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We show that the total number of non-torsion integral points 
on the elliptic curves ED : y2 = x3−D2x, where D ranges over 
positive squarefree integers less than N , is O(N(logN)− 1

4 +ε). 
The proof involves a discriminant-lowering procedure on 
integral binary quartic forms and an application of Heath-
Brown’s method on estimating the average size of the 2-Selmer 
groups of the curves in this family.
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1. Introduction

Given an elliptic curve over Q with short Weierstrass model

E : y2 = x3 + Ax + B, A,B ∈ Z, (1)

we study the quadratic twists of E, with the model
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ED : y2 = x3 + AD2x + BD3, (2)

where D denotes a positive squarefree integer. Consider the set of integral points

ED(Z) :=
{
(x, y) ∈ Z2 : y2 = x3 + AD2x + BD3} .

It follows from a result of Mordell [17] that #ED(Z) is always finite.
We are interested in the distribution of the number of integral points #ED(Z) in 

a quadratic twist family, when ED are ordered according to the size of D. If E(Q)
contains a 2-torsion point, this point must have the form (a, 0) for some integer a under 
the model (1), and hence (aD, 0) ∈ ED(Z) for all squarefree integers D. Therefore we 
call an integral point non-trivial if it is not a 2-torsion point of ED(Q). Define the set 
of non-trivial integral points on ED to be

E∗
D(Z) := {(x, y) ∈ ED(Z) : y �= 0}.

Define

D := {D ∈ Z : D > 0 squarefree},
DN := {D ∈ D : D ≤ N}.

Granville [9] conjectured that almost all curves within a quadratic twist family have no 
non-trivial integral point. We state the conjecture adapted to our model (2).

Conjecture 1.1 (Granville [9]). Fix A, B ∈ Z such that 4A3 + 27B2 �= 0. Let ED : y2 =
x3 + AD2x + BD3, D ∈ D. Then

#{D ∈ DN : E∗
D(Z) �= ∅} ∼ CA,BN

1
2 ,

where CA,B is a constant that depends only on A, B.

We note that Granville’s original conjecture considers a different model Dy2 = f(x), 
where f ∈ Z[x] and deg f = 3. When f(x) = x3+Ax +B, any point (x, y) ∈ Z2 satisfying 
Dy2 = f(x) corresponds to a point (Dx, Dy) ∈ ED(Z), so there are fewer integral points 
using the model Dy2 = f(x) when compared to our model (2). The exponent 1

2 stated 
in Conjecture 1.1 replaces 1

3 in the original conjecture because of this discrepancy. The 
exponent 1

2 is suggested by some heuristics given in [5, p. 6677–6678] for the family 
y2 = x3 −D2x.

In this direction, Matschke and Mudigonda [16] handled the case when f(x) is re-
ducible, assuming the abc conjecture.

Theorem 1.2 (Matschke–Mudigonda [16]). Assume that the abc conjecture is true. Sup-
pose f(x) = x3 + Ax + B, A, B ∈ Z, such that 4A3 + 27B2 �= 0 and f(x) is reducible 
over Q. Then
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#{D ∈ DN : Dy2 = f(x) for some x, y ∈ Z, y �= 0} ≤ N
2
3+o(1).

Our goal here is to gain progress towards Conjecture 1.1 on a specific quadratic twist 
family. We restrict our attention to the congruent number curve E : y2 = x3 − x, and 
study its twists

ED : y2 = x3 −D2x.

It is well known that the torsion subgroup of ED(Q) is {O, (0, 0), (±D, 0)} ∼= Z/2Z ×
Z/2Z (see for example [13, Chapter I, Proposition 17]), where O denotes the point at 
infinity.

We now review some existing results concerning the family {ED : D ∈ D}, and 
explain how it is implied that the moments of #ED(Z) are bounded. The 2-Selmer group 
of ED, which we denote by Sel2(ED), is a finite abelian group with exponent 2 that is 
defined via local conditions and admits an injection ED(Q)/2ED(Q) ↪→ Sel2(ED) (see for 
example [21, Chapter X]). In particular, the 2-Selmer rank provides an upper bound to 
the rank rank(ED(Q)) of the Mordell–Weil group of ED over Q. It is usually easier to 
compute the 2-Selmer groups of elliptic curves with a torsion subgroup Z/2Z × Z/2Z
over Q, since then most of the work can be done over Q. Heath-Brown [11, Theorem 1]
computed all the moments of the size of the 2-Selmer groups of ED. For any positive 
integer k, he showed that

1
#DN

∑
D∈DN

(# Sel2(ED))k =
k∏

j=1
(1 + 2j) + ok(1). (3)

Since the 2-Selmer rank provides an upper bound to the rank of ED, the equation (3)
implies that

1
#DN

∑
D∈DN

2k·rank ED(Q) �k 1. (4)

Lang [14, page 140] conjectured that the number of integral points on a quasi-minimal 
Weierstrass equation of an elliptic curve E should be bounded only in terms of rankE(Q). 
For the family {ED : D ∈ D}, it follows from existing results in this direction by Silver-
man [20, Theorem A] and Hindry–Silverman [12, Theorem 0.7], that there exists some 
absolute constant C, such that

#ED(Z) � Crank ED(Q). (5)

In [5], we showed that C in (5) can be taken as small as 3.8. Combining the upper bounds 
in (5) and (4), we can bound the k-th moment of #ED(Z) by

1
#DN

∑
(#ED(Z))k �k 1. (6)
D∈DN



4 S. Chan / Advances in Mathematics 457 (2024) 109946
We will show that in fact the moments of #E∗
D(Z) tend to 0. The following is our 

main result.

Theorem 1.3. For any ε > 0 and any k > 0, we have
∑

D∈DN

(#E∗
D(Z))k �ε,k N(logN)− 1

4+ε.

This shows that the k-th moment of #E∗
D(Z) tends to 0 as N tends to infinity, since 

# DN ∼ 6
π2N .

To prove Theorem 1.3, it suffices to prove the following.

Theorem 1.4. For any ε > 0, we have

#{D ∈ DN : E∗
D(Z) �= ∅} �ε N(logN)− 1

4+ε.

Indeed, by an application of Hölder’s inequality, we have

∑
D∈DN

(#E∗
D(Z))k ≤

( ∑
D∈DN

(#E∗
D(Z)) k

ε

)ε
(#{D ∈ DN : E∗

D(Z) �= ∅})1−ε

�ε,k N(logN)(− 1
4+ε)(1−ε),

where we have inserted (6) and the estimate from Theorem 1.4. Rescaling ε gives Theo-
rem 1.3.

We now give an outline of the proof of Theorem 1.4. In Section 2, for each integral 
point (x, y) ∈ ED(Z), we use Mordell’s correspondence [18, Chapter 25] to construct 
a corresponding integral binary quartic form f that represents 1 and has discriminant 
related to the discriminant of ED. Then in Section 3, we show that by picking an auxiliary 
prime p | D/ gcd(x, D), we can transform f into an integral binary quartic form F that 
represents p and has discriminant lowered by a factor of p6. In Section 4, we show that 
gcd(x, D) can be controlled by the image of (x, y) in the 2-Selmer group of ED under the 
map

ED(Z) ↪→ ED(Q) � ED(Q)/2ED(Q) ↪→ Sel2(ED).

Then in Section 5 we extract some information about the distribution of 2-Selmer ele-
ments from work of Heath-Brown [10,11] to show that for almost all D, we are always 
able to pick the required auxiliary prime p of a suitable size. In particular, this p is not too 
small, so that there are o(N) many discriminants for the discriminant-lowered quartic F
to take. At the same time, by ensuring that p is not too large, we can deduce from upper 
bounds on the number of solutions to Thue inequalities, that each SL2(Z)-equivalence 
class of F can only be the image of finitely many integral points. In Section 6, we proceed 
to count the set of those quartics F that were discriminant-lowered by some suitable p. 
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We make use of the fact that every integral binary quartic form is SL2(Z)-equivalent to 
at least one reduced form with bounded seminvariants [6]. Applying the syzygy satisfied 
by the seminvariants returns a set of integral points on twists of E with bounded height. 
Then Theorem 1.4 follows from an application of an upper bound by Le Boudec [15].

2. Integer-matrix binary quartic forms

We say that a binary quartic form is integer-matrix if it has the form

f(X,Y ) = a0X
4 + 4a1X

3Y + 6a2X
2Y 2 + 4a3XY 3 + a4Y

4, ai ∈ Z.

Given any integral binary quartic form f and (x0, y0) ∈ Z2, define the action of

γ =
(
a b
c d

)
∈ GL2(Z)

on the pair (f, (x0, y0)) by

γ · (f(X,Y ), (x0, y0)) = (f((X,Y ) · γ), (x0, y0) · γ−1),

where

(X,Y ) · γ = (aX + cY, bX + dY ).

This action preserves the value of f(x0, y0).
We recall some facts about the seminvariants of quartic forms [6, Section 4.1.1]. For 

our convenience, we choose to scale the seminvariants differently than in [6], since we 
will only be dealing with integer-matrix binary forms. The invariants of f are

I = I(f) = a0a4 − 4a1a3 + 3a2
2, and

J = J(f) = a0a2a4 − a0a
2
3 − a2

1a4 + 2a1a2a3 − a3
2.

The discriminant of f is

Δ(f) := I3 − 27J2

= a3
0a

3
4 − 64a3

1a
3
3 − 18a2

0a
2
2a

2
4 − 12a2

0a1a3a
2
4 − 6a0a

2
1a

2
3a4

− 180a0a1a
2
2a3a4 + 81a0a

4
2a4 + 36a2

1a
2
2a

2
3 − 27(a2

0a
4
3 + a4

1a
2
4)

+ 54a2(−a2
2 + 2a1a3 + a0a4)(a4a

2
1 + a0a

2
3)

The seminvariants attached to the form are I, J , a = a(f) = a0,

H = H(f) = a2
1 − a0a2, and R = R(f) = 2a3

1 + a2
0a3 − 3a0a1a2.
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Comparing to the formulas in [6, Section 4.1.1], here we have taken out a factor of −48
from their H, a factor of 32 from their R, a factor of 12 from their I, a factor 432 from 
their J , and a factor of 256 ·27 from their Δ. The seminvariants are related by the syzygy

H3 − I

4a
2H − J

4 a
3 =

(
R

2

)2

. (7)

Notice that when I and J are both divisible by 4, (H, 12R) defines an integral point on 
a twist of the elliptic curve y2 = x3 − I

4x − J
4 .

2.1. Mordell’s correspondence

For integers A, B such that 4A3 + 27B2 �= 0, define an elliptic curve over Q with the 
affine integral Weierstrass model

EA,B : y2 = x3 + Ax + B.

The discriminant of EA,B is given by

ΔEA,B
= −16(4A3 + 27B2).

For integers c, d, e ∈ Z, define an integer-matrix binary quartic form

fc,d,e(X,Y ) = X4 + 6cX2Y 2 + 8dXY 3 + eY 4.

Define

A := {(EA,B , (x0, y0)) : A,B ∈ Z, 4A3 + 27B2 �= 0, (x0, y0) ∈ EA,B(Z)},
B := {fc,d,e : c, d, e ∈ Z, e ≡ c2 mod 4, Δ(f) �= 0}.

The following correspondence is given by Mordell [18, Chapter 25] (or see [3, Section 2.3]
for a modern interpretation).

Theorem 2.1 (Mordell). There is a bijection

A → B

given by

(EA,B , (x0, y0)) 	→ f,

where

f(X,Y ) = X4 − 6x0X
2Y 2 + 8y0XY 3 + (−4A− 3x2

0)Y 4.
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Moreover, under this map, Δ(f) = ΔEA,B
, I(f) = −4A and J(f) = −4B.

The inverse map comes from the syzygy (7) satisfied by the seminvariants, but we will 
only make use of the map in the direction from A to B from Theorem 2.1.

3. Lowering the discriminant

We now fix an elliptic curve E : y2 = x3+Ax +B, A, B ∈ Z and consider its quadratic 
twists ED : y2 = x3 + AD2x + BD3, where D ∈ D. For each P = (c, d) ∈ ED(Z), 
Theorem 2.1 gives the binary quartic form

fP (X,Y ) := X4 − 6cX2Y 2 + 8dXY 3 + (−4AD2 − 3c2)Y 4, (8)

which satisfies Δ(fP ) = ΔED
6, I(fP ) = −4AD2 and J(fP ) = −4BD3.

Denote the space of integer-matrix binary quartic forms by V . Let x(P ) denote the 
x-coordinate of the point P ∈ ED(Z). Define a map

Ψ :
⋃

D∈D

{
(P,M) : P ∈ ED(Z), M ∈ Z, M > 0

M | D, gcd(2 · x(P ),M) = 1

}
→ (V × Z2)/ SL2(Z) (9)

given by

(P,M) = ((c, d),M) 	→ (F, (1, 0)),

where F is defined by taking k to be any integer such that k ≡ dc−1 mod M and

F (X,Y ) = 1
M3 fP (MX + kY, Y ). (10)

We will show that Ψ is well-defined and injective in Lemma 3.1 and Lemma 3.2.
In work of Bombieri and Schmidt [4], to bound the number of solutions to a Thue 

equation F1(X, Y ) = h, they transformed the equation to F2(X, Y ) = 1, where the 
discriminant of F2 is raised by a factor of h6 compared to that of F1. Some applications 
of this idea can be found in [1,2]. Here we attempt to carry out the reverse process on 
the integral quartic forms fP to lower their discriminants.

Lemma 3.1. Take D ∈ D. Let P = (c, d) ∈ ED(Z) and take fP as defined in (8). Fix a 
positive squarefree integer M dividing D that is coprime to 2c. Then for any integer k
such that k ≡ dc−1 mod M , we have that

F (X,Y ) := 1
M3 · fP

(
(X,Y ) ·

(
M 0
k 1

))
= 1

M3 · fP (MX + kY, Y )

is an integer-matrix binary quartic form. Moreover, we have
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(i) F (1, 0) = M ,
(ii) I(F ) = −4A(D/M)2, J(F ) = −4B(D/M)3, and
(iii) Δ(F ) = Δ(fP )/M6 = −16(4A3 + 27B2)(D/M)6.

Proof. Since (c, d) ∈ ED(Z), we have d2 = c3 +AD2c +BD3. Taking any integer k such 
that k ≡ dc−1 mod M , we have k2 ≡ d2c−2 ≡ c mod M . Then by Hensel’s lemma we 
can find a lift K of k such that k ≡ K mod M and

c ≡ K2 mod M3. (11)

It suffices to show that F is an integer-matrix binary quartic form with this choice of 
k = K, since otherwise k = K+uM for some integer u, and we can consider F (X−uY, Y )
instead.

Next we put (11) into d2 = c3 +AD2c +BD3 and solve for d mod M3. Since d ≡ kc ≡
k3 ≡ K3 mod M , we see from the two square roots of (K2)3+AD2(K2) +BD3 mod M3, 
that

d ≡ K3 + AD2

2K mod M3. (12)

By (11) and (12), we see that the coefficients of

fP (MX + KY, Y ) = M4X4 + 4M3KX3y + 6M2(K2 − c)X2Y 2

+ 4M(K3 − 3cK + 2d)XY 3 + (K4 − 6cK2 + 8dK − 4AD2 − 3c2)Y 4

are all divisible by M3. Therefore F is an integer-matrix binary quartic form. The re-
maining properties are then straightforward from the definition of F . �
Lemma 3.2. The map Ψ is well-defined and injective.

Proof. To show that Ψ is well-defined, by Lemma 3.1, it remains to show that the 
class (F, (1, 0))/ SL2(Z) does not depend on the choice of k. Since k is determined up 
to modulo M by (c, d), if there are two choices of k, say k1 and k2, that gives two 
forms F1 and F2 via (10), they must satisfy k1 = k2 + uM for some integer u. Then 

F2(X + uY, Y ) = F1(X, Y ), and so 
(

1 0
u 1

)
· (F2, (1, 0)) = (F2, (1, 0)).

Next we check that Ψ is injective. The value of F (1, 0) determines M , and together 
with the discriminant of F , determines D. In the following, fix some D ∈ D and some 
M | D such that gcd(2, M) = 1. Suppose that P, Q ∈ ED(Z) satisfy gcd(x(P ), M) =
gcd(x(Q), M) = 1 and write Ψ(Q, M) = (FP , (1, 0)) and Ψ(P, M) = (FQ, (1, 0)). Suppose 
that (FP , (1, 0)) and (FQ, (1, 0)) are SL2(Z)-equivalent, so γ · (FP , (1, 0)) = (FQ, (1, 0))

for some γ ∈ SL2(Z). Then (1, 0) · γ−1 = (1, 0) implies that we can write γ =
(

1 0
u 1

)
for some u ∈ Z. Recall that
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FP (X,Y ) = 1
M3 · fP

(
(X,Y ) ·

(
M 0
kP 1

))

and

FQ(X,Y ) = 1
M3 · fQ

(
(X,Y ) ·

(
M 0
kQ 1

))

for some integers kP and kQ which are determined up to modulo M . From FP ((X, Y ) ·
γ) = FQ(X, Y ), we get

fP

(
(X,Y ) · γ ·

(
M 0
kP 1

))
= fQ

(
(X,Y ) ·

(
M 0
kQ 1

))
.

Then since
(
M 0
kQ 1

)−1(1 0
u 1

)(
M 0
kP 1

)
=
(

1 0
uM + kP − kQ 1

)
,

we have

fP

(
(X,Y ) ·

(
1 0

uM + kP − kQ 1

))
= fQ(X,Y ).

The X3Y -coefficients of fP and fQ are both 0, so it must be that uM + kP − kQ = 0
and fP = fQ. Hence P = Q. �
4. The 2-Selmer group of y2 = x3 − D2x

In the following sections we will specialise in the case when A = −1 and B = 0, that 
is, the quadratic twist family containing the congruent number curves

ED : y2 = x3 −D2x,

where D ∈ D.
Heath-Brown [10,11] computed the moments of the size of the 2-Selmer groups of the 

congruent number curve family {ED : D ∈ D}. We will extract some information about 
the 2-Selmer elements in this family from the argument in [10,11], in order to show that 
we can usually pick a suitable M to apply Lemma 3.1.

The 2-Selmer group of ED is defined to be

Sel2(ED) := ker

⎛
⎝H1(Gal(Q/Q), ED[2]) →

∏
p place of Q

H1(Gal(Qp/Qp), ED)

⎞
⎠ .

Since ED has full 2-torsion, there is an isomorphism H1(Gal(Q/Q), ED[2]) ∼= ((Q×/

(Q×)2)2, and it is possible to obtain explicit equations for the homogeneous spaces. 
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(See for example [21, Chapter X, Proposition 1.4].) For the curves ED, these equations 
were given as part of Heath-Brown’s argument [10, Section 2]. As we will see, each 2-
Selmer element of ED(Q) corresponds to a system of two binary quadratic forms that is 
everywhere locally solvable. We will follow [10, Section 2] to recover the equations.

We begin by defining the set of tuples which we will use as representatives of 2-Selmer 
elements.

Definition 4.1. For D ∈ D, define WD to be the set of all 4-tuples of positive squarefree 
integers (D1, D2, D3, D4) such that

(1) the system

D1X
2 + D4W

2 = D2Y
2, D1X

2 −D4W
2 = D3Z

2, (13)

is everywhere locally solvable, and
(2) D1D2D3D4 = D.

Consider the injective homomorphism

θ : ED(Q)/2ED(Q) → Q×/(Q×)2 ×Q×/(Q×)2 ×Q×/(Q×)2

given by

(x, y) 	→ (x−D,x, x + D) (14)

at non-torsion points. At torsion points, we have θ(O) = (1, 1, 1), θ((0, 0)) =
(−D, −1, D), θ((D, 0)) = (2, D, 2D), θ((−D, 0)) = (−2D, −D, 1).

In the next lemma we establish the correspondence between WD and Sel2(ED).

Lemma 4.2. The set WD is in bijection with
{

Sel2(ED)/θ({O, (0, 0), (±D, 0)}) if D is odd,
Sel2(ED)/θ({O, (0, 0)}) if D is even,

where θ denotes the natural map

θ : ED(Q) � ED(Q)/2ED(Q) ↪→ Sel2(ED).

More explicitly, identifying Sel2(ED) as a subgroup of (Q×/(Q×)2)3 via (14), (D1, D2,

D3, D4) ∈ WD maps to
⎧⎪⎪⎨
⎪⎪⎩

{
(D1D2, D2D3, D3D1), (−D4D3,−D3D2, D2D4),

(2D2D1, D1D4, 2D4D2), (−2D3D4,−D4D1, D1D3)

}
if D is odd,

{(D D ,D D ,D D ), (−D D ,−D D ,D D )} if D is even.
1 2 2 3 3 1 4 3 3 2 2 4
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Moreover, if the image of (c, d) ∈ ED(Z) under the map

ED(Z) ↪→ ED(Q) � ED(Q)/2ED(Q) ↪→ Sel2(ED) � WD (15)

is (D1, D2, D3, D4), then

gcd(c,D) ∈ {D1D2D3, D2D3D4, D1D2D4, D1D3D4}. (16)

Proof. Following [10, Section 2], we first show that there is a bijection between 
θ(ED(Q)) ∼= ED(Q)/2ED(Q) and the set of tuples of squarefree integers (B1, B2, B3, B4)
such that

B1B2B3B4 =
{
D or 4D if D is odd,

D if D is even,
gcd(B1, B2, B3) = 1, B1B2B3 > 0, (17)

and the system

B1X
2 + B4W

2 = B2Y
2, B1X

2 −B4W
2 = B3Z

2 (18)

is solvable over Q. Then in the same way, by working over Qp over all places p of Q
instead, Sel2(ED) corresponds to the set of tuples (B1, B2, B3, B4) satisfying (17) and 
such that (18) is everywhere locally solvable. Note that (B1, B2, B3, B4) is not necessarily 
in WD yet, but this will be adjusted in a later step.

We begin by constructing (B1, B2, B3, B4) from an arbitrary element of (x, y) ∈
ED(Q). Suppose (x, y) ∈ ED(Q), and write x = r/s and y = t/u, where r, s, t, u are 
integers, s, u > 0, and gcd(r, s) = gcd(t, u) =1. Putting this into y2 = x3 −D2x, we have

r(r + sD)(r − sD)u2 = t2s3.

Then since gcd(t, u) = gcd(r, s) = 1, we must have s3 = u2, so s = W 2 for some integer 
W . Now write gcd(r, D) = B0, and r = B0r

′. From

r(r + sD)(r − sD) = t2,

we see that B3
0 | t2, hence B2

0 | t since B0 is squarefree. Then writing B4 = D/B0, we 
have gcd(r′, sB4) = 1 by construction, and the equation becomes

r′(r′ + sB4)(r′ − sB4) = B0(t/B2
0)2.

The factors on the left are pairwise coprime except possibly a common factor of 2 between 
r′ + sB4 and r′ − sB4, which only occurs when r′ and sB4 are both odd; in this case 
r′, (r′ + sB4)/2, (r′ − sB4)/2 are pairwise coprime. Now we can write

r′ = B1X
2, r′ + sB4 = B2Y

2, r′ − sB4 = B3Z
2, (19)
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where B1, B2, B3 are squarefree integers such that

B1B2B3 =
{

B0 if B1, B2, B3 are pairwise coprime,
4B0 if gcd(B2, B3) = 2 and B1, B4 are odd.

In the first case B1B2B3B4 = D and in the second case B1B2B3B4 = 4D with B1, B4

odd and B2, B3 even. When D is even, the case B1B2B3B4 = 4D is not possible since 
8 | B1B2B3B4 is not compatible with the parity conditions on the squarefree Bi. Putting 
s = W 2 into (19) and rearranging, we obtain a solution to the system (18). Identifying 
θ(ED(Q)) with a subgroup of (Q×/(Q×)2)3 as in (14), it is clear from the construction 
that θ((x, y)) = (B1B2, B2B3, B3B1).

Conversely, given (B1, B2, B3, B4) and a solution to (18), take B0 to be the squarefree 
part of B1B2B3, then (x, y) = (B0B1X

2/W 2, B2
0XY Z/W 3) ∈ ED(Q) and θ((x, y)) =

(B1B2, B2B3, B3B1). For any element w ∈ (Q×/(Q×)2)3, we can check that there is 
at most one (B1, B2, B3, B4) satisfying (17) such that w ≡ (B1B2, B2B3, B3B1). This 
shows that θ(ED(Q)) is in bijection with the set of (B1, B2, B3, B4) as claimed.

The tuple (B1, B2, B3, B4) constructed is not always in WD because of the signs 
of B1, B2, B3, B4 and their valuations at 2. To obtain the bijection as required in the 
lemma, we add a suitable torsion point of ED to (x, y). If D is odd, exactly one of 
(x′, y′) ∈ {(x, y), (x, y) + (0, 0), (x, y) + (D, 0), (x, y) + (−D, 0)} satisfies x′ > 0 and 
v2(x′) �= 0. Take (D1, D2, D3, D4) to be the tuple corresponding to (x′, y′) and take this 
as the image of (x, y) in WD. By studying θ((x′, y′)), we see that the image of (x, y) in 
WD relates to (B1, B2, B3, B4) as follows

(D1, D2, D3, D4) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(B1, B2, B3, B4) if v2(x) �= 0 and x > 0,
(B4,−B3, B2,−B1) if v2(x) �= 0 and x < 0,
(B2/2, B1, B4, B3/2) if v2(x) = 0 and x > 0,

(−B3/2, B4,−B1, B2/2) if v2(x) = 0 and x < 0.

If D is even, then exactly one of (x′, y′) ∈ {(x, y), (x, y) + (0, 0)} satisfies x′ > 0 and 
v2(x′) ≡ 1 mod 2. We take the image of (x, y) in WD to be

(D1, D2, D3, D4) =
{

(B1, B2, B3, B4) if and x > 0,
(B4,−B3, B2,−B1) if and x < 0.

For the final claim in the lemma, notice that if (x, y) ∈ ED(Z), by construction 
gcd(x, D) = B0, which is the squarefree part of B1B2B3. This gives (16) by rewriting 
B1B2B3 in terms of D1, D2, D3, D4 in each of the above cases. �
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5. Generic 2-Selmer elements

In Lemma 4.2 we constructed a map from Sel2(ED) to WD. We want to show that for 
almost all P ∈ E∗

D(Z), there exists a prime p of suitable size such that p | D but p � x(P )
in order to apply Lemma 3.1 with M = p. The observation in (16) suggests that it will 
be useful to show that D1, D2, D3, D4 all have prime factors in an expected range. To 
achieve this, we will follow Section 2 to Section 4 in work of Heath-Brown [10] closely 
with suitable modifications. (See also [11].)

Henceforth 0 < ε < 1
4 will be a fixed constant. Let S be the interval

S :=
[
exp((logN)2ε), exp((logN)1−2ε)

]
,

so that any p ∈ S satisfies

2ε log logN ≤ log log p ≤ (1 − 2ε) log logN.

Define

ω(n) := #{p prime : p | n},

ωS(n) := #{p prime : p | n, p ∈ S}.

Further define a parameter

N‡ := exp
(
(logN) 1

4 ε
)
.

The goal of this section is to prove the following result.

Theorem 5.1. Define two properties on (D1, D2, D3, D4) ∈ WD:

(S1) (D1, D2, D3, D4) comes from a torsion point on ED(Q);
(S2) for each i ∈ {1, 2, 3, 4}, we have Di > N‡ and there exist some p | Di such that 

p ∈ S.

Then

#
{
D ∈ DN : (S1) and (S2) both fail for

some (D1, D2, D3, D4) ∈ WD

}
�ε N(logN)− 1

4+ε.

From Lemma 4.2, we can check that all torsion points map to (1, 1, 1, D) ∈ WD if D
is odd. If D is even, {O, (0, 0)} maps to (1, 1, 1, D) and {(±D, 0)} maps to 

(
2, 1, 1

2D, 1
)

in WD. Therefore the condition (S1) is equivalent to
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(D1, D2, D3, D4) =
{

(1, 1, 1, D) if D is odd,
(1, 1, 1, D) or

(
2, 1, 1

2D, 1
)

if D is even.

When D is even, exactly one of D1, D2, D3, D4 is even. For the subsequent character 
sum argument, it will be easier to first isolate the prime factor 2 by replacing the even 
Di with 2di and consider instead tuples of odd integers. Define

δi(η) :=
{

1 if η = i,

0 otherwise,

so that if Dη is even, we have Di = 2δi(η)di for i ∈ {1, 2, 3, 4}, and we take η = 0 when 
D is odd so that trivially Di = di = 2δi(0)di for i ∈ {1, 2, 3, 4}. To prove Theorem 5.1, it 
suffices to bound the number of 4-tuples of positive odd integers (d1, d2, d3, d4) satisfying 
the following conditions for some η ∈ {0, 1, 2, 3, 4}:

(1)
(
2δ1(η)d1, 2δ2(η)d2, 2δ3(η)d3, 2δ4(η)d4

)
∈ WD for some D ∈ DN , and

(2) one of the conditions (W1) and (W2) listed below.

(W1) For some i ∈ {1, 2, 3, 4}, we have di ≤ N‡, and

(d1, d2, d3, d4) �=
{

(1, 1, 1, D) if η = 0 or 4,
(1, 1, 1

2D, 1) if η = 2.
(20)

(W2) We have di > N‡ for all i ∈ {1, 2, 3, 4}, and there exists an i such that di has no 
prime factor in S.

In the above notation, η = 0 implies that D = d1d2d3d4 is odd, and η ∈ {1, 2, 3, 4}
implies that D = 2d1d2d3d4 is even.

5.1. The indicator function

For (D1, D2, D3, D4) =
(
2δ1(η)d1, 2δ2(η)d2, 2δ3(η)d3, 2δ4(η)d4

)
to lie in WD, the sys-

tem (13) has to be everywhere locally solvable. Following the proof of [10, Lemma 3], we 
will package the local conditions as a sum of product of Jacobi symbols. The function 
we will obtain to detect the local solvability conditions is essentially the same as in [10, 
Lemma 3] for odd D. For simplicity, we shall only keep the conditions at odd primes 
dividing D. (Though we remark here that there are automatically real solutions because 
Di > 0 and the conditions at 2 do not really contribute further, see [10, Lemma 2].) The 
condition that (D1, D2, D3, D4) ∈ WD implies that
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
D2D4

p

)
=
(

−D3D4
p

)
= 1 if p | d1,(

−D1D4
p

)
=
(

2D1D3
p

)
= 1 if p | d2,(

2D1D2
p

)
=
(

D1D4
p

)
= 1 if p | d3,(

D1D2
p

)
=
(

D1D3
p

)
= 1 if p | d4.

(21)

Set

Π1 :=
∏
p|d1

(
1 +
(
D2D4

p

))(
1 +
(
−D3D4

p

))
,

Π2 :=
∏
p|d2

(
1 +
(
−D1D4

p

))(
1 +
(

2D1D3

p

))
,

Π3 :=
∏
p|d3

(
1 +
(

2D1D2

p

))(
1 +
(
D1D4

p

))
,

Π4 :=
∏
p|d4

(
1 +
(
D1D2

p

))(
1 +
(
D1D3

p

))
,

then

Gη(d1, d2, d3, d4) := 4−ω(d1d2d3d4)Π1Π2Π3Π4

takes the value 1 when η and (d1, d2, d3, d4) satisfy (21) and 0 otherwise. Since 
(D1, D2, D3, D4) ∈ WD implies (21), we have

Gη(d1, d2, d3, d4) ≥
{

1 if
(
2δ1(η)d1, 2δ2(η)d2, 2δ3(η)d3, 2δ4(η)d4

)
∈ WD,

0 else.
(22)

The next step is to expand Π1, Π2, Π3, Π4. Substituting Di = 2δi(η)di, we get

Π1 =
∑(

2δ2(η)+δ4(η)d2d4

d13

)(
−2δ3(η)+δ4(η)d3d4

d12

)(
−2δ2(η)+δ3(η)d2d3

d14

)
,

where the sum is over all factorisations d1 = d10d12d13d14;

Π2 =
∑(

−2δ1(η)+δ4(η)d1d4

d23

)(
21+δ1(η)+δ3(η)d1d3

d24

)(
−21+δ3(η)+δ4(η)d3d4

d21

)
,

where the sum is over all factorisations d2 = d20d21d23d24;

Π3 =
∑(

21+δ1(η)+δ2(η)d1d2
)(

2δ1(η)+δ4(η)d1d4
)(

21+δ2(η)+δ4(η)d2d4
)
,

d34 d32 d31
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where the sum is over all factorisations d3 = d30d31d32d34;

Π4 =
∑(

2δ1(η)+δ2(η)d1d2

d43

)(
2δ1(η)+δ3(η)d1d3

d42

)(
2δ2(η)+δ3(η)d2d3

d41

)
,

where the sum is over all factorisations d4 = d40d41d42d43.
Write d = (dij) as the 16-tuple of positive odd integers that arise from the expansions 

above, where the indices (i, j) are in the range

1 ≤ i ≤ 4, 0 ≤ j ≤ 4, i �= j.

For odd D, set

g0(d) :=
(
−1
α

)(
2
β0

)∏
i

4−ω(di0)
∏
j �=0

4−ω(dij)
∏
k �=i,j

∏
l

(
dkl
dij

)
,

where α = d12d14d23d21 and β0 = d24d21d34d31. Then

G0(d1, d2, d3, d4) =
∑
d∏

j �=i dij=di

g0(d).

For even D, from the expansions of Π1, Π2, Π3, Π4, we see that the only difference 
from the odd case is with the terms 

(
2
dij

)
that appear in the sum. Set

gη(d) :=
(
−1
α

)(
2
βη

)∏
i

4−ω(di0)
∏
j �=0

4−ω(dij)
∏
k �=i,j

∏
l

(
dkl
dij

)
,

where

β1 = d23d21d32d31d43d42, β2 = d13d14d24d21d43d41,

β3 = d12d14d34d31d42d41, β4 = d13d12d23d24d34d32.

Then

Gη(d1, d2, d3, d4) =
∑
d∏

j �=i dij=di

gη(d).

5.2. Setting up the sums

We now set up the sum which bounds the number of elements in WD that satisfy (W1). 
For each η ∈ {0, 1, 2, 3, 4}, we want to estimate the sum
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∑
(d1,d2,d3,d4)

(W1)

Gη(d1, d2, d3, d4),

where the sum is taken over all positive odd integers d1, d2, d3, d4 that satisfy (W1) and 
such that d1d2d3d4 ∈ DN . Following [10, Section 3], dissect the sum according to the size 
of each dij in the factorisation. For each (i, j), take Aij to run over powers of 2. Then 
for A = (Aij), define the restricted sum

S(k)
η (A) :=

∑
d

Aij<dij≤2Aij

gη(d),

where the sum is taken over all 16-tuples of odd positive integers d = (dij) such that ∏
i,j dij ∈ DN and Aij < dij ≤ 2Aij for every i, j, with the further condition that

∏
j

dkj ≤ N‡. (23)

The property (23) is equivalent to dk ≤ N‡, which for any given k ∈ {1, 2, 3, 4} is a 
subcase of (W1). Note that if Aij = 1

2 , the interval Aij < dij ≤ 2Aij forces dij = 1. To 
capture the property (20) from (W1), we exclude A that satisfy

{
Aij = 1

2 for all i ∈ {1, 2, 3} if η = 0 or 4,
Aij = 1

2 for all i ∈ {1, 2, 4} if η = 2.
(24)

Then

∑
(d1,d2,d3,d4)

(W1)

Gη(d1, d2, d3, d4) ≤
4∑

k=1

∑
A

S(k)
η (A), (25)

where the sum runs over all A except those that satisfy (24). We shall begin bound-
ing (25) in Section 5.4.

We next set up the sum that treats the property (W2). For ease of notation, assume 
that it is d4 > N‡ that has no prime factor in S. The cases with d4 replaced by d1, d2, 
d3 will turn out to be the same after relabelling. We want to bound

∑
d1d2d3d4∈DN

d1,d2,d3,d4>N‡

p|d4⇒p/∈S

Gη(d1, d2, d3, d4).

Similar to the previous case, define the restricted sum
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S′
η(A) :=

∑
d

Aij<dij≤2Aij

gη(d),

where the sum is taken over all 16-tuples of odd positive integers d = (dij) such that ∏
i,j dij ∈ DN and Aij < dij ≤ 2Aij for every i, j, with the extra conditions that

(p | d40d41d42d43 ⇒ p /∈ S) and (26)

d10d12d13d14, d20d21d23d24, d30d31d32d34, d40d41d42d43 > N‡. (27)

Then

∑
d1d2d3d4∈DN

d1,d2,d3,d4>N‡

p|d4⇒p/∈S

Gη(d1, d2, d3, d4) =
∑
A

S′
η(A). (28)

5.3. Preliminaries

We collect some results used in [10] which we will utilise.

Lemma 5.2 ([19, Theorem 1]). Fix 0 < ε < 1 and some positive constant C. Let f be a 
multiplicative function such that f(p�) ≤ C for all prime p and � ≥ 1. Then

∑
X−Y <n≤X

f(n) � Y

logX exp

⎛
⎝∑

p≤X

f(p)
p

⎞
⎠

uniformly for 2 ≤ X1−ε ≤ Y < X.

The next result by Heath-Brown handles double oscillation of characters.

Lemma 5.3 ([10, Lemma 4]). Let am, bn be complex numbers of modulus at most 1. Let 
M, N, X � 1. Then

∑
m,n

ambn

( n

m

)
� MN min{M,N}− 1

32

uniformly in X, where the sum is for squarefree m, n satisfying M < m ≤ 2M , N < n ≤
2N , mn ≤ X.

We will also use the following version of the Siegel–Walfisz theorem for character 
sums.
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Lemma 5.4 ([10, Lemma 6]). Let k > 0 be given. Let d(r) denote the number of divisors 
of r. Then for arbitrary positive integers q, r and any non-principal character χ mod q, 
we have

∑
n∈DX

gcd(n,r)=1

4−ω(n)χ(n) � X · d(r) · exp
(
−c
√

logX
)
,

with a positive constant c depending only on k, uniformly for q ≤ (logX)k.

5.4. Bounding the subsums

We proceed to bound the subsums in (25) and (28) following [10, Section 3] closely. 
To study the indices u, v of the symbols 

(
du

dv

)
that can appear in the expression of gη, 

we make the following definition as in [10].

Definition 5.5 (linked indices). We call two indices u = (i, j) and v = (k, l) linked if

i �= k and precisely one of the conditions
{
l /∈ {0, i},
j /∈ {0, k}

holds.

If two indices u and v are linked, then exactly one of 
(

du

dv

)
and 

(
dv

du

)
appears in 

the sum gη. When both 
(

du

dv

)
and 

(
dv

du

)
appear in the expression, which is a possibil-

ity if u and v are unlinked, we can apply quadratic reciprocity to get 
(

du

dv

)(
dv

du

)
=

(−1) du−1
2 · dv−1

2 .
We first bound the contribution of S(k)

η (A) from A with less than 4 large indices to 
the sum (25).

Lemma 5.6. We have

∑
A

#{u:Au≥N‡}≤3

|S(k)
η (A)| � N(logN)− 1

4+ε.

Proof. Let W = {u : Au ≥ N‡}. Bound |gη(d)| trivially by 
∏

i,j 4−ω(dij). Write m =∏
u/∈W du and n =

∏
u∈W du. Then for any given prime factor of n there are #W ≤ 3

ways to place it into one of {du : u ∈ W}, and for any given prime factor of m there are 
at most 16 ways to place it into one of {du : u /∈ W}. Therefore

∑
A∈F

|S(k)
η (A)| �

∑
m<(N‡)16

(
16
4

)ω(m) ∑
n≤N

m

(
3
4

)ω(n)

.

#W≤3
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Applying Lemma 5.2 and Mertens theorem, the inner sum becomes

∑
n≤N

m

(
3
4

)ω(n)

� N

m
(logN)− 1

4 .

Then substituting this back gives

∑
A∈F

#W≤3

|S(k)
η (A)| � N(logN)− 1

4
∑

m≤(N‡)4

4ω(m)

m
� N(logN)− 1

4+ε.

This gives the claimed upper bound. �
When there are two large variables with linked indices, we apply Lemma 5.3.

Lemma 5.7. Suppose Au, Av ≥ (logN)544 for some linked indices u and v. Then

S′
η(A) � N(logN)−17 and S(k)

η (A) � N(logN)−17.

Proof. We follow the proof of [10, Lemma 5]. Since u and v are linked, we can write

gη(d) = a(du)b(dv)
(
du

dv

)
,

where the functions a and b depends on the other variables (dw)w�=u,v but is independent 
of dv and du. Moreover |a(du)|, |b(dv)| ≤ 1.

For S′
η(A), when du does not satisfy (26), we impose that a(du) = 0. Similarly when 

dv does not satisfy (26), we impose b(dv) = 0. We have

S′
η(A) �

∑
(dw)w�=u,v

Aw<dw≤2Aw

∣∣∣∣∣∣∣∣
∑
du

Au<du≤2Au

∑
dv

Av<dv≤2Av

a(du)b(dv)
(
du

dv

)∣∣∣∣∣∣∣∣
,

where the sum is further subject to 
∏

i,j dij ∈ DN and (27) being satisfied. Then an 
application of Lemma 5.3 implies that

S′
η(A) �

∑
(dw)w�=u,v

Aw<dw≤2Aw

AuAv(min{Au, Av})−
1
32 � N(logN)−17,

where we have substituted the lower bound for Au, Av.
The sum for S(k)

η (A) can be bounded similarly. �
If the set of indices L that are linked to u are such that 

∏
v∈L dv �= 1 is small and du

is large, we apply Lemma 5.4 instead.
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Lemma 5.8. Fix an index u. Let L be the set of indices that are linked to u. Suppose 
Av < (logN)544 holds for every v ∈ L, and Av �= 1

2 for at least one v ∈ L. Then if 
Au ≥ (N‡) 1

4 , we have

S′
η(A) �ε N(logN)−17 whenever u /∈ {40, 41, 42, 43},

and

S(k)
η (A) �ε N(logN)−17 holds for any u.

Proof. We follow the proof of [10, Lemma 7]. Write d′ for the product 
∏

v∈L dv. We can 
put gη(d) into the form

4−ω(du)
(
du

d′

)
χ(du)C,

where χ is a character modulo 8, |C| ≤ 1, and χ and C do not depend on du. Then

S′
η(A) �

∑
(dw)w�=u

∣∣∣∣∣
∑
du

4−ω(du)
(
du

d′

)
χ(du)

∣∣∣∣∣ ,
where the sum of du is subject to the conditions Au < du ≤ 2Au, 

∏
i,j dij ∈ DN and (27)

(but not (26) because u /∈ {40, 41, 42, 43} by assumption). Then 
( ·
d′

)
χ is a character 

mod 8d′ and non-principal because d′ �= 1. Since 8d′ � (logN)544·15 ≤ (log(N‡)) 4
ε ·544·15, 

we can apply Lemma 5.4, then sum over all (dw)w�=u, we get

S′
η(A) �ε N(logN)15 exp

(
−c
√

logAu

)
,

where c is a constant depending only on ε. Inserting the lower bound Au ≥ (N‡) 1
4 yields 

the required estimate.
The proof for S(k)

η (A) is similar noting that imposing (23) does not require the as-
sumption u /∈ {40, 41, 42, 43}. �

Combining Lemma 5.7 and Lemma 5.8 we have the following.

Lemma 5.9. Suppose Au ≥ (N‡) 1
4 and Av �= 1

2 hold for some linked indices u and v. 
Then

S′
η(A) �ε N(logN)−17 whenever u /∈ {40, 41, 42, 43},

and

S(k)
η (A) �ε N(logN)−17 holds for any u.
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The following is inferred by [10, Lemma 9].

Lemma 5.10. If U is a set of pairwise unlinked indices, and #U ≥ 4, then U takes one 
of the following form

{10, 20, 30, 40}, {i0, j0, ij, ji}, {i0, ij, ik, il},
{i0, ji, ki, li}, {ij, ik, lj, lk}, {ij, ji, kl, lk}, (29)

where i, j, k, l denote different non-zero indices.

5.5. The case di ≤ N‡

We now work towards bounding the contribution from (W1).

Lemma 5.11. For each η ∈ {0, 1, 2, 3, 4}, we have

#
{(

2δ1(η)d1, 2δ2(η)d2, 2δ3(η)d3, 2δ4(η)d4

)
∈ WD : (W1) holds

}
�ε N(logN)− 1

4+ε.

We adapt the argument in [10, Lemma 9, Lemma 11] to prove Lemma 5.11.

Lemma 5.12. For each k ∈ {1, 2, 3, 4},

∑
A

|S(k)
η (A)| �ε N(logN)− 1

4+ε,

where the sum is over all A other than those that satisfy

Au ≥ N‡ for all u ∈ U and Au = 1
2 for all u /∈ U (30)

for some U being one of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{10, 20, 30, 40}, {40, 41, 42, 43}, {20, 12, 32, 42}, {30, 13, 23, 43} if η = 0,
{10, 20, 30, 40}, {40, 14, 24, 34} if η = 1,
{10, 20, 30, 40}, {20, 12, 22, 32}, {30, 31, 32, 34} if η = 2,
{10, 20, 30, 40}, {30, 13, 23, 43} if η = 3,
{10, 20, 30, 40}, {10, 11, 21, 31}, {40, 41, 42, 43} if η = 4.

(31)

Proof. By Lemma 5.6, we can assume that there exists a set of indices U of size at least 
4, such that Au ≥ N‡ for all u ∈ U . By Lemma 5.9, we can assume that the indices in 
U are pairwise unlinked.
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Therefore it remains to show that for each η ∈ {0, 1, 2, 3, 4}, the bound
∑
A

u∈U⇒Au≥N‡

u/∈U⇒Au= 1
2

|S(k)
η (A)| �ε N(logN) 1

4+ε (32)

holds for every U in (29), unless U is one of the sets in (31). When D is odd, namely 
when η = 0, (32) essentially follows from [10, Lemma 11].

For even D, fix any η ∈ {1, 2, 3, 4}, then consider A such that Au ≥ N‡ for all u ∈ U
and Au = 1

2 for all u /∈ U . We see that for every possible U , there exists v ∈ U such 
that dv is one of the variables in βη. Now fix one such v ∈ U . Since the indices in U are 
unlinked, putting in du = 1 for all u /∈ U , we see that gη(d) has the form

gη(d) =
(
−1
α′

)(
2
β′
η

) ∏
u∈U

4−ω(du)
∏

{u,w}⊂U
ϕu,w(du, dw),

where α′ is the product of the variables dividing α with indices in U , β′
η is the prod-

uct of variables dividing βη with indices in U , and ϕu,w(du, dw) is either trivially 1 or 
(−1) du−1

2 · dw−1
2 depending on the indices u, w. Viewing (du)u∈U\{v} as fixed, we can write

gη(d) = 4−ω(dv)χ(dv)C,

where C depends on (du)u∈U\{v} but not dv and satisfies |C| ≤ 1, and the function 

χ(dv) is 
(

2
dv

)
or 
(

−2
dv

)
depending on (du)u∈U\{v} and whether v is the index of a 

variable dividing α. Then we have

|S(k)
η (A)| �

∑
(du)

u∈U\{v}

∣∣∣∣∣
∑
dv

4−ω(dv)χ(dv)

∣∣∣∣∣ ,
where (du) are restricted to satisfy Au < du ≤ 2Au, 

∏
u∈U du ∈ DN and (23). Apply 

Lemma 5.4 to the inner sum we conclude that

|S(k)
η (A)| �ε N(logN)−17

as in the proof of [10, Lemma 7]. Summing over all O((logN)16)-many possible A, the 
bound in (32) holds as required. �

We are ready to bound the contribution from (W1).

Proof of Lemma 5.11. By (22), Gη provides an upper bound to the indicator function 
of WD, so we can bound the number of elements in WD satisfying (W1) by the sum 
in (25). The assumption (23) implies that S(k)

η (A) is an empty sum whenever Akj ≥ N‡
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for some j. Checking the sets in (31), the only possibility that S(k)
η (A) is non-trivial and 

not covered by Lemma 5.12, is if A satisfies (30) with

U =

⎧⎪⎪⎨
⎪⎪⎩
{40, 41, 42, 43} when η = 0,
{30, 31, 32, 34} when η = 2,
{40, 41, 42, 43} when η = 4,

but these are within the exclusions set out in (24). This completes the proof. �
5.6. Prime divisors of a large di

We now bound the contribution from (W2).

Lemma 5.13. For each η ∈ {0, 1, 2, 3, 4}, we have

#
{(

2δ1(η)d1, 2δ2(η)d2, 2δ3(η)d3, 2δ4(η)d4

)
∈ WD : (W2) holds

}
�ε N(logN)− 1

4+ε.

To prove Lemma 5.13, we again modify the estimates in [10, Section 3] to account for 
the extra restrictions in the sum.

Lemma 5.14.
∑
A

S′
η(A) �ε

∑
U

∑
A

v/∈U⇒Av= 1
2

S′
η(A) + N(logN)−1,

where the sum over U is over all U of the form {1i, 2j, 3k, 4l}.

Proof. For each A such that S′
η(A) is non-trivial, the condition (27) allows us to find a 

set of indices

U = {1i, 2j, 3k, 4l},

where i, j, k, l are not necessarily distinct, such that d1i, d2j , d3k, d4l > (N‡) 1
4 . Hence we 

may assume that A1i, A2j , A3k, A4l ≥ (N‡) 1
4 . By Lemma 5.7, we can further assume that 

the indices 1i, 2j, 3k, 4l are pairwise unlinked, so U must take one of the form in (29).
Now suppose v /∈ U . If v is not linked to any one of 1i, 2j, 3k, then {1i, 2j, 3k, v} is also 

a set of unlinked indices with size 4. Comparing against the list in (29), if {1i, 2j, 3k, 4l}
and {1i, 2j, 3k, v} are both sets of unlinked indices, they must be the same set, which 
contradicts the assumption that v /∈ U . Therefore v must be linked to one of {1i, 2j, 3k}, 
and this allows us to apply Lemma 5.9. Hence we are left with the terms S′

η(A) with 
Av = 1

2 for all v /∈ U . The sum of S′
η(A) over those A treated by Lemma 5.7 and 

Lemma 5.9 contributes O(N(logN)−1) since there are O((logN)16) possible A. �
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Proof of Lemma 5.13. It suffices to bound (28). We further simplify the expression ob-
tained in Lemma 5.14. Note that there are only finitely many possible U = {1i, 2j, 3k, 4l}, 
then on setting d1 = d1i, d2 = d2j , d3 = d3k, d4 = d4l, we deduce that

∑
U

∑
A

v/∈U⇒Av= 1
2

S′
η(A) �

∑
d1d2d3d4∈DN

d1,d2,d3,d4≥N‡

p|d4⇒p/∈S

4−ω(d1d2d3d4) ≤
∑

D∈DN

4−ω(D)
∑

(d1,d2,d3,d4)
d1d2d3d4=D
p|d4⇒p/∈S

1

=
∑

D∈DN

(
3
4

)ωS(D)

�ε N(logN)− 1
4+ε,

where the final inequality follows from Lemma 5.2 and Mertens theorem. Therefore we 
conclude that

∑
A

S′
η(A) �ε N(logN)− 1

4+ε,

which gives the required bound for (28) as desired. �
Combining Lemma 5.11 and Lemma 5.13 proves Theorem 5.1.

6. Counting generic points

The goal of this section is to prove Theorem 1.4. We begin by collecting the exceptional 
set of D ∈ DN that will be disregarded in the subsequent argument. Take GN to be the 
collection of D ∈ DN that satisfy at least one of the following:

(P1) ω(D) ≥ 2 log logN ,
(P2) D < exp(3(logN)1−2ε),
(P3) the conditions (S1) and (S2) both fail for some (D1, D2, D3, D4) ∈ WD.

Lemma 6.1. We have

#GN �ε N(logN)− 1
4+ε.

Proof. By the Erdős-Kac theorem [7], the number of D ∈ DN satisfying (P1) is bounded 
by O(N(logN)− 1

2 ). The number of D ∈ DN that satisfy (P2) is trivially bounded by 
exp(3(logN)1−2ε). Theorem 5.1 allows us to bound the number of D ∈ DN that sat-
isfy (P3) by Oε(N(logN)− 1

4+ε). Collecting the upper bounds proves the lemma. �
Recall that any integral point in ED(Z) maps to WD under the map in (15), and

E∗
D(Z) = ED(Z) \ {(0, 0), (±D, 0)}.
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For the non-trivial integral points that have image of the type (S1), we have the following 
bound from [5, Theorem 1.4] and the discussion after [5, Theorem 10.1].

Lemma 6.2. We have
∑

D∈DN

∑
T∈{O,(0,0),(±D,0)}

#(E∗
D(Z) ∩ (T + 2ED(Q))) �

√
N logN.

Therefore it remains to handle the integral points on ED with D ∈ DN \GN that have 
image satisfying (S2). Define

ZN :=
⋃

D∈DN \GN

{P ∈ ED(Z) : P /∈ 2ED(Q) + {O, (0, 0), (±D, 0)}}.

Then the image of P = (x, y) ∈ ZN corresponds to (D1, D2, D3, D4) ∈ WD of the 
type (S2). By Lemma 4.2, we have

D

gcd(x,D) ∈ {D1, D2, D3, D4},

so the property (S2) allows us to pick a prime factor MP of D/ gcd(x, D) of size

exp((logN)2ε) < MP < exp((logN)1−2ε). (33)

Now since D is squarefree, MP divides D but does not divide x. Therefore we can apply 
the map Ψ defined in (9) to (P, MP ). Having fixed a choice of MP for each P ∈ ZN , 
define

Ψ′ : ZN → (V × Z2)/ SL2(Z)

by

P 	→ (P,MP ) Ψ	−→ (F, (1, 0)).

Also define

Φ : ZN
Ψ′
−→ (V × Z2)/ SL2(Z) → V/ SL2(Z)

by

P
Ψ′
	−→ (F, (1, 0)) 	→ F.

By Lemma 3.1(i), if Ψ′(P ) = (F, (1, 0)), then F (1, 0) = MP and so (33) can be rewritten 
as
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exp((logN)2ε) < F (1, 0) < exp((logN)1−2ε). (34)

For any P ∈ ZN , write

D̃ = D

MP
,

so Δ(F ) = (2D̃)6 if F = Φ(P ) by Lemma 3.1(iii). Since D ≥ exp(3(logN)1−2ε) by (P2) 
and MP is in the range (33), we have

exp(2(logN)1−2ε) ≤ D exp(−(logN)1−2ε) ≤ D̃ < D exp(−(logN)2ε). (35)

6.1. Points lowered to the same quartic

We now show that each class in im Φ cannot arise from too many integral points.

Lemma 6.3. For any F ∈ im Φ, we have

#Φ−1(F ) � 1,

where the implied constant is absolute.

Proof. From Lemma 3.2, we know that Ψ is injective, so Ψ′ is also injective. Therefore 
we want to show that the size of the fibres of imΨ′ → im Φ ⊂ V/ SL2(Z) is bounded. 
Fix an arbitrary F0 ∈ im Φ. Suppose (F, (1, 0)) ∈ im Ψ′ is such that F and F0 are 
SL2(Z)-equivalent, so we can write

F0(X,Y ) = F ((X,Y ) · γ)

for some γ ∈ SL2(Z). Then

γ · (F (X,Y ), (1, 0)) = (F ((X,Y ) · γ), (1, 0) · γ−1) = (F0(X,Y ), (1, 0) · γ−1).

Setting (x, y) = (1, 0) · γ−1, we see that F0(x, y) = F (1, 0), then by (34), (x, y) gives a 
solution to the Thue inequality

1 ≤ |F0(X,Y )| ≤ h, (36)

where h := exp((logN)1−2ε). In particular this solution is primitive (i.e. x and y co-
prime), since γ−1 ∈ SL2(Z) has determinant 1 and entries in Z. Therefore to bound the 
number of possible SL2(Z)-equivalence classes of (F, (1, 0)) that maps to F0, it suffices 
to bound the number of primitive solutions to (33).

A result by Evertse [8, Theorem 6.4(ii)] implies that when 28Δ(F0) ≥ (13h)10, the 
number of solutions to (36) is bounded by some absolute constant. Since Δ(F0) =
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(2D̃)6 � exp(12(logN)1−2ε) from (35), and h10 = exp(10(logN)1−2ε), we conclude 
that the number of possible classes (F, (1, 0)) ∈ im Ψ′ that maps to each class of F0 is 
absolutely bounded. �
6.2. Integral points with bounded height

The last piece of the argument is to bound the size of the image of Φ. In the remainder 
of this paper, our task is to prove the following estimate.

Lemma 6.4. We have

# im Φ �ε N exp(−(logN)ε).

Every integral binary quartic form is SL2(Z)-equivalent to at least one reduced form 
in the sense of [6, Section 4.3]. The seminvariant a, H of the reduced form are bounded in 
terms of the seminvariants I and J . We restate a theorem in [6] in terms of our rescaled 
seminvariants. The scale factors of the seminvariants can be found in Section 2.

Theorem 6.5 ([6, Proposition 11]). Suppose F0(X, Y ) ∈ Z[X, Y ] is a SL2(Z)-reduced 
quartic form, and Δ(F0) > 0, with leading coefficient a = a(F0) and seminvariant H =
H(F0). Order the three real roots φ1, φ2, φ3 of X3 − I

4X − J
4 so that aφ1 < aφ2 < aφ3. 

Then (a, H) satisfies one of the following:

(1) |a| ≤ 4
3 |φ1 − φ3| and max{aφ1, aφ3 − 4φ2

3 + 1
3I} ≤ H ≤ aφ2; or

(2) |a| ≤ 4
3 |φ1 − φ2| and aφ3 ≤ H ≤ aφ2 − 4φ2

2 + 1
3I.

For F ∈ im Φ, recall from the properties in Lemma 3.1 that Δ(F ) = (2D̃)6 > 0, I(F ) =
4D̃2 and J(F ) = 0, so in the notation of Theorem 6.5, we have {φ1, φ3} = {−D̃, D̃} and 
φ2 = 0. Suppose F0 is a reduced form of F with leading coefficient a = a(F0) and 
seminvariant H = H(F0). Then the two possible cases in Lemma 6.5 both lead to

|a| ≤ 8
3D̃ and |H| ≤ 4

3D̃
2. (37)

The syzygy in (7) for F0 now takes the form

H3 − (aD̃)2H =
(

1
2R
)2

. (38)

Notice that this gives an integral point (H, 12R) ∈ E|aD̃|(Z) when a �= 0. In the following, 
we show that the possibility that a = 0 does not happen to the forms in im Φ.

Lemma 6.6. Suppose F ∈ im Φ. Then any form in the SL2(Z)-equivalence class of F has 
non-zero leading coefficient.
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Proof. Assume for contradiction that Φ(P ) = F for some P = (c, d) ∈ ZN and F
is equivalent to some quartic form with leading coefficient 0. Then there is a non-
trivial integral solution to F (X, Y ) = 0. From Φ(P ) = F , we know that F (X, Y ) =
1

M3 fP (MX + kY, Y ) for some M, k ∈ Z, so fP (X, Y ) = 0 has a non-trivial rational 
solution, say (x0, y0). Then from the expression of fP in (8),

fP (x0, y0) = x4
0 − 6cx2

0y
2
0 + 8dx0y

3
0 + (4D2 − 3c2)y4

0 = 0.

We see that y0 �= 0 since the solution is non-trivial. The roots of fP (X, 1) are

x0

y0
= −

√
c +

√
c + D +

√
c−D, −

√
c−

√
c + D −

√
c−D,

√
c +

√
c + D −

√
c−D,

√
c−

√
c + D +

√
c−D.

For x0/y0 to be rational, it must be that θ(P ) = (1, 1, 1), where θ is the 2-descent 
homomorphism defined in (14). This implies that P ∈ 2ED(Q), but such points were 
excluded from ZN . �

Since the seminvariants a, H, R, I and J together determine the quartic form up to 
SL2(Z)-equivalence classes, to bound # im Φ, it suffices to count the number of tuples 
(a, D̃, H, R) associated to reduced forms in imΦ. In light of Theorem 6.5 and Lemma 6.6, 
to prove Lemma 6.4, we can assume (35), (37), (38), and a �= 0. We split into two cases 
according to whether (H, 12R) is a torsion point on E|aD̃|(Z).

6.3. Torsion points

Here we bound the number of classes in im Φ that contain a reduced form which 
produces a torsion point (H, 12R) ∈ E|aD̃|(Z) through the syzygy (38). Recall from (35)
that

D̃ ≤ N exp(−(logN)2ε).

Let

Ñ = N exp(−(logN)2ε),

so that D̃ ≤ Ñ .

Lemma 6.7. The total number of SL2(Z)-equivalence classes that contain an integer-
matrix binary form F that satisfies a(F ) �= 0, H(F ) ∈ {−a(F )D̃, 0, a(F )D̃}, I(F ) =
(2D̃)2 and J(F ) = 0 for some D̃ ∈ DÑ , is bounded by

�ε N exp(−(logN)ε).
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Proof. Suppose that F (X, Y ) = a0X
4 + 4a1X

3Y + 6a2X
2Y 2 + 4a3XY 3 + a4Y

4, so 
a(F ) = a0. Since H(F ) = a2

1 − a0a2, and by assumption a0 | H(F ), it must be that 
a0 | a2

1. Then a0 | Δ(F ) = (2D̃)6 by the formula of the discriminant in Section 2. 
Therefore for each D̃, there can only be a maximum of 2 · 7ω(2D̃) possible a0. Inserting 
the assumptions to (7), we see that R(F ) = 0. Summing over D̃ ∈ DÑ , then applying 
Lemma 5.2, the number of classes can be bounded by

#
{

(a, D̃,H) ∈ Z3 : a �= 0, a | (2D̃)6, D̃ ∈ DÑ ,

H ∈ {−aD̃, 0, aD̃}

}
�
∑
D̃≤Ñ

7ω(D̃) � Ñ(log Ñ)6.

Finally putting in Ñ = N exp(−(logN)2ε) completes the proof. �
6.4. Non-torsion points

We now bound the number of classes in imΦ that contain a reduced form which pro-
duces a non-torsion point (H, 12R) ∈ E|aD̃|(Z) through the syzygy (38) and satisfies (37). 
Since D ∈ DN \GN , those ED that satisfies (P1) have been removed, we can assume that 
ω(D̃) < ω(D) < 2 log logN . Also by Lemma 6.6, a �= 0.

Lemma 6.8. We have

#

⎧⎪⎨
⎪⎩(a, D̃,H,R) ∈ Z4 :

1 ≤ |a| ≤ 8
3Ñ , D̃ ∈ DÑ ,

ω(D̃) < 2 log logN,(
H, 1

2R
)
∈ E∗

|aD̃|(Z), |H| ≤ 4
3D̃

2

⎫⎪⎬
⎪⎭�ε N exp(−(logN)ε).

Proof. Write n = |aD̃| ≤ 8
3Ñ

2. For each positive integer n, the number of positive 
squarefree divisor D̃ of n satisfying ω(D̃) < 2 log logN , is bounded by

∑
k≤min{ω(n),2 log logN}

(
ω(n)
k

)
<

∑
k≤2 log logN

(ω(n))k

� exp
(
2(log logN)2 + O(log logN)

)
, (39)

where we have used the fact that ω(n) � logN .
The number of integral points P = (H, 12R) ∈ En(Z) we are counting are of bounded 

height |x(P )| ≤ 4
3Ñ

2, so applying a result by Le Boudec [15, Theorem 2] we get

∑
n≥1

#
{
P ∈ E∗

n(Z) : |x(P )| ≤ 4
3Ñ

2
}

� Ñ(log Ñ)6. (40)

Now multiplying together the upper bounds in (39) and (40), then substituting Ñ =
N exp(−(logN)2ε), we get that the total number of (a, D̃, H, R) is
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� N exp
(
−(logN)2ε + 2(log logN)2 + O(log logN)

)
.

This proves the claim. �
Lemma 6.7 and Lemma 6.8 completes the proof of Lemma 6.4. Theorem 1.4 follows 

from Lemma 6.1, Lemma 6.2, Lemma 6.3 and Lemma 6.4.
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