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Abstract 

 
Understanding the relationship between a given phenotype and its underlying genotype or 

genotypes is one of the most pressing challenges of biology, as it lies at the heart of not only basic 
understanding of evolutionary theory, but also of practical applications in medicine and 
bioengineering. Understanding this relationship is complicated by the ubiquitous phenomenon of 
epistasis, wherein mutation effects are dependent on their genetic context. Fitness landscapes — 
representations of phenotype as a function of genotype — are being increasingly used as a tool to 
study the effects and interactions of thousands of mutations, but are experimentally limited to 
exploring a small fraction of a protein’s theoretical sequence space. Furthermore, not all regions of 
said sequence space are necessarily equally informative. Thus, gene selection for landscape surveys 
should be carefully considered in order to maximize the usable output of necessarily limited data. 

In this work, we analyzed the fitness landscapes of orthologous green fluorescent proteins from 
four different species, by systematically measuring the phenotype, fluorescence, of tens of 
thousands of mutant genotypes from each protein. These landscapes were highly heterogeneous, 
with some genes being mutationally robust and displaying epistasis only rarely, and others being 
highly epistatic and mutationally fragile. We used this data to train machine learning models to 
predict fluorescence from genotype. Although the training data contained almost exclusively 
genotypes with less than 3% sequence divergence from the original wild-type sequences, we were 
able to create novel, functional genotypes with up to 20% sequence divergence. Counterintuitively 
however, genes with high mutational robustness and rare epistasis were more difficult to introduce 
large numbers of mutations into, not less. This represents the first study of large-scale fitness 
landscapes of a protein family, and provides insights into how to approach future landscape surveys 
and their applications in novel protein design. 
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1. Introduction 

 

 

 

1.1. Understanding genotype-to-phenotype maps 

 

1.1.1. Motivation 

An organism’s phenotype is shaped by its genotype, modulated by environmental factors. This is true 
whether the phenotype in question is the color of a cat’s fur, how many eggs a spider lays, or how brightly 
a fluorescent protein glows. Some phenotypes are governed by interactions of many genes together, while 
others are monogenic. But even in the latter case, the precise relationship between a set of genotypes and 
their corresponding phenotypes is often obscure (de Visser et al., 2011), making it difficult or impossible to 
reliably predict one from the other. 

This difficulty is a source of chagrin to researchers from all walks of science, as understanding the map 
between genotype and phenotype would have actionable implications for a broad range of fields. In 
medicine, it would inform predictions of disease progression (Huang, 2013) as well as patients’ response to 
therapy (Bolton et al., 2020), in addition to monitoring the emergence of drug resistance in pathogens 
(Lozovsky et al., 2009; Palmer et al., 2015; Flynn et al., 2023). In evolutionary theory, it would aid interpretation of 
population dynamics (Watson et al., 2020), quantitative genetics (Mackay, 2014), and evolutionary arms races 
between co-evolving species (Gupta et al., 2022). Biotechnological applications include but are not limited to 
protein design (Wrenbeck et al., 2017; Ogden et al., 2019) and crop engineering (DeHaan & Van Tassel, 2014). 
Additionally, it is fun (Sarkisyan et al., 2016). This work is therefore dedicated to better understanding and 
exploiting the genotype-to-phenotype relationship, one of the most pressing challenges in biological 
research. 

 

1.1.2. Fitness landscapes 

A fitness landscape is a representation of fitness, or any other phenotype, as a function of genotype. 
The concept was originally introduced as a way to to picture the evolution of populations or genes (Wright, 

1932), where said populations or genes can move through genotype space and acquire a higher or lower 
fitness (or other phenotypic value) depending on where in the space they move to. The nature of this 
space and the parameters used to quantify fitness can vary depending on the organismal scale and on the 
questions one seeks to address. For example, population studies might use reproduction or growth rate as 
a proxy for fitness as a function of allele combinations across the genome (Gupta et al., 2022), whereas genes 
or proteins can be thought of as moving through a sequence space consisting of nucleotide or amino acid 
sequences of a given length (Melamed et al, 2013; Sarkisyan et al., 2016; Chan et al., 2017), with expression level or 
molecular activity being the phenotype of interest.  

If one then pictures the space being moved through as the set of possible genotypes, with the distance 
between any two points being roughly proportional to the number of mutational steps between them, 
then assigning each point a fitness value creates a “landscape” of high-fitness peaks and low-fitness 
valleys. The smaller the fitness changes between adjacent points, the smoother the landscape appears 
(Figure 1). 

Such a visual representation of a genotype-to-phenotype map is naturally a vast oversimplification of 
its true properties, namely its massive dimensionality. For instance, the sequence space of a gene of length 
N is N-dimensional, with one axis for each position in the sequence, and becomes N+1 dimensional after 
assigning fitness values. Given the discrepancy between the number of dimensions an average human can 
visualize and the number of positions in an average gene, achieving any real understanding of a complete 
fitness landscape’s true shape is literally unthinkable. Reducing such complex data to a low-dimensional 
projection of hills and valleys has therefore been occasionally criticized as misleading (Fragata et al., 2018; 

Kaplan, 2008), mainly because it may mask the true distance between genotypes and create the false 
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impression of isolated fitness peaks separated by valleys of death, when peaks might in fact be connected 
by a ridge along some higher dimension. 

Nevertheless, the inherent intuitiveness of fitness landscapes means that they remain a useful 
abstraction in the study of genotype-to-phenotype maps (Fragata et al., 2018, Hartman & Tullman-Ercek, 2019), and 
their use has been expanding in recent years in fields ranging from synthetic biology (Davidson et al., 2012; 

Wrenbeck et al., 2017; Ogden et al., 2019) to evolution (Canale et al, 2018, Lozovsky et al., 2012) and everything in between 
(Huang, 2013; Bolton et al., 2020; DeHaan & Van Tassel, 2014).  

While “fitness” has traditionally been defined in evolutionary biology as reproductive success (Orr, 

2009) and therefore a property only applicable on the organismal scale, studies of protein fitness 
landscapes typically use the protein’s function or activity as a proxy for fitness in cases where the 
molecular phenotype itself, and not its effect on overall organism survival or reproduction, is of interest. 
We ourselves will also use the term “fitness” in this work in such a manner.  

The experimental approach in studies of protein fitness landscapes is typically to generate a library of 
mutant variants of the protein in question, and measure the phenotype of interest for each of those 
mutant genotypes. Of course, the sheer size of genotype space mentioned earlier is not only a problem for 
humans trying to imagine higher dimensions, but also for laboratory setups, as assaying all or even most 
genotypes of any given gene would be physically impossible. Sewall Wright gives the example of a 
sequence space of 1000 loci, each with 10 possible alleles; this corresponds to 101000 combinations, which 
Wright correctly identifies as “a very large number” (Wright, 1932) and, indeed, higher than the number of 
atoms in the universe.  

Due to these experimental constraints, studies of protein fitness landscapes must either limit their 
focus to specific functionally or evolutionarily relevant sites or domains (O’Maille et al., 2008; Hietpas et al., 2011; 

Olson et al., 2014; Podgornaia & Laub, 2015; Poelwijk et al., 2019; Pokusaeva et al., 2019; Johnston et al., 2024), or explore a 
library of random mutants in nearby sequence space (Bershtein et al., 2006; Fowler et al., 2010; Jacquier et al., 2013; 

Melamed et al., 2013; Sarkisyan et al., 2016), or analyze only single mutant effects while forgoing interactions 
(Sanjuan et al., 2004; Chan et al., 2017). The second approach is broad but shallow while the first is deeper but 
narrow, but in either case, only a small fraction of the theoretically possible genotypes ever make 
themselves available for study.  

This raises the question: how many measured genotypes are actually necessary in order to construct a 
reasonable, and useful, genotype-to-phenotype map? 

 

.  
FIGURE 1. Conceptual illustration of smooth and rugged fitness landscapes. The X and Y axes represent a simplified projection of 
genotype space, where the distance between two points is indicative of the similarity of the corresponding genotypes. Genotype 
fitness is shown on the Z axis, in green. The more gradual and predictable are the fitness changes between similar genotypes, the 
smoother the landscape appears. 
 

1.1.3. Epistasis 

Even considering the harsh limitations in terms of the amount of experimentally feasible 
measurements, constructing an accurate genotype-to-phenotype map would be trivial if interactions 
between mutations never occurred. In such a world, the phenotype of a clone with multiple mutations AB 
could be readily extrapolated from the phenotypes of the individual mutants A and B. A protein of length 
100 would thus require a mere 100 · 19 = 1900 measurements (19 being the number of alternative amino 
acids from the wild type), which is rather more manageable than the full theoretical protein sequence 
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space of 20100.  
However, experimental data has long shown that different mutations can and do interact with each 

other (Bateson et al., 1905; de Visser et al., 2011; Mackay, 2014; Hopf et al., 2017), such that a given mutation’s 
phenotypic effect is dependent on the genetic context in which it occurs, i.e. the presence or absence of 
other particular mutations. This phenomenon is called epistasis. For qualitative traits, such as color 
markings or morphology, mutations may mask or modify each other’s effects in a variety of surprising 
ways (Ishida et al., 2006; Schmidt-Küntzel et al., 2009). For quantitative traits, it can manifest as synergistic or 
antagonistic interactions (when mutations amplify or inhibit each other’s effects, respectively) and be 
either positive or negative (when the final effect on fitness is more beneficial or more deleterious than 
expected, respectively); in some cases, it can even change the sign of a mutation’s effect on phenotype 
(when the same mutation is beneficial in one context but deleterious in another) (Poelwijk et al., 2016) (Figure 
2). One context — though not the only — in which sign epistasis arises is that of speciation, where 
mutations accumulate in diverging lineages to the point of being incompatible (Orr, 1995); pathogenic 
variants in one lineage may thus be neutral in another (Orr & Turelli, 2001; Kondrashov et al., 2002; Kulathinal et al., 

2004). An interesting, if rare, subtype of sign epistasis is reciprocal sign epistasis, where two individually 
deleterious mutations create a neutral or even net positive effect (or vice versa) when they co-occur 
(Poelwijk et al., 2011). Epistasis may be intergenic, where the effects of one gene allele are modified by the 
existence of another allele at a different gene locus, or intragenic, where the interaction is between 
mutations at different sites within the same gene.  

This non-independence of mutation contributions to phenotype makes intuitive sense, and was 
already illustrated in 1970 by John Maynard Smith (Smith, 1970) by a word game analogy wherein words are 
proteins, letters are amino acids, and the goal is to find a path from one word to another without 
generating any meaningless (low fitness) words in between. The shortest path from WORD to GENE is thus 
WORD—WORE—GORE—GONE—GENE, wherein epistasis can be readily observed: for example, the same 
change from O to E in the second position is permissible when it occurs in the GONE background, but not 
in the WORD background, where it would create an unfit WERD. 

From a molecular point of view, epistasis can be explained and even expected in some cases when it 
occurs between physically close or interacting sites, such as between adjacent residues in a folded tertiary 
structure or subunits in a protein complex (Podgornaia & Laub, 2015; Kumar et al., 2017) or even between genes 
which do not interact directly on the molecular level but are part of the same metabolic pathway (de Visser 

et al., 2011). However, a structural or biophysical reason behind epistatic interactions is not always 
immediately apparent (Starr et al., 2016), making epistasis difficult to predict. In turn, this obfuscates the link 
between genotype and phenotype and increases the amount of data required in order to make sense of it: 
the more pervasive epistasis is, the more difficult it is to analyze and predict mutation effects. In fitness 
landscape terms, epistasis, particularly sign epistasis, renders the landscape more rugged (Figure 1) 
(Poelwijk et al., 2007; Poelwijk et al., 2011; Saona et al., 2022) by removing some of the direct paths between fitness 
peaks, even if it can also create indirect, otherwise inaccessible paths. Thus, an understanding of the rules 
governing epistatic interactions is key in understanding fitness landscapes and in leveraging genotype-
phenotype data in downstream applications. 

 

.  
FIGURE 2. Pairwise epistasis affecting a quantitative trait. The trait’s fitness, or phenotype, is represented by color, with darker 
greens being more fit. (a) Case of no epistasis: the mutations A and B do not modulate each other’s effects. (b) Magnitude epistasis: 
A and B jointly result in a greater fitness change than expected (synergistic epistasis) from their individual effects on the ab 
background. Conversely, a and b jointly result in a smaller than expected change (antagonistic epistasis), when starting from the 
AB background. (c) Sign epistasis: A decreases fitness in the b background, but increases it in the B background. (d) Reciprocal sign 
epistasis: both A and B are either beneficial or deleterious depending on whether they co-occur or not. 
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1.2. GFP as a model for fitness landscape studies 

 
As far as using a protein’s function as a proxy for fitness, fluorescent proteins are attractive candidates 

for fitness landscape studies since light emission is a quantitative and readily measurable phenotype. The 
first such protein, green-glowing and isolated from the hydrozoan jellyfish Aequorea victoria, was 
discovered in the 1960s and eventually earned Osamu Shimomura and his colleagues the Nobel Prize in 
Chemistry. Fluorescent proteins produce light by absorbing higher energy (shorter wavelength) photons 
and then emitting lower energy (longer wavelength) photons upon relaxing to their ground state (Adan et 

al., 2017). Different fluorescent proteins may differ in their optimal excitation (absorption) and emission 
spectra, but all share similar tertiary structures consisting of eleven β-sheets arranged in a barrel around a 
light-emitting chromophore (Figure 3a) (Chudakov et al., 2010).  

They are user-friendly molecules as a rule, being generally physically and structurally stable, non-
toxic, relatively small (under 240 amino acids or 27 kDa), and not prone to interact with other cellular 
components (Chudakov et al., 2010). They also require no chaperones to fold correctly in either prokaryotic or 
eukaryotic cells, need no cofactors, and the only post-translational modification they require is self-
catalyzed: the maturation of the chromophore, achieved by the cyclization of the serine, tyrosine and 
glycine residues in positions 65–67 in the presence of oxygen (Tsien, 1998; Chudakov et al., 2010). These features, 
which have so popularized GFP and other fluorescent proteins as reporters for gene expression and 
protein localization in model organisms from all domains of life, also make them ideal subjects for 
studying the more abstract question of genotype-to-phenotype maps. 

Furthermore, fluorescent proteins are interesting in and of themselves due to how different members 
of this family can occupy vastly distant positions in sequence space and yet maintain such similar 
functionalities and 3D conformations (Chudakov et al., 2010). GFPs and GFP-like proteins have been 
documented in evolutionarily distant taxa ranging from jellyfish (Tsien,1998; Xia et al., 2002; Fourrage et al., 2014), 
corals (Alieva et al., 2008; Shagin et al., 2004), arthropods (Wilmann et al., 2006), and even cephalochordates (Baumann 

et al., 2008; Yue et al., 2016). Fluorescent proteins, including GFPs, are believed to share a single common origin 
(Shagin et al., 2004) rather than having arisen as a result of convergent evolution, yet sequence diversification 
over time has been such that many GFPs from different species are known to share under 20% amino acid 
identity (Figure 3b,c), while still exhibiting near-identical 3D β-barrel structures (Figure 3a) and light 
emission properties (Figure 3d). This makes GFPs a compelling group of proteins to use for fitness 
landscape studies, as it allows for a broad exploration of sequence space without requiring modifications 
to the type of phenotype data collected, thus allowing direct comparisons between distant sequences.  

Indeed, the sequence space of GFP has already been explored at a local scale, focusing on around 50 
thousand random genetic variants of Aequorea victoria GFP, or avGFP (Sarkisyan et al., 2016). This study found 
the fitness peak of avGFP to be narrow, meaning that protein fitness, measured as fluorescence output, 
tended to decrease dramatically in sequences only a few mutations away from the wild type. This sharp 
fitness loss was attributable to widespread negative synergistic epistasis among genotypes with multiple 
mutations, which meant that the overall effect of combinations of mutations was worse than the sum of 
their individual effects. Importantly, these mutation effects on fluorescence were found to be linked to 
their effects on protein structure and stability, according to their predicted effect on protein ΔΔG: 
individual mutations, each only slightly destabilizing on its own, together caused a sudden and sharp 
decline in fluorescence once their joint effects on protein structural integrity exceeded a critical threshold 
(Sarkisyan et al., 2016).  

But, how far can these results on avGFP be extrapolated to the rest of GFP sequence space? Do other 
local landscapes, centered around other, distant GFP sequences, share similar properties? How do 
interactions between mutations change from one region of GFP space to another? 

The fitness landscapes of various unrelated proteins — ranging from β-lactamase to Hsp90 to a WW 
domain and more — have been analyzed and published in the last two decades (Bershtein et al., 2006; Jacquier et 

al., 2013; Melamed et al., 2013; Olson et al., 2014; Hietpas et al., 2011; Fowler et al., 2010). However, only two surveys of 
multiple members of the same protein family are currently available to our knowledge. One study is that 
of orthologous His3 proteins in yeast (Pokusaeva et al., 2019), which focused exclusively on positions and 
amino acid states observed to be polymorphic across 21 natural yeast species. The other is that of three 
orthologous TIM barrel proteins (Chan et al., 2017), which assayed only single-mutant genotypes and as such 
did not study intramolecular epistasis. In this work, we will expand from the 2016 avGFP landscape by 
characterizing the fitness landscapes — including multi-mutant data — of GFP genes from three more 
species. This data will allow us to study the effects of mutations and their interactions within and across 
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genes, with the aim of understanding the broader sequence space of the GFP family as a model for fitness 
landscapes of protein families. 

 

.  
FIGURE 3. General properties and comparisons of four green fluorescent proteins. (a) Tertiary conformations of the four main 
GFPs used in this work, showing similar barrel structures (green gradient) surrounding the light-emitting chromophore (yellow). 
The phylogenetic relationship of the species from which these GFPs are derived is indicated by the cladogram above. (b) 
Structural alignment of the same GFPs, made with the T-Coffee Expresso alignment tool. Identical amino acids at any given 
position are labeled in the same color. Alignment gaps are left in white. (c) Amino acid identities (green) and similarities (grey) 
shared between each pair of proteins, structurally aligned as in (b). Aligned amino acids were counted towards the similarity score 
if they belonged to the same category, i.e.: aliphatic (M/L/A/I/V), aromatic (W/Y/F), negatively charged (D/E), positively charged 
(K/H/R), polar (S/T/N/Q), or special (P/G/C). For reference, randomly generated amino acid sequences of the same length 
average around 5% identity and 18% similarity (own simulations). (d) Absorbance and emission spectra of the four GFPs. 
 

1.3. Experimental approach 

 
We explored the sequence space of the green fluorescent protein family by focusing on multiple 

sequence-divergent GFPs from which to construct local fitness landscapes. An overview of the 
experimental design follows below; more detailed explanations are available in the methodology section 
(see: 4. Materials and Methods). Briefly: for each gene, we generated a mutant library comprising thousands of 
variants, each of which was barcoded with a unique molecular identifier. Libraries were expressed in E. coli 
and variants were separated by FACS according to their fluorescence intensity (fitness) (Figure 4). By 
sequencing the barcodes of sorted cells and analyzing their distribution across the designated green gates, 
we paired each variant’s genotype to its corresponding fitness. These data were then used for analyses of 
mutation effects, epistasis, comparisons of local landscapes, etc., and ultimately used to train machine 
learning algorithms and generate novel artificial, functional GFP sequences. 
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1.3.1. Selection of genes 

We selected documented GFP genes from different species based on several criteria. Firstly, we 
required candidate proteins to share similar optimal excitation and emission spectra (Figure 3d) in order 
to allow direct phenotype comparisons between genes without introducing unnecessary noise in the data 
due to shifting measurement parameters or settings. Related to this point, they should also be functional 
in E. coli, our chosen model organism, under standard culture conditions. Secondly, we wanted the selected 
genes to share varying degrees of sequence identity with each other, in order to be able to compare 
distant regions of sequence space. Thirdly, we favored proteins with known, resolved tertiary structures, 
in order to simplify any downstream structure-based analysis. Fourthly, many species are known to 
contain multiple, sometimes dozens of, GFP copies in their genome (Takahashi-Kariyazono et al., 2015; Baumann et 

al., 2008; Kashimoto et al., 2021), but we prioritized genes from species with fewer known copies on the basis 
that high gene redundancy may lead to weaker selection pressure (Nowak et al., 1997) and therefore to 
potentially less fit genes. (Note however: since the start of this work, emerging studies have shown that 
many species in fact contains more FP genes than previously believed: for example, multiple new FPs 
discovered in Aequorea victoria (Lambert et al., 2020) and Clytia hemisphaerica (Leclère et al., 2019).) 

Based on the above considerations, we selected three GFP genes from which to construct local fitness 
landscapes (see: 4.2.1. Gene selection), referred to in this work as amacGFP, cgreGFP, and ppluGFP2. The 
former two are derived from hydrozoan jellyfishes, Aequorea macrodactyla and Clytia gregaria respectively, 
while ppluGFP2 is derived from the copepod Pontellina plumata and is sometimes referred to in other 
literature as copGFP. Together with avGFP, these four genes share between 17% and 82% amino acid 
identity with each other (Figure 3c). 

Note: for simplicity, we will refer to these reference genotypes as the “WTs” of their respective local 
landscapes, even in cases where the reference amino acid sequences differ from the original, natural wild-
type sequence by 1-3 point mutations (see: 4.2.1. Gene selection). 

 

1.3.2. Creation of mutant libraries 

E. coli codon-optimized sequences of the selected genes were used as the DNA template in mutagenic 
PCRs in order to create a library of mutant variants. Barcodes were introduced during this step thanks to a 
randomized 20N region in the reverse PCR primer (see: 4.2.1. Generation of mutant sequences). PCR reaction 
conditions were optimized to generate approximately four nucleotide mutations per variant, 
corresponding to an average of 1-2 amino acid substitutions per protein variant.  

Plasmid-based mutant libraries were then obtained in a two-step process. First, PCR products were 
cloned into a promoter-less storage vector and transformed into E. Coli, recovering tens of thousands of 
colonies in each case. This step serves to estimate and control the size (number of variants) of the 
libraries, as the number of recovered colonies at this stage is roughly equivalent to the number of unique 
barcodes going forward, given that a) the probability of multiple variants sharing the same 20N nucleotide 
barcode is negligible (one chance in 420); b) double transformation is rare, so the vast majority of colonies 
contain only one variant; and c) transformed cells are not given enough recovery time to divide before 
being plated, so each transformed cell only gives rise to a single colony (see: 4.2.1. Cloning of mutants into 

storage vectors). (Of course, the total number of unique protein sequences in the final library is always lower 
than the number of barcodes, due to some variants containing no, or only synonymous, mutations.) At this 
stage, the plasmid library is also sequenced, in order to know which genotype is represented by which 
barcode (see: 4.6. Library sequencing: Coding regions). 

Second, variants are shuttled from the storage vector into an expression vector (see: 4.2.1. Generation of 

final expression constructs). Final expression vectors contain a GFP variant cloned under a constitutive 
promoter and in-frame with mKate2, a red fluorescent protein, as in Sarkisyan et al., 2016. This fusion protein 
setup ensures a 1:1 mKate2:GFP ratio and thereby allows mKate2 signal to serve as a control for GFP 
expression level. mKate2 was originally chosen as a reference based on several key properties (Sarkisyan et 

al., 2016), primarily that a) it does not undergo a green-emitting stage during chromophore maturation, 
unlike many other red fluorescent proteins, and b) there is minimal overlap between the excitation and 
emission spectra of mKate2 and those of GFP (Figure 5a). Furthermore, in our setup, a rigid alpha-helical 
linker prevents direct physical interaction between mKate2 and GFP. These features help ensure that 
mKate2 fluorescence not affect or interfere with measured GFP signal.  

While the mKate2-GFP fusion protein setup described above was also used previously for the avGFP 
fitness landscape (Sarkisyan et al., 2016), the libraries described in this work differ from the overall avGFP 
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setup in two main ways: genome integration of the constructs to limit copy number variation, and the use 
of secondary barcodes to allow for internal replicates in a single experiment.  

Expression from a chromosomally integrated construct can be expected to be less noisy than that 
from a plasmid, due to the lack of copy number variation from cell to cell (Boyd et al., 2000). Whereas the 
avGFP library was expressed from a low/mid-copy number plasmid (Sarkisyan 2016), our current expression 
vectors contain 5’ and 3’ homology arms which flank the mKate2-GFP construct and map to a safe harbor 
on the E. coli chromosome, allowing genomic integration via homologous recombination as in Bassalo et al, 

2016 (see: 4.3. Genome integration). 
Furthermore, our expression vectors also contain a 10N barcode located after the GFP sequence (see: 

4.2.1. Generation of destination vector). Each cloned molecule thus contains both a 20N identifier specific to a 
particular variant sequence, as well as an additional 10N identifier, henceforth referred to as “primary 
barcode” and “secondary barcode” respectively. This allows for the possibility of measuring biological 
replicates in a single experiment, as cells containing the same primary barcode but different secondary 
barcodes must necessarily have originated from independent cloning and genome integration events. We 
harvest 3-5 times more colonies at this stage than in the storage vector step, to maximize the number of 
primary barcodes associated to multiple secondaries in the final library. 

 

.  
FIGURE 4. Experimental pipeline for the generation, sequencing, expression and sorting of mutant libraries. Figure adapted from 
Gonzalez Somermeyer et al., 2022, Figure 2. 
 

1.3.3. Fitness measurements 

Genome-integrated bacteria were processed by FACS (see: 4.4. Fluorescence-activated cell sorting). We 
defined a narrow gate in the red channel, limiting ourselves to cells with comparable mKate2 (and 
therefore GFP) expression levels, in order to minimize capturing variations in fluorescence caused by 
differences in gene expression (as opposed to caused by differences in genotype). The selected red gate 
was subdivided into eight gates according to the intensity of green fluorescence (Figure 5b), and cells 
falling into any of these eight green gates were physically sorted into separate tubes.  

Note: the values reported by FACS machines are directly dependent on the laser voltage settings, as 
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well as on the machine model etc.; these values should not be interpreted as an absolute quantification of 
the fluorescence of sorted samples. Therefore, to facilitate comparisons across different gene libraries 
(processed by necessity on different days and/or different machines), all libraries had a small amount of 
wild-type control cells of other genes mixed in prior to sorting. These controls are sorted along with the 
rest of the library, and act as reference points to help compare different genes’ relative fluorescences 
across experiments (see: 4.4.1. FACS sample preparation). In addition, we employ a number of “count controls”, 
cells with known barcodes generated separately from the libraries. These cells are not mixed or sorted 
together with the libraries, but are added in fixed amounts to each tube after sorting, thereby serving as 
controls to convert the number of NGS reads to a cell count later on. I.e., if we know that we obtain X reads 
from Y control cells, we can calculate how many reads per cell to expect, and then determine for other 
barcodes how many cells were actually sorted during the experiment (see: 4.4.2. FACS setup). 

The barcode regions of recovered sorted cells were amplified and sequenced. For each barcode, we 
used the distribution of cell counts across the eight green gates to assign a fluorescence (fitness) value 
(see: 4.7.1. Determination of fitness values). By combining the barcode-to-fitness and barcode-to-genotype data, 
we were able to reconstruct genotype-to-fitness maps containing data from tens of thousands of mutant 
variants for each of our selected starting genes. This data formed the basis for analyses of mutation effects 
and epistatic interactions within and across genes, and served as the training data for machine learning 
models used to generate novel, functional protein sequences with up to 20% sequence diverge from the 
original wild-types. 

.  
FIGURE 5. GFP library cell sorting. (a) Absorbance and emission spectra of GFP (green) and mKate2 (red). GFP spectra for amacGFP, 
ppluGFP2, and cgreGFP are comparable (Figure 3). FACS laser excitation wavelengths (488 nm for GFP, 561 nm for mKate2) are 
indicated by vertical dashed lines. The shaded areas represent fluorescence signal collection for GFP (515-545 nm) and mKate2 
(600-620 nm) during FACS. (b) Representative example of E. coli colonies expressing an mKate2-GFP library. Note the variable 
green intensities (top) versus homogenous red intensities (middle). The bottom panel shows green and red channels merged. (c) 
Representative FACS setup for library sorting. Only cells within a narrow gate in the mKate2 channel (red) are sorted; these 
represent cells with comparable mKate2-GFP expression levels. This red gate is subdivided into 8 green gates which are then 
sorted; the darkest green gate is based on the distribution of GFP/mKate2-negative control cells. Fluorescence values are shown 
log10-transformed. (d) Representative example of colonies grown from sorted cells from the 8 green gates of a FACS run. Images all 
show merged red and green channels. Cells in (b) and (d) were grown on LB-zeocin agar overnight at 30oC then overnight again at 
room temperature, then photographed with a Canon EOS 600D SLR camera in (b) or Nikon SMZ25 stereo microscope in (d), under 
blue and yellow light; aside from cropping and merging red/green channels, photographs were not altered.
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2. Results 

 
We created and analyzed mutant libraries for amacGFP, cgreGFP, and ppluGFP2 independently (Figure 

4). A large fraction (~34%) of the genotypes in the amacGFP library contained a V11L mutation (see: 4.2.1. 

Generation of mutant sequences), so for some downstream analyses we considered the V11L subset separately 
from the rest of amacGFP genotypes. A general summary of library statistics can be found in Table 1. Note: 
mutation indexing will generally refer to the structurally aligned position (equivalent across orthologous 
genes), with counting starting from Methionine = 0, unless otherwise specified. 
 

 

 

Table 1. General dataset statistics. False positives refer to genotypes which contain mutations affecting chromophore or 
chromophore-interacting sites Y68, G69, R99, E229 (numbering refers to the structurally aligned positions, equivalent to Y66, G67, 
R96, E222 in traditional avGFP notation) but which were assigned a bright fluorescence value; as the chromophore is crucial for 
fluorescence, mutations in these sites can be expected to eliminate fluorescence, with very few exceptions. False negatives refer 
to nucleotide genotypes containing exclusively synonymous mutations which were assigned low fluorescence values (see: 4.7.4. 
Library data filtering). WT fitnesses and standard deviations are determined from the distribution of synonymous variants 
encoding WT proteins. 

 amacGFP cgreGFP ppluGFP avGFP  
(Sarkisyan et al., 2016) 

Protein length (aa) 238 235 222 238 
Chromophore SYG SYG GYG SYG 

Number of assayed 
protein genotypes 

35500 (of which, 12010 
V11L) 

26165 32260 51715 

Average number of 
measured replicates per 

genotype 

8.7 6.8 12 1.2 

False positives 
(chromophore mutants 
assigned high fitness) 

0.55% (9/1635) 0.75% (14/1860)  0.49% (11/2242)  0.24% (2/839)  

False negatives (WT 
genotypes assigned low 

fitness) 

0% (0/1084) 0% (0/1583) 0% (0/2744) 0.08% (2/2444) 

WT fitness (log10) ± 
standard deviation 

3.97 ± 0.031 
(V11L: 3.96 ± 0.03) 

4.5 ± 0.028 4.23 ± 0.027 3.72 ± 0.082 

 
 

2.1. General features of local landscapes 

 

2.1.1. Distributions of mutation effects on fluorescence are bimodal 
For all new genes (amacGFP, amacGFP:V11L, cgreGFP, and ppluGFP2), as well as for the previously 

published avGFP, the distribution of fluorescence values of the mutant libraries was bimodal (Figure 6a-b). 
The majority of assayed genotypes were either relatively bright or non-fluorescent entirely, although the 
proportion of bright versus dark genotypes varied across genes. This pattern was echoed in the bimodal 
distribution of the effects of single mutations, with the majority of observed amino acid substitutions 
being either lethal or only slightly deleterious to fluorescence. This is in line with existing literature on 
the distribution of fitness effects (Wloch et al., 2001; Sanjuán et al., 2004; Eyre-Walker & Keightley, 2007; Wylie & 

Shakhnovich, 2011) and with other experimental studies of protein fitness landscapes (Hietpas et al., 2011; Jacquier 

et al., 2013; Chan et al., 2017), which consistently describe the effects of mutations on fitness as following a 
bimodal distribution. 
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.  
FIGURE 6. Fitness distributions of mutant libraries. Libraries created during this work are in green; publicly available data from 
avGFP (Sarkisyan et al., 2016) is in dark grey. (a) KDE plots showing the overall distributions of fluorescence of cgreGFP, amacGFP, 
amacGFP:V11L, and ppluGFP2 libraries, in green. WT values for each library are indicated by a white bar near the X axis. The total 
number of protein genotypes assayed is indicated on the right side of the figure. (b) As (a), but for avGFP. (c) Distribution of 
fluorescences of avGFP genotypes categorized by the number of amino acid mutations (X axis). The number of assayed genotypes 
is indicated at the top: for the WT, this number refers to the amount of distinct nucleotide genotypes containing exclusively 
synonymous mutations (see: Table 1 for WT distribution variance); for all other categories, it refers to the number of distinct 
protein sequences containing the specified amount of amino acid substitutions. The red horizontal dashed line represents the 
fluorescence cutoff below which genotypes were considered non-functional in the original publication. The median fluorescences 
of each category are shown in white and were used to fit a logistic curve (black line). The vertical dashed black line marks the 
average number of mutations necessary for the median fluorescence value to fall below the non-functionality cutoff. (d,e,f,g) As 
(c), but for cgreGFP, amacGFP, amacGFP:V11L, and ppluGFP2. Here, the non-fluorescence cutoff corresponds to the values of the 
upper border of the darkest FACS gate used during sorting, itself defined by the distribution of GFP-negative control cells. 
 

2.1.2. Mutational thresholds mark fluorescence loss 

For all genes, median fluorescence decreased as a function of the number of mutations (Figure 6c-g). 
This was expected, given that the more mutations are introduced, the greater the chances of one or more 
of those mutations being deleterious. This decrease was not linear: the bimodality of fluorescence values 
described above was largely maintained across data subsets irrespective of the number of mutations, with 
the proportion of bright versus dark populations shifting in favor of the latter as the number of mutations 
increased. This resulted in a threshold effect: a sharp decrease in median fluorescence coinciding with the 
dark population becoming the majority after a critical number of mutations was reached. It has been 
suggested that such loss of function patterns are attributable to the cumulative effect of mutations on 
protein stability, which, once past a certain threshold, render the protein thermodynamically unable to 
fold and therefore function (Bloom et al., 2005; Bershtein et al., 2006; Sarkisyan et al., 2016; Starr & Thornton, 2016). We 
will address the role of protein stability on GFP fluorescence in a later section of this work (see: 2.3. 

Structure, stability, and mutational robustness). 
 

2.1.3. Mutational robustness varies across genes 

While all GFP genes exhibited the threshold effect described above, the value of the threshold itself in 
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terms of number of mutations was highly variable. The amacGFP and ppluGFP2 libraries maintained high 
proportions of functional, bright genotypes containing up to 5-6 mutations, while cgreGFP already showed 
dramatic loss of fluorescence after only ~3 mutations (Figure 6c-g). This was consistent with the overall 
distribution of fluorescence values from the cgreGFP library showing a higher proportion of dark 
genotypes than that of amacGFP or ppluGFP (Figure 6a). The loss of fluorescence could be closely 
approximated by a logistic (sigmoid) curve fitted to the median fluorescence values for each number of 
mutations (Figure 6c-g), highlighting the threshold effect behind fluorescence loss.  

The ability of a DNA sequence to accumulate mutations without manifesting significant changes in 
phenotype has been termed “mutational robustness” (de Visser et al., 2003; Bershtein et al., 2006), and we will use 
this term throughout this work to describe the degree to which different GFP genes can tolerate amino 
acid substitutions without losing fluorescence. In terms of fitness landscape imagery (Wright, 1932), 
mutationally robust genes such as amacGFP and ppluGFP2 can be thought of as having flatter fitness 
peaks, while mutationally fragile genes such as cgreGFP and avGFP have sharper or steeper fitness peaks. 

We separately looked at genotypes which maintained WT-level fluorescence and genotypes which 
were non-functional, with increasing numbers of mutations. As a simple measure of mutational 
robustness, we determined the numbers of mutations necessary to either eliminate fluorescence, or cause 
it to fall below WT levels in 50% of genotypes, by fitting a curve to this data and solving for f(x) = 0.5 (Figure 
7). We affectionately termed these values “mutational lethal dose 50”, or MutLD50(Dark) and MutLD50(WT) 
respectively. MutLD50 values (WT/Dark) for the various GFP orthologues were as follows: 0.9/3.2 
(cgreGFP), 2.2/4.1 (avGFP), 1.8/5.7 (amacGFP), 1.9/5.7 (amacGFP:V11L), 1.7/6 (ppluGFP2). (Note: these 
values differ marginally — between 0-0.2 — from those published in Gonzalez Somermeyer et al., 2022 due to the 
rescaling of amacGFP and ppluGFP2 datasets to the cgreGFP range of values which was done as part of this 
dissertation. This rescaling was done to improve direct comparability of fluorescence values across 
datasets after adding five new local landscapes in 2.6. Novel cgreGFP-Derived Genes). 

Interestingly, mutational robustness did not appear to cluster according to the genes’ sequence 
identity: for instance, amacGFP and avGFP, the two closest genes at 82% shared amino acid identity, 
exhibited opposite tendencies in this regard. 

 

.  
FIGURE 7. Number of mutations required to critically affect fluorescence in 50% of genotypes. For each gene and for increasing 
numbers of mutations, the fraction of assayed genotypes maintaining WT-level fitness (i.e. fluorescence values within 2 standard 
deviations of the WT) is shown in green, and the fraction of non-functional genotypes (i.e. fluorescence values within the darkest 
FACS gate) in black. Each set of points is fitted with a logistic curve, f(x) = L/(1 –  e—k(x—x0)). The number of mutations x at which the 
fraction of genotypes with WT-level fitness drops below 50% (MutLD50(WT)) was determined by calculating the inverse of the fitted 
function and solving for f(x) = 0.5, and is marked by a vertical dotted green line. The same procedure was done of the fraction of 
non-functional genotypes (MutLD50(Dark)), in black. 
 
 
 

2.2. Intramolecular epistasis 

 
We calculated epistasis as the difference between the observed fluorescence of a given genotype and 

its expected fluorescence in the absence of epistasis. In the absence of epistasis, the joint effect of all 
mutations is by definition equal to the sum of their individual effects (see: 4.7.6. Calculation of mutation effects 

and epistasis), with deviations from this rule being caused solely by measurement error.  
To minimize false discovery of epistasis, we set a minimum threshold of |0.3|, as in Sarkisyan et al., 2016, 

and did not accept values under this threshold as necessarily indicative of real epistasis. For some analyses 
focused specifically on cases of strong epistasis, we set the threshold even higher, as indicated in the 
relevant sections. A difference of |0.3| is equivalent to a two-fold difference between measured and 
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expected fluorescence values. This value falls well outside our typical range of measurement errors (see: 
4.7.7. Estimation of noise) and therefore may even lead to an underestimation of the actual amount of weaker 
epistatic interactions. 

 

2.2.1. Epistasis is predominantly negative and a feature of sharper peaks 

The majority of observed epistasis was negative, meaning that the measured fluorescence of multi-
mutant genotypes was less than that expected under an additive model of non-interacting mutation 
effects (Figure 8a) Furthermore, epistasis was much more common overall in mutationally fragile libraries 
(cgreGFP, avGFP) than in robust ones (amacGFP, ppluGFP2) (Figure 8a,b). The latter finding is consistent 
with the observed threshold effects mentioned previously: if mutations are acting, even additively, upon 
an intermediate phenotype such as protein stability which results in sudden fluorescence loss past a 
certain threshold, then crossing this threshold will be detected as negative epistasis when measured in 
terms of fluorescence effects (Starr & Thornton, 2016). The lower the threshold, the more frequently epistasis 
will be detected.  

In accordance with the above, if there exists a link between mutational robustness and the 
pervasiveness of epistasis due to the relationship of both with protein stability (or any other underlying 
phenotype), it may follow that negative epistasis in robust genes will be more likely to manifest when a 
higher number of mutations are in play. Epistatic interactions involving three or more mutations have 
been termed higher order epistasis (Weinreich et al., 2013). In our data, the distribution of epistasis as a 
function of the number of mutations also differed between libraries. In the case of the more mutationally 
robust amacGFP and ppluGFP2, genotypes with more (5-7) mutations were more likely to display negative 
epistasis than genotypes with fewer (3-4) mutations, while the opposite was true for the mutationally 
fragile cgreGFP. Indeed, with the exception of avGFP, negative epistasis tended to peak in genotypes with a 
similar number of mutations as the gene in question’s MutLD50(Dark) (Figure 8c). 

On the other hand, positive epistasis, while rare, tended also to be of higher order (Figure 8c). 
However, this may partially be a consequence of the experimental setup: the range of data measurements 
does not extend very far past WT bright values (Figure 6a), making the beneficial mutation effects more 
difficult to detect than deleterious effects on the WT. The detection of positive effects and positive 
epistasis therefore depends on the expected phenotype to be low. Because the expected fluorescence under 
the additive model tends to be inversely proportional to the number of mutations, positive epistasis may 
be more easily detected in genotypes with a higher mutation count, which may not necessarily reflect its 
true distribution. 

 

.  
FIGURE 8. Overview of epistasis. All avGFP data shown in this figure is taken from Sarkisyan et al., 2016. (a) Cumulative 
distribution of observed epistasis in all datasets. Dashed vertical lines places at -0.3 and 0.3 indicate the minimal values for 
epistasis considered in this work; percentages indicate, for each library, the proportion of genotypes displaying epistasis below or 
above these limits, out of all genotypes where epistasis was calculable. (b) For n mutations (X axis), the fraction of genotypes 
observed to be functional, out of all those expected to be so under an additive model of mutation contributions. The cutoff for 
functionality was chosen to be the upper border value of the darkest FACS gate, except for avGFP, where the cutoff was set to 3 as 
in the original publication. In the absence of epistasis, Observed/Expected values are expected to equal 1. (c) Prevalence of higher 
order negative epistasis of varying magnitudes (color), and positive epistasis over 0.3 (black). Dashed vertical lines mark the 
number of mutations needed to eliminate fluorescence in 50% of genotypes (MutLD50(Dark)). 
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2.2.2. Physically proximal residues are more likely to exhibit pairwise epistasis 

In folded proteins, residues which are distant from each other in the primary structure (amino acid 
sequence) may be physically near in the tertiary one (3D conformation). Amino acids which are spatially 
proximal have greater opportunities to interact with one another, so pairwise epistatic interactions may 
be expected to be more prevalent between adjacent  residues in a protein’s folded structure (Melamed et al., 

2013; Sarkisyan et al., 2016). 
Using PyMOL and the proteins’ solved 3D structures, we calculated the physical distance between all 

pairs of amino acids, defined as the minimal distance, in Ångströms, between any two atoms belonging to 
different residues (see: 4.7.8. Determination of physical distances between residues). For all proteins, the average 
distance between epistatic pairs was less than for non-epistatic pairs (Figure 9). This difference was 
particularly pronounced in the flatter landscapes where epistasis was rarer overall (amacGFP, ppluGFP2), 
consistent with the hypothesis of mutations affecting fluorescence through an intermediate phenotype 
exhibiting a threshold effect (e.g. protein stability): in mutationally fragile genes where just two mutations 
are often sufficient to cross this threshold, pairwise epistasis can be expected to be less dependent on 
specific (proximal) interactions between residue pairs. 

 
 

.  
FIGURE 9. Distances between epistatic and non-epistatic pairs of residues. Distances in Ångström represent the minimal distances 
between amino acids (i.e. between any atom from one residue and any other atom from the other residue). Pairs of residues were 
considered epistatic if they displayed epistasis values under -0.3 or over 0.3 (representing a two-fold change in fluorescence 
compared to the non-epistatic expectation). KDE plots show the distributions of distances (Å) between amino acids of epistatic and 
non-epistatic pairs. Median values are indicated by vertical dashed lines; in all cases, the difference was highly significant (Mann-
Whitney U test, all p-values < 10-10). 
 

2.2.3. Sign epistasis is rare but detectable 

Sign epistasis refers to cases where a given mutation is observed to have a deleterious effect in one 
genetic background, but a neutral or even beneficial effect in another (de Visser et al., 2011; Starr et al., 2016; 

Poelwijk et al., 2016). As the majority of mutations were measured in multiple genetic contexts within the 
same library (see: 4.7.6. Calculation of mutation effects and epistasis), we were able to see how consistent mutation 
effects were in different contexts (variants of the same gene), and how frequently its sign changed. While 
many mutations displayed occasional severely deleterious effects even if they were near-neutral in the 
majority of backgrounds, mutations with effects ranging from significantly deleterious (-0.3, or a two-fold 
decrease in fitness) to significantly beneficial (+0.3, or a two-fold increase in fitness) were rare. AvGFP had 
the highest incidence of single mutations displaying effects below -0.3 and above 0.3, at 134/1431 (9.4%) of 
mutations assayed in multiple backgrounds, followed by cgreGFP (47/1412, 3.3%), ppluGFP2 (24/1312, 
1.8%), amacGFP (10/1383, 0.7%), and amacGFP:V11L (5/1247, 0.4%). This was roughly proportional to the 
overall rates of epistasis in each dataset (Figure 8a). 

A rare subset of sign epistasis is reciprocal sign epistasis (Kondrashov & Kondrashov, 2015), wherein 
individually deleterious mutations rescue each other’s effects to result in a net positive joint effect (or, 
conversely, wherein individually beneficial mutations are mutually incompatible). While rare, we did 
detect instances of reciprocal sign epistasis in our data. For example: the cgreGFP dataset contained two 
triple-mutant genotypes, R96S:Q183R:R234C and R96S:T113M:Q183R, both of which were assigned nearly-
WT fitness values. The mutations R96S and Q183R, present in both genotypes, were individually lethal to 
fluorescence; the R96 residue is known to play a role in chromophore maturation (Wood et al., 2005). The 
other two mutations, R234C and T113M, were individually near neutral. Therefore, the high fluorescence 
levels of the two triple-mutant genotypes — if accurate — were likely due to reciprocal sign epistasis 
between R96S and Q183R. Existing literature has reported that the “debilitating mutation R96A or R96M 
can be rescued by Q183R” (Banerjee et al., 2017; Wood et al., 2005), although we are not aware of existing 
references to R96S. To confirm that this was a genuine case of reciprocal epistasis, we individually 
expressed the R96S, Q183R, and double mutant genotypes in bacteria (Figure 10), which revealed that 



 

14 

while both single mutants were non-fluorescent, fluorescence in the double mutant was successfully 
rescued. 

 

.  
FIGURE 10. Example of reciprocal sign epistasis in cgreGFP. (a) 3D structure of cgreGFP, with the chromophore colored in yellow 
and positions R96 and Q183 labeled in black. (b) Spots of E. coli expressing WT cgreGFP, cgreGFP:R96S, cgreGFP:Q183R, and 
cgreGFP:R96S:Q183R. Mutant sequences were generated by amplifying WT cgreGFP with primers containing point mutations, then 
ligating the fragments into an expression vector. These cells confirm the non-functionality of both single R96S and Q183R 
mutants, as well as the fluorescence of the double mutant, proving the existence of reciprocal sign epistasis between these two 
mutations. Cells were grown on LB/ampicillin-agar, overnight at 30oC. 
 

2.3. Structure, stability, and mutational robustness 

 
Mutations affecting key locations of a protein’s structure, such as an enzyme’s catalytic site, are likely 

to be deleterious for obvious reasons. In the case of fluorescent proteins, mutations affecting the 
chromophore itself, or residues involved in chromophore maturation, are expected to be mostly lethal 
even if the overall structure of the final, folded protein is largely undisrupted (Banerjee et al., 2017; Wood et al., 

2005). However, such mutations are only a small subset of all possible deleterious mutations. In general, the 
effect of a mutation on protein function is often believed to be a result of its underlying effect on protein 
stability and/or folding ability (Bloom et al., 2005; Bershtein et al., 2006; Zeldovich et al., 2007; Sarkisyan et al., 2016; Starr & 

Thornton, 2016). If a mutation causes misfolding, it follows that the resulting protein’s functionality will be 
affected; similarly, even if a mutated protein does successfully fold, its function may be impaired if its 
structural integrity is more sensitive to perturbations in its molecular environment. 

We analyzed the effects of mutations as a function of their position in the protein sequence to see the 
importance of protein structure on fluorescence, and compared mutations’ observed effects with their 
computationally predicted effects on protein folding. We also tested WT, folded proteins for their 
thermostability and sensitivity to chemical denaturing agents, on the basis that less physically stable GFPs 
may also be less tolerant to mutations due to their structure being more easily disrupted. 

 

2.3.1. Buried residues are more sensitive to mutations 

The tertiary structure of fluorescent proteins consists of a barrel made of eleven β-sheets which 
surround the fluorescent chromophore inside. The side chains of the amino acid residues along the β-
sheets are alternatingly inward- and outward-facing. Residues whose side chains are internally oriented 
(“buried” residues) are thus more likely to interact with and/or affect the immediate surroundings of the 
chromophore than residues with externally oriented side chains (“exposed” residues) (Figure 11). 
Mutations in buried sites can thus be expected, on average, to have greater fluorescence-dampening 
effects due to altering the chromophore environment; this was previously observed to be the case for 
avGFP (Sarkisyan et al., 2016). 

Our data confirmed this was the case for amacGFP, amacGFP:V11L, cgreGFP, and ppluGFP2 as well. 
Comparisons of fitnesses of single-mutant genotypes showed drastic differences in overall distribution as 
well as median fluorescence depending on whether the mutation affected a buried residue or an exposed 
one (Figure 12a,b). This tendency was also clear in genotypes with multiple mutations, where maintenance 
of fluorescence was in general dependent on how many of those mutations affected buried sites (Figure 
12b). 
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FIGURE 11. Close-up of buried and exposed residues. Tertiary structure of a 
representative GFP (cgreGFP), with residues colored according to the median effect of 
mutations in that position, as in Figure 12a, where darker colors signify more 
deleterious effects on fluorescence. The central chromophore, as well as residues 
along one of the barrel’s β-sheets, are highlighted with their side chain structures 
visible. 
 
 
 
 
 
 
 
 

.  
FIGURE 12. Effects of mutations in solvent-exposed and buried positions. (a) Median effects of mutations according to their 
position along the protein sequence. Only genotypes with a single mutation were used in this calculation. Sequence positions of 
orthologous GFPs are shown structurally aligned; white cells indicate alignment gaps or lack of data. Secondary structures were 
extracted from the proteins’ PDB files: β-sheets are represented by arrows and α-helices by squiggly lines. (b) Distributions of 
fluorescence of genotypes with a total of one, two, or three mutations, split according to the proportion of those mutations 
affecting a buried site. KDE plots are scaled so that the area under each curve is equal to 1. The number of data points (genotypes) 
in each category is stated in color on the right. 
 

2.3.2. Mutations predicted to be more destabilizing are more deleterious 

A commonly used metric for predicting a mutation’s effect on protein stability in terms of protein 
folding is ΔΔG (Kellogg et al., 2011; Zhang et al., 2012; Bigman & Levy, 2018), which measures the difference in the 
Gibbs free energy change (ΔG) of the protein with and without the mutation: ΔΔG = ΔG(mutant) – ΔG(WT). The ΔG 
itself refers to the energy change between a protein’s unfolded and folded states: ΔG = G(unfolded) – G(folded), with 
subzero values being thermodynamically conducive to protein folding. The higher the ΔΔG value is, the 
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more destabilizing the mutation in question is expected to be, as the protein is predicted to fold more 
poorly with the mutation than without it. Conversely, negative ΔΔG values indicate the mutation is 
predicted to be stabilizing.  

In avGFP, a moderate negative correlation (Spearman’s ρ = -0.45) was found between mutations’ 
predicted ΔΔG values and their effects on fluorescence (Sarkisyan et al., 2016), consistent with higher ΔΔG 
values being indicative of destabilizing mutations. 

In order to calculate ΔΔG predictions, a solved crystal structure of the protein of interest is required. 
Those of cgreGFP and ppluGFP2 have been publicly available since 2011 and 2006 respectively (Malikova et 

al., 2011; Wilmann et al., 2006), while the crystal structure of amacGFP was determined as part of this work (see: 
4.8.4. Crystallization and structure of amacGFP). Calculation of ΔΔG values for all libraries, as well as amacGFP 
protein crystallization, was performed by Nina Bozhanova (see: 4.9.2. Calculation of ΔΔG predictions). 

Direct comparison of point mutations’ predicted ΔΔGs versus observed fitness effects  showed only 
weak negative correlations in the case of amacGFP and ppluGFP2, while that observed in the cgreGFP 
library was somewhat stronger (Figure 13a). It is worth noting that mutations in the more epistatic and 
less mutationally robust libraries (cgreGFP and avGFP) showed stronger, if still moderate, correlations 
between their predicted ΔΔG values and measured fitness effects, compared to the less epistatic and more 
mutationally robust libraries (amacGFP and ppluGFP2). 

Nevertheless, a categorical comparison of neutral mutations (observed to maintain fluorescence levels 
within one standard deviation of the wild-type) and lethal ones (observed to eliminate fluorescence) 
showed a clear and significant tendency for lethal mutations, as a group, to have higher (more 
destabilizing) predicted ΔΔG values than neutral mutations (Figure 13b). This suggests that there is indeed 
a link between a mutation’s effect on measurable protein fitness and its underlying effect on protein 
folding, even if any singular mutation’s ΔΔG value is not always enough to confidently predict its actual 
effect.  

Moreover, the difference between the ΔΔG distributions of neutral and lethal mutations was more 
pronounced in the mutationally fragile libraries than in the robust ones: in avGFP and cgreGFP, only ~1% 
of neutral mutations were associated to ΔΔG values higher than the median for lethal mutations, while for 
amacGFP and ppluGFP the value was closer to ~10% (Figure 13b). This trend suggests a possible link 
between a protein’s mutational robustness and its physical stability — i.e., proteins who are better able to 
tolerate multiple co-occurring mutations may also better withstand individual mutations with greater 
destabilizing effects. This would be consistent with a robust protein’s destabilization threshold being more 
difficult to reach, thus requiring either more mutations, or more highly deleterious ones. 

 

.  
FIGURE 13. ΔΔG predictions versus observed effects of single mutations. (a) Scatterplot showing the relationship between a 
mutation’s measured fitness effect and its predicted ΔΔG value. Each dot is a different mutation; lighter colors represent higher 
density of data points. Spearman’s correlation coefficient is indicated in the top left corner of each plot; the p-value in all cases 
was under 10-15. (b) Distribution of ΔΔG values of neutral mutations (causing a loss of fluorescence no greater than one standard 
deviation from the WT) and lethal mutations (causing fluorescence to drop to the values of the darkest FACS gate). Mann-Whitney 
U tests show a significant difference between the two distributions in all cases, with p-values under 10-5. Dashed vertical lines 
represent the median ΔΔG value of each group. The fraction of neutral mutations associated with a ΔΔG higher than the median of 
the lethal group is highlighted in red. 
 

2.3.3. Dark variants show greater propensity for aggregation 

Misfolded proteins are highly prone to aggregation in general (Hartl & Hayer-Hartl, 2009). If deleterious 
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mutations affect fluorescence through their effect on protein stability and/or folding, it may follow that 
non-functional — likely misfolded — GFP variants should be expected to be more prone to forming protein 
aggregates than their functional, bright counterparts. We bulk tested bacteria grown from sorted cells 
from the darkest (P3) and brightest (P10) FACS gates (see: 4.4.2. FACS setup). Cells were lysed and centrifuged, 
and the insoluble (pellet) and soluble (supernatant) fractions were run on a protein gel (see: 4.9.10. SDS-PAGE 

and Western Blot). (Note: this was performed only for amacGFP, cgreGFP, and ppluGFP2 libraries, as avGFP 
cells from Sarkisyan et al., 2016 were not available.) The presence of mKate2-GFP fusion protein was detected 
by Western Blot using an anti-His-Tag antibody (our construct contains a 6H tag at mKate’s N-terminus; 
see: 4.2.4. Generation of destination vector). Protein extract from all bright cells contained mKate2-GFP primarily 
in the supernatant, indicating the variants were soluble, as expected for correctly-folded GFP. On the 
other hand, protein extract from dark cells, i.e. containing GFP variants with highly deleterious mutations, 
showed much greater mKate2-GFP localization in the insoluble pellet fraction than was the case for bright 
variants. This tendency of forming insoluble aggregates is consistent with protein misfolding.  

Interestingly, not all GFP orthologs were equally aggregation-prone. Dark amacGFP variants showed 
the highest tendency to aggregate, followed by dark ppuGFP2 and cgreGFP variants. We performed SEC-
MALS analysis — size exclusion chromatography with multi-angle light scattering — to determine the 
natural oligomeric states of our WT orthologs (see: 4.9.9. SEC-MALS). At physiologically relevant 
concentrations, avGFP and cgreGFP are reportedly monomeric and dimeric, respectively (Malikova et al., 

2011), and this was corroborated by SEC-MALS peak analysis (Figure 15). PpluGFP2 is reported to run as a 
dimer on gel-filtration chromatography (Wilmann et al., 2006), and TurboGFP, derived from ppluGFP2, is also 
described as dimeric in concentrations up to 5 mg/ml (though tetrametic in crystal form) (Evdokimov et al., 

2006). However, SEC-MALS on ppluGFP2 (1 mg/ml) indicated it to be primarily tetrameric, while also 
forming high-molecular weight oligomers/aggregates. Finally, amacGFP and amacGFP:V11L appeared to 
be an approximately even mix of monomers and dimers. Given these results, there did not appear to be a 
correlation between a WT protein’s usual oligomeric state and its propensity to aggregate when mutated, 
nor with its mutational robustness. 

 

.  
Figure 14. Protein gels showing aggregation of dark vs. bright GFP mutants. Figure adapted from Gonzalez Somermeyer et al., 
2022, Figure 4-S2. AmacGFP, cgreGFP, and ppluGFP2 cells from the darkest (P3) and brightest (P10) sorted FACS gates were lysed. 
Full lysates (lanes 1-4), as well as the pellet (lanes 5, 7, 8) and supernatant (lanes 6, 8, 10) fractions derived from centrifuging the 
lysates, were stained with Coomassie (top) and Western Blotted (bottom) using an anti-His Tag antibody expected to label mKate2-
GFP fusion proteins (~53-56 kDa, depending on the GFP variant). Bright protein variants (right) are detected primarily in the 
soluble fraction (supernatant) of the lysate, while dark protein variants (left) are more likely to be detected in the insoluble 
fraction (pellet). 
 

.  
Figure 15. SEC-MALS analysis of WT GFPs. Figure adapted from Gonzalez Somermeyer et al., 2022, Figure 4-S2. Depending on the 
gene, the molecular weight of a GFP monomer is between 25-27 kDa. Peak analysis of different GFP orthologs, run at 1 mg/ml, 
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indicates primarily monomeric (avGFP), dimeric (cgreGFP), mixed monomeric and dimeric (amacGFP, amacGFP:V11L), or 
tetrameric (ppluGFP2) states. PpluGFP2 also displays a population of high-molecular weight aggregates. Mw/Mn ratios for all 
peaks were ideal, at between 1 and 1.002, except for the larger ppluGFP2 aggregates (Mw/Mn = 1.147) . 
 

2.3.4. Thermostability correlates with mutational robustness with one exception 

Assessing a protein’s sensitivity to temperature is commonly part of studying its physical stability. We 
purified WT amacGFP, amacGFP:V11L, cgreGFP, ppluGFP2 and avGFP proteins (see: 4.8. His-tagged protein 

purification) and assayed their thermostability through a series of complementary tests in which protein 
samples were heated at a constant rate (see: 4.9.8. Thermosensitivity assays). Melting temperatures were 
determined by differential scanning fluorimetry, which measures the temperatures of protein unfolding 
and aggregation by monitoring changes in fluorescence emission of aromatic residues (Figure 16a,c); 
differential scanning calorimetry, which measures denaturation temperature by monitoring the 
difference in heat absorption between the sample and a reference (Figure 16d); circular dichroism, which 
measures loss of secondary structures by monitoring absorbance at a specified wavelength (Figure 16e,f); 
and by heating purified proteins in a qPCR machine, which directly measures loss of green fluorescence 
emission itself (Figure 16b).  

Results from the various types of test were largely consistent and comparable. Specific melting 
temperatures for the same protein varied across methods by 1-2oC, which is not unexpected given that 
melting temperatures are sensitive to a wide variety of factors including temperature ramp rate, pH, and 
salt or buffer composition (Crowther et al., 2009), and different methods required slightly different sample 
treatments by necessity. The overall pattern, however, was the same regardless of the assay used: cgreGFP 
had the lowest melting temperature, followed, in order, by amacGFP:V11L, amacGFP, ppluGFP2, and 
avGFP. Furthermore, logistic (sigmoid) functions fitted to the CD data indicated that cgreGFP also had the 
steepest transition slope (followed by amacGFP:V11L, amacGFP, avGFP, and ppluGFP2 in order), indicating 
that it not only denatured at lower temperatures, but also did so more quickly.  

With the exception of the mutationally fragile yet highly thermostable avGFP, the other four proteins 
indicated a correlation between tolerance to mutations and tolerance to heat. In order of most to least 
sensitive to both, they were: cgreGFP, amacGFP:V11L, amacGFP, and ppluGFP2. This suggests that lower 
physical stability of the WT state may be behind reduced mutational robustness: if a protein’s starting 
point is already less stable, it may take fewer mutations, on average, to push it past its viability threshold 
and cause it to misfold.  

AvGFP was an outlier in this regard, displaying the highest melting temperature of all tested GFPs 
despite being one of the least mutationally robust; indeed, a comparison of its CD spectra before and after 
heating suggest it retains some secondary structure even after heating to 98oC, whereas the spectra of all 
other proteins flattens out to zero after heating (Figure 16e). Possibly however, the shape of the avGFP 
landscape — a sharp peak featuring pervasive epistasis — was in part influenced by its gene expression 
levels during fluorescence measurements, which were higher than those of amacGFP, cgreGFP, or 
ppluGFP2 libraries (see: 3.1. On protein stability and selecting candidate genes for landscape surveys) 

 
 

.  
Figure continued on next page. 
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FIGURE 16. Thermostability of GFP orthologues. Figure adapted from Gonzalez Somermeyer et al., 2022, Figure 4. Vertical dashed 
lines in (a), (b), (c), (d), and (f) indicate melting temperatures of different GFPs. In (a), (b), (d), and (f), temperature was increased 
at a rate of 1°C per minute, in (c), at a rate of ~2°C per minute. (a) DSF-measured thermal unfolding. The first derivative 
350/330 nm emission ratio is shown. Shaded areas indicate standard deviation of three replicates. (b) Melting curves of green 
fluorescence emission (510 nm) as a function of temperature measured on a qPCR machine. Shaded areas indicate standard 
deviations of eight technical replicates. (c) DSF-measured thermal aggregation. The first derivative of the light scattering is 
shown. Shaded areas indicate standard deviation of three replicates. (d) Specific heat capacities measured by DSC in duplicate. (e) 
Spectra measured by circular dichroism before and after heating. Vertical dotted lines mark the wavelength monitored during the 
melting curves represented in (f). (f) Circular dichroism melting curves monitored at 208 nm (avGFP) or 218 nm (all other genes), 
fitted with a logistic curve. For avGFP, monitoring at 218 nm (light grey) did not reveal a transition. 
 

2.3.5. Protein sensitivity to urea does not correlate well with mutational robustness 

Another widespread way to assess protein stability is by the use of chemical denaturing agents, such 
as urea or guanidinium chloride (Reddy et al., 2012). We subjected all WT GFPs to 9 M urea and scanned full 
absorbance and fluorescence spectra at regular intervals for a total period of ~60 hours (see: 4.9.7. Urea 

sensitivity assays). Protein denaturation is naturally expected to result in fluorescence loss as well as to 
changes in the overall absorbance spectra (Sarkisyan et al., 2012).  

Different GFPs displayed very different sensitivity to urea, as was immediately noticeable in their 
spectral shifts over time (Figure 17a,b), with ppluGFP2 and avGFP being the least affected, and 
amacGFP:V11L the most, closely followed by cgreGFP. We tracked the signal loss at the wavelengths 
corresponding to the absorbance and fluorescence peaks of each protein in order to determine their half-
lives, i.e. time points at which the signal fell below half of its initial value. Fluorescence half-life times in 
9 M urea ranged from ~1 h (amacGFP:V11L) to ~2.5 h (amacGFP, cgreGFP), 16 h (ppluGFP2), and 57 h 
(avGFP) (Figure 17d). Absorbance peaks for avGFP and ppluGFP2 never fell below half of their initial values 
during the 60 hours of measurements, while half-lives for amacGFP, amacGFP:V11L, and cgreGFP were 
~19 h, ~26 h, and ~14 h, respectively (Figure 17c). 

While the mutationally robust ppluGFP2 was comparatively stable in 9 M urea and the mutationally 
fragile cgreGFP was degraded rapidly, the opposite pattern was true for the mutationally fragile yet urea-
resistant avGFP and the mutationally robust yet urea-sensitive amacGFP:V11L. The sample size of only five 
data points, however, is likely insufficient to draw any conclusions about the correlation, or lack thereof, 
between the two attributes.  

Furthermore, fluorescence loss curves for amacGFP, amacGFP:V11L, and ppluGFP2 could be fitted 
closely by the sum of two exponential decay functions, while this was not true of cgreGFP and avGFP. 
Indeed, cgreGFP in particular displayed a visibly different pattern of fluorescence loss over time than, for 
instance, amacGFP, despite the two proteins sharing nearly the same half-life (Figure 17d). This suggests 
that denaturation of different fluorescent proteins in urea is likely influenced by a variety of complex 
underlying factors. 
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FIGURE 17. GFP sensitivity to urea. (a) Absorbance (blue) and emission spectra (green) of purified WT proteins in 9 M urea. Spectra 
were scanned for ~60 hours at regular intervals; the darker the line, the later the time point. Values are normalized such that the 
spectrum peak at time point zero equals 1. (b) As in (a), but in PBS instead of urea. (c) Loss of absorbance signal over time in 9 M 
urea, monitored at the wavelength corresponding to the absorbance peak for each protein. With a 5 nm resolution, absorbance 
peaks were: 495 nm (amacGFP, amacGFP:V11L), 485 nm (cgreGFP), 480 nm (ppluGFP2), or 395 nm (avGFP). Curves could be 
successfully fit with a logistic function (black). Half-lives are labeled where possible in colored vertical lines. (d) As in (c), but 
showing fluorescence emission instead of absorbance. With a 5 nm resolution, fluorescence peaks were: 510 nm (amacGFP, 
amacGFP:V11L, avGFP) or 500 nm (cgreGFP, ppluGFP2). Curves for amacGFP, amacGFP:V11L, and ppluGFP2 could be fit with a 
simple sum of two exponential decay functions, but cgreGFP and avGFP could not. 
 

2.3.6. Case study: V11L alters amacGFP’s sensitivity to mutations in a structure-dependent way  
As mentioned previously, around one third of all amacGFP genotypes contained the V11L mutation 

(see: 4.2.2. Generation of mutant sequences, Table 1), which is enough data for amacGFP:V11L to be analyzed 
separately from amacGFP. As a standalone mutation in the WT amacGFP background, V11L may be 
considered neutral since its measured effect (approximately -0.01) falls within one standard deviation of 
the WT (approximately -0.03, as calculated from the distribution of WT-coding genotypes with 
synonymous mutations, Table 1). AmacGFP:V11L’s mutational robustness is the same as amacGFP’s (Figure 
6e,f), and epistasis was similarly uncommon in both datasets (Figure 8). 

The effects of nearly 1000 single amino acid substitutions were measured in both amacGFP and 
amacGFP:V11L backgrounds. We looked at the difference between each mutation’s effect in one gene 
versus the other, as a function of its position along the protein sequence. The difference was calculated as 
Effect(V11L) – Effect(WT), so negative values indicate a worse effect in the V11L background than in the WT, 
while positive values indicate the opposite. For the majority of positions, mutations had comparable 
effects in both genes (Figure 18c). However, ~10% of positions showed a trend towards harboring 
mutations more deleterious in one background than the other (Figure 18a,b). Notably, the sites at which 
mutations were most deleterious in amacGFP:V11L versus amacGFP were all clustered at one of the barrel 
lids (Figure 18d), suggesting that the V11L mutation, while not affecting amacGFP’s mutational robustness 
overall, has an effect on amacGFP structure (and/or folding ability) such that tolerance to additional 
mutations is positionally dependent. 

Furthermore, as shown previously, assays of thermal and urea sensitivity on WT proteins showed that 
amacGFP:V11L had a lower melting temperature (Figure 16) as well as lower stability in urea (Figure 17) 
than amacGFP. This shows that V11L affects the overall stability of the final folded protein (possibly by 
influencing the molecular environment of the barrel lid (Figure 18d)), even if its observable effects on 
mutational robustness and fluorescence in standard culture conditions are minimal.  

Taken together, the case of amacGFP:V11L both supports the claim of mutations affecting a protein’s 
underlying structure and stability (even if they may not immediately affect the phenotype of interest), 
while also highlighting the complicated nature of the relationship between proteins’ physical properties 
and their mutational robustness. 
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FIGURE 18. Positional differences of mutation effects in amacGFP and amacGFP:V11L. (a) Difference in effect, measured as 
Effect(amacGFP:V11L) – Effect(amacGFP), of mutations measured in both backgrounds, at positions where mutations were on average less 
deleterious in amacGFP:V11L than in amacGFP. The average difference in effect at each position is marked by a green line. The 
light green shaded area shows the region into which the majority of average positional differences fell. (b) As (a), but showing 
positions where mutations were on average more deleterious in amacGFP:V11L than in amacGFP. (c) Distribution of the average 
difference in mutation effects of all 238 sequence positions. The shaded green area, from -0.1 to 0.1, includes 90% of positions. Only 
positions falling outside this region are shown in (a) and (b). (d) 3D structure of amacGFP, with residues colored according to the 
average difference in effect between amacGFP and amacGFP:V11L at each position. Red indicates sites where mutations are on 
average worse in amacGFP:V11L than in amacGFP; blue indicates the opposite. Positions from (a) and (b) are shown here in 
spheres representation. V11L itself is shown in black. 
 

2.4. Epistasis across genes 

 
After considering each local landscape individually, we asked how transferable the information from 

each gene was: how correlated are mutation effects in different gene contexts? How prevalent is sign 
epistasis across genes — and therefore, how rugged the “global” GFP fitness landscape? We already 
observed that different genes displayed different mutational robustness, frequency of epistasis, and even 
structural properties of the mature WT protein. To understand to what degree knowledge about one gene 
is useful for describing another, we directly compared mutation effects across genes and looked at the 
effect of extant mutations (known to have been observed in other, functional GFPs in nature). 

 

2.4.1. Extant mutations are less likely to be deleterious 

Drawing from UniProt and available literature describing the discovery of novel fluorescent proteins 
in nature (Alieva et al., 2008; Fourrage et al., 2014; Labas et al., 2002; Shagin et al., 2004; Baumann et al., 2008), we manually 
curated a list of 68 extant, confirmed-functional FP sequences with recorded emission spectra. We used 
the multiple sequence alignment tool T-Coffee Expresso (Armougon et al., 2006) to structurally align these 68 
protein sequences along with avGFP, amacGFP, cgreGFP, and ppluGFP2. The majority of these proteins 
shared between 25-50% sequence identity with each other. We will refer to amino acid states observed in 
one or more wild GFPs, at a given position of the alignment, as “extant states” or “extant mutations”. 

We expected extant states to generally be, in the absence of epistasis, non-deleterious, based on the 
fact that they are observed in nature to be present in functional FP sequences. Indeed, in comparisons of 
genotypes with the same total number of mutations, genotypes containing solely extant states were 
overall brighter than those containing solely non-extant mutations; this was the case for all of our focal 
genes (Figure 19). However, even combinations of exclusively extant states were not universally neutral, 
consistent with the accumulation of individually small deleterious effects. 
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FIGURE 19. Effects of extant and non-extant mutations. For different total numbers of amino acid substitutions, fluorescence 
distributions of genotypes containing exclusively non-extant mutations (i.e. mutations not confirmed to exist in nature) are 
shown in dark green, and of those containing exclusively extant mutations (i.e. which have been documented in other functional 
GFPs) are shown in light green. Only categories containing at least 15 genotypes in total are shown. Median values are also plotted, 
in the respective color. 
 

2.4.2. Changes in mutation effects across genes is not proportional to genes’ sequence identity 

For any given pair of genes, hundreds of mutations existed for which measurements had been carried 
out in both backgrounds. We defined a mutation as being the same in two different genes if it both a) 
occurred in the same position, according to the structurally aligned protein sequences (Figure 3b), and b) 
mutated to the same final amino acid state (regardless of the original WT state in that position). For each 
pair of genes, we measured the correlation between mutations’ effects in one gene background and their 
effects in the other. The nearly identical amacGFP and amacGFP:V11L genes displayed a very strong 
correlation of mutation effects (Figure 20a), which is expected (Greenbury et al., 2016). Beyond that, we 
observed that overall, near-neutral mutations tended to remain near-neutral regardless of the gene 
background, and lethal mutations tended to remain lethal resulting in significant but moderate 
correlations seen in Figure 20a. However, correlations appeared independent of the sequence identity 
shared by the pair of genes under consideration (Figure 20b), even though mutation effects can be 
expected to change over the course of evolution (Orr, 1995; Starr & Thornton, 2016; Bazykin, 2015) and thus to 
correlate with phylogenetic or sequence distance. 

In a similar vein, we looked at the rate of change of a mutation’s sign, i.e. how frequently a neutral or 
beneficial mutation became deleterious in a different gene background. Frequency of sign epistasis is an 
indicator of the ruggedness of a fitness landscape, as it limits the viable mutational paths available 
between one sequence and another (Poelwijk et al., 2007; Saona et al., 2022). Furthermore, the probability of a 
mutation changing its sign from one background to another may be expected to increase as a function of 
the sequence divergence between the two backgrounds (Orr, 1995); this is the basis of, for instance, 
Dobzhansky-Muller incompatibilities, where speciation leads to increased genetic divergence, eventually 
to the point where mutations which are acceptable in one species are incompatible with the other (Orr & 

Turelli, 2001). For each pair of genes, we considered the fraction of mutations which were measured as 
neutral in one gene yet deleterious in the other, out of all the mutations which has been measured in both. 
Once again, sign epistasis was exceedingly rare between sequence neighbors amacGFP and amacGFP:V11L, 
but occurred in comparable amounts between other more distant pairs independent of their sequence 
distance (Figure 20c). 

 

.  
Figure continued on next page. 
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FIGURE 20. Effects of single mutations in different gene backgrounds. (a) Pairwise comparisons of the effects of single amino acid 
substitutions measured in multiple genes. The Spearman correlation coefficient is indicated; p-values were all below 10-8. (b) 
Spearman correlations from (a) as a function of the sequence divergence (100 – amino acid identity, in percent) between each pair 
of genes. (c) Prevalence of sign epistasis. For each pair of genes, the percentage of mutations which are neutral in one (causing 
fluorescence loss of less than two standard deviations from WT brightness) but deleterious in the other (causing fluorescence loss 
of more than five standard deviations from WT brightness), out of all mutations measured in both backgrounds. X axis as in (b). 
 
 

2.5. Machine learning-guided protein design 

 
As described previously, in the absence of epistatic interactions between residues, the phenotype of 

any given multi-mutant genotype could be predicted accurately by simply summing up the individual 
effects of the relevant mutations. Extrapolating from this, novel and functional genotypes with untested 
combinations of mutations could be readily created by selecting and incorporating any number of 
mutations observed to be neutral or beneficial. However, epistasis is rampant (Figure 8), making the joint 
effect of groups of mutations unpredictable. In practice, identifying compatible combinations of mutations 
with no understanding of their potential interactions can be expected to be as successful as the idea, 
frequently misattributed to Charles Darwin, of a blind man in a dark room searching for a black cat who 
isn’t there. 

To leverage our datasets of tens of thousands of genotype-phenotype measurements, we used our 
library data to train machine learning models to predict fitness from genotype (see: 4.10. Machine learning). 
We expected that a successful understanding of the rules governing a protein’s fitness landscape should 
enable not only describing the observed data, but also creating novel functional genotypes. To test this, we 
generated artificial protein sequences with up to 48 amino acid substitutions, predicted to fluoresce by ML 
models,  and experimentally tested them. Furthermore, as “more data = more better” is widely accepted to 
apply to machine learning (as long as the data is of good quality), we tested whether data from different 
GFP genes could be jointly applied to produce better results than data from one library alone. 

Our thanks go to Aubin Fleiss and Katya Putintseva for creating the machine learning models used in 
this section. 

 
 

2.5.1. Neural networks with sigmoid activation layers can transform fitness potential into 

fluorescence 

The amacGFP (including amacGFP:V11L), cgreGFP, ppluGFP2 and avGFP datasets were used separately 
to train a variety of neural net architectures to predict fitness from genotype (see: 4.10.1. Modeling of local 

landscapes), using 60% of the data for training, 20% for validation, and 20% for testing (Table 2). As expected, 
simple linear models performed notably better in predicting fluorescence in amacGFP and ppluGFP2 
datasets, where epistasis was less abundant, than in cgreGFP and avGFP datasets, as judged by the models’ 
R2 (Figure 21a). Building from that basic linear model, the addition of an output node with sigmoid 
activation improved predictions for all genes, though only very moderately in the case of cgreGFP (Figure 
21b), while the addition of an output subnetwork of ten sigmoid neurons followed by a final linear output 
node resulted in a substantial improvement in cgreGFP predictions and a small improvement in the 
already good performance for other genes (Figure 21c).  

The final network architecture was based on that of the models with output subnetworks. Optimized 
models consisted of one input layer which received one-hot encoded protein sequence information, one 
hidden layer of neurons with linear activation functions, a second hidden layer of neurons with sigmoid 
activation functions, and one final linear node which output the predicted fluorescence of the input 
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genotype (see: 4.10.1. Modeling of local landscapes). The optimized architectures performed similarly well for 
the different genes, with R2 values around 0.9 (Figure 21d). 

The output from the network’s linear layer can be understood as the fitness potential (P), a weighted 
sum of mutation effects (mi) on fitness such that P = α0 + α1m1 + α2m2 + … + αnmn. However, due to epistatic 
interactions and/or effects of mutations on intermediate phenotypes, the fitness potential alone does not 
reliably predict final fluorescence (Figure 21a). The much more accurate fluorescence predictions after the 
addition of a sigmoid layer show that the underlying relationship between fitness potential and 
fluorescence can be captured by non-trivial sigmoid functions, which is consistent with the libraries’ 
previously observed bimodal fluorescence distribution and mutational threshold effects (see: 2.1.1. 

Distributions of mutation effects on fluorescence are bimodal). The transformation of fitness potential into 
fluorescence output by the optimized architecture can be visualized in Figure 21e. 
 

 
Table 2. ML models and gene predictions: numbers and statistics. 

 avGFP amacGFP cgreGFP ppluGFP2 
R2 (linear model) 0.68 0.77 0.6 0.82 

R2 (sigmoid model) 0.9 0.86 0.63 0.85 
R2 (output subnetwork) 0.94 0.88 0.86 0.9 

R2 (optimized 
architecture) 

0.95 0.91 0.89 0.92 

N. mutations used across 
all novel genotypes 

— 359 243 427 

N. mutations used across 
successful novel 

genotypes 

— 210 218 225 

N. conditionally 
deleterious mutations 

used in successful novel 
genotypes 

— 28 (13.4%) 58 (26.7%) 33 (13.2%) 

 
 

.  
FIGURE 21. Fluorescence-predicting performance of machine learning models. In (a), (b), (c), and (d), each dot represents a 
genotype whose measured fluorescence is depicted on the Y axis; the corresponding fluorescence predictions output by the 
neural networks are shown on the X axis; lighter color represents higher density of data points; and the diagonal line represents a 
theoretical 1:1 perfect correlation between real (Y) and predicted (X) values. The models tested are as follows. (a) Linear model 
consisting of one input layer and one linear output node. (b) As (a) with the addition of one sigmoid output neuron. (c) Model with 
output subnetwork: one input layer, one linear node, one layer of 10 sigmoid nodes, and one linear output node. (d) Final, 
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optimized architecture: one input layer, one layer of linear nodes followed by a Monte Carlo dropout layer, one layer of sigmoid 
nodes followed by a Monte Carlo dropout layer, and one linear output node. (e) Observed fluorescence values (point cloud) and 
model prediction (red line) as a function of the fitness potential output by the network’s linear activation layer. 

 

2.5.2. Mutationally fragile libraries provide better training data for novel protein design 

A genetic algorithm was used to generate artificial protein sequences with increasing numbers of 
mutations in combinations not observed in the data (see: 4.10.2. Generation of novel protein sequences predicted to 

fluoresce). The expected fluorescence of these artificial sequences was then predicted by the optimized 
neural network of the gene in question, and the top sequences were selected for experimental validation 
(see: 4.11. Experimental validation of novel gene sequences).  

We focused initially on the mutationally robust amacGFP and ppluGFP2, on the basis that a) these 
genes were already observed to tolerate greater numbers of mutations, making them better candidates for 
the creation of novel multi-mutation genotypes, and b) they displayed comparatively little epistasis 
overall, thus decreasing the potential for unexpected interactions between mutations chosen by the 
genetic algorithm. We started by experimentally testing 12 sequences each of amacGFP and ppluGFP2 
genotypes with 6, 12, 18, and 24 mutations. All tested genotypes were predicted to glow at least as brightly 
as the WT, but while the intensity of fluorescence was not always up to expectations, genotypes of either 
gene with 6-12 mutations were largely functional, as were half of ppluGFP2 genotypes with 24 mutations 
(Figure 22).  

We then expanded the range of ppluGFP2 predictions to include 12 genotypes each with 30, 36, 42, and 
48 mutations. We optimistically also tested amacGFP predictions with 30 mutations, nearly all of which 
were found to be non-functional, and did not push any further with amacGFP. Crucially, we decided to also 
begin testing predictions for cgreGFP, with 6 and 12 mutations, despite cgreGFP’s mutational fragility and 
pervasive epistasis promising to make it a difficult gene to successfully mutate. The ppluGFP2 genotypes 
with 30+ mutations were only occasionally functional, but interestingly, all but one of the cgreGFP 6-12-
mutant predictions were near WT fluorescence, which could not be said for either amacGFP or ppluGFP2 
predictions with the same number of mutations. We then expanded cgreGFP predictions up to 48 
mutations; while the average fluorescence intensity decreased with increasing numbers of mutations, the 
majority of sequences were functional, all the way up to 48 mutations — representing around 20% 
sequence divergence (Figure 22).  

The fact that novel genotypes incorporating so many mutations were much more successful in the 
background of mutationally fragile and highly epistatic cgreGFP was a surprising result, particularly so 
because the algorithm was not limited to using so-called universally neutral mutations. In fact, all tested 
genotypes, successful or not, incorporated at least one conditionally deleterious mutation (i.e. observed to 
be deleterious, often highly so, in at least one context within the library, even if usually near-neutral) 
(Figure 22b). Furthermore, out of all mutations used across ML-predicted genotypes for a given gene, 
successful cgreGFP genotypes incorporated conditionally deleterious mutations around twice more 
frequently than amacGFP or ppluGFP2: 26.7% of mutations in functional cgreGFP predictions were 
observed to have deleterious effects of at least -0.3 (two-fold fluorescence decrease), versus 13.4% in 
amacGFP and 13.2% in ppluGFP2 (Table 2). This suggests that the model was able to capture epistasis to 
some extent and thereby avoid negative interactions. Indeed, out of all cgreGFP library genotypes with 6 
mutations which were expected to be functional under an additive model, only ~30% actually were (Figure 
8b); by comparison, ML-generated cgreGFP genotypes with 6, 12, and 18 mutations were universally 
functional, and frequently even maintained near-WT fluorescence levels (Figure 22b). 

 The greater success of the cgreGFP model was not an artifact of a larger training dataset, as the 
amacGFP and ppluGFP2 datasets contained 6,000-9,000 more assayed genotypes than cgreGFP (Table 1). 
However, the mutational fragility of cgreGFP may have resulted in a less “noisy” dataset for ML models to 
learn from: the fact of its fluorescence being so easy to kill may have made it easier for the models to 
understand what doesn’t work. Conversely, the failed amacGFP and ppluGFP predictions may have 
suffered from higher order epistatic interactions which were not captured in the library data due to the 
scarcity of measured genotypes with 8 or more mutations; this would be consistent with the observed 
epistasis in amacGFP and ppluGFP datasets tending towards the higher order (Figure 8c). 
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FIGURE 22. Experimental validation of ML-generated artificial genotypes. (a) Plated spots of E. coli expressing ML-generated 
protein sequences. The WT is represented in the middle of each plate; genotypes with increasing numbers of mutations (from 6, 
up to 30 or 48, in steps of 6) are arranged in concentric circles around the WT. (b) Quantified fluorescence of ML-generated 
genotypes from (a). To highlight the frequency of conditionally deleterious mutations even in functional sequences, the color of 
each dot (genotype) represents the worst observed effect (as measured in the corresponding gene’s library data, across multiple 
backgrounds) of any mutation comprising the genotype in question. The horizontal dashed red line marks the non-functionality 
threshold (P3 gate border). The dotted black line tracks the median fluorescence of genotypes in each group. 
 

2.5.3. Handpicked combinations of beneficial mutations perform poorly 

After observing that half of ppluGFP2 artificial genotypes with 24 mutations were functional, we 
wondered how well the ML models were learning about the underlying mutation interactions, as opposed 
to simply creating combinations of seemingly-neutral mutations. To this end, we generated 12 ppluGFP2-
derived sequences, also with 24 mutations each, without the use of ML models (see: 4.11.2. Manual selection of 

top mutations in ppluGFP2). One of these genotypes consisted of the “top 24” mutations observed in the 
ppluGFP2 dataset, i.e. the 24 mutations with the most beneficial median effects, as measured over multiple 
ppluGFP2 backgrounds (see: 4.7.6. Calculation of mutation effects and epistasis). The remaining 11 genotypes 
consisted of random combinations of the “top 175” best mutations, all of which were observed to have 
median effects of 0 or higher; we chose a pool of 175 because this would provide comparable sequence 
diversity to the ML-generated genotypes. 

Overall, the pool of mutations available to these non-ML genotypes had more beneficial effects on 
fluorescence than the group of mutations used in the ML-generated ones (Figure 23a). Nevertheless, these 
manually curated genotypes performed worse than their ML counterparts: only 3/12 were fluorescent 
(and the “top 24” candidate was not one of them), compared to 6/12 for ML genotypes, and none of the 
3/12 were as bright as the WT or the top three ML genotypes (Figure 23b). This supports the notion of the 
optimized ML models being able to capture, and avoid, negative epistatic interactions. 

 
 



 

27 

.  
FIGURE 23. Comparison of artificial genotypes generated with and without ML. We generated 12 ppluGFP2-derived genotypes 
containing 24 mutations by randomly combining the most beneficial/neutral mutations, and compared their fitness with that of 
ML-generated ppluGFP2 genotypes with 24 mutations. (a) KDE plots showing the distribution of mutation effects of mutations 
used by the genetic algorithm in the 24-mutation ppluGFP2 ML genotypes (dark grey) and the mutations used to generate the 
non-ML genotypes (green). In either case, only mutations measured in at least 10 ppluGFP2 backgrounds were used; the X axis 
shows their median effect across all observed backgrounds. (b) Experimentally-measured fluorescence of ML-generated and non-
ML-generated genotypes. The dashed horizontal line represents the cutoff for non-fluorescence (upper P3 border). The non-ML 
genotype consisting of the “top 24 best” mutations (as opposed to random combinations of the top 175) is represented by a lighter 
color. 
 

2.5.4. Combining data from different local landscapes worsens performance 

In addition to training ML models on single libraries and creating novel genotypes using a single gene 
as a starting point, we also trained models using combined data from multiple landscapes. While the 
different GFP orthologs differed from each other in terms of mutational robustness or physical stability of 
the mature WT protein, they also shared similarities — dependence of mutation effects on position and 
ΔΔG, threshold effects underlying fluorescence output — suggesting a common biophysical framework 
underlying mutation effects. This raises the possibility that information from one landscape may be partly 
extrapolated to others. While a large minority of specific mutations substantially changed effect across 
genes (Figure 20a), our ML models discussed above appeared capable of capturing and handling epistatic 
interactions to some degree. To what extent can data from distant local landscapes be combined in order 
to create an understanding of the global GFP sequence space? Can this data be generalized further, and be 
used to engineer novel, functional sequences that are distant from all assayed genes? 

The range of fluorescence values of the different libraries varied considerably. Before combining 
them, the data were linearly rescaled to a common range by aligning the peaks of the fitness distributions. 
The combined dataset, consisting of rescaled genotype-phenotype data for amacGFP, cgreGFP, ppluGFP2, 
and avGFP, was used to train neural nets of the same general architecture as previously (one linear and 
one sigmoid hidden layers, one linear output node; aligned gene sequences were input under one-hot 
encoding). However, these models performed either worse or no better than models trained exclusively on 
data from one gene library, when predicting the fitness of genotypes from that library. A closer look at the 
neuron activation patterns revealed that given neurons were “specializing” in only one of the four genes. 
Although explicit information on library origin was not provided to the model, input sequences were 
processed by a different set of neurons according to which WT gene the network identified them as having 
originated from. Essentially, the global model consisted of four submodels, each dedicated to a different 
GFP (Figure 24a). 

We speculated that this was due to the format of the input genotypes, which were one-hot encoded. As 
mutant genotypes typically contain only a few mutations, the vast majority of sequences from a given 
library will contain the same (WT) amino acid state at any given position. Input sequences can thus easily 
be clustered according to gene origin. To avoid this, new models were trained wherein only information 
on mutated positions was provided as input, and positions containing the WT state were not defined, 
precluding identification of the gene background by sequence alone. However, when models were trained 
on data from two or more libraries, they performed universally worse than when they were trained only 
on one (Figure 24b). Furthermore, models trained on one dataset performed very poorly on other gene 
datasets. This approach for input genotype formatting was abandoned. 

Finally, we considered whether information could be transferred, or reused, from one dataset to 
another, by starting from the optimized single-gene models and partially re-training them on data from 
another library. However, models where either the linear or the sigmoid hidden layer was re-trained on 
data from a second library also resulted in a dramatic decrease in performance, with R2 values dropping to 
below 0.5. 
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These results indicate that the rules underlying mutation effects and interactions are too different 
from one gene to the next for information pertaining to one gene to be relevant for another — at least for 
our particular panel of GFP orthologs. 

 
 
 

.   

 
FIGURE 24. ML model training on multiple gene datasets. (a) Simplified schematic of an “expected” global model trained on 
multiple libraries (left) versus the observed reality of emerging gene-specific submodels (right). (b) Performance of ML models 
trained on different combinations of datasets. As an example, validation is shown for the amacGFP dataset. The addition of multi-
gene training data universally worsened performance. 
 

2.6. Landscapes of artificial cgreGFP-derived genes 

 
Results from ML-guided creation of novel GFP sequences showed that the library of cgreGFP, the least 

mutationally robust gene and highly epistatic, yielded the best outcome in terms of designing functional, 
distant genotypes. This suggests that machine learning models may be able to capture negative epistatic 
interactions — and thereby avoid them during the generation of artificial sequences, and that cgreGFP’s 
high sensitivity to mutations may have resulted in “cleaner” data, easier to interpret by ML models. 
Deleterious effects were more readily and consistently apparent in the cgreGFP library, whereas in 
amacGFP or ppluGFP2 they were often masked by the protein’s general tolerance to perturbations. 

On the other hand, combining data from multiple gene libraries resulted in a clear decline in ML 
models’ ability to accurately predict fitness from genotype, possibly due to cross-gene epistasis causing 
conflicting information about mutation effects. In addition, changes in mutation effects from one gene 
background to another, while negligible in extremely close backgrounds (amacGFP vs. amacGFP:V11L), did 
not vary according to the sequence divergence of the genes under consideration (Figure 20). Key 
properties of local landscapes (shape, frequency of epistasis) and WT proteins (chemical/thermal stability) 
were highly variable, but these properties were not more similar in genes with higher sequence identity. 
As sequence divergence between pairs of genes ranged from 18% to over 80% (Figure 3b,c), these findings 
suggests that the underlying rules governing the emergence of epistatic interactions may change on a 
scale smaller than 18% sequence divergence. But how so? Is it a gradual change? Is there a threshold effect 
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and if so, what is the threshold? 
To better understand this process of changing interactions, we sought to to fill this gap and analyze 

the behavior of mutations across pairs of genes with less than 18% sequence identity. For this, we 
expanded our datasets to include local landscapes of less sequence-divergent genes. However, wild GFPs 
are a highly varied gene family: the majority of members share only ~25-50% amino acid identity with 
each other, with only rare, isolated pairs sharing over 82% sequence identity (see: 2.4.1. Extant mutations are 

less likely to be deleterious). For our candidate genes for new landscapes, we therefore decided to draw from 
our collection of ML-generated, functionally-validated cgreGFP sequences, rather than from extant, 
natural genes. This would further allow a) with fewer tested genes, a greater number of pairwise 
comparisons in the 0-18% identity range, b) an opportunity to compare the changes emerging after 
departing in different “directions” from the same reference WT, and c) to assess the utility of multiple 
small local landscapes of highly similar sequences versus a single larger local landscape of a gene, for the 
training of machine learning models. 

We selected two genes 6 mutations away from WT cgreGFP (cgreGFP:1338 and cgreGFP:132) and two 
genes 12 mutations away (cgreGFP:4111 and cgreGFP:9708). The “1338”, “4111”, and “9708” variants were 
chosen from amongst the most successful ML-generated genotypes, while cgreGFP:132 was created as a 
midway point between WT cgreGFP and cgreGFP:9708 (Figure 25a,b). We processed these four genes 
independently, creating and processing new mutant libraries for each. Furthermore, from among the ML-
generated cgreGFP genotypes with 18, 24, 30, 36, 42, and 48 mutations, we selected the top two best 
(brightest) genes from each category and pooled them to create a fifth, “minis” library. Unfortunately, not 
all twelve variants were recovered in the final, filtered dataset, although we discovered an unexpected 
subset of “hybrid” genotypes — apparent crosses between different templates, likely caused by PCR 
chimeras. General statistics on these libraries can be found in Table 3. 

 
Table 3. General statistics of new datasets. False positives and negatives are defined as in 4.7.4. Library data filtering. MutLD50 
values were determined as in Figure 7. Values for WT cgreGFP are prvided for reference. The “1338”, “132”, “9708”, and “4111” 
were processed independently; all other variants are part of the “minis” library (see: 4.2.1. Gene selection). Values labeled “—” 
were not calculable. 

 Distance from 
cgreGFP 

Number of 
assayed 

genotypes 

False positives False negatives  “WT” fitness MutLD50  
WT / Dark 

cgreGFP —  26165 0.75% (14/1860) 0% (0/1583) 4.5 ± 0.028 0.9 / 3.2 
cgreGFP:1338 6 8934 0.32% (1/308) 0.43% (3/693) 4.41 ± 0.017 0.3 / 1.5 
cgreGFP:132 6 4267 0.666% (1/150) 0% (0/504) 4.58 ± 0.012 0.9 / 6.6 

cgreGFP:9708 12 4180 1.55% (2/129) 0.14% (1/701) 4.56 ± 0.026 1.6 / 7 
cgreGFP:4111 12 8214 0.71% (2/280) 0.47% (3/643) 4.49 ± 0.013 0.5 / 2 
cgreGFP:2880 18 1670 0% (0/96) 1.3% (1/77) 4.5 ± 0.017 0.9 / 2.9 
cgreGFP:3224 18 150 0% (0/8) 0% (0/8) 4.47 ± 0.034 1.4 / 2.4 
cgreGFP:900x 24 1106 0% (0/73) 0% (0/50) 4.46 ± 0.036 0.9 / 2.6 
cgreGFP:575 24 38 0% (0/4) 0% (0/1) 4.44 ± NA 0.9 / 2.5 
cgreGFP:83 30 265 0% (0/10) 0% (0/23) 4.36 ± 0.027 0.7 / 2.1 

cgreGFP:626 30 182 7.1% (1/14) 0% (0/10) 4.44 ± 0.026 0.8 / — 
cgreGFP:121 36 206 0% (0/13) 0% (0/7) 4.32 ± 0.013 0.3 / 2.3 
cgreGFP:985 36 358 0% (0/15) 0% (0/14) 3.98 ± 0.124 1.3 / 2.4 
cgreGFP:13 42 1 — — — — 

cgreGFP:911 42 — — — — —  
cgreGFP:567 48 97 0% (0/5) 0% (0/7) 4.35 ± 0.046 1.4 / 2.3 

cgreGFP:1414 48 45 25% (1/4) 0% (0/1) 4.5 ± NA — 
Hybrid —  608 4.3% (1/23) — — — 
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FIGURE 25. Novel cgreGFP-derived gene libraries. (a) Conceptual representation of landscapes of cgreGFP-derived genes. The 
original (WT) cgreGFP is in the middle, in lighter green. Distances (number of mutations separating each gene) are roughly 
proportional between cgreGFP, cgreGFP:1338, cgreGFP:4111, cgreGFP:132, and cgreGFP:9708; other distances are not to scale. Note: 
figure overlap between libraries does not imply actual overlap in terms of specific genotypes measured. (b) Hamming distances 
between all cgreGFP-derived genes: number of mutations in green, percent sequence divergence (100 – protein identity) in grey. 
 

2.6.1. Few mutations are needed to drastically alter general properties 

Consistent with previously described genes, all new libraries displayed bimodal distributions of 
fluorescence (Figure 26a), with peaks centered at near-WT and near-null fitness. Also consistent with 
previous findings and with general expectations based on GFP structure, mutations in the new genes were 
more deleterious overall if they affected buried, internally oriented residues compared to solvent-exposed 
ones (Figure 26b,c). 

However, despite all being derived from the same mutationally fragile and highly epistatic cgreGFP 
wild-type, the new set of libraries displayed great variability in terms of mutational robustness and 
pervasiveness of epistasis. While cgreGFP:1338 and cgreGFP:4111 were even more mutationally fragile 
than WT cgreGFP, cgreGFP:132 and cgreGFP:9708 were the most robust genes of any analyzed so far 
(Figure 27, Table 3).  

The previously observed link between low mutational robustness and high epistasis was supported by 
the new data, with a much higher proportion of variants of fragile genes (“1338”, “4111”) than robust 
genes (“132”, “9708”) losing functionality due to negative epistasis (Figure 28b). In particular, 
cgreGFP:4111 (more fragile and more epistatic overall than WT cgreGFP) and cgreGFP:9708 (highly robust 
with relatively little overall epistasis, similarly to ppluGFP2) highlighted the robustness/epistasis link 
(Figure 28a). On the other hand, cgreGFP:1338 (MutLD50(Dark) = 1.5, ~10% of genotypes with negative 
epistasis) displayed less epistasis overall than might be naively expected from comparing it to WT cgreGFP 
(MutLD50(Dark) = 3.4, ~12% epistasis) or cgreGFP:4111 (MutLD50(Dark) = 2, ~17% epistasis). This is likely due to 
the fact that, for negative epistasis to be detected, the fluorescence expectation under a non-epistatic 
model must be high enough; yet, cgreGFP:1338’s extreme mutational fragility meant that the majority of 
multi-mutant genotypes were expected to be low-fitness even under an additive model of mutation effects. 
Indeed, the rate of negative epistasis in cgreGFP:1338 peaks in double-mutant genotypes and then steadily 
declines, while other genes show more higher-order epistasis (Figure 28c). 

Both cgreGFP:1338 and cgreGFP:132 are only six mutations away (2.5% protein sequence divergence) 
from WT cgreGFP, and cgreGFP:4111 and cgreGFP:9708 are 12 mutations away (5% sequence divergence). 
Yet, the local landscapes of these genes vary considerably from each other and from the original WT from 
which they derive. This indicates that the general features of protein fitness landscapes can be readily 
altered through seemingly minor changes in the starting protein sequence. This is consistent with existing 
knowledge on, for example, specific point mutations causing significant changes in protein properties 
(Bloom et al., 2005; Jacquier et al, 2013). 
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FIGURE 26. General features of cgreGFP-derived landscapes. (a) KDE plots showing the bimodal distribution of fluorescence values. 
Respective “WT” values are represented by white bars. The number of measured genotypes is indicated on the right; only genes 
with >1000 measured genotypes are included. (b) Distribution of fluorescences of genotypes with exactly one mutation, split 
according to whether the mutation affects a buried residue (side chains facing inward) or an exposed one (side chains facing 
outward). Only genes with >800 measured single-mutant genotypes are represented. (c) Median effects of single mutations based 
on their position in the protein sequence. Only genes with >800 measured single-mutant genotypes are represented. Buried 
positions are labeled with black tick marks. As a reference, the secondary structure of WT cgreGFP is displayed at the top. 

 

.  
FIGURE 27. Distribution of fluorescences of cgreGFP-derived genes, according to number of mutations. Only genes with >50 
measured genotypes are displayed; for genes with <300 measured genotypes, individual data points are shown in addition to the 
overall distribution. The number of measured genotypes in each category is indicated at the top. Median fluorescence values 
(white circles) were used to fit a logistic curve (black); horizontal red dashed lines represent the threshold for non-functionality. 
The cgreGFP:9708 data could not be fit by a logistic curve. 
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FIGURE 28. Overview of epistasis in new cgreGFP-derived libraries. Compare: Figure 8. Only libraries with >4000 measured 
genotypes (cgreGFP:1338, cgreGFP:132, cgreGFP:9708, cgreGFP:4111) are displayed. (a) Cumulative distribution of observed 
epistasis. WT cgreGFP data is provided in black, for comparison. (b) For n mutations, fraction of genotypes observed to be 
functional, out of all those expected to be so under a non-epistatic additive model. WT cgreGFP data is provided in black, for 
comparison. (c) Prevalence of negative epistasis of varying magnitudes (color) and positive epistasis over 0.3 (black). Where 
possible, dashed vertical lines mark the number of mutations needed to eliminate fluorescence in 50% of genotypes. Only 
categories with >10 epistasis-measured genotypes are displayed. WT cgreGFP data is shown for comparison. 
 

2.6.2. Mutations change effect across genes depending on differences in sequence and robustness 

As previously, we compared the effects of single mutations in different gene backgrounds. Having over 
a dozen small genotype-phenotype datasets centered around highly similar cgreGFP-derived genes 
allowed us to expand the number of pairwise comparisons from 10 (see: 2.4.2. Changes in mutation effects across 

genes is not proportional to genes’ sequence identity) to 49 (considering only gene pairs with at least 100 mutations 
measured in both backgrounds). 

The correlation between mutations’ effects across two gene backgrounds was dependent on the 
sequence identity between the genes in question. While this dependence was not observable previously 
when comparing genes with a minimum sequence divergence of 18% (Figure 20), cgreGFP-derived gene 
pairs provided coverage of the 2-18% sequence divergence range and showed a steady decline in the 
correlation of mutation effects (Figure 29a). New data points in the >50% sequence divergence range were 
consistent with previous data.  

The same was not the case for sign epistasis: two genes’ sequence divergence was only moderately 
correlated to mutation effects changing sign from one to the other, and variability was very high (Figure 
29b). The chance that a deleterious mutation will become neutral in a different background (or vice versa) 
can be more easily explained as a function of the difference in mutational robustness of the two genes in 
question. The rate of sign epistasis was moderately correlated with the difference in MutLD50(Dark) between 
the two backgrounds (Figure 29c), and highly correlated with the difference in MutLD50(WT) (Figure 29d). 
This makes intuitive sense, as an overall lower proportion of single mutations will be deleterious in a gene 
with high mutational robustness, while mutationally fragile genes will see a lower fraction of single 
mutations being neutral. Thus, a mutation which is neutral in a robust background is more likely to 
exhibit sign epistasis (become deleterious) if said robust background is compared to a fragile one than to 
another robust one. That said, the fact that genes with high sequence identity exhibit significant 
differences in local landscape shape (see: 2.6.1. Few mutations are needed to drastically alter general properties), 
resulting in frequently high rates of sign epistasis even between pairs of similar sequences (Figure 29b), 
suggest that the global GFP fitness landscape is substantially rugged. 
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FIGURE 29. Effects of single mutations in different gene backgrounds, revisited. Compare: Figure 20b,c. (a) Spearman correlations 
between measured mutation effects in pairs of gene backgrounds, as a function of the sequence divergence between the genes. 
Only pairs with >100 mutations measured in both backgrounds are displayed. Data points from Figure 20b are in black, new data 
from cgreGFP-derived genes are in green. Overall, the negative correlation between sequence distance and mutation effects is 
high, at ρ = -0.89 (p < 10-16). (b) For each pair of genes, the percentage of mutations which are neutral in one but deleterious in the 
other, out of all mutations measured in both backgrounds. X axis as in (a). Only pairs with >100 mutations measured in both 
backgrounds are displayed. Data points from Figure 20c are in black, new data are in green. Overall, the correlation between 
sequence distance and proportion of sign epistasis across genes is ρ = 0.39 (p < 0.006). (c) Sign epistasis calculated as in (b), but 
shown as a function of the difference in MutLD50(Dark) values of the two genes in each pairwise comparison. The correlation here is 
ρ = 0.46 (p < 0.0009). (d) As (c), but for MutLD50(WT). In this case, the positive correlation is higher, at ρ = 0.73 (p < 10—9). 
 

2.6.3. Protein stability and mutational robustness, revisited 

As for amacGFP, ppluGFP, and original cgreGFP, we tested tested the stability of the new “WT” 
proteins in order to detect a potential relationship between physical stability and mutational robustness. 
As mentioned previously, a non-mutant reference protein starting from a low physical stability may be 
more vulnerable to mutations which would, on average, destabilize it even further (Bloom et al, 2005; Zeldovich 

et al., 2007; Bershtein et al., 2006). In the absence of resolved crystal structures of the 16 new cgreGFP-derived 
genes, we could not calculate the expected ΔΔG values of mutations. However, we performed urea and 
temperature sensitivity tests as previously (see: 4.9.7. Urea sensitivity assays, 4.9.8. Thermosensitivity assays).  

We performed urea denaturation assays on all 16 new proteins. The initial shapes of absorbance and 
emission spectra were broadly similar to those of cgreGFP (Figure 30), though their responses to 9 M urea 
varied greatly in sensitivity. Some proteins displayed their own idiosyncrasies, such as cgreGFP:985 
possessing a second absorbance peak around 390 nm (possibly reflecting differences in the anionic state of 
the chromophore (Chudakov et al., 2010)) or cgreGFP:121 in PBS increasing in fluorescence over time (possibly 
triggered by increased oxygenation during plate shaking, if cgreGFP:121 matured less readily than other 
variants?). Fluorescence emission and absorbance half-lives ranged from lower to much higher than those 
of original cgreGFP (Figure 31a,b). However, the proteins’ half-lives appeared uncorrelated with their 
mutational robustness (Figure 32). 

We also measured thermosensitivity of all proteins by performing melting curves in a qPCR machine 
(see: 4.9.8. Thermosensitivity assays). The melting temperatures of the “1338”, “132”, “9708” and “4111” variants 
were additionally measured by DSF and DSC (Figure 33a-d). However, the additional data points revealed 
that the tentative link between thermal stability and mutational robustness, suggested by 
amacGFP/cgreGFP/ppluGFP2 data, was not generalizable across other tested GFPs (Figure 32). 
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Figure 30. Absorbance and emission spectra of cgreGFP-derived genes in 9M urea and PBS. As in Figure 17a,b, spectra were 
scanned in 5 nm intervals, regularly over the course of ~60 hours: each line represents one time point (the darker, the later in the 
time series). 
 

.  
FIGURE 31. Decay of absorbance and fluorescence of cgreGP-derived genes in 9M urea. Compare: Figure 17c,d. The 16 genes 
pictured are split into three rows for ease of visualization. (a) Loss of absorbance over time, monitored at the wavelength 
corresponding to the absorbance peak of each protein. Absorbance peaks were at 485 nm for the “1338”, “132”, “4111”, “9708”, 
“2880”, “13”, “3224”, and “83” genes, and 490 nm for all others. Curves were fitted with a logistic function. (b) Loss of fluorescence 
emission over time upon 420 nm excitation, monitored at the peak emission wavelength for each protein. Emission peaks were 
500 nm for the “1338”, “132”, “4111”, “9708”, “2880”, “3224”, and “83” genes, 510 nm for cgreGFP:911, and 505 nm for all other 
genes. The fluorescence loss of all proteins except for the “1338”, “132”, “4111”, “9708”, “2880”, “121”, and “83” variants could be 
successfully fit with a sum of two exponential decay functions. 
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.  
FIGURE 32. Mutational robustness and physical protein stability. Mutational robustness (MutLD(Dark), top row, and MutLD50(WT), 
bottom row) as a function of proteins’ fluorescence half-lives in 9M urea (left), absorbance half-lives in 9M urea (center), or 
melting temperature as determined in a qPCR machine (right). Only genes with sufficient data to calculate MutLD50s are 
displayed. Absorbance half-lives half-lives were set to the maximum 70 hours for genes which had not yet lost 50% of their initial 
absorbance value by the end of the measurements. 
 

.  
FIGURE 33. Thermostability of four cgreGFP-derived genes. Compare with Figure 16a-d. Only genes for which 4000+ genotypes 
were measured are shown. Melting temperatures are indicated by vertical dashed lines. (a) DSF-measured thermal unfolding, 
measured in triplicate. (b) Melting curves measured via qPCR machine, measured in eight replicates. (c) DSF-measured thermal 
aggregation, measured in triplicate. (d) DSC-measured specific heat capacities, measured in duplicate (due to a machine error 
during one of the cgreGFP:132 replicates, only one run is shown for that gene.) 
 

2.6.4. Hybrid gene variants tend to maintain function 

The cgreGFP:minis library, wherein 12 cgreGFP-derived variants were pooled at the beginning of 
library creation and mutagenesis, contained ~600 genotypes which could not be assigned a single origin, 
i.e. the coding sequence appeared not to be a version of one of the 12 original templates, but rather a 
hybrid or chimera molecule with more than one “parent”. This was likely due to the formation of 
chimeras during the mutagenic PCR step (see: 4.6.5. NovaSeq PE250 data clean-up, Figure 40).  

The calculation of a mutation’s effect requires knowing the fitness of a reference (WT) sequence and 
that of the same sequence plus the mutation (see: 4.7.6. Calculation of mutation effects and epistasis). As these 600 
genotypes are all unique hybrids between different combinations of the 12 “minis” origins, containing 
multiple (average: 12.8) mutations compared to the closest parent (plus any additional mutations 
introduced during mutagenesis), it was not possible to calculate specific mutation effects in this data.  

However, we observed that fitnesses of the hybrid genotypes followed the usual bimodal distribution 
of all other libraries (Figure 34), with a substantial fraction being brightly fluorescent: ~40% of the 
genotypes overall fell within the four brightest FACS gates, even among hybrids with over 15 mutations 
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compared to the nearest parent. This seemed notable, as previous data showed that much fewer than 15 
mutations are typically required to eliminate fluorescence in virtually all genotypes (Figure 6, Figure 27), 
even if the mutations in question represent extant states from functional wild FPs (Figure 19). This 
suggests that recombination between reasonably distant functional sequences (parent genotypes in the 
“minis” library all share ~80-85% sequence identity, see Figure 25b) may be a way to introduce large 
numbers of mutations at once while maintaining protein function. Indeed, recombination between 
homologous sequences is known to result in novel, functional genes: for instance, viruses famously 
recombine to give rise to medically relevant variants (Perez-Losada et al., 2015). Furthermore, the genetic 
algorithm employed during the generation of our artificial GFP sequences used a recombination approach 
(see: 4.10.2. Generation of novel protein sequences predicted to fluoresce), although it did not start from such 
divergent sequences. Hybridization between homologous genes may be another tool with potential to help 
generate novel distant, functional sequences. 

 

.  
FIGURE 34. Fitness distribution of hybrid genotypes. The distribution of fluorescences of the ~600 hybrid genotypes from the 
“minis” library is is light green; that of the rest of the “minis” library is in dark green. KDE plots are normalized such that the area 
under the curve for each category sums to 1.
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3. Discussion 

 
Protein fitness landscapes remain a useful tool in the fields of protein design and bioengineering, as 

they help elucidate the effects and interactions of mutations which may be leveraged with the aim of 
creating novel sequences with particular functions. Indeed, experimental studies of protein landscapes are 
becoming more and more common as sequencing costs decrease and high-throughput experimental 
setups improve, even in the advent of emerging ML and other computational methods aimed at generating 
novel proteins by relying only on extant sequence data or biophysical protein folding models (Dou et al., 

2018; Lisanza et al., 2023; Hayes et al., 2024). 
However, given that epistatic interactions are rampant (Bershtein et al., 2006; Mackay, 2014; Olson et al., 2014; 

Poelwijk et al., 2019), experimental genotype-phenotype data must provide information on such interactions 
in order to be useful in predicting mutation effects or generating novel proteins. However, our data shows 
that not all proteins are equally amenable to providing such information, at least not within the 
constraints of an experimentally feasible amount of measurements: counter to intuition, mutationally 
robust proteins are not easier to introduce large numbers of mutations into, if the goal is to create very 
distant functional sequences.  

This is partly a consequence of positive epistasis being rarer than negative — it is easier to break a 
thing than to fix it, so models are better served by learning the patterns of negative epistasis and avoiding 
what is known not to work. This appears to be more readily achieved with data from mutationally fragile 
proteins like cgreGFP, where such examples of failed mutational combinations are frequent and 
unambiguous. In contrast, data from mutationally robust proteins is arguably more confusing, 
inconsistent, and difficult to learn from, as slightly negative effects and interactions may remain 
undetected until it is too late (Figure 22a,b). 

Thus, our results indicate that mutational robustness and frequency of epistasis are relevant factors to 
consider, when selecting a sequence to begin engineering. However, identifying good, low-robustness 
candidate genes is not necessarily straightforward: even with ever-improving technological and 
experimental advances, carrying out a fully-fledged landscape analysis is highly time- and resource-
intensive.  

Furthermore, the environment in which a protein of interest is studied should be carefully considered: 
the same collection of mutant genotypes may yield differently-shaped landscapes depending on the 
experimental conditions in which they are assayed. Different gene orthologs may have evolved in 
different habitats and thus require different conditions for optimal function. One should therefore 
carefully consider the parameters of the experimental setup in which the phenotype of interest will be 
measured, as well as the desired contexts in which the results will be applied. 
 

 

 

3.1. On protein stability and selecting candidate genes for landscape 

surveys 

 
Existing literature is replete with theory and examples suggesting that the effects of mutations in 

coding sequences are dependent on their effect on protein structure and/or stability. An important link 
between these two quantities has been shown in e.g. fitness landscape studies of the TEM-1 β-lactamase 
(Bershtein et al., 2006; Jacquier et al., 2013), the IgG-binding domain of protein G (GB1) (Olson et al., 2014), the 
chaperone protein Hsp90 (Hietpas et al., 2011), a poly(A)-RNA-binding protein Pab1 (Melamed et al., 2013), indole-
3-glycerol phosphate synthase (TIM barrel) proteins (Chan et al, 2017), a human WW domain (Fowler et al., 2010), 
influenza nucleoprotein (Gong et al., 2013), and avGFP itself (Sarkisyan et al. 2016), as well as in more general, 
theoretical works (Zeldovich et al., 2007; Wylie & Shakhnovich et al., 2011; Starr & Thornton, 2016). 

The ability to fold correctly and to maintain physical integrity in physiologically relevant molecular 
environments are general requirements that apply to the great majority of proteins, regardless of their 
function — intrinsically disordered proteins being a notable exception. So, are more physically unstable 
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variants typically also less mutationally robust, and therefore better candidates for fitness landscape 
studies? Intuitively, this makes sense: if mutations’ effects on the phenotype of interest are mediated by 
their effect on an intermediate phenotype such as folding or stability, then it is plausible that more 
initially unstable variants are more vulnerable to further, small destabilizations which would more easily 
push them beyond the threshold of non-functionality (Bershtein et al., 2006). Under this model, a protein’s 
mutational robustness is an emerging property of its physical stability and/or folding ability: the higher 
the latter, the more mutations are required, on average, before observing critically negative effects.  

In this work, we have seen several factors which support a link between protein structure and/or 
stability and mutational robustness. Physically proximal pairs of residues are more likely to be epistatic 
(Figure 9). As a group, mutations with higher predicted ddG values — expected to have more destabilizing 
effects on protein folding — had overall worse effects on fluorescence (Figure 13). Buried residues with 
internally-oriented and potentially chromophore-interacting side-chains were more sensitive to mutation 
(Figure 12). Finally, mutation effects in amacGFP and amacGFP:V11L varied in a structurally-biased 
manner, with sites around the lower barrel lid being predominantly more sensitive in amacGFP:V11L 
(Figure 18). These features are all indicative of protein structure and/or stability playing an important role 
in the final phenotype, in this case fluorescence. 

However, our assays on protein stability — in terms of folded proteins’ sensitivity to urea and 
temperature — indicate that such straightforward measurements of a protein’s physical properties are not 
necessarily a reliable indicator of its response to genetic mutations.  

Our initial batch of genes  — avGFP, amacGFP, ppluGFP2, and cgreGFP — suggested a link between 
melting temperature and mutational robustness, with avGFP being an outlier gene exhibiting great 
thermostability (as well as urea resistance) while being overall mutationally fragile (Figure 16). The case of 
avGFP may potentially be related, at least in part, to differences in experimental design between the 2016 
avGFP landscape survey (Sarkisyan et al., 2016) and that of other GFPs in this work. AvGFP was expressed from 
a plasmid, with a copy number of ~30 per cell — protein expression levels were therefore at least an order 
of magnitude higher than those of subsequent GFPs which were expressed from a single, genome-
integrated copy. Existing literature shows that some mutation effects do not manifest equally at different 
protein concentration levels (Jiang et al., 2013). While the use of mKate2 as an expression control allowed us 
to avoid such problems within any given experiment, libraries expressed from genomic and plasmid DNA 
may not be directly comparable in this regard. Furthermore, protein aggregation is a well-known 
consequence of protein misfolding (Hartl & Hayer-Hartl, 2009), but is also dependent protein concentration 
(Ignatova & Gierasch, 2004). Different mutant variants may be more prone to aggregate at different 
concentration levels, but higher expression levels may be more intolerant to slightly destabilizing 
mutations and lead to more widespread aggregation — affecting fluorescence readouts — overall. Thus, a 
given gene’s fitness landscape may vary in shape — with a sharper peak meaning lower mutational 
robustness — depending on its expression level during experiments. In the case of avGFP, we cannot 
exclude the possibility that its local landscape may have appeared flatter and less epistatic if it had been 
expressed from a genomic copy. 

Nevertheless, subsequent assays with additional proteins did not support a direct link between 
chemical and/or thermal sensitivity and mutational robustness of GFP variants (Figure 32). So while 
protein structure and folding ability do appear to underlie landscape shape, these features were not 
captured by assays measuring the denaturation of already folded proteins. Why was this the case? 
Proteins, even small ones, may pass through various structural intermediates before reaching their final 
native state (Brockwell & Radford, 2007); this has been shown to be the case for GFP as well (Andrews et al., 2007; 

Reddy et al., 2012). A proportion of slightly misfolded and/or partially folded variants may thus become 
trapped in local energy minima and fail to reach their intended final conformation — and while this is 
certainly exacerbated by the presence of destabilizing mutations, it is also the case even for sequences 
without such mutations (Reddy et al., 2012). Sequences with a higher propensity for becoming waylaid on the 
way to their native structure can be thought of as being more easily pushed past a critical stability 
threshold by the introduction of mutations, which in turn manifests as lower mutational robustness. 
However, the ability of successfully folded proteins — a subset of all starting molecules — to withstand 
temperature- or chemically-induced denaturation may not necessarily reflect the ability to fold correctly 
in the first place. A protein’s ΔG — the change in energy between folded and unfolded states — has 
traditionally been used to describe folding ability, and this measure can be determined to some extent by 
controlled denaturation/refolding assays. However, recent literature casts doubt on the universal validity 
of this measurement as well (Sorokina et al, 2022). 

What other measured could be used as a proxy for mutational robustness? A study in yeast has 
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indicated that mutations cause, on average, worse fitness costs when introduced into higher-fitness (i.e. 
faster-growing) strains (Johnson et al., 2019). This suggests that high-fitness genotypes may be more 
vulnerable to mutations in general and thus display lower mutational robustness than lower-fitness ones. 
However, this finding does not appear to generalize reliably across other phenotypes: our own data 
contains multiple examples of highly-fit (fluorescent) genotypes being more mutationally robust than 
their less-fit counterparts. For instance, cgreGFP:132 and cgreGFP:9708 are both brighter than cgreGFP and 
significantly more robust, while cgreGFP:1338 is both dimmer and more mutationally fragile (Table 3). 
Thus, simply surveying prospective proteins for the phenotype of interest and selecting the fittest 
variants may not reliably reveal the best candidates for fitness landscape studies in all cases. 

Overall, more effective approaches for approximating a protein’s mutational robustness are thus 
desirable, as this could be a deciding factor when choosing a starting sequence for a fitness landscape 
survey from among a pool of candidates. 

For some proteins with easily measurable phenotypes, constructing small landscapes of several 
hundred mutants of different genes may suffice to grant reasonable insight into the most promising 
candidates, in terms of mutational robustness (Figure 27). Even without full library sequencing, the overall 
distribution of fitnesses is quite informative: while this distribution is bimodal across the board, more 
mutationally fragile genes display a higher proportion of genotypes in the “unfit” peak (Figure 26a): this 
can be ascertained even without any library sequencing. 

 

3.2. On machine-learning methods in landscape data analysis 

 
We have seen that datasets rich in negative mutation effects and interactions, i.e. those derived from 

mutationally fragile genes, are more conducive to learning the patterns required to create successful, 
novel combinations of mutations. High-fluorescence, ML-generated genotypes with 6-48 mutations were 
generated with the highest success in cgreGFP, the least robust gene, all of which contained at least one 
conditionally deleterious mutation — i.e. observed to be deleterious in at one or more backgrounds it was 
measured in (Figure 22b). Moreover, combinations of hand-picked, “best” (least deleterious) mutations 
were unsuccessful in ppluGFP2, a mutationally robust gene with low levels of detected epistasis (Figure 
23b). This suggests that ML models were able to learn, to some degree, how to avoid genetic contexts or 
interactions which would trigger deleterious effects, but without limiting themselves to simply combining 
universally neutral mutations.  

An alternate hypothesis may be that artificial cgreGFP variants were more successful due to WT 
cgreGFP being significantly brighter than WT ppluGFP2 or amacGFP (Figure 22a), thereby providing a 
larger buffer zone between functionality and non-functionality. However, this explanation is implausible 
on several levels. First, it would imply that brighter GFPs should be more mutationally robust, but our data 
has already shown that this is not the case: the majority of cgreGFP genotypes with >3 mutations are 
already non-functional (Figure 6d). Furthermore, if we accept the role of protein stability underlying 
mutational robustness, higher fluorescence values — or indeed many other phenotypes of interest — are 
not necessarily correlated with higher physical stability and/or folding ability, and therefore need not be 
linked to mutation tolerance.  

It should also be noted that the differences between sharper and flatter landscapes can be thought of 
as a matter of degree and not a matter of kind. All assayed genes in this work display fluorescence loss 
following a threshold effect, with varying mutational robustness and epistasis levels defined by higher or 
lower thresholds. In the case of cgreGFP, negative interactions were detectable early on due to only few 
mutations being necessary to disrupt fluorescence. Whereas for amacGFP and ppluGFP2, slightly 
deleterious mutations were able to accumulate without immediate phenotypic consequence — however, 
once the (higher) threshold was crossed, negative effects and interactions manifested just as they did for 
cgreGFP. Thus, ML models’ performance on flatter landscapes might improve if provided with more 
training data focused on this transition region (6+ mutations) and/or if training data prioritized genotypes 
with greater numbers of mutations. However, the size of the theoretical sequence space available 
increases exponentially with every step from the WT. An adequate sampling of e.g. 6-mutant space might 
require significantly more data points than a representative sampling of e.g. 3-mutant space, in order to 
achieve the same level of usefulness for ML. In that case, fitness landscape surveys of genes with low 
mutational robustness remain the more experimentally economical choice. 

The new data from cgreGFP-derived genes (see: 2.6. Novel cgreGFP-derived genes) is currently being 
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analyzed by ML collaborators. Can models trained on one gene perform well on other genes as long as 
mutation effects are highly correlated in both? Does having a set of smaller landscapes located clustered in 
a small area of sequence space provide any benefit over a single, larger landscape centered on one gene — 
perhaps by improving generalizability without the performance drops observed when combining more 
distant landscapes? Future results will further inform the ideal approach to fitness landscape surveys 
aimed at ML methods for protein engineering. 

 

3.3. On the global GFP landscape 

 
In any study of multiple members of the same gene family, the question arises of how generalizable 

one gene’s properties are to others. A study of >5,000 mutations in three orthologous TIM barrel proteins, 
sharing 30-40% sequence identity, found that their fitness landscapes were highly correlated, suggesting 
the possibility that “fitness landscapes can be translocated in sequence space” (Chan et al., 2017). Our work 
also showed significant, if moderate (ρ = ~0.5) correlations between mutation effects across genes (Figure 
29a), the extent to which findings from one GFP landscape can be extrapolated to another appears limited, 
as indicated in particular by the poor performance of ML models trained on data from multiple orthologs 
(Figure 24b). 

 The correlation of mutations effects across pairs of GFPs was dependent on the sequence identity 
between the two genes, up to a certain point. Theory indicates that changes in mutations’ effects across 
genes or species are expected to increase with phylogenetic distance (Orr, 1995); this explains phenomena 
such as hybrid incompatibilities, where mutations impact fitness according to the genetic context in 
which they occur (Orr & Turelli, 2001). However, beyond ~18% sequence divergence, we observed that 
correlations of mutation effects plateaued (Figure 29a). Similarly, changes in sign occur at a steady rate 
across such gene pairs, affecting ~10-15% of all mutations (Figure 20c); though variance is high, this rate 
does not appear to depend on sequence divergence, except for nearly-identical gene pairs (Figure 29b). 
This is in line with existing literature on sign epistasis across species, which have found that ~10% of 
pathogenic mutations in one species are neutral (compensated) in other backgrounds, and that this 
remains true regardless of the phylogenetic distance between the species being compared (Kondrashov et al., 

2002; Kulathinal et al., 2004). 
While mutation impacts are known and expected to change over the course of evolution (Starr & 

Thornton, 2016; Bazykin, 2015), the finding that sequence divergence beyond ~18% seems independent of the 
rate of change in mutation effects implies that the rules underlying epistatic interactions tend to shift on a 
smaller scale than this. This would be consistent with the observed heterogeneity of fitness landscapes of 
genes with high sequence identity (Figure 27, Figure 28a,b). However, this does not mean that the same 
rules cannot be maintained and applied across greater distances; indeed, successful ML-generated cgreGFP 
genotypes with 48 mutations (20% sequence divergence from the WT) likely were successful because the 
selected mutations interacted in ways which were still consistent with their behavior in the original 
cgreGFP library. Conversely, failed ML-generated genotypes may represent not only cases where the 
interactions of selected mutations were not fully understood, but also cases where the nature of these 
interactions had changed compared to the training data. 

Our data points in the 2-18% sequence divergence range are limited to pairwise comparisons between 
cgreGFP-derived genes, all of which — except for the original WT cgreGFP itself — were ML-generated 
based on WT cgreGFP data. This raises the question of whether artificial sequences are biased, in terms of 
their landscape properties, compared to wild-evolved sequences with comparable levels of identity: 
wouldn’t sequences purposefully derived from the same starting point be more likely to share similarities 
with each other? However, this argument may be applied to natural sequences as well. First, all 
fluorescent proteins are believed to have evolved from one common ancestor (Shagin et al, 2004); a priori, the 
genetic algorithm used to generate our artificial sequences (see: 4.10.2. Generation of novel protein sequences 

predicted to fluoresce) was as as just blind as naturally occurring mutations, prior to selection pressure. 
Second, empirical data showed that the closest near-natural sequences assayed, avGFP and amacGFP, did 
not share more similarities with each other than with cgreGFP and ppluGFP2, other natural sequences 
(Figure 6, Figure 7, Figure 8). As mentioned above, landscape features such as mutational robustness and 
pervasiveness of epistasis did not correlate with sequence distance past ~18%, and landscapes of artificial 
cgreGFP-derived sequences were themselves highly heterogeneous (Figure 27, Figure 28). Any biases in 
landscape features thus seem likelier to arise due to specific experimental measurement setups — 
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excitation at 488 nm, growth at 30oC, etc., which may differ from the optimal environment for any given 
variant — than from the fact of having derived form a common reference protein. 

Overall, data from natural GFPs from four species as well as multiple artificially-generated GFP 
sequences indicate that the global fitness landscape of green fluorescent proteins is highly heterogeneous. 
While a common framework of protein stability and folding ability can be understood to underlie GFPs 
generally, there remains great variability across genes in terms of landscape shape as well as physical 
properties such as resistance to denaturation, and this variability may be modulated by the introduction 
of only a few mutations, such that sequence distance between two genes is not a reliable indicator for 
similarities in their behavior. At the same time, our data suggests that genes with lower mutational 
robustness yield useful training data for machine learning more readily than genes with higher mutational 
tolerance, where mutation impacts may be conditionally masked and more difficult to interpret. At a time 
when fitness landscape surveys are becoming ever more common and experimentally accessible (Fragata et 

al., 2019; Flynn et al., 2023), we hope that this study of orthologous versions of a model protein will impact the 
understanding of fitness landscapes of protein families and inform the selection of promising candidate 
genes for future studies.
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4. Materials and Methods 

 

 

 

4.1. General protocols 

 
This section describes basic, general-use molecular biology techniques which were employed 

repeatedly as part of various other protocols. They are grouped here to avoid unnecessary repetition. 
 

4.1.1. Golden Gate cloning 

Golden Gate is a type of cloning where DNA digestion and ligation steps are carried out simultaneously 
in the same tube, eliminating the need for gel purification of specific digested DNA fragments prior to 
ligation. This is achieved through the use of Type IIS restriction enzymes, which cut DNA at a predictable 
location outside of their own recognition site. This provides two main benefits. Firstly, the recognition 
sites and cut sites can be placed such that, upon successful ligation of the desired molecules, the 
recognition sites are no longer present and the DNA can therefore not be cut again. This feature is what 
allows digestion and ligation to occur in a single reaction (when using restriction enzymes and ligase 
which are functional in same buffer) (Figure 35). Secondly, the user is able to control the exact sequence of 
nucleotides which will be cut into sticky ends, allowing easy customization and mixing and matching of 
modular cloning “blocks”. The overhangs are typically designed to be non-palindromic, so there is only 
one way for all blocks to fit together; this reduces the incidence of incorrectly cloned constructs. 

The Golden Gate protocol used in this work was adapted from Weber et al., 2011, with thermocycling 
parameters adapted from Iverson et al., 2016. The following parameters were used for all cloning reactions 
unless otherwise specified.  

 

Reaction mix 
✓ 50 ng insert DNA (if multiple inserts, 50 ng each) 
✓ 50 ng destination vector 
✓ 20U Type IIS restriction enzyme (BsaI or BpiI) 

✓ 10U T4 DNA ligase buffer 
✓ 2 μl 10X T4 ligase buffer 

✓ H2O up to 20 μl 
 

Temperature cycling parameters 
1. 10 min 37oC (restriction enzyme ideal temperature) 

2. 25 cycles:  
2.1. 16oC, 90 s (T4 ligase ideal temperature)  

2.2. 37oC, 3 min 
3. 5 min 50oC, 10 min 80oC (enzyme denaturation step) 

 
Typically, the DNA of interest replaces a lacZ cassette in the destination vector, allowing for 

blue/white color screening of colonies. When it is important to minimize the total amount of lacZ-positive 
colonies on the plate, an extra digestion-only step may be performed after the above cycling protocol is 
complete, by adding fresh restriction enzyme and incubating at 37oC again. 

 

Transformation of competent cells 
10 μl of Golden Gate reaction were used to transform 50 μl of chemically competent cells. Cells were 

plated on LB agar plates containing the appropriate antibiotic, and incubated overnight at either 37oC or 
30oC as needed. Colonies were first screened by PCR for the expected insert length and then sequence 
confirmed by Sanger sequencing. 
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.  
FIGURE 35. Principle of Golden Gate cloning. Type IIS restriction sites (black) cut outside of their recognition sites. After ligation of 
the desired insert into the destination vector, recognition sites are no longer available, allowing for one-tube simultaneous 
digestion/ligation reactions. 
 

4.1.2. Colony screening and other PCRs 

All PCRs were performed using Encyclo (Evrogen), OneTaq (NEB), or Q5 (NEB) (see: 4.12.1. List of 

consumables and services). General protocols are listed below; deviations will be specified in the relevant 
Methods sections. 

 

Colony screening 
The majority of our cloning setups featured blue/white color screening. Nevertheless, white colonies 

were screened by PCR for correct insert size wherever possible (i.e. not for all 100k variants in a library) 
and Sanger sequenced. Colony PCRs were performed in a total reaction volume of 10 μl, using bacterial 
cells directly as the DNA template by lightly touching a pipette tip to the colony and transferring the cells 
to the PCR reaction tube. Bacteria were not lysed separately prior to PCR, as the initial PCR step of ~3 
minutes at 94-95oC was sufficient in that regard. Colony PCRs were performed using OneTaq or Encyclo 
polymerases for 25 cycles; see below for protocols. 

 

OneTaq PCR 
As a low-fidelity polymerase, OneTaq was exclusively used for colony screening. The reaction mix for 

10 μl is shown below; scale up as needed. 
✓ A tiny amount of cells, or 5+ ng of DNA 

✓ 5 μl OneTaq 2X Master Mix 
✓ 0.2 μl each of 5-10 μM forward and reverse primer 

✓ H2O up to 10 μl 
 
Thermocycling parameters: 

1. 3 min 94oC 
2. Cycles (variable number): 

1. Denaturation: 30s 94oC 
2. Primer annealing: 20s Tm (primer-dependent) 

3. Extension: 68oC, 1 min per kb 
3. 5 min 68oC; final extension 

 

Encyclo PCR 
Encyclo polymerase features ~20-fold higher fidelity than Taq, and higher processivity than Q5. It was 

used for occasional colony screening, and for amplification of some library DNA prior to sequencing (see: 
4.6.1. Sample preparation: amacGFP, cgreGFP, ppluGFP2, 4.5.1. Barcodes sample preparation). The reaction mix for 10 μl is 
shown below; scale up as needed. 
✓ A tiny amount of cells, or 5+ ng of DNA 
✓ 1 μl 10X Encyclo buffer 

✓ 0.2 μl 50X dNTP mix 
✓ 0.2 μl 50X Encyclo polymerase 
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✓ 0.2 μl each of 5-10 μM forward and reverse primer 

✓ H2O up to 10 μl 
 
Thermocycling parameters: 

1. 3 min 95oC 

2. Cycles (variable number): 
1. Denaturation: 10s 95oC 
2. Primer annealing: 10s Tm (primer-dependent) 

3. Extension: 72oC, 1 min per kb 
3. 5 min 72oC; final extension 

 

Q5 PCR 
Q5 is one of the highest-fidelity polymerases available, but is a highly finicky creature (source: 

personal experience) especially compared to Encyclo. Q5 was used for amplification of some library DNA 
prior to sequencing (see: 4.6.3. Sample preparation: novel cgreGFP variants, 4.5.1. Barcodes sample preparation). The 
reaction mix for 50 μl was as follows: 
✓ A tiny amount of cells, or 5+ ng of DNA 

✓ 10 μl 5X reaction buffer 
✓ 1 μl 10 mM dNTP mix 
✓ 2.5 μl each of 10 μM forward and reverse primer 

✓ 0.5 μl Q5 polymerase 
✓ H2O up to 50 μl 

 
Note: the 2X Master Mix version tended to perform much more efficiently and reliably than the non-

premixed Q5, unfortunately we only discovered it at the end of the project. Reaction mix for the 2X 
version was as follows: 
✓ A tiny amount of cells, or 5+ ng of DNA 
✓ 25 μl 2X master mix 

✓ 2.5 μl each of 10 μM forward and reverse primer 
✓ H2O up to 50 μl 

 
Thermocycling parameters: 

1. 3 min 98oC 

2. Cycles (variable number): 
1. Denaturation: 15s 98oC 

2. Primer annealing: 20s Tm (primer-dependent, but ~4oC higher than it would be for non-Q5 
polymerases) 

3. Extension: 72oC, 30s per kb 
3. 5 min 72oC; final extension 
 

4.1.3. Electrocompetent cells and electroporation 

E. coli cells were grown in liquid LB culture, with or without antibiotic as needed, in an air shaker at 
37oC (or 30oC if containing pSIM5). Cells were grown in 50 ml aerated bioreactor tubes to an optical density 
of around OD600 = 0.8 (in our experience, this yielded better results than the often cited OD600 = 0.6), then 
washed with ice-cold water to render them electrocompetent. 

 

Protocol (adapted from Sharam et al., 2009): 
1. Chill cells on ice for 15 minutes, and cool centrifuges down to 4oC. 
2. Centrifuge cells at 4500 g and 4oC for 7 minutes.  

3. Discard supernatant and resuspend in 30 ml ice-cold distilled H2O. 
4. Centrifuge cells at 4500 g and 4oC for 7 minutes.  
5. Discard supernatant and resuspend in 1 ml ice-cold distilled H2O.  

6. Transfer to 1.5 ml tubes. 
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7. Centrifuge at 10000 g and 4oC for 30 seconds.  

8. Discard supernatant and resuspend in 1 ml ice-cold distilled H2O. 
9. Repeat steps 7-8. 

10. Discard supernatant and resuspend in ice-cold 10% glycerol up to 400 μl. 
11. Aliquot as needed (100 μl per reaction) and store at -80oC. 

 
Before use, electrocompetent cells were thawed on ice. 100 μl of cells were mixed with 1-2 μl (5-50 ng) 

of DNA, then transferred to a chilled electroporation cuvette (1 mm electrode gap). Cells were 
electroshocked at standard settings for bacteria (1800 V, 25 uF, 200 Ω), paying attention to the time 
constants displayed after the pulse, as values below 4.6 ms are indicative of problems such as salt 
contamination which can lead to low transformation efficiency. 1 ml LB without antibiotic (supplemented 
with 0.2% arabinose if genome integrating) was added directly to the cuvette immediately afterwards, 
then cells were transferred to a 15 ml tube and incubated at 37oC with shaking for one hour (or two hours 
at 30oC if genome integrating). 

After use, electroporation cuvettes were thoroughly rinsed with distilled water followed by 70% 
ethanol, three times, then given a final rinse with distilled water and left to air dry upside down. In our 
experience, cuvettes could be reused in this way indefinitely with no observed decrease in transformation 
efficiency. 

 

4.1.4. Harvesting plated libraries 

Cell libraries were plated on square plates. We used the number of colonies as a proxy for the number 
of variants in the library. To estimate that number, colonies were manually counted in several 
representative 2x2 cm sections and these counts were extrapolated to the full plated area. 

Colonies were harvested from plates by adding 2-3 ml of M9 liquid media and using the long side of a 
generic glass microscopy slide (much faster and cheaper than using a cell scraper; credit to Bor Kavčič for 
this idea) to carefully scrape the cells off the surface of the agar. Plates were tilted to pool the liquid media 
into one corner and cells were recovered by pipetting. 

If extracting plasmid DNA, cells were then pelleted. Cell pellets weighing up to 0.5 g were purified 
using Promega’s PureYield Midiprep kit following the centrifugation protocol. Larger pellets (up to 2.5 g) 
were processed with Thermo Fisher’s GeneJET Maxiprep kit following “Protocol A: Plasmid DNA 
purification using low speed centrifuges”, or by splitting the sample across multiple PureYield Midiprep 
columns. 

 

4.2. Creation of mutant GFP libraries 

 

4.2.1. Gene selection 

We selected an initial panel of eight GFP genes from six species to test:  
• GFPxm191uv, derived from the jellyfish Aequorea macrodactyla (Luo et al., 2006); UniProt ref. Q8WTC7. 

• CheGFP2 and CheGFP4 form the jellyfish Clytia hemisphaerica (Fourrage et al., 2014); UniProt refs. 
J9PGG2 and J9PJD5. 

• cgreGFP derived from the jellyfish Clytia gregaria (Markova et al., 2010); UniProt ref. D7PM05; PDB 
structure 2HPW (Malikova et al., 2011). 

• GFP509 from the jellyfish Aldersladia magnificus (unpublished); GenBank ref. ACC54354.1; UniProt 
ref. D3TI87. 

• ppluGFP2, also known as copGFP, from the copepod (arthropod) Pontellina plumata; UniProt ref. 
Q6WV12; PDB structure 2G3O (Wilmann et al., 2006). 

• GFP1 and GFP2 from Asymmetron lucayanum, a lancelet (cephalochordate) (Yue et al., 2016).  
 
Protein-coding nucleotide sequences were codon optimized for E. coli expression (using known 

Escherichia coli K12 codon usage tables downloaded from kazusa.co.jp/) and domesticated for Golden Gate 
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cloning (i.e. removing any restriction sites for BsaI, BpiI, and BsmBI) using custom Python scripts. For 
consistency, if multiple genes contained the same amino acid at a given position, the same codon was used 
for all genes at that site. Final sequences were ordered from Twist Bioscience as synthetic dsDNA and 
cloned as fusion proteins with mKate2, a red fluorescent protein used as a control of expression level in 
Sarkisyan et al., 2016, under a constitutive promoter. Constructs were transformed into E. coli DH5a cells and 
the resulting colonies were imaged under blue illumination to check for green light emission. 
GFPxm191uv, cgreGFP, and ppluGFP2 were strongly fluorescent under these conditions, while CheGFP2 
was only dimly fluorescent and the remaining genes were not observed to fluoresce.  

Note: the protein sequences of cgreGFP and ppluGFP2 used in this work were not modified from their 
wild type sequences, whereas GFPxm191uv, described in Luo et al., 2006, contains three amino acid 
substitutions compared to the true A. macrodactyla wild type: F64L (also present in the avGFP variant 
analyzed in Sarkisyan et al., 2016), Q69L, and T203C; these modifications are reported to improve the protein’s 
fluorescence emission when expressed in standard laboratory conditions (Luo et al., 2006). For simplicity, we 
refer to this gene as “amacGFP” in this work. Also for simplicity, we refer to all reference sequences, 
cgreGFP, ppluGFP2, amacGFP, and avGFP as “wild-types” in the context of comparing them to mutant 
variants in their respective libraries, even though we acknowledge that this term is euphemistic in the 
case of the latter two genes. 

 

Artificial cgreGFP-derived gene libraries 
The cgreGFP-derived variants used to construct additional landscapes in the later sections of this work 

(see: 2.6. Novel cgreGFP-derived genes) were selected from among the successful artificial sequences generated 
by machine learning models trained on the cgreGFP data. The two top-performing sequences from each 
category (containing 12, 18, 24, 30, 36, 42, and 48 mutations) were selected, plus one of the top-performing 
6-mutation genotypes (cgreGFP:1338), plus another 6-mutation genotype which was specifically generated 
for this part of the project (cgreGFP:132) to be a mid-way point between WT cgreGFP and one of the 12-
mutant variants (cgreGFP:9708). Mutant libraries were subsequently generated separately for each of the 
following: 

• cgreGFP:1338 (6 mutations) 
• cgreGFP:132 (6 mutations) 

• cgreGFP:9708 (12 mutations) 
• cgreGFP:4111 (12 mutations) 

• cgreGFP:minis, an equiproportional pool of the other 12 genes: cgreGFP:2880 and cgreGFP:3224 (18 
mutations), cgreGFP:575 and cgreGFP:900x (24 mutations), cgreGFP:626 and cgreGFP:83 (30 
mutations), cgreGFP:121 and cgreGFP:985 (36 mutations), cgreGFP:13 and cgreGFP:911 (42 
mutations), cgreGFP:1414 and cgreGFP:567 (48 mutations) 

 

4.2.2. Generation of mutant sequences 

Randomly-mutated GFP sequences were generated via mutagenic PCR using Agilent’s GeneMorph II 
Random Mutagenesis kit. This kit employs an error-prone polymerase which lacks proofreading 
capabilities. The PCR primers in this step (oligos 292 & 293, see: List of Oligos) included BpiI restriction sites 
for Golden Gate cloning of the PCR products into a storage vector; the reverse primer contained a 
degenerate 20N region which enabled the many resulting gene variants to be labeled with a unique 
barcode (Figure 4). Primers were ordered as PAGE-purified oligos, which is recommended for longer oligos 
in order to more efficiently remove aborted products and impurities. 

The average number of mutations per molecule in a mutagenic PCR depends on the number of PCR 
cycles (with more cycles leading to more mutations) as well as on the initial quantity of DNA template 
(with more material leading to fewer mutations). A variety of different reaction conditions were tested. 
The average number of mutations was determined by cloning the PCR product into a plasmid (see: 4.2.3. 

Cloning of mutants into storage vectors), Sanger sequencing 20-25 clones and aligning the sequences with the 
wild-type template to count the mismatches.  

We aimed for the GFP variants in each library to contain, on average, 4 mutations. Considering that 
around a third of nucleotide mutations are synonymous (see: any codon table), this corresponds on 
average to 1-2 amino acid substitutions per protein variant.  

The official GeneMorph II protocol recommends the perplexingly high amount of 500-1000 nanograms 
of starting template material when aiming for 4.5 or fewer mutations per sequence. Please note that 
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“starting template” here refers only to the amount of DNA corresponding to the mutagenesis target, and 
does not include the rest of the plasmid. So, for an ~800 bp gene on a ~2500 bp plasmid as is our case, 
500 ng of “starting template” would mean over 1500 ng of plasmid. The libraries in this work were all 
prepared using 75 ng of starting template (~240 ng of plasmid), because the PCRs with more than that 
consistently failed. Please see below for reaction details. 

 

Reaction mix: 
✓ 240 ng template plasmid* 

✓ 5 μl 10X Mutazyme II reaction buffer 
✓ 1 μl 40mM dNTP mix 
✓ 1 μl each of 5μM forward and reverse primer 

✓ 1 μl Mutazyme II polymerase 
✓ H2O up to 50 μl 

 
* The template for the “minis” library consisted of an equimolar mix of twelve cgreGFP-derived 

template plasmids. For all other libraries, the template consisted of a single plasmid containing the 
appropriate wild type GFP sequence. Note: the use of a pool of different yet homologous sequences as the 
template in the “minis” reaction resulted in a subset of molecules consisting of hybridizations between 
different “parent” templates (see: 4.6.5. NovaSeq PE250 data clean-up, Figure 40). 

 

Temperature cycling parameters: 
1. 95oC, 2 min 

2. (Variable number of) cycles: 
2.1. 95oC, 30 s 

2.2. 55oC, 30 s (the annealing temperature of 55oC was chosen based on gradient PCR tests with 
annealing temperatures ranging from 48oC to 60oC) 

2.3. 72oC, 60 s 
3. 72oC, 10min 

 

A note on amacGFP:V11L 
We observed after the fact that around one third of genotypes in the final amacGFP library contained 

the V11L mutation. This was likely due to accidental contamination of the WT amacGFP DNA used as 
template during the mutagenic PCR, at some point during testing for the optimal mutagenesis conditions 
(early tests of sequencing ~20 clones to check mutation rate did not reveal an abundance of V11L 
genotypes, so the contamination must have occurred right before the final, optimized reaction). However, 
we decided to treat this as a good thing and an opportunity to study twin peaks in a single landscape: buy 
one, get one free. 

 

A note on the number of mutagenic PCR cycles  
In our experience, the GeneMorph II polymerase appears to lose activity over time, before even 

approaching its expiration date. amacGFP was the first library constructed and it was generated using 8 
cycles of mutagenic PCR. Vexingly, after the amacGFP library was fully validated and it was time to 
proceed with cgreGFP and ppluGFP a few months later, 8 PCR cycles no longer yielded an average of ~4 
mutations per clone, but closer to ~2. A few new tests showed that 16 PCR cycles was now the right 
amount. (The GeneMorph II kit had been stored correctly, at -20C, and was not expired.) Three years later, 
when preparing the new cgreGFP-derived libraries, the kit’s mutagenic capabilities had mercifully not 
degraded very much more, and 20 PCR cycles were used on all the new libraries.  

 

A note on certain degenerate primers 
The reverse primer used in mutagenic PCRs contained twenty degenerate positions, meant to be 

occupied randomly by either A, T, C, or G. The primers used for the mutagenesis of amacGFP, cgreGFP, and 
ppluGFP were ordered as PAGE-purified oligos from Sigma (oligos 292 & 293, see: 4.12.2.List of Oligos). After 
sequencing the full libraries, we could observe that the twenty barcode positions were not, in fact, equally 
likely to be occupied by any of the four possible nucleotides. Cytosine and adenine were by far more 
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common than guanine or thymine, to varying degrees of extremity (Figure 36b).  
For the new cgreGFP-derived libraries, we ordered new primers from Microsynth. In this case, we did 

not observe any extreme A/T/C/G bias (Figure 36c), although indels resulting in some barcodes being 19 
or 21 nucleotides long seemed to be more common than in the Sigma primers, despite both being PAGE-
purified. (We did not quantify the frequency of barcode indels, as there is no reason to expect them to 
interfere with experiments.) 

 
.

 
FIGURE 36. A/T/C/G bias from degenerate barcoding primers. (a) In the absence of bias, the four nucleotide types should be 
equally probably at any given position of the barcode. (b) The primary 20N barcodes from amacGFP, cgreGFP, and ppluGFP2 
libraries were introduced with PAGE-purified oligos from Sigma containing a 20N degenerate region. However, cytosine and 
adenine were much more common than thymine or, especially, guanine, with the severity of the bias being dependent on the 
position in the sequence. (c) Novel cgreGFP-derived gene libraries were barcoded with identically-designed primers ordered from 
Microsynth, and showed much less nucleotide bias. 
 

4.2.3. Cloning of mutants into storage vector 

PCR products generated by mutagenic PCR were run on 1% agarose / 0.5% TAE gels, and the correct 
DNA band (~800bp) was excised and purified with whichever New England Biolabs, Thermo Fisher, or 
Blirt/DNA Gdansk (since assimilated by Qiagen) gel purification kit was within easiest reach.  

Purified products were cloned into a storage (non-expression) vector using Golden Gate cloning with 
BpiI (see: 4.1.1. Golden Gate cloning). We used the plasmid pICH41258 a.k.a. “Level 0-SP” vector from the MoClo 
Toolkit (Addgene Kit #1000000044), which is high copy (pUC origin) and confers spectinomycin resistance, 
as a destination vector for this purpose.  

10 μl of cloning reaction were used to transform 50 μl of chemically competent cells. Transformation 
protocols were followed according to the cell manufacturer’s instructions, with the exception that post-
heat-shock recovery time was kept to only ~20 minutes before plating (most protocols recommend 45-60 
minutes). This protocol modification was done in order to minimize opportunity for cell division during 
recovery, which would interfere with colony-count-based quantification of the number of distinct clones 
(barcodes) obtained. Transformants were plated on LB agar plates containing 50 μg/ml spectinomycin and 
40 μg/ml X-Gal, and incubated overnight at 37oC. Blue/white color screening allowed for an easy visual 
determination of cloning efficiency; the proportion of LacZ-positive colonies was typically between 0.5% 
and 5%. 

For amacGFP, cgreGFP, and ppluGP2, Lucigen Ecloni 10G cells were used for transformation. A single 50 
μl tube of these cells, transformed as described above, usually yielded above 100 thousand colonies. We 
harvested around 125k colonies for each of these three libraries. However, for the new cgreGFP-derived 
libraries in the second part of the project, Lucigen cells were not available so NEB 5-alpha High Efficiency 
chemically competent cells and ThermoFisher Library Efficiency DH5a competent cells were used instead. 
Sadly, both of these had a ~10-fold lower transformation efficiency than the Lucigen cells, so multiple vials 
had to be used per library. Only around 30k colonies (70k for cgreGFP:minis) were harvested for each of 
the new cgreGFP-derived libraries (see: 4.2.1. Gene selection), on the basis that this was a more manageable 
library size than the previously attempted 125k, where, after data filtering, we only recovered around 30k 
variants. (Though in the end, of course, we were not able to recover all 30k variants in the final data.) 

 

4.2.4. Generation of destination vector 

The destination vector for GFP mutant libraries consists of several parts (Figure 4):  
✓ 600 bp 5’ and 3’ homology arms complementary to the E. coli chromosome, for use in downstream 
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genome integration; sequences taken from Bassalo et al. 2016. 

✓ An mKate2-lacZ fusion protein under a constitutive promoter (T5) and lambda T0 terminator, as in 
the pQE30 vector where the avGFP library was previously expressed (Sarkisyan et al., 2016). The lacZ 
sequence is flanked by BsaI restriction sites in order to be easily replaced by GFP variants via 
Golden Gate cloning. Two restriction sites for BsmBI, another Type IIS enzyme, are located 
between lacZ and the terminator, oriented so as to cut away from each other. The mKate2 protein 
contains a 6H His-tag at the N-terminal end. 

✓ A zeocin antibiotic resistance cassette under a constitutive promoter, to facilitate selection of cells 
with successful genome integration of libraries downstream. 

✓ SpeI and NotI restriction sites, flanking the entire construct; these are used downstream to 
linearize the construct prior to genome integration. 

✓ A plasmid backbone containing a high copy number origin and ampicillin resistance cassette, 
obtained by PCR on the CIDAR vector DVA_AH (Addgene #66043) with primers that removed 
unwanted BsaI sites (oligos 238 & 239, see: 4.12.2.List of Oligos). 

 
The different parts were obtained by PCR where possible or ordered as synthetic dsDNA fragments, 

and assembled via Golden Gate cloning to form the final plasmid. 
The BsmBI sites located after lacZ were then used to insert a library of 10N barcodes. Complimentary 

DNA oligos containing BsmBI sites and a degenerate 10N region were annealed by pooling them 1:1, 
heating them to 95oC, and slowly cooling to room temperature. The post-lacZ filler sequence was replaced 
by 10N barcodes in the destination vector via Golden Gate cloning, and the cloning mix was used to 
transform chemically competent cells. Around ten thousand colonies were recovered, pooled, and plasmid 
DNA was extracted using Thermo Fisher’s GeneJET Maxiprep kit.  

This library of ~10k plasmids, each labeled with a different 10N barcode (referred to as “secondary 
barcode” elsewhere in this work), was used as the destination vector for GFP libraries. In the final design, 
mKate2 and GFP are separated by a rigid alpha-helix linker (GSLAEAAAKEAAAKEAAAKAAAARG) to avoid 
potential interactions between them (Sarkisyan et al., 2016).  

 

A note on antibiotic selection:  
we chose the rarely-used zeocin antibiotic for this vector as it was sure to be compatible with all other 

cloning and genome integration steps in the project. The integration protocol results in cells which, at 
some point of their life stage, are already resistant to chloramphenicol (via the pSIM5 recombineering 
vector), kanamycin (via the pX2-Cas9 plasmid), and ampicillin (via the gRNA plasmid), so these antibiotics 
were all excluded as being inappropriate selection methods (see: 4.3. Genome integration). Furthermore, we 
also avoided spectinomycin as this antibiotic is used in various Golden Gate plasmids (Weber et al., 2011) 
including our chosen library storage vector and we wished to avoid any potential incompatibilities there 
as well. 

 

4.2.5. Generation of final expression constructs 

Mutant GFP libraries were shuttled from their non-expression storage vectors to the destination 
vector (containing secondary barcodes) via Golden Gate cloning, wherein the lacZ fragment is replaced by 
a barcoded GFP variant, in frame with mKate2, to form an mKate2-GFP fusion protein. 

For each library, we harvested 3-5 times more colonies in this step than we had in the initial library 
generation step (over 500k colonies for amacGFP, ppluGFP2, and cgreGFP; 100k colonies for cgreGFP:1338, 
cgreGFP:132, cgreGFP:4111, and cgreGFP:9708; and 220k colonies for cgreGFP:minis). Therefore, each 
primary barcode can be expected to be associated with 3-5 secondary barcodes in the final expression 
library, on average. 

 

4.3. Genome integration 

 
We adapted protocols from Bassalo et al., 2016 and Sharam et al., 2009 to integrate our constructs into the E. 

coli genome via CRISPR-Cas9 mediated homologous recombination. This method combines the λ Red 
recombineering system with CRISPR targeting of the desired integration spot, and uses the following DNA: 
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• pSIM5 (Sharam et al., 2009), kindly provided by the Court lab, contains λ Red system genes under a 
heat-inducible promoter. This plasmid is chloramphenicol-selectable. 

• pX2-Cas9 (Addgene #85811) (Bassalo et al., 2016), contains the Cas9 enzyme under an arabinose-
inducible promoter. This plasmid is kanamycin-selectable. 

• SS9_RNA (Addgene #71656) (Bassalo et al., 2016), contains the Cas9 guide RNA targeting the sequence 
“TCTGGCGCAGTTGATATGTA”. This plasmid is ampicillin-selectable. 

• Our mKate2-GFP library, linearized and flanked by homology arms to the target integration spot 
(see: 4.3.1. Preparation of DNA insert). 

 
The λ Red system used here is based on the use of three genes derived from the λ bacteriophage 

(Sharam et al., 2009): gam, bet, and exo, encoding the proteins Gam, Beta and Exo respectively. The first of 
these, Gam, prevents linear DNA from being immediately degraded in the cytoplasm after transformation. 
The other two are responsible for inserting DNA at the target location: Beta facilitates the annealing of 
complementary ssDNA (such as the chromosome and our transformed DNA), and Exo is a 5’ to 3’ dsDNA 
exonuclease. The λ Red genes on pSIM5 are controlled by a heat-inducible promoter which activates 
expression from temperatures of 34oC and up. Cells transformed with pSIM5 must therefore be grown at 
lower temperatures, both to avoid unintentional recombination events between repetitive DNA regions, 
and because, perhaps more importantly, long-term gam expression is lethally toxic (Sharam et al., 2009).  

The CRISPR/Cas9 guide RNA (SS9_RNA) targets an intergenic safe harbor where exogenous DNA can be 
integrated without disrupting native genes (Bassalo et al., 2016). After Cas9 induces a double stranded break, 
the DNA will be repaired via homologous recombination, using the λ Red machinery to integrate the GFP 
library construct at the site. Furthermore, the protospacer-adjacent motif (PAM) (a short sequence of 
nucleotides requires for Cas9 to cleave DNA) is mutated in the homology arms flanking the GFP construct, 
ensuring that the site cannot be cut again after integration. 

 

4.3.1. Preparation of DNA insert 

Linear constructs as in Figure 4 were prepared by digesting the plasmid library with SpeI and NotI 
restriction enzymes (New England Biolabs) and gel purifying the relevant ~3.6 kbp band. Reactions were 
incubated at 37oC for one hour before being run on 1% agarose / 0.5% TAE gels at 120V, and DNA was 
extracted using gel purification kits from New England Biolabs (Monarch) or Thermo Fisher (GeneJET) 
according to the manufacturer’s instructions. 
 

Reaction mix (40 μl total volume): 
✓ 32 μl (3-5 μg) plasmid DNA 

✓ 4 μl CutSmart 10X Buffer 
✓ 2 μl (40 U) SpeI-HF 
✓ 2 μl (40 U) NotI-HF 

 
The size of the construct containing mKate2-GFP, zeocin resistance cassette, and both homology arms 

is around 3.6 kbp. The full plasmid including the backbone is 5.3 kbp, but circular supercoiled DNA 
migrates faster than relaxed linear DNA on agarose gels (Lee at al., 2012). In this case, the uncut, likely 
supercoiled plasmid dares to migrate at a similar rate as the linear 3.6 band of interest. It is therefore 
crucial to run an uncut sample alongside the digest in order to monitor their migration, and only cut out 
the linear fragment when it has been sufficiently resolved (Figure 37). For 1% agarose gels running at 
120V, at least one hour is required. Failure to exert rigor during this step results in the purified linear 
fragment being contaminated with plasmid DNA; in turn, this results in a high fraction of recombineering 
cells being transformed with plasmid instead of (or in addition to) the linear construct during the genome 
integration step. (While the vast majority of plasmid-carrying cells can be excluded during FACS thanks to 
their high fluorescent signal, a high proportion of such cells in the library implies a lower proportion of 
cells of interest, which is inefficient.) 
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.  
FIGURE 37. Agarose gel visualization of uncut vs. digested expression vector. After digestion with SpeI/NotI, the ~3.6 kbp linear 
DNA required for genome integration (containing homology arms, mKate2-GFP, and resistance cassette) migrates at a similar rate 
as the undigested plasmid. The image shows the gel after running for ~30 minutes at 120 V. At least one hour is required to 
reliably resolve the two bands before excision and purification, in order to avoid contaminating the linear construct with residual, 
uncut plasmid. 
 

4.3.2. Preparation of recombineering cells 

We used the E. coli strain BW29655 (CGSG #7934) (Zhou et al., 2003) for genome integration. Bassalo et al., 

2009, whose method we adapted, employ the strain BW25113 (CGSC #7636), which is also the parent strain 
of the Keio Collection, a set of around 4000 single gene knockout strains (Baba et al., 2006). We did not have 
this strain on hand at the start of this work, but did have strain BW29655 in the lab. BW29655 is 
genotypically similar to BW25133 except for lacking the rph-1 frameshift mutation and for having deleted 
the two-component system of EnvZ/OmpR porins (Zhou et al., 2003); the Δ(envZ-ompR)520 deletion does not 
inhibit growth in standard culture conditions nor interfere with expression of fluorescent markers. As the 
most similar strain to BW25113 that we had immediately on hand, we decided to test the genome 
integration protocol with BW29655 right away. To our pleasant surprise, we were very quickly able to 
optimize a highly efficient genome integration protocol with our library constructs and this strain, so we 
simply kept using it and never switched to another strain. 

Several steps are required in order to generate cells with recombineering capacity. We first generated 
electrocompetent BW29655 cells, which we co-transformed with pSIM5 and pX2-Cas9 plasmids and grew 
overnight at 30oC on LB-agar plates containing 25 μg/ml chloramphenicol and 50 μg/ml kanamycin. 
Resulting colonies were used to inoculate overnight liquid cultures in LB plus antibiotic. On the third day, 
recombineering cells were prepared according to the following protocol, adapted from Sharam et al., 2009: 

 
1. Growth of cells to exponential phase. We diluted overnight cultures seventy-fold and incubated at 30oC 

with shaking. We used 500 μl of overnight culture per 35 ml of LB supplemented with 
chloramphenicol, kanamycin, and 0.2% arabinose. We grew cells in 50 ml aerated bioreactor tubes, 
and used multiple tubes rather than larger flasks when scaling up, as flask size and shape was 
observed to affect the efficiency of heat shock in the next step. Although Sharam et al., 2009 do not 
include arabinose in this step, we observed that its use here improved subsequent genome 
integration efficiency, compared to its use solely during the recover step. We also observed better 
efficiency when cells were grown to an OD600 of 0.8, rather than 0.6. This step takes around four 
hours. 

2. Induction of λ Red system by heat shock. We exposed cultures to 42oC for 15 minutes to induce 
expression of λ Red genes. (We skipped this step when preparing non-induced cells for negative 
controls.) Although the  literature and common sense both recommend using water baths for this 
step in order to optimize heat transfer, in our experience cells died en masse when using 42oC 
water baths, though we experimented with various lengths of heat shock time and in various 
water baths and air shakers. For best results, heat shock was performed in an Innova 44 air shaker.  

3. Make electrocompetent cells. After heat shocking, cells were placed immediately on ice and subjected 
to several rounds of washing with ice-cold distilled water to render them electrocompetent (see: 
4.1.3. Electrocompetent cells and electroporation). Each initial 35 ml culture yielded enough cells for four 
genomic integration reactions downstream; each reaction typically generated >200,000 genome-
integrated colonies. Induced and non-induced electrocompetent cells were stored at -80oC until 
use. 

 

4.3.3. Genome integration 

Induced cells were transformed (see: 4.1.3. Electrocompetent cells and electroporation) with ~10 ng linearized 
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GFP library DNA and with ~50 ng plasmid encoding a guide RNA targeting a safe harbor in the E. Coli 
chromosome (Bassalo et al., 2016). Immediately after electroporation, cells were recovered in 1 ml LB/0.2% 
arabinose media at 30oC for two hours, then plated on LB agar plates supplemented with 50 μg/ml zeocin.  

Plated cells were grown overnight at 30oC, then left at room temperature for one more day. We 
observed that this treatment improved the fluorescence intensity displayed by the cells, compared to only 
incubating for a single day at 30oC. (We speculate this may be due to some variants having an especially 
long maturation time.) 

 

4.3.4. Sanity checks 

Successful genome integration was confirmed by PCR using a primer pair complementary to the 
chromosomal sequences flanking the integration landing site (oligos 327 & 329, see: 4.12.2.List of Oligos) as 
well as a primer pair where one primer is located inside the insert and the other is chromosomal (oligos 
321 & 329, see: 4.12.2.List of Oligos). Around two dozen colonies were screened, with chromosomal integration 
being confirmed in all of them. The absence of plasmid DNA in genome-integrated cells could also be 
confirmed, using primers specific to the plasmid backbone (oligos 356 & 359, see: 4.12.2.List of Oligos). Note: 
Aside from plasmid-carrying cells being generally undesirable, it is especially so for cells containing an 
integrated construct to also contain plasmid, as this could result in the same cell expressing different GFP 
variants at the same time. Care should be taken to ensure the linear dsDNA used for integration be as 
plasmid-free as possible (see: 4.3.1. Preparation of DNA insert.) 

As a negative control, non-induced cells were also transformed, in the same manner as induced cells 
described above. As non-induced cells never have the chance to express λ Red genes, they are not capable 
of integrating DNA via homologous recombination. They are also not capable of maintaining linear DNA 
within the cytoplasm; to do so would require expression of λ Red gam, which in any case would not save 
them in the long term because a) the Gam protein is toxic, and b) the linear construct cannot be replicated 
and transmitted to future generations. Thus, any colonies arising from transformed non-induced cells 
must be the result of a) genomic integration of the linear construct via non-homologous end-joining, or b) 
contamination of the linear construct with undigested plasmid. The machinery for traditional non-
homologous end-joining is absent in E. coli, although an alternative, rare mechanism has been reported in 
some strains (Chayot et al., 2010). Plasmid contamination is thus the only plausible culprit for the existence of 
colonies on negative control plates; indeed, this can be confirmed by the naked eye, as the difference in 
copy number variation between genome-integrated cells and plasmid-carrying cells is such that colonies 
of the latter appear visibly colored even under ambient light. PCR screening with plasmid-specific primers 
(oligos 356 & 359, see: 4.12.2.List of Oligos) also confirmed the presence of plasmid in all screened colonies 
growing on negative control plates. Therefore, transformation of non-induced cells was used in order to 
check that the purified linear dsDNA intended for genomic integration was not significantly contaminated 
with plasmid DNA. 

 

4.3.5. Generation of wild-type and count controls 

For each wild-type GFP gene, a pool of barcoded wild-type sequences was generated by PCR using a 
high-fidelity polymerase (Q5 or Encyclo) and barcoded primers (oligos 292 & 293, see: 4.12.2.List of Oligos). 
This pool was cloned into the mKate2 destination vector (see: 4.2.1. Generation of final expression constructs), and 
plasmid DNA was extracted from a few hundred pooled colonies and used for genome integration 
according to the protocol described above.  

After integration, up to 6 colonies were selected from each gene and the GFP-barcode region was 
amplified and sent for Sanger sequencing to document the barcode and to check the integrity of the GFP 
coding sequence. Verified clones were stored as glycerol stocks. A limited number of clones which did not 
pass this check (due to having incorporated some mutation in the GFP region) were also stored as glycerol 
stocks and used as “count controls”. 
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4.4. Fluorescence-activated cell sorting 

 

4.4.1. FACS sample preparation 

Genome-integrated libraries were plated two days before FACS experiments (see: 4.3.3. Genome 

integration). In parallel, wild-type control cells and count control cells (see: 4.3.5. Generation of wild-type and count 

controls) were plated individually from glycerol stocks.  
After overnight incubations at 30oC and room temperature, colonies were washed from plates (see: 

4.1.4. Harvesting plated libraries), resuspended in 0.22 μm-filtered 1X M9 liquid medium and thoroughly mixed. 
Approximately 5 million colonies were recovered for each of the amacGFP, cgreGFP, and ppluGFP2 
libraries, and around 2 million colonies for each of the novel cgreGFP-derived gene libraries. (In the case of 
FACS experiments repeated at OIST (Table 4), the libraries were plated from glycerol stocks made at ISTA, 
due to difficulties with genome integration efficiency in the new laboratory location. In all other cases, 
sorted libraries were the result of fresh genome integrations two days prior.) 

Wild-type controls were also resuspended in M9 medium, and added to the library to a final 
controls:library ratio of approximately 0.5:100. The libraries of amacGFP, cgreGFP, and ppluGFP2 were all 
sorted alongside wild-type controls from all three genes as well as avGFP, each represented by 3-5 
barcodes. The novel cgreGFP-derived gene libraries contained wild-type controls from 17 cgreGFP-derived 
genes, including the original WT cgreGFP, each represented by 2-6 barcodes.  

Library mixes were generally diluted ~1:1000 in filtered M9 media before being allowed near the FACS 
machine; concentrations were then adjusted to achieve an event rate of ~15k-25k events/s at a flow rate of 
1 (the minimum). 

 

4.4.2. FACS setup 

All FACS experiments were performed on various BD Aria III cell sorters, using a 70 micron nozzle. The 
amacGFP, cgreGFP, and ppluGFP2 libraries were sorted at the Institute of Molecular Pathology (IMP) in 
Vienna, together with IMP cytometry staff, with each library being simultaneously sorted on two 
machines in parallel. Novel cgreGFP-derived gene libraries were sorted at ISTA and/or OIST (Table 4).  

 

Sort precision 
In order to minimize data noise caused by cells being accidentally sorted into the wrong tubes, the 

Sort Precision Mode was always set to “Single Cell” for all FACS experiments. This is the highest possible 
precision setting, and implies that droplets will only be sorted if a) their leading and trailing droplets are 
empty (i.e. maximum Purity Mask setting), and b) the target cell is located near the middle of the droplet 
(i.e. Phase mask set to half the maximum). The former minimizes the chances of a sorted droplet merging 
with a non-empty adjacent droplet, causing it to be contaminated; the latter improves droplet trajectory 
accuracy (which can be affected by particles located at the edges of the droplet) and thus minimizes the 
chances of a sorted cell falling outside of the target tube. 

Furthermore, the flow rate during sorting was always set to 1, the minimum value. (Possible values 
range from 1 to 11, possibly as a nod to Spinal Tap.) A lower flow rate means a narrower stream, which 
increases resolution by making cells more likely to pass by the lasers in single file, as opposed to side by 
side.  

 

Thresholding 
The FSC (forward scatter) measures a particle’s size by collecting diffracted light along the same path 

as the laser beam, while the SSC (side scatter) measures internal complexity or granularity by collecting 
refracted and reflected light perpendicularly to the beam (Adan et al., 2017). Thresholds in the FSC and/or 
SSC channels are commonly used in order to filter out electronic noise during sorting; events smaller than 
the threshold will not be displayed or analyzed by the machine. We used a fluorescence-negative control 
bacteria to set the voltages for the FSC and SSC channels such that the bacterial cell population was easily 
identifiable, and set an SSC threshold of 1000, which in our case was comfortably below the minimum SSC 
values of the cell population. We observed no improvement in the overall sorting experience when using 
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an FSC threshold in addition to SSC, and an FSC threshold on its own was less effective than SSC.  
Note: setting the threshold value too high will result in widespread contamination of all sorted gates 

with random cells: real events (cells) which fall below the threshold will not be displayed to the user, will 
be ignored entirely by the machine, and will therefore be free to contaminate sorted droplets without 
being filtered out according to the Sort Precision settings. Setting SSC voltage and threshold values 
intelligently is vital. 

 

Fluorescence channels and compensation 
We used two fluorescence channels: “FITC” for detection of GFPs (488 nm blue laser excitation, 

530/30 nm band pass detection filter) and “PE-TexasRed” for detection of mKate2 (561 nm yellow laser 
excitation, 610/20 nm band pass detection) (Figure 5a).  

The use of compensation controls is recommended when using two or more fluorescent markers in 
the same experiment, due to the possibility of different markers having overlapping spectra and therefore 
contaminating each other’s signals. Despite the joint use of two fluorescent markers in our setup (mKate2 
and GFP), compensation was not performed during the sorting of amacGFP, cgreGFP, and ppluGFP2 
libraries at VBCF because it was deemed unnecessary due to the known lack of overlap between mKate2 
and GFP spectra in the wavelengths used during FACS. Nevertheless and in the interest of procedural 
rigor, for all FACS runs of novel cgreGFP-derived genes, GFP-only and mKate2-only cells were used as 
controls to calculate compensation values according to the standard BD Aria III protocol.  

 

Gate selection 
Cell doublets can be detected by looking at the relationship between the measured height (H) and total 

area (A) in either the FSC or SSC channels. For single cells which are normally all the same shape, these 
values should be proportional, so plotting H as a function of A is a simple diagonal and events deviating 
from this ratio likely represent multiple cells stuck together. We looked at SSC-H versus SSC-A and defined 
a polygon gate encompassing the diagonal. This population (P1) was our population of single bacterial 
cells. 

Within P1, we then selected an interval gate in the mKate2 (red) channel centered roughly around the 
peak of the mKate2 fluorescence distribution and encompassing ~10% of the total library cell population 
(Figure 5c). (The narrower this gate, the better our control for mKate2-GFP protein expression levels, but 
too narrow a gate would exclude too many cells and slow the experiment to the point of unfeasibility.) 
Only cells falling within this red gate (P2) were sorted; all others were discarded. 

The selected red P2 gate was subdivided into eight interval gates (P3-P10) according to fluorescence 
intensity in the green channel. The darkest of these, P3, was defined based on the distribution of GFP-
negative control cells and meant to capture cells with totally non-functional GFP mutants. Gates P4-P10 
were spaced unevenly across the rest of the green value range with the intent of maximizing fluorescence 
resolution while taking into account cell population density (Figure 5c). This setup of gates P3-P10 was in 
contrast to the previous setup for avGFP, which defined gates in the green channel at equal intervals on 
the logarithmic scale (Sarkisyan et al., 2016). 

 

Sorting rounds 
Libraries were sorted at room temperature in multiple rounds of one hour each. Four green gates were 

sorted simultaneously at any given time (p3-P6, or P7-P10), with cells being recovered in room-
temperature SOC or LB medium. After one hour of sorting, a fixed number of count control cells were 
sorted into each recovery tube (5000 per count control barcode in the case of amacGFP, cgreGFP, and 
ppluGFP2; 2000 or 1000 in the case of novel cgreGFP-derived libraries sorted at ISTA or OIST respectively).  

The full volume of recovered cells from a given round was plated onto multiple large square LB/zeocin 
agar plates (up to 300k sorted cells per plate) and incubated overnight at 30oC then overnight again at 
room temperature. Colonies were then imaged with a Canon EOS 600D SLR camera under blue light to 
check the overall green brightness of different gate outputs, as a sanity check to ensure sorting was 
successful. Colonies derived from different FACS gates were stored as glycerol stocks and used to extract 
DNA for barcode sequencing (see: 4.5. Library sequencing: Barcodes). 

Note: six separate FACS experiments were discarded entirely, and individual rounds were discarded 
from three other runs, due to heavy cross contamination caused by cells falling into the wrong gates 
during sorting. The four sorting streams were sometimes observed to fluctuate during sorting or even 
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dissolve into an untargeted spray (particularly on the ISTA machine), resulting in all recovery tubes being 
contaminated with random library cells. 

 
Table 4. Controls and quantities of sorted GFP libraries. OIST-sorted libraries were prepared by growing cells from the glycerol 
stocks of unsorted aliquots of the corresponding libraries previously sorted at ISTA. In the case of the “minis” library, the initial 
ISTA sorting was unsuccessful (large amount of missorted cells apparent by microscope observation of colonies derived from 
sorted cells), but its unsorted glycerol stock was used for both OIST runs. 

Library Location Sample WT controls Total number of 
sorted cells Events/s 

amacGFP IMP 
~5M colonies 

avGFP, amacGFP, 
cgreGFP, ppluGFP2 

~11,114,000 25k 
amacGFP IMP ~16,740,500 25k – 30k 
cgreGFP IMP 

~5M colonies 
~11,866,000 25k 

cgreGFP IMP ~16,390,000 25k – 30k 
ppluGFP2 IMP 

~5M colonies 
~16,246,000 25k 

ppluGFP2 IMP ~17,649,000 25k – 30k 
cgreGFP:1338 ISTA ~1.3M colonies 

cgreGFP and 
cgreGFP-derived 

genes (“1338”, “132”, 
“4111”, “9708”, 
“2880”, “3224”, 

“900x”, “626”, “575”, 
“121”, “83”, “13”, 

“911”, “985”, “567”, 
“1414”) 

5,142,365 15k – 20k 

cgreGFP:1338 OIST ~2M colonies (from 
ISTA glycerol stock) 7,557,122 15k – 20k 

cgreGFP:132 ISTA ~1.5M colonies 6,385,511 15k – 20k 

cgreGFP:132 OIST ~2M colonies (from 
ISTA glycerol stock) 14,580,691 15k – 20k 

cgreGFP:9708 ISTA ~2M colonies 8,865,010 15k – 20k 

cgreGFP:9708 OIST ~2M colonies (from 
ISTA glycerol stock) 11,020,876 15k – 20k 

cgreGFP:4111 ISTA ~1.8M colonies 5,265,272 15k – 20k 
cgreGFP:4111 ISTA ~2M colonies   

cgreGFP:minis OIST ~2M colonies (from 
ISTA glycerol stock) 2,923,905 10k – 15k 

cgreGFP:minis OIST ~2M colonies (from 
ISTA glycerol stock) 6,395,383 15k – 20k 

 

4.5. Library sequencing: barcodes 

 

4.5.1. Barcodes sample preparation 

Sorted cells from different gates (see: 4.4.2. FACS setup) were washed from plates and collected separately 
(see: 4.1.4. Harvesting plated libraries). Barcode regions were extracted from all samples by PCR and Illumina 
adapter sequences were added, in the following steps: 

 
1. Extraction of genomic DNA (optional). For amacGFP, cgreGFP, and ppluGFP2, no gDNA was extracted, 

and the first PCR step was performed directly on cells. For novel cgreGFP genes, gDNA was 
extracted from an aliquot of cells (~0.05 g) from each gate from each sorting experiment, following 
the “Gram Negative Bacteria” protocol from Promega’s Wizard gDNA Purification Kit. Extracted 
gDNA was checked by NanoDrop for purity and run on a 1% agarose gel to check for DNA integrity. 
In practice, we did not observe any improvement in PCR output when using gDNA instead of cells, 
making this step optional (or pointless). 

2. First PCR: amplification of barcodes. In this step, primers containing partial NG adapter sequences 
were used (olgios 373-375 and 387, see: 4.12.2.List of Oligos). The forward primers (a pool of N-shifted 
oligos, to increase sequence complexity for NGS) were designed to anneal directly upstream of the 
primary barcode, while the reverse was located in the zeocin resistance cassette in order to 
generate a ~350 bp fragment of ideal size for Illumina sequencing. In the case of amacGFP, 
cgreGFP, and ppluGFP2, 15 PCR cycles with Encyclo polymerase were used; for novel cgreGFP-
derived genes, it was 18 PCR cycles with Q5 (an even higher fidelity polymerase than Encyclo, but 
seemingly less processive). In all cases, PCR products were gel purified and eluted in 10 μl H2O. 

3. Second PCR: addition of NGS adapters. 1 μl of purified PCR from the previous step was used as the 
template for a second PCR, using primers corresponding to NGS adapters. For amacGFP, cgreGFP, 



 

56 

and ppluGFP2, TruSeq Illumina adapters were used (oligos 366 & 379-86/427-30, see: 4.12.2.List of 

Oligos) and the PCR consisted of 9 cycles with Encyclo polymerase. For novel cgreGFP-derived 
genes, dual-index primer pairs provided by VBCF were used (oligos DI5 & DI7, see: 4.12.2.List of Oligos) 
and the PCR consisted of 14 cycles with Q5 polymerase. PCR products were gel purified and 
submitted for NGS sequencing. 

4. Sequencing. As the full region of interest (primary and secondary barcodes, plus technical 
sequences) was around 65 bp, the above samples were sent for single-end, 100 bp-length 
sequencing (HiSeqV4 SR100 or NovaSeq SP/S1 SR100, as available). Between 10-15% PhiX DNA was 
added per run to increase sample sequence complexity. 

 

4.5.2. Illumina SR100 data processing 

Sequencing data files were converted from .bam to .fastq format using Bamtools as needed (see: 4.6.2. 

MiSeq PE300 data processing). Overall read quality was checked by FastQC. As a general rule, barcode data from 
amacGFP/cgreGFP/ppluGFP2 and from the novel cgreGFP-derived genes was processed in the same way, 
except that the efficiency of scripts was improved for the latter. The following data processing steps were 
performed using custom Python scripts: 

 
1. Processing of individual samples (cells from one gate).  

1.1. Identification of barcode-adjacent constant sequence. Reads were expected to consist of a 20N 
primary barcode and 10N secondary barcode, separated by an invariant “AGGTGCTAG” 
sequence, plus flanking technical sequences. Reads found not to contain the constant 
between-barcodes sequence were discarded. 

1.2. Barcode extraction. The secondary barcode was assigned the 10 bp sequence immediately 
after the mentioned invariant region. The primary barcode was assigned to the 20 bp 
sequence immediately preceding it (for amacGFP, cgreGFP, and ppluGFP2 libraries), or to 
the 20 bp sequence immediately following the forward primer-annealing region (for novel 
cgreGFP-derived genes, due to the observation that these contained more frequent indels 
in the barcode region, such that counting 20 bp from the end instead of the beginning 
would cause a reading shift compared to barcodes extracted in the full-length gene 
sequencing). 

1.3. Barcode quantification. The total number of reads corresponding to a given 
primary/secondary barcode combination in the sample was determined. 

2. Unification of gate samples from a single FACS run. 
2.1. Determination of barcode distribution across gates. The data from all eight green gates from 

the same FACS experiment were combined. Each primary/secondary barcode combination 
was assigned an array of eight numbers corresponding to its total read counts across the 
different FACS gates. 

2.2. Correction of sequencing errors: primary barcodes. Similar primary barcodes were merged 
together if a) their sequences differed by only one nucleotide, and b) they shared the same 
secondary barcodes (or subset of). Given the improbability of meeting both criteria, the 
less abundant primary was assumed to be a sequencing error of the more abundant one. 
For each secondary barcode of the less abundant primary, the read counts were added to 
the corresponding counts of the more abundant primary. (This step was not performed for 
amacGFP, cgreGFP, and ppluGFP2 libraries due to concerns about lower barcode diversity 
caused by C/A bias in the primers; see: 4.2.2. Generation of mutant sequences.) 

2.3. Correction of sequencing errors: secondary barcodes. Following the same reasoning as above, 
two secondary barcodes of the same primary were merged together if a) their sequences 
differed by only one nucleotide, and b) the less abundant secondary had a ten-fold lower 
read count than the more abundant one. 

3. Read count normalization. 
3.1. Determination of the number of reads originating from a single cell. Between 3 and 5 count 

control barcodes were added in fixed amounts to each gate (see: 4.4.2. FACS setup). For each 
gate, the median read count per cell was determined by dividing the read counts of each 
count control barcode by the corresponding number of count control cells, and taking the 
median. 
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3.2. Normalization of all read counts. For each gate, the read counts of each primary/secondary 
barcode combination were normalized by dividing by the median read count per cell 
determined above. This approximation of cell counts were termed “pseudo-cell counts” 
going forward. 

4. Association of barcodes to genotypes. Primary barcode sequences were used to assign nucleotide and 
protein genotypes, referencing full-gene sequencing of the appropriate libraries (see: 4.6. Library 

sequencing: Coding regions). Barcodes with missing genotype data were discarded. 
5. Determination of fitness values and downstream processing. See: 4.7.1. Determination of fitness values, 4.7.2. 

Combining data from multiple experiments, and 4.7.4. Library data filtering. 
 

4.6. Library sequencing: coding regions 

 
Full-length coding sequences and their associated barcodes were sequenced by high-throughput 

Illumina NGS. The longest possible read lengths produced by Illumina platforms are paired-end reads of 
250 or 300 bp, allowing for full coverage of sequences up to around 500 bp. However, as the full length of 
barcoded GFP gene sequences is closer to 800 bp, we sequenced the N-terminal and C-terminal sections 
separately. We used different approaches for the first and second parts of the project. 

 

4.6.1. Sample preparation: amacGFP, cgreGFP, ppluGFP2 

The mutant libraries of these three genes were first circularized, which allowed the N- and C-terminal 
halves to be amplified separately while still incorporating the barcode in region in each case (Figure 4). 
Illumina “TruSeq” adapters were then added, and the halves were sequenced with Illumina’s MiSeq PE300 
platform: 

 
1. Circularization.  

1.1. Excision of gene library from storage vector. Mutant libraries in storage vectors (see: 4.2.3. 

Cloning of mutants into storage vectors) were digested with BsaI, and the GFP fragment (~750 bp) 
was isolated by agarose gel purification. 

1.2. Preparation of oligo bridge. Complementary primers (oligos 388 & 389, see: 4.12.2.List of Oligos) 
were annealed to each other by pooling them 1:1, then heating at 950C and cooling to room 
temperature in a thermocycler at a rate of ~0.1oC per second. These oligos contained BsaI 
restriction sites designed to leave compatible overhangs with those of the GFP fragment 
from the previous step, flanking a short filler sequence. 

1.3. Circularization. The annealed dsDNA oligos and the linear GFP fragment were ligated 
together to form a circular molecule via a modified Golden Gate reaction. Initial reactions 
contained 100 U BsaI, 60 U T4 ligase, and 50 ng each of GFP fragment and oligo filler, in a 
final volume of 500 μl in 1X T4 ligase buffer. The reaction was performed at room 
temperature. Every 30 minutes, another 50 ng (~1 μl) of each DNA partner was added to 
the mix, up to a combined total of 2 μg DNA. The large reaction volume and the gradual 
and limited DNA addition helped minimize the concentration of free, unligated DNA (once 
ligated, circular molecules could not be cut again due to the loss of restriction sites); we 
observed during tests that the higher the DNA concentration, the more prevalent was the 
formation of circular multimers (Figure 38a,b). Naturally, multimers should be religiously 
avoided, as using them as templates in downstream steps would cause coding regions to be 
associated to the wrong barcodes. 

1.4. Purification of circular monomers. The full reaction volume was processed through a column-
based DNA clean-up kit in order to concentrate the sample into a volume that would fit 
into an agarose gel well. Whole samples were then run on 1% agarose/0.5% TAE gels and 
the band corresponding to the circular monomer was excised and purified. Circular 
molecules were observed to migrate faster than their linear counterparts on a gel (Figure 
38b). Successful circularization was further confirmed by PCR using primers that would 
fail to amplify linear fragments (Figure 38a). 
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2. First PCR: amplification of gene halves. Barcoded N-terminal halves of GFP were amplified using the 
circularized libraries as template (oligos 373-5 & 376-8/421-3/431-3, see: 4.12.2.List of Oligos) (Figure 
4). As the barcode is originally located after the stop codons, C-terminal halves were amplified 
directly from the libraries in the original storage plasmid (oligos 370-2 & 367-9/424-6/434-6, see: 
4.12.2.List of Oligos). In both cases, 10 PCR cycles with Encyclo polymerase were employed. Primers 
included a template-specific region as well as a partial NGS adapter sequence. Furthermore, for 
each gene half, three separate, staggered primer pairs were employed which differed from each 
other only by being shifted by 1-3 nucleotides; this increase in sequence complexity is desirable 
for NGS (see note below). PCR products were run on a 1% agarose gel and gel purified, eluting in 
10 μl H2O. 

3. Second PCR: addition of NGS adapters. 1 μl of purified PCR products from the previous step were used 
as the template DNA in a second PCR (also Encyclo, 10 cycles) (oligos 366 & 379-86/427-30, see: 
4.12.2.List of Oligos). The primers in this case corresponded to the full-length TruSeq Universal 
Illumina adapters, initially annealing to the partial adapter sequence already incorporated during 
the previous step. The forward primer was the same for all samples; a different reverse primer, 
differing by a unique 6N index sequence, was used for each sample in order to be able to pool 
samples together in the same NGS run and demultiplex them afterwards. 

4. Sequencing. All samples described above were sequenced at VBCF on the Illumina MiSeq platform, 
generating paired-end reads of length 300 bp each. A total of 5 MiSeq lanes were used, yielding 
~100 million reads altogether. As amplicon libraries have low sequence complexity even when 
using N-shifted primers, ~20% of PhiX DNA was included per run. 

 

A note on N-shifted PCR primers: 
Introducing reading shifts is recommended for amplicon libraries or other samples where nucleotide 

diversity per position is expected to be low. This is the case for our mutant libraries, as only a minority of 
variants will contain a point mutation any given site. During NGS, starter molecules are amplified into 
clusters, and each cycle, clusters are imaged and their nucleotide states are determined by their 
fluorescent signal. If nucleotide diversity is low, resolving individual adjacent clusters becomes more 
difficult, as the majority signal may mask that from alternative nucleotides. This results in miscalled bases 
and sequencing errors. Using staggered primers, also called phased primers, increases the nucleotide 
diversity at any given site, minimizing this problem. 

Sample sequence complexity may also be increased by the addition of PhiX DNA (typically 10-20%) 
prior to sequencing. 

 

.  
FIGURE 38. GFP library circularization. (a) Schematic of the desired circular molecule (top) and of an undesired multimer (dimer, 
bottom), showing the circulatizing oligo filler in grey and GFP sequence in green. Placement of PCR primers used to confirm 
circularization are shown on the monomer. In the dimer, PCR of the N-terminal half would lead to the amplified coding region 
being associated with the incorrect barcode (represented by green vs. purple). (b) Agarose gel visualization of pre- and post-
circularization products. Purified, linear dsDNA of the cgreGFP and slightly shorter ppluGFP gene libraries are shown on the left. 
On the right, the circularization products are shown (see: 4.6.1. Sample preparation: amacGFP, cgreGFP, ppluGFP2). Circular 
monomers migrate faster than linear molecules of the same size. Multimers are also visible. 
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4.6.2. MiSeq PE300 data processing 

Demultiplexed sequence data were downloaded from VBCF in .bam format and converted to .fastq 
using Bamtools: 

bamtools convert -in sample.bam -format fastq -out sample.fastq  
 
FastQC files provided by VBCF indicated overall good sequencing quality, with quality decreasing 

towards the ends of the reads, particularly Read 2; this is standard for MiSeq. No quality-based read 
trimming was performed. 

Raw sequencing reads were processed using custom Python scripts. Code is available on the 
Orthologous_GFP_Fitness_Peaks GitHub page. The data was processed in the following steps: 

 
1. Processing of individual samples (gene halves): 

1.1. Identification of barcode-adjacent constant sequence. All constructs included an invariable 
22 bp sequence between the stop codon and the barcode. This was used as a primer-
annealing region during mutagenic PCR and during post-FACS barcode amplification. Any 
sequencing reads found not to contain this sequence were discarded. 

1.2. Barcode extraction. Barcodes corresponded to the 20 nucleotides immediately adjacent to 
the above invariable sequence. 

1.3. Trimming of primer sequences. Sequences corresponding to primer-annealing regions used 
during sample preparation were discarded, as leaving them in would interfere with the 
discovery of real point mutations in those regions. 

1.4. Pooling of reads with matching barcodes. Reads with the same barcode were pooled, and 
barcodes with fewer than 5 reads to their name were discarded as having too low 
coverage. (Note: due to concerns about reduced barcode diversity caused by nucleotide 
bias in the barcoding primers (see: 4.2.2. Generation of mutant sequences), no attempts were 
made to correct for sequencing errors in the barcode region during this step.) 

1.5. Making of consensus sequences. Aligned reads were merged into a consensus sequence by 
taking the most abundant nucleotide at each position. (Note: by default, sequences are 
already aligned after primer trimming, so no external sequence aligner was used in this 
case.) This process was done separately for forward (Read 1) and reverse (Read 2) 
sequences. Sequences with ambiguous positions, i.e. less than 80% agreement among all 
reads for all positions, were discarded. This high threshold improved data quality 
downstream compared to our initial simple threshold of 50%. 

1.6. Merging of Read 1 and Read 2 consensus. For each barcode, the Read 2 consensus sequence 
was reverse-complemented and the forward and reverse consensus sequences were 
merged together. The overlap between Read 1 and Read 2 varied between samples but was 
always over 100 bp long. If the overlap region was not a 100% match between both 
consensus sequences, the barcode was discarded. 

2. Merging of N- and C-terminal gene halves: For each surviving barcode, the N-terminal and C-terminal 
consensus sequences were merged. The overlap between gene halves was only 6 bp long for 
amacGFP, but 71 bp and 53 bp for cgreGFP and ppluGFP2, respectively. Barcodes where the overlap 
was not a 100% match between gene halves were discarded. 

3. Genotype determination: 
3.1. Nucleotide mutation extraction. Global pairwise alignments were made between every full-

length consensus sequence and the relevant wild-type reference, using Biopython (Cock et 

al., 2009). Nucleotide genotypes were determined by extracting the mutations (mismatches 
with the reference). 

3.2. Protein translation. Nucleotide coding sequences were translated to protein sequences and 
amino acid mutations were extracted by comparing with the wild-type reference. 

 

4.6.3. Sample preparation: novel cgreGFP variants 

For these genes, circularization was not performed. Instead, three PCRs were performed on each 
library such that the different-length products spanned the entire gene length, with the barcode always 
being included (Figure 39). Primers were designed to anneal to regions which were identical in all 16 of the 
novel cgreGFP-derived genes, in order to avoid any bias resulting from some variants being amplified 
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more efficiently than others.  
Aside from the lack of circularization, the sample preparation steps were essentially the same as for 

the previous libraries (i.e., NGS adapters added via two PCR steps; see: 4.6.1. Sample preparation: amacGFP, 

cgreGFP, ppluGFP2), with the following modifications: 
• Primer sequences. For the first PCR, we used N-shifted oligos binding to different regions of the gene 

sequence (Figure 39). For the second PCR, we used premixed dual-index Illumina adapters 
provided by VBCF (DI5 & DI7, see: 4.12.2. List of Oligos). 

• PCR conditions. We used Q5 polymerase, 10 cycles for the first PCR and 13 cycles for the second. 
• NGS run. Samples were sequenced by Microsynth on a single NovaSeq SP PE250 flowcell, instead of 

using several MiSeq PE300 lanes. 
 

4.6.4. NovaSeq PE250 data processing 

Demultiplexed sequence data were downloaded from Microsynth in .fastq format. 
 
Processing of raw read data was performed using custom Python scripts adapted from those used for 

MiSeq PE300 data (see: 4.6.2. MiSeq PE300 data processing): 
 

1. Processing of individual samples (gene fragments): 
1.1. Identification of barcode-adjacent constant sequence. As in 4.6.2. MiSeq PE300 data processing. 
1.2. Barcode extraction. As in 4.6.2. MiSeq PE300 data processing. 
1.3. Trimming of primer sequences. As in 4.6.2. MiSeq PE300 data processing.  
1.4. Pooling of reads with matching barcodes and correction of barcode sequencing errors. Reads with 

the same barcode were pooled, taking into account potential sequencing errors. Error 
rates for Illumina NGS have been reported to range from 0.1% to 0.6% per base (Stoler & 

Nekrutenko, 2021), depending on the platform and on the individual run. If we pessimistically 
assume an error rate of 0.6%, then the probability of the 20N barcode being sequenced 
perfectly in any given read is (1 – 0.006)20 = 0.89, meaning that up to 11% of reads may 
contain miscalled bases in the barcode region. We therefore considered two barcodes to be 
equivalent, if a) they differed by only one base, and b) the less abundant barcode was 
associated to fewer than 10 reads. 

1.5. Alignment of reads. Reads belonging to the same barcode were aligned using the multiple 
sequence alignment tool MUSCLE v3.8.1551 (Edgar, 2004), alongside the corresponding WT 
sequence for reference. This was done separately for the forward (Read 1) reads from each 
of the three fragments (Figure 39) and for the pooled reverse (Read 2) reads from all 
fragments. 

1.6. Making of consensus sequences. From each multiple read alignment, a consensus sequence 
was generated by taking the most abundant nucleotide at each position. Any given 
position was considered ambiguous if less than 75% of reads were in agreement about 
nucleotide identity. Initially, nearly all consensus sequences contained ambiguous 
positions; see 4.6.5. NovaSeq PE250 data clean-up for details on this problem and how it was 
fixed. Any barcodes whose final, post-clean-up consensus sequences still contained 
ambiguities were discarded. 

2. Merging of gene fragments. For each surviving barcode, the four consensus sequences were merged 
together by comparing the their overlapping regions (Figure 39). Barcodes were discarded if the 
overlap regions did not match 100%.  

3. Genotype determination: 
3.1. Nucleotide mutation extraction. As in 4.6.2. MiSeq PE300 data processing. 
3.2. Protein translation. As in 4.6.2. MiSeq PE300 data processing. 
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.  
FIGURE 39. PCR setup for NovaSeq PE250. For NGS of new cgreGFP-derived gene libraries, three fragments of different lengths 
were amplified, with overlapping sections between them to allow for downstream sequence merging. The barcode was included in 
the Read2 of all fragments. 
 

4.6.5. NovaSeq PE250 data clean-up 

When combining reads to create consensus sequences and/or when merging consensus sequences 
from different amplicons (see: 4.6.6. NovaSeq PE250 data processing), the majority of coding sequences failed to 
assemble without ambiguities.  Upon inspection, in nearly all cases, ambiguous positions were due to 
conflict between the WT state and a mutated nucleotide, with neither state achieving a 75% majority (our 
threshold for consensus building). That is, the same barcode was associated to different sequences at a 
rate much higher than could ever be expected from random one-off sequencing errors. 

Note: considered individually, the conflict at any given position under dispute is of course always 
between the WT and a non-WT nucleotide, and not between two non-WTs (discounting rare sequencing 
errors). For example: if the same barcode is associated to two sequences with mutations at different sites, 
nAnnn and nnnBn, where n represents the WT state, the conflicts are necessarily n/A and B/n. However, we 
did not observe such cases in our data: taking into account the full read sequences, all conflicts were 
between 100% WT sequences and sequences with one or more mutations. We will hereafter refer to a 
read’s joint nucleotide states across all conflicting positions as its “haplotype”. So, for a barcode associated 
to a consensus sequence with ambiguities in positions X, Y, and Z, we observed reads with fully WT 
haplotypes (WT states at sites X, Y, and Z) and reads with fully mutant haplotypes (mutations at all sites X, 
Y, and Z). We did not observe ambiguities caused by conflicts between three or four nucleotide states. 

In order to determine which sequence was the correct one, we performed long-read sequencing of 
full-length mKate2-GFP-barcode sequences from all cgreGFP-derived libraries, and compared the data to 
the Illumina reads. Long-read sequencing was done in-house on a MinION Mk1C device (Nanopore 
Technologies), using one R9.4.1 flowcell. Nanopore reads were processed as follows, using custom Python 
scripts: 

 
1. Read filtering. 20N primary barcode sequences were extracted from all Nanopore reads by scanning 

for the constant barcode-adjacent motif (see: 4.6.2. MiSeq PE300 data processing). Reads without this 
motif, or which were too short to span the full GFP sequence, were discarded. 

2. Generation of consensus sequences. Reads with the same primary barcode were grouped and aligned 
with the appropriate reference sequence (i.e. according to which library the barcode belonged to, 
which was known from the Illumina data; with 420 theoretically possible barcodes, there was no 
barcode overlap between libraries). Consensus sequences were created for barcodes with at least 3 
reads, by assigning the simple majority nucleotide at each aligned position. Barcodes with fewer 
than 3 reads were discarded. (Note: average sequence quality was overall low (Phred scores 
between 7 and 25) across the full read length, and indels were rampant, with most reads exhibiting 
multiple short deletions compared to reference GFPs. However, these deletions appeared 
randomly spaced, such that they were canceled out in alignments of multiple reads.)  

3. Extraction of mutations. Ambiguous positions in consensus sequences of Illumina reads were 
compared with their corresponding nucleotide states in the Nanopore consensus reads. 

 
The Nanopore data confirmed that in virtually all cases where a conflict existed between a WT 

haplotype and a mutant haplotype, the mutant one represented the true genotype. Over 10k barcodes 
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from each library were captured by long-read sequencing: 

• cgreGFP:1338: 14,189 barcodes, 99.3% in support of the fully mutant haplotype. 
• cgreGFP:132: 12,783 barcodes, 99.5% in support of the fully mutant haplotype. 
• cgreGFP:9708: 20,857 barcodes, 99.3% in support of the fully mutant haplotype. 

• cgreGFP:4111: 23,010 barcodes, 99.4% in support of the fully mutant haplotype. 
 
Based on this, we returned to the Illumina data for libraries “1338”, “132”, “9708”, and “4111”, and 

resolved all conflicts by assigning the mutant haplotype and discarding reads which supported the WT 
state. We then proceeded with merging gene fragments as described in 4.6.6. NovaSeq PE250 data processing. 

 

Source of WT contamination 
The abundance of false WT sequences in NGS data was likely caused by insufficient sequence diversity, 

despite the addition of PhiX DNA and the use of staggered primers during sample amplification. The 
majority of mutant variants have only a handful of mutated positions spread across the full ~700 bp gene 
length. Thus, for any given position, the overwhelming majority of sequences will contain the WT state. 
The genuine signal from a mutated position in one cluster may then be lost among the WT calls of 
surrounding clusters. NGS flowcells may use 4-channel chemistry (where A, T, C, and G are each labeled a 
different color) or 2-channel chemistry (only two fluorophores are used, and nucleotides are labeled with 
one or the other, or both, or neither) for base calling. It is possible that this problem may occur more 
readily in NovaSeq runs, which use 2-channel chemistry, than in the previously employed MiSeq runs, 
which use 4-channel chemistry [personal communication with sequencing facility staff]. 

 

Detection of hybrid sequences in the “minis” library 
In the case of the cgreGFP:minis library, derived from a mix of 12 templates (see: 4.2.2. Generation of 

mutant sequences), data processing was more complex. Before extracting mutations and determining 
whether there is a conflict between WT and non-WT reads, we needed to first determine which of the 12 
“WTs” is the correct one for each barcode. (When using a generic “cgreGFP consensus” sequence as the 
WT reference, containing the majority amino acid states from among all cgreGFP “WTs”, only 39.9% of the 
33,095 Nanopore consensus sequences supported the “fully mutant” haplotype.) 

Out of the full 705 bp coding sequence, 195 sites are variable across the different cgreGFP “WT” 
references (called “origins” or “parents” hereafter). For each barcode, we looked at the nucleotide states 
of these sites to determine the most likely origin. This was done independently for each amplicon 
fragment. We observed that in a significant fraction of cases (~30%), different fragments appeared to 
originate from different origins. To investigate this, we looked at the Nanopore reads covering the full 
gene length. These confirmed the existence of apparently hybrid sequences consisting of segments of 
different origins (see Figure 40 for an example). Once identified, we allowed these hybrid genotypes to 
remain in the dataset (see: 2.6.4. Hybrid gene variants tend to maintain function). 

These hybrid or chimeric sequences were likely an artifact of the simultaneous use of 12 templates in a 
single PCR reaction during the mutagenesis step. The 12 different origins are all cgreGFP variants and 
therefore share high sequence identity, and thus may complementarily anneal to one another. Any 
molecule prematurely aborted during PCR extension may serve as a primer during the next cycle and bind 
to a template molecule from a different origin. This results in a subset of PCR products consisting of single 
molecule chimeras originating from multiple templates (Haas et al., 2011). 
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FIGURE 40. Chimeric GFP sequences. Two examples of barcodes associated with hybrid cgreGFP sequences from the “minis” 
library. Individual, aligned Nanopore reads are shown above the WT reference sequences corresponding to the genotype’s 
identified original templates. Sequence positions on the X axis are limited to the 195 sites which are variable across different 
origins, but only those positions which vary between the immediately relevant origins are highlighted. The segments amplified 
for NovaSeq PE250 sequencing are labeled below, and the position at which the template switch occurs is marked by a vertical 
black line. 
 

4.7. Library data processing and analyses 

 

4.7.1. Determination of fitness values 

A fitness was assigned to each primary/secondary barcode combination from each FACS run, using the 
cumulative distribution of pseudo-cell counts across gates (normalized to sum to 1) and the signal values 
(i.e. fluorescence intensities, non-log-transformed) corresponding to the borders of the sorting gates, as 
reported by the FACS machine during sorting. A cumulative density function of normal distribution was 
fitted to this data, and the fitted mean was assigned as the fitness; see Figure 41 for a panel of example 
barcodes. 

For amacGFP, cgreGFP, and ppluGFP2, fitting was performed using custom Python scripts by 
Alexander Mishin (code available on the Orthologous_GFP_Fitness_Peaks public GitHub page). The 
fitting algorithm was not bounded by the minimum observable experimental values (i.e. the middle of the 
darkest FACS gate, P3, see: 4.4.2. FACS setup), so barcodes with 100% of reads in the P3 gate were sometimes 
assigned fitnesses below the P3 midpoint. This data was left as-is for machine learning (see: 4.10.1. Modeling 

of local landscapes), but for all other analyses, fitness values under the P3 midpoint were set to the P3 
midpoint itself, on the basis that a) it is unjustified to assign different outputs to barcodes with the same 
input information (i.e. all reads exclusively in P3), and b) the P3 gate was selected during FACS to 
encompass the distribution of GFP-negative control cells, so any within-P3 variation is stochastic and does 
not reflect true differences in fluorescence anyway.  

For the novel cgreGFP-derived libraries, Mishin’s code was modified to ensure the output was bounded 
by the minimum and maximum observed gate values, but otherwise untouched. 
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.  
FIGURE 41. Representative examples of CDF fitting of FACS data. Each panel shows, for a different barcode, the CDF fitting (red 
curve) of the cumulative cell counts (black dashed curve) across green FACS gates. The X axis represents raw fluorescence values 
as output by the FACS machine (not log-transformed); for simplicity, only gate IDs are labeled (P3 – P10). Cell counts in each gate, 
normalized to sum to 1, are represented by grey bars. The fitness (fluorescence) value determined by the CDF fitting is shown as a 
vertical dashed red line. 
 

4.7.2. Combining data from multiple experiments 

After assigning fitness values, data from different FACS runs of the same library was pooled. In order 
to minimize any noise caused by inherent differences between machines, data from different FACS runs 
was scaled as follows.  

For amacGFP, cgreGFP, and ppluGFP2, the values of wild-type controls included during sorting were 
used to match brightnesses by linear regression (see: Alexander Mishin’s code available on the 
Orthologous_GFP_Fitness_Peaks GitHub page) in order to merge data from the two parallel FACS runs 
on different machines. 

For novel cgreGFP-derived libraries, barcodes (i.e. primary/secondary pairs) measured in both 
machines and with a minimum cell count (at least 15 pseudo-cells) in each were fitted using Python’s 
scipy.optimize.curve_fit module. The fitness values (non-log-transformed) from one experiment 
were then transformed to the scale of the other experiment using the fitted parameters. For 
cgreGFP:minis, the data from the two FACS runs were, linearly, largely in agreement, so the function 
f(x) = a·x was sufficient to transform one to the range of the other. However, for cgreGFP:1338, 
cgreGFP:4111, cgreGFP:9708, and cgreGFP:132, a more complex function was necessary to fit the data 
(Figure 42). For these libraries, first- and second-degree polynomials were poor fits; third-degree 
polynomials were good fits, but the function f(x) = a·xb + c·√x seemed marginally better than that, so we used 
this. (Note: this fit does not attempt to capture or explain any biological phenomena, merely to adjust data 
ranges from separate experiments so that they are comparable.) Once on the same scale, the transformed 
data were further adjusted slightly in order to align the minimum and WT fluorescence values of both 
experiments, according to the linear formula:  

Min(OIST) + (x – Min(IST)) · (WT(OIST) – Min(OIST)) / (WT(IST) – Min(IST)). 
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FIGURE 42. Merging of data from two FACS runs. Data from cgregFP:1338 is shown, as an example. (a) Data from IST and OIST runs, 
prior to rescaling; X and Y axes show respective fluorescence values. Light green points represent all barcodes with cell counts 
over 15 measured in both experiments. FACS  gate borders (black dots), gate midpoints (white dots), and control barcodes from 17 
cgreGFP-derived “WTs” (dark green dots) are also shown. For reference, the black line, f(x) = x,  shows ideal fluorescence 
agreement between the two experiments. All data points represented were used to fit the red curve, f(x) = a·xb + c·√x. (b) Data points 
as in (a), after transforming the IST values according to the parameters of the fitted curve and applying a linear rescaling to align 
the minimal and WT fluorescence values. Again for reference, the black line shows f(x) = x. (c) Distribution of the IST (dark green 
outline) and OIST (light green fill) library data, after rescaling. (d) As (c), but showing only WT genotypes. 
 

4.7.3. The non-effect of synonymous mutations 

Synonymous mutations are widely considered to have no phenotypic effects because they do not 
affect a protein’s final amino acid sequence. Nonetheless, in some instances, synonymous mutations may 
have a fitness cost (Bailey et al., 2021), due to e.g. codon bias (mutating to a rare codon may affect translation 
by causing ribosomal stalling), or by affecting RNA stability or structure. Therefore, before merging data 
from genotypes containing different synonymous mutations, we checked for differences between the 
distributions of WT nucleotide genotypes vs genotypes containing synonymous substitutions. We did not 
see evidence of synonymous mutations affecting fluorescence in our data, and therefore barcode data 
pertaining to the same protein sequence was ultimately pooled together regardless of the presence of any 
synonymous mutations. It is likely that, if any effect caused by synonymous mutations existed, it would 
not be captured by our FACS setup, as RNA anomalies would likely affect mKate2 translation as well, and 
such cells would fall outside the sorted red gate (Figure 5c). 

 

.  
FIGURE 43. Effects of synonymous mutations. Fluorescence distributions of barcodes associated to WT nucleotide sequences 
(green) versus sequences encoding WT proteins but containing synonymous substitutions (black outline) are shown for all main 
libraries. These distributions were not significantly different (Mann-Whitney U test, p > 0.15) for all genes except cgreGFP:9708 
(p < 0.01), which is likely a statistical fluke. Only quality barcodes with a minimum cell count of 50 were considered, as in Gonzalez 
Somermeyer et al., 2022, Figure 1-S1. Differences in cgreGFP:9708 distributions fluctuate into non-significance with higher or 
lower cell count thresholds, but changing the figure after the fact felt like p-hacking. Note: different libraries were run on 
different FACS machines with different voltage etc., so the X axis here is not comparable across genes. 
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4.7.4. Library data filtering 

After performing fitness determinations for each primary/secondary barcode pair and merging data 
from replicate experiments, barcode-to-fitness datasets were quality filtered and barcodes/nucleotide 
genotypes corresponding to the same protein sequence were ultimately merged.  (“Nucleotide genotypes” 
refer to DNA mutations; “protein genotypes” refer to amino acid substitutions in the final proteins. Due to 
synonymous mutations, the same protein genotype may be represented by multiple nucleotide 
genotypes.) Filtering steps all take place prior to log10-transforming the fitness values. Python code 
relating to amacGFP, cgreGFP, and ppluGFP2 datasets is publicly available on the 
Orthologous_GFP_Fitness_Peaks GitHub repository; this code was modified/improved slightly for new 
cgreGFP-derived genes.  

Data processing steps were briefly as follows, with more detail below: 
1. Discard low-quality barcodes (i.e. given primary/secondary barcode pairs measured on a given 

machine), based on low cell count or high spread across FACS gates. 
2. Merge surviving barcodes according to their nucleotide genotype. This means grouping all 

replicates representing the same nucleotide genotype, summing their cell counts, and assigning 
the genotype a fluorescence corresponding to the average fitness of its replicates weighted by 
their individual cell counts. 

3. Discard low-quality nucleotide genotypes, based on low total cell count, high variance, or few 
replicates. This filtered dataset is stored as the final, “Nucleotide Genotypes to Fitness” dataset for 
each gene (subject to downstream rescaling, see: 4.7.5. Scaling of library values), used for some 
downstream analyses. 

4. Merge surviving nucleotide genotypes according to their protein genotypes. As in Step 2, where 
replicates are now variants with synonymous mutations encoding the same protein. This dataset 
is stored as the final, “Amino Acid Genotypes to Fitness” dataset for each gene (subject to 
downstream rescaling, see: 4.7.5. Scaling of library values), used for most downstream analyses. 

 

Parameters subject to filtering 
Data can widely be considered unreliable if it is based on few measurements/replicates or if those 

replicates contradict each other. In our data, these aspects can be captured in the following parameters, 
on either the barcode or genotype level: 

• Individual cell count: for a given primary/secondary barcode ID, the number of physical cells of that 
ID which were FACS sorted (or normalized “pseudo-cell” counts, accounting for average number 
of NGS reads per cell). 

• Within-barcode variability: for a given primary/secondary barcode ID, the spread of cell counts 
across FACS gates. While it is normal for a given genotype’s fluorescence to span multiple gates, 
reads spread across dark and bright gates can be due to sorting errors. 

• Number of replicates: for a given genotype, the number of unique barcodes measured: either same 
primary but different secondary barcode, or same primary/secondary measured on different 
machines, or different primary barcodes representing the same protein genotype (with or without 
synonymous mutations). 

• Global cell count: for a given genotype, the total number of cells of all barcodes replicates 
representing that genotype. 

• Variability across replicates: for a given genotype, the index of dispersion or coefficient of variation 
(respectively variance or standard deviation, normalized to the mean) in assigned fitnesses of 
different barcodes representing that genotype. 

 
For amacGFP, cgreGFP, and ppluGFP2, no filtering was applied to individual barcodes, but genotypes 

with low global cell count, low number of replicates, or high variability across replicates were discarded. 
For new cgreGFP-derived libraries, barcodes were additionally filtered prior to nucleotide genotype 
merging. Exact threshold values for filter parameters can be found in (Table 5). Thresholds were 
determined independently for each library because, a priori, we cannot assume that all FACS runs to have 
had identical sorting precision in practice (despite machine settings), nor all genes to naturally exhibit the 
same variability in fluorescence.  

Thresholds for each filter parameter were determined with the goal of maximizing the total number 
of surviving protein genotypes while minimizing the number of genotypes with incorrectly-assigned 
fitnesses (as estimated by quality-control genotypes described below). Thousands of combinations of 
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threshold parameters were applied to the entirely of each dataset uniformly and blindly. 
 

Quality control genotypes 
Each dataset contained many nucleotide genotypes encoding WT proteins; as the WTs are, naturally, 

known to be bright, we can assume that any apparently-WT-encoding genotypes assigned a low fitness in 
the dataset must be victims of a) FACS technical error: droplets being accidentally sorted into the wrong 
tube, or b) sequencing error: they are not truly WT, but actual mutations in the coding sequence were not 
detected. The latter possibility is minimized by imposing higher minimum read counts and overall read 
agreement for consensus sequences (see: 4.6. Library sequencing: Coding regions). WT genotypes therefore serve 
as internal controls for estimating the rate of “false negatives” — bright genotypes incorrectly classified as 
dark or dim. 

Conversely, datasets also contain many genotypes encoding a mutation in the chromophore (Y66 and 
G67, in traditional avGFP numbering) or in other residues involved in chromophore maturation (R96 and 
E222, in traditional avGFP numbering), hereafter called chromophore mutants for simplicity. As a 
functional chromophore is a physical requirement for fluorescence, any chromophore mutants assigned a 
high brightness are also likely due to (a) or (b) described above. Note that the probability of (a), FACS mis-
sorting, is likely higher in this case, due to how the machine works: it is easier for a dark cell to go 
undetected and tag along with a bright cell into a bright-gate tube, than it is for a bright cell to go 
undetected and be sorted into a dark-gate tube (Figure 44). Note also that in the case of chromophore 
mutants, a rare option (c) exists: That the mutation genuinely doesn’t eliminate fluorescence. Rare 
mutations affecting chromophore maturation have been documented which maintain fluorescence 
(mainly, the substitution of tyrosine with another aromatic amino acid) (Chudakov et al., 2010; Sarkisyan et al., 

2012), or which are rescued by other mutations elsewhere in the sequence (Wood et al., 2005); see Figure 10 for 
an example. Nevertheless, such mutations are rare, so chromophore mutants remain a good internal 
control for “false positives” — dark genotypes incorrectly classified as dim.  

Note: we did not use nonsense mutations as “false positive” checks, as stop codon read-through is 
frequent (Poole et al., 1995): multiple avGFP genotypes containing premature stop codons were cloned 
independently and confirmed to be fluorescent (Sarkisyan et al., 2016). 

 
Table 5. Dataset filtering parameters and statistics. Chromophore sites are numbered starting from Met=0 for each gene. We 
stopped considering E223 in new datasets due to mutations at that site being frequently only slightly deleterious, making it a bad 
control for lethal mutations. WT genotypes contributed to the False Negative rate if they were assigned fitnesses falling within 
any of the four dimmest gates (P3 – P6), while chromophore mutants contributed to the False Positives rate if they were assigned 
fitnesses falling within any of the four brightest gates (P6 – P10). 

 amacGFP ppluGFP2 cgreGFP cgreGFP: 1338 cgreGFP: 132 cgreGFP: 4111 cgreGFP: 9708 cgreGFP: 
minis 

Chromo-phore 
sites 

Y65, G66, R95, 
E221  

Y57, G58, R86, 
E209 

Y68, G69, R99, 
E223 

Y68, G69, R99 Y68, G69, R99 Y68, G69, R99 Y68, G69, R99 Y68, G69, R99 

Barcode cell 
count 

— — — 4 10.8 7.8 2.7 7 

Barcode spread 
(gates) 

— — — 1.7 1.11 1.3 1.25 1 

Minimum 
replicates 

2 3 3 — — — 2 — 

Global cell 
count 

26 23 14 4.5 45.1 — 40.2 16.5 

Replicate 
variance 

525 (D) 1000 (D) 575 (D) 1 (CV) — 1.2 (CV) 0.25 (CV) 0.32 (CV) 

% data 
discarded 

~78% ~68% ~80% ~16% ~44% ~23% ~57% ~56% 

Surviving 
nucleotide 
genotypes 

46173 47045 34758 11307 5894 10499 6477 4987 

False negatives 0/1084 0/2744 0/1583 3/693 (0.43%) 0/504 3/643 (0.47%) 1/701 (0.14%) 1/184 (0.54%) 

Surviving 
protein 

genotypes 

35500 32260 25165 8934 4267 8214 4180 4597 

False positives 9/1635 
(0.55%) 

11/2242 
(0.49%) 

14/1860 
(0.75%) 

1/308 (0.32%) 1/150 
(0.666%) 

1/280 (0.36%) 2/129 (1.55%) 2/242 (0.82%) 
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.  
FIGURE 44. Brightnesses of WT and chromophore-mutant genotypes before and after data filtering. Each dot represents a unique 
nucleotide genotype, either WT-encoding (green) or containing a mutation affecting chromophore maturation (black). The X axis 
represents fluorescence (non-log10-transformed) across the 8 sorted FACS gates. Vertical dotted lines mark gate borders. Note: 
cgreGFP:minis WTs appear to have an excessively broad distribution because the 12 different WT genes of the “minis” library vary 
greatly in intensity from each other. 
 

4.7.5. Scaling libraries to the same value range 

FACS runs were performed on four different machines over the course of several years, and it was not 
always possible to maintain identical voltage and other settings. The range of fluorescence values of 
different libraries are therefore not always comparable. To be able to directly compare fitness values 
across libraries, we rescaled the filtered data by matching the brightnesses of the WT control genotypes, 
which were included in all sorted libraries for this purpose (see: 4.4.1. FACS sample preparation). This method 
was essentially the same as for merging data from separate FACS runs of the same library (see: 4.7.2. 

Combining data from multiple experiments), but using only WT controls (since no other genotypes would overlap 
between libraries). 

Note: this rescaling was not performed on amacGFP, cgreGFP, or ppluGFP2 datasets as analyzed in 
Gonzalez Somermeyer et al., 2022, and machine learning models were trained on non-rescaled datasets (see: 4.10. 

Machine learning). However, the data ranges of new cgreGFP-derived gene libraries were very different from 
that of the original cgreGFP, so to allow direct comparisons, new libraries were rescaled to the original 
cgreGFP range. For consistency, the amacGFP and ppluGFP2 libraries were then also rescaled to this range 
for this dissertation, and non-ML analyses were repeated (to no difference in results from Gonzalez 

Somermeyer et al., 2022). 
Datasets were rescaled such that the minimum fluorescence values (P3 midpoint) and the fitness value 

of WT cgreGFP (which was measured in all experiments) were matched. For amacGFP and ppluGFP2, a 
second degree polynomial f(x) = a·x + b·x2 was fitted to the fluorescence values of control WT genotypes 
(avGFP, amacGFP, cgreGFP, ppluGFP2), and the fitted parameters were used to transform amacGFP and 
ppluGFP2 data to the cgreGFP range (Figure 45a,b). For new cgreGFP-derived libraries, which did not 
include WT avGFP, amacGFP, or ppluGFP2 control barcodes, the FACS gate border values and WT cgreGFP 
fitness values were used instead. This was possible because in all experiments, the FACS gates were 
selected in a similar fashion in the sense of which section or proportion of the library population fell into 
each gate. Finally, the data were further linearly rescaled (as in 4.7.2. Combining data from multiple experiments) 
to align the minimum and WT cgreGFP values (Figure 45c,d). 

Note: avGFP data from Sarkisyan et al., 2016 was not rescaled in any way, due to a) no controls of any 
other genes were available in the avGFP data to use as references for fitting; b) FACS gates were also 
unsuitable for this purpose, since gates in the avGFP experiments were selected differently (fixed 
intervals) from those of all other libraries (P3 as fully dark, other gates relative to population size); c) 
avGFP’s absorbance spectrum differs from that of the other genes (Figure 3d), thus the 405 nm laser was 
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used for excitation in avGFP experiments, while the 488 nm laser was used for other GFPs, making the 
values of the WT avGFP controls in those libraries unrepresentative of its actual relative brightness. 

 

.  
FIGURE 45. Rescaling of datasets to the WT cgreGFP data range. (a) Fitting of second-degree polynomial to amacGFP and cgreGFP 
control WT genotypes. The fitness value of the very bright WT cgreGFP was not included, as its intensity clearly fell beyond the 
measurement limits of the amacGFP experiment. (b) As (a), but for ppluGFP2. (c) Example (cgreGFP:1338) of fitting a third-degree 
polynomial to gate values in new cgreGFP-derived gene libraries. (d) Fluorescence values (Y axis) of different control WT 
genotypes (X axis) after rescaling of different libraries (color). 
 

4.7.6. Calculation of mutation effects and epistasis 

All calculations of mutation effects were performed on log10-transformed fitness values unless 
otherwise stated.  

 

Effects of individual mutations 
The effect of any given mutation M was calculated as the difference between the measured 

fluorescences of the genotype containing the single mutation M and the wild-type:  
Effect(M) = Fluorescence(M) – Fluorescence(WT) 

 

Expected joint effects without epistasis 
The effects of single mutations were used to calculate the expected fitnesses of genotypes with 

multiple mutations under the assumption of no epistasis. Note that expected fitnesses could only be 
calculated for genotypes composed solely of mutations which had also been measured individually. Under 
this assumption, the individual mutations comprising any given n-mutant genotype contribute additively 
to the final fitness of said genotype:  

Fluorescence(expected) = Fluorescence(WT) + Effect(M1) + Effect(M2) + … + Effect(Mn) 

  
Note: the possible values of “expected” fluorescence were bounded by the minimum and maximum 

measurable values, for each dataset. For example, if two separate mutations were each observed to reduce 
fluorescence to zero, the expected fitness of the double-mutant genotype was still just zero, not the actual 
mathematical sum of both lethal effects. 

 

Epistasis 
Epistasis was calculated as the difference between the observed (measured) fitness and the expected 

fitness under the above additive model: 
Epistasis = Fluorescence(observed) – Fluorescence(expected) 

 

Background-calibrated mutation effects 
Furthermore, within each library, many mutations were observed in multiple backgrounds. For 
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example, if the fitnesses of genotypes A, B, and AB were all measured, then the individual effect of A could 
be calculated not only in the WT background, but also in the background of B; likewise for the effect of B in 
the background of A. More generally, for any pair of genotypes differing by only one mutation M, the 
effect of M can be calculated as above: 

Effect(M) = Fluorescence(background + M) – Fluorescence(background)  

 
Having multiple observations of the same mutation’s effects in different backgrounds allowed for 

computing its average and/or median effect across backgrounds, as well as see how variable, or prone to 
interacting epistatically, the mutation was. These “background-calibrated” effects were used alongside 
“simple” (as measured in the WT) effects in various analyses, in particular in the generation of ML-guided 
design of novel sequences. 

 

4.7.7. Estimation of noise 

Measurement errors, caused by e.g. cells falling into the wrong FACS tubes and skewing fitness 
estimates downstream, can affect not only the genotype in question, but also calculations of “expected” 
(additive) fluorescence of other genotypes and thereby calculations of epistasis. Therefore, we should 
consider the possibility of spurious epistasis arising from measurement errors, and set an appropriate 
threshold for what we consider to be true epistasis such that false positives are reliably avoided. For this, 
we estimated our measurement error and simulated epistasis discovery due to it. 

Under ideal circumstances (perfect measurements) and in the absence of epistasis, the following holds 
true for any two co-occurring mutations A and B (subject to the minimum and maximum of the 
experimentally measurable range):  

Effect(AB) = Effect(A) + Effect(B)  

 
Epistasis, measured as Effect(observed) – Effect(expected), should be equal to zero in this case: 

Epistasis = Effect(AB) – (Effect(A) + Effect(B)) = 0 

 
However, if there exists measurement error, we have the following, where “noise(x)” is the error in the 

measurement of genotype x:  
   MeasuredEpistasis(AB) = MeasuredEffect(AB) – (MeasuredEffect(A) + MeasuredEffect(B)) 
   MeasuredEpistasis(AB) = (Effect(AB) + noise(AB)) – (Effect(A) + noise(A) + Effect(B) + noise(B)) 
 
In the hypothetical case of no real epistasis, any detected epistasis will be due solely to measurement 

error: 
    MeasuredEpistasis(AB) = (Effect(A) + Effect(B) + noise(AB)) – (Effect(A) + noise(A) + Effect(B) + noise(B)) 
    MeasuredEpistasis(AB) = noise(AB) – noise(A) – noise(B) 

 
Furthermore, the chances of spurious epistasis discovery increase as the number of mutations in the 

genotype increase: 
MeasuredEpistasis(ABCD) = noise(ABCD) – noise(A) – noise(B) – noise(C) – noise(D) 

Note: measurement error (noise) can take either positive of negative values. 
 
We estimated the measurement error in our data by looking at the standard deviations of 

fluorescences of genotypes represented by multiple replicates. Since amacGFP, cgreGFP, and ppluGFP2 
datasets were filtered at the nucleotide genotype level but not at the barcode level (see: 4.7.4. Library data 

filtering), we used the nucleotide genotype datasets for this, as unfiltered barcodes would not be 
representative of the final, in-use datasets. Distributions of standard deviations were well fit by a skew-
normal curve (Figure 46a). 

We then simulated spurious epistasis for genotypes with increasing numbers of mutations (2–8) by 
simulating measurement error (noise). For a hypothetical genotype with n mutations, the simulated 
epistasis was equal to the sum of n+1 measurement errors drawn from the skew normal distribution which 
was fitted to the real data. Spurious epistasis values between -0.2 and 0.2 was common, but values beyond -
0.3 or 0.3 — the thresholds set in this work for accepting epistasis as genuine — were negligible (Figure 
46b). 
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FIGURE 46. Estimation of noise in genotype-phenotype data. (a) Distributions of standard deviations of protein genotypes 
represented by at least three replicates (nucleotide genotypes with synonymous mutations) (bars) and skew normal curve fit to 
this distribution (green curve). (b) Simulations of spurious epistasis for genotypes containing 2-8 mutations, with noise values 
drawn from the fitted distributions in (a). 10,000 simulations were performed for each category (gene/number of mutations). Plots 
show the cumulative distribution of false epistasis detected under these conditions. Vertical dashed lines mark the thresholds (-
0.3 and 0.3) used in this work for accepting epistasis as genuine. 
 

4.7.8. Determination of physical distances between residues 

Distance measurements (in Angstroms) between pairs of residues on the folded protein structure were 
determined as in Sarkisyan et al., 2016. Briefly, the coordinates of all atoms in all residues of protein PBD 
structures (2WUR, 2HPW, 2G3O, 7LG4) were extracted using PyMOL. The distances between pairs of atoms 
belonging to different amino acid residues was calculated using custom Python scripts (available on the 
Orthologous_GFP_Fitness_Peaks GitHub repository). For any given pair of residues, the minimum 
distance between any two atoms (one from each residue) was assigned as the distance between residues 
(in Ångströms). The structural similarity of sequence-divergent GFP orthologs can be appreciated in 
Figure 47. 

 

.  
FIGURE 47. Physical distances between pairs of residues in folded GFPs. Mimimum distances between any two atoms belonging to 
two residues are displayed in Ångströms. Amino acid positions are represented on the X and Y axes. 
 

4.8. His-tagged protein purification 

 

4.8.1. Protein Expression 

Coding sequences of wild-type GFPs, codon-optimized for E. Coli and flanked by Type IIS restriction 
sites for easy cloning (see: 4.1.1. Golden Gate cloning), were obtained by PCR where possible or ordered as 
synthetic DNA from Twist Bioscience. Genes were cloned in-frame with an N-terminal 6H polyhistidine 
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tag, under a T7 promoter, in a homemade low-copy (p15A origin) vector conferring kanamycin resistance.  
Purified, sequence-verified plasmids were then used to transform BL21(DE3) cells. Unlike most 

laboratory strains, BL21(DE3) cells contain an inducible T7 polymerase, allowing the specific over-
expression of proteins of interest under the T7 promoter. Transformed BL21(DE3) cells were plated on LB 
agar supplemented with 50 μg/ml kanamycin and 20 μM IPTG to induce T7 expression, and incubated 
overnight at 30oC and then overnight again at room temperature. We chose to use plated cells rather than 
liquid cultures, and constant rather than time-limited IPTG exposure, in order to maximize the amount of 
fully matured GFP (toxicity from extreme over-expression was not an issue). 

 

4.8.2. Protein Extraction 

His-tagged proteins were purified using sepharose beads coated with nickel ions (Ni2+), which interact 
and bind to imidazole rings. As histidine contains an imidazole ring, proteins with exposed histidine 
residues are preferentially bound. Once the protein of interest is captured and other proteins and 
molecules have been washed away, the His-tagged protein can be released by flooding with high 
concentrations of imidazole, which competes with and takes the place of the proteins on the nickel-
sepharose beads. 

The following homemade buffers were used in this step: 
• Binding buffer: 150 mM NaCl, 20 mM Tris-HCl, 25 mM imidazole, pH 8 (note: a low but nonzero 

concentration of imidazole is recommended even during initial binding and washing, to minimize 
nonspecific binding of other histidine-containing proteins to the beads) 

• Elution buffer: 150 mM NaCl, 20 mM Tris-HCl, 500 mM imidazole, pH 8 
 

Protocol: 
1. Cell recovery: Wash cells (densely grown colonies from 10-15 plates) and resuspend in 35-40 ml of 

binding buffer inside a 50 ml Falcon tube. 
2. Cell lysis. We sonicated cells in a Qsonica Q700 device, using the flat 1 cm probe nozzle and the 

following parameters: 20 kHz, amplitude 10, 1s on/4s off (20 minutes active sonication time in 
total). After sonication, the solution is visibly less murky, due to the bacterial cell walls being 
compromised. 

3. Pellet cell debris. Centrifuge sonicated cells for 30 minutes at 21,000 g, at 4-6oC.  
4. Resin equilibration. Wash 3 ml of nickel-sepharose beads with 20 ml of distilled water followed by 

20 ml of binding buffer. The easiest way to do this is by adding the beads to a chromatography 
column and letting the washes flow through. 

5. Incubation of beads and protein. After centrifugation, collect the green supernatant and add the 
washed beads to it. Incubate with rotation for one hour at 4-6oC to promote capture of His-tagged 
GFP by the beads. Discard the pelleted cell debris. 

6. Column set-up. Add the supernatant/resin solution to the chromatography column. Allow the liquid 
to pass through to a waste bucket by gravity, or if you don’t have all day, connect a silicone tube to 
the column’s nozzle and use a peristaltic pump instead, but be careful to not allow the resin beads 
to dry out. 

7. Washing. Add 20 ml of binding buffer to the column and allow it to pass through. Repeat this step a 
total of three times. 

8. Elution. Remove the silicone tubing and peristaltic pump, and ready a collection tube. Add ~5 ml of 
elution buffer to the column and allow it to pass through. Ideally, place a new collection tube for 
every 0.5-1 ml eluted; the eluted protein is much less concentrated at the beginning and end of 
this process, so using multiple collection vials avoids diluting the more concentrated elute. Eluted 
GFP can be stored at 4oC indefinitely. 

 

A note on bacterial sonication: 
Sonication was performed in a cold room, and the tubes with cells were, additionally, on ice; 

nevertheless, the heat produced was enough to partially melt that ice, so it is important to ensure that the 
tube is properly secured and immobile during the whole process so that the tube walls don’t hit the 
sonicator probe. (We never suffered any accidents in this regard, however, we were very annoyed the day 
somebody broke the integrated tube fastener.) 
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Extended sonication with the Q700 was the only successful method we were able to test. For instance, 
no amount of water bath sonication was effective at lysing the cells; even hours-long programs harsh 
enough to heat the water and the protein past its denaturing point (evidenced by the visible loss of green 
color) did not seem to succeed in actually lysing the cell walls. 

 

Reuse of Nickel-Sepharose Beads 
After use, nickel-sepharose beads were washed with 20 ml of resin stripping buffer (20 mM Na2HPO4, 

0.5 M NaCl, 50 mM EDTA, pH 7.4) to remove residual protein, followed by 20 ml of binding buffer and 20 ml 
of distilled water to remove residual EDTA. As an extra precaution and to remove any stubborn 
precipitated protein, beads were also incubated in 1 M NaOH for one hour, then washed with 40 ml of 
binding buffer and 40 ml of distilled water.  

Clean beads were then recharged with 5 ml 0.1M NiSO4, rinsed with 20 ml of distilled water followed by 
20 ml of binding buffer to adjust the pH, and finally stored in 20% ethanol for future use. 

The above steps were performed with the beads resting in a chromatography column and the 
solutions passing through with the help of a peristaltic pump. Chromatography columns were rinsed 
thoroughly with distilled water and also reused. 

 

4.8.3. Protein Quantification and Storage 

Protein concentration was estimated via NanoDrop using the Protein A280 protocol, taking into 
account the extinction coefficient for each protein. Extinction coefficients were determined using 
ProtParam (https://web.expasy.org/protparam/), based on the amino acid sequence of each protein. 

As part of Anna Toidze’s bachelor thesis project, we also estimated protein concentrations by Bradford 
assay using the Pierce Coomassie Protein Assay Kit (Thermo Fisher) according to the manufacturer’s 
instructions. The calibration curve was generated by fitting a linear function f(x) = ax + b to the 
measurements of BSA samples of known concentration (0, 25, 125, 250, 500, 750, 1000, 1500, and 
2000 mg/ml). Bradford-estimated protein concentrations largely coincided with those estimated by 
NanoDrop for the same samples. 

 

4.8.4. Crystallization and structure of amacGFP 

Purified amacGFP protein (obtained as in 4.8. His-tagged protein purification) was crystallized and used to 
resolve the 3D protein structure. Crystallization and structure determination were performed by Nina 
Bozhanova. Full methodology is described in Gonzalez Somermeyer et al., 2022.  

Briefly: amacGFP was crystallized at 21oC, following the Hampton Research Additive Screen protocol 
and using the sitting drop vapor diffusion technique. Crystals were grown for 1 week and flash frozen in 
liquid nitrogen with mother liquor/20% PEG400 as cryoprotectant. Diffraction data was collected on a D8 
Venture system and crystal structures were solved by molecular replacement using MOLREP.  

The amacGFP structure can be found on PDB under the accession code 7LG4. 
 

4.9. Measures of protein structure and stability 

 
All assays were performed on purified GFP proteins (see: 4.8. His-tagged protein purification). All protein 

samples used in the assays below were diluted starting from 20 mg/ml stock solutions in elution buffer 
(see: 4.8.2. Protein extraction). Unless otherwise stated, stocks were diluted with imidazole-free elution buffer 
(20mM Tris-HCl, 150mM NaCl, pH 8). 

 

4.9.1. Urea sensitivity assays 

The urea sensitivity of all “wild-type” reference GFPs was assayed by measuring the absorbance and 
fluorescence (emission) spectra with and without 9M urea. 20 mg/ml stocks were diluted in either 1X PBS 
or 1X PBS/9M urea to final protein concentrations of 18.5 μM (for absorbance) or 0.15 μM (for 
fluorescence), in a final volume of 200 μl per technical replicate. Samples were measured in 96-well plates 
with flat- and clear-bottomed wells (and, in the case of fluorescence measurements, black walls). 

https://web.expasy.org/protparam
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Absorbance spectra were measured from 300 nm to 700 nm and fluorescence spectra from 420 nm to 
700 nm, in 5 nm intervals, on a Biotek SynergyH1 plate reader at 42oC. For fluorescence, an excitation 
wavelength of 420 nm was used, which is suboptimal for all of our proteins but allowed us to measure a 
fuller emission spectrum than excitation at 488 nm would have. Measurements were repeated at fixed 
time intervals (~40 and ~25 minutes for absorbance and fluorescence respectively, due to the time 
necessary to measure full spectra in all 96 wells), for a total of around 60 hours. Data from 3–8 technical 
replicates was kept for each gene and each condition (some replicates were discarded due to aberrations 
caused by evaporation or bubbles in the well). 

As blanks, 8 wells containing the corresponding amount of protein-free elution buffer were measured 
alongside the samples. These values were subtracted from those of the protein measurements, in order to 
avoid interference from the imidazole present in the protein elution buffer (which absorbs significantly 
around 300 nm). 

The excitation and emission peaks for each gene were determined by detecting the highest values in 
PBS for absorbance and fluorescence, respectively, within the 5 nm resolution allowed by the 
measurement setup. Urea sensitivity was determined by tracking the decrease in absorbance and 
fluorescence of these peaks over time in 9M urea. 

 

4.9.2. Thermosensitivity assays 

The sensitivity to increasing temperatures of different GFPs was measured in a variety of ways. Simple 
melting curves generated in a qPCR machine were done at ISTA; DSF and CD measurements were 
performed at the Central European Institute of Technology (CEITEC) in Brno, Czech Republic, under the 
supervision of facility staff Josef Houser and Eva Fujdiarová; DSC runs were performed at CEITEC by Josef 
Houser.  

 

qPCR melting curves 
Samples were diluted to 0.1 mg/ml. 6-8 replicates of 20 μl were loaded onto white qPCR 96-well qPCR 

plates and monitored for fluorescence loss in a Roche LightCycler 480 qPCR machine, using a melting 
curve protocol of heating from 20oC to 99oC at a ramp rate of ~2oC/min (the slowest we could force the 
machine to go). The SYBR Green channel (excitation at 465 nm and detection at 510 nm) was chosen for 
monitoring as it was the most similar to GFP absorbance and emission parameters. Melting curve 
temperatures were calculated automatically, corresponding to the peak of the first derivative of the 
fluorescence emission loss. 

 

Circular dichroism 
200 μl of 0.1 mg/ml protein samples were run on a Jasco J-815 CD spectropolarimeter, in cuvettes of 

1 mm thickness. Proteins’ initial spectra between 200 and 260 nm were measured at 30oC; the spectrum of 
protein-free buffer was also measured and subtracted from those of the proteins. Spectra were not 
measured beyond 200 nm, as measurements because unreliable due to voltage increases of over 700 V; we 
observed that higher concentrations of imidazole in the protein buffer decreased the usable range of 
measurements. Initial spectra were measured at a scanning speed of 100 nm/min, a data pitch of 1 nm, a 
digital integration time of 2s with 1 nm bandwidth, and 10 accumulations. The wavelength corresponding 
to the spectrum peak was then selected (208 nm for avGFP, 218 nm for amacGFP, cgreGFP, and ppluGFP), 
and samples were heated to 98oC at a ramp rate of 1oC/min with constant monitoring of the selected peak 
wavelength. The full spectra were subsequently measured again post-denaturation, using the same 
settings as for the initial spectra.  

The melting curves (monitored at 218 or 208 nm during heating) were fitted with a logistic function, 
f(x) = L / (1+e-k(x-x0)), using custom Python scripts (scipy.optimize.curve_fit) in order to obtain the 
melting temperature (x0). 

 

Differential scanning fluorimetry 
DSF measures the changes in the fluorescence emission at 330 nm and 350 nm of aromatic amino acids 

(primarily tryptophan, but also tyrosine), as proteins are heated. As proteins are denatured, buried 
residues become exposed. Because the fluorescence of aromatic amino acids depends on their immediate 
surroundings, this results in a detectable change in emission, and the ratio of 350/330 nm fluorescence as 
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a function of increasing temperature can be used to determine the temperature at which the protein 
unfolds.  

Protein samples were diluted to 1 mg/ml and run in triplicate (10 μl per replicate) on a Prometheus 
NT.48 (NanoTemper Technologies) device, set to 100% excitation power. Samples were heated from 20oC to 
110oC at a rate of 1oC/min. The melting temperatures for protein unfolding and protein aggregation were 
determined from the peaks of the first derivatives of either the 350/330 nm emission ratio (for unfolding) 
or the light scattering (for aggregation).  

None of our GFPs’ chromophores fluoresce in the range of 330-350 nm, which could interfere with 
interpretation of DSF measurements (Figure 3d). And while our GFPs all had a low tryptophan (W) content, 
tyrosine (Y) content was sufficient to generate a good signal. The aromatic amino acid content of our DSF-
tested GFPs was: 

• avGFP: 1 W, 11 Y 
• amacGFP and amacGFP:V11L: 1 W, 10 Y 

• cgreGFP and its derivatives (1338, 132, 9708, 4111): 3 W, 14 Y 
• ppluGFP: 0 W, 12 Y 

 

Differential scanning calorimetry 
DSC measures a protein’s specific heat capacity (Cp, measured in calories per mole), i.e. the amount of 

heat required to increase sample temperature, which changes as the protein denatures. The protein 
sample and a known reference (buffer solution) are heated simultaneously at a constant rate; when the 
protein unfolds, heat is absorbed, causing a temperature difference between the sample and the reference 
which can be converted into a Cp value. The enthalpy of unfolding (ΔH) is the area under the Cp curve, and 
the peak corresponds to the protein’s melting temperature. 

Samples were diluted to 1 mg/ml and run in duplicate on a MicroCal PEAQ-DSC machine (Malvern 
Analytical). Temperature settings were set to increase from 20oC to 110oC at a ramp rate of 1oC/min, in 
order to be able to compare with DSF data (because the ramp rate affects the detected melting 
temperature: the faster the temperature increases, the higher the detected Tm will be). Melting 
temperatures were calculated automatically as the peak of the Cp curve. 

 

4.9.3. SEC-MALS 

SEC-MALS consists of first separating proteins or other macromolecules in solution based on their 
hydrodynamic volume (size exclusion chromatography), then measuring the intensity of light scattering 
as the sample elutes from the chromatography column (multi-angle light scattering). The light scattering 
is proportional to the macromolecules’ weight-averaged mass. This method therefore allows the 
molecular masses of different macromolecules in solution (for example, different oligomeric states of a 
protein) to be determined. 

SEC-MALS analysis was performed at CEITEC, Brno, by Josef Houser. 1 mg/ml GFP samples were run on 
an OmniSEC system (Malvern Panalaytical). 50 μl were used as the injection volume, and samples were 
measured at 30oC with a flow rate of 0.7 ml/min. 

 

4.9.4. SDS-PAGE and Western Blot 

Cells from P3 and P10 FACS gates were grown from glycerol stocks on LB/zeocin agar. Colonies (>10k 
per condition) were recovered (see: 4.1.4. Harvesting plated libraries) and cells were pelleted. Pellets (0.25 g) 
were then resuspended in 30 ml of Lysis Buffer (1X PBS pH 7.4, 150 NaCl, supplemented with 50 μl protease 
inhibitor cocktail (Merck #P8340)) and sonicated on a QSonica Q700 (20 khz, amplitude 10, 10 minutes of 
active sonication at 1s ON/4s OFF). (30 ml is not a typo. Unfortunately, sonication of smaller volumes on 
various other devices was not efficient.)  

15 μl of lysed cells were centrifuged for 10 minutes at 20,000 g. The supernatant was isolated and the 
pellet was resuspended in 15 μl of Lysis Buffer. Supernatants, resuspended pellets, and full lysates (15 μl) 
were mixed separately with 5 μl 4X Laemmli loading buffer (BioRad) and boiled for 5 minutes at 95oC. 
Samples were then run in 4-20% polyacrilamide Mini-Protean gels (BioRad) for one hour at 100 V 
alongside a protein ladder (Protein Precision Plus Standard, BioRad). The coomassie-based ReadyBlue dye 
(Sigma) was used to stain the gels, overnight at room temperature.  

Coomassie-stained gels were imaged on a ChemiDoc MP system (BioRad), then transfered to PVDF 



 

76 

membranes using a Trans-Blot Turbo Transfer system (BioRad). Membranes were blocked with EveryBlot 
buffer (15 min, room temperature), then incubated overnight at 4oC with the primary anti-His-Tag 
antibody (Abcam) diluted 1:1000 in blocking buffer. Membranes were subjected to five washes of five 
minutes each in 1X PBS/0.05% Tween-20, then incubated for two hours at room temperature with anti-
mouse HRP secondary antibody (Cell Signal), diluted 1:1000 in blocking buffer. Finally, membranes were 
washed five times again and incubated with SuperSignal West Pico-Plus ECL substrate according to the 
manufacturer’s instructions. Membranes were imaged on a ChemiDoc MP system. 

 

4.9.5. Calculation of ΔΔG predictions 

ΔΔG predictions in this work were performed by Nina Bozhanova, using the resolved proteins 
structures 2WUR (avGFP) (Shinobu et al., 2010), 2HPW (cgreGFP) (Malikova et al., 2011), 2G3O (ppluGFP2) (Wilmann 

et al., 2006), and 7LG4 (amacGFP and amacGFP:V11L) (this work). Full methodology is described in Gonzalez 

Somermeyer et al., 2022.  
Briefly: the first chain from each structure was minimized using Rosetta Relax with constrains to 

starting coordinates. 50 models were generated per protein, and the one with the lowest total score was 
selected. Chromophores were treated as non-canonical amino acids and their geometry was optimized 
using Gaussian density functional theory. ΔΔG predictions were calculated using Rosetta’s ddg_monomer, 
for all mutations except nonsense mutations, chromophore mutations, and mutations at sites absent from 
the resolved crystal structure. Rosetta version 3.10 was used throughout. 

 

4.10. Machine learning 

All machine learning work described in this section was performed by Aubin Fleiss and Ekaterina 
Putintseva. Full details on the methods used can be found in Gonzalez Somermeyer et al., 2022, and the code is 
publicly available on the Orthologous_GFP_Fitness_Peaks GitHub repository. 

 

4.10.1. Modeling of local landscapes 

Separately for amacGFP (including amacGFP:V11L), cgreGFP, and ppluGFP2, data was split randomly 
into sets for training (60%), validation (20%), and testing (20%). Neural networks were trained on protein 
sequences represented by one-hot encoding (a binary encoding consisting of, for each position in the 
protein, a vector of length 20 where the relevant amino acid is represented by a 1 and the nineteen absent 
amino acids are represented by zeros). Protein sequences in the training set were paired with their 
respective fitness (fluorescence) values, and the neural networks were tasked with predicting fluorescence 
from input sequences. The Keras software package was used to build all ML models, and model goodness 
was judged by the coefficient of determination (R2) between known and predicted fitness values of 
genotypes in the validation set.  

The following models of increasing complexity were trained on each dataset: 
 

1. Linear models. Neural networks with one input layer, and one layer consisting of a single neuron 
with a linear activation function. These were trained for 30 epochs with the task of minimizing the 
difference between real and predicted fluorescence values, with loss being measured by the mean 
square error. To prevent overfitting, the validation loss was monitored with a patience of 10 
epochs. These models output a sum of individual mutation effects on fitness (i.e. fitness potential). 

2. Models with sigmoid output node. As above, but with the addition of a single neuron with a sigmoid 
activation function. 

3. Models with output subnetworks. As the linear models in (1), with the addition of an output 
subnetwork consisting of ten neurons with sigmoid activation functions, followed by a final linear 
output node. The hidden layer of ten sigmoid nodes were able to effectively transform the fitness 
potential (i.e. the output from the first, linear neuron layer) into accurate fluorescence values.  

4. Final optimized architecture. The final neural nets consisted of the input layer, a first hidden layer of 
neurons with linear activation, a second hidden layer of neurons with sigmoid activation, and one 
linear output node. A wide array of networks with this general architecture were tested, differing 
from each other by the number of neurons (1, 10, 20, 50, 100, or 200, selected randomly) in the two 
hidden layers. These networks also contained a Monte Carlo dropout layer after each hidden layer, 
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with the aim of minimizing overfitting as well as allowing the models to output fluorescence 
values with uncertainty estimates. The various networks were trained for 10 epochs, after which 
the best-performing one for each gene (i.e. the one with the smallest mean square error on the 
validation data) was trained for up to 30 epochs more. The training and validation sets used on the 
optimized models were filtered in order to ensure fairness: genotypes were only included in the 
training data if all their constituent mutations were present in, at minimum, a total of 10 
genotypes (this ensured that enough data on each mutation was available for the models to make 
an informed opinion), and the validation data was filtered so as to not contain any mutations not 
present in the training data. 

 
Furthermore, independent models for each gene with 1, 10, and 100 leaky ReLu nodes were also 

generated, using 90% of the genotype-to-phenotype data for training and 10% for validation. These models 
were trained for up to 500 epochs while minimizing mean square error loss. Overfitting was avoided in the 
same way as for the linear models described above. These models were used as independent a posteriori 
fluorescence predictors, to double-check artificially generated sequences predicted to be fluorescent (see 
below). 

 

4.10.2. Generation of novel protein sequences predicted to fluoresce 

Artificial protein sequences were generated following a genetic algorithm approach, and the 
optimized neural networks described above were queried as to the predicted fluorescence value of the 
generated sequence. Candidate sequences with a given target number of mutations were created as 
follows: 

1. Initialization. The first round begins with 50 wild-type protein sequences. 
2. Recombination and mutation events. Half of the population of sequences is left as is. The other half is 

subjected to crossing over and/or mutation events: 
2a. Crossing over. Recombination (sequence exchange) occurred between pairs of sequences 

with a probability of 0.7. If and when it happened, the number of crossings (between 1 and 
5) and their position along the sequence were chosen randomly. 

2b. Mutagenesis. Mutations were drawn randomly from a pool containing both mutant amino 
acid states and WT states (to allow for potential mutation reversion). The probability of 
suffering a mutation was 0.01–0.015 per amino acid, and if the target number of mutations 
(defined by the user) was exceeded, then a previously integrated mutation was reverted. 
The pool of potential mutant states was limited to mutations which a) had been observed 
at least 10 times in the neural net training data, and b) were observed from the data to 
have a median effect on fluorescence no worse than -0.1 (see: 4.7.6. Calculation of mutation 

effects and epistasis). This approach therefore excluded universally negative mutations, but 
did not limit the pool of potential mutations to those seemingly universally neutral. 
Furthermore, the pool was enriched in non-extant mutations (see: 2.4.1. Extant mutations are 

less likely to be deleterious), to avoid the algorithm converging toward sequences already 
known to be functional; non-extant states comprised 60% of states available to the 
algorithm. 

3. Selection. All sequences in the population above (mutated and/or recombined or not) were one-hot 
encoded and their fluorescence predicted by the optimized neural network (see: 4.10.1. Modeling of 

local landscapes). Their predicted fitness was set as the median of 20 calculations performed by the 
model. Protein sequences were sorted in descending order of predicted fluorescence, and the 
lower ranking sequences were culled. New WT sequences were added in order to keep the 
population size constant. 

4. Rinse and repeat. Steps (2) and (3) above were repeated for several generations. In order to avoid a 
loss of sequence diversity due to excessive number of generations, any given algorithm run was 
stopped once the median predicted fluorescence level of the population reached a plateau. 
Furthermore, the entire algorithm was repeated independently a minimum of 10 times, or until all 
the mutations available in the pool had been sampled.  

5. Final candidate genotypes. From among the final sequences generated, those with the desired 
number of mutations and whose fluorescence was predicted to be greater than the initial WT by 
both the optimized neural net and the ReLu a posteriori neural net (see: 4.10.1. Modeling of local 
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landscapes) were submitted as candidates for experimental validation. 
 
Note: the numerical values listed above for the recombination rate and per-amino-acid mutation rate, 

as well as the ratio of WT to mutant states available in the pool and the number of generations, were 
adjusted empirically with the aim of reaching the targeted number of mutations per sequence while also 
maintaining high predicted fluorescence levels. 

 

4.11. Experimental validation of novel gene sequences 

 

4.11.1. Selection of ML-generated test sequences 

Novel protein sequences for amacGFP, cgreGFP, and ppluGFP2 were computationally generated and 
predicted by machine learning models to fluoresce brightly (see: 4.10.2. Generation of novel protein sequences 

predicted to fluoresce). For each gene, sets of candidate sequences containing increasing numbers of 
mutations were created (6, 12, 18, 24, 30, 36, 42, and 48 mutations in the case of ppluGFP2 and cgreGFP; 
only up to 30 mutations for amacGFP; and eventually up to 84 mutations for cgreGFP).  

For each gene and each category (number of mutations), we experimentally tested 12 protein 
sequences. In cases where more than 12 candidate sequences were available to choose from, we chose the 
12 which were as different from each other as possible in order to maximize the tested sequence diversity. 
To this end, the hamming distance between each pair of sequences was calculated, and the top 12 
candidates with the highest overall distance scores were selected.  

Coding sequences corresponding to the chosen novel proteins were generated using custom Python 
scripts. All nucleotide sequences were codon-optimized for E. coli and free of any internal restriction sites 
that would make them incompatible with Golden Gate cloning (BsaI, BpiI, BsmBI) or even genome 
integration (SpeI, NotI). Finally, BsaI restriction sites were added to flank the coding sequences, for 
downstream Golden Gate cloning into expression vectors. Final nucleotide sequences were ordered as 
synthetic DNA fragments in 96-well plates from Twist Bioscience and IDT. 

 

A note on synthetic DNA fragments 
We ordered multiple 96-well plates of synthetic dsDNA gene fragments from Twist Bioscience and one 

plate of gBlocks from IDT. Genes from Twist tended to give a 100% correct sequence with the first tested 
clone in ~90% of cases, and in the remaining cases, the second sequenced clone was correct. In contrast, 
only ~68% of initial clones from IDT genes were correct, with a further ~12% being correct in the second 
clone, another ~12% requiring 3-5 clones, and the remaining requiring 6+ clones to be sequenced before 
identifying one with a perfect sequence. Out of all the clones with incorrect IDT sequences, 88% of them 
were incorrect due to an indel, while 12% contained point substitutions. The difference in error rates 
between the two companies, and the pervasiveness of indels in particular may be due to differences in 
(proprietary) synthesis methods. 

 

4.11.2. Manual selection of top mutations in ppluGFP2 

For the non-ML-generated ppluGFP2 test sequences containing 24 mutations, we first checked the 
diversity of mutations used in the ML-generated sequences; 175 unique mutations were observed to have 
been employed across the 12 ML ppluGFP2 24-mutation genotypes. To make comparisons fairer between 
genotypes constructed manually versus by ML in terms of available choice of mutations, we decided to 
also select 175 mutations from the dataset to serve as the pool to draw from. For this, we ordered all 
mutations measured in at least 5 backgrounds in the ppluGFP2 dataset according to their median observed 
effect across backgrounds, and selected the top 175 mutations. None of the “top 175” mutations had a 
negative median effect on fluorescence (Figure 23a). (However, it was not possible to limit the pool to 
“universally neutral” mutations, i.e. those never observed, in any background, to have a deleterious effect 
causing loss of fluorescence of over one standard deviations from the WT fluorescence; only 5 mutations 
fit such a stringent criteria.) 

We generated 12 non-ML genotypes, each incorporating 24 mutations from the “top 175” pool. One of 
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the genotypes was manually constructed to contain precisely the top 24 mutations of the pool, the “best of 
the best” out of all mutations ever tested in the ppluGFP2 dataset. The remaining 11 genotypes were 
constructed by taking 24 mutations at random from the “top 175” pool. 

Nucleotide sequences were generated and ordered as synthetic DNA, as described in section 4.11.1. 

Selection of ML-generated test sequences. 
 

4.11.3. Fluorescence measurements of novel genes 

All novel GFP sequences were cloned via Golden Gate cloning into a homemade expression vector 
under a constitutive T5 promoter and lambda T0 terminator. The homemade vector conferred zeocin 
resistance and contained an origin of replication derived from pBR322, resulting in a medium/low copy 
number of ~20 copies per cell. 

Golden Gate reactions were carried out in 96-well PCR plates. Chemically competent XL10-Gold cells 
were transformed in chilled 96-well PCR plates and the heat shock was performed in a thermocycler. 96-
well deep well plates were used for post-heat shock recovery. Cells were plated on LB agar/zeocin plates 
supplemented with autoclaved black drawing ink (Higgins) in an ink:media ratio of 1:100, in order to 
improve the contrast between the fluorescent signal from GFP-positive colonies and the LB itself (which 
autofluoresces green). 

Plates were incubated overnight at 30oC and then overnight again at room temperature, as during 
library expression prior to FACS. On the second day, all genes could be visually confirmed to be functional 
or not. Either way, at least one colony per construct was sequence-confirmed via Sanger sequencing. 
Sequence-confirmed clones were stored as glycerol stocks, and also streaked side by side alongside WT 
constructs on fresh LB agar/zeocin/ink plates which were then incubated as above. Those plates were 
were then imaged with a Canon EOS 600D SLR camera under identical conditions (aperture 2.8, ISO 100, 
0.8s exposure time); settings were selected to maximize visible fluorescent signal without resulting in any 
saturated pixels. FIJI was used to convert images to 8-bit and to extract the median pixel values for each 
streak; no other image parameters such as brightness or contrast were modified. These values were log-
transformed and scaled to the range of values of the sorted libraries, in order to allow direct comparisons. 

 

A note on the use of T5 promoter 
The constitutive T5 promoter sequence, as in the commercial pQE30 vectors, is 

AAATCATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCAATTGTGAGCGGATAACAATTTCACACA. In ~3% 
of sequenced constructs, we observed a partial promoter deletion, resulting in 
AAATCATAAAAAATTTATTTGCT--------------------------------TTGTGAGCGGATAACAATTTCACACA. 

Notably, if a promoter deletion occurred, it was always identical: the missing section was always 
TTGTGAGCGGATAACAATTATAATAGATTCAA. This exact T5 promoter deletion has been described in Kawe et al., 

2011, and appears to occur as a result of lack of repression during key time periods of plasmid 
establishment. We strongly recommend avoiding headaches by avoiding this promoter in cases where 
medium-level, constitutive expression is desired. Note: while the T5 promoter was also used in mKate2-
GFP sorted libraries, we do not expect this phenomenon to affect sorting results: any individual cells 
having suffered a spontaneous promoter deletion should be unable to express mKate2 properly, and will 
therefore fall outside the gate of interest. 

 

4.12. List of materials 

 

4.12.1. List of consumables and services 

 

Antibiotics:  
• Zeocin (InvivoGen #ant-zn-1p); 50 mg/ml stocks obtained by dissolving 1 g powder in 20 ml HEPES buffer; working 

concentration 50 μg/ml 
• Carbenicillin (…); working concentration 100 μg/ml, interchangeable with ampicillin 
• Ampicillin (ISTA media kitchen); working concentration 100 μg/ml 
• Kanamycin (ISTA media kitchen); working concentration 50 μg/ml 
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• Chloramphenicol (ISTA media kitchen); working concentration 25 μg/ml 
• Spectinomycin (ISTA media kitchen); working concentration 50 μg/ml 

 

Antibodies: 
• Anti-6X His-Tag Antibody HIS.H8 (Abcam #ab18184) 
• Anti-Mouse IgG, HRP-Linked Antibody (Cell Signalling #7076) 

 

Biological materials: 
• E. coli strain BW29655 (CGSC #7934) 
• The pSIM5 plasmid was kindly provided by Court lab 
• E. cloni 10G Chemically Competent Cells (1 x 109 cfu/µg) (Lucigen #60107) 
• Addgene plasmids and kits: pX2-Cas9 (#85811), SS9_RNA (#71656), MoClo Toolkit (#1000000044), CIDAR MoClo 

Parts Kit (#1000000059) 
• BL21(DE3) Competent E. coli (NEB #C2527I) 
• Chemically competent DH5α (106 cfu/μg) and XL10-Gold (109 cfu/μg) prepared by the ISTA media kitchen 

 

Buffers & media:  
• General solutions: 50X TAE, 10X PBS, 5M NaCl, 50% Glycerol, Milli-Q water, 0.1M NiSO4, 10M urea, were prepared by the 

ISTA media kitchen 
• Growth media: LB agar, LB liquid media, and M9 liquid media were prepared by the ISTA media kitchen 
• Any other solutions were homemade from other ingredients listed in this section 

 

Chemicals:  
• TopVision Agarose Tablets (Thermo Fisher #R2802) 
• X-Gal Solution, ready-to-use (Thermo Fisher #R0941) 
• Imidazole (Sigma Aldrich #12399-100G) 
• L-(+)-Arabinose (Sigma Aldrich #A3256-25G) 
• IPTG Molecular Biology Grade (Applichem #A4773,0005) 
• Waterproof Drawing Ink, Black India (Higgins #44204) 
• Protease Inhibitor Cocktail (Merck/Sigma Aldrich #P8340) 

 

DNA oligos: sigma + microsynth 
• NEB Unique Dual-Index Illumina Adapter primers obtained from VBCF 

 

DNA purification, gel:  
• EXTRACTME DNA Gel-Out Kit (Blirt #EM08, sadly discontinued)  
• Monarch DNA Gel Extraction Kit (NEB #T1020S)  
• GeneJET Gel Extraction Kit (Thermo Fisher #K0691) 

 

DNA purification, genomic:  
• Wizard Genomic DNA Purification Kit (Promega #A1125) 

 

DNA purification, plasmid:  
• EXTRACTME Plasmid Mini Kit (Blirt #Em01.1, sadly discontinued)   
• ZymoPURE Plasmid Miniprep Kit (Zymo Research #D4211)  
• PureYield Plasmid Midiprep System (Promega #A2492)  
• GeneJET Plasmid Maxiprep Kit (Thermo Fisher #K0492) 

 

Electroporation: 
• Electroporation Cuvettes 1 mm Gap (VWR #732-1135) 

 

Enzymes, polymerase:  
• Encyclo Plus PCR Kit (Evrogen #PK101)  
• Q5 High-Fidelity 2X Master Mix (NEB #M0492S)  
• Q5 High-Fidelity DNA Polymerase (NEB #M0491S)  
• OneTaq Quick-Load 2X Master Mix with Standard Buffer (NEB #M0486L) 
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• GeneMorph II Random Mutagenesis Kit (Agilent #200550) 
 

Enzymes, restriction:  
• Eco31I (BsaI) (Thermo Fisher #ER0291)  
• BpiI (BbsI) (Thermo Fisher #ER1011)  
• SpeI-HF (NEB #R3133S)  
• NotI-HF (NEB #R3189S) 

 

Enzymes, other:  
• T4 DNA Ligase (Thermo Fisher #EL0011) 

 

Molecular weight markers: 
• GeneRuler 1 kb DNA Ladder (Thermo Fisher #SM0311) 
• Precision Plus Protein Dual Color Standard (BioRad #1610374) 

 

Petri dishes and other plates:  
• 500 μl 96-Well V-Bottom Sterile Clear Assay Plates (Axygen #P-96-450V-C-S)  
• Petri dish, square, 12x12 cm (Greiner Bio-One #688102) 
• Petri dish, 92x16 mm (Sarstedt #82.1473) 
• Generic 96-well clear flat-bottom plates 
• Generic 96-well white qPCR plates 

 

Pipette tips:  
• All filter and non-filter tips (1250 μl, 200 μl, 12.5 μl) by Starlab 

 

Protein gels and Western Blot: 
• 4–20% Mini-PROTEAN TGX Precast Protein Gels (Biorad #4561095) 
• ReadyBlue Protein Gel Stain (Sigma Aldrich #RSB-1L) 
• 4X Laemmli Sample Buffer (BioRad #1610747) 
• Immun-Blot PVDF Membrane (BioRad #1620174) 
• EveryBlot Blocking Buffer (BioRad #12010020) 
• SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Scientific, #34579) 

 

Protein purification: 
• Ni Sepharose High Performance (GE Healthcare/Cytiva #17-5268-01) 
• Econo-Pac Chromatography Columns (BioRad #7321010) 

 

Sequencing, Sanger:  
• Performed by Microsynth 

 

Sequencing, NGS: 
• MiSeq PE300 and HiSeqV4 SR100 runs performed by VBCF 
• NovaSeq SR100 runs performed by VBCF or OIST sequencing facilities 
• NovaSeq PE250 run performed by Microsynth 

 

Synthetic DNA:  
• Synthetic Gene Fragments (Twist Bioscience)  
• gBlocks Gene Fragments (Integrated DNA Technologies) 

 

Tubes, various:  
• 0.2 ml 8-Strip PCR Tube, Individually Attached Flat Caps (StarLab #A1402-3700) 
• 1.5 ml ClearView Snap-Cap microtubes (Sigma #T4816-250EA) 
• 1.5 ml Graduated Tube Natural and EasyGrip Cap (StarLab #E1415-2230 and #E1480-0399) 
• TubeSpin Bioreactor 50 (TPP #87050) 
• Various generic 0.5 ml, 1.5 ml, 2 ml, 15 ml, and 50 ml tubes 
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4.12.2. List of oligos 

As a general rule, oligos longer than 50 nt were ordered PAGE-purified. 
 

238  Fw: backbone for expression vector 
CGCGGGGAAGACGTACTAACTGACCTACTAGTAGCGG 

239  Rv: backbone for expression vector 
GGTGCAGAAGACATCTCCTGCAACCCACTAGTCTCT 

292   Rv: barcoded primer for mutagenic PCR 
ACTTCGGAAGACCAACCTNNNNNNNNNNNNNNNNNNNNTGTTCCTAGGCGCCGCTCATCATCA 

293  Fw: primer for mutagenic PCR 
GATTCATTAATCACTCTGGAAGACCAAATG  

321  Fw: before GFP in mKate2 expression construct 
GCCCGGCGTCTACTATGTG  

327  Fw: E. coli genome, before 5’ homology arm 
TCGCCATCTTGTCGAGGAAC  

329  Rv: E. coli genome, after 3’ homology arm 
TGGCGGAACAGGCGTATATC  

331  Fw: homemade general-use destination vector 
AATCGGTCACTGTGGCACGT  

332  Rv: homemade general-use destination vector 
AAGAGTGCATCCTGCCGCAC  

350  Oligo filler for library circularization  
ATAAAGGTCTCAAGGTCGCCCTGAGCCGCTACTACCAATGAGAGACCAATAT 

351  Oligo filler for library circularization  
ATATTGGTCTCTCATTGGTAGTAGCGGCTCAGGGCGACCTTGAGACCTTTAT 

356  Rv: plasmid backbone of mKate2-GFP vector 
TAGACGTCAGGTGGCACTTTT  

359  Fw: plasmid backbone of mKate2-GFP vector 
GTGAGCAAAAGGCCAGCAAA  

366  TruSeq Universal Read 1 Adapter 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT  

367-9  Fw: amacGFP C-terminus + partial TruSeq Read 1 adapter 
CCCTACACGACGCTCTTCCGATCT[2-4N]GTGAAGTTCGAGGGCGACACACTG 

370-2  Rv: GFP (any) C-terminus + partial TruSeq Read 2 adapter 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC[2-4N]ACCACAGAGTACTTCGTGGTCTCA 

373-5  Fw:  GFP (any) N-terminus + partial TruSeq Read 1 adapter 
CCCTACACGACGCTCTTCCGATCT[2-4N]GATGATGAGCGGCGCCTAGGAACA  

376-8  Rv: amacGFP N-terminus + partial TruSeq Read 2 adapter 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC[2-4N]GTCCATGCCCTTCAGCTCGATGCG  

379-86  Rv: TruSeq Indexed Read 2 Adapters 
CAAGCAGAAGACGGCATACGAGAT[6N]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC  

387  Rv: post-barcodes region + partial TruSeq Read 2 adapter 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCNNAACCGCCGAGGTCAGTTTCGCC 

388  Oligo filler for library circularization  
ATAAAGAAGACAAAGGTTGAGACCACGAAGTACTCTGTGGTCTCAAATGAAGTCTTCAATAT 

389  Oligo filler for library circularization  
ATATTGAAGACTTCATTTGAGACCACAGAGTACTTCGTGGTCTCAACCTTTGTCTTCTTTAT 
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421-3  Rv: cgreGFP N-terminus + partial TruSeq Read 2 adapter 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC[2-4N]TCCCCAGGATGTTGCCGTTTGACT  

424-6  Fw: cgreGFP C-terminus + partial TruSeq Read 1 adapter 
CCCTACACGACGCTCTTCCGATCT[2-4N]GTTCGACAATGACGGCCAGTACGA  

427-30  Rv: more TruSeq Indexed Read 2 Adapters (see 379-86) 

431-3  Rv: ppluGFP2 N-terminus + partial TruSeq Read 2 adapter 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCNNAGCCTGTGCCCACTACCTTGAAGTC  

434-6  Fw: ppluGFP C-terminus + partial TruSeq Read 1 adapter 
CCCTACACGACGCTCTTCCGATCTNNGCATTGAAAAGTACGAGGACGGCG  

DI5  Fw: i5 Illumina primer for dual-indexing 
AATGATACGGCGACCACCGAGATCTACAC[8N]ACACGACGCTCTTCCGATCT 

DI7  Rv: i7 Illumina primer for dual-indexing 
CAAGCAGAAGACGGCATACGAGAT[8N]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
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