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Abstract

We show convergence of the Navier–Stokes/Allen–Cahn system to a classi-
cal sharp interface model for the two-phase flow of two viscous incompressible
fluids with same viscosities in a smooth bounded domain in two and three space
dimensions as long as a smooth solution of the limit system exists. Moreover, we
obtain error estimates with the aid of a relative entropy method. Our results hold
provided that the mobility mε > 0 in the Allen–Cahn equation tends to zero in
a subcritical way, i.e., mε = m0ε

β for some β ∈ (0, 2) and m0 > 0. The proof
proceeds by showing via a relative entropy argument that the solution to the Navier–
Stokes/Allen–Cahn system remains close to the solution of a perturbed version of
the two-phase flow problem, augmented by an extra mean curvature flow term
mε H�t in the interface motion. In a second step, it is easy to see that the solution
to the perturbed problem is close to the original two-phase flow.

1. Introduction

During its evolution, the interface between two immiscible fluids may undergo topo-
logical changes, such as the merging or pinchoff of droplets. Mathematically, when
modeling the interface classically as a (d − 1)-dimensional manifold, this creates
challenges for the analysis and for numerical approximations. Diffuse-interface
models circumvent these problems by replacing the sharp interface by a diffuse
transition layer of a finite width ε > 0, reducing the problem to a set of PDEs
posed on the entire domain. However, this procedure comes at the cost of introduc-
ing an additional modeling error: For many diffuse-interface models for fluid-fluid
interfaces it has remained an open problem to rigorously show convergence to the
original sharp-interface model in the limit of vanishing interface width ε → 0,
even prior to any topology change. In the present work, we prove the convergence
of a diffuse-interface approximation for one of the most fundamental macroscopic
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models for a fluid-fluid interface, the Navier–Stokes equation for two immiscible
incompressible fluids separated by a sharp interface with surface tension. To the
best of our knowledge, the present work is the first general1 quantitative conver-
gence result for any diffuse-interface approximation of the standard free boundary
problem for the interface between two immiscible incompressible viscous fluids.

More specifically, in this contribution we rigorously identify the sharp-interface
limit of the following Navier–Stokes/Allen–Cahn system

∂tvε + vε · ∇vε − �vε + ∇ pε = −ε div(∇ϕε ⊗ ∇ϕε) in � × (0, T0), (1.1a)
div vε = 0 in � × (0, T0), (1.1b)

∂tϕε + vε · ∇ϕε = mε

(
�ϕε − 1

ε2 W ′(ϕε)
)

in � × (0, T0), (1.1c)

(vε, ϕε)|∂� = (0, −1) on ∂� × (0, T0), (1.1d)
(vε, ϕε)|t=0 = (v0,ε, ϕ0,ε) in �, (1.1e)

in a bounded domain � ⊆ R
d , d = 2, 3, with smooth boundary. Here vε : � ×

(0, T0) → R
d is the mean velocity of the fluid mixture, pε : � × (0, T0) → R its

pressure and ϕε : � × (0, T0) → R an order parameter (e.g. the volume fraction
difference of the fluids) related to the different phases, where the values ϕε = ±1
describe that only one fluid is present. Moreover, ε > 0 is a constant related to the
thickness of the diffuse interface and mε > 0 is a constant diffusion coefficient,
which depends on ε > 0. Here W : R → R is a double well-potential, satisfying
standard assumptions. More precisely, we assume that W is twice continuously
differentiable and we have, for some c > 0,

W (±1) = 0, W (−s) = W (s), W (s) ≥ c min{|s − 1|2, |s + 1|2}

for all s ∈ R. A standard example is W (s) = c(1 − s2)2 for c > 0.
This model was introduced by Liu and Shen in [30] to describe a two-phase

flow for incompressible fluids with the same viscosity and densities. For simplicity
we have set the densities and viscosities to one. The model can be considered as the
analogue of the well-know “model H”, cf. [21,24], if one replaces the convective
Cahn-Hilliard equation by a convective Allen–Cahn equation. A first analytic study
of the system (1.1a)–(1.1e) was done by Gal and Grasselli [19] in the case of a
bounded smooth domain in two space dimensions, where the existence of global
and exponential attractors and convergence to stationary solutions was shown. For a
more general model with different densities and viscosities Jiang et al. [25] proved
the existence of weak solutions globally in time (in two and three space dimensions).
Moreover, in the case of two space dimensions they proved global well-posedness
in the strong sense and studied the longtime behavior of strong solutions. We refer to
Giorgini et al. [20] for a mass-conserving variant of the Navier–Stokes/Allen–Cahn
system with different densities and further references.

1 The only previous work in this direction [4] only explicitly covers the case of the scaling
regime mε = ε1/2 and works under substantially stronger assumptions on the initial data.
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It is the purpose of this contribution to study the limit (1.1a)–(1.1e) as ε → 0
in the case that mε →ε→0 0 suitably. Then one expects to have convergence to
solutions of the classical two-phase Navier–Stokes equation with surface tension:

∂tv
±
0 + v±

0 · ∇v±
0 − �v±

0 + ∇ p±
0 = 0 in �±

t , t ∈ [0, T0], (1.2a)

div v±
0 = 0 in �±

t , t ∈ [0, T0], (1.2b)

�2Dv±
0 − p±

0 I�n�t = −σ H�tn�t on �t , t ∈ [0, T0], (1.2c)

�v±
0 � = 0 on �t , t ∈ [0, T0], (1.2d)

V�t = n�t · v±
0 on �t , t ∈ [0, T0], (1.2e)

v−
0 |∂� = 0 on ∂� × (0, T0), (1.2f)

�0 = �0, v±
0 |t=0 = v±

0,0 in �±
0 . (1.2g)

Here (�t )t∈[0,T0] is an evolving (d − 1)-dimensional submanifold of � such that
� is the disjoint union of two smooth domains �±

t and �t as well as ∂�±
t = �t

for every t ∈ [0, T0]. Here the absence of a boundary contact of �t is assumed
for all t ∈ [0, T0]. Moreover, v±

0 (., t) : �±
t → R

d and p±
0 (., t) : �±

t → R are
the velocity and pressure of two fluids filling �+

t and �−
t for every t ∈ [0, T0],

n�t denotes the interior normal of �t with respect to �+
t , H�t and V�t denote the

mean curvature (sum of principle curvature) and normal velocity, resp., of �t with
respect to the orientation given by n�t . Furthermore, � f �(s) = limh→0+( f (s +
hn�t (s)) − f (s + hn�t (s))), s ∈ �t , denotes the jump of a function f defined in
a neighborhood of �t and Dv±

0 := 1
2

(∇v±
0 + (∇v±

0 )	
)

is the symmetric gradient.

Finally, σ = ∫ 1
−1

√
2W (s) ds > 0 is a surface tension coefficient. For what follows

we set that

� :=
⋃

t∈[0,T0]
�t × {t}, �± :=

⋃
t∈[0,T0]

�±
t × {t}, v0 :=

∑
±

v±
0 χ�± . (1.3)

For given vε = v the convective Allen–Cahn equation, i.e., (1.1c)–(1.1d), was
discussed formally by the first author in [2] and it was shown formally that the limit
system is given by the transport Eqs. (1.2e)–(1.2f) in the case that mε = m0ε for
some m0 > 0. We note that in this case these arguments can be extended to show
formally convergence of the full system (1.1a)–(1.1e) to (1.2a)–(1.2f) by combining
it with the arguments in [5] for a Navier–Stokes/Cahn-Hilliard system. But in the
case that mε = m0ε

β for some β > 2 nonconvergence was shown in the sense that,
in general,

ϕε(x, t) = θ0

(
d�t (x)

ε

)
+ O(ε) as ε → 0,

where d�t is the signed distance function to �t , no longer holds and a weak for-
mulation of the right-hand side of (1.1a) does not converge to the mean curvature
functional σ H�tn�t δ�t , which appears in a weak formulation of (1.2a) and (1.2c).
Here θ0 : R → R is the so-called optimal profile, which is the unique solution of

−θ ′′
0 (s) + W ′(θ0(s)) = 0 for all s ∈ R, θ0(s) →s→±∞ ±1, θ0(0) = 0.



   77 Page 4 of 50 Arch. Rational Mech. Anal.          (2024) 248:77 

Therefore convergence of the full system (1.1a)–(1.1e) cannot be expected in this
case. We note that in this case the counterexample given in [6] for a Navier–
Stokes/Cahn-Hilliard system in a radially symmetric situation can be adapted to
the present Navier–Stokes/Allen–Cahn system. It is the purpose of the present con-
tribution to show convergence of solutions of (1.1a)–(1.1e) to the smooth solution
of (1.2a)–(1.2f) on a time interval [0, T0] for which the latter exists in the case of a
subcritical scaling of the mobility mε = m0ε

β for some β ∈ (0, 2). Moreover, we
will derive error estimates with the aid of a relative entropy method. We note that
this is the first rigorous convergence result for a vanishing mobility mε →ε→0 0
in this regime, which includes the natural choice mε = m0ε. Finally, let us remark
that the derivation of a similar convergence result using a relative entropy method
was attempted in the recent work [26]; however, as the approach of [26] relies on
the invalid estimate [26, equation (2.4)], it overlooks the need to devise a careful
estimate for the critical interface stretching term that forms the main challenge for
our result.

Except for [4], so far only convergence in the case of a non-vanishing mo-
bility mε = m0 > 0 for all ε > 0 has been shown. First this was done in the
case of a Stokes/Allen–Cahn system with same viscosities by Abels and Liu [7],
then for a Navier–Stokes/Allen–Cahn system with different viscosities in Abels
and Fei [3], both in two space dimensions, and by Hensel and Liu [22] for the
Navier–Stokes/Allen–Cahn system with same viscosities in two and three space
dimensions. We note that the first two results are based on a refined spectral esti-
mate for the linearized Allen–Cahn operator and rigorous asymptotic expansions,
while the latter result uses the relative entropy method similarly as for the conver-
gence of the Allen–Cahn equation to the mean curvature flow shown by Fischer,
Laux, and Simon [17]. In the case of a non-vanishing mobility the limit system
consists of a system, where (1.2e) is replaced by a convective mean curvature flow
equation

V�t = n�t · v±
0 + m0 H�t on �t , t ∈ [0, T0].

In the contribution by Abels, Fei, and Moser [4] convergence of a Navier–Stokes/
Allen–Cahn system with different viscosities was shown in the special case of
mε = m0

√
ε and two space dimensions using the same method as in [3,7] refined for

this degenerate case. We note that the arguments could be extended to mε = m0ε
β

for β ∈ (0, 1
2 ], but the case β = 1

2 seems to be critical for the estimates in this
contribution and new ideas and refinements seem to be needed to treat the cases
with β > 1

2 with this method. At this stage, the relative entropy method used in the
present contribution appears to be more flexible.

In the following we consider a situation, in which the limit system (1.2a)–(1.2g)
is known to possess a unique smooth solution for some T0 > 0. We note that strong
well-posedness of this system was extensively studied starting with the results by
Denisova and Solonnikov [14]. Moreover, it was shown by Prüss and Simonett [34]
that strong solutions become analytic instantaneously in time. We refer to Köhne,
Prüss, and Wilke [27] and the monograph by Prüss and Simonett [35] for results on
local well-posedness in an L p-setting and further references. Finally, we note that
global-in-time existence of a notion of weak solutions, called varifold solutions,
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was shown in [1] and weak-strong uniqueness for these kind of solutions was shown
by Fischer and Hensel [16].

In general, there are two main mathematical approaches to the quantitative
justification of sharp-interface limits: an approach pioneered by de Mottoni and
Schatzman [13] and Chen [12] relies on a matched asymptotic expansion around
the sharp-interface limit to obtain an approximate solution to the diffuse interface
model; by means of a stability analysis of the linearized operator, it is possible
to derive rates of convergence. This approach has recently also been successfully
adapted to our Navier–Stokes/Allen–Cahn system with mobility mε = ε1/2 by Fei
and the first and the third author [4]. An alternative approach – recently developed
by the second author, Laux, and Simon [17] – proceeds via a suitably defined rela-
tive entropy. In [17], the relative entropy approach is used to give a short proof of
convergence of the Allen–Cahn equation towards mean curvature flow (valid for
well-prepared initial data and as long as a classical solution to the latter exists); this
result was extended in [23] to interfaces with boundary contact and in [29] to the
anisotropic case. The general approach has found numerous further applications: In
[18], convergence of the vectorial Allen–Cahn equation with multi-well potential
towards multiphase mean curvature flow has been established by the second author
and Marveggio; the case of the vectorial Allen–Cahn equation with two-well po-
tential has been considered by Liu [31,32]. Furthermore, Laux and Liu [28] have
obtained the sharp-interface limit for a model for liquid crystals. Hensel and Liu
[22] have used the relative entropy approach to study the sharp-interface limit of
the Navier–Stokes/Allen–Cahn system (1.1a)–(1.1e) in the regime of nonvanish-
ing mobility, deriving a Navier–Stokes/mean curvature flow system in the limit. In
general, a key advantage of the relative entropy approach to sharp interface limits
is its robustness, for instance requiring only convergence of the initial energy of
solutions to the phase-field model. In contrast, the approach of matched asymp-
totic expansions may be used to establish an approximation of the diffuse interface
model to arbitrary order.

The main result of our contribution is as follows:

Theorem 1.1. (Convergence) Let mε := m0ε
β for ε > 0, where m0 > 0 and β ∈

(0, 2) are fixed, q = 2 if d = 2, and q = 4
3 if d = 3. Moreover, let T0 > 0 be such

that the two-phase Navier–Stokes system with surface tension (1.2a)–(1.2g) has a
smooth solution (v±

0 , p±
0 , �) on [0, T0]. Let (vε, ϕε) with vε ∈ L∞(0, T0; L2

σ (�))∩
L2(0, T0; H1

0 (�)d), ϕε ∈ L2(0, T0; H2(�)) ∩ W 1
q (0, T0; L2(�)) for ε > 0 be

energy-dissipating weak solutions to the Navier–Stokes/Allen–Cahn system (1.1a)–
(1.1e) on [0, T0] as in Remark 1.2 below for the constant mobility mε and for initial
data (v0,ε, ϕ0,ε) with energy uniformly bounded with respect to ε and satisfying

∑
±

∫

�±
0

1

2
|v0,ε − v±

0,0|2 dx +
∫

�

ε

2
|∇ϕ0,ε|2 + 1

ε
W (ϕ0,ε) − (ξ · ∇ψ0,ε) dx

+
∫

�

|σχ�+
0

− ψ0,ε| min{dist�0 , 1} dx ≤ C
ε2

mε

(1.4)
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for ε > 0 sufficiently small, where ψ(r) := ∫ r
−1

√
2W (s) ds and ψ0,ε := ψ(ϕ0,ε).

Set ψε := ψ(ϕε).
Then, for ε > 0 small and a.e. T ∈ [0, T0], it holds that

‖(vε − v0)(., T )‖L2(�) + ‖σχ�+
T

− ψε(., T )‖L1(�) ≤ C

(
ε√
mε

+ mε

)
(1.5a)

‖∇vε − ∇v0‖L2(0,T0;L2(�)) ≤ C

(
ε√
mε

+ mε

)
(1.5b)

for some C > 0 independent of ε > 0 and T ∈ [0, T0]. Finally, there are well-
prepared initial data (v0,ε, ϕ0,ε) for ε > 0 small in the sense that (1.4) is satisfied,
even with rate ε2.

This result will be a consequence of Corollary 3.2 below.
Let us briefly comment on some aspects of our main theorem. First, note that

the choice mε := ε2/3 leads to the best-possible overall convergence rate O(ε2/3)

in (1.5). If one employs the Navier–Stokes/Allen–Cahn system as a numerical
approximation of the two-phase flow with sharp interface, this thus suggests the
choice of mobility mε ∼ ε2/3.

Second, our theorem requires a lower bound on the mobility of the form mε � εβ

for some β < 2. With a slightly more careful argument, it would in fact be possible
to weaken this assumption to mε � ε2| log ε|3. However, in the regime mε � ε2 one
would expect that the Allen–Cahn term no longer suffices to stabilize the Modica-
Mortola type profile of the diffuse interface, making it susceptible to stretching or
squeezing by drift: To see this heuristically, notice for instance that in this scaling
regime the reaction term −mε

ε2 W ′(ϕε) from the Allen–Cahn Eq. (1.1c) no longer
suffices to drive the values of ϕε towards the minima of the potential W in finite
time. This possible stretching of the profile by advection in turn is expected to
lead to errorneous capillary effects in (1.1a) and hence convergence to a different
limiting system; see also [6], in which this has been observed rigorously for certain
choices mε = εβ , β > 2.

Remark 1.2. Let q = 2 if d = 2, and q = 4
3 if d = 3. We note that weak solutions

(vε, ϕε)withvε ∈ L∞(0, T0; L2
σ (�))∩L2(0, T0; H1

0 (�)d),ϕε ∈ L2(0, T0; H2(�))

∩ W 1
q (0, T0; L2(�)) for ε > 0 to the Navier–Stokes/Allen–Cahn system (1.1a)–

(1.1e) on [0, T0] are understood in the sense of [22, Definition 3] with the difference
that we only require ϕε ∈ W 1

4/3(0, T0; L2(�)) if d = 3. In particular, we assume
that the energy inequality

∫

�

( |vε(x, t)|2
2

+ ε

2
|∇ϕε(x, t)|2 + W (ϕε(x, t))

ε

)
dx

+
∫ t

0

∫

�

(
|∇vε(x, τ )|2 + |∂tϕε(x, τ ) + vε(x, τ ) · ∇ϕε(x, τ )|2

)
dx dτ

≤
∫

�

( |v0,ε|2
2

+ ε

2
|∇ϕ0,ε|2 + W (ϕ0,ε)

ε

)
dx for every t ∈ [0, T0]
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holds true, which is essential for the following arguments. Existence of weak so-
lutions follows from the results in [25]. We note that in the latter contribution the
authors do not prove the energy inequality. However, it can be proved in a standard
manner using the energy identity for the solutions of the Galerkin system in [25]
and lower semi-continuity of norms. We also refer to [20, Theorem 3.1] for the
mass-conserved variant of the system.

Let us comment on the novelty of our contribution. As mentioned before, this
is the first convergence result for (1.1a)–(1.1e) in the case of a vanishing mobility
mε → 0, except for the special case mε = m0

√
ε in two space dimensions. We

use a relative entropy similar as in [22], which extends the one for the Allen–Cahn
equation used in [17] to the coupled Navier–Stokes/Allen–Cahn system. The main
step in the proof of convergence consists in showing a suitable estimate for the
relative entropy. Parts of the arguments and calculations in our situation follow
closely [22], but certain estimates degenerate as mε → 0 and some terms become
critical. Therefore essential new ingredients are needed.

More precisely, it will turn out that the main challenge in controlling the growth
of the relative entropy for mε � 1 consist of controlling terms involving the failure
of equipartition of energy such as

∫ (
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
∂n η̃ dx .

A naive direct estimate would bound such terms by the square root of the relative
entropy, insufficient for a subsequent control of the growth via the Gronwall lemma.
Instead, we shall see that by careful integration by parts arguments and an approx-
imation of the diffuse interface by a graph, they may in fact be controlled by the
dissipation term from the Allen–Cahn equation and the relative entropy, provided
that mε � ε2.

We deal with these critical terms in Sects. 4.2–4.4. The estimates make use
of a suitable parametrization of a suitably chosen level set {ϕε = b(t)} for some
b(t) ∈ (− 1

2 , 1
2 ) up to an error controlled by the relative entropy using results from

[16]. Moreover, it is essential for the construction of the relative entropy that we use
sufficiently smooth solutions of a modification of the limit system (1.2a)–(1.2g),
where the interface evolution (1.2e) is replaced by the convective mean curvature
flow equation with vanishing mobility

V�t = n�t · v±
0 + mε H�t on �t , t ∈ [0, T0].

This is used to obtain a sufficiently good approximation and control of some critical
remainder terms. However, it makes the solution depend on mε, ε, respectively, and
existence of such solutions together with uniform estimates in ε > 0 sufficiently
small needs to be shown. We note that existence of strong solutions for a fixed
mε > 0 locally in time was shown by the first and third author in [8] and in
[22, Appendix]. But the existence time might depend on ε. To obtain the uniform
bounds for small ε > 0 a Hanzawa transformation is used to transform the modified
system of the limit system (1.2a)–(1.2g). Then a fixed point argument can be used
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to obtain strong solutions for mε sufficiently small using suitable uniform bounds
for the mε-dependent linearized system in spaces of maximal Lq -regularity.

The structure of the contribution is as follows: in Sect. 2 we define the energy-
type functionals, which will be essential for the proof of convergence, and study their
coercivity properties. Afterwards the central stability estimate and convergence
result is given in Sect. 3. The essential estimates for the relative entropy are done in
Sect. 4. The proof of the stability estimate, which implies the convergence result, is
given in Sect. 6. Finally, in Sect. 7 existence of strong solutions for the modification
of the limit system (1.2a)–(1.2g) for sufficiently small mε > 0 is shown and its
difference to the solution of the real limit system is estimated by a multiple of mε,
cf. Theorem 7.7 below.

Let us finish the introduction with some notation. For example, we denote with
W k

p(�) for k ∈ N, 1 ≤ p ≤ ∞ and some domain � the Sobolev space with

k weak derivatives and integrability exponent p. Moreover, let Hk := W k
2 and

L2
σ (�) := {v ∈ C∞

0 (�)d : div v = 0}L2(�)d

, where C∞
0 (�) is the space of smooth

functions with compact support in �.

2. Definition and Coercivity Properties of the Energy Functionals

In this section we define the energy/entropy functionals used for our Gronwall
argument and show suitable coercivity properties. The definitions are similar to [22],
but based on a modification of the limit system as mentioned in the introduction.
To this end, we need some notation.

Let (vε, ϕε) with vε ∈ L∞(0, T0; L2
σ (�)) ∩ L2(0, T0; H1

0 (�)d) and ϕε ∈
L2(0, T0; H2(�)) ∩ W 1

q (0, T0; L2(�)), where q = 2 if d = 2 and q = 4
3 if

d = 3, for ε > 0 small be energy-dissipating weak solutions to the Navier–
Stokes/Allen–Cahn system (1.1a)–(1.1e) on [0, T0] with constant mobility mε > 0
as in Remark 1.2. Moreover, for mε > 0 small let (v±

mε
, p±

mε
, (�

mε
t )t∈[0,T0]) be

solutions of the two-phase Navier–Stokes equation with surface tension on [0, T0]
but with the evolution equation V�

mε
t

= n�
mε
t

· v±
mε

+ mε H�
mε
t

on �
mε
t instead of

(1.2e), cf. (7.1)–(7.7) and Theorem 7.9 in Sect. 7 below. We define that

�mε :=
⋃

t∈[0,T0]
�

mε
t × {t},

�mε,± :=
⋃

t∈[0,T0]
�

mε,±
t × {t} and vmε :=

∑
±

v±
mε

χ�mε,± . (2.1)

Let d�mε be the signed distance function of �mε and P�mε be the orthogonal
projection on a tubular neighbourhood �mε (2δ) of �mε of the width 2δ, where
δ > 0 is sufficiently small and can be chosen independently of mε > 0 sufficiently
small, cf. Remark 7.8. Let �

mε
t (2δ) := �mε (2δ) ∩ (Rd × {t}) be the time-slice. On

�mε (2δ) we set that

n := n�mε |P�mε and H := H�mε |P�mε , (2.2)
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where we avoided to add mε in the notation for n and H for convenience, and we
used the notation f |P�mε := f ◦ P�mε for suitable f . Moreover, we denote by
Xmε := (d�mε , P�mε , prt )

−1 on (−2δ, 2δ) × �mε the coordinate map describing
the tubular neighbourhood strip �mε (2δ) and define the normal derivative and the
tangential gradient by

∂n := n · ∇ and ∇τ := (Id − n ⊗ n)∇, respectively. (2.3)

On �mε (2δ) it holds that

∇ = n∂n + ∇τ , |∇u|2 = |∂nu|2 + |∇τ u|2 for suitable u, (2.4)

∂n = [∂1(. ◦ Xmε )] ◦ X−1
mε

and ∇τ = Dx P�mε [∇�
mε
t

(. ◦ Xmε )] ◦ X−1
mε

. (2.5)

Finally, let us recall that

ψ(r) :=
∫ r

−1

√
2W (s) ds, σ := ψ(1) and ψε := ψ(ϕε) (2.6)

and define that

nε :=
{ ∇ϕε|∇ϕε | , if ∇ϕε �= 0,

s, else,
(2.7)

where s is a fixed unit vector in R
d . Then ψε and nε are defined on �× (0, T0) and

it holds that

nε|∇ϕε| = ∇ϕε and nε|∇ψε| = ∇ψε.

2.1. Relative Entropy

We define the relative entropy as follows for a.e. t ∈ [0, T0]:

E[vε, ϕε|vmε , �mε ](t) :=
∫

�

1

2
|vε − vmε |2(x, t) dx + E[ϕε|�mε ](t), (2.8)

E[ϕε|�mε ](t) :=
∫

�

ε

2
|∇ϕε|2(x, t) + 1

ε
W (ϕε(x, t)) − (ξ · ∇ψε)(x, t) dx .

(2.9)

Here we chose to introduce a separate notation for the second interface-related
part for convenience. Here ξ is an extension (with quadratic cutoff) of the unit
normal on �mε . Note that the interface-related part of the relative entropy – being
the same as the relative entropy in [17] – is motivated by the Modica-Mortola trick;
as we shall see below, it controls both the error in the equipartition of the diffuse
interface energy (2.14) and a tilt-excess type error quantity for the interface normal
(2.13). At the same time, the time evolution of the relative entropy (2.9) can be
calculated in a straightforward manner using the energy dissipation inequality for
the Navier–Stokes/Allen–Cahn equation as well as the phase-field Eq. (1.1c).

For the precise definition of ξ : � × [0, T0] → R
d and an accompanying

B : � × [0, T0] → R
d (which has the role of an approximate transport and
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rotational velocity for ξ ) we first introduce suitable cutoff functions (analogous
to [22, Proof of Theorem 1]). Let η̄ : R → [0, 1] be smooth and even such that
supp η̄ ⊆ [−1, 1] and such that it satisfies the quadratic decay

1 − Cη̄r2 ≤ η̄(r) ≤ 1 − cη̄r2 and |η̄′(r)| ≤ C |r | for r ∈ [−1, 1], (2.10)

where cη̄, Cη̄, C > 0. Moreover, let η̃ : R → [0, 1] be smooth with supp η̃ ⊆
[−2, 2] and η̃ = 1 on [−1, 1]. Finally, we set ηmε := η̄(

d�mε

δ
) and η̃mε := η̃(

d�mε

δ
).

Then we define

ξ := nηmε and B := vmε + mε Hnη̃mε , (2.11)

where n = n(mε) and H = H(mε) were defined in (2.2). For important properties
of ξ and B we refer to Lemma 2.2 below.

The relative entropy from (2.8) satisfies the following coercivity properties:

Lemma 2.1. (Coercivity Properties of the Relative Entropy) First, the relative en-
tropy provides a control of the velocity error in terms of

∫

�

1

2
|vε − vmε |2 dx ≤ E[vε, ϕε|vmε , �mε ]. (2.12)

Moreover, it yields a tilt-excess-type error estimate of the form
∫

�

(1 − nε · ξ)|∇ψε| dx ≤ E[ϕε|�mε ]. (2.13)

Additionally, we have some control of the error in the equipartition of the energy
in the sense

∫

�

1

2

(√
ε|∇ϕε| − 1√

ε

√
2W (ϕε)

)2

dx ≤ E[ϕε|�mε ]. (2.14)

Furthermore, one obtains control of tangential derivatives and for the lack of
equipartition of energy in normal direction: for a.e. t ∈ [0, T0] it holds that

∫

�
mε
t (2δ)

ε

2
|∇τ ϕε|2(x, t) + 1

2

(√
ε∂nϕε − 1√

ε

√
2W (ϕε)

)2
(x, t) dx

≤ E[ϕε|�mε ](t), (2.15)

and one can replace ∂nϕε by |∂nϕε| in the estimate. Finally, for some C = C(δ) > 0
it holds that

∫

�

(
|nε − ξ |2 + min{d2

�mε , 1}
) (

ε|∇ϕε|2 + |∇ψε|
)

dx ≤ C E[ϕε|�mε ],
(2.16)∫

�

(
min{d�mε , 1} +√1 − nε · ξ

) ∣∣∣ε|∇ϕε|2 − |∇ψε|
∣∣∣ dx ≤ C E[ϕε|�mε ].

(2.17)
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Proof. Up to (2.15) the estimates are analogous to Hensel, Liu [22, Lemma 5].
Note that one only uses the definitions and the elementary estimate |ξ | ≤ 1 −
c min{d2

�mε , 1}, cf. also Lemma 2.2 below. The new estimate (2.15) is a simple
consequence of the properties (2.4) of ∂n and ∇τ . ��
Lemma 2.2. (Properties of ξ and B) For (ξ, B) = (ξ, B)(mε) from (2.11) we have

1. Regularity: for some p > d + 5 it holds that

ξ ∈ C1([0, T0], C0(�)d ) ∩ C0([0, T0]; C2
c (�)d ),

B ∈ C0([0, T0]; C0,1(�)d ) ∩ L p(0, T0; W 2
p(� \ �

mε
t )d ),

∇τ ∇ B ∈ L∞ (
�mε

(
3δ
2

))d3

,

we have uniform bounds with respect to mε and B|∂� = 0.
2. Coercivity and consistency: we have

|ξ | ≤ 1 − c min{d2
�mε , 1} in � × [0, T ], (2.18)

ξ = n, ∇ · ξ = −H on �mε , (2.19)∣∣∣∣
B − vmε

mε

· ξ + ∇ · ξ
∣∣∣∣ ≤ C min{d�mε , 1} a.e. in � × [0, T ], (2.20)

where (2.19) is a relation for the mean curvature and (2.20) is an approximate
equation for interface normal velocity.

3. Evolution equations for ξ : it holds (where ∇B is defined to be the Jacobian)
that

|(∂t + B · ∇)|ξ |2| ≤ C min{d2
�mε , 1} a.e. in � × [0, T ],

(2.21)

|∂t ξ + (B · ∇)ξ + (I d − ξ ⊗ ξ)(∇ B)	ξ | ≤ C min{d�mε , 1} a.e. in � × [0, T ],
(2.22)

where (2.21) means that |ξ |2 is approximately transported by the vector field B and
(2.22) that ξ is approximately transported and rotated by B.

Proof. The regularity and uniform bounds for ξ are obtained directly from the ones
for d�mε in Theorem 7.9. Moreover, vmε instead of B satisfies the regularity, uniform
bounds and the boundary condition stated for B due to Theorem 7.9 together with
embeddings and interpolation theory. Moreover, the second term in the definition
(2.11) of B is contained in C0([0, T0], C2

c (�)2) because of Theorem 7.9 and due to
the mε-prefactor and the well-known identities H = (−�d�mε )|P�mε , n = ∇d�mε

and P�mε = Id − nd�mε .
The properties (2.18)–(2.19) are clear from the definition and the well-known

identities n = ∇d�mε , ∇ · n = �d�mε on �mε (2δ) and �d�mε |�mε = −H on �mε .
Moreover, a direct calculation gives

B − vmε

mε

· ξ + ∇ · ξ = Hηmε η̃mε + ∇ · ξ.
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The latter vanishes on �mε , hence (2.20) follows. Moreover,

−∂t d�mε = V�mε = vmε · n + mε H = B · ∇d�mε on �mε (2.23)

due to (7.6) for mε instead of m, and therefore

(∂t + B · ∇)d�mε = 0 on �mε . (2.24)

We compute |ξ |2 = η2
mε

and

(∂t + B · ∇)|ξ |2 = 2

δ
ηmε η̄

′
(

d�mε

δ

)
(∂t + B · ∇)d�mε .

Due to (2.24), η̄′(0) = 0 together with a transformation in tubular neighbourhood
coordinates and the Taylor Theorem, we obtain (2.21).

Finally, let us prove (2.22). Equation (2.23) yields, by definition,

∂t d�mε + vmε |P�mε · n + mε H = 0 on �mε (2δ).

Differentiating the previous identity implies

∂tn + ∇(vmε |P�mε )	 · n + (∇n)	vmε |P�mε + mε∇H = 0 on �mε (2δ), (2.25)

where ∇(vmε |P�mε ) = ∇vmε |P�mε ∇ P�mε and it is well-known that ∇ P�mε |�mε

= Id − n ⊗ n on �mε . Moreover, on �mε it holds that

∂tξ + (B · ∇)ξ + (Id − ξ ⊗ ξ)(∇B)	ξ

= ∂tn + (vmε + mε Hn) · ∇n + (Id − n ⊗ n)
[
∇vmε + mε(n∇H	 + H∇n)

]	
n

= ∂tn + vmε · ∇n + (Id − n ⊗ n)(∇vmε )	n + mε∇H,

where we used (∇n)	n = 0 and n · ∇n = n · ∇H = 0. Finally, due to n = ∇d�mε

on �mε (2δ) we have ∂x jn = ∇n j for j = 1, ..., d and hence vmε ·∇n = (∇n)	vmε

on �mε (2δ). Therefore we obtain (2.22) from (2.25). ��

2.2. Bulk Error Functional

We define the bulk error functional for all t ∈ [0, T0] by

Ebulk[ϕε|�mε ](t) :=
∫

�

(
σχ

�
mε,+
t

− ψε(x, t)
)

ϑ(x, t) dx, (2.26)

where ϑ : �×[0, T0] → [0, 1] is defined as ϑ := ϑ(
d�mε

δ
), where ϑ : R → [0, 1]

is smooth with

ϑ > 0 on (1,∞), ϑ < 0 on (−∞, 0) and |ϑ | = 1 on R \ [−1, 1],
as well as cϑ |r | ≤ |ϑ(r)| ≤ Cϑ |r | for all r ∈ [−1, 1] and some cϑ , Cϑ > 0.
Note that we use a different sign convention for ϑ as in [22]. Hence ϑ is roughly
proportional to the signed distance function of �mε close to �mε and appropriately
truncated to ±1 outside. The required properties of ϑ will be shown in Lemma 2.4
below.

Let us now prove coercivity properties for the bulk error functional.
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Lemma 2.3. (Coercivity Properties of Ebulk) It holds (σχ�mε,+ − ψε) ϑ ≥ 0, in
particular Ebulk[ϕε|�mε ] ≥ 0. Moreover,

∫

�

|σχ�mε,+ − ψε| min{d�mε , 1} dx

+ ‖σχ�mε,+ − ψε‖2
L1(�)

≤ C Ebulk[ϕε|�mε ]. (2.27)

Finally, for all c0 > 0 there exists C = C(c0) > 0 such that
∫

�

|σχ�mε,+ − ψε||vε − vmε | dx

≤ c0

∫

�

|∇vε − ∇vmε |2 dx + C
(
E[vε, ϕε|vmε , �mε ] + Ebulk[ϕε|�mε ]) .

(2.28)

Proof. Because of |ϕε| ≤ 1 due to the maximum principle, it holds that |ψε| ≤ σ ,
by definition. Hence the properties of ϑ yield (σχ�mε,+ − ψε) ϑ ≥ 0. Moreover,

|σχ�mε,+ − ψε| min{d�mε , 1} ≤ C |σχ�mε,+ − ψε||ϑ | = C (σχ�mε,+ − ψε) ϑ

and this estimates the first term in (2.27). This yields that the second term in (2.27)
is controlled by using the inequality (cf. [17, Proof of Theorem 1])
(∫ δ

0
|g| dr

)2

≤ 2‖g‖L∞(0,δ)

∫ δ

0
|g|(r)r dr for all g ∈ L∞(0, δ), (2.29)

which is derived by dividing the square [0, δ]2 into two triangles and applying
Fubini’s theorem.

Finally, (2.28) can be shown analogously to [22, proof of (31)] with (2.27) and
elementary estimates, in particular the Gagliardo-Nirenberg inequality in normal
direction of �mε , the Hölder and Young inequality as well as (2.29). ��
Lemma 2.4. (Properties of ϑ) For ϑ = ϑ(mε) defined after (2.26) the following
properties hold:

1. Regularity: it holds that

ϑ ∈ C1([0, T0], C1(�)) ∩ C0([0, T0]; C3(�))

and we have uniform bounds with respect to mε.
2. Coercivity and consistency: we have

c min{d�mε , 1} ≤ |ϑ | ≤ C min{d�mε , 1} for some c, C > 0, (2.30)

ϑ > 0 in �mε,+, ϑ < 0 in �mε,−. (2.31)

3. Evolution equation: it holds that

|(∂t + B · ∇)ϑ | ≤ C min{d�mε , 1} a.e. on � × (0, T0). (2.32)

Proof. The regularity and uniform bounds for ϑ follow directly from the ones
for d�mε by Theorem 7.9. The estimates (2.30)–(2.31) follow directly from the
definition of ϑ and the properties of ϑ . Moreover, (2.32) is shown via the chain
rule and (∂t + B · ∇)d�mε = 0 on �mε , cf. (2.24). ��
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3. Stability Estimate and Convergence Result

In this section we formulate our main results on stability and quantitative conver-
gence for solutions of the Navier–Stokes/Allen–Cahn system (1.1a)–(1.1e) towards
solutions of the classical two-phase Navier–Stokes equation (1.2a)–(1.2g) for suit-
able scalings of the mobility mε.

We obtain the following stability result:

Theorem 3.1. (Stability Estimate) Let mε := m0ε
β > 0, where m0 > 0 and

β ∈ (0, 2) are fixed. Let T0 > 0 be such that the two-phase Navier–Stokes system
with surface tension (1.2a)–(1.2g) has a smooth solution (v±

0 , p±
0 , �) on [0, T0].

Moreover, let (v±
mε

, p±
mε

, �mε ) be strong solutions to the modified system (7.1)–
(7.7) for ε > 0 small, cf. Theorem 7.9 below. Furthermore, let (vε, ϕε) for ε > 0 be
energy-dissipating weak solutions to the Navier–Stokes/Allen–Cahn system (1.1a)–
(1.1e) on [0, T0] for the constant mobility mε as in Remark 1.2 starting from initial
data with energy uniformly bounded with respect to ε. We use the notation from
Sect. 2, in particular we define the relative energy functional E[vε, ϕε|vmε , �mε ]
and the bulk error functional Ebulk[ϕε|�mε ] as in (2.8) and (2.26).

Then for ε > 0 small and a.e. T ∈ [0, T0] it holds that

1

2
‖∇vε − ∇vmε‖2

L2(0,T ;L2(�))
+ E[vε, ϕε|vmε , �mε ](T ) + Ebulk[ϕε|�mε ](T )

≤ eC(β,m0)T
(

E[vε, ϕε|vmε , �mε ](0) + Ebulk[ϕε|�mε ](0) + C
ε2

mε

)
.

(3.1)

The proof is done via a Gronwall-type argument in Sect. 6, using coercivity
properties for the relative entropy and the bulk error in Sect. 2 as well as preliminary
estimates in Sects. 4 and 2.2. As an immediate consequence of Theorem 3.1 we
get,

Corollary 3.2. (Convergence Result) Let the assumptions of Theorem 3.1 hold.
Moreover, let the initial data satisfy

E[vε, ϕε|v0, �](0) + Ebulk[ϕε|�](0) ≤ C
ε2

mε

(3.2)

for ε > 0 small. Then for ε > 0 small and a.e. T ∈ [0, T0] it holds that

‖(vε − vmε )(., T )‖L2(�) + ‖σχ
�

mε,+
T

− ψε(., T )‖L1(�) ≤ CeC(β,m0)T ε√
mε

,

‖∇vε − ∇vmε‖L2(0,T ;L2(�)) ≤ CeC(β,m0)T ε√
mε

(3.3)

and for the true limit we obtain

‖(vε − v0)(., T )‖L2(�) + ‖σχ�+
T

− ψε(., T )‖L1(�) ≤ C

(
eC(β,m0)T ε√

mε

+ mε

)
,

‖∇vε − ∇v0‖L2(0,T ;L2(�)) ≤ C

(
eC(β,m0)T ε√

mε

+ mε

)
.

(3.4)
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Finally, there are well-prepared initial data (v0,ε, c0,ε) for ε > 0 small in the sense
that (3.2) is satisfied, even with rate ε2.

Proof. Estimate (3.3) is a direct consequence of Theorem 3.1 and the coercivity
estimates (2.12) from Lemma 2.1 and (2.27) from Lemma 2.3. Then (3.4) fol-
lows from Theorem 7.7. Because of (v±

mε
, �mε )(0) = (v±

0,0, �0), we conclude that
E[vε, ϕε|vmε , �mε ](0) = E[vε, ϕε|v0, �](0) and Ebulk[ϕε|�mε ](0) = Ebulk[ϕε|�]
(0). The existence of well-prepared initial data is well-known, cf. [17, Proof of
Theorem 1] and [23, Appendix B]. ��

4. Relative Entropy Estimate

Let the assumptions and notation of Sect. 2 be in place. In this section we derive
an inequality for the relative entropy E[vε, ϕε|vmε , �mε ] defined in (2.8) that can
be employed later to obtain a Gronwall-type estimate. We use the notation

Hε := −ε�ϕε + 1

ε
W ′(ϕε). (4.1)

4.1. Preliminary Relative Entropy Inequality

We derive the first important estimate for the relative entropy.

Lemma 4.1. (Relative Entropy Inequality) Let the assumptions and notation of
Sect. 2 be valid and Hε be defined as in (4.1). More precisely, let (v±

mε
, p±

mε
,

(�
mε
t )t∈[0,T0]) for mε > 0 small be solutions of the adjusted two-phase Navier–

Stokes equation (7.1)–(7.7) on [0, T0], cf. Theorem 7.9 below. Additionally, let
(vε, ϕε) for ε > 0 small be energy dissipating weak solutions to the Navier–
Stokes/Allen–Cahn system (1.1a)–(1.1e) on [0, T0] with constant mobility mε > 0
as in Remark 1.2. Finally, let �mε , �mε,±, vmε be as in (2.1), σ , ψε, nε be as
in (2.6)–(2.7), ξ , B be as in (2.11), E[vε, ϕε|vmε , �mε ] be as in (2.8). Then for
a.e. T ∈ [0, T0] we obtain

E[vε, ϕε|vmε , �mε ](T ) ≤ E[vε, ϕε|vmε , �mε ](0) −
∫ T

0

∫

�

|∇vε − ∇vmε |2 dx dt

−
∫ T

0

∫

�

mε

2ε

∣∣∣Hε +√2W (ϕε)∇ · ξ

∣∣∣
2

dx dt (4.2a)

−
∫ T

0

∫

�

mε

2ε

∣∣∣∣Hε − B − vmε

mε

· ξ ε|∇ϕε|
∣∣∣∣
2

dx dt (4.2b)

−
∫ T

0

∫

�

(vε − vmε ) · ((vε − vmε ) · ∇)vmε dx dt
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−
∫ T

0

∫

�

(σχ�mε,+ − ψε)((vε − vmε ) · ∇)(∇ · ξ) dx dt

+
∫ T

0

∫

�

mε

∣∣∣∣
B − vmε

mε

· ξ + ∇ · ξ

∣∣∣∣
2

ε|∇ϕε|2 dx dt (4.2c)

+
∫ T

0

∫

�

mε|∇ · ξ |2
(√

2W (ϕε)√
ε

− √
ε|∇ϕε|

)2

dx dt

−
∫ T

0

∫

�

1√
ε

(
Hε +√2W (ϕε)∇ · ξ

)
(vmε − B) · (nε − ξ)

√
ε|∇ϕε| dx dt

(4.2d)

−
∫ T

0

∫

�

(∂tξ + (B · ∇)ξ + (Id − ξ ⊗ ξ)(∇B)	ξ) · (nε − ξ)|∇ψε| dx dt

−
∫ T

0

∫

�

(ξ ⊗ ξ(∇B)	ξ) · (nε − ξ)|∇ψε| dx dt (4.2e)

−
∫ T

0

∫

�

(
(∂t + B · ∇)|ξ |2

)
|∇ψε| dx dt

−
∫ T

0

∫

�

∇B : (ξ − nε) ⊗ (ξ − nε)|∇ψε| dx dt

+
∫ T

0

∫

�

(∇ · B)(1 − ξ · nε)|∇ψε| dx dt

+
∫ T

0

∫

�

(∇ · B)
1

2

(√
ε|∇ϕε| − 1√

ε

√
2W (ϕε)

)2

dx dt

−
∫ T

0

∫

�

(nε ⊗ nε − ξ ⊗ ξ) : ∇B(ε|∇ϕε|2 − |∇ψε|) dx dt

−
∫ T

0

∫

�

ξ ⊗ ξ : ∇B(ε|∇ϕε|2 − |∇ψε|) dx dt. (4.2f)

Proof. Unlike in [22], our choice of B does not have compact support, but due
to the boundary condition B|∂� = 0 by Lemma 2.2 we observe that analogous
computations as in the proof of [22, Proposition 6] may be carried out. ��
Remark 4.2. The choice of B in (2.11), i.e. B := vmε +mε Hnη̃mε with the plateau

cutoff η̃mε , is natural in order to control the term (4.2c), i.e.
∫ T

0

∫
�

mε

∣∣∣∣ B−vmε

mε
· ξ

+ ∇ · ξ

∣∣∣∣
2

ε|∇ϕε|2 dx dt . Note that in Hensel, Liu [22] the projected velocity field

(n · vmε |P�mε )n is used within the definition of B instead. This is not possible here
because one would then obtain from (4.2c) a remainder of the form

1

mε

∫ T

0

∫

�

min{d2
�mε , 1}ε|∇ϕε|2 dx dt,

which is only controlled by C
mε

∫ T
0 E[ϕε|�mε ](t) dt due to (2.16). However, with

the new choice of B it is not clear anymore how to estimate the last term (4.2f),
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i.e.,
∫ T

0

∫

�

ξ ⊗ ξ : ∇B(ε|∇ϕε|2 − |∇ψε|) dx dt.

To this end we rewrite and estimate the term (4.2f) in a novel way in the following
Sect. 4.2. The idea is to write ξ ⊗ ξ : ∇B as a normal derivative and use integration
by parts in a suitable way. The other terms in the relative entropy estimate from
Lemma 4.1 will turn out to be controllable with the choice of B in (2.11), the
coercivity properties of the relative entropy and the bulk error functional from
Sects. 2.1 and 2.2, cf. Sect. 6 below.

4.2. The Remaining Problematic Term

For a.e. t ∈ [0, T0] consider a 1-Lipschitz-function h = hε(., t) : �
mε
t → (−δ, δ).

This function h will be constructed in Sect. 4.3 below, and it will be used to approx-
imate a suitable level set of ϕε(., t). Moreover, the energy outside a strip around
the graph

�
mε

t,h := {s + hε(s, t)n(s, t) : s ∈ �
mε
t }

over �
mε
t determined by h will be estimated in Sect. 4.4 below. Let us define shifted

tubular neighbourhoods for a.e. t ∈ [0, T0], δ̃ ∈ (0, δ]:
�

mε

t,h (δ̃) := {x ∈ �
mε
t (2δ) : d�mε (x, t) ∈ hε(P�mε (x, t), t) + (−δ̃, δ̃)}. (4.3)

In order to estimate the problematic term from Remark 4.2, we need the fol-
lowing lemma whose proof is based on integration by parts and will be postponed.

Lemma 4.3. For a.e. t ∈ [0, T0] let h = hε(., t) : �
mε
t → (−δ, δ) be a 1-Lipschitz-

function. Moreover, let δε ∈ (0, δ
2 ] for ε > 0 small, �

mε

t,h (δε) be defined as in (4.3)

and η̃ ∈ C0,1
c (�

mε

t,h (δε)). Then for a.e. t ∈ [0, T0] it holds that

∫

�
mε
t,h (δε)

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
∂n η̃ dx (4.4a)

=
∫

�
mε
t,h (δε)

(
ε

2
|∂nϕε|2 + 1

ε
W (ϕε) −√2W (ϕε)∂nϕε

)
η̃∇ · n dx (4.4b)

+
∫

�
mε
t,h (δε)

(
Hε +√2W (ϕε)∇ · n

)
∂nϕεη̃ dx (4.4c)

−
∫

�
mε
t,h (δε)

ε∇τ ϕε · ∇τ η̃ ∂nϕε dx (4.4d)

−
∫

�
mε
t,h (δε)

ε∇τ ϕε · (∇n	∇τ ϕε)η̃ dx (4.4e)

+
∫

�
mε
t,h (δε)

ε

2
|∇τ ϕε|2 (η̃∇ · n + ∂n η̃) dx . (4.4f)
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We obtain the following important estimate:

Lemma 4.4. For a.e. t ∈ [0, T0] let h = hε(., t) : �
mε
t → (−δ, δ) be a 1-Lipschitz-

function. Moreover, let δε ∈ (0, δ
2 ] for ε > 0 small and let �

mε

t,h (δε) be defined as
in (4.3). Then for a.e. t ∈ [0, T0] it holds that
∣∣∣∣
∫

�

ξ ⊗ ξ : ∇B
(
ε|∇ϕε|2 − |∇ψε|

)
|(x,t) dx

∣∣∣∣ (4.5a)

≤ C
∫

�
mε
t (2δ)\�mε

t,h (
δε
2 )

(
ε|∇ϕε|2 + 1

ε
W (ϕε)

)
|(x,t) dx (4.5b)

+ C
∫

�
mε
t,h (δε)

ε

mε

|∂nϕε|2|d�mε − h(P�mε )|2|(x,t) dx (4.5c)

+ mε

4ε

∫

�
mε
t,h (δε)

∣∣∣Hε +√2W (ϕε)∇ · ξ

∣∣∣
2 |(x,t) dx (4.5d)

+ C
∫

�
mε
t,h (δε)

(|h|P�mε |2 + |∇τ (h|P�mε )|2)
(

ε|∇ϕε|2 + 1

ε
W (ϕε)

)
|(x,t) dx

(4.5e)

+ C E[ϕε|�mε ](t), (4.5f)

where C > 0 is independent of ε and t.

Proof. First of all, it suffices to show the estimate with (4.5a) replaced by
∣∣∣∣∣
∫

�
mε
t (2δ)

ξ ⊗ ξ : ∇B

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
|(x,t) dx

∣∣∣∣∣ (4.6)

because of the cutoff for ξ in (2.11), the identity

ε|∇ϕε|2 − |∇ψε| = ε

2
|∇ϕε|2 − 1

ε
W (ϕε) + 1

2

(√
ε|∇ϕε| − 1√

ε

√
2W (ϕε)

)2

,

the coercivity estimate (2.14) and finally the control of the tangential gradient in
(2.15) in terms of the relative entropy. In order to rewrite the expression by Lemma
4.3, we use the following idea: for a.e. t ∈ [0, T0] we write ξ ⊗ ξ : ∇B(., t) as ∂nη,
where η = η(., t) is defined as

η(x) :=
∫ d�mε (x,t)

h(P�mε (x,t))
ξ ⊗ ξ : ∇B(P�mε (x, t)

+rn(P�mε (x, t), t), t) dr for x ∈ �
mε
t (2δ).

Moreover, to avoid boundary terms on ∂�
mε
t (δε) we introduce a smooth α : R →

[0, 1] with α ≡ 1 on [− 1
2 , 1

2 ] and α ≡ 0 on R \ [− 3
4 , 3

4 ] and set for a.e. t ∈ [0, T0]
η̃ = η̃(., t) := (α̃η)(., t), α̃(x, t)

:= α

(
d�mε (x, t) − h(P�mε (x, t))

δε

)
, for x ∈ �

mε
t (2δ).
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Note that Theorem 7.9 and the regularity and uniform bounds in Theorem 2.2 yield
that α̃(., t), η̃(., t) and η(., t) are in C0,1(�). We rewrite things as follows:

ξ ⊗ ξ : ∇B(., t) = ∂nη = (1 − α̃)∂nη − ∂nα̃ η + ∂n η̃. (4.7)

Because of the definition of α̃, it holds that 1 − α̃ = 0 on �
mε

t,h ( δε

2 ). Moreover,

∂nα̃ = 1

δε

α′
(

d�mε (x, t) − h(P�mε (x, t))

δε

)
= 0

on �
mε

t,h

(
δε

2

)
∪
[
�

mε
t (2δ) \ �

mε

t,h

( 3
4δε

)]

and |η| ≤ Cδε on �
mε

t,h (δε) for a.e. t ∈ [0, T0]. Therefore the first two terms on the
right hand side of (4.7) yield contributions in (4.6) that can be estimated by (4.5b).
Hence we can replace ξ ⊗ ξ : ∇B(., t) by ∂n η̃ in (4.6) for a.e. t ∈ [0, T0].

For the remaining term
∣∣∣∣∣
∫

�
mε
t,h (δε)

∂n η̃

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
|(x,t) dx

∣∣∣∣∣ (4.8)

one can apply integration by parts on �
mε

t,h (δε) for a.e. t ∈ [0, T0] and rewrite in a
suitable way, cf. Lemma 4.3. Let us estimate the corresponding terms (4.4b)–(4.4f)
from Lemma 4.3 now. Note that (4.4b) and (4.4e)–(4.4f) are directly controlled by
(4.5f) because of the coercivity properties (2.15) of the relative entropy.

Moreover, (4.4c) with ∇ · ξ instead of ∇ · n can be estimated by (4.5c) and
(4.5d) due to Young’s inequality and |η̃|(., t) ≤ C |d�mε − h(P�mε )|(., t). Because
of the definition of ξ in (2.11) it holds that

∇ · n = (1 − ηmε )∇ · n − 1

δ
η̄′
(

d�mε

δ

)
+ ∇ · ξ,

where |1 −ηmε | ≤ C |d�mε |2 and |η̄′
(

d�mε

δ

)
| ≤ C |d�mε |. Hence, from exchanging

∇ · n with ∇ · ξ , we obtain the error term
∫

�
mε
t,h (δε)

√
W (ϕε)|∂nϕε| (|d�mε |2 + |h(P�mε )|2)|(x,t) dx,

which is controlled by (4.5e) and (4.5f) due to the bound
√

W (ϕε)|∂nϕε| ≤ |∇ψε|
and (2.16). Hence (4.4c) is estimated.

Finally, it remains to estimate (4.4d). It holds ∇τ η̃ = ∇τ α̃η + α̃∇τ η due to
η̃ = α̃η, where we have because of (2.5)

∇τ α̃ = − 1

δε

α′
(

d�mε (., t) − h(P�mε (., t))

δε

)
∇τ (h(P�mε ))|(.,t),

∇τ η = − ∂nη|(P�mε (.,t)+h(P�mε (.,t))n(P�mε (.,t),t)∇τ (h(P�mε ))|(.,t)
+
∫ d�mε (.,t)

h(P�mε (.,t))
∇τ [ξ ⊗ ξ : ∇B(P�mε + rn(P�mε ), t)] |(.,t) dr.
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Due to Lemma 2.2 we obtain

|∇τ η̃| ≤ C
(|d�mε | + |h|P�mε | + |∇τ (h|P�mε )|) |(.,t).

Altogether, (4.4d) is controlled by (4.5e) and (4.5f) due to Young’s inequality, (2.15)
and (2.16). This shows Lemma 4.4. ��
Proof of Lemma 4.3. First, we use ∂n η̃ = n · ∇η̃ = ∑d

i=1 ni∂xi η̃ and integration
by parts on �

mε

t,h (δε) with η̃ ∈ C0,1
c (�

mε

t,h (δε)) for a.e. t ∈ [0, T0]. This yields

∫

�
mε
t,h (δε)

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
∂n η̃ dx

= −
∫

�
mε
t,h (δε)

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
(∇ · n)η̃ dx

−
∫

�
mε
t,h (δε)

∂n

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
η̃ dx

for a.e. t ∈ [0, T0]. Note that ∂2
n ϕε = ((n·∇)n)·∇ϕε+n⊗n : D2ϕε = n⊗n : D2ϕε.

Therefore

−
∫

�
mε
t,h (δε)

∂n

(
ε

2
|∂nϕε|2 − 1

ε
W (ϕε)

)
η̃ dx

= −
∫

�
mε
t,h (δε)

(
ε�ϕε − 1

ε
W ′(ϕε)

)
∂nϕεη̃ dx

+
∫

�
mε
t,h (δε)

ε (Id − n ⊗ n) : D2ϕε∂nϕεη̃ dx

for a.e. t ∈ [0, T0]. In order to rewrite the last term, we compute

∇ · ((Id − n ⊗ n)∇ϕε∂nϕεη̃)

= −(∇ · n)n · ∇ϕε∂nϕεη̃ + (Id − n ⊗ n) : D2ϕε∂nϕεη̃ + ∇τ ϕε · ∇(∂nϕεη̃),

where we used ∇ · (Id − n ⊗ n) = −(∇ · n)n. Because of

∇(∂nϕε) = ∇(n · ∇)ϕε = (∇n)	∇ϕε + (n · ∇)∇ϕε

and integration by parts, we obtain, for a.e. t ∈ [0, T0],
∫

�
mε
t,h (δε)

ε (Id − n ⊗ n) : D2ϕε∂nϕεη̃ dx

=
∫

�
mε
t,h (δε)

ε|∂nϕε|2(∇ · n)η̃ dx −
∫

�
mε
t,h (δε)

ε∇τ ϕε · ∇η̃ ∂nϕε dx

−
∫

�
mε
t,h (δε)

ε∇τ ϕε · (∇n	∇ϕε)η̃ dx −
∫

�
mε
t,h (δε)

ε∇τ ϕε · ((n · ∇)∇ϕε) η̃ dx .
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Note that in (4.4b)–(4.4c) the
√

2W (ϕε)-terms cancel and were added for conve-
nience. Moreover, one can directly prove that ∇n	∇ϕε = ∇n	∇τ ϕε. Hence it is
left to show that for a.e. t ∈ [0, T0]

−
∫

�
mε
t,h (δε)

ε∇τ ϕε · ((n · ∇)∇ϕε) η̃ dx =
∫

�
mε
t,h (δε)

ε

2
|∇τ ϕε|2 (η̃∇ · n + ∂n η̃) dx .

(4.9)

To this end we use n · ∇ =∑d
i=1 ni∂xi and integration by parts for ∂xi . This yields

−
∫

�
mε
t,h (δε)

ε∇τ ϕε · ((n · ∇)∇ϕε) η̃ dx = −1

2

∫

�
mε
t,h (δε)

ε(n · ∇)|∇τ ϕε|2η̃ dx

=
∫

�
mε
t,h (δε)

ε

2
|∇τ ϕε|2∇ · (η̃n) dx,

where we used (n · ∇)(Id − n ⊗ n) = 0 in the second step. Therefore (4.9) holds
and this shows Lemma 4.3. ��

4.3. Parametrization of the Majority of the Interface

In order for our estimate on the problematic term (4.2f) provided by Lemma 4.4 to
work, we need to represent a suitable level set of the phase-field ϕε as approximately
a graph of a small function hε over the surface �

mε
t , as only then the term (4.5c)

becomes controllable in terms of a constant ε2/mε and the relative entropy (see
Corollary 4.11 below for details).

In this section we construct for a.e. t ∈ [0, T0] a 1-Lipschitz-function h =
hε(., t) : �

mε
t → (−δ, δ) that is used to approximate a suitable level set of ϕε(., t).

To this end, we need the following proposition about local interface errors of a
BV-set compared to the strong interface �

mε
t from Sect. 2.

Proposition 4.5. Let T0 > 0, δ > 0 and �mε , �mε,±, vmε for mε > 0 small be
as in Sect. 2. Moreover, let n be the extension of the normal from (2.2) and ξ be
defined as in (2.11). Let t ∈ [0, T0] be fixed and χ̃ ∈ BV(Rd; {0, 1}) be arbitrary.
We set χ := χ

�
mε,+
t

.

Let θ : [0,∞) → [0, 1] be a smooth cutoff with θ ≡ 0 outside of [0, 1
2 ]

and θ ≡ 1 in [0, 1
4 ]. We define the local height of the one-sided interface errors

h±
t = h±

t,ε : �
mε
t → [0, δ

2 ] in ±n-direction as

h±
t (s) :=

∫ ∞

0
(χ − χ̃)(s + yn(s, t)) θ

( y

δ

)
dy for a.e. s ∈ �

mε
t .

Then h±
t are BV -functions and we denote the distributional tangential derivative

by Dtanh±
t , by ∇ tanh±

t the density of the absolutely continuous part of Dtanh±
t with

respect to Hd−1 and by Dsh±
t the singular part. Finally, let G̃t := {s + (h+

t −
h−

t )(s)n(s, t) : s ∈ �
mε
t } denote the graph of h+

t − h−
t .
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Then we have the following estimates with constants independent of χ̃ and
t ∈ [0, T0]:

∫

�
mε
t

|h±
t |2 dHd−1 ≤ C

∫

Rd
|χ − χ̃ | min

{
d�

mε
t

, 1
}

dx (4.10)

as well as
∫

�
mε
t

min{|∇ tanh±
t |2, |∇ tanh±

t |} dHd−1 + |Dsh±
t |(�mε

t )

≤ C
∫

Rd

(
1 − ξ(., t) · ∇χ̃

|∇χ̃ |
)

d|∇χ̃ | + C
∫

Rd
|χ − χ̃ | min

{
d�

mε
t

, 1
}

dx,

(4.11)

and
∫

Rd\G̃t

1 d|∇χ̃ | ≤ C
∫

Rd

(
1 − ξ(., t) · ∇χ̃

|∇χ̃ |
)

d|∇χ̃ |

+ C
∫

Rd
|χ − χ̃ | min

{
d�

mε
t

, 1
}

dx . (4.12)

Proof. The assertions up to (4.12) can be shown analogously to [16, Proposi-
tion 26a–b]. Moreover, (4.12) may be established readily using the arguments for
statement c) of [16, Proposition 26]. ��

The plan is to apply the previous Proposition 4.5 to a suitable level set of ϕε(., t)
for a.e. t ∈ [0, T0]. The latter is selected in the following lemma:

Lemma 4.6. Let t ∈ [0, T0] be such that ϕε(., t) ∈ H1(�). Then the relative
entropy E[ϕε|�mε ](t) from (2.9) is well-defined and finite. Moreover, there exists a
level b(t) = bε(t) ∈ (− 1

2 , 1
2 ) such that the corresponding super-level set Sb(t) :=

{x ∈ � : ϕε(x, t) > b(t)} is a set of finite perimeter (possibly empty) and satisfies
with ξ as in (2.11) and ψ as in (2.6) the estimate
∫

Rd

(
1 − ξ(., t) · ∇χSb(t)

|∇χSb(t) |
)

d|∇χSb(t) | ≤ 2

ψ( 1
2 ) − ψ(− 1

2 )
E[ϕε|�mε ](t).

Proof. Let t be as in the lemma. Then E[ϕε|�mε ](t) is well-defined and finite
because of ϕε(., t) ∈ H1(�). Moreover, ϕε(., t) ∈ BV (�) yields together with the
coarea-formula for BV-functions, cf. Ambrosio, Fusco, Pallara [10, Theorem 3.40]
that Sb := {x ∈ � : ϕε(x, t) > b} is a set of finite perimeter (possibly empty) for
a.e. b ∈ R. Moreover, we use the coarea-formula for BV-functions [10, Theorem
3.40] applied to ψε(., t) = ψ(ϕε(., t)) ∈ H1(�) (together with an approximation
argument by simple functions) and obtain

E[ϕε|�mε ](t) ≥
∫

�

[|∇ψε| − ξ · ∇ψε](., t) dx

=
∫

Rd

[
1 − ξ · ∇ϕε

|∇ϕε|
]
(., t) |∇ψε(., t)| dx
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=
∫ σ

0

∫

Rd

[
1 − ξ · ∇ϕε

|∇ϕε|
]
(., t) d|∇χS

ψ−1(r)
| dr.

This shows the claim by a contradiction argument. ��
We combine Proposition 4.5 and Lemma 4.6 in the following lemma:

Lemma 4.7. Let t ∈ [0, T0] be fixed such that ϕε(., t) ∈ H1(�). Let the level
b(t) = bε(t) ∈ (− 1

2 , 1
2 ) and the super-level set Sb(t) be as in Lemma 4.6. We set

χ := χ
�

mε,+
t

. Then there is a 1-Lipschitz function ht = ht,ε : �
mε
t → (−δ, δ)

subject to the estimate

∫

�
mε
t

|ht |2 + |∇ tanht |2 dHd−1 ≤ C E[ϕε|�mε ](t)

+ C
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx (4.13)

such that the graph Gt := {s + ht (s)n(s, t) : s ∈ �
mε
t } approximates the reduced

boundary of Sb(t) in the following sense:

∫

Rd\Gt

1 d|∇χSb(t) | ≤ C E[ϕε|�mε ](t) + C
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx .

(4.14)

Finally, constants in the estimates (4.13)–(4.14) are independent of ϕε and t.

Proof. By Lemma 4.6 it holds χ̃ := χSb(t) ∈ BV (Rd; {0, 1}). Hence by Proposition
4.5 applied for χ̃ there exist BV-functions h±

t : �
mε
t → [0, δ

2 ] such that (4.10)–
(4.12) hold. We set h̃t := h+

t − h−
t . It remains to modify h̃ to obtain a 1-Lipschitz

function. To do so, we use a standard Lipschitz truncation strategy (see e.g. [9],
[15, Section 6.6.3] or [11]): we consider the maximal operator M over �

mε
t , which

can be defined as in [36, Chapter I, §8.1 (ii)] since Hd−1��mε
t satisfies the doubling

condition with respect to the geodesic balls on �
mε
t . Then there is some C1 > 0

such that

|u(s1) − u(s2)| ≤ C1|s1 − s2|
(M|Dtanu|(s1) + M|Dtanu|(s2)

)

for Hd−1-a.e. s1, s2 ∈ �
mε
t

for all u ∈ BV (�
mε
t ) with some C1 > 0 independent of u and small mε. More

precisely, in the case that �
mε
t is replaced by R

d−1 this inequality is shown in [11,
Lemma 2(c)]. Then the estimate in the present case can be shown by localization.
Moreover, because of the continuous dependence on t ∈ [0, T ] and mε ∈ [0, m0]
(cf. Theorem 7.7), the constant can be chosen uniformly in t ∈ [0, T0], mε ∈ [0, m0]
for ε > 0 sufficiently small. Using the precise representative for h̃t we define

ht (s) := h̃t (s) for all s ∈ At := {s ∈ �
mε
t : (M|Dtanh̃t |)(s) ≤ c},
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where c > 0 is a small constant to be determined. The so-defined function h is
Lipschitz on At with Lipschitz-constant bounded by c1c. We extend h to all of �

mε
t

as a Lipschitz function via the standard extension, cf. [10, Proposition 2.12]), i.e.

ht (s) := inf
s̃∈At

{h̃t (s̃) + Lip(h̃t )|s − s̃|},

where the Lipschitz constant stays the same. Hence for c small enough (independent
of h̃t , ht , t and small mε), we obtain that ht is 1-Lipschitz and bounded by 3δ

4 .
Moreover, using the weak L1-estimate for the maximal operator we obtain

Hd−1 (�mε
t \ At

) ≤ C
∫

�
mε
t

|∇ tanh̃t | dHd−1 + |Dsh̃t |(�mε
t )

≤ C E[ϕε|�mε ](t) + C
∫

Rd
|χ − χ̃ | min

{
d�

mε
t

, 1
}

dx,

(4.15)

where we used (4.11) and Lemma 4.6 in the last step. Because of |∇ tanht | ≤ C
as well as by (4.11) and the fact that Dtanh̃t = ∇ tanh̃t = ∇ tanht a.e. on At , this
establishes the bound
∫

�
mε
t

|∇ tanht |2 dHd−1 ≤ C E[ϕε|�mε ](t) + C
∫

Rd
|χ − χ̃ | min

{
d�

mε
t

, 1
}

dx .

Hence the |ht |2-part of the bound (4.13) is left to prove. The latter follows because
of (4.15), the boundedness of ht and (4.11). Finally, (4.14) follows from (4.12) in
Proposition 4.5, the estimate (4.15) and Lemma 4.6. ��
Corollary 4.8. Let t ∈ [0, T0] be fixed such that ϕε(., t) ∈ H1(�), let b(t) =
bε(t), Sb(t) be as in Lemma 4.6 and let ht = ht,ε : �

mε
t → (−δ, δ) be as in Lemma

4.7. Then, with χ := χ
�

mε,+
t

, it holds that

∫

�
mε
t (2δ)

(|ht |P�mε |2 + |∇τ (ht |P�mε )|2)
(

ε|∇ϕε|2 + 1

ε
W (ϕε)

)
|(x,t) dx

≤ C E[ϕε|�mε ](t) + C
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx .

(4.16)

Proof. Using of the identity (2.5) for ∇τ , we can exchange ∇τ (ht |P�mε ) by
(∇ tanht )|P�mε in the above estimate. Moreover, since both ht and ∇ tanht are uni-
formly bounded, we can consider the estimate with ∂nϕε instead of ∇ϕε, since
tangential derivatives are controlled by (2.15). Then we apply an integral transfor-
mation with the tubular neighbourhood coordinates to obtain

∫

�
mε
t (2δ)

(|ht |P�mε |2 + |(∇ tanht )|P�mε |2)
(

ε|∂nϕε|2 + 1

ε
W (ϕε)

)
|(x,t) dx

=
∫

�
mε
t

(|ht |2 + |∇ tanht |2)(s)
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∫ 2δ

−2δ

(
ε|∂r (ϕε|Xmε

)|2 + 1

ε
W (ϕε|Xmε

)

)
|(r,s,t) Jt (r, s) dr ds,

where the factor Jt = Jt (mε) satisfies for some cJ , CJ > 0 independent of t and
mε

cJ ≤ Jt (r, s) ≤ CJ for all s ∈ �
mε
t , r ∈ (−δ, δ).

Let σ = ψ(1) be as in (2.6). For s ∈ �
mε
t such that the inner integral with respect

to r ∈ (−2δ, 2δ) is less or equal 4σ , the desired estimate follows from Lemma
4.7. For s ∈ �

mε
t for which this is not the case, we use that |ψ(ϕ)| ≤ σ for all

ϕ ∈ [−1, 1] and therefore
∣∣∣∣
∫ 2δ

−2δ

∂r
(
ψ(ϕε|Xmε (r,s,t))

)
dr

∣∣∣∣ ≤ 2σ.

Hence it follows for such s ∈ �
mε
t that

∫ 2δ

−2δ

(
ε|∂r (ϕε|Xmε

)|2 + 1

ε
W (ϕε|Xmε

) − ∂r
(
ψ(ϕε|Xmε

)
)) |(r,s,t) Jt (r, s) dr

≥ cJ

∫ 2δ

−2δ

(
ε|∂r (ϕε|Xmε

)|2 + 1

ε
W (ϕε|Xmε

) − ∂r
(
ψ(ϕε|Xmε

)
)) |(r,s,t) dr

≥ cJ

2

∫ 2δ

−2δ

(
ε|∂r (ϕε|Xmε

)|2 + 1

ε
W (ϕε|Xmε

)

)
|(r,s,t) dr

≥ cJ

2CJ

∫ 2δ

−2δ

(
ε|∂r (ϕε|Xmε

)|2 + 1

ε
W (ϕε|Xmε

)

)
|(r,s,t) Jt (r, s) dr.

Therefore the contribution in this case can be estimated with (2.15) and by using
that ht and ∇ tanht are uniformly bounded. ��

Finally, in order to control the second term in (4.16) in the end, we need the
following lemma:

Lemma 4.9. Let t ∈ [0, T0] be fixed such that ϕε(., t) ∈ H1(�) and let b(t) =
bε(t), Sb(t) be as in Lemma 4.6. Then with χ := χ

�
mε,+
t

and Ebulk[ϕε|�mε ] from
Sect. 2.2 it follows that

∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx ≤ C Ebulk[ϕε|�mε ](t). (4.17)

Proof. The integrand is zero on R
d \ �. Moreover, note that (2.27) yields

∫

�

|σχ − ψε(., t)| min{d�
mε
t

, 1} dx ≤ C Ebulk[ϕε|�mε ](t).

Hence we obtain
∫

�
mε,+
t

|σ − ψε(., t)| min{d�
mε
t

, 1} dx +
∫

�
mε,−
t

|ψε(., t)| min{d�
mε
t

, 1} dx
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≤ C Ebulk[ϕε|�mε ](t).

For a.e. x ∈ �
mε,+
t ∩ Sb(t) it holds |χ −χSb(t) |(x) = 0. For a.e. x ∈ �

mε,+
t \ Sb(t) we

have |χ −χSb(t) |(x) = 1 and ψε(x, t) ≤ ψ(b(t)) ≤ ψ( 1
2 ). Hence |σ −ψε(x, t)| ≥

|σ −ψ( 1
2 )| > 0 since b(t) ∈ (− 1

2 , 1
2 ). This shows the estimate on �

mε,+
t . Moreover,

for a.e. x ∈ �
mε,−
t \ Sb(t) we have |χ − χSb(t) |(x) = 0. Finally, for a.e. x ∈

�
mε,−
t ∩ Sb(t) it holds |χ − χSb(t) |(x) = 1 and ψε(x, t) > ψ(b(t)) ≥ ψ(− 1

2 ) > 0.

This yields the estimate on �
mε,−
t . ��

4.4. Estimate of Energy Away from Strip Around Level Set

In this section we estimate the remainder terms (4.5b)–(4.5c) from Lemma 4.4
involving the energy density for ϕε. Therefore we show the following lemma:

Lemma 4.10. Let t ∈ [0, T0] be fixed such that ϕε(., t) ∈ H1(�) and let b(t) =
bε(t), Sb(t) be as in Lemma 4.6. We set χ = χ

�
mε,+
t

. Moreover, let h = ht,ε :
�

mε
t → (−δ, δ) be as in Lemma 4.7. We define the shifted tubular neighbourhood

�
mε

t,h (δ̃) for δ̃ ∈ (0, δ] as in (4.3). For κ > 0 fixed and ε > 0 small we obtain with
some constants c, C > 0 independent of ϕε, h, t and κ

∫

�
mε
t (δ)\�mε

t,h (κε)

(
ε
|∇ϕε|2

2
+ W (ϕε)

ε

)
dx

≤ C

(
E[ϕε|�mε ](t) +

∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx + e−cκ
)

.

Proof. Let Gt be the graph of h = ht,ε as in Lemma 4.7. Then Rt := P�
mε
t

(Gt ∩
supp |∇χSb(t) |) ⊆ �

mε
t satisfies

Hd−1(�
mε
t \ Rt ) ≤ C

(
E[ϕε|�mε ](t) +

∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx

)
,

where we used thatHd−1((�
mε
t \ Rt )∩ P�

mε
t

(supp |∇χSb(t) |)) is controlled by (4.14)

and that for the remaining part R̃t := (�
mε
t \ Rt ) \ P�

mε
t

(supp |∇χSb(t) |) we have

Hd−1(R̃t ) =
∫

R̃t

∫ δ

δ
2

2

δ
dr dHd−1(s) ≤ C

∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx

since s ∈ R̃t implies |χ − χSb(t) |(s + rn(s, t)) = 1 either for all r ∈ (−δ,− δ
2 ) or

for all r ∈ ( δ
2 , δ).

Moreover, for s ∈ Rt it holds that

ϕε(s + h(s)n(s, t), t) = b(t). (4.18)
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The strategy is to use an ODE inequality argument in normal direction using the
control of the relative entropy over the equipartition error. More precisely, by (2.15)
we have
∫

�
mε
t

∫ δ

−δ

1

2

∣∣∣∣
√

ε∂r ϕ̃ε − 1√
ε

√
2W (ϕ̃ε)

∣∣∣∣
2

(., t)Jt (r, s) dr dHd−1(s) ≤ E[ϕε|�mε ](t),
(4.19)

where ϕ̃ε := ϕε|Xmε (.,t) with Xmε as in Sect. 2 and the factor Jt = Jt (mε) appears
due to an integral transformation and satisfies for some cJ , CJ > 0 independent of
t and mε

cJ ≤ Jt (r, s) ≤ CJ for all s ∈ �
mε
t , r ∈ (−δ, δ).

With f := √
ε∂r ϕ̃ε − 1√

ε

√
2W (ϕ̃ε) it holds that

∂r ϕ̃ε = 1

ε

√
2W (ϕ̃ε) − 1√

ε
f,

where
√

W (ϕ) ≥ c(1 − ϕ)(1 + ϕ) ≥ c′(1 − ϕ) if ϕ ≥ − 3
4 . Hence if ϕ̃ε ≥ − 3

4 we
have

∂r (1 − ϕ̃ε)
2 = 2(1 − ϕ̃ε)(−∂r ϕ̃ε) ≤ −2c′

ε
(1 − ϕ̃ε)

2 + 2√
ε

f (1 − ϕ̃ε)

≤ −c′

ε
(1 − ϕ̃ε)

2 + C1| f |2.

We multiply the preceding inequality by e− c
ε
(r−h(s)) and integrate from h(s) to r .

Then we obtain for s ∈ Rt because of (4.18)

(1 − ϕ̃ε)
2(s, r) ≤ e− c

ε
(r−h(s))(1 − b(t))2 + C1

cJ

∫ δ

−δ

| f (s, r)|2 Jt (r, s) dr (4.20)

for all r ∈ [h(s), δ) provided that ϕ̃ε(r̃ , s) ≥ − 3
4 for all r̃ ∈ [h(s), r). We define

St :=
{

s ∈ Rt : C1

cJ

∫ δ

−δ

| f (s, r)|2 Jt (r, s) dr ≤ 1

4

}
.

Then, due to b(t) ∈ (− 1
2 , 1

2 ) and (4.20) we obtain ϕ̃ε(r, s) ≥ − 3
4 for all r ∈ [h(s), δ)

and s ∈ St . Analogously one shows ϕ̃ε(r, s) ≤ 3
4 for all r ∈ (−δ, h(s)] and s ∈ St .

Moreover, note that because of (4.19) and the definition of f we have

Hd−1(Rt \ St ) ≤ 4cJ

C1

∫

Rt

∫ δ

−δ

| f (s, r)|2 Jt (r, s) dr dHd−1(s) ≤ 8cJ

C1
E[ϕε|�mε ](t).

We use an integral transformation to obtain
∫

�
mε
t (δ)\�mε

t,h (κε)

(
ε

2
|∇ϕε|2 + W (ϕε)

ε

)
dx
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=
∫

�
mε
t

∫ δ

h(s)+κε

(
ε

2
|∇ϕε|2|Xmε

+ W (ϕ̃ε)

ε

)
Jt (r, s) dr dHd−1(s)

+
∫

�
mε
t

∫ h(s)−κε

−δ

(
ε

2
|∇ϕε|2|Xmε

+ W (ϕ̃ε)

ε

)
Jt (r, s) dr dHd−1(s).

We use the definition (2.9) to derive an estimate. First, for the contribution over
�

mε
t \ St we use an integral transformation as above for the last term in (2.9). Since

ξ points in normal direction by definition (2.11), the inner integral is uniformly
bounded because |ψ | ≤ σ . Hence the estimates forHd−1(�

mε
t \ Rt ) andHd−1(Rt \

St ) yield that the contribution over �
mε
t \ St is suitably estimated by the right hand

side of the estimate in the Lemma. For the remaining part over St , we note that, due
to integration by parts and since ξ points in normal direction by definition (2.11),
we have

∣∣∣∣
∫

St

∫ δ

h(s)+κε

ξ |Xmε
· ∇(ψε|Xmε

− σ)Jt (r, s) dr Hd−1(s)

∣∣∣∣

≤ C

∣∣∣∣
∫

St

∫ δ

h(s)+κε

(ψ(ϕ̃ε) − σ) dr dHd−1(s)

∣∣∣∣

+
∣∣∣∣
∫

St

(ψ(ϕ̃ε) − σ)Jt (r, s)|δr=h(s)+kε dHd−1(s)

∣∣∣∣
≤ C

(
e−cκ + ‖ f ‖2

L2(�
mε
t (δ))

)
≤ C

(
e−cκ + E[ϕε|�mε ](t)) ,

where we have used

|ψ(ϕ̃ε(r, s)) − σ | ≤ C

(
e− c

ε
(r−h(s)) + ‖ f (s, .)‖2

L2
Jt (.,s)

(−δ,δ)

)

for all r ∈ [h(s), δ), s ∈ St

due to (4.20) and |ψ(r) − σ | ≤ C(1 − r)2 for all r ∈ R. Analogously, one shows
∣∣∣∣∣
∫

St

∫ h(s)−κε

−δ

ξ |Xmε
· ∇ψε|Xmε

Jt (r, s) dr Hd−1(s)

∣∣∣∣∣ ≤ C
(
e−cκ + E[ϕε|�mε ](t)) .

Finally, we have
∣∣∣∫�mε

t \St

∫
(−δ,h(s)−κε)∪(h(s)+κε,δ)

ξ · ∇ψε dx
∣∣∣ ≤ CHd−1(�

mε
t \St ).

Combining these bounds, this shows the claim. ��
As a corollary of Lemma 4.10, we estimate the remaining term (4.5c).

Corollary 4.11. Let the assumptions and notation of Lemma 4.10 be in place and

let C0 ≥ 1. Moreover, let C1 > 0 such that
∫
�

ε
|∇ϕε |2

2 + W (ϕε)
ε

dx ≤ C1. Then for
all ε small with δε := C0| log ε|ε ≤ δ and for some uniform C > 0 we have

∫

�
mε
t,h (δε)

1

mε

(
ε

2
|∇ϕε|2 + 1

ε
W (ϕε)

)
(x, t)

∣∣∣d�
mε
t

− h(P�
mε
t

)

∣∣∣2 dx

≤ CC3
0 | log ε|3 ε2

mε

(
E[ϕε|�mε ](t) +

∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx

)
+ CC1

ε2

mε
.
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Proof. Let C0 ≥ 1 be fixed, then for all ε sufficiently small it holds 2C0| log ε|ε ≤
δ. We fix ε small. Let N ∈ N be such that C0| log ε| ≤ N ≤ 2C0| log ε|. Then
δε ≤ Nε ≤ δ and

∫

�
mε
t,h (Nε)

1

mε

(
ε
|∇ϕε|2

2
+ W (ϕε)

ε

)
(x, t)

∣∣∣d�
mε
t

− h(P�
mε
t

)

∣∣∣2 dx

≤
N∑

n=2

C
∫

�
mε
t,h (nε)\�mε

t,h ((n−1)ε)

1

mε

(
ε
|∇ϕε|2

2
+ W (ϕε)

ε

)
(x, t)

∣∣∣d�
mε
t

− h(P�
mε
t

)

∣∣∣2 dx

+ C
∫

�
mε
t,h (ε)

1

mε

(
ε
|∇ϕε|2

2
+ W (ϕε)

ε

)
(x, t)

∣∣∣d�
mε
t

− h(P�
mε
t

)

∣∣∣2 dx

≤ C
N∑

n=2

ε2

mε
n2
∫

�
mε
t,h (nε)\�mε

t ((n−1)ε)

(
ε
|∇ϕε|2

2
+ W (ϕε)

ε

)
(x, t) dx + CC1

ε2

mε

≤ C
N∑

n=2

ε2

mε
n2
(

E[ϕε|�mε ](t) +
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx + e−c(n−1)

)

+ CC1
ε2

mε

≤ C
ε2

mε
N 3
(

E[ϕε|�mε ](t) +
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx

)
+ CC1

ε2

mε
,

where we used Lemma 4.10. This shows the claim. ��

5. Bulk Error Identity

For the bulk error functional Ebulk[ϕε|�mε ] defined in (2.26) we have the following
identity:

Lemma 5.1. (Bulk Error Identity) Let the assumptions of Sect. 2 hold. More pre-
cisely, let (v±

mε
, p±

mε
, (�

mε
t )t∈[0,T0]) for mε > 0 small be solutions of the adjusted

two-phase Navier–Stokes equation (7.1)–(7.7) on [0, T0], cf. Theorem 7.9 below.
Moreover, let (vε, ϕε) for ε > 0 small be energy dissipating weak solutions to the
Navier–Stokes/Allen–Cahn system (1.1a)–(1.1e) on [0, T0] with constant mobility
mε > 0 as in Remark 1.2. Finally, let �mε , �mε,±, vmε be as in (2.1), σ , ψε, nε be
as in (2.6)–(2.7), ξ , B be as in (2.11), Ebulk[ϕε|�mε ] and ϑ be as in (2.26) and Hε

be defined as in (4.1). Then, for all T ∈ [0, T0],
Ebulk[ϕε|�mε ](T )

= Ebulk[ϕε|�mε ](0) +
∫ T

0

∫

�
(σχ�mε,+ − ψε)(∂t + B · ∇)ϑ dx dt (5.1a)

+
∫ T

0

∫

�
(σχ�mε,+ − ψε)ϑ ∇ · B dx dt (5.1b)

−
∫ T

0

∫

�
ϑ(B − vmε ) · (nε − ξ)|∇ψε| dx dt (5.1c)
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+
∫ T

0

∫

�
(σχ�mε,+ − ψε)(vε − vmε ) · ∇ϑ dx dt (5.1d)

−
∫ T

0

∫

�
ϑ(B − vmε ) · ξ(|∇ψε| − ε|∇ϕε|2) dx dt (5.1e)

+ mε

∫ T

0

∫

�

1√
ε

(
Hε − B − vmε

mε
· ξ ε|∇ϕε|

)
ϑ

√
ε|∇ϕε| dx dt (5.1f)

− mε

∫ T

0

∫

�
ϑ

1√
ε

(
Hε +√2W (ϕε)∇ · ξ

)(√
ε|∇ϕε| −

√
2W (ϕε)√

ε

)
dx dt

(5.1g)

− mε

∫ T

0

∫

�
ϑ(∇ · ξ)

∣∣∣∣
√

ε|∇ϕε| −
√

2W (ϕε)√
ε

∣∣∣∣
2

dx dt (5.1h)

+ mε

∫ T

0

∫

�
ϑ

√
ε|∇ϕε|(∇ · ξ)

(√
ε|∇ϕε| −

√
2W (ϕε)√

ε

)
dx dt. (5.1i)

Proof. This can be shown analogously to [22, Lemma 7]. The mε-factors appear
here because of the Allen–Cahn part (1.1c) through the equation for ∂tψε. Note
that we use a different sign convention for ϑ compared to [22], this just changes
the signs in all terms. ��

6. Proof of Theorem 3.1(Stability Estimate)

Proof of Theorem 3.1. Up to (4.2c), (4.2d), (4.2e) and (4.2f) the terms in the
estimate for the relative entropy from Lemma 4.1 can be estimated analogously
to [22, Proof of Theorem 1]. Here note that ‖∇vε −∇vmε‖2

L2(0,T ;L2(�))
and (4.2a)–

(4.2b) are terms with a good sign. At this point, let us estimate a few terms for the
convenience of the reader. For example,

∣∣∣∣
∫ T

0

∫

�

(σχ�mε,+ − ψε)((vε − vmε ) · ∇)(∇ · ξ) dx dt

∣∣∣∣

≤ C
∫ T

0

∫

�

|σχ�mε,+ − ψε||vε − vmε | dx dt,

where the latter term can be estimated with (2.28) by using 1
2‖∇vε −

∇vmε‖2
L2(0,T ;L2(�))

for absorption. Moreover, due to (2.21) it holds that

∣∣∣∣
∫ T

0

∫

�

(
(∂t + B · ∇)|ξ |2

)
|∇ψε| dx dt

∣∣∣∣ ≤
∫ T

0

∫

�

min{d2
�mε , 1}|∇ψε| dx dt,

which is controlled due to (2.16). Finally, let us estimate
∣∣∣∣
∫ T

0

∫

�

(nε ⊗ nε − ξ ⊗ ξ) : ∇B(ε|∇ϕε|2 − |∇ψε|) dx dt

∣∣∣∣

≤ C
∫ T

0

∫

�

√
1 − nε · ξ

∣∣∣ε|∇ϕε|2 − |∇ψε|
∣∣∣ dx dt,
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where we used |(nε⊗nε−ξ⊗ξ) : ∇B| = |nε⊗(nε−ξ) : ∇B+(ξ ·∇)B ·(nε−ξ)| ≤
|nε − ξ | and |nε − ξ |2 = 2(1 − nε · ξ). Hence the above term is controlled via
(2.17).

Let us consider the remaining four terms (4.2c), (4.2d), (4.2e) and (4.2f) for
which new estimates are needed. First, the new choice (2.11) of ξ and B compared to
[22, (75)–(76)] yields (2.20) and enables us to estimate (4.2c) with (2.16). Moreover,
for the estimate of (4.2d) it remains to control

∫ T

0

∫

�

1

mε

∣∣(vmε − B) · (nε − ξ)
∣∣2 ε|∇ϕε|2 dx dt

due to absorption with (4.2a). However, we have vmε − B = −mε Hnη̃mε by defi-
nition (2.11) of B, hence the term is controlled by mε

∫ T
0 E[vε, ϕε|vmε , �mε ](t) dt

because of (2.16). Additionally, to estimate the term (4.2e) we write (ξ⊗ξ(∇B)	ξ)·
(nε−ξ) = (ξ	(∇B)	ξ)ξ ·(nε−ξ). Hence because of ξ ·(nε−ξ) = nε ·ξ −1+1−
|ξ |2 and (2.10), the term (4.2e) is controlled via (2.16). Finally, we estimate (4.2f)
with Lemma 4.4, where the 1-Lipschitz-function h = hε(., t) for a.e. t ∈ [0, T0]
is taken from Lemma 4.7 and we consider δε := C0| log ε|ε for some C0 ≥ 1
and ε small. It remains to estimate (4.5b)–(4.5e). First, note that (4.5d) is absorbed
by (4.2a). Moreover, (4.5e) is controlled via Corollary 4.8 and Lemma 4.9. More
precisely, we have

∫

�
mε
t,h (δε)

(|h|P�mε |2 + |∇τ (h|P�mε )|2)
(

ε|∇ϕε|2 + 1

ε
W (ϕε)

)
|(x,t) dx

≤ C E[ϕε|�mε ](t) + C
∫

Rd
|χ − χSb(t) | min

{
d�

mε
t

, 1
}

dx

≤ C(E[ϕε|�mε ](t) + Ebulk[ϕε|�mε ](t)),
where b(t) = bε(t) and Sb(t) are as in Lemma 4.6. Moreover, (4.5b) is suit-
ably estimated by Lemma 4.10 provided that C0 ≥ 1 is large enough such that
e−cC0| log ε| ≤ ε2. Finally, (4.5c) is controlled by Corollary 4.11 and Lemma 4.9.
Altogether, we obtain that

1

2
‖∇vε − ∇vmε‖2

L2(0,T ;L2(�))
+ E[vε, ϕε|vmε , �mε ](T )

≤ E[vε, ϕε|vmε , �mε ](0) + C
ε2

mε

+ C

( | log ε|3ε2

mε

+ 1

)∫ T

0
E[vε, ϕε|vmε , �mε ](t) + Ebulk[ϕε|�mε ](t) dt.

Next, we estimate the terms on the right hand side in the identity for Ebulk[ϕε|�mε ]
from Lemma 5.1. The terms (5.1a)–(5.1b) are controlled by the bulk error itself
due to (2.32), (2.30) and (2.27). Moreover, (5.1c) and (5.1e) can be estimated by
the relative entropy because of (2.16) and (2.17), respectively. The term (5.1d) is
controlled by the bulk functional due to (2.28). Moreover, we estimate (5.1f)–(5.1g)
via Young’s inequality in order to absorb one part with the positive terms (4.2b)
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and (4.2a), respectively. The remainders as well as (5.1h)–(5.1i) are controlled by
the relative entropy because of (2.16) and (2.14). Finally, this yields

Ebulk[ϕε|�mε ](t) ≤ Ebulk[ϕε|�mε ](0)

+ C
∫ T

0
E[vε, ϕε|vmε , �mε ](t) + Ebulk[ϕε|�mε ](t) dt.

Let mε = m0ε
β with m0 > 0 and β ∈ (0, 2) be as in the theorem. Then it

holds | log ε|3ε2

mε
≤ Cβ

m0
for some constant Cβ > 0 independent of ε for ε > 0 small.

Finally, the Gronwall inequality yields Theorem 3.1. ��

7. Existence for the Approximate Two-Phase Flow

In this section we consider the existence of strong solutions for the modified two-
phase flow

∂tv±
m + v±

m · ∇v±
m − �v±

m + ∇ p±
m = 0 in �

m,±
t , t ∈ [0, T0], (7.1)

divv±
m = 0 in �

m,±
t , t ∈ [0, T0], (7.2)

−�2Dv±
m − p±

m I�n�m
t

= σ H�m
t
n�m

t
on �m

t , t ∈ [0, T0], (7.3)

�v±
m� = 0 on �m

t , t ∈ [0, T0], (7.4)

V�m
t

− n�m
t

· v±
m = m H�m

t
on �m

t , t ∈ [0, T0], (7.5)

v−
m |∂� = 0 on ∂� × (0, T0), (7.6)

�m
0 = �0, v±

m |t=0 = v±
0 in �±

0 , (7.7)

where T0 > 0 is such that (1.2a)–(1.2g) possesses a smooth solution and m > 0
is sufficiently small. Here, analogously as for �±

t and �t , the domain � is the
disjoint union of two sufficiently smooth domains �

m,±
t and an evolving interface

�m
t = ∂�

m,+
t for every t ∈ [0, T ]. Furthermore, n�m

t
, V�m

t
, and H�m

t
denote interior

normal (with respect to �
m,+
t ), the normal velocity, and the mean curvature of �m

t ,
respectively. We note that before m = mε > 0 depends on ε > 0 and mε →ε→0 0.
But in the system above only the value of m > 0 enters. Therefore we skip the
ε-dependence. The goal is to show that then for every m > 0 sufficiently small also
(7.1)–(7.7) possesses a strong solution on the same time interval [0, T0], which is
close to the solution of (1.2a)–(1.2g) in a certain sense. The idea for the proof is
to use the interface �t of the solution of (1.2a)–(1.2g) for every t ∈ [0, T0] as a
reference surface and to transform the modified system (7.1)–(7.7) with the aid
of the Hanzawa transformation with respect to �t to a perturbed two-phase flow
problem in �±

t , t ∈ [0, T0]. To show solvability of the transformed system for small
m > 0 we reduce the system to a fixed-point problem with the aid of the invertibility
of the principal part of the linearized system and apply the contraction mapping
principle as usual. But to apply this strategy invertibility of the principal part of
the linearized system to (7.1)–(7.7) together with uniform estimates in m > 0 are
essential. These results are obtained in the next subsection.
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Throughout this section we will use the notation from [35]. In particular, we
note that for a Banach space X , 1 ≤ p ≤ ∞, and T0 > 0

0W 1
q (0, T ; X) = {u ∈ W 1

q (0, T ; X) : u|t=0 = 0}.

7.1. Analysis of the Linearized System

In this subsection (�t )t∈[0,T0] is a smooth evolving family of (d − 1)-dimensional
submanifolds such that �t = ∂�+

t ⊆ � and � is the disjoint union of �t and two
smooth domains �+

t and�−
t for every t ∈ [0, T0]. Moreover, we assume that there is

a continuous X : �×[0, T0] → � such that (X |�±
0 ×[0,T0], id) : �±

0 ×[0, T0] → �±
are smooth and

1. Xt := X (·, t) : �±
0 → �±

t are smooth diffeomorphisms for all t ∈ [0, T0],
2. det(Dξ Xt (ξ)) = 1 for all ξ ∈ �0 \ �0, t ∈ [0, T0].

Here we use the same notation as in Sect. 2. In particular, we have Xt (�0) = �t for
all t ∈ [0, T0]. In the later applications (�t )t∈[0,T0] is given by the smooth solution
of (1.2a)–(1.2g) and Xt = X (·, t) can be obtained as the solutions of

d
dt Xt (ξ) = v±

0 (Xt (ξ), t) for all ξ ∈ �±
0 , t ∈ [0, T0],

X0(ξ) = ξ for all ξ ∈ �±
0 .

Since �v±
0 � = 0, X : �0 × [0, T0] → �0 is well defined and continuous.

We consider the linearized system

∂tv± − �v± + ∇ p± = f in �±
t , t ∈ [0, T0], (7.8)

div v± = g in �±
t , t ∈ [0, T0], (7.9)

−�2Dv± − p±I�n�t = σ��t hn�t + a on �t , t ∈ [0, T0], (7.10)

�v±� = 0 on �t , t ∈ [0, T0], (7.11)

∂•
t h = n�t · v + m��t h + b on �t , t ∈ [0, T0], (7.12)

v−
0 |∂� = 0 on ∂� × [0, T0], (7.13)

h|t=0 = h0, v±|t=0 = v±
0 in �±

0 , (7.14)

where v± = v|�± and ∂•
t h denotes the material time derivative of h : � → R

defined by

∂•
t h = ∂t h̃ + ∇h̃ · (∂t Xt ) ◦ X−1

t on �,

where h̃ : �(δ) → R with h̃(x, t) = h(P�t (x), t) for all x ∈ �t (δ), t ∈ [0, T0] for
a sufficiently small δ.

The main result of this subsection is

Theorem 7.1. Let q > d + 2, T0 ∈ (0,∞),
m ∈ (0, 1), and �,�t ,�

±
t , t ∈ [0, T0], be as before. Moreover, let

f ∈ Lq(0, T0; Lq(�))d , g ∈ Lq(0, T0; W 1
q (� \ �t )) ∩ W 1

q (0, T0; Ẇ −1
q (�)),
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v0 ∈ W
2− 2

q
q (� \ �0)

d ,

a ∈ W
1
2 − 1

2q
q (0, T0; Lq(�t ))

d ∩ Lq(0, T0; W
1− 1

q
q (�t ))

d , h0 ∈ W
3− 2

q
q (�0),

b ∈ W
1− 1

2q
q (0, T0; Lq(�t )) ∩ Lq(0, T0; W

2− 1
q

q (�t ))

satisfy the compatibility conditions

1. v0|∂� = 0, �v±
0 � = 0,

2. div v0 = g|t=0,
3. −PT �0�2Dv±

0 �n�t = PT �0a|t=0,

then there is a unique solution (v, p, h) such that

v ∈ W 1
q (0, T0; Lq(�))d ∩ Lq(0, T0; W 2

q (� \ �t ))
d , p ∈ Lq(0, T0; Ẇ 1

q (� \ �t )),

�p� ∈ W
1
2 − 1

2q
q (0, T0; Lq(�t )) ∩ Lq(0, T0; W

1− 1
q

q (�t )),

h ∈ W
2− 1

2q
q (0, T0; Lq(�t )) ∩ W 1

q (0, T0; W
2− 1

q
q (�t )) ∩ Lq(0, T0; W

4− 1
q

q (�t )).

Moreover, there is some C > 0 independent of m ∈ (0, 1) and the data (f, g, a, b,

v0, h0) such that

‖v‖W 1
q (0,T0;Lq (�)) + ‖v‖Lq (0,T0;W 2

q (�\�t ))
+ ‖p‖Lq (0,T0;Ẇ 1

q (�\�t ))

+ ‖�p�‖
W

1
2 − 1

2q
q (0,T0;Lq (�t ))

+ ‖�p�‖
Lq (0,T0;W 2− 1

q
q (�t ))

+ ‖h‖
W

2− 1
2q

q (0,T0;Lq (�t ))

+ ‖h‖
W 1

q (0,T0;W
1− 1

q
q (�t ))

+ ‖h‖
Lq (0,T0;W

3− 1
q

q (�t ))

+ m‖h‖
Lq (0,T0;W 4− 1

q
q (�t ))

≤ C
(
‖f‖Lq (0,T0;Lq (�)) + ‖g‖Lq (0,T0;W 1

q (�\�t ))

+‖a‖
W

1
2 − 1

2q
q (0,T0;Lq (�t ))∩Lq (0,T0;W

2− 1
q

q (�t ))

+‖b‖
Lq (0,T0;W

2− 1
q

q (�t ))

+ ‖v0‖
W

2− 2
q

q (�\�0)

+ ‖h0‖
W

4− 3
q

q (�0)

)
(7.15)

Here we define Lq(0, T0; W m
q (�\�t )) such that g ∈ Lq(0, T0; W m

q (�\�t )) if
and only if g ◦ (X, id(0,T0)) ∈ Lq(0, T0; W m

q (� \�0)) for m ∈ N0 and analogously
for the other function spaces involving �t .

7.2. Case of a Flat Interface

Throughout this section we assume that �±
t = R

d±, �t = R
d−1 × {0}, and � =

R
d . We follow the strategy of [35, Section 8.2]. To this end we first assume that

f = g = a = v0 = h0 = 0, use a spectral shift, and consider, for ω > 0,

(∂t + ω)v± − �v± + ∇ p± = 0 in R
d± × (0,∞), (7.16)

divv± = 0 in R
d± × (0,∞), (7.17)
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�2Dv± − p±I�ed = −σ�Rd−1 hed on R
d−1 × {0} × (0,∞), (7.18)

�v±� = 0 on R
d−1 × {0} × (0,∞), (7.19)

(∂t + ω)h + vd − m�Rd−1 h = b on R
d−1 × {0} × (0,∞), (7.20)

(v, h)|t=0 = (0, 0), (7.21)

where v± = v|
R

d± , p± = p|
R

d± .
The goal of this subsection is to prove

Theorem 7.2. For any ω > 0, 1 < q < ∞,

b ∈ 0W
1− 1

2q
q (0,∞; Lq(Rd−1)) ∩ Lq(0,∞; W

2− 1
q

q (Rd−1))

there is a unique solution
v ∈ 0W 1

q (0, ∞; Lq (Rd )) ∩ Lq (0, ∞; W 2
q (Rd \ (Rd−1 × {0})))d ,

p ∈ Lq (0, ∞; Ẇ 1
q (Rd \ (Rd−1 × {0})))

with �p±� ∈ W
1
2 − 1

2q
q (0, ∞; Lq (Rd−1)) ∩ Lq (0,∞; W

1− 1
q

q (Rd−1)),

h ∈ 0W
2− 1

2q
q (0, ∞; Lq (Rd−1)) ∩ 0W 1

q (0, ∞; W
2− 1

q
q (Rd−1)) ∩ Lq (0, ∞; W

4− 1
q

q (Rd−1))

satisfying

‖v‖W 1
q (0,∞;Lq ) + ‖v‖Lq (0,∞;W 2

q )

+ ‖p‖Lq (0,∞;W 1
q ) + ∥∥�p±�

∥∥
W

1
2 − 1

2q (0,∞;Lq )∩Lq (0,∞;W 1− 1
q

q )

+ ‖h‖
W

2− 1
2q

q (0,∞;Lq )

+ ‖h‖
W 1

q (0,∞;W 2− 1
q

q )

+ ‖h‖
Lq (0,∞;W 3− 1

q
q )

+ m‖h‖
Lq (0,∞;W 4− 1

q
q )

≤ C

(
‖b‖

W
1− 1

2q
q (0,∞;Lq )

+ ‖b‖
Lq (0,∞;W 2− 1

q
q )

)
(7.22)

uniformly in m ∈ [0, 1].
Analogously as in [35] one obtains that (v±, p±, h) solves (7.16)–(7.21) if and
only if

(∂t + ω)h + ed · (DN )−1
(

0
−σ�Rd−1 h

)

−m�Rd−1 h = b on R
d−1 × {0} × (0,∞),

(v, h)|t=0 = (0, 0), (7.23)

where DN is the Dirichlet-to-Neumann operator for the two-phase Stokes problem
as in [35, Section 8.3.2] and (v±, p±) is determined by (7.16)–(7.19) and v|t=0 = 0
in dependence on h. More precisely, the Laplace-Fourier transform of u = ed ·
(DN )−1

(
0

−σ�Rd−1 h

)
is given by

û(λ, ξ) = −σ |ξ |2
2λ/|ξ | + 2(λ + |ξ |2) 1

2 + |ξ |
ĥ(λ, ξ),
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cf. [35, Equation (8.34)], where we note that η1 = η2 = (λ + |ξ |2) 1
2 + |ξ | since

ρ1 = ρ2 = μ1 = μ2 = 1 in our case. Hence the Fourier-Laplace transformation
of (7.23) is sm(λ, |ξ |)ĥ(λ, ξ) = b̂(λ, ξ), where

sm(λ, τ ) = λ + mτ 2 + στ 2

2λ/τ + 2(λ + τ 2)
1
2 + τ

for λ ∈ C, τ ∈ C \ {0}.

We note that s0(λ, |ξ |) coincides with the symbol s0,0(λ, ξ) studied in [35, Sec-
tion 8.3.4], for which it was shown

|s0,0(λ, ξ)| ≤ Cη(|λ| + |ξ |) for all λ ∈ �π/2+η, ξ ∈ (�η ∪ −�η

)n−1
,

cf. [35, Equation (8.50)] for every η ∈ [0, π
2 ). Hence for every η ∈ [0, π

2 ) there is
some Cη such that

|sm(λ, τ )| ≤ Cη(|λ| + |τ | + m|τ |2) for all λ ∈ �π/2+η, τ ∈ �η,

uniformly in m ∈ [0, 1]. The essential point is that we have the same kind of lower
bound.

Lemma 7.3. For any ω0 > 0 there is some η > 0 and c > 0 such that

|sm(λ, τ )| ≥ c(|λ| + |τ | + m|τ |2) for all λ ∈ �π/2+η, |λ| ≥ ω0, τ ∈ �η,

(7.24)

Proof. First of all, we note that

sm(λ, τ ) = λ + mτ 2 + στk(z) with z = λ

τ 2 , τ �= 0,

where it was shown in [35, p. 392] that for any ϑ ∈ [0, π) there is some Cϑ > 0
such that

|k(z)| ≤ Cϑ

1 + |z| for all z ∈ �ϑ.

Moreover, Re k(z) > 0 if Re z ≥ 0.
We first show that (7.24) holds for λ ∈ �π/2−δ, τ ∈ �η and any δ ∈ (0, π/4)

and sufficiently small η > 0 (depending on δ). To this end we use that for any η > 0
there is some Cη > 0 such that

|z| ≤ Cη Re z for all z ∈ �π/2−η.

Furthermore, observe that

2λ

τ
+ 2(λ + τ 2)

1
2 + τ ∈ �π/2−δ/2 for all λ ∈ �π/2−δ, τ ∈ �δ/4

and therefore

στ 2

2λ/τ + 2(λ + τ 2)
1
2 + τ

∈ �π/2−δ/3 for all λ ∈ �π/2−δ, τ ∈ �η
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if η > 0 is sufficiently small. Since λ, mτ 2 ∈ �π/2−δ/3 for all λ ∈ �π/2−δ, τ ∈ �η

as well, we conclude

|sm(λ, τ )| ≥ Re sm(λ, τ ) = Re λ + m Re τ 2 + Re
στ 2

2λ/τ + 2(λ + τ 2)
1
2 + τ

≥ cη

(
|λ| + m|τ |2 + |τ ||k(z)|

)
with z = λ

τ 2

provided η > 0 is sufficiently small. Now, if |z| ≤ 1, there is some c > 0 such that
|k(z)| ≥ c if Re z ≥ 0 and |z| ≤ 1 and we conclude

|sm(λ, τ )| ≥ cη

(
|λ| + m|τ |2 + |τ |

)
if |z| ≤ 1.

On the other hand, if |z| ≥ 1, then |λ| ≥ |τ |2 and therefore

|sm(λ, τ )| ≥ cη

(
|λ| + m|τ |2 + |τ |

)
for all λ ∈ �π/2−δ, |λ| ≥ ω0, τ ∈ �η

uniformly in m ∈ [0, 1] if η > 0 is sufficiently small.
Next we consider λ ∈ �π/2+δ \ �π/2−δ for δ > 0 sufficiently small. To this

end we note that, since Re k(z) > 0 if Re z ≥ 0 and k(z) →z∈�ϑ,|z|→∞ 0 for every
ϑ ∈ [0, π), we have that

K := {k(z) : z ∈ �π/2+η

} ⊆ {z ∈ C : Re z > 0}
if η > 0 is sufficiently small. Moreover, K is compact. Therefore, there is some
δ > 0 such that

K ⊆ �π/2−3δ.

Moreover, it is easy to prove that there is some Cδ > 0 such that

|z| + |w| ≤ Cδ|z + w| for all z ∈ �π/2+δ \ �π/2−δ, w ∈ �δ

provided that δ ∈ (0, π/4). Hence

|sm(λ, τ )| ≥ cδ

(
|λ| + |mτ 2 + στk(z)|

)

≥ cδ

(
|λ| + m Re(τ 2) + σ Re(τk(z))

)

≥ cδ

(
|λ| + m|τ 2| + σ |τ ||k(z)|

)
,

and, with the same arguments as before,

|sm(λ, τ )| ≥ cδ

(
|λ| + m|τ 2| + |τ |

)

for all λ ∈ �π/2+δ \ �π/2−δ , |λ| ≥ ω0, τ ∈ �η uniformly in m ∈ [0, 1] if η > 0 is
sufficiently small. This finishes the proof. ��
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Now we can proceed as in [35, Section 8.3.3]. Let D
1
2
n = (−�x ′)

1
2 be the

Fourier multiplication operator with symbol |ξ |, ξ ∈ R
d−1. Then D

1
2
n possesses an

R-bounded functional calculus in W
2− 1

q
q (Rd−1), for any 1 < q < ∞. Therefore

(λ + D
1
2
n + m Dn)s

−1
m (λ, D

1
2
n )

is R-bounded and possesses a bounded H∞-calculus on �π/2+η \ Bω0(0) for some
η > 0 and any ω0 > 0, which is also uniformly bounded in m ∈ [0, 1]. Hence the
operator-valued H∞-calculus of G = ∂t +ω on 0 Hr

q (0,∞; Kq(Rd−1)) for ω > 0,
s, r ∈ R and K = H, W yields that

(∂t + ω + D
1
2
n + m Dn)s

−1
m (∂t + ω, D

1
2
n ) ∈ L

(
0 Hr

q (0,∞; Kq(Rd−1))
)

is uniformly bounded in m ∈ [0, 1] for any s, r ∈ R. Hence we obtain for h

= s−1
m (λ, D

1
2
n )b and b ∈ E that h solves (7.23) and satisfies

‖ωh‖E + ‖∂t h‖E + ‖∇x ′h‖E + m‖∇2
x ′h‖E ≤ Cr,s,p‖b‖E

uniformly in m ∈ [0, 1], where E := Lq(0,∞; W
2− 1

q
q (Rd−1)) or E := 0 Hk

q (0,∞;
Lq(Rd−1)), k = 0, 1. By real interpolation we obtain that the same is true for

b ∈ E = 0W
1− 1

2q
q (0,∞; Lq(Rd−1)). This shows existence of a solution as in

Theorem 7.2 satisfying (7.22) uniformly in m ∈ [0, 1], where the existence of (v, p)

and the corresponding estimates follow from [35, Corollary 8.3.3]. Uniqueness can
be shown by a standard duality argument. Hence Theorem 7.2 is proved.

7.3. Proof of Theorem 7.1

First we assume that �t = � is independent of t ∈ [0, T0]. In this case one proves
the result by the same localization and perturbation argument and reduction to semi-
homogeneous data as in [35, Section 8.2] using the result for a flat interface due to
Theorem 7.2. The only difference is related to the new term “m��h” in the evolu-
tion equation for h. These extra-terms can be controlled by m‖h‖

Lq (0,T0;W 4− 1
q

q )

(uni-

formly in m ∈ [0, 1]), while all other terms can be controlled by ‖h‖
Lq (0,T0;W

3− 1
q

q )

as in the case m = 0. Here we note that in the proof one can reduce to h0 = 0 by

subtracting some h̃ ∈ Lq(0, T0; W
4− 1

q
q (�))∩ W 1

q (0, T0; W
2− 1

q
q (�)) from h, which

exists because of

W
4− 3

q
q (�) = (W

2− 1
q

q (�), W
4− 1

q
q (�))1− 1

q ,q

since 1 − 1
q , 1 − 3

q �∈ Z due to q > d + 2 > 3 and by the trace method for real
interpolation spaces.
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Now, if �t , t ∈ [0, T0], are smoothly evolving interfaces as before, we fix an
arbitrary t0 ∈ [0, T0] and define Jt0 := [max(t0 − δ, 0), min(T0, t0 + δ)] for δ > 0
and X̃ : � × Jt0 → � × Jt0 by X̃(x, t) = (Xt (X−1

t0 (x)), t) for all x ∈ �, t ∈ Jt0 .
Then (7.8)–(7.13) with Jt0 instead of [0, T0] is equivalent to a system of the form

∂t ṽ± − �ṽ± + ∇ p̃± = f̃ + Kf in �±
t0 × Jt0 , (7.25)

div v± = g + Kg in �±
t0 × Jt0 , (7.26)

−�2Dv± − p±I�n�t = σ��t hn�t + a + Ka on �t0 × Jt0 , (7.27)

�v±� = 0 on �t0 × Jt0 , (7.28)

∂t h = n�t · v + m��t0
h + b + Kb on �t0 × Jt0 , (7.29)

v−
0 |∂� = 0 on ∂� × Jt0 , (7.30)

where (Kf , Kg, Ka, Kb) depend linearly on (v±, p±, h) and

‖Kf‖Lq (Jt0 ;Lq (�)) + ‖Kg‖Lq (Jt0 ;W 1
q (�\�t0 )) + ‖Kb‖

Lq (Jt0 ;W 2− 1
q

q (�t0 ))

+ ‖Ka‖
W

1
2 − 1

2q
q (Jt0 ;Lq (�t0 ))∩Lq (Jt0 ;W 2− 1

q
q (�t0 ))

≤ C(δ)
(
‖v‖W 1

q (Jt0 ;Lq (�)) + ‖v‖Lq (Jt0 ;W 2
q (�\�t0 )) + ‖p‖Lq (Jt0 ;W 1

q (�\�t0 ))

+ ‖�p�‖
W

1
2 − 1

2q
q (Jt0 ;Lq (�t0 ))

+ ‖�p�‖
Lq (Jt0 ;W 2− 1

q
q (�t0 ))

+ ‖h‖
Lq (Jt0 ;W 3− 1

q
q (�t0 ))

+‖h‖
W 1

q (Jt0 ;W 1− 1
q

q (�t0 ))

+ m‖h‖
Lq (Jt0 ;W 4− 1

q
q (�t0 ))

)
,

where

ṽ± := v± ◦ X̃ |�±
t0
, p± := p± ◦ X̃ |�±

t0
, h̃ := h ◦ X̃ |�t0

,

f̃ := f ◦ X̃ , g̃ := g ◦ X̃ , ã := a ◦ X̃ |�t0
, b̃ := b ◦ X̃ |�t0

and C(δ) → 0 as δ → 0 since X̃ → I in Ck(�±
t0 × Jt0) as δ → 0 for any

k ∈ N. Hence by a standard Neumann series argument (7.25)–(7.30) together with
ṽ|t=t̃0 = v0 ◦ X̃(·, t̃0), h̃|t=t̃0 = h0 ◦ X̃(·, t̃0)|�t̃0

, t̃0 := max(0, t0 − δ), possesses

a unique solution (ṽ±, p̃±, h̃) for every (f, g, a, b, v0, h0) as in Theorem 7.1 with
[0, T0] replaced by Jt0 and the initial time 0 replaced by t̃0 = max(0, t0−δ) provided
δ = δ(t0) > 0 is sufficiently small. Transforming back, this yields a unique solution
(v±, p±, h) of (7.8)–(7.13) together with v|t=max(0,t0−δ) = v0, h|t=max(0,t0−δ) =
h0 for every (f, g, a, b, v0, h0) as in Theorem 7.1 with [0, T0] replaced by Jt0 and
the initial time 0 replaced by t̃0. Moreover, the Neumann series argument also shows
that (7.15) with the same replacements as before holds true uniformly in m ∈ [0, 1].

Since {(t0 −δ(t0), t0 +δ(t0)) : t0 ∈ [0, T0]} is an open covering of [0, T0], there
are finitely many 0 = t0 < t1 < . . . < tN < T0 and δ j > 0 such that [0, T0] =⋃N

j=0 Jt j and we can solve (7.8)–(7.13) on Jt j = [max(0, t j − δ), min(t j + δ, T0)]
together with ṽ|t=max(0,t j −δ j ) = v0, h̃|t=max(0,t j −δ j ) = h0 uniquely as before.
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Hence we can solve (7.8)–(7.14) by solving successively (7.8)–(7.13) on Jt j , j =
0, . . . , N with initial values (v0, h0), (v|t=t j−1 , h|t=t j−1) for j = 2, . . . , N . Finally,
since (7.15) holds true uniformly in m ∈ [0, 1] on the intervals Jt j , j = 0, . . . , N ,
one also obtains (7.15) on [0, T0] uniformly in m ∈ [0, 1].

7.4. Existence of Solutions for the Transformed System

The idea of the proof is to represent �m
t from the solution of (7.1)–(7.7) for every

t ∈ [0, T0] as a graph over �t , where �t , t ∈ [0, T0], is from the smooth solution of
(1.2a)–(1.2g) and to transform (7.1)–(7.7) to a corresponding perturbed system in
�±

t , t ∈ [0, T0] with the aid of the Hanzawa-Transformation associated to �t . To
this end, let us denote that

�t (3δ) = {x ∈ R
d : |d�t (x)| < 3δ}, t ∈ [0, T0],

where

d�t (x) =
{

dist(x, �t ) if x ∈ �+
t ,

− dist(x, �t ) else

is the signed distance to �t . Since (�t )t∈[0,T0] are smoothly evolving, compact, and
[0, T0] is compact, there is some δ > 0 such that for every x ∈ �t (3δ), t ∈ [0, T0]
there is a unique closest point P�t (x) ∈ �t and

�(3δ) :=
⋃

t∈[0,T0]
�t (3δ) × {t} � (x, t) �→ (d�t , P�t ) ∈ R

d+1

is smooth. Moreover, we choose δ > 0 so small that �(3δ) ⊆ � × [0, T0].
Furthermore, for a given continuous “height function” h : � → R let

θh : � → R
n : x �→ x + h(x, t)n�t (x).

Here � is defined as in (1.3). Then θh is injective provided that ‖h‖C0(�) < δ.
Moreover, we define the Hanzawa transformation associated to � as

�h(x, t) = x + χ(d�t (x)/δ)h(P�t (x), t)n�t (P�t (x)), (7.31)

where χ ∈ C∞(R) such that χ(s) = 1 for |s| ≤ 2δ and χ(s) = 0 for |s| > 2
3 as

well as |χ ′(s)| ≤ 4 for all s ∈ R, and ‖h‖C0(�) < δ. Then �h(., t) : � → � is a
smooth diffeomorphism for every t ∈ [0, T0], cf. e.g. [35, Chapter 1, Section 3.2].
Hence for any h : � → R that is continuously differentiable with ‖h‖C0(�) < δ we
have that (�h

t )t∈[0,T0] := (θh(�t , t))t∈[0,T0] is an oriented, compact evolving C1-
manifold, such that �h

t is a C2-manifold for every t ∈ [0, T0] if h(·, t) : �t → R is
twice continuously differentiable.

In the following we look for a solution of (7.1)–(7.7) such that �m
t = �h

t
for all t ∈ [0, T0] a sufficiently regular h : � → R with ‖h‖C0(�) < δ. Then
(v±

m , p±
m , (�m

t )t∈[0,T0]) solves (7.1)–(7.7) if and only if

v±(x, t) := v±
m(�h(x, t), t), p±(x, t) = p±

m (�h(x, t), t) for x ∈ �±
t , t ∈ [0, T0],

h(x, t) := hm(P�t (θh(x, t)), t) for x ∈ �t , t ∈ [0, T0]
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solves the transformed system

∂tv± − �v± + ∇ p± = a±(h; Dx )(v±, p±) (7.32)

+ ∂t�h · ∇hv± − v± · ∇hv± in �±,

div v± = tr((I − A(h))∇v±) =: g(h)v± in �±, (7.33)

�v� = 0 on �, (7.34)

�2Dv± − p±I�n�t = t (h; Dx )(v, p) + σ K (h)n�h
t

◦ θh
t on �, (7.35)

v−|∂� = 0 on ∂� × (0, T0),

(7.36)

∂•
t h − n�t · v = mK (h) + (n�h

t
◦ θh

t − n�t

) · v on �, (7.37)

v|t=0 = v0 on �±
0 , (7.38)

where

a±(h; Dx )(v±, p±) = divh(∇hv±) − �v± + (∇ − ∇h)p±,

∇h = A(h)∇, divh u = tr(∇hu), A(h) = Dx�
−T
h ,

t (h, Dx )(v, p) = [[(n�0 − nh) · (2μ± Dv − pI ) + 2nh · sym(∇v − ∇hv)]],
nh = A(h)n�0

|A(h)n�0 |
, K (h) = H�h

t
◦ θh

t .

For the fixed-point argument we introduce the solution space

Em(T0) := E1(T0) × E2(T0) × E3(T0) × E4,m(T0),

E(T0) := E1(T0) × E2(T0) × E3(T0) × E4(T0),

E1(T0) := 0W 1
q (0, T0; Lq (�))d ∩ Lq (0, T0; W 2

q (� \ �t ))
d ,

E2(T0) := Lq (0, T0; Ẇ 1
q (� \ �t )),

E3(T0) := 0W
1
2 − 1

2q
q (0, T0; Lq (�t )) ∩ Lq (0, T0; W

1− 1
q

q (�t )),

E4,m(T0) := W
2− 1

2q
q (0, T0; Lq (�t )) ∩ 0W 1

q (0, T0; W
2− 1

q
q (�t )) ∩ Lq (0, T0; W

4− 1
q

q (�t )),

E4(T0) := W
2− 1

2q
q (0, T0; Lq (�t )) ∩ 0W 1

q (0, T0; W
2− 1

q
q (�t )) ∩ Lq (0, T0; W

3− 1
q

q (�t )),

where E4,m(T0) is normed by

‖h‖E4,m (T0) := ‖h‖E4(T0) + m‖h‖
Lq (0,T0;W 4− 1

q
q (�t ))

+ m‖h‖
W

1− 1
2q

q (0,T0;W 2
q (�t ))

+ m‖h|t=0‖
W

4− 3
q

q (�0)

‖h‖E4(T0) := ‖h‖
W

2− 1
q

q (0,T0;Lq (�t ))

+ ‖h‖
W 1

q (0,T0;W 2− 1
q

q (�t ))

+ ‖h‖
Lq (0,T0;W 3− 1

q
q (�t )

+ ‖h|t=0‖
W

3− 3
q

q (�0)
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and E1(T0), E2(T0) are normed in a standard manner. We note that in comparison
to [27] the conditions w|t=0 = 0, h|t=0 = 0 are already included in the definition
of Em(T0). Moreover, we define the space for the right-hand side as

F(T0) := F1(T0) × F2(T0) × F3(T0) × F4(T0)

F1(T0) := Lq (0, T0; Lq (�))d , F2(T0) := Lq (0, T0; W 1
q (� \ �t )) ∩ W 1

q (0, T ; Ẇ−1
q (�)),

F3(T0) := W
1
2 − 1

2q
q (0, T0; Lq (�t ))

d ∩ Lq (0, T ; W
1− 1

q
q (�t ))

d ,

F4(T0) := W
1− 1

2q
q (0, T0; Lq (�t )) ∩ Lq (0, T ; W

2− 1
q

q (�t ))

normed in the standard manner.
Then (7.32)–(7.37) can be written as

Lz + mL̄z = N (z) + m N̄ (z), (7.39)

for z = (v, p, �p�, h) ∈ E(T0) with ‖h‖C0(�) < δ, where

Lz = (L1(v, p), L2v, L3(v, π, h), L4(v, h)),

N (z) = (N1(v, p), N2(v, h), N3(v, π, h), N4(v, h))

for z = (v, p, π, h) with ‖h‖C0(�) < δ are defined as in [27, Section 4]. More
precisely,

L1(v, p) := ∂tv − �v + ∇ p,

L2v := div v,

L3(v, p, h) := −�2Dv±�n�t − πn�t − (��t h)n�t

L4(v, h) := ∂•
t h − n�t · v + v0 · ∇�t h

and

N1(v, p, h) := F(h, v)∇v + M4(h) : ∇2v + M1(h)∇ p, N2(v, h) := M1(h) : ∇v,

N3(v, h) := Gτ (h)∇v + (Gν(h)∇v + Gγ (h))n�t

N4(v, h) := ([M0(h) − I ]∇�t h) · v + (v − v0) · ∇�t h,

where F, M1, . . . , M4 are defined as in [27, Section 2], with the only difference
that the time-independent reference surface � is replaced by the smoothly evolving
reference surface �t , t ∈ [0, T0] and ∂t h is replaced by ∂•

t h. Moreover,

L̄z = (0, 0, 0,��t h),

N̄ z = (0, 0, 0, K (h) − ��t h)

for z = (v, p, π, h). Let us note that

Lz0 = N (z0),

for z0 = (v0, p0, 0), where v0|�± = v±
0 , p0|�± = p±

0 is the solution of the limit
system (1.2a)–(1.2g). Therefore (7.39) is equivalent to

Lmw := Lw + mL̄w − DN (z0)w



Arch. Rational Mech. Anal.          (2024) 248:77 Page 43 of 50    77 

= N (w + z0) − N (z0) − DN (z0)w + m N̄ (w + z0) =: Nm(w) (7.40)

for w = (u, π, �π�, h) with u = v − v0, π = p − p0, where

DN (z0)w =

⎛
⎜⎜⎝
v0 · ∇w + w · ∇v0 + (DM1(0)h + DM2(0)h + DM3(0)h)∇v0

(DM1(0)h) : ∇v0
(DGτ (0)h)∇v0 + ((DGν(0)h)∇v0)n�t

0

⎞
⎟⎟⎠

since L̄z0 = 0, M0(0) = I , M j (0) = 0 for j = 1, . . . , 4, Gτ (0) = Gν(0) =
Gγ (0) = 0, and DGγ (0)h = σ(DH�t (0) − DH�t (0))h = 0. Hence DN (z0) is a
linear operator of lower order with respect to w compared to L + mL̄ .

As in [27, Proposition 3] we have

Proposition 7.4. Let q > d +2. Then N ∈ Cω(U ,F(T )) and N̄ ∈ Cω(Um,F(T )),
where

U := {(u, π, r, h) ∈ E(T ) : ‖h‖E4(T ) < r0}, Um = U ∩ Em(T )

for r0 > 0 sufficiently small. Moreover, for every r1 ∈ (0, r0) there is some C > 0
such that

‖m N̄ (w1) − m N̄ (w2)‖F(T ) ≤ C R‖w1 − w2‖Em (T ) (7.41)

for all w1, w2 ∈ Um with ‖w j‖Em (T ) ≤ R, j = 1, 2, where R ∈ (0, r1].
Proof. The statement for N is proved in the same way as in [27, Proposition 3],
where the only difference is that the reference surface is time-dependent. But be-
cause of the compactness of [0, T0] all relevant norms are uniformly controlled.
For the statement on N̄ we use the quasilinear structure of K (h), i.e.,

K (h) = C0(h) : ∇2
�t

h + C1(h),

where C j (h) depend only on h and ∇�t h and are analytic in (h,∇�t h) (pointwise),
cf. e.g. [35, Section 2.2.5]. Moreover, due to [33, Lemma 6.1] F4(T0) is a Banach
algebra and m‖∇2

�t
h‖F4(T0) ≤ C‖w‖Em (T0) uniformly in m ∈ (0, 1]. From this

N̄ ∈ Cω(Um,F(T0)) easily follows and one obtains (7.41) in a straight forward
manner. ��

The central technical results are

Proposition 7.5. Let r0 be as in Proposition 7.4. There are some CN > 0, R0 ∈
(0, r0) such that for every R ∈ (0, R0], m ∈ (0, 1] we have

‖Nm(w1) − Nm(w2)‖F(T0) ≤ CN R‖w1 − w2‖Em (T0) (7.42)

for all w1, w2 ∈ Em(T0) with ‖w j‖Em (T0) ≤ R for j = 1, 2.



   77 Page 44 of 50 Arch. Rational Mech. Anal.          (2024) 248:77 

Proof. Let R0 ∈ (0, 1] be at least so small that R0 < r0. Then, by the definition of
Nm ,

Nm(w1) − Nm(w2) =N (w1 + z0) − N (w2 + z0) − DN (z0)(w1 − w2)

+ m
(
N̄ (w1 + z0) − N̄ (w2 + z0)

)

for all w j ∈ U , j = 1, 2. Now using the power series expansion for N (w j + z0)

and N̄ (w j + z0), we obtain for R0 sufficiently small

‖Nm(w1) − Nm(w2)‖F(T0) ≤ C‖w1 − w2‖2
E(T0)

+ C R‖w1 − w2‖Em (T0)

≤ C R‖w1 − w3‖Em (T0)

for all w j ∈ Um with ‖w j‖Em (T0) ≤ R, j = 1, 2. ��
Proposition 7.6. Let Lm be defined as in (7.40). Then there are some m1 ∈ (0, 1],
CL > 0 such that Lm : Em(T0) → F(T0) is invertible and

‖L−1
m ‖L(F(T0),Em (T0)) ≤ CL for all m ∈ (0, m1].

Proof. First of all L +mL̄ : Em(T ) → F(T ) is invertible for all m ∈ (0, m1], m1 ∈
(0, 1] sufficiently small, and all T ∈ (0, T0] because of Theorem 7.1. Moreover,
there is some C ′

L > 0 such that

‖(L + mL̄)−1‖L(F(T ),Em (T )) ≤ C ′
L for all m ∈ (0, m1] and T ∈ (0, T0].

Using

E4(T ) ↪→ 0W 1
q (0, T ; W

2− 1
q

q (�t )) ∩ W 1
r (0, T ; W 1

q (�t ))

↪→ C1− 1
q

(
[0, T ]; W

2− 1
q

q (�t )

)

uniformly in T ∈ (0, T0] for some r > q and the smoothness of v0 one can show

‖v0 · ∇w + w · ∇v0 + (DM1(0)h + DM2(0)h + DM3(0)h)∇v0‖Lq (�×(0,T ))

≤ CT
1
q ‖h‖

L∞(0,T ;W 2− 1
q

q (�t ))

≤ C ′T
1
q ‖h‖E4(T )

and

‖(DM1(0)h) : ∇v0‖F2(T ) ≤ C‖(DM1(0)h) : ∇v0‖W 1
q (�)×(0,T )) ≤ CT

1
q − 1

r ‖h‖E4(T ),

‖(DGτ (0)h)∇v0 + ((DGν(0)h)∇v0)n�t ‖F3(T ) ≤ CT α‖h‖E4(T )

uniformly in T ∈ (0, T0] and h ∈ E4(T ) for some α > 0 by straightforward
estimates. Hence

‖DN (z0)(L + mL̄)−1‖L(F(T )) ≤ CT α for all m ∈ (0, m1] and T ∈ (0, T0]
for some α > 0. Hence by a Neumann series argument Lm is invertible and

‖L−1
m ‖L(F(T ),Em (T )) ≤ CL for all m ∈ (0, m1]
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provided that T ∈ (0, T∗] for some T∗ > 0 sufficiently small. Finally, the invert-
ibility of Lm and the uniform estimate on the time interval (0, T0) can be shown by
the same arguments as in the end of the proof of Theorem 7.1 by dividing (0, T0)

in finitely many intervals (0, T1), (T1, T2), . . . , (TN−1, TN ) of length less than T∗
and solving the system iteratively on the intervals. ��

Now let

Rm := 2mCL‖N̄ (z0)‖F(T )

and choose m0 ∈ (0, m1] so small that

CLCN (Rm0 + m0) ≤ 1

2
and Rm0 ≤ R0.

Then we have for every m ∈ (0, m0]
‖L−1

m (Nm(w1) − Nm(w2)) ‖Em (T ) ≤ CLCN (Rm + m)‖w1 − w2‖Em (T )

≤ 1

2
‖w1 − w2‖Em (T )

for all w1, w2 ∈ Em(T ) with ‖w j‖Em (T ) ≤ Rm for j = 1, 2 and

‖L−1
m Nm(w)‖Em (T ) ≤ ‖L−1

m (Nm(w) − Nm(0)) ‖Em (T ) + CL‖Nm(0)‖Em (T )

≤ Rm

2
+ mCL‖N̄ (z0)‖F(T ) ≤ Rm

for all w ∈ Em(T ) with ‖w‖Em (T ) ≤ Rm . Hence L−1
m Nm is a contraction on

BRm (0) in Em(T ) for all m ∈ (0, m0] and we obtain for every m ∈ (0, m0] a
unique wm ∈ BRm (0) such that

wm = L−1
m (Nmwm). (7.43)

In summary, we obtain

Theorem 7.7. There is some m0 > 0 such that for every m ∈ (0, m0] the trans-
formed system (7.32)–(7.38) possesses a solution (v, p, �p�, h) ∈ Em(T0), which
satisfies

‖(v − v0, p − p0, �p − p0�, h)‖Em (T0) ≤ Cm

for some C > 0 independent of m ∈ (0, m0].
Transforming back with �−1

h finally yields a solution (v±
m , p±

m , (�m
t )t∈[0,T0]) of

(7.1)–(7.7).

Remark 7.8. SinceE4,m(T0) ↪→ C0([0, T0]; C2(�t )) uniformly in m ∈ (0, 1), one
can show in a straight forward manner that there are m1 ∈ (0, m0] and δ > 0 such
that the signed distance function d�m

t
and the orthogonal projection P�m

t
on �t for

every t ∈ [0, T0] are well-defined and smooth in �m(2δ) = {(x, t) ∈ � × [0, T0] :
| dist(x, �m

t )| < 2δ} for every m ∈ (0, m1]. Moreover,

�m(2δ) ⊆ �(3δ) for all m ∈ (0, m1]
and δ > 0 can be chosen (as before) such that the signed distance function d�t and
the orthogonal projection P�t on �t for every t ∈ [0, T0] are smooth in �(3δ).
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7.5. Uniform Regularity

The goal of this section is to prove

Theorem 7.9. Let q > d + 5. There is some m0 > 0 such that for every m ∈
(0, m0] (7.1)–(7.6) possesses a solution (v±

m , p±
m , �m) with �m ⊆ �(δ), d�m

t
∈

C1
t C1

x ∩ C0
t C3

x in �(δ) and vm ∈ Lq(0, T ; W 1
q (�)d) ∩ Lq(0, T ; W 2

q (� \ �m
t )) ∩

W 1
q (0, T ; Lq

σ (�)) and ∇τ∇vm ∈ L∞(�×(0, T )), ∇τ pm ∈ Lq(0, T ; W 1
q (�\�t ))

with uniformly bounded norms with respect to m ∈ (0, m0].
Proof. We use the so-called parameter-trick to obtain that the tangential derivative
of the solution belongs locally to the same function space as the solution itself
(together with uniform bounds). To this end we follow the arguments in [35, Sec-
tion 9.4.2] with modifications to our time dependent reference manifold �t . Let
(t0, x0) ∈ � be arbitrary and X̃ : � × Jt0 → � with X̃(x, t) = Xt (X−1

t0 (x)) for all
x ∈ �, t ∈ Jt0 := [max(t0 − δ, 0), min(T0, t0 + δ)] as in Section 7.3. Moreover,
let ϕ : B3R(0) ⊆ R

d−1 → R
d be a local parametrization of �t0 with ϕ(0) = x0.

Furthermore, for t ∈ Jt0 let φt : B3R(0) × (−2δ0, 2δ0) → R
d be defined by

φt (s, ρ) = X̃(ϕ(s), t) + ρn�t

for all (s, ρ) ∈ B3R(0) × (−2δ0, 2δ0).

Then P�t (φt (s, ρ)) = X̃(ϕ(s), t). We define the truncated shift τξ : Jt0 × B3R(0)

× (−2δ0, 2δ0) → B3R(0) × (−2δ0, 2δ0)

τξ (t, s, ρ) = (s + ξη(t)χ0(s)ζ0(ρ), ρ) for all (t, s, ρ) ∈ Jt0

×B3R(0) × (−2δ0, 2δ0),

where ξ ∈ Br (0) ⊆ R
d−1, 0 < r ≤ R, χ0 ∈ C∞

0 (Rd−1) with 0 ≤ χ0 ≤ 1,
supp χ0 ⊆ B2R(0) and χ0(s) = 1 if |s| ≤ R, ζ0 ∈ C∞

0 (R) with supp ζ0 ⊆
[−5δ/2, 5δ/2] and ζ0(ρ) = 1 if |ρ| ≤ 2δ0, η ∈ C∞

0 (R) with η(t) = 0 if t ∈
[t0 − δ/2, t0 + δ/2] and supp η ⊆ (t0 − δ, t0 + δ). Finally, we define

τ ξ (t, x) = φt (τξ (t, φ
−1
t (x)))

for all (t, x) ∈ U :=
⋃

t∈Jt0

{t} × Ut , Ut := φt

(
B3R(0) × (− 3δ0

2 , 3δ0
2 )
)

.

and τ ξ (t, x) = (t, x) for all t ∈ Jt0 , x ∈ � \ Ut and t ∈ [0, T ] \ Jt0 , x ∈ �. Note
that P�t (τ ξ (t, x)) = τξ (t, P�t (x)) for all x ∈ Ut , t ∈ Jt0 and therefore

h ◦ (id, P�·) ◦ τ ξ (t, x) = h(t, P�t (τ ξ (t, x))) = (h(t, ·) ◦ τξ ) ◦ (id, P�·)(t, x)

for all (t, x) ∈ U and thus

�h(τ ξ (t, x), t) = �h◦(id,τξ )(x, t) for all (t, x) ∈ U

since d�t ◦ τ ξ (t, ·) = d�t on Ut and χ ◦ (d�t /δ) = 0 on �t (2δ) \ Ut for all t ∈ Jt0 .
Altogether we observe that for r > 0 sufficiently small τ ξ (t, ·) : � → � is a

smooth diffeomorphism, which depends smoothly on ξ ∈ Br (0) and t ∈ [0, T ]. We
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denote by Tξ : Em(T ) → Em(T ) the operator obtained by pointwise composition
with τ ξ . Let Gm : BR(0) ⊆ Em(T ) → BR(0) with Gm(w) := w − L−1

m (Nmw)

and wm be as in (7.43). Then

0 = Tξ Gm(wm) = Tξ Gm(T −1
ξ Tξwm) for all ξ ∈ Br (0).

Therefore we define Gm : Br (0) × BR(0) ⊆ R
d−1 × Em(T ) → Em by

Gm(ξ, w) := Tξ Gm(T −1
ξ w).

Then as in [35, Section 9.4.2] one observes that Gm is continuously differentiable
and ∂ξ jGm(0, wm) ∈ Em(T ) is bounded with respect to m ∈ (0, 1]. Furthermore
wm,ξ := Tξwm solves

Gm(ξ, wm,ξ ) = 0 for all ξ ∈ Br (ξ).

In particular, Gm(0, wm) = 0 and

DwGm(0, wm) = DGm(wm) = I − L−1
m DNm(wm) : Em(T ) → Em(T )

is invertible since ‖L−1
m DNm(wm)‖L(Em (T )) ≤ 1

2 due to Proposition 7.5 for m ∈
(0, m1]with m1 > 0 sufficiently small as before. Furthermore,‖DGm(wm)−1‖L(Em (T ))

≤ 2 uniformly in m ∈ (0, m1]. Now the Implicit Function Theorem yields that, if
r > 0 is sufficiently small, there are some r ′ > 0 and continuously differentiable
�m : Br (0) → Br ′(wm) ⊆ Em(T ) such that Br ′(wm) ⊆ BR(0) and

1. Gm(ξ,�m(ξ)) = 0 for all ξ ∈ Br (0).
2. IfGm(ξ, u) = 0 for some u ∈ BR(0) ⊆ Em(T ) and ξ ∈ Br (0), then u = �m(ξ).

Hence �m(ξ) = wm,ξ for all ξ ∈ Br (0). To obtain uniform boundedness of
∂ξ j wm,ξ |ξ=0 we use that

∂ξ j wm,ξ |ξ=0 = −DwGm(0, wm)−1∂ξ jGm(0, wm) = −DGm(wm)−1∂ξ jGm(0, wm),

where ∂ξ jGm(0, wm) ∈ Em(T ) and DwGm(wm)−1 are uniformly bounded in
m ∈ (0, m1] by the same observations before. Since ∂ξ j u ◦ τξ |ξ=0 = ∂τ j u in

a neighborhood of x0, where τ j (x) = ∂p j X̃(ϕ(p), t), j = 1, . . . , d − 1, (with
x = φt (p, q)) form a basis of Tx�t , the statement of the theorem follows. ��
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