Magnitude Pruning [Hag94, HPTD15], preserves accuracy only until 10% sparsity,
and completely collapses beyond 30% sparsity. Second, as shown in Figure 3.10, SparseGPT
can also accurately impose sparsity in the more stringent, but hardware-friendly, 2:4 and 4:8
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Figure 3.10: Perplexity vs. model and sparsity type when compressing the entire OPT model
family (135M, 350M, . . . , 66B, 175B) to different sparsity patterns using SparseGPT.

semi-structured sparsity patterns [MLP+21], although this comes at an accuracy loss relative
to the dense baseline for smaller models.

One key positive finding, illustrated in Figure 3.10, is that larger models are more compressible:
they drop significantly less accuracy at a fixed sparsity, relative to their smaller counterparts.
(For example, the largest models from the OPT and BLOOM families can be sparsified to
50% with almost no increase in perplexity.) In addition, our method allows sparsity to be
compounded with weight quantization techniques as the one introduced in Section 3.2: for
instance, we can induce 50% weight sparsity jointly with 4-bit weight quantization with
negligible perplexity increase on OPT-175B.

One notable property of SparseGPT is that it is entirely local, in the sense that it relies
solely on weight updates designed to preserve the input-output relationship for each layer,
which are computed without any global gradient information. As such, we find it remarkable
that one can directly identify such sparse models in the “neighborhood” of dense pretrained
models, whose output correlates extremely closely with that of the dense model.

3.3.2 Background
Overall, we will operate in a layer-wise post-training setup very similar to the two previous
sections. For clarity, we repeat some of the previous definitions, highlighting new aspects that
will be particularly relevant for deriving the SparseGPT algorithm.

Layer-Wise Pruning. Overall, we will operate in a very similar layer-wise post-training
setting Post-training compression is usually done by splitting the full-model compression
problem into layer-wise subproblems, whose solution quality is measured in terms of the
ℓ2-error between the output, for given inputs Xℓ, of the uncompressed layer with weights Wℓ

and that of the compressed one. Specifically, for pruning, [HCI+21] posed this problem as
that of finding, for each layer ℓ, a sparsity mask Mℓ with a certain target density, and possibly
updated weights ˆ︂Wℓ such that

argminmask Mℓ,ˆ︂Wℓ
||WℓXℓ − (Mℓ ⊙ ˆ︂Wℓ)Xℓ||22. (3.10)

Mask Selection & Weight Reconstruction. A key aspect of the layer-wise pruning
problem in (3.10) is that both the mask Mℓ as well as the remaining weights ˆ︂Wℓ are optimized
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jointly, which makes this problem NP-hard [BD08]. Thus, exactly solving it for larger layers is
unrealistic, leading all existing methods to resort to approximations.
A particularly popular approach is to separate the problem into mask selection and weight
reconstruction [HLL+18, KKM+22, HCI+21]. Concretely, this means to first choose a pruning
mask M according to some saliency criterion, like the weight magnitude [ZG17], and then
optimize the remaining unpruned weights while keeping the mask unchanged. Importantly,
once the mask is fixed, (3.10) turns into a linear squared error problem that is easily optimized.

Existing Solvers. Early work [Kin97] applied iterated linear regression to small networks.
More recently, the AdaPrune approach [HCI+21] has shown good results for this problem
on modern models via magnitude-based weight selection, followed by applying SGD steps
to reconstruct the remaining weights. Follow-up works demonstrate that pruning accuracy
can be further improved by removing the strict separation between mask selection and
weight reconstruction. Iterative AdaPrune [FA22] performs pruning in gradual steps with
reoptimization in between and OBC [FSA22] introduces a greedy solver which removes weights
one-at-a-time, fully reconstructing the remaining weights after each iteration, via efficient
closed-form equations.

Difficulty of Scaling to 100+ Billion Parameters. Prior post-training techniques have
all been designed to accurately compress models up to a few hundred million parameters with
several minutes to a few hours of compute. However, our goal here is to sparsify models up to
1000× larger.
Even AdaPrune, the method optimized for an ideal speed/accuracy trade-off, takes a few hours
to sparsify models with just 1.3 billion parameters (see also Section 3.3.4), scaling linearly to
several hundred hours (a few weeks) for 175B Transformers. More accurate approaches are at
least several times more expensive [FA22] than AdaPrune or even exhibit worse than linear
scaling [FSA22]. This suggests that scaling up existing accurate post-training techniques to
extremely large models is a challenging endeavor. Hence, we propose a new layer-wise solver
SparseGPT, based on careful approximations to closed form equations, which easily scales
to giant models, both in terms of runtime as well as accuracy.

3.3.3 The SparseGPT Algorithm
Fast Approximate Reconstruction

Motivation. As outlined in Section 3.3.2, for a fixed pruning mask M, the optimal values of
all weights in the mask can be calculated exactly by solving the sparse reconstruction problem
corresponding to each matrix row wi via:

wi
Mi = (XMiX

⊤
Mi

)−1XMi(wMiXMi)⊤, (3.11)

where XMi denotes only the subset of input features whose corresponding weights have not
been pruned in row i, and wMi represents their respective weights. However, this requires
inverting the Hessian matrix HMi = XMiX⊤

Mi
corresponding to the values preserved by the

pruning mask Mi for row i, i.e. computing (HMi)−1, separately for all rows 1 ≤ i ≤ drow.
One such inversion takes O(d3

col) time, for a total computational complexity of O(drow · d3
col)

over drow rows. For a Transformer model, this means that the overall runtime scales with
the 4th power of the hidden dimension dhidden; we need a speedup by at least a full factor of
dhidden to arrive at a practical algorithm.

42



3.3. SparseGPT: Massive Language Models Can Be Accurately Pruned

Different Row-Hessian Challenge. The high computational complexity of optimally
reconstrucing the unpruned weights following Equation 3.11 mainly stems from the fact that
solving each row requires the individual inversion of a O(dcol × dcol) matrix. This is because
the row masks Mi are generally different and (HMi)−1 ≠ (H−1)Mi , i.e., the inverse of a
masked Hessian does not equal the masked version of the full inverse. This is illustrated also
in Figure 3.11. If all row-masks were the same, then we would only need to compute a single
shared inverse, as H = XX⊤ depends just on the layer inputs which are the same for all rows.

select & invert

reconstruct Hessian

Figure 3.11: Illustration of the row-Hessian challenge: rows are sparsified independently, pruned
weights are in white.

Such a constraint could be enforced in the mask selection, but this would have a major impact
on the final model accuracy, as sparsifying weights in big structures, like entire columns, is
known to be much more difficult than pruning them individually3. The key towards designing
an approximation algorithm that is both accurate and efficient lies in enabling the reuse
of Hessians between rows with distinct pruning masks. We now propose an algorithm that
achieves this in a principled manner.

Equivalent Iterative Perspective. To motivate our algorithm, we first have to look at the
row-wise weight reconstruction from a different iterative perspective, using the classic OBS
update [HSW93, SA20, FKA21]. Assuming a quadratic approximation of the loss, for which
the current weights w are optimal, the OBS update δm provides the optimal adjustment of
the remaining weights to compensate for the removal of the weight at index m, with error εm:

δm = − wm

[H−1]mm

·H−1
:,m, εm = w2

m

[H−1]mm

. (3.12)

Since the loss function corresponding to the layer-wise pruning of one row of W is a quadratic,
the OBS formula is exact in this case. Hence, w + δm is the optimal weight reconstruc-
tion corresponding to mask {m}C . Further, given an optimal sparse reconstruction w(M)

corresponding to mask M, we can apply OBS again to find the optimal reconstruction for
mask M′ = M − {m}. Consequently, this means that instead of solving for a full mask
M = {m1, . . . , mp}C directly, we could iteratively apply OBS to individually prune the weights
m1 up until mp in order, one-at-a-time, reducing an initially complete mask to M, and
will ultimately arrive at the same optimal solution as applying the closed-form regression
reconstruction with the full M directly.

3For example, structured (column-wise) pruning ResNet50 to > 50% structured sparsity without accuracy
loss is challenging, even with extensive retraining [LZK+21], while unstructured pruning to 90% sparsity is
easily achievable with state-of-the-art methods [EGM+20, PIVA21].
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Figure 3.12: [Left] Visualization of the SparseGPT reconstruction algorithm. Given a fixed
pruning mask M, we incrementally prune weights in each column of the weight matrix W,
using a sequence of Hessian inverses (HUj

)−1, and updating the remainder of the weights in
those rows, located to the “right” of the column being processed. Specifically, the weights
to the “right” of a pruned weight (dark blue) will be updated to compensate for the pruning
error, whereas the unpruned weights do not generate updates (light blue). [Right] Illustration
of the adaptive mask selection via iterative blocking.

Optimal Partial Updates. Applying the OBS update δm potentially adjusts the values of all
available parameters (in the current mask M) in order to compensate for the removal of wm.
However, what if we only update the weights in a subset U ⊆M among remaining unpruned
weights? Thus, we could still benefit from error compensation, using only weights in U, while
reducing the cost of applying OBS.
Such a partial update can indeed be accomplished by simply computing the OBS update using
HU, the Hessian corresponding to U, rather than HM, and updating only wU. Importantly,
the loss of our particular layer-wise problem remains quadratic also for U and the OBS updates
are still optimal: the restriction to U does not incur any extra approximation error by itself, only
the error compensation might not be as effective, as less weights are available for adjustment.
At the same time, if |U| < |M|, then inverting HU will be a lot faster than inverting HM. We
will now utilize this mechanism to accomplish our goal of synchronizing the masked Hessians
across all rows of W.
Hessian Synchronization. In the following, assume a fixed ordering of the input features
j = 1, . . . , dcol. Since those are typically arranged randomly, we will just preserve the given
order for simplicity, but any permutation could in principle be chosen. Next, we define a
sequence of dcol index subsets Uj recursively as:

Uj+1 = Uj − {j} with U1 = {1, . . . , dcol}. (3.13)
In words, starting with U1 being the set of all indices, each subset Uj+1 is created by removing
the smallest index from the previous subset Uj. These subsets also impose a sequence of
inverse Hessians (HUj

)−1 = ((XX⊤)Uj
)−1 which we are going to share across all rows of W.

Crucially, following Section 3.1, the updated inverse (HUj+1)−1 can be calculated efficiently by
removing the first row and column, corresponding to j in the original H, from B = (HUj

)−1

in O(d2
col) time via one step of Gaussian elimination:

(HUj+1)−1 =
(︃

B− 1
[B]11

·B:,1B1,:

)︃
2:,2:

, (3.14)

with (HU1)−1 = H−1. Hence, the entire sequence of dcol inverse Hessians can be calculated
recursively in O(d3

col) time, i.e. at similar cost to a single extra matrix inversion on top of the
initial one for H−1.
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Once some weight wk has been pruned, it should not be updated anymore. Further, when
we prune wk, we want to update as many unpruned weights as possible for maximum
error compensation. This leads to the following strategy: iterate through the Uj and their
corresponding inverse Hessians (HUj

)−1 in order and prune wj if j ̸∈ Mi, for all rows i.
Importantly, each inverse Hessian (HUj

)−1 is computed only once and reused to remove weight
j in all rows where it is part of the pruning mask. A visualization of the algorithm can be
found in Figure 3.12.
Computational Complexity. The overall cost consists of three parts: (a) the computation
of the initial Hessian, which takes time Θ(n · d2

col) where n is the number of input samples
used—we found that taking the number of samples n to be a small multiple of dcol is sufficient
for good and stable results, even on very large models (see Appendix A.3.1); (b) iterating
through the inverse Hessian sequence in time O(d3

col) and (c) the reconstruction/pruning itself.
The latter cost can be upper bounded by the time it takes to apply (3.12) to all drow rows of W
for all dcol columns in turn, which is O(dcoldrowdcol). In total, this sums up to O(d3

col +drowd2
col).

For Transformer models, this is simply O(d3
hidden), and is thus a full dhidden-factor more efficient

than exact reconstruction. This means that we have reached our initial goal, as this complexity
will be sufficient to make our scheme practical, even for extremely large models.
Weight Freezing Interpretation. While we have motivated the SparseGPT algorithm
as an approximation to the exact reconstruction using optimal partial updates, there is also
another interesting view of this scheme. Specifically, consider an exact greedy framework
which compresses a weight matrix column by column, always optimally updating all not yet
compressed weights in each step as we did in the previous two sections. At first glance,
SparseGPT does not seem to fit into this framework as we only compress some of the
weights in each column and also only update a subset of the uncompressed weights. Yet,
mechanically, “compressing” a weight ultimately means fixing it to some specific value and
ensuring that it is never “decompressed” again via some future update, i.e. that it is frozen.
Hence, by defining column-wise compression as:

compress(wj)i = 0 if j ̸∈Mi and wj
i otherwise, (3.15)

i.e. zeroing weights not in the mask and fixing the rest to their current value, our algorithm
can be interpreted as an exact column-wise greedy scheme. This perspective will allow us to
cleanly merge sparsification and quantization into a single compression pass.

Adaptive Mask Selection

So far, we have focused only on weight reconstruction, i.e. assuming a fixed pruning mask
M. One simple option for deciding the mask, following AdaPrune [HCI+21], would be via
magnitude pruning [ZG17]. However, Section 3.1 shows that updates during pruning change
weights significantly due to correlations, and that taking this into account in the mask selection
yields better results. This insight can be integrated into SparseGPT by adaptively choosing
the mask while running the reconstruction.
One obvious way of doing so would be picking the p% easiest weights to prune in each
column i when it is compressed, leading to p% overall sparsity. The big disadvantage of
this approach is that sparsity cannot be distributed non-uniformly across columns, imposing
additional unnecessary structure. This is particularly problematic for massive language models,
which have a small number of highly-sensitive outlier features [DLBZ22, XLS+23].
We remove this disadvantage via iterative blocking. More precisely, we always select the
pruning mask for Bs = 128 columns at a time (see Appendix A.3.1), based on the OBS
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reconstruction error ε from Equation (3.12), using the diagonal values in our Hessian sequence.
We then perform the next Bs weight updates, before selecting the mask for the next block,
and so on. This procedure allows non-uniform selection per column, in particular also using the
corresponding Hessian information, while at the same time considering also previous weight
updates for selection. (For a single column j, the selection criterion becomes the magnitude,
as [H−1]jj is constant across rows.)

Extension to Semi-Structured Sparsity

SparseGPT is also easily adapted to semi-structured patterns such as the popular n:m
sparsity format [ZMZ+21, HCI+21] which delivers speedups in its 2:4 implementation on
Ampere NVIDIA GPUs. Specifically, every consecutive m weights should contain exactly n
zeros. Hence, we can simply choose blocksize Bs = m and then enforce the zeros-constraint
in the mask selection for each row by picking the n weights which incur the lowest error as per
Equation (3.12). A similar strategy could also be applied for other semi-structured pruning
patterns. Finally, we note that a larger Bs would not be useful in this semi-structured scenario
since zeros cannot be distributed non-uniformly between different column-sets of size m.

Full Algorithm Pseudocode

Algorithm 3.3: The SparseGPT algorithm. We prune the layer matrix W to p%
unstructured sparsity given inverse Hessian H−1 = (XX⊤ + λI)−1, lazy batch-update
blocksize B and adaptive mask selection blocksize Bs; each Bs consecutive columns
will be p% sparse.

M← 1drow×dcol // binary pruning mask
E← 0drow×B // block quantization errors
H−1 ← Cholesky(H−1)⊤ // Hessian inverse information
for i = 0, B, 2B, . . . do

for j = i, . . . , i + B − 1 do
if j mod Bs = 0 then

M:,j:(j+Bs) ← mask of (1− p)% weights wc ∈W:,j:(j+Bs) with largest w2
c /[H−1]2cc

end if
E:,j−i ←W:,j / [H−1]jj // pruning error
E:,j−i ← (1−M:,j) ·E:,j−i // freeze weights
W:,j:(i+B) ←W:,j:(i+B) −E:,j−i ·H−1

j,j:(i+B) // update
end for
W:,(i+B): ←W:,(i+B): −E ·H−1

i:(i+B),(i+B): // update
end for
W←W ·M // set pruned weights to 0

With the weight freezing interpretation discussed at the end of Section 3.3.3, the SparseGPT
reconstruction can be cast in the column-wise greedy framework of the quantization algo-
rithm GPTQ. This means we can also inherit several algorithmic enhancements from GPTQ,
specifically: precomputing all the relevant inverse Hessian sequence information via a Cholesky
decomposition to achieve numerical robustness and applying lazy batched weight matrix up-
dates to improve the compute-to-memory ratio of the algorithm. Our adaptive mask selection,
as well as its extensions to semi-structured pruning, are compatible with all of those extra
techniques as well.
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Algorithm 3.3 presents the the unstructured sparsity version of the SparseGPT algorithm in
its fully-developed form, integrating all the relevant techniques from GPTQ.

Joint Sparsification & Quantization

Algorithm 3.3 operates in the column-wise greedy framework of GPTQ, thus sharing the
computationally heavy steps of computing the Cholesky decomposition of H−1 and continuously
updating W. This makes it possible to merge both algorithms into a single joint procedure.
Specifically, all weights that are frozen by SparseGPT are additionally quantized, leading to
the following generalized errors to be compensated in the subsequent update step:

E:,j−i ← (W:,j −M:,j · quant(W:,j)) / [H−1]jj, (3.16)

where quant(w) rounds each weight in w to the nearest value on the quantization grid.
Crucially, in this scheme, sparsification and pruning are performed jointly in a single pass
at essentially no extra cost over SparseGPT. Moreover, doing quantization and pruning
jointly means that later pruning decisions are influenced by earlier quantization rounding, and
vice-versa. This is in contrast to the joint techniques in Section 3.1, which first sparsify a layer
and then simply quantize the remaining weights.

3.3.4 Experiments
Setup. We implement SparseGPT in PyTorch [PGM+19] and use the HuggingFace Trans-
formers library [WDS+19] for handling models and datasets. All pruning experiments are
conducted on a single NVIDIA A100 GPU with 80GB of memory. In this setup, SparseGPT
can fully sparsify the 175-billion-parameter models in approximately 4 hours. Similar to Yao
et al. [YAZ+22] and Section 3.2, we sparsify Transformer layers sequentially in order, which
significantly reduces memory requirements. All our experiments are performed in one-shot,
without finetuning, in a similar setup to recent work on post-training quantization of GPT-scale
models [YAZ+22, DLBZ22] and Section 3.2. Additionally, in Appendix A.3.6 we investigate
the real-world acceleration of our sparse models with existing tools.
For calibration data, we follow the protocol in Section 3.2.4 and use 128 2048-token segments,
randomly chosen from the first shard of the C4 [RSR+20a] dataset. This represents generic
text data crawled from the internet and makes sure that our experiments remain actually
zero-shot since no task-specific data is seen during pruning.

Models, Datasets & Evaluation. We primarily work with the OPT model family [ZRG+22],
to study scaling behavior, but also consider the 176 billion parameter version of BLOOM
[SFA+22]. While our focus lies on the very largest variants, we also show some results on
smaller models to provide a broader picture.
In terms of metrics, we mainly focus on perplexity, which is known to be a challenging and stable
metric that is well suited for evaluating the accuracy of compression methods [YAZ+22, DZ23].
We consider the test sets of raw-WikiText2 [MXBS17] and PTB [MKM+94] as well as
a subset of the C4 validation data, all popular benchmarks in LLM compression literature
[YAZ+22, PPK+22, XLS+23]. For additional interpretability, we also provide ZeroShot accuracy
results for Lambada [PKL+16], ARC (Easy and Challenge) [BPM+18], PIQA [TP03] and
StoryCloze [MRL+17].
We note that the main focus of our evaluation lies on the accuracy of the sparse models,
relative to the dense baseline rather than on absolute numbers. Different preprocessing may
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influence absolute accuracy, but has little impact on our relative claims. The perplexity is
calculated following precisely the procedure described by HuggingFace [Hug22], using full
stride. Our ZeroShot evaluations are performed with GPTQ’s implementation, which is in turn
based on the popular EleutherAI-eval-harness [Ele22]. Additional evaluation details can be
found in Appendix A.3.3. All dense and sparse results were computed with exactly the same
code, available as supplementary material, to ensure a fair comparison.

Baselines. We compare against the standard magnitude pruning baseline [ZG17], applied
layer-wise, which scales to the very largest models. On models up to 1B parameters, we
compare also against AdaPrune [HCI+21], the most efficient among existing accurate post-
training pruning methods. For this, we use the memory-optimized reimplementation of Frantar
& Alistarh [FA22] and further tune the hyper-parameters provided by the AdaPrune authors.
We thus achieve a ≈ 3× speedup without impact on solution quality, for our models of interest.

Results

Pruning vs. Model Size. We first study how the difficulty of pruning LLMs changes with
their size. We consider the entire OPT model family and uniformly prune all linear layers,
excluding the embeddings and the head, as standard [SWR20, KCN+22], to 50% unstructured
sparsity, full 4:8 or full 2:4 semi-structured sparsity (the 2:4 pattern is the most stringent).
The raw-WikiText2 performance numbers are given in Table 3.14 and visualized in Figure 3.10.
The corresponding results for PTB and C4 can be found in Appendix A.3.4 and show very
similar trends overall.

OPT - 50% 125M 350M 1.3B
Dense 27.66 22.00 14.62
Magnitude 193. 97.80 1.7e4
AdaPrune 58.66 48.46 32.52
SparseGPT 36.85 31.58 17.46

OPT Sparsity 2.7B 6.7B 13B 30B 66B 175B
Dense 0% 12.47 10.86 10.13 9.56 9.34 8.35
Magnitude 50% 265. 969. 1.2e4 168. 4.2e3 4.3e4
SparseGPT 50% 13.48 11.55 11.17 9.79 9.32 8.21
SparseGPT 4:8 14.98 12.56 11.77 10.30 9.65 8.45
SparseGPT 2:4 17.18 14.20 12.96 10.90 10.09 8.74

Table 3.14: OPT perplexity results on raw-WikiText2.

One immediate finding is that the accuracy of magnitude-pruned models collapses across
all scales, with larger variants generally dropping faster than smaller ones. This is in stark
contrast to smaller vision models which can usually be pruned via simple magnitude selection
to 50% sparsity or more at very little loss of accuracy [SA20]. It highlights the importance of
accurate pruners for massive generative language models, but also the fact that perplexity is a
very sensitive metric.
For SparseGPT, the trend is very different: already at 2.7B parameters, the perplexity loss
is ≈ 1 point, at 66B, there is essentially zero loss and at the very largest scale there is even
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a slight accuracy improvement over the dense baseline, which however seems to be dataset
specific (see also Appendix A.3.4). AdaPrune, as expected, also yields a big improvement over
magnitude pruning, but is significantly less accurate than SparseGPT. Despite the efficiency
of AdaPrune, running it takes approximately ≈ 1.3h on a 350M model and ≈ 4.3h on a 1.3B
one, while SparseGPT can fully sparsify 66B and 175B models in roughly the same time,
executing on the same A100 GPU.

In general, there is a clear trend of larger models being easier to sparsify, which we speculate
is due to overparametrization. A detailed investigation of this phenomenon would be a good
direction for future work. For 4:8 and 2:4 sparsity, the behavior is similar, but accuracy drops
are typically higher due to the sparsity patterns being more constrained [HCI+21]. Nevertheless,
at the largest scale, the perplexity increases are only of 0.11 and 0.39 for 4:8 and 2:4 sparsity,
respectively.

Sparsity Scaling for 100+ Billion Parameter Models. Next, we take a closer look at
the largest publicly-available dense models, OPT-175B and BLOOM-176B, and investigate
how their performance scales with the degree of sparsity induced by either SparseGPT or
magnitude pruning. The results are visualized in Figures 3.9 and 3.13.
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Figure 3.13: Uniform pruning BLOOM-176B.

For the OPT-175B model (Figure 3.9) magnitude pruning can achieve at most 10% sparsity
before significant accuracy loss occurs; meanwhile, SparseGPT enables up to 60% sparsity at
a comparable perplexity increase. BLOOM-176B (Figure 3.13) appears to be more favorable
for magnitude pruning, admitting up 30% sparsity without major loss; still, SparseGPT can
deliver 50% sparsity, a 1.66× improvement, at a similar level of perplexity degradation. Even
at 80% sparsity, models compressed by SparseGPT still score reasonable perplexities, while
magnitude pruning leads to a complete collapse (>100 perplexity) already at 40/60% sparsity
for OPT and BLOOM, respectively. Remarkably, SparseGPT removes around 100 billion
weights from these models, with low impact on accuracy.

ZeroShot Experiments. To complement the perplexity evaluations, we provide results on
several ZeroShot tasks. These evaluations are known to be relatively noisy [DLBZ22], but
more interpretable. Please see Table 3.15.

Overall, a similar trend holds, with magnitude-pruned models collapsing to close to random
performance, while SparseGPT models stay close to the original accuracy. However, as
expected, these numbers are more noisy: 2:4 pruning appears to achieve noticeably higher
accuracy than the dense model on Lambada, despite being the most constrained sparsity
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Method Spars. Lamb. PIQA ARC-e ARC-c Story. Avg.
Dense 0% 75.59 81.07 71.04 43.94 79.82 70.29
Magnitude 50% 00.02 54.73 28.03 25.60 47.10 31.10
SparseGPT 50% 78.47 80.63 70.45 43.94 79.12 70.52
SparseGPT 4:8 80.30 79.54 68.85 41.30 78.10 69.62
SparseGPT 2:4 80.92 79.54 68.77 39.25 77.08 69.11

Table 3.15: ZeroShot results on several datasets for sparsified variants of OPT-175B.

pattern. These effects ultimately average out when considering many different tasks, which is
consistent to the literature [YAZ+22, DLBZ22, DZ23].

Joint Sparsification & Quantization. Another interesting research direction is the combi-
nation of sparsity and quantization, which would allow combining computational speedups
from sparsity [KKG+20, EDGS20] with memory savings from quantization [DLBZ22, DZ23]
and Section 3.2. Specifically, if we compress a model to 50% sparse + 4-bit weights, store
only the non-zero weights and use a bitmask to indicate their positions, then this has the
same overall memory consumption as 3-bit quantization. Hence, in Figure 3.14 (right) we
compare SparseGPT 50% + 4-bit with state-of-the-art GPTQ 3-bit numbers. It can be seen
that 50% + 4-bit models are more accurate than their respective 3-bit versions for 2.7B+
parameter models, including 175B with 8.29 vs. 8.68 3-bit. We also tested 2:4 and 4:8 in
combination with 4-bit on OPT-175B yielding 8.55 and 8.85 perplexities, suggesting that 4bit
weight quantization only brings an ≈ 0.1 perplexity increase on top semi-structured sparsity.
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Figure 3.14: Comparing joint 50% sparsity + 4-bit quantization with size-equivalent 3-bit on
the OPT family for ≥ 2.7B params.

Sensitivity & Partial N:M Sparsity. One important practical question concerning n:m
pruning is what to do when the fully sparsified model is not accurate enough? The overall
sparsity level cannot simply be lowered uniformly, instead one must choose a subset of layers
to n:m-sparsify completely. We now investigate what a good selection is in the context of
extremely large language models: we assume that 2/3 of the layers of OPT-175B/BLOOM-
176B should be pruned to 2:4 sparsity and consider skipping either all layers of one type
(attention, fully-connected-1, fully-connected-2) or skipping one third of consecutive layers
(front, middle, back). The results are shown in Figure 3.15.
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Figure 3.15: Sensitivity results for partial 2:4 pruning.

While the sensitivity of layer-types differs noticeably between models, there appears to be a clear
trend when it comes to model parts: later layers are more sensitive than earlier ones ; skipping
the last third of the model gives the best accuracy. This has a very practical consequence in
that, due to the sequential nature of SparseGPT, we can generate a sequence of increasingly
2:4 sparsified models (e.g. 1/2, 2/3, 3/4, . . . ) in a single pruning pass by combining the first
x layers from a SparseGPT run with the last nlayers − x of the original model. The accuracy
of such model sequences are shown in Appendix A.3.5.

Kernel for Memory-Bound Inference. Although it is very challenging to achieve compu-
tational speedup from sparsity patterns without direct hardware support on modern GPUs, it
is possible to accelerate memory loading and thus achieve speedup in the batchsize 1 regime
similar to weight-only quantization in Section 3.2.4. We demonstrate this by implementing a
custom GPU kernel which assumes bitmask storage of the sparsity mask plus dense storage of
the non-zero weights. Crucially, we further assume an n:m pattern with large m, e.g., 16:32,
16:64 or 16:128. This usually yields similar accuracy as fully unstructured pruning, but greatly
simplifies kernel design as it enables natural partition of the problem into corresponding blocks.
Our kernel first fetches activations and a non-zero weight tile into shared memory. Then it
loads and decodes the corresponding bitmask, indexing into shared memory to read non-zero
weights as it encounters corresponding 1-bits; importantly, this process is bank-conflict free.
As demonstrated by Table 3.16, this kernel achieves substantial speedup on an NVIDIA
RTX A6000 GPU. At low sparsity, acceleration is essentially ideal while higher rates run into
diminishing returns. This is primarily due to the fact that our current sparsity mask decoding
implementation has a constant overhead, irrespective of the sparsity level. Finally, we note
that this kernel was originally written for a follow-up project to SparseGPT about further
enhancing accuracy via finetuning [KKF+23].

Pattern 16:32 16:64 16:128
Speedup 1.82× 2.89× 3.42×

Table 3.16: Batchsize 1 generation speedups for custom kernel on a 4K × 12K matrix.

3.3.5 Related Work
Pruning Methods. To our knowledge, we are the first to investigate pruning of massive
GPT-scale models, e.g. with more than 10 billion parameters. One justification for this
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surprising gap is the fact that most existing pruning methods, e.g. [HMD16, GEH19, KA22],
require extensive retraining following the pruning step in order to recover accuracy, while
GPT-scale models usually require massive amounts of computation and parameter tuning both
for training or finetuning [ZRG+22]. SparseGPT is a post-training method for GPT-scale
models, as it does not perform any finetuning. So far, post-training pruning methods have
only been investigated at the scale of classic CNN or BERT-type models [HCI+21, KKM+22],
which have 100-1000x fewer weights than our models of interest. We discussed the challenges
of scaling these methods, and their relationship to SparseGPT, in Section 3.3.2.

Post-Training Quantization. By contrast, there has been significant work on post-training
methods for quantizing open GPT-scale models [ZRG+22, SFA+22]; see Section 3.2.2 for a
overview of early research in this area. More recently, Follow-up work [XLS+23] investigated
joint activation and weight quantization to 8 bits, proposing a smoothing-based scheme which
reduces the difficulty of activation quantization and is complemented by efficient GPU kernels.
Park et al. [PYNC22] tackle the hardness of quantizing activation outliers via quadapters,
learnable parameters whose goal is to scale activations channel-wise, while keeping the other
model parameters unchanged. Dettmers & Zettlemoyer [DZ23] investigate scaling relationships
between model size, quantization bits, and different notions of accuracy for massive LLMs,
observing high correlations between perplexity scores and aggregated zero-shot accuracy across
tasks. As we have shown in Section 3.3.3, the SparseGPT algorithm can be applied in
conjunction with GPTQ, the current state-of-the-art algorithm for weight quantization, and
should be compatible with activation quantization approaches [XLS+23, PYNC22].

3.3.6 Discussion
We have provided a new post-training pruning method called SparseGPT, specifically tailored
to massive language models from the GPT family. Our results show for the first time that
large-scale generative pretrained Transformer-family models can be compressed to high sparsity
via weight pruning in one-shot, without any retraining, at low loss of accuracy, when measured
both in terms of perplexity and zero-shot performance. Specifically, we have shown that
the largest open-source GPT-family models (e.g. OPT-175B and BLOOM-176B) can reach
50-60% sparsity, dropping more than 100B weights, with low accuracy fluctuations.
In terms of limitations, we focus primarily on uniform per-layer sparsity but non-uniform
distributions are a promising topic for future work. Further, SparseGPT is currently not
quite as accurate on smaller and medium sized variants as on the very largest ones. We think
this may be addressable through careful partial or full finetuning, which is starting to become
feasible at the scale of such models up to a few billion parameters. Finally, while we study
the sparsification of pretrained foundation models in this work, we think investigating how
additional post-pretraining techniques like instruction tuning or reinforcement learning with
human feedback interact with compressibility will also be an important future research area.
Overall, our work shows that the high degree of parametrization of massive GPT models allows
pruning to directly identify sparse accurate models in the “close neighborhood” of the dense
model, without gradient information. Remarkably, the output of such sparse models correlates
extremely closely with that of the dense model. We also show that larger models are easier to
sparsify : at a fixed sparsity level, the relative accuracy drop for the larger sparse models narrows
as we increase model size, to the point where inducing 50% sparsity results in practically no
accuracy decrease on the largest models, which should be seen as very encouraging for future
work on compressing such massive models.
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CHAPTER 4
Systems

The previous chapter described how to design fast and accurate algorithms for significantly
compressing very large machine learning models. However, actually translating theoretical
compression into practical benefits is a challenging problem as well, even more so since
uncompressed Transformer software is, due its importance, already extremely well optimized.

This chapter will first introduce Marlin, a mixed-precision inference kernel that achieves
near-optimal GPU utilization across a wide range of batchsizes, significantly enhancing the
practicality of weight-only quantization (via, e.g., GPTQ). Afterwards, we will turn our attention
towards scaling up the post-training compression methodology introduced in Chapter 3 by
another order of magnitude, to trillion-parameter Mixture-of-Expert models. In this context,
even higher theoretical compression rates can be achieved. While this involves complex, initially
not at all hardware-friendly, encoding, we show how sub 1-bit compression rates can actually
be made practical by careful co-design of a compression scheme and a corresponding GPU
inference kernel.

Section 4.1.3 is based on the Marlin GitHub repository [FA24a] and parts of the paper
preprint “MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language
Models” [FCC+24], while Section 4.2 is derived from the MLSys 2024 paper “QMoE: Practical
Sub-1-Bit Compression of Trillion Parameter Models” [FA24b].

4.1 Marlin: A Near-Optimal Mixed-Precision Kernel

4.1.1 Motivation
In Section 3.2.4, we demonstrated how weight-only quantized models can bring major inference
speedups during generation, by reducing the amount of memory that needs to be transferred
to registers, the primary runtime bottleneck in this application. However, our respective kernel
was designed only for batchsize 1 inference, i.e., one-token-at-a-time. As the adoption of
LLMs is rapidly growing, this is becoming unrealistic in a practical serving setting. Further,
even local inference is moving away from the batchsize 1 setup due to the emergence of new
techniques like speculative decoding [LKM23] or top-k voting [RST+24]. While there have
been some attempts at writing efficient kernels for larger batchsizes [LZW+23, DPHZ23],
their speedups relative to uncompressed inference drop rapidly even if the batchsize is only
increased a little, say from 1 to 4.
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In theory, modern GPUs have very large FLOPs/Bytes ratios, meaning that they can execute
floating point operations much faster than they can read bytes from memory. As an example,
an A10 GPU has a FLOPs/Bytes ratio of ≈ 200 [NVI22]. Consequently, if the weights are
stored in 4-bit precision and every multiply-accumulate counts for 2 FLOPs, inference should
theoretically be memory-bound up until batchsize bopt ≈ 50. (Processing one input token
takes 2 FLOPs per weight and the GPU can execute 100 FLOPs in the time it takes to load
one 4-bit weight. Hence, memory loading will dominate runtime as long as the input batchsize
is less than 50.) In fact, bopt is the batchsize where latency is neither bound by memory nor by
compute, i.e., where we achieve the lowest latency at maximum throughput. In principle, this
is precisely the batchsize that we would like to operate at in practice: any smaller does not
yield speedups and any larger does not improve throughput. However, actually implementing
such a mixed-precision (we will focus on FP16-INT4 here) matmul kernel which fully maximizes
essentially all GPU resources (compute and memory) simultaneously is a major challenge. In
the following section, we will try to come as close as possible to this goal by designing Marlin,
an extremely optimized Mixed-precision Auto-Regressive LINear kernel.

4.1.2 Kernel Design
In what follows, we will aim to implement a matrix multiplication C = AB where A is of
shape m× k, B of shape k × n and C of shape m× n. Further, A is in full FP16 precision,
while B has been (symmetrically) quantized to INT4, either with one FP16 scale per output
n, shared between all elements of the corresponding column, or one scale per g consecutive
weights in each column, for (k/g)n scales in total. Our kernel is designed for Ampere-class
GPUs and will take full advantage of key features specific to this architecture [NVI20].

Bound By Weight Loading. Executing our target matmul requires, in theory, touching
exactly 16mk + 4kn + 16mn bits of memory (reading both operands and writing the results)
while executing exactly mkn multiply-accumulate operations, each counted as 2 FLOPs. If m
is small, say ≈ 16− 32, our problem has very low arithmetic intensity (assuming reasonable
weight matrix B shapes). Consequently, as FLOPs/Bytes ratios on modern GPUs are generally
> 100, it should be completely bound by the cost of reading the quantized weights B from
global GPU memory.
This holds theoretically, while we actually need to organize computation very carefully for
this to remain true in practice. In contrast to the previously studied [FAHA23, DZ23] m = 1
case, where both A and C are tiny, inputs and outputs now actually have non-negligible
size, especially since those operands have 4× higher bit-width than our weights. Hence, it
is quite easy to end up with a kernel where activation loading significantly impacts runtime:
e.g., assume that for every 16× 64 tile from B, we reload one 16× 16 tile from A (in global
memory), then both weight and activation loading will contribute equally to the runtime.
The remedy to this is to widen A tiles, but doing so by too much will partition n only into
very few segments. This in turn means that we also need to split our problem across the k
dimension in order to produce sufficiently many sub-problems to saturate most of the GPU’s
SMs. Unfortunately, if there are too many k splits, we will require quite a few reduction steps,
involving repeated global reads and writes, noticeably increasing the number of overall memory
accesses and consequently the kernel runtime.
Fortunately, there is one mechanism we can exploit to work around the above problems: the
L2 cache. This cache usually has 10s of MBs capacity [NVI20] and 2− 4× higher bandwidth
than global memory; for simplicity of discussion, we will assume 4×. The size of the cache is

54



4.1. Marlin: A Near-Optimal Mixed-Precision Kernel

easily enough to store (significant parts of) A, and so loading A fragments will take only 1/4
of the time it takes to load B fragments in the 16 × 16 and 16 × 64 example from above.
Further, since a GPU can load from L2 to L1 and from global to L2 simultaneously (any global
load must pass through the entire cache hierarchy), we can pipeline these loads and essentially
hide the bandwidth cost of the A fragment access completely, as long as the overall required
memory traffic (for weights + activations) does not exceed the L2 bandwidth.

Consequently, we will proceed by partitioning C into tiles of size m × nc with nc ∈
{64, 128, 256}, i.e. moderately wide tiles of full input batchsize m, and then assigning
each corresponding independent matmul sub-problem to one SM (for now, we assume that
this leads to good utilization, we will handle the common case where this does not happen
later). At nc = 256, even batchsize m = 64 remains bound by global weight loading since the
weight/activation load ratio is 1 and the L2 bandwidth ≥ 2× larger than the global one.

Maximizing Loading Bandwidth. Since our kernel will be memory-bound, its runtime
will be determined by how much of the theoretical bandwidth we are actually able to achieve.
Consequently, we always want to utilize the widest loads possible. On current GPUs, this is
128 bits = 16 bytes per thread. This means one warp can load 32× 32 = 1024 INT4 weights
with a single instruction. To reach peak efficiency, we need to have 8 threads each in a warp
read 128 bytes of contiguous memory (assuming 128-byte-aligned addresses), a full cache line.
Achieving this for activation tiles of shape m× ka mandates a tile ka of at least 64. Since the
weights are static during inference and can thus be preprocessed offline, we simplify things
by reshuffling 16× 64 tiles (1024 weights in total) so that they are laid out contiguously in
memory and are thus trivial to load optimally (this also simplifies the corresponding index
calculations).

While we continuously reload A fragments from L2 cache, each element of B is accessed
exactly once. Nevertheless, every read will be put into the L2 cache as well, potentially evicting
parts of A that are still needed by some SMs. To avoid such cache pollution, we can supply the
cp.async instruction with an evict_first cache-hint, ensuring that unnecessarily stored
B data is dropped before any other cache line, which may actually still be required.

Shared Memory Layouts. Overall, we will load both weights and activations asynchronously
via Ampere’s cp.async instruction from global (or L2) to shared memory; this requires no
temporary registers and also makes overlapping these loads with computation much easier.
Due to our offline preprocessing of B, we can simply copy to shared memory in contiguous
fashion, avoiding any bank conflicts. In contrast, handling the A fragments requires a lot
more care: specifically, we need to ensure that the 16-byte vectors corresponding to indices
ij, (i + 8)j, i(j + 1) and (i + 8)(j + 1) of each 16× 16 FP16 activation block are stored in
different memory banks. Only then can ldmatrix.sync instructions, which load A operand
data and distribute it across warp threads to prepare for tensor core use, execute in conflict-free
manner. Note that this is not the case for, e.g., ij and (i + 1)j since the offset between those
indices is exactly 128 bytes (there are 32 banks of 4-byte width). This can be achieved by
storing 16-byte element ij in an activation tile at location i(i⊕ j) in the corresponding shared
memory tile, where ⊕ denotes the XOR operation [NVI24a]. Another key aspect of this index
transformation is that if a warp reads a contiguous sub-tile of the global A tile (e.g., the first
4 rows), then it will be written permuted but still overall contiguously into shared memory.
Although undocumented, this appears to be necessary in order to avoid bank conflicts on
writing, judging by the NVIDIA profiler. These index calculations are somewhat complex and
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potentially slow to take care of dynamically; however, as they only affect a relatively small
number of shared memory locations, which remain static throughout the main loop, we can
precompute them in registers, accompanied by appropriate unrolling (see below).

Memory Load Pipelining. The key to simultaneously reaching close to maximum bandwidth
and close to maximum compute is to fully overlap memory loading and tensor core math.
For global to shared memory loads, this can be achieved via cp.async operations, in every
iteration prefetching the A and B tiles which will be used d− 1 steps in the future, where
d is the pipeline depth (we need one more buffer for the current tile). Additionally, we can
prefetch the next sub-tile from shared memory (most GPU operations do not block until they
hit a dependency) before accumulating the current partial matmul, for which the operands
were already fetched to registers in the previous iteration—this technique is also called double
buffering [NVI24b]. We pick a pipeline depth of d = 4 for two reasons: (a) this seemed
sufficient in all of our tests to completely hide latency while fitting into shared memory even
for m = 64, and (b) because it is evenly divisible by 2. The latter is crucial as it allows us
to smoothly unroll across the full pipeline since after d iterations both the pipeline and the
register buffer index will always have the same value of 0. This unrolling makes all shared
memory addressing completely static, avoiding slow transformed index calculations (see above)
by using some of the extra registers that we have available. Finally, we would like to note
that this also seemed to be the most reliable way to make the CUDA compiler correctly
order instructions to enable actual double buffering. Figure 4.1 visualizes the several layers of
pipelining used by the Marlin kernel.
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Figure 4.1: Several levels of pipelining in the Marlin kernel.

Warp Layout. As discussed previously, each SM will compute an m × nc fragment of
the output C by repeatedly fetching m × ka blocks from A and ka × nc tiles from B and
then accumulating those partial matmuls into the result, stored in registers—only after the
entire column slice in B is processed, it will be written back out into global memory. This
computation must further be subdivided across warps: in the most straight-forward fashion,
each warp would compute an m × (nc/#warps) tile of the output. In order to reach peak
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compute throughput, we would like to use at least 4 (as Ampere GPUs have 4 warp schedulers)
and ideally 8 warps (to have a bit more latency hiding) [SLG+22]. However, this leads to
rather small tile sizes, especially at smaller nc. This is not just problematic for our memory
reshuffling discussed above but also hinders tensor core throughput since a small tile-width
brings more sequential dependencies (as those consecutive operations must use the same
accumulators) into tensor-core operations, which can cause stalls. Instead, we fix the sub-tile
width of each warp to 64 and further split the computation across ka; Figure 4.2 illustrates
such a warp layout and Algorithm 4.1 provides corresponding pseudo-code. Consequently,
multiple warps will accumulate partial results of the same output sub-tile in registers. These
must then eventually be reduced in shared memory before the final write-out, but this can be
done via a logarithmic parallel reduction [H+07], and thus typically causes minimal overhead.
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Figure 4.2: Illustration of Marlin’s warp layout. Multiple warps accumulate partial results of
the same output tile; see also Algorithm 4.1 for corresponding pseudocode.

Algorithm 4.1: Warp reduction within a corresponding A
and B tile. The following pseudo-code is executed by all
warps, identified via “warp_idx”.

split A tile into 1× k sub-tiles, indexed via [i, j]
split B tile into k × n sub-tiles, indexed via [i, j]
i← ⌊warp_idx/n⌋
j ← warp_idx mod n
C← all zeros (if A and B tiles are the first)
while i < k do

C← C + A[0, i]B[i, j]
i← i + (#warps/n)

end while
parallel reduce C across j (if A and B tiles are the last)

Dequantization and Tensor Cores. Another critical aspect of any mixed-precision kernel
is datatype conversion, in our case, converting INT4 to FP16. Doing this naively via type-casts
is very slow. Fortunately, we can achieve the same result with clever binary manipulations—we
follow a modified version of the approach suggested by [KHFA22]. We now illustrate this
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procedure at the hand of the most simple case: converting the INT4 located at positions
12 − 15 in an INT16 to a signed FP16 value. First, we extract just the bits corresponding
to our INT4 (via an AND of a mask) and turn bits 1 − 7 of the result into 0110010 (with
an OR); this can be accomplished in a single lop3 instruction, which we however seemingly
need to emit explicitly. Now, we have an FP16 number with an exponent of 50 and the
last 4 mantissa bits corresponding to our conversion target. Consequently, subtracting the
FP16 value with exponent 50 and mantissa 0, will give us the floating point representation of
exactly our 4 target bits, unsigned. To make this value signed, we further have to subtract
8, which we can however fuse directly into the last 3 bits of the total value we subtract. A
similar strategy also works for decoding the INT4 located at positions 8− 11; for the values at
0− 3 and 4− 7, we need to execute a shift, in order to bring those values into the mantissa
bits of the reinterpreted float. Modern GPUs can simultaneously compute with two separate
16-bit operands packed into a single 32-bit register. Hence, we can efficiently dequantize two
INT4s in an INT32 at the same time, using the just described procedure. Finally, we want
to dequantize directly into the right register layout for subsequent tensor core calls. To do
this, we again take advantage of the fact that B can be preprocessed offline and reorganize
weights such that the 16-byte vector read by each thread contains precisely its necessary 8
quantized weights of 4 separate 16× 16 tensor core blocks. Additionally, within an INT32,
weights are stored interleaved, according to the pattern 64207531, to power the previously
mentioned parallel decoding.
At the innermost level, we accumulate the results of an m× 16 times 16× 64 matmul. We
execute this accumulation column-wise, emitting 16× 16 times 16× 8 tensor core mma.sync
instructions. This has the advantage over row-wise execution that we can pipeline the
dequantization of the next B operand with the tensor core math of the current column; note
that the tensor core and int/float math used for dequantization feature different GPU pipelines
that can be engaged at the same time. While proper ordering of instructions is important here
for good performance, this part makes a simple enough loop construction that the compiler
seems to be able to figure this out well without too much extra care.

Groups and Instruction Ordering. So far, we have completely disregarded the quantization
scale factors. For per-output quantization, we can simply scale the final output once before
the global write-out. An interesting observation we have made in this context is that despite
these loads not being asynchronous to any computation, it is still critical to perform them
via cp.async followed by an immediate wait_group instruction to avoid unfavorable main
loop instruction reordering by the compiler.
With grouped quantization, which is crucial to maintain the best possible accuracy, we have to
load and apply scaling during the main loop. First, we reorganize scale storage in a similar way
as quantized weights (see above), such that the scales required by the same type of thread,
for different 16× 16 blocks are packed together and can be loaded from shared memory as a
single 16-byte vector (we note that multiple threads will need to load the same scale package
due to the tensor core layout). In principle, for group-size 128 and a B tile shape of 64× 256
(a common setting), we only need to global and shared memory load new scales once every
other tile (and here only once during the first sub-tile). However, it appears that the compiler
is rather brittle to such irregularities in perhaps the most critical section of the code, leading
to unfavorable instructions orderings with 10− 20% overall slow-down in some shape settings.
Instead, we find that reloading scales from shared memory for every sub-tile (but there are
no redundant global loads) maintains peak performance. Doing this adds some technically
unnecessary shared memory loads, but there is sufficient extra bandwidth to support this at
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no overhead, while it otherwise preserves the compiler’s well pipelined instruction ordering for
non-grouped quantization.

Striped Partitioning. With all the techniques explained in the previous several paragraphs,
we can reach near optimal compute and bandwidth performance, provided matrices are large
and can be perfectly partitioned across all SMs over the n axis. In practice, this is rarely the
case. The standard remedy in such a situation is to also partition across the k dimension, but
for many popular layer shape and GPU combinations we would need a lot of additional splits
to reach an even distribution without significant wave quantization. This in turn adds many
global reduction steps with additional overhead. Instead, we opt for a striped partitioning
scheme where the “stripes” of B processed by an SM may span across multiple C tiles (see
also Figure 4.3). Concretely, we first determine the number of B tiles to be processed by
each SM T = ⌈#tiles/#SMs⌉ and then assign (up to) T tiles column-wise starting top-left.
Crucially, if we reach the bottom of a tile column but the current SM does not yet own T tiles,
we proceed by assigning tiles from the top of the next tile column; in other words, stripes can
span across multiple columns. This ensures a roughly uniform distribution of tiles across all
SMs, while minimizing the number of required global reduction steps. Overall, this strategy is
similar to stream-k partitioning [OMC+23].
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Figure 4.3: Illustration of Marlin’s striped partitioning scheme.

We implement the global reduction between stripes of the same tile column serially, from
bottom to top. The latter approach is most efficient since the bottom-most SM will have
its results fastest and the top-most slowest in the presence of any column spill-over. We
perform the reduction in FP16 directly in the output buffer to maximize L2 cache hits and
thus minimize any global read overheads. This also keeps the operation essentially in-place,
requiring only a small extra lock buffer for synchronization.

Finally, we note that for batchsizes ≫ 64, we can virtually replicate B for the striped index
calculations, followed by a modulo operation to move back into the original matrix, and
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advance the A pointer to the corresponding size-64 input batch segment. This results in
significantly less global reductions for large input batchsizes (as occur during LLM prefills)
and noticeably improves compute throughput in this setting.

4.1.3 Benchmarks
We first compare the performance of Marlin with other popular 4-bit inference kernels, on a
large matrix that can be ideally partioned on an NVIDIA A10 GPU. This allows all kernels to
reach pretty much their best possible performance. All kernels are executed at groupsize 128
(however, we note that scale formats are not 100% identical).
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Figure 4.4: Peak performance of Marlin compared with other popular open-source kernels.

While existing kernels achieve relatively close to the optimal 3.87x (note the 0.125 bits storage
overhead of the group scales) speedup at batchsize 1, their performance degrades quickly as
the number of inputs is increased. In contrast, as can be seen in Figure 4.4, Marlin delivers
essentially ideal speedups at all batchsizes, enabling the maximum possible 3.87x speedup up
to batchsizes around 16-32.

Due to its striped partioning scheme, Marlin brings strong performance also on real (smaller)
matrices and various GPUs. This is demonstrated by the results in Figure 4.5, where we
benchmark, at batchsize 16, the overall runtime across all linear layers in Transformer blocks
of popular open-source models.
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Figure 4.5: Marlin performance across real layer shapes of popular models.
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Next, we also study what performance can be sustained over longer periods of time, at locked
base GPU clock. Interestingly, we find that reduced clock speeds significantly harm the relative
speedups of prior kernels, but have no effect on Marlin’s virtually optimal performance (relative
to the lower clock setting). This can be observed in Figure 4.6.
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Figure 4.6: Sustained performance of Marlin compared with other popular open-source kernels.

Finally, we test how Marlin performs on very large inputs while running on a powerful GPU
like the A100. While our primary goal was achieving the best possible generation performance
at medium batchsizes, good prefill performance is still relevant in practice. As can be seen in
Table 4.1, Marlin performs essentially identical to an uncompressed compute-bound matmul
up to batchsize 1024, with only ≈ 10% slow-down at even larger input shapes. At these
massive m values, some of the optimizations designed specifically for our main medium m
setting become slightly suboptimal; we leave optimizing for this scenario to future work.

batchsize 1024 2048 4096 8192
speedup 0.99 0.91 0.91 0.88

Table 4.1: Marlin performance on an 8K × 8K matrix for very large batchsizes.

GPTQ Modifications

The quantization format used by Marlin, designed for peak inference efficiency, is slightly
different than the one used in Section 3.2. Hence, we quickly validate that GPTQ still produces
highly accurate models with Marlin settings. For that purpose, we also integrate two small
improvements into GPTQ: (a) picking group scales by searching for optimal group-wise clipping
thresholds similar to [LTT+24], and (b) supporting calibration sequences of variable length.
Figure 4.7 shows that Marlin-quantized models are ≈ 3.33× smaller at the same perplexity
as the uncompressed baseline. While this is not lossless (the ideal gain would be 3.87× in
this setup), it is an extremely practical improvement, especially given Marlin’s highly efficient
inference performance.
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3.33x

Figure 4.7: Pareto-curve of Llama2 models quantized to the Marlin format via GPTQ.

4.2 QMoE: Practical Sub-1-Bit Compression of Trillion
Parameter Models

4.2.1 Motivation & Overview
Generative large language models (LLMs), e.g. [RWC+19, BMR+20, TLI+23, TMS+23], have
garnered significant industrial and popular attention due to their surprising performance across
many practical language and reasoning tasks. Yet, a major obstacle to broad deployment is
given by their extremely high inference costs. One particularly promising approach for reducing
these costs is the use of Mixture-of-Experts (MoE) architectures, e.g. [CDLCG+22, DHD+22,
ZBK+22], whose general idea is to replicate certain model components many times while
routing each input only to a small subset of those replicas. Through expert “specialization” to
input subsets, MoEs achieve faster inference for the same model quality, but with significantly
higher memory requirements due to components being replicated hundreds or even thousands
of times, for the largest and best-performing models.

For example, the popular SwitchTransformer family [FZS22], on which we focus in this study,
uses between 128 and 2048 experts (layer replicas) to significantly outperform standard dense
T5 models [RSR+20b] in terms of inference and training costs, at equivalent model accuracy.
Artetxe et al. [ABG+22] report similar improvements, on different tasks, for 512 experts.
However, these results come at the cost of dramatic increases in model size: the largest
SwitchTransformer has 1.6 trillion parameters, requiring 3.2TB of storage in standard half-
precision, and correspondingly requires a hundred or more expensive (GPU or TPU) accelerators
for efficient usage. This not only makes practical deployment costly and challenging, but also
strongly limits research on such models.

Challenges. It is natural to ask whether the truly massive memory costs of such MoEs
can be reduced via techniques for model compression, such as quantization [GKD+21] or
sparsity [HABN+21], without significant accuracy loss. Achieving this would require overcoming
conceptual and technical barriers:

1. Conceptually, existing post-training/one-shot compression methods, whose costs would
be low enough to execute on such models, are only able to reduce precision to 3 or 4
bits per parameter [FAHA23, DZ23, WYH23] or around 50% sparsity [FA23], before
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significant accuracy loss occurs. Yet, making trillion-parameter MoEs practical would
require compression rates between 10× and 20× relative to 16-bit precision, i.e., on
average less than 1 bit per parameter.

2. A key practical issue is scaling : applying state-of-the-art compression methods, designed
for large dense models, to MoEs that are an order of magnitude larger, while maintaining
affordability, runs into a plethora of memory, performance and reliability roadblocks.

3. Actually achieving sub-1-bit compression in practice would require a novel customized
compression format. Such a format would also need to come with decoding algorithms
that are highly-efficient on accelerators such as GPUs, in order to run inference on
compressed models without major processing slowdowns.

Contribution. In this section, we overcome these challenges, and introduce QMoE, a
framework for accurate compression and fast inference over massive MoEs, reducing model
sizes by 10–20×, to less than 1 bit per parameter. QMoE is specifically designed to compress
and subsequently inference with models like the 1.6 trillion parameter SwitchTransformer-c2048,
using only modest computational resources.

Our key technical contributions are a highly scalable compression algorithm implementation and
a customized compression format designed together with bespoke GPU-kernels for fast on-the-
fly decoding. Further, we show for the first time that accurate sub-1-bit compression of trillion
parameter MoEs is feasible and can be achieved via affordable retraining-free compression
techniques.

Concretely, we reduce the size of SwitchTransformer-c2048, the largest openly-available model,
from 3.2TB in bfloat16 to less than 160GB in our customized compressed format, that is, ≈ 0.8
bits per parameter, at only a minor increase in loss on pretraining validation and zero-shot
data. Using our QMoE kernels, this compressed model can then be executed fully, without
any slow offloading, on commodity hardware such as 8× NVIDIA RTX 3090 or 4× NVIDIA
A6000 GPUs, with < 5% runtime overhead relative to an idealized version of uncompressed
execution, which would require ≈ 20× more GPUs.

In summary, our work enables, for the first time, the performant execution of massive-scale
MoE models on commodity hardware. This is illustrated by the fact that we are able to
efficiently run the trillion-parameter SwitchTransformer-c2048 model on a single commodity
GPU server, with minor accuracy loss. This addresses one of the key limitations behind MoE
architectures, and should improve their practical adoption, as well as facilitate further research
on understanding and improving such models.

4.2.2 Background
Mixture of Expert Models (MoEs)

The core idea behind Mixture of Expert models (MoEs) is to increase the number of parameters,
and thus the network’s modelling power, while at the same time keeping compute costs near-
constant, relative to a standard feed-forward architecture. This is typically achieved by creating
many copies of certain model components, each of which is responsible for processing only a
subset of all input tokens. The corresponding input-to-component assignments are generally
decided by a “router” layer. Probably the most common MoE design [FZS22, ABG+22], which
we also focus on here, is to replicate the fully-connected module of a Transformer and route
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tokens to the replica, referred to as an expert, with the highest assignment score predicted by
a linear routing layer; see Figure 4.8 for an illustration. This design enables efficient training
and inference of extremely large models, using 100s or even 1000s of experts, since each token
is processed only by a small subset of the massive overall network.

Attention Block Router

FC Block 1

FC Block 2

FC Block 3

MoE Layer

Tokens

Figure 4.8: Example of an MoE Transformer block. Each token is routed to a different
fully-connected (FC) block.

Data-Dependent Quantization

The currently most effective strategy for reducing model size and corresponding memory
costs is quantization, i.e., converting model weights to lower numerical precision. While
simple rounding can suffice for compression to 8 or even 4 bits, accurately quantizing models
to extremely low precision (e.g., lower than 3 bits per parameter) typically requires more
sophisticated data-dependent methods [NAVB+20, WCHC20, HNH+21].

Such data-dependent quantization methods use a small set of calibration data, which is passed
through the model. As this happens, for each linear layer ℓ with weights Wℓ, quantized weights
Qℓ are determined one-by-one. Specifically, one approach to do this is by solving a layer-wise
quantization problem, stated with respect to Wℓ and the observed calibration data inputs Xℓ

at the current layer:
argminQℓ

||QℓXℓ −WℓXℓ||. (4.1)

Various solvers for Equation (4.1) have been proposed, with some optimized, in terms of
speed and accuracy, particularly for extremely large models, like GPTQ (see Section 3.2)
or ZeroQuant [YAZ+22, WYH23]. The former performs quantization using second-order
information in the layer-wise Hessian matrix XℓX

⊤
ℓ , while the latter applies SGD-optimization

with straight-through gradient estimation [BLC13].

Another noteworthy characteristic of many such methods is that per-layer quantization can be
performed sequentially, using the input from the already partially quantized model up to layer
ℓ− 1, when quantizing layer ℓ, serving to reduce error accumulation. Concretely, this can be
efficiently implemented by using Xℓ to find Qℓ before passing on Xℓ+1 = QℓXℓ to the next
layer.

MoE Quantization

There are several aspects which make very-low-bit, e.g. ternary (3 values) quantization
promising for MoE models:
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• In many architectures, almost all parameters are located in the experts, as they are
1000s of them. This means that, for size reduction, it suffices to focus on compressing
just those experts and leave other layers in standard precision. This reduces error
accumulation since only a subset of modules involved in a forward pass are actually
quantized.

• Previous work has observed that extremely large dense models are more resistant to
quantization noise than smaller ones [FAHA23, CCKDS23]. Large MoEs can be much
larger than some of these massive dense models, and are thus a prime target for accurate
quantization.

• MoE training involves additional stochasticity through routing instabilities and strategies
like token dropping [LLX+20], which may inherently encourage high resistance to noise.
Finetuning is also often performed with high dropout [FZS22].

Our experiments in Section 4.2.6 confirm that MoEs are indeed highly robust to extreme levels
of quantization.

4.2.3 Scaling Up Data-dependent Quantization to MoEs
Challenges

While data-dependent quantization techniques have already been used to successfully compress
large dense models up to 176 billion parameters [FAHA23, WYH23], applying them to sparse
mixture-of-expert models another order of magnitude larger brings several new challenges.

Memory Costs. The first major problem we encounter is a large increase in the memory
required to apply such techniques. Not only are the original model weights nearly 10× larger,
but the quantization process itself also needs > 100× more data. The latter constraint is
because accurate data-dependent quantization methods require a sufficient number of input
samples for each layer that is being compressed. For very large dense models, a few hundreds of
thousands of “calibration tokens” typically suffice [FAHA23, YAZ+22]. However, in MoEs with
thousands of layers, a single expert processes only a small subset of all inputs, hence we need
much more tokens overall to achieve good coverage of all experts. Further, in encoder-decoder
architecture models, like SwitchTransformers, each token is processed only by half of the model,
again increasing data requirements. For fast compression, we must maintain intermediate
results for the full calibration dataset, which requires 100s of GBs of memory for the largest
models.

GPU Utilization. The next significant challenge is that existing large-scale quantization
implementations, in particular for GPTQ and related methods [FAHA23, CCKDS23], are
designed to be fast and memory efficient for the massive individual layers occurring in dense
models. Meanwhile, MoEs typically have smaller layers, but 100× to 1000× more of them.
Current implementations have poor GPU utilization in this case, and consequently bad
performance. A similar issue occurs if activations and weights have to be transferred between
CPU and GPU with high frequency, which may be required to cope with the massive memory
requirements discussed previously.
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Reliability Requirements. Finally, another issue when compressing models with tens of
thousands of layers is that running into rare edge cases, which may break the process, is highly
likely. This is includes numerical problems like non-invertible layer-wise Hessians, as well as
model-specific ones, e.g., extreme routing patterns on particular layers.

System Design & Optimizations

In this section, we describe system-level design and optimizations to address the challenges in
Section 4.2.3. This allows us to apply data-dependent compression to massive MoEs, while
preserving the key feature of post-training compression techniques: the ability to perform
effective compression using only modest computational resources, e.g., a single NVIDIA A6000
GPU and less than one day of compute. Although we focus on scaling the popular GPTQ
method, most techniques described below will generalize to other approaches, like ZeroQuant
[YAZ+22], as well.

Optimized Activation Offloading. As discussed before, a key challenge in compressing
MoEs is that we need to maintain massive activation sets. Yet, it is possible to carefully
orchestrate model execution in such a way that we only ever need to perform computation on
a small subset of the intermediate data. This allows us to offload main storage from GPU, to
much less expensive and plentiful CPU memory.

Concretely, we maintain a single large buffer B which we update as follows, for the dense part
of a Transformer block:

1. Fetch one “sample” X, containing a few hundreds of tokens, from CPU to GPU.

2. Pass it through the corresponding dense layers to obtain the result Y .

3. Calculate and store expert assignment for tokens in Y .

4. Send Y back to CPU and overwrite X in B.

and respectively for the sparse part, looping over experts:

1. Fetch all individual tokens in B that have been assigned to expert E, denoted by XE,
from CPU to GPU.

2. Use them to produce compressed expert E ′ (for example, with GPTQ).

3. Run XE through E ′ to get YE′ .

4. Send YE′ back to CPU and overwrite XE in B.

This process, which is visualized in Figure 4.9, minimizes both memory consumption and
transfer cost: we need only a single copy of B and each token is only read and written twice
per Transformer block.
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Figure 4.9: Illustration of the offloading execution for the sparse part of a Transformer block.
An expert E2 and its corresponding input tokens XE are fetched to GPU memory to produce
E ′

2, which together with the corresponding outputs YE are written back to CPU again.

List Buffer. To efficiently support per-sample access for evaluating dense model components,
as well as fully-vectorized querying of expert tokens, we store B as a list buffer data structure.
This can be seen as a huge contiguous buffer of all token hidden states, together with delimiter
indices denoting boundaries between individual samples. Figure 4.10 illustrates this storage
format. This datastructure is crucial for efficiency; naively iterating over samples and fetching
relevant tokens via masking is unusably slow for large sample counts.
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Figure 4.10: List buffer example with 3 samples, indicated by hue.

Lazy Weight Fetching. Since the weights of the 1.6 trillion parameter model consume 3.2
TB of storage, they cannot even be stored in CPU RAM. Thus, we lazily fetch them directly
from disk storage as they are required. If we follow the inference procedure outlined previously,
this would be exactly once. Afterwards, their memory is released again.

Expert Grouping. Additionally, in order to avoid GPU underutilization (see Section 4.2.3),
we group multiple experts together and apply a joint batched variant of the GPTQ algorithm.
Concretely, we extract the inputs XE corresponding to all experts E ∈ E in group E (the XE

will generally have different sizes) and compute Hessians HE. These matrices, together with
the weight matrices WE, are then stacked to 3-dimensional tensors, on which our modified
GPTQ algorithm operates, compressing all experts simultaneously. We can also compute
HE = XEX⊤

E directly with a single matmul as the XE are generally small enough, avoiding
the slow per-sample accumulation employed by prior implementations. Our default expert
groupsize |E| is 16, which we find to bring a good trade-off between GPU memory consumption
and utilization.

Table 4.2 demonstrates the impact of expert grouping via GPTQ batching, when compressing
a sparse encoder layer of switch-base-128 using 10k samples; |E| = 16 yields about ≈ 6×
speedup over standard per-expert computation.
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|E| = 1 |E| = 4 |E| = 16
174.1s 54.4s 28.8s

Table 4.2: Sparse layer compression time for different |E|.

Robustness Modifications. To achieve sufficiently high robustness for successfully quan-
tizing trillion parameter models with tens of thousands of layers, we need to employ various
numerical and memory adjustments. The most important are listed below:

• We use 10× higher relative Hessian dampening δ = 0.1, avoiding breakdowns with
inf-values.

• Very few layer Hessians are not invertible even after high dampening; we skip GPTQ for
those and simply perform vanilla rounding.

• Sometimes an expert receives a number of tokens that is much larger than average,
leading to out-of-memory situations when these are fetched to GPU. We avoid this by
capping the maximum number of tokens used for compression at 4× the mean and use
multiple iterations for computing and updating YE in such cases.

Accuracy Improvements

In addition to implementing a highly efficient compression system, we also make new discoveries
about applying GPTQ in our particular context, i.e., for models trained for masked-language-
modelling, MoEs and ternary quantization.

Premasking Special Tokens. First, we find that results can be improved if the various
special separator tokens inserted by the masked-language-modelling task [RSR+20b] are
excluded from the calibration data used for compression. Concretely, in the encoder, we mask
out those “mask-tokens” during the Hessian computation. Meanwhile, in the decoder, we skip
the token directly before such a special token as this is the one used to predict the latter.
As shown in Table 4.3 for switch-base-128 with 10k samples, this brings noticeably lower loss
at no additional compute cost. We think that because those tokens are very common during
training, the model is so robust in their prediction that any error compensation on them during
quantization is unnecessary, while worsening correction for other tokens.

mask BF16 2bit tern
no 1.73 1.86 2.16
yes 1.73 1.76 1.99

Table 4.3: Impact of special token masking; validation loss.

4.2.4 Realizing Sub-1-Bit Compression
Using our system discussed in Section 4.2.3, we can accurately quantize extremely large
SwitchTransformers to very low bit-widths: 2-bit and even ternary (3 possible values). Yet, in
practice, this falls still short of our compression goal of less than 1 bit per parameter. We
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find that compression rates can be pushed significantly further by taking advantage of the low
entropy in the quantized weights. Next, we co-design an encoding scheme and a CUDA kernel
which realize sub-1-bit per weight compression in practice, at minimal cost in terms of GPU
execution overhead for inference.

Natural Sparsity

We pick quantization grids in standard fashion: row-wise around the min and max weights values
[DLBZ22, FAHA23], e.g., for ternary: {wmin, 0, wmax}. These rather wide grids combined
with the fact that weights are typically close to normally distributed, naturally lead to high
sparsity after quantization, i.e., a large number of zeros. We demonstrate this in Table 4.4,
averaged over all layers. For ternary weights, the largest model achieves close to 90% natural
sparsity ; the standard deviation is also quite low, at < 5%. Seen another way, the quantized
weights have low entropy, meaning that, on average, significantly less bits per weight should
be required for lossless storage.

model 2-bit ternary
base128 72.2% 85.7%
large128 73.1% 86.4%
c2048 76.5% 88.6%

Table 4.4: Natural sparsity for different compressed models.

From Sparsity to Entropy

The direct way of utilizing these high zero proportions would be in form of a joint sparse &
quantized representation [KCN+22, YCG23]: storing only the quantized values of non-zero
weights, together with necessary position metadata. However, as our base quantization levels
are already very low, standard sparsity metadata formats [EDGS20, LZW+23] would only allow
limited additional compression. A bitmask indicating non-zero locations requires 1 bit per
weight, while 10-13 bit (depending on layer size) column indices are even less memory efficient
at the sparsity levels we encounter. Therefore, we take a different approach: we do not utilize
sparsity directly but rather the low entropy, which is implied by the fact that a single value (0)
occurs very frequently.

Fast GPU Decoding Challenges

In principle, we could group multiple consecutive ternary weights into super-symbols and then
apply a code which assigns variable length codewords to those super-symbols, based on their
probability of occurrence, for example, via a Huffman approach [Huf52]. If the quantized
weight values were close to independent, this would achieve strong compression rates; in fact,
for actual independence, they would be essentially Shannon-optimal [Mac03].

At the same time, our primary goal is to use compressed models for fast and space-efficient
inference. Thus, it is critical not only that our encoding scheme achieves good compression,
but also that it can be decoded fast on GPU hardware. This is challenging for a number of
reasons:
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Challenge 1: Entropy-based codes generally possess sequential decoding dependencies:
symbol i can only be determined if the length, which is variable, of all (i− 1) prior symbols is
known. Hence, processing consecutive symbols simultaneously leads to high synchronization
overhead.

Challenge 2: Binary words in storage (e.g., INT32 blobs) may contain different numbers
of decoded symbols. Consequently, even if rows/blocks are encoded independently, parallel
decoding will happen non-uniformly, while all threads in a GPU-warp must always execute the
same instruction. This would result in many wasted operations.

Challenge 3: Variable-length low-bit decoding involves a large number of binary operations
like shifts, which are not particularly efficient on GPUs.

Challenge 4: Individual matrices of MoEs are typically not very large, making it difficult
to split them into enough separately decoded segments to achieve good GPU utilization
without having to store additional data to break sequential dependencies, which would harm
compression rates.
In contrast, uncompressed half-precision matrix-vector products, which are the primary opera-
tion underlying generative inference, easily achieve close to ideal memory-bandwidth utilization
and thus present a very strong baseline.

4.2.5 Compression Scheme & Kernel Co-design
To achieve our goal, we need to design a compression scheme and its GPU decoding kernel
jointly, and potentially trade off compression for faster decoding. We begin with an overview
of the main ideas behind our approach, followed by an in-depth discussion of key details.

Overview

Instead of a code with variable length codewords (see Section 4.2.4) mapping to fixed length
data, we will use a dictionary-based code with fixed length codewords mapping to a variable
number of symbols. Such LZW-based schemes [Wel84] are popular for general purpose
compression like ZIP, as they are particularly effective for text data with long repeated
segments. While a dictionary code is not ideal in terms of compression rate for the case of
almost-random data in our application, it will be key for fast GPU decoding.
First, our kernel design uses one warp, that is 32 consecutive threads, to handle a row of
a weight matrix, each of which is encoded independently. This addresses Challenge 4 in
Section 4.2.4, yielding reasonable GPU utilization for relevant matrix sizes, with negligible
metadata overhead. Further, we use a fixed-to-variable code with a large dictionary. This
allows us to use a full warp to process one codeword at-a-time, extracting all data, while
maintaining good efficiency, thus working around Challenges 1 and 2. This way, slow bit and
base-3 operations (for ternary) can also be kept at a minimum, resolving Challenge 3.

Dictionary Design and Implementation

In general, assume that the values of a ternary weight matrix (denoted by 0, 1, 2) are distributed
close to independently according to the distribution:

P (0) = p0, P (1) = P (2) = 1− p0

2 , (4.2)
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where p0 denotes the probability of sampling 0, e.g., 0.885 as per Table 4.4. As we plan to
use a rather large dictionary, it should be shared between many weight matrices to not cause
substantial storage overheads. We find that such a static dictionary works well enough, while
simplifying memory efficient compression (see Section 4.2.3) as we do not have to collect
statistics over many yet uncompressed experts.

Next, we consider pairs of ternary values t = (t1, t2), whose corresponding probability is
P (t) = P (t1)P (t2). We generate the 216 highest probability sequences containing at most
14 such pairs. This dictionary can be generated using a max-priority queue on probability, as
shown by Algorithm 4.2.

Algorithm 4.2: Generate decoding dictionary sequences.
Q← max priority queue containing (1.0, ())
while |D| < 216 do

p, s← pop(Q)
append s to dictionary if 0 < |s| < 28
for t ∈ {(t1, t2) | t1, t2 ∈ {0, 1, 2}} do

push((p · P (t), cat(s, t)), Q)
end for

end while

To briefly understand the procedure, notice that upon the first iteration, it will push all
individual pairs t = (t1, t2) to the priority queue, sorting them by decreasing probability, after
which they will be expanded in this order.

We have exactly 216 codewords as this allows us to store them in the native UINT16 datatype,
avoiding any slow bit-extractions at this decoding level. Each of those codewords maps to
two consecutive UINT32 values containing up to 7 pairs each, stored using 2 bits per ternary
value, followed by the total number of pairs in the sequence; see also Figure 4.11. This
format dictates our maximum chosen pair count of 14. Further, we consider pairs, rather than
individual weights, to fit the maximum count into 4 bits. The 2-bit-per-weight format is used
as there is enough space, while a more compact ternary encoding would involve slow modulo
and division operations for extraction. We store the pair-count twice so that each thread can
work with only half of the data, stored in a fast INT32 type.

01 10 00 00 01 00 00 00 01 10 00 00 10 00 1100

2 bits 4 bits

1 weight 1 pair pair count

4 bits

0110 0000 01 00 000010 10 00 00 00 00 1100

unfilled

Figure 4.11: Data format of a dictionary entry; here of 24 weights.

Overall, mapping 16-bit codewords to 64-bit data blobs strikes a good balance between several
goals: (a) Having codewords map to, on average, more uncompressed values than their
bitwidth, a necessary condition for achieving < 1-bit compression. (b) Minimizing the overall
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storage cost of the dictionary to fit into the L2-cache of the GPU, which is critical for good
decoding performance. (c) Utilizing as many threads in a warp as possible for simultaneously
extracting plain weights from the decoded data; usually, > 16 will do useful work and only 4
out of 32 threads are never active in this step. (d) Avoiding as many conditionals and extra
operations necessary for dealing with non-uniform data storage as possible, which slow down
parallelization.

Finally, we note that while dictionary lookups are in principle random access, keeping it sorted
from highest to lowest probability ensures very favorable caching behavior. Since each lookup
also automatically prefetches several subsequent elements, and most lookups are for frequently
occurring codewords, there are many fast L1-cache hits.

Validation. To assess the effectiveness of our scheme, we compute achieved compression
rates, both on a real ternary quantized c2048 model as well as on weight matrices sampled
directly from distribution (4.2), yielding 20.07× and 21.11×, respectively. This gap of only
≈ 5% suggests that our simplifying independence assumption is indeed quite close for large
models. We also note that our rates are only ≈ 20% away from the distribution’s (with
p = 0.885) theoretical compression limit of 25.40×, which we consider a reasonable trade-off
for enabling fast GPU decoding.

GPU Kernel

Having defined the dictionary format, we now discuss the design of the actual decoding
kernel. We focus on the most important operation for inference, decompression fused with a
matrix-vector-product. However, our techniques can easily be adapted to other use-cases, e.g.,
pure decompression.

Listing 4.1 provides CUDA-like pseudocode for our kernel, computing the matrix-vector-product
of compressed matrix w_comp (with metadata row_off and ter_minmax, using dictionary
dec) and BF16 vector x, into output buffer y. The handling of various edge cases and some
index calculations have been removed for readability. Please see our source code for the fully
functional implementation.

Parallelization. Overall, each threadblock will handle multiple consecutive rows, each of
which is processed by a single warp. We use exactly one thread-block per GPU Streaming
Multiprocessor (SM) with min(#rows_in_block, 32) warps; if there are more than 32 rows
in a block, (some) warps sequentially process multiple rows (note that this part is omitted
in Listing 4.1 for simplicity). This avoids any bad wave quantization effects. We find this
strategy to be an effective heuristic that yields good performance for all matrix shapes we
consider.

Execution. Our kernel starts by loading the entire input vector to shared memory (x_shared,
lines 7-9), using all warps in a threadblock. This enables fast element access in the subsequent
per-row product-sum accumulations.

Next, each warp processes its corresponding row by first fetching (up to) 32 codewords into
shared memory (w_comp_block, line 23) using a single coalesced transaction. It then loops
over those symbols, processing one-at-a-time (lines 26-33). First, using 28 of its 32 threads
(line 25), it fetches the corresponding decoding data from the dictionary where the first
UINT32 is assigned to threads 0-13 and the second to threads 14-27 (wx14, line 27). Then,
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each thread extracts its corresponding ternary weight (lines 29-30) and adds the corresponding
input product into its own partial result accumulator (res, line 31). We note that the input
reads from shared memory are contiguous and do not cause bank conflicts. Afterwards, each
thread advances the offset index (idx, line 32) into the input vector by the total number of
weights encoded in the current symbol.

Finally, after the full row has been scanned, a warp-reduction (lines 37-38) over the partial
results of each thread yields the output (y, lines 39-40).

Ternary Decoding. Another relevant detail is that ternary weights are stored as 0, 1, 2 (line
29) but need to be dequantized to 0, wmin, wmax for multiplication with inputs. We found that
the most efficient way of performing this conversion is via a shared memory lookup table (lines
11-14). Crucially, this table needs to be replicated 32 times across the column-dimension to
avoid very frequent bank conflicts, which would otherwise occur every time not all 28 threads
dequantize the same value (line 30). Fortunately, there are only 3 input values and so its
overall size is tolerable.

1 template <int num_warps, int w_width>
2 __global__ void Sub1MatVec(
3 int* dec,
4 ushort* w_comp, int* row_off, __nv_bfloat162* ter_minmax,
5 __nv_bfloat16* x, __nv_bfloat16* y
6 ) {
7 __shared__ float x_shared[w_width];
8 for (int i = thread; i < w_width; i += 32 * num_warps)
9 x_shared[i] = __bfloat162float(x[i]);

10
11 __shared__ float deq[3][32 * num_warps];
12 deq[0][thread] = 0;
13 deq[1][thread] = __bfloat162float(ter_minmax[row].x);
14 deq[2][thread] = __bfloat162float(ter_minmax[row].y);
15
16 __syncthreads();
17 __shared__ w_comp_block[32][num_warps];
18
19 float res = 0;
20 int idx = 0;
21
22 for (int i = 0; i < row_off[row + 1] - row_off[row]; i += 32) {
23 w_comp_block[warp][lane] = w_comp[i + lane];
24
25 if (lane < 28) {
26 for (int j = 0; j < 32; j++) {
27 int enc = w_comp_block[warp][j];
28 int wx14 = dec[2 * enc + (lane / 14)];
29 int ter = (wx14 >> (4 + 2 * (lane % 14))) & 0x3;
30 float w = deq[ter][thread];
31 res += w * x_shared[idx + lane];
32 idx += 2 * (wx14 & 0xf);
33 }
34 }
35 }
36
37 for (int i = 16; i > 0; i /= 2)
38 res += __shfl_down_sync(0xffffffff, res, i);
39 if (lane == 0)
40 y[row] += __float2bfloat16(res);
41 }
42

Listing 4.1: Simplified kernel pseudocode for a fused decompress + matrix-vector-
product operation.
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4.2.6 Experiments
General Setup

Models. We focus our experiments on the SwitchTransformer [FZS22] family of models.
Our primary target is the very largest variant, c2048, with around 1.6 trillion parameters, but
we also consider the comparatively small base128 (7B params) and large128 (26B params)
versions for testing and ablations. We chose the SwitchTransformer family as it contains the
largest publicly-available model, which also features a similar or higher number of training
tokens to parameters ratio than potential alternatives like Artetxe et al. [ABG+22]. Further,
those models are also among the most popular massive MoEs, with several implementations
across frameworks [WDS+19, SCP+18, Goo23b].

Framework. As accessibility is a major goal of our work, we build our code-base around
the PyTorch-backend of the highly popular HuggingFace [WDS+19] framework, which brings
a number of additional challenges. First, we find that the largest model variants require a
handful of bugfixes, primarily configuration and model setup changes, in order to run properly.
We suspect that this is because their enormous sizes have rendered extensive testing very
difficult. Second, we observed a major inefficiency in the context of generative inference for
models with a large number of experts: the HuggingFace implementation will perform several
(empty) CUDA calls for potentially 1000s of experts to which no token is routed, accumulating
large overheads. We modify the implementation (also for baselines) to skip such unnecessary
calls, leading to > 10× speedup for large models. We apply all changes to the HuggingFace
framework only dynamically at runtime, so that our code can be run directly with an official
installation.

Datasets. SwitchTransformers have been trained for a Masked-Language-Modelling (MLM)
objective [RSR+20b] on the C4 dataset [RSR+20a]. Similar to most works in the area of LLM
quantization [YAZ+22, FAHA23, DZ23], we focus on general upstream compression directly on
this pretraining task/dataset combination. Consequently, our evaluation focuses on validation
performance for C4/MLM, where we use the public reproduction of C4 on HuggingFace as
well as their replication of the original masking procedure. Calibration data for compression
is taken, in order, from the first two shards of the training set. For efficiency, we primarily
evaluate on 128 samples (corresponding to the average loss over > 10K tokens, which is quite
stable) from the first shard of the validation set, but we also perform some evaluations other
datasets.

Hardware. All compression experiments, including those for the very largest models, can be
performed in less than a day on a single NVIDIA A6000 with 48GB of GPU memory. However,
efficiently compressing trillion parameter models using a large number of calibration samples
requires a few 100GBs of (CPU) RAM; the original 1.6T model itself also occupies > 3 TB
disk storage.

Compression Results

Accuracy. We begin by quantizing all SwitchTransformer models to 2-bit and ternary
precision, and evaluating their validation loss. Our default number of calibration samples is
10K for 128 experts and 160K for 2048, but we also consider using 0.5× and 2× as many
samples. In addition to using our efficient QMoE framework discussed in Section 4.2.3, we also

74



4.2. QMoE: Practical Sub-1-Bit Compression of Trillion Parameter Models

consider a standard round-to-nearest (RTN) baseline [DLBZ22]. We simulate the latter by
fixing Hessians to the identity matrix, thus applying precisely the same quantization settings
and evaluation protocol. Table 4.5 summarizes our results.
Perhaps surprisingly, vanilla rounding (RTN) does not lead to a complete model collapse
even at ternary precision, emphasizing the high robustness of large MoEs to quantization.
Nevertheless, the loss increases are quite significant for smaller models at 2-bit and far too
large to be useful at ternary precision. In contrast, using data-dependent quantization, 2-bit
is achievable at minimal loss (1.7% relative on c2048) and ternary at only a small increase
(6.7% relative on c2048). This demonstrates not only the effectiveness of such advanced
quantization methods in this context, but also shows that extremely low-bit compression is
indeed practical for massive MoEs.

method base128 large128 c2048
2bit tern 2bit tern 2bit tern

BF16 1.73 1.55 1.18
RTN 2.27 4.54 1.96 2.79 1.33 2.15

QMoE 0.5x 1.78 2.11 1.54 1.70 1.22 1.27
QMoE 1.0x 1.76 1.99 1.56 1.69 1.20 1.26
QMoE 2.0x 1.76 1.93 1.57 1.64 1.21 1.26

Table 4.5: Comparing C4 validation losses for 2-bit and ternary (tern) quantized SwitchTrans-
formers. “QMoE 0.5x” indicates that only half of the default number of calibration samples
are used.

Additionally, we conduct evaluations on Arxiv, GitHub, StackeEchange and Wikipedia data
sampled from RedPajama [Com23]. Even though only < 0.01% of our C4 calibration data
originates from those websites, the compressed model still preserves performance almost as
well as on the core of the distribution (see Table 4.6).

bits arxiv github stackexch. wiki
BF16 1.31 0.99 1.15 1.20
2-bit 1.34 1.05 1.17 1.24
tern 1.42 1.13 1.22 1.32

Table 4.6: Additional evaluations for the c2048 model.

In terms of calibration data, we see that increasing the amount of samples generally improves
performance slightly, most noticeably for ternary quantization, but there is also some noise in
the process, especially at 2-bit.

Compression. Next, we investigate the actual compression rates that are achieved by further
compressing ternary models using our scheme introduced in Section 4.2.4. We consider both
compression relative to just the MoE modules (the model parts we quantize) as well as to the
full model and all its metadata. The compression rates and overall checkpoint sizes are listed
in Table 4.7.
In general, measuring only relative to parts we compress (moe-only), all sizes achieve > 16×
compression rate and thus < 1 bits per parameter storage. On c2048, even the overall rate,
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model moe-only full size [GB]
bf16 ours

base128 17.06× 11.76× 14.9 1.27
large128 18.34× 13.32× 52.7 3.96
c2048 20.07× 19.81× 3142 158.6

Table 4.7: Compression rates and sizes for ternary models.

including all uncompressed dense layers, remains at 19.81×, corresponding to 0.807 bits per
parameter, reducing the checkpoint size from 3142GB to 158.6GB. One can also observe that
compression rates increase with model size, which is for two reasons: (a) natural sparsity
increases while our encoding dictionary is also optimized for c2048 (see Section 4.2.4), and
(b) weight distributions become closer to independent for larger layer sizes.

Runtime. Finally, we evaluate how long it takes to produce compressed models on a single
A6000 GPU, for different amounts of calibration data. The results are shown in Table 4.8.
Smaller models can be compressed in less than an hour and even c2048 in less than a day,
confirming the high efficiency of QMoE. The runtime increase from large128 to c2048 is
roughly proportional to the difference in size, despite the latter using 16× more samples. This
is because the number of samples per expert stays constant and the expert size increases only
slightly. Finally, we note that simply (iteratively) loading the original 1.6T model into RAM
takes close to 5 hours on our slow disk storage.

model 5K/80K 10K/160K 20K/320K
base128 8.4min 14.0min 21.6min
large128 22.0min 30.2min 45.2min
c2048 13.3h 16.0h 20.8h

Table 4.8: Compression runtime for different calibration data size.

Runtime Results

Individual Layers. Our kernel performance evaluation starts with a direct (isolated) com-
parison of our compressed matrix-vector product kernels (see Section 4.2.4) against PyTorch’s
standard (uncompressed) bfloat16 cuBLAS kernels. Figure 4.12 (Left) shows the time taken by
our compressed kernels relative to bfloat16, for the matrix shapes found in our MoEs, on two
different GPUs. While our kernels have to perform a lot less slow (global) memory reads than
the bfloat16 baseline due to lower storage costs, they need to spend much more compute for
complex unpacking of the heavily-compressed weights. Nevertheless, executing our compressed
kernels takes less time than the close to ideal bfloat16 baseline in all cases, with up to 35%
speedup on specific matrix shapes. We note that these are very low-latency operations, with
the smallest matrix taking < 0.02 milliseconds and the largest < 0.05.

End-to-End Execution. Finally, we also benchmark our kernels end-to-end in HuggingFace
on the real weights of our compressed MoE models. We consider an individual user application,
like [FAHA23, LKM23, PPK+22], where a single prompt (sampled from C4) should be processed
to generate a 128-token response. As actually running the bfloat16 version of the c2048 model
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would require > 65 A6000 and > 130 3090 GPUs (versus 4 and 8, respectively, for sub-1-bit
compressed weights) we have to estimate its runtime. We do this by having all experts in
a layer point to the same weight data (resolving memory issues), which allows us to collect
timings with precisely the same overheads as for our compressed models. However, this is a
highly optimistic estimate since real execution would require close to 20× more GPUs, with
corresponding communication overheads, and our numbers should thus be viewed as a lower
bound.
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Figure 4.12: (Left) Per-layer compressed kernel performance relative to uncompressed execution.
(Right) End-to-end runtimes of compressed models and estimates (∗, would require 65/130
GPUs) for bloat16 baselines. c2048 is run on 4×A6000 and 8×3090 GPUs, respectively.

The results, shown in Figure 4.12 (Right), demonstrate that end-to-end execution of compressed
models is only < 5% slower than standard (uncompressed) execution. This slight slow-down
despite faster per-layer timings is due to the fact that the encoder may sometimes route
multiple tokens to the same expert. Our current implementation naively executes a separate
matrix-vector product for each token, while the baseline performs a much more efficient joint
matrix multiplication. For applications where this is a significant bottleneck, one could easily
introduce an inner loop over tokens into our kernel (Listing 4.1, line 30), or fully decompress
first, followed by a standard matmul, for large token counts.

4.2.7 Related Work
Mixture-of-Expert (MoE) Models. Mixture-of-expert models are a popular approach for
creating large-scale models that are more efficient for inference [FZS22, ABG+22, CDLCG+22].
At the core of MoEs lie (sparse) routing mechanisms, of which many variants have been
proposed. Those range from static assignment based on input token IDs [RSW+21], over
dynamic token-to-expert matching [ZLL+22], to “soft” routing of linear input combinations
[PRMH24]. Since MoEs can feature rather different computational profiles from standard
dense models, there is also significant research on optimizing inference and training systems
[BCD+22, GNYZ23, HCX+23]. Among the most critical problems in this area are data-
exchanges between accelerators during routing and dealing with uneven compute-loads for
different experts.

LLM Quantization. Quantization is a very popular compression technique, which has seen
a vast amount of work [GKD+21], especially in the context of LLMs. Specifically, the ability
to perform accurate weight quantization for billion-parameter models has greatly boosted their
accessibility: it has been shown that extremely large dense models can be quantized to 8- or even
4-bit precision at little accuracy loss [DLBZ22, YAZ+22, FAHA23, DZ23]. Pushing towards
even lower bitwidths via more sophisticated compression formats, like multi-level grouping
coupled with higher-precision outliers [DSE+24, AMF+23], or new quantization techniques,
like incoherence preprocessing [CCKDS23], is an active area of research. Currently, accurate
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quantization to 2 or less bits appears to be a major barrier for post-training quantization
of standard LLMs. By contrast, in this work we show that massive MoE models appear to
be significantly more compressible, as we achieve sub-1-bit compression at comparable loss
increases to 3-bit or 4-bit quantization of standard LLMs.

MoE Compression. There has also been work on compressing MoE models in particular.
Chen et al. [CHX+22] and Koishekenov et al. [KNB23] perform compression via specialization
of MoEs to specific “downstream” finetuning datasets by pruning components not relevant to
the particular task. In contrast, we focus on general “upstream” compression of the pretrained
model, via extremely low-bit quantization. Other works [KHFA22, YGW+23, KHFA23] also
perform MoE quantization, but focus on noticeably higher bit-widths, like 8 or 4 bits per weight.
This is accomplished primarily via simple rounding, which, as shown by our experiments, is
not accurate enough for full 2-bit or lower compression. Kim et al. [KFA22] achieve 2-bit
quantization on a 5 billion parameter MoE, which is considered relatively small in this area,
by further optimization of the model via Quantization-Aware Training [NFA+21]. Applying
such an approach for trillion-scale models would be extremely resource intensive. They also do
not provide any mechansims for exploiting low-bit quantization and its corresponding natural
sparsity in practice, which is challenging and constitutes a key contribution of our work.
Relative to prior work, we are particularly focused on scalabilty and practicalty. While existing
works study models with at most tens of billions of parameters, we demonstrate all our
techniques at trillion parameter scale.

4.2.8 Discussion and Limitations
We have presented QMoE, an end-to-end compression and inference framework for massive
MoEs. We showed, for the first time, that models like the trillion-parameter SwitchTransformer-
c2048 can be accurately compressed to less than 1 bit per parameter, close to 20× compression
rate, in a custom format that enables the first efficient execution of such a model on a single
commodity GPU server. QMoE is open-source and built around the popular HuggingFace
framework, making deployment and research for massive MoEs significantly cheaper and more
accessible.
Our study is limited in terms of models, as only very few massive and accurate MoEs are
available publicly. Additionaly, due to their size, most MoEs are trained and deployed in
different bespoke framework, requiring complex manual integrations to use for further research.
A natural extension of our work would be to apply our QMoE techniques to other MoE models
or variants, such as Artetxe et al. artetxe2021efficient or SoftMoEs [PRMH24]. It would also
be interesting to further finetune a compressed model for specialized down-stream tasks. Zoph
et al. [ZBK+22] report strong results when finetuning only non-expert layers, which QMoE
leaves uncompressed, suggesting that this could be a promising direction for future work.
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CHAPTER 5
Scaling Laws

In Chapter 3, we studied compression primarily from the perspective of a broad audience,
that is researchers or practioners who would like to take an existing model and make it more
efficient, in order to run it on their available hardware, which may not be particularly powerful.
Hence, the compression process itself being cheap enough was absolutely critical. In this
chapter, we consider a very different use-case: a large company able to train its own massive
models completely from scratch, which would like to reduce the cost of serving millions of
users by obtaining more compressed networks. In this scenario, the cost of compression is
secondary (as huge compute clusters are easily available), what really matters are the efficiency
gains achieved.

Concretely, we will focus on much more expensive training-based (as opposed to post-training)
compression techniques. Here, especially in the context of modern models which scale
exceptionally well in both size and amounts of training data, studying individual models is not
always very meaningful. Instead, the most critical questions evolve around the joint scaling
behavior of compression, model size and training data. Section 5.1, which is based on the
ICLR 2024 paper “Scaling Laws for Sparsely-Connected Foundation Models” [FRH+24] takes
the first key steps in that direction, identifying a corresponding scaling law and defining the
concept of optimal sparsity.

5.1 Scaling Laws for Sparsely-Connected Foundation
Models

5.1.1 Motivation & Overview
Foundation models [BHA+21], loosely defined as large (often Transformer-based [VSP+17])
networks that are trained on massive quantities of highly general data, have driven significant
progress in deep learning, for both natural language [BMR+20] and vision tasks [DBK+21].
One key property of such models is the predictability of their performance when scaling various
model attributes, such as the number of parameters and the amount of data or computation
used [KMH+20]. This is encapsulated by scaling laws, which make it possible to accurately
predict the final performance of a model given its size and training budget (i.e., amount of
training data).
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5. Scaling Laws

A parallel trend, motivated by computational costs, has been the focus towards increased
efficiency for large models. This is usually achieved by employing compressed parameterizations
via quantization [GKD+21] or sparsification [HABN+21], during inference and/or training,
which can lead to reduced run-time via both software and hardware support [EDGS20, YAZ+22].
Despite major community interest in efficiency, the impact of these compressed representations,
in particular of parameter/weight sparsity, on the scaling behavior of foundation models is not
well understood; especially, when applying powerful but expensive training-based compression
methods [JKC+18, ZG17].
In this paper, we address this gap by studying the relationship between sparsity and scaling
laws for foundation models. We focus on weight sparsity, that is, on networks whose individual
connections are pruned, and on Transformer [VSP+17] models for both vision [DBK+21] and
language [RSR+20b] domains. We use the massive JFT-4B [Goo23a] and C4 [RSR+20a]
datasets, which are several orders of magnitude larger than what has been employed so far by
the vast majority of work on sparsity. In this massive dataset regime, dense models continue
to improve with prolonged training and it is unclear if sparse models can be competitive in a
fair comparison, using equal amounts of training compute and data. This is in contrast to
popular pruning benchmarks, e.g., ImageNet [DDS+09], executing for many training epochs,
where dense models tend to saturate [KKI+23], allowing sparse models to achieve major gains
relative to dense models with a comparable number of parameters.
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Figure 5.1: (Left) Fit and extrapolation quality of the L(S, N, D) scaling law on T5/C4.
(Right) Optimal sparsity Sopt contours fitted on ViT/JFT, for sparse and dense costs (details
in Section 5.1.4).

In order to quantify the benefits of sparsity, or the lack thereof, in this large-dataset regime we
develop joint scaling laws that relate the sparsity of a network, its effective size and the amount
of data used for training. We show that, for sparsity S, number of non-zero parameters N and
amount of training data/steps D, the validation loss L approximately satisfies the following
law, for both vision and language tasks:

L(S, N, D) =
(︃

aS(1− S)bS + cS

)︃
·

(︃ 1
N

)︃bN

+
(︃

aD

D

)︃bD

+ c, (5.1)

Intuitively, the first two summands capture the power law scaling in terms of capacity, i.e.
sparsity and non-zero parameters, and data, respectively, while c is a lower bound on the
achievable task loss. In more detail, the first multiplicative term captures the impact of sparsity,
here expressed as remaining density (1 − S), which itself follows a saturating power-law
with coefficient aS, exponent bS and limit constant cS. The exponents bN and bD scale the
(non-zero) parameter count N , and the data D term, respectively, as is common in classical
scaling laws [KMH+20].
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5.1. Scaling Laws for Sparsely-Connected Foundation Models

We validate this formula empirically using large vision and language datasets, several model
sizes, amounts of training data and sparsity levels. Please see Figure 5.1 (Left) for an illustration
of the scaling law fit and extrapolation quality. In turn, this law allows us to obtain several
new insights for sparsely connected foundation models:

• First, the sparse scaling law suggests that sparsity affects each model size in a similar
way, i.e., as a multiplicative constant to the size scaling. At the same time, sparsification
does not appear to interact significantly with the data scaling; the original dense term
in D is preserved.

• Second, we can use our scaling law in Equation (5.1) to analytically derive the optimal
sparsity Sopt for a given inference size and training budget, allowing us to predict the
regime where sparsity could actually provide benefits over simple dense model rescaling
and extended training.

• Our analysis of optimal sparsity Sopt, demonstrated in Figure 5.1 (Right), shows that
its iso-contours run parallel to the dense compute optimal Chinchilla line [HBM+22] of
the respective model and task. Importantly, the optimal sparsity increases with longer
training. Further, while optimal dense models define a line on the parameter-FLOPs
surface, optimal sparse models form a half-plane (with different sparsities unlocking
multiple optimal sizes for a fixed training cost).

• In addition, we find that the main conclusions of our law hold also for hardware-
friendly n:m sparsity patterns [MLP+21], that relative capacity gains through sparsity are
consistent across domains, and that pruning well-trained dense models is more efficient
than training from scratch (while sparsifying), if dense checkpoints already exist, but is
significantly slower otherwise.

In sum, our results provide the first scaling law for characterizing the impact of sparsity on the
performance of Transformers trained on massive datasets. From the conceptual perspective,
this provides a simple tool to understand the power–but also the limitations–of sparsity for a
given task/model combination. From the practical side, this can be used to determine whether
sparsity can be a reasonable option for inference or training speedups, in settings where specific
software/hardware support for such compressed representations is available.

5.1.2 Scaling Laws for Parameter-Sparse Transformers
Fair evaluation in the presence of strong scaling. In the context of modern Trans-
formers trained on massive datasets, popular evaluation approaches for pruning [GEH19,
SA20, SWR20, SJP+21, BCM+23] that have been reasonable for standard benchmarks like
ResNet50/ImageNet [SA20, SJP+21] or BERT/GLUE [SWR20, KCN+22], require careful
reconsideration to ensure meaningful comparisons. Specifically, it is critical to adopt the
resource-equivalent setting of Liu et al. [LSZ+18] and Jin et al. [JCR+22], which we illustrate
below.
For example, assume that a model pretrained for 100k steps is pruned to 50% sparsity over
another 100k steps (a standard setup for ResNet50/ImageNet). The resulting network should
not be compared to the original one, as it has had 2× more training overall. Further, even a
comparison against a 2× smaller model (same non-zero parameter count) trained for 200k
steps (same amount of training) is not necessarily fair, as training this smaller dense model
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requires less overall compute than producing the larger sparse one (as we perform sparsification
only gradually). In both cases, due to the strong scaling properties of Transformers trained
on massive quantities of data [KMH+20, HBM+22], the respective baseline would have most
likely improved significantly with more data/compute as well. Thus, the proper comparison
point for a sparse network is a dense model with the same number of parameters trained for
equivalent compute. This resource normalization, required by strong scaling and no overfitting,
renders this setting very challenging.

Experimental setup overview. We execute extensive training sweeps across sparsity, size
and data, which we then subsequently use to develop scaling laws. Now follows a very brief
summary of our main setup; a detailed discussion of all our choices, including the experiment
grid and hyper-parameters, can be found in Appendix B.1.1. In terms of models and datasets,
we focus on Vision Transformers [DBK+21] trained for multi-label image classification on the
JFT-4B dataset [DDM+23], consisting of 4 billion images, as well as encoder-decoder T5
models [RSR+20b] (improved 1.1 version [Goo23b]) trained for masked-language-modelling
on C4 [RSR+20b], consisting of 150+ billion tokens. We follow the model’s respective original
training recipes [ZKHB22, RSR+20b] and carry out sparsification during training via gradual
magnitude pruning [ZG17], using a cubic schedule starting at 25% of training and ending
at 75%. Our setup is optimized for robustness and consistency across scales rather than
maximizing pruning performance on one particular setting (see also Appendix B.1.3).

5.1.3 Deriving the Core Law
Dense scaling. It is well established [KMH+20, HBM+22] that the pretraining validation
loss of dense Transformers can be approximately modeled, in terms of parameter count N
and amount of training data D, by functions of the following form:

L(N, D) =
(︃

aN

N

)︃bN

+
(︃

aD

D

)︃bD

+ c. (5.2)

The first two summands capture the power law scaling in terms of size and data, respectively.
Meanwhile, c represents the inherent stochasticity of the modelling problem as a lower bound
on the loss. The scaling exponents bN and bD are usually quite stable for a particular task,
whereas the constant coefficients aN and aD vary with minor process changes like a different
architecture or optimizer.
Scaling laws usually assume an ideal training setup with no data repetition and focus on
modelling the non-bottlenecked regime (e.g., with sufficient steps/data/batchsize/etc.) rather
than on edge cases [KMH+20, HBM+22]; we follow suit. Further, we deliberately consider
the pretraining loss and infinite data setting to assess the effectiveness of sparsity in its most
challenging (one essentially needs to fit the data as well as possible) yet also most useful
application (all further post-processing would directly benefit from a compressed base model;
see also Appendix B.1.6).

Preliminary observations. The key question we hope to address is how parameter sparsity
S enters this core scaling relationship; understanding this will enable studying other interesting
aspects like optimal sparsity or limit performance. A priori, it is not obvious how S should enter
into Equation (5.2) to form L(S, N, D), where N denotes the number of non-zero parameters.
Are larger models easier to sparsify, does longer training help highly sparse models more, or is
sparsity mostly independent of other parameters? Therefore, to identify the functional form of
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Figure 5.2: Visualization of T5/C4 sweep results for all sizes and sparsities, grouped by training
steps.

the scaling law, we run a T5 training sweep over sparsity, size and steps. Figure 5.2 shows
validation loss (with a lower bound c = 1 subtracted to account for power law saturation
against the inherent uncertainty limit) versus model size for all sparsity levels, grouped by the
number of training steps. Please observe that the scaling of this plot, as well as most other
visualizations in this paper, is log-log.
We make three major observations from these graphs:

1. The loss vs. #non-zero curves for all sparsity levels seem to form almost parallel lines,
differing primarily in the intercept.

2. The higher the sparsity the lower the loss, but gains are quickly diminishing.

3. The overall shape of all curves is very similar for each training duration, the y-values
just tend to shift a bit downwards with more training steps.

Sparse scaling law. We now use the previous insights to construct our L(S, N, D) formula.
Observation 1 suggests that the model size power law scaling for all sparsity levels differs
primarily by a constant factor (intercept in a log-log plot); bN (the slope) stays fairly consistent.
Based on observation 2, we model this sparsity factor as a (quickly) saturating power law.
Finally, observation 3 indicates that sparsity and data scaling are mostly independent, hence
we simply keep the original D-term. In summary, these observations lead us to the following
joint scaling law:

L(S, N, D) =
(︃

aS(1− S)bS + cS

)︃
·

(︃ 1
N

)︃bN

+
(︃

aD

D

)︃bD

+ c. (5.3)

To properly model that 0.75 is twice as sparse as 0.5, we define the sparsity power-law part
via the corresponding compression rate 1/(1 − S). Further, aN is subsumed by aS and cS,
leaving 7 free parameters. On a high level, our scaling law combines a capacity limit term,
comprised of size and sparsity (which can encode extra information via its zero pattern), with
the standard data limit term. Lastly, S = 0 recovers the established L(N, D) form.

T5/C4 results. Next, we fit the coefficients of L(S, N, D) to our entire T5 sweep data. This
is accomplished, following [HBM+22], by minimizing the Huber-loss of log L with δ = 0.001 (for
robustness against outliers) using BFGS, for multiple random starting points. We plot actual
vs. predictions in Figure 5.1 (Right) to judge the quality of our final fit (see Appendix B.1.4
for coefficient values). All in all, the predictions match the observed data quite closely (despite
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having ≈ 7 datapoints per free parameter), demonstrating the compatibility of the law in (5.3)
with the observations.
Furthermore, we evaluate extrapolation performance by pruning a 2.3 billion parameter model
to 75% sparsity. This constitutes an ≈ 6.75× larger target number of non-zero parameters
than the maximum in our fitting data, which is a similar level of extrapolation as was done
in the Chinchilla study [HBM+22]. To avoid any architecture bottlenecks and achieve better
training utilization, we use the T5-XL architecture (rather than a rescaled T5-base) and train
with batchsize 256 for 250k steps (rather than 500k with batchsize 128). Despite these changes
to our setup, the prediction of our fitted scaling law is quite close to the actual validation loss;
see Figure 5.1 (Right).

ViT/JFT-4B results. Lastly, we execute a ViT training sweep and also fit a scaling law
of the same (5.3) form as for the T5 data. Here we use δ = 0.01 and do not take the log
of L as we find the NLP-optimized settings from before to exclude outliers too aggressively
for ViT data (which gives a poor fit for smaller models). We note that this sweep contains
> 2× more datapoints, leading to more robust coefficient estimates. We qualitatively compare
predicted and actual loss-vs-data curves in Figure 5.3, organized by sparsity level. We strongly
emphasize that the predictions in all subplots here are produced by a single joint law with the
same parameters (not one fit per image). As can be seen, for the most part, our law appears
to match the collected datapoints very well. Only at the lowest amount of training, some
points are a bit off the prediction curve; we suspect that this may be related to the fact that
these runs only involve comparatively few training steps, which may be a slight bottleneck
for the optimization process. Finally, we train a 75% ViT-L for 3.6 billion images to validate
extrapolation, ending up only 0.09 better than the corresponding prediction, in line with being
a slightly better base architecture than the family used for our sweep (see Appendix B.1.1).
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5.1.4 Optimal Sparsity
One particularly interesting feature of the joint scaling law just derived is that it allows easily
comparing models with different sparsities but the same number of non-zero parameters and
training cost. Thus, we can determine in which situations sparse models are better than
dense ones, according to all criteria discussed in Section 5.1.2. Specifically, we can define the
following quantity:
Optimal sparsity. The sparsity value Sopt(N, C) which yields the lowest validation loss for a
fixed number of non-zero parameters N and training cost C.1

1We note that it is common in the literature [HBM+22] to define scaling laws in terms of parameters N
and data D, but switch to expressing scaling in terms of computational cost C whenever relevant.
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5.1. Scaling Laws for Sparsely-Connected Foundation Models

There are two ways of defining training costs in this context: (a) densely, as the cost of training
a dense base model of size N/(1−S) for the same amount of training steps, or (b) sparsely, as
the actual FLOPs spent to produce the sparse model, assuming that sparsity can be perfectly
exploited during training as soon as it appears. For our particular sparsification schedule, (b)
can be calculated by multiplying the training costs of a dense model, approximated as 6ND
[KMH+20] (or half for encoder-decoder architecture models), by (see Appendix B.1.5 for this
and other derivations):

cmul(S) = (0.25 + 0.50 · (1− 0.75 · S))/(1− S) + 0.25. (5.4)

As we have assumed that the amount of training equals the amount of new data, we can
determine the performance of a sparsity S model trained for compute C = 6ND · cmul(S)
by querying L with DS = (C/6N)/cmul(S), i.e., scaling down the D corresponding to C by
the increase in training costs of the sparse model. Inserting DS and then differentiating with
respect to S gives the contour line for which sparsity S is optimal, i.e., achieves the lowest
loss among all possible sparsity choices, when training for the same compute:

bD ·
c′

mul(S)
cmul(S) ·

(︃
cmul(S) · aD

DS

)︃bD

= asbs(1− S)bS−1 ·N−bN . (5.5)

An interesting property about this contour is that it implies DS = O(N bN /bD), meaning that if
data- is stronger than size-scaling, then the same sparsity is optimal for a smaller data-to-size
ratio on larger models. This is sensible as a process bottlenecked more by capacity than by
data will benefit more from increasing the former, e.g., by adding sparsity. Finally, we want to
point out that Sopt can often also be determined explicitly by solving (5.4) for S, e.g., here
for dense training costs with cmul(S) = 1/(1− S):

Sopt(N, C) = max
{︃

1−exp
[︃(︃

log bD

aSbS

+bN logN
)︃

/(bD +bS)
]︃
·
(︃6aDN

C

)︃bD/(bD+bS)
, 0

}︃
. (5.6)

Empirical results. We now compute optimal sparsity curves for our experimental T5 and
ViT data, for which we fit scaling laws in the previous subsection. Figure 5.1 (Right) and 5.4
show the optimal sparsity contours, both for dense and sparse costs. An interesting feature
of Equation (5.5) is that all sparsity contours are, by construction, parallel to the Chinchilla
compute optimal line [HBM+22], which denotes ideal utilization of training FLOPs for fully
dense models; this can be clearly observed in the plots as well. However, we note that the
Chinchilla line does not necessarily correspond to the S = 0 case since non-zero sparsity may
be optimal in this regime (this is the case for sparse-FLOPs).
The key take-away from these results is that as one trains significantly longer than Chinchilla
(dense compute optimal), more and more sparse models start to become optimal in terms
of loss for the same number of non-zero parameters. This is because the gains of further
training dense models start to slow down significantly at some point, allowing sparse models
to overtake them. We further illustrate this effect on a subset of our actual ViT data in
Figure 5.5.
The practical question now is how much longer training is necessary? In terms of sparse
FLOPs, 50% sparsity is already optimal for < 2× (ViT) and < 3× (T5) longer training than
Chinchilla; for dense FLOPs it is ≈ 5× and ≈ 70×, respectively. While the latter number
seems quite high at first glance, we note that language models of the sizes we consider here
are already typically trained for > 100× longer than Chinchilla [BMR+20]. Additionally, larger
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Figure 5.5: Loss vs. sparse pretraining FLOPs for ViT models of varying sparsity.

models are being trained with more and more data as well, e.g., Llama2-7B with ≈ 14×
Chinchilla [TMS+23]. In general, the optimal sparsity at a given point (N, C) is lower for
dense than sparse FLOPs since the former assumes that sparsity provides no benefits during
training.

Limit Performance

In the previous section, we have focused only on when sparse models become optimal but
not how much better they can be compared to dense models. In this section, we study the
following question: How much larger, and thus computationally more expensive, does a dense
model need to be in order to match the loss of a smaller sparse model with very long training?
Since we have found the scaling term in D to not interact with sparsity in Section 5.1.3, it
suffices to compute the increase in N required to lower the loss by the same factor as the
increase in S via:

gain(S) =
(︃

aS(1− S)bS + cS

aS + cS

)︃−1/bN

. (5.7)

The gains for our particular scaling coefficients are shown in Table 5.1 (Left). They are to
be interpreted in the following way: for example, a 75% sparse ViT with N non-zeros will
perform similar to a dense one with ≈ 2.17N parameters, when both are trained with the
same amount of data. Crucially, this holds for any amount of data and thus also in the infinite
limit when training is purely capacity bound. Hence, this expresses an equivalence between
dense capacity and sparse capacity. We find that sparsity gains are very similar across vision
and text domains, with the sweet-spot being around 75% sparsity at ≈ 2.15× gain. This is in
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alignment with the view of sparsity as a general increase in modeling power; we note that the
gain is defined relatively to domain-specific improvements through increases in model size.

Family 0.500 0.750 0.875
ViT/JFT 1.60× 2.17× 2.63×
T5/C4 1.59× 2.16× 2.63×

Pattern 0.50 0.75
n:4 1.56× 1.62×
n:8 1.67× 1.81×

Table 5.1: (Left) Equivalent dense size multiplier to match performance of a sparse model.
(Right) Dense size multipliers for n:m sparsity on T5/C4.

N:M sparsity. Complementing the unstructured sparsity exploration, we now also consider
structured n:m sparsity, which can be accelerated on hardware [PY21, HCI+21]. Similar to how
minor changes in the process (optimizer, model shape) generally only affect the multiplicative
constants in dense scaling laws [KMH+20], we also expect minor changes in the sparsification
process to only affect the sparsity term in (5.3). This can be exploited to fit laws based on
significantly less runs: if the dense base scaling is known, one only has to fit aS, bS and cS

(just 3 rather than 7 parameters) to find the corresponding L(S, N, D). We utilize this in the
context of n:m sparsity by fitting new laws for 2:4 and 1:4 as well as 4:8 and 2:8 patterns,
respectively, based only on a subset of our full grid in Appendix B.1.1. Concretely, we execute
all runs involving either the least amount of steps, or the smallest model.
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Figure 5.6: Loss vs. size plot for a subset of T5/C4 n:m sparsity data.

Figure 5.6 visualizes a subset of the collected data, displaying a very similar form to 5.2, which
indicates that the general scaling law shape also holds for n:m sparsity. We also fit scaling laws
(with Huber δ = 0.01 as 0.75 patterns will otherwise be treated as an outlier) and calculate
sparsity gains as in Section 5.1.4; see Table 5.1 (Right). In general, 2:4 and 4:8 perform
both very similar to 50% (see Table 5.1 and also Figure 5.6), although the n:m estimates
are slightly more noisy due to less data used in fitting the curves. Meanwhile, 1:4 brings
almost no advantage and 2:8 only a slight improvement, which is contrary to our unstructured
results. We suspect that the 75% patterns may simply be too stringent to significantly increase
capacity beyond their 50% variants.

Decoder-only models. While we have focused on encoder-decoder models for language
to cover a wide range of architectures, we now also validate our sparsity scaling laws in the
context of standard decoder-only Transformers trained for auto-regressive language modeling.
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We follow the same setup as in our T5/C4 experiments, changing only model architecture
and loss function. We again execute the experiment grid defined in Table B.1 for 250K and
500K training steps, as well as a subset of the more expensive 1M step runs. Figure 5.7
demonstrates that all key sparse scaling properties still hold.
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Figure 5.7: Visualization of decoder-only experiment and corresponding scaling fit quality.

Pruning pretrained models. Lastly, we consider a practical scenario where a set of existing
very well-trained dense models should be made more efficient via pruning, using a small
fraction of the compute spent for the initial pretraining. Our main interest here is to compare
the efficiency of sparsifying from scratch and sparsifying from a pretrained checkpoint. For
that purpose, we train ViT S/16, M/16 and B/16 models for 4 full epochs on JFT ( i.e., 16
billion images) and then start the same gradual sparsification procedure we used before from
these checkpoints, for 5.6% of the pretraining budget (as the model is already pretrained,
we start to sparsify immediately rather than after 25% of training). Finally, we use our
scaling laws from Section 5.1.3 to determine the amount of training necessary to produce
equivalent models of the same quality when starting from scratch. Table 5.2 shows how much
more/less data is required to achieve equivalent performance for sparsifying from scratch,
when excluding/including the pretraining cost, respectively.

Model 0.500 0.750 0.875
exc. inc. exc. inc. exc. inc.

S/16 4.90× 0.25× 4.27× 0.23× 2.45× 0.13×
M/16 4.76× 0.25× 4.18× 0.22× 2.57× 0.14×
B/16 4.35× 0.23× 4.00× 0.21× 2.72× 0.14×

Table 5.2: Relative amount of data required for sparsifying from scratch to match the validation
loss of pruning from a pretrained model, when pretraining cost is excluded (exc.) and included
(inc.).

If the model already exists and there is thus no pretraining cost, then starting from such a
checkpoint is > 4× more efficient then sparsifying from scratch for 0.5/0.75, and > 2× for
0.875 sparsity, respectively. The reason why the efficiency gains are decreasing with higher
sparsity is most likely the increased divergence from the initial starting point. At the same time,
when the pretraining cost is counted as well, pruning throughout the whole training process
appears to be ≥ 4× more efficient, relative to the ≈ 5% pruning of pretraining budget. Overall,
these results clearly demonstrate that, while the sparsification process benefits significantly
from a better trained initial model, it only does so to a limited extent.
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5.1.5 Related Work
Sparsity & pruning. Sparsity has a long history [LDS89, HSW93] and a large number
of works have been published on this topic [HABN+21]. State-of-the-art methods range
from simple gradual removal of the smallest weights [ZG17], to partial or full sparse training
[MMS+18, JPR+20, PIVA21], approximate Hessian-based metrics [SA20, FKA21, KKFA23]
and “soft” sparse optimization [KRS+20, SWR20]. Sparsity can lead to substantial practical
speedups with specialized inference algorithms [KKG+20, EDGS20]. Yet, most of those works
focus on relatively simple tasks like ResNet50/ImageNet or BERT/GLUE.

In contrast, much less is known when it comes to sparsifying Transformers trained on massive
datasets: The Appendix of Gopher [RBC+21] conducts pruning experiments for a generative
language modelling task and finds that, when trained for the same amount of steps, sparse
models can outperform dense ones, but leaves open whether this is also possible when
accounting for the significantly increased compute spent for producing those sparse models,
relative to equivalently sized dense ones. Similarly, [Cer22] prunes a GPT-like model, also
using significantly more data than its dense baseline. Recently, SparseGPT [FA23] showed
that it is possible to impose weight-sparsity on extremely large language models, even without
retraining; yet, it remains unclear if this can also be done on smaller networks that are trained
on more data.

Scaling laws. The key behind the success of Transformers is their exceptional scaling:
increasing model size and/or data brings consistent performance improvements, even at
huge scale. Further, this scaling behavior is predictable, following simple power-law curves
[KMH+20]. This can be utilized to construct a family of compute optimal models [HBM+22].
More recently, scaling laws are being extended to more specialized applications, e.g.: optimizing
model shapes [AZKB23], routing mechanisms [CDLCG+22], repeating training data multiple
times [MRB+23] and several downstream tasks [CGRK23]. However, not much is known
about the scaling of weight sparsity for such models.

[RFCS21] studies the relationship between width, depth and weight density for pruning
pretrained ResNets trained primarily on the CIFAR dataset [KH+09], which is nowadays
considered very small. Contrarily, we consider modern Transformers trained on datasets many
orders of magnitude larger and focus particularly on the data/compute dimension that is
crucial in this context, but not relevant in the setting of [RFCS21].

Transformer efficiency. Making (large) Transformers more efficient is currently a highly
active area of research. Probably the currently most popular and practical approach is
quantization, that is reducing the numerical precision [FAHA23, DZ23, XLS+23]. Further,
there are also many works on Mixture-of-Expert (MoE) models, which bound the overall
computation cost per sample [DHD+22, FZS22, ABG+22, RPM+21]. MoEs are a form of
dynamic activation sparsity, which is very different from the static weight sparsity that we
study; the former trades off increased memory for faster inference, whereas the latter reduces
both inference and memory costs. In general, quantization, MoEs and weight sparsity are
complementary and may be stacked for compound gains [KCN+22].

5.1.6 Discussion
Limitations. While our study is based on extensive experiments across models and domains,
it also has limitations, which we discuss here and plan to address in future work. First, our
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sparsification recipe was optimized for robustness and scalability across a wide range of setups,
rather than to fully maximize sparsity versus accuracy in a particular setting. We believe that
specific coefficient values can be improved with extensive setting-specific tuning and better
sparsification techniques; however, the general nature of our scaling law will remain consistent.

We focus on settings where pruning is applied to pretraining tasks with massive amounts of
data and compute. This is ideal in terms of usability, as down-stream (finetuning) applications
directly benefit from the pruned model, but it also makes compression quite challenging.
We think higher sparsity rates can be achieved if pruning is applied directly for specialized
applications that only require a subset of the model’s capabilities. Similarly, our study focuses
on the infinite data setting, which essentially eliminates overfitting, as only a single pass over
the data is performed. Sparsity could be particularly effective when data is limited and thus
multiple epochs are performed.

Our proposed sparse scaling law suggests that higher sparsity is always better (but with
potentially quite quickly saturating improvements), which may not be true in extremes. For
very high sparsity (e.g., 64× compression) we sometimes see slightly worse performance,
presumably due to imperfections in the pruning and optimization process. This phenomenon
could potentially be modelled by a quadratic, but the present study treats it as a bottleneck-case
that is not necessarily captured.

Finally, the main goal of this study is understanding core scaling relationships. Thus, we focused
on the most fundamental cost metric, non-zero parameter count. However, in practice, sparsity
acceleration can be complex: current software/hardware may not provide ideal speedups and
models generally also contain operations (e.g., layer-norms, attention) which do not benefit
from weight sparsity. Extending our scaling results to more target metrics is an interesting
topic for future work.

Compatibility with other works. We will now briefly discuss how our scaling insights line
up with existing sparsification results on similar models/datasets. First, the results in the
Appendix of Rae et al. [RBC+21], for a decoder-only text-generation model, are consistent
with our scaling laws; the improvement through sparsity appears to be similar for each model
size and their maximum size advantage of 2.5× observed at 0.9 sparsity is quite close to our
limit gains in Section 5.1.4.

In contrast, Cerebras [Cer22] reports a significantly better gain of ≈ 5×, but in a quite different
setting where the baseline is training (not inference) compute optimal and sparsification uses
> 5× more data than the dense comparison point. This is not inconsistent to our results: if
we query our fitted T5 scaling law (see Section 5.1.3) with this setup, we predict 1.54 loss
(dense 1B params, 20B tokens) vs. 1.48 loss (80% sparse & 200M non-zeros, 100B tokens),
in favor of the sparse model.

Finally, SparseGPT [FA23] notes that post-training pruning becomes easier as the model size
increases. However, they do not perform any retraining, and observe this effect primarily
relative to the respective unpruned base model, not in terms of improvements over the Pareto
size-vs-loss frontier that we focus on. Hence, we believe that this is likely more related to the
pretrained models’ initial robustness to pertubations rather than the architecture’s inherent
sparsifiability.

Practical implications. Our scaling insights lead to a number of practical consequences:
Sparsity seems to affect each model size in approximately the same way, while remaining
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mostly independent of the amount of training data used. This provides evidence that good
pruning performance in less expensive settings should generalize to performance at scale, which
will hopefully accelerate research on new sparsification recipes and algorithms. Additionally,
we have shown that optimal sparsity levels continuously increase with longer training. Sparsity
thus provides a means to further improve model performance for a fixed final parameter cost.
In particular, when training beyond Chinchilla optimality, where simple dense training starts to
run into diminishing returns, sparsity can provide a clear alternative. Thus, our findings can
be interpreted as providing practical motivation for further developing sparsity support.
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CHAPTER 6
Conclusion

In summary, this thesis studied the problem of making massive machine learning models more
efficient from three major directions: developing new fast and accurate compression algorithms,
implementing highly efficient systems solutions to translate theoretical gains into practical
benefits and empirically understanding the scaling behavior of compression during training on
a more fundamental level.

We started in Section 3.1 by developing OBC, a new post-training (that is free of any retraining)
compression algorithm with state-of-the-art accuracy on smaller vision and text models, for
both sparsity and quantization. A particularly interesting aspect of OBC is that it approached
two very different forms of compression with the same algorithmic strategy, thus unifying them.
Next, we heavily modified this algorithm in a way that yields several orders of magnitude
speedup, while performing only slightly worse in terms of accuracy. This lead to GPTQ (see
Section 3.2) and SparseGPT (see Section 3.3), the first methods fast and accurate enough
to compress 100+ billion parameter models to 4- or even 3-bit precision and 50% sparsity,
respectively. GPTQ and SparseGPT are highly practical, taking only ≈ 4 hours on a single
GPU to compress such massive models, while coming with optimized GPU inference kernels
that deliver up 4.5× real-world generation speedup for single-user applications. In fact, our
GPTQ kernel was the first practical (open-source) demonstration that standard weight-only
quantization does not just bring memory savings but also latency reduction.

Next, we revisited the problem of writing highly efficient GPU kernels for mixed-precision
inference, though this time in the context of a much more practical, but also much more
challenging, multi-user setting. Section 4.1 described how to implement Marlin, an extremely
optimized FP16 times INT4 matrix multiplication kernel, which for the first time delivers
essentially ideal performance in the medium batchsize regime, simultaneously maximizing
memory bandwidth and compute throughput. In Section 4.2, we presented additional systems
optimizations to scale GPTQ, and similar methods, to even larger trillion-parameter models.
In this context, we also co-designed a bespoke extreme compression format together with
an efficient GPU kernel. This makes it possible to achieve an average size of 0.8 bits per
parameter, on highly overparameterized models, while maintaining uncompressed inference
speed.

Finally, Section 5.1 moved to a slightly different compression setting, where huge amounts of
compute resources are available and maximizing accuracy is the exclusive goal. We conducted
large amounts of pruning-during-training experiments to identify the first scaling law accurately
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modeling the joint interaction of weight-sparsity, model-size and amount of training data used.
Interestingly, we observed that sparsity seems to behave very regularly across scales. This
allowed us to characterize the optimal sparsity level for every combination of target inference
and training cost. Crucially, we found that the more and more budget is spent on training a
fixed cost model, the higher the optimal sparsity becomes. This is particularly relevant for
developing mobile models, where a small memory footprint is critical, while current recipes are
already heavily overtraining such networks.

Overall, this thesis makes practical contributions on various angles of large model efficiency.
Our fast and accurate compression algorithms are particularly useful for open-source, academia,
or any individuals with only limited compute resources. Meanwhile, our scaling law insights
are very relevant to corporations or other entities able to train massive models from scratch,
which should then be served to large user-bases. Lastly, our highly efficient GPU inference
kernels bring significant practical acceleration both in local (single-user) and large-scale serving
settings. Nevertheless, there is still a lot of potential for future work in the area of this thesis;
we outline a few especially interesting research directions below.

6.1 Future Work
Activation Compression. In this thesis, we have primarily focused on compressing model
weights, leaving activations in standard precision. As we have shown, this is sufficient to
accomplish significant speedup in memory-bound applications. However, not every LLM
use-case is memory-bound: for example, prefilling a large prompt is completely compute-bound.
If we were able to compress also the activations to lower bitwidth such operations could be
accelerated as well. One major difference between activations and weights is that the former are
dynamic whereas the latter are static. This means that any quantization must be applied online,
directly during inference. Hence, it may not be possible to employ advanced rounding schemes
like GPTQ, as their runtime may negate any benefits of the additional compression. Most
existing activation compression schemes [EMB+19, JCM+21] utilize extensive (re-)training
which would likely be far too expensive for larger models, suggesting that the development of
entirely new approaches might be necessary. Another related problem is the compression of
the KV-cache, which is comprised of activation vectors. This is probably a bit easier since
the KV-cache is mostly involved in memory-bound operations [Sha19], where it is, as we have
shown, feasible to efficiently support much more flexible and complex compression formats via
custom CUDA kernels.

(Semi-)Automated Kernel Generation. As we have demonstrated with Marlin, it is
possible to write near peak-performing kernels for compressed inference. However, doing
so requires a lot of effort, with many meticulous low-level optimizations. It will be very
difficult to sustain the development of such well optimized kernels across various compression
formats and GPU architectures, due the amount of manual labor involved. For standard
(uncompressed) kernels, (semi-)automated frameworks like Triton [TKC19] and JAX Pallas
[BFH+18] are gaining in popularity. These make it possible to write many different types of
accelerator kernels at a higher block-based level, while low-level detailed are automatically
figured out by the compiler. Unfortunately, such libraries are currently not particularly well
suited for compression use-cases. This is because reaching peak decompression performance
often involves various tricks at the very lowest thread and/or register level, which is completely
abstracted away and thus very hard to control explicitly. Figuring out either appropriate
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extensions to current systems or completely new kinds of abstractions seems like a necessary
step towards significantly speeding up compressed kernel development. Alternatively, it would
be even better, yet likely much more difficult, if those low-level tricks could be automatically
determined by the compiler.

Compression Scaling Laws. This thesis introduced scaling laws for one particular type
of compression, weight-sparsity. A natural follow-up question to ask is whether the scaling
phenomena we observed in this context also translate to other forms of compression, like
weight quantization or various forms of activation compression. Additionally, this would be
interesting from the perspective of comparing the practical efficiency of different compression
schemes. Expanding on that, it might also be possible to jointly model finer-grained aspects
of compression types (group-sizes, mantissa bits, sparsity pattern restrictions, etc.) in order to
eventually discover new compression formats with better efficiency vs. accuracy trade-offs than
conventional schemes. Another related direction could be exploring the scaling of compression
with impact on training speed, like fully-quantized training [MSB+22]. In our specific weight-
sparsity setting, compression only started to become optimal (and thus useful in practice)
once a model is being “overtrained” [TLI+23]. However, if compression accelerates not just
inference but also training, this may have potential to provide benefits in “undertrained” or
“training-compute-optimal” [HBM+22] regimes as well.
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APPENDIX A
Algorithms

A.1 Optimal Brain Compression: Accurate Post-Training
Quantization and Pruning

A.1.1 Proof of Row & Column Removal Lemma

Proof. First, we observe that element j in row i, i.e. [A]ij, is set to 0 by the equivalent
matrix transformation of subtracting [A]ij times column i denoted by A:,i divided by the
corresponding diagonal element [A]ii (similarly, elements in column i can be set to 0 by
subtracting row i). Thus, Lemma 1 corresponds to zeroing H−1

pi and H−1
ip for i ̸= p via

equivalent matrix transformations, or in other words, Gaussian elimination of one row and
column.

Next, we apply these equivalent matrix transformations to both sides of the obvious equality
H−1H = I, which ultimately gives an equation of the following AB = C form:

⎡⎢⎣A1 0 A2
0⊤ a 0⊤

A4 0 A3

⎤⎥⎦ ·
⎡⎢⎣ B1 b1 B2
b4

⊤ b b2
⊤

B4 b3 B3

⎤⎥⎦ =

⎡⎢⎣ I c1 0
c4

⊤ c c2
⊤

0 c3 I

⎤⎥⎦ . (A.1)

Notice now that the entries of B corresponding to the eliminated row and column in A do
not affect the I and 0 blocks in C since they are always multipled by 0. Thus, the matrix of
the Ai blocks must be the inverse of the Bi block matrix, which is exactly what we wanted to
calculate.

A.1.2 OBQ-ExactOBS Algorithm Pseudocode

The OBQ version of the ExactOBS algorithm is given below; we emphasize the similarity to
the pruning variant of ExactOBS shown in Algorithm 3.1.
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Algorithm A.1: Quantize k ≤ dcol weights from row
w with inverse Hessian H−1 = (2XX⊤)−1 according
to OBS in O(k · d2

col) time.
M = {1, . . . , dcol}
for i = 1, . . . , k do

p← argminp∈M
1

[H−1]pp
· (q(wp)− wp)2

w← w−H−1
:,p

1
[H−1]pp

· (wp − q(wp))
H−1 ← H−1 − 1

[H−1]pp
H−1

:,p H−1
p,:

M ←M − {p}
end for

A.1.3 Timing Information
In this section, we provide detailed information about the runtime of our method. All numbers
reported here are for the execution on a single NVIDIA RTX 3090 GPU using our PyTorch
implementations. Pruning runs with a global step are performed with the “less compute”
variant described in Figure 3.1. Hence an entire database of many pruning levels can be
generated in approximately the time shown for unstructured and block pruning runs here.

PTQ Runtime Comparison. We begin with a runtime comparison of existing state-of-the-
art post-training methods at the task of quantizating the weights of all layers of a ResNet50
to 4 bits. All timings were collected by executing the authors’ open-source implementations
on the same hardware, the results are shown in Table A.1.

Model BitSplit AdaRound AdaQuant BRECQ OBQ
ResNet50 124m 55m 17m 53m 65m

Table A.1: Runtimes of post-training quantization methods in minutes (m).

BRECQ, AdaRound and our method OBQ all take around one hour to fully quantize ResNet50,
the former two slightly less and the latter slightly more. Meanwhile, BitSplit takes about twice
as long, whereas AdaQuant is 3× faster. However, as shown in Table 3.5 in the main text,
AdaQuant is also considerably less accurate than the other methods. In summary, the runtime
of ExactOBS is in line with existing post-training methods. Additional optimizations, like
periodically shrinking the Hessian by omitting rows/columns of pruned/quantized weights, can
likely improve the practical speed further.

Different Compression Types. Next, we study the runtime of ExactOBS applied to
different types of compression problems. We consider a smaller model (YOLOv5s), a medium
model (ResNet50) and a larger one (BERT). The corresponding runtimes for all compression
types featured in this work are listed in Table A.2.

In general, we can see that quantization and unstructured pruning take about the same time,
which matches with the fact that the corresponding algorithms are very similar. Correspondingly,
2:4 pruning and quantizing a 2:4 pruned model are only approximately half as expensive, which
is again expected as they perform half the work. For YOLO and BERT, blocked pruning is the
most expensive compression type due to the overheads incurred by handling the additional
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Model Quant Unstr 4-block 2:4 Quant 2:4
ResNet50 65m 64m 61m 31m 35m
YOLOv5s 7m 6m 10m 3m 4m
BERT 111m 103m 142m 51m 56m

Table A.2: Runtimes of ExactOBS for different models and compression types in minutes (m).

c × c block matrices (see Section 3.1.4). Interestingly, for ResNet50, this is not the case,
which is probably related to the highly non-uniform compute distribution that is discussed in
more detail in the next paragraph. Overall, these results show that our techniques are quick for
small models and still reasonably efficient even for bigger models like BERT, taking less than
2 hours on a single GPU. Finally, we note that ExactOBS is essentially perfectly parallelizable
and its runtime can thus scale linearly with the number of available GPUs.

Per-Layer Runtimes. Finally, we note that as the time complexity of OBQ implemented via
ExactOBS is O(drow · d3

col), i.e. cubic in the column dimension, the overall runtime can often
be dominated by a few particularly large layers. This is illustrated e.g. by ResNet50 where,
as shown in Figure A.1, about 75% of the overall runtime is spent in the 3× 3 convolutions
of the last block (which have dcol ≈ 4500 when unfolded), of which there are just 3 in total.
Meanwhile, most of the earlier layers are quantized within seconds. This means that one could,
in many cases, reduce the overall compression runtime significantly by applying a faster but
less accurate method to just those few bottleneck layers while still achieving more accurate
compression on all the others through our techniques.

Figure A.1: Runtime of OBQ for each layer of ResNet50.
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A.2 GPTQ: Post-Training Quantization for Generative
Pre-Trained Transformers

A.2.1 Additional Language Generation Results
Tables A.3, A.4, A.5 and A.6 show additional results for language generation tasks.

OPT Bits 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 175B
full 16 38.99 31.08 20.29 17.97 15.77 14.52 14.04 13.36 12.01
RTN 4 53.89 36.79 57.30 31.05 18.84 16.51 15.40 225.66 14.22
GPTQ 4 45.17 34.52 21.85 19.14 16.56 14.94 14.26 13.81 12.26
RTN 3 1.4e3 88.04 1.3e4 1.4e4 5.7e3 2.8e3 1.2e3 5.0e3 8.0e3
GPTQ 3 73.19 47.08 32.10 24.81 21.88 16.68 15.36 28.12 12.86

Table A.3: OPT perplexity results on PTB.

BLOOM Bits 560M 1.1B 1.7B 3B 7.1B 176B
full 16 43.69 57.96 30.00 25.34 20.83 14.59
RTN 4 51.10 66.85 33.58 27.68 22.42 15.00
GPTQ 4 46.97 62.47 31.84 26.49 21.67 14.75
RTN 3 126. 185. 106. 66.78 35.04 107.
GPTQ 3 70.35 87.04 46.11 34.02 26.14 15.57

Table A.4: BLOOM perplexity results for PTB.

OPT Bits 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 175B
full 16 26.56 22.59 16.07 14.34 12.71 12.06 11.44 10.99 10.13
RTN 4 33.91 26.21 24.51 18.43 14.36 13.36 13.46 309. 11.61
GPTQ 4 29.22 24.63 16.97 15.00 13.18 12.26 11.57 11.23 10.28
RTN 3 834 55.49 5.2e3 1.1e4 5.3e3 3.1e3 1.4e3 3.5e3 4.6e3
GPTQ 3 42.41 31.33 21.63 18.17 17.14 13.34 12.23 14.59 10.67

Table A.5: OPT perplexity results on C4. We note that the calibration data used by GPTQ is
sampled from the C4 training set, this task is thus not fully zero-shot.

A.2.2 Timing Experiment Setup
Our timing experiments are performed following the standard HuggingFace/accelerate1 setup
also used by the recent work LLM.int8() [DLBZ22]. In this setting, the model is split
by distributing chunks of consecutive layers across GPUs. Importantly, in this setup the
communication costs are minimal, < 5% of the total runtime even when working with 8 GPUs.
This means almost all of the reported speedups are due to our quantized-matrix full-precision

1https://huggingface.co/docs/accelerate/index
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BLOOM Bits 560M 1.1B 1.7B 3B 7.1B 176B
full 16 26.60 22.05 19.49 17.49 15.20 11.71
RTN 4 29.89 24.44 21.26 18.76 16.06 12.04
GPTQ 4 28.00 23.25 20.55 18.10 15.60 11.81
RTN 3 67.49 60.71 113. 80.49 22.59 598.
GPTQ 3 35.78 28.83 25.34 21.25 17.67 12.27

Table A.6: BLOOM perplexity results for C4. We note that the calibration data used by GPTQ
is sampled from the C4 training set, this task is thus not fully zero-shot.

vector product kernels. We emphasize that the only difference between the FP16 baseline and
our quantized models are the kernels used to perform the underlying matrix-vector products.

This means all overheads due to HuggingFace, attention or non-quantized operations like
residuals or LayerNorms are exactly the same. Consequently, our quantized models should
benefit from more advanced distribution strategies [ZLZ+22] or more efficient attention kernels
[DFE+22] just as much as our baseline.

In general, our kernels target generative inference in the low batch-size setting (for simplicity,
we consider only batchsize 1) where the underlying (close to) matrix-vector products are
memory-bound. For non-generative and large-batch applications, operations may be compute-
rather than memory-bound and our kernels thus not directly applicable. Instead, one could
simply decompress the matrix before performing the corresponding matrix-matrix calculations:
this takes < 1.5ms on an A100 and < 3ms on an A6000 compared to 76ms/365ms for the
subsequent OPT-175B FC2 layer computation with batchsize 16× 1024 tokens. Hence, for
such applications our methods significantly reduce the required number of GPUs at very little
computational overhead. This is similar to recent work [DLBZ22], but we achieve a 2.5×
higher compression rate.

A.3 SparseGPT: Massive Language Models Can Be
Accurately Pruned

A.3.1 Ablation Studies
In this section, we conduct ablations studies with respect to several of the main parameters of
SparseGPT. For a fast iteration time and making it possible to also explore more compute
and memory intensive settings, we focus on the OPT-2.7B model here. Unless stated otherwise,
we always prune uniformly to the default 50% sparsity. For brevity we only show raw-WikiText2
results here, but would like to note that the behavior on other datasets is very similar.

Amount of Calibration Data. First, we investigate how the accuracy of SparseGPT
scales with the number calibration data samples, which we vary in powers of two. The results
are shown in Figure A.2. Curiously, SparseGPT is already able to achieve decent results even
with just a few 2048-token segments; using more samples however yields significant further
improvements, but only up to a certain point as the curve flattens quite quickly. Thus, since
using more samples also increases compute and memory costs, we stick to 128 samples in all
our experiments.
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ples ablation.
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blocksize ablation.

Hessian Dampening. Next, we study the impact of Hessian dampening by testing values
varying as powers of ten (see Figure A.3) which are multiplied by the average diagonal value,
following [FAHA23]. Overall, this parameter does not seem to be too sensitive, 0.001 to 0.1
appear to perform quite similar; only when the dampening is very high, the solution quality
decreases significantly. We choose 1% (i.e. 0.01) dampening to be on the safe side with
respect to inverse calculations also for the very largest models.

Mask Selection Blocksize. Another important component of our method is the adaptive
mask selection as shown in Figure A.4 where we vary the corresponding blocksize parameter
with powers of two. Both column-wise (blocksize 1) as well as near full blocksize (4096 and
8192) perform significantly worse than reasonable blocking. Interestingly, a wide range of
block-sizes appear to work well, with ones around a few hundred being very slightly more
accurate. We thus choose blocksize 128 which lies in that range while also slightly simplifying
the algorithm implementation as it matches the default lazy weight update batchsize.

Sensitivity to Random Seeds. Finally, we determine how sensitive the results of our
algorithm are with respect to randomness; specifically, relative to the random sampling of the
calibration data. We repeat a standard 50% pruning run 5 times with different random seeds
for data sampling and get 13.52± 0.075 (mean/std) suggesting that SparseGPT is quite
robust to the precise calibration data being used, which is in line with the observations in
other post-training works [NAVB+20, HNH+21, FSA22].

A.3.2 Approximation Quality
In this section we investigate how much is lost by the partial-update approximation employed
by SparseGPT, relative to (much more expensive) exact reconstruction. We again consider
the OPT-2.7B model at 50% sparsity and plot the layer-wise squared error of SparseGPT
relative to the error of exact reconstruction (with the same mask and Hessian) for the first
half of the model in Figure A.5. Apart from some outliers in form of the early attention
out-projection layers, the final reconstruction errors of SparseGPT seem to be on average
only around 20% worse than exact reconstruction; on the later fully-connected-2 layers, the
approximation error even gets close to only 10%, presumably because these layers have a very
large number of total inputs and thus losses by considering only correlations within subsets
are less severe than on smaller layers. Overall, these results suggest that, despite its dramatic
speedup, SparseGPT also remains quite accurate.
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Figure A.5: Error of SparseGPT reconstruction relative to exact reconstruction for the first
half of OPT-2.7B at 50% sparsity.

A.3.3 Evaluation Details

Perplexity. As mentioned in the main text, our perplexity calculation is carried out in
standard fashion, following exactly the description of [Hug22]. Concretely, that means we
concatenate all samples in the test/validation dataset, encode the result with the model’s
matching tokenizer and then split it into non-overlapping segments of 2048 tokens (the
maximum history of the models we study). Those are run through the model to calculate the
corresponding average language modelling loss. The exponentiated number is the perplexity
we report.

Datasets. In terms of datasets, we use the raw version of the WikiText2 test-set and
concatenate samples, as recommended by the HuggingFace description referenced above,
with “\n\n" to produce properly formatted markdown. For PTB, we use the test-set of
HuggingFace’s “ptb_text_only” version and concatenate samples directly, without separators,
as PTB is not supposed to contain any punctuation. Our C4 subset consists of the starting
(the dataset comes in random order) 256 times 2048 encoded tokens in the first shard of the
directly concatenated validation set; this choice is made to keep evaluation costs manageable.

A.3.4 Additional Results

Pruning Difficulty Scaling on PTB & C4. Tables A.7 and A.8 present the equivalent
results to Table 3.9 in the main text, but on PTB and our C4 subset, respectively. Overall,
they follow very similar trends to those discussed in Section 3.3.4. The main notable difference
is that no slight perplexity decrease relative to the dense baseline is observed at 50% sparsity
for the largest models, hence we have labelled this as a dataset specific phenomenon.

50% Sparse + 3-bit. The main paper only presents near loss-less results for 50% +
4-bit joint sparsification and quantization, corresponding to 3-bit quantization in terms of
storage. For 50% + 3-bit (corresponding to 2.5-bit), OPT-175B achieves 8.60 PPL on
raw-WikiText2, which is also more accurate than GPTQ’s [FAHA23] 8.94 state-of-the-art
2.5-bit result. SparseGPT scores the same 8.93 for 4:8 + 3-bit. Based on these initial
investigations, we believe that combining sparsity + quantization is a promising direction
towards even more extreme compression of very large language models.
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Table A.7: OPT perplexity results on PTB.

OPT - 50% 125M 350M 1.3B
Dense 38.99 31.07 20.29
Magnitude 276. 126. 3.1e3
AdaPrune 92.14 64.64 41.60
SparseGPT 55.06 43.80 25.80

OPT Sparsity 2.7B 6.7B 13B 30B 66B 175B
Dense 0% 17.97 15.77 14.52 14.04 13.36 12.01
Magnitude 50% 262. 613. 1.8e4 221. 4.0e3 2.3e3
SparseGPT 50% 20.45 17.44 15.97 14.98 14.15 12.37
SparseGPT 4:8 23.02 18.84 17.23 15.68 14.68 12.78
SparseGPT 2:4 26.88 21.57 18.71 16.62 15.41 13.24

OPT - 50% 125M 350M 1.3B
Dense 26.56 22.59 16.07
Magnitude 141. 77.04 403.
AdaPrune 48.84 39.15 28.56
SparseGPT 33.42 29.18 19.36

OPT Sparsity 2.7B 6.7B 13B 30B 66B 175B
Dense 0% 14.32 12.71 12.06 11.45 10.99 10.13
Magnitude 50% 63.43 334. 1.1e4 98.49 2.9e3 1.7e3
SparseGPT 50% 15.78 13.73 12.97 11.97 11.41 10.36
SparseGPT 4:8 17.21 14.77 13.76 12.48 11.77 10.61
SparseGPT 2:4 19.36 16.40 14.85 13.17 12.25 10.92

Table A.8: OPT perplexity results on a C4 subset.

A.3.5 Partial 2:4 Results
Tables A.9 and A.10 show the performance of a sequence of partially 2:4 sparse models on
three different language modelling datasets. The first fraction of layers is fully sparsified while
the remainder is kept dense. In this way, speedup and accuracy can be traded off also from
binary compression choices, such as n:m-pruning.

OPT-175B – 2:4 dense 1/2 2/3 3/4 4/5 full
raw-WikiText2 8.34 8.22 8.38 8.49 8.52 8.74
PTB 12.01 12.15 12.80 13.02 13.12 13.25
C4-subset 10.13 10.22 10.41 10.52 10.59 10.92

Table A.9: Pruning different fractions (as consecutive segments from the beginning) of OPT-
175B layers to the 2:4 pattern.
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BLOOM-176B – 2:4 dense 1/2 2/3 3/4 4/5 full
raw-WikiText2 8.11 8.20 8.50 8.67 8.74 9.20
PTB 14.58 14.78 15.44 15.84 15.96 16.42
C4-subset 11.71 11.81 12.06 12.23 12.32 12.67

Table A.10: Pruning different fractions (as consecutive segments from the beginning) of
BLOOM-176B layers to the 2:4 pattern.

A.3.6 Sparsity Acceleration
Lastly, we perform a preliminary study of how well sparse language models can already be
accelerated in practice with off-the-shelf tools, for both CPU and GPU inference. We think
that these results can likely be improved significantly with more model specific optimization,
which we think is an important topic for future work.

CPU Speedups. First, we investigate acceleration of unstructured sparsity for CPU inference.
For that we utilize the state-of-the-art DeepSparse engine [Neu22] and run end-to-end inference
on OPT-2.7B (support for larger variants appears to be still under development) for a single
batch of 400 tokens, on an Intel(R) Core(TM) i9-7980XE CPU @ 2.60GHz using 18 cores.
Table A.11 shows the end-to-end speedups of running sparse models over the dense one,
executed in the same engine/environment. (For reference, dense DeepSparse is 1.5× faster
than the standard ONNXRuntime.) The achieved speedups are close to the theoretical
optimum, which suggests that unstructured sparsity acceleration for LLM inference on CPUs
is already quite practical.

Sparsity 40% 50% 60%
Speedup 1.57× 1.82× 2.16×

Table A.11: Speedup over dense version when running sparsified OPT-2.7 models in DeepSparse.

Weight Q/K/V/Out FC1 FC2
Dense 2.84ms 10.26ms 10.23ms
2:4 Sparse 1.59ms 6.15ms 6.64ms
Speedup 1.79× 1.67× 1.54×

Table A.12: Runtime and speedup for the different layer shapes occuring in OPT-175B using
2048 tokens.

GPU Speedups. 2:4 sparsity as supported by NVIDIA GPUs of generation Ampere and
newer theoretically offers 2× acceleration of matrix multiplications. We now evaluate how
big those speedups are in practice for the matmul problem sizes that occur in our specific
models of interest. We use NVIDIA’s official CUTLASS library (selecting the optimal kernel
configuration returned by the corresponding profiler) and compare against the highly optimized
dense cuBLAS numbers (also used by PyTorch). We assume a batch-size of 2048 tokens and
benchmark the three matrix shapes that occur in OPT-175B; the results are shown in Table
A.12. We measure very respectable speedups through 2:4 sparsity between 54 − 79%, for
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individual layers (end-to-end speedups will likely be slightly lower due to some extra overheads
from e.g. attention).
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APPENDIX B
Scaling Laws

B.1 Scaling Laws for Sparsely-Connected Foundation
Models

B.1.1 Experimental Setup
This section discusses our experimental choices and hyper-parameters, as well as technical
details for sparsity-aware AdaFactor and iterative n:m pruning.

Models & datasets. We consider two standard deep learning applications: vision and
language. For the former, we focus on Vision Transformers [DBK+21] trained for multi-label
image classification on the JFT-4B dataset [DDM+23], consisting of 4 billion images; for the
latter, we consider encoder-decoder T5 models [RSR+20b] (improved 1.1 version [Goo23b])
trained for masked-language-modelling on C4 [RSR+20b], consisting of 150+ billion tokens.
These choices allow us to study the generality of our laws not just across vision and language
but also for different kind of pretraining objectives and variations of Transformer architectures.

Training hyper-parameters. For the most part, we reuse the optimized training hyper-
parameters of the original ViT-scaling [ZKHB22] and T5 paper [RSR+20b], respectively. Our
only notable change is that we do not factor the second moment of the respective AdaFactor-
based [SS18] optimizers (however, we still apply relative learning rate scaling and RMS clipping
for T5); this is done since factorized moments for pruning and sparse optimization are not yet
very well studied. Further, we train T5 models with batchsize 128 (similar to most ablation
studies in the original paper [RSR+20b]) in order to perform sufficiently many optimization
steps also for experiments with lower total amounts of training data, which we found important
to obtain stable sparse results through model and data scaling.

Model sizes. When it comes to selecting our particular model dimensions, two things must
be taken into account: (a) we are particularly interested in the inference-optimal overtraining
regime [TLI+23] where models get close to their capacity limit, and (b) to produce a model
with N non-zeros and sparsity S, we actually need to train a model that is 1/(1− S) times
larger than a dense model of size N . In combination with the fact that we need to repeat the
entire training sweep for multiple sparsity levels, this limits the size of models we can study

123



while keeping compute requirements feasible. Specifically, we start from the base variants of
both ViT and T5 (B/16 and t5-base). Then we generate models of appropriate sizes by scaling
only the Transformer’s hidden dimension and keeping all other shape parameters constant.
This way we can get quite precise size-matches between models and sparsities, facilitating
direct comparisons (not all default family models are exactly 2× steps apart and a 50% sparse
model would thus not always be directly comparable to the next smallest dense variant); we
did not observe any notable performance decrease for dense models using this scaling strategy,
at the sizes we study.

Sparsity configurations. We focus primarily on the most fundamental sparsity type, un-
structured sparsity, but also perform some investigations for the more practical n:m pruning
pattern [ZMZ+21, PY21] where only n out of m consecutive weights are non-zero. We
uniformly sparsify all linear layers in the Transformer backbone, which effectively avoids layer
collapse [WZG20], or other edge cases that may otherwise occur in our sweeps, and generally
works decently well for Transformer models. On T5 models, we also sparsify the rather large
embeddings to the amount necessary for parameter matching a smaller dense version.

Preliminary experiments indicated quickly diminishing returns for very sparse models, which, as
discussed previously, are in addition quite expensive to train. Thus, we focus on three medium
sparsities: 50%, 75%, 87.5%, corresponding to a 2×, 4× and 8× compression rate, respectively.
Our implementation is based on the recently proposed Jaxpruner library [LPM+23], which is
easy to integrate into the offical ViT [Goo23a] and T5 [Goo23b] codebases.

Pruning strategy. As we intend to execute substantial sweeps across model size, training
data and sparsity, it is essential that our pruning method is highly robust and does not require
hyper-parameter retuning for each run. A natural candidate is gradual magnitude pruning
(GMP) [ZG17], which is well studied and known to be very reliable. At the same time, GMP
is usually quite competitive with more complex techniques [SA20, KA22], especially at the
medium sparsity levels that we focus on. We also tested a variation of GMP which incorporates
diagonal second-order information [KCN+22], but found it to perform almost identically in
our setting. Further, we tried AC/DC [PIVA21], STE [LSB+20] and RigL [EGM+20] (which
achieve strong results on classic benchmarks) but saw similar or worse performance, while
being more sensitive to hyper-parameters as we scale (see also Appendix B.1.3). Thus, we
ultimately decided to use GMP.

In terms of specific hyper-parameters, we prune using a cubic schedule starting after 25% of
training and ending at 75%, updating every 100 steps. Our sparsification interval was chosen
so that pruning begins with a reasonably well trained model and ends with sufficient finetuning
of the final sparse structure. However, we performed ablations for frequency/start/end in
Appendix B.1.3 and did not find the process to be too sensitive to those hyper-parameters
(except for when the pruning interval is really short).

Sweep grids. Table B.1 lists the grid parameters that we sweep over. For ViTs, we consider
7 target models sizes in 2× increments each, while we use 4 targets sizes in increments of 4×
for T5. Vision Transformers are trained for 4 different lengths, with the longest corresponding
to ≈ 1.8 billion images; language models are trained for 3 different lengths up to ≈ 65 billion
tokens. The set of sparsity targets is the same in both cases, corresponding to 2, 4 and 8×
compression rate. Overall, the ViT grid was designed to be more extensive whereas the T5
setup was chosen to be more efficient.
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Model family ViT T5
#Non-zero params 0.66M, 1.33M, . . . , 42.4M 1.3M, 5.3M, . . . , 85M
Training steps 55K, 110K, 220K, 440K 250K, 500K, 1M
Sparsities 0.0, 0.5, 0.75, 0.875 0.0, 0.5, 0.75, 0.875
Total #runs 112 48

Table B.1: Grid definition for our main scaling sweeps.

B.1.2 Technical Details
Sparsity-aware RMS. AdaFactor [SS18] as employed by T5 [RSR+20b] defines the learning
rate relatively, scaling it by the root-mean-square (RMS) of each weight tensor, respectively.
We find that this does not interact well with high sparsity, as a tensor with many zeros tends
to have a lower RMS, resulting in a smaller learning rate, which is especially problematic as
high levels of sparsification require more recovery during the pruning process. To work around
this, we always calculate the RMS only over unpruned weights, which effectively alleviates this
problem. We also apply the same technique to AdaFactor’s RMS clipping threshold, but note
that this is much less critical than the learning rate scaling.

Iterative n:m pruning. Sparsifying to the n:m pattern is usually done by pruning in one-
shot, followed by finetuning [ZMZ+21], or directly training with a dynamic pruning mask via
straight-through gradient estimation [LAS+23]. We take a different approach in this work: we
gradually remove the smallest weights while ensuring that at least n weights remain in each
group of size m. This effectively generalizes the highly robust gradual pruning paradigm to
the n:m setting. Not only does gradual n:m pruning unify our setups between unstructured
and structured sparsity experiments, we also found it to work reliably across scales with the
same hyper-parameters, a highly useful property for scaling studies. A simple and efficient
implementation of this scheme is shown in Algorithm B.1: the key is to temporarily set
the largest n items in each group to ∞, thus ensuring that they are always picked by an
unstructured topk selection.

Algorithm B.1: Prune weights w to
sparsity s ≤ 1 − n/m where each
group of m weights contains at most
n zeros.

Inm ← topk-nm(|w|, n, m)
w′ ← copy of w
w′

Inm ←∞
Iunstr ← topk-unstr(|w′|, 1− s)
w−Iunstr ← 0

B.1.3 Pruning Ablations
We ablate gradual magnitude pruning hyper-parameters by sparsifying ViT-B/16 for 900M
images to S = 0.9375 sparsity. A high S was chosen in order to amplify differences between
parameter settings; we vary the (relative) start and end point of gradual pruning as well as
the update frequency of the mask; the pruning schedule is always cubic. As can be seen in
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Table B.2, most configurations perform very similar, except when the pruning period is too
short overall. We ultimately pick the 25-75/100 setup to ensure that there is sufficient time
for training a decent model before starting pruning, as well as for properly finetuning the final
sparse version, which we think could be helpful for some points in our main scaling experiment
grid.

start end freq accuracy
0.250 0.750 100 45.28
0.250 0.750 50 45.08
0.250 0.750 200 45.13
0.125 0.875 100 45.33
0.475 0.625 100 44.65
0.125 0.625 100 45.13
0.375 0.875 100 45.04

Table B.2: Ablation study of gradual magnitude pruning hyper-parameters.

AC/DC. We also experimented with the AC/DC method [PIVA21], a sparse training
approach that was recently shown to yield very strong results on standard (non-foundation
model) benchmarks [KKI+23]. We use a sparse and dense cycle length of 20K steps (10K each
phase) and apply AC/DC only during the same pruning period as our GMP setup to ensure
the same pre- and post-sparsification finetuning. On smaller T5 models, AC/DC works well
but yields very similar results to GMP. On larger models, however, AC/DC appears to require
some hyper-parameter reconfiguration for higher sparsities. Since per-model hyper-parameter
tuning is inconvenient for large scaling sweeps, while initial results also did not suggest
clear improvements, we stuck to well established GMP. In general, we note that even for
classic benchmarks, major differences between pruning methods tend to appear mostly at very
high sparsities [SA20]. Nevertheless, we think that more extensively investigating advanced
sparsification approaches in the context of massive pretraining datasets is an interesting topic
for future work.

#nnz 0.500 0.750 0.875
GMP AC/DC GMP AC/DC GMP AC/DC

1.3M 17.11 17.11 15.64 15.96 14.73 14.59
42M 6.11 6.11 5.87 6.05 5.81 6.11

Table B.3: Comparing validation perplexity of T5 models trained for 250K steps using GMP
and AC/DC, respectively; we show perplexity as losses at these levels should be compared in
log-scale.

B.1.4 Scaling Coefficients
Table B.4 lists the fitted coefficient values for the scaling results presented in the main paper;
D is assumed to be the number of images for ViT and the number tokens for T5. The
fitting errors are also shown, where we note again that they correspond to the Huber-loss
with δ = 0.01 for ViT/JFT and the Huber-loss of log L with δ = 0.001 for T5/C4, following
[HBM+22].
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Model Sparse aS bS cS bN aD bD c Error
ViT/JFT unstr. 2.94e+2 0.821 4.68e+2 0.392 2.37e+8 0.890 4.517 4.93e-4
T5/C4 unstr. 1.68e+1 0.722 4.50e+1 0.245 6.90e+8 0.203 0.651 7.60e-6
T5/C4 n:m 8.64e+1 2.752 5.36e+2 – – – – 2.1e-5

Table B.4: Fitted coefficients of the scaling laws presented in the main paper.

For n:m sparsity, we only refit the sparsity coefficients aS, bS and cS, preserving the other
values from the corresponding unstructured results. While the fitting procedure may not be
guaranteed to be convex, we find the process to converge to virtually the same values from
different random starting points.

B.1.5 Optimal Sparsity Derivations

Sparse costs. We now discuss how to derive the sparse cost factor cmul(S) given by
Equation 5.4 in Section 5.1.4 for our particular pruning setup. For the first 25% of training, we
use a dense model that is 1/(1−S) times larger, incurring cost 0.25/(1−S), while for the last
25% we are training a model with sparsity S of the same cost as the dense reference model,
thus contributing a 0.25 term. For the middle 50%, we prune in the cubic S − S · (1− t)3

schedule [ZG17], where t ∈ [0, 1]. The cost spent over this period is given by 1 minus (we care
about density rather than sparsity) the integral over the full range of t, which is (1− 0.75 · S),
further multiplied by 0.5 to cover the duration.

Contour lines. To determine the contours of Sopt(N, C), i.e., the regions where a particular
sparsity S is optimal, we first query L(S, N, D) with DS = D/cmul(S), where D = C/6N is
the amount of data corresponding to dense training FLOPs C relative to which cmul is defined,
giving:

(aS(1− S)bS + cS) ·
(︃ 1

N

)︃bN

+
(︃

cmul(S) · aD

D

)︃bD

+ c. (B.1)

Next, we optimize for S by differentiating and setting the result equal to 0:

−asbs(1− S)bS−1 ·
(︃ 1

N

)︃bN

+ bD

(︃
cmul(S) · aD

DS

)︃bD−1
·

(︃
c′

mul(S) · aD

DS

)︃
= 0. (B.2)

Finally, the form presented in the main paper is constructed by a few algebraic simplifications:

bD

(︃
cmul(S) · aD

DS

)︃bD−1
·

(︃
c′

mul(S) · aD

DS

)︃
= asbs(1− S)bS−1 ·N−bN (B.3)

bD ·
c′

mul(S)
cmul(S) ·

(︃
cmul(S) · aD

DS

)︃bD

= asbs(1− S)bS−1 ·N−bN . (B.4)
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Closed form solution. The closed form solution for Sopt(N, C) assuming dense costs
cmul(S) = 1/(1− S) can be found by solving the above contour equation for S:

(︃ 1
1− S

)︃bD+1
· bD

(︃
aD

DS

)︃bD

= (1− S)bS−1 · asbs ·N−bN (B.5)(︃ 1
1− S

)︃bD+bS

= aSbS

bD

·N−bN

(︃
aD

DS

)︃−bD

(B.6)

(bD + bS) · log
(︃ 1

1− S

)︃
= log

[︃
aSbS

bD

·N−bN

(︃
aD

DS

)︃−bD
]︃

(B.7)

1
1− S

= exp
{︃

log
[︃
aSbS

bD

·N−bN

(︃
aD

DS

)︃−bD
]︃
/(bD + bS)

}︃
(B.8)

S = 1− exp
{︃
− log

[︃
aSbS

bD

·N−bN

(︃
aD

DS

)︃−bD
]︃
/(bD + bS)

}︃
. (B.9)

Further algebraic manipulations yield:

S = 1− exp
{︃

log
[︃

bD

aSbS

·N bN

(︃
aD

DS

)︃bD
]︃
/(bD + bS)

}︃
(B.10)

S = 1− exp
[︃(︃

log bD

aSbS

+ bN logN + bDlog aD

DS

)︃
/(bD + bS)

]︃
. (B.11)

S = 1− exp
[︃(︃

log bD

aSbS

+ bN logN
)︃

/(bD + bS)
]︃
·

(︃
aD

DS

)︃bD/(bD+bS)
. (B.12)

Substituting DS by its expression in C and guaranteeing that the result is always non-negative
(since sparsity < 0 does not exist) brings the formula given in Section 5.1.4.

B.1.6 Impact of Sparsity on Downstream Tasks
As discussed in the main text, the focus of this study, similar to most other works on scaling
laws, lies on modeling the pretraining task validation loss. For dense models it is known, that
this loss is strongly correlated with performance on downstream (e.g. few-shot) applications
[HBM+22]. This effect has also been observed for sparse models, for example in the context
of transfer learning for ImageNet models [IPKA22]. We now provide additional evidence, for
our particular sparse models by evaluating them on a suite of common few-shot tasks.

Concretely, we consider all dense and sparse models from our main sweep and plot few-shot
accuracy vs. pretraining loss; the results are shown in Figure B.1. As can be seen, sparse
models exhibit very similar behavior to dense ones, both in terms of accuracy achieved for a
fixed validation loss as well in terms of overall noise level that is typical for each task. This
confirms that sparse models with better pretraining validation loss, like dense models, indeed
also perform, on average, better on few-shot tasks.

B.1.7 Practical Sparsity Acceleration
Although we focus primarily on developing a general understanding of sparsity scaling, rather
than on accelerating sparse model in practice, there are many works that study the latter. We
now summarize some of them.

Network weights that are exactly zero must not be stored and can be safely skipped during
computation. This means that, in principle, sparse models require both less memory as well as
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Figure B.1: Few-shot accuracy vs. pretraining loss for dense and sparse ViT/JFT models.

less compute to run than their dense counterparts. For CPU inference, this compute reduction
can be effectively translated into end-to-end speedups using sparsity-aware matrix algorithms
[EDGS20, KKG+20]. Custom hardware can also achieve strong throughput improvements for
sparse models: for example, Thangarasa et al. [TGM+23] report almost 4× speedup on a
matrix multiplication with 75% sparse weights. On modern GPUs, effectively utilizing fully
unstructured sparsity is challenging due to irregular computation patterns. However, newer
generations of NVIDIA GPUs include dedicated hardware support for semi-structured n:m
sparsity [PY21], yielding up to 2× speedup over fully dense matrix multiplications.
While effectively utilizing weight sparsity during training is still an active of research, there
are already some promising results. Emani et al. [EFS+23] report substantial end-to-end
training speedups for training large, unstructured sparse, Transformer models on custom
hardware. Meanwhile, [NPI+23] develop sparsity-aware backpropagation kernels for efficient
CPU training.
Finally, we note a very recent line of work which uses unstructured sparsity [XZL+23, KKF+23]
primarily for reducing model size, in order to fit massive Transformer models onto smaller
accelerators. Further, for memory bound generative inference, this brings practical as well, by
reducing transfer costs between GPU main memory and registers due.
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