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Abstract

Deep learning is essential in numerous applications nowadays, with many recent advancements
made possible by training very large models. Despite their broad applicability, training neural
networks is often time-intensive, and it is usually impractical to manage large models and
datasets on a single machine. To address these issues, distributed deep learning training has
become increasingly important. However, distributed training requires synchronization among
nodes, and the mini-batch stochastic gradient descent algorithm places a significant load on
network connections. A possible solution to tackle the synchronization bottleneck is to reduce
a message size by lossy compression.
In this thesis, we investigate systems and algorithmic approaches to communication compression
during training. From the systems perspective, we demonstrate that a common approach of
expensive hardware overprovisioning can be replaced through a thorough system design. We
introduce a framework that introduces efficient software support for compressed communication
in machine learning applications, applicable to both multi-GPU single-node training and larger-
scale multi-node training. Our framework integrates with popular ML frameworks, providing up
to 3× speedups for multi-GPU nodes based on commodity hardware and order-of-magnitude
improvements in the multi-node setting, with negligible impact on accuracy.
Also, we consider an application of our framework to different communication schemes, such as
Fully Sharded Data Parallel. We provide strong convergence guarantees for the compression in
such a setup. Empirical validation shows that our method preserves model accuracy for GPT-
family models with up to 1.3 billion parameters, while completely removing the communication
bottlenecks of non-compressed alternatives, providing up to 2.2× speedups end-to-end.
From the algorithmic side, we propose a general framework that dynamically adjusts the
degree of compression across a model’s layers during training. This approach enhances overall
compression and results in significant speedups without compromising accuracy. Our algorithm
utilizes an adaptive algorithm that automatically selects the optimal compression parameters
for model layers, ensuring the best compression ratio while adhering to an error constraint.
Our method is effective across all existing families of compression methods. It achieves up
to 2.5× faster training and up to a 5× improvement in compression compared to efficient
implementations of current approaches. Additionally, LGreCo can complement existing adaptive
algorithms.
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CHAPTER 1
Introduction

Deep Neural Networks have made remarkable advancements in the last few years. The models
find widespread applications across various domains, including computer vision [HZRS16,
DBK+20], natural language processing [VSP+17, DCLT18], as well as applications in natural
sciences [JEP+21]. Neural networks can also assist in image generation [RPG+21], information
search or analysis [BMR+20, LC17]. Yet, highily-adaptive models require a large scale of
models and datasets. In turn, training large models on massive data can be time- and energy-
consuming.
In this thesis, we focus on reducing the training time for the distributed training. Fast training
enhances the productivity of machine learning researchers and practitioners. Also, it reduces
the time between the data collection and deployment of the final model. It is often impractical
to handle large models and datasets on a single machine. The common strategy to tackle these
problems is to distribute the compute on multiple resources. The primary approach in Deep
Learning, which was also used in all aforementioned successes, is Data Parallelism [DCM+12].
Multiple devices process different partitions of the data in parallel and compute model updates.
Scaling the number of devices allows to increase the batch size which allows to speed up
the training. However, this improvement comes with two problems. The first is related to
the optimization algorithm, Stochastic Gradient Descent [RM51] (SGD), used in most of
Deep Neural Network training approaches. Parallelism helps SGD reduce the variance of
model updates by computing on larger portions (batches) of training data. However, it was
found [GDG+17] that training with large batch sizes results in worse accuracy on data the
model has never seen during the training. The second problem is that distributed training
introduces synchronization requirements among compute devices. The aforementioned SGD
represents a communication-intensive pattern. It contains computation-intensive phases and
communication-intensive synchronization of model updates interleaved with one another.
Communication is used to exchange the model parameters or the gradients between the
devices. This significantly strains the network both in terms of bandwidth and latency. As
hardware accelerators speed development continues to outpace network bandwidth and models
keep growing in size, the computation-to-communication ratio increasingly shifts towards
communication, i.e. advances in computation term are more prominent than communication
improvements. For example, BERT [DCLT18] model published in 2018 contains 340 million
parameters, whereas Nemotron-4 [WDD+24] released in 2024 consists of 340 billion parameters
showing the parameters count increase of 1000 times in 6 years. From the hardware perspective,
the interconnect bandwidth provided by major cloud providers between cloud instances has only
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improved by 10 times over the past decade. As a result, network performance can substantially
impact the training time for large Deep Neural Networks (DNNs).

In this thesis, we focus on system and algorithmic approaches that tackle communication
bottlenecks in Data Parallel training. One option is to use a specific hardware [SCH+21] to
circumvent the bandwidth problems. This requires additional efforts to deploy and maintain
the hardware, which can be excessive for most practitioners. Another solution is to reduce
communication by either reducing the message size or reducing the number of sent messages.
A number of messages can be reduced by taking local steps [Sti18], breaking the global
synchronization into peer-to-peer synchronization [LZZL18], or by the aforementioned approach
with batch size increase.

At a high level, this thesis is concerned with methods for lossy compression. In this approach
attention has to be paid to the following things: 1. Applying lossy compression affects the
final model accuracy, so the compression parameters have to be carefully chosen. 2. The
compression costs should be significantly lower than the communication gains so that applying
compression makes sense in practice. We address these challenges and propose systems and
algorithmic solutions to improve communication efficiency at Distributed Data Parallel training.

This thesis investigates the bottlenecks in distributed training of Deep Neural Networks
and presents a method for creating a system that uses efficient lossy compression in this
context. Additionally, we have implemented a framework that supports various communication
compression techniques, enabling us to match the performance of state-of-the-art systems
without affecting the final model’s accuracy.

The remainder of the thesis is organized in the following way:

• In Chapter 2, we present a necessary background on Neural networks and distributed
training concepts, and overview common approaches to tackle communication problems.

• In Chapter 3, we introduce a system supporting efficient gradient compression. We
show that the costly hardware overprovisioning approach can be replaced by algorithmic
and system design, and propose a framework called CGX, which provides efficient
software support for compressed communication in ML applications, for both multi-GPU
single-node training, as well as larger-scale multi-node training. CGX is based on two
technical advances: At the system level, it relies on a re-developed communication
stack for ML frameworks, which provides flexible, highly-efficient support for compressed
communication. At the application level, it provides seamless, parameter-free integration
with popular frameworks, so that end-users do not have to modify training recipes
or significant training code. This chapter is based on our published work [MRA22],
appearing in Middleware’22.

• In Chapter 4, we investigate the idea of adapting compression parameters across
model layers and training time. This chapter, based on our work [MAFA24], published
in MlSys’22, presents a general framework for dynamically adapting the degree of
compression across the model’s layers during training, improving overall compression
while leading to substantial speedups, without sacrificing accuracy. The framework,
called L-GreCo, is based on an adaptive algorithm that automatically picks the optimal
compression parameters for model layers, guaranteeing the best compression ratio,
while satisfying an error constraint. Extensive experiments over image classification
and language modeling tasks show that L-GreCo is effective across all existing families
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of compression methods and achieves up to 2.5× training speedup and up to 5×
compression improvement over efficient implementations of existing approaches, and
can even complement existing adaptive algorithms.

• In Chapter 5, which is based on our ICML’23 paper [MVGA23], we consider a variation
of Data Parallel training, namely fully-sharded data parallel (FSDP) training. We present
QSDP, a variant of FSDP supporting both gradient and weight quantization. QSDP is
simple to implement and has essentially no overheads. We validate this approach by
training GPT-family models with up to 1.3 billion parameters on a multi-node cluster.
Experiments show that QSDP preserves model accuracy, while completely removing the
communication bottlenecks of FSDP, providing end-to-end speedups of up to 2.2x.

• Finally, in Chapter 6, we review our methods and results and explore potential new
research directions for the future.
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CHAPTER 2
Background

In this chapter, we present the key concepts, algorithms, and systems for distributed deep
learning which we will refer to in the subsequent chapters. In the first part, we cover the
main concepts related to neural networks, training process, and optimization. Next, we
discuss distributed training. In the second part, we describe various approaches to scale the
training, and communication patterns in Data Parallel training and highlight the communication
bottlenecks in consumer-grade GPUs and compression methods that are commonly used to
tackle them.

2.1 Basics of Neural Network Training
Deep Learning is a subfield of Machine Learning and Artificial Intelligence. This section
explores the fundamental components and processes involved in Deep Learning training as a
comprehension of these mechanisms is essential for enhancing training efficiency.

2.1.1 Neural Networks
Neural Network represents a set of multiple layers of basic processing units called artificial
neurons. They take inputs, process them, and produce an output. Each neuron uses an
aggregation function to compute a single combined value from its weighted inputs. Then each
neuron applies an activation function to its input to produce the output. The connections
between neurons are called weights, and the model training involves adjusting these weights
to minimize the difference between the model predictions and true outcomes.

2.1.2 Training process
The training of the model is iterative and performed in steps. Each step comprises of two
phases: forward and backward passes.

Forward pass. During the forward pass the data is passed through the network, layer by
layer, from input to output. Each neuron processes the input using weights and an activation
function and then passes the result to the next layer. The final layer’s output is compared to
the expected result and an error or loss value is computed.
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2. Background

Loss function. The loss value represents a measure of how far the network’s output is from
the actual target value. The choice of the loss function depends on the type of task the model
is designed to solve. Common loss functions include Mean Squared Error (MSE) for regression
tasks and Cross-Entropy Loss [Goo52] for classification tasks.

Backward pass. The backward pass or backpropagation is the process of computing the
appropriate update for each layer in the network. It involves calculating the gradient of the
loss function with respect to each weight using the chain rule, and then updating the weights
in the opposite direction of the gradient so that it minimizes the model loss in subsequent
iterations.

2.1.3 Optimization algorithms
One of the common gradient-based optimization algorithms is Gradient Descent. It updates
weights by moving in the direction of the negative gradient. While Gradient Descent has
good convergence rates, it also comes with quite a high computational cost as it requires
computing the full gradient. Given the size of the dataset and the sizes of the modern neural
networks, the computation of the full gradient at each iteration becomes infeasible.

A possible solution to circumvent the costs of the Gradient Descent approach is to use an
estimation of the full gradient. Stochastic Gradient Descent [RM51], variation of gradient
descent, suggests using only a subset (mini-batch) of the data to calculate the gradient.
Although Stochastic Gradient Descent converges more slowly in terms of iterations compared
to Gradient Descent, its lower cost per iteration makes it suitable for large datasets and
models.

While Stochastic Gradient Descent and its variations are among the most popular algorithms
for optimizing neural networks, several other algorithms have been introduced, such as Ada-
grad [DHS11] and Adam [KB14], which calculate individual learning rates for each parameter
in the model.

2.1.4 Major hyper-parameters
The essential part of the training process is the hyper-parameters that affect both the efficiency
of the training and final model accuracy. Learning Rate: The rate at which the model is
updated. Too high learning rate value can cause instability, and too low can lead to slow
convergence. Mini-Batch Size: Number of samples processed before updating the model. The
large batch size allows to improve the training speedup but it decreases the generalization
qualities of the final model.

2.2 Distributed Deep Learning Training
Training deep learning models at the modern scale of model and dataset sizes is highly
computationally intensive and time-consuming. A possible way to tackle these problems is
to distribute the training onto multiple compute devices. There are several approaches to
distributed the compute of the training process.
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Figure 2.1: Types of distributed training. Solid arrow lines represent communication between
layers within a device and dashed arrow lines show the communication between devices.

2.2.1 Communication
Data Parallel

Data parallel distributed training is a popular method for training deep learning models on
large datasets. It involves splitting the data across multiple devices (workers), such as GPUs
or CPUs, while maintaining a copy of the entire model on each device. Each device is assigned
a data partition so that each device processes a unique portion of the data. At each step, all
workers perform forward-backward iterations on local data resulting in the local gradients. The
locally computed gradients are aggregated and used to update the model parameters. Data
parallel is characterized by repeated gradient communication among devices which synchronize
the model updates. The communication volume increases with both the model size and the
number of workers, leading to significant network traffic.

A variation of the Data Parallel approach is Fully-Sharded Data Parallel (FSDP) technique,
introduced in [RRRH20b]. This method addresses the challenges of training large models by
efficiently utilizing memory. FSDP incorporates data parallelism by allowing each shard to
process a different subset of the input data but it avoids keeping the entire copy of the model
on each device. In FSDP, model parameters are divided (sharded) across multiple devices.
Each device holds only a part of the full model’s parameters. During forward-backward the
weights of a layer that is about to execute an operation are collected on each device and
vanilla Data Parallel operation is performed.

Model Parallelism

In Model Parallelism, the model is split into multiple parts that are distributed across the
devices. Each device computes the input for its assigned model part and propagates it to the
subsequent device. The common approach for model parallelism optimization is pipelining. The
method suggests overlapping computations between one layer and the next as data becomes
ready. Pipelining is used to overlap forward evaluation, backpropagation, and weight updates.
This approach is commonly implemented [CKF11, SPP+19, AAB+15] and boosts utilization
by reducing periods of processor inactivity. The traffic pattern in such distributed training type
generally shows a sequential nature as data moves through each stage of the pipeline. The
amount of data exchanged between stages is proportional to the output sizes of the layers at
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the ends of the model partitions. It is typically smaller than the entire model because users
are able to choose how to partition the model to reduce communication between stages.

Tensor Parallelism

The third partitioning strategy for DNN training is tensor parallelism. This strategy divides the
work inside a layer and distributes the operations of a neural network across multiple devices,
such as GPUs. This approach is especially useful for training very large models that do not fit
into the memory of a single device. The main idea is to split the tensors - the data and model
parameters - involved in the computations across multiple devices then perform operations
locally and synchronize the results. Note, that unlike in the Data Parallel approach, in Tensor
Parallel the input can be split not only in batch dimension and we synchronize the outputs
of each layer not model updates. The typical example of Tensor Parallel is a distribution
of matrix-matrix multiplication. We split the input matrices into smaller submatrices and
distribute them across multiple devices or processors. Each processor then performs the matrix
multiplication using its assigned partitions. To get the final result matrix, we must combine
the partial results from each processor communicating and aggregating the local results.

In practice, large-scale deep learning typically employs a hybrid approach that integrates all or
some of the described distributed training types. This combination harnesses the advantages
of the methods to efficiently train large neural networks on extensive datasets. Figure 2.1
illustrates the major distributed training techniques implemented in the modern Deep Learning
frameworks.

This thesis focuses on the Data Parallel approaches - the ones that are mostly affected by
communication overhead in practice.

Communication primitives in Data Parallel

The original Data Parallel technique features storing a copy of a model on each device and
aggregation, typically summation, of model updates at each training iteration. Basically,
we need to compute the sum of local vectors and store the result on each device. Modern
implementations of this procedure include Parameter Server [LNC+18, LAP+14] approach and
various types of AllReduce collective primitive.

Parameter server Devices in this approach are split into two groups: workers that perform
the training computation and Parameter servers that are responsible for the model updates
aggregation (one device may serve two roles). In this method, the workers compute the model
updates and send them to parameter servers. These servers aggregate the updates to calculate
and distribute the new model parameters. This approach can accommodate a varying number
of workers and parameter servers, making it adaptable to different hardware configurations
and workloads. Sharding the model parameters across several Parameter Servers helps balance
the load and prevent bottlenecks, improving the overall efficiency of the training process.
This approach allows to avoid explicit synchronization between workers, however, it does
not completely exclude the global barrier - each worker still has to wait till all other workers
compute the update and send it to the Parameter Server.

Next, we describe various implementations of AllReduce primitive. The primitive gets an input
vector and a list of workers and at the end of the execution, each worker has an aggregated
input vectors from all workers.
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Full mesh approach is a straight-forward one-round algorithm in which every node sends a
vector to other participants and sums the received vectors. Basically, it represents AllGather
primitive with summing the resulting matrix along the 0-th dimension. The communication
complexity of this algorithm per node is dN2 (where d - size of the input, N - number of
workers), the latency term for Full Mesh is α (the communication with other servers can be
done in parallel).

Ring-Allreduce is arguably the most bandwidth-optimal algorithm. It is implemented in all
popular communication libraries (NCCL, Gloo) used in distributed Deep Learning frameworks.
Similar to SRA, Ring uses the division of the initial vector into chunks. But communication is
done in a ring-shaped topology. The algorithm consists of 2 phases, each phase has N − 1
rounds. In the first phase, each node p sends chunk p to the neighbor on the right in the
ring topology and receives a chunk from its left neighbor. Then it sums the received chunk
and its chunk p− 1 and sends the result to the right neighbor receiving chunk p− 2. The
receive-sum-send repeats N − 1 times and each node has a different portion of the resulting
vector. In the second phase, the nodes want to broadcast the resulting chunks, i.e. perform
AllGather collective, and, according to the algorithm, they do it within the ring-shaped topology.
They follow the same communication pattern as in the first round but instead of summing local
chunk chunks with the received ones each node overwrites local values. The communication
complexity is O(dN), the latency term is higher than in the previous algorithms and amounts
to 2α(N − 1), as long as communication can not be parallelized due to the algorithm design.

Rabenseifner’s AllReduce [Rab04] consists of two rounds. First, each process divides its
vector into N subarrays, which we refer to as “chunks”. In the first round, each node p receives
the p-th chunk of the initial vector (we refer to it as chunk p) from all nodes and aggregates
it. For example, the first node accumulates the elements of the input vector from 0 to ⌈ d

N
⌉,

second node broadcasts the range from ⌈ d
N
⌉ to 2⌈ d

N
⌉, etc. In other words, each node performs

a Scatter-Reduce collective. In the second round, each node broadcasts the aggregated chunk
to all other nodes, i.e. AllGather collective. The communication complexity of the algorithm
is O(dN), and the latency term is 2α.

Tree-AllReduce essentially represents a hierarchical parameter-server. It uses a dendritic data
aggregation pattern where each node collects data from its child nodes and then forwards the
aggregated data to its parent node. This traffic pattern follows the tree structure, typically a
binary or n-ary tree. The depth of the tree determines the latency. The communication is
done in 2log(N) rounds and two phases. The communication complexity is O(dN), latency
term is 2α log N .

Hierarchical Approach is specifically designed for multi-tier architectures and initially performs
AllReduce within nodes, such as multi-GPU systems, typically utilizing higher-speed links. It
then aggregates data between nodes during the inter-node AllReduce. They may combine
several aforementioned algorithms, in the sense that it uses different algorithms for inter- and
intra-node communication. Hierarchical combinations can face performance challenges when
there is a significant difference between intra-node and inter-node communication speeds or
when the hierarchy becomes excessively deep.

Fully Sharded Data Parallel

Fully Sharded Data Parallel (FSDP) is an advanced distributed training technique designed
to efficiently scale the training of large deep learning models across multiple GPUs. The key
idea (see Figure 2.2) is that both the training data and the model parameters are split among
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Figure 2.2: Scheme of Fully Sharded Data Parallel technique. Each worker keeps only a split
of the weights. Before the forward pass of a layer, all workers collect the missing weights of
the layer. Then the original Data Parallel forward pass with full weights is executed which
is followed by the removal of the received weights. At the backward pass, the weights are
gathered again and local gradients are computed and synchronized. Afterwards, the collected
weights are removed and the remaining weight split is updated with the synchronized gradients.

the N nodes. That is, only a 1/N partition of the parameters of each layer is stored at a
node. Then, during both the forward and backward passes, nodes operate synchronously
layer-by-layer. They use all-to-all communication to gather the full weights for the current
layer before performing the forward or backward operation. Once the operation is complete,
nodes can discard the received weight partitions for the current layer and proceed to the
next layer. The major advantage of the method is memory usage reduction. However, FSDP
faces challenges in terms of communication: since every forward and backward pass includes
all-to-all weight exchanges, the network bandwidth may suffer from massive communication.

2.2.2 Communication bottleneck
Since the communication of the gradients in the Data Parallel approach involves large
amounts of data, comparable to the size of the DNN, the communication becomes the
bottleneck [MRA22, PZC+19]. Specifically, Luo et al. [LNC+18] state that computation speed
and neural network sizes grow faster than network bandwidth. Hence, modern compute devices
(typically, GPUs) encounter long idle times while waiting for communication. This leads to
longer training time and inefficient utilization of computational resources.

The shift of the performance bottleneck from computation to communication is due to two
factors. First, advancements in GPUs and other compute accelerators, like the NVIDIA
H100 [NVI22], provide significant performance enhancements — 20× for floating point
calculations and 40× for mixed precision calculations—compared to V100, released in 2017.
Moreover, introducing new supported data types, e.g. fp8, increases the inference speed
by another 2× for mixed precision computations. This rate of improvement outpaces the
advancements in network bandwidth, which took 8 years to achieve a 10× increase in Ethernet
speeds, going from 10 Gbps to 100 Gbps.

Secondly, the training workload is undergoing a shift in the communication-to-computation
ratio, which is intensified by the trend toward larger neural networks. However, the impact
of this shift varies depending on the specific application. Popular deep learning frameworks
support partial overlaps of communication and computation phases, allowing communication
to begin as soon as the first partial results of backpropagation are available. The effectiveness
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of this technique depends on the structure of the model, with limited benefits for DNNs with
large initial layers, as there is less opportunity to overlap communication with computation in
these cases.

Model size,
params count 10 Gbits 50 Gbits 100 Gbits Ideal

125M 2.6 2.0 1.9 1.1
350M 14.0 6.8 6.0 3.2

1B 51.0 26.2 23.5 10.8

Table 2.1: Average step time (in seconds, lower is better) in the training of Large Language
models using Fully Sharded Data Parallel at different inter-node communication bandwidths.
“Ideal” stands for the training without communication.

To quantitatively validate the bottleneck, we performed a benchmark of 3 language models
trained using Fully Sharded Data Parallel in a cluster of 4 nodes, each includes 8 NVIDIA V100
GPUs. In order to verify the training performance for different communication bandwidths
(we chose 10, 50, and 100 Gbits) we artificially reduced input-output bandwidth on each node,
using the UNIX tc tool [TC01]. We can see (Table. 2.1) that training of a large model is
highly affected by communication bandwidth, the communication in this case contains 400%
of the computation (”Ideal“ column in the table). The typical size of the modern language
models could be by an order of magnitude larger which implies that communication bottleneck
in that case will become a significant challenge.

2.2.3 Communication compression
To address the problem of communication bottleneck, lossy gradient compression was proposed.
The DNN training usually applies versions of the Stochastic Gradient Descent (SGD) [RM51].
Given the training stochasticity, intuitively, the process should converge despite the noise
introduced by the lossy compression. The existing compression methods can be divided into
biased and unbiased.
Unbiased methods. A compression operator Q(v) over a vector v is called unbiased
if: E[Q(v)] = v. Examples of unbiased operators include quantization schemes, such as
QSGD [AGL+17], TernGrad [WXY+17], and some versions of sparcification, e.g. rand-
K [SCJ18]. Quantization reduces the precision of each element in the gradient vector, for
example, casts each 32-bits float to one byte. Sparsification methods pick a subset of the
gradient components, resulting in a sparse vector. Intuitively, sparsification might profit from
bucketing as well, but in practice, it works better when compressing gradients per layer or
even the full network-level gradient vector.
QSGD is a codebook-based quantization scheme. It maps vector components into predefined
values. This method quantizes each component of the gradient via randomized rounding to a
uniformly distributed set of values. The randomized rounding allows preserving the expected
value of the stochastic gradient. Formally, the method can be defined as follows. For any
v ∈ Rd, with v ̸= 0, Qs(vi) = ∥v∥2 · sign(vi) · q(vi, s). q(vi, s) is a random variable that is
defined the following way. Let 0 ≤ l ≤ s−1 be an integer such that |vi|/ ∥v∥ ∈ [l/s, (l+1)/s],
s is a size of the codebook. Then,

q(vi, s) =

⎧⎨⎩l/s, with probability 1− p(|vi|/ ∥v∥ , s)
(l + 1)/s, otherwise
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Algorithm 2.1: Training with error feedback
input : Local copy of model x, Number of nodes N , e0 = 0
output : The trained model x̂

1 On each node i for each iteration t do
2 Calculate stochastic gradient gi

t(x);
3 pi

t = gi
t(x) + ei

t; // Apply error feedback
4 ci

t = Q(pi
t); // Compress the vector

5 ei
t+1 = pi

t − ci
t; // Update error feedback

6 Perform AllReduce operation decompressing vectors when needed;
7 Result of AllReduce: pt = 1

N

∑︁N
j=1 pj

t ;
8 Apply pt to x;
9 end

where p(a, s) = as− l for any a ∈ [0, 1].
The major advantages of QSGD are efficient implementation of the algorithm, absence of
training hyperparameters tuning in practice, and lack of additional tools to compensate the
loss. The disadvantages include constraints on compression ratio (the experiments show that
the accuracy degrades in general when the compression ratio exceeds ∼ 8 and, in theory, one
cannot quantize the element to less than 1 bit), non-associativity of the compression operator
with summation (i.e. the order of compression and summation operations matters). Another
downside of the QSGD is that when it is applied to the entire gradient vector it leads to a
convergence degradation, due to scaling issues. The common way to address this is to split
the vector into subarrays, called buckets, and apply a compression technique independently to
each bucket. This approach increases the compressed size of the vector because we have to
keep meta-information for each bucket and slows downs the compression, but helps to recover
the full accuracy.
TernGrad encodes gradient components into three values {-1, 0, 1} scaled by the infinite
norm of the gradient. First, given a stochastic gradient g, the method encodes values to bits,
the bit values are selected with probability: P (bi = 1|g[i]) = |gi|/ ∥g∥∞. Formally, TernGrad
is defined as: Q(gi) = ∥g∥∞ · sign(gi) · bi. The main disadvantage of the algorithm is the
necessity of tuning hyperparameters such as learning rate schedule and weight decay. When
the standard parameters are used, the algorithm has a substantial accuracy loss.
Rand-K is a fixed-dimension sparsification method. A set of k values is randomly selected
out of d possible ones and passed along with the corresponding indices, all other values are
ignored. By design, Rand-k is biased but can be made unbiased by multiplying g with a factor
d/k. In comparison to the previous methods, Rand-K has higher limits of the compression
ratio. However, training with applied Rand-K does not converge or has a high accuracy loss in
practice with comparable to the QSGD compression ratio using the standard hyperparameters.
Biased methods. Basically, a compression operator Q(v) is called biased if E[Q(v)] ̸= v.
In general, such compression operators need compensation techniques that aggregate the
error introduced by the compression. An example of such a technique is error feedback (see
Algorithm.2.1). Applying such compensation methods lets us recover accuracy and improve
convergence rate for both unbiased and biased methods [KRSJ19]. A possible drawback of
the error feedback is a memory overhead - the size of error feedback buffers is comparable
to the model’s size. Examples of biased methods include quantizations, sparsifications, and
low-rank methods.
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Figure 2.3: Example Top-k compression: 20% of the gradient components and corresponding
indices are sent.

One-bit SGD [SFD+14] represents a quantization method that encodes all elements that are
less than the constant threshold τ to 0, and all others to 1. In decoding, zeros transform
to the mean of negative values, and ones to the mean of positive values. The approach can
be easily efficiently implemented, but it requires memory compensation mechanisms, and
hyperparameters tuning and the compression operator is not associative.
Top-K [RAA+19, Sti18] is a fixed-dimension sparsification method. It selects the elements
from the vector that belong to the k largest values of the vector (in absolute value) and
saves their indices and values (see Figure.2.3). This method has unlimited perspectives of the
compression ratio value. Although similar to QSGD, it loses accuracy with standard parameters
starting from a certain compression ratio threshold and, as a biased compression it requires
additional error compensation techniques. Another downside of the method is an expensive
estimation of the largest values which significantly slows down the compression.
A different approach to gradient compression is to treat the gradients as multidimensional
tensors, not as vectors. The idea of the low-rank factorization methods is to decompose the
gradient matrix G ∈ Rm×n into 2 rank-r matrices P ∈ Rm×r and Q ∈ Rr×n. In order to
reduce communication complexity r is chosen much smaller than m and n.
There are several methods favoring this approach. ATOMO [WSL+18] uses singular value
decomposition (SVD) to find P and Q matrices. But in the case of large models SVD of gradient
matrices becomes too compute-intensive to use it in DNN training. PowerSGD [VKJ19] uses
a generalized power iteration algorithm to calculate P and Q matrices. Among the other
low-rank factorization methods PowerSGD is the fastest one, to the best of our knowledge. The
advantages of this technique are that it has high compression rates(up to 100− 1000×) and
that the compression operator is associative. One of the disadvantages is high latency overhead
because it compresses and communicates layers separately and does two communication
rounds per layer. Also, in order to recover the accuracy the method introduces several memory
compensation buffers which increases the memory footprint.
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CHAPTER 3
Systems support for efficient gradient

compression

3.1 Preface
As previously mentioned in Chapter 2, distributed training in Data Parallel setup suffers from
communication bandwidth limitations. Lossy gradient compression is a widely used approach to
address this issue. Although numerous methods and techniques have been proposed, only a few
are practically applicable. Furthermore, integrating these methods into real-world applications
demands substantial engineering effort, and the resulting performance improvements may fall
short of expectations.

In this Chapter, which follows [MRA22] with minor changes, we discuss the communication
problems of distributed training and suggest an algorithmic and systems design approach as
an alternative to hardware overprovisioning approach. We present a gradient compression
framework, called CGX (for Compressed Gradient Exchange), that provides significant speedups
for multi-GPU nodes based on commodity hardware, and order-of-magnitude improvements in
the multi-node setting, with negligible impact on accuracy.

3.2 Introduction
Distributed scalability of Deep Learning still presents non-trivial challenges, and the last
decade has seen a tremendous amount of work on distributed paradigms, algorithms, and
implementations to address them [LAP+14, CSAK14, ABC+16, PZC+19, JZL+20].

Specifically, two key scaling challenges behind are reducing the synchronization costs among
computing nodes [JWG+19, JZL+20, PZC+19, LMXG21], and minimizing the communication
costs which arise naturally due to the high bandwidth requirements of all-to-all transmission of
model updates (gradients) between nodes. In this chapter, we focus mainly on mitigating the
bandwidth cost of gradient transmission in DNN training, which is an increasingly common
bottleneck, correlated to the soaring parameter counts of modern machine learning models.

There are two main strategies for addressing bandwidth bottlenecks. The industrial approach
involves bandwidth over-provisioning, exemplified by the 30-fold increase in inter-GPU band-
width in NVIDIA-enabled cloud-grade multi-GPU servers from the 2015 Kepler generation to
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the post-2018 Ampere generation, aided by the customized GPU-centric NCCL communication
library [Nvi18]. However, this approach incurs substantial hardware and development costs,
leading to significantly higher expenses for end-users. For instance, there is a nearly tenfold
cost difference between cloud-grade, over-provisioned multi-GPU servers like NVIDIA DGX
systems [GLD+17] and commodity workstations with consumer-grade GPUs, which are popular
due to their lower costs and comparable single-GPU performance, but have notable scalability
performance gaps.

The alternative algorithmic approach leverages the fact that stochastic gradient descent
(SGD) [RM51] can converge with compressed gradients. Methods such as gradient quantization,
sparsification, and gradient decomposition can theoretically reduce bandwidth costs by up to
two orders of magnitude without compromising accuracy. However, practical implementation
of these methods faces significant challenges.

The first challenge is that of parametrization and integration: approaches such as gradient
sparsification or decomposition often require non-trivial parameter and implementation changes
to the training process, e.g. [LHM+17, RAA+19, VKJ19], to support compression. This would
require practitioners to revisit their entire training setup and tune additional hyper-parameters,
in order to achieve compression while recovering accuracy. A second challenge is that of
efficient system support for communication-compression, as it often requires significant
changes to lower levels of the software stack, such as supporting compressed or sparse data
types. Despite research in this direction [XHA+21, BLZ+21, GJY+21], the question of general
and efficient system support for communication-compression is still open: currently, only one
such approach, PowerSGD decomposition [VKJ19], is supported natively by one popular
framework, PyTorch [PGM+19].

Contributions. In this chapter, we introduce a communication framework called CGX,
which addresses these challenges, and allows for parameter-free, seamless integration of
communication-compression into data-parallel DNN training workflows, with up to order-of-
magnitude speedups for data-parallel DNN training.

At the application level, CGX starts from an investigation of the feasibility of parameter-
free compression: specifically, we implement and test all existing algorithmic approaches,
and identify a variant of quantization-based compression that converges to full accuracy for
many popular models, under fixed, universal settings of parameters, without modifying to
the original training recipes. At the system level, we investigate how gradient compression
can be seamlessly and efficiently integrated with modern ML frameworks. Specifically, we
revisit the entire communication stack of modern ML frameworks with compression in mind,
from a new point-to-point communication mechanism which supports compressed types, to
compression-aware reductions, and finally a communication engine which interfaces with ML
frameworks, supporting compression at the tensor/layer level.

The existence of a parameter-free compression technique which recovers accuracy, combined
with the ability of CGX to customize the compression level per layer motivates a new layer-wise
adaptive compression problem. The idea is that we can customize the way model gradients
are compressed in layer-wise fashion, so that the overall compression error is close to a given
accurate baseline, but maximizing the bandwidth gains: for instance, one can apply more
aggressive compression to layers that are larger, but less “sensitive” in terms of accuracy. While
prior work has already considered techniques which globally adapt the degree of compression
during training, e.g. [AWL+21, MAEAC21], this is the first instance of this problem to jointly
considers both error and compression constraints at the fine-grained per-layer level. Our
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Figure 3.1: Compression vs. average step time for different models, when using all GPUs on an 8x
RTX-3090 machine (Table 3.2). Dotted lines denote the throughput at perfect scalability for each
model. Throughput nears ideal as we decrease transmission size, suggesting that bandwidth is the
main bottleneck. See Section 3.3.1 for details.

experimental results show that layer-wise adaptive compression can bring significant additional
gains.

To justify our design choices, we contrast our design against the first implementation of
quantized collectives in NCCL, which we call QNCCL, which we contribute as a separate
artifact, showing clear performance and usability improvements in favor of the CGX design.
In addition, CGX does not require significant user-code or training pipeline changes, as we
provide turn-key integrations with popular ML frameworks such as Pytorch(Section 3.5.1) and
Tensorflow(Appendix A.2).

Experimental Validation. From the practical perspective, our work is motivated by the
experimental data in Figure 3.1, showing that bandwidth congestion is the key scalability
bottleneck on single-node, multi-GPU commodity servers, which have emerged as a popu-
lar training approach [Lam21, Gen21, Lea21]. The same phenomenon occurs generally in
multi-node data-parallel training settings, for a wide range of current and emerging training
workloads, from image classification using classical convolutional neural networks (CNNs),
to Transformer-based models for both language modeling [VSP+17, DYY+19] and image
classification [PVU+18, DBK+20].

We validate our system experimentally in both single-node and multi-node settings, across all
of the above standard training tasks. We compare servers using commodity NVIDIA GPUs
(RTX series) against cloud-grade NVIDIA servers from the Volta and Ampere architectures.
(See Table 2 for details.) First, we find that, once communication bottlenecks are eliminated
from “commodity" machines using CGX, they can match or outperform cloud-grade server
with similar peak performance. Importantly, this can be done with negligible accuracy loss.

For example, we find that, on a commodity 8x RTX 3090 server, CGX can almost triple
training throughput, reaching up to 90% of the ideal scaling, matching or even outperforming
a bandwidth-overprovisioned (and more expensive) DGX-1 system. Our second application

17



3. Systems support for efficient gradient compression

Table 3.1: Server-grade (first 2) vs. consumer-grade NVIDIA GPUs. Throughput obtained
using the NVIDIA Deep Learning Examples benchmark [Nvi20]. Throughput for Resnet50
is measured in images/s, for Transformer-XL (T-XL in table) in tokens/s. TDP stands for
maximal Thermal design power (in Watts).

GPU type Arch. SM TensorCores GPU Direct GPU RAM, GB TDP ResNet50 T-XL
A100 Ampere 108 432 Yes 40 250 2470 60K
V100 Volta 80 640 Yes 16 250 1226 37K
A6000 Ampere 84 336 Yes 48 300 566 39K

RTX3090 Ampere 82 328 No 24 350 850 39K
RTX2080 TI Turing 68 544 No 10 250 484 13K

Table 3.2: Systems characteristics of workstations used in evaluation.

System GPUs Inter-GPU link Inter-GPU
bandwidth GPU RAM RAM CPUs

DGX-1 8xV100 NVLink 100 Gbps 128 GB 512 GB 64
A6000 8xA6000 NVLink 100 Gbps 384 GB 1008 GB 128

RTX-3090 8xRTX3090 None (bus) 15 Gbps 192 GB 512 GB 128

RTX-2080 8xRTX2080
TI None (bus) 15 Gbps 96 GB 256 GB 72

is to multi-node training, where we show up to 10x performance gains, enabled in part by
our new solution to the adaptive layer-wise compression problem, without accuracy loss or
additional parameters.

Our findings imply that hardware bandwidth overprovisioning may not be required for scalability
in DNN training, and that highly-customized, hyperparameter-heavy compression techniques
are not always necessary to remove bottlenecks. This should be immediately useful to users
aiming to scale such workloads on commodity or multi-node hardware, but also more broadly
for hardware/software co-design for distributed deep learning.

3.3 Motivation and Prior Work

3.3.1 A Motivating Experiment
The standard computational unit for DNN training is the multi-GPU node, usually in instances
with 4–16 GPUs. End-users often rely on consumer-grade GPUs for training, whereas tra-
ditionally cloud services mainly employ cloud-grade GPUs, with some notable exceptions,
e.g. [Lam21, Lea21, Gen21]. We begin by briefly examining the scalability differences between
cloud and commodity GPU servers. As we illustrate in Figures 3.5b and 3.5c, the maximum
effective throughput of a cloud-grade 8-GPU DGX-1 server is > 2× higher than that of
a comparable commodity 8xRTX-3090 GPU server, when using the same state-of-the-art
software configuration (specifically, Horovod [SB18] on top of the NCCL communication
library).

This gap is surprising, considering that the single-GPU performance is similar (see Table 3.1).
To examine the specific impact of gradient transmission / bandwidth cost, we implemented
a synthetic benchmark that reduces bandwidth cost by artificially compressing transmission.
Specifically, assuming a buffer of size N to be transmitted, e.g. a layer’s gradient, and a target
compression ratio γ ≥ 1, we only transmit the first k = N/γ elements. The results for the 8x
RTX-3090 machine, using all 8 GPUs, are shown in Figure 3.1, where the compression ratio

18



3.3. Motivation and Prior Work

is varied on the X axis, and we examine its impact on the time to complete an optimization
step, shown on the Y axis. The dotted line represents the time per step in the case of
ideal (linear) scaling of single-GPU times. We consider Transformer [DYY+19] and BERT-
based models [DCLT18] for language modeling tasks, as well as VGG-16 [SZ14] and Vision
Transformer (ViT) models for classification on ImageNet.

We therefore observe that bandwidth cost appears to be the main scalability bottleneck on this
machine. Moreover, recent models (Transformer-XL and ViT) benefit more from compression
relative to the classic ResNet50 model, which has fewer parameters. Second, there are limits
to how much compression is required for scalability, which depend on the model characteristics.
An order of magnitude compression appears to be sufficient for significant timing improvements,
although Transformer-based architectures can still benefit from compression of up to two
orders of magnitude.

Discussion. The reason for this poor scalability is the lack of efficient communication
support. Specifically, GPU-to-GPU transmissions on commodity hardware have significantly
lower bandwidth, and higher latency, relative to their cloud counterparts. Specifically, in
software , the NVIDIA GPUDirect technology should allow GPUs on the same machine to
communicate directly, without the need for extra memory copies. Commodity GPUs, such as
the RTX 3090, do not support this technology. At the same time, the hardware communication
support for NVIDIA GPUs, i.e. NVLink and NVSwitch components, is also not available or
severely restricted for commodity GPUs [Har21, nvi21].

3.3.2 Data-Parallel DNN Training

Distribution Strategies and Costs. Training a DNN essentially minimizes a loss function,
related to the error of the model on the dataset, via a sequence of optimization steps, each
acting on some data samples. To preserve computational efficiency, it is common to perform a
batched version of this process, by which several samples are processed in a single optimization
step, and the sum of gradients is applied.

Data-parallelism is arguably the standard way to scale DNN training, and can be viewed as
a variant of batch SGD in which sample gradients are generated in parallel over compute
nodes. Specifically, the dataset is partitioned over nodes, each of which maintains a copy of
the model, and computes gradients over samples in parallel. Periodically, these gradients are
aggregated (e.g., averaged) and the resulting update is applied to all local models.

Several techniques have been proposed to address the synchronization and communication
costs inherent to this lock-step averaging procedure. Here, we focus on communication/band-
width cost, and assume that synchronization preserves the synchronous ordering of gradient
iterations, although our techniques are also compatible with all existing scheduling strategies,
e.g. [JWG+19, PZC+19, JZL+20, YLM+20].

Batch Scaling. An orthogonal scaling approach is increasing the batch size at each node. This
requires careful hyper-parameter tuning for accuracy preservation, e.g. [GDG+17, YLR+19],
although recipes for large batch scaling are known for many popular models. We consider
scalability in both 1) the large-batch setting, where we adopt the best-known hyperparameter
recipes to preserve accuracy, and 2) the small-batch setting, corresponding to datasets or
models for which large-batch scaling parameters are unavailable or unknown.
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3.3.3 Communication Compression Methods
The basic idea behind communication-compression methods is to reduce the bandwidth
overhead of the gradient exchange at each step by performing lossy compression. Our
presentation assumes that a generic mechanism allowing for all-to-all communication among
the nodes is available. (We discuss our implementation choices in Sections 3.4 and 3.5.)
Roughly, existing schemes can be classified as follows.

Gradient Quantization. Roughly, this approach works by reducing the bit-width of the
transmitted updates [SFD+14]. One of the first compression approaches [AGL+17] observed
that stochastic quantization of the gradient values is sufficient to guarantee convergence. Their
method, called QSGD, is a codebook compression method which quantizes each component
of the gradient via randomized rounding to a uniformly distributed grid. Formally, for any
non-zero vector v⃗, given a codebook size s and v⃗ ∈ Rd, Qs(vi) = ∥v⃗∥2 · sign(vi) · q(vi, s).
The stochastic quantization function q(vi, s) essentially maps the component’s value vi to
an integer quantization level, as follows. Let 0 ≤ ℓ ≤ s − 1 be an integer such that
|vi|/∥v⃗∥ ∈ [ℓ/s, (ℓ + 1)/s]. That is, ℓ is the lower endpoint of the quantization interval
corresponding to the normalized value of vi. Then,

q(vi, s) =

⎧⎨⎩ℓ/s, with probability 1− p(|vi|/∥v⃗∥, s),
(ℓ + 1)/s, otherwise

where p(a, s) = as − ℓ for any a ∈ [0, 1]. The trade-off is between the higher compression
due to using a lower codebook size s, and the increased variance of the gradient estimator,
which in turn affects convergence speed. This idea inspired a range of related work [LAK18,
RKFM+21, FTM+20] reducing the variance of the compression by improved quantizers. We
discuss these schemes further in Section 3.5.

Gradient Sparsification. These methods, e.g. [Str15, DJMVE16, LHM+17, KRSJ19], cap-
italize on the intuition that many gradient values may be skipped from transmission. The
standard approach to sparsification is magnitude thesholding, effectively selecting the top K
gradient components for transmission, where K is a hyper-parameter. Then, error correction
is applied to feed the thresholded gradient components back into the next round’s gradient.
Variants of this procedure can achieve more than 100× gradient compression while still recov-
ering accuracy [LHM+17]. However, this comes at the price of model-specific hyper-parameter
tuning, which may be unreasonable in a deployment setting.

Renggli et al. [RAA+19] proposed efficient sparse collectives, and observed that sparsification
methods can be promising in cases where there is high natural redundancy–such as fully-
connected or embedding layers–but may be a poor choice for general compression due to the
need for hyper-parametrization. Our investigation confirmed their finding.

Gradient Decomposition. This approach treats the gradients as multidimensional tensors,
and decomposes the gradient matrix G ∈ Rm×n into 2 rank-r matrices P ∈ Rm×r and
Q ∈ Rr×n, with r much smaller than m and n. ATOMO [WSL+18] uses singular value
decomposition (SVD) to find the matrices P and Q. However, in the case of large models,
the SVD of gradient matrices becomes too compute-intensive to be used during training.
PowerSGD [VKJ19] uses a generalized power iteration algorithm to calculate the matrices P
and Q, and is the fastest currently-known factorization method. To recover accuracy, it applies
a combination of error correction techniques. Their results show that these methods can be
highly useful in the case of CNNs, yielding high compression ratios (up to 100×). However, in
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Table 3.3: Compression approaches. Stateful here means that approach requires maintaining
of a state of error compensating techniques.

Compression
rate with
recovery

Tunable
Parameters Properties Computational

Overhead

Quantization ∼ 8x Bits, bucket size Non-associative, stateless ≤ 3%

Sparsification
(TopK) ∼ 100x Sparsity,

momentum

Non-associative, stateful,
not overlapping with

compute
10%

Decomposition
(PowerSGD) ∼ 100x Rank, warm-up

Associative, stateful,
incompatible with mixed

precision
20%

our experience, recovering accuracy in e.g. Transformers training requires careful tuning, and
higher rank values, resulting in lower performance.
Adapting Compression during Training. The idea of adapting the degree of compression
during different stages of DNN training has been considered by [AWL+21, GLW+20, CCB+18,
CYRW20, MAEAC21]. However, we emphasize the fact that all these references globally
adapt the amount of gradient compression for the entire model to preserve end accuracy,
whereas we investigate mechanisms which adapt compression at the per-layer level. Moreover,
to achieve high compression, some existing methods require hyperparameter tuning [CYRW20]
or focus on specific architectures [AWL+21]. By contrast, we adapt compression parameters
automatically both across layers, and across training iterations.
Efficient Software Support. There has already been significant work on providing system
support for compression. Two main challenges are: 1) the introduction of additional hyper-
parameters in the training process, and 2) the fact that, since most compression methods are not
associative, they are not directly supported by standard collective implementations and require
algorithm-specific re-implementations. Grubic et al. [GTAZ18] showed that CNNs can withstand
8-bit gradient compression, and provided a simple MPI-based implementation of quantization,
while Dutta et al. [DBA+20] examined the implementation gap, showing that frameworks should
support both global and per-layer compression. Renggli et al. [RAA+19] and Fei et al. [FHS+21]
provided efficient support for sparse reductions, while the GRACE framework [XHA+21],
Bagua [GJY+21] and HiPress [BLZ+21] frameworks provided efficient implementations of
communication-compression methods. We compare against these frameworks in Section 3.7.
We differ from this prior work in two major directions. At the application level, we focus on
seamless, parameter-free integration with existing data-parallel training pipelines: thus, we
investigate compression techniques which allow accuracy recovery without additional hyper-
parameter tuning. This is not the case with prior frameworks, which leave the choice of
compression parameters to the user. Second, at the system level, we seek to maximize speedup
by rewriting components of the communication stack to support compression, provide an
adaptive layer-wise compression solution which maximizes speedup.
Recent work by [AWVP] investigated the practical potential of gradient compression methods
in cloud-grade settings. They provide analytical and empirical evidence suggesting that gradient
compression methods can only provide marginal speedups in distributed data-parallel training
of DNNs in such bandwidth-overprovisioned settings.
However, the generality of their results is restricted by the following factors: 1) they only
consider a limited subset of compression methods and possible implementations: for instance,
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their compressed implementations strictly follow the NCCL API, which, as we illustrate via our
QNCCL implementation, means that the compression methods were used inefficiently and with
accuracy loss; 2) they focus on cloud-grade bandwidth-overprovisioned systems, and therefore
their findings do not apply to the popular setting of commodity servers. These two factors, as
well as additional implementation differences, explain the difference between their conclusions
and the ones from this work.

3.4 Goals and Challenges
The results in Section 3.3.1 suggest that bandwidth can be a key bottleneck when attempting
to scale DNN training on commodity GPUs, while the discussion in Section 3.3.3 outlines
non-trivial trade-offs when implementing these techniques for general models. We therefore
outline our key goals:

1. Accuracy Recovery: Similar to MLPerf [MRC+20], we set our accuracy loss threshold
at < 1% relative to the main metric of the full-precision baseline (e.g. Top-1 classification
accuracy), although in most of the tasks we present the accuracy loss is practically
negligible.

2. Hyperparameter-Freedom: Second, we wish to enable scalable data-parallel DNN
training in the absence of any model or task information, recovering accuracy under
standard (uncompressed) hyper-parameters.

3. Eliminating Bandwidth Bottlenecks: Third, we aim to mitigate or even completely
eliminate bandwidth constraints. Since not all target models are equally communication-
bottlenecked, this allows us some flexibility with respect to how much compression to
apply depending on the model and application.

4. Simple Interface: Finally, the integration with the underlying training framework should
be seamless.

State of the art. We executed implementations of the compression methods described
in Section 3.3.3 on a range of modern tasks and models. Our findings are summarized in
Table 3.3, and discussed in detail below.

We found that no existing approach fully satisfies all the above requirements. For instance,
quantization-based methods are known recover accuracy on CNNs when using 8-bit compres-
sion [GTAZ18], meeting Goals 1 and 2. However, this amount of compression is not sufficient
to remove the bandwidth bottlenecks for modern Transformer-class models (Goal 3); moreover,
the parameters of [GTAZ18] do not allow full accuracy recovery on Transformers.

Second, examining gradient sparsification methods, we notice that they can ensure high com-
pression (Goal 3); however, they require complex hyperparameter tuning for accuracy recovery
in the high-compression regime [LHM+17], breaking either Goal 1 or Goal 2. Conversely, as
also noted by [RAA+19], these methods can recover accuracy under medium density (e.g.
20%), but in that case their performance is similar to quantization approaches. This family of
methods has the additional cost of having to maintain state (the error buffer) and being less
amenable to computation-communication overlap, since the selection operation is applied over
the entire gradient.
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Finally, decomposition methods have been shown to yield compression ratios of up to 100×
in the case of CNNs, attaining Goal 3. Moreover, with careful tuning of hyper-parameters,
PowerSGD is able to recover accuracy for CNNs under generic rank-decomposition values.
In addition, this method is associative, lending itself to seamless implementation via MPI or
NCCL (Goal 4). Unfortunately, however, we found that this method can require high rank
values for stable training, especially on Transformers, where there is almost no speedup, and
that it is not compatible with reduced-precision (FP16) training, which is used by virtually all
frameworks.

3.5 CGX System Design
A typical DNN training framework has three parts, as described in Figure 3.2:

1. Framework interface (in Python) with high-level API. It may also include a frontend
that unifies the input from the learning framework.

2. Background thread collecting inputs, groups them into blocks based on query type
and input properties.

3. Communication engine performing the query (Allreduce, Broadcast, Allgather). At
this stage, the framework typically calls an existing communication library, such as NCCL,
Gloo, or an MPI implementation.

A key issue when implementing most compression methods such as quantization or sparsification
is that their operations are non-associative, and so the aggregation function (sum) must be
performed at the lowest level in the above diagram. This means that we cannot integrate the
compression into higher levels without a bespoke implementation, which in turn may lead to
performance and implementation costs.

3.5.1 The CGX Communication Engine
To efficiently support compression, we implemented our own communication engine, with
primitives which support non-associative compression operators. Broadly, there are two
approaches to do this. The first is a native one, by which one can implement compression-
aware Allreduce using communication libraries. Alternatively, one can modify or extend existing
communication libraries, such as NCCL, to support compression operators.

The native approach requires deeper integration, but has the advantage that compression
is performed “closer" to training, which means that the compression engine has information
about the model layers, and their gradients and thus has a richer, more flexible API. The
disadvantage is that it has to explicitly interface with the training framework, and users may
have to adjust their training pipeline.

The second low-level approach is to directly perform compression and de-compression at the
primitive/transport level, independently of the user’s code and training pipeline. In this case,
the framework can only operate with the raw data buffers provided by the upper layers. This
loses information about the data it operates with, e.g., layer names, which could be useful
for compression operators, but is easier to interface with, and may have lower overheads.
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Figure 3.2: Abstract architecture of a Distributed
Data Parallel (DDP) framework. CGX components
are in blue, and arrows stand for procedure calls.
Dashed arrows represent hardware interactions, e.g.
P2P transport is supported via GPU NVLinks.

Framework Integration

To investigate this non-trivial dichotomy,
we implemented both variants. Specif-
ically, our main framework, called
CGX, integrates natively with the user’s
code, and can interface both via
Horovod [SB18], a popular distribu-
tion wrapper that works with all ma-
jor ML frameworks, but also separately
via framework-specific extensions, such
as PyTorch Distributed Data Parallel
(DDP). Separately, as an instance of the
“low-level” approach, we re-implemented
the NCCL communication library to
support quantized reduction operations.
We call this separate implementation
QNCCL, and contrast it to our main
approach.

The Native CGX Framework. The
main version of CGX uses the Horovod
wrapper [SB18] to interface with popular
ML frameworks. Specifically, we imple-
mented a communication engine with
Allreduce methods supporting compres-
sion operators. Next, we added layer
filters that split model gradients into log-
ical subsets, which the framework may handle differently: some accuracy-critical subsets are
communicated in full precision, while other subsets are compressed and reduced in lower-
precision. Empirically, it is known that layers like batch/layer normalization and bias layers
are sensitive to gradient compression, while being small. Therefore, we communicate them
uncompressed. As a bonus, this avoids calling compression operators for multiple small inputs.

Further, CGX performs compression per-layer, and not as a blob of concatenated tensors. This
provides the flexibility of exploring heterogeneous compression parameters and avoids mixing
gradient values from different layers, which may have different value distributions, leading to
large quantization error. We found that such filters can be applied “at line rate” without loss
of performance, as most of the computation can be overlapped with the transmission of other
layers. CGX’s API allows users to choose the compression parameters for specific layers or
filter out the group of layers.

Torch DDP Integration. Our compression/communication engine is portable: to illustrate
this, we also integrate it separately with the Torch DDP pipeline [PGM+19]. The code is
available at https://github.com/IST-DASLab/torch_cgx. In this case, CGX acts
as a Torch extension that implements an additional Torch DDP backend, as a supplement to
the built-in NCCL, MPI and Gloo backends. Thus, users only need to import the extension
and change the backend at initialization.
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We integrated our functionality into the communication engine of the Data Parallel framework.
At this level, we no longer have access to the buffer structure, therefore we can not explicitly
filter layers. Nevertheless, the user can provide the layout of the model layers (e.g. gradient
sizes and shapes). Using this information, we can obtain the offsets of the layers in each buffer
provided by torch.distributed. An example of using the Torch extension is presented
in the Appendix(Listing A.1).

Choosing a Reduction Scheme

The “hottest” operation in distributed data-parallel training is Allreduce, corresponding to
the logical gradient averaging. To support non-associative compression operators, we need
to choose the reduction algorithm together with the compression operator, to maximize
performance and minimize the compression error due to iterative compression-decompression.
We considered the following reduction schemes.
Scatter-Reduce-Allgather (SRA) (or Rabenseifner’s Allreduce [Rab04]) works in two rounds:
a process first divides its vector of dimension d into N subarray (“chunks”) each node receives its
“chunk” of the initial vector from all other nodes and aggregates it (Scatter-Reduce). Second, it
broadcasts the aggregated “chunk” (Allgather). The bandwidth cost is O(d(N−1)), the latency
term is 2α, corresponding to the two rounds. Ring-Allreduce is the bandwidth-optimal algo-
rithm, implemented in most libraries (e.g. NCCL, Gloo). Similar to SRA, it divides the initial vec-
tor into chunks, and communication is done in a ring-shaped topology. In the first phase, each
node sends a chunk to its “right” neighbor and receives a chunk from its left neighbor. It then
sums the received chunk with its local result and sends the result forward, repeating N−1 times.

Table 3.4: Throughput of different reduction
schemes (items per second).

ResNet-50 Transformer-XL ViT
SRA 2900 260k 1918
Ring 2830 236k 1883
Tree 2770 202k 1756

In the second phase, nodes broadcast (All-
gather) the resulting chunks on the ring. The
bandwidth cost is O(d(N − 1)/N), with la-
tency 2α(N − 1), assuming communication
can not be itself parallelized. Tree-Allreduce
can be seen as a hierarchical parameter-server.
Communication is done in 2 log N rounds and
two phases. The nodes build a tree-like topology, and send their vectors up to the root,
summing them along the path, and then propagate back the result. Communication complexity
is O(2d× log(N)), while latency is 2α log N .
Discussion. We examined the practicality of these reductions, and found Scatter-Reduce-
Allgather (SRA) to show the best performance. It also has the key algorithmic advantage
of lower compression error, due to fewer compression/decompression steps. Thus, we mainly
employed this algorithm inside CGX. Table 3.4 illustrates CGX throughput under different
reduction schemes, for different tasks, on an 8-GPU server. (See Section 3.7 for the full setup.)

Default Compression Approach

Our framework implements several compression approaches; yet, based on the discussion
in Section 3.3.3, we use gradient quantization as our main method. The rationale behind
our choice is the following. First, as suggested by Figure 3.1, quantization compression by
8-10x should provide sufficient bandwidth reduction to overcome most of the communication
bottleneck. Moreover, it can do so in a generic, parameter-free way : an independent contri-
bution of our work is that we identify general parameter values providing 8-10x compression
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Figure 3.3: Training step times for different communication backends in CGX Communication
engine on a single node, 8 RTX3090 GPUs. Lower is better.

without accuracy loss on all the model classes and tasks we tried. We investigate additional
performance improvements customized per-layer compression, which can provide an additional
performance boost.

3.5.2 Communication Backend
The key question at the lower level of the stack is how to implement the peer-to-peer
communication primitives. Here, existing options are GPU-aware MPI implementations, NCCL,
or Facebook Gloo. (For instance, GRACE [XHA+21] supports all three options.) To maximize
performance, instead of relying on existing implementation, we developed a set of new peer-to-
peer communication primitives, that are based on data transfers through UNIX shared memory.
We call this communication backend SHM.
SHM works by registering a UNIX shared memory buffer for each pair of GPUs within a node
and map it to GPU memory. On send, we move the input buffer to the shared segment
and synchronize with the recipient using CUDA IPC primitives. SHM is only supported for a
single node, while CGX can use both MPI- and NCCL-based backends in multi-server setups.
Moreover, we support heterogeneous communication where the intra node communication
uses SHM, MPI, or NCCL as the backend, or performs NCCL-allreduce without compression,
while the inter-node communication uses MPI or NCCL. The difference in performances is
illustrated in Figure 3.3, showing that SHM outperforms other backends, by up to 33%. The
speedup is justified by the lower synchronization between compression and communication,
and the single memory transfers via the GPU Communication Engine. Thus, unless otherwise
stated, we use SHM for intra-node communication in all our experiments.

3.5.3 Implementation Details
Efficient Quantization. The quantization algorithm sketched in Section 3.3.3 has the
following downside: when applied to the entire gradient vector it leads to convergence
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degradation, due to scaling issues. A common way to address this is to split the vector into
subarrays, called buckets, and apply compression independently to each bucket [AGL+17].
This approach increases the compressed size of the vector because we have to keep scaling
meta-information for each bucket and slows down the compression, but helps to recover full
accuracy. The bucket size has an impact on both performance and accuracy recovery: larger
buckets lead to faster and higher compression, but higher per-element error. Therefore, one
has to pick the bucket size appropriate for the chosen bits-width empirically. We found out
that 4 bits and 128 bucket size always recovers full accuracy, has reasonable speedup, and can
be efficiently implemented, so we use this as a compression baseline in all our experiments.

To achieve low compression overheads, we applied the following optimizations: we use an
efficient parallel bucket norm computation algorithm, and, for elementwise compression/de-
compression, we perform cache-friendly vectorized memory load/stores. Quantization overhead
amounts to 1-3% of computational cost in our benchmarks.

Improved Scheduling. CGX also aims to improve the latency term. For this, we perform fine-
grained scheduling of gradient synchronization, which is known to lead to improved performance
for Parameter Servers [JZL+20]. As part of scheduling optimization, CGX supports user-
defined filtering of layers and cross-barrier training. Filtering of small layer modules such as
biases or batch norm not only improves convergence but positively affects performance. Such
filtering removes the need for extra compression kernel calls without a notable increase in
communication costs. Cross-barrier optimization does not provide significant performance in a
single node setup, confirming the observations in [JZL+20].

3.5.4 The QNCCL Library
The role of the QNNCL implementation is to contrast our design choices relative to a direct
re-implementation of communication compression in the popular NCCL library. To build this
low-level variant, we started from vanilla NCCL and replaced Allreduce with implementations
that compress every piece of data before its transfer. We leverage the NCCL communication
optimizations to avoid costs for additional GPU calls. However, in this case, we lack information
about the internal structure of the buffer and have to apply compression parameters uniformly
over the entire model. In this case, we also have limitations in terms of the GPU resources
imposed by NCCL itself, which lead to additional compression overheads. We examine the
performance trade-offs of this approach in the experimental section.

3.6 Layer-wise Adaptive Quantization
One key optimization supported by CGX is varying compression parameters at the per-layer
level. This is especially well-suited to models such as Transformers which have heterogeneous
layer sizes, e.g. due to large embeddings. Synchronization of such layers can be quite expensive,
and, since they come early in the model, cannot be overlapped with computation. Yet, these
massive layers can support highly-compressed communication. Thus, we investigate automatic
mechanisms to pick per-layer compression levels.

We focus on the trade-off between two parameters for each layer: the magnitude of the com-
pression error and compressed size of the layer. Our adaptive algorithm tries to balance these
constraints in order to maximize speedup while recovering convergence. We periodically collect
gradient statistics and then re-assign bit-widths and bucket-size to each layer. Specifically, we
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Table 3.5: Validation results for training with the baseline and CGX optimizations, respectively.
ResNet50, VGG and ViT numbers are Top-1% accuracies, Transformer-XL and GPT-2 show
perplexity, while BERT shows F1-score.

ResNet50 VGG16 ViT-base Transformer-XL-base GPT-2 BERT
Baseline 75.8± 0.2 69.1± 0.1 79.2 22.81± 0.1 14.1± 0.1 93.12± 0.05

CGX 75.9± 0.2 68.9± 0.1 78.6 22.9± 0.1 13.9± 0.1 93.06± 0.05

want to minimize the compressed size of the model gradients while minimizing the ℓ2-norm of
the compression error, which is linked to convergence [KRSJ19].

Problem Definition. We formalize this problem as identifying per-layer bit-widths b1, b2, . . . , bL

for the L layers minimizing the bandwidth objective ∑︁L
ℓ=1 bℓ ·size(Lℓ) across all the bis, subject

to the fact that compression error cannot exceed a maximum threshold α ·E4. Here, α > 0 is
a fixed parameter, and E4 is the error when we compress all layers to 4 bits, for which we
know that full recovery occurs.

We emphasize that this formulation is different from the (global) adaptive compression problems
considered by prior work [AWL+21, GLW+20, CCB+18, CYRW20, MAEAC21], as they usually
consider the problem of adapting the global degree of compression to the various stages of the
training process, as opposed to the fine-grained layer-wise bit-width adaptation we consider.

This constrained optimization problem can be approached via standard solvers, and in fact, our
first approach has been to use Bayesian optimization. However, we found that this requires an
instance-specific tuning, and adds hyper-parameters. We therefore investigate problem-specific
heuristics.

A straightforward approach is to simply sort layers by the ratio of gradient magnitude over the
layer size. We then assign the lowest bit-width to the first layers in this order, and the highest
to the last layers, interpolating linearly in the middle. Experimentally, this approach recovers
accuracy and improves over static assignment, but the performance gains are minor.

This observation inspires a clustering-based approach, by which we collect layers with similar
sensitivity to gradient compression into groups, and assign bit-widths correspondingly. We
use a 2D-clustering algorithm [Mac67], where the dimensions are the size of the layer, and
the ℓ2-norm of the top values of the accumulated gradient. We perform clustering to obtain
“sensitivity groups,” each with its own centroid, and then sort the centroids by their gradient
norms. Finally, we linearly map bit-widths and bucket sizes to the layers. The exact procedure
is described in Algorithm 3.1. We investigate its practical performance in Section 3.7.3.

Algorithm 3.1: KMEANS-based adaptive compression
Input: Model Layers Li, accumulated gradients Gi, possible bit-widths B = {β1, β2, . . . , βk}
Output: Bit-width assignments bℓ ∈ B for each layer ℓ

Initialisation : Compute 2D-representation for each layer ℓ by computing points (size(Lℓ),
norm(Gℓ)).

1: Obtain (centroids, clusters) = kmeans over data into k clusters
2: Sort centroids based on norm(Ci)− size(Ci) and assign them
3: Assign points (layers) corresponding to each centroid to the corresponding bit width bℓ.
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3.7 Experimental Validation

3.7.1 Experimental Setting
Infrastructure. Our evaluation uses commodity workstations based on RTX2080 and RTX3090
consumer-grade GPUs, and a cloud-grade EC2 p3.16xlarge machine, with 8 V100 GPUs,
equivalent to a DGX-1 server. Please see Table 3.2 for complete system characteristics. The
scheme of interconnect between GPUs on the 8x RTX3090 machine is shown in Appendix
(Figure 3.4). In brief, the 8 GPUs are split into two groups, each assigned to a NUMA node,
which are bridged via QPI. Bandwidth measurements via [LSC+18] show that inter-GPU
bandwidth varies from 13 to 16 Gbps depending on location. At the same time, we have
1Gbps Allreduce bandwidth for reasonable buffer sizes. Results for RTX2080 are similar, with
1.5Gbps Allreduce bandwidth.

The V100/DGX-1 machine forms a so-called Backbone Ring inside a Hypercube Mesh [LSC+20],
in which GPUs are connected via NVLINK. The DGX-1 has GPU-to-GPU bandwidth of up to
100 Gbps, leading to the same Allreduce bandwidth in our workloads. Performance on our
setup is identical to a branded DGX-1 measured via NVIDIA’s benchmarks [Nvi20].

Environment and Tasks. Most experiments were run using the PyTorch version of the
NVIDIA Training Examples benchmark [Nvi20]. For state-of-the-art model implementations, we
used the Pytorch Image Models [Wig19] and the Huggingface Transformers repositories [Hug22].
For the experiments on V100 machine, we used the official NGC PyTorch 20.06-py3 Docker
image. We used CUDA 11.1.1, NCCL 2.8.4, and cudnn/8.0.5. We examine three different
DNN learning tasks: 1) image classification on ImageNet [DDS+09] ; 2) language modeling
on WikiText-103; 3) question-answering on the SQUAD dataset.

Baselines. We use the non-compressed original training recipes as a baseline. We do not
modify any of the training hyper-parameters. In distributed training, we use either Horovod-
NCCL or PyTorch-DDP with NCCL backend. In all our experiments, NCCL showed better
performance than OpenMPI or Gloo, so we use it as the default backend. For a fair comparison,
we use the CGX extension depending on the baseline framework: for Horovod-NCCL, we
use our Horovod extension, and for PyTorch-DDP we apply our Torch distributed backend
extension. We also compare our results against ideal linear scalability on the same machine,
calculated by training speed on a single device multiplied by the number of devices. We
use step time and throughput (items/sec) as the performance metrics. For all performance
experiments, we validated that the hyper-parameters used are sufficient to recover training
accuracy, across 3 runs with different seeds. All the reported speed numbers are averaged over
300 training iterations after a warm-up of 10 iterations. Unless specifically stated, we do not
employ the adaptive compression algorithm.

C0

P0

QPI

GPU0 GPU1 GPU2 GPU3

C1

P1

GPU4 GPU5 GPU6 GPU7

Figure 3.4: PCIe topology for RTX machines.
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Figure 3.5: Throughput for ResNet50/ImageNet, Transformer-XL (TXL) on WikiText, and BERT
on SQUAD. Higher is better. Hatched bars represent ideal scaling. CGX leads to self-speedups of
> 2×, and scalability of 80% to 90%. Hatched bars represent ideal scaling.

Table 3.6: Training throughput with CGX, PowerSGD, and GRACE on single machine with 8
RTX3090 GPUs. (Transformer-XL/PowerSGD did not converge, so we only provide throughput
numbers.)

ResNet50 Transformer-XL-base BERT
Baseline 1900 170k 17.5k

CGX 2900 260k 38.7k
PowerSGD 2600 220k* 38.3k

Grace 1000 30k 14.3k

3.7.2 Experimental results
Accuracy Recovery

We first examine the model accuracies using standard hyper-parameters in end-to-end training
experiments. The gradient bit-width used for these experiments is 4 bits. The bucket size
was 1024 for CNNs, and 128 for Transformer models, chosen empirically. As stated, we
reduce small layers (biases, batch, and layer normalization layers) in full precision. The results
of training on the RTX3090 machine with 8 GPUs are presented in the Table 3.5, with the
corresponding accuracy parameters. All CGX accuracy results are within the standard 1% error
tolerance [MRC+20]; in most cases, accuracy is within seed random variability. We provide
detailed training details in terms of batch size and mixed precision in Appendix A.1. Unless
otherwise stated, we focus on the following model/task combinations: Transformer-XL on
WikiText-103, ResNet50 on ImageNet, and ViT on ImageNet. The parameters are identical to
the ones provided above. All experiments were run on 8 GPUs.

Comparison with other algorithmic approaches

PowerSGD Compression. We follow the implementation of [VKJ19], and set the rank to 4
for CNNs and use rank 8 for Transformers, implying up to 100x compression. PowerSGD can
not be used in conjunction with FP16 training, as it can lead to divergence in our experiments,
so we compare at FP32. But with full-precision gradients training PowerSGD can not achieve
baseline accuracy at Transformers pre-training (we tried ranks up to 32). As Table 3.6 shows
CGX has superior performance on single node over PowerSGD in spite of lower compression.
This is because 1) higher compression shows diminishing returns, 2) CGX has lower compression
overhead (Table 3.3), and 3) CGX implements faster reductions.

Sparsification. We implemented the TopK [DJMVE16] algorithm as part of the CGX
framework. Usage of the sparcification compression there faces the following issues. In
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order to converge under standard parameters, sparcification must be applied upon the entire
model, not layer-wise which is impossible due to specifics of the communication frameworks
(torch.distributed, Horovod). In our experiments we did not manage to make topK
with error feedback converge with a similar to QSGD compression rate. Moreover, topK with
higher compression rates did not show any speedup in comparison to QSGD due to compression
saturation on our workstation (see Figure 3.1) and higher topK overhead (see Table 3.3, we
used [MAEAC21] topK mechanism).

Comparison with other systems

GRACE Comparison. We adapted our benchmarks to also compare to GRACE [XHA+21],
which also implements quantization and sparsity compression techniques. We used the same
uniform 4-bit compression variant for frameworks, as this recovers accuracy. We used NCCL
as the communication backend for GRACE, as it provided the best performance in our setting.
We found (see Table 3.6) that CGX outperforms GRACE by more than 3x on average. Our
profiling suggests that this occurs because GRACE uses a less effective reduction scheme
(NCCL-Allgather vs. optimized Allreduce), less efficient compression (e.g., no bucketing), and
transmission (even with 4 bits compression, GRACE communicates in INT8). We also tried
GRACE with very high-sparsity TopK compression (0.001), and performance did not improve
significantly. This suggests that GRACE’s implementation has additional bottlenecks in terms
of communication latency.

NCCL and QNCCL Comparison. As shown in Figure 3.1, NCCL has poor scaling on
commodity machines, especially from 4 to 8 GPUs, where communication cost is highest. CGX
can give > 2x speedup relative to NCCL, reaching 80-90% of linear scaling. This enables the
consumer-grade RTX3090 GPU to match or even surpass the throughput of a DGX-1 server.
We found that QNCCL partly alleviates the scaling problems of NCCL, and only improves
throughput by a limited margin, as it does not benefit from the bespoke communication
backend integrated in CGX. An orthogonal issue for QNCCL is the fact that it has higher
accuracy degradation: since compression cannot be performed layer-wise (as QNNCL does
not have layer information), it cannot perform layer-wise compression. We have been able to
recover accuracy within 1% with QNCCL at 4bit compression by reducing bucket size to 128
for all models, but this comes with a further performance reduction.

Bagua and HiPress Comparison. Bagua [GJY+21] and HiPress-CaSync [BLZ+21] are
distributed training frameworks, which also support some generic forms of gradient quantization.
In multinode experiments on 4x EC2 p3.8xlarge instances with 4 V100 GPUs each, we observed
that Bagua and HiPress have similar performance to CGX on the smaller ResNet50 model, and
that they are up to 10% slower on the larger VGG19 model. This is since all frameworks use
the same NCCL backend for inter-node communication, but CGX uses a faster pattern (SRA
vs Ring or Tree for NCCL) than HiPress and has better compression rate than Bagua (which
only supports 8 bit quantization). Moreover, HiPress only supports 2 bit quantization, e.g.
[WXY+17, Str15]), which does not converge under standard parameters for Transformed-based
models.

HiPress unfortunately does not support the newer commodity RTX-3090 GPUs, so we could
only compare with Bagua on the Genesis Cloud 8xRTX3090 instance. The results of the
comparison are presented in Figure 3.6, showing that CGX provides clearly superior performance,
especially for the VGG19 model.
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Figure 3.6: Scaling throughput in multi-node environment for image classification tasks. Bagua
vs CGX.

Comparison with Hardware Bandwidth Overprovisioning.

We now turn to Figure 3.5 where we first observe that, although in terms of single-GPU
performance the RTX3090 is comparable to the V100/DGX-1, it has poor multi-GPU scaling
for large models when using the standard NCCL setup (< 50% of linear scaling). The older
2080 GPUs have lower throughput both due to both lower memory, limiting maximum batch
size, as well as lower computational power (Fig. 3.5a). Thus, we mainly focus on 3090 GPUs.
If we compare the maximum achievable performance (ideal scaling), CGX achieves similar results
to the bandwidth overprovisioning approach, on both the DGX and the A6000 machines. In
other words, CGX allows us to get bandwidth-overprovisioning performance via a “middleware”
approach, achieving our stated goals. The remaining percentage gaps from perfectly linear
scaling are because of 1) latency costs, 2) inefficiencies in our implementation, and 3) remaining
communication costs, especially in early layers, which cannot be overlapped with computation.
To measure this, we artificially removed the bandwidth bottleneck, by sending only a small
number of elements per layer. The results in Table 3.7 show that CGX is close to ideal
bandwidth reduction.

Table 3.7: Ideal performance (% of linear scaling) achievable via bandwidth-overprovisioning
for different workloads, relative to CGX.

ResNet50 VGG16 TXL BERT ViT
Ideal Perf. 92 % 91 % 95 % 88 % 95 %
CGX Perf. 90% 84 % 87 % 75 % 93 %

Table 3.8: Comparison of adaptive methods. Speedups and compression rates are relative to
static bits-width assignment (4 bits). Experiments are run with Transformer-XL base model
on 8 RTX3090 GPUs (single node) and 4 nodes with 4xRTX3090 GPUs each (multi-node).
Accordion is applied to QSGD with 3 and 4 as compression bounds.

Compression Speedup 1-Node Speedup Multi-Node
KMEANS 1.47 5% 40%

Bayes 1.34 3% 30%
Linear 1.15 2% 13%

Accordion 1.21 3% 15%
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Figure 3.8: Comparison of adaptive compression approaches. Error and size compression are
shown relative to uniform static assignment of compression parameters to 4 bits.

3.7.3 Layer-wise Adaptive Compression
So far, we have provided results for our version of 4bit quantization, which always recovers
accuracy. We now examine additional performance savings due to adaptive compression.
Across all models, the automated procedure in Section 3.5.1 identifies large layers with low-
performance sensitivity (e.g. fully-connected or embedding layers) for lower bit-widths, and has
similar total compression error to uniform compression. We illustrate this on Transformer-XL,
the model with the most non-uniform layer sizes. We conducted single-node experiments on an
8xRTX3090 machine, and multi-node on four 4xRTX3090 machines. As before, the baseline
is 4-bits static compression, which was shown to recover full accuracy. Figure 3.7 represents
perplexity against time for different selection mechanisms. Figures 3.8a and 3.8b represent
compression error and compression ratio relative to static assignment. Table 3.8 shows that
Bayesian optimization shows stable compression error, and good average compression. Yet,
the kmeans-based method shows the lowest quantization error, best average compression,
and highest speedup, as it tends to compress large layers more. Specifically, this can lead to
additional improvements in the order of 5% on a single node and up to 40% in multinode
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setting, without accuracy loss. This approach can still be improved by taking into account
runtime speedups instead of absolute compression.
Among existing adaptive schemes, AdaComp [CCB+18] and Accordion [AWL+21] are the only
ones which can be adapted to our setting. For comparison, we execute the Transformer-XL
model on a language modelling (LM) task. AdaComp basically suggest adaptive scheme for
sparsification, with possible further quantization of communicated elements. We first applied
AdaComp only for sparsification: however, unfortunately the compression assignment provided
by AdaComp did not converge to reasonable accuracy on this task.
Second, we adapted Accordion to our framework with QSGD compression, using Accordion
to choose bit-width parameters based on its critical regimes detection approach. We used
Accordion with hyperparameter η = 0.5, as suggested by the authors, and updated the
compression parameter every 1k steps of training. As the lower and higher compression levels,
we checked (2, 4) and (3, 4). The first pair resulted in significantly lower final accuracy relative
to the baseline. The second pair (3,4) recovered the final accuracy, but the compression ratio
was inferior to all the other adaptive schemes we investigated, and considerably below our
proposed clustering scheme. Please see Figure 3.8b and Table 3.8 for an illustration. For
instance, our adaptive scheme resulted in 17% additional multi-node speedup compared to
Accordion.

3.7.4 Practical Implications
Multi-node experiments. Next, we examine performance on multi-node training in the
cloud. We used 4 4xRTX3090 Genesis instances with 10Gbps intra-node bandwidth and 5
Gbps inter-node bandwidth. Table 3.9 shows that CGX provides up to 10x speedup over the
uncompressed baseline.

Table 3.9: Items per second when training with the NCCL and CGX optimizations, respectively,
on 4 machines with 4 RTX3090 GPUs each.

ResNet50 ViT-base Transformer-
XL-base BERT

Baseline 564 34 32k 1.4k
CGX 2.3k 235 85k 12k

Implications for Cloud Training. Several cloud services provide servers with commodity
GPUs [Gen21, Lam21, Lea21]. We therefore compare a standard AWS EC2 4xV100 GPU
instance (p3.8xlarge) instance with a 4xRTX 3090 Genesis Cloud instance [Gen21]. We execute
the same training benchmark, with and without CGX. The numbers in Table 3.10 show that
CGX allows us to obtain almost twice higher throughput (training tokens/second) per dollar
on the more affordable Genesis instance, for a standard language modelling task (SQuAD)
task using an industry-standard BERT model.

Table 3.10: Comparison of training performance for different cloud services (AWS and Genesis)
with and without CGX. The training task is BERT-QA and achieves full accuracy.

Instance Throughput (1K tok./sec) Price per hour ($) Tokens/second per $
Genesis + NCCL 4737 6.8 696
AWS + NCCL 14407 12.2 1181
Genesis + CGX 14171 6.8 2083
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CHAPTER 4
Layerwise-Adaptive Gradient

Compression for Data-Parallel Training

4.1 Preface
As we discussed in the previous chapters data-parallel distributed training of deep neural
networks is widespread, but it still experiences communication bottlenecks. To mitigate these
bottlenecks, various compression techniques like quantization, sparsification, and low-rank
approximation have been developed. However, many implementations remain sub-optimal
because they apply compression uniformly across DNN layers, disregarding the layers’ differences
in parameter count and impact on accuracy.
In this chapter, which follows [MAFA24] with minor changes, we provide a general framework
for dynamically adapting the degree of compression across the model’s layers during training,
improving overall compression while leading to substantial speedups, without sacrificing accu-
racy. Our framework, called L-GreCo, is based on an adaptive algorithm that automatically
picks the optimal compression parameters for model layers, guaranteeing the best compression
ratio, while satisfying an error constraint.

4.2 Introduction
A popular approach for reducing the cost of gradient communication, which is the main focus
of this chapter, is lossy gradient compression [SFD+14, AGL+17, DJMVE16, VKJ19], which
reduces the number of communicated bits per iteration. Hundreds of such techniques have
been proposed, which can be roughly categorized into three method families. The first is
quantization [SFD+14, AGL+17, WXY+17], which reduces the bit width of the communicated
gradients in a variance-aware fashion in order to preserve convergence. The second is
sparsification [Str15, DJMVE16, LHM+17], reducing the number of gradient components
updated at every step, which are chosen via various saliency metrics. The third and most
recent approach is low-rank approximation [WSL+18, VKJ19], which leverages the low-rank
structure of gradient tensors to minimize communication.
In practice, these approaches come with trade-offs in terms of compression versus ease of
use. For instance, gradient quantization is easy to implement and deploy, but only provides
limited compression before accuracy degradation; sparsification and low-rank approximation
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can provide order-of-magnitude compression improvements, but come with additional costs in
terms of maintaining error correction and careful hyper-parameter tuning. These trade-offs
have been investigated via adaptive compression methods [AWL+21, MRA22, FTM+20], which
adjust the compression to the error incurred during various phases of DNN training.
Currently, there is still a significant gap between ideal, theoretically-justified compression
methods, and their efficient systems implementations. For example, the theory of gradient
compression [KRSJ19, NMC+21] suggests that the ideal compression method in terms of
convergence is that which minimizes the norm of the compression error, i.e., the difference
between the global model gradient and the compressed one. (For instance, global TopK selection
provides the best sparsification-based compressor for a given parameter K [SDMA+21].) Yet,
parameter selection based on a global gradient at each step is not practical from the systems
perspective: performing global selection, such as TopK, requires waiting for the whole model
gradient to be available; yet fast implementations of data-parallel training transmit each
layer’s gradients as soon as they are generated, overlapping communication and computation.
Moreover, many existing implementations miss significant opportunities for optimization:
modern models such as Transformers [VSP+17] are highly heterogeneous in terms of both layer
sizes and layer sensitivity to gradient compression (see Figure 4.1), and gradient compression
impacts various stages of training differently [ARS18].
This gap between the theory and practice of gradient compression, led some to question the
usefulness of this approach [AWVP]. In this chapter, we address this gap and show that,
when paired with efficient and adaptive systems support, gradient compression can be a
powerful technique for efficient data-parallel training. Specifically, the question we address
is the following: Given an arbitrary model and gradient compression technique, is there an
efficient way to balance accuracy constraints, such as layer sensitivities, and the communication
constraints, such as layer sizes, dynamically during training in order to maximize speedup,
without sacrificing theoretical convergence and practical accuracy?
To address this, we introduce L-GreCo, an efficient and general framework for Layer-wise
parametrization of GRadiEnt COmpression. At the algorithmic level, L-GreCo is based on a
new formalization of the layer-wise adaptive compression problem, which identifies per-layer
compression parameters, e.g. per-layer sparsity or quantization levels, seeking to maximize
compression, under a fixed constraint on the total compression error, which ensures both
good theoretical convergence, and negligible accuracy loss. At the system level, L-GreCo
works by integrating with standard training frameworks, such as torch.distributed,
to exploit model heterogeneity in terms of both per-layer structure and per-layer sensitivity,
determining on-the-fly by how much to compress individual layer gradients in order to maximize
compression or end-to-end training times.
We validate L-GreCo across all existing families of compression strategies : quantization, spar-
sification, and low-rank compression across a variety of vision and language tasks. L-GreCo
consistently achieves higher compression rates than existing manual or adaptive strate-
gies [VKJ19, AWL+21], in a black-box fashion, and is particularly effective for modern
Transformer models, in both single- and multi-node settings.
We summarize our contributions as follows:

• We introduce a new approach leveraging the heterogeneous structure of DNNs in order to
reduce communication overheads while maintaining convergence, guaranteeing optimal
layer-wise compression-based by balancing a theoretically-justified error metric with an
optimization objective maximizing compression.
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Figure 4.1: Profile of L-GreCo rank choices for PowerSGD compression on Transformer-XL.
The red line represents uniform compression, while the blue line represents the L-GreCo profile.
Transparent bars show layer sizes. Layers are indexed in the order they are communicated.
The annotated number is the final test perplexity (ppl) for the experiment (lower is better).
Here, the average compression of L-GreCo is 1.5x higher than uniform.

• We provide an extensive empirical evaluation on different neural networks (ResNet18,
ResNet50, Transformer-XL, Transformer-LM) with different datasets (CIFAR-100, Ima-
geNet, Wikitext-103) showing that L-GreCo reduces communication by up to 5× and
achieves speedups up to 2.5× without loss of accuracy or significant tuning, across both
single and multi-node deployments.

• In addition, we conduct the first in-depth study of both sensitivity and performance met-
rics. We show that the theoretically-justified error norm metric is essentially equivalent
to more complex metrics based on examining output loss. From the performance per-
spective, we show that optimization objectives seeking to maximize absolute compression
lead to similar results to objectives that minimize transmission time.

• Finally, we show that L-GreCo is compatible with prior adaptive compression schemes;
specifically, it can be extended to use information about the different stages of train-
ing [AWL+21], leading to further performance improvements.

4.3 Related work
Compression methods. Gradient compression usually employs three strategies: quantiza-
tion, sparsification, and low-rank decomposition. Quantization methods [SFD+14, AGL+17,
WXY+17, LAK18, RKFM+21] use lower precision of each gradient component, reducing
the number of transmitted bits. They are easy to implement and work under stable
hyper-parameters [AGL+17, XHA+21, MRA22]. However, their compression is limited by
the fact that at least one bit per entry must usually be transmitted. Sparsification tech-
niques [Str15, DJMVE16, LHM+17, KRSJ19] circumvent this by identifying salient com-
ponents in the gradient and only transmit such subsets. Finally, gradient decomposition
algorithms [VKJ19, WSL+18] use the fact that the layer-wise gradient tensors are known
to be well-approximable via low-rank matrices and aim to design light-weight projection
approaches that also provide low error. Sparsification and low-rank techniques usually require
error correction buffers to preserve good convergence, as well as non-trivial hyper-parameter
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tuning. As we show experimentally, L-GreCo is compatible with all of these approaches and
can provide significant additional bandwidth savings for each such strategy without sacrificing
model accuracy and without tuning.

Adaptive Compression. The general idea of adapting the degree of compression during
training has been investigated by AdaComp [CCB+18], which proposes a self-tuning adaptive
compression method; yet, their method does not adapt compression parameters per layer and
cannot be combined with other compression approaches. [FTM+20] adapts the quantization
grid to the gradient distribution; yet, their approach is specifically tuned to quantization, and
oblivious to layer heterogeneity.

Rethink-GS [SDMA+21] optimize the total error over steps for sparsification-based compres-
sion and suggest threshold global sparsifiers, which are shown to reach higher compression rates
than uniform per-layer compression on small vision tasks (e.g. ResNet18 on CIFAR10/100).
However, their approach is restricted to sparsification and leaves unclear how to tune the
threshold for large-scale, sensitive models such as Transformers or ImageNet-scale models.
In particular, we were unable to obtain good results with this approach on models such as
Transformer-XL or Transformer-LM. In Section 4.6.3, we present a comparison with their
approach on ResNet18/CIFAR-100, showing that our method yields both higher accuracy and
higher compression.

Accordion [AWL+21] adapts the compression parameters of sparsification and low-rank com-
pression based on the critical regimes of training. The algorithm alternates between two
compression levels (“low” and “high”), provided by the user and is prone to accuracy loss.
Our approach improves upon Accordion in terms of speedup, but also that we can combine
our method with Accordion and obtain even higher gains. CGX(Chapter 3) investigated a
kmeans-based heuristic, which we show experimentally to be sub-optimal.

To our knowledge, our dynamic programming strategy has not been employed in the context
of adaptive gradient compression. Related approaches have been investigated in the context
of weight compression for DNNs, see e.g. [WLCC20, ANL+20, FA22, SYM+22]. Yet, there
are major differences: (1) the error metrics and speedup objectives are different in the case of
weight compression; (2) we execute online at training time, which means that our algorithm
has to be extremely efficient and adapt to dynamic inputs.

Recently, Agarwal et al. [AWVP] questioned the utility of gradient compression for distributed
training. Yet, their study is limited in the sense that they only consider a limited subset of
compression methods and focus on NCCL-type implementations on bandwidth-overprovisioned
networks. By contrast, we consider a more flexible system implementation that allows to map
layer parameters to different compression levels and show practically that L-GreCocan yield
speedups both on commodity single-node GPU servers and on general multi-node systems.

4.4 Problem Formulation
Goals. Assuming we are given a DNN model M with L layers and a compression technique,
we would intuitively like to find a choice of compression parameters cℓ, one for each layer
ℓ ∈ {1, 2, . . . , L} which would minimize a metric representing damage of the training quality
introduced by compression while minimizing the total number of bits transmitted. Yet, this
intuitive description leaves open a range of details, such as 1) the notion of layer-wise metric
that corresponds to the compression effect for a given set of parameters; 2) the exact problem
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formulation, constraining the compression effect or the compression ratio; and 3) an efficient
implementation of such an algorithm.

Sensitivity Metrics. Since choosing the right sensitivity metric is key for accuracy recovery,
we have investigated two different approaches. First, the sensitivity of a layer to gradient
compression can be measured by the impact on the model’s loss. To evaluate this, we set up
the following experiment: We saved model checkpoints at different stages of the uncompressed
training. Then, we conducted multiple short runs (50 steps) with the same data starting
from the checkpoint, varying compression parameters. We use the difference of loss with
and without compression as the metric. Since we wish to observe the model’s reaction to
the compression of individual layers, we vary compression parameters for each layer, not
compressing other layers’ gradients. With that, we collect the differences of loss for each layer
and the compression parameter as the metric.

Another approach is based on gradient compression theory, which shows formally that the
squared ℓ2 compression error is a good measure of the convergence impact of compression
technique [KRSJ19, NMC+21, SDMA+21]. Here, we aggregate gradients for the training,
then compress the aggregated gradients for each compression parameter and for each layer
individually, and use the magnitude of the error as a metric.

As shown in Section 4.6.4, the two approaches are strongly correlated, and the resulting optimal
parameters are close to each other. However, the loss-based approach is less practical, as it
requires offline evaluation, altering the original training pipeline and additional training time.
By contrast, the error-based approach can be used online during training and has negligible
overheads. Thus, we use the L2 norm of the compression error as the main sensitivity metric.

The Constrained Optimization Problem. Given an error metric, we formalize the layer-wise
compression optimization problem as follows. Given a modelM with L layers ℓ ∈ {1, 2, . . . , L}
and a compression technique, providing a set of compression choices C = {c1, c2, . . . ck} for
each layer. We emphasize that, for simplicity, we consider a single compression technique
and the same compression choices/levels for each layer, but our approach would also work for
different techniques being applied to the same model and heterogeneous compression choices.

In this context, our method receives as input an error function error(ℓ, cj), which provides the
L2 norm of the compression error at layer ℓ for compression choice cj , and a function size(ℓ, cℓ)
which measures the transmission cost of layer ℓ for choice cℓ. In addition, we assume to be
given a fixed maximal error threshold Emax which the algorithm should not violate. Then, we
wish to find a layer-wise setting of compression parameters c1, . . . , cL with the objective:

minimize
L∑︂

ℓ=1
size(ℓ, cℓ) s.t.

L∑︂
ℓ=1

error(ℓ, cℓ) ≤ Emax.

Practically, this formulation minimizes the total transmission cost for the gradient tensors under
a maximum additive constraint on the gradient compression error. One implicit assumption is
that the metric error(·, ·) is additive over layers and that it is possible to obtain a “reference”
error upper bound, which does not result in accuracy loss. We will see that this is the case for
the error metric we adopt.

The Error Bound. We pick the error bound Emax to track that of a reference compression
approach which is known not to lose accuracy relative to the baseline. Here, we leverage
the fact that the literature provides parameters that allow reaching full accuracy recovery
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for different models and datasets. For instance, for quantization, we track the error of 4-
bit quantization, known to recover for every model [AGL+17, MRA22]. For sparsification,
[LHM+17, RAA+19] as well as for matrix decomposition [VKJ19], we use different reference
parameters according to their baselines. For details, please refer to Tables 4.2 and 4.3. An
interesting consequence of this choice is that, since we guarantee ℓ2 compression error, which
is a small constant factor of the error of these theoretically-justified approaches, we inherit
similar convergence guarantees, as per [NMC+21].

4.5 The L-GreCo Framework
Overview. We now describe a general algorithm to solve the constrained optimization problem
from the previous section. Our algorithm makes layer-wise decisions in order to balance the
magnitude of the compression error and the compressed size of the model. As inputs, our
algorithm takes in the uncompressed layer sizes size(ℓ,⊥), a set G of accumulated gradients
per layer (which will be used to examine compression error), as well as a fixed error bound
Emax. Specifically, at a given decision step, the objective is to find an optimal mapping of each
layer ℓ to a compression level cℓ, such that the norm of the total compression error, computed
over the set of accumulated gradients G does not surpass Emax, but the total compressed size
of the model ∑︁L

ℓ=1 size(ℓ, cℓ) is minimal for this error bound.
This formulation is reminiscent of the knapsack problem: the error is the size of the knapsack,
and the compressed size is the value we wish to optimize. In this formulation, the problem
would have an efficient optimal algorithm using dynamic programming (DP). However, the
squared L2 error is not discrete, so we cannot directly apply this approach. Instead, we reduce
this to a solvable problem by discretizing the possible set of error values. Since errors are
monotonic and we can use a very fine discretization without significant efficiency loss, it is
unlikely that we would miss the optimal solution by a significant amount. For illustration, in
our implementation, we use D = 10000 as a discretization factor (i.e. steps of size Emax/D).
The Algorithm. The procedure, presented in Algorithm 4.1, works as follows. First, we
compute the data needed for the algorithm for all layers and all considered compression
parameters (lines 1-10), corresponding to errors and compressions for each possible choice.
Then, we execute a dynamic programming algorithm to solve the following problem. We
want to compute the minimum total size given total compression error E in the first ℓ layers
C(ℓ, E) = minℓ C(ℓ − 1, E − error(ℓ, cℓ)) + size(ℓ, cℓ). To achieve this, for each layer we
want to consider, we run over all error increments and all possible compression parameters
and minimize the total compressed size for the current total compression error (lines 12-22),
saving the compression parameter with which we obtain the minimum. Then, in lines 23-27,
we find the error increment achieving the lowest total compressed size and reconstruct the
compression parameter mapping—obtaining the result.
System Implementation. We integrate L-GreCo between the user training code and the
communication system responsible for gradient compression and synchronization. We run the
above algorithm periodically, e.g., once per training epoch, on a single designated worker;
unless otherwise stated, this worker performs all steps. In between runs of the algorithm,
we accumulate per-layer gradients in auxiliary buffers. We then build an L2 error table for
each layer, for every compression parameter in the user-provided range, and for the reference
compression parameters set. To find the error, we simulate the compression/decompression
of each layer with the given compression parameter without applying error feedback and
compute the L2 distance between the original and recovered vectors. Then, we run the DP
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Algorithm 4.1: L-GreCo adaptive compression
Input: Model Layers Li, accumulated gradients Gi, compression parameters C = {c1, c2, . . . , ck},

static default compression parameters to improve Cd
i , discretization factor D

Output: Compression assignments cℓ ∈ C for each layer ℓ
1: N = number of layers
2: Compute Emax for the default compression parameters Cd

i

3: Compute discretization step Emax/D.
4: Costs matrix N × |C| where position i, j has a value of the size of layer i compressed with

compression parameter cj .
5: Errors matrix N × |C| where position i, j has a value of the discretized L2 of the compression

error when the accumulated gradients of layer i are compressed with parameter cj .
6: DP matrix N × (D + 1) filled with ∞ values.
7: PD matrix N × (D + 1).
8: // Initialization of the cost tables:
9: for c ∈ C do

10: DP [1][Errors[1][c]] = Costs[1][c]
11: PD[1][Errors[1][c]] = c
12: end for
13: // Dynamic programming algorithm
14: for Layer li := 2..N do
15: for ci ∈ C do
16: for ei := Errors[li][ci]..D do
17: t = DP [li − 1][ei − Errors[li][ci]] + Costs[li][ci]
18: if t < DP [li][ei] then
19: DP [li][ei] = t
20: PD[li][ei] = ci

21: end if
22: end for
23: end for
24: end for
25: errmin = argmin(DP [N ])
26: // Reconstruction of the optimal parameters
27: for li = N..1 do
28: result[li] = PD[li][errmin]
29: errmin = errmin − Errors[li][result[li]]
30: end for
31: return result

algorithm. This provides us with the optimal compression mapping, which the designated
worker broadcasts to the other workers. Then, on each worker, we save the parameters
mapping in the communication engine.

Computational and memory costs. The algorithm assumes that we accumulate gradients
in additional buffers, occupying the model size memory. The DP algorithm has O(D|L||C|)
time complexity and O(|L|D) memory complexity. The actual timings for the algorithm are
presented in Table 4.1. The overheads consist of 1. error computation, and 2. running dynamic
programming. Dynamic programming takes a minor fraction of training time, whereas most of
the overhead is caused by computation. However, both overheads are negligible compared to
the speedups provided by L-GreCo (see Figures 4.3 and B.5).

Communication details. In a data-parallel implementation, gradients become available
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Table 4.1: Timing overheads for L-GreCo in relation to the total training time. Numbers in
brackets represent error computation.

Model Description ResNet50
PowerSGD 0.56%[0.49%] 0.15%[0.14%]

QSGD 0.14%[0.13%] 0.04%[0.03%]
TopK 0.38%[0.35%] 0.33%[0.30%]

right after the backward propagation of the corresponding layer, and are grouped into several
buffers—called buckets in Pytorch)—allowing the overlapping of gradient communication
with further computation. Thus, the communication of the first buckets is completely “hidden”
by computation, whereas the synchronization of the last bucket becomes a significant part
of the timing delay between steps. Thus, the transmission time of different buckets has a
different impact on the training speed. Hence, in theory, optimizing for the compression ratio
might yield suboptimal results in practice.
Optimizing for Time. To showcase the flexibility of L-GreCo, we augmented our system to
allow us to measure the actual synchronization time for each gradient bucket, allowing the
algorithm to optimize directly for communication times. We also reformulated the optimization
problem: to minimize the length of time between the start of the first bucket synchronization
and the end of the last one, rather than the compression ratio. Then, we train a regression
model to learn the relation between the transmitted bucket sizes and gradient synchronization
time. Thus, we obtained per-bucket coefficients T (b), which we can apply for each layer in a
respective bucket. Then we change the objective in the optimization problem(see Formula. 4.4)
to:

minimize
L∑︂

ℓ=1
size(ℓ, cℓ) ∗ T (ℓ) s.t.

L∑︂
ℓ=1

error(ℓ, cℓ) ≤ Emax.

4.6 Experimental Validation
We experimentally evaluate L-GreCo across all existing compression strategies: quantization
using QSGD, TopK sparsification, and low-rank approximation via PowerSGD.

4.6.1 Experimental setup
Infrastructure. Our evaluation uses commodity workstations with 4 or 8 NVIDIA RTX3090
GPUs. In the multi-node setting, we use 4 cloud instances with 4xRTX3090 GPUs provided by
Genesis Cloud. Bandwidth measurements show that inter-GPU bandwidth values lie between
13 to 16 Gbps, and inter-node bandwidth in the cloud is up to 10 Gbps. We used Pytorch
1.10, openmpi/4.1.4, CUDA 11.3, NCCL 2.8.4, and cudnn/8.1.1.
Implementation. We implemented L-GreCo in PyTorch using torch.distributed
hooks for PowerSGD and leveraging the open-source CGX framework(Chapter 3) for basic
quantization and sparsification operations.
Datasets and models. We examine two different DNN learning tasks: 1) image classification
on the CIFAR100 [Kri09] and ImageNet [DDS+09] datasets, and 2) language modeling on
WikiText-103 [MXBS16]. We used state-of-the-art model implementations and parameters
provided by the PyTorch version of the NVIDIA Training Examples benchmark [Nvi20] and
the fairseq library PyTorch examples [OEB+19]. We used ResNet-18 for CIFAR-100
training with batch size 256, ResNet-50 in the mixed-precision regime for ImageNet with batch
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Table 4.2: Accuracy recovery and compression ratios for different compression methods with
uniform and adaptive schemes on image classification tasks. The compression ratios measure
actual transmission savings. Values in brackets for L-GreCo compression ratios stand for
improvements relative to the corresponding uniform compression.

Compression
approach

Parameter
choice

ResNet18 on CIFAR-100 ResNet50 on ImageNet

Default
param

Accuracy Compression
ratio

Default
param

Accuracy Compression
ratio

Baseline N/A - 76.60± 0.40 1.0 - 76.88± 0.16 1.0

QSGD uniform 4 bit 76.80± 0.40 7.8 4 bit 77.38± 0.10 7.7
L-Greco 76.46± 0.21 8.6 [1.10×] 76.77± 0.25 11.0 [1.41×]

TopK uniform 1% 75.73± 0.46 48.1 1% 76.85± 0.06 45.6
L-Greco 75.66± 0.35 182.0 [3.78×] 77.04± 0.27 122.0 [2.67×]

PowerSGD uniform rank 4 76.36± 0.28 72.2 rank 4 76.50± 0.37 66.5
L-Greco 76.43± 0.37 133.9 [1.85×] 76.33± 0.27 96.2 [1.44×]

Table 4.3: Accuracy recovery and compression ratios for different compression methods with
uniform and adaptive schemes on language modeling tasks. The compression ratios measure
actual transmission savings. Values in brackets for L-GreCo compression ratios stand for
improvements relative to the corresponding uniform compression.

Compression
approach

Compression
parameters

TransformerXL on WIKITEXT-103 TransformerLM on WIKITEXT-103

Default
param

Perplexity Compression
ratio

Default
param

Perplexity Compression
ratio

Baseline N/A - 23.82± 0.10 1.0 - 29.34± 0.12 1.0

QSGD uniform 4 bit 23.82± 0.1 7.8 4 bit 29.39± 0.10 7.8
L-Greco 24.11± 0.09 9.1 [1.16×] 30.03± 0.16 9.9 [1.26×]

TopK uniform 10% 24.13± 0.14 4.9 10% 29.29± 0.09 4.9
L-Greco 24.19± 0.13 12.8 [2.61×] 29.08± 0.20 25.6 [5.2×]

PowerSGD uniform rank 32 24.08± 0.12 14.0 rank 32 29.98± 0.09 15.0
L-Greco 24.09± 0.15 20.8 [1.48×] 30.19± 0.09 26.5 [1.76×]

size 2048, and Transformer-XL and Transformer-LM trained in full-precision for WikiText-
103, with batch sizes 256 and 2048, respectively. All our experiments use the original
uncompressed training recipes, without any additional hyperparameter tuning to
account for gradient-compressed training.

Baselines. The first natural baseline is uncompressed training, which sets our accuracy
baseline. Matching MLPerf [MRC+20], we set our accuracy threshold to 1% relative to
uncompressed training. The second natural baseline is the best existing manually-generated
gradient compression recipes. By and large, existing methods propose uniform per-layer
compression to a given threshold, e.g. [AGL+17, WXY+17, RAA+19, VKJ19]. For such
baselines, we want to improve compressed size and training speed, possibly also improving final
model accuracy. We found that the best choice of compression parameters for uniform per-layer
assignment depends on the compression method, dataset, and task. For some experiments, we
had to tune the uniform compression parameters to match baseline (non-compressed) results
(see Tables 4.2 and 4.3).

Parameter ranges. L-GreCo requires a range of possible compression parameters as input.
We have always chosen this range to include the default compression parameters used in the
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Figure 4.2: Perplexity (lower is better) vs. time per step (smaller is better) for different
ranks of PowerSGD compression for the Transformer-XL wikitext-103 task with uniform or
L-GreCo suggested compression schemes. Single node, 8 RTX3090 GPUs.

literature. Moreover, we left a gap between the default parameter and the highest possible
compression parameter (the right range bound) — otherwise, we are limited to matching L2
error, and a gap between the default parameter and the lowest possible compression (the left
range bound)—otherwise, we will not improve compression. We use the following approach for
deciding ranges. Assume a default uniform compression parameter D, e.g., 4 quantization bits.
For quantization and low-rank methods, the search space was defined as [D/2, 2 ∗D] with an
incremental step of 1. For sparsification, we chose [D/10, 10 ∗D] with an increment of D/10.

The other two input parameters of L-GreCo are how frequently the algorithm is run and
the warm-up period after which the compression is turned on. The first parameter matches
the evaluation period (typically, 1 epoch). As we will see (Figure 4.5a), the compression
ratio of the schemes returned by L-GreCo is relatively stable, so it does not need a frequent
re-adjustment. The warm-up period equals the default learning rate warm-up period.

4.6.2 Evaluation results
Accuracy recovery. We first examine model accuracies using standard recipes for end-to-
end training. For each experiment, we performed 3 runs with different seeds. We compare
L-GreCo recovery with the uncompressed (baseline) and the best uniform per-layer com-
pression parameters (uniform). The results are presented in Tables 4.2 and 4.3, including
seed variability. The compression ratio represents actual transmission cost savings versus
the uncompressed baseline. For each compression method and training task, we show the
parameter value that provides the highest compression ratio while recovering final accuracy,
i.e., further uniform compression leads to worse convergence.

Overall, results show that L-GreCo stays within the accuracy recovery limit of 1% multiplica-
tive error [MRC+20] for most tasks, often being close to the uniform baseline while consistently
increasing the compression ratio across all the tasks and compression techniques. We stress
that we did not perform task-specific parameter tuning. The gains are remarkably high for
sparsification and low-rank techniques, where the search space and savings potential are higher.
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For instance, for Transformer-LM, we obtain up to 5x higher compression relative to
the uniform baseline, with negligible accuracy impact. At the same time, L-GreCo induces
> 1% multiplicative loss on quantization and low-rank compression for the highly-sensitive
Transformer-LM model.1 This is because our default compression range is too aggressive
in this case; this can be easily addressed by adjusting the range—we chose not to do it for
consistency.
Further, we varied the uniform default parameters, specifically throttling the target PowerSGD
rank for the Transformer-XL/WikiText-103 task. Figure 4.2 shows that L-GreCo provides a
markedly better trade-off than uniform compression. We can see that L-GreCo provides better
perplexity recovery while improving training speed.
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Figure 4.3: Throughput for Transformer-XL (TXL) on WikiText-103. Multi-node, each node has 4
RTX3090 GPUs.
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Figure 4.4: Throughput for Transformer-XL (TXL) on WikiText-103. Single node, 8 RTX3090
GPUs.

Speedup results. For end-to-end training speedup improvements, we compare against
standard uncompressed training ResNets and Transformers. We consider weak scaling, i.e.,
increase the global batch size while increasing the node count. (Performance improvements are
higher for strong scaling.) We begin by examining training throughput results for multi-node
training of Transformer-XL in Figure 4.3, executed in the cloud environment. (See Appendix
Figure B.5 for ResNet50 experiments.) This setting encounters a bandwidth bottleneck even
at a lower node count, which is apparent given the poor performance of the uncompressed
baseline. Tuned uniform compression partly removes this bottleneck: for instance, uniform
PowerSGD/ResNet50 reaches 75% of ideal scaling on 4 nodes.
It is, therefore, surprising that automatic non-uniform compression can still provide significant
improvements in this setting: relative to uniform compression, L-GreCo gives up to 2.4x
speedup.

1Specifically, our loss is of at most 0.85 perplexity relative to the uncompressed baseline. For this model,
however, even basic FP16 training loses more than 1 point of perplexity vs FP32.

45



4. Layerwise-Adaptive Gradient Compression for Data-Parallel Training

Table 4.4: Comparison of L-GreCo with other adaptive algorithms on ResNet-18/CIFAR-100,
TopK compression.

Method Parameters Accuracy Average Density (%)
Uniform 2% 71.8 2.00 (1×)
Uniform 0.1% 70.6 0.1 (20×)

Accordion min = 0.1%, max = 2% 71.6 0.57 (3.5×)
Rethink-GS λ = 4.72× 10−3 71.4 0.35(5.7×)

L-GreCo [0.1%, 10%] 71.7 0.30% (6.7×)

This suggests that non-uniform compression can be an effective strategy in this scenario,
especially for layer-heterogeneous models such as Transformers.

We next examine results for single-node scaling from 1 to 8 GPUs, presented in Figure 4.4.
For this model, using PowerSGD and TopK, L-GreCo leads to gains up to 25% end-to-end
speedup compared to uniform, with negligible accuracy difference. For QSGD, the search
space is very limited: uniform already uses 4 bits and provides very good scaling. Our adaptive
method still provides 2% speedup compared to our well-tuned uniform compression and 50%
speedup compared to non-compressed training, reaching ≥ 90% of ideal scaling. (Appendix
Figure B.4 presents ResNet50 results, which show lower improvements since training is weakly
communication-bound in this setting.)

Overall, we note that L-GreCo provides statistically-significant performance improvements
over static uniform compression (especially given heterogeneous models) when applied to
all considered compression methods, with negligible impact on accuracy. We explore the
compression overheads in Appendix B.5.
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Figure 4.5: Adaptive compression using L-GreCo versus other methods, for PowerSGD
compression on Transformer-XL. The left plot shows the dynamics of the compression ratio
during training, marking the average compression ratio. The right plot presents the transmitted
number of elements per bucket averaged over time. Buckets are in communication order.

4.6.3 Comparison with other adaptive methods
So far, we have used uniform compression as our baseline. We now compare L-GreCo with
prior works on adaptively choosing compression parameters. We consider Accordion [AWL+21]
and CGX(Chapter
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Here, since we aim to maximize speedup without dropping accuracy, we tune the compression
parameters for each algorithm, the chosen compression method, and training task (without
changing the training hyperparameters, e.g., learning rate, weight decay, etc.) so that we get
the best timing results with the final model accuracy within the 1% MLPerf standard. The
best range of parameters for L-GreCo turns is ranks [8, 64] (see Table 4.5) with default rank
32.
The adaptive compression of CGX is based on kmeans and maps layers into a 2-dimensional
space (layer size vs. L2-error). The algorithm clusters layers into several groups and assigns
predefined compression parameters to the layers in the groups. We have implemented this
logic with PowerSGD compression. We used rank 32 as default, and the best (in terms
of compression) range was from 8 to 64, using 6 layer clusters. The results are shown in
the Table 4.5. In short, L-GreCo improves upon the kmeans approach by up to 33%. In
Figure 4.5b, we observe that L-GreCo picks parameters such that the largest and the last
bucket are compressed the most, whereas the kmeans algorithm chooses worse compression
parameters for those layers in some iterations.
Rethink-GS[SDMA+21] suggests a sparcification method, which is technically adaptive
hard-threshold sparsification changes the number of transmitted elements based on the gradient
distribution. We have run the L-GreCo training of ResNet18/CIFAR-100. We used 1%
density as a default parameter for L-GreCo and the search range was [0.1%, 10%]. For
Rethink-GS we used parameter λ = 4.72× 10−3. The setup from [SDMA+21] is presented
in Appendix B in Table B.1. The comparison of compression ratios and accuracies for this
setup is shown in the Table 4.4.
As a result, L-GreCo improves upon Rethink-GS by 17% in terms of compression ratio
(6.7× vs 5.7×) while also improving the final accuracy - 71.7% vs 71.4% (the numbers differ
from the ones we show in Table. 4.2 as here we used the setup from [SDMA+21]). We note
that our framework did not require any hyperparameter tuning at all for this experiment,
whereas Rethink-GS requires careful tuning of the hard-threshold λ parameter.

Table 4.5: Comparison of L-GreCo with other adaptive algorithms on Transformer-XL using
PowerSGD.

Adaptive algorithm Param. Range Ratio Single node Tokens/s Multi-node Tokens/s
Uniform 32 14.1 110k 72k
L-GreCo 8 - 64 23.5 144k 150k

Accordion 16, 64 23.9 114k 107k
CGX, kmeans 8 - 64 21.6 124k 112k

L-GreCo + Accordion 8 - 128 36.9 138k 176k

Global TopK Comparison. The optimization problem of minimizing gradient error magnitude
given the desired compression ratio - can be alternatively solved by taking a global TopK in the
case of gradient sparsification, which in this case minimizes total error. However, this method
has several drawbacks. First, the global TopK requires careful fine-tuning and hyperparameter
search in order to converge when low densities are used. L-GreCo, in turn, does not try to
minimize the global compression error – it tries to match it to the compression error of the
uniform layer-wise compression that recovers accuracy. Also, L-GreCo aims to maximize
compression, meaning that each layer has a contribution to gradient synchronization. This
may not be the case for global TopK: at high sparsities, some layers could have gradient
zero for several steps, impacting model quality. The second disadvantage of global TopK
is the actual speedup. As we discussed in Section 4.5, in modern data-parallel frameworks,
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gradients are synchronized in parallel with computation for the sake of efficiency, hiding
communication costs behind computation. However, in global TopK, one has to wait until
all layer gradients are produced, then perform compression and communication. In this
case, the loss of performance due to non-overlapped communication may be higher than the
improvements due to compression. To confirm this, we have implemented the algorithm using
torch.distributed hooks and ran the RN18/CIFAR100 training. Even on this relatively
small model, global TopK is 10% slower than L-GreCo when applied with a similar global
density, in this case, 0.25%.

Accordion Comparison. Accordion adapts compression by detecting critical regimes
during training. It accepts two possible compression modes (corresponding to low and high
compression) and has a threshold error parameter η. It collects the gradients and periodically
decides the parameter to use based on gradient information for each layer. We have implemented
Accordion using the torch.distributed hook, used for PowerSGD. For the parameter η,
we chose the value of 0.5 suggested by the authors and tried to hand-tune the best pair of low
and high compression parameters for each model, with which training converges to an accuracy
that is within MLPerf bounds. We ran this algorithm on Transformer-XL/Wikitext-103, and
found that the best pair of parameters (in terms of training time without losing accuracy) are
high compression rank 16 and low compression rank 64.

In Figure 4.5, one can observe the dynamics of the average compression ratio over the training of
Accordion relative to L-GreCo. We notice that Accordion chooses a low compression
rank for almost all layers during the first period of training and a high compression rank for the
rest of the training time, leading to completely bimodal uniform compression. This suggests
that Accordion may not really exploit the heterogeneous nature of DNN models. Therefore,
the optimizations of Accordion and L-GreCo, respectively, could be seen as orthogonal :
Accordion focuses on varying the amount of average compression during training, whereas
L-GreCo finds an optimal way of reaching this average level by setting layer-wise targets.

L-GreCo+ Accordion. With this in mind, we combined these two algorithms: We first
executed Accordion to get the suggested parameters for each layer and used these parameters
as the default set of parameters in L-GreCo, used to define the maximal error of the
DP algorithm (see line 2 in Algorithm 4.1). Thus, Accordion determines the model
sensitivity to gradient compression at different points in training, while L-GreCo finds the
best mapping of compression parameters per layer. In Figure 4.5, we see that the resulting
combination (L-GreCo with range [8, 128] and Accordion with high=16, low=64) provides
better compression ratios, without accuracy drop.

We also compare the performance of the two algorithms in isolation (see Table 4.5). We
observe that, despite the fact that the theoretical compression ratio suggested by Accordion
is essentially the same as that of L-GreCo, the Accordion throughput is less by around
30%. This is explained by the fact that L-GreCo compressed the last transmitted layers
(buckets) to higher levels, leading to significantly-improved total transmission time. Specifically,
in Figure 4.5b, we observe that L-GreCo transmits twice fewer elements in the last bucket
relative to Accordion. Moreover, combining L-GreCo with Accordion improves the
compression ratio by 50%, and training time by up to 66% compared to Accordion.

Overall, L-GreCo improved practical compression relative to prior techniques. Of note, the
highest compression ratio is achieved by the hybrid Accordion + L-GreCo method, which
leverages layer-wise insights in terms of both sensitivity and training dynamics.
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4.6.4 Evaluating the loss-based accuracy metric
As discussed in Section 4.4, a key advantage of L-GreCo is that it can use any metric for
measuring layer sensitivity to compression. To illustrate this, we investigated a loss-based
metric, in which we collect model loss differences between uncompressed training and training
with the gradient compression for certain layers, while other layers stay intact and use the loss
difference as the sensitivity metric.
To compare the loss-based and error-based approaches, we evaluate the correlation coefficients
of the metrics these two approaches provide. We observe (see Appendix B.6 for details)
that the metric values from the two approaches have a high correlation and lead to very
similar layer-wise compression parameters. Hence, since collecting loss-based metrics requires
additional offline training runs, our usage of an error-based metric is justified.

4.6.5 Optimizing specifically for time
Considering that transmitted layer groups/communication buckets have different impacts on
training performance, one may notice that compression may not always result in speedup. With
this in mind, we have modified L-GreCo to explicitly optimize the expected communication
time, rather than the compression ratio. See the last part of Section 4.5 for a detailed
description of this algorithm variant.
We have run the resulting time-aware variant of L-GreCo with PowerSGD on Transformer-
XL/WikiText-103 training. The linear model built on the timing data we collected (5000
samples - sets of compression ratios per bucket) has a score close to 1, meaning that we
managed to predict the communication time using communicated bucket sizes almost perfectly.
(The linear regression model was trained by running training for 50 steps with 5 steps of
warmup for each set of compression parameters.)
We find that the per-bucket coefficients from the linear model are close to each other (see
Appendix B.7for precise numbers). This means that each bucket’s impact on communication
time is proportional to the bucket size. Also, we noticed that the parameters we obtain with
the modified algorithm are close to the parameters from the original L-GreCo algorithm.
Given that, we figure that in the case of Transformer-XL the original L-GreCo is close to
optimal in terms of timing as well.
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CHAPTER 5
Quantized Sharded Data-Parallel

Training with Convergence Guarantees

5.1 Preface
The impressive recent progress of Deep Learning in tasks such as natural language processing
and computer vision has been accompanied by massive increases in parameter counts. For
instance, large language models (LLMs) from Transformer family, such as GPT [RNS+18],
OPT [ZRG+22] and BLOOM [LSW+22] easily count billions of trainable parameters. Training
such models can easily exceed the memory capacity of a single computational unit, such
as a GPU. This has necessitated new methods to leverage data-parallelism. Among these
methods, fully-sharded data parallel (FSDP) training has gained significant popularity, but
similar to the original Data Parallel it continues to face scalability bottlenecks. A possible
solution - lossy communication compression is challenging as most communication involves
the model’s weights and direct compression can affect convergence and reduce accuracy. In
this chapter, which follows [MVGA23], we introduce QSDP, a variant of FSDP that supports
both gradient and weight quantization with theoretical guarantees. It is simple to implement
and has essentially no overheads. We prove that a natural modification of SGD achieves
convergence even when maintaining only quantized weights.

5.2 Introduction
As a consequence, standard distribution strategies such as data-parallel training [Bot10], which
require each node to be able to keep all parameters in memory, are no longer directly applicable.
Several novel distribution strategies have been proposed to mitigate this challenge, such as
model-parallel training [SPP+19, RSR+20], pipeline-parallel training [HCB+19, HNP+18] and
model sharding [RRA+21, RRRH20a, RRRH20b, Fai21].

We consider the communication costs of distribution strategies for massive models, and focus on
Fully-Sharded Data-Parallel (FSDP) distributed training, which is among the most popular and
user-friendly approaches to mitigate per-node memory limitations. FSDP is supported natively
by Pytorch [PGM+19], Facebook fairscale [Fai21], and Microsoft DeepSpeed [RRA+21],
where it is known as ZeRO-3.
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The main idea behind FSDP is that both the training data and the model parameters are
partitioned among the P nodes. That is, only a 1/P partition of the parameters of each
layer is stored at a node. Then, both for the forward and for the backward pass, nodes
proceed synchronously layer-by-layer, gathering full weights for the current layer, via all-to-all
communication, before executing its forward or backward operation. After this operation
is complete, nodes can discard the current layer’s received weights partitions, and move to
the next layer. (Please see Figure 5.1 for an illustration, and Section 5.5.1 for a detailed
description.)
The key advantage of this pattern is that it reduces memory usage linearly in P . Thus, it enables
running models with billions of parameters on small or medium-sized clusters [Fai21, Mos22b].
At the same time, FSDP faces challenges in terms of communication efficiency : since every
forward and backward pass relies on all-to-all weight exchanges, FSDP can put massive pressure
on the network bandwidth, which becomes a bottleneck.
As we will show, all-to-all communication leads to significant communication bottlenecks when
training LLMs on multi-node clusters. Two key challenges to removing this communication
bottleneck are that 1) a majority of FSDP’s communication is layer weights : quantizing them
naively loses theoretical convergence, and can easily lead to practical divergence; 2) the FSDP
setting poses stringent compute and memory constraints, restricting the set of approaches.
Contribution. We propose the first communication-efficient variant of FSDP, called QSDP,
which provides both convergence guarantees, and strong practical performance. QSDP is
inspired by a new analysis of SGD convergence with full quantization of transmitted model
state. That is, we show that a simple modified variant of SGD can allow both weights and
gradients to be quantized during training, without additional per-node memory or costly local
computation. We find the fact that this is possible with convergence guarantees surprising,
since nodes only observe biased estimators of the gradients, taken over quantized weights,
without any error-correction [KRSJ19]. From the practical perspective, our approach is fast
and easy to implement, and completely removes the communication bottlenecks of FSDP,
while recovering accuracy for billion-parameter GPT models.
At a high level, the QSDP algorithm simply performs weight and gradient quantization before
the corresponding FSDP all-to-all communication steps. While gradient compression can
be performed using standard unbiased compressors, e.g. [AGL+17], weight compression is
performed using a carefully designed unbiased estimator. Our key contribution is in the analysis:
we model the training process as a new instance of sparse recovery [BD08, Fou12], in which
1) the projection step is performed via quantization and not sparsification, and 2) the gradient
step is itself quantized. This connection allows us to prove, under analytic assumptions, that
QSDP converges towards a minimizer of the loss over the set of lattice points corresponding
to the quantization being employed. We believe this is the first instance of such an analysis.
The analysis could potentially be improved by further leveraging structure, as it currently
requires increasing the sparsity by a quadratic factor involving the “condition number” of
the underlying objective, which, although inherent to this type of approach [AS22], may in
theory be quite large. However, despite this shortcoming, it paves the way towards a principled
algorithm, with excellent practical behavior.
We complement our analysis with an efficient implementation of QSDP in Pytorch [PGM+19],
which we validate by training LLMs from the GPT family [RNS+18, ZRG+22] between
125M and 1.3B parameters, on a multi-node multi-GPU environment on Amazon EC2. Our
experiments first show that communication bottlenecks can significantly impact standard
FSDP in this standard practical setting, and that QSDP essentially removes such bottlenecks
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Figure 5.1: Scheme of (Quantized) Fully Sharded Data Parallel algorithm. During forward pass
we collect the missing partitions of layer’s weights, compute its activations and discard the
partitions. At backward pass, we collect the weights again, compute the gradients, synchronize
the gradients corresponding to our partition.

without impact on accuracy. For example, QSDP can train GPT-1.3B to essentially the
same perplexity up to 2.2x faster than standard FSDP on a 10Gbps network. In addition, we
also introduce a “learned” adaptive weight quantization approach which can further reduce
bit-width, without significant accuracy impact.

5.3 Related Work
Over the past decade, there has been a massive amount of work on communication-efficient
variants of Data-Parallel SGD, e.g. [SFD+14, DJMVE16, AGL+17, VKJ19, TYL+19, WSL+18].
(Please see [BNH19] for a survey.) The vast majority of this work focuses on gradient
compression, the main communication cost of SGD, and is thus mostly orthogonal to our
work. The massive scale of recent deep models, e.g. [CND+22, BMR+20] has led to significant
work on novel distribution strategies [RRA+21, RRRH20a, RRRH20b, Fai21] adapted to the
requirements of these models, among which FSDP is a standard approach, e.g. [CND+22].
While there is recent work on further optimizing FSDP, e.g. [JMNC22, MWJ+22], we are the
first to investigate and address its communication costs. Our results are part of a broader
line of work using different techniques to make the training of massive models amenable to
standard infrastructure, e.g. [WYR+22, YHD+22, BBD+22].

Quantized weight exchange during training has been investigated independently in the context
of decentralized distributed learning. Tang et al.[TZG+18] present a scheme which supports
quantized weight exchange by having each node extrapolate each of its neighbors’ model
values; yet, this would require unrealistic Θ(Pd) extra memory in our case. Similarly, other
work in this vein [KSJ19, NSD+21, LDS20] either requires additional storage, or would not fit
the FSDP algorithm structure. Both our analysis approach and our algorithms’ guarantees are
different relative to this line of work.

Recently, there has been a surge of interest in post-training quantization approaches for large
language models, which reduce the deployment costs of already trained models [YAZ+22,
DLBZ22, FAHA22, XLS+22]. Our work is complementary, in the sense that we show that
quantized weights and gradient representations can be applied during training, without accuracy
loss, leading to training speedup. On the other hand, these post-training approaches would be
too expensive to be executed for compression at training time.

A parallel line of work aims to perform fully-quantized training of DNNs [BHHS18, ZGY+20].
One general finding from this line of work is that integrating weight and gradient quantization
into training is extremely challenging, even when using 8bit precision, from both accuracy and
performance perspectives. Specifically, this line of work investigates model modifications via
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e.g. parameter tuning and specialized normalization layers, in order to recover accuracy. By
contrast, we preserve model structure and do not modify hyper-parameter values, although we
only quantize the transmitted state.

5.4 Background and Motivation

5.4.1 Data-Parallel Training
In this classic SGD distribution pattern [Bot10], each node (e.g., GPU) holds a copy of the
model, and the data is partitioned among the nodes. Each training step samples a subset of
the data called a batch, performs a forward pass over the batch to obtain model predictions,
and then performs a backward pass to obtain gradient updates. Finally, nodes communicate
their local gradient updates in all-to-all fashion to keep the model in sync.

5.4.2 Gradient Compression
Transmitting gradients is the key communication cost of Data-Parallel SGD, and there has
been a tremendous amount of work on addressing the resulting bandwidth bottleneck [SFD+14,
DJMVE16, Str15]. (As this area is extremely vast, we refer to [BNH19, LZ+20] for a full
overview.) Of these, gradient quantization is a particularly-popular technique, which has
the advantage that variants of it can be implemented without additional memory cost. A
simple example is the QSGD technique [AGL+17], which is essentially a codebook compression
method which maps each gradient value to a point on a uniform grid, via randomized rounding.
For this, values are first scaled to the range [−1, 1], and then each scaled coordinate v is
mapped to one of the endpoints of its quantization interval v ∈ [qi, qi+1] via the following rule:

q(v) =

⎧⎨⎩qi, with probability v−qi

qi+1−qi
,

qi+1, otherwise.

It is easy to see that this gradient estimator is unbiased with respect to the stochastic
quantization, and that its variance can be bounded by the norm of the original gradient. We
will revisit this scheme in Sections 5.5.3 and 5.6.

5.4.3 Fully-Sharded Data-Parallel Training
As the name suggests, FSDP starts from the Data-Parallel (DP) approach. The main
observation is that nodes do not necessarily need to store the full set of parameters at every
stage of training, in particular during the backward pass. Specifically, we use the scarce GPU
memory to represent only those layers which are in the forward-backward “working set” at a
given moment of time.

Initially, model parameters are partitioned, so that each of the P workers is assigned a distinct
1/P fraction of each layer’s weights. At each optimization step (see Figure 5.1, ignoring
the dashed quantization operations), before the forward pass on a layer, each worker collects
the missing partitions from other workers, computes the output activations, discards the
received partitions and proceeds to the next layer. For the backward pass, workers again
collect all layer weights, compute the gradients, synchronize them, discard the layer weights,
and proceed to the next layer. Technically, each optimization step consists of two AllGather
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collective operations for weights, and one Reduce-Scatter to sync gradients (full pseudocode
in Appendix C.1).
One can easily check that the above approach implements the standard SGD iteration one-to-
one, relative to a sequential execution. If we denote by yt the model’s parameter vector used
at iteration t, and by g (yt) the average of the nodes’ stochastic gradients at step t, taken at
yt, then, for learning rate η, we can model the iteration as

yt+1 = yt − ηg (yt) . (5.1)

FSDP with Compression. The natural way to reduce the cost of weight and gradient
transmission in the above scheme would be to simply quantize them before transmission.
(Please see the full Figure 5.1.) To examine the impact of adding compression on the above
SGD iteration, let us consider abstract quantization operators Qw applied to the weights,
and Qg applied to the gradients. (We will specify these quantization functions precisely in
Section 5.5.3, and the exact implementation in Section 5.6.) For iteration t ≥ 0, let vt be a
“virtual” view of the model weights at the beginning of iteration t, obtained by aggregating all
the weights, across all the weight partitions, in full precision.
First, notice that, if we apply Qw before all transmissions, then the algorithm will only observe
the quantized version of vt, which we denote by Qw(vt). Then, we can re-write one iteration
of the algorithm as

vt+1 = Qw(vt)− ηQg(g (Qw(vt))).

This formulation inspires the notation xt = Qw(vt), as the algorithm only “sees” the quantized
version of the full-precision weights. Then, we get the following iteration:

xt+1 = Qw(xt − ηQg(g (xt))), (5.2)

which would correspond to an abstractly-quantized version of FSDP. This iteration is the
starting point for our analysis in the next section.

5.5 SGD with Quantized Weights and Provable
Convergence

The cornerstone of our method consists of a stochastic gradient method that provably converges
to a good quantized iterate, under reasonable analytic assumptions. One main novelty is
that it converges despite the fact that the domain is non-convex. At a very high level, it is
similar to the iterative hard thresholding (IHT) method, which achieves provable guarantees
despite the fact that it seeks a good iterate in the set of vectors of bounded sparsity [BD08].
Throughout this section, we abstract away specifics of the system architecture, since they are
not relevant to our analysis. We explain their relationship to the actual implementation in
Section 5.6.
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5.5.1 Background and Assumptions
The main challenge we face is to obtain quantized solutions to optimization problems that
seek to minimize a function f : Rn → R:

min
x∈G

f(x) , (5.3)

where the domain G is a lattice that allows for an efficient communication of its elements.
We restrict our attention to shifts of the lattice δZn along the direction of the all-ones vector.
Formally, G = {δZn + r1 : r ∈ [−δ/2, δ/2)}.
Overview. Even in the case where f is convex, the non-convex structure of G makes it
incredibly difficult to obtain a good minimizer to f without suffering a large loss. In fact,
problems of this form are generally NP-hard. However, we show that when f is reasonably
well-conditioned we can obtain strong convergence guarantees. The idea consists of alternating
stochastic gradient descent steps with applications of a quantization operator Qw which
projects the new iterate back onto a certain subset of G. Letting g (xt) be a stochastic
gradient, and δ a parameter which determines the coarseness of the quantization grid that we
project onto, our update at step t + 1 has the following form:

xt+1 = Qw
δ (xt − ηg (xt)) . (5.4)

This formulation covers the practical case where the stochastic gradient g (xt) corresponds
to a mini-batch stochastic gradient. Indeed, as in practice f takes the form f(x) =

1
P m

∑︁P
i=1

∑︁m
j=1 f(x; yj), where S = {y1, . . . , ym} are data samples, and fi(x) are loss

functions at individual nodes, the stochastic gradients obtained via backpropagation takes the
form 1

|B|
∑︁

j∈B∇fi(x; yj), where i is a random node, and B is a sampled mini-batch.
Quantization by Random Shift. For weight quantization, we consider the following unbiased
stochastic quantization method. To quantize a vector, we first sample a single fixed random
scalar r, then shift all the coordinates of the vector by r. For vector encoding, it rounds each
coordinate to the nearest neighbor on the quantization grid, and sends the lattice coordinates
of the resulting vector, together with the scalar r. For decoding, it takes the lattice point,
and undoes the shift on the quantized coordinates. The notable difference between this and
more standard quantization methods, e.g.[AGL+17], is that quantization is dependent across
coordinates. In exchange for losing independence, it allows us to provide stronger guarantees
in the context of weight quantization. We define it formally:

Definition 1 (quantization by random shift). Let δ > 0 be a scalar defining the coarseness
of the quantization grid. Let a scalar r ∈ [−δ/2, δ/2), and let the deterministic operator
Qw

r,δ : R→ R which rounds to the nearest element in δZ + r:

Qw
r,δ (x) = δ ·

⌊︃
x− r

δ

⌉︃
+ r .

Define the randomized quantization operator Qw
δ : R→ R via Qw

δ (x) = Qw
r,δ (x), for a random

r ∼ Unif ([−δ/2, δ/2)). We apply Qw
δ to vectors, with the meaning that it is dependently

applied to each coordinate for a single random shift r.

We use this quantization method to show that, for a well-conditioned loss function, and appro-
priate grid parameters, the iteration (5.4) converges, under reasonable analytical assumptions,
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to a set of weights that are comparable in quality to the best possible quantized weights from
a slightly coarser grid. We note that to further reduce communication costs, our method also
supports gradient quantization in addition to weight quantization, provided that gradients are
quantized using an (arbitrary) unbiased estimator.
Analytical Assumptions. Formally, our analysis uses the following assumptions on f .

1. Unbiased gradient estimators with variance σ: E [g (x) |x] = ∇f (x).

2. For β > 0, the β-smoothness condition: for all x, ∆,

f (x + ∆) ≤ f (x) + ⟨∇f (x) , ∆⟩+ β

2 ∥∆∥
2
2 .

3. For α > 0, the Polyak-Łojasiewicz (α-PL) condition:

1
2 ∥∇f (x)∥2

2 ≥ α (f (x)− f ∗) ,

where f ∗ = minx f (x).

The first two assumptions are standard in stochastic optimization (see e.g. [LSB+19]). The
Polyak-Łojasiewicz (PL) condition [KNS16] is common in non-convex optimization, and
versions of it are essential in the analysis of DNN training [LZB20, AZLS19]. In words, it
states that small gradient norm, i.e. approximate stationarity, implies closeness to optimum in
function value.

5.5.2 Main Theoretical Results
We are now ready to state our main analytical result.

Theorem 2. Let α, β, δ⋆, ε > 0 and σ ≥ 0 be real parameters, and let η = min
{︂

3
10

εα
σ2 , 1

}︂
.

Let f : Rn → R be a β-smooth and α-PL function, with access to a stochastic gradient
g (x), i.e. E [g (x) |x] = ∇f (x) with bounded variance E ∥g (x)−∇f (x)∥2

2 ≤ σ2. For each
r ∈ [−δ⋆/2, δ⋆/2), let x⋆

r,δ⋆
be any minimizer of f over δ⋆Zn + r1. Let δ = η

⌈16(β/α)2⌉ · δ⋆.
Consider the iteration:

xt+1 = Qw
δ

(︄
xt −

η

β
g (xt)

)︄
.

In T = 10
η
· β

α
ln f(x0)−Ef(x⋆

r,δ⋆
)

ε
iterations we obtain a point xT satisfying Ef (xT )−Ef(x⋆

r,δ⋆
) ≤

ε.

Discussion. To understand the convergence of this method, let us establish as a benchmark
the expected value Ef(x⋆

r,δ⋆
) of the best iterate on the lattice δ⋆Zn +r1, where the expectation

is taken over the shift r. Our method finds a point in a slightly finer grid xT ∈ δZn + r′1,
such that in expectation over the randomness in the algorithm, the value of the function is
at most ϵ larger than our benchmark. The sacrifice we have to make in exchange for this
surprisingly strong convergence is an increase in resolution for the iterates we maintain, which
is dependent, among others, on the condition number of f . It appears that without further
assumptions, the dependence on condition number can be quite large – unfortunately, even
the best-known analyses of “standard” iterative hard thresholding (the sparsity correspondent
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to our projection approach) have quadratic dependency in the condition number, as shown
in [AS22], so bounds of this type are inherent even for simple examples, like ℓ2 regression.
Since our method works with stochastic gradients, we can additionally quantize gradients to
further reduce communication. In fact, any quantization method that compresses gradients to
an unbiased estimator with low variance can be directly plugged into Theorem 2.
We state in the following corollary a generic bound for quantized gradients, which highlights
the trade-off between variance and communication for the quantization method.

Corollary 3 (Gradient Quantization). Let α, β, δ⋆, ε, b > 0 and σ, σ∇ ≥ 0 be real parameters.
Let f : Rn → R be a β-smooth and α-PL function, with access to a stochastic gradient
estimator g (x), i.e. E [g (x) |x] = ∇f (x) with bounded variance E ∥g (x)−∇f (x)∥2

2 ≤ σ2.
Let Qg : Rn → R be a gradient quantizer which for any stochastic gradient g (x) encountered
during the execution of the algorithm, ensures:

1. unbiased estimator: E [Qg(g (x))|g (x)] = g (x),

2. variance: E
[︂
∥Qg(g (x))− g (x)∥2

2 |g (x)
]︂
≤ σ2

∇,

3. requires b bits to communicate Qg(g (x)).

For each r ∈ [−δ⋆/2, δ⋆/2), let x⋆
r,δ⋆

be any minimizer of f over δ⋆Zn + r · 1. Let η =
min

{︃
3
10

εα
σ2+σ2

∇
, 1
}︃

, δ = η

⌈16(β/α)2⌉ · δ⋆, and consider the iteration:

xt+1 = Qw
δ

(︄
xt −

η

β
Qg (g (xt))

)︄
.

In T = 10
η
· β

α
ln f(x0)−Ef(x⋆

r,δ⋆)
ε

iterations we obtain a point xT satisfying Ef (xT )−Ef(x⋆
r,δ⋆

) ≤

ε. Furthermore, the entire algorithm requires O
(︃

b · σ2+σ2
∇

εα
β
α

ln f(x0)−Ef(x⋆
r,δ⋆

)
ε

)︃
bits to commu-

nicate the quantized gradients.

We notice that since b and σ∇ are inversely associated, we can establish a trade-off between
the number of iterations and the total communication. As a matter of fact, this trade-off kicks
in only at the point where the variance of the quantized gradient estimator becomes as large
as that of the stochastic gradient, as the number of iterations scales linearly with σ2 + σ2

∇.
For example, given a resolution parameter δ∇ > 0, a simple gradient quantization scheme
such as the one employed by QSGD, quantizes gradient entries to δ∇Zn, while guaranteeing
σ2

∇ ≤ δ∇Gℓ1 , where Gℓ1 ≥ ∥g (x) ∥1, and b = O(Gℓ1/δ∇ · (ln n + ln Gℓ1)) bits required for
communication. See a more detailed discussion in Section C.5.3. By varying δ∇ we distinguish
between the extreme cases, corresponding to the scenarios where the quantized gradients are
dense and sparse, respectively. While the total communication does not improve by varying
δ∇, by doing so we are able to reduce the communication performed in each iteration, in
practice [AGL+17].
Dense gradients: setting δ∇ = σ2/Gℓ1 , we obtain exactly the same number of iterations as
in the basic case without quantized gradients, but the communication per iteration is reduced
to O(G2

ℓ1/σ2 · (ln n + ln Gℓ1)).
Sparse gradients: setting δ∇ = Gℓ1 , the number of iterations scales with max

{︂
σ2, G2

ℓ1

}︂
rather than σ2, but the pre-step communication is reduced to O (ln n + ln Gℓ1) bits.
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5.5.3 Analysis Overview
Let us briefly explain the intuition behind our theoretical analyses. We view our iteration
as a version of projected gradient descent, where iterates are projected onto the non-convex
domain of quantized vectors. In general, when the domain is convex, projections do not
hurt convergence. But in our setting the distance to the optimal solution can increase and
drastically affect the loss. However, we can show a trade-off between how much this distance
increases and the ratio between the target and optimal resolution δ/δ⋆.
To understand this better, consider a point x ′ obtained by taking a step x ′ = Qw

δ (x− 1
β
∇f(x)).

Using smoothness, we can verify that this significantly decreases the loss, provided that the
quantization operator does not perturb its input by too much in ℓ2 norm. Formally, using
Lemma 7 we see that

f(x ′) ≤ f(x)− 1
2β
∥∇f(x)∥2

2 (5.5)

+ β

2

⃦⃦⃦⃦
⃦Qw

δ

(︄
x − 1

β
∇f(x)

)︄
−
(︄

x − 1
β
∇f(x)

)︄⃦⃦⃦⃦
⃦

2

2
.

Since compared to a vanilla gradient method, this suffers a reduction in the progress made in
a single iteration, we can force this to be significantly smaller so as not to undo more than a
fraction of the progress we would ideally make. To do so, we notice that we can change the
last term in (5.5) to the current error in function value, and we can make this dependence be
arbitrarily small by using a finer resolution δ for our quantization grid. This is captured by the
following crucial lemma, which we prove in Section C.5.4.

Lemma 4. Let δ⋆ > δ > 0, such that δ⋆/δ ∈ Z. Let x ∈ Rn, and for all r ∈ [−δ⋆/2, δ⋆/2),
let an arbitrary x⋆

r,δ⋆
∈ δ⋆Zn + r1. Then

E
[︂
∥Qw

δ (x)− x∥2
2

]︂
≤ δ

δ⋆

Er

[︃⃦⃦⃦
x⋆

r,δ⋆
− x

⃦⃦⃦2

2

]︃
.

Using Lemma 4, together with the α-PL condition, we can change the extra error term to

β

2 ·
δ

δ⋆

Er

[︄
2
α

(︄
f

(︄
x − 1

β
∇f(x)

)︄
− f(x⋆

r,δ⋆
)
)︄]︄

,

where x⋆
r,δ⋆

are picked to be the best minimizers in δ⋆Zn + r1. To simplify the exposition
and highlight the main ideas, let us assume that Er[f(x⋆

r,δ⋆
)] = f(x⋆). Since by the α-PL

condition we know that the gradient norm is large compared to the error in function value, we
conclude that

f(x ′)− f(x⋆) ≤ f(x)− f(x⋆)− α

β
(f(x)− f(x⋆))

+ β

α
· δ

δ⋆

(︄
f

(︄
x − 1

β
∇f(x)

)︄
− f(x⋆)

)︄

≤ (f(x)− f(x⋆))
(︄

1− α

β
+ β

α

δ

δ⋆

)︄
.

This shows that by setting the δ ≤ δ⋆ · (α/β)2/2, in each iteration the error contracts by a
1−Θ(α/β) factor, which allows us to conclude that this algorithm converges linearly to a
minimizer. We provide full proofs in Section C.5.
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5.6 QSDP Implementation

5.6.1 Overview
We implemented a practical version of the QSDP algorithm described in the previous section,
supporting both weight and gradient quantization, in Pytorch [PGM+19] starting from the
PyTorch FSDP support. Our implementation uses the CGX framework(Section 3) as a
communication backend, to which we added support for quantized AllGather and Reduce-
Scatter collectives.

In the original FSDP implementation, layers are packed into groups: weights and gradients
of layers in the same group are concatenated before communication. In QSDP, we compress
layers separately, filtering out normalization layers and biases, which are communicated in full
precision. This filtering is implemented at the level of the CGX communication backend. The
quantized AllGather and Reduce-Scatter operations are implemented by leveraging peer-to-peer
NVIDIA NCCL primitives. For multi-node (inter-server) communication, we used hierarchical
versions of the algorithms to reduce the size of inter-node transmissions.

One important optimization regards the granularity at which quantization is performed.
Specifically, applying quantization over large tensors suffers from scaling issues, which results
in accuracy degradation. To address this, we perform compression independently into equally-
sized “buckets” of fixed size, and compress each bucket independently. This approach sacrifices
compression by a negligible amount (as we need to transmit min-max scaling meta-information
for each bucket), but helps avoid loss in terms of model quality.

Bucketing (or grouping) on the weights is known to be necessary for good accuracy when
quantizing pre-trained LLMs [DZ23]. It is also justified theoretically (Theorem 2), as it both
reduces compression variance and allows us to explore solutions over finer-grained lattices. We
observed experimentally that bucket size 1024 provides a good balance between compression
and accuracy and use it as a universal hyper-parameter. In the context of this optimization,
we observed that the impact of stochasticity in the quantization becomes minimal.

5.6.2 Learned Weight Quantization
We now describe an additional (optional) optimization, which allows us to further reduce
practical bits-width, at little to no accuracy loss. The motivating observation behind this
optimization is that the quantization schemes we use for weights and gradients assume uniform
locations of the quantization levels. Yet, this uniform grid does not take the distribution
of values into account. The idea of adapting the locations of quantization levels to the
data distribution has already been studied [ZLK+17, FTM+20]. However, existing dynamic-
programming approaches ZipML [ZLK+17] have high computational cost (quadratic in the
number of data points); thus, we use a fast version of gradient-descent-based optimization
over the quantization levels [FTM+20].

The goal of the distribution-aware quantizer in Algorithm 5.1 is to select new locations
for a fixed number of quantization points and weight values, so as to minimize the error
introduced by quantization. The algorithm runs iteratively across all values, finds the locations
of quantization points for each value, and updates the quantization points using the gradient
descent update rule. We run this heuristic periodically after a warmup period, separately for
the weights and gradients of each layer. We save the derived locations of the quantization
levels and use them for quantization until the next re-computation.
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Algorithm 5.1: Gradient-based Optimization of the Levels
1: Input: values V , initial levels Q0, learning rate α.
2: Output: optimized quantization levels Q.
3: Normalize values V bucket-wise.
4: for each value vi from V do
5: qi = find_closest(v,Qi) // Quantize using current level
6: qi = qi − α(qi − vi) // Update chosen quantization level
7: end for

5.7 Experimental Validation

5.7.1 Experimental setup
Infrastructure. We evaluate QSDP for training GPT-scale LLMs using multiple cloud-grade
Amazon EC2 p3dn.24xlarge machines, with 8 V100 SXM2 GPUs each. Each GPU has
32GB of memory. The inter-GPU interconnect is provisioned by NVLinks with 200Gbps, while
the inter-server bandwidth is 100 Gbps.

Environment and Tasks. We use the official NGC PyTorch 22.05-py3 Docker image with
PyTorch 1.12, CUDA 11.6.2, NCCL 2.12, and the MosaicML Composer library (version 0.12),
as well as a fork of the CGX communication library (Chapter 3). All experiments were run
with MosaicML Large Language Models implementation [Mos22a]. The benchmarks run the
pre-training of different versions of GPT-family models [RNS+18, BMR+20], varying the sizes
of the models, on the C4 dataset [RSR+20]. Specifically, we examine the accuracy of GPT
models with 125M, 350M, and 1.3B parameters. For benchmarks, we use 4 servers with 8
GPUs each. See Appendix C.1 for training details.

Baselines. As a baseline, we use training with default parameters, which is already highly
optimized by MosaicML [Mos22a]. We note that directly using INT8 quantization, without
bucketing, resulted in very poor accuracy, and therefore we do not use it as a baseline. In
terms of communication, the baseline transmits weights in full (FP32) precision and gradients
in half (FP16) precision. In QSDP experiments, we do not modify any hyperparameters. We
convert gradients to full precision before quantization. For all timing experiments, the reported
numbers are averaged over 50 training steps after a warm-up of 10 iterations. Our main
accuracy measure is perplexity, which is known to be a very stringent accuracy measure in
this setting, and correlates extremely well with zero-shot performance [DLBZ22].

Accuracy Recovery. We first examine the effect of quantization on model quality, i.e. final
model perplexity, in the end-to-end experiments. The default bit-width for weights and gradients
quantization is 8 bits, using 1024 bucket size, which we illustrate as W8G8. We communicate
normalization layers and biases in full precision. We emphasize that straightforward round-to-
nearest or stochastic quantization does not converge to reasonable final perplexity in this setup:
Naive quantization without bucketing loses more than 2 units of perplexity on GPT-125M, a
model on which W8G8 with 1024 bucket size improves perplexity.

The accuracy results are presented in Table 5.1. The QSDP final perplexity is almost identical
to that of regular training, and QSDP can even slightly improve the baseline accuracy. We
stress that we did not perform any parameter tuning: quantization parameters are the same
across all layers.

End-to-end Speedup. For end-to-end training speedup improvements, we use multi-node
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Figure 5.2: Perplexity vs time for standard FSDP (FP32 weights and FP16 gradients) and
QSDP (both weights and gradients quantized to 8 bits) for the 1.3B model in the 10Gbps
bandwidth setup.

GPT pretraining under standard hyperparameters. We examine speedup for different inter-node
bandwidths: 10 Gbits, 50 Gbits, and 100 Gbits. For that, we artificially reduce input-output
bandwidth on each node, using the UNIX tc tool [TC01]. The results are presented in
Figure 5.3. First, please notice that standard FSDP training has a non-trivial bandwidth
bottleneck even at 100Gbps bandwidth as we increase model size and that this bandwidth
bottleneck can dominate training time on the lower 10Gbps bandwidth. Second, the running
time of QSDP is essentially constant across all three scenarios, showing that it has essentially
removed the bandwidth bottleneck. More precisely, QSDP outperforms the baseline by up to
15% in the 100Gbps scenario (a non-trivial reduction of 12 hours of training time or 1.5k$ of
cloud costs1), and by 2.25x in the 10Gbps scenario.
Learned quantization. We examined the performance of learned quantization for the small
125M parameters model. We ran the optimization algorithm after 400, 1900, and 3800
training steps, and noticed that optimizing the locations of quantization levels has no effect for
bit-widths higher than 6 bits, but leads to noticeable improvements for lower bit-widths. Please
see Table 5.3. Learned weight quantization allows us to improve the final model performance
for different weight and gradient quantization parameter pairs, reaching perplexities that are
close to the baseline. Specifically, using learned quantization results in reaching the highest
compression ratio for weights and gradient in training (i.e. 5 and 4 bits respectively) without
substantial accuracy impact. We expand upon these experiments in Appendix C.3.

1price of 12 hours training on 4 AWS p3dn.24xlarge instances
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Table 5.1: Perplexities recoveries for different models end-to-end training using QSDP. Weights
and gradients quantized to 8 bits, uniform quantization.

125M 350M 1.3B
Baseline 35.81 23.94 18.00
QSDP 35.58 23.95 18.34

Table 5.2: Final perplexities of training 125m GPT-2 model with combinations of weights and
gradients low-bits uniform (not learned) quantization.

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Weights bits
Gradients bits 6 5 4

6 35.74 36.08 35.84
5 36.01 35.94 36.36
4 37.11 37.38 37.61
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Figure 5.3: Training step time for different models at various inter-node bandwidth with
and without QSDP enabled. The fact that QSDP step time is constant across considered
bandwidths means that QSDP successfully tackles bandwidth bottlenecks.

Table 5.3: Final perplexities of low-bits quantization of 125m GPT-2 model using the learned
quantization levels. Learned quantization in the W6G4 configuration provides lower perplexity
than the baseline.

baseline w6g4 w5g4 w4g4 w4g32
Uniform 35.81 35.81 36.34 37.61 37.11
Learned 35.75 36.01 36.94 36.55
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CHAPTER 6
Discussion and Future work

Given that the success of deep learning heavily relies on the scale of the models and the datasets
used for training, efficient training is more crucial than ever. Distributed training accelerates
the process; however, communication can become a scalability bottleneck in these systems.
This thesis explores solutions to this communication bottleneck through lossy compression.

Thesis summary

As the first step, we designed and implemented the system, called CGX, that supports efficient
gradient compression. We demonstrated in Chapter 3 that the expensive approach of hardware
overprovisioning can be replaced by algorithmic and system design. Our framework offers
efficient software support for compressed communication in machine learning applications,
applicable to both multi-GPU single-node training and larger-scale multi-node training. CGX
utilizes a newly developed communication stack for ML frameworks at the system level and
enables seamless, parameter-free integration with popular frameworks, allowing end-users to
avoid modifying training recipes or significant portions of training code.
Next, we have explored the concept of adapting compression parameters across different model
layers and throughout the training process. Chapter 4 introduces a general framework for
dynamically adjusting the degree of compression across a model’s layers during training. The
algorithm determines the optimal compression parameters so that 1) the total L2 compression
error aligns with a target known to maintain the accuracy, and 2) the overall compressed
size is minimized for this target. In other words, the approach enhances overall compression
and achieves significant speedups without compromising accuracy. The framework, named
L-GreCo, employs an adaptive algorithm that automatically selects the optimal compression
parameters for each model layer, ensuring the best compression ratio while meeting an error
constraint. Overall, we presented a new approach to enhance existing gradient compression
methods with virtually no cost in terms of time or accuracy loss.
Moreover, we have examined a variation of Data Parallel training known as fully-sharded data
parallel training. We introduce a variant called QSDP, which supports both gradient and
weight quantization. QSDP is straightforward to implement and incurs virtually no overhead.
The approach is validated by training GPT-family models with up to 1.3 billion parameters on
a multi-node cluster. Experiments demonstrate that QSDP maintains model accuracy while
eliminating the communication bottlenecks of FSDP, achieving end-to-end speedups of up to
2.2x. Additionally, we have provided a theoretical investigation that resulted in a novel analysis
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demonstrating that Stochastic Gradient Descent (SGD) can converge with robust guarantees,
even with quantized iterates, provided a well-quantized solution is available. Our findings show
that communication compression can be a useful technique within new distribution strategies
inspired by large-scale training. We believe we are the first to demonstrate both convergence
guarantees and strong practical performance for straightforward weight compression schemes
applied during SGD-based training.

Future directions

The research prospects in distributed deep learning discussed in this thesis focus on a systems-
algorithmic co-design approach. As deep learning models increase in size and complexity, new
challenges related to scalability, performance, and efficiency will require more improvements. In
what follows, we highlight potential research avenues for further exploration of these emerging
trends.
Integration with other distributed training approaches. In CGX (Chapter 3) and other
works we only focus on Data Parallel based training and its extensions. Future work may
extend our results to model-parallel or hybrid synchronization setups, e.g. [ZGQ+20, LMXG21].
The Tensor Parallel approach that becomes more popular with the development of Large
Language models might require additional systems and algorithmic approaches.
Further research of layer-wise compression. In Chapter 4, we examine the impact
of heterogeneous compression on training performance and accuracy, primarily using L2
compression error as a key metric. However, this approach does not account for inter-layer
interactions during training, as we treat the layers independently. Future work could investigate
alternative metrics that consider the impact of layers on one another.
Additionally, in Chapter 4, we focus on experiments using individual compression techniques,
selecting compression parameters for either quantization, sparsification, or decomposition.
However, L-GreCo inherently supports hybrid approaches, allowing for different layers to be
quantized, decomposed, or sparsified. Implementing this idea would require additional system
support due to the diverse backends of the compression techniques, but it could potentially
lead to further improvements in speed and accuracy.
Another possible research direction is to further explore the combination of critical training
regimes [ARS18] with our work [MAFA24] on Language Models in various types of training,
such as pre-training or fine-tuning.
Compression in Fully Sharded Data Parallel. An intriguing extension of QSDP, as discussed
in Chapter 5, would be to explore other compression techniques, such as weight pruning or
gradient low-rank decomposition. Additionally, integrating L-GreCo with QSDP could reveal
interesting patterns in layers, not just for gradient but for weight compression as well. This
integration might further identify layers that are particularly sensitive to compression, providing
valuable insights for post-training weight compression. Furthermore, such an approach could
help optimize the balance between compression efficiency and model performance, potentially
leading to more refined and effective compression strategies across different layers. This would
be particularly useful for enhancing the performance of large-scale deep learning models while
maintaining their accuracy.
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APPENDIX A
Appendix for Chapter 3

A.1 Training Hyperparameters
Following the original recipes, ResNet50, VGG16, and the Vision Transformer (base model)
were trained on ImageNet with total batch sizes 256, 256, 576 respectively. ViT was trained
in mixed precision level 1 (activations at FP16, weights, and gradients in full precision).
The Transformer-XL (base model) experiment was run on WikiText-103 dataset with batch
size 256 and second level mixed precision (model, activations, and gradients cast FP16).
The GPT-2 model was trained on WikiText-2, batch size 24, level 2 mixed precision. For
question-answering we used BERT model on the SQUAD-v1 dataset with batch size 3 per
GPU and FP32 training.
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Figure A.1: Throughput for ResNet50, VGG16 /ImageNet with Tensorflow. Higher is better.
Hatched bars represent ideal scaling.

A.2 Other frameworks
As an extension of Horovod, CGX also supports not only Pytorch but other Deep Learning
frameworks, e.g. Tensorflow. Figure A.1 shows the results of CNN benchmarks based on
Tensorflow. As we can see, CGX outperforms NCCL backend by up to 130%.
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Listing A.1: Torch extension (torch_cgx) usage example
import t o r c h
import to rch_cgx

# s p e c i f y backend wi th g r a d i e n t compre s s i on
t o r c h . d i s t r i b u t e d . i n i t _ p r o c e s s _ g r o u p ( backend=’ cgx ’ )
. . .

#model d e f i n i t i o n
model = . . .
# r e g i s t e r model
l a y e r s = [ ( name , p . numel ( ) ) fo r name , p in model . named_parameters ( ) ]
to rch_cgx . r e g i s t e r _ m o d e l ( l a y e r s )
# S p e c i f y f i l t e r i n g . batch norm and b i a s modules w i l l be r educed i n f u l l p r e c i s i o n
to rch_cgx . e x c l u d e _ l a y e r ( " bn " )
to rch_cgx . e x c l u d e _ l a y e r ( " b i a s " )
. . .
model = DDP( model , d e v i c e _ i d s =[ l o c a l _ r a n k ] )
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APPENDIX B
Appendix for Chapter 4

Table B.1: Hyperparameters for ResNet-18/CIFAR-100 from [SDMA+21]
Parameter Value

Number of workers 8

Optimizer SGD with
momentum

Global batch size 1024
Momentum 0.9

Post warmup LR 1.6

LR decay /10 at epoch 150
and 250

LR warmup Linear for 5 epochs,
starting from 0.1

Epochs 300
Weight decay 10−4

B.1 Bucket prioritization
Considering the fact that communication buckets have different impacts on training per-
formance, we modified the L-GreCo algorithm so that the last buckets in transmission
order, corresponding to the earlier layers, were compressed more. This compensates for the
compression error caused by picking lower compression parameters for the first buckets, i.e.,
the last layers. In practical terms, we have added linear priorities to the layers in Algorithm 4.1,
multiplying the size of each layer by the index of the bucket the layer is communicated in. The
profile of communicated elements per buckets is shown in the Figure B.1. We observe the
linear shift of higher compression ratios towards the last buckets. However, bucket prioritization
performs worse than original L-GreCo. It means that the effect of the first big buckets
transmission is higher than the effect of better compression of the last buckets.

B.2 Low-rank error computation
As discussed in Section 4.5, one of the main steps of our algorithm is to compute the error
matrix for different possible compression parameters. Table 4.1 suggests that this is the most
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Figure B.1: Communicated elements per bucket for L-GreCo and L-GreCo with linear bucket
prioritizing. Transformer-XL with PowerSGD.

time-consuming part of our framework. Specifically for the PowerSGD, we need to compute
low-rank errors for a wide range of ranks. There are two possible solutions to do so.

B.2.1 Singular Value Decomposition
The first way to compute errors is to use singular value decomposition and compute singular
values for a particular layer, and calculate the approximation error for rank r < min(m, n) by
calculating er =

√︂∑︁min(m,n)
i=r+1 σ2

i , which can be done efficiently for all ranks. Specifically, it is
sufficient to compute squared singular values once, and then compute all the errors by a single
matrix product. Thus, the bottleneck is computing singular values requiring O(mn·min(m, n))
time and O(n2 + mn) space.

B.2.2 Power Iteration Steps
The second approach is to calculate the approximation error for each rank separately by doing
a few power steps (without the communication parts); as PowerSGD[VKJ19] claims, this
approach converges to the SVD-suggested matrix. On the practical side, we have observed that
applying only 5 power steps is enough to have a small error relative to the optimal low-rank
approximation suggested by SVD. This approach needs O(mnr) time and O((m + n) · r)
space for calculating rank r approximation error and therefore O(mnr2

max) to compute errors
for all r ∈ [rmin, rmax].

B.2.3 The Best of Both Worlds
Comparing computational complexity and memory requirements of two methods suggests it is
better to use the power method when the rank range is small, e.g., ResNet50 on ImageNet
or ResNet18 on Cifar100, and to use the SVD method when the rank range is large, e.g.,
TransformerXL and TransformerLM on WIKITEXT-103.
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Figure B.2: Compression ratio of the scheme suggested by L-GreCo during the training.
ResNet50 with PowerSGD.

Table B.2: Hyperparameters for ResNet-18/CIFAR-100
Parameter Value

Number of workers 8

Optimizer SGD with
momentum

Global batch size 128
Momentum 0.9

Base LR 0.1

LR decay /10 at epoch 150
and 250

Epochs 200
Weight decay 10−4

Table B.3: Hyperparameters on ResNet-50/ImageNet
Parameter Value

Number of workers 8

Optimizer SGD with
momentum

Global batch size 2048
Momentum 0.875

LR warmup Linear for 8 epochs,
starting from 0.256

LR schedule cosine

LR decay /10 at epoch 150
and 250

Epochs 90
Weight decay 1/32768

Label smoothing 0.1

B.3 Combination of PowerSGD and L-GreCo

We note that in all of our wide-range experiments, the compression ratio when L-GreCo
is applied to PowerSGD generally increases during the training (see Figure B.2). This also
aligns with the intuition behind the results of [AWL+21]. This suggests that in this scenario,
L-GreCo is able to increase the compression in the less crucial learning periods, e.g., last
epochs.
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Table B.4: Hyperparameters on Transformer-XL/WikiText-103
Parameter Value

Number of workers 8
Optimizer LAMB

Global batch size 256
LR warmup Linear for 1000 steps
LR schedule cosine

Number of steps 40k
Weight decay 0.0

Table B.5: Hyperparameters on Transformer-LM/WikiText-103
Parameter Value

Number of workers 8
Optimizer Adam

Adam betas (0.9, 0.98)
Global batch size 2048

LR warmup Linear for 4000 steps
starting from 10−7

LR schedule inverse sqrt
Number of steps 50k

Weight decay 0.01

B.4 Detailed experimental settings

For all the experiments, we used the standard hyperparameters, datasets, and data preprocessing.
The detailed hyperparameters are shown in the tables B.2, B.3, B.4, and B.5. For the
experiments with Rethink-GS [SDMA+21] we used hyperparameters presented in the Table B.1.

For preprocessing the images of CIFAR-100 datasets, we follow the standard data augmentation
and normalization routines. Random cropping and horizontal random flipping were applied
for data augmentation. We also normalized each color with the following mean and standard
deviation values for each channel: (0.4914, 0.4822, 0.4465) and (0.2023, 0.1994, 0.2010).

ResNet50 model uses the following data augmentation. We perform random resized crop to
224×224, scale from 8% to 100%, and do a random horizontal flip. Also, we do normalization
with means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225).

For wikitext-103 preprocessing, we used the standard preprocessing tools and tokenizers
provided by Nvidia Examples [Nvi20] and FairSeq library [OEB+19].

B.5 Profiling.

In order to explore the compression overhead, we run the profiling of the training. The result
is presented in Figure. B.3. We compare operation timings for the original(uncompressed)
training and training where the gradients are compressed with PowerSGD, rank 32. We can
see that relatively expensive compression (PowerSGD is more time-consuming than QSGD
and optimized TopK) takes less than 10% of the step time.
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Figure B.3: Profiling of the training without compression vs PowerSGD compression, rank 32.
Transformer-XL model on WikiText-103 dataset. Single node, RTX3090 GPUs.
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Figure B.4: Throughput for ResNet50/ImageNet. Single node, RTX3090 GPUs.
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Figure B.5: Throughput for ResNet50/ImageNet. Multi-node, each node has 4 RTX3090 GPUs.

B.6 Metrics connection

To verify the connection between loss-based and error-magnitude approaches we have collected
the metrics for the same compression parameters with the same model. We started from the
same checkpoint, ran for the same number of steps. For error-magnitude we collected the
gradients in a buffer, for loss we estimated loss in the end of the experiment. In figure B.6a,
we see that the resulting metrics have a high correlation.
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Figure B.6: Correlation coefficients between metric values (a) for PowerSGD using loss-based
and error-magnitude approaches as the sensitivity metrics. Timing coefficients per bucket (b)
for timing-based approach. Transformer-XL/WikiText-103 model training with PowerSGD
method.

B.7 Timing-based optimization
We have conducted the experiments described in Section 4.6.5 on Transformer-XL/WikiText103
for PowerSGD compression. We collected the per-bucket coefficients in the linear model to see
if the impact of a bucket on the training performance is based not only on its size. Figure. B.6b
shows that the coefficients are uniform accross the model meaning that the performance is a
function of a parameters count in the bucket.
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APPENDIX C
Appendix for Chapter 5

C.1 Training details.
For training of GPT-2 models we were using MosaicML [Mos22a] examples. The global batch
size for 125M and 350M models was 256, for 1.3B - 512, resulting in 4 gradient accumulations
at each iteration. For all models AdamW optimizer was used, the optimizer parameters are
presented in the Table C.1. 125M model was trained in 4800 steps, 350M model in 13400
steps, 1.3B model in 14000 steps.

C.2 Network overhead experiments
In order to evaluate the effect on communications in FSDP training we conducted the synthetic
experiment which reduces the bandwidth costs in each iteration. Specifically, given the buffer
of size N which is about to be communicated, and compression ratio γ we only transmit the
first N/γ elements. The results for our setup (4 x 8V100-32G GPUs) at different internode
bandwidths is shown in the Figures.C.1, communication weights and gradients are reduced to
the same compression ratio. We see that the most effect of compression is reached as expected
for the largest 1.3B model and at lowest bandwidth. However, one can get around 80%
speedup at high bandwidth when up to 8x compression ratio is applied. Also, we notice that
8× compression almost reaches the ideal scaling for large model and has a evident overhead
over the no-communication training in case of the small model. It infers that the large models
have a bottleneck in bandwidth component of the communication and the small model has a
dominating latency part.

To see the variance of the compression effects on weights and gradients we conducted the
similar experiment for different combinations of compression ratio pairs (see C.2). We observe
that weight compression gives more performance profits than gradient compression. This
can be naturally explained by the fact that weights are communicated more frequently than
gradients in FSDP (in this particular experiment weights are communicated 5 times per one
gradient exchange) and the amount of transmissions per communication is similar.

The difference between the synthetic experiment and QSDP performance numbers with the
same compression ratios can be justified by the performance inefficiency of NCCL point-to-
point communication primitives on which QSDP compressed communication is based on -
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Algorithm C.1: Pseudocode of QSDP for a Fixed Layer
1: Input: worker p, layer input xp, worker weight partition wp.
2: function ExecuteForwardPass
3: qwp ← QuantizeWeights(wp) // Quantize p’s weights
4: qw ← AllGather(qwi for all i ) // Collect quantized weights
5: op ← Layer(qw, xp) // Compute output for p
6: free(qw) // Discard aggregated layer weights
7: end function
8: function ExecuteBackwardPass
9: qwp ← QuantizeWeights(wp) // Quantize p’s weights

10: qw ← AllGather(qwi for all i ) // Collect quantized weights
11: gp ← Gradient(qw, op) // Compute gradient for p
12: free(qw) // Discard aggregated layer weights
13: qgp ← QuantizeGradients(gp) // Quantize p’s gradient
14: qgp ← ReduceScatter(qgi for each i) // Distribute gradients
15: wp ←WeightUpdate(qgp, wp) // Update p’s weights
16: free(qg) // Discard aggregated gradients
17: end function

Table C.1: AdamW optimizer parameters.

125M 350M 1.3B
learning rate 6e-4 3e-4 2e-4

betas 0.9, 0.95 0.9, 0.95 0.9, 0.95
epsilon 1e-8 1e-8 1e-8

the compression overhead in our experiments was verified to be negligible (less than 1% per
iteration).
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Figure C.1: Compression vs average step time for different models at different inter-node bandwidths
with fake compression (weights and gradients have the same compression ratio). Lower is better.
The dashed line represents ideal scaling - training without communication.

C.3 Learned quantization
We implemented stochastic gradient descent optimization of quantization levels in PyTorch.
We use learning rate 0.01, batch size 1024. We run the learning for each layer larger than
1e5 parameters, for other layers uniform quantization was used. We evaluate the quality of
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Table C.2: Training step timings (in seconds) for 1.3B model at 100 Gbps bandwidth with
various combinations of weights and gradient compression ratio.

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Weights ratio
Gradients ratios 1 2 4 8

1 23.23 21.36 20.62 20.2
2 19.27 17.17 16.26 15.95
4 17.50 15.35 14.6 14.08
8 16.62 14.52 13.66 13.21

quantization levels by comparing L2 of compression error introduced by quantizing a buffer
using the levels. We conducted the such evaluation for weights quantized to 5 bits and
gradients quantized to 4 bits during the training of GPT 125M model. The results for one of
the attention layers and LM head layer are shown in the Figures C.2 and C.3. The dashed
vertical lines show the moment of running learning quantization levels algorithm. We see that
compression error of learned quantization levels is constantly lower for the learned algorithm,
and the lower bits-width (for gradients we use 4 bits quantizaton) the larger the gap between
the considered methods. Also, we see that the compression error of the learned quantization
only increases in sync with uniform quantization over time. It means that learning algorithm
can be run only once, at the start of the training.

Also, we measured overhead of running learning algorithm for GPT 125M with weights
quantized to 5 bits, gradients to 4 bits. The overhead of learning algorithm amounts to around
9 minutes, whereas the full training takes lasts 5 hours.

The extra experiments results with low bit-width quantization are shown in the Table. C.3. The
number doesn’t show full perplexity recovery but they represent the improvements achieved by
learned levels algorithm. We can see that with learned quantization levels one can reduce up
to 3 units of perplexity.

1000 2000 3000 4000 5000
Training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L2
 n

or
m

 o
f e

rro
r 

 re
la

tiv
e 

to
 la

ye
r n

or
m

maxmin
learned

(a) Weights

1000 2000 3000 4000 5000
Training step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

L2
 n

or
m

 o
f e

rro
r 

 re
la

tiv
e 

to
 la

ye
r n

or
m

maxmin
learned

(b) Gradients

Figure C.2: Compression error (L2 norm of the error relative to L2 norm of the input) comparison
with learned quantization levels for attention layer of 125M model, W5G4 quantization.
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Figure C.3: Compression error (L2 norm of the error relative to L2 norm of the input) comparison
with learned quantization levels for LM-Head layerof 125M model, W5G4 quantization.

Table C.3: Final perplexities of low-bits quantization of 125m GPT-2 model using the learned
quantization levels.

baseline w3g32 w2g32 w8g3 w8g2
Uniform 35.81 45.53 57.92 39.91 44.79
Learned 42.31 56.54 37.72 44.65

C.4 Convergence experiments.
Quantization bucket size. To highlight the importance of bucket size choice on practice we
trained the 125M model quantizing weights and gradients to 8 bits with larger than default
bucket size. The results are shown in Figure C.4. We can see that training with quantization
with bucket size 16284 has a remarkable gap in the convergence curve and does not recover
full accuracy.

Quantization by Random shift. We have conducted an empirical study of the Theorem 2
to show the impact of the random shift in quantization on the training convergence. We setup
a linear regression problem on the YearPredictionMSD dataset from UCI Machine learning
repository data [DG17]. We trained the model quantizing weights and gradients of the linear
model to 8 bits with bucket size 16 using the original QSGD and QSGD with random shift.
We can see in the Figure. C.5 that QSGD with random shift has better convergence than
QSGD in the setup with convex problem.

C.5 Convergence Proofs
In this section we provide the convergence analysis for our algorithms.

C.5.1 Overview
We use the notation and assumptions defined in Section 5.5.1. As all of our analyses revolve
around bounding the progress made in a single iteration, to simplify notation we will generally
use x to denote the current iterate, and x ′ to denote the iterate obtained after the generic
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update:
x ′ = Qw

δ

(︄
x − η

β
g (x)

)︄
,

where β is the smoothness parameter of f . In Section C.5.2 we will first prove convergence
for the deterministic method, where we have direct access to the gradients of f . The analysis
precisely follows the steps we described in Section 5.5.1. Then, we extend this analysis to the
case of stochastic gradients, and provide the full proof for Theorem 2. Finally, in Section C.5.3
we show that given an appropriate gradient quantization method with bounded variance, we
can use it on top of our iteration to further reduce the required amount of communication,
and thus prove Corollary 3.
Before proceeding, we first formally analyze the quantization method we defined in Section 5.5.1,
and show some additional properties that will be useful later.

Lemma 5. Let v ∈ Rn, and let δ > 0. Then,

E [Qw
δ (v)] = v ,

E
[︂
∥Qw

δ (v)− v∥2
2

]︂
= δ2 ·

n∑︂
i=1

{︃
vi

δ

}︃(︃
1−

{︃
vi

δ

}︃)︃
,

E
[︂⃦⃦⃦

Qw
r,δ (v)− r1

⃦⃦⃦
0

]︂
≤ ∥v∥1 /δ .

Since the proofs are technical, we defer them to Section C.5.4. The most important feature of
this quantization scheme is captured by Lemma 4, which is crucial for our convergence proof.
We first restate it, and prove it formally in Section C.5.4.

Lemma 4. Let δ⋆ > δ > 0, such that δ⋆/δ ∈ Z. Let x ∈ Rn, and for all r ∈ [−δ⋆/2, δ⋆/2),
let an arbitrary x⋆

r,δ⋆
∈ δ⋆Zn + r1. Then

E
[︂
∥Qw

δ (x)− x∥2
2

]︂
≤ δ

δ⋆

Er

[︃⃦⃦⃦
x⋆

r,δ⋆
− x

⃦⃦⃦2

2

]︃
.

The proof crucially relies on the fact that δ/δ⋆ ∈ Z, and is rooted in the following inequality:

Lemma 6. Let y ∈ R and k ∈ Z. Then

(1− {y}) {y} ≤ k
(︃

1−
{︃

y

k

}︃)︃{︃
y

k

}︃
.
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Proof. It suffices to consider y ∈ [0, k], as both {y}(1−{y}) and {y/k}(1−{y/k}) are periodic
within this interval. The function {y/k}(1 − {y/k}) is a quadratic which is monotonically
increasing over [0, k/2] and symmetric around k/2. As (1− {y}){y} is periodic on intervals
of length 1 it suffices to show that (1 − {y}){y} ≤ k

(︂
1−

{︂
y
k

}︂)︂ {︂
y
k

}︂
on the interval [0, 1].

At this point we can drop the fractional part, and simply need to compare two quadratics over
[0, 1]. Equivalently we need to show that k(1− y/k)y/k ≥ y(1− y) over [0, 1], which after
simplifying both sides is equivalent to y2(1− 1/k) ≥ 0 over this interval, which is true.

Finally, we provide some basic optimization inequalities, which will allow us to prove our
theorems.
Optimization Basics. The first Lemma bounds the change in function value using smoothness,
while the latter upper bounds the ℓ2 distance to optimality using the error in function value.
We provide the proofs in Sections C.5.4 and C.5.4.

Lemma 7. Let f : Rn → R be a β-smooth function. Then for any ∆ ∈ Rn,

f (x + ∆) ≤ f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2 + β

2

⃦⃦⃦⃦
⃦ η

β
∇f (x) + ∆

⃦⃦⃦⃦
⃦

2

2
.

Lemma 8. If f : Rn → R satisfies the α-PL condition, then for all x ∈ Rn,

f (x)− f ⋆ ≥ α

2 ∥x − x⋆∥2
2 ,

where x⋆ ∈ arg minx f (x).

We are now ready to prove the main theorems in this paper.

C.5.2 SGD with weight quantization
We first prove the stepping lemma for our quantized gradient method, in the case where full
gradients are available. The steps are essentially the same we described in Section 5.5.1.

Lemma 9. Let f (x) : Rn → R be a β-smooth and α-PL function. For each r ∈ [−δ⋆/2, δ⋆/2],
let x⋆

r,δ⋆
be any minimizer of f over δ⋆Z + r. Let δ = δ⋆

⌈4(β/α)2⌉ . Then letting x ′ =

Qw
δ

(︂
x − 1

β
∇f (x)

)︂
, one has that in expectation over the random bits used by the quantization

operator:
Ef (x ′)− Ef

(︂
x⋆

r,δ⋆

)︂
≤
(︄

1− α

2β

)︄(︂
Ef (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
.

Proof. Letting ∆ = x ′ − x, we write:⃦⃦⃦⃦
⃦ 1

β
∇f (x) + ∆

⃦⃦⃦⃦
⃦

2

2
=
⃦⃦⃦⃦
⃦(x + ∆)−

(︄
x − 1

β
∇f (x)

)︄⃦⃦⃦⃦
⃦

2

2
=
⃦⃦⃦⃦
⃦Qw

δ

(︄
x − 1

β
∇f (x)

)︄
−
(︄

x − 1
β
∇f (x)

)︄⃦⃦⃦⃦
⃦

2

2
.

Also using Lemma 4, we have that for any x⋆ ∈ arg minx f (x) ,

E
⃦⃦⃦⃦
⃦Qw

δ

(︄
x − 1

β
∇f (x)

)︄
−
(︄

x − 1
β
∇f (x)

)︄⃦⃦⃦⃦
⃦

2

2
≤ δ

δ⋆

Er

⎡⎣⃦⃦⃦⃦⃦x − 1
β
∇f (x)− x⋆

r,δ⋆

⃦⃦⃦⃦
⃦

2

2

⎤⎦
≤ 2 δ

δ⋆

⎛⎝Er

[︃⃦⃦⃦
x⋆

r,δ⋆
− x⋆

⃦⃦⃦2

2

]︃
+
⃦⃦⃦⃦
⃦x − 1

β
∇f (x)− x⋆

⃦⃦⃦⃦
⃦

2

2

⎞⎠ .
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Using the α-PL condition we upper bound distance from x⋆ with function value i.e.
⃦⃦⃦
x⋆

r,δ⋆
− x⋆

⃦⃦⃦2

2
≤ 2

α
·
(︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
,⃦⃦⃦⃦

⃦x − 1
β
∇f (x)− x⋆

⃦⃦⃦⃦
⃦

2

2
≤ 2

α

(︄
f

(︄
x − 1

β
∇f (x)

)︄
− f (x⋆)

)︄
.

Combining these with Lemma 7 for η = 1 we conclude that

Ef (x ′) ≤ f (x)− 1
2β
∥∇f (x)∥2

2

+ 2 δ

δ⋆

· β

α

(︄
f

(︄
x − 1

β
∇f (x)

)︄
− f (x⋆)

)︄
+ 2 δ

δ⋆

· β

α
· Er

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
.

Again, using the PL condition we lower bound 1
2 ∥∇f (x)∥2

2 ≥ α (f (x)− f (x⋆)), which gives

E [f (x ′)− f (x⋆)]

≤
(︄

1− α

β

)︄
(f (x)− f (x⋆)) + 2 δ

δ⋆

· β

α

(︄
f

(︄
x − 1

β
∇f (x)

)︄
− f (x⋆)

)︄
+ 2 δ

δ⋆

· β

α
· Er

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
≤
(︄

1− α

β
+ 2 δ

δ⋆

· β

α

)︄
(f (x)− f (x⋆)) + 2 δ

δ⋆

· β

α
· Er

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
.

Equivalently we obtain

Ef (x ′)− Ef
(︂
x⋆

r,δ⋆

)︂
≤
(︄

1− α

β
+ 2 δ

δ⋆

· β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+ 2 δ

δ⋆

· β

α
· E

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
+ f (x⋆)− Ef

(︂
x⋆

r,δ⋆

)︂
=
(︄

1− α

β
+ 2 δ

δ⋆

· β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

2 δ

δ⋆

· β

α
− α

β
+ 2 δ

δ⋆

· β

α

)︄
· E

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
=
(︄

1− α

β
+ 2 δ

δ⋆

· β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

4 δ

δ⋆

· β

α
− α

β

)︄
· E

[︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

]︂
.

Since we set δ/δ⋆ = 1
⌈4(β/α)2⌉ , the second term is non-positive. Therefore in this case we have

Ef (x ′)− Ef
(︂
x⋆

r,δ⋆

)︂
≤
(︄

1− α

2β

)︄(︂
Ef (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
,

which concludes the proof.

We now generalize the proof of Lemma 9 to the case where only stochastic gradients are
available. The proof is essentially the same, the main difference being that we isolate terms
involving the difference between the stochastic and the true gradient, which we bound separately
using our variance bound.

Lemma 10. Let f : Rn → R be a β-smooth and α-PL function. For each r ∈ [−δ⋆/2, δ⋆/2],
let x⋆

r,δ⋆
be any minimizer of f over δ⋆Z+r. Let δ = η

⌈16(β/α)2⌉ ·δ⋆. Let x ′ = Qw
δ

(︂
x − η

β
g (x)

)︂
,

where g (x) is an unbiased estimator for ∇f (x) i.e. E [g (x) |x] = ∇f (x), and 0 < η ≤
1 is a step size parameter. Furthermore assume that the variance of g (x) is bounded
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E ∥g (x)−∇f (x)∥2
2 ≤ σ2, for a real parameter σ > 0. Then, for r ∼ Unif ([−δ⋆/2, δ⋆/2)),

in expectation over the gradient stochasticity:

E [f (x ′) |x]− Ef
(︂
x⋆

r,δ⋆

)︂
≤
(︄

1− 3
4η

α

β

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+ 5

4
η2

β
σ2 .

Proof. We follow the analysis from Lemma 9, while moving the stochastic gradients into
expressions that involve the stochastic variance. Letting δ = x ′ − x, we write:

⃦⃦⃦⃦
⃦ η

β
∇f (x) + ∆

⃦⃦⃦⃦
⃦

2

2
=
⃦⃦⃦⃦
⃦(x + ∆)−

(︄
x − η

β
∇f (x)

)︄⃦⃦⃦⃦
⃦

2

2
=
⃦⃦⃦⃦
⃦Qw

r,δ

(︄
x − η

β
g (x)

)︄
−
(︄

x − η

β
∇f (x)

)︄⃦⃦⃦⃦
⃦

2

2

≤ 2
⃦⃦⃦⃦
⃦Qw

r,δ

(︄
x − η

β
g (x)

)︄
−
(︄

x − η

β
g (x)

)︄⃦⃦⃦⃦
⃦

2

2
+ 2

⃦⃦⃦⃦
⃦ η

β
(g (x)−∇f (x))

⃦⃦⃦⃦
⃦

2

2
,

where we used the inequality ∥a + b∥2
2 ≤ 2 ∥a∥2

2 + 2 ∥b∥2
2. Also using Lemma 4, we have that

for any x⋆ ∈ arg minx f (x) ,

E
⃦⃦⃦⃦
⃦Qw

r,δ

(︄
x − η

β
g (x)

)︄
−
(︄

x − η

β
g (x)

)︄⃦⃦⃦⃦
⃦

2

2

≤ δ

δ⋆

E

⎡⎣⃦⃦⃦⃦⃦x − η

β
g (x)− x⋆

r,δ⋆

⃦⃦⃦⃦
⃦

2

2

⎤⎦
≤ 2 δ

δ⋆

⎛⎝E [︃⃦⃦⃦x⋆
r,δ⋆
− x⋆

⃦⃦⃦2

2

]︃
+
⃦⃦⃦⃦
⃦x − η

β
g (x)− x⋆

⃦⃦⃦⃦
⃦

2

2

⎞⎠
≤ 2 δ

δ⋆

⎛⎝E [︃⃦⃦⃦x⋆
r,δ⋆
− x⋆

⃦⃦⃦2

2

]︃
+ 2

⃦⃦⃦⃦
⃦x − η

β
∇f (x)− x⋆

⃦⃦⃦⃦
⃦

2

2
+ 2

⃦⃦⃦⃦
⃦ η

β
(g (x)−∇f (x))

⃦⃦⃦⃦
⃦

2

2

⎞⎠ .

Using the α-PL condition we upper bound distance from x⋆ with function value i.e.

⃦⃦⃦
x⋆

r,δ⋆
− x⋆

⃦⃦⃦2

2
≤ 2

α
·
(︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
,⃦⃦⃦⃦

⃦x − η

β
∇f (x)− x⋆

⃦⃦⃦⃦
⃦

2

2
≤ 2

α

(︄
f

(︄
x − η

β
∇f (x)

)︄
− f (x⋆)

)︄
.
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Combining these with Lemma 7 we conclude that in expectation over the random shift:

f (x ′) ≤ f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2

+ β

2 ·
⎛⎝2

⃦⃦⃦⃦
⃦Qw

r,δ

(︄
x − η

β
g (x)

)︄
−
(︄

x − η

β
∇fi (x)

)︄⃦⃦⃦⃦
⃦

2

2
+ 2

⃦⃦⃦⃦
⃦ η

β
(g (x)−∇f (x))

⃦⃦⃦⃦
⃦

2

2

⎞⎠
≤ f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2

+ 2β
δ

δ⋆

·

⎛⎝⃦⃦⃦x⋆
r,δ⋆
− x⋆

⃦⃦⃦2

2
+ 2

⃦⃦⃦⃦
⃦x− η

β
∇f (x)− x⋆

⃦⃦⃦⃦
⃦

2

2
+ 2

⃦⃦⃦⃦
⃦ η

β
(g (x)−∇f (x))

⃦⃦⃦⃦
⃦

2

2

⎞⎠
+ η2

β
∥g (x)−∇f (x)∥2

2

≤ f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2

+ 4 δ

δ⋆

β

α

(︄
f

(︄
x − η

β
∇f (x)

)︄
− f (x⋆)

)︄
+ 4 δ

δ⋆

β

α

(︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
+ η2

β

(︄
1 + 4 δ

δ⋆

)︄
∥g (x)−∇f (x)∥2

2 .

Again, using the PL condition we lower bound 1
2 ∥∇f (x)∥2

2 ≥ α (f (x)− f (x⋆)), which gives
that in expectation over the random shift:

f (x ′)− f (x⋆) ≤
(︄

1− η2 α

β

)︄
(f (x)− f (x⋆)) + (1− η) ⟨∇f (x) , ∆⟩

+ 4 δ

δ⋆

β

α

(︄
f

(︄
x − η

β
∇f (x)

)︄
− f (x⋆)

)︄
+ 4 δ

δ⋆

β

α

(︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
+ η2

β

(︄
1 + 4 δ

δ⋆

)︄
∥g (x)−∇f (x)∥2

2

≤
(︄

1− η2 α

β
+ 4 δ

δ⋆

β

α

)︄
(f (x)− f (x⋆)) + 4 δ

δ⋆

β

α

(︂
f
(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
+ (1− η) ⟨∇f (x) , ∆⟩+ η2

β

(︄
1 + 4 δ

δ⋆

)︄
∥g (x)−∇f (x)∥2

2 .

and equivalently, in expectation over the random shift:

E
[︂
f (x ′)− f

(︂
x⋆

r,δ⋆

)︂]︂
≤
(︄

1− η2 α

β
+ 4 δ

δ⋆

β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

8 δ

δ⋆

β

α
− η2 α

β

)︄(︂
Ef

(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
+ (1− η) ⟨∇f (x) ,E [∆]⟩+ η2

β

(︄
1 + 4 δ

δ⋆

)︄
∥g (x)−∇f (x)∥2

2 .

At this point we use Lemma 5 to write

E [∆] = E
[︄
Qw

r,δ

(︄
x − η

β
g (x)

)︄
− x

]︄

= − η

β
g (x) ,
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and thus
(1− η) ⟨∇f (x) ,E [∆]⟩ = − η

β
(1− η) ⟨∇f (x) , g (x)⟩ .

Therefore, after taking expectation over both the random shift and gradient stochasticity we
obtain:

E
[︂
f (x ′)− f

(︂
x⋆

r,δ⋆

)︂
|x
]︂

≤
(︄

1− η2 α

β
+ 4 δ

δ⋆

β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

8 δ

δ⋆

β

α
− η2 α

β

)︄(︂
Ef

(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
− η

β
(1− η) ∥∇f (x)∥2

2 + η2

β

(︄
1 + 4 δ

δ⋆

)︄
σ2

≤
(︄

1− η2 α

β
+ 4 δ

δ⋆

β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

8 δ

δ⋆

β

α
− η2 α

β

)︄(︂
Ef

(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
− 2η (1− η) α

β
(f (x)− f (x⋆)) + η2

β

(︄
1 + 4 δ

δ⋆

)︄
σ2

=
(︄

1− η2 α

β
− 2η (1− η) α

β
+ 4 δ

δ⋆

β

α

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+
(︄

8 δ

δ⋆

β

α
− η2 α

β
− 2η (1− η) α

β

)︄(︂
Ef

(︂
x⋆

r,δ⋆

)︂
− f (x⋆)

)︂
+ η2

β

(︄
1 + 4 δ

δ⋆

)︄
σ2 .

Since we set δ/δ⋆ = η

⌈16(β/α)2⌉ , the second term is non-positive. Therefore in this case we
have

E
[︂
f (x ′)− Ef

(︂
x⋆

r,δ⋆

)︂
|x
]︂
≤
(︄

1− η2 α

β
− 2η (1− η) α

β
+ η

4
α

β

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+ η2

β

⎛⎝1 + η

4

(︄
α

β

)︄2
⎞⎠σ2

≤
(︄

1− 7
4η

α

β
+ η2 α

β

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+ η2

β

⎛⎝1 + η

4

(︄
α

β

)︄2
⎞⎠σ2

≤
(︄

1− 3
4η

α

β

)︄(︂
f (x)− Ef

(︂
x⋆

r,δ⋆

)︂)︂
+ 5

4
η2

β
σ2 ,

as long as η ≤ 1. This concludes the proof.

Using Lemma 10 the proof of Theorem 2 follows very easily.

Theorem 2. Let α, β, δ⋆, ε > 0 and σ ≥ 0 be real parameters, and let η = min
{︂

3
10

εα
σ2 , 1

}︂
.

Let f : Rn → R be a β-smooth and α-PL function, with access to a stochastic gradient
g (x), i.e. E [g (x) |x] = ∇f (x) with bounded variance E ∥g (x)−∇f (x)∥2

2 ≤ σ2. For each
r ∈ [−δ⋆/2, δ⋆/2), let x⋆

r,δ⋆
be any minimizer of f over δ⋆Zn + r1. Let δ = η

⌈16(β/α)2⌉ · δ⋆.
Consider the iteration:

xt+1 = Qw
δ

(︄
xt −

η

β
g (xt)

)︄
.

In T = 10
η
· β

α
ln f(x0)−Ef(x⋆

r,δ⋆
)

ε
iterations we obtain a point xT satisfying Ef (xT )−Ef(x⋆

r,δ⋆
) ≤

ε.
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Proof. Plugging in Lemma 10 and applying it for T = 10
η

β
α

ln f(x0)−Ef(x⋆
r,δ⋆)

ε
we obtain:

Ef (xT )− Ef
(︂
x⋆

r,δ⋆

)︂
≤ ε

2 + 5
4

η2

β
σ2 ·

T −1∑︂
k=0

(︄
1− 3

4η
α

β

)︄k

≤ ε

2 + 5
4

η2

β
σ2 · 4

3
1
η

β

α
= ε

2 + 5
3

η

α
σ2 .

Since we set η = min
{︂

3
10

εα
σ2 , 1

}︂
, the entire quantity is at most ε, which concludes the

proof.

C.5.3 Reducing Communication by Quantizing Gradients
The approach described in Section C.5.2 maintains quantized weights, but communicating
gradients may still be expensive. In this section we show that any reasonable quantization
method for gradients can be used to reduce communication, while paying in exchange an
increased variance. This trade-off is inherent, as the reduction in the number of bits requires
injecting randomness, so as the entropy of the output is not smaller than that of the original
message to be communicated.
To do so we use any gradient quantization method Qg, as long as it is an unbiased estimator
for the input it takes, and has bounded variance. Our formal requirements for Qg are the
following.

Definition 11. We say that a gradient quantization operator Qg is a (σ∇, b)-unbiased quantizer
if it:

1. is an unbiased estimator: E [Qg(g (x))|g (x)] = g (x),

2. has bounded variance on the stochastic gradients: E
[︂
∥Qg(g (x))− g (x)∥2

2 |g (x)
]︂
≤

σ2
∇,

3. requires b bits to communicate Qg(g (x)).

By Lemma 5, these requirements are automatically satisfied by our shift-and-round quantization
operator Qw, and we can show that σ∇ and b are determined by the ℓ1 norm of g (x).
Standard Quantization Schemes and Their Communication Cost. Another standard
gradient quantization scheme can be obtained by independently rounding each coordinate to one
of the neighboring points on the quantization grid, with an appropriate probability. An identical
scheme has been previously used in other related works on gradient quantization [AGL+17].

Definition 12 (quantization by flipping a coin). Let δ > 0 be a scalar defining the coarseness
of the quantization grid. Let the operator Qδ : R→ δZ defined as

Qδ (x) =

⎧⎨⎩δ
⌊︂

x
δ

⌋︂
with probability 1−

(︂
x
δ
−
⌊︂

x
δ

⌋︂)︂
δ
(︂⌊︂

x
δ

⌋︂
+ 1

)︂
with probability x

δ
−
⌊︂

x
δ

⌋︂
where δ > 0. We apply Qδ to vectors, with the meaning that it is independently applied to
each coordinate.

It is fairly easy to prove that this satisfies very similar properties to those proved for Qw

in Lemma 5, which we quickly prove in Section C.5.4. We notice an important difference

97



between these two quantization methods. While Q independently quantizes each coordinate,
the quantization in Qw is done dependently across coordinates, and the output is always a
vector in δZn + r1, for a randomly sampled scalar r. Although morally they are quite similar
(in fact, the shift after rounding could just as well be ignored, and still have an unbiased
extimator), it is important if we want to relate the quality of the final solution to the best set
of weights from a reasonably chosen grid. This difference is apparent when trying to provide
bounds of the type of Lemma 4, bu this attempt falls through in the case of the Q operator.

As we can naively relate the communication cost of a quantized gradient to its sparsity, it
is important to discuss quantitative bounds. In both cases, the sparsity bound depends on
the ℓ1 norm of the quantized vector, and its easy to see that it is tight. By comparison, the
bound from [AGL+17] is provided in terms of the ℓ2 norm of the vector, but pays an additional√

n factor, which is suboptimal when the input is analytically sparse. For Qw and Q, we see
that the variance introduced by quantizing a generic vector v is bounded by δ ∥v∥1, while
its sparsity is ∥v∥1 /δ. Hence a naive encoding of this quantized gradient requires at most
O
(︂

∥v∥1
δ

(ln n + ln ∥v∥1)
)︂

bits of communication.

SGD with Weight and Gradient Quantization. For gradient quantization operators that
are unbiased estimators, we can use them as stochastic gradients inside the scheme we derived
in Theorem 2. To do so we crucially use the following identity involving conditional variance:

Lemma 13 (Law of total variance). Given random variables X and Y , one has that

Var [Y ] = E [Var [Y |X]] + Var [E [Y |X]] .

Corollary 14. Consider a stochastic gradient estimator g (x) such that E [g (x) |x] = ∇f (x)
and E

[︂
∥g (x)−∇f (x)∥2

2 |x
]︂
≤ σ2. Consider (σ∇, b)-unbiased quantizer (Definition 11).

Then
E [Qδ (g (x)) |x] = ∇f (x) ,

i.e. it is an unbiased estimator for the gradient, and

E
[︂
∥Qδ (g (x))−∇f (x)∥2

2

]︂
≤ σ2

∇ + σ2 .

Proof. The fact that the quantized gradient is an unbiased estimator for ∇f (x) follows from
the law of total expectation, as

E [Qδ (g (x)) |x] = E [E [Qδ (g (x)) |x, g (x)]] = E [E [g (x) |x]] = ∇f (x) .

For the variance, we use Lemma 13 to write:

E
[︂
∥Qδ (g (x))−∇f (x)∥2

2

]︂
= Var [Qδ (g (x))]
= E [Var [Qδ (g (x)) |g (x)]] + Var [E [Qδ (g (x)) |g (x)]]
≤ σ2

∇ + Var [g (x)]
= σ2

∇ + σ2 .

Finally, combining Theorem 2 with Corollary 14, we obtain the final result from Corollary 3.
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C.5.4 Deferred Proofs
Proof of Lemma 5

Proof. For both the mean and variance computation, it suffices to prove these bounds for the
scalar operator.
We note that by definition Qw

r,δ (x) − r = Qw
0,δ (x− r) = δ · Qw

0,1

(︂
x−r

δ

)︂
:= δ ·

⌊︂
x−r

δ

⌉︂
. Also

let {x} = x − ⌊x⌋ denote the fractional part of x. We can easily verify that for any scalar
0 ≤ z < 1, we have

Eu∼Unif([−1/2,1/2)) [⌊z + u⌉] = z . (C.1)
This is because ⌊z + u⌉ = 1 if and only if z + u ≥ 1/2 i.e. u ≥ 1

2 − z, which happens with
probability z. Now we can express the expectation of Qw

r,ϵ (x) as follows:

E [Qw
δ (x)] = Er

[︂
Qw

0,δ (x− r) + r
]︂

= Er

[︂
Qw

0,δ (x− r)
]︂

+ Er [r]

= Er

[︃
Qw

0,δ

(︃
δ
⌊︃

x

δ

⌋︃
+ δ

{︃
x

δ

}︃
− r

)︃]︃
+ Er [r]

= δ
⌊︃

x

δ

⌋︃
+ Er

[︃
Qw

0,ϵ

(︃
δ
{︃

x

δ

}︃
− r

)︃]︃
+ Er [r]

= δ
⌊︃

x

δ

⌋︃
+ Er

[︃
δ ·Qw

0,1

(︃{︃
x

δ

}︃
− r

δ

)︃]︃
+ Er [r] .

In the last line we used the fact that Qw
0,δ (y) = δ ·Qw

0,1

(︂
y
δ

)︂
. Now we reparameterize by using

u := r/δ, where r ∼ Unif ([−1/2, 1/2)). This allows to write the term in the middle as:

Er

[︃
δ ·Qw

0,1

(︃{︃
x

δ

}︃
− r

δ

)︃]︃
= δ · Eu∼Unif([−1/2,1/2))

[︃
Qw

0,1

(︃{︃
x

δ

}︃
− u

)︃]︃
= δ ·

{︃
x

δ

}︃
,

were we used (C.1). Plugging back in we obtain that

E
[︂
Qw

r,δ (x)
]︂

= δ
⌊︃

x

δ

⌋︃
+ δ ·

{︃
x

δ

}︃
+ 0 = x .

Next we compute the scalar variance:

E
[︂
(Qw

δ (x)− x)2
]︂

= Er

[︃(︂
Qw

0,δ (x− r)− x
)︂2
]︃

= Er

[︄(︃
δ
⌊︃

x

δ

⌋︃
+ δ ·Qw

0,1

(︃{︃
x

δ

}︃
− r

δ

)︃
− x

)︃2
]︄

= Er

[︄
δ2 ·

(︃⌊︃
x

δ

⌋︃
+ Qw

0,1

(︃{︃
x

δ

}︃
− r

δ

)︃
− x

δ

)︃2
]︄

= Eu∼Unif([−1/2,1/2))

[︄
δ2 ·

(︃⌊︃
x

δ

⌋︃
+ Qw

0,1

(︃{︃
x

δ

}︃
− u

)︃
− x

δ

)︃2
]︄

= δ2 · Eu∼Unif([−1/2,1/2))

[︄(︃
Qw

0,1

(︃{︃
x

δ

}︃
− u

)︃
−
{︃

x

δ

}︃)︃2
]︄

.

Now we use the fact that for any scalar 0 ≤ z < 1 one has that

Eu∼Unif([−1/2,1/2))
[︂
(⌊z + u⌉ − z)2

]︂
= z2 .
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This follows from the fact that ⌊z + u⌉ = 1 iff u ≥ 1/2− z, which happens with probability
z, and makes the expectation equal to∫︂ 1/2−z

−1/2
z2du +

∫︂ 1/2

1/2−z
(1− z)2 du = z (1− z) ,

which leads us to
E
[︂
(Qw

δ (x)− x)2
]︂

= δ2 ·
{︃

x

δ

}︃(︃
1−

{︃
x

δ

}︃)︃
,

which gives us what we needed.
Finally, for the sparsity bound, let us understand when a single scalar gets rounded to zero
(before shifting back by r). We have that for x ∈ R,

P
[︂
Qw

r,δ (x)− r = 0
]︂

= P
[︃
Qw

r,1

(︃
x

δ

)︃
− r = 0

]︃
=

⎧⎨⎩
∫︁ 1/2

−1/2 1⌊x
δ

−r⌉=0dr, |x| < δ,

0, δ ≤ |x| ,

=

⎧⎨⎩
∫︁ 1/2

−1/2 1− 1
2 ≤ x

δ
−r≤ 1

2
dr, |x| < δ,

0, δ ≤ |x| ,
=

⎧⎨⎩
∫︁ 1/2

−1/2 1x
δ

− 1
2 ≤r≤ x

δ
+ 1

2
dr,

⃓⃓⃓
x
δ

⃓⃓⃓
< 1,

0, 1 ≤
⃓⃓⃓

x
δ

⃓⃓⃓
,

= min
{︃

x

δ
+ 1

2 ,
1
2

}︃
−max

{︃
x

δ
− 1

2 ,−1
2

}︃
= 1

2 + min
{︃

x

δ
, 0
}︃
−
(︃
−1

2 + max
{︃

x

δ
, 0
}︃)︃

= 1 + min
{︃

x

δ
, 0
}︃
−max

{︃
x

δ
, 0
}︃

= 1−
⃓⃓⃓⃓
x

δ

⃓⃓⃓⃓
.

which shows that

E [∥Qg
δ (v)∥0] =

n∑︂
i=1

(1− P [Qg
δ (vi) = 0]) =

n∑︂
i=1

⎧⎨⎩
⃓⃓⃓

vi

δ

⃓⃓⃓
, |vi| < δ,

1, δ ≤ |vi| ,
≤ ∥v∥1 /δ .

This concludes the proof.

Proof of Lemma 4

Proof. It suffices to prove this coordinate-wise. From Lemma 5 we have that for any x ∈ R,

E
[︂
(Qw

δ (x)− x)2
]︂

= δ2
(︃

1−
{︃

x

δ

}︃)︃{︃
x

δ

}︃
and similarly for δ⋆. Let k = δ⋆/δ. Then

E
[︃(︂

Qw
δ⋆

(x)− x
)︂2
]︃

= k2δ2
(︄

1−
{︄

x/δ

k

}︄)︄{︄
x/δ

k

}︄

Applying the inequality from Lemma 6, we conclude that

E
[︂
(Qw

δ (x)− x)2
]︂

= δ2
(︃

1−
{︃

x

δ

}︃)︃{︃
x

δ

}︃
≤ δ2·k

(︃
1−

{︃
x

kδ

}︃)︃{︃
x

kδ

}︃
= 1

k
E
[︃(︂

Qw
δ⋆

(x)− x
)︂2
]︃

.

Applying this bound to all coordinates we obtain

E
[︂
∥Qw

δ (x)− x∥2
2

]︂
≤ δ

δ⋆

E
[︃⃦⃦⃦

Qw
r,δ⋆

(x)− x
⃦⃦⃦2

2

]︃
.

Also since Qw
r,δ⋆

rounds to the nearest point in δ⋆Z+r, clearly
⃦⃦⃦
Qw

r,δ⋆
(x)− x

⃦⃦⃦2

2
≤
⃦⃦⃦
x⋆

r,δ⋆
− x

⃦⃦⃦2

2
for all r. Taking expectations on both sides and combining with the previous inequality concludes
the proof.
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Proof of Lemma 7

Proof. Using smoothness we have

f (x + ∆) ≤ f (x) + ⟨∇f (x) , ∆⟩+ β

2 ∥∆∥
2
2

= f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2 +
(︄

η2

2β
∥∇f (x)∥2

2 + η ⟨∇f (x) , ∆⟩+ β

2 ∥∆∥
2
2

)︄

= f (x) + (1− η) ⟨∇f (x) , ∆⟩ − η2

2β
∥∇f (x)∥2

2 + β

2

⃦⃦⃦⃦
⃦ η

β
∇f (x) + ∆

⃦⃦⃦⃦
⃦

2

2
.

Proof of Lemma 8

The proof is standard and can be found in literature, such as [KNS16]. However, for
completeness we reproduce it here.

Proof. Let g (x) =
√︂

f (x)− f ∗ for which we have

∇g (x) = 1
2
√︂

f (x)− f ∗
∇f (x) .

Using the α-PL condition we have

∥∇g (x)∥2 = 1
4 (f (x)− f ∗) · ∥∇f (x)∥2 ≥ 1

2 (f (x)− f ∗) · α · (f (x)− f ∗) = α

2 .

Now starting at some x0, we consider the dynamic ẋ = −∇g (x). We see that this always
decreases function value until it reaches some xT for which ∇g (xT ) = 0 and hence by the
PL inequality, xT is a minimizer i.e. f (xT ) = f ∗. Now we can write

g (xT ) = g (x0) +
∫︂ T

0
⟨∇g (xt) , ẋt⟩ dt = g (x0) +

∫︂ T

0
⟨∇g (xt) ,−∇g (xt)⟩ dt

= g (x0)−
∫︂ T

0
∥∇g (xt)∥2 dt .

Thus

g (x0)− g (xT ) =
∫︂ T

0
∥∇g (xt)∥2 dt ≥

√︃
α

2 ·
∫︂ T

0
∥∇g (xt)∥ dt =

√︃
α

2 ·
∫︂ T

0
∥ẋt∥ dt ,

where we used our lower bound on the norm of ∇g (x). Finally, we use the fact that the last
integral lower bounds the total movement of x as it moves from x0 to xT . Thus∫︂ T

0
∥ẋt∥ dt ≥ ∥x0 − xT∥ ,

so
g (x0)− g (xT ) ≥

√︃
α

2 ∥x0 − xT∥ ,

which enables us to conclude that

f (x0)− f ∗ ≥ α

2 ∥x0 − xT∥2 ,

where xT is some global minimizer of f . This concludes the proof.
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Bound for Quantization by Coin Flip

Lemma 15. Let v ∈ Rn, and let δ > 0, and let Qδ be the quantization operator from
Definition 12. Then,

E [Qδ (v)] = v ,

E
[︂
∥Qδ (v)− v∥2

2

]︂
= δ2 ·

n∑︂
i=1

{︃
vi

δ

}︃(︃
1−

{︃
vi

δ

}︃)︃
,

E [∥Qδ (v)∥0] ≤ ∥v∥1 /δ .

Proof. For the expectation and variance, it suffices to prove that these bound holds coordinate-
wise. Let x ∈ R, and write x = δ

(︂⌊︂
x
δ

⌋︂
+
{︂

x
δ

}︂)︂
so that

E [Qδ (x)] = E
[︃
Qδ

(︃
δ
(︃⌊︃

x

δ

⌋︃
+
{︃

x

δ

}︃)︃)︃]︃
= δ

⌊︃
x

δ

⌋︃
+ E

[︃
Qδ

(︃
δ
{︃

x

δ

}︃)︃]︃
= δ

⌊︃
x

δ

⌋︃
+ E

[︃
Qδ

(︃
δ
{︃

x

δ

}︃)︃]︃
= δ

⌊︃
x

δ

⌋︃
+ δ ·

{︃
x

δ

}︃
= x .

Similarly we write the variance as:

E
[︂
(Qδ (x)− x)2

]︂
= E

[︄(︃
Qδ

(︃
δ
{︃

x

δ

}︃)︃
− δ

{︃
x

δ

}︃)︃2
]︄

=
(︃

1−
{︃

x

δ

}︃)︃(︃
δ
{︃

x

δ

}︃)︃2
+
{︃

x

δ

}︃
·
(︃

δ − δ
{︃

x

δ

}︃)︃2

= δ2
(︄(︃

1−
{︃

x

δ

}︃)︃{︃
x

δ

}︃2
+
{︃

x

δ

}︃
·
(︃

1−
{︃

x

δ

}︃)︃2
)︄

= δ2
(︃

1−
{︃

x

δ

}︃)︃{︃
x

δ

}︃
,

For the sparsity bound, we need to understand when a single scalar gets rounded to zero. We
have that for x ∈ R,

P [Qδ (x) = 0] =

⎧⎨⎩1−
⃓⃓⃓

x
δ

⃓⃓⃓
, |x| < δ,

0, δ ≤ |x| ,

which shows that

E [∥Qδ (v)∥0] =
n∑︂

i=1
(1− P [Qδ (vi) = 0])

=
n∑︂

i=1

⎧⎨⎩
⃓⃓⃓

vi

δ

⃓⃓⃓
, |vi| < δ,

1, δ ≤ |vi| ,
≤ ∥v∥1 /δ .
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