
QuAK: Quantitative Automata Kit

Marek Chalupa1 , Thomas A. Henzinger1 , Nicolas Mazzocchi1,2(B) ,
and N. Ege Saraç1(B)

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{mchalupa,tah,esarac}@ista.ac.at

2 Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
nicolas.mazzocchi@stuba.sk

Abstract. System behaviors are traditionally evaluated through binary
classifications of correctness, which do not suffice for properties involving
quantitative aspects of systems and executions. Quantitative automata
offer a more nuanced approach, mapping each execution to a real num-
ber by incorporating weighted transitions and value functions gener-
alizing acceptance conditions. In this paper, we introduce QuAK, the
first tool designed to automate the analysis of quantitative automata.
QuAK currently supports a variety of quantitative automaton types,
including Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg automata,
and implements decision procedures for problems such as emptiness,
universality, inclusion, equivalence, as well as for checking whether an
automaton is safe, live, or constant. Additionally, QuAK is able to com-
pute extremal values when possible, construct safety-liveness decomposi-
tions, and monitor system behaviors. We demonstrate the effectiveness of
QuAK through experiments focusing on the inclusion, constant-function
check, and monitoring problems.

Keywords: quantitative safety · quantitative liveness · quantitative
automata

1 Introduction

System behaviors are traditionally seen as sequences of system events, and speci-
fications typically categorize them as correct or incorrect without providing more
detailed information. This binary perspective has long been the cornerstone of
formal verification. However, many interesting system properties require moving
beyond this view to systematically reason about timing constraints, uncertainty,
resource consumption, robustness, and more, which necessitates a more nuanced
approach to the specification, modeling, and analysis of computer systems.

Quantitative automata [12] extend standard boolean ω-automata with
weighted transitions and a value function that accumulates an infinite sequence

This work was supported in part by the ERC-2020-AdG 101020093
N. Mazzocchi was affiliated with ISTA when his collaboration started.

c© The Author(s) 2025
T. Margaria and B. Steffen (Eds.): ISoLA 2024, LNCS 15222, pp. 3–20, 2025.
https://doi.org/10.1007/978-3-031-75387-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75387-9_1&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0000-0001-6425-5369
http://orcid.org/0009-0000-2866-8078
https://doi.org/10.1007/978-3-031-75387-9_1

4 M. Chalupa et al.

p0 p1

p2p3

on:2
on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0
Σ :0

Fig. 1. A quantitative automaton A modeling the power consumption of a device.
Associating with A different value functions, we can specify different aspects of its
power consumption, e.g., considering LimInfAvg, the automaton specifies the long-term
average power consumption.

of weights into a single value, which generalizes the notion of acceptance condi-
tion. The common value functions include Inf, Sup, LimInf, and LimSup (respec-
tively generalizing safety, reachability, co-Büchi and Büchi acceptance condi-
tions), as well as DSum (discounted sum), LimInfAvg and LimSupAvg (limit aver-
age a.k.a. mean payoff). Let us consider the quantitative automaton A given in
Fig. 1, which models the power consumption of a device. With the value func-
tion Inf, it maps each execution to its minimal power consumption, whereas with
LimInfAvg or LimSupAvg to its long-term average power consumption. For exam-
ple, the infinite execution (off · on)ω is mapped to 0 with the value function Inf,
and to 1 with LimInfAvg or LimSupAvg.

The basic decision problems for boolean automata extend to this model nat-
urally. A quantitative automaton A is non-empty (resp. universal) with respect
to a rational number v iff A maps some (resp. every) infinite word w to a value at
least v [12]. Notice that problem of non-emptiness (resp. universality) is closely
related with computing the maximal (resp. minimal) value achievable by the
automaton. As an example, consider the quantitative automaton given in Fig. 1
with the value function LimInfAvg and the threshold value v = 1. Evidently,
the maximal value achievable by A in Fig. 1—its so-called top value—is 2, as
witnessed by the word onω, and thus A is not empty with respect to v = 1.
Moreover, an automaton A is included in (resp. equivalent to) another automa-
ton B iff, for every infinite word w, the value mapped to w by A is at most (resp.
exactly) the value mapped to w by B [12]. Beyond their close relation to game
theory, these problems are relevant and interesting because solving them allows
us to reason about quantitative aspects of systems and their executions.

Introduced around fifteen years ago, the model of quantitative automata
has been a significant focus of research [6,7,9,32,33], with its value functions
such as discounted sum and mean payoff being extensively explored in games
with quantitative objectives for an even longer period [20,37]. Nonetheless, the
notions of monitorability, safety, and liveness for quantitative properties have
been introduced and studied only recently [8,23–25]. These notions and the cor-
responding problems are important both from a theoretical and a practical per-
spective, because the study of these problems deepens our understanding of the

QuAK: Quantitative Automata Kit 5

models of quantitative automata and games, and their solutions can support
our verification efforts. As for boolean properties [1,26], the ability to check if
an automaton is safe lead to specialized verification techniques, e.g., the charac-
terization of safety as continuity may enable verification techniques in domains
outside of automata theory [8]. Despite the potential implications of these results
on the practical verification of quantitative properties, no general tool exists for
the analysis of quantitative automata.

In this paper, we introduce QuAK, the first general tool designed to automate
the analysis of quantitative automata. QuAK supports a range of quantitative
automaton types, including Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg
automata. It implements decision procedures for fundamental problems such as
emptiness, universality, inclusion, equivalence, constant-check, safety, and live-
ness. In particular, it leverages the antichain-based inclusion algorithm for Büchi
automata [18] by extending the tool FORKLIFT [17]. Additionally, QuAK pro-
vides capabilities for computing top and bottom values of quantitative automata,
performing safety-liveness decompositions, and monitoring system behaviors.
QuAK is designed to be free of dependencies beyond the C++ standard library
and features an intuitive interface, making it accessible and easy to use.

Modeling beyond-boolean aspects of systems has been considered in sev-
eral different ways. One approach considers multi-valued truth domains instead
of binary domains [10,13]. Another prominent approach involves weighted
automata [36], which extend classical automata by assigning each transition
a numerical weight from a semiring whose operations describe how the weights
are accumulated. Tools such as Vaucanson [30], Vcsn [15], and Awali [29] provide
support for the analysis of weighted automata. The well-established techniques
for weighted automata on finite words do not adapt well to the ω-valuation
monoid framework necessary for infinite words. Quantitative automata pro-
vide a more intuitive alternative, as they are designed to generalize boolean
finite-state ω-automata. See [5] for more on the distinction between weighted
and quantitative automata. Another significant approach considers the interac-
tion of digital computational processes with analog physical processes, modeled
using automata [2,21] as well as temporal logics [3] and implemented in tools
such as UPPAAL [28] and HyTech [22]. Signal temporal logic [31], in partic-
ular, has quantitative semantics that allows for reasoning about the degree to
which a specification is satisfied or violated, and is implemented in tools such
as Breach [16], S-TaLiRo [4], and RTAMT [35]. Finally, probabilistic verification
deals with systems that have inherent uncertainties, such as random failures
or probabilistic decision making. PRISM [27] is a widely used tool that allows
for the analysis of probabilistic models like Markov chains and Markov decision
processes.

2 Quantitative Properties and Automata

Let Σ = {a, b, . . .} be a finite alphabet of letters. An infinite (resp. finite) word
(trace) is an infinite (resp. finite) sequence of letters w ∈ Σω (resp. u ∈ Σ∗).

6 M. Chalupa et al.

Moreover, we denote by Σ+ the set of non-empty finite words. Given u ∈ Σ∗

and w ∈ Σ∗ ∪Σω, we write uw (resp. u � w) when u is a strict (resp. nonstrict)
prefix of w. We denote by |w| the length of w ∈ Σ∗ ∪ Σω and, given a ∈ Σ, by
|w|a the number of occurrences of a in w. For w ∈ Σ∗ ∪ Σω and 0 ≤ i < |w|, we
denote by w[i] the ith letter of w. An infinite word is ultimately periodic (a.k.a,
a lasso word) iff it is of the form uvω for some u, v ∈ Σ∗ with |v| > 0.

A value domain D is a poset. We assume that D is a nontrivial (i.e., ⊥ �= �)
complete lattice. Whenever appropriate, we write 0 or −∞ instead of ⊥ for the
least element inf D, and 1 or ∞ instead of � for the greatest element supD.

A quantitative property is a total function Φ : Σω → D from the set of infinite
words to a value domain. A boolean property P ⊆ Σω is a set of infinite words.

A nondeterministic quantitative automaton on words [12] is a tuple A =
(Σ,Q, ι, δ), where Σ is an alphabet; Q is a finite nonempty set of states; ι ∈ Q
is the initial state; and δ : Q × Σ → 2Q×Q is a finite transition function over
weight-state pairs. A transition is a tuple (q, σ, x, q′) ∈ Q×Σ ×Q×Q such that
(x, q′) ∈ δ(q, σ), also written q

σ:x−−→ q′. We write γ(t) = x for the weight of a
transition t = (q, σ, x, q′). An automaton A is deterministic if, for all q ∈ Q and
a ∈ Σ, the set δ(q, a) is a singleton. We require the automaton A to be total
(a.k.a. complete), meaning that for every state q ∈ Q and letter σ ∈ Σ, there is
at least one state q′ and a transition q

σ:x−−→ q′. For a state q ∈ Q, we denote by
Aq the automaton derived from A by setting its initial state ι to q.

A run of A on a word w is a sequence ρ = q0
w[0]:x0−−−−→ q1

w[1]:x1−−−−→ q2 . . . of
transitions where q0 = ι and (xi, qi+1) ∈ δ(qi, w[i]). When w is a finite word, we
also write ρ = q0

w−→A q′ as shorthand, where q′ one of the states A reaches after
reading w. For 0 ≤ i < |w|, we denote the ith transition in ρ by ρ[i], and the finite
prefix of ρ up to and including the ith transition by ρ[..i]. Since each transition
ti carries a weight γ(ti) ∈ Q, the sequence ρ provides a weight sequence γ(ρ) =
γ(t0)γ(t1) A Val-automaton is equipped with a value function Val : Qω → R,
which assigns real values to runs of A. The value of a run ρ is Val(γ(ρ)). The
value of a Val-automaton A on a word w, denoted A(w), is the supremum of
Val(ρ) over all runs ρ of A on w. The top value of a Val-automaton A, denoted
�A (or � when A is clear from the context), is the supremum of A(w) over all
words w. Similarly, the bottom value of A, denoted ⊥A (or ⊥), is the infimum
of A(w) over all words w.

We list below the common value functions for quantitative automata, defined
over infinite sequences v0v1 . . . of rational weights.

– Inf(v) = inf{vn | n ≥ 0}
– Sup(v) = sup{vn | n ≥ 0}
– LimInf(v) = lim

n→∞ inf{vi | i ≥ n}
– LimSup(v) = lim

n→∞ sup{vi | i ≥ n}

– LimInfAvg(v) = LimInf

(
1
n

n−1∑
i=0

vi

)

QuAK: Quantitative Automata Kit 7

– LimSupAvg(v) = LimSup

(
1
n

n−1∑
i=0

vi

)

– For a discount factor λ ∈ Q ∩ (0, 1), DSumλ(v) =
∑
i≥0

λivi

All of these classes of automata are sup-closed [8, Prop. 2.2]: for every finite
word u ∈ Σ∗ there is a continuation w ∈ Σω with A(uw) = supw′∈Σω A(uw′).

2.1 Basic Decision Problems of Quantitative Automata

Non-emptiness. An automaton A is non-empty with respect to a threshold
v ∈ Q iff A(w) ≥ v for some w ∈ Σω. Since the top value of an automaton is
achievable by a lasso word [12, Thm. 3], it is easy to see that A is non-empty
with respect to v iff �A ≥ v. The top value of the common classes of quantitative
automata can be computed as follows: For Inf and Sup automata, the top value
can be computed by a simple extension of the standard attractor construction; for
LimInf and LimSup automata, by a simple extension of the standard recurrence
construction. For LimInfAvg and LimSupAvg automata, it can be computed by
Karp’s maximum mean cycle algorithm; for DSum automata, by solving a game
with discounted payoff objectives in graphs with rewards on edges. All of these
computations are in PTime, therefore the non-emptiness problem is in PTime
for these automata classes.

Universality. An automaton A is universal with respect to a threshold v ∈ Q

iff A(w) ≥ v for all w ∈ Σω. For Inf, Sup, LimInf, and LimSup automata, the
universality problem is PSpace-complete [12, Thm. 7]. This is achieved by a
simple reduction to the boolean universality problem (of safety, reachability,
co-Büchi, and Büchi automata, respectively). For nondeterministic LimInfAvg
and LimSupAvg automata, the problem is undecidable [11,14], and for nondeter-
ministic DSum automata, it is a long-standing open problem. Nonetheless, for
their deterministic counterparts the problem is in PTime by a simple product
construction [12, Thm. 8].

Notice that an automaton is universal with respect to a threshold v iff its
bottom value ⊥ is at least v. For a deterministic automaton A, the bottom value
can be computed in PTime as ⊥A = −�−A where −A is a copy of A in which
all the weights are multiplied by −1. For a nondeterministic Inf, Sup, LimInf, or
LimSup automaton A, we can compute its bottom value via repeated inclusion
checks against a constant automaton: the largest weight x of A such that the
constant automaton B with the value x is included in A equals ⊥A, which gives
us a PSpace algorithm.

Inclusion. An automaton A is included in another automaton B iff A(w) ≤
B(w) for all w ∈ Σω. Like the universality problem, the inclusion is PSpace-
complete for Inf, Sup, LimInf, and LimSup automata [12, Thm. 4]. As expected,

8 M. Chalupa et al.

for nondeterministic LimInfAvg and LimSupAvg automata, it is again undecidable
(by a reduction from universality), and for nondeterministic DSum automata, it
is again open. When B is deterministic, the problem is again in PTime by a
simple product construction [12, Thm. 5]. Analogously, A is equivalent to B iff
A(w) = B(w) for all w ∈ Σω. The decidability and complexity results for the
inclusion problem carry to equivalence problem.

The standard approach for Inf, Sup, LimInf, and LimSup automata relies
on reducing the problem to boolean inclusion: an automaton A is included in
another automaton B iff L(A, v) ⊆ L(B, v) holds for every weight v of A, where
L(A, v) = {w ∈ Σω | A(w) ≥ v}. QuAK takes an alternative approach based on
antichains [18,38], which we detail in Sect. 3.

2.2 Safety and Liveness of Quantitative Automata

Constant-Function Problem. A quantitative automaton A defines a constant
function iff there exists c ∈ R such that A(w) = c for all w ∈ Σω. For all common
classes of quantitative automata, deciding whether they define a constant func-
tion is PSpace-complete [8, Prop. 3.2, Thms. 3.3 and 3.7]. Deciding whether
an automaton defines a constant function is closely related with deciding its
safety and liveness [8]. As we will discuss below, this is especially important for
limit average automata whose equivalence is undecidable and for discounted sum
automata whose universality is open. For limit average automata, the constant-
function problem can be solved by a reduction to the limitedness problem of
distance automata. For discounted sum automata, the problem is reduced to the
universality problem of nondeterministic finite automata on finite words. For the
remaining classes of automata, one can simply check if the given automaton is
universal with respect to its top value.

Safety. The boolean membership problems asks, given a boolean property P ⊆
Σω and a word w ∈ Σω, whether w belongs to P . Then, a boolean property
P is safe iff every word w that is not a member of P has a finite prefix uw
such that for every continuation w′ the word uw′ is not a member of P . The
quantitative decision problems discussed above implicitly generalize the boolean
membership problem to the quantitative setting by asking, given an automaton
A, a value v, and a word w, whether the value A(w) is at least v. The quantitative
generalization of safety reflects this view: a quantitative property Φ is safe iff
every wrong membership query has a finite witness for the violation.

Definition 1 ([24]). A quantitative property Φ : Σω → D is safe iff for every
w ∈ Σω and v ∈ D with Φ(w) �≥ v, there exists a finite prefix uw such that
supw′∈Σω Φ(uw′) �≥ v.

The safety closure SafetyCl(Φ) of a property Φ ensures its safety by minimally
increasing the value of each word, and a property is safe iff it is equal to its
safety closure (see [24, Defn. 5, Prop. 6, Thm. 9]). For the common classes

QuAK: Quantitative Automata Kit 9

of quantitative automata, we can compute their safety closure in PTime by
assigning the top value of each state to all its incoming transitions [8, Thm. 4.18].

The decision procedures for safety in quantitative automata depend on the
value functions, with Inf and DSum automata always defining safety proper-
ties [8, Thm. 4.15], while for Sup, LimInf, and LimSup automata, safety check
is PSpace-complete thanks to the decidability of their equivalence [8, Thm.
4.22]. For LimInfAvg and LimSupAvg automata, despite the undecidability of
their equivalence problem, their safety can be decided in ExpSpace by using
their constant-function check as a subroutine [8, Thm. 4.23].

Liveness. As for boolean safety, the notion of boolean liveness takes the mem-
bership problem to its basis. A boolean property P is live iff for every finite
word u (even if u is prefix of some word that is not a member of P) there is a
continuation w such that the word uw is a member of P . Quantitative liveness
extends this membership-based view: a quantitative property Φ is live iff, when-
ever a property value is less than �, there exists a value v for which the wrong
membership query Φ(w) ≥ v can never be dismissed by any finite witness u ≺ w.

Definition 2 ([24]). A property Φ : Σω → D is live when for all w ∈ Σω,
if Φ(w) < �, then there exists a value v ∈ D such that Φ(w) �≥ v and for all
prefixes u ≺ w, we have supw′∈Σω Φ(uw′) ≥ v.

In the quantitative setting, liveness is characterized by the safety closure
operation, where a quantitative property Φ is live iff Φ(w) < SafetyCl(Φ)(w) for
all words w with Φ(w) < � [24, Thm. 37]. For sup-closed quantitative properties
(like those defined by quantitative automata thanks to [8, Prop. 2.2]), a property
is live iff its safety closure defines a constant function � [8, Thm. 5.7].

To decide liveness for a quantitative automaton A, one can check if
SafetyCl(A) maps all words w to �, which involves checking the universality of
SafetyCl(A) with respect to �. Note that SafetyCl(A) is an Inf automaton when
Val ∈ {Inf,Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}, and a DSum automaton
when Val = DSum. For Inf automata, this problem is PSpace-complete. For
DSum automata, despite their universality is open, checking whether their live-
ness check is PSpace-complete [8, Thm. 5.9] since checking whether they define
a constant function is PSpace-complete.

Safety-Liveness Decompositions. Every boolean property P is the intersec-
tion of a boolean safety property S and a boolean liveness property L. In this
decomposition, S is the boolean safety closure of P , while L is the union of P
with the complement of S. In a way, the liveness part L balances the safety
closure S by not including the words that belong to the difference of S and P .

Every quantitative property Φ is the pointwise minimum of its safety clo-
sure SafetyCl(Φ) and a liveness property Ψ [24, Thm. 44]. In particular, the
liveness component Ψ is defined similarly to its boolean analogue: for every
word w, we have Ψ(w) = � if Φ(w) = SafetyCl(Φ)(w), and Ψ(w) = Φ(w) if

10 M. Chalupa et al.

Φ(w) < SafetyCl(Φ)(w). For deterministic Sup, LimInf, and LimSup automata,
the decomposition works the same way on the level of transition weights (see [8,
Thms. 5.10 and 5.11]), which is achievable in PTime. Note that Sup and LimInf
automata are determinizable [12, Thm. 13].

3 The Tool

QuAK implements the decision procedures and constructions described in
Sects. 2.1 and 2.2. In particular, let A and B be Val automata where Val ∈
{Inf,Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}, and let v ∈ Q be a rational
number. QuAK currently supports the following operations (whenever known to
be computable):

1. Check if A is non-empty with respect to v.
2. Check if A is universal with respect to v.
3. Check if A is included in B.
4. Check if A defines a constant function.
5. Check if A defines a safety property.
6. Check if A defines a liveness property.
7. Compute the top value � of A.
8. Compute the bottom value ⊥ of A.
9. Compute the safety closure of A.

10. Compute the safety-liveness decomposition of A.
11. Construct and execute a monitor for A.

The tool is written in C++ using the standard library, and is available at
https://github.com/ista-vamos/QuAK together with detailed instructions on its
usage. In this section, we describe the automata representation, our antichain-
based inclusion algorithm, implementation of the constant-function check for
limit average automata, and monitoring approach for quantitative properties.
The rest follows the descriptions in Sects. 2.1 and 2.2.

Automata Representation. We represent automata in a way that makes the
algorithms as efficient as possible while keeping their implementation convenient
and maintainable. Here, we explain some choices we made for this sake.

Automata objects do not have a value function because it may be useful to
interpret the same transition structure in different ways (like in Fig. 1). The user
needs to specify the value function when a decision procedure or a construc-
tion is called on an automaton. Moreover, each automaton contains a directed
acyclic graph representing its strongly connected components (SCCs), which is
constructed once the automaton is created. Each state has a tag representing the
SCC it belongs to. Moreover, in addition to storing the outgoing transitions of a
state, we also store the incoming transitions. These are useful when computing
the top value, constructing the safety closure, and determinizing the safety clo-
sure of limit average automata (for deciding their safety). Finally, while boolean

https://github.com/ista-vamos/QuAK

QuAK: Quantitative Automata Kit 11

automata has a fixed domain {0, 1}, each quantitative automaton may define a
different domain. To address this, each automaton has two numerical variables
representing the minimum and maximum of its domain, whose values are taken
as the minimum and maximum of the automaton’s weights by default.

Antichain-Based Inclusion Algorithm. The language inclusion of Büchi
automata (a.k.a. LimSup) is known to be PSpace-complete. Algorithms that
behave well in practice have been investigated for decades and remains an active
research field. Among others, FORKLIFT [17] uses the Ramsey-based tech-
nique and leverages the antichains heuristic. The algorithm to decide whether
L(A) ⊆ L(B) holds searches counterexamples and runs membership queries. The
Ramsey-based approach prunes the search for inclusion violation by discarding
candidates of L(A) which are subsumed by others words of L(A) with respect
to a given well-quasiorder. Termination comes from the mathematical properties
of well-quasiorders guaranteeing that only finitely many candidates will be kept
after pruning. Correctness is trivial: if a kept candidate violates L(A) ⊆ L(B)
then the inclusion does not holds. To guarantee completeness, we require the
quasiorder to fulfill, for all candidate w ∈ Σω subsumed by w0 ∈ Σω, that
w0 ∈ L(B) implies w ∈ L(B). Hence, if all candidates belong to L(B) then
so do the discarded ones. The antichains heuristic allows a symbolic fixpoint
computation of the remaining candidates [38].

Language inclusion can be decided by reasoning solely on ultimately periodic
words (a.k.a. lasso words). So, the candidates are words of the form uvω, where
u ∈ Σ∗ and v ∈ Σ+ are called a stem and a period, respectively. [19] provides
an algorithm that uses two quasiorders: one for the stems and one for the peri-
ods. Since using different quasiorders yields more pruning when searching for
a inclusion violation, [18] considers using an unbounded number of quasiorders
called FORQ: one for the stems and a family of quasiorders for the periods each of
them depending on a distinct stem. It is worth emphasizing that each quasiorder
requires a fixpoint computation, and thus, the more quasiorders are handled, the
more the antichains heuristic is leveraged.

The novelty of FORKLIFT lies in the use of FORQ to discard candidates.
Below, we generalize FORQs for Büchi automata defined in [18] to support any
LimSup automata.

Definition 3. Let B = (Σ,Q, ι, δ) be a LimSup automaton over the weights
W = {γ(t) | t is a transition of B}. The structural FORQ of B is the pair
(�B, {�B

u}u∈Σ∗) where the quasiorders are defined by:

u1 �B u2 ⇐⇒ TgtB(u1) ⊆ TgtB(u2)

v1 �B
u v2 ⇐⇒ CxtB(TgtB(u), v1) ⊆ CxtB(TgtB(u), v2)

12 M. Chalupa et al.

with TgtB : Σ∗ → 2Q and CxtB : 2Q × Σ+ → 2Q×Q×W such that

TgtB(u) = {q′ ∈ Q | ι
u−→B q′}

CxtB(S, v) = {(q, q′, x) | q ∈ S, ρ = q
v−→B q′, and x is the maximum

of the weight sequence of ρ}

The modification appears in the definition of CxtB where x ranges over the
weights of B instead of {⊥,�}. Extending all the properties on structural FORQ
established by [18] to this definition is straightforward, and implies the sound-
ness of our inclusion algorithm for LimSup automata. To use this algorithm for
other classes of automata, we translate Inf, Sup, and LimInf automata to LimSup
automata in PTime for inclusion queries.

We highlight the remaining technical modifications below.

– Given a stem u ∈ Σ∗, the data structure used for the fixpoint computation of
CxtB carries (as in FORKLIFT) a period v ∈ Σ+, a context CxtB(TxtB(u), v),
and (in addition to FORKLIFT) the value of A over uvω.

– In FORKLIFT, the fixpoint computation of CxtB does not leverage SCCs.
A compilation option provides an implementation for QuAK that computes
CxtB while only considering inter-SCC transitions. For A, it is clear that
transitions leaving an SCCs cannot bring extra information. For B, however,
the soundness is not immediate, and requires the FORQ to satisfy the picky
constraint defined in [18], which our generalization fulfills as well. We call this
optimization scc-search.

Constant-Function Check for Limit Average Automata. Checking
whether a limit average automaton A is constant can be done by a reduction
to the limitedness problem of distance automata [8, Thm. 3.7]. To simplify our
implementation, we consider a reduction to the universality problem of LimInf
automata. In essence, our reduction follows [8, Thm. 3.7] except for in two points.
First, after removing negative-weighted edges by Johnson’s algorithm, instead
of constructing a distance automaton, we flip the weights again to construct a
limit average automaton (which resolves nondeterminism by sup and has the
same value function as the input automaton). This yields an automaton B with
non-positive transition weights. Then, we construct a LimInf automaton C by
mapping negative weights of B to 0, and 0-valued weights to 1. Note that it may
not hold that B(w) < 0 iff C(w) < 1 for all words w, but since C recognizes an
ω-regular language, we can show that B is constant iff C is universal with respect
to 1.

More specifically, the reduction goes as follows. Let A be a LimInfAvg (resp.
LimSupAvg) automaton. First, obtain A1 by subtracting � from all transition
weights of A. We have A1(w) = A(w) − � for all words w. Then, obtain A2 by
multiplying by −1 all transition weights of A1, resolving nondeterminism by inf,
and taking the value function LimSupAvg (resp. LimInfAvg). We have A2(w) =
−A1(w) for all words w. Then, obtain A3 by using Johnson’s algorithm to remove

QuAK: Quantitative Automata Kit 13

transitions with negative weights of A2. We have A2(w) > 0 iff A3(w) > 0 for
all words w. Then, obtain B by multiplying by −1 all transition weights of A3,
resolving nondeterminism by sup, and taking the value function LimInfAvg (resp.
LimSupAvg). We have B(w) = −A3(w) for all words w. Note that all transitions
of B have non-positive weights. Finally, obtain C by updating the weights of B
as follows and taking the value function LimInf: if a transition has weight 0, then
its new weight is 1; otherwise (weight less than 0), then its new weight is 0.

By construction, A is constant iff B is constant. We argue that B is constant
iff C is universal (with respect to 1). If there is a word u ∈ Σω such that
B(u) < 0, then all runs of B over u visit infinitely often some negative weight.
Thus, C(u) < 1 comes as a direct consequence of this implication. Note, however,
that the reciprocal is not true, i.e., all runs of a word could visit infinitely often
some negative weight while being mapped to 0 by B. Now, if there is a word
v ∈ Σω such that C(v) < 1, then there exists also an ultimately periodic word
w ∈ Σω such that C(w) < 1. This is because C is a co-Büchi automaton that
defines a non-empty ω-regular language. Let w be of the form w1w

ω
2 . We define

x = |w1|, y = |w2|, and let n be the number of states of C. Suppose towards
contradiction that some run of C over w visits only the weight 1 for x + yn
consecutive transitions. It implies that this run visits twice the same state at
the end of the period w2 while visiting only the weight 1 in between, which
exhibits another run of C over w of value 1, and thus leads to the contradiction
C(w) = 1. Hence, all runs of C over w periodically visit the weight 0 after x+ yn
transitions. Since B differs from C only in transition weights, all runs of B over
w periodically visit some negative weight after x + yn transitions, therefore
B(w) < 0. In conclusion, A defines a constant function iff C is universal (with
respect to 1). Note that we can directly construct C from A in PTime.

Monitoring. Given a specification represented as a deterministic quantitative
automaton A, QuAK is able create a monitor object that stores an array of top
values (storing the top value of Aq for each state q of A), an array of bottom
values (storing the bottom value of Aq for each state q of A), and a pointer to
the current state of A (initialized as the initial state of A). A monitor object
can read input letters incrementally while getting the next state q of A and
maintaining the lowest and highest values achievable from q, namely, the bottom
and top values of Aq. In addition, we implement running average monitors for
limit average automata.

4 Experimental Evaluation

We evaluated QuAK in a set of experiments. In particular, we measure the
performance our antichain-based inclusion algorithm and compare it to the
standard algorithm based on repeated reduction to language inclusion of Büchi
automata. These experiments include also the measurement of the impact of the
scc-search optimization described in Sect. 3. Next, we evaluate the runtime of
checking if an automaton defines a constant function. Finally, we use QuAK to

14 M. Chalupa et al.

Fig. 2. CPU time in milliseconds of running Antichains (x axis) and Standard (y axis)
inclusion algorithms on random automata with 2–32 states where at least one algorithm
finished within time limit. The alphabet has 2. Orange dots are for pairs of automata
that are not included and green crosses are for included automata. The scatter plot on
the left is for Sup and on the right for LimSup value function. (Color figure online)

runtime monitor the smoothness of a controller for a drone to show that the
tool can be used in the context of quantitative runtime monitoring. The artifact
to reproduce the experiments can be found at https://doi.org/10.5281/zenodo.
13132069.

Setup. QuAK was compiled with -O3 and link-time optimizations enabled. The
scc-search optimization was enabled for all experiments except a part of those
that aimed at evaluating this optimization (Sect. 4.1). All experiments ran on
machines with AMD EPYC CPU with the frequency 3.1 GHz. The time limit
was set to 100 s wall time.

Benchmarks. Because of the lack of benchmarks for quantitative automata, we
used randomly generated quantitative automata. All automata are complete
(i.e., every state has an outgoing transition for each symbol in the alphabet) and
have weights between −10 and 10 chosen uniformly at random. An automaton
that has n states can have up to n|Σ|+2n+1 edges where Σ is the alphabet. As
a result, the generated automata are non-deterministic. The number of states
and the size of alphabet differ in the experiments and are always explicitely
mentioned.

4.1 Comparing Inclusion Algorithms

In this subsection, we compare the standard approach to compute the quan-
titative automata inclusion (referred to as Standard) with our antichain-based

https://doi.org/10.5281/zenodo.13132069
https://doi.org/10.5281/zenodo.13132069

QuAK: Quantitative Automata Kit 15

Fig. 3. CPU time of running Antichains algorithm with and without the scc-search

optimization on the benchmarks from Fig. 2. In the left plot, the x axis shows how
many instances the inclusion algorithms are able to decide given the time limit on the
y axis. The right plot compares the runtime per instance. There, orange dots are for
pairs of automata that are not included and green crosses are for included automata.
The plots are for Sup automata and time is in seconds. (Color figure online)

inclusion algorithm (referred to as Antichains). The implementation of the stan-
dard approach uses the boolean version of FORKLIFT to decide the inclusion
of boolean automata. Both algorithms are implemented in QuAK.

Figure 2 shows the CPU time of running Standard and Antichains algo-
rithms for Val ∈ {Sup, LimSup}. We used 100 random automata with 2–32 states
and with 2-symbol alphabet. Algorithms were ran for each possible pair of the
automata, which results in 10000 inclusion checks. In the plots, we show only
the runs where at least one algorithm decided the inclusion.

The algorithm Antichains is almost always faster, often significantly, and
it can finish in a lot of cases when Standard reaches the time limit (points
on the blue dashed line). The Standard algorithm internally runs (the boolean
version of) Antichains algorithm multiple times for each weight, and therefore
it is expected that Antichains should be faster most of the times.

Evaluating Optimizations of Inclusion Algorithms. The results in Fig. 2
are for QuAK that is compiled with the scc-search optimization (see Sect. 3).
Plots in Fig. 3 show that this optimization significantly improves the runtime.
The plot on the left shows how many instances (the x axis) can be decided given
the time limit is set to the value on the y axis. The optimization allows to decide
nearly 2000 more instances in under 2 s. The plot on the right shows that the
optimization also hurts in some cases. Nevertheless, it helps with approximately
90% of the considered automata.

16 M. Chalupa et al.

Fig. 4. CPU time of deciding if an automaton defines a constant function. Points rep-
resenting timeouts were moved above the timeout line (the dashed line) and separated
(with no particular order with respect to the vertical axis).

4.2 Evaluating Constant-Function Checking

To evaluate the constant-function checking algorithm for limit average automata,
we generated 1000 random automata with a 4-symbol alphabet and 1–100 states.
The results of running the algorithm on these automata are summarized in
Fig. 4. The plot suggests that deciding if an automaton is constant is feasible
for many LimInfAvg and LimSupAvg automata. Nonetheless, we can see that the
computational complexity grows very steeply (after all, the problem is PSPACE-
complete): if the automaton is not very small, then the result is either computed
very quickly, or not at all.

4.3 Runtime Monitoring

We experimented with using quantitative automata for runtime monitoring. Our
use case is to monitor the smoothness of controllers of cyber-physical systems
(CPS) [34], which means that the actions issued by a CPS controller should
always cause only a relatively small change in the state of the CPS. For example,
a controller of a drone should not instruct it to immediately change to the
opposite of the current direction. Controllers that are not smooth can lead to
increased energy consumption or even hardware failures [34].

We monitored a flying drone in a simulated environment. For simplicity, we
assumed that the drone is a point with mass 1 and its energy consumption is
equal to the sum of forces generated by the thrust of its engines. Each action
issued by a controller is a pair of integers (x, y) that represents the acceleration
vector (on a 2D plane), with −10 ≤ x, y ≤ 10. Therefore, the alphabet Σ has 441
symbols. The monitor computes the running average of weights of the automaton
AM that has one state for each symbol from Σ, and from each state q there is an

outgoing edge q
q′:x−−→ q′ to any other state q′ under the symbol q′. In other words,

QuAK: Quantitative Automata Kit 17

Fig. 5. Results of monitoring the smoothness of a drone controller on an erratic and
smoothed trajectory (Original and Smoothed, resp.). The situation is depicted on the
left where the erratic trajectory is blue and the smoothed one is red. Only a part of
the trajectories is shown (units are the position). In the table on the right, Score is the
value computed by the monitor and EC is the energy consumption of the drone on the
trajectory. The lower is the score, the smoother should be the trajectory. All numbers
are averages from 3 simulations.

the states remember the last issued action. The weight x of each transition going
from q to q′ is the distance between q and q′. In total, the automaton AM has
441 states and 194481 edges.

The initial mission of the drone was to get from the point (0, 0) to (1000, 1000)
(with no obstacles) using a controller that every 0.1 s issues a command to accel-
erate toward the target. However, a random deviation taken from the normal
distribution with mean 0 and standard deviation either 1 or 5 (this is a parame-
ter) is applied to both acceleration coordinates at every step. The magnitude of
the acceleration is also random, skewed toward the maximum acceleration value
10. If the resulting acceleration along a coordinate is greater (lower) than 10
(-10, resp.), it is set to 10 (-10, resp.).

The rather chaotic controller described above models an imperfect controller
and results in navigating the drone along an erratic trajectory. We ran another
mission where the drone followed the previously taken erratic trace that has
been smoothed using gradient ascent. The situation is depicted on the left in
Fig. 5, and the results of monitoring the trajectories is on the right in the same
figure. The monitor correctly assigns lower scores to smoother trajectories, which
directly corresponds to the difference in energy consumption (EC).

5 Conclusion

We presented QuAK: the first software tool to automate the analysis of quantita-
tive automata. QuAK implements several standard decision procedures as well as

18 M. Chalupa et al.

an antichain-based inclusion checking, algorithms to decide whether an automa-
ton is safe, live, and constant, and a construction for its safety-liveness decom-
position. In the future, we plan to add algorithms for discounted sum automata
and implement safety-liveness decompositions for more classes of automata. One
can also extend the tool with a support for probabilistic and nested variants of
quantitative automata.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993). https://doi.org/10.1006/INCO.1993.1025

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Boker, U.: Quantitative vs. weighted automata. In: Proceedings of Reachability
Problems, pp. 1–16 (2021)

6. Boker, U.: Discounted-sum automata with real-valued discount factors. In:
Sobocinski, P., Lago, U.D., Esparza, J. (eds.) Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn,
Estonia, 8–11 July 2024, pp. 15:1–15:14. ACM (2024). https://doi.org/10.1145/
3661814.3662090

7. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.2168/
LMCS-10(1:10)2014

8. Boker, U., Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Safety and liveness of
quantitative automata. In: Pérez, G.A., Raskin, J. (eds.) 34th International Con-
ference on Concurrency Theory, CONCUR 2023, Antwerp, Belgium, 18–23 Septem-
ber 2023. LIPIcs, vol. 279, pp. 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPICS.CONCUR.2023.17

9. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,
Japan, 6–10 July 2015, pp. 750–761. IEEE Computer Society (2015). https://doi.
org/10.1109/LICS.2015.74

10. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

11. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15375-4 19

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.1805953

13. Chechik, M., Gurfinkel, A., Devereux, B.: XChek: a multi-valued model-checker.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 505–509.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 41

https://doi.org/10.1007/BF01782772
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1006/INCO.1993.1025
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.4230/LIPICS.CONCUR.2023.17
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/3-540-45657-0_41

QuAK: Quantitative Automata Kit 19

14. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 22

15. Demaille, A., Duret-Lutz, A., Lombardy, S., Sakarovitch, J.: Implementation con-
cepts in Vaucanson 2. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp.
122–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39274-
0 12

16. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

17. Doveri, K., Ganty, P., Mazzocchi, N.: FORKLIFT (v1.0). Zenodo (2022). https://
doi.org/10.5281/zenodo.6552870. Maintained at https://github.com/Mazzocchi/
FORKLIFT

18. Doveri, K., Ganty, P., Mazzocchi, N.: FORQ-based language inclusion formal test-
ing. In: Shoham, S., Vizel, Y. (eds.) CAV 2022, Part II. LNCS, vol. 13372, pp.
109–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2 6

19. Doveri, K., Ganty, P., Parolini, F., Ranzato, F.: Inclusion testing of büchi automata
based on well-quasiorders. In: Haddad, S., Varacca, D. (eds.) 32nd International
Conference on Concurrency Theory, CONCUR 2021, 24–27 August 2021, Virtual
Conference. LIPIcs, vol. 203, pp. 3:1–3:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPICS.CONCUR.2021.3

20. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
nat. J. Game Theory 8, 109–113 (1979)

21. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, 27–30 July 1996, pp. 278–292. IEEE Computer Society (1996). https://doi.
org/10.1109/LICS.1996.561342

22. Henzinger, T.A., Ho, P.-H.: HyTech: the Cornell hybrid technology tool. In: Antsak-
lis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–
293. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 14

23. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Abstract monitors for quantitative
specifications. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp. 200–
220. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17196-3 11

24. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Quantitative safety and liveness. In:
Kupferman, O., Sobocinski, P. (eds.) ETAPS 2023. LNCS, vol. 13992, pp. 349–370.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30829-1 17

25. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021, pp. 1–14. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470547

26. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/S100090050010

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-39274-0_12
https://doi.org/10.1007/978-3-642-39274-0_12
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.5281/zenodo.6552870
https://doi.org/10.5281/zenodo.6552870
https://github.com/Mazzocchi/FORKLIFT
https://github.com/Mazzocchi/FORKLIFT
https://doi.org/10.1007/978-3-031-13188-2_6
https://doi.org/10.4230/LIPICS.CONCUR.2021.3
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/S100090050010

20 M. Chalupa et al.

29. Lombardy, S., Marsault, V., Sakarovitch, J.: Awali, a library for weighted automata
and transducers (version 2.3) (2022). Software available at http://vaucanson-
project.org/Awali/2.3/

30. Lombardy, S., Poss, R., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson.
In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 96–107. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45089-0 10

31. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

32. Michaliszyn, J., Otop, J.: Approximate learning of limit-average automata. In:
Fokkink, W.J., van Glabbeek, R. (eds.) 30th International Conference on Concur-
rency Theory, CONCUR 2019, Amsterdam, the Netherlands, 27–30 August 2019.
LIPIcs, vol. 140, pp. 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPICS.CONCUR.2019.17

33. Michaliszyn, J., Otop, J.: Minimization of limit-average automata. In: Zhou, Z.
(ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intel-
ligence, IJCAI 2021, Virtual Event / Montreal, Canada, August 19–27 2021, pp.
2819–2825. ijcai.org (2021). https://doi.org/10.24963/IJCAI.2021/388

34. Mysore, S., Mabsout, B., Mancuso, R., Saenko, K.: Regularizing action policies
for smooth control with reinforcement learning. In: IEEE International Conference
on Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June 5, 2021,
pp. 1810–1816. IEEE (2021). https://doi.org/10.1109/ICRA48506.2021.9561138.
https://doi.org/10.1109/ICRA48506.2021.9561138

35. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

36. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961). https://doi.org/10.1016/S0019-9958(61)80020-X

37. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953)
38. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-

rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://vaucanson-project.org/Awali/2.3/
http://vaucanson-project.org/Awali/2.3/
https://doi.org/10.1007/3-540-45089-0_10
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.4230/LIPICS.CONCUR.2019.17
https://doi.org/10.24963/IJCAI.2021/388
https://doi.org/10.1109/ICRA48506.2021.9561138
https://doi.org/10.1109/ICRA48506.2021.9561138
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5
http://creativecommons.org/licenses/by/4.0/

	QuAK: Quantitative Automata Kit
	1 Introduction
	2 Quantitative Properties and Automata
	2.1 Basic Decision Problems of Quantitative Automata
	2.2 Safety and Liveness of Quantitative Automata

	3 The Tool
	4 Experimental Evaluation
	4.1 Comparing Inclusion Algorithms
	4.2 Evaluating Constant-Function Checking
	4.3 Runtime Monitoring

	5 Conclusion
	References

