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A B S T R A C T

Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively
tried out in neuroengineering, as a substrate for the mobile robot’s control unit, i.e., as a cyborg’s brain. Most
of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the
networks may exhibit an emergent spatial map of steady nucleation sites (‘‘n-sites’’) of spontaneous population
spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change
local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative
spatially-embedded connectome, we systematically show in simulations that the number, location, and relative
activity of spontaneously formed n-sites (‘‘the vitals’’) crucially depend on the samplings of three distributions:
(1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of
the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover,
blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability
was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is
explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity,
i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic,
all simulation results can be accurately reproduced. The model, which has already demonstrated a very high
richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting
peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent
illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark
models.
1. Introduction

Spatiotemporal patterns are the main source of information about
the surrounding world: each phenomenon or event is characterized
by where and when it happens. In the neuroscience domain, it has
been recently shown that unique spatiotemporal patterns of functional
connections in the human brain can be used, like fingerprints, to
identify a particular person (Finn et al., 2015; Sareen et al., 2021;
Van De Ville et al., 2021). However, studies of such an identification
require expensive scanners for functional magnetic resonance imaging
or magnetoencephalography, while invasive experimental techniques
are limited due to ethical considerations. Besides, the human brain itself
is so complex that it is extremely difficult to reliably distinguish a true
statistically significant effect from a multitude of artifacts.

Therefore, it seems worth turning first to simpler “toy” experi-
mental systems, in particular, to two-dimensional (2D) neuronal net-
works grown in vitro, like a woven carpet, the so-called neuronal
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cultures (Chiappalone, Pasquale, & Frega, 2019; Soriano, 2023). Dense
micro-electrode arrays embedded in the surface under such a carpet
allow detecting electrical impulse (“spiking”) activity of neurons with
high spatial and temporal resolution. It is well-known that neuronal
cultures demonstrate a rich repertoire of characteristic spatiotemporal
patterns of spontaneous spiking activity in the form of the so-called
population spikes (PSs) or bursts of such spikes (Cohen et al., 2008;
Eytan & Marom, 2006; Maeda, Robinson, & Kawana, 1995; Penn, Segal,
& Moses, 2016; Raichman & Ben-Jacob, 2008; Rolston, Wagenaar, &
Potter, 2007; Sun, Kilb, & Luhmann, 2010; Wagenaar, Nadasdy & Pot-
ter, 2006; Wagenaar, Pine & Potter, 2006). Interestingly, PSs occur from
nucleation sites (n-sites) and each mature neuronal culture usually has
several n-sites (Darbon et al., 2002; Lonardoni et al., 2017; Madhavan,
Chao, & Potter, 2007; Orlandi et al., 2013; Streit et al., 2001; Yvon,
Rubli, & Streit, 2005). The specific number of n-sites and their location
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Neural Networks 180 (2024) 106589 
(i.e., the spatial map of n-sites) are likely unique for each network,
serving as reliable natural marks of distinction of the networks from
each other. Despite the comparative simplicity and reproducibility of
the in vitro experiments, which are also qualitatively reproduced in
imulations by spiking neuronal network models (Gritsun, le Feber, &
utten, 2012; Lonardoni et al., 2017; Orlandi et al., 2013; Paraskevov
Zendrikov, 2017), a detailed mechanism underlying the occurrence

f steady spatial map of n-sites for spontaneous PSs remains elusive.
eanwhile, similar phenomena typically associated with the so-called

euronal avalanches subject to self-organized criticality (SOC) can also
ccur in vivo (Muller et al., 2018; Petermann et al., 2009; Priesemann
t al., 2014) (on SOC in brain slices and neuronal cultures in vitro,
ee Beggs & Plenz, 2003, 2004 and Pasquale et al., 2008; Tetzlaff et al.,
010; Yada et al., 2017). In addition, as population spikes originating
rom a steady n-site mimic events of focal epilepsy, spontaneously
ormed n-sites might be used as a simplistic prototype of focal epilepsy
oci on the cortical sheet (Lytton, 2008; Wendling et al., 2016). So
nderstanding the mechanism of forming the map of n-sites seems quite
mportant.

In its turn, such an understanding arises as the result of constructing
theory that consistently explains key statistically-proven dependen-

ies. However, a weeks-long period of neuronal culture growth, difficul-
ies in getting structurally similar samples with the spatial homogeneity
f the location of neurons on the substrate, and other restricting factors
ake it very challenging to obtain reliable experimental statistics for

he spatial maps of n-sites. Fortunately, as mentioned above, there
re mathematical models of neuronal cultures that plausibly simulate
patiotemporal patterns of neuronal activity observed in the “wet”
xperiments: the models describe an occurrence of episodic PSs from
small number of spontaneously-formed steady n-sites (Gritsun et al.,
012; Lonardoni et al., 2017; Orlandi et al., 2013; Paraskevov &
endrikov, 2017).

In this article, we present the results of systematic simulations
erformed to study the key parametric dependencies of the 2D spiking
euronal network model (Paraskevov & Zendrikov, 2017) that affect
tationary spatial map of n-sites. An important feature of this generative
odel is that it is completely deterministic, i.e., all of its results

re accurately reproducible. To identify the influence of the model
arameters on the occurring nucleation maps, we initially prepared
certain reference realization of the neuronal network, and obtained

he reference nucleation map for it. Further, by changing the target
arameters of the reference neuronal network (RefNN), we observed
ow the nucleation pattern changed in response.

As a result, we have found that the number, location, and relative
ctivity of PS n-sites crucially depend on specific samplings of three
istributions: (1) the network distribution of neuronal excitability, (2)
he distribution of connections between neurons of the network, and (3)
he distribution of maximal amplitudes of the synaptic current pulse.

Aside from the apparent use for advanced computational modeling
f focal epilepsy (Hall & Kuhlmann, 2013; Wang et al., 2014, 2017),
hese results indicate that the nucleation pattern can change signifi-
antly (i) with the neuronal network age (cp. Montala-Flaquer et al.
2022)) and (ii) due to external electrical stimulation, especially spa-
ially local one, when only a part of the network is stimulated (Baruchi

Ben-Jacob, 2007; Dias et al., 2021; George et al., 2018; le Feber
t al., 2015; Pasquale, Martinoia, & Chiappalone, 2017). The latter is
tandardly used in attempts to create a hybrid bio-electronic control
ystem for a mobile robot (e.g., Bakkum, Chao, & Potter, 2008; Chao,
akkum, & Potter, 2007, 2008, reviewed in Chen et al., 2023; George
t al., 2020).

From the viewpoint of physics, both planar neuronal cultures and
he suggested neuronal network model in particular exhibit a bright
xample of autowave pattern-forming system out of equilibrium (Cross

Greenside, 2009; Cross & Hohenberg, 1993; Ermentrout, 1998),
imilarly to the family of Belousov–Zhabotinsky reactions (Zaikin &

habotinsky, 1970; Zhabotinsky & Zaikin, 1973). For instance, it has

2 
een previously shown in simulations with the model that in relatively
ense networks, where inhibitory neurons are not blocked, a PS can
riginate in the form of multi-armed spiral wave with the drifting cen-
er (Paraskevov & Zendrikov, 2017). If connections between neurons
n the model network are rather sparse and the inhibitory neurons
re blocked, as we consider here, then a PS occurs only in the form
f outward circular waves beginning in a few steady n-sites, which
riginate spontaneously. As in many other pattern-forming dissipative
ystems, the nature of such a spontaneous nucleation is insufficiently
lear. The previous study has shown that n-sites are not located at
ocal inhomogeneities of the spatial density of neurons, which is on
verage homogeneous (Paraskevov & Zendrikov, 2017). In the present
tudy, we have found that the nucleation is crucially dependent on a
mall fraction of non-pacemaker neurons having the highest subcritical
xcitability: blocking the dynamics of these neurons leads to a complete
uppression of PSs and their n-sites.

. Model, its analysis, and methods

.1. Neuronal network model

It consists of three main components: (i) an algorithm for generating
he network connectome, (ii) a spiking neuron model, and (iii) a
ynamic synapse model describing the interaction between neurons.
he network standardly has 80% excitatory and 20% inhibitory neu-
ons (Beaulieu et al., 1992; Gabbott & Somogyi, 1986; Markram et al.,
004; Soriano et al., 2008; Trevelyan et al., 2015). However, in order
o obtain a clear map of n-sites, the inhibitory neurons have been
locked (i.e., their membrane potentials have been clamped to the
esting potential 𝑉𝑟𝑒𝑠𝑡) in most of the simulations described in this
rticle. The impact of inhibitory neurons is described in Discussion;
uppl. Video 2 shows a simulation with unblocked inhibitory neurons
see also Baltz, de Lima, & Voigt, 2010).

.1.1. Network connectome model
We assume that (i) 𝑁 point neurons are uniformly distributed over

quare area 𝐿 × 𝐿 and (ii) the probability of formation of a unilateral
onnection between each pair of neurons decreases exponentially as
function of the distance 𝑟 between them, if the distance is not too

arge (Boucsein et al., 2011; Ercsey-Ravasz et al., 2013; Hellwig, 2000;
v et al., 2017; Markov et al., 2011, 2013; Miles, Traub, & Wong, 1988;
obinson, 2019; Uttley, 1955),

𝑐𝑜𝑛(𝑟) = exp(−𝑟∕𝜆) + 𝑝min𝜃(𝑟 − 𝑟0), (1)

here 𝑟 ≤
√

2𝐿, 𝜆 is the characteristic connection length (both 𝑟 and
𝜆 are further expressed in units of 𝐿 by default), 𝑟0 = 𝜆 ln(1∕𝑝min) (see
the description below), and 𝜃(…) is the unit step function: 𝜃(𝑥) = 1
for 𝑥 > 0 and 𝜃(𝑥) = 0 for 𝑥 ≤ 0. In engineering, the exponential
dependence 𝑝𝑐𝑜𝑛(𝑟) ∝ exp(−𝑟) is sometimes referred to as the Waxman
model (Dettmann & Georgiou, 2016; Waxman, 1988).

The second summand in Eq. (1) contributes to formation of long-
range connections, typically increasing the total number of connections
up to 5% (see the left graph in Fig. 1). This summand must be included
to take into account constraints of the random number generator
(RNG), which is necessary for generating the network connectome.
In particular, the standard RNG in C can generate a random inte-
ger number within the range from 0 to some predetermined value
𝑅𝐴𝑁𝐷_𝑀𝐴𝑋, which may depend on the operating system but cannot
be smaller than 32 767. That integer number can be then transformed
into the real one by normalizing it by 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋, resulting in
the pseudo-uniform distribution from 0 to 1 that is used to generate
neuronal connections by comparing the random numbers with the
probability 𝑝𝑐𝑜𝑛. However, as the smallest nonzero random number
is 𝑝min = 1∕𝑅𝐴𝑁𝐷_𝑀𝐴𝑋, there is a systematic bias for nonzero
probability values smaller than this limit: these values are compared
with zero and always lead to the connection formation. If 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋
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Fig. 1. Upper graphs: LEFT: The red curve is a fraction of network connections with the given length 𝑟, or the product 𝑝𝑐𝑜𝑛(𝑟)𝑃 (𝑟), where 𝑝𝑐𝑜𝑛(𝑟) and 𝑃 (𝑟) are given by Eqs. (1)
and (3), respectively. In turn, the gray curve illustrates the case 𝑝𝑐𝑜𝑛(𝑟) = exp(−𝑟∕𝜆) following from Eq. (1) at 𝑝min = 0. The blue dots represent the data for the RefNN network
connectome used in all simulations. The inset shows the same graph with linear scale on the vertical axis and 𝑟∕𝐿 ≤ 0.1. RIGHT: Probability density function 𝐹 (𝜈), given by
Eq. (12), for self-frequencies 𝜈 of pacemaker neurons (solid line is for excitatory neurons, dashed line is for inhibitory neurons; the difference originates from the different values
of 𝜏𝑟𝑒𝑓 ), if the background currents are distributed by the non-negative and upper-bounded normal distribution, see Eq. (9). Inset: Fraction of pacemaker neurons 𝑁𝑝𝑚∕𝑁 (formula
(13) with 𝐼max = 20 pA) as a function of two basic parameters for the normal distribution (9) of background currents — the mean 𝜇 and standard deviation 𝜎. The filled gray circle
indicates the values used in simulations. The critical value of the background current, above which the neuron is a pacemaker, is 𝐼𝑐 = 15 pA. At the bottom: LEFT: Schematic
outline of two LIF neurons, see Eq. (7), coupled by a monosynaptic excitatory connection. The presynaptic neuron is a newly minted pacemaker (with a spiking frequency of
10 Hz), while the postsynaptic one is not. The synaptic current 𝐼𝑠𝑦𝑛(𝑡) = 𝐽𝑦(𝑡), where 𝑡 is time, is subject to a short-term depression of fraction 𝑦(𝑡) determined by Eq. (15). RIGHT:
The time dependencies for the postsynaptic neuron potential 𝑉 counted from the resting potential (top) and 𝐼𝑠𝑦𝑛 (bottom). The constant 𝐽 was taken of 152 pA, the maximal
value in the samplings for all simulations. Provided that spiking threshold potential 𝑉𝑡ℎ = 15 mV, the dynamics show that even the largest (not depressed) first pulse of 𝐼𝑠𝑦𝑛 is
insufficient to cause a spike generation on the postsynaptic neuron if the latter is not fed by non-zero subcritical background current.
turns to infinity, the second term in Eq. (1) vanishes and we return
to the Waxman model (i.e., the first summand in Eq. (1)). Given
𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 = 32767 and 𝜆 = 0.01, one gets 𝑝min ≈ 3⋅10−5 and 𝑟0 ≈ 0.1.

A comparative study of neuronal networks generated with and
without the second summand in Eq. (1) is given in Ref. Zendrikov and
Paraskevov (2021). In brief, for 𝑁 = 50000 and 𝜆 = 0.01 standardly
used in this study, the average number of outgoing connections per
neuron increases from 𝑚̄ = 31 for the Waxman model to 𝑚̄ = 32
for Eq. (1), with the unchanged standard deviation (= 6) (cp. Cullen
et al. (2010)). Thus, effectively, every neuron acquires one additional
long-range connection (Isele et al., 2015). As the fraction of additional
connections is quite small, the results of comparative simulations have
been qualitatively the same.

It is important to stress that, regardless of the second summand
in Eq. (1) for 𝑝𝑐𝑜𝑛(𝑟), the considered networks belong to the small-
world network type (Humphries & Gurney, 2008; Lacy & Robinson,
2020; Neal, 2017; Telesford et al., 2011; Watts & Strogatz, 1998),
with the following mean values of the clustering coefficient (CC) and
the shortest path length (SPL): CC ≈ 0.13 and SPL ≈ 4 for Eq. (1),
and CC ≈ 0.15 and SPL ≈ 11 for the Waxman model (Zendrikov &
Paraskevov, 2021). Based on these numbers, the “small-world-ness”
introduced in Humphries and Gurney (2008) is increased more than
twice (from about 45 to 103) with including the second summand in
3 
Eq. (1). Therefore, the RNG-caused correction in Eq. (1) substantially
improves this criterion.

It is also worth noting that inequality 𝑟 ≤
√

2𝐿 implies that
connections between neurons are geometrically modeled by segments
of straight lines (Segev et al., 2003; Shefi, Ben-Jacob & Ayali, 2002;
Shefi et al., 2002). In other words, we assume that the connection
length is simply equal to the distance between neurons. As the square
area is a convex set of points, this simplification seems rational. We
emphasize that the connections do not cross boundaries of the square
and, therefore, the neurons in the vicinity of the boundaries have fewer
connections. For simplicity, parameter 𝜆 in Eq. (1) is chosen indepen-
dently of whether the pre- and postsynaptic neurons are excitatory or
inhibitory (cp. Miles et al. (1988)). The formation of autaptic connec-
tions (i.e., self-connections) (Ikeda & Bekkers, 2006) is also prohibited
to this end (cp. Protachevicz et al. (2020)). Duplicate connections are
not considered in the model as well: every neuron can have only one
outgoing synapse to any other neuron.

With a given function 𝑝𝑐𝑜𝑛(𝑟), the average number of connections in
a network of 𝑁 neurons is

𝑁𝑐𝑜𝑛(𝜆) =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑝𝑐𝑜𝑛(𝑟𝑖𝑗 ), (2)

where 𝑟𝑖𝑗 is the distance between the 𝑖th and 𝑗th neurons. For the
neurons being uniformly distributed over the square 𝐿 × 𝐿, 𝑟 is a
𝑖𝑗
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random value with the distribution density given by (𝑟 is expressed in
units of 𝐿)

𝑃 (𝑟) =

{

2𝑟(𝜋 − 4𝑟 + 𝑟2), 𝑟 ≤ 1,
4𝑟(2 arcsin(1∕𝑟) + 2

√

𝑟2 − 1 − 𝜋∕2 − 𝑟2∕2 − 1), 1 < 𝑟 ≤
√

2,

(3)

ere 𝑃 (𝑟) is the probability density to find two point neurons at
istance 𝑟 from each other, such that ∫

√

2
0 𝑃 (𝑟)𝑑𝑟 = 1 (Paraskevov &

endrikov, 2017; Weisstein, 2019a). It has a single maximum 𝑃 (𝑟𝑚𝑎𝑥) ≈
.4 at 𝑟𝑚𝑎𝑥 = (4 −

√

16 − 3𝜋)∕3 ≈ 0.5.
The resulting distribution of connection lengths is given by the

roduct 𝑝𝑐𝑜𝑛(𝑟)𝑃 (𝑟), which, as a function of 𝑟, reaches its maximum at
≈ 𝜆 for 𝜆 ≲ 0.1 and 𝑟 < 𝑟0 (see Fig. 1, the inset of the left graph).
he average number of connections in the network of 𝑁 neurons is
𝑐𝑜𝑛(𝜆) = 𝑝̄𝑐𝑜𝑛(𝜆)𝑁(𝑁 − 1), where the space-averaged probability

̄𝑐𝑜𝑛(𝜆) = ∫

√

2

0
𝑝𝑐𝑜𝑛(𝑟′)𝑃 (𝑟′)𝑑𝑟′ (4)

ncreases monotonically with 𝜆, asymptotically reaching unity at infin-
ty, and at 𝜆 ≪ 1 it has quite simple form 𝑝̄𝑐𝑜𝑛(𝜆) ≈ 2𝜋𝜆2. In turn, the
verage number of outgoing (or incoming) connections per neuron is

𝑚̄ = 𝑝̄𝑐𝑜𝑛(𝜆)(𝑁 − 1). The average fraction 𝑛𝑐𝑜𝑛(𝑟) of network connections
ith the lengths longer than or equal to 𝑟, where 0 ≤ 𝑟 ≤

√

2, can also
be determined explicitly (see Fig. S1 in Suppl. Mat.),

𝑛𝑐𝑜𝑛(𝑟) =
1

𝑝̄𝑐𝑜𝑛(𝜆)∫

√

2

𝑟
𝑝𝑐𝑜𝑛(𝑟′)𝑃 (𝑟′)𝑑𝑟′. (5)

Finally, due to the fact that every connection between neurons
has a metric length, there exist spike propagation delays. Assuming
a constant speed of spike propagation along connections (implying
axons), the delays are calculated by formula

𝜏𝑑𝑒𝑙 = 𝜏𝑑𝑒𝑙,𝑚𝑖𝑛 + 𝑟∕𝑣𝑠𝑝, (6)

where 𝜏𝑑𝑒𝑙 is the total spike-propagation delay for a connection of
length 𝑟, 𝜏𝑑𝑒𝑙,𝑚𝑖𝑛 is the minimal delay same for all connections, and
𝑣𝑠𝑝 is the constant speed of spike propagation along the axon. We set
𝜏𝑑𝑒𝑙,𝑚𝑖𝑛 = 0.2 ms and 𝑣𝑠𝑝 = 0.2 L∕ms (Murakoshi, Guo, & Ichinose, 1993)
with 𝐿 = 1 mm by default.

2.1.2. Neuron model
We use the standard Leaky Integrate-and-Fire (LIF) neuron that

has no ability for intrinsic bursting. Subthreshold dynamics of trans-
membrane potential 𝑉 of such a neuron is described by equation

𝜏𝑚𝑑𝑉 ∕𝑑𝑡 = 𝑉𝑟𝑒𝑠𝑡 − 𝑉 (𝑡) + (𝐼𝑠𝑦𝑛(𝑡) + 𝐼)𝑅𝑚, (7)

where 𝑉𝑟𝑒𝑠𝑡 is the neuron’s resting potential, 𝜏𝑚 is the characteristic time
for relaxation of 𝑉 to 𝑉𝑟𝑒𝑠𝑡, 𝑅𝑚 is the electrical resistance of the neuron’s
membrane, 𝐼𝑠𝑦𝑛(𝑡) is the total incoming synaptic current, which, as
a function of time 𝑡, depends on the dynamic model of a synapse
and the number of incoming synapses, 𝐼 is a constant “background”
current, the magnitude of which varies from neuron to neuron. The
background currents determine the diversity of neuronal excitability
and the fraction of pacemaker neurons in the network.

When the transmembrane potential reaches a threshold value 𝑉𝑡ℎ =
𝑉 (𝑡𝑠𝑝), it is supposed that the neuron emits a spike: 𝑉 abruptly drops to
a specified value 𝑉𝑟𝑒𝑠𝑒𝑡, 𝑉𝑟𝑒𝑠𝑡 ≤ 𝑉𝑟𝑒𝑠𝑒𝑡 < 𝑉𝑡ℎ, and retains this value during
the absolute refractory period 𝜏𝑟𝑒𝑓 , after which the potential dynamics
is again described by Eq. (7). The outcome of the LIF neuron dynamics
for the rest of the network is a sequence of spike generation moments
{𝑡(1)𝑠𝑝 , 𝑡

(2)
𝑠𝑝 ,…}.

If the LIF neuron has 𝐼 value that exceeds 𝐼𝑐 = (𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑡)∕𝑅𝑚, the
critical (or rheobase) value, then this neuron is a pacemaker, i.e., it is
able to emit spikes periodically with frequency

𝜈 = (𝜏 + 𝜏 ln[(𝐼 − 𝐼 )∕(𝐼 − 𝐼 )])−1, (8)
𝑟𝑒𝑓 𝑚 𝑟 𝑐

4 
where 𝐼𝑟 = (𝑉𝑟𝑒𝑠𝑒𝑡 − 𝑉𝑟𝑒𝑠𝑡)∕𝑅𝑚, in the absence of incoming signals from
other neurons. Based on experimental findings (Illes et al., 2014; Le
Bon-Jego & Yuste, 2007), we assume that both excitatory and inhibitory
neurons may be pacemakers. In turn, if the background current 𝐼 is
less than 𝐼𝑐 , then this leads to an increase of depolarization of the
neuron’s potential to some asymptotic subthreshold value, i.e. to the
effective individualization of the neuronal resting potential, 𝑉 𝑒𝑓𝑓

𝑟𝑒𝑠𝑡 (𝐼) =
𝑉𝑟𝑒𝑠𝑡 + 𝐼𝑅𝑚.

In what follows, we consider that the background current values
are distributed according to the non-negative and upper-bounded part
of the normal (Gaussian) distribution, with the mean 𝜇 and standard
deviation 𝜎,

𝐺(𝐼, 𝜇, 𝜎) =

⎧

⎪

⎨

⎪

⎩

exp(− (𝐼−𝜇)2

2𝜎2
)

𝑆
√

2𝜋𝜎2
, 0 ≤ 𝐼 ≤ 𝐼max

0, otherwise.
(9)

Here, 𝐼max is the upper value of the background current and 𝑆 =
1
2 (erf(

𝐼max−𝜇
𝜎
√

2
) + erf( 𝜇

𝜎
√

2
)), where erf(…) represents the error function,

is a normalization factor ensuring equality ∫ 𝐼max
0 𝐺(𝐼, 𝜇, 𝜎)𝑑𝐼 = 1.

In turn, the distribution density for self-frequencies (8) of the pace-
maker neurons is given by formula (cp. Roxin et al., 2011)

𝐹 (𝜈, 𝜇, 𝜎) = 𝐺(𝐼(𝜈), 𝜇, 𝜎)
|

|

|

|

𝑑𝐼(𝜈)
𝑑𝜈

|

|

|

|

, (10)

here

(𝜈) =
𝐼𝑟 − 𝐼𝑐 exp(1∕(𝜈𝜏𝑚) − 𝜏𝑟𝑒𝑓∕𝜏𝑚)
1 − exp(1∕(𝜈𝜏𝑚) − 𝜏𝑟𝑒𝑓∕𝜏𝑚)

(11)

is the inverse function for 𝜈(𝐼), see Eq. (8). Explicitly, one gets (depen-
dencies on 𝜇 and 𝜎 are implied)

𝐹 (𝜈) = 𝐺(𝐼(𝜈)) 1
𝜏𝑚𝜈2

(𝐼(𝜈) − 𝐼𝑐 )(𝐼(𝜈) − 𝐼𝑟)
(𝐼𝑐 − 𝐼𝑟)

. (12)

he distribution density 𝐹 (𝜈) is plotted in Fig. 1 (right graph). The
umber of pacemakers 𝑁𝑝𝑚 can also be derived explicitly

𝑝𝑚∕𝑁 = ∫

𝐼max

𝐼𝑐
𝐺(𝐼, 𝜇, 𝜎)𝑑𝐼 =

erf( 𝐼max−𝜇
𝜎
√

2
) − erf( 𝐼𝑐−𝜇

𝜎
√

2
)

erf( 𝐼max−𝜇
𝜎
√

2
) + erf( 𝜇

𝜎
√

2
)
, (13)

The corresponding plot for 𝑁𝑝𝑚∕𝑁 given by Eq. (13) is shown on the
inset of the right graph in Fig. 1. In all simulations we assume such
inequalities 𝜎 < 𝜇 < 𝐼𝑐 that 𝑁𝑝𝑚 ≪ 𝑁 .

Numerical values of parameters for the LIF neuron model: 𝜏𝑚 =
20 ms, 𝑅𝑚 = 1 G𝛺, 𝑉𝑟𝑒𝑠𝑡 = 0 mV, 𝑉𝑡ℎ = 15 mV, 𝑉𝑟𝑒𝑠𝑒𝑡 = 13.5 mV.
These give the critical current value 𝐼𝑐 = 15 pA and 𝐼𝑟 = 13.5 pA.
Refractory period 𝜏𝑟𝑒𝑓 = 3 ms for excitatory neurons, 𝜏𝑟𝑒𝑓 = 2 ms for
inhibitory neurons. The non-negative part of normal distribution for
the background currents, bounded above by 𝐼max = 20 pA, has the
mean 𝜇 = 7.7 pA and the standard deviation 𝜎 = 4.0 pA. These give
the fraction (13) of pacemakers 𝑁𝑝𝑚∕𝑁 = 3.4% with the maximal 𝜈
value 121 Hz for excitatory neurons and 138 Hz for inhibitory ones
(see the right graph in Fig. 1).

2.1.3. Synapse model
A single contribution to the incoming synaptic current in our neu-

ronal network model is determined as

𝐼𝑠𝑦𝑛(𝑡) = 𝐽𝑦(𝑡). (14)

Here 𝐽 is a constant that determines the amplitude of synaptic cur-
rent impulse. The sign and magnitude of 𝐽 depend on the type of
pre- and postsynaptic neurons (i.e., whether the neuron is excitatory
or inhibitory). Next, 𝑦(𝑡) is a dimensionless parameter, 0 ≤ 𝑦 ≤

1, the dynamics of which is determined by the following system of
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equations (Tsodyks, Pawelzik, & Markram, 1998; Tsodyks, Uziel, &
Markram, 2000):

⎧

⎪

⎨

⎪

⎩

𝑑𝑥∕𝑑𝑡 = 𝑧∕𝜏𝑟𝑒𝑐 − 𝑢𝑥𝛿(𝑡 − 𝑡𝑠𝑝 − 𝜏𝑑𝑒𝑙),
𝑑𝑦∕𝑑𝑡 = −𝑦∕𝜏𝐼 + 𝑢𝑥𝛿(𝑡 − 𝑡𝑠𝑝 − 𝜏𝑑𝑒𝑙),
𝑑𝑧∕𝑑𝑡 = 𝑦∕𝜏𝐼 − 𝑧∕𝜏𝑟𝑒𝑐 ,

(15)

where 𝑥, 𝑦 and 𝑧 are the fractions of synaptic resources in the recovered,
active and inactive states, respectively; 𝑥 + 𝑦 + 𝑧 = 1; 𝜏𝑟𝑒𝑐 , 𝜏𝐼 are the
characteristic relaxation times, 𝛿(…) is the Dirac delta function, 𝑡𝑠𝑝 is
the moment of spike generation at the presynaptic neuron, 𝜏𝑑𝑒𝑙 is the
spike propagation delay (see Eq. (6)), and 𝑢 is the fraction of recovered
synaptic resource used to transmit the signal across the synapse, 0 ≤
𝑢 ≤ 1. The stable fixed point of Eq. (15) is (𝑥, 𝑦, 𝑧) = (1, 0, 0). The
bottom plots in Fig. 1 show typical dynamics resulting from Eq. (15)
for a synapse between two excitatory neurons.

For the outgoing synapses of inhibitory neurons, the dynamics of 𝑢
is described by equation (Tsodyks et al., 1998, 2000)

𝑑𝑢∕𝑑𝑡 = −𝑢∕𝜏𝑓𝑎𝑐𝑖𝑙 + 𝑈 (1 − 𝑢)𝛿(𝑡 − 𝑡𝑠𝑝 − 𝜏𝑑𝑒𝑙), (16)

where 𝜏𝑓𝑎𝑐𝑖𝑙 is the characteristic relaxation time, and 0 < 𝑈 ≤ 1 is a
constant parameter. For the outgoing synapses of excitatory neurons, 𝑢
remains constant and equals to 𝑈 .

Qualitatively, Eq. (15) describe a short-term synaptic depression
due to the depletion of synaptic resources at a high enough frequency
of incoming spikes, while the additional Eq. (16) enables inhibitory
synapses to overcome the depression and even increase their impact in
a certain frequency range (Tsodyks et al., 1998). Focusing on excitatory
neurons and synaptic depression, let us outline an important case
of an outgoing synapse of the pacemaker neuron generating spikes
with frequency 𝜈 given by Eq. (8). One can find the dependence of
a stationary amplitude of synaptic current pulses on 𝜈 by simplifying
Eq. (15) as follows. Assuming that 𝜏𝐼 ≪ 𝜏𝑟𝑒𝑐 and completely neglecting
the finite-time dynamics of 𝑦 (see the bottom right graph in Fig. 1),
equations for the amplitudes (denoted by subscript “a”) of the fractions
of synaptic resources read: 𝑧𝑎 ≈ 1−𝑥𝑎, 𝑦𝑎 ≈ 𝑢𝑥𝑎, and 𝑧𝑎∕𝜏𝑟𝑒𝑐 − 𝑢𝑥𝑎𝜈 = 0.
Provided that 𝑢 = 𝑈 , these result in

𝑦𝑎 ≈ 𝑈∕(1 + 𝑈𝜏𝑟𝑒𝑐𝜈), (17)

so the amplitude of synaptic current, see Eq. (14), is 𝐽𝑦𝑎 ∼ 1∕𝜈 for
relatively large 𝜈 values (Abbott et al., 1997; Tsodyks & Markram,
1997). This hyperbolic decrease is a direct consequence of the synap-
tic depression that may substantially reduce the impact of excitatory
pacemakers on the other neurons of the network. A possibility of col-
lective synchronization in excitatory spiking networks without synaptic
depression has been considered, e.g., in Hansel, Mato, and Meunier
(1995), Pham et al. (1998). To gain a qualitative understanding of the
impact of short-term synaptic depression on network activity, one can
recommend the mean-field analysis suggested in Tabak et al. (2000)
(cp. Kistler & van Hemmen, 1999; Senn et al., 1996).

In the numerical simulations all synaptic parameters, except 𝜏𝐼 ,
were normally distributed with the mean values 𝜇𝑘 described below,
i.e., each synapse had its own unique values of these parameters.
Standard deviations for all distributed parameters were equal to 0.5𝜇𝑘.
The maximal (or minimal, if the parameter is negative) values of the
distributions were restricted by 4𝜇𝑘 (or 1, if 4𝜇𝑘 > 1 for parameter 𝑈),
and the minimal (maximal, if the parameter is negative) values were
restricted by zero (or the time step, for the time constants).

The numerical values of parameters for the synapse model were
as follows (Tsodyks et al., 2000): 𝜏𝐼 = 3 ms, mean values for the
normal distributions 𝜏𝑟𝑒𝑐,𝑒𝑒 = 𝜏𝑟𝑒𝑐,𝑒𝑖 = 800 ms, 𝜏𝑟𝑒𝑐,𝑖𝑒 = 𝜏𝑟𝑒𝑐,𝑖𝑖 = 100 ms,
𝜏𝑓𝑎𝑐𝑖𝑙,𝑖𝑒 = 𝜏𝑓𝑎𝑐𝑖𝑙,𝑖𝑖 = 1000 ms, 𝐽𝑒𝑒 = 38 pA, 𝐽𝑒𝑖 = 54 pA, 𝐽𝑖𝑒 = 𝐽𝑖𝑖 = −72
pA, 𝑈𝑒𝑒 = 𝑈𝑒𝑖 = 0.5, 𝑈𝑖𝑒 = 𝑈𝑖𝑖 = 0.04. Here, the first lowercase index
denotes the type (𝑒 = excitatory, 𝑖 = inhibitory) of presynaptic neuron
and the second index stands for the type of postsynaptic neuron.

Finally, using the above numerical values, let us theoretically de-

termine the regime of synaptic impact and define the concept of a

5 
“strong” synapse. To this end, one needs to use the strength-duration
curve (SDC) for a single impulse of excitatory synaptic current given by
Eq. (14). By its definition, the SDC is a dependence of minimal spike-
triggering amplitude 𝐼 (𝑎)𝑠𝑦𝑛 of the stimulating impulse on its characteristic
duration, in our case 𝜏𝐼 . Assuming that the stimulated non-pacemaker
neuron is initially at rest, the SDC is determined by the system of two
algebraic equations: 𝑉 = 𝑉𝑡ℎ and 𝑑𝑉 ∕𝑑𝑡 = 0 at 𝑡 = 𝑡𝑠𝑝 (Paraskevov,
2023). The solutions of this system are 𝐼 (𝑎)𝑠𝑦𝑛 and the moment 𝑡𝑠𝑝 of spike
generation, as functions of 𝜏𝐼 . The SDC is function 𝐼 (𝑎)𝑠𝑦𝑛(𝜏𝐼 ).

Let us now consider an idealized case where a non-pacemaker LIF
neuron has only one incoming excitatory synapse, which is activated
at the moment 𝑡 = 0, and that the initial conditions are as follows:
𝑉 = 𝑉 𝑒𝑓𝑓

𝑟𝑒𝑠𝑡 = 𝑉𝑟𝑒𝑠𝑡 + 𝐼𝑅𝑚, which is an asymptotic value of the effective
resting potential due to background current 𝐼 < 𝐼𝑐 = (𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑡)∕𝑅𝑚
(see Eq. (7)), and 𝑥 = 𝑥0, 𝑦 = 0, 𝑧 = 1 − 𝑥0.

Then, according to Eqs. (14) and (15), the synaptic current impulse
is given by

𝐼𝑠𝑦𝑛(𝑡) = 𝐽𝑢𝑥0 exp(−𝑡∕𝜏𝐼 ), 𝑡 > 0. (18)

The corresponding SDC for the amplitude 𝐼 (𝑎)𝑠𝑦𝑛 = 𝐽𝑢𝑥0 reads
(Paraskevov, 2023)

𝐼 (𝑎)𝑠𝑦𝑛 =

{

𝐼𝑒𝑓𝑓𝑐 (𝜏𝑚∕𝜏𝐼 )𝜏𝑚∕(𝜏𝑚−𝜏𝐼 ), 𝜏𝐼 ≠ 𝜏𝑚,
𝐼𝑒𝑓𝑓𝑐 exp(1), 𝜏𝐼 = 𝜏𝑚,

(19)

where 𝐼𝑒𝑓𝑓𝑐 = (𝑉𝑡ℎ−𝑉
𝑒𝑓𝑓
𝑟𝑒𝑠𝑡 )∕𝑅𝑚 = 𝐼𝑐−𝐼 . From Eq. (19) we get a threshold

value for 𝐽 ,

𝐽𝑡ℎ = 𝜂(𝐼𝑐 − 𝐼), 𝐼 < 𝐼𝑐 , (20)

such that for 𝐽 ≥ 𝐽𝑡ℎ a synaptic impulse determined by Eq. (18) results
in a spike generation by the postsynaptic non-pacemaker neuron. In
what follows, we define a “strong” synapse as that having 𝐽 ≥ 𝐽𝑡ℎ.
Importantly, Eq. (20) quantifies the fact that the synaptic strength
is not absolute but relative: it depends on the postsynaptic neuron
excitability.

In turn, the dimensionless coefficient 𝜂 in Eq. (20) is defined as (for
𝜏𝐼 ≠ 𝜏𝑚)

𝜂 = (1∕(𝑢𝑥0))(𝜏𝑚∕𝜏𝐼 )𝜏𝑚∕(𝜏𝑚−𝜏𝐼 ). (21)

Substituting 𝜏𝑚 = 20 ms, 𝜏𝐼 = 3 ms, and 𝑢 = 𝑈𝑒𝑒 = 0.5 into Eq. (21), one
gets 𝜂 ≈ 18.6∕𝑥0.

If the background current is zero, 𝐼 = 0, and 𝑥0 = 1, for 𝐼𝑐 = 15
pA according to Eq. (20) we get 𝐽𝑡ℎ ≈ 18.6𝐼𝑐 = 279 pA. This value
is more than seven times higher than the mean value 𝐽𝑒𝑒 = 38 pA
(cp. Darbon et al., 2002) and exceeds the maximal value 4𝐽𝑒𝑒 = 152
pA allowable in the sampling. So if all non-pacemaker neurons would
have zero background currents, then, even without taking into account
the synaptic depression, the neuronal network would not contain strong
synapses, each of which can independently cause a spike generation by
the postsynaptic neuron (see the bottom right graph in Fig. 1). In that
case, to make a non-pacemaker neuron fire, several incoming excitatory
synapses must be activated in a time interval substantially smaller than
the relaxation time constant 𝜏𝑚 of the neuron’s potential (see Eq. (7)).
This condition is increasingly unlikely if the fraction of pacemakers is
getting smaller.

Nonzero subcritical background currents drastically change the net-
work dynamics. In fact, due to those, the effective (asymptotic) neu-
ronal resting potential 𝑉 𝑒𝑓𝑓

𝑟𝑒𝑠𝑡 = 𝑉𝑟𝑒𝑠𝑡 + 𝐼𝑅𝑚 is continuously distributed
from 𝑉𝑟𝑒𝑠𝑡 up to 𝑉𝑡ℎ; this distribution is the same as that for the back-
ground currents. It means that a substantial fraction of non-pacemaker
neurons can be hypersensitive such that activating even a single in-
coming excitatory synapse may trigger a spike. This fraction can be
quantified as follows.

Provided that 𝐽 ≤ 𝐽max = 4𝐽𝑒𝑒 in Eqs. (14) and (18), from the spike-

triggering condition 𝐽 ≥ 𝐽𝑡ℎ = 𝜂(𝐼𝑐 − 𝐼) one gets the lower value 𝐼∗
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Fig. 2. Introducing the reference neuronal network (RefNN) and the spatial map of its n-sites. Upper graph: Time dependence of normalized spiking activity (averaged over 2 ms)
of the neuronal network consisting of 50 thousand neurons uniformly distributed over the square area 𝐿×𝐿 at 𝜆 = 0.01𝐿. The peaks of activity are the population spikes. In order
to extract a clear spatial map of their n-sites, all inhibitory synapses have been constantly disabled. Capital letters over the population spikes denote specific n-sites generating
them (see the bottom right map). Middle graph: LEFT: Network activity (top) and raster (bottom) during the population spike marked by the arrow in the upper graph. RIGHT:
Snapshots of the instantaneous spatial activity of neurons for the corresponding moments of the population spike. Blue dots depict neurons and red dots highlight spiking neurons.
Each frame corresponds to the whole area 𝐿 ×𝐿. On the frame 1 the primary n-site labeled below by D is clearly visible. Bottom graph: LEFT: Spatial locations of the stationary
nucleation sites of the population spikes shown in the upper graph. Five primary n-sites (A, B, C, D, E) with different relative rates of population spike generation (see the upper
graph) are clearly distinguishable. Black dots depict spatial spiking activity of neurons during 5 ms before and 5 ms after the network activity has crossed the detecting threshold
value (𝐴𝑡ℎ, see Section 2.4). RIGHT: Schematic reconstruction (“map”) of the spatial pattern of n-sites. These are depicted by filled circles, which colors correspond to the different
scenarios (e.g., co-activation of two n-sites, C and D) of population spike initiation.
of the sought range of background currents (the upper value is 𝐼𝑐):
𝐽max = 𝜂(𝐼𝑐 − 𝐼∗), 𝐼∗ = 𝐼𝑐 − 𝐽max∕𝜂.

Then the fraction of highly excitable non-pacemaker neurons is
given by

𝑁ℎ𝑒∕𝑁 = ∫

𝐼𝑐

𝐼∗
𝐺(𝐼, 𝜇, 𝜎)𝑑𝐼 =

erf( 𝐼𝑐−𝜇
𝜎
√

2
) − erf( 𝐼∗−𝜇

𝜎
√

2
)

erf( 𝐼max−𝜇
𝜎
√

2
) + erf( 𝜇

𝜎
√

2
)
. (22)

At 𝑥0 = 1, we get 𝐼∗ ≈ 6.8 pA and 𝑁ℎ𝑒∕𝑁 ≈ 0.57, i.e., more than half
of all non-pacemaker neurons are potentially highly excitable. But how
many of them have at least one strong enough incoming synapse?

Provided that values of 𝐽 in Eq. (14) are normally distributed, the
fraction of strong synapses (i.e., those having 𝐽 ≥ 𝐽𝑡ℎ) for a given
𝐽𝑡ℎ ≤ 𝐽max, or the probability that a given synapse is strong, reads

𝑁𝑠𝑠∕𝑁𝑐𝑜𝑛 = Prob(𝐽 ≥ 𝐽𝑡ℎ) =
𝐽max

𝐺(𝐽 , 𝐽𝑒𝑒, 0.5𝐽𝑒𝑒)𝑑𝐽
∫𝐽𝑡ℎ

6 
=
erf( 𝐽max−𝐽𝑒𝑒

0.5𝐽𝑒𝑒
√

2
) − erf( 𝐽𝑡ℎ−𝐽𝑒𝑒

0.5𝐽𝑒𝑒
√

2
)

erf( 𝐽max−𝐽𝑒𝑒
0.5𝐽𝑒𝑒

√

2
) + erf( 𝐽𝑒𝑒

0.5𝐽𝑒𝑒
√

2
)
. (23)

Simplifying the latter formula and substituting 𝐽𝑡ℎ from Eq. (20) there,
we get

Prob(𝐽 ≥ 𝐽𝑡ℎ) =
erf(3

√

2) − erf(
√

2(𝜂(𝐼𝑐 − 𝐼)∕𝐽𝑒𝑒 − 1))

erf(3
√

2) + erf(
√

2)
≡ 𝛷(𝐼). (24)

The function 𝛷(𝐼) increases monotonically from 𝛷(𝐼∗) = 0 to 𝛷(𝐼𝑐 ) = 1.
The probability that a highly excitable non-pacemaker neuron has at

least one strong enough incoming synapse (note that it is strong enough
for that particular neuron) is given by

𝛷̄ = ∫

𝐼𝑐

𝐼∗
𝛷(𝐼)𝐺(𝐼, 𝜇, 𝜎)𝑑𝐼, (25)

where 𝐺(𝐼, 𝜇, 𝜎) is standardly determined by Eq. (9). For the above
parameters, numerical integration gives 𝛷̄ ≈ 0.07.
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Fig. 3. The effect of two random renewals of the entire sampling of background (“bg”) currents for the RefNN, occurring at the 10th and 20th second of the simulation. Left
panel: TOP: Network distribution of bg-currents for the RefNN shown in Fig. 2. The bg-currents of pacemaker neurons (i.e. having 𝐼𝑏𝑔 > 𝐼𝑐 = 15 pA) are marked by red color. The
circular arrows show that new values of bg-currents are set independently of the old values so that a pacemaker can become non-pacemaker and vice versa. BOTTOM: A detailed
representation of re-sampling the entire set of bg-currents at the 10th second of the simulation. Right panel: The panel is divided into three vertical sections by dashed lines. Each
section corresponds to a fixed sampling of bg-currents. TOP: Time dependence of the network spiking activity. Population spikes have been labeled according to their primary
n-sites. MIDDLE: Stationary maps of n-sites. The color intensity (saturation) of the circles corresponds to the relative intensity of a particular n-site. BOTTOM: Spatial distribution
of pacemakers as a function of the bg-current sampling. During the first 10 s both the network activity and the map of n-sites coincide completely with their RefNN benchmark
(Fig. 2). The change of the bg-currents sampling, visible by the change of pacemaker density (the lower row of the graphs), leads to a new pattern of stationary n-sites. Note the
absence of any correlation between the maxima of pacemaker density and the n-sites.
Accordingly, denoting by 𝑁𝑡𝑟 the statistically average number of
highly excitable non-pacemaker neurons with at least one strong incom-
ing synapse (in what follows, we call such neurons as “trigger neurons”,
see Discussion), we get 𝑁𝑡𝑟∕𝑁 = 𝛷̄𝑁ℎ𝑒∕𝑁 ≈ 0.04. The latter fits well
the simulation results described in Section 3.4.

It is worth noting a substantial dependence of 𝑁ℎ𝑒 and 𝛷̄ on 𝑥0,
i.e., on the initial fraction of synaptic resources in the recovered state.
Decreasing 𝑥0 leads to an increase of 𝐼∗ in Eqs. (22) and (25) resulting
in a decrease in 𝑁ℎ𝑒 and 𝛷̄ and, consequently, in 𝑁𝑡𝑟. For instance,
decreasing 𝑥0 by half, from 1 to 0.5, leads to 𝑁ℎ𝑒∕𝑁 ≈ 0.181, 𝛷̄ ≈ 0.027
and 𝑁𝑡𝑟∕𝑁 ≈ 0.005.

The above theoretical analysis allows us to explain the robustness
of the very first population spike that occurs about 30 ms after the
simulation begins (see Figs. 2 and 10, and the description of the initial
conditions in Section 2.3 below). During this time, the excitability of
non-pacemakers increases (accordingly, the number of strong synapses
also increases), and pacemakers emit the first spike later than their
stationary period 1∕𝜈 (due to 𝑉𝑟𝑒𝑠𝑒𝑡 ≠ 𝑉𝑟𝑒𝑠𝑡, or 𝐼𝑟 ≠ 0, see Eq. (8)).
Apparently, the very first population spike corresponds to the first firing
of the majority of pacemakers. Indeed, the corresponding synaptic
current pulses from the pacemakers have a maximal amplitude (since
𝑥0 ≈ 1), so the number of strong synapses is also close to the maximum,
even though the non-pacemakers have not reached the asymptotic
values for their effective resting potentials. Afterwards, for an outgoing
excitatory synapse of the pacemaker with self-frequency 𝜈, due to
synaptic depression 𝑥0 drops from about 1 at the simulation beginning
to a stationary amplitude 𝑥𝑎 ∼ 1∕𝜈 (see Eq. (17) and the bottom right
graph in Fig. 1). The relative strength of the synapse decreases as well.
So the network impact of the first few spikes of a pacemaker is maximal
and, consequently, the very first population spike should be considered
as an artifact of the model and the initial conditions.
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2.2. Main output values

The main output values in the numerical simulations are raster,
network activity, and spatial coordinates of neurons. The raster plot
shows the moments of spike generation for every neuron. In turn,
normalized network activity (or, briefly, net activity) 𝐴 is a histogram
showing the number of spikes generated by the network within time
bins Δ𝑡 = 2 ms and divided by the total number of neurons, 𝑁 .
Formally, it is defined as

𝐴(𝑡𝑛) =
1
𝑁

𝑁
∑

𝑖=1

∑

𝑗 ∫

𝑡𝑛

𝑡𝑛−1
𝛿(𝑡 − 𝑡𝑖,𝑗𝑠𝑝 )𝑑𝑡, (26)

where 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 1, 2,… is the sequence of natural numbers, 𝑡0 = 0,
and 𝑡𝑖,𝑗𝑠𝑝 is the moment when 𝑖th neuron generates its 𝑗th spike.

Coordinates of neurons and the raster are needed for reconstructing
spatiotemporal patterns of spiking activity of the neuronal network
(Fig. 2).

2.3. Initial conditions and numerical method

The initial conditions for common dynamic variables are the same
for all neurons, 𝑉 (𝑡 = 0) = 𝑉𝑟𝑒𝑠𝑡, and for all synapses: 𝑥(𝑡 = 0) = 0.98,
𝑦(𝑡 = 0) = 𝑧(𝑡 = 0) = 0.01. For the outgoing synapses of inhibitory
neurons, values 𝑢(𝑡 = 0) equal to the corresponding 𝑈 values, which
are normally distributed (see Section 2.1.3).

All differential equations for the neuronal and synaptic dynamics
were solved numerically using the standard Euler method with time
step 𝑑𝑡 = 0.1 ms. The numerical simulations have been performed using
a custom-made neuronal network simulator written in C. The source
code of its latest version NeuroSim-TM-2.2 fully compatible with all
previous ones is provided (see Data and code availability). The code
is also available online at https://github.com/dzenn/NeuroSim-TM.

https://github.com/dzenn/NeuroSim-TM
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Fig. 4. The effect of two random renewals for the distribution of background (“bg”) currents only for pacemakers (3.4% of the total number of neurons), occurring at the 10th
and 20th second of the simulation. Left panel: TOP: Network distribution of bg-currents for the RefNN shown in Fig. 2. Arrows indicate that the redistribution of bg-currents occurs
only among pacemakers, so that each pacemaker still remains a pacemaker, but with a different value of the bg-current in the range from 15 to 20 pA. BOTTOM: An expanded
representation of re-sampling the bg-currents for pacemakers at the 10th second of the simulation. Right panel: The panel structure is the same as that shown in Fig. 3. In contrast
to the case of re-sampling all bg-currents (Fig. 3), the locations of some n-sites (e.g., A1 and A2, B1 and C2, or D1, B2 and A3) were nearly retained.
Fig. 5. The effect of two random renewals of the sampling of background (“bg”) currents only among non-pacemakers, occurring at the 10th and 20th second of the simulation.
Left panel: TOP: Network distribution of bg-currents for the RefNN shown in Fig. 2. Arrows indicate that the redistribution of bg-currents occurs only within the group of
non-pacemakers. BOTTOM: An expanded representation of re-sampling the bg-currents for non-pacemakers at the 10th second of the simulation. Right panel: The panel structure is
the same as that shown in Fig. 3. Unlike the case of changing the sampling of bg-currents only for pacemakers, the same procedure only for non-peacemakers leads to a substantial
change in the number of n-sites. Note that the pacemaker density (the lower row of the graphs) is unchanged.
2.4. Reconstruction of the spatial pattern of n-sites

The primary n-sites are determined at the initial stage of population
spikes. Evaluating the number of n-sites depends on the simulation
8 
time, as the population spikes occur randomly from one of them, with
different relative probabilities. As a rule, one can obtain the whole
stationary set of n-sites after 10–15 sequentially passed population
spikes.
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A spatial map of n-sites is constructed as follows. The entire area
𝐿 × 𝐿 is divided into 𝑁𝑒𝑙𝑒𝑚 = 104 elementary square areas with
coordinates 𝑟𝑘. The elementary square side equals 0.01𝐿. The spatial
map is obtained by counting the number 𝑛𝑘 of spikes emitted by the
neurons within each of such areas during 35 ms after the moment when
the network activity, Eq. (26), is exceeding the specified threshold
𝐴𝑡ℎ = 0.006 (for comparison, the baseline activity level typically lies
within the range from 0.003 to 0.004). The n-site position is defined as
a “center of mass” of 20% of the areas with the largest 𝑛𝑘 values

𝑟𝑛𝑠 =
𝑁𝑒𝑙𝑒𝑚
∑

𝑘=1
𝑛̃𝑘𝜃(𝑛̃𝑘 − 0.8max(𝑛̃𝑘))𝑟𝑘, 𝑛̃𝑘 = 𝑛𝑘∕

𝑁𝑒𝑙𝑒𝑚
∑

𝑘=1
𝑛𝑘. (27)

The position of each n-site on the spatial map is shown by a filled
circle of the standard diameter 0.12𝐿. Each n-site can be assigned
a quantitative characteristic — the intensity, or relative frequency,
of generating population spikes from this site. The intensity of a n-
site is depicted by the color saturation of the corresponding filled
circle. Thus, for each realization of the neuronal network, a schematic
reconstruction of the spatial pattern of stationary n-sites has been made
that determines their number, location, and intensities.

Note that values of both threshold 𝐴𝑡ℎ and the time window for sum-
ming the network activity have been chosen to obtain the most contrast
and clear picture of n-sites. However, if a population spike originates
from two n-sites simultaneously, the algorithm described above is
poorly applicable. Therefore, the automatic determination of all n-sites
(using the code sim_data_proc.c in the supplementary online files) was
additionally controlled visually, by watching videos of spatiotemporal
spiking of the network. The videos were generated by custom-made
visualization software Spatial Activity Monitor (Paraskevov & Zendrikov,
2017; Zendrikov & Paraskevov, 2021), rewritten in Python.

3. Results

A typical simulation result for the neuronal network model is shown
in Fig. 2 (see also Suppl. Video 1). A population spike spatially emerges
from one of several stable n-sites, from which synchronous spiking
activity starts propagating in the form of concentric traveling waves.
The spatial map of n-sites is determined by the samplings of simu-
lation parameters, being unique and unchanged for a given neuronal
network realization. Each n-site can be quantitatively characterized by
its intensity, or relative frequency, of generating population spikes from
this site. For a particular network realization, one can therefore build
a schematic reconstruction (i.e., a map) of the spatial pattern of n-
sites that determines their number, locations, and intensities (Fig. 2,
bottom right graph). Extensive simulations have clearly shown that all
these characteristics significantly depend on three parameter sets: (1)
the sampling of background currents or neuronal excitabilities, (2) the
network connectome implementation, i.e., the sampling of the full set
of connections between neurons, and (3) the sampling of amplitudes of
synaptic currents (𝐽 in Eq. (14)).

For performing a systematic analysis, we have chosen the network
realization, which spiking dynamics is shown in Fig. 2, as a refer-
ence neuronal network (RefNN). Each of three numerical experiments
described further (Figs. 3–9) is associated with a certain parameter
sampling modification of the RefNN and shows the impact of that
modification on the pattern of n-sites in comparison to the reference
pattern shown in Fig. 2.

Another important result has been obtained while blocking the
dynamics of a small fraction (up to 4%) of neurons with the highest
subcritical excitability: it turns out that both n-sites and population
spikes are very sensitive to such a blocking, meaning that the most
highly excitable non-pacemaker neurons are crucial for the spatially
nucleated sync (see Fig. 10).

Finally, we have also thoroughly studied the influence of (i) simula-
tion duration, (ii) heterogeneity of initial neuronal potentials, and (iii)
tenfold smaller time step of simulation on completeness and stability

of the RefNN n-sites map (see Figs. S2–S4 in Suppl. Mat.).
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3.1. Changing the sampling of background currents during simulations

The critical current 𝐼𝑐 divides the sampling of background currents
into two parts such that the minority (a few percent) of neurons
with background currents above 𝐼𝑐 are pacemakers, and most neurons
have background currents below 𝐼𝑐 so these are non-pacemakers. It is
worth noting that if all outgoing connections from pacemakers to non-
pacemakers are blocked, it would lead to a complete cessation of the
spiking activity of the latter.

Given that ten seconds of simulation is enough to build the n-
sites map, we conducted a series of five experiments on the sampling
of background currents, in four of which the sampling was changed
in a certain way twice during the simulation, at the 10th and 20th
second. In the fifth experiment, the sampling was dynamic all the time:
a neuron’s background current was randomly updated after each time
the neuron generated a spike. Herewith, in all five experiments the posi-
tions of neurons, the network connectome, and the synaptic parameters
remained unchanged, i.e., identical to the RefNN realization.

Specifically, in the first experiment, the entire sampling of back-
ground currents was generated anew twice, at the 10th and 20th second
of the simulation. Such re-sampling could transform a pacemaker into
non-pacemaker and vice versa. The experiment result is shown in Fig. 3:
the map of n-sites changes significantly with each re-sampling.

In the second experiment, we randomly updated the background
currents twice only for the pacemaker neurons: all new values were
still above 𝐼𝑐 (see Fig. 4). As a result, a few n-sites seemingly remained,
with retained or slightly displaced locations. As a result, a few n-sites
appeared (or remained) on the former or slightly displaced locations.
At the same time, new intense n-sites appeared in other places. Impor-
tantly, the locations of n-sites do not correlate with the maxima of the
spatial distribution of pacemakers (see the bottom graphs of the right
panel in Figs. 3 to 6).

In the third experiment, the values of background currents were
randomly renewed twice only for non-pacemakers (Fig. 5). Here, unlike
the two previous cases, one can clearly see not only the change in
locations and intensities of n-sites, but also a significant change in their
number.

In the fourth experiment, the background currents were also up-
dated twice, separately within the subgroups of pacemakers and non-
pacemakers, so that there were no transitions between the subgroups
(Fig. 6). In this case, the map of n-sites was also changed significantly
every time and, again, this occurred without any noticeable correlation
with the change in the spatial distribution of pacemakers.

Finally, in the fifth experiment, the background current value of a
neuron was updated each time immediately after generating a spike by
this neuron in such a way that the neuron always retained its group
affiliation either to pacemakers or non-pacemakers, as in the fourth
experiment. The result is shown in Fig. 7. In this case, population
spikes are relatively rare and, most importantly, the locations of n-sites
are apparently non-stationary, i.e., population spikes mostly arise from
non-repeating n-sites. Abolishing the condition for a neuron to remain
within its former group of either pacemakers or non-pacemakers leads
to the rapid disappearance of spiking activity in the neuronal network,
since the transition from pacemakers to non-pacemakers is much more
probable than the inverse one.

3.2. Network connectome modification

Despite the specific implementation of the network connectome
(i.e., the sampling of the whole set of connections between the neurons)
is obviously important for most properties of the network spike activity,
we have studied this issue quantitatively. In particular, we performed
three simulations based on the RefNN, in which (i) the coordinates
of the neurons and the sampling of the background currents were
identical to the RefNN, (ii) the synaptic parameters were the same

for all synapses of the network and were equal to the mean values
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Fig. 6. The effect of two random renewals of the sampling of background (“bg”) currents separately among pacemakers and among non-pacemakers (i.e., without mixing between
these groups), occurring at the 10th and 20th second of the simulation. Left panel: TOP: Network distribution of bg-currents for the RefNN shown in Fig. 2. Arrows indicate that
the redistribution of bg-currents occurs separately within the groups of non-pacemakers and pacemakers. BOTTOM: An expanded representation of re-sampling the bg-currents
at the 10th second of the simulation. Right panel: The panel structure is the same as that shown in Fig. 3. It is seen that the pattern of n-sites changes significantly after each
re-sampling of the bg-currents.
Fig. 7. Simulation of spiking activity of the RefNN for the case where the background (“bg”) current value of a neuron is updated each time after generating a spike by this
neuron, given that the functional identity of the neuron is retained (i.e., the only possible transitions are “pacemaker → pacemaker” and “non-pacemaker → non-pacemaker”, as for
the case shown in Fig. 6). In the present case, population spikes and their n-sites still occur, although it happens relatively rarely (note the extended simulation time). Importantly,
the location of a currently active n-site is repeated substantially less frequently and only for a few n-sites (see the ones with labels 6, 7, 11, and 12), indicating the absence of a
stationary map of n-sites. LEFT: Top graph: Time dependence of the network spiking activity. The number next to each population spike is a label of the corresponding n-site (here,
we use numbers as labels because there may be an unpredictably high number of one-shot n-sites). Bottom graph: Absolute values of changes in bg-currents of non-pacemaker
neurons (green dots) and pacemakers (dark-red dots) as functions of time. The critical current is 𝐼𝑐 = 15 pA and the maximal background current value is 𝐼max = 20 pA, see
Section 2.1.2, so the change span for non-pacemakers is from 0 to 15 pA, and for pacemakers it is from 0 to 𝐼max − 𝐼𝑐 = 5 pA. RIGHT: Reconstruction of the spatial locations of
the emerged n-sites.
of the corresponding Gaussian distributions (see Section 2.1.2), and
(iii) the network’s connectome was made anew for each simulation. As
before, all inhibitory neurons were constantly disabled throughout the
simulations. The results are shown in Fig. 8. It is seen that the stationary
map of n-sites in every simulation is completely different from the other
two. This fact confirms the crucial role of a particular realization of the
network connectome for nucleation pattern formation.
10 
3.3. Modification of the sampling of synaptic current amplitudes during
simulation

In addition to studying the impact of modifying the network con-
nectome, we also conducted a simulation, where, for the RefNN, the
sampling of amplitudes of synaptic currents was generated anew twice
during the simulation (at the 10th and 20th second). The result is
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Fig. 8. Three simulations (upper, middle and lower panels) of spiking activity of the network, in which (i) the coordinates of neurons and the sampling of background currents
are identical to the RefNN, (ii) the synaptic parameters are the same for all synapses of the network and are equal to the mean values of the corresponding Gaussian distributions,
and (iii) the network’s connectome is made anew for each simulation. The layout for each panel: LEFT: Time dependence of the network spiking activity. Each population spike is
labeled (capital letters A, B, C ...) the same as the primary n-site from which it has originated. RIGHT: Reconstruction of the spatial map of stationary n-sites labeled by capital
letters. It is seen that the maps are significantly different for the different realizations of the network’s connectome.
shown in Fig. 9. It is seen that each update of the sampling dras-
tically changes the map of n-sites. It proves that changing only the
weights of synaptic connections is sufficient to remake the stationary
configuration of the n-sites. Importantly, the pronounced sensitivity
of the nucleation map to the sampling of synaptic current amplitudes
indicates that a change of that map may be used as a novel visual
marker of the impact of spike-timing-dependent synaptic plasticity (on
including this in the synapse model, see Discussion) on a stationary
dynamic state of the neuronal network.

3.4. Blocking the dynamics for non-pacemakers having nearly-critical ex-
citability

An interesting result has been obtained while blocking the dynamics
of non-pacemaker neurons (by constantly clamping their potential to
𝑉𝑟𝑒𝑠𝑡, regardless of incoming signals) with subcritical values of the
background current, specifically, in a narrow range from some value
𝐼𝑐𝑢𝑡 up to the critical value 𝐼𝑐 = 15 pA for turning into a pacemaker.
The number of blocked neurons 𝑁𝑐𝑢𝑡 is explicitly given by formula

𝑁𝑐𝑢𝑡∕𝑁 = ∫

𝐼𝑐

𝐼𝑐𝑢𝑡
𝐺(𝐼, 𝜇, 𝜎)𝑑𝐼 =

erf( 𝐼𝑐−𝜇
𝜎
√

2
) − erf( 𝐼𝑐𝑢𝑡−𝜇

𝜎
√

2
)

erf( 𝐼max−𝜇
𝜎
√

2
) + erf( 𝜇

𝜎
√

2
)
. (28)

Given that 𝐼max = 20 pA, 𝜇 = 7.7 pA, 𝜎 = 4.0 pA (see Sec. 2), for
𝐼𝑐𝑢𝑡 = 14.5 pA, 14 pA, and 13.5 pA one gets 𝑁𝑐𝑢𝑡∕𝑁 = 1.1%, 2.4%,
and 4.1%, respectively. Simulations showed that all n-sites disappeared
completely for the latter value, and disappeared partially for two
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former ones (Fig. 10). In these two cases, the sequence of corresponding
population spikes also changed and decreased, relative to the bench-
mark RefNN simulation (RefNN data are shown on the top-row graphs
in Fig. 10). As a result, it turns out that blocking just about 4% of non-
pacemaker neurons having the highest subcritical excitability is enough
to completely suppress the occurrence of population spikes and their
n-sites. A theoretical explanation of this result is given in Section 2.1.3.

3.5. Testing completeness and stability of the n-sites map: long simulation,
initial potentials diversity, and small time step

To test if the simulation duration of 10 s is sufficient to completely
define the stationary map of primary n-sites, we performed a five-times
longer simulation for the RefNN. The results are shown in Fig. S2 of
the Suppl. Mat. One n-site (labeled by F in Fig. S2) indeed appeared
relatively late so it was missed in the simulation shown in Fig. 2. At
the same time, most of the n-sites have been revealed within 10 s of
simulation.

We have also checked the stability of the n-sites map against (i)
diversity of initial values 𝑉𝑖(𝑡 = 0), 𝑖 = 1, 𝑁 , of neuronal membrane
potentials (see Fig. S3) and (ii) tenfold smaller value of the simulation
time step 𝑑𝑡 defined in Section 2.3 (see Fig. S4).

For the case of different initial potentials, we performed five sim-
ulations for the RefNN with the duration of 30 sec: the first one (top
graph in Fig. S3) was a control simulation with 𝑉𝑖(𝑡 = 0) = 𝑉𝑟𝑒𝑠𝑡, and in
each of the four others the values 𝑉𝑖(𝑡 = 0) were randomly taken from
the uniform distribution in the interval between the resting potential
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Fig. 9. Simulation of the RefNN spiking activity with two instant re-generations (at the 10th and 20th second) of the whole sampling of amplitudes of synaptic currents. Similar
to the right panel in Fig. 3, the graph is divided into three vertical sections by dashed lines. Each section corresponds to a fixed sampling of synaptic current amplitudes. Top:
Time dependence of the network spiking activity; the population spikes are labeled the same as their n-sites. Bottom: The stationary map of n-sites. As before, the color intensity
of the filled circles corresponds to the relative intensity of a particular n-site. It is seen that the map of n-sites changes significantly after each re-sampling of the amplitudes of
synaptic currents.
𝑉𝑟𝑒𝑠𝑡 and the firing threshold 𝑉𝑡ℎ. The result is that the diversity of the
initial potentials leads to a redistribution of relative activities of previ-
ously detected n-sites but not to an emergence of new ones. Notably,
the activity alteration is more pronounced for the n-sites, which are
relatively faint in the benchmark (“control”) ReNN simulation (Fig. 2).

In turn, to study the influence of simulation time step 𝑑𝑡 on the
map of n-sites, we performed three simulations for the RefNN with
the duration of 10 s (Fig. S4). The first one was with 𝑑𝑡 = 0.01 ms
(instead of the standard 𝑑𝑡 = 0.1 ms) and the time bin Δ𝑡 = 0.2 ms
(instead of the standard Δ𝑡 = 2 ms) for averaging the network activity
defined by Eq. (26). As the result, we got that changing the time step
𝑑𝑡 drastically modified the spatial nucleation pattern: a major part of
the benchmark n-sites did not appear, while one new and very active
site occurred (Fig. S4). To test if some simple rescaling could revive
the benchmark map of RefNN n-sites, in the second simulation, along
with the above-mentioned decrease of 𝑑𝑡 and Δ𝑡, we also decreased
tenfold the minimal spike-propagation delay 𝜏𝑑𝑒𝑙,𝑚𝑖𝑛 (see Section 2.1.1,
at the end), setting it to 0.02 ms instead of the standard 0.2 ms.
Finally, in the third simulation, in addition to all changes made in the
second simulation, we increased tenfold the spike propagation speed
𝑣𝑠𝑝, setting it to 2 mm/ms instead of the standard 0.2 mm/ms. However,
all these rescalings did not affect the initial result essentially. We have
concluded that a more elaborate rescaling of the integrative properties
of neurons is needed to restore the benchmark nucleation map at 𝑑𝑡 =
0.01 ms.

4. Discussion

Summarizing, we generated a benchmark implementation of the
model neuronal network, called the Reference Neuronal Network
(RefNN), and showed a high sensitivity of its n-sites map to

• the sampling of constant background currents during a simulation
(Figs. 3–7);

• the network connectome (Fig. 8);
• the sampling of synaptic current amplitudes during a simulation

(Fig. 9);
• blocking the dynamics of non-pacemakers having nearly-critical

excitability (Fig. 10).
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In addition, we checked the n-sites map for the influence of the
simulation duration (Fig. S2), the diversity of initial neuronal potentials
(Fig. S3), and the small simulation time step (Fig. S4). For the latter,
we found a substantial impact on the n-sites map and showed the
inefficiency of the two simple re-scalings to offset the impact.

Functionally, the model network exhibits spontaneous population
spikes originating from a set of steady n-sites. The crucial question is
as follows: what is the structure of a n-site?

It is tempting to assume that n-sites are small spatially-localized
neuronal assemblies containing a few functionally-equal “trigger” neu-
rons. Firing of one of such neurons, provided that its outgoing synapses
are sufficiently strong (see Section 2.1.3), may lead to avalanche-like
activation of the others in the assembly, i.e., to the n-site activa-
tion (Hernandez-Navarro et al., 2021; Yvon et al., 2005). That n-site
activates other n-sites in the first place and then they collectively
activate the rest of the network. A n-site may contain as little as one
trigger neuron, though the case where it is formed by several trigger
neurons located near each other would make it relatively more stable
and active.

In turn, the trigger neurons are thought to be excitatory non-
pacemaker neurons having (i) a relatively large number of strong
incoming synapses (Eckmann et al., 2010) and/or relatively high inter-
nal excitability mimicked by the background current value (Zbinden,
2011) and (ii) a relatively large number of strong outgoing synapses.
So being a trigger neuron is a smoothly graded, comparative, but not
a binary characteristic. According to the definition, trigger neurons
are expected to be systematically active at the start of a population
spike generation, and their spiking activity in the intervals between
population spikes is expected to be weak, compared to the pacemakers
(cp. Eckmann et al., 2008; Eytan & Marom, 2006; Latham et al., 2000a,
2000b).

It is worth noting that the concept of “trigger” neurons is closely
related, or even synonymous, to the neurons of “nacelles” (Gross
& Kowalski, 1999), “early-to-fire” neurons (Eytan & Marom, 2006),
“highly active” neurons (Shein et al., 2008) (cp. Okada et al., 2021),
“major burst leaders” (Ham et al., 2008), “leader” neurons (Dazza
et al., 2021; Eckmann et al., 2008, 2010; Zbinden, 2011), “critical”
neurons (Luccioli et al., 2014), “driver cells” (Luccioli et al., 2018),
“pioneer” neurons (Bauermeister, Keren, & Braun, 2020), and “core”
neurons (Guarino, Filipchuk, & Destexhe, 2023).
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Fig. 10. Simulation of the spiking activity for RefNN while blocking the dynamics of non-pacemaker neurons having background (“bg”) current values in a certain range up to
the critical value 𝐼𝑐 = 15 pA. Top-row graphs (from left to right): the map of n-sites (left), the network distribution of bg-currents (center), and a combined graph of the network
activity and the raster plot for the original “unperturbed” RefNN (right), i.e., the same data as shown in Fig. 2. For each population spike, the corresponding “parent” n-site (or
a couple of simultaneously active n-sites) is indicated on the activity graph. The 2nd row from the top: similar graphs for the case of blocking the dynamics of neurons having
bg-currents ranging from 14.5 pA to 15 pA. This range contains 1.1% of the network’s neurons. Here and further, the blocked range is highlighted by gray color on the distribution
of bg-currents (the central graph in the row). Note that the n-sites C and D have disappeared, but a new n-site F has appeared instead. The 3rd row from the top: results for
blocking the dynamics of neurons having bg-currents in a wider range from 14 pA to 15 pA, which contains 2.4% of all neurons. In this case, all n-sites, except for site A, have
disappeared. Bottom-row graphs: results for blocking the dynamics of neurons having bg-currents in an even wider range from 13.5 pA to 15 pA, which contains 4.1% of all
neurons. In this case, all n-sites and population spikes have disappeared (except for the initial-conditions-caused artefact at the beginning of the simulation).
Further, our results allow for the interpretation that the stationarity
of n-sites can be a quasi-stable (or maybe even unstable) equilibrium
position, at least for those n-sites that are not very active relative to the
others. It means that even a small change in some of the network model
parameters can lead to a substantial reorganization of the whole map of
n-sites. A potential mechanism for such changes is the Hebbian plastic-
ity, in particular, Spike-Timing-Dependent Plasticity (STDP) (Caporale
& Dan, 2008; Debanne & Inglebert, 2023; Feldman, 2012; Morrison,
Diesmann, & Gerstner, 2008). The latter can be directly implemented
into the model as an additional dynamics of 𝑢, the fraction of recovered
synaptic resource used to transmit the signal across the synapse, in
Eq. (15). Indeed, in the presented model, coefficient 𝑢, 0 ≤ 𝑢 ≤ 1,
has an exact meaning of synaptic weight, being static for the outgoing
synapses of excitatory neurons. To include the so-called “online” STDP
implementation based on pairwise spike correlations (Morrison et al.,
2008), one can add the following dynamic equations for the synapses
between excitatory neurons (cp., e.g., Farajidavar, Saeb, & Behbehani,
2008; Lobov et al., 2016; Shimoura et al., 2021):

⎧

⎪

⎨

⎪

𝑑𝑎𝑝𝑟𝑒∕𝑑𝑡 = −𝑎𝑝𝑟𝑒∕𝜏𝑝𝑟𝑒 +𝐾𝑝𝑟𝑒(1 − 𝑎𝑝𝑟𝑒)𝛿(𝑡 − 𝑡𝑝𝑟𝑒 − 𝜏𝑑𝑒𝑙),
𝑑𝑎𝑝𝑜𝑠𝑡∕𝑑𝑡 = −𝑎𝑝𝑜𝑠𝑡∕𝜏𝑝𝑜𝑠𝑡 +𝐾𝑝𝑜𝑠𝑡(1 − 𝑎𝑝𝑜𝑠𝑡)𝛿(𝑡 − 𝑡𝑝𝑜𝑠𝑡), (29)
⎩

𝑑𝑢∕𝑑𝑡 = (1 − 𝑢(𝑡))𝑎𝑝𝑟𝑒(𝑡)𝛿(𝑡 − 𝑡𝑝𝑜𝑠𝑡) − 𝑢(𝑡)𝑎𝑝𝑜𝑠𝑡(𝑡)𝛿(𝑡 − 𝑡𝑝𝑟𝑒 − 𝜏𝑑𝑒𝑙),
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where 𝐾𝑝𝑟𝑒, 𝐾𝑝𝑜𝑠𝑡, 𝜏𝑝𝑟𝑒, 𝜏𝑝𝑜𝑠𝑡 are positive constant parameters; 𝑡𝑝𝑟𝑒, 𝑡𝑝𝑜𝑠𝑡
are the moments of the last (up to the current time 𝑡) presynaptic
and postsynaptic spikes, respectively, and 𝜏𝑑𝑒𝑙 is the spike propagation
delay. The auxiliary dynamic variables 𝑎𝑝𝑟𝑒(𝑡) and 𝑎𝑝𝑜𝑠𝑡(𝑡) are always
within the range from zero to one, 0 ≤ 𝑎𝑝𝑟𝑒(𝑡), 𝑎𝑝𝑜𝑠𝑡(𝑡) ≤ 1; these trace the
spiking history of pre- and postsynaptic neurons, respectively. Finally,
the initial conditions for Eq. (29) may be as follows: 𝑎𝑝𝑟𝑒(𝑡 = 0) = 0,
𝑎𝑝𝑜𝑠𝑡(𝑡 = 0) = 0, 𝑢(𝑡 = 0) = 0.5.

For the synapses from excitatory to inhibitory neurons, one could
either keep 𝑢(𝑡) = 0.5, i.e., not consider dynamics of synaptic weight
𝑢, or allow functionally similar dynamics of 𝑢(𝑡) as for the synapses
between excitatory neurons, but with other values of the STDP pa-
rameters (cp. Lu et al., 2007). At last, for the outgoing synapses of
inhibitory neurons, the dynamics of 𝑢 is innately described by Eq. (16)
in the short-term synaptic plasticity model. One could use parameter
𝑈 there as a synaptic weight obeyed to STDP. However, as several
experiments have shown that inhibitory STDP is strongly dependent on
developmental stage of the neural tissue (Debanne & Inglebert, 2023),
we believe that mathematical modeling of this phenomenon is beyond
the scope of this article. Moreover, recent experiments indicate similar
developmental-stage dependence even for the “classical” excitatory
STDP implied in Eq. (29) (Debanne & Inglebert, 2023). We therefore
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emphasize that our consideration of the STDP impact here is purely
speculative.

Even though quantifying the impact of the “classical” excitatory
STDP on the spatial map of n-sites is a complex unsolved prob-
lem (Knoblauch et al., 2012), the obtained results (see Fig. 9) allow
for predicting a substantial influence, provided that STDP substantially
affects synaptic weights. As a whole, in the presence of STDP, the n-
sites map might require a long transient time to become stationary. For
the STDP model described by Eq. (29), if parameters 𝐾𝑝𝑟𝑒 and 𝐾𝑝𝑜𝑠𝑡
re small enough, the stationary n-sites are assumed to correspond
o a stationary bell-shaped distribution of synaptic weights, as this
istribution is typical for the STDP rule with multiplicative weight
ependence (Rubin, Lee, & Sompolinsky, 2001; van Rossum, Bi, &
urrigiano, 2000). STDP could also result in a finite lifetime for each
-site, which would blossom and then fade out, with or without further
evival.

Another mechanism that may affect the existence and stability of
he n-sites map is spike-frequency (or spike-triggered) adaptation of
he neuronal dynamics (Benda & Herz, 2003; Benda, Maler, & Longtin,
010; Brette & Gerstner, 2005; Ermentrout, Pascal, & Gutkin, 2001;
uhrmann, Markram, & Tsodyks, 2002; Liu & Wang, 2001; Vreeswijk
Hansel, 2001) (see also a recent model (Chintaluri & Vogels, 2023)

f combined metabolically-driven pacemaking and adaptation). Unlike
TDP, this mechanism is internal, i.e., it does not directly depend on
nteractions between neurons. In the simplest case, the adaptation can
e implemented as follows: instead of Eq. (7) for neuronal potential 𝑉 ,

we now have
{

𝜏𝑚𝑑𝑉 ∕𝑑𝑡 = 𝑉𝑟𝑒𝑠𝑡 − 𝑉 (𝑡) + (−𝐼𝑎(𝑡) + 𝐼𝑠𝑦𝑛(𝑡) + 𝐼)𝑅𝑚,
𝑑𝐼𝑎∕𝑑𝑡 = −𝐼𝑎(𝑡)∕𝜏𝑎 + Δ𝐼𝑎𝛿(𝑡 − 𝑡𝑠𝑝),

(30)

where the second equation describes the dynamics of an adaptation
current 𝐼𝑎 providing a negative (inhibitory) feedback after each spike
of the neuron. Here 𝜏𝑎 and 𝑡𝑠𝑝 are the adaptation time constant and
the moment of the last generated spike, respectively. Qualitatively, at
the moment of spike generation by the neuron, 𝐼𝑎 is instantly increased
by the value of Δ𝐼𝑎 and then decays exponentially with characteristic
time 𝜏𝑎, which is substantially larger than the absolute refractory
period, 𝜏𝑟𝑒𝑓 . If incoming synaptic current 𝐼𝑠𝑦𝑛(𝑡) is set to zero and the
constant background current 𝐼 > 𝐼𝑐 , i.e., the neuron is an unperturbed
pacemaker, adaptation current 𝐼𝑎 results to a decrease in the firing
frequency, compared to that determined by Eq. (8). Importantly, the
spike-frequency adaptation and synaptic depression may jointly lead
to a nontrivial form of amplification of the impact of pacemakers on
other neurons: a decrease in the spike generation frequency due to the
adaptation leads to a decrease in synaptic depression (see Eq. (17) and
subsequent text) which, in its turn, causes an increase in the amplitude
of outgoing synaptic current pulses.

As our simulations have shown a high sensitivity of the n-sites map
to pacemaker frequencies (see Figs. 3, 4, and 6), adding 𝐼𝑎 dynamics
in the spiking network model virtually guarantees some change in the
n-sites map relative to the one for RefNN. Moreover, as the adaptation
timescale 𝜏𝑎 ∼ 100 ms (cp. Giugliano et al., 2004; Guarino et al., 2023)
has the same order of magnitude as a typical duration of population
spike (see Fig. 2), the adaptation may also directly affect the collective
dynamics of non-pacemaker neurons.

Although the effect of adaptation should be studied separately, we
assume that it is not similar to the renewal of the background current
value each time immediately after spike generation by the neuron (see
Fig. 7 and the related text), and the adaptation does not destroy a
stationary map of n-sites. Indeed, in the case of the background current
renewal immediately after the spike, the new current value can be
greater than the old one (except for the two limiting values), while in
the case of adaptation the sum (−𝐼𝑎(𝑡)+𝐼) in Eq. (30) is always smaller
than 𝐼 . In addition, the intervals between population spikes are about
ten times longer than the population spike duration and 𝜏𝑎. Therefore,

the adaptation currents of non-pacemakers decay significantly during
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such an interval, and the excitabilities of these neurons will again be
determined by the same values of background currents. The n-sites
appear at the initial stage of a population spike when most non-
pacemaker neurons have almost zero adaptation currents. If the trigger
neurons participate in the appearance of n-sites only once, i.e. only
the first spike from each of them is critical, the effect of adaptation
is unlikely to be very significant.

If inhibitory neurons are not blocked in the RefNN simulation, their
activity blurs the n-sites map so that it is hardly possible to get a clear
map not only algorithmically but even visually (see Suppl. Video 2).
In this case, only one or two most intense n-sites corresponding to the
map obtained in the inhibition-off mode could be still detectable for the
unaltered simulation time. As a rule, inhibition tears local n-sites into
several delocalized ragged patches of activity. One can interpret it as
follows. In the network model that underlies simulations, the inhibitory
neurons have the same spatially uniform distribution and, importantly,
the same connectivity characteristics as the excitatory neurons. In
real networks, however, inhibitory neurons statistically have a greater
proportion of short connections than excitatory ones (e.g., see Miles
et al., 1988). This may explain the above-mentioned delocalizing effect
caused by the activity of inhibitory neurons. Interestingly, as it has been
previously shown in simulations for the same model, in the inhibition-
on mode a population spike can occasionally originate in the form
of a multi-armed spiral wave with the drifting center if the network
connectome is relatively dense (𝜆 = 0.04𝐿) (Paraskevov & Zendrikov,
2017).

It should be noted that both the neuronal network model and
the above-described results on n-sites can be readily extended into
the three-dimensional (3D) case, where population spikes have been
recently observed in spherical cerebral organoids obtained from human
induced pluripotent stem cells (Quadrato et al., 2017; Sharf et al., 2022;
Trujillo et al., 2019). Although cerebral organoids have a substantially
more deterministic connectome than a model network of randomly
connected neurons (Kelava & Lancaster, 2016; Lancaster et al., 2013),
the latter could be a starting point, as a very rough approximation.
Besides, moving from a two-dimensional plane to a three-dimensional
space always leads to new possibilities. Indeed, is it possible to make
four equilateral triangles out of six matches? On the plane — no,
but in the three-dimensional space — yes (imagine a tetrahedron,
i.e., triangular pyramid).

Formally, for the extension into the 3D case, one should only change
accordingly (i) the dimensionality of the metric distance and (ii) the
probability density 𝑃 (𝑟) of finding two neurons at 3D distance 𝑟 from
each other. Below, we briefly outline the most basic cases of the cube
and the ball, compared to their 2D analogs.

For neurons being uniformly distributed in the cube 𝐿 × 𝐿 × 𝐿, the
probability density 𝑃𝑐𝑢𝑏𝑒(𝑟) of finding two neurons at 3D distance 𝑟 from
each other is given by (as in Eq. (3) before, we equate 𝐿 = 1 to shorten
the formula)

𝑃𝑐𝑢𝑏𝑒(𝑟) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑟2(4𝜋 − 6𝜋𝑟 + 8𝑟2 − 𝑟3), 0 ≤ 𝑟 ≤ 1,

(6𝜋 − 1)𝑟 − 8𝜋𝑟2 + 6𝑟3 + 2𝑟5 + 24𝑟3 arctan(
√

𝑟2 − 1)−

−8𝑟(1 + 2𝑟2)
√

𝑟2 − 1, 1 < 𝑟 ≤
√

2,

(6𝜋 − 5)𝑟 − 8𝜋𝑟2 + 6(𝜋 − 1)𝑟3 − 𝑟5 + 8𝑟(1 + 𝑟2)
√

𝑟2 − 2−

−24𝑟(1 + 𝑟2) arctan(
√

𝑟2 − 2) + 24𝑟2 arctan(𝑟
√

𝑟2 − 2),
√

2 < 𝑟 ≤
√

3

(31)

with ∫
√

3
0 𝑃𝑐𝑢𝑏𝑒(𝑟)𝑑𝑟 = 1 (Philip, 2007) (cp. Weisstein (2019b)). The

dependence 𝑃𝑐𝑢𝑏𝑒(𝑟) is shown by the blue curve on the left graph in
Fig. 11.

For a centrosymmetric spatial boundary (disk, ball), similar formu-
las for the probability density 𝑃 (𝑟) are much simpler. In particular, for

the point neurons being uniformly distributed within a 2D disk (Gritsun
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Fig. 11. Probability density 𝑃 (𝑟) of detecting two points (in our case, two point neurons), randomly and independently dropped in a specific enclosed area (green curves) or
olume (blue curves), at the distance 𝑟 from each other. The distance 𝑟 is two-dimensional (2D) for the area and three-dimensional (3D) for the volume. Left graph: The green
urve is 𝑃 (𝑟) for the square 𝐿 × 𝐿 (see Eq. (3)), and the blue curve is 𝑃 (𝑟) for the cube 𝐿 × 𝐿 × 𝐿 (Eq. (31)), where 𝐿 is the corresponding side length. Right graph: The green

curve is 𝑃 (𝑟) for the disk 𝜋𝑅2 (Eq. (32)), and the blue curve is 𝑃 (𝑟) for the ball (4∕3)𝜋𝑅3 (Eq. (33)), where 𝑅 is the corresponding radius.
et al., 2012) and a 3D ball of radius 𝑅, the corresponding probability
densities 𝑃𝑑𝑖𝑠𝑘(𝑟) and 𝑃𝑏𝑎𝑙𝑙(𝑟) are given by (see the right graph in Fig. 11)

𝑃𝑑𝑖𝑠𝑘(𝑟) =
2𝑟
𝜋𝑅2

(2 arccos( 𝑟
2𝑅

) − 𝑟
𝑅

√

1 − 𝑟2

4𝑅2
), (32)

𝑃𝑏𝑎𝑙𝑙(𝑟) =
𝑟2

𝑅3
(3 − 9

4
𝑟
𝑅

+ 3
16

𝑟3

𝑅3
), (33)

where 0 ≤ 𝑟 ≤ 2𝑅 and ∫ 2𝑅
0 𝑃𝑑𝑖𝑠𝑘,𝑏𝑎𝑙𝑙(𝑟)𝑑𝑟 = 1 (Mathai, 1999; Tu &

ischbach, 2002; Weisstein, 2019c).
For the 3D case, though a detailed statistical study similar to the

ne reported here for 2D networks has not been carried out so far, a
eries of test simulations for 3D neuronal networks confined in the cube
as confirmed the existence of population spikes occurring from a few
tatic n-sites.

Based on all of the above, as the spiking network model described
ere has demonstrated a very high richness-to-complexity ratio, it may
e used as an excellent illustrative tool for teaching network-level
omputational neuroscience, complementing a few benchmark models
e.g., the Brunel’s model and its amended spatial versions Brunel,
000; Mehring et al., 2003). Specifically, to illustrate spatiotemporal
atterns of network spiking activity, such as concentric traveling waves
nderlying population spikes.

Notably, population spikes have been often treated as neuronal
valanches, the statistics of which exhibits signatures (e.g., a specific
ower-law distribution of the avalanche sizes, cp. Touboul & Destexhe,
017) of self-organized criticality (SOC) (Hesse & Gross, 2014; Plenz
Thiagarajan, 2007; Plenz et al., 2021). Moreover, modeling studies

ave indicated that short-term synaptic plasticity may play a leading
ole in this phenomenon (Levina, Herrmann, & Geisel, 2007, 2009)
reviewed in Zeraati, Priesemann, & Levina, 2021). In turn, our findings
how that population spikes can have a small set of steady n-sites rather
han occurring spatially at random. The latter, and that some n-sites
an be located quite close to each other, challenge the standard SOC
nterpretation, which implies a certain spatial symmetry. Further, our
esults are consistent with those claiming the existence of a small frac-
ion of trigger neurons, rather than a transient formation of neuronal
ssemblies. Such neurons are crucial for driving population spikes,
equiring further elaboration of the SOC-based explanation.

. Conclusion

In this article, for a two-dimensional generative network of exci-
atory spiking neurons with short-term synaptic depression, we have
umerically studied the sensitivity of the spatial map of spontaneously
15 
formed n-sites of population spikes to the changes in the network
distributions of (i) neuronal excitability, (ii) the set of incoming and
outgoing connections of a neuron, and (iii) amplitudes of pulsed synap-
tic interaction between neurons. We have also detected a crucial role of
a few percent of non-pacemaker neurons with the highest excitability
both for the nucleation effect and population spikes.

A possible influence of the Hebbian plasticity (STDP) and spike-
frequency adaptation on the existence and stability of the n-sites map,
and an extension of the network model into the three-dimensional case,
have been discussed. An amplification of the impact of pacemakers
on other neurons due to an interaction between the spike-frequency
adaptation and synaptic depression is qualitatively predicted. Finally,
using the example of a simulation with unblocked inhibitory neurons,
their blurring impact on the n-sites map has been demonstrated.

In turn, the impact of the outlined results may be as follows. From
a theoretical perspective, the proven high sensitivity of the n-sites map
to the changes in parameter samplings makes it impossible to describe
the nucleation effect using a standard mean-field approach. Interpreting
the nucleation as a critical dynamic state is competed by the hypothesis
of a decisive impact of a small fraction of trigger neurons having
relatively high (i) internal excitability and/or number of strong incom-
ing excitatory synapses and (ii) number of strong outgoing excitatory
synapses.

From a practical perspective, our results indicate that instead of
adjusting the closed-loop control system of a cyborg to the emergent
pattern of n-sites, one should find a way to completely suppress its
occurrence by minimal, extremely selective exposure (e.g., physical
— by laser ablation, optogenetic or, perhaps, pharmacological) to the
disinhibited neuronal culture. The targets for such an exposure may be
up to 5% of the most excitable non-pacemaker neurons.

Finally, the obtained results, including the complete dataset of
simulations, also provide the empirical basis for constructing a theory
that would predict the number and locations of primary n-sites with-
out performing simulations of neuronal dynamics, i.e., only based on
the static parameter samplings of a particular implementation of the
neuronal network.
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