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Estimating global properties of many-body quantum systems such as entropy or bipartite entanglement
is a notoriously difficult task, typically requiring a number of measurements or classical postprocessing
resources growing exponentially in the system size. In this work, we address the problem of estimating
global entropies and mixed-state entanglement via partial-transposed (PT) moments and show that efficient
estimation strategies exist under the assumption that all the spatial correlation lengths are finite. Focusing
on one-dimensional systems, we identify a set of approximate factorization conditions (AFCs) on the
system density matrix, which allow us to reconstruct entropies and PT moments from information on local
subsystems. This identification yields a simple and efficient strategy for entropy and entanglement
estimation. Our method could be implemented in different ways, depending on how information on local
subsystems is extracted. Focusing on randomized measurements providing a practical and common
measurement scheme, we prove that our protocol requires only polynomially many measurements and
postprocessing operations, assuming that the state to be measured satisfies the AFCs. We prove that the
AFCs hold for finite-depth quantum-circuit states and translation-invariant matrix-product density
operators and provide numerical evidence that they are satisfied in more general, physically interesting
cases, including thermal states of local Hamiltonians. We argue that our method could be practically useful
to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s quantum
platforms.
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I. INTRODUCTION

In the context of today’s digital quantum technologies
[1–9], an outstanding challenge is to devise measurement
schemes of many-qubit states which are efficient and yet
simple enough to be performed in current noisy intermedi-
ate-scale quantum (NISQ) devices [10,11]. This problem
has motivated new ideas and protocols to improve our
ability to characterize complex quantum states. A notable
example is that of the so-called randomized-measurement
(RM) toolbox [12–15], which has provided us with novel
opportunities to experimentally investigate entanglement,

a cornerstone in both quantum information [16,17] and
quantum many-body theory [18,19].
For instance, paralleling earlier experiments based on

quantum interference [20–22] (cf. also Refs. [23–26]), pure-
state entanglement can be detected by exploiting the two-
copy representation of subsystem purities [13,15,27–29],
as is now routinely done in various experimental
platforms [27,30–33]. RMs have been also applied to
study both mixed-state bipartite entanglement based on
the estimation of the so-called partial-transposed (PT)
moments [34,35], and multipartite entanglement, as charac-
terized by the quantum Fisher information [36–39].
Despite these developments, estimating global proper-

ties of quantum systems with a very large number of
qubits N remains a difficult task. In particular, while RM
approaches to estimate any local observable aremore efficient
than performing full-state tomography [40–55], estimating
global properties requires performing exponentially many
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measurements or postprocessing operations. Therefore, it is
unfeasible to significantly scale up existing protocols to probe
global purities and bipartite entanglement [13,15,27–29,35],
raising the question of whether these quantities will be
experimentally accessible at all as larger NISQ devices
become available.
In this work, we address precisely the problem of

estimating global entropies and PT moments in many-
qubit systems and show that efficient strategies exist under
the assumption that all spatial correlation lengths in the
system are finite. This condition encompasses a large class
of physically interesting cases, including ground and
thermal states of local Hamiltonians and is thus very
natural when considering NISQ devices from the point
of view of quantum simulation [56–58].
In more detail, we focus on one-dimensional (1D)

systems and put forward a strategy for the estimation of
entropies and PT moments, requiring only polynomially
many measurements and postprocessing operations. Our
protocol is provably accurate for states satisfying a set of
approximate factorization conditions (AFCs), which
express the absence of long-range correlations and which
are shown to be a general feature of short-range correlated
states. The basic idea, which is conveyed in Fig. 1, is that
the AFCs allow one to reconstruct global purities and PT
moments from local information. The efficiency of our
method is independent of how local information is
extracted (for instance, this could be done via full tomog-
raphy of certain reduced density matrices or via protocols
using multiple physical copies, as discussed later).
However, we focus on an implementation making use of

the standard RM toolbox [12]. Our motivation is twofold.
On the one hand, there is rich literature studying the
statistical errors associated with reconstructing purities
and PT moments using RM measurements, allowing us
to make our estimates very explicit. On the other hand, RM
schemes are a very practical tool, which is now routinely
employed in various experimental platforms [12–15].
The proposed approach is different from full tomographic

methods relying on prior assumptions on the system state.
There, a common strategy is to assume that the system state
is described by a sufficiently simple ansatz wave function,
and estimate the values of its free parameters. This logic was
first put forward in the context of matrix-product states
(MPSs) [59–62], while recently extended to matrix-product
density operators (MPDOs) [63–67], Gibbs states [68–73],
permutation-invariant states [74–76], low-rank states [77],
stabilizers [78], and tensor- and neural-network wave
functions [79–84]. While these methods may be practically
very useful, they also have drawbacks. For instance, as we
discuss inmore detail in Sec. III A, an accurate estimation of,
say, global purities might require reconstructing the state up
to exponential precision, thus leading to unpractical over-
heads inN. On the contrary, our approach does not learn the
state wave function, targeting purities and PT moments
directly; cf. Fig. 1.
Finally, we mention that our ideas could be extended, in

some cases straightforwardly, to probe other types of
quantities generally requiring exponentially many mea-
surements, including participation entropies [85–91] or
stabilizer Rényi entropies [92], which were recently con-
sidered in the many-body setting [92–99]. In addition,
while we focus on 1D systems, where analytic and
numerical analyses are simpler, we expect that our
approach could be generalized to higher spatial dimensions.
Therefore, our work also opens up a number of important
directions for future research.
The rest of this manuscript is organized as follows. After

reviewing a few preliminary notions and tools in Sec. II, we
start by introducing the main ideas underlying our approach
in Sec. III. To this end, we consider the class of so-called
finite-depth quantum-circuit (FDQC) states, which provide
an ideal toy model for short-range correlated many-body
quantum states. Their minimal structure allows us to
remove unnecessary technical complications from the
discussion and present the logic of our method in the
simplest possible setting. We consider both purities
(Sec. III A) and PT moments (Sec. III B), working out
efficiency performance guarantees for their estimation.
The most general form of our protocol is presented in

Sec. IV. After introducing the AFCs in Sec. IVA, we
rigorously derive performance guarantees for the accurate
estimation of the purity and PT moments (Sec. IV B) under
the assumption that the state to be measured satisfies the
AFCs. We then discuss the generality of the AFCs, proving
that they are satisfied in translation-invariant MPDOs

FIG. 1. A 1D quantum system S is partitioned into adjacent
intervals Ij of size k, jIjj ¼ k. In this work, we consider extracting
the purities over Ij and Ij ∪ Ijþ1 using the classical-shadow
approach [15]. Performing M local measurements with respect
to randomly chosen bases and classical postprocessing operations,

they yield faithful estimators for Tr½ρ2I � denoted by PðeÞ
2 ½I�. Such

subsystem-purity estimators are then combined to obtain a pre-

diction PðeÞ
2 for the global purity. The accuracy of the method is

controlled by k and the state correlation lengths.
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(Sec. IV C) and presenting numerical evidence for their val-
idity in thermal states of local Hamiltonian; cf. Sec. IV D.
We also present a full classical simulation of the measure-
ment protocol (Sec. IV E), studying in a concrete example
the typical number of measurements required to estimate
the bipartite purity of area-law pure states.
Next, in Sec. V we discuss a few natural examples of

highly mixed states where bipartite entanglement can be
detected for large system sizes by estimating just the first
few PT moments. Since the first few PT moments can be
very simply extracted by our approach, we argue that our
results could be practically useful to probe mixed-state
entanglement in experimentally available noisy quantum
platforms. Finally, we report our conclusions in Sec. VI,
while the most technical parts of our work are consigned to
several appendixes.

II. ENTANGLEMENT AND RANDOMIZED
MEASUREMENTS

A. Mixed-state entanglement and PPT conditions

We consider a system of N qubits denoted by S. Given a
region I ⊂ S, the associated Hilbert space is HI ≃ C⊗2jIj,
where we denoted by jIj the number of qubits in I. We will
be interested in the Rényi entropies of the region I,

Sn½I� ¼
1

1 − n
lnPn½I�; ð1Þ

where

Pn½I� ¼ Tr½ρnI �; ð2Þ

and ρI is the reduced density matrix on the region I. For
n ¼ 2, P2½I� coincides with the purity, which is a simple
probe for the subsystem entropy,withP2½I� ¼ 1 andP2½I� ¼
2−jIj for pure and maximally mixed states, respectively.
Consider now a partition of S into two disjoint sets

S ¼ A ∪ B, yieldingHS ¼ HA ⊗ HB. If the system is in a
pure state jψiAB ∈HS , its bipartite entanglement is quanti-
fied by the Rényi entropies SnðρAÞ [17]. Conversely, when
the state of the system is mixed, its entanglement can be
quantified by the logarithmic negativity [100,101]

EðρÞ ¼ ln
X
j

jλjj; ð3Þ

where the sum is over all eigenvalues fλjgj of the operator
ρTA
AB, and ð·ÞTA denotes partial transpose with respect to
subsystem A. The spectrum of the PT density matrix, and
hence the logarithmic negativity, is completely fixed by the
PT moments

pn ¼ Tr½ðρTA
ABÞn� ð4Þ

for n ¼ 1; 2;…; dimðHA ⊗ HBÞ. Note that p1 ¼ 1,
while the second PT moment coincides with the purity
p2 ¼ P2 [35].
The importance of the PTmoments is twofold. On the one

hand, they can be accessed directly viaRMs [34,35] (or using
quantum interference [102,103]); see Sec. II B. On the other
hand, the knowledgeof the first fewPTmoments is enough to
certify bipartite entanglement based on the nonpositivity of
the partial-transposed density matrix [34,35,104–106], or to
detect different typesof entanglement structures [107]. In this
work,wewill consider a particular set of conditions on thePT
moments to certify bipartite entanglement, which were
derived in Refs. [35,106] and which we call the pn-positive
partial transpose (PPT) conditions. Denoting by SEP the set
of separable, i.e., not entangled, states in S, the pn-PPT
conditions take the form

ρ∈SEP ⇒ pnpn−2 ≥ p2
n−1: ð5Þ

Therefore, when the state of the system ρ violates thepn-PPT
conditions, it is entangled, and the differencep2

n−1 − pnpn−2
is a probe formixed-state entanglement. Note that, for n ¼ 3,
Eq. (5) coincides with the relation first derived in Ref. [35].
These conditions are in general not optimal and are a strict
subset of those derived in Refs. [105,106]. Still, their
simplicity makes them particularly convenient for our
purposes.

B. Randomized measurements and classical shadows

The power of RM schemes lies in the fact that they
need not be tailored to a specific property of the system.
Rather, one performs measurements which are ran-
domly sampled from a fixed ensemble independent of
the observable of interest. Subsequently, the outcomes are
processed differently depending on the quantity to be
estimated [28,29,108,109]. Denoting by ρ the system
density matrix, this approach gives us access to all
observable expectation values Tr½ρO� and, more generally,
to multicopy objects of the form Tr½ρ⊗nO�, where the
integer n ≥ 1 is called the copy (or replica) index.
In this section, we recall the basic aspects of RMs used in

our work. While the logic explained in the next sections may
be implemented in different ways, we will focus on a set of
protocolsmakinguse the (local) classical shadows introduced
in Ref. [15], a prominent element in the RM toolbox [12].We
briefly recall the main aspects of the formalism, while we
refer to Refs. [12,15] for a thorough introduction.
In what follows, we denote by j0ij and j1ij the basis

elements of the local computational basis corresponding to
qubit j, spanning Hj ≃ C2. In the classical-shadow frame-
work, one performs a set of M measurements (one per
experimental run, each labeled by an integer r) consisting

of local unitary operations
Q

j u
ðrÞ
j followed by a projective

measurement onto the computational basis
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jk1;…; kNi ¼⨂N
j¼1jkjij; ð6Þ

with kj ¼ 0, 1. The unitaries are sampled from a Haar-
random ensemble, identically and independently for each
qubit j and experimental run r; see Fig. 2. Denoting by

fkðrÞj g the set of outcomes of this two-step process, the

values fkðrÞj g and the unitaries fuðrÞj g are used to define the
so-called classical shadows

ρðrÞS ¼ ⨂
i∈S

½3ðuðrÞi Þ†jkðrÞi ihkðrÞi juðrÞi − 12�; ð7Þ

which can be classically stored in an efficient way.
As mentioned, the measurement protocol does not

depend on the observable of interest. Rather, one adapts
the postprocessing operations on the classical shadows
based on the quantity to be estimated. For instance, given
any observable O, an estimator for its expectation value is

ô ¼ 1

M

XM
r¼1

Tr½OρðrÞS �: ð8Þ

It is easy to see that ô is faithful, i.e., unbiased, while
different bounds for the statistical variance of this estimator
may be derived depending on the locality properties
of O [12,15].
It is important to recall that classical shadows also give

access to entropy and PT moments. Let us consider in
particular the purity, which is given by Eq. (2) for n ¼ 2.
For this quantity, the classical shadows allow us to write the
estimator [15]

PðeÞ
2 ½I� ¼ 1

MðM − 1Þ
X
r≠r0

TrðρðrÞI ρðr
0Þ

I Þ; ð9Þ

where ρI is defined as in Eq. (7). PðeÞ½I� is a faithful
estimator. Note that, alternatively, one can use another

estimator for the purity [13,27,29] that provides robustness
against miscalibration errors using the same data. The

statistical errors associated with PðeÞ
2 ½I� are quantified by its

variance, which can be bounded by [15,35,38]

Var½PðeÞ
2 ½I�� ≤ 4

�
2jIjP2½I�

M

�
þ 2

�
22jIj

M − 1

�
2

; ð10Þ

where jIj denotes the number of qubits in I. This bound is
known to be essentially optimal [35,38], telling us that an
exponentially large number of measurements is needed to
estimate the purity.
The PT moments (4) can be treated similarly. In this case,

one constructs the estimator [35]

pðeÞ
n ½AB� ¼ 1

n!

�
M
n

�
−1

×
X

r1≠r2≠;…;≠rn

Tr½½ρðr1ÞAB �TA � � � ½ρðrnÞAB �TA �: ð11Þ

Once again, pðeÞ
n ½AB� is faithful, and it is possible to derive

explicit bounds on its variance, although it becomes
increasingly involved for higher n. For instance, for
n ¼ 3 one has [35,38]

Var½pðeÞ
3 ½AB�� ≤ 9

2jABj

M
Trðρ4ABÞ þ 18

23jABj

ðM − 1Þ2 p2½AB�

þ 6
26jABj

ðM − 2Þ3 : ð12Þ

Estimating the statistical errors by the variance, Eqs. (10)
and (12) imply that, in order to guarantee an accurate
reconstruction of the purity and PT moments of the system,
exponentially many measurements in its size are needed.
As mentioned, this makes it unfeasible to significantly
scale up previous experiments making use of this
strategy [13,15,27–29,35]. The goal of this work is to
show that these limitations may be overcome under
assumptions which are very common in the context of
many-body physics, and thus also natural from the point of
view of quantum simulation. Namely, we will put forward a
set of protocols for entropy and entanglement estimation
which are provably efficient assuming that all spatial
correlation lengths of the state to be measured are finite.
Wewill focus on 1D systems, where analytic and numerical
analyses are simpler, although we expect that our approach
could be generalized to higher spatial dimensions;
see Sec. VI.

III. A TOY MODEL FOR THE
ESTIMATION PROTOCOL

In this section, we introduce the main ideas underlying
our approach, focusing on a simplified setting where we

FIG. 2. (a) Within the classical-shadow approach, each meas-
urement process consists of random on-site unitaries followed by
local projective measurements. Their outcomes are stored and
later postprocessed to construct the classical shadows. (b) Picto-
rial representation of a local finite-depth quantum circuit. The
gates are arranged in a brickwork pattern, forming layers of
mutually commuting unitary operations acting on pairs of
neighboring qubits. Lower (upper) dangling legs correspond to
the input (output) qubits. The depth of the circuit is the number of
applied layers. In this picture, the depth is l ¼ 3.
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can get rid of unnecessary technical complications. We
analyze the case of FDQC states, where the state to be
measured is prepared by a shallow (local) quantum circuit

ρ ¼ UðlÞ
�
⨂
L

j¼1

σj

�
½UðlÞ�†; ð13Þ

where L is length of the system, i.e., the number of qubits
(we use the letter L instead of N, as in the previous section,
to emphasize that we are focusing on the 1D case). Here, σj
are arbitrary single-qubit density matrices, while UðlÞ is a
local circuit of depth l, namely, UðlÞ ¼ Vl;…; V2V1,
where Vj contains quantum gates acting on disjoint pairs
of nearest-neighbor qubits; cf. Fig. 2. Wewill assume that l
is fixed, i.e., not increasing with the system size. We do not
ask for translation symmetry and, unless specified other-
wise, assume open-boundary conditions. The gates making
up UðlÞ can be arbitrary; i.e., they need not be taken out of
some finite gate set. The FDQC states (13) have a very
simple structure from the point of view of many-body
physics, but are known to approximate physically interest-
ing states such as MPSs [110,111] and, more generally,
ground states of gapped local Hamiltonians [112–115].
Throughout this section, we will assume that we know

that the state of the system is exactly of the form (13) for
some finite l. We develop a protocol to efficiently estimate
the purity and the PT moments of such a state, based on this
knowledge. The protocol takes only the depth of the circuit
l as an input and does not make use of state tomography. In
fact, it will be later generalized replacing the assumption of
the FDQC structure with the AFCs, which make no explicit
reference to the form of the state wave function.

A. Purity estimation: Factorization formula

The starting point of our method is a factorization
property for powers of the system density matrix. Let I
be any interval of adjacent qubits (I can coincide with the
full system S). Consider a partition I ¼ A ∪ B ∪ C, where
B separates A and C and denote by jBj the number of qubits
in B; cf. Fig. 3(a). Based on the fact that the state is
prepared by a finite-depth circuit, Eq. (13), one can prove

Trðρ2I Þ ¼
TrABðρ2ABÞTrBCðρ2BCÞ

TrBðρ2BÞ
ð14Þ

for any partition with jBj ≥ 2l − 1, where ρX denotes the
density matrix reduced to the interval X, and XY is
shorthand notation for X ∪ Y. Now, let fIjgRj¼1 be a
collection of adjacent intervals covering the system S,
with jIjj ¼ k ≥ 2l − 1, and assume without loss of gen-
erality that R ¼ L=k is an integer; cf. Fig. 1. By applying
Eq. (14) iteratively, we arrive at

Trðρ2Þ ¼
Q

R−1
j¼1 TrIj∪Ijþ1

ðρ2Ij∪Ijþ1
ÞQ

R−1
j¼2 TrIj ½ρ2Ij �

; ð15Þ

where ρ is the system density matrix (13). A proof of
Eqs. (14) and (15) is given in Appendix A.
Equation (15) is remarkable because its right-hand side

(rhs) depends only on the purities of subsystems containing
up to 2k qubits, and thus gives us a natural basis for an
efficient estimation strategyof theglobal purity. The idea is to
first reconstruct the “local” purities Tr½ρ2I � (with either I ¼ Ij
or I ¼ Ij ∪ Ijþ1), and subsequently plug their estimated
values in the rhs of Eq. (15), yielding the global purity
estimate. Thismethod ismore efficient thandirectly targeting
Trðρ2Þ, as the local purities can be reconstructed from a
number of measurements growing exponentially in k, not in
L; see Eq. (10). Below, we give a more precise description of
the protocol, proving that an accurate estimation of the purity
requires only a polynomial (in L) number of measurements
and postprocessing operations.
We consider performing MI measurements (i.e., exper-

imental runs) to estimate the purity of each interval I, with
I ¼ Ij or I ¼ Ij ∪ Ijþ1; see Eq. (15). The set of measure-
ments MI is used to determine only the purity over I, and
for simplicity we perform the same number of measure-
ments MI ¼ M for each interval. Although this increases
the total number of experiments MT by a factor L, since

MT ¼
X
I

MI ∝ LM; ð16Þ

this procedure guarantees that statistical errors associated
with distinct regions are independent and facilitate their
rigorous analysis. For each interval, we then construct the
estimators PðeÞ½I� given in Eq. (9), and define

rðeÞ2 ¼
Q

R−1
j¼1 P

ðeÞ
2 ½Ij ∪ Ijþ1�Q

R−1
j¼2 P

ðeÞ
2 ½Ij�

; ð17Þ

which is our estimator for the global purity. Since the latter
purity is typically exponentially small in L, we quantify the

accuracy of rðeÞ2 by the relative error

FIG. 3. (a) Partition considered in Eq. (14): A 1D interval I is
divided into three disjoint regions A, B, and C, where B separates
A and C. (b) Partition considered in Eq. (26): A 1D interval I is
divided into two halves A and B. Each half is partitioned into two
regions A ¼ A1 ∪ A2, B ¼ B1 ∪ B2.
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εr ¼
���� r

ðeÞ
2

P2

− 1

����: ð18Þ

Next, we seek to bound the number of measurements
required to guarantee that εr is small with high probability.
This problem is solved in Appendix B 1, where we prove
the following result: For any arbitrarily small δ > 0,
choosing

M ≥ max

�
28k; L2

24kþ10

k2δ2

�
; ð19Þ

the probability that jεrj ≥ δ satisfies

Pr ½jεrj ≥ δ� ≤ 24kþ11L3

δ2k3M
; ð20Þ

where we recall that k ¼ jIjj. The proof of Eq. (20) is based
on a careful analysis of how the error on each factor in
Eq. (17) affects the global purity, making use of the

statistical independence of PðeÞ
2 ½I� for different I and the

so-called Chebyshev’s inequality. Equations (16), (19), and
(20) then imply that polynomially many (in L) measure-
ments and postprocessing operations are enough to accu-
rately estimate the purity, as anticipated. [The polynomial
scaling of the postprocessing operations follows straight-
forwardly from the definition (9), because the number of
elements in each sum scales as M2, where M ¼ OðL3Þ.]
We can rephrase this result in a more transparent way. For a
given confidence level γ ¼ Pr ½jεrj < δ�, Eq. (20) implies
that it is enough to take a number of measurements

M ≥
24kþ11L3

δ2k3ð1 − γÞ : ð21Þ

Before concluding this section, a few remarks are in
order. First, it is important to note that the individual factors
in the formula (17) could also be extracted using different
RM schemes or even standard tomography for the density
matrices ρI . Indeed, the possibility of estimating the global
purity from polynomially many measurements does not
depend on the fact that we are using classical shadows, but
rather on the factorization property (17) (since its rhs
involves only local subsystems). Still, classical shadows
and RMs in general offer several advantages compared to
state tomography. For instance, while RM schemes to
estimate Tr½ρ2I � require a number of measurements scaling
exponentially in jIj, the exponents are typically favorable
compared to tomography [27,31,116]. In addition, classical
shadows make it very easy to rigorously bound statistical
errors, facilitating the analyses presented throughout
this work.

Second, taking the logarithm of Eq. (15), we obtain

Sð2ÞðρÞ ¼
XR−1
j¼1

Sð2ÞðρIj∪Ijþ1
Þ −

XR−1
j¼2

Sð2ÞðρIjÞ; ð22Þ

where Sð2ÞðρÞ ¼ − ln Trρ2 is the second Rényi entropy. [We
note that similar formulas previously appeared (albeit for
the von Neumann, rather than for the Rényi entropy) in the
context of approximate Markov-chain states [117–120]; see
also Refs. [121–128].] Therefore, our results can equiv-
alently be formulated in terms of Rényi entropies, rather
than purities (note that a small relative error on the latter
implies a small additive error on the Rényi entropy).
Finally, as the state (13) can be represented exactly as a

matrix-product operator (MPO) [129], it is instructive to
compare our strategy with those based on MPDO
tomography [63–65,65–67]. In many cases, these methods
can efficiently provide an estimate of the system density
matrix ρðeÞ satisfying

kρðeÞ − ρk1 ≤ δ; ð23Þ

where k·k1 denotes the trace norm, while δ ¼ OðL−αÞ is a
small parameter vanishing polynomially in L. While this
approximation allows us to accurately estimate the expect-
ation value of any local observable, it might not be enough
to extract the global Rényi-2 entropy. Indeed, given ρ and σ
with δ ¼ kρ − σk1, we have the following bound, which is
known to be tight in general [130,131]:

jSð2ÞðρÞ − Sð2ÞðσÞj ≤ 2L
�
1 − ð1 − 2δÞ2 − 4δ2

ð2L − 1Þ
�

∼ 2Lδ: ð24Þ

Therefore, a precise estimation of the Rényi-2 entropy
requires an exponentially accurate reconstruction of the
system density matrix, typically leading to unpractical
overheads in L. (We note that a precise estimation of the
von Neumann entanglement entropy, instead, requires only
to reconstruct the target state up to an error which decays
polynomially in the system size [132]. However, comput-
ing the von Neumann entanglement entropy for MPDOs is
expected to be computationally hard in general.) Instead,
our method gets around this technical issue, as it does not
rely on state tomography.

B. The normalized PT-moment estimation

The ideas presented in the previous section may be
applied to the PT moments, although a few subtleties must
be taken into account. Denoting by pðeÞ

n our estimate for pn,
one is tempted to ask for a protocol that makes the relative

error jpðeÞ
n =pn − 1j sufficiently small. This is, however,

problematic: Contrary to the moments Pn, it is nontrivial to
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bound jpnj from below by a positive number. In order to get
around this issue, we define the normalized PT moment

p̃n½AB� ¼
pn½AB�

Pn½A�Pn½B�
; ð25Þ

and, instead of focusing on the relative error, we ask for an
accurate estimate of p̃n up to a small additive error. The
motivation for this choice is twofold. First, as it will be
clear later, for FDQC states one can show that p̃n½AB� is
independent of the system size. Therefore, contrary to the
purity, one does not have to deal with numbers which are
exponentially small in L. Second, we will see in Sec. V that
entanglement certification based on the pn-PPT conditions
requires approximating p̃n½AB� up to a small additive error.
In order to estimate the normalized PT moment (25),

we once again rely on certain factorization properties of
the density matrix. Consider the FDQC state (13) and take
a partition of the system as in Fig. 3(b), with jB1j ¼
jA2j ¼ k ≥ 2l − 1, where l is the depth of the circuit. As
we show in Appendix A 2, one can prove

Tr½ðρTA
ABÞn� ¼ Tr½ðρTA2

A2B1
Þn� TrA½ρnA�TrB½ρnB�

TrA2
½ρnA2

�TrB1
½ρnB1

� : ð26Þ

This equation implies

p̃n½AB� ¼ sn½A2B1�; ð27Þ

where we define

sn½XY� ¼
Tr½ðρTX

XYÞn�
TrX½ρnX�TrY ½ρnY �

: ð28Þ

Note that sn½A2B1� depends only on the density matrix of a
local subsystem and does not scale with the system size, as
anticipated (because of the FDQC structure, the reduced
density matrix over the region A2B1 is independent of the
system size for L ≥ jA2B1j þ 2l − 1). Therefore, it is
possible to obtain an accurate estimate from a number of
measurements and postprocessing operations independent
of L, for any arbitrary small additive error.
To see this explicitly, we consider the following protocol:

We introduce an estimator for sn½A2B1�, namely,

sðeÞn ¼ pðeÞ
n ½A2B1�

PðeÞ
n ½A2�PðeÞ

n ½B1�
: ð29Þ

The estimators for the moments PðeÞ
n ½A2�, PðeÞ

n ½B1�, and the

PT moment pðeÞ
n ½A2B1� are defined in Eq. (11). We compute

each of them out of M different classical shadows, so that
the total number of experimental runs is MT ¼ 3M. This is
done so that the statistical errors are independent,

facilitating their analysis. After these steps, we obtain an
estimate for sn½A2B1�, and thus, due to Eq. (26), for p̃n½AB�.
Importantly, we can bound the additive statistical error

which affects our estimate, namely,

εa ¼ jsðeÞn − p̃n½AB�j: ð30Þ

For instance, focusing for simplicity on the case n ¼ 3, we
prove in Appendix B 2 the following result: For any small
δ > 0 and choosing

M ≥ 27
211kþ9

δ2
; ð31Þ

we have

Pr ½jsðeÞ3 − p̃3½AB�j ≥ δ� ≤ 81
211kþ9

Mδ2
; ð32Þ

where jA2j ¼ jB1j ¼ k ≥ 2l − 1, with l being the circuit
depth. This result is proved by the same techniques used to
derive Eq. (20). Again, it is useful to rephrase our result in
terms of the confidence level γ, yielding

M ≥ 81
211kþ9

ð1 − γÞδ2 : ð33Þ

Equation (32) states that a number of measurements not
scaling with the system size is enough to guarantee that p̃3

is approximated with arbitrary precision and high proba-
bility. Explicit performance guarantees such as Eq. (32) for
higher integer values of n are more cumbersome to derive
and will be omitted. Still, based on the analysis presented in
Appendix B 2, one can easily see that inequalities of the
form (32) hold for higher n too, where the rhs is always
independent of L.

IV. FINITE-RANGE CORRELATED STATES

In this section, we present and discuss the most general
form of our protocols. First, in Sec. IVA we give the
definition of the AFCs, which state that the nth powers of
the system density matrix effectively factorize over regions
of size smaller than some length scales ξn. Our definition
might appear arbitrary at first, but we show later that
such AFCs hold in large classes of states (see Secs. IV C
and IV D). Next, in Sec. IV B we describe a protocol for
purity and PT-moment estimation in states satisfying the
AFCs. Such protocols take as an input the value of the
length scales ξn (assumed to be known) and the desired
accuracy, yielding as an output the numerical estimations
for the purity and PT moments. The protocols require only
polynomially many (in L) measurements and postprocess-
ing operations. In addition, we can rigorously prove that the
estimation errors are smaller than the desired threshold with
high probability. Finally, we discuss the generality of the
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AFCs, proving analytically that they hold for MPDOs
(Sec. IV C) and presenting numerical evidence for their
validity in Gibbs states of local Hamiltonians (Sec. IV D).

A. The approximate factorization conditions

The strategies developed so far rely on exact factoriza-
tion conditions on the system density matrix, which are
related to the sharp light-cone structure of correlation
functions in FDQC states [110,133,134]. Away from these
ideal cases, Eqs. (14) and (26) do not hold, but it is natural
to conjecture that they can be modified taking into account
exponential corrections over scales governed by the system
correlation lengths. This is done in this section, where we
introduce a set of AFCs generalizing Eqs. (14) and (26),
respectively.
Given a state ρ, we say that it satisfies the purity AFC if

there exist α2; β2; kc > 0 such that, for any interval I ¼
A ∪ B ∪ C as in Fig. 3(a), with jBj ¼ k ≥ kc, we have

����Trðρ2I Þ−1 TrABðρ
2
ABÞTrBCðρ2BCÞ
TrBðρ2BÞ

− 1

���� ≤ α2e−β2jBj: ð34Þ

Similarly, we say that ρ satisfies the PT-moment AFCs if
there exist αn; βn > 0, and an integer kc such that

jp̃n½AB� − sn½A2B1�j ≤ αne−βnðjA2jþjB1jÞ ð35Þ

for all partitions as in Fig. 3(b) with jB1j ¼ jA2j ¼ k ≥ kc.
Here, p̃n½AB� and sn½A2B1� are defined in Eqs. (25) and
(28), respectively. Equations (34) and (35) obviously
generalize Eqs. (14) and (26), introducing exponential
corrections over length scales ξn ¼ β−1n .
While the definitions (34) and (35) might appear

arbitrary at first, we show later that such AFCs hold in
large classes of states (see Secs. IV C and IV D). This
statement is very intuitive: On the one hand, we have shown
that they hold exactly for FDQC states; on the other hand,
in the absence of topological order, ground states are
known to be well approximated by FDQC states [112–
115]. It is then natural to expect that the AFCs continue to
hold as the temperature is increased or as the system is
perturbed by incoherent noise, as these ingredients do not
introduce long-range quantum correlations. In the next
section, we assume that the AFCs hold, and describe a
protocol for purity and PT-moment estimation. We stress
that we do not need any additional assumption on the state
to be measured. For instance, we do not require that it can
be represented efficiently by an MPDO.
Our protocols take as an input the values of αn, βn, and

the desired accuracy. For instance, the purity estimation
protocol takes as an input α2, the correlation length
ξ2 ¼ β−12 , and the target threshold relative error δ.
Importantly, it is not necessary to know the values of α2
and β2 exactly: It is sufficient to have two estimates α̃2, ξ̃2,
which upper bound them. This is because if α2 ≤ α̃2 and

ξ2 ≤ ξ̃2, then Eq. (34) also holds replacing α2 and β2 with
α̃2 and β̃2 ¼ ξ̃−12 , respectively. We can choose α̃2 and ξ̃2
arbitrarily, but the number of measurements and postpro-
cessing operations increase parametrically with α̃2 and ξ̃2;
see Eq. (37). Therefore, the more accurately we can
estimate the values of α2 and β2, i.e., the more information
we have on the state to be measured, the more efficiently we
can estimate the purity and, similarly, the PT moments. It is
important to note that, in this respect, the situation is
completely analogous to MPDO tomography. In that case,
one assumes that the density matrix of the system ρ can be
described accurately by some MPO with a bond dimension
D. Such a bond dimension does not need to be known
exactly, but only an upper bound for it needs to be known.
In practice, one can take α2 and β−12 larger than any
expected length scale in the system.
Finally, suppose that, for given state ρ, we have an ansatz

for α2 and ξ2. From the experimental point of view, an
important question is whether it is possible to efficiently
certify that Eq. (34) holds, with the ansatz values α2 and ξ2,
for the state to be measured. While at the moment this is an
open question, a simple consistency check consists of
repeating the purity estimation protocol (explained in
Sec. IV B) for increasing values of the input ansatz values
α2 and ξ2, and checking that the estimated value for the
purity does not change, up to the expected precision. If the
estimated purity does change, this is a “red flag” signaling
the failure of the AFCs. We refer to Sec. VI for further
discussion on the possibility to efficiently certify the
validity of the AFCs.

B. Estimation protocols for states satisfying the AFCs

First, we consider estimating the global purity of a state
satisfying the AFCs (34). We assume the following:

(i) We know that the system is prepared in a state ρ
satisfying the AFCs (34).

(ii) We know two numerical values α2 and β2 for which
Eq. (34) is satisfied.

Below, we detail our protocol to efficiently estimate the
purity. The proof that the protocol works is nontrivial and is
presented in detail in Appendix C. Intuitively, we use the
fact that, because of the AFC (34), the estimator rðeÞ2

defined in Eq. (17) yields a good approximation for the
purity, for values of jIjj which grow mildly (logarithmi-
cally) in L.
The protocol takes as an input the values of α2 and β2,

and consists of the following steps:
(1) Choose the desired relative error δ on the purity. This

can be any arbitrarily small number δ > 0.
(2) Take a partition of the system as in Fig. 1, where

jIjj ¼ k and choose

k ≥ ξ2 lnð7α2L=δÞ; ð36Þ
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where ξ2 ¼ β−12 . The reason for the functional form
appearing on the rhs is technical and explained in
Appendix C.

(3) As in Sec. III A, perform MI ¼ M classical-shadow
measurements to estimate the purity of each interval
I, with I ¼ Ij or I ¼ Ij ∪ Ijþ1 [we use the set of
measurements MI to determine only the purity over
I, so that the total number of experimental runs is
given by Eq. (16)].

(4) From the classical shadows obtained out of the
measurements, compute rðeÞ2 defined Eq. (17). This
is the output of our protocol, giving us an estimate
for the global purity.

As mentioned, it is intuitive that the output of
this protocol rðeÞ2 is, with high probability, an accurate
approximation for the purity. This is proven rigorously
in Appendix C, where we show [more precisely,
Eq. (37) holds for M sufficiently large, namely, M ≥
max fð7α2L=δÞ8ξ2 ln 2; ðL272210=δ2Þð7α2L=δÞ4ξ2 ln 2g; see
Appendix C]

Pr ½jðrðeÞ2 =P2Þ − 1j ≥ δ� ≤ 72211L3

δ2M

�
7α2L
δ

�
4ξ2 ln 2

: ð37Þ

Therefore, by a polynomial number of measurementsM we
can guarantee that the probability that the relative error

jrðeÞ2 =P2 − 1j is larger than δ is arbitrarily small. Rephrasing
our result in terms of the confidence level γ, we thus obtain

M ≥
72211L3

δ2ð1 − γÞ
�
7α2L
δ

�
4ξ2 ln 2

: ð38Þ

This formalizes the anticipated result.

Note that rðeÞ2 defined above is a faithful estimator for the
quantity

r2 ¼
Q

R−1
j¼1 TrIj∪Ijþ1

ðρ2Ij∪Ijþ1
ÞQ

R−1
j¼2 TrIj ½ρ2Ij �

; ð39Þ

but because Eq. (15) does not hold exactly, it is not a
faithful estimator of the global purity P2. Still, it is a good
approximation, as it is clear from the relation

���� r2P2

− 1

���� ≤ 4α2L
k

e−β2k; ð40Þ

which holds for

k ≥ ξ2 lnð2α2LÞ; ð41Þ

and follows directly from Eq. (34); cf. Appendix C. In
practice, the rhs of Eq. (40) makes it necessary to consider
intervals Ij whose length k grows logarithmically in L to
keep the error below the desired threshold.

A similar protocol works for the PT moments. In this
case, a number of measurements, which does not scale with
the system size, is enough to guarantee arbitrary accuracy
with high probability; cf. Appendix C. We note that the
results of this section imply that the number of postpro-
cessing operations to estimate the purity and PTmoments is
also at most polynomial in L. This is because the estimators
(9) and (11) are constructed summing a number of terms
which are polynomial inM, and hence, at most polynomial
in L.
In the rest of this section, we discuss the generality of the

AFCs. We prove analytically that they hold for the
important class of translation-invariant MPDOs and pro-
vide numerical evidence that they are also satisfied by
thermal states of local Hamiltonians. These results show-
case the generality and versatility of our approach.

C. Proof of AFCs in matrix-product
density operators

We now focus on MPDOs, a very general class of states
providing accurate approximations for several short-range
correlated density matrices, including thermal states of
local Hamiltonians [60,135]. We study the translation-
invariant case, where we can provide analytic results.
We recall that a translation-invariant MPDO σ is defined
by a four-index tensor Aj;k

a;b, with j, k ¼ 0, 1 and
a; b ¼ 0; 1;…; χ − 1, where χ is its bond dimension [129].
For a system size L, its matrix elements read

hi1;…; iLjσLjj1;…; jLi ¼ Ai1;j1
a1;a2A

i2;j2
a2;a3 � � �AiL;jL

aL;a1 ; ð42Þ

where repeated indices are summed over. This defines a
family of normalized states (we assume that the local
tensors A generate a positive operator for all system sizes L,
namely, σL ≥ 0 for all L)

ρL ¼ σL
Tr½σL�

ð43Þ

Using the standard notation from tensor-network
theory [129], we can represent Eq. (42) as

ð44Þ

Here, each circle corresponds to a tensor Aj;k
a;b. The lower

and upper legs are associated with input and output degrees
of freedom, respectively, while the remaining ones corre-
spond to the “virtual” indices aj ¼ 0;…; χ − 1. Note that
the contracted legs indicate pairs of indices which are
summed over.
We first focus on the purity. We are able to show that

MPDOs satisfy the purity AFCs under a few technical
assumptions, which encode the fact that all correlation
lengths are finite but are otherwise very general.
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Technically, we impose a few conditions on the spectrum
and eigenstates of the transfer matrices (note that τn is not
Hermitian and that, for n ¼ 1, we recover the standard
transfer matrix [135])

ð45Þ

where the top and bottom legs are contracted. Informally,
we ask that τ1 and τ2 have nondegenerate eigenvalues with
largest absolute value, and that the corresponding eigen-
states are not orthogonal. These conditions are general in
the sense that one needs to choose fine-tuned examples to
violate them. We refer the reader to Appendix D for a
precise statement and a detailed discussion.
Under these assumptions, we show that ρL satisfies the

purity AFCs. Note that, different from the rest of this work,
here we are considering periodic boundary conditions.
Since Eq. (34) was introduced for open-boundary con-
ditions, we consider directly its global version (40), which
can immediately be generalized to the periodic case.
Clearly, the expression for r2 must be modified with
respect to Eq. (39): Taking into account periodic boundary
conditions, we replace it with

r2 ¼
Q

R
j¼1 TrIj∪Ijþ1

ðσ2Ij∪Ijþ1
ÞQ

R
j¼1 TrIj ½σ2Ij �

; ð46Þ

where we assume without loss of generality that R ¼ L=k is
an integer, while the normalization factors Tr½σ2� cancel out.
The task of proving Eq. (40) [using the definition (46)] is

carried out in Appendix D. There, we derive the following
statement: Given the family of MPDOs ρL as above, there
exist ζ > 0, and C > 0 (independent of L) such that, for
any integer k ≥ kmin, with

kmin ¼ max f1; ζ lnð20Cχ2LÞg; ð47Þ

we have

���� r2P2

− 1

���� ≤ χ2ð80Cþ 32ÞL
k
e−k=ζ ð48Þ

for all L ≥ maxfζ lnð25χ2Þ; 4kþ ζ lnð2χÞg. The correla-
tion length ζ and the constant C depend on both the
eigenvalues and eigenvectors of the transfer matrices τ1 and
τ2; cf. Appendix D. Therefore, the purity approximate
factorization formula (40) holds with α2 ¼ χ2ð20Cþ 8Þ,
and β2 ¼ 1=ζ. In turn, using the results of the previous

sections, this implies that the purity of MPDOs can be
estimated efficiently using our approach [note that, with
these identifications, Eq. (36) implies k ≥ kmin, where kmin
is defined in Eq. (47)].
Similarly, the AFCs for PT moments could be verified

analytically for bulk-translation-invariant MPDOs with
suitable open-boundary conditions. This is slightly more
involved, as a few additional technical assumptions on the
boundaries are needed. For this reason, we do not discuss
this explicitly. Instead, the AFCs for PT moments will be
numerically analyzed in detail in the next section, together
with the purity AFCs, for the physically interesting case of
Gibbs states of local Hamiltonians in a few concrete
examples.

D. Numerical study of AFCs in Gibbs states

As mentioned, it is natural to conjecture that the AFCs
are very general, as they encode the fact that all the spatial
correlation lengths in the system are finite. In this section,
we provide numerical evidence supporting this claim,
studying thermal states of two prototypical 1D local
Hamiltonians. We focus in particular on the Ising model
with transverse and longitudinal fields

HI ¼ −
1

4

XL−1
j¼1

½σzjσzjþ1 þ hxσxj þ hzσ
z
j�; ð49Þ

and the so-called XXZ Heisenberg spin chain

HXXZ ¼ −
1

4

XL−1
j¼1

½σxjσxjþ1 þ σyjσ
y
jþ1 þ Δσzjσ

z
jþ1�: ð50Þ

We study the corresponding Gibbs states

ρβ ¼
exp ð−βHÞ

Zβ
; ð51Þ

where Zβ is a normalization factor.
Note that the Hamiltonians HI and HXXZ are integrable

for hz ¼ 0 [136] and all values of Δ [137], respectively,
although we do not expect that integrability plays any
role in the following discussion. Note also that both
Hamiltonians feature second-order quantum phase transi-
tions at zero temperature: For HI the critical line is hz ¼ 1,
while HXXZ displays a critical phase for jΔj < 1. However,
we are interested in finite-temperature states, and since in
1D the temperature always introduces a finite length scale,
we similarly expect that quantum criticality does not play
any role [138].
In order to assess the validity of the AFC for the purity,

we test its global version (40). To this end, we numerically
compute r2ðkÞ, as defined in Eq. (39), for increasing values
of the interval size k ¼ jIjj, and the global purity P2. Then,
we evaluate the corresponding relative error
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εrðk; L; βÞ ¼
���� r2ðkÞP2

− 1

����; ð52Þ

where we make the dependence on k, β, and L explicit. The
calculations are carried out using the iTensor library [140],
by first approximating the thermal states by MPOs of finite
bond dimension denoted by χ, and subsequently taking
powers and traces of such MPOs. For each quantity, this
procedure is repeated for increasing χ, until convergence is
reached. We refer the reader to Appendix E for further
details.
For fixed values of L, we first test the exponential

dependence in k of εrðk; L; βÞ predicted by Eq. (40).
Examples of our numerical data are reported in Fig. 4,
showing a very clear exponential decay. For the Ising
model, we choose a nonzero value of the longitudinal field
in order to break integrability. Note that, for very large k,
we see an apparent plateau. We attribute this behavior to the
finite numerical precision of our computations (note the
very small values of εr corresponding to these plateaus). It
is interesting to note that the decay rate for the XXZ chain is
faster than the Ising model, although higher bond dimen-
sions are needed in order to accurately approximate the
corresponding Gibbs state by an MPO. In any case, we see
that quite small values of k are enough to obtain a very
good approximation of the purity. We repeat the calcu-
lations for different values of the Hamiltonian parameters
and β, finding consistent results.
Next, we study the functional form of εrðk; L; βÞ. From

the numerical point of view, it is not straightforward to test
that it is asymptotically bounded by the rhs of Eq. (40).
Therefore, we proceed differently. Given an arbitrary fixed
δ > 0, we define the minimal region size required to
achieve a specified precision δ,

k�ðδ; LÞ ¼ min fk∶εrðk; L; βÞ < δg: ð53Þ

Assuming that εr satisfies an asymptotic bound of the form
(40), it is easy to show that k�ðδ; LÞ grows at most
logarithmically in L; namely, there exist α2 and β2 such that

k�ðδ; LÞ ≤ 1

β2
lnðα2L=δÞ: ð54Þ

When this condition holds, the estimation protocol
explained in Sec. IV B is efficient. Importantly, compared
to Eq. (35), Eq. (54) is straightforward to test by our
numerical computations.
We have verified that Eq. (54) is satisfied for several

values of the temperature and the Hamiltonian parameters.
An example of our numerical results is given in Fig. 5. For
the Ising model, we see a very clear logarithmic scaling.
For the Heisenberg chain, higher bond dimensions are
required to achieve the same accuracy. Accordingly, we
were not able to simulate sufficiently large system sizes to
obtain a clear logarithmic behavior. Still, our results were
always consistent with a growth of k�ðδ; LÞ which is at
most logarithmic in L; cf. Fig. 5. Thus, our numerical data
fully support the validity of Eq. (54). In fact, note that the
values of k�ðδ; LÞ are found to be very small in practice.
This is true even when the required bond dimension for
MPO calculations is large, as in the case of the XXZ
Heisenberg chain. This might make our approach useful
already for relatively small system sizes, even if compared
against MPO tomographic methods.
Finally, we study the AFC for the PT moments (34). To

this end, we define the additive error

εaðk; L; βÞ ¼ jp̃n½AB� − sn½A2B1�j; ð55Þ

where we make the dependence on k, β, and L explicit.
Because the numerical cost of evaluating the trace of the
nth power of an MPO increases with n, we restrict our
analyses to n ¼ 3.
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FIG. 4. Relative error εrðk; L; βÞ defined in Eq. (52) as a function of k for β ¼ 2 and different values of L. In (a) and (b), we report
numerical data corresponding to the Ising and XXZ spin chains, respectively. In the former case, we choose hx ¼ 1.1, hz ¼ −0.04, while
the maximal bond dimension used in the computation is χ ¼ 32. In the latter case, we set Δ ¼ 2, while χ ¼ 64.
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In Fig. 6, we report an example of our data for εaðk; L; βÞ
as a function of k, for increasing system sizes. From the plots,
two things are apparent. First, for fixed L, the additive error
displays a clear exponential decay. Second, its values are
independent of L (for values of k much smaller than the
system size). This behavior is perfectly consistent with
Eq. (35). Note that, as in the previous plots, we observe
irregular behavior for sufficiently large k, where εa
approaches a plateau and displays an L dependence. We
interpret these effects as arising due to numerical inaccur-
acies (note the very small values of εa). Similarly, when k
approaches L=2 we observe L-dependent behavior, which
can be attributed to finite-size effects. We have repeated our
calculations for different β and Hamiltonian parameters (in
each case, we checked that the bond dimension was large
enough), always finding consistent results.

E. Practical feasibility of purity estimation

In Sec. IV B, we have shown that, for states satisfying the
AFCs, the purity and the PTmoments may be estimated by a

number of measurements growing only polynomially in the
system size. Still, the degrees of the polynomials in our
bounds are high; cf., for example, Eq. (33). Accordingly, one
may wonder whether our approach could be applied in
practice in experiments with current repetition rates. It is
important to note, however, that our analysis was mainly
concerned with establishing the polynomial dependence
rigorously, so that our bounds may likely be improved by
more refinedmathematical derivations.More importantly, as
we have stressed, our protocolmay be improved by choosing
different ways of estimating the local purities and PT
moments, a simple variant being the method of “common
randomized measurements” [48]. These improvements are
expected to lead to polynomial boundswith lower exponents.
Going beyond general bounds, it is important to illustrate

how our estimation protocol performs in practice. This is
done in this section, where we exemplify its feasibility by
presenting a classical simulation of the full protocol in
an explicit case. For simplicity, we focus on random
MPSs [60,135] of N qubits and consider the purity of
the reduced density matrix over a half system. The choice

FIG. 5. Numerical results for the minimal region size k�ðδ; LÞ required to achieve a specified precision δ of purity estimation; see
Eq. (53). In the plots, we choose δ ¼ 0.01 and β ¼ 2, while (a) and (b) correspond to the Ising and XXZ spin chains, respectively. The
Hamiltonian parameters and bond dimensions are the same as in Fig. 4.

0 20 40 60 80 100 120 140

10
–16

10
–12

10
–8

10
–4

1

0 5 10 15

10
–16

10
–12

10
–8

10
–4

1

FIG. 6. Additive error εaðk; L; βÞ defined in Eq. (55) as a function of k, for β ¼ 2 and different values of L. In (a) and (b) we report
numerical data corresponding to the Ising and XXZ spin chains, respectively. The Hamiltonian parameters and bond dimensions are
chosen as in Fig. 4.
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of pure MPSs is motivated by the fact that it makes it easier
to classically simulate the probability distribution of the
measurement outcomes. At the same time, random states
model typical physical states without allowing for fine-
tuning. Our simulations show that the number of measure-
ments needed to reconstruct the purities is orders of
magnitude smaller compared to our theoretical bounds,
demonstrating that our protocol is experimentally feasible
in current quantum platforms.
The details of our simulation are as follows. We initialize

the system in a random MPS with complex coefficients and
bond dimension χ [140]. Once the random MPS is con-
structed,we save a copy of it and simulate the RMprocess (in
particular, we imagine that we have experimental access to
many identical copies of the state). In our simulation, we
consider a slightly more general measurement scheme
compared to the one detailed in Sec. II B. In particular,
we make use of the RMs described in Ref. [29] where each
random unitary uj is reused for nM local measurements.
Therefore, denoting by nU the number of distinct unitaries,
the total number of experiments is nUnM (so that the
classical-shadow approach described in Sec. II B is a special
case with nM ¼ 1, nU ¼ M). Each simulated experimental
run produces a bit string sðm;kÞ ¼ ðsm;k

1 ;…; sm;k
L Þ, with

m ¼ 1;…; nU, k ¼ 1;…; nM. Note that, numerically, we
can obtain the correct probability distribution for the meas-
urement outcomes using the perfect-sampling algorithm for
MPSs [141]. We have chosen to simulate the RM scheme
with reuse of local unitaries, as this scheme is more efficient
to simulate, and it has been used in a number of recent
experiments [27,30–33].

Finally, we collect the simulated measurement outcomes
to construct the purity estimator (17). Instead of Eq. (9), we
use the following estimator for the local purities:

PðeÞ
2 ½I� ¼ 2N

nUnMðnM − 1Þ
XnU
m¼1

XnM
k;k0¼1
k≠k0

ð−2Þ−D½sðm;kÞ
I ;sðm;k0Þ

I �; ð56Þ

where D½sðm;kÞ
I ; sðm;k0Þ

I � is the Hamming distance between

the bit stings sðm;kÞ
I and sðm;k0Þ

I on subsystem I. Compared to
Eq. (9), Eq. (56) achieves a more accurate estimate for
many repetitions nM using a few sets of distinct unitaries
uM and is expected to be more robust against miscalibration
errors [12]. We also checked numerically that our results
were qualitatively unchanged when using estimators based
on classical shadows.
Using the above simulation procedure, we studied the

estimator rðeÞ2 defined in Eq. (29) as a function of the
number of measurements nUnM. We computed in particular

the statistical error εs ¼ rðeÞ2 =r2, where r2 is the rhs of
Eq. (15) and the full relative error ε ¼ εr defined in
Eq. (18). In Fig. 7, we report our data for χ ¼ 2, 3,
k ¼ 4, 6, and system sizes up to L ¼ 96 (each plot
corresponds to an average error over 20 instances of the
random MPS).
From the plots, we see that roughly 104 measurements

are enough to obtain a relative error below 10% for system
sizes up to L ∼ 100 (note that in this range of the
parameters, statistical and full errors are seen to be numeri-
cally close, signaling that the deviations from exact AFCs
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FIG. 7. Statistical and full relative error on the bipartite purity in random MPSs, as a function of the number of experimental runs
nUnM, with fixed nM ¼ 1000. For each plot, we report the bond dimension χ of the random MPS and the length of the intervals jIjj ¼ k
in which the system is partitioned in our estimation protocol. Plots (a), (b), and (c) show the statistical error εs, while plots (d), (e), and (f)
show the full relative error ε, cf. the main text for the definitions.
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are small for k ¼ 6, both for χ ¼ 2 and χ ¼ 3). In addition,
roughly 105 measurements are needed to reach an error
around 5% for system sizes up to L ∼ 50 (note that, for
these sizes, a direct application of RM schemes to estimate
global purities is unfeasible). As announced, these numbers
are orders of magnitude smaller than what was predicted by
our general bounds, suggesting that these bounds are far
from being tight.
We stress that the number of measurements performed in

our simulations are of the order of those performed in
current trapped-ion and superconducting qubit experi-
ments; see, e.g., Refs. [27,30–33,39]. The results reported
in this section thus substantiate the claim that our protocol
is practically useful for global purity and entanglement
estimation in today’s quantum platforms.

V. MIXED-STATE ENTANGLEMENT DETECTION

In this section, we study the pn-PPT conditions for
states satisfying the AFCs. In Sec. VA, we first introduce a
set of quantities, which we call fnðρÞ, displaying the
following properties: (i) fnðρÞ < 0 if and only if ρ violates
the pn-PPT conditions, and (ii) fnðρÞ can be estimated
efficiently if ρ satisfies the AFCs, representing natural
probes for mixed-state entanglement. Next, in Sec. V B, we
compute fn in a few concrete cases including the Gibbs
states of local Hamiltonians and identify the values of the
system parameters for which f2, f3 < 0. The results of this
section show that our approach can be successful in
detecting entanglement even for large numbers of qubits
and highly mixed states, thus being practically useful in
many situations routinely encountered in available quan-
tum platforms.

A. The pn-PPT conditions and mixed-state
entanglement probes

Given the density matrix ρAB on a bipartite system, its
logarithmic negativity (3) can be extracted from the knowl-
edge of all PTmomentspn, withn ¼ 1;…; dimðHA ⊗ HBÞ.
Therefore, while our method is efficient to estimate the
individual PT moments, reconstructing the logarithmic
negativity is still hard, as it requires an exponential number
of them.
Luckily, the pn-PPT conditions introduced in Sec. II A

allow us to detect mixed-state entanglement from only a
few PT moments. For example, the first two nontrivial
elements in the family (5) involve only the PT moments up
to n ¼ 5. Explicitly, they read

p3 − PPT; p3p1 ≥ p2
2; ð57aÞ

p5 − PPT; p3p5 ≥ p2
4: ð57bÞ

The conditions (57) can be equivalently rewritten in terms
of the quantities

f3ðρABÞ ¼ p̃3p̃1 − p̃2
2

P2
2½A�P2

2½B�
P1½A�P1½B�P3½A�P3½B�

; ð58aÞ

f5ðρABÞ ¼ p̃5p̃3 − p̃2
4

P2
4½A�P2

4½B�
P3½A�P3½B�P5½A�P5½B�

; ð58bÞ

where p̃n are the normalized PT moments defined in
Eq. (25). Indeed, f3 and f5 are negative if and only if
the inequalities (57) are violated.
Crucially, f3ðρABÞ and f5ðρABÞ can be estimated effi-

ciently if ρAB satisfies the AFCs. Indeed, they depend only
on Pn and the normalized PT moments p̃n, both of which
can be estimated using the protocol introduced in Sec. IV;
see also Ref. [142]. We note that such estimation protocols
allow us to reconstruct fnðρABÞ up to any arbitrary small
additive error. Namely, for any arbitrary positive constant δ,

one can construct an estimator fðeÞn , with jfðeÞn − fnj ≤ δ
by polynomially many (in L) measurements and postpro-
cessing operations. This is easily seen recalling that p̃n (Pn)
can be estimated up to any additive (relative) error, and
using that

jp̃n½I�j ≤ 1;
ðPn½I�Þ2

Pn−1½I�Pnþ1½I�
≤ 1; ð59Þ

where the first inequality from jp̃n½I�j ≤ p̃2½I� ¼ P2½I�,
while the second follows from Hölder’s inequality.
At this point, it is important to ask whether the quantities

fn are practically useful in the many-body context con-
sidered in this work. For example, one could be worried
that the conditions (57) are never violated for large L (even
if the logarithmic negativity is nonzero), or that fn is
exponentially small in L for highly mixed states, thus
requiring an exponential accuracy for its estimation. To

address this question, consider a family of states ρðLÞAB
defined for increasing system sizes L and satisfying the

AFCs. Suppose that we extract fnðρðLÞAB Þ using our estima-
tion protocol for a fixed approximation error δn. Then, the
pn-PPT conditions (57) allow us to successfully detect
entanglement if

f3ðρðLÞAB Þ ≤ −C3; ð60aÞ

f5ðρðLÞAB Þ ≤ −C5; ð60bÞ

where C3; C5 > 0 are constants (independent of L) with
Cn ≥ 2δn. Indeed, in these cases the statistical inaccuracy is
smaller (with high probability) than the amount by which

fnðρðLÞAB Þ is negative, allowing us to certify entanglement.
In the next subsection, we study a few natural examples

of states satisfying the AFCs showing that Eq. (60) holds
either for all values of L or up to very large system sizes.
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Therefore, we exhibit concrete examples where fn are
provably useful for entanglement detection.

B. Mixed-state entanglement detection
in FDQC and Gibbs states

We start by studying the relations (60) in the simplest
case of FDQC states (13). We consider a family of states
where the single-qubit density matrices in Eq. (13) are
parametrized as

σiðγÞ ¼ γjaiihaij þ ð1 − γÞjbiihbij: ð61Þ

Here, jaii, jbii are arbitrary orthonormal states, while 0 ≤
γ ≤ 1=2 plays the role of a depolarizing parameter con-
trolling both purity and bipartite entanglement (γ is not to
be confused with the symbol previously used for con-
fidence levels). We ask for which values of γ the conditions
(57) are violated.
This problem is analyzed in detail in Appendix F. We

prove that, for generic choices of the unitary gates, there
exist γ3, γ5 > 0 such that Eqs. (60a) and (60b) are satisfied,
respectively, for all γ ≤ γ3=L and γ ≤ γ5=L1=3. Now,
choosing in particular γL ¼ γ5=L1=3, we have

Tr½ρðLÞðγLÞ2� ¼ ½γ2L þ ð1 − γLÞ2�L
≤ exp ½−2ðγL − γ2LÞL�
≤ exp ½−γLL� ¼ exp ½−γ5L2=3�; ð62Þ

namely,

S2½ρðLÞðγLÞ� ≥ γ5L2=3: ð63Þ

Therefore, ρðLÞðγLÞ provides an example where the p5-PPT
condition is violated by a finite amount C5 and, at the same
time, the global Rényi-2 entropy grows polynomially, albeit
sublinearly, in the system size [143].
As a final interesting example, let us consider once again

finite-temperature states of local Hamiltonians. In this case,
the purity decays exponentially in L, and we expect that the
conditions (58) fail to detect the presence of entanglement
in the thermodynamic limit. In the following, we give
evidence that they can nevertheless be useful when con-
sidering systems of large but finite size.
To support this claim, we study thermal states in the Ising

model (49), and numerically compute the coefficients (60)
for different temperatures and system sizes. The compu-
tations are performed using tensor-network methods, fol-
lowing the same strategy explained in Sec. IV D. An
example of our results is reported in Fig. 8. In these plots,
we have fixed small but otherwise arbitrary positive
numbers C3 and C5, and identified the values of β and
L for which f3ðβ; LÞ ≤ −C3 and f5ðβ; LÞ ≤ −C5.
The data corresponding to the p3-PPT condition are

reported in Fig. 8(a), which clearly shows that the values
of the temperature T ¼ β−1 for which the entanglement can
be detected decrease with L, consistent with our previous
analysis of FDQC states. On the other hand, Fig. 8(b) shows
that f5ðβ; LÞ < −C5 up to values of the temperature
(T ≃ 0.1) that do not significantly depend on L, at least
up to very large system sizes (L ≃ 1024). We expect that this
is a finite-size effect, namely, that increasing L further, the
values of T for which entanglement can be detected will

FIG. 8. Density plots for the coefficients f3ðβ; LÞ [plot (a)] and f5ðβ; LÞ [plot (b)] as a function of β and L. The data correspond to
thermal states in the Ising model (49), with hx ¼ 1.1 and hz ¼ −0.04. Red (blue) regions indicate the values of β and L for which
f3ðβ; LÞ, f5ðβ; LÞ are larger (smaller) than some small values −C3 ¼ 0.01 and −C5 ¼ 0.001, respectively.
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decrease. Still, this example shows how the pn-PPT con-
ditions may be able to detect entanglement even for highly
mixed states and up to very large system sizes, making the
estimation protocol for PT moments practically very useful.

VI. OUTLOOK

We have studied the problem of estimating global entro-
pies and entanglement in many-qubit states, assuming the
validity of certain AFCs which encode the fact that all the
spatial correlations lengths in the system are finite. We have
shown that the AFCs allow one to reconstruct entropies and
PT moments from local information which can be extracted
efficiently using standard RM schemes. Exploiting this fact,
we have devised a very simple strategy for entropy and
entanglement estimation which is provably accurate, requir-
ing polynomially many local measurements and postpro-
cessing operations. We have discussed the generality of the
AFCs, providing both analytic and numerical evidence for
their validity in different classes of states, includingMPDOs
and thermal states of local Hamiltonians.
As we have argued, the protocols proposed in this work

could be practically useful to detect bipartite mixed-state
entanglement for large numbers of qubits in today’s
quantum platforms. This is especially true when consider-
ing current NISQ devices from the point of view of
quantum simulation, since the AFCs hold under assump-
tions that are very common in the context of many-body
physics. In addition, our work has also raised important
questions and opens up a number of interesting directions.
First, our protocols assume that the state to be measured

satisfies theAFCs.Therefore, an important question from the
experimental perspective is whether it is possible to devise a
complementary (and still efficient) strategy to certify their
validity, similar to what can be done in the case of MPS [61]
or entanglement-Hamiltonian tomography [69].
As we have discussed in Sec. IVA, a simple but effective

consistency check can be carried out by repeating our
protocols multiple times, each time with an increased ansatz
value for the correlation lengths. If the estimated purities or
PT moments change beyond the expected precision over
different repetitions, we obtain a red flag signaling the failure
of the AFCs in the state to be measured. This process,
however, does not allow one to rigorously rule out the
presence of long-range correlations, as this would require
running the estimation protocols using, as an input, corre-
lation lengths which are proportional to the system size. We
envision that a way to tackle the certification problem could
be to identify a hierarchy of properties which are strictly
stronger than the AFCs and for which rigorous certification
protocols can be foundmore easily. At themoment, however,
this remains an open problem.
Next, while we have focused on 1D systems, a very

natural direction is to extend our approach to higher spatial

dimensions. In this case, additional technical complications
arise, but we expect that efficient estimation strategies for
the purity and PT moments exist under similar conditions
encoding the absence of long-range correlations. We stress
that this problem is particularly important, since tomo-
graphic methods for many-qubit states (based, for instance,
on tensor or neural networks) are much less developed in
higher dimensions.
Finally, we mention that our approach could also be

applied to probe other quantities which generally require
exponentially many measurements. Straightforward exam-
ples include the participation entropies [85–89] and the so-
called stabilizer Rényi entropies [92], but we expect that
similar ideas could be implemented in other contexts. One
example is that of cross-platformverificationprotocols [144],
which involve probing the (possibly exponentially small)
overlaps between different density matrices. Similarly, effi-
cient estimation strategies for the so-called Loschmidt
echo [145] also appear to be within the reach of the
techniques developed in this work. While these problems
require dealingwith additional technical subtleties compared
to the analysis of the entropy and PT moments, we believe
that the latter are not substantial and could be overcome. We
leave the study of these applications to future research.

Note added.Recently, awork byGondolf et al. [146] showed
that any translation-invariant, finite-rangeHamiltonian in 1D
at any inverse temperature β > 0 satisfies the purity AFCs, in
complete agreement with our numerical results of Sec. IVD
and further substantiating the generality of our approach.
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APPENDIX A: FACTORIZATION CONDITION
FOR FDQC STATES

1. The purity

In this section, we show that the FDQC states (13) satisfy
the factorization condition (14). In fact, we prove the
stronger condition

TrB⊗n ½Π⃗Bðρ⊗n
ABCÞ�

¼ TrB⊗n ½Π⃗Bðρ⊗n
ABÞ� ⊗ TrB⊗n ½Π⃗Bðρ⊗n

BCÞ�
TrBðρnBÞ

; ðA1Þ

where we introduce the n-copy cyclic permutation oper-
ator Π⃗Bji1;…; ini ¼ jin; i1;…; in−1i, and we assume
jBj ≥ ð2l − 1Þ, where l is the circuit depth. We make
use of a graphical derivation. We show the case n ¼ 2,
l ¼ 4, and jBj ¼ 8 for concreteness, but it is clear that the
proof generalizes for all values of n and l. The reduced
density matrix over the interval I ¼ A ∪ B ∪ C reads

ðA2Þ

Following the standard tensor-network notation, the lower
(upper) dangling legs correspond to the input (output)
qubits. In addition, here and in the following, the upper and
lower legs in the same column, which are marked with a
small rectangle of the same color, are traced over. Finally,
black dots correspond to the density matrices σj.
The left-hand side of Eq. (A1) can be represented as

ðA3Þ

where dangling legs are not contracted, while the gray
rectangle is a shorthand notation for the reduced den-
sity matrix (A2). Using unitarity of the gates, we get
TrB⊗n ½Π⃗Bðρ⊗n

ABCÞ� ¼ T1T2T3, where

Note that T1 and T3 are operators, while T2 is a number. Let
us compare this graphical expression with the one on the
rhs of Eq. (A1). The first and second terms in the numerator
read, respectively,

Similarly, the denominator in Eq. (A1) reads
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Putting everything together and simplifying the common
factors in the numerator and denominator, we arrive at
Eq. (A1). Finally, using the fact that TrðρnXÞ ¼ TrðΠ⃗Xρ

⊗n
X Þ,

and the relation Π⃗ABC ¼ Π⃗A ⊗ Π⃗B ⊗ Π⃗C, we arrive at

TrðρnABCÞ ¼
TrABðρnABÞTrBCðρnBCÞ

TrBðρnBÞ
: ðA4Þ

For n ¼ 2, this proves Eq. (14).
Next, we prove Eq. (15). Let us consider a partition of

the whole system S ¼ A ∪ B ∪ C, where jBj ¼ jCj ¼
k ≥ 2l − 1. We first make use of Eq. (14). Setting now
Að0Þ ≔ A, Bð0Þ ≔ B, Cð0Þ ≔ C we can iterate this operation,
each time splitting the interval AðjÞ ∪ BðjÞ into three
adjacent regions Aðjþ1Þ, Bðjþ1Þ, and Cðjþ1Þ with jBðjþ1Þj ¼
jCðjþ1Þj ¼ k. We continue this procedure until jARj ¼ k,
which gives us Eq. (15).

2. The PT moments

The goal of this section is to prove Eq. (26).
We start by recalling the expression for the PT

moments [102]

Tr½ðρTA
ABÞn� ¼ Tr½Π⃖AΠ⃗Bðρ⊗n

ABÞ�; ðA5Þ

where we introduce the n-copy forward (backward) cyclic
permutation operator in the n-replica space defined by

Π⃗Aji1;…; ini ¼ jin; i1;…; in−1i;
Π⃖Bji1;…; ini ¼ ji2; i3;…; i1i: ðA6Þ

Using this notation, it is easy to see that Eq. (A1) implies

TrB⊗n ½Π⃖Bðρ⊗n
ABCÞ�

¼ TrB⊗n ½Π⃖Bðρ⊗n
ABÞ� ⊗ TrB⊗n ½Π⃖Bðρ⊗n

BCÞ�
TrBðρnBÞ

: ðA7Þ

Equation (A7) can be proved by taking the partial transpose
with respect to A⊗n and C⊗n on both sides of Eq. (A1),
followed by complex conjugation. Next, let us take a
bipartition of the system into A and B, each divided
into two intervals A ¼ A1 ∪ A2 and B ¼ B1 ∪ B2 with
jA2j ¼ jB1j ¼ k; cf. Fig. 3(b). Making use of Eq. (A1),
we have

Tr½ðρTA
ABÞn� ¼ TrA⊗nTrB⊗n

2
Π⃖AΠ⃗B2

TrB⊗n
1
Π⃗B1

ρ⊗n

¼
TrA⊗n⊗B⊗n

1
ðΠ⃖AΠ⃗B1

ρ⊗n
AB1

Þ
TrB1

ðρnB1
Þ

×
TrB⊗n

1
⊗B⊗n

2
ðΠ⃗B1

Π⃗B2
ρ⊗n
B1B2

Þ
TrB1

ðρnB1
Þ : ðA8Þ

Using

TrA⊗n⊗B⊗n
1
ðΠ⃖AΠ⃗B1

ρ⊗n
AB1

Þ
¼ TrA⊗n

1
TrB⊗n

1
Π⃖A1

Π⃗B1
TrA⊗n

2
Π⃖A2

ρ⊗n
A1A2B1

¼ TrA⊗n
1

⊗A⊗n
2
ðΠ⃖A1

Π⃖A2
ρ⊗n
A1A2

Þ
× TrA⊗n

2
⊗B⊗n

1
ðΠ⃖A2

Π⃗B1
ρ⊗n
A2B1

Þ½TrA2
ðρnA2

Þ�−1; ðA9Þ

we finally arrive at Eq. (26).

APPENDIX B: STATISTICAL-ERROR
ANALYSIS IN FDQC STATES

1. Statistical-error analysis for the purity

In this section we prove Eq. (20). We consider the
protocol explained in Sec. III A and denote by PðeÞ

2 ½I� the
estimates for P2½I� ¼ Trðρ2I Þ obtained from the classical-
shadow approach. These local purities are estimated with a

nonzero relative error, i.e., PðeÞ
2 ½I�=P2½I� ¼ ð1þ εIÞ. We

define

ε ¼ max fjεIj∶I ∈ fIjgj ∪ fIj ∪ Ijþ1gjg: ðB1Þ

We take rðeÞ2 defined in Eq. (17) as the experimental
estimate for the global purity P2 ¼ Trðρ2Þ, choosing the
intervals Ij with jIjj ¼ k ≥ 2l − 1, where l is the circuit
depth, so that Eq. (15) holds.
We start our proof from a few preliminary lemmas.
Lemma 1. Suppose ε ≤ 1=2. Then,

���� r
ðeÞ
2

P2

− 1

���� ≤ eð4L=kÞε − 1: ðB2Þ

Proof. Setting PðeÞ
2 ½I� ¼ P2½I�ð1þ εIÞ, recalling R ¼

L=k, where k ¼ jIjj and using Eq. (15), we have

rðeÞ2

P2

¼
Q

R−1
j¼1 ð1þ εIj∪Ijþ1ÞQ

R−1
j¼2 ð1þ εIjÞ ; ðB3Þ

as so, using jεIj ≤ ε,

rðeÞ2

P2

≤
ð1þ εÞR−1
ð1 − εÞR−2 ≤

�
1þ ε

1 − ε

�
R
;

rðeÞ2

P2

≥
ð1 − εÞR−1
ð1þ εÞR−2 ≥

�
1 − ε

1þ ε

�
R
: ðB4Þ

Since ε ≤ 1=2, and using ð1þ xÞ ≤ ex, we have

1þ ε

1 − ε
¼ 1þ 2ε

1 − ε
≤ 1þ 4ε ≤ e4ε: ðB5Þ
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Therefore,

e−ð4L=kÞε ≤
rðeÞ2

P2

≤ eð4L=kÞε: ðB6Þ

Finally, using

ð1 − e−aÞ ≤ ea − 1; ðB7Þ

we obtain Eq. (B2). ▪
Lemma 2. Let M ≥ 24jIj. Then,

Pr ðjεIj ≥ αÞ ≤ 22jIjþ3

α2M
: ðB8Þ

Proof. We start from the bound (10). SinceM ≥ 24jIj, we
have in particular M ≥ 4, and Eq. (10) implies

Var½PðeÞ
2 ½I�� ≤ 4

�
2jIjP2½I�

M

�
þ 4

�
22jIj

M

�
2

: ðB9Þ

Since by hypothesisM ≥ 24jIj, while P2½I� ≥ 2−jIj, we have

4

�
22jIj

M

�
2

≤ 4

�
2jIjP2½I�

M

�
; ðB10Þ

and so

Var½PðeÞ
2 ½I�� ≤ 8

2jIjP2½I�
M

: ðB11Þ

Equation (B8) then follows using Chebyshev’s inequality
and P2½I� ≥ 2−jIj. ▪
We are ready to state and prove the main result of this

section.
Theorem 1. Let 0 ≤ δ ≤ 1 and take

M ≥ max

�
28k; L2

24kþ10

k2δ2

�
; ðB12Þ

where k ¼ jIjj ≥ 2 (the case k ¼ 1 is trivial). Then,

Pr ½jðrðeÞ2 =P2Þ − 1j ≥ δ� ≤ 24kþ11L3

δ2k3M
: ðB13Þ

Proof. Recalling the definition (B1), note that if
ε < ðk=8LÞδ, then ε < 1=2 and also eð4L=kÞε − 1 < δ.
Using Lemma 1, this implies

Pr½jðrðeÞ2 =P2Þ − 1j ≥ δ� ≤ Pr½ε ≥ ðk=8LÞδ�
¼ 1 − Pr½ε < ðk=8LÞδ�: ðB14Þ

In more detail, the validity of the first inequality can be
seen as follows: Suppose ε < ðk=8LÞδ. Then necessarily

ε < 1=2 and so also jrðeÞ2 =P2 − 1j < δ (by Lemma 1).

Therefore, the set of cases in which jrðeÞ2 =P2 − 1j ≥ δ must
be contained in the set of cases in which ε ≥ ðk=8LÞδ. In a
formula, this is the first line of Eq. (B14).
From the definition of ε and Lemma 2, we have

Pr½ε < x� ¼
Y
j

ð1 − Pr½jεIj j ≥ x�Þ

×
Y
j

ð1 − Pr½jεIj∪Ijþ1 j ≥ x�Þ

≥
��

1 −
22kþ3

x2M

��
1 −

24kþ3

x2M

��
R

; ðB15Þ

where we used that the random variables εIj are statistically
independent. Therefore,

Pr½ε < x� ≥
�
1 −

24kþ3

x2M

�
2R

: ðB16Þ

Setting x ¼ δk=ð8LÞ, we have by hypothesis
24kþ3=x2M ≤ 1=2. Therefore, using 1 − z ≥ e−2z for
0 ≤ z ≤ 1=2, we obtain

Pr½ε < ðk=8LÞδ� ≥ exp

�
−
24kþ11L3

Mδ2k3

�
: ðB17Þ

Plugging this into Eq. (B14), and using 1 − e−z ≤ z, we
finally obtain Eq. (B13). ▪

2. Statistical-error analysis for the PT moments

In this section we prove Eq. (32). Considering the same
protocol and using the same notation as Sec. III B, we set

pðeÞ
3 ½A2B1� ¼ p3½A2B1� þ εA2B1; ðB18aÞ

PðeÞ
3 ½A2� ¼ P3½A2�ð1þ εA2Þ; ðB18bÞ

PðeÞ
3 ½B1� ¼ P3½B1�ð1þ εB1Þ: ðB18cÞ

Note that εA2B1 is an additive error, while εA2 , εB1 are
relative errors. We also define

ε ¼ 22jA2jþ2jB1jmax fjεA2B1 j; jεA2 j; jεB1 jg: ðB19Þ

In the following, we will set jA2j ¼ jB1j ¼ k, where k ≥
2l − 1 with l being the circuit depth. With this choice,
Eq. (27) holds.
For clarity, we organize the proof into lemmas.
Lemma 3. Suppose ε ≤ 1. Then,

jsðeÞ3 ½A2B1� − s3½A2B1�j ≤ 16ε; ðB20Þ

where sn½A2B1� is defined in Eq. (27).
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Proof. We start from

sðeÞ3 ½A2B1� ¼
p3½A2B1� þ εA2B1

P3½A2�ð1þ εA2ÞP3½B1�ð1þ εB1Þ ; ðB21Þ

which gives us

jsðeÞ3 ½A2B1� − s3½A2B1�j

≤
jp3½A2B1�j

P3½A2�P3½B1�
jεA2 j þ jεB1 j þ jεA2εB1 j
ð1þ εA2Þð1þ εB1Þ

þ jεA2B1 j
P3½A2�P3½B1�ð1þ εA2Þð1þ εB1Þ : ðB22Þ

Denoting by λj the eigenvalues of ρ
TA2
A2B1

, we have

jp3½A2B1�j ≤
X
j

jλjj3 ≤
X
j

λ2j ¼ P½A2B1� ≤ 1; ðB23Þ

where we used λj ∈ ½−1=2; 1� [147] and Tr½ðρTA
ABÞ2� ¼

Tr½ρ2AB� [35]. In addition, since ε≤1, clearly jεA2 j ≤ 1=2,
jεB1 j ≤ 1=2 and so also jεA2εB1 j < jεA2 j. Putting everything
together, and using P3½I� ≤ 2−2jIj, we finally arrive
at Eq. (B20). ▪
Lemma 4. Let M ≥ 3 × 28k. Then,

Pr ðjεA2 j ≥ αÞ ≤ 27
23k

α2M
; ðB24aÞ

Pr ðjεB1 j ≥ αÞ ≤ 27
23k

α2M
; ðB24bÞ

Pr ðjεA2B1 j ≥ αÞ ≤ 27
22k

α2M
: ðB24cÞ

Proof. We start from the bound [38]

Var½pðeÞ
3 ½AB�� ≤ 9

2jABj

M
Trðρ4ABÞ þ 18

23jABj

ðM − 1Þ2 p2½AB�

þ 6
26jABj

ðM − 2Þ3 : ðB25Þ

Since M ≥ 3 × 28k (and k ≥ 1), then

18

ðM − 1Þ2 ≤
27

M2
;

6

ðM − 2Þ3 ≤
9

M3
: ðB26Þ

Therefore,

Var½pðeÞ
3 ½AB�� ≤ 9

2jABj

M
Trðρ4ABÞ þ 27

23jABj

M2
p2½AB�

þ 9
26jABj

M3
: ðB27Þ

Since M ≥ 3 × 28k, we have

9
2jABj

M
Trðρ4ABÞ ≥ 27

23jABj

M2
p2½AB�;

9
2jABj

M
Trðρ4ABÞ ≥ 9

26jABj

M3
: ðB28Þ

In the first line, we have used that p2½I� ¼ Tr½ρ2I � and
Hölder’s inequality, which guarantees

Tr½ρ2I �=Tr½ρ4I � ≤ 2jIj=Tr½ρ2I � ≤ 22jIj; ðB29Þ

while in the second line, we have used Trðρ4ABÞ ≥
2−3jABj ¼ 2−6k. Putting it all together, we get

Var½pðeÞ
3 ½AB�� ≤ 27

22k

M
Trðρ4ABÞ: ðB30Þ

Similarly, we have [38]

Var½P3½A2�� ≤ 9
2jA2j

M
Trðρ4A2

Þ þ 18
23jA2j

ðM − 1Þ2 Trðρ
2
A2
Þ

þ 6
26jA2j

ðM − 2Þ3

≤ 27
2k

M
Trðρ4A2

Þ: ðB31Þ

Using Trðρ4A2
Þ=½Trðρ3A2

Þ�2 ≤ 1=Trðρ3A2
Þ ≤ 22k, we obtain

Var

�
PðeÞ

3 ½A2�
P3½A2�

�
≤ 27

2k

M

Trðρ4A2
Þ

½Trðρ3A2
Þ�2 ≤ 27

23k

M
; ðB32Þ

and analogously for Pð2Þ
3 ðB1Þ. Equations (B24) follow

using Chebyshev’s inequality. ▪
We are ready to state and prove the main result of this

section, yielding Eq. (32).
Theorem 2. Let 0 ≤ δ ≤ 1 and take

M ≥ 27
211kþ9

δ2
: ðB33Þ

Then,

Pr ½jsðeÞ3 ½A2B1� − s3½A2B1�j ≥ δ� ≤ 81
211kþ9

Mδ2
: ðB34Þ

Proof. Recall the definition (B19) and note that if
ε ≤ δ=16, then trivially ε < 1 and so, by Lemma 3,

jsðeÞ3 − s3j ≤ δ. This implies

Pr½jsðeÞ3 − s3j ≥ δ� ≤ Pr½ε ≥ δ=16�
¼ 1 − Pr½ε < δ=16�: ðB35Þ
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In more detail, the validity of the first inequality can be seen
as follows: Suppose ε < δ=16. Then trivially ε < 1 and so

necessarily also jsðeÞ3 − s3j < δ (by Lemma 3). Therefore,

the set of cases in which jsðeÞ3 − s3j ≥ δ is contained in the
set of cases for which ε ≥ δ=16. In a formula, this is the first
line of Eq. (B35).
From the definition of ε and Lemma 4, we have

Pr½ε< x� ¼ ð1−Pr½jεA2 j≥ x2−4k�Þ
× ð1−Pr½jεB1 j≥ x2−4k�Þð1−Pr½jεA2B1 j≥ x2−4k�Þ

≥
�
1−27

211k

x2M

�
3

; ðB36Þ

where we used that the random variables εIj are statistically
independent. Setting x ¼ δ=16, we have by hypothesis
27 × 211k=x2M < 1=2. Therefore, using 1 − z ≥ e−2z for
0 ≤ z ≤ 1=2, we obtain

Pr½ε < δ=16� ≥ exp

�
−81

211kþ9

Mδ2

�
: ðB37Þ

Plugging into Eq. (B35), and using 1 − e−z ≤ z, we finally
obtain Eq. (B34). ▪

APPENDIX C: STATISTICAL-ERROR ANALYSIS
FOR STATES SATISFYING THE AFCs

In this appendix, we prove the main claims reported in
Sec. IV B. Let ρ be a state satisfying Eq. (34) for all
partitions as in Fig. 3(a), with jBj ¼ k ≥ kc (and open-
boundary conditions). We first prove Eq. (37).
We start with the following:
Lemma 5. Let

k ≥
lnðα2L=δÞ

β2
; ðC1Þ

for 0 ≤ δ ≤ 1=2. Then, defining r2 as in Eq. (39), we have

���� r2
Trðρ2Þ − 1

���� ≤ 4δ: ðC2Þ

Proof. First, applying iteratively Eq. (34), we get (recall-
ing that R ¼ L=k)

r2
Trðρ2Þ ¼

YR−1
j¼2

ð1þ εjÞ; ðC3Þ

with jεjj ≤ α2e−β2k, and so

���� r2
Trðρ2Þ − 1

���� ¼
����
YR−1
j¼2

ð1þ εjÞ − 1

����: ðC4Þ

We have

YR−1
j¼2

ð1þ εjÞ − 1 ≤ ð1þ α2e−β2kÞR−2 − 1

≤ exp ½α2ðL=kÞe−β2k� − 1: ðC5Þ

Analogously,

YR−1
j¼2

ð1þ εjÞ − 1 ≥ ð1 − α2e−β2kÞR−2 − 1: ðC6Þ

Because of Eq. (C1), we have α2e−β2k ≤ 1=2. Therefore,
using 1 − z ≥ e−2z for 0 ≤ z ≤ 1=2, we have

YR−1
j¼2

ð1þ εjÞ − 1 ≥ exp ½−2α2ðL=kÞe−β2k� − 1: ðC7Þ

Therefore,

e−y − 1 ≤
YR−1
j¼2

ð1þ εjÞ − 1 ≤ ey=2 − 1 ≤ ey − 1; ðC8Þ

where y ¼ 2α2ðL=kÞe−β2k. Since 1 − e−y ≤ ey − 1, this
implies

����
YR−1
j¼2

ð1þ εjÞ − 1

���� ≤ exp ½2α2ðL=kÞe−β2k� − 1: ðC9Þ

Finally, due to Eq. (C1), we have 2α2ðL=kÞe−β2k ≤ 1.
Therefore, using ez − 1 ≤ 2z for 0 ≤ z ≤ 1, we arrive at

���� r2
Trðρ2Þ − 1

���� ≤ 4α2L
k

e−β2k ≤ 4δ: ðC10Þ

▪
Next, we prove Eq. (37), via the following:
Theorem 3. Let 0 ≤ δ ≤ 1=2 and set

k ¼ lnðα2L=δÞ
β2

: ðC11Þ

Choosing

M ≥ max

��
α2L
δ

�8 ln 2
β2 ;

L2210

δ2

�
α2L
δ

�4 ln 2
β2

�
; ðC12Þ

and recalling the definition (17), we have

Pr ½jðrðeÞ2 =P2Þ − 1j ≥ 7δ� ≤ 211L3

δ2M

�
α2L
δ

�4 ln 2
β2 : ðC13Þ
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Proof. Set rðeÞ2 =r2 ¼ ð1þ ε1Þ and r2=P2 ¼ ð1þ ε2Þ,
where rðeÞ2 is defined in Eq. (17). Using Lemma 5 (and
that δ ≤ 1=2), we have jε2j ≤ 4δ and so

���� r
ðeÞ
2

P2

− 1j ¼
���� r

ðeÞ
2

r2

r2
P2

− 1

���� ≤ 4δþ 3jε1j: ðC14Þ

If jε1j < δ, then jrðeÞ2 =P2 − 1j < 7δ. Therefore, the set of

cases in which jrðeÞ2 =P2 − 1j ≥ 7δ is contained in the set of
cases in which jε1j ≥ δ. In a formula,

Pr½jðrðeÞ2 =P2Þ − 1j ≥ 7δ� ≤ Pr½jðrðeÞ2 =r2Þ − 1j ≥ δj�: ðC15Þ

Thanks to Eq. (C12), we can use Theorem 1, yielding

Pr½jðrðeÞ2 =r2Þ − 1j ≥ δj� ≤ 24kþ11L3

δ2k3M
≤
24kþ11L3

δ2M

≤
211L3

δ2M

�
α2L
δ

�4 ln 2
β2 ; ðC16Þ

which completes the proof. ▪
Note that, in order to recover Eqs. (36) and (37), we

simply rename δ0 ¼ 7δ.
Finally, we present a technical result showing that the PT

moments can be estimated efficiently, assuming that the
state to be measured satisfies the AFCs. We focus for
simplicity on the case n ¼ 3 and follow a protocol similar

to that of Sec. III B. Namely, we take sðeÞ3 ½A2B1� defined in
Eq. (29) as our estimator for p̃3½AB�, and, for any
0 ≤ δ ≤ 1, we choose

k ¼ lnð2α3=δÞ
2β3

: ðC17Þ

Finally, we performM measurements to estimate p3½A2B1�,
P3½A2�, andP3½B1� each (so the total number isMT ¼ 3M).
We can then prove the following:
Theorem 4. For any 0 ≤ δ ≤ 1=2, set

k ¼ lnð2α3=δÞ
2β3

: ðC18Þ

If

M ≥ 27
29

δ2

�
2α3
δ

�11 ln 2
2β3 ; ðC19Þ

then

Pr ½jsðeÞ3 − p̃3j ≥ δ� ≤ 81 × 29

δ2M

�
2α3
δ

�11 ln 2
2β3 : ðC20Þ

Proof. Our estimator for the normalized PT moment
p̃3½AB� is

sðeÞ3 ¼ pðeÞ
3 ½A2B1�

PðeÞ
3 ½A2�PðeÞ

3 ½B1�
: ðC21Þ

First, suppose js3 − sðeÞ3 j < δ=2. Then, using Eqs. (35) and
(C18), we have

jsðeÞ3 − p̃3j ≤ jsðeÞ3 − s3j þ js3 − p̃3j
≤ ðδ=2Þ þ ðδ=2Þ ¼ δ: ðC22Þ

Therefore, the set of cases in which jsðeÞ3 − p̃3j ≥ δ is

contained in the set of cases in which jsðeÞ3 − s3j ≥ δ=2,
namely,

Pr½jsðeÞ3 − p̃3j ≥ δ� ≤ Pr½jsðeÞ3 − s3j ≥ δ�: ðC23Þ

Finally, thanks to Eq. (C19), we can apply Theorem 2,
yielding

Pr ½jsðeÞ3 − p̃3j ≥ δ� ≤ 81 × 29

δ2M

�
2α3
δ

�11 ln 2
2β3 : ðC24Þ

▪

APPENDIX D: AFCs AND MPDOs

In this appendix, we prove that the purity AFCs hold for
MPDOs. To this end, we assume the following conditions
on the transfer matrices (45):
(A) The matrices τ1 and τ2 admit the spectral decom-

position

τ1 ¼
Xχ−1
j¼0

λjjRð1Þ
j ihLð1Þ

j j; ðD1aÞ

τ2 ¼
Xχ2−1
j¼0

μjjRð2Þ
j ihLð2Þ

j j; ðD1bÞ

wherewe assume jλ0j > jλjj, jμ0j > jμjj for all j ≥ 1;
i.e., τ1, τ2 have a trivial Jordan form and a finite gap.
(The assumption that τ1 and τ2 can be diagonalized is
purely technical and not necessary. However, we keep
it here as it makes the analysis simpler, and it is in any
case quite general.) Note that we can also assume
without loss of generality that λ0 ¼ 1 (which implies

μ0 > 0, since ρL > 0 for all L). Finally, jRðnÞ
j i and

hLðnÞ
j j are the left and right eigenstates; i.e., they are

vectors on the left and right virtual indices of τ1 and τ2
which are normalized such that

hLðnÞ
j jRðnÞ

k i ¼ δj;k; n ¼ 1; 2: ðD2Þ
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(B) We further need to assume the technical conditions

ðhLð1Þ
0 j ⊗ hLð1Þ

0 jÞjRð2Þ
0 i ≠ 0; ðD3aÞ

hLð2Þ
0 jðjRð1Þ

0 i ⊗ jRð1Þ
0 iÞ ≠ 0; ðD3bÞ

which again are quite general, as orthogonality
requires fine-tuning.

We use the same notations and assumptions as in
Sec. IV C, so that

P2 ¼
Tr½σ2�
ðTr½σ�Þ2 ðD4Þ

and

r2 ¼
Q

R
j¼1 TrIj∪Ijþ1

ðσ2Ij∪Ijþ1
ÞQ

R
j¼1 TrIj ½σ2Ij �

; ðD5Þ

where jIjj ¼ k, and R ¼ L=k is an integer.
First, we introduce the correlation lengths

e−
1
ζ1 ¼ maxj>0fjλjjg

λ0
; e−

1
ζ2 ¼ maxj>0fjμjjg

μ0
; ðD6Þ

and also

ζ ¼ maxðζ1; ζ2Þ: ðD7Þ

Next, given the spectral decomposition in Eqs. (D1), we
define

C ¼ max
ðj;k;lÞ
≠ð0;0;0Þ

�jhLð1Þ
j jhLð1Þ

k jRð2Þ
l ihLð2Þ

l jRð1Þ
j ijRð1Þ

k ij
jhLð1Þ

0 jhLð1Þ
0 jRð2Þ

0 ihLð2Þ
0 jRð1Þ

0 ijRð1Þ
0 ij

�
: ðD8Þ

Note that the denominator is nonvanishing because of
Eqs. (D3). We can now state the main result of this section.
Theorem 5. Take jIjj ¼ k with

k ≥ kmin ¼ max f1; ζ lnð20Cχ2LÞg: ðD9Þ

Then, for all

L ≥ maxfζ lnð25χ2Þ; 4kþ ζ lnð2χÞg; ðD10Þ

we have

���� r2P2

− 1

���� ≤ χ2ð80Cþ 32ÞL
k
e−k=ζ: ðD11Þ

Proof. Using Eqs. (D1), we have

P2 ¼
Pχ2−1

j¼0 μLj

ðPχ−1
j¼0 λ

L
j Þ2

¼ μL0
λ2L0

ð1þ ε̃Þ; ðD12Þ

where

ε̃ ¼ 1þPχ2−1
j¼1 ðμj=μ0ÞL

ð1þPχ−1
j¼1ðλj=λ0ÞLÞ2

− 1: ðD13Þ

Since by hypothesis L ≥ ζ1 lnð2χÞ, we have χe−L=ζ1 ≤ 1=2,
and so

jε̃j ≤ 4ðχ2e−L=ζ2 þ 2χe−L=ζ1 þ χ2e−2L=ζ1Þ
≤ 24χ2e−L=ζ: ðD14Þ

On the other hand,

Tr½σ2I � ¼
Xχ−1
j;k¼0

λL−jIjj λL−jIjk ðhLð1Þ
j j⊗ hLð1Þ

k jÞ

×

�Xχ2−1
l¼0

μjIjl jRð2Þ
l ihLð2Þ

l j
�
ðjRð1Þ

j i⊗ jRð1Þ
k iÞ: ðD15Þ

Therefore, recalling the definition (D8), we have

Tr½σ2I � ¼ λ2ðL−jIjÞ0 μjIj0 hLð1Þ
0 jhLð1Þ

0 jRð2Þ
0 i

× hLð2Þ
0 jRð1Þ

0 ijRð1Þ
0 ið1þ εIÞ; ðD16Þ

where

jεIj ≤ 2Cχe−ðL−jIjÞ=ζ1 þ Cχ2e−jIj=ζ2

þ Cχ2e−2ðL−jIjÞ=ζ1 þ 2Cχ3e−ðL−jIjÞ=ζ1e−jIj=ζ2

þ Cχ4e−2ðL−jIjÞ=ζ1e−jIj=ζ2 : ðD17Þ

Since by hypothesis L ≥ 4kþ ζ lnð2χÞ, it is easy to verify
that all five terms above are upper bounded by Cχ2e−jIj=ζ
(recall that jIj ≤ 2k for all I), and so

jεIj ≤ 5Cχ2e−jIj=ζ ≤ 5Cχ2e−k=ζ; ðD18Þ

where we used that either jIj ¼ k or jIj ¼ 2k, and so
jIj ≥ k. Therefore,

Q
R
j¼1 TrIj∪Ijþ1

ðσ2Ij∪Ijþ1
ÞQ

R
j¼1 TrIj ½σ2Ij �

¼ μL0
λ2L0

�QR
j¼1ð1þ εIj∪Ijþ1ÞQ

R
j¼1ð1þ εIjÞ

�
; ðD19Þ
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with jεIj ≤ 5Cχ2e−k=ζ. Combining this with Eq. (D12), we
arrive at

r2
P2

− 1 ¼
�QR

j¼1ð1þ εIj∪Ijþ1ÞQ
R
j¼1ð1þ εIjÞ

�
ð1þ ε̃Þ−1 − 1

¼ ð1þ ε̃Þ−1
�QR

j¼1ð1þ εIj∪Ijþ1ÞQ
R
j¼1ð1þ εIjÞ − 1 − ε̃

�
; ðD20Þ

where ε̃ is given in Eq. (D13).
Next, we define

ε ¼ max fjεIj∶I ∈ fIjgj ∪ fIj ∪ Ijþ1gjg: ðD21Þ

By hypothesis k ≥ kmin [kmin is given in Eq. (D9)].
Therefore, using Eq. (D18) we have jεIj ≤ 1=2 for all jIj
and so also ε ≤ 1=2. Therefore, we can apply the derivation
in Lemma 1 to show

����
Q

R
j¼1ð1þ εIj∪Ijþ1ÞQ

R
j¼1ð1þ εIjÞ − 1

���� ≤ eð4L=kÞε − 1: ðD22Þ

Since by hypothesis L ≥ ξ lnð25χ2Þ, we also have ε̃ ≤ 1=2
[cf. Eq. (D14)], and so Eq. (D20) yields

���� r2P2

− 1

���� ≤ 2ðeð4L=kÞε − 1Þ þ 2jε̃j: ðD23Þ

Finally, we note that Eq. (D9) implies that ð4L=kÞε ≤ 1,
and using ez − 1 ≤ 2z for 0 ≤ z ≤ 1, we arrive at

���� r2P2

− 1

���� ≤ 80χ2CðL=kÞe−k=ζ þ 25χ2e−L=ζ

≤ χ2ð80Cþ 32ÞL
k
e−k=ζ: ðD24Þ

▪
This theorem proves Eq. (48), under the condition (47).

Therefore, the approximate factorization property (40)
holds for MPDOs, with the identification

α2 ¼ ð20Cþ 8Þχ2; β2 ¼ 1=ζ: ðD25Þ

APPENDIX E: DETAILS ON THE
NUMERICAL COMPUTATIONS

In this appendix, we provide further details on the
numerical computations performed to obtain the data
presented in Secs. IV D and V. As mentioned, the calcu-
lations are carried out using the iTensor library [140] by
first approximating the thermal states by MPOs of bond
dimension χ and subsequently taking powers and traces of
the density matrices represented in this way. For each
quantity, we have always verified that the results were
stable upon increasing the bond dimension χ. An example
of our data is reported in Fig. 9, where we study εrðk; L; βÞ
defined in Eq. (52) as a function of the bond dimension χ
used to approximate the thermal state. In general, we have
found that relatively small bond dimensions are enough
in the quantum Ising chain, while larger bond dimensions
are required in order to observe convergence in the
Heisenberg model.
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FIG. 9. Scaling of the relative error εrðk; L; βÞ defined in Eq. (52) as a function of the bond dimension χ used to approximate the
thermal state. In (a), we show data for the Ising chain while (b) shows data for the XXZ chain. In both cases, we use the same parameters
as in Fig. 4. Data shown for k ¼ 4, other values of k show similar behavior with χ ¼ 16 being sufficient for convergence in the Ising
model, while the XXZ model appears to be well converged from χ ¼ 64.
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APPENDIX F: TECHNICAL DETAILS
ON THE PPT CONDITIONS

The goal of this appendix is to identify the conditions
under which the class of states ρðLÞðγÞ introduced in
Sec. V B satisfy Eqs. (60) for all system sizes L and some
suitable constants C3, C5 independent of L.
For concreteness, let the circuit depth l be even, l ¼ 2k

with k ≥ 1 (a similar discussion holds for l ¼ 2kþ 1) and
take a bipartition of the system as in Fig. 10. We group
neighboring sites into blocks containing q ¼ l − 1 qubits,
forming a new superqudit associated with a Hilbert space of
dimension d ¼ 2l−1. It is easy to show that the circuit can
be rewritten as a depth-2 quantum circuit acting on the
super qudits; cf. Fig. 10. Therefore (assuming without loss
of generality R ¼ L=q is an integer),

ρLðγÞ ¼ Vð2Þ
�
⨂
L=q

j¼1

ωj

�
½Vð2Þ�†; ðF1Þ

where ωj ¼ ⊗q
i¼1 σjqþi, while

Vð2Þ ¼
�Y

j

V2j;2jþ1

��Y
j

V2jþ1;2jþ2

�
ðF2Þ

is the depth-2 FDQC acting on the superlattice.
As it is manifest from Fig. 10, the region A contains

all superqudits with labels from 1 to L=2q, while B
contains all those with labels from L=2qþ 1 to R¼L=q.
Define the sets of superqudits S1 ¼ fR=2 − 1; R=2g,
S2 ¼ fR=2þ 1; R=2þ 2g, and

ρ̃S1S2 ¼ WωR=2−1 ⊗ ωR=2 ⊗ ωR=2þ1 ⊗ ωR=2þ2W†; ðF3Þ

where W ¼ VR=2;R=2þ1VR=2−1;R=2VR=2þ1;R=2þ2. Note that
ρ̃S1S2 is different from the reduced density matrix over
S1 ∪ S2. Using the graphical representation for the blocked
circuits and Eq. (27), it is simple to show

p̃n½AB� ¼
Tr½ðρ̃TS1

S1S2
Þn�

TrS1 ½ρ̃nS1 �TrS2 ½ρ̃nS2 �
≕ s̃n; ðF4Þ

where ρ̃S1 ¼ TrS2 ½ρ̃S1S2 � and ρ̃S2 ¼ TrS1 ½ρ̃S1S2 �. Therefore,
p̃n½AB� coincides with the normalized PT moments of the
state ρ̃S1S2 supported on four superqudits. Next, it is also
easy to compute

Pn½A� ¼ TrS1 ½ρ̃nS1 �½γn þ ð1 − γÞn�L=2−2q;
Pn½B� ¼ TrS2 ½ρ̃nS2 �½γn þ ð1 − γÞn�L=2−2q: ðF5Þ

Finally, setting

t̃3 ¼
TrS1 ½ρ̃2S1 �2TrS2 ½ρ̃2S2 �2
TrS1 ½ρ̃3S1 �TrS2 ½ρ̃3S2 �

; ðF6Þ

t̃5 ¼
TrS1 ½ρ̃4S1 �2TrS2 ½ρ̃4S2 �2

TrS1 ½ρ̃3S1 �TrS2 ½ρ̃3S2 �TrS1 ½ρ̃5S1 �TrS2 ½ρ̃5S2 �
; ðF7Þ

we arrive at

f3 ¼ s̃3 − s̃22t̃3
½γ2 þ ð1 − γÞ2�2L−8q
½γ3 þ ð1 − γÞ3�L−4q ; ðF8aÞ

f5 ¼ s̃5s̃3 − s̃24t̃5
½γ4 þ ð1 − γÞ4�2L−8q

½γ3 þ ð1 − γÞ3�L−4q½γ5 þ ð1 − γÞ5�L−4q :

ðF8bÞ

Now, define

K3 ¼ maxfs̃3ðγÞ − s̃22ðγÞt̃3ðγÞ∶0 ≤ γ ≤ 1=4g; ðF9Þ

K5 ¼ maxfs̃5ðγÞs̃3ðγÞ − s̃24ðγÞt̃5ðγÞ∶0 ≤ γ ≤ 1=4g; ðF10Þ

and

H3 ¼ maxfjs̃22ðγÞt̃3ðγÞj∶0 ≤ γ ≤ 1=4g; ðF11Þ

H5 ¼ maxfjs̃24ðγÞt̃5ðγÞj∶0 ≤ γ ≤ 1=4g: ðF12Þ

The constants K3, K5, H3, and H5 depend on the specific
choices of the unitary gates forming UðlÞ. For nonentan-
gling gates, K3 and K5 are positive, but for generic choices

FIG. 10. Any FDQC of depth l can be rewritten as a depth-2 quantum circuit after grouping l − 1 qubits into a single qudit. In the
middle panel, we highlight with different colored sets of gates defining the two-qudit gates in the grouped lattice (colored rectangles in
the right panel). In all panels, a dashed orange line separates the regions A and B, defining the bipartition of the system.
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of gates, one has K3 < 0 and K5 < 0. We are ready to state
our main result.
Theorem 6. Suppose K3, K5 < 0. Then, assuming with-

out loss of generality γ ≤ 1=4 and defining

Cl¼
jKlj
2

; γ3¼−
K3

4H3

; γ5 ¼
�
−

K5

8H5

�
1=3

; ðF13Þ

we have

0 ≤ γ ≤ γ3=L ⇒ f3 ≤ −C3; ðF14Þ

while

0 ≤ γ ≤ γ5=L1=3 ⇒ f5 ≤ −C5; ðF15Þ

for all system sizes L.
Proof. We start from Eq. (F8) and note

½γ2 þ ð1 − γÞ2�2
γ3 þ ð1 − γÞ3 ¼ 1 − ε3; ðF16Þ

with 0 ≤ ε3 ≤ γ for 0 ≤ γ ≤ 1=4. Therefore,

f3 ≤ K3 þ s̃22t̃3½1 − ð1 − ε3ÞL−4q�
≤ K3 þH3½1 − ð1 − γÞL−4q�: ðF17Þ

Using 1 − γ ≥ e−2γ for 0 ≤ γ ≤ 1=4, we get

f3 ≤ K3 þH3½1 − e−2γðL−4qÞ� ≤ K3 þ 2H3γL: ðF18Þ

Hence, if γ ≤ γ3=L, we finally arrive at

f3 ≤ K3=2 ¼ −C3: ðF19Þ

Analogously, we have

½γ4 þ ð1 − γÞ4�2
½γ3 þ ð1 − γÞ3�½γ5 þ ð1 − γÞ5� ¼ 1 − ε5; ðF20Þ

with 0 ≤ ε3 ≤ 2γ3 for 0 ≤ γ ≤ 1=4. Therefore,

f5 ≤ K5 þ s̃24t̃5½1 − ð1 − ε5ÞL−4q�
≤ K3 þH5½1 − ð1 − 2γ3ÞL−4q�: ðF21Þ

Using 1 − x ≥ e−2x for 0 ≤ x ≤ 1=4, we get

f5 ≤ K5 þH5½1 − e−4γ
3ðL−4qÞ� ≤ K5 þ 4H5γ

3L: ðF22Þ

Hence, if γ ≤ γ5=L1=3, we arrive at

f5 ≤ K5=2 ¼ −C5: ðF23Þ

▪
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