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Abstract: Methods used in topological data analysis naturally capture higher-order interactions in
point cloud data embedded in a metric space. This methodology was recently extended to data
living in an information space, by which we mean a space measured with an information theoretical
distance. One such setting is a finite collection of discrete probability distributions embedded in
the probability simplex measured with the relative entropy (Kullback–Leibler divergence). More
generally, one can work with a Bregman divergence parameterized by a different notion of entropy.
While theoretical algorithms exist for this setup, there is a paucity of implementations for exploring
and comparing geometric-topological properties of various information spaces. The interest of this
work is therefore twofold. First, we propose the first robust algorithms and software for geometric
and topological data analysis in information space. Perhaps surprisingly, despite working with
Bregman divergences, our design reuses robust libraries for the Euclidean case. Second, using the
new software, we take the first steps towards understanding the geometric-topological structure
of these spaces. In particular, we compare them with the more familiar spaces equipped with the
Euclidean and Fisher metrics.

Keywords: higher-order interactions; topological data analysis; persistent homology; simplicial
complex; alpha shape; wrap complex; information theory; Shannon entropy; relative entropy;
Bregman divergence; non-Euclidean geometry; Bregman geometry

1. Introduction

The motivation for the work reported in this paper is the deeper understanding of
the effect of the ambient metric on the higher-order interactions arising in data, as well as
its multi-scale geometric–topological properties. The first can be viewed via the Čech or
Alpha complex, the second through their persistent homology. Specifically, we generalize
geometric and topological data analysis methods from Euclidean geometry to Bregman
geometries in which dissimilarity is measured with divergences that are generally non-
symmetric and violate the triangle inequality. By necessity, these methods are sensitive to
the dissimilarity defining the ambient geometry, and we exploit this sensitivity to quantify
the difference between geometries.

As example geometries, we emphasize those related to information-theoretic concepts,
such as the Shannon geometry and the Fisher geometry. What we call the Shannon geometry
is induced by the relative entropy (Kullback–Leibler divergence) [1], which is based on
Shannon’s entropy [2]. The Fisher geometry is induced by the Fisher distance (more
technically the Fisher–Rao metric [3]). It was introduced by Rao [4], building on Fisher’s
seminal work [5] in statistics.

These are examples of what we call information spaces [6]. Such spaces often exhibit
unfamiliar behavior, different from the Euclidean space we are used to. Understanding
such spaces is however important, as—plainly speaking—this is where many types of data
live [7].
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Importantly, these geometries are commonly used in data science. For example,
relative entropy is a standard loss function used in dimensionality reduction [8,9] and
deep learning [7,10]. (This connection may not be immediately obvious. Many models
aim to explicitly minimize what is called cross-entropy. It has the same minimizer as the
relative entropy, which can additionally be viewed as a distance, and therefore gives rise to
a geometry). The Fisher geometry starts to be considered [11] as an alternative.

We therefore deem it important to shed light on the differences and commonalities
between these geometries. Some pertinent questions are as follows: Is the simpler Fisher
geometry a good approximation of the Shannon geometry? Can we see a significant
difference between the Euclidean geometry and the non-Euclidean ones, as predicted by
the discrepancy in their practical performances?

In the current work, we are particularly interested in the algorithms that underpin
the data analysis methods, especially the topological ones. While the Fisher geometry can
be handled with Euclidean tools [6], the Shannon geometry used to require customized
ones [12]. We show that the Shannon geometry can also benefit from existing robust tools,
although in this case the application is less direct. We also hope that this development
opens new alleys for topological data analysis in information spaces.

Prior work and results. The research reported in this paper merges several lines of work.
One is the study of Bregman divergences from the computational geometry point of view
initiated in [13] and the extension of topological data analysis to Bregman and Fisher geome-
tries started in [6,12]. Another is the study of higher-order interactions in high-dimensional
probabilistic feature spaces [14,15], which generally lack information-theoretical interpreta-
tions.

Pivotal work at the intersection of computational geometry and Bregman geometry
includes the extension of k-means clustering [16], proximity search data structures [17,18],
and Voronoi tessellations [13] to the Bregman setting.

On a practical note, we mention a research direction focusing on detecting, loosely
speaking, the holes in knowledge [14,15,19,20] understood as a collection of text documents.
In the simplest case, each text document is represented as a discrete probability distribution
(by counting characteristic keywords [21]). Interestingly, higher-order interactions among
documents are necessary to capture the multi-scale topology of these data. Indeed, pairwise,
triplewise, etc., intersections between balls (with respect to the appropriate metric or
divergence) centered at the data points reveal the topological structure.

In this work, we will also use computational topology methods. One important
topological tool is the nerve and the related Nerve Theorem. Intuitively, it allows one to
capture the topology (more precisely, the homotopy type) of a union of (a finite collection of)
objects using a finite simplicial complex. The theorem is usually attributed to Borsuk [22] or
Leray [23], and is stated more explicitly by Weil [24]. See [25] for a comprehensive, modern
treatment of this topic.

A particularly important concept in our investigations is the Bregman–Delaunay
mosaic, which we formally define as the straight-line dual of the not necessarily straight-
line Bregman–Voronoi tessellation obtained by measuring distance with the Bregman
divergence from a data point. This mosaic was already defined in [13], and we explain how
it can be computed as a weighted Euclidean Delaunay mosaic using standard geometric
software. In Euclidean space, the Alpha shapes can be defined as the sublevel sets of the
radius function on the Delaunay mosaic, which is a generalized discrete Morse function
in the sense of Forman [26] and Freij [27]. The lower sets of the critical simplices of this
function constitute the Wrap complex [28], which was introduced as a shape reconstruction
tool in [29]. We extend this framework by introducing the rise function on a Bregman–
Delaunay mosaic, which provides a convenient measure of the size of a Bregman ball. With
these notions, we construct the shape of data in different geometries, and we use them to
quantify the difference between the geometries.

We have implemented all the algorithms and used the resulting software to run
experiments comparing the Euclidean, Shannon, and Fisher geometries for synthetic data.
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We find that the Delaunay mosaics and their Alpha and Wrap complexes in these geometries
show some, occasionally subtle, differences, which we quantify.

Outline. Section 2 provides the necessary background from discrete geometry and compu-
tational topology. Section 3 gives the details needed to compute Delaunay mosaics and their
Alpha and Wrap complexes in Bregman and Fisher geometries using software for weighted
Delaunay mosaics in Euclidean geometry. Section 4 presents computational experiments,
and Section 5 discusses the quantification of the difference between Bregman and other
geometries. Section 6 concludes the paper. In Appendices A–D, we provide supplementary
experiments, results, and background information.

2. Background

We need some background on Bregman divergences, Delaunay mosaics, and discrete
Morse functions. Indeed, this paper combines these concepts to obtain new insights into
Bregman–Delaunay mosaics and their scale-dependent subcomplexes.

Bregman divergence. Given a suitable convex function on a convex domain, the best affine
approximation at a point defines a dissimilarity measure on the domain (see [30]). We
follow [31] in the details of this construction, requiring a technical third condition that
guarantees a conjugate function of the same kind. Let Ω ⊆ Rd be an open and convex
domain. A function F : Ω → R is of Legendre type [32] if

(i) F is differentiable;
(ii) F is strictly convex;
(iii) ∇F diverges whenever we approach the boundary of Ω.

If the boundary of the domain is empty, which is the case for Ω = Rd, then Condition (iii) is
void. In other words, ∥∇F(x)∥ does not necessarily diverge when ∥x∥ → ∞. Given points
x, y ∈ Ω, the Bregman divergence from x to y associated with F is the difference between F
and the best affine approximation of F at y, both evaluated at x:

DF(x∥y) = F(x)− [F(y) + ⟨∇F(y), x − y⟩], (1)

where ⟨., .⟩ denotes the standard dot product. Note that DF(x∥y) ≥ 0, with equality iff
x = y, resembling a metric. However, the other two axioms of a metric do not hold: the
divergence is not necessarily symmetric, and it violates the triangle inequality in all non-
trivial cases. In spite of these shortcomings, Bregman divergences are useful as measures of
dissimilarity and are sufficient to define a geometry.

For a given h ≥ 0, the primal ball with center x contains all points y such that the
divergence from x to y is at most h, and the dual ball contains all points y such that the
divergence from y to x is at most h:

BF(x, h) = {y ∈ Ω | DF(x∥y) ≤ h}, (2)

B∗
F(x, h) = {y ∈ Ω | DF(y∥x) ≤ h}. (3)

The geometric intuition for (2) is to cast light onto the graph of F from a point vertically
above x ∈ Rd in Rd+1 and at distance h below the graph of F: the primal ball is the vertical
projection of the lit up part of the graph onto Rd. This ball is not necessarily convex. The
geometric intuition for (3) is to intersect the graph of F with the tangent hyperplane at x
shifted vertically upward by a distance h: the dual ball is the vertical projection of the part
of the graph on or below this shifted hyperplane. This ball is necessarily convex.

The conjugate of F can be constructed with elementary geometric means. Specifically,
we use the polarity transform that maps a point A = (a, ad+1) ∈ Rd ×R to the affine map
A∗ : Rd → R defined by A∗(x) = ⟨a, x⟩ − ad+1. Similarly, it maps A∗ to A = (A∗)∗. The
graph of F can be described as a set of points or a set of affine maps that touch the graph.
The conjugate function, F∗ : Ω∗ → R, is defined such that polarity maps the points of the
graph of F to the tangent affine maps of the graph of F∗, and it maps the tangent affine
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maps of the graph of F to the points of the graph of F∗. Since A and A∗ switch position
with gradient, so do F and F∗. More specifically, Ω∗ = ϕ(Ω) and F∗ : Ω∗ → R are given by

ϕ(x) = ∇F(x), (4)

F∗(ϕ(x)) = ⟨∇F(x), x⟩ − F(x), (5)

∇F∗(ϕ(x)) = x. (6)

The convexity of Ω and Conditions (i), (ii), (iii) imply that Ω∗ is convex and F∗ satisfies
(i), (ii), (iii). In other words, the conjugate of a Legendre type function is again a Legendre
type function. Importantly, the Bregman divergences associated with F and with F∗ are
symmetric: DF(x∥y) = DF∗(ϕ(y)∥ϕ(x)). Hence, ϕ maps primal balls to dual balls and it
maps dual balls to primal balls:

B∗
F∗(ϕ(x), h) = ϕ(BF(x, h)), (7)

BF∗(ϕ(x), h) = ϕ(B∗
F(x, h)). (8)

Since all dual balls are convex, all primal balls are diffeomorphic images of convex sets.
This implies that the common intersection of a collection of primal balls is either empty or
contractible [12], so the Nerve Theorem applies.

Examples. An important example of a Legendre type function is ϖ : Rd → R defined by
mapping x to half the square of its Euclidean norm: ϖ(x) = 1

2∥x∥2. It is the only Legendre
type function that is its own conjugate: ϖ = ϖ∗. The symmetry between the divergences
of a Legendre type function and its conjugate thus implies Dϖ(x∥y) = Dϖ(y∥x) and
Bϖ(x, h) = B∗

ϖ(x, h). Indeed, it is easy to see that the divergence is half the squared
Euclidean distance, Dϖ(x∥y) = 1

2∥x − y∥2, which is of course symmetric. This particular
Legendre type function provides an anchor point for comparison.

The example that justifies the title of this paper is the (negative) Shannon entropy [2].
We add an extra term, resulting in E : Rd

+ → R, defined as E(x) = ∑d
i=1[xi ln xi − xi]. Being

linear, the additional term does not affect the resulting divergence, but simplifies certain
computations later.

This function is of Legendre type and fundamental to information theory [2].
Its divergence,

DE(x∥y) = ∑d
i=1[xi ln xi − xi ln yi − xi + yi], (9)

is generally referred to as the relative entropy [10] or the Kullback–Leibler divergence [1]
from x to y. We remark that the above derivation using the Bregman machinery results in a
divergence which is valid on the entire positive orthant of Rd, and agrees with the standard
definition [1] on the standard simplex.

The gradient of the Shannon entropy at x is the vector ∇E(x) with components ln xi
for 1 ≤ i ≤ d. Using Equation (5), one easily computes that the conjugate of E maps this
vector to ∑d

i=1 xi. Hence E∗ : Rd → R is defined by mapping y ∈ Rd to E∗(y) = ∑d
i=1 eyi .

A case of special interest is the restriction of the Shannon entropy to the standard
simplex, which is a subset of the positive orthant. Writing x = (x1, x2, . . . , xd) for a point
of Rd

+, the standard (d − 1)-simplex, denoted ∆d−1, consists of all points x that satisfy
x1 + x2 + . . . + xd = 1. We use ∆d−1 as the domain of a Legendre type function, which
is the reason why we introduce ∆d−1 as an open set. Finally, write E∆ : ∆d−1 → R for
the restriction of the Shannon entropy to the standard simplex. This setting is important
because each x ∈ ∆d−1 can be interpreted as a probability distribution on d disjoint events.
Correspondingly, −E∆(x) = −E(x) is the expected efficiency to optimally encode a sample
from this distribution. Finally, the relative entropy from x to y is the expected loss in coding
efficiency if we use the code optimized for y to encode a sample from x. Projecting the
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gradient of the unrestricted Shannon entropy into the hyperplane of the simplex passing
through the origin, we obtain the gradient of the restriction:

∇E∆(x) =


ln x1
ln x2

...
ln xd

− 1
d

d

∑
i=1

ln xi


1
1
...
1

. (10)

Using (4) and (5), we compute the conjugate of E∆, which we state in terms of the barycentric
coordinates parametrizing Rd−1. Specifically, we obtain ϕ∆(x) = ∇E∆(x) and

E∗
∆(ϕ∆(x)) = ⟨∇E∆(x), x⟩ − E∆(x) (11)

= 1 − 1
d ∑d

i=1 ln xi (12)

= 1 + ln ∑d
i=1 eyi , (13)

in which the yi = ln xi − 1
d ∑d

i=1 ln xi are the coordinates in conjugate space. Indeed, it is
not difficult to verify (13) using ln ∑d

i=1 xi = 0 for points in the standard simplex.

Antonelli isometry. A Bregman divergence gives rise to a path metric in which length
is measured by integrating the square root of the divergence. As explained in [6], any
divergence that decomposes into a term per coordinate implies an isometry between this
path metric and the Euclidean metric. By (9), the relative entropy is an example of such
a divergence, and the corresponding path metric is known as the Fisher metric, which
plays an important role in statistics and information geometry [3]. Instead of formalizing
the recipe for constructing the Fisher metric from the relative entropy, we note that the
mapping

ȷ(x) = (
√

2x1,
√

2x2, . . . ,
√

2xd) (14)

is an isometry with Euclidean space, as first observed by Antonelli [33]. By virtue of
being an isometry, the distance between points x, y ∈ Rd

+ under the Fisher metric satisfies
∥x − y∥Fsh = ∥ȷ(x)− ȷ(y)∥. The path of this length from x to y is the preimage of the line
segment from ȷ(x) to ȷ(y), which is generally not straight.

Of special interest is the Fisher metric restricted to the standard (d − 1)-simplex,
denoted ∆d−1. The mentioned isometry maps ∆d−1 to ȷ(∆d−1), which is the positive orthant
of the sphere with radius

√
2 and center at the origin in Rd. The shortest path between

x, y ∈ ∆d−1 is thus the preimage of the great-circle arc that connects ȷ(x) and ȷ(y) on the
sphere. Since this arc is generally longer than the straight line segment connecting ȷ(x)
and ȷ(y) in Rd

+, the distance between x and y under the Fisher metric restricted to ∆d−1 is
generally larger than in the unrestricted case.

Alpha shapes and Wrap complexes. Two popular shape reconstruction methods based on
Delaunay mosaics are the Alpha shapes introduced in [34] and the Wrap complexes first
published in [29]. Both extend to generalized discrete Morse functions and therefore to
Bregman–Delaunay mosaics and Bregman–Wrap complexes. While working with Bregman
divergences, we can construct them using weighted Euclidean Delaunay mosaics, for which
there is readily available fast software. For brevity, standard definitions and properties are
available in Appendix B. Letting D be a simplicial complex and f : D → R a generalized
discrete Morse function, the Alpha complex for h is the sublevel set,

Alphah( f ) = f−1(−∞, h], (15)

and the Alpha shape is the underlying space of the Alpha complex. In contrast to the Alpha
shape, the assumption that f be a generalized discrete Morse function is essential in the
definition of the Wrap complex. Recall that every step of a generalized discrete Morse function
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is an interval of simplices in the Hasse diagram. We form the step graph, G = G f , whose
nodes are the steps and whose arcs connect step φ to step ψ if there are simplices P ∈ φ and
Q ∈ ψ with an arc from P to Q in the Hasse diagram. By construction, f is strictly increasing
along directed paths in the step graph, which implies that the graph is acyclic.

The lower set of a node ν in G, denoted ↓ ν, is the set of nodes φ for which there
are directed paths from φ to ν. Similarly, we write ↓ N =

⋃
ν∈N ↓ ν for the lower set

of a collection of nodes, and
⋃ ↓ N for the corresponding collection of simplices. We

are particularly interested in the set of singular intervals, and we recall that each such
interval contains a critical simplex of f . We write Sg f for the set of singular intervals, and
Sg f (h) ⊆ Sg f for the subset whose simplices satisfy f (Q) ≤ h. The Wrap complex for h is
the union of steps in the lower sets of the singular intervals with value at most h:

Wraph( f ) =
⋃

↓ Sg f (h). (16)

There are alternative constructions of the Wrap complex. Starting with the Alpha complex
for h, we obtain the Wrap complex for the same value by collapsing all non-singular
intervals that can be collapsed. The order of the collapses is not important as all orders
produce the same result, namely Wraph( f ). Symmetrically, we may start with the critical
simplices of value at most h and add the minimal collection of non-singular intervals
needed to obtain a simplicial complex. The minimal collection is unique and so is the result,
Wraph( f ). A proof of the equivalence of these three definitions of the Wrap complex is
given in Appendix C.

3. Mosaics and Algorithms

In this section, we review Bregman–Delaunay and Fisher–Delaunay mosaics as well as their
scale-dependent subcomplexes. All mosaics are constructed using software for weighted Delau-
nay mosaics in Euclidean geometry; all subcomplexes are computed by convex optimization,
adapting the method from [12]. We begin with the mosaics in Bregman geometry.

Bregman–Delaunay mosaics. Let Ω ⊆ Rd be open and convex, consider a Legendre type
function F : Ω → R, and let U ⊆ Ω be locally finite. Following [12,13], we define the
Bregman–Voronoi domain of u ∈ U, denoted domF(u, Ω), as the points a ∈ Ω that satisfies
DF(u∥a) ≤ DF(v∥a) for all v ∈ U. The Bregman–Voronoi tessellation is the collection
of such domains, and the Bregman–Delaunay mosaic records all non-empty common
intersections:

VorF(U, Ω) = {domF(u, Ω) | u ∈ U}, (17)

DelF(U, Ω) = {Q ⊆ U |
⋂

u∈Q
domF(u, Ω) ̸= ∅}, (18)

and we note that the mosaic is isomorphic to the nerve [35,36] of the tessellation. To
develop geometric intuition, we observe that VorF(U, Ω) can be obtained by growing
primal Bregman balls with centers at the points u ∈ U. When two such balls meet, they
freeze where they touch but keep growing everywhere else. Eventually, each ball covers
exactly the corresponding domain. Since the primal balls are not necessarily convex, it is not
surprising that the faces shared by the domains are not necessarily straight. Nevertheless,
the Delaunay mosaic has a natural straight-line embedding as all its cells are vertical
projections of the lower faces of the convex hull of the points (u, F(u)) ∈ Rd+1. To see this,
we note that each cell of the mosaic corresponds to a dual Bregman ball whose boundary
passes through the vertices of the cell, and this ball is the vertical projection of the part of
the graph of F on or below the graph of an affine function.

Construction. To construct the mosaic, we assume that U ⊆ Ω is in general position, by
which we mean that Conditions I and II from Appendix D are satisfied after transforming
U ⊆ Ω to X ⊆ Rd ×R such that DelF(U, Ω) is a subcomplex of the weighted Delaunay
mosaic of X. Lifting the points from Rd to Rd+1 and projecting the lower boundary of
the convex hull back to Rd, we obtain the mosaic. We remind the reader that relevant
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background information can be found in Appendix B, and define ϖ(a) = 1
2∥a∥2. We

formalize this method while stating all steps in terms of weighted points in d dimensions:

STEP 1: Let X ⊆ Rd ×R be the set of weighted points x(u) = (u, 2ϖ(u)− 2F(u)), with
u ∈ U.

STEP 2: Compute the weighted Delaunay mosaic of X in Euclidean geometry, denoted
Del(X).

STEP 3: Select DelF(U, Ω) as the collection of simplices in Del(X) whose corresponding
weighted Voronoi cells have a non-empty intersection with Ω∗.

Indeed, the weighted Delaunay mosaic computed in Step 2 may contain simplices
that do not belong to the Delaunay–Bregman mosaic of F. To implement Step 3, we note
that DelF(U, Ω) is dual to VorF(U, Ω), which is isomorphic to VorF∗(ϕ(U), Ω∗), and this
Bregman–Voronoi tessellation is the weighted Voronoi tessellation of X restricted to Ω∗.
This tessellation has convex polyhedral cells and is readily available as the dual of Del(X).
Writing Y(Q) ⊆ X for the points x(u) with u ∈ Q ⊆ U and dom(Y) for the weighted
Voronoi cell that corresponds to Y ∈ Del(X), we have

DelF(U, Ω) = {Q ⊆ U | dom(Y(Q)) ∩ Ω∗ ̸= ∅}. (19)

Instead of computing all these intersections, we can collapse Del(X) to the desired sub-
complex and thus save time by looking only at a subset of the mosaic. We explain how the
simplices can be organized to facilitate such a collapse. Recalling that Ω∗ ⊆ Rd is open
and convex, we introduce the signed distance function, θ : Rd → R, which maps every
a ∈ Rd to plus or minus r = r(a) such that the sphere with center a and radius r touches
∂Ω∗ but does not cross the boundary. Finally, θ(a) = r(a) if a ̸∈ Ω∗ and θ(a) = −r(a) if
a ∈ Ω∗. Note that Ω∗ = θ−1[−∞, 0) and that Ω∗

t = θ−1[−∞, t) is open and convex for
every t. Now construct ϑ : Del(X) → R by mapping Y ∈ Del(X) to the maximum t ∈ R
for which dom(Y) ∩ Ω∗

t = ∅. By (19), we obtain DelF(U, Ω) by removing all simplices Y
with ϑ(Y) ≥ 0. The crucial observation is that for X in general position, ϑ is a generalized
discrete Morse function with a single critical vertex. To see this, we observe that Vor(X)
decomposes Ω∗

t into convex domains for every value t, which by the Nerve Theorem [22]
implies that ϑ−1(−∞, t] is contractible. Removing the simplices in a sequence of decreasing
values of ϑ thus translates into a sequence of collapses that preserve the homotopy type of
the mosaic.

Rise functions. To introduce scale into the construction of Bregman–Delaunay mosaics, we
generalize the radius function from Euclidean geometry to Bregman geometries, changing
the name because size is more conveniently measured by height difference in the (d + 1)-st
coordinate direction as opposed to the radius in Rd. Let u̇ = (u, F(u)) and ū : Rd → R
be the point and affine map that correspond to u ∈ Ω, and let υ : Rd → R be the upper
envelope of the ū, u ∈ U. We introduce the rise function, ϱF : DelF(U, Ω) → R, which maps
each simplex, Q, to the minimum difference between F∗ and υ at points in the conjugate
Voronoi cell:

ϱF(Q) = inf
a∈ϕ(dom(Q,Ω))

[F∗(a)− υ(a)]. (20)

It is the infimum amount we have to lower the graph of F∗ until it intersects the graph
of υ at a point vertically above the Voronoi cell in conjugate space. Without going to the
conjugate, we can interpret ϱF(Q) in terms of (primal) Voronoi domains and cones of light
cast from the u̇ onto the graph, which we raise until the cones clipped to within their
Voronoi domains have a point in common. This interpretation motivates the name of the
function. Comparing (20) with (A8), we see that the two agree when F = ϖ and Ω = Rd.
Indeed, we obtain F∗ = ϖ and υ = ξ. Furthermore, ϕ(dom(Q, Ω)) = dom(Q, Ω), and
taking the infimum is the same as taking the minimum.
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For every h ∈ R, we have a sublevel set, DelF,h(U, Ω) = ϱF
−1(−∞, h], which we refer

to as the Bregman–Alpha complex of U and F for size h. For h < 0, this complex is empty,
for h = 0, it is a set of vertices namely the points in U, and for sufficiently large positive h,
this complex is DelF(U, Ω).

Information-theoretic interpretations. We offer a brief information-theoretical interpreta-
tion for many of the geometric objects mentioned above in the case of relative entropy.

Let us start with a primal relative entropy ball of radius r around a finite probability
distribution c. It contains all distributions that can be used to approximate c, incurring the
efficiency loss of at most r bits. With this, it is easy to see that the Voronoi and Delaunay
constructions have intuitive information-theoretical interpretations. For simplicity, let us
consider the Čech rise (radius) function, which arises from the first point of a non-empty
intersection between a number of primal balls [35,36]. This radius is therefore the smallest
number of bits that need to be incurred when approximating the centers of these balls
with a single distribution. This value can be interpreted as an information-theoretical
quantification of the high-order interactions among these distributions. Of course, the
intersection point is exactly the unique best choice for such a distribution.

The remaining objects can be interpreted in a similar way, which we leave for the
reader. We stress that the birth and death values in the resulting persistence diagrams also
express the loss of coding efficiency in bits—and stress that the diagrams are identical for
the Delaunay and Čech case.

Computation. We compute the rise function following the intuition based on primal
Voronoi domains explained below (20). Equivalently, ϱF(Q) is the minimum amount we
have to raise the graph of F so it has a supporting hyperplane that passes through all points
u̇, with u ∈ Q, while all other point u̇, with u ∈ U, lie on or above the hyperplane.

To turn this intuition into an algorithm, we consider the affine hull of Q and write
v̄ : aff Q → R for the affine function that satisfies v̄(u) = F(u) for all u ∈ Q. Let H : aff Q ∩
Ω → R measure the difference: H(a) = F(a)− v̄(a). Since F is of Legendre type, so is H.
We are interested in the infimum of H, which either occurs at a point in aff Q ∩ Ω or at the
limit of a divergent sequence. We therefore introduce a numerical routine that returns both,
the infimum and the point where it occurs:

1 INFSIZE (function F, simplex Q):
2 (aQ, hQ) = (arginf H, inf H);
3 return (aQ, hQ).

Note that the dual Bregman ball centered at aQ ∈ aff Q ∩ Ω of size hQ contains Q in
its boundary, and it may or may not contain points of U \ Q in its interior. If it does not,
then ϱF(Q) = hQ, otherwise, ϱF(Q) is the minimum function value of the proper cofaces
of Q. To express this more formally, we write coFacets(Q) for the collection of simplices
R ∈ Del(X) with Q ⊆ R and #R = #Q + 1. Since Q gets its value either directly or from a
coface, it is opportune to compute the rise function in the order of decreasing dimension:

1 for p = d downto 0 do
2 forall p-simplices Q ∈ DelF(U, Ω) do
3 (aQ, hQ) = INFSIZE(F, Q);
4 if B∗

F(aQ, hQ) ∩ [U \ Q] = ∅
5 then ϱF(Q) = hQ
6 else ϱF(Q) = min

R∈coFacets(Q)
ϱF(R).

Note that this algorithm assigns a value to every simplex in DelF(U, Ω). Indeed, the
simplices in Del(X) that are not in DelF(U, Ω) have been culled in Step 3, as explained above.

Fisher metric. In addition to the Bregman divergences, we consider Delaunay mosaics
under the Fisher metric. To construct them, we recall that the mapping ȷ : Rd

+ → Rd
+

defined by ȷ(x) = (
√

2x1,
√

2x2, . . . ,
√

2xd) is an isometry between the Fisher metric and
the Euclidean metric. This suggests the following algorithm:
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STEP 1: Compute the Delaunay mosaic of ȷ(U) in Euclidean space.

STEP 2: Remove the simplices from Del(ȷ(U)) whose dual Voronoi cells have an empty
intersection with Rd

+.

STEP 3: Draw the resulting complex by mapping each point ȷ(u) to the original point
u ∈ U ⊆ Rd

+.

The rise function in Euclidean geometry maps every simplex ȷ(Q) ∈ Del(ȷ(U)) to the
squared radius of the smallest empty circumsphere of ȷ(Q). By isometry, the preimage of
this Euclidean sphere is the smallest empty circumsphere of Q under the Fisher metric, and
the squared radius is the same. We thus obtain the rise function on the Fisher–Delaunay
mosaic by copying the values of the rise function on the Delaunay mosaic in Euclidean
geometry.

The construction of the mosaic for the Fisher metric restricted to the standard simplex,
∆d−1, is only slightly more complicated. As mentioned in Section 2, the isometry maps
∆d−1 to

√
2Sd−1

+ , which is our notation for the positive orthant of the sphere with radius
√

2
centered at the origin in Rd. The distance between points u, v ∈ ∆d−1 under the Fisher met-
ric thus equals the Euclidean length of the great-circle arc connecting ȷ(u), ȷ(v) ∈

√
2Sd−1

+ .
The Delaunay mosaic of ȷ(U) under the geodesic distance can be obtained by constructing
the convex hull of ȷ(U) ∪ {0} in Rd and centrally projecting all faces not incident to 0
onto the sphere. As before, we cull simplices whose dual Voronoi cells have an empty
intersection with the positive orthant of the sphere, and we draw the mosaic in ∆d−1 by
mapping the vertices back to the original points. Furthermore, the rise functions of the
mosaics in

√
2Sd−1

+ and in ∆d−1 are the same. Note, however, that the geodesic radius is
the arc-sine of and therefore slightly larger than the straight Euclidean radius in Rd.

4. Computational Experiments

We illustrate the Bregman–Alpha and Bregman–Wrap complexes while comparing
them to the conjugate, the Fisher, and the Euclidean constructions.

Example in positive quadrant. Let X be a set of 1000 points uniformly distributed according
to the Fisher metric in (0, 2]2 ⊆ R2

+. To sample X, we use the isometry, ȷ : R2
+ → R2

+,
between the Fisher and the Euclidean metric mentioned in Section 2. Specifically, we
sample 1000 points uniformly at random according to the Euclidean metric in (0, 2]2, and
we map each point with coordinates x1, x2 to ȷ−1(x1, x2) =

1
2 (x2

1, x2
2), which is again a point

in (0, 2]2. To compute the Delaunay mosaic in Fisher geometry, we construct the (Euclidean)
Delaunay mosaic of ȷ(X) and draw this mosaic with the vertices at the points in X. Recall
however that the domain is Ω = Rd

+ and not Rd. A simplex whose corresponding Voronoi
cell has an empty intersection with the positive orthant thus does not belong to the mosaic,
which is restricted to Ω. We identify these simplices and remove them from the Delaunay
mosaic as described in Section 3.

Example in standard triangle. Motivated by our interest in information-theoretic appli-
cations, we repeat the above experiment within the standard triangle, ∆2, which consists
of all points (x1, x2, x3) ∈ R3

+ that satisfy x1 + x2 + x3 = 1. Every point in ∆2 can be
interpreted as a probability distribution on three disjoint events, which is indeed the most
relevant scenario for the application of the relative entropy. To sample a set Y of 1000 points
uniformly at random according to the Fisher metric in ∆2, we use again ȷ, now restricted to
∆2, whose image is the positive orthant of the sphere with radius

√
2 centered at the origin

of R3. Sampling 1000 points uniformly at random according to the geodesic distance on
the sphere, we take the convex hull of ȷ(Y) ∪ {0} and obtain the mosaic by mapping the
vertices to the points in Y = ȷ−1(ȷ(Y)). Before drawing the faces in ∆2, we remove 0 and
all incident faces, as well as all faces whose corresponding Voronoi cells have an empty
intersection with R2

+.
Recall that the squared Fisher metric matches the relative entropy in the infinitesimal

regime, which explains the random appearance of the reconstruction in Figure 1, for which
we set the threshold to 0.0025. The reconstruction in Shannon geometry is similar to those in
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conjugate Shannon geometry in Figure 1a and in Fisher geometry in Figure 1b. To interpret
the reconstruction in Figure 1d, we observe that the difference between the Shannon entropy
and the squared Euclidean norm has a minimum at the center and no other critical points
in the interior of the triangular domain. Accordingly, the reconstruction removes simplices
near the corners and the three sides first. More drastically, the Bregman–Wrap complex for
the same data removes all simplices except for a single critical edge near the center (see
Figure 2d).

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure 1. (Top) The Bregman–Alpha complex in Shannon geometry of a set Y of 1000 random points
in ∆2 with threshold h = 0.0025. (Bottom row) The reconstructions in four different geometries.

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure 2. (Top) The Bregman–Wrap complex in Shannon geometry of the same points and threshold as in
Figure 1. (Bottom row) The reconstructions in four different geometries.
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5. Quantification of Difference

We take a data-centric approach to quantifying the differences between the geome-
tries. Given a common domain, Ω, and a finite set of points, U ⊆ Ω, we compare the
corresponding mosaics and rise functions.

Mosaics. The Delaunay mosaics of U depend on the local shape of the balls defined by the
metric or the divergence. Letting D and E be two Delaunay mosaics with vertex sets U, we
compare them by counting the common cells:

J(D, E) = 1 − #(D ∩ E)
#D + #E − #(D ∩ E)

, (21)

which is sometimes referred to as the Jaccard distance between the two sets. It is normalized
so that J = 0 iff D = E and J = 1 iff D and E share no cells at all. In our application, the two
mosaics share all vertices, so J is necessarily strictly smaller than 1. To apply this measure
to the constructions in Section 4, we write D0, D1, D2, D3, D4 for the mosaics in Figure A1,
and we write E0, E1, E2, E3, E4 for the mosaics in Figure 3. All mosaics are different, except
for D0 = D4 and E0 = E4. The Jaccard distances are given in Table 1.

Table 1. The Jaccard distances between the Delaunay mosaics in Shannon, conjugate Shannon, Fisher, Euclidean,
and weighted Euclidean geometries for points in the positive quadrant on the top and in the standard triangle on
the bottom.

J D0 D1 D2 D3 D4

D0 0.00 0.06 0.04 0.48 0.00
D1 0.00 0.02 0.47 0.06
D2 0.00 0.47 0.04
D3 0.00 0.48
D4 0.00

E0 E1 E2 E3 E4

E0 0.00 0.10 0.06 0.52 0.00
E1 0.00 0.04 0.51 0.10
E2 0.00 0.51 0.06
E3 0.00 0.52
E4 0.00

We see that the mosaics in conjugate Shannon geometry and in Fisher geometry are
most similar to each other and less similar to the mosaic in Shannon geometry. The mosaic
in Euclidean geometry is most dissimilar to the others (see Figure 3 and related Figure A1
in Appendix A for visual confirmation).

Rise functions. Different rise functions on the same mosaic can be compared by counting
the inversions, which are the pairs of cells whose orderings are different under the two
functions. Recall that D0 = D4 and E0 = E4, let d0 : D0 → R and e0 : E0 → R be the rise
functions in Shannon geometry, and let d4 : D4 → R and e4 : E4 → R be the rise functions
in weighted Euclidean geometry. The normalized number of inversions are

I(d0, d4) = 0.476, (22)

I(e0, e4) = 0.467. (23)

In words, slightly fewer than half the pairs are inversions, both for d0, d4 and for e0, e4. This
is plausible because d4 orders the cells along the diagonal while d0 preserves the random
character of the point sample (see Figure A2d). Similarly, e4 orders the cells radially, from
the center of the standard triangle to its periphery, while e0 preserves again the random
character of the sample (see Figure 4d).



Entropy 2024, 26, 637 12 of 22

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure 3. (Top) The Bregman–Delaunay mosaic in Shannon geometry for the same set of points as used in
Figures 1 and 2. (Bottom row) Four Delaunay mosaics whose triangles and edges are colored depending on
whether or not they belong to the Shannon–Delaunay mosaic.

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure 4. (Top) the color-coded Bregman–Delaunay mosaic in Shannon geometry of the same set of points as in
Figure 3. (Bottom row) The color-coded Delaunay mosaics.

We can compare the rise functions also visually, by color-coding the 2-dimensional
cells, and this works even if the mosaics are different. Specifically, we shade the triangles
by mapping small to large rise function values onto dark to light colors. In Figure A2a,b,
this leads to randomly mixed dark and light triangles, while in Figure A2c,d, there are
clear but opposing gradients parallel to the diagonal. Similarly, in Figure 4c, we see the
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rise function decreasing from the center to the boundary of the standard triangle, and in
Figure 4d we see it increasing from the center to the boundary. In addition, we compare
general rise functions by computing their persistence diagrams (see [36]). Writing Dgm(d)
for the persistence diagram of function d, we quantify the difference with the bottleneck
between the diagrams:

B(d, e) = W∞(Dgm(d), Dgm(e)). (24)

As explained in [36], the bottleneck distance is 1-Lipschitz, that is: B(d, e) ≤ ∥d − e∥∞,
but d ̸= e does not necessarily imply B(d, e) ̸= 0. The bottleneck distances between the
di : Di → R and the ei : Ei → R are given in Table 2.

Table 2. The bottleneck distances between the persistence diagrams of the rise functions on the Delaunay
mosaics in Shannon, conjugate Shannon, Fisher, Euclidean, and weighted Euclidean geometries for
points in the positive orthant on the top and points in the standard triangle on the bottom.

B d0 d1 d2 d3 d4

d0 0.0000 0.0028 0.0004 0.0126 0.0048
d1 0.0000 0.0028 0.0126 0.0048
d2 0.0000 0.0126 0.0048
d3 0.0000 0.0126
d4 0.0000

e0 e1 e2 e3 e4

e0 0.0000 0.0006 0.0003 0.0031 0.0035
e1 0.0000 0.0003 0.0030 0.0034
e2 0.0000 0.0030 0.0034
e3 0.0000 0.0023
e4 0.0000

In part, this comparison agrees with the Jaccard distances between the mosaics given
in Table 1. The most obvious disagreements are for d0, d4 and for e0, e4, in which quite
different functions are defined on identical mosaics.

6. Discussion

We extended two popular computational geometric-topological methods within the
framework of discrete Morse functions and showed how this generalizes the methods to
data in Bregman and Fisher geometries. Importantly, this allowed us to produce a robust
implementation without the need to develop customized low-level software. We hope
that this result will provide extra motivation for the development of geometric software
for high-dimensional Euclidean space, as such software can be reused to handle data in
information space. In particular, efficient computation of skeleta of weighted Delaunay
mosaics would be relevant for topological analysis of high-dimensional data.

Turning the table, we use these generalized methods to compare different geometries
experimentally. Our experimental approach to studying geometries is a first step towards
an intuitive understanding of these often counter-intuitive geometries, as well as the
high-order interactions occurring in them.

We reiterate one reason why understanding such geometries is important: they under-
pin many modern data science methods. It is, for example, a prerequisite for explaining the
surprisingly good performance of many deep learning models (that output predictions as
discrete probability distributions). More broadly, the space of discrete probability distribu-
tions is a basic object in mathematics, but is not well understood. We provide new tools for
broadening the understanding of such spaces.

Perhaps the main observation coming from our experiments is the following. As we
know, the pairwise distance in the Kullback–Leibler geometry and the Euclidean or Fisher
one can be very different. Indeed, on the standard simplex, the former can approach infinity
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while it is bounded in the latter. Still, our experiments show that the geometric-topological
structures—at least in low dimensions—do not typically show large discrepancies between
the geometries. Is this also true in higher dimensions? How does this generalize to other
Bregman divergences and the corresponding generalized Fisher distances [6]? To what
extent can the Fisher space replace the Shannon space in various applications?

Several open questions about experimental understanding of geometric spaces arise:

• How do these results generalize to other notions of entropy, such as the Burg entropy [37]?
The resulting Bregman Itakura–Saito divergence [38] is used to compare speech sam-
ples, but little is known about the resulting geometry and how it compares with other
geometries.

• Is there a deeper reason for the similarity of the studied geometries? For example: are
there Pinsker-type inequalities [39,40] between the pairwise dissimilarities (as well as
other Bregman divergences)?

• Can the sensitivity of Delaunay mosaics to the dissimilarity be quantified probabilisti-
cally, as the expected Jaccard distance for random point processes?

• Persistence has been used before to compare metric spaces [41], and it would be
interesting to know whether there are deeper connections to our work.

• Can the Fisher metric be extended beyond the positive part of the sphere? What is the
geometry of the preimage of the Antonelli map in this case?

We finish with a technical question concerning the Delaunay mosaics in Fisher geom-
etry: is the drawing we obtain by mapping the vertices to the corresponding points and
connecting them with straight edges, flat triangles, etc., necessarily a geometric realization
of the mosaic?
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Appendix A. Extra Visualizations

In this section, we provide visualizations and discussion for the positive orthant
case. We recall that the form of the Kullback–Leibler divergence we use works also in this
case (and not only on the standard simplex). Figure A3 top displays the Bregman–Alpha
complex in Shannon geometry for threshold 0.004. Infinitesimally, the relative entropy
agrees with the squared Fisher metric, so the uniform distribution of the points translates
into a fairly uniform arrangement of random holes in the complex. The closer we get to the
left or the lower side of the square, the denser the points get and the more anisotropically
aligned with the sides the edges and the triangles get.

For comparison, the bottom row in Figure A3 shows the Bregman–Alpha complex in
conjugate Shannon geometry, in Fisher geometry, in Euclidean geometry, and in weighted

https://git.ista.ac.at/katharina.oelsboeck/wrap_2_3-public/
https://git.ista.ac.at/katharina.oelsboeck/wrap_2_3-public/
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Euclidean geometry. The primal and the dual balls behave similarly, which explains the
similarity of the complexes in Figure A3 top and (a). It should however be mentioned that
the underlying triangulation in Figure A3a occasionally folds, which is caused by moving
the vertices from the conjugate points (for which we have a straight-line embedding) to
the original points. Not surprisingly, there is also a striking similarity to the reconstruction
in Fisher geometry Figure A3b. The Bregman–Alpha complex in Euclidean geometry
Figure A3c is just the usual Alpha complex of the points. It clearly shows that the density
decreases along the diagonal. The complex in Figure A3d mixes aspects of Shannon and
Euclidean geometry. In particular, it reuses the mosaic in Figure A3 top and assigns weights
to the points such that this triangulation is the weighted Delaunay mosaic of the weighted
points in Euclidean geometry. The corresponding rise function reflects the difference
between the Shannon entropy and the squared Euclidean norm. Indeed, the rise function
increases along the diagonal, which explains why the reconstructed complex is almost the
entire mosaic, with cells along the left and bottom sides of the square domain missing.

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure A1. (Top) The Bregman–Delaunay mosaic in Shannon geometry for the same set of points as used in
Figures A3 and A4. (Bottom row) Four Delaunay mosaics whose triangles and edges are colored depending on
whether or not they belong to the Shannon–Delaunay mosaic.

We see very similar reconstructions in Figure A4, which shows the Bregman–Wrap
complexes for the same set of points and the same threshold. By construction, each Wrap
complex is a homotopy equivalent subcomplex of the corresponding Alpha complex. The
biggest difference occurs in weighted Euclidean geometry, in which we reuse the mosaic in
Shannon geometry but filter with the rise function obtained from the squared Euclidean
norm. The corresponding Bregman–Wrap complex consists of a single vertex near the
upper right corner of the square domain (see Figure A4d). This reconstruction reflects the
simple relation between the Shannon entropy and the halved squared Euclidean norm:
ϖ(x)− E(x) is monotonically increasing from left to right and from bottom to top. This
translates into a discrete gradient that introduces a flow with a single critical cell, namely,
the vertex near the upper right corner.
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(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure A2. (Top) The color-coded Bregman–Delaunay mosaic in Shannon geometry. The set of points is the
same as in Figure A1. (Bottom row) The color-coded Delaunay mosaics for the same set X.

(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure A3. (Top) The Bregman–Alpha complex in Shannon geometry of a set X of 1000 points uniformly
distributed according to the Fisher metric in (0, 2]2 and a threshold h = 0.004. (Bottom row) The reconstructions
in four different geometries.
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(a) Conjugate Shannon. (b) Fisher. (c) Euclidean. (d) Weighted Euclidean.
Figure A4. (Top) The Bregman–Wrap complex in Shannon geometry of the same points and the same threshold
as in Figure A3. (Bottom row) The reconstructions in four different geometries.

Appendix B. Background on Delaunay Mosaics and Related Topics

We recall standard definitions related to Delaunay mosaics, the corresponding liftings
and projections, as well as discrete Morse theory.

Delaunay mosaics. In this paper, the ability to assign real weights to points is essential,
so we go straight to the weighted generalizations of the Voronoi tessellation and the
Delaunay mosaic. A weighted point is a pair x = (pt(x), wt(x)) ∈ Rd × R, in which
pt(x) is its location and wt(x) is its weight. The power distance of a ∈ Rd from x is
πx(a) = ∥pt(x)− a∥2 − wt(x). It is common to think of the weighted point as a ball with
center pt(x) and squared radius wt(x). With this interpretation, πx(a) is negative inside,
zero on the boundary, and positive outside the ball. Given a locally finite set of weighted
points, X ⊆ Rd ×R, the (weighted) Voronoi domain of x ∈ X consists of all points a for
which x minimizes the power distance, and the (weighted) Voronoi tessellation of X is the
collection of such domains:

dom(x) = {a ∈ Rd | πx(a) ≤ πy(a), ∀y ∈ X}, (A1)

Vor(X) = {dom(x) | x ∈ X}. (A2)

A (weighted) Voronoi cell is the common intersection of Voronoi domains, and we write
dom(Q) =

⋂
x∈Q dom(x). Note that the affine hull of dom(Q) contains a unique point,

denoted aQ, that minimizes the power distance to the weighted points in Q. Indeed, aQ is
at the intersection of the affine hull of dom(Q) and the affine hull of the locations pt(x),
x ∈ Q. Let #Q be the cardinality of Q. We are primarily interested in the generic case,
when every non-empty Voronoi cell, dom(Q), satisfies the following two general position
conditions:

I. the dimension of dom(Q) is d + 1 − #Q,
II. aQ does not belong to the boundary of dom(Q).

By Condition I, dom(Q) = ∅ whenever #Q > d + 1. Condition I also implies that
every non-empty Voronoi cell is the intersection of a unique collection of Voronoi domains.
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Figure A5. The Voronoi tessellation restricted to the open rectangular region and its dual restricted
Delaunay mosaic.

The (weighted) Delaunay mosaic is the collection of polytopes spanned by subsets
of X that define non-empty Voronoi cells. It is convenient to identify such a subset, Q,
with the polytope it spans, which is the convex hull of the locations of the weighted points
in Q. In the assumed generic case, all polytopes are simplices, and the Delaunay mosaic
is a simplicial complex geometrically realized in Rd, which we denote as Del(X). Most
of the time, we restrict our attention to an open convex region, Ω ⊆ Rd, we assume
X ⊆ Ω × R, and we write dom(Q, Ω) = dom(Q) ∩ Ω. Correspondingly, the restricted
Voronoi tessellation and the restricted Delaunay mosaic are

Vor(X, Ω) = {dom(x, Ω) | x ∈ X}, (A3)

Del(X, Ω) = {Q ⊆ X | dom(Q, Ω) ̸= ∅} (A4)

(see Figure A5).

Lifting and projecting. The Voronoi tessellation and the Delaunay mosaic can both be
constructed as the projection of the boundary complexes of convex polyhedra in Rd+1.
To explain this, recall that ϖ(a) = 1

2∥a∥2 and map every weighted point, x, to the point
ẋ ∈ Rd+1 and to the affine map x̄ : Rd → R defined by

ẋ = (pt(x), ϖ(pt(x))− 1
2 wt(x)), (A5)

x̄(a) = ϖ(pt(x)) + ⟨pt(x), a − pt(x)⟩+ 1
2 wt(x) (A6)

= ⟨pt(x), a⟩ − 1
2∥pt(x)∥2 + 1

2 wt(x). (A7)

The map is chosen so that the solution to ϖ(a)− x̄(a) = 0 is the sphere with center pt(x)
and squared radius wt(x). The point is chosen so that a point on the graph of ϖ lies on or
below the graph of x̄ iff this point is visible from ẋ, by which we mean that the entire line
segment connecting ẋ with this point lies below the graph of ϖ.

Let ξ : Rd → R be the pointwise maximum of the affine maps, ξ(a) = maxx∈X x̄(a),
and note that it is piecewise linear and convex. As observed already by Georges Voronoi [42],
the vertical projection of its linear pieces gives the Voronoi tessellation of X in Rd. To ob-
tain a similar construction of the Delaunay mosaic, we take the convex hull of the points
ẋ ∈ Rd+1. We call a hyperplane that touches the polytope without intersecting its interior
a support plane, and the intersection of the polytope with a support plane a face of the
polytope. For points in general position, all faces are simplices. A lower face is the intersec-
tion of the polytope with a non-vertical support plane such that the polytope lies above the
hyperplane. In analogy to the relation observed by Voronoi, the vertical projection of the
lower faces of the convex hull gives the Delaunay mosaic of X in Rd.

The interpretations of the Voronoi tessellation and the Delaunay mosaic as projections
of boundary complexes of convex polyhedra provide geometrically intuitive interpretations
of a function that plays a crucial role in this paper. Recall that each simplex, Q ∈ Del(X),
corresponds to a Voronoi cell, dom(Q). The radius function, or more precisely the half-
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squared radius, ϱ : Del(X) → R, maps Q to the minimum difference between ϖ and ξ at
points in the Voronoi cell:

ϱ(Q) = min
a∈dom(Q)

[ϖ(a)− ξ(a)]. (A8)

In words, ϱ(Q) is the amount we have to lower the graph of ϖ until it intersects the graph
of ξ at a point vertically above dom(Q). The function value is also the minimax difference
between ϖ and any affine map that satisfies ȳ(pt(x)) ≤ ϖ(pt(x))− 1

2 wt(x) for all x ∈ X
and with equality for all x ∈ Q. Specifically, we minimize the maximum ȳ(a)− ϖ(a), in
which the maximization is over all a ∈ Rd, and the minimization is over all affine maps,
ȳ : Rd → R, that satisfy the conditions stated above.

Discrete Morse theory. Assuming a general position, the radius function on the Delaunay
mosaic enjoys structural properties, which we now formalize. Let K be a simplicial complex
and P, Q ∈ K two simplices. For a monotonic function, f : K → R, P ⊆ Q implies
f (P) ≤ f (Q). The Hasse diagram of K is the directed graph whose nodes are the simplices
and whose arcs are the codimension 1 face relations: every arc ends at a p-simplex and starts
at a (p − 1)-dimensional face of this simplex. By construction, the values of a monotonic
function are non-decreasing along directed paths in the Hasse diagram. A level set of
f is a maximal collection of simplices with shared function value, f−1(r) ⊆ K, and we
call a maximal connected subset of a level set a step. For simplices P ⊆ R in K, call
ψ = {Q ∈ K | P ⊆ Q ⊆ R} an interval, P = lb(ψ) its lower bound, R = ub(ψ) its upper
bound, and note that #ψ = 2#R−#P. According to an inessential modification of the original
formulation by Forman [26], f is a discrete Morse function if every step is an interval of
size 1 or 2. A slightly weaker condition was introduced by Freij [27], calling f a generalized
discrete Morse function if every step is an interval. The corresponding partition of K into
intervals is called the generalized discrete gradient of f .

The singleton intervals are special, which is expressed by calling the simplices they
contain and the corresponding values critical. To motivate this terminology, consider
two contiguous values, r < s, and the corresponding sublevel sets, Kr = f−1(−∞, r] and
Ks = f−1(−∞, s]. By assumption, no simplex maps to a value strictly between r and s,
which implies that the difference between the two complexes is the level set at s. This
level set is a disjoint union of steps, and because f is generalized discrete Morse, a disjoint
union of mutually separated intervals. When we add the simplices of such an interval to
Kr, then the homotopy type changes if the interval consists of a single, critical simplex,
and it remains unchanged if the interval consists of two or more simplices. The operation
of removing a non-singular interval is called a collapse. If all intervals in f−1(s) are non-
singular, then we write Ks ↘ Kr to express that Kr can be obtained from Ks by collapsing
all intervals in the difference. More generally, if (r, t] contains no critical value of f , then
Kt ↘ Kr (see Forman [26]).

Appendix C. Equivalence of Definitions

This appendix proves that the three definitions of the Wrap complex offered in Section 2
are indeed equivalent. Given a generalized discrete Morse function f : D → R, we recall
that Wraph( f ) ⊆ Alphah( f ) are the Wrap and the Alpha complex of f for h, and Sg f (h) is
the collection of singular steps whose critical simplices have function value at most h.

Result 1 (Wrap Complex Lemma). Let f : D → R be a generalized discrete Morse function on a
simplicial complex. Then

(i) Wraph( f ) is the smallest complex K ⊆ D that satisfies Alphah( f ) ↘ K, in which we restrict
the collapses to intervals of f .

(ii) Wraph( f ) is the smallest subcomplex of D that contains
⋃

Sg f (h) and is a union of intervals
of f .
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Proof. Consider two steps, φ and ψ, in the step graph G of f . If there is an arc from φ to ψ,
then φ contains a proper face of a simplex in ψ. This implies that if M is a collection of steps
such that K =

⋃
M is a complex, then ψ ∈ M implies φ ∈ M. If both belong to M, then φ

cannot be collapsed. On the other hand, if φ ∈ M and no successor of φ in G belongs to M,
then we can collapse φ; that is: K \ φ is a complex. To prepare the proofs of (i) and (ii), we
let M be a collection of steps such that

1. K =
⋃

M contains a critical simplex Q iff f (Q) ≤ h;
2. K is a complex;
3. there is no step φ ∈ M such that K ↘ K \ φ.

First, we claim that the three properties specify M uniquely. To prove this claim, let
φ0 ∈ M be non-singular and let φ0, φ1, . . . , φk be maximal such that φi ∈ M is a successor
of φi−1 in G for 1 ≤ i ≤ k. We note that k ≥ 1 because φ0 cannot be collapsed, and φk
is singular because the sequence is maximal. To obtain a contradiction, we assume that
N ̸= M is another collection of steps that satisfies Properties 1, 2, and 3. Suppose first that
N contains a step µ0 ̸∈ M, and consider a maximal sequence µ0, µ1, . . . , µℓ such that µj ∈ N
is a successor of µj−1 in G for 1 ≤ j ≤ ℓ. Since µ0 ̸∈ M, the step is necessarily non-singular,
which implies ℓ ≥ 1 and µℓ singular. But then there is a first step along this sequence, µj,
that belongs to M. Since there is an arc from µj−1 to µj and µj−1 ̸∈ M, this contradicts
that M is a complex. Suppose second that N contains no such step µ0, but M contains a
step φ0 ̸∈ N. By the symmetric argument, this implies that N is not a complex, again a
contradiction. We conclude that the collection M that satisfies Properties 1, 2, 3 is unique.

Second, we claim that the unique complex that satisfies Properties 1, 2, and 3 is
Wraph( f ). By definition, the Wrap complex contains all critical simplices that satisfy
f (Q) ≤ h. The value of Q is the maximum of any step in the lower set of its singular
interval, which implies that Wraph( f ) contains no critical simplex with value larger than h
and therefore satisfies Property 1. Property 2 is satisfied because all faces of a simplex in a
step that are not in the step belong to predecessors of the step. Indeed, the directed path
from a face to a simplex in the Hasse diagram maps to a possibly shorter directed path
from the step of the face to the step of the simplex in G. To see that Property 3 is satisfied as
well, we note that every non-singular step φ0 ⊆ Wraph( f ) has a directed path to a singular
interval and can therefore not be collapsed. We conclude that Wraph( f ) is the only union
of steps that satisfies Properties 1, 2, and 3.

To prove (i), we note that Alphah( f ) satisfies Properties 1 and 2, so it cannot satisfy
Property 3 unless it is equal to Wraph( f ). We can therefore collapse non-singular intervals.
The process must halt, and the only way it can halt is when it reaches the unique union of
steps that satisfies Properties 1, 2, 3, which is Wraph( f ).

To prove (ii), we observe that Wraph( f ) contains
⋃

Sg f (h) and is a union of steps.
To see that it is the smallest such complex, suppose there is another complex, L =

⋃
N,

that has this property and there exists a step φ ⊆ Wraph( f ) \ L. As argued above, this
contradicts that L is a complex, which implies (ii).

Appendix D. Algorithm for Discrete Gradient

It is easy to see that the rise function defined in Section 3 is monotonic. As proved
in [12], it also satisfies the more stringent requirements of a generalized discrete Morse
function provided U ⊆ Ω is in general position. The generalized discrete gradient of
this function is a partition of the Delaunay mosaic into intervals, and this partition is
instrumental in the construction of subcomplexes discussed in Section 4.

The construction of this partition is complicated by the impossibility of computing
the rise function exactly, at least for general Legendre-type functions. Given a numerical
approximation, g : K → R, our goal is therefore to first recover the generalized discrete
Morse function that g approximates. Given a tolerance, ε ≥ 0, we give an algorithm that
computes such a function f : K → R with ∥ f − g∥∞ ≤ ε and such that the corresponding
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partition is minimal in a restricted sense. To prepare the algorithm, we define the gap of a
subset φ ⊆ K as the maximum difference of function values:

gap φ = max
P,Q∈φ, P⊆Q

[g(Q)− g(P)]. (A9)

If g is monotonic, then all gaps are non-negative. Otherwise, let −ε0 be the smallest (largest
negative) gap between pairs P ⊆ Q, set g(P) = min{g(P), g(Q)} whenever P ⊆ Q, and
note that this makes g monotonic while changing the value of any simplex by at most ε0.
We will therefore assume that g is monotonic. Letting V be a partition of K into intervals,
we call an interval ψ ̸∈ V compatible with V if

(i) ψ is the union of intervals in V;
(ii) every pair of simplices P ⊆ Q with P ∈ ψ and Q ̸∈ ψ implies g(ub(ψ)) ≤ g(Q),

in which ub(ψ) is the upper bound of the interval. The algorithm constructs the discrete
gradient of f by adding compatible intervals to an initially trivial partition of K, namely
the one in which every simplex belongs to its own set in the partition. The function itself is
computed by spreading the function value of the upper bound to the other simplices in the
interval. Let ψ1, ψ2, . . . , ψm be the collection of all intervals of K, sorted by gap, let ε ≥ 0 be
a fixed threshold, and initialize i to 1 and V to the trivial partition of K.

1 while i ≤ m and gap ψi ≤ ε do
2 if ψi compatible with V then
3 remove all φ ∈ V with φ ⊆ ψi from V;
4 add ψi to V;
5 forall P ∈ ψi do set f (P) = g(ub(ψi));
6 i = i + 1.

Condition (i) guarantees that the computed V is a partition of K into intervals. Condi-
tion (ii) makes sure that no relation is reversed, which implies that the computed function,
f : K → R, is monotonic and that V is a refinement of its partition into steps. Finally,
0 ≤ f (P) − g(P) ≤ ε for all simplices P ∈ K, as claimed. Without assuming that g is
monotonic, the upper bound on the distance between the two functions is ε + ε0.

A slight improvement of the algorithm takes into account that an interval can change
from incompatible to compatible. By keeping track of this property throughout the algo-
rithm, we can add an interval to the partition even after it was rejected earlier.
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