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Abstract 
Context  Biotic resource exploitation is a critical deter-
minant of species’ distributions. However, quantifying 
resource exploitation patterns through space and time can 
be difficult, complicating their incorporation in spatial 
ecology studies. Therefore, understanding the local driv-
ers of spatial patterns of resource exploitation may con-
tribute to better large-scale species distribution models.
Objectives  We investigated (1) how the resource 
exploitation patterns of two trophic interactions 
(plant–insect) are explained by insect behaviour, 
resource aggregation, and potential insect-insect 
interactions. We also analyzed how (2) resource patch 
size and (3) resource accessibility in a heterogeneous 
landscape affected host exploitation patterns.

Methods  We quantified nectar robbing by insects in 
the genus Bombus (bumblebees) and seed predation 
by Brachypterolus vestitus larvae (Antirrhinum bee-
tle) on Antirrhinum majus L. (wild snapdragons) in 
the Pyrenees Mountains, Catalonia, Spain. We tested 
hypotheses about resource exploitation by integrating 
spatial analyses at multiple scales.
Results  Both trophic interactions were aggregated, 
explained by the aggregation of their resource. At 
some scales, nectar robbing is more aggregated than 
the resource. Trophic interaction abundance is propor-
tional to resource patch size, following the ideal free 
distribution model. Landscape features do not explain 
the locations exploited. Nectar robbing and seed pre-
dation occur together more often than expected.
Conclusions  Our findings suggest that multiple biotic 
and ecological spatial factors may simultaneously affect 
resource exploitation at a local scale. These findings 
should be considered when developing agricultural pro-
jects, management plans and conservation policies.

Keywords  Plant–insect interactions · Nectar 
robbing · Seed predation · Point-pattern analysis · 
Resource exploitation · Landscape heterogeneity

Abbreviations 
CI	� Confidence Intervals
CSR	� Complete Spatial Randomness (referring to 

point processes)
GLM	� Generalized Linear Model
HSI	� Hopkins-Skellam Index

Supplementary Information  The online version 
contains supplementary material available at https://​doi.​
org/​10.​1007/​s10980-​024-​01899-9.

G. Pocull 
Centre de Ciència i Tecnologia Forestal de Catalunya 
(CTFC), Crta Sant Llorenç de Morunys, Km 2, 
25280 Solsona, Spain
e-mail: guillempocull@gmail.com

G. Pocull · C. Baskett (*) · N. H. Barton (*) 
Institute of Science and Technology Austria (ISTA), Am 
Campus 1, 3400 Klosterneuburg, Austria
e-mail: cabaskett@gmail.com

N. H. Barton 
e-mail: nick.barton@ist.ac.at

http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-024-01899-9&domain=pdf
http://orcid.org/0000-0003-4282-2187
http://orcid.org/0000-0002-7354-8574
https://doi.org/10.1007/s10980-024-01899-9
https://doi.org/10.1007/s10980-024-01899-9


	 Landsc Ecol          (2024) 39:172   172   Page 2 of 16

Vol:. (1234567890)

KDE	� Kernel Density Estimation (referring to 
maps)

NLR	� Null Linear Regression
PPA	� Point Pattern Analysis
SCE	� Simulation Confidence Envelope

Introduction

Biotic interactions are key drivers of community 
structure (Kéfi et  al. 2012; Woodward et  al. 2010) 
and shape species distributions on fine, local scales 
(Franklin & Miller 2009; Perea et al. 2021), but also 
at the scale of species’ ranges (Wisz et  al. 2013; 
Ortego and Knowles 2020). Despite their impor-
tance, biotic interactions are difficult and expen-
sive to quantify thoroughly across space and time 
(Ovaskainen et  al. 2016). Therefore, species distri-
bution models have historically focused on abiotic 
factors to determine where organisms live (Graciá 
2020, but see recent advances by Gargano et al. 2017 
and Ortego & Knowles 2020). However, accounting 
for biotic interactions can greatly increase the pre-
dictive power of the distribution models (Ovaskainen 
et  al. 2016). Joint species distribution models, for 
example, account for relationships between species 
in addition to environmental predictors (Wilkinson 
et  al. 2021). Nevertheless, incorporating the multi-
scale nature of biotic interactions poses a challenge 
in its application (Ovaskainen et  al. 2016). Biotic 
interactions often result in aggregation, with a high 
potential impact on the distribution of populations 
and species. For example, individuals may be found 
in clusters in order to defend against biotic threats 
(Bertolini et  al. 2019) or aggregating around ben-
eficial species whose suitable environmental con-
ditions are patchily distributed (Drake & Richards 
2018; Hochstrasser & Peters 2004). Furthermore, if 
an aggregated species serve as the resource for yet 
another species, the host distribution can shape the 
distribution and size of resource-dependent popula-
tions, modify the exploitative behaviour (Goulson 
2010; Matter 2000; Jácome-Flores et  al. 2018) and 
influence coexistence with other resource-dependent 
species (Chesson 2000; Lancaster & Downes 2004). 
Specifically, plant hosts for herbivores usually 
aggregate in patches (Goulson 2010), where patch 
size can be the main limiting factor for consumer 

populations (Cade et  al. 1999; Schooley & Wiens 
2005). Therefore, the relationship between patch 
size and consumer abundance can be important for 
conservation (Matter 2000).

Three potential relationships between consumer 
abundance and resource patch size have been pro-
posed. First, the resource concentration hypothesis 
suggests that consumers are disproportionately more 
attracted to larger patches due to an exponential 
increase of resources and because large patches are 
easier to find (Connor et al. 2000; Root 1973). Second, 
Schooley and Wiens (2005) coined the undermatch-
ing hypothesis, which suggests that populations are 
more abundant than expected in patches with fewer 
resources. Third, Fretwell and Lucas (1969) created 
the ideal free distribution model, stating that when 
larger patches are disproportionately more exploited, 
then smaller patches will become more resource-dense 
and attractive to exploiters. This feedback creates an 
even exploitation of resources that minimizes compe-
tition. Studies have found support for all three theo-
retical relationships (Connor et al. 2000; Kennedy & 
Gray 1993; Schooley & Wiens 2005), suggesting that 
context is important, but it is still unclear why differ-
ent hypotheses hold in different systems.

Patches are not isolated but rather, are strongly 
influenced by their location within the landscape 
(Schooley & Wiens 2005). In a heterogeneous land-
scape, patch access could be influenced by features 
such as natural barriers, environmental gradients or 
human disturbance (Gargano et  al. 2017; Verboven 
et al. 2014). Landscape changes that hinder access to 
resources may reduce insect population abundance 
(Gargano et  al. 2017) and plant reproductive success 
(Verboven et al. 2014), which may lead to biodiversity 
loss (Knisley 2011). On the other hand, some human 
activities that were considered harmful for pollina-
tors—such as agricultural and grazing practices—may 
have a neutral effect on bee abundance when done 
at low intensity (Winfree et  al. 2009). Furthermore, 
human-modified landscapes can positively impact 
insect populations: garden areas and urban parks 
favour nesting for bumblebees, due to their greater and 
prolonged deposit of resources throughout the year 
(McFrederick & LeBuhn 2006; Osborne et al. 2007). 
However, research on how landscape heterogeneity 
and ecological gradients affect plant–insect interac-
tions is still scarce (Gargano et al. 2017).
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In this study, we analyze three aspects of the 
fine-scale exploitation patterns of two antagonistic 
plant–insect interactions: seed predation by snap-
dragon beetle larvae and nectar robbing by bumble-
bees in wild snapdragons. (summarised in Table  1). 
First, we ask how each interaction is affected by spa-
tial patterning of the resource and the other interac-
tion. We predict that exploitation patterns by both bee-
tles and bumblebees are significantly aggregated, due 
to the bumblebees’ social nesting behaviour (Goul-
son 2010) and due to conspecific attraction observed 
in a congener beetle (MacKinnon et  al. 2005). We 
also predict that the two plant–insect interactions are 
found together less often than expected due to chance 
because of non-trophic interactions: they may com-
pete for a similar resource (nectar), and/or nectar 
robbing may negatively impact fruit development, 
affecting the seed predators (Stout & Goulson 2000). 
Second, we test the three alternative patch size-abun-
dance hypotheses by asking whether the probability 
of each plant–insect interaction depends on resource 
patch size. Third, we ask how landscape heterogene-
ity such as human disturbances and natural landscape 
barriers affect resource exploitation. We specifically 
predict that low-intensity farming in the study area 
does not affect nectar robbing and that urban gar-
dening and parks increase the frequency of both 
plant–insect interactions. We tested these predictions 
using spatial analysis of a large, high-resolution data-
set of plant–insect interactions in a single population.

Materials and methods

Study system and site

Antirrhinum majus L. (wild snapdragon; Plantagi-
naceae) is a short-lived self-incompatible perennial 
herb (Andalo et al. 2010). Snapdragons live in rocky 
cliffs and disturbed areas in the French and Spanish 

Pyrenees Mountains (Khimoun et al. 2013). Individu-
als often aggregate in small persistent patches (Jawor-
ski et  al. 2016), likely due to passive seed dispersal 
(Andalo et  al. 2010; Khimoun et  al. 2013). Flowers 
are zygomorphic with a personate corolla, produced 
on terminal spikes with up to 15 simultaneously open 
flowers. Fruits can produce up to 400–500 seeds 
(Usha 1965).

Only large bumblebees (Hymenoptera) have 
enough strength to force their way through the flower 
lips to access snapdragon nectar (Guzmán et  al. 
2017) and pollinate snapdragons (Tastard et al. 2011, 
2014). Bumblebees provide resources to their off-
spring by foraging on flowers in the area surrounding 
their nests (Goulson 2010). In our focal population, 
(Andalo et al. 2019) found that two of the three bum-
blebee species that pollinate snapdragons—Bombus 
terrestris L. and Bombus muscorum L.—shift their 
behaviour to nectar robbing across the flowering sea-
son. Specifically, they found that nearly 90% of visits 
produced between 05/25/2016 and 07/12/2016 were 
nectar robbing. Nectar robbing is the foraging behav-
iour in which a nectar reward is obtained without 
providing any benefit to the plant. Its effects on plant 
fitness can be neutral (Morris 1996) or detrimental, 
reducing the seed set (Goulson 2010; Irwin & Maloof 
2002). Primary nectar robbing is defined as the first 
time a bumblebee robs nectar on a flower. It is eas-
ily traceable by observing the holes that bumblebees 
chew in the basal half of the snapdragon corolla 
(Andalo et al. 2019; Goulson 2010).

In our study system, we called the behaviour of 
feeding on flower ovules and immature seeds “seed 
predation”. This type of feeding behaviour can have 
highly detrimental effects on plant fitness (Whitney 
& Stanton 2004). We observed larvae of Brachypter-
olus vestitus Kiesenwetter (snapdragon beetle; 
Coleoptera) inside 19% of sampled flowers, feed-
ing on the ovules and possibly nectar. Often multi-
ple individuals were found in each flower (up to 8). 

Table 1   Summary of the hypotheses and spatial analyses used

spatial scale (m) interactions prediction: exploitation patterns are explained by… analysis

0–120 trophic behaviour (tendency of insects to aggregate) point patterns
non-trophic the spatial pattern of the other interaction

1 – 220 trophic the resource patch size quantile regression
0 – 1,500 trophic the landscape structure distance GLM
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Adult B. vestitus lay their eggs inside snapdragon 
flower buds, where both adults and larvae feed on 
inner floral tissues of A. majus (Butler-Stoney 1988; 
Jelíken 2007; Wagner 1994). To identify the species, 
we sequenced the standard mtDNA COI barcode 
region from tissue of two larvae collected inside A. 
majus flowers, and six adult coleopterans collected in 
or on A. majus at our study site using standard meth-
ods (standard mtDNA COI sequences analysis per-
formed by Brent Emerson’s laboratory at CSIC and 
IPNA in La Laguna, Tenerife, Spain). Then we used 
BLAST analysis against GenBank to identify the 
insects (NCBI 2022). The two seed predators larvae 
and one adult specimen had > 99% match to B. ves-
titus (Supplementary Table  1 in Online Resource). 
Voucher specimens are deposited at Museo Nacional 
de Ciencias Naturales, Spain (larvae ID: MNCN_Ent 
344,534, MNCN_Ent 344,535, adult ID: MNCN_
Ent 356,420). Species in the genus Rhinusa are also 
known Antirrhinum seed predators, but they are pre-
sent at a later stage of fruit development than when 
we surveyed plants (Jaworski et al. 2016).

Our study site is the Vall de Ribes, Catalonia, 
Spain. The study area is 3 km wide, between Planoles 
(42.3166N, 2.1042E) and Fornells de la Muntanya 
(42.3240N, 2.0472E) (Fig. 1). The site has been used 
in past research because it contains a flower colour 
cline, where yellow- and magenta-flowered A. majus 
meet and interbreed (Andalo et  al. 2010; Whibley 
et al. 2006). Here, we ignore the effects of flower col-
our on plant–insect interactions because preliminary 
analysis indicates that nectar robbing and seed pre-
dation are not affected by flower colour (C. Baskett, 
unpublished data).

Data collection

We quantified the prevalence of nectar robbing and 
seed predation, two trophic interactions (i.e., inter-
actions based on resource exploitation) involv-
ing snapdragons. We conducted a field survey from 
06/16/2020 to 07/07/2020, during the peak flowering 
season. We rotated haphazardly between patches all 
over the sampling area on a daily basis and returned 

Fig. 1   Map of the study area, depicting the location of all snapdragons, the subset of snapdragons selected for plant–insect interac-
tion analysis, the various landscape categories used, and the location of the two villages
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to each patch multiple times. Censuses were taken 
between 9 am and 6 pm. For 944 individuals (a hap-
hazard subset of the population, due to limited time) 
we collected the uppermost flower and stored it in the 
fridge (4ºC) for a maximum of 48 h before quantify-
ing the trophic interactions. Primary nectar robbing 
sensu Goulson (2010) was indicated by a hole in the 
basal half of the flower corolla. Seed predation was 
indicated by the presence of B. vestitus larvae inside 
flowers.

In order to perform spatial analysis, we collected 
precise location data on the focal plants and all addi-
tional snapdragons we were able to access in the 
study area, for a total of 2,333 individuals. Location 
data (accurate to within 3.7  m at our site, Suren-
dranadh et  al. 2022) was recorded using GeoXT 
handheld GPS units (Trimble, Sunnydale, CA, USA). 
Using QGIS software (v. 3.10.14) (QGIS Develop-
ment Team 2024), we manually moved the few points 
that were accidentally situated inside the road—due 
to Trimble measuring errors—to the nearest site out-
side it. We incorporated the point dataset inside an 
Observational Window (sensu Baddeley et al. 2016), 
which comprises the sampled area next to roads 
and paths where snapdragons flourish (14.86  ha), 
informed by 12 years of sampling snapdragons at this 
study site (N. Barton, unpublished data). We repro-
jected the spatial objects from the geographic coor-
dinates system (EPSG: 4326) to the projected coordi-
nates system (EPSG: 25,831) in R (v. 3.6.3) (R Core 
Team 2020) with the package sf, to facilitate working 
with the landscape category polygons.

Aggregation patterns

One of the functions of Point Patterns Analysis (PPA) 
is to visualize and quantify spatial aggregation, which 
can provide insight into how resources are exploited 
(Lancaster & Downes 2004; Rodríguez-Pérez et  al. 
2012) and if mechanisms of competition, exclusion or 
coexistence exist (Brown et  al. 2011). We used first 
and second-order PPAs to quantify the spatial pat-
terns of the resource (snapdragons) and both trophic 
interactions (seed predation and nectar robbing). The 
test statistics of PPA were conducted with the R pack-
age Spatstat (Baddeley et al. 2016).

Before performing PPAs to test our hypotheses, we 
tested for homogeneity of the data, a crucial first step 
for deciding the appropriate PPAs. The intensity of 

points can be constant through space—called homo-
geneity—or vary by an intensity function, called 
inhomogeneity (Baddeley et  al. 2016; Law et  al. 
2009). We tested for homogeneity using the quadrat 
counting and the Kolmogorov–Smirnov techniques. 
The quadrat counting technique is a chi-squared test 
defined from Pearson goodness-of-fit sensu Baddeley 
et  al. (2016, pp. 163–168). We decided the optimal 
grid to perform the quadrat counting test was 18 × 12 
cells. Each cell had a horizontal length of 185 m and 
a vertical length of 130 m. This resolution reflects a 
trade-off between snapdragon cluster size and bias. 
The Kolmogorov–Smirnov technique is a measure of 
discrepancy between cumulative distribution func-
tions (Perry et al. 2006) sensu Baddeley et al. (2016, 
pp. 184–186). Both techniques showed significant 
intensity differences for the snapdragons and trophic 
interactions (Supplementary Table  2 in Online 
Resource), so our subsequent analyses assumed inho-
mogeneous data.

To analyze if the spatial distribution of the snap-
dragon is determined by spatially structured features 
and ecological gradients we performed first-order 
PPA (Gimond 2021; Law et  al. 2009). Additionally, 
we tested if the aggregation of the trophic interac-
tions follows from the degree of aggregation of the 
snapdragons, which act in this case as the spatially 
structured features. We used the Hopkins-Skellam 
analysis, as recommended for inhomogeneous PPA 
(Baddeley et  al. 2016, p. 259; Rubak 2019). Its for-
mula is defined in Table 2a. Hopkins-Skellam index 
(HSI) = 1 is consistent with completely spatially 
randomness (CSR) pattern, HSI < 1 indicates clus-
tering, and HSI > 1 indicates overdispersion. The 
Hopkins-Skellam analysis was performed using the 
hopskel.test function from Spatstat in R. To estimate 
the P-values, we proceed with a bootstrapping test. 
We ran 999 Monte-Carlo simulations of the Poisson 
null model, which is a CSR process inside the same 
Observational Window. The significance threshold 
was set at α = 0.05. Edge correction was not used 
because snapdragons were distributed next to roads 
and could not grow inside dense forests. These actual 
habitat boundaries are not an artefact of sampling, so 
edge correction is not needed (Law et al. 2009).

Out of 944 sampled plants, we found evidence of 
seed predation in 175 and of nectar robbing in 685. 
To estimate the degree of aggregation of the interac-
tions independently from that of the resource itself, 
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we proceeded to reshuffle the interaction presence—
also called random labelling—across the 944 sam-
pled plants 999 times and obtain significance with 
bootstrapping.

To analyze if the spatial distribution of the exploi-
tation patterns is determined by the spatial distribu-
tion of the resource, we performed second-order PPA. 
Second-order analyses quantify the influence between 
pairs of individuals (such as exclusion or aggregation) 
(Gimond 2021; Law et  al. 2009). The method used 
is the Pairwise Distances with Ripley’s K-function 
(Baddeley et al. 2016, pp. 242–246; Dale 1999). The 
modification of the K-function that applies to inho-
mogeneous data is the Kinhom (Baddeley et al. 2016, 
p. 243; Law et al. 2009; Perry et al. 2006). The inho-
mogeneous L-function is analogous to the inhomoge-
neous K-function. However, we used the L-function 
because it stabilizes the variance and helps with vis-
ual assessment of the graph. It was computed with 
the Linhom function from Spatstat (Baddeley et  al. 
2016, p. 245) and it is defined in Table 2b. Then the 
L-function is compared with the theoretical curve of 
the Poisson null model, defined in Table 2c (Badde-
ley et al. 2016, p. 206). The intensity was estimated 
with the density function from Spatstat (Baddeley 
et al. 2016, pp. 242–246). Some judgement is needed 
in choosing the appropriate bandwidth to smooth the 
intensity (Law et  al. 2009; Rubak 2019). We chose 
a bandwidth value of 100  m because it created a 

density map large enough to not interfere with the 
natural aggregation processes of snapdragons and 
small enough to distinguish the local intensity differ-
ences. Then we proceed to bootstrap, generating 999 
simulations of the Poisson null model of the L-func-
tion (Baddeley et al. 2016; Swift et al. 2017). We then 
created simulation confidence envelopes (SCE) with 
an alpha level of 0.05. If the empirical L-function lies 
outside the SCE, we rejected the CSR null hypoth-
esis (Baddeley et  al. 2016, pp. 390–394). When the 
L-function lies above the SCE, it indicates cluster-
ing, and if it is below, it suggests an overdispersed 
pattern (Baddeley et al. 2016, pp. 390–394). We did 
the simulations for all plants and each plant–insect 
interaction.

To determine whether seed predation and nectar 
robbing occur together more frequently than expected, 
we conducted a second-order bivariate analysis. This 
analysis enables us to compare the spatial relationship 
between two point patterns and infer biological mean-
ing, such as coexistence or dependence (Dixon 2013). 
To compare bivariate data, we used the inhomoge-
neous L-cross function. We transformed the K-cross 
function to L-cross function as described in Baddeley 
et al. (2016, pp. 594–596) to check how many type j 
events are nearby the i type (Table 2d). We used the 
L-cross function to examine whether the non-trophic 
interaction is more or less aggregated than expected. 
The L-cross function can also compare a point pattern 

Table 2   Summary of the formulas used

HSI: i and j are the index of a vector of the nearest-neighbour points, di is the nearest-neighbour distances for m randomly sampled 
data points, and the empty-space distances ej for an equal number m of randomly sampled spatial locations. L̂inhom(r) each point xj 
from the point process X is weighted depending on the function of the intensity λ that is subject to the location u on a specific radius 
r. Linhom,pois(r) : ≡ represents identical toL̂

crossinhom
(r) : X(j) is the sub-process of points of type j, with intensity λj, and t(u, r, X) is the 

count of r-neighbours. K(x;6) : x in a given point and 6 is the maximum derivative of Kernel for the Triweight method.
*Baddeley et al. (2016)
✝Guidoum (2015)

metric description formula

a HSI Hopkins-Skellam index*
=

m
∑

i=1

d2
i
∕

m
∑

j=1

e2
j

b L̂inhom(r)
Transformation of the K-function to the inhomoge-

neous L-function * =

�

�[
∑

xj∈X

1

𝜆(xj)
1{0 < ��u − xj�� ≤ r}�u ∈ X]∕𝜋

c L̂inhom,pois(r)
Poisson null model of the L-function * ≡ r

d L̂crossinhom(r)
Inhomogeneous L-cross function *

=

√

�j
−1
�
[

t(u, r,X(J))∕u�X(i))
]

∕�

e K(x;6) Triweight method for the
Kernel Density Map ✝

=
35

32
(1 − x2)31
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with a subsample of itself with a reshuffling proce-
dure (Baddeley et al. 2016; Fletcher & Fortin 2018). 
We used this feature to demonstrate that the inter-
actions were spatially randomly sampled to avoid 
bias in the spatial analyses (Supplementary Fig. 1 in 
Online Resource), and to find the spatial patterns of 
trophic interactions isolating the resource effect.

Density of trophic interactions v. habitat patch size

To test whether resource exploitation depends on 
resource patch size, we used quantile regression 
analysis of interaction frequency in discrete resource 
patches. We defined patches with the Kernel Density 
Estimation (KDE) map tool in QGIS. KDE is a com-
monly used tool to determine hotspots—or patches 
in our case (Nelson & Boots 2008). No edge cor-
rection was utilised because (1) the KDE applies to 
the intrinsic dataset, not to the individuals that could 
lie outside the Observational Window and (2) we 
clipped the area of the KDE inside the Observational 
Window. We chose the Triweight method (Table 2e) 
because it creates sharper patches (Guidoum 2015). 
The KDE bandwidth estimation differs from that 
chosen in the second-order analyses. In this case, the 
objective was to create a sharp KDE to identify the 
patches of resources. The likelihood cross-validation 
bandwidth selection method, with the bw.ppl func-
tion from Spatstat, provided the optimal bandwidth 
for our dataset: 3.2  m. Based on our visual percep-
tion, we considered that one plant per square meter 
is the minimum density to create a continuous snap-
dragon patch for the bumblebees and adult coleopter-
ans. Therefore, we created the KDE contour map with 
the QGIS tool contour at a density of 1 ind./m2 and a 
pixel size of 0.1 m.

We compared the resource patch area with the 
number of trophic interactions detected inside. The 
abundance was transformed to decimal logarithm 
after adding 1 (Connor et al. 1997; Schooley & Wiens 
2005). We then used quantile regression analysis 
because it supports heteroscedastic data—like ours—
and is equivariant to monotonic transformations 
(Cade et al. 1999). We proceed as sensu Schooley and 
Wiens (2005), indicating the 5% regression quantile 
as the lower constraint, the 50% as the median and 
the 95% as the upper one. The slope and confidence 
intervals (CI) of the 95% quantile were compared 
with the slope of the Null Linear Regression (NLR). 

We calculated the NLR slope by dividing the num-
ber of snapdragons surveyed for plant–insect inter-
actions by the total number of snapdragons across 
the dataset. If the NLR is between the 5% and 95% 
quantile regression lines, then our data is equivalent 
to the ideal free distribution hypothesis. If the NLR 
is significantly above the 95% quantile, it corresponds 
with the undermatching hypothesis. When the NLR 
is significantly below the 5% quantile, it matches 
the resource concentration hypothesis (Schooley & 
Wiens 2005). Simultaneously, if the 95% quantile had 
a significantly greater slope (CI 95%) than the 50% 
quantile, then the resource patch size is the active 
constraint of the trophic interaction among other fac-
tors, called a limiting-factor relationship (Cade et al. 
1999; Schooley & Wiens 2005).

Resource accessibility in a heterogeneous landscape

To assess the accessibility to resources in a heteroge-
neous landscape, we computed the minimum distance 
between the location of each trophic interaction and 
six landscape features. Initially, we verified the spatial 
autocorrelation of the point-pattern data across four 
scales, employing the joint count test (Stevens & Jen-
kins 2000) conducted with the R package spdep. The 
scales used were 5, 20, 40, and 100 nearest neighbor 
points. This preliminary analysis confirmed that the 
trophic interactions were spatially autocorrelated.

To mitigate the influence of spatial autocorrela-
tion and ensure minimal data loss while examining 
the association between trophic interactions and land-
scape features, we implemented a thinning process 
(pruning) on the point spatial data, separately for seed 
predation and nectar robbing. We followed the proce-
dure outlined by Assis (2020) to determine the mini-
mum thinning required to eliminate spatial autocorre-
lation. First, we thinned the complete dataset to retain 
one individual every X meters in the surrounding area, 
where X ranged from 1 to 30 m in 0.5 m increments 
(yielding 59 subsamples). Next, we evaluated spatial 
autocorrelation in the subsamples at the same four spa-
tial scales (5, 20, 40, and 100 nearest neighbor points) 
using the joint count test. For subsequent analysis of 
landscape features, unambiguously avoiding autocor-
relation across multiple scales, we selected the mini-
mum thinning interval without significant spatial auto-
correlation at any of these four scales. To account for 
potential variation introduced by randomness in the 
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thinning process, we conducted bootstrapping, repeat-
ing the thinning and autocorrelation tests one hundred 
times. Finally, we calculated the mean of the minimum 
thinning distances obtained through bootstrapping. 
The resulting minimum thinning distance necessary 
to eliminate significant autocorrelation was 18.5 m for 
nectar robbing and 3  m for seed predation, reducing 
the datasets to 155 and 466 plants, respectively.

We extracted the landscape features from the soil 
use layer of the Institut Cartogràfic i Geològic de 
Catalunya (Cobertes del sòl. ICGC 2018) and cat-
egorized them as bare soil, fields, farming, forests, 
gardens and urban areas (Supplementary Table  4 in 
Online Resource). We computed the minimum dis-
tance between the location of the trophic interactions 
and the landscape features using the QGIS geoalgo-
rithm v.distance. We then generated a logistic GLM to 
compare the presence or absence of each trophic inter-
action (previously thinned to eliminate spatial autocor-
relation) with the minimum distance to each landscape 
feature, thus it is independent of plant location.

Results

Aggregation patterns

First, we quantified spatial aggregation using the HSI. 
We found that the resource and both trophic interactions 
are significantly aggregated compared to a CSR process 
(Table 3). The second-order analysis showed that snap-
dragons and the trophic interactions are above the SCE 
on a fine scale (Fig. 2a). However, the snapdragon aggre-
gation dilutes after a radius of 46  m and the resource 
exploitation by both trophic interactions at 35 m.

Second, we asked whether each trophic interaction is 
as aggregated as expected, given the degree of resource 

aggregation. For seed predation, neither the HSI nor 
the L-cross function showed any deviation from the 
expected aggregation of the snapdragons (Table  3, 
Fig. 2b). For nectar robbing, the HSI was lower than its 
resource (more aggregated), but the difference is only 
marginally significant (p = 0.065; Table  3). Similarly, 
the L-cross function was within the SCE at most scales, 
except for the range between 0–2  m and 50–63  m, 
where it exceeded the SCE, and after 120 m of radius, 
where it fell below the SCE (Fig. 2c).

Third, we compared the spatial aggregation of the 
two trophic interactions to each other, that is the non-
trophic interaction. The observed L-cross function 
peaked around 8 m, then largely exceeded the SCE until 
40 m, and finally fell below the SCE at 100 m (Fig. 3). 
This indicates that nectar robbing and seed predation 
occur together more often than expected at fine scales. 
However, the Fig. 3 also shows a repulsion effect of the 
non-trophic interactions at radius above 100 m.

Density of trophic interactions v. resource patch size

In our study area, the 2,333 surveyed snapdragons 
clumped in 338 patches with a mean size of 15,84 m2. 
The NLR had a slope (b1) of 0.405. For seed preda-
tion, the NLR lay between the 50% and 95% quantiles, 
consistent with the ideal free distribution hypothesis. 
Moreover, the 95% slope is significantly greater than 
the 50% slope, demonstrating a limiting-factor associ-
ation with habitat patch size (Supplementary Table 3 
in Online Resource and Fig. 4a). For nectar robbing, 
the NLR is between the 5% and 50% quantiles, also 
consistent with an ideal free distribution. However, 
we did not detect a significant limiting-factor associa-
tion: the 95% and 50% quantile slopes were not sig-
nificantly different (Supplementary Table 3 in Online 
Resource and Fig. 4b).

Table 3   Hopkins-Skellam analysis for the snapdragon plants 
and trophic interactions. N: population size or interaction 
sample size. HSI significantly less than 1 indicates cluster-
ing. P-value from CSR: H0 is CSR. HSI reshuffled: HSI mean 

of the random shuffling of trophic interactions across plants. 
P-value from reshuffling: H0 is HSI = HSI reshuffled. Signifi-
cant P-values are bolded (ɑ = 0.05)

actors N HSI P-value from CSR HSI reshuffled P-value 
from 
reshuffling

resource 2,333 0.013  < 0.001 - -
seed predators 175 (944) 0.064  < 0.001 0.090 0.550
nectar robbers 685 (944) 0.009  < 0.001 0.090 0.065
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Resource accessibility in a heterogeneous landscape

The logistic GLM analysis did not detect any signifi-
cant correlation between seed predation and nectar 
robbing frequencies and the location of any of the 
tested landscape features: bare soil, fields, forests, 
gardens and urban areas (p > 0.1 for all analyses). The 
results of the analysis are shown in Supplementary 
Table 5 in Online Resource.

Discussion

Biotic interactions and their strength shift when 
changing environmental conditions (Tikhonov 
et al. 2017) and the spatial scale (Ovaskainen et al. 

2016). Here, we analyzed trophic and non-trophic 
interactions to ask how two insects exploit spatially 
structured resources at several spatial scales, and 
react to other exploiters. We integrated multiscale 
spatial analyses by sampling thousands of plants to 
quantify resource aggregation and patch size on a 
fine scale and by characterizing landscape hetero-
geneity. We found that seed predation and nectar 
robbing were as aggregated as the plant resource, 
increase proportionally with plant patch area, and 
are found together more often than expected at 
smaller scales. For a summary of the resulting find-
ings, please refer to Table  4. Our results could be 
useful for building detailed spatial ecological mod-
els of resource exploitation to incorporate biotic 
interactions into spatial and landscape ecology, 

Fig. 2   The clustering 
function (inhomogeneous 
L-function) of the resources 
and the trophic interac-
tions spatial patterns. a) 
Resources (in green), seed 
predation (in black) and 
nectar robbing (in orange) 
compared with CSR (blue). 
b) Seed predation compared 
with the null of reshuffled 
resources. c) Nectar robbing 
compared with the null of 
reshuffed resources. Solid 
lines represent the observed 
value of the L-function 
(Lôbs(r)); the dashed line 
represents the mean of the 
Monte-Carlo simulations 
for the CSR or reshuf-
fling (Lt̂heo(r)); the shaded 
area represents the space 
between lower (Lĥi(r)) 
and upper (L̂lo(r)) critical 
boundary from the simula-
tions (SCE)
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species distribution modelling, and evolutionary 
ecology (Bakx et al. 2019; Ovaskainen et al. 2016).

Insects can have an aggregated distribution due to 
a patchy structure of their resource (Fletcher & For-
tin 2018). Indeed, the first-order analysis showed that 

snapdragons (the resource) are clustered (Table  3). 
We suggest that this is related to the preference of 
snapdragons to live on rocky cliffs and disturbed 
areas, which itself is patchily distributed (Jaworski 
et al. 2016). The second-order analysis also showed a 
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Fig. 3   The closeness function, called inhomogeneous L-cross 
function, of the non-trophic interaction (in purple) in a reshuf-
fled bivariate interaction (in red). The solid line represents the 
observed value of the L-function for our data pattern (Lôbs(r)); 

the dashed line represents the mean of the reshuffling Monte-
Carlo simulations j (Lt̂heo(r)); the shaded area represents the 
space between lower (Lĥi(r)) and upper (Ll̂o(r)) critical bound-
ary from the simulations (SCE)

Fig. 4   Relationship 
between the number of 
trophic interactions and 
the resource patch size for 
(a) seed predation and (b) 
nectar robbing. The green 
dashed line represents the 
NLR with b1 = 0.405 and 
b0 = 0; the solid lines in 
each graph represent the 
5%, 50% and 95% regres-
sion quantiles of both 
seed predation and nectar 
robbing. Data plotted on a 
log–log scale 5th
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Table 4   Summary of the hypotheses addressed and results

interactions prediction: exploitation patterns are explained by… results figures and tables

trophic behaviour (tendency of insects to aggregate) no, mainly T. 3 and Fig. 2
non-trophic the spatial pattern of the other interaction yes Figure 3
trophic the resource patch size ideal free distribution Figure 4 and T. 7
trophic the landscape structure no Supp. T. 5
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significant aggregation of snapdragons below a radius 
of 46 m (Fig.  2a), perhaps attributed to the species’ 
short-distance seed dispersal mechanisms (Khimoun 
et  al. 2013). The posterior aggregation dilution is 
consistent with the size of patches found in Fig.  4, 
while the presence of snapdragon patches exhibited 
significant overdispersion beyond a radius of 70  m, 
likely attributable to the overdispersion of suitable  
habitat.

We predicted that both plant–insect interactions 
would be significantly more aggregated than their 
resource due to their behaviours: social nesting in 
bumblebees (Goulson 2010; Kembro et  al. 2019) 
and conspecific attraction in Brachypterolus beetles  
(MacKinnon et  al. 2005). However, seed predation 
was as aggregated as the resource for both first- and 
second-order PPAs (Table 3, Fig. 2b). Despite a lack 
of excessive aggregation for nectar robbing overall  
(Table 3), our second-order analysis found an excess 
aggregation of nectar robbing at two ranges (0-2  m 
and 50-63  m), and overdispersion beyond 120  m 
(Fig. 2c). The excess aggregation in the 0-2 m range 
could be an artifact of the GPS inaccuracy in the  
first 3.7  m. However, it is highly unlikely that the 
measurement error in GPS location systematically 
over-aggregated points. Therefore, aggregation at 
this small scale could be explained due to traplining  
behaviour, in which bumblebees are more likely 
to forage on the nearby unvisited neighbour plants 
(Kembro et  al. 2019). The excess aggregation in 
the 50-63  m range and the overdispersion beyond 
120  m could be consequences of an interaction 
between foraging range and intercolony competition.  
Bumblebees tend to exploit resources inside a  
foraging range around their nest, typically within 
100 m (Goulson 2010; Kembro et al. 2019). (Kembro  
et  al. 2019; Wolf & Moritz 2008). Complementing  
our analysis with knowledge of bumblebee nest  
locations would clarify the drivers of nectar robbing  
aggregation patterns.

Similar to the finding that both interactions are for 
the most part as aggregated as the resource, we found 
that resource exploitation increases proportionally 
with patch area (Fretwell & Lucas 1969; Kennedy & 
Gray 1993). That is, the relationship between number 
of interactions and patch size fits the ideal free distri-
bution hypothesis for both trophic interactions, with 
no significant pattern of under- or over-exploitation 
of patches depending on the patch size. An ideal 

free distribution is often found for bumblebee forag-
ing patterns, but the mechanism is not necessarily as 
simple as random patch selection (Goulson 2010). 
Larger patches are more easily spotted or more likely 
to be encountered, but this is balanced by two factors. 
First, as stated in the ideal free distribution hypoth-
esis, larger patches tend to be overexploited, and 
individuals can learn to avoid them. Second, there 
is a tendency to visit a higher proportion of flow-
ers in small patches, where bumblebees are better 
able to memorize and avoid previously visited flow-
ers than in large patches (Goulson 2010; Ohashi & 
Yahara 1999). In addition to our patch size relation-
ship findings, we detected a limiting-factor relation-
ship of patch size for seed predators, but not for bum-
blebees. We hypothesize that seed predation might 
be limited by the patch size because plants are both 
resource and habitat for the coleopteran larvae. The 
congener B. pulicarius is attracted by conspecifics 
and selectively feeds on flowers of Linaria vulgaris 
(morphologically similar to snapdragons, and also in 
Plantaginaceae) with a higher density of ramets (Egan 
& Irwin 2008; MacKinnon et al. 2005). If this behav-
iour were extrapolated to B. vestitus, the preference 
of adult individuals to eat and to lay their offspring 
in large snapdragon patches and their attraction to 
the presence of other beetle individuals (perhaps as 
mates) may lead to limitation of beetle density by 
patch size. Schooley and Wiens (2005) found a simi-
lar limiting-factor relationship for a Hemiptera spe-
cies with a life cycle similar to our focal seed predator 
(larvae live and feed on a patchily distributed cactus). 
However, we caution that the limiting factor result 
could be driven by false negatives of seed predation 
if larvae were too small during sampling, and a scar-
city of large patches (Fig.  4). Nonetheless, we have 
certainly demonstrated that both trophic interactions 
increase proportionally with patch size. These find-
ings have relevance for conservation decision-making 
for organisms that rely on patchily-distributed habitat 
or resources.

Landscape heterogeneity, such as distance from for-
est edge or human disturbance, can cause significant 
effects on plant–insect interactions (Gargano et  al. 
2017; Totland 2001; Winfree et  al. 2009). However,  
we did not find any significant effects of landscape  
features on plant–insect interaction frequency. 
Our results are in accordance with the findings of 
Swift et  al. (2017), where the nesting clustering  
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behaviour of the shorebird Hudsonian Godwit 
remained independent of the habitat and landscape 
characteristics. We hypothesize three possible (non-
exclusive) explanations for the lack of association 
between plant–insect interactions and landscape  
features. First, variation in foraging behaviour may be  
driven more strongly by resource spatial structure than  
landscape features. Second, variation in landscape  
features may be on too large of a scale to affect 
resource use. Both bumblebees and Brachypterolus  
beetles are flying species in their adult life cycle and 
appear to be making decisions at a scale range of 
meters and tens of meters—as previously discussed 
in the last two paragraphs. However, the landscape 
structure is at a scale of an order of magnitude higher, 
where for the points with interactions, the mean of 
the farthest landscape feature was approximately 
560 m for each interaction. Third, the lack of patterns  
at landscape scales could be a consequence of the 
potential dilution of effects resulting from both  
interactions occurring at community scales. This is 
due to the fact that both pollinators and seed predators  
interact with other species within the community. 
Together, these results do not support our hypothesis 
that a heterogeneous landscape affects the patterns 
of resource exploitation. However, these findings 
imply that we can isolate the behaviour and biotic 
interactions of the species from the structure of the  
surrounding landscape.

In addition to analyzing the spatial patterns of  
the trophic interactions in relation to their resource 
and landscape context, we asked whether there are  
any signals of non-trophic interaction between the 
bumblebees and beetles. We found a repulsion effect 
on the non-trophic interaction on radius above 100 m 
(Fig.  3). This phenomenon could be explained by 
bumblebees and adult coleoptera not choosing the 
same patches at large scales (perhaps due to landscape 
features we could not detect). However, at small scales 
when they choose the same patches they tend to choose  
the same flowers. That is, contrary to our prediction of  
competitive exclusion at fine scale, we found nectar  
robbing and seed predation to be closer than expected 
on a radius below 40  m. The steep initial slope is 
explained by the finding of both interactions inside 
120 out of 944 sampled plants (69% of plants with 
seed predation and 18% of plants with nectar robbing).  
First, the lack of evidence for competition could be 

explained by resource partitioning, because the two 
insects exploit different resources. Second, it could 
be explained by temporal partitioning. We found that 
nectar robbing is more frequent early in the season and 
seed predation later (Supplementary Fig. 2 in Online 
Resource). Beyond simply a lack of competition,  
however, we observed a more aggregated pattern than 
expected (Fig. 3). One possible explanation is that the 
species have a commensal relationship (Hochstrasser 
& Peters 2004), where egg-laying coleopterans utilize 
the nectar robbing holes to access the flower’s interior.  
A more likely explanation is that both insects are 
attracted to similar floral and plant traits (Rodríguez-
Rodríguez et  al. 2017). Further study is needed; 
as Carl Sagan said, “Extraordinary claims require  
extraordinary evidence”.

Conclusions and future directions

Despite the importance of biotic interactions for 
structuring organisms’ spatial distributions, they  
are more challenging to quantify than the abiotic  
environment, and have thus been only infrequently 
analyzed in a spatially explicit context (Ovaskainen 
et al. 2016; Wilkinson et al. 2021). Here, we collected 
a large spatial dataset on two antagonistic plant–insect 
interactions and their plant host and analyzed their 
distribution on multiple spatial scales. We found that 
plant aggregation impacted the resource exploitation 
patterns of plant–insect interactions. In addition, we 
demonstrated an ideal free distribution of exploitation  
for both species. Finally, we found an intriguing  
pattern of overlap in nectar robbing and seed predation. 
Our results could be useful for scaling up to multiple 
populations in order to integrate biotic interactions 
into species distribution modelling where resource 
exploitation cannot be measured on so fine of a scale. 
Future work in the system could simultaneously  
consider temporal and spatial dynamics of insect  
behavior, resource exploitation (Cressie & Wikle 2015; 
Gabriel & Diggle 2009) and resource availability, such  
as effects of flowering synchrony (Jácome-Flores et al. 
2018). A multivariate analysis at the community level 
can also be considered in the future (as in Perea et al. 
2021). Finally, further analysis could compare whether 
plant traits or plant spatial structure is more predictive  
of biotic interaction frequency.
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Data availability (data transparency)

The datasets generated and analysed during the current 
study will be deposited to the ISTA Research Explorer 
repository upon manuscript acceptance. Voucher spec-
imens of insects are deposited in the Museo Nacional 
de Ciencias Naturales, Spain.

Code availability (software application or custom 
code)

The majority of analyses were conducted in R. Pro-
ject code is available, upon prior request, in the fol-
lowing Github repository: https://​github.​com/​Guill​
emPoc​ull/​Spati​al_​Ecolo​gy_​Antir​rhinum_​majus. 
Upon manuscript acceptance, the scripts used to gen-
erate the final published results will also be deposited 
to the ISTA Research Explorer repository. QGIS soft-
ware was used without coding.
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