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1. Introduction

The classification of dynamics is an important topic in dynamical systems. One well-
known example is the classification of circle diffeomorphisms. Let T := R/Z and f : T →
T be an orientation-preserving Cr homeomorphism, where r ∈ N ∪ {∞, ω}. Poincaré 
laid the foundations of the theory of circle diffeomorphisms and introduced the concept 
of rotation number in the classification of these diffeomorphisms. The rotation number 
ρ(f) ∈ R of f is defined as the uniform limit

lim
n→∞

fn(x) − x

n
.

The rotation number is independent of the choice of x ∈ T and is invariant under 
conjugations, making it a useful dynamical invariant. Poincaré’s classification theorem 
states that if the rotation number ρ(f) is rational pq , then f has a periodic orbit of period 
q. If the rotation number is irrational, then f is semi-conjugate to the irrational (rigid) 
rotation. Denjoy [17] further showed that if the rotation number is irrational and lnDf

has bounded variation, then the semi-conjugacy is a homeomorphism. This result was 
later extended by Arnold [15], as part of the KAM theory, who showed that if f is Cω

close to a rotation and the rotation number ρ(f) satisfies the Diophantine condition, then 
the conjugacy is analytic. Subsequent work by Herman, Yoccoz, Katznelson, Ornstein, 
Sinai, and others [28,29,52,53,41–43,49] extended this result to the global version of 
analytic, smooth, or finitely differentiable circle diffeomorphisms f . They showed that 
when f is analytic (resp. C∞, Ck with k > 2) and ρ(f) is Diophantine, the conjugacy is 
analytic (resp. C∞, Ck−r for some 0 < r < k). Moreover, the Diophantine condition can 
be weakened to the Brjuno condition, which turns to be necessary [53]. Therefore, the 
dynamics of the circle diffeomorphism f can be completely determined by its rotation 
number ρ(f).

A one-frequency cocycle is a natural generalization of a circle diffeomorphism in high 
dimensions. Let G be a Lie-subgroup of GL(s, C). A Cr one-frequency G-cocycle (α, A)
is a skew-product defined on T ×Cs such that

(α,A) : T ×Cs → T ×Cs, (x, v) �→ (x + α,A(x) · v),

where α ∈ R\Q, A ∈ Cr(T , GL(s, C)), r ∈ N ∪ {∞}. The iterates of the cocycle 
(α, A)n = (nα, An) are defined as A0(x) = I,

An(·) = A(· + (n− 1)α) · · ·A(·), n ≥ 1,

and An(·) = A−n(· − nα)−1 for n ≤ −1.
When G = SO(2, R), taking projective action, it naturally induces the cocycle

Tφ : T × T → T × T , (x, g) �→ (x + α, φ(x) · g).
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Moreover, if φ is smooth, then dynamical properties of Tφ depend on the topological 
degree d(φ) of φ. For example, if φ is C2 with d(φ) 	= 0, then Tφ is ergodic and it 
has a countable Lebesgue spectrum on the orthocomplement of the space of functions 
depending only on the first variable [33]. If φ is absolutely continuous with d(φ) = 0, 
then Tφ has a singular spectrum [25].

However, when G is non-compact, hyperbolicity appears. Therefore, another impor-
tant dynamical invariant is introduced. For a cocycle (α, A) ∈ R\Q × C0(T , GL(s, C)), 
we define the Lyapunov exponents L1(α, A) ≥ L2(α, A) ≥ ... ≥ Ls(α, A) as

Lk(α,A) := lim
n→∞

1
n

∫
T

ln(σk(An(x)))dx, k = 1, · · · , s,

(repeatedly according to multiplicities), where for a matrix B we denote by σ1(B) ≥
... ≥ σs(B) its singular values (eigenvalues of 

√
B∗B). As the k-th exterior product ΛkB

of B satisfies ‖ΛkB‖ =
∑k

j=1 σj(B), one can define

Lk(α,A) :=
k∑

j=1
Lj(α,A) = lim

n→∞
1
n

∫
T

ln(‖ΛkAn(x)‖)dx, k = 1, · · · , s. (1.0.1)

Unfortunately, these Lyapunov exponents are far from enough to classify the cocycles. 
In fact, even for cocycles with all Lyapunov exponents vanishing, the dynamics still have 
a variety of possibilities [19,40].

1.1. Accelerations

A breakthrough came recently, with the establishment of the global theory of one-
frequency analytic Schrödinger operators. Avila [4] classified one-frequency analytic 
SL(2, R) cocycles and proposed another dynamical invariant called “accelerations”. In-
deed, for any analytic cocycle (α, A) ∈ R\Q × Cω(T , GL(s, C)), there exists δ > 0 such 
that A can be holomorphically extended to {|�z| ≤ δ}. Let Aε(x) := A(x +iε) for |ε| < δ. 
We can then define the accelerations of (α, A) as follows:

ωk := lim
ε→0+

1
2πε (L

k(α,Aε) − Lk(α,A)), ωk := ωk − ωk−1. (1.1.1)

Furthermore, we define (ω1, · · · , ωs) as the acceleration vector of (α, A). The most im-
portant observation is that the accelerations are quantized [4,7], namely that there 
exists l ∈ {1, · · · , s} such that both lωk and lωk are integers. Actually the accelera-
tions are dynamical invariants as they remain invariant under conjugations. We recall 
that (α, Ai) ∈ R\Q ×Cω(T , G), i = 1, 2, are Cω-conjugate to each other, if there exists 
B ∈ Cω(χGT , G), where χGT := R/χGZ, χG ∈ N∗ depending on G,1 such that

1 In particular, χG = 2 for G = SL(2, R), and χG = 1 for G = SO(3, R).



4 X. Hou et al. / Advances in Mathematics 457 (2024) 109943
A1(·) = B(· + α)A2(·)B(·)−1.

Moreover, a cocycle is said to be reducible if it is conjugate to a constant. A cocycle 
(α, A) is said to be almost reducible if the closure of the analytic conjugate class of 
(α, A) contains a constant cocycle.2

With these notations, Avila’s classification of one-frequency analytic SL(2, R)-cocycles 
is introduced [4]. If A is homotopic to the identity, or in other words, if the topological 
degree d(A) = 0, then the dynamical behavior can be determined by the Lyapunov 
exponent and acceleration. To be precise, if ω1 = 0, then the cocycle is subcritical (resp. 
uniformly hyperbolic) when L1(α, A) = 0 (resp. L1(α, A) > 0). On the contrary, if ω1 	=
0, (α, A) is critical (resp. supercritical or non-uniformly hyperbolic) when L1(α, A) = 0
(resp. L1(α, A) > 0). On the other hand, if the topological degree d(A) 	= 0, i.e., A :
T → SL(2, R) is homotopic to θ �→ Rd(A)θ, where

Rθ :=
(

cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
,

Avila-Krikorian [11] proved that if (α, A) is L2-conjugate to rotations, then it is Cω-
conjugate to rotations. In conclusion, the classification of analytic SL(2, R)-cocycles 
depends on three dynamical invariants: the topological degree, Lyapunov exponent, and 
acceleration.

The natural inquiry is whether this kind of classification can be generalized to high-
dimensional cocycles. As an initial attempt, we consider this question for cocycles valued 
in SO(s, R), s ∈ N∗. Note that if A takes values in SO(s, R), then Lk(α, A) = 0, 
k = 1, · · · , s. Hence the monotonicity on singular values therefore Lyapunov exponents 
provides that

ω1 ≥ · · · ≥ ωs.

In particular, for any SO(3, R)-cocycle, as determinant is identically 1, we have ω1+ω2+
ω3 = 0. As singular values λ, λ−1 come in pairs, we deduce that nonzero accelerations 
are in pairs ω, −ω. Hence the acceleration vector must be in the form

(ω1, 0,−ω1), (1.1.2)

i.e., essentially has one variable. And we get the following classifications of the dynamics 
of analytic one-frequency SO(3, R) cocycles.

Theorem A. Let α ∈ R\Q and A ∈ Cω(T , SO(3, R)), then we have the following:

1. ω1 = 0 if and only if (α, A) is Cω-almost reducible.

2 One can consult section 2.2 for more details.
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2. Assuming additionally that α ∈ RDC, if ω1 	= 0, then (α, A) is Cω-conjugate to

(α, exp
( 0 ω1x + c 0
−ω1x− c 0 0

0 0 0

)
),

for some c ∈ R.

We say α ∈ R\Q satisfies a Diophantine condition DC(κ, τ) if κ > 0 and τ > 0, where

||qα− p||Z >
κ

|q|τ , (p, q) ∈ Z2, q 	= 0,

where || ·||Z represents the distance to the nearest integer for a real number. Furthermore, 
we say that α ∈ R\Q is recurrent Diophantine if there exist some γ > 0, τ > 1 such 
that Gn(α) ∈ DC(γ, τ) for infinitely many n, where G : (0, 1) → (0, 1) is the Gauss map 
defined by G(x) = { 1

x} and {x} denotes the fractional part of x. Let RDC be the set of 
recurrent Diophantine numbers, which has a full Lebesgue measure. We point out that 
the condition α ∈ RDC is used for technical reason. It would be interesting to generalize 
the result to all α ∈ R\Q.

Theorem A is interesting for several reasons. Firstly, Theorem A (1), provides another
understanding of Avila’s well-known Almost Reducibility Conjecture (ARC) for SO(3, R)
cocycles. The ARC states that any subcritical (α, A) ∈ R\Q × Cω (T , SL(2, R)) is an-
alytically almost reducible, which has important implications for both dynamical and 
spectral aspects, as highlighted in various works [2,4,8,13,14]. Notably, our proof of The-
orem A (1) for SO(3, R) cocycles is different from the one in the case of SL(2, R) [2,3]. Our 
method is applicable to compact group. However, in this article, we focus on SO(3, R) co-
cycles. It is interesting to extend Theorem A (1) to cocycles on general compact groups, 
see also the discussions in Remark 1.1.

Moreover, Theorem A provides classification for one-frequency analytic SO(3, R)-
cocycle: all cocycles can be classified into almost reducible ones and non-almost-reducible 
ones, since the normal form cocycle in Theorem A (2) is obviously not almost-reducible. 
Furthermore, Theorem A (1) states that almost reducibility for SO(3, R) cocycles holds 
for all irrational frequency (not merely RDC as in [24,39]), which is a completely new 
result.

Finally, we would like to mention that for the case ω1 = 0, the result should hold for 
general compact groups. However, when ω1 	= 0, the rigidity result, as demonstrated in 
Theorem A (2), can only be expected in a weaken version (achieving by a sequence of 
conjugations) for general compact groups. This is due to extra difficulty solving cohomo-
logical equation, arising in the possibility of the matrix form of dynamical degree being 
degenerate and having a large centralizer. One can consult [47] for more discussions.
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1.2. Dynamical degree

As mentioned earlier, for G = SO(2, R) or SL(2, R), where the fundamental group 
of G is nontrivial, the topological degree plays a significant role in dynamical classifi-
cation. However, for G = SO(s, R), s ≥ 3, the fundamental group is Z/2Z, rendering 
the topological degree less applicable. In contrast, another degree called the “dynamical 
degree” can be defined and utilized. The concept of dynamical degree was initially pro-
posed by Krikorian [39] and formally introduced by Frączek [24] for SU(2)-cocycles. It 
can be extended to any compact cocycles and general cocycles L2-conjugate to rotations 
[12,34,47].

Let α ∈ R\Q and A ∈ C1(T , SO(s, R)), s ≥ 3, Aα be the operator defined as follows:

Aα : L2(T , so(s,R)) ←→ L2(T , so(s,R)), Y �→ A−1(·)Y (· + α)A(·),

and Aj
α represent its j-th iteration. It is known that Aα is a unitary operator. According 

to von Neumann’s ergodic theorem, there exists an Aα-invariant D ∈ L2(T , so(s, R)), 
such that the following convergence holds:

1
n
An(·)−1∂An(·) = 1

n

n−1∑
j=0

Aj
α(A(·)−1∂A(·)) L2

−−→ D, (1.2.1)

and A(x)−1D(x + α)A(x) = D(x) almost everywhere. We call any matrix D in the 
algebraic conjugate class the dynamical degree of (α, A). The dynamical degree is in-
variant under measurable conjugacy [24, Theorem 2.10]. Since D ∈ so(s, R), there exist 
Q ∈ SU(s) and d1, · · · , ds ∈ R such that D is conjugate to the diagonal form

D = Q · 2πidiag (d1, · · · , ds) ·Q−1.

Furthermore, notice that conjugation of 
(

0 1
−1 0

)
∈ SO(2, R) on diagonal matrix acts 

like a transposition on diagonal elements, we can properly order the diagonal entries of 
D such that

d1 ≥ · · · ≥ ds.

We thus define the vector of dynamical degree to be �d = (d1, · · · , ds).
We note that the dynamical degree is quantized (dk ∈ Z, k = 1, · · · , s), as proven in 

[12,47]. Since acceleration is also quantized [4,7], a natural question arises as to whether 
there is any relation between them. In fact, for analytic SO(s, R)-cocycles, they are the 
same.

Theorem B. Let α ∈ R\Q and A ∈ Cω(T , SO(s, R)). The acceleration vector of (α, A)
is the same as the vector of dynamical degree of (α, A).
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Remark 1.1. In fact, Theorem B remains true in a more general setting. For any Lie-
subgroup G of GL(2s, R), it has a maximal compact subgroup G ∩ SO(2s, R). For any 
G-cocycle which is further L2-conjugate to rotations (valued in G ∩ SO(2s, R)), one can 
still define the dynamical degree [12,47]. Moreover, the proof of Theorem B remains true 
for this class of cocycles.

In particular, when G = Sp(2s, R), L2-conjugacy to rotations can be provided by gen-
eralized Kotani theory [51]. Therefore, high dimensional generalization of Theorem A (1) 
would be particularly interested in the spectral application of quasi-periodic Schrödinger 
operators on the strip [27], or Schrödinger operators with trigonometric polynomial [50].

As the vector of dynamical degree has integer entries, we deduce the following result.

Corollary 1.1. Let α ∈ R\Q and A ∈ Cω(T , SO(s, R)). The accelerations of (α, A) are 
all integers.

We recall [7, Theorem 1.4]: when A ∈ Cω(T , L(Cs, Cs)), for k = 1, · · · , s, there exists 
an integer 1 ≤ l ≤ s, such that lwk ∈ Z. Our improvement is essentially due to the 
compactness of SO(s, R): eigenvalues always have algebraic multiplicity 1, which leads 
to l = 1.

Consequently, the dynamical degree can be used to classify analytic one-frequency 
quasi-periodic SO(3, R)-cocycles. In particular, we can establish the relation between 
acceleration, dynamical degree, and almost reducibility.

Corollary 1.2. Let α ∈ R\Q and A ∈ Cω(T , SO(3, R)). Then the following statements 
are equivalent:

1. The dynamical degree is zero,
2. The largest acceleration ω1 is zero,
3. (α, A) is Cω almost reducible.

1.3. More histories and comments

A quasi-periodic linear system on a Lie group G (referred to as a linear system for 
short) is an ordinary differential equation on Td ×G of the form

{
ẋ = Ã(θ)x,
θ̇ = ω,

(1.3.1)

where Ã : Td → g (g is the Lie algebra of G), and ω ∈ Td is rationally independent. 
Poincaré time-1 map of (1.3.1) is in fact a quasi-periodic cocycle on G. Naturally, conju-
gation and in particular almost reducibility results of the corresponding cocycle is closely 
related to the ones of the original linear system [55], cf. section 3.1.
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Let the frequency α ∈ Td be Diophantine and A ∈ Cω(Td, SL(2, R)). In 1975, 
Dinaburg-Sinai [18] used the KAM approach to prove that for a typical one-parameter 
family of cocycles close to a constant, reducible cocycles are of positive measure. Subse-
quently, by using the resonance-cancellation technique developed by Moser-Pöschel [46], 
Eliasson [19] made a significant breakthrough by proving, under the same assumption, 
that reducible cocycles are of full measure, through an essential improvement of the KAM 
approach. By adapting and improving Eliasson’s approach, Krikorian [37] extended the 
full-measure reducibility result in [19] to the cases of semi-simple compact Lie groups. It 
was further generalized to GL(s, R) cocycles quite recently by Wang-Xu-You-Zhou [50]. 
Eliasson’s approach was also developed to SO(3, R) cocycles to show the local genericity 
of uniquely ergodic and, in particular, non-reducible [20]. We remark that all of these 
results hold for smooth or finitely differentiable cases, regardless of whether we consider 
linear systems or cocycles [1,16,21,38].

However, the Diophantine condition on frequencies in local problems can be relaxed 
when considering one-frequency cocycles or two-frequency linear systems on SL(2, R), 
as shown in [2,6,31]. Both of these articles developed non-standard KAM techniques to 
deal with conjugation problems. Although the method developed in [31] only applies to 
linear systems, the result still holds for cocycles due to the local embedding theorem 
[55].

One may inquire whether any conclusions can be derived regarding conjugation for 
cocycles or linear systems that are not necessarily close to constants (referred to as the 
global case). In the case of one-frequency cocycles, global results can be anticipated. 
In [40], Krikorian proved a profound result stating that for a recurrent Diophantine 
frequency, C∞-reducible smooth cocycles valued in SU(2) are C∞-dense. Moreover, 
Krikorian proved that for a recurrent Diophantine frequency, non-reducible smooth cocy-
cles on SU(2) can be divided into countable conjugation classes. In fact, the proof in [40]
indicates the existence of a quantified conjugation-invariant quantity, which is precised 
later by Frączek [24]. Frączek [23] also studied ergodicity and mixing property related to 
SU(2) cocycles. In the case of SL(2, R), Avila-Krikorian [10] proved that given recurrent 
Diophantine frequency, for almost every energy, the corresponding Schrödinger cocycle 
is either Cω-reducible or non-uniformly hyperbolic, based on Kotani theory [44,48] and 
the renormalization scheme introduced in [40].

Furthermore, several interesting results have been established in [24,34–36,12,30], 
which include topics such as degree, reducibility, almost-reducibility, unique ergodic-
ity, non-reducibility, and spectrum of one-frequency cocycles on semi-simple compact 
groups. Avila’s global theory and accelerations in [4,7] for analytic one-frequency cocy-
cles provide new insights into understanding global conjugation problems.

It is important to note that most of the conclusions about cocycles on semi-simple 
compact groups, whether local or global, require Diophantine or recurrent Diophantine 
conditions. In this paper, we aim to examine the relations among accelerations, dynamical 
degree, and almost-reducibility for analytic cocycles over any irrational frequency. We 
firstly recall the convergence of renormalization proved in [12,47]. Then by proving the 
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preservation of acceleration along renormalization and using the explicit form of limit 
of renormalization, we deduce Theorem B concerning coincidence of acceleration vector 
and vector of dynamical degree. As for Theorem A, if ω1 = 0, we conclude by showing a 
local almost-reducibility result over any irrational frequency. We prove such result using 
the KAM scheme developed by Hou-You [31] and the local embedding theorem [55], 
which are applicable only to the analytic case. On the other hand, if ω1 	= 0, we prove 
conjugation result through an adapted KAM scheme developed by Krikorian [39] for 
SU(2)-cocycles. A technical point in the function of this KAM scheme is the estimates 
on length, which were developed in [39,34] for compact cocycles. Since accelerations can 
only be defined for analytic cocycles, Corollary 1.2 holds only for the analytic case.

Finally, let us mention that the dynamics of cocycles has received significant attention 
from researchers, with a focus on the conjugation problems and their classifications. 
These questions are not only important in the field of dynamical systems, but also 
in mathematical physics, where they have wider applications in the spectral theory of 
Schrödinger operators [2,4,5,8,9,13,14,26,45,54].
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2. Preliminary

2.1. Lie group and Lie algebra

Let

SO(s,R) := {X ∈ M(s,R) : XTX = XXT = I},

so(s, R) be the Lie algebra of SO(s, R), namely

so(s,R) := {X ∈ M(s,R) : X = −XT }.

For a matrix X ∈ M(s, R), we work with its operator norm induced by Euclidean norm 
on Rs, i.e.,

||X|| = sup
v∈Rs, ||v||=1

||Xv||.

For a matrix D ∈ so(s, R), its centralizer z(D) is defined to be
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z(D) = {C ∈ so(s,R) | DC = CD}.

In this article, we mainly work on SO(3, R) and so(3, R). As for the Lie algebra 
so(3, R), it has a basis

J1 =
( 0 1 0
−1 0 0
0 0 0

)
, J2 =

( 0 0 1
0 0 0
−1 0 0

)
, J3 =

( 0 0 1
0 0 0
−1 0 0

)
,

satisfying

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2.

Then we have the following observation.

Lemma 2.1. For D ∈ so(3, R)\{0}, its centralizer is the 1-dimensional linear subspace 
generated by D.

Besides, it is easy to see that for A ∈ so(3, R), it has eigenvalue {||A||i, −||A||i, 0} and 
there exists B ∈ SO(3, R) such that

BTAB = ||A||J1.

2.2. Almost reducibility of Cω-cocycles

In this paper, we focus on analytic category. We start with the norm. Let h > 0, 
n ∈ N∗. We define the strip

Tn
h := {θ = (θ1, · · · , θn) ∈ Cn

∣∣ |�θ1| + · · · + |�θn| ≤ h}/Zn.

We denote by Cω
h (Tn, ∗) the space of all maps F : Tn → ∗ admitting an analytic 

extension on Tn
h , equipped with the norm

‖F‖h := sup
θ∈Tn

h

‖F (θ)‖,

where ∗ could be R, C, SO(3, R) or so(3, R). Then Cω(Tn, ∗) :=
⋃

h>0 C
ω
h (Tn, ∗) be-

comes the set of all analytic ∗-valued function on Tn.
With the analytic norm, we can define Cω-almost-reducibility precisely. Given a Lie-

subgroup G of GL(s, C), a Cω G-cocycle (α, A) is said to be Cω-almost-reducible if there 
exist a sequence of hn > 0, Bn ∈ Cω

hn
(χGT , G) and a bounded sequence of An ∈ G such 

that

lim ||Bn(x + α)A(x)Bn(x)−1 −An||hn
= 0.
n→∞
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Here one has to consider conjugations defined on χGT due to algebraic reason, and An

is changing along the KAM scheme. For more details, one can refer to [38]. We remark 
that χG = 1 when G = SO(3, R).

2.3. Continued fraction expansion

Define as usual for 0 < α < 1,

a0 = 0, α0 = α, q0 = 1, p0 = 0, q−1 = 0, p−1 = 1,

and inductively for n ≥ 1,

an = [α−1
n−1], αn = α−1

n−1 − an = G(αn−1) = { 1
αn−1

},

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, (2.3.1)

where [·] denotes the integer part, {·} denotes the fractional part and G is the Gauss 
map G(x) = {x−1}. Let

βn = Πn
j=0αj , U(x) =

(
0 1
1 −[x−1]

)
.

Define

Q0 = −I, Qn = U(αn−1) · · ·U(α0).

Then (2.3.1) shows that

Qn = (−1)n
(
pn−1 −qn−1
−pn qn

)
.

And we have

βn = (−1)n(qnα− pn) = 1
qn+1 + αn+1qn

,

1
qn+1 + qn

< βn <
1

qn+1
.

2.4. Renormalization of actions and cocycles

Z2-actions and renormalization of actions will be a fundamental tool in this paper. 
We recall here, following [10], Z2-action and the scheme of renormalization introduced 
in [40]. In particular, we focus on analytic case for SO(s, R), s ≥ 3.

Denote by Ωω = R × Cω(R, SO(s, R)) the group composed of skew-product diffeo-
morphisms (α, A) : R × SO(s, R) → R × SO(s, R),
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(α,A)(x, v) = (x + α,A(x)v), (2.4.1)

with the composition being the group operation. An analytic fibered Z2-action is a homo-
morphism Φ : Z2 → Ωω. We use Λω to denote the space of analytic fibered Z2-actions, 
endowed with the pointwise topology.

For two elements in Ωr, (α1, A1), (α2, A2), they form a commuting pair, denoted by (
(α1, A1)
(α2, A2)

)
, if they are commuting with each other, i.e.,

A1(x + α2)A2(x) = A2(x + α1)A1(x).

As Φ(1, 0) and Φ(0, 1) determine Φ and commute with each other by definition, they form 
a commuting pair. In below, we will not distinguish an Z2-action Φ and the corresponding 
commuting pair ( Φ(1,0)

Φ(0,1) ).
For any Φ ∈ Λω, we define γΦ

n,m := Π1 ◦ Φ(n, m) ∈ R and AΦ
n,m := Π2 ◦ Φ(n, m) ∈

Cω(R, SO(s, R)) for all (n, m) ∈ Z2, where Π1 : R × Cω(R, SO(s, R)) → R and Π2 :
R × Cω(R, SO(s, R)) → Cω(R, SO(s, R)) are coordinate projections. Let Λω

0 be the set 
of Φ ∈ Λω with γΦ

1,0 = 1.
Notice that Cω(R, SO(s, R)) acts on Ωω by ConjB(α, A(·)) = (α, B(· +α)A(·)B(·)−1). 

This action extends to an action, still denoted ConjB , on Λω. For Φ ∈ Λω, the ConjB(Φ)
is given by

ConjB(Φ)(n,m) = (γΦ
n,m, B(· + γΦ

n,m)AΦ
n,m(·)B(·)−1), n,m ∈ Z.

We say that Φ, Φ′ ∈ Λω are Cω-conjugate via B ∈ Cω(R, SO(s, R)) if Φ′ = ConjB(Φ)
holds.

We say that a Z2-action Φ is normalized if Φ(1, 0) = (1, I). In this case, Φ(0, 1) =
(α, A) can be viewed as an analytic cocycle, since A is automatically 1-periodic. Con-
versely, given an analytic cocycle (α, A), we associate a normalized action Φα,A by setting 
Φα,A(1, 0) = (1, I), Φα,A(0, 1) = (α, A).

We cite the normalizing lemma from [10], whose proof remains true for Z2-actions 
valued in compact groups. We will provide a quantitative version of it in section 5.2.

Lemma 2.2. For any Φ ∈ Λω
0 , Φ is Cω-conjugate to a normalized action.

Let Φ ∈ Λω
0 , B ∈ Cω(R, SO(s, R)) such that ConjB(Φ) is normalized. Then we call B

a normalizing map of Φ. The choice of B may not be unique.
To define renormalization, we start with Z2-actions. We introduce the following maps.

1. Let λ 	= 0. Define rescaling Mλ : Λω → Λω by

Mλ(Φ)(n,m) := (λ−1γΦ
n,m, AΦ

n,m(λ·)), Φ ∈ Λω. (2.4.2)
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2. Let U ∈ GL(2, Z). Define base change U : Λω → Λω by

U(Φ)(n,m) = Φ(n′,m′),
(
n′

m′

)
= U ·

(
n

m

)
, Φ ∈ Λω. (2.4.3)

We point out that these two operations are pairwise commutative. Besides, U commute 
with ConjB while Mλ ◦ ConjB = ConjB(λ·) ◦Mλ.

For Z2-action Φ ∈ Λω, n ∈ N, we define the n-th renormalization of Φ around 0 to be

Rn(Φ) := Mβn−1 ◦Qn(Φ). (2.4.4)

Based on the renormalization of Z2-action, we introduce renormalization of cocycles. 
For a Cr cocycle (α, A), we consider renormalization on the related Z2-action Φα,A. We 
can also express renormalization explicitly by commuting pair:

Rn(Φα,A) = Mβn−1 ◦ (−1)n
(

pn−1 −pn
−qn−1 qn

)(
(1, I)
(α,A)

)
, n ∈ N.

As Rn(Φα,A) ∈ Λω
0 , by Lemma 2.2, there exists B ∈ Cω(R, SO(s, R)) such that 

ConjBRn(Φα,A) is normalized. We denote the commuting pair of this normalized Z2

action by 
(

(1, I)
(αn, Ã

(n))

)
. Since normalizing map is not unique, Ã(n) is not unique either. 

We call (αn, Ã(n)) a representative of the n-th renormalization of (α, A).
A fundamental observation is that the conjugation relation is invariant under renor-

malizations. More precisely, we have the following result. The proof is relatively direct 
by definition, we refer to [47, Lemma 4.4.1, Lemma 4.4.2] for example.

Lemma 2.3. 1. Representative of renormalization is unique up to conjugation.
2. Two cocycles are conjugate to each other if and only if they have conjugate represen-
tatives of renormalization.

Now we talk about the convergence of renormalization. As compact cocycle is a special 
case of cocycles L2-conjugation to rotation, by [47, Theorem 5.1.1], [12], we have the 
following results.

Theorem 2.1. Let α ∈ R\Q, A ∈ Cω
h (T , SO(s, R)). There exist D ∈ so(s, R) satisfying 

exp(D) = I, a sequence of representatives of renormalization (αn, Ã(n)), Cn ∈ z(D), 
ϕn ∈ Cω

h (T , so(s, R)) such that

Ã(n)(x) = exp(ϕn(x)) exp((−1)nDx + Cn), (2.4.5)

satisfying the estimate

lim ||ϕn||h = 0.

n→∞
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This means representatives of renormalization (αn, Ã(n)) converge to a precise normal 
form. This kind of normal form result was firstly stated for SU(2)-cocycles in the C∞-
topology [39,24], and then for SL(2, R)-cocycles in the C∞ and Cω-topology [10,11]. It 
is also generalized to quasi-periodic cocycles valued in semi-compact Lie groups in the 
C∞-topology [34].

3. Local results I. Close to constant

To prove the conjugation result in Theorem A, by the preservation of conjugation 
along renormalization, it can be achieved by conjugating renormalizations. Moreover, by 
the convergence of renormalization given in Theorem 2.1, we will fall into a neighborhood 
of some normal form after deep enough renormalization. Therefore we only need to study 
conjugation in local case, namely close to some normal form (α, exp(Dx + C)), where 
exp(D) = I, c ∈ z(D). We will deal with D = 0 in this section and D 	= 0 in the next 
section.

In this section, we will prove that any one-frequency SO(3, R)-cocycle close to constant 
is Cω-almost-reducible. Our main result is the following.

Theorem 3.1. Let α ∈ R\Q, h > 0, L ≥ 1, C ∈ so(3, R). There exists δ = δ(h, L), such 
that for any A ∈ Cω

h (T , SO(3, R)), if ||A − exp(C)||h < δ, then (α, A) is Cω-almost-
reducible, in the sense that, there exist hn > 0, Bn ∈ Cω

hn
(T , SO(3, R)), n ∈ N∗, such 

that

lim
n→∞

‖An − exp(Cn)‖hn
‖Bn‖Lhn

= 0, (3.0.1)

for An := Bn(· + α)AB−1
n and some Cn ∈ so(3, R), n ∈ N∗.

Remark 3.1. The perturbation δ = δ(h) does not depend on the frequency α. Thus the 
result is of semi-local nature [22].

For technical reasons, we will not prove Theorem 3.1 directly. Instead we consider 
almost reducibility of linear systems. We will firstly formulate a parallel theorem to 
Theorem 3.1 for linear systems and show that one can deduce Theorem 3.1 from the 
parallel result in section 3.1. Then we will work on almost reducibility of linear systems 
in the rest of this section.

3.1. Change to almost reducibility of linear systems

Let ω ∈ R2, A ∈ Cω(T 2, SO(3, R)). Consider the linear system{
ẋ = A(θ)x
θ̇ = ω.

(3.1.1)
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We say that B ∈ Cω(T 2, SO(3, R)) conjugates (3.1.1) to another linear system{
ẋ = A+(θ)x
θ̇ = ω,

(3.1.2)

for some A+ ∈ Cω(T 2, SO(3, R)), if

∂ωB(θ) = B(θ)A(θ) −A+(θ)B(θ),

where

∂ωB(θ1, θ2) := ω1
∂

∂θ1
B(θ1, θ2) + ω2

∂

∂θ2
B(θ1, θ2), for ω = (ω1, ω2).

Denote by Φ ∈ Cω(R × T 2, SO(3, R)) the basic solution (which is in fact unique) of 
(3.1.1) that satisfies

d

dt
Φ(t, θ) = A(θ + tω)Φ(t, θ), Φ(0, θ) = I, t ∈ R, θ ∈ T 2.

Let Φ+ be the basic solution of (3.1.2). Then B conjugating (3.1.1) to (3.1.2) is equivalent 
to

B(θ + tω)Φ(t, θ)B(0, θ)−1 = Φ+(t, θ). (3.1.3)

We claim the following almost reducibility result for linear system, whose proof will 
be given later.

Theorem 3.2. Let α ∈ (0, 1)\Q, ω = (α, 1) ∈ R2, C ∈ so(3, R). For h > 0 and L ≥ 1, 
there exists δ = δ(h, L) such that for any F ∈ Cω

h (T 2, so(3, R)) satisfying ||F ||h < δ, the 
system {

ẋ = (C + F (θ))x
θ̇ = ω

(3.1.4)

is Cω-almost-reducible, in the sense that, there exist hn > 0, Bn ∈ Cω
hn

(T 2, SO(3, R)), 
n ∈ N∗, such that Bn conjugates (3.1.4) to{

ẋ = (Cn + Fn(θ))x
θ̇ = ω,

(3.1.5)

for some Cn ∈ so(3, R), Fn ∈ Cω
hn

(T 2, so(3, R)), n ∈ N∗, and the following estimate 
holds

lim ‖Fn‖hn
‖Bn‖Lh = 0. (3.1.6)
n→∞ n
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To show that we can deduce Theorem 3.1 from Theorem 3.2 directly, we need to use 
in addition the following local embedding theorem proved in [55, Theorem 1.1]. It was 
proved for any Lie group G. We will restrict on the case SO(3, R), which also has a better 
estimate as shown in [55, Remark 1.1].

Theorem 3.3 ([55], Local embedding theorem). Let h > 0, d ∈ N∗, μ ∈ Td−1 with 
(μ, 1) rationally independent, C ∈ so(3, R), H ∈ Cω

h (Td−1, so(3, R)). There exist ε =
ε(C, h, |μ|) > 0, c = c(C, h, |μ|) > 0 such that the quasi-periodic cocycle (μ, eCeH(·)) can 
be analytically embedded into a quasi-periodic linear system provided that ‖H‖h < ε. 
More precisely, there exists F ∈ Cω

h/(1+|μ|)(Td, so(3, R)) such that (μ, eCeH(·)) is the 
Poincaré map of {

ẋ = (C + F (θ))x
θ̇ = (μ, 1),

and the estimate holds

‖F‖h/(1+|μ|) ≤ c‖H‖h.

Proof of Theorem 3.1. Assume that α ∈ (0, 1) without lose of generality. For A ∈
Cω

h (T , SO(3, R)) with ||A − exp(C)||h small for some constant C ∈ so(3, R), by The-
orem 3.3, there exists F ∈ Cω

h/(1+α)(T 2, so(3, R)) such that (α, A) is the Poincaré map 
of the linear system {

ẋ = (C + F (θ))x
θ̇ = (α, 1),

(3.1.7)

and the estimate holds

‖F‖h/(1+α) ≤ c||A− exp(C)||h.

As long as ||A − exp(C)||h is small enough, by Theorem 3.2, (3.1.7) is Cω-almost-
reducible, i.e., there exist hn > 0, Bn ∈ Cω

hn
(T 2, SO(3, R)), n ∈ N∗, such that Bn

conjugates (3.1.7) to

{
ẋ = (Cn + Fn(θ))x
θ̇ = (α, 1),

(3.1.8)

for some Cn ∈ so(3, R), Fn ∈ Cω
hn

(T 2, so(3, R)), n ∈ N∗, and the following estimate 
holds

lim ‖Fn‖hn
‖Bn‖Lh = 0. (3.1.9)
n→∞ n
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Concerning the quantitative estimates, suppose that Φ(t, θ), Φn(t, θ) are the corre-
sponding basic solution of (3.1.7) and (3.1.8), then we have

Φn(t, θ) = eCnt
(
I +

t∫
0

e−CnsFn(θ + s(α, 1))Φn(s, θ)ds
)
. (3.1.10)

Let gn(t) = ||e−CntΦn(t, θ)||hn
. We deduce from (3.1.10) that

gn(t) ≤ 1 +
t∫

0

‖Fn‖hn
gn(s)ds.

Gronwall’s inequality therefore provides

gn(t) ≤ e‖Fn‖hn t. (3.1.11)

Back to (3.1.10), let t = 1, θ = (θ1, 0), we have

Φn(1, θ1, 0) = eCn + F̃n(θ1), (3.1.12)

where F̃n ∈ Cω
hn

(T , so(3, R)) is given by

F̃n(θ1) = eCn

1∫
0

e−CnsFn(θ1 + sα, s)Φn(s, θ1, 0)ds.

Then by (3.1.11) we deduce that

‖F̃n‖hn
≤

1∫
0

‖Fn‖hn
gn(s)ds ≤ e‖Fn‖hn − 1 ≤ 2‖Fn‖hn

, (3.1.13)

where the last inequation is provided by smallness of ‖Fn‖hn
.

Since Bn conjugates (3.1.7) to (3.1.8), we have the relation of basic solutions

Bn(θ1 + tα, t)Φ(t, θ1, 0)Bn(θ1, 0)−1 = Φn(t, θ1, 0).

Let t = 1. As (α, A) is the Poincaré map of (3.1.7), we deduce that

An(θ1) = Bn(θ1 + α, 0)A(θ1)Bn(θ1, 0)−1 = eCn + F̃n(θ1),

where we use the fact that B is 1-periodic in both coordinates. Besides, (3.1.13) and 
(3.1.9) give that
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||An − eCn ||hn
||Bn||Lhn

= 0.

Hence we have completed the proof of Theorem 3.1. �
3.2. Proof of Theorem 3.2

In this subsection, we will introduce an alternative analytic space and norm to work 
with. We will also introduce an iteration scheme, by applying which we will be able to 
prove Theorem 3.2. The proof of the iteration scheme will be given in the next subsection.

3.2.1. Spaces and norms
To make the future estimates simpler, we introduce an alternative analytic space and 

norm. For h > 0, we define Bh(∗) as the space of functions F ∈ Cω(T 2, ∗) (∗ can be 
so(3, R), SO(3, R), R or C) satisfying 

∑
k∈Z2 ||F̂ (k)||e2π|k|h < ∞, where |k| := |k1| + |k2|

for k = (k1, k2), equipped with the norm

||F ||#h :=
∑
k∈Z2

||F̂ (k)||e2π|k|h < ∞.

It follows immediately that for any F, G ∈ Bh(∗), we have FG ∈ Bh(∗), and

||FH||#h ≤ ||F ||#h ||H||#h .

Sometimes, for an analytic matrix valued function, we need to consider the relations 
between its analytic norm and the analytic norms of its entry functions. As for so(3, R)
case, we obviously have the conclusion

‖
3∑

s=1
fsJs‖#

h =
( 3∑

s=1
(‖fs‖#

h )2
) 1

2

, ∀f1, f2, f3 ∈ Bh(R), h > 0. (3.2.1)

For any N > 0, we define the operators TN , RN on Bh(∗) as

(TNF )(θ) :=
∑

k∈Zd,|k|<N

F̂ (k)e2πi<k,θ>, (RNF )(θ) :=
∑

k∈Zd,|k|≥N

F̂ (k)e2πi<k,θ>.

Then TN +RN = I. And for any 0 < h′ < h, since ||F̂ (k)|| ≤ ||F ||he−2π|k|h, we compute 
that

||RNF ||#h′ =
∑

k∈Zd,|k|≥N

||F̂ (k)||e2π|k|h′

≤ 2||F ||h
min{1, (h− h′)2}e

−2πN(h−h′). (3.2.2)
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The spaces Bh(∗) and Cω(T 2, ∗) are closely related. For h > 0, F ∈ Bh(∗), we have

sup
x∈T2

h

||F (x)|| ≤ ||F ||#h . (3.2.3)

Hence F ∈ Cω
h (T 2, ∗). It follows that

Bh(∗) ⊆ Cω
h (T 2, ∗).

And for any h > h′ > 0, F ∈ Cω
h (T 2, ∗), we have the estimate

∑
k∈Z2

||F̂ (k)||e2π|k|h′ ≤
∑
k∈Z2

||F ||he−2π|k|he2π|k|h′ ≤ 2||F ||h
min{1, (h− h′)2} . (3.2.4)

Therefore F ∈ Bh′(∗). We deduce that

Cω
h (T 2, ∗) ⊆ Bh′(∗).

3.2.2. Proof of local almost reducibility of linear systems
We will prove Theorem 3.2 via a nonstandard KAM iterations. The key iteration 

proposition is the following.

Proposition 3.1. Let 0 < h ≤ 1, L ≥ 1, C ∈ so(3, R), F ∈ Bh(so(3, R)), ε = ||F ||#h , 
p ≤ q < q+ be positive integers. Under the following assumptions

e−
1
2 q+h < ε ≤ min{(10L)−100L, h4(L+1), e−

1
2 qh}, (3.2.5)

1
2q+

≤ |qα− p| ≤ 1
q+

, (3.2.6)

{k ∈ Z2 | | 〈k, ω〉| < 1
7q , |k| <

q+
6 } ⊆ {l(q,−p) | l ∈ Z}, (3.2.7)

one can construct B ∈ Bh+(SO(3, R)), C+ ∈ so(3, R) and F+ ∈ Bh+(so(3, R)), with 

h+ = h
6(L+2) , such that B conjugates 

{
ẋ = (C + F (θ))x
θ̇ = ω

to 

{
ẋ = (C+ + F+(θ))x
θ̇ = ω

, 

and for ε+ = ||F+||#h+
, the estimate holds

ε+

(
||B||#h+

)2L
≤ ε2e−q+h+ . (3.2.8)

We point out that (3.2.7) requires the resonant sites to be in some special form. In fact 
this is satisfied as a consequence of following small divisor lemma given in [31, Lemma 
4.1].
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Lemma 3.1 ([31]). Let α ∈ R\Q, ω = (α, 1), pn

qn
be the best approximation of α, we have

{k ∈ Z2 | | 〈k, ω〉| < 1
7qn

, |k| < qn+1

6 } ⊆ {l(qn,−pn) | l ∈ Z}. (3.2.9)

The proof of Proposition 3.1 is rather technical and will be given in the next subsec-
tion. Now we use the proposition to prove Theorem 3.2.

Proof of Theorem 3.2. We choose

δ = δ(h, L) = h2

8 min{(10L)−100L, (h2 )4(L+1), e−
h
4 }. (3.2.10)

For F ∈ Cω
h (T 2, so(3, R)) with ||F ||h < δ, by (3.2.4), we deduce that F ∈ Bh

2
(so(3, R))

satisfies the estimate

||F ||#h
2
≤ 8

h2 ||F ||h <
8
h2 δ. (3.2.11)

To study almost reducibility of the linear system{
ẋ = (C + F (θ))x
θ̇ = ω,

(3.2.12)

we construct conjugation inductively.
Let B0 = I, h0 = h

2 , C0 = C, F0 = F . Then B0 automatically conjugates (3.2.12) to

{
ẋ = (C0 + F0(θ))x
θ̇ = ω,

and the estimate holds for ε0 = ‖F0‖#
h0

,

ε0

(
||B0||#h0

)L

= ε0 ≤ min{(10L)−100L, h
4(L+1)
0 , e−

1
2 q0h0}, (3.2.13)

where we use (3.2.10) and (3.2.11).
To do induction, we assume that for some n ∈ N∗, there exist hn > 0, Bn ∈

Bhn
(SO(3, R)), Cn ∈ so(3, R) and Fn ∈ Bhn

(so(3, R)), such that Bn ∈ Bhn
(SO(3, R))

conjugates (3.2.12) to

{
ẋ = (Cn + Fn(θ))x
θ̇ = ω,

(3.2.14)

and the estimate holds for εn = ‖Fn‖#
h ,

n
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εn

(
||Bn||#hn

)L

≤ min{(10L)−100L, (hn)4(L+1), e−
1
2 qnhn}. (3.2.15)

To construct conjugation at step n +1, we separate into two different cases, depending 
on the size of εn.

Case 1. If εn ≤ e−
1
2 qn+1hn , then we trivially define

hn+1 = hn, Bn+1 = Bn, Cn+1 = Cn, Fn+1 = Fn.

Immediately, Bn+1 conjugates (3.2.12) to

{
ẋ = (Cn+1 + Fn+1(θ))x
θ̇ = ω,

and the estimate holds for εn+1 = ‖Fn+1‖#
hn+1

εn+1

(
||B(n+1)||#hn+1

)L

≤ min{(10L)−100L, (hn+1)4(L+1), e−
1
2 qn+1hn+1}.

Case 2. If εn > e−
1
2 qn+1hn , then together with (3.2.15) we have

e−
1
2 qn+1hn < εn ≤ min{(10L)−100L, (hn)4(L+1), e−

1
2 qnhn}. (3.2.16)

By preceding estimate and Lemma 3.1, we are able to apply Proposition 3.1. This 
provides the existence of B(n+1) ∈ Bhn+1(SO(3, R)), Cn+1 ∈ so(3, R) and Fn+1 ∈
Bhn+1(so(3, R)), such that B(n+1) conjugates (3.2.14) to

{
ẋ = (Cn+1 + Fn+1(θ))x
θ̇ = ω,

(3.2.17)

and the estimate holds

εn+1

(
||B(n+1)||#hn+1

)2L
≤ ε2ne

−qn+1hn+1 . (3.2.18)

In particular,

εn+1 ≤ ε2n. (3.2.19)

Then Bn+1 := B(n+1)Bn conjugates (3.2.12) to (3.2.17). Moreover, by (3.2.15), (3.2.18)
and (3.2.19), we have the following estimate

εn+1

(
||Bn+1||#h

)L

≤εn+1

(
||B(n+1)||#h

)L (
||Bn||#h

)L
n+1 n+1 n+1
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≤
(
εn+1

(
||B(n+1)||#hn+1

)2L
) 1

2

· εn
(
||Bn||#hn+1

)L

≤
(
min{(10L)−100L, (hn)4(L+1), e−

1
2 qnhn}

)2
· e− 1

2 qn+1hn+1

≤min{(10L)−100L, (hn+1)4(L+1), e−
1
2 qn+1hn+1}.

Hence in both case, we are able to construct conjugacy Bn ∈ Bhn+1(SO(3, R)) and 
satisfy estimates in the same form.

By induction, we conclude that for any n ∈ N, there exist hn, Bn ∈ Bhn
(SO(3, R)), 

Cn ∈ so(3, R), Fn ∈ Bhn
(so(3, R)), such that Bn conjugates (3.2.12) to

{
ẋ = (Cn + Fn(θ))x,
θ̇ = ω,

and the estimate holds

‖Fn‖#
hn

(
||Bn||#hn

)L

≤ min{(10L)−100L, (hn)4(L+1), e−
1
2 qnhn}. (3.2.20)

Moreover, (3.2.20) provides that

lim
n→∞

‖Fn‖#
hn

(
||Bn||#hn

)L

= 0.

As shown in (3.2.2), Bhn
(∗) ⊂ Cω

h (T 2, ∗) with || · ||h ≤ || · ||#h , we deduce that Bn ∈
Cω

hn
(T 2, SO(3, R)), Fn ∈ Cω

hn
(T 2, so(3, R)) and

lim
n→∞

‖Fn‖hn
(||Bn||hn

)L = 0.

Hence we complete the proof of Theorem 3.2. �
3.3. Proof of iteration scheme

In this subsection, we construct the iteration scheme. We will firstly introduce a nice 
subspace of Bh(so(3, R)) in the sense of conjugation, then give the proof of Proposi-
tion 3.1.

For simplicity of notation, we denote Bh(so(3, R)) briefly by Bh. Without lose of 
generality, we assume that

C = 2πρJ1, ρ ∈ R.
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3.3.1. A nice subspace of Bh

For F ∈ Bh, to construct B ∈ Bh(SO(3, R)) so that for some C+ ∈ so(3, R) and a 

smaller F+ ∈ Bh, B conjugating 

{
ẋ = (C + F (θ))x
θ̇ = ω

to 

{
ẋ = (C+ + F+(θ))x
θ̇ = ω

, it 

is sufficient to solve

∂ωB = B(C + F ) − (C+ + F+)B. (3.3.1)

If B is close to the identity, namely B = eY with Y ∈ Bh small, then (3.3.1) provides a 
linearized equation

∂ωY − [C, Y ] = F + D, (3.3.2)

for some constant D ∈ so(3, R). However, when solving (3.3.2), one may encounter the 
small divisor problem, i.e., the liner operator

Bh → Bh, Y �→ ∂ωY − [C, Y ], (3.3.3)

may be not invertible or invertible but with an inverse operator of too large norm.
As studied in [31,32], a key observation is that there exists a subspace B(nre)

h of Bh, 
satisfying the property that for any Y ∈ B(nre)

h , one has

∂ωY, [C, Y ] ∈ B(nre)
h , (3.3.4)

and the estimate holds

||∂ωY − [C, Y ]||#h ≥ η||Y ||#h , (3.3.5)

for a uniform constant η > 0. In other word, the restricted linear operator (3.3.3) on 
B(nre)
h behaves well. Therefore, we are able to solve (3.3.2) in B(nre)

h . To formulate the 

result precisely, we decompose the space Bh into a direct sum B(nre)
h ⊕ B(re)

h .

Lemma 3.2 ([31,32]). Let h > 0, η > 0, ω ∈ R2, C ∈ so(3, R). For any F ∈ Bh

satisfying ||F ||#h ≤ 10−8η2, there exist Y ∈ Bh, H ∈ B(re)
h such that eY conjugate {

ẋ = (C + F (θ))x
θ̇ = ω

to 

{
ẋ = (C + H(θ))x
θ̇ = ω

, satisfying the estimates

||Y ||#h ≤ 10
η
||F ||#h , ||H||#h ≤ 2||F ||#h . (3.3.6)

Remark 3.2. Preceding lemma was firstly given in [31, Lemma 3.1] and there are some 
minor improvements in later articles such as [32, Lemma 4.1]. Here we use the version 
in [32].
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Given ε > 0. We define

Λ1 := {k ∈ Z2 | |〈k, ω〉| ≥ 2ε 1
4 }, Λ2 := {k ∈ Z2 | |〈k, ω〉 − ρ| ≥ ε

1
4 }.

Then it follows directly that

Λc
2 − k∗ := {k − k∗ | k ∈ Λc

2 } ⊆ Λc
1, ∀k∗ ∈ Λc

2. (3.3.7)

Furthermore, we have the following simple fact.

Lemma 3.3. Under the assumptions of Proposition 3.1, the estimate holds

100(L + 2)2qε 1
4 � 1. (3.3.8)

Consequently, we have

Λc
1 ∩ {k ∈ Z2 | |k| < q+

6 } ⊆ {l(q,−p) | l ∈ Z}. (3.3.9)

Proof. By (3.2.5), we get

100(L + 2)2qε 1
4 ≤ 100(L + 2)2qε 1

8 ε
1
8 ≤ 100(L + 2)2qe−

qh
16 ε

1
16

≤ 1600(L + 2)2

eh
ε

1
8 ≤ 105L2ε

1
8 � 1,

then (3.3.9) follows from (3.2.7) and (3.3.8). �
Given h > 0, now we define B(nre)

h , B(re)
h explicitly and verify the properties (3.3.4)

and (3.3.5). Let

B(nre)
h := {E ∈ Bh |E = fJ1 + �wJ2 + �wJ3, for f ∈ Bh(R)

in the form
∑
k∈Λ1

f̂(k)e2πi〈k,θ〉,

w ∈ Bh(C) in the form
∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉},

B(re)
h := {H ∈ Bh |H = fJ1 + �wJ2 + �wJ3, for f ∈ Bh(R)

in the form
∑
k∈Λc

1

f̂1(k)e2πi〈k,θ〉,

w ∈ Bh(C) in the form
∑
k∈Λc

2

ŵ(k)e2πi〈k,θ〉}. (3.3.10)

It follows the direct sum splitting
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Bh = B(nre)
h ⊕ B(re)

h .

By definition, for any E ∈ B(nre)
h , there exist f =

∑
k∈Λ1

f̂(k)e2πi〈k,θ〉 ∈ Bh(R), w =∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉 ∈ Bh(C), such that E = fJ1 + �wJ2 + �wJ3. We can express E
explicitly

E =

⎛⎝∑
k∈Λ1

f̂(k)e2πi〈k,θ〉

⎞⎠J1

+ 1
2

⎛⎝∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉 +
∑
k∈Λ2

ŵ(k)e−2πi〈k,θ〉

⎞⎠J2

− i

2

⎛⎝∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉 −
∑
k∈Λ2

ŵ(k)e−2πi〈k,θ〉

⎞⎠J3.

Then we compute that

∂ωE =2πi

⎛⎝∑
k∈Λ1

〈k, ω〉f̂(k)e2πi〈k,θ〉

⎞⎠ J1

+ πi

⎛⎝∑
k∈Λ2

〈k, ω〉ŵ(k)e2πi〈k,θ〉 −
∑
k∈Λ2

〈k, ω〉ŵ(k)e−2πi〈k,θ〉

⎞⎠ J2

+ π

⎛⎝∑
k∈Λ2

〈k, ω〉ŵ(k)e2πi〈k,θ〉 +
∑
k∈Λ2

〈k, ω〉ŵ(k)e−2πi〈k,θ〉

⎞⎠J3,

and

[C,E] =πiρ

⎛⎝∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉 −
∑
k∈Λ2

ŵ(k)e−2πi〈k,θ〉

⎞⎠J2

+ πρ

⎛⎝∑
k∈Λ2

ŵ(k)e2πi〈k,θ〉 +
∑
k∈Λ2

ŵ(k)e−2πi〈k,θ〉

⎞⎠ J3,

where we recall that C = 2πρJ1, ρ ∈ R. It follows that

∂ωE ∈ B(nre)
h , [C,E] ∈ B(nre)

h .

Moreover, by direct computation, we have

‖∂ωE − [C,E]‖#
h ≥ πε

1
4 ‖E‖#

h . (3.3.11)
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Hence the two characterizing conditions are satisfied therefore the space B(nre)
h is well-

defined.

3.3.2. Proof of Proposition 3.1
Based on the nice space B(nre) defined in the preceding section, we can now prove 

Proposition 3.1. We will also make use of Floquet theory.

Proof of Proposition 3.1. We start with the linear system

{
ẋ = (C + F (θ))x
θ̇ = ω,

(3.3.12)

satisfying the assumptions (3.2.5), (3.2.6), (3.2.7). Motivated by the quantitative esti-
mate (3.3.11) of B(nre), we work with η = πε

1
4 . Then (3.2.5) provides that

||F ||#h = ε < 10−8η,

which enables us to apply Lemma 3.2. It shows the existence of Y ∈ Bh, H ∈ B(re)
h , such 

that eY conjugates (3.3.12) to

{
ẋ = (C + H(θ))x
θ̇ = ω,

(3.3.13)

and the estimates hold

||Y ||#h ≤ 10
η
ε < ε

1
2 , ||H||#h ≤ 2ε, (3.3.14)

where (3.2.5) is used for the first inequation. By construction of B(re)
h in (3.3.10), there 

exist

f =
∑
k∈Λc

1

f̂(k)e2πi〈k,θ〉 ∈ Bh(R), w =
∑
k∈Λc

2

ŵ(k)e2πi〈k,θ〉 ∈ Bh(C), (3.3.15)

such that

H = fJ1 + �wJ2 + �wJ3.

To study further conjugation of (3.3.13), we separate into two cases depending on Λc
2.

Case 1. If Λc
2 ∩ {k ∈ Z2||k| < q+

6 } = ∅, then T q+
6
H = T q+

6
fJ1. By Lemma 3.3,

Λc
1 ∩ {k ∈ Z2 | |k| < q+ } ⊆ {l(q,−p) | l ∈ Z}.
6
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)

Correspondingly, we define

B1(θ) := exp

⎛⎝ ∑
k∈Λc

1\{0}, |k|< q+
6

f̂(k)e2πi〈k,θ〉

2πi〈k, ω〉 J1

⎞⎠

=exp

⎛⎝ ∑
l(q,−p)∈Λc

1\{0},|l(q,−p)|< q+
6

f̂(k)e2πi〈l(q,−p),θ〉

2πil(qα− p) J1

⎞⎠ . (3.3.16

Immediately, B1 conjugates (3.3.13) to

{
ẋ = (C+ + F+)x
θ̇ = ω,

(3.3.17)

where C+ = C + Ĥ(0), F+ = Ad(B1)R q+
6
H. By the assumptions (3.2.5) and (3.2.6), for 

h+ := h
6(L+2) , the construction of B1 (3.3.16) provides the bound

‖B1‖#
h+

≤ e
q+ε

π � e
1

2(L+1) q+h+ . (3.3.18)

Let B = B1e
Y . Then B conjugates (3.3.12) to (3.3.17). For ε+ = ‖F+‖#

h+
, by (3.3.18), 

(3.3.14), (3.2.5), we compute that

ε+

(
‖B‖#

h+

)2L
≤‖R q+

6
H‖#

h+
·
(
‖B1‖#

h+

)2(L+1)
·
(
‖eY ‖#

h+

)2L

≤2εe−
2πq+·(6L+11)h+

6 · eq+h+ · e2Lε
1
2

�ε2e−q+h+ . (3.3.19)

Hence (3.2.8) holds, which completes the proof in Case 1.

Case 2. If Λc
2 ∩ {k ∈ Z2||k| < q+

6 } 	= ∅, then there exists k∗ ∈ Λc
2, such that

|k∗| = min
k∈Λc

2
|k|, 0 ≤ |k∗| <

q+
6 .

We deal with k∗ through a rotation step as follows.

Lemma 3.4. Let Q = exp{−2π〈k∗, θ〉J1}, C1 = 2π(ρ − 〈k∗, θ〉)J1,

F1 = fJ1 + �{we−2π〈k∗, θ〉}J2 + �{we−2π〈k∗, θ〉}J3. (3.3.20)

Then Q conjugates (3.3.13) to the system
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{
ẋ = (C1 + F1(θ))x
θ̇ = ω,

(3.3.21)

and the estimates hold

‖C1‖ ≤ 2πε 1
4 , ‖F1‖#

h
3
≤ 2ε. (3.3.22)

Moreover, T q+
6
F1 is in the form

T q+
6
F1 =

∑
k∈(q,−p)Z,|k|< q+

6

F̂1(k)e2πi〈k,θ〉. (3.3.23)

Proof. Direct computation shows that Q conjugates (3.3.13) to 

{
ẋ = (C1 + Ad(Q)H(θ))x
θ̇ = ω

. 

In addition, we compute that

Ad(Q)H =Ad(Q) · (fJ1 + �wJ2 + �wJ3)

=fJ1 + �wAd(Q) · J2 + �wAd(Q) · J3

=fJ1 + {�w cos 2π〈k∗, θ〉 + �w sin 2π〈k∗, θ〉}J2

+ {�w cos 2π〈k∗, θ〉 − �w sin 2π〈k∗, θ〉}J3

=fJ1 + �{we−2π〈k∗, θ〉}J2 + �{we−2π〈k∗, θ〉}J3. (3.3.24)

Hence we deduce (3.3.20) for F1 = Ad(Q)H.
Recall (3.3.15), we can rewrite

we−2π〈k∗, θ〉 =
∑
k∈Λc

2

ŵ(k)e2πi〈k−k∗, θ〉 =
∑

k∈Λc
2−k∗

ŵ(k + k∗)e2πi〈k, θ〉. (3.3.25)

As k∗ ∈ Λc
2, by (3.3.7) and (3.3.9), we have

(Λc
2 − k∗) ∩ {k ∈ Z2 | |k| < q+

6 } ⊆ Λc
1 ∩ {k ∈ Z2 | |k| < q+

6 } ⊆ {l(q,−p) | l ∈ Z}.

Therefore we get the truncated form of F1 (3.3.23). �
To do further conjugation of (3.3.21), we firstly work with the truncated system

{
ẋ = (C1 + T q+

6
F1)x

θ̇ = ω.
(3.3.26)

By the precise form of T q+ F1 given in (3.3.23), we can apply Lemma A.1. By (3.3.22),

6
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‖C1 + T q+
6
F1‖#

h
3
≤ 10ε 1

4 . (3.3.27)

Applying Lemma A.1 to the system (3.3.26) on the domain of |�θ| ≤ h
3 , there exists B1 ∈

Cω
h
3
(T 2, SO(3, R)) which conjugates (3.3.26) to 

{
ẋ = C+x

θ̇ = ω
for some C+ ∈ so(3, R). By 

(3.3.27), Lemma A.1 and Lemma 3.3, we have the estimate

‖B1‖h
3
≤ e15q+qε

1
4 h ≤ e

1
(L+1) q+h+ .

Then by the assumptions (3.2.4), (3.2.5), we deduce the estimate for h+ = h
6(L+2) ,

‖B1‖#
h+

≤ 72(L + 2)2

(2L + 3)2h2 e
1

(L+1) q+h+ ≤ 200ε
1

L+1 e
1

2(L+1) q+h+ ≤ e
1

2(L+1) q+h+ . (3.3.28)

Consequently, B1 conjugates (3.3.21) to{
ẋ = (C+ + F+(θ))x
θ̇ = ω,

(3.3.29)

where F+ = Ad(B1)R q+
6
F1. To sum up, let

B = B1QeY = B1 exp{−2π〈k∗, θ〉J}eY .

Then B conjugates (3.3.12) to (3.3.29).
By (3.2.5) and (3.3.28), recalling |k∗| ≤ 1

6q+, for ε+ = ‖F+‖#
h+

, we compute that

ε+

(
‖B‖#

h+

)2L
≤‖R q+

6
F1‖#

h+
ε+

(
‖B1‖#

h+

)2L+2 (
‖Q‖#

h+

)2L (
‖eY ‖#

h+

)2L

≤2εe−2π· q+6 ·2(L+ 3
2 )h+ · eq+h+ ·

(
e2π· 16 q+h+

)2L
· 22L

�ε2e−q+h+ .

Hence (3.2.8) holds, which completes the proof in Case 2. Therefore we have completed 
the proof of Proposition 3.1. �
4. Local results II. Close to exp(Dx + C) with D �= 0

When restricted in 3 dimension, since the dynamical degree D ∈ so(3, R), we could 
always conjugate it to 2πdJ1 for some d ∈ R. By Theorem 2.1, expD = I. It forces 
d ∈ Z.

In this section, we study the normal form in the neighborhood of (α, exp(Dx + C))
for D, C ∈ so(3, R), where D = 2πdJ1, d ∈ Z, C ∈ z(D). By Lemma 2.1, C must be in 
the form cJ1 for some c ∈ R. We will prove the following theorem.
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Theorem 4.1. Let h > 0, γ > 0, σ > 0, d ∈ Z. There exists ε > 0 such that for α ∈
DC(γ, σ), A ∈ Cω

h (T , SO(3, R)), if ||A − exp(2π(dx + c)J1)||h ≤ ε for some c ∈ R and 
(α, A) has dynamical degree dJ1, then (α, A) is Cω-conjugate to (α, exp(2π(dx + c′)J1))
for some c′ ∈ R.

4.1. Cohomological equation

Let α ∈ DC(γ, σ). A can be written in the form

A(x) = exp(2π(dx + c)J1) exp(ϕ(x)),

where ϕ ∈ Cω
h (T , so(3, R)) satisfies ||ϕ||h ≤ ε. We try to find the simplest function 

ϕ′ ∈ Cω
h′(T , so(3, R)) and a ψ ∈ Cω

h′(T , so(3, R)) for some 0 < h′ < h such that

exp(ψ(x+ α)) exp(2π(dx+ c)J1) exp(ϕ(x)) exp(−ψ(x)) = exp(2π(dx+ c)J1) exp(ϕ′(x)).
(4.1.1)

If ϕ is small enough and if we seek a small ψ, the linearized equation becomes

Ad(exp(−2π(dx + c)J1))ψ(x + α) + ϕ(x) − ψ(x) = ϕ′(x). (4.1.2)

Let {w1, w2, w3} be a basis of so(3, C) given by the adjoint action of exp(2π(dx +c)J1), 
i.e.,

exp(−2π(dx + c)J1)wk exp(2π(dx + c)J1) = e2πi(lkx+λk)wk, k = 1, 2, 3,

for some lk, λk ∈ C. As exp(2πdJ1) = I we have lk ∈ Z. We express ϕ with respect to 
the basis ϕ(x) =

∑3
k=1 ϕk(x)wk. Then (4.1.2) becomes

e2πi(lkx+λk)ψk(x + α) + ϕk(x) − ψk(x) = 0, k = 1, 2, 3. (4.1.3)

By Lemma 2.1, there exists only one k ∈ {1, 2, 3} such that lk = 0. We assume that 
l3 = 0. Then Lemma 2.1 gives that w3 = J3. Therefore λ3 = 0. In this case, we have the 
following classical lemma:

Lemma 4.1. Let α ∈ DC(γ, σ), h > 0, ϕ ∈ Cω
h (T , C). For 0 < h′ < h, there exists 

ψ ∈ Cω
h′(T , C), such that

−ϕ(x) + ϕ̂(0) = ψ(x + α) − ψ(x),

and

||ψ||h′ ≤ cst.||ϕ||h,

where the constant depends only on γ.



X. Hou et al. / Advances in Mathematics 457 (2024) 109943 31
For k ∈ {1, 2}, lk 	= 0. Similar to Proposition 8.1 in [39], we have the following lemma.

Lemma 4.2. Let α ∈ R\Q, h > 0, ϕ ∈ Cω
h (T , C), l ∈ Z\{0}, λ ∈ R. For 0 < h′ < h, there 

exists ψ ∈ Cω
h′(T , C) such that

e2πi(lx+λ)ψ(x + α) − ψ(x) = −ϕ(x) + Pα,l,λ(ϕ)(x), (4.1.4)

where

Pα,l,λ(ϕ)(x) =
{∑−l−1

m=0 e2πimxPα,l,λ(ϕ)(m), if l < 0;∑0
m=−1+1 e

2πimxPα,l,λ(ϕ)(m), if l > 0,

Pα,l,λ(ϕ)(m) =
∞∑
j=0

ϕ̂(m− jl)e2πi{[(j+1)m− j(j−1)
2 l]α+(j+1)λ}

+
∞∑
j=1

ϕ̂(m + jl)e−2πi{[jm+ j(j+1)
2 l]α+jλ},

and the following estimates hold:

||Pα,l,λ(ϕ)||h′ ≤ ||ϕ||h(1 + 2e−2πlh

1 − e−2πlh )
|l|∑
j=1

e−2πk(h−h′) ≤ cst. ||ϕ||h
h

,

||ψ||h′ ≤ ||ϕ||h
1 − e−2πh (1 + 1

1 − e−2π(h−h′) ) ≤ cst. ||ϕ||h
h(h− h′) .

For ϕ ∈ Cω
h (T , so(3, R)), we decompose it with respect to the basis {w1, w2, w3} to 

be ϕ =
∑3

k=1 ϕkwk. Let α ∈ R\Q, D ∈ so(3, R)\{0}, C ∈ z(D). We define

P0ϕ = ϕ̂3(0)w3, Pα,d,cϕ = Pα,l1,λ1ϕ1w1 + Pα,l2,λ2ϕ2w2.

Combining Lemma 4.1 and 4.2 in each direction, and using preceding lemma, we 
deduce the following result.

Corollary 4.1. Let ε > 0 small, α ∈ DC(γ, σ), h > 0, ϕ ∈ Cω
h (T , so(3, R)) with ||ϕ||h ≤ ε, 

d ∈ Z, c ∈ R. Then there exists ψ, F ∈ Cω
h′(T , C), h′ < h, such that

exp(ψ(x + α)) exp(2π(dx + c)J1) exp(ϕ(x)) exp(−ψ(x))

= exp(2π(dx + c)J1 + P0ϕ) exp(Pα,d,cϕ(x) + F (x)),

where F = O2(ϕ, ψ, Pα,d,cϕ) and the following estimates hold:

||Pα,d,c(ϕ)||h ≤ cst. ||ϕ||h , ||ψ||h′ ≤ cst. ||ϕ||h
′ .
h h(h− h )
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4.2. Proof of Theorem 4.1

Let D = 2πdJ1 with d ∈ Z, {w1, w2, w3} be the basis given by adjoint action of d, 
namely

exp(−Dx)wk exp(Dx) = e2πilkxwk,

for some lk ∈ Z, ϕ ∈ Cω
h (T , so(3, R)). We assume that l3 = 0. Then we decompose ϕ

with respect to {w1, w2, w3}, namely ϕ =
∑3

k=1 ϕkwk. We define

Prϕ :=
2∑

k=1

Tlkϕkwk, Tlψ :=
{∑−l−1

m=0 e2πimxψ̂(m), if l < 0;∑0
m=−l+1 e

2πimxψ̂(m), if l > 0,
(4.2.1)

for l ∈ Z, ψ ∈ Cω
h (T , C). We cite [34, Lemma 7.1] and reformulate it as follows. It is 

proved through the estimates on length.

Lemma 4.3. There exists a positive constant c, such that for ϕ ∈ Cω
h (T , so(3, R)) small 

enough, if (α, exp(2π(dx + c)J1) expϕ) is of dynamical degree 2πdJ1, then it satisfies

||Prϕ||L2 ≤ c||(I − Pr)∂ϕ||L2 . (4.2.2)

Proof of Theorem 4.1. By our assumption, we can write A(x) = exp(2π(dx + c)J1) ×
expϕ(x) for some ϕ ∈ Cω

h (T , so(3, R)) with ||ϕ||h ≤ ε. By Corollary 4.1, there exists 
c1 ∈ R, ψ1, F1 ∈ Cω

h1
(T , so(3, R)), h1 = h

2 + h
4 , such that for ϕ1 = Pα,d,cϕ,

exp(ψ1(x + α)) exp(2π(dx + c)J1) exp(ϕ(x)) exp(−ψ1(x))

= exp(2π(dx + c1)J1) exp(ϕ1(x) + F1(x)),

with estimates

||ϕ1||h1 ≤ cst. ||ϕ||h
h

, ||F1||h1 ≤ cst. ||ϕ||2h
h2(h− h1)2

.

Then Lemma 4.3 gives that

||Pr(ϕ1 + F1)||L2 ≤ c||(I − Pr)∂(ϕ1 + F1)||L2 . (4.2.3)

As ϕ1 = Pα,d,cϕ, we have ϕ1 = Prϕ1. Then (4.2.3) gives that

||ϕ1 + PrF1||L2 ≤ c||(I − Pr)∂F1||L2 ≤ cst.||F1||h.

Moreover, as ϕ1 = Prϕ1 and PrF1 stay in a finite dimensional linear space (function with 
finite number of nonzero Fourier coefficients), norms on such space are all equivalent. 
Hence we deduce that
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||ϕ1 + PrF1||h ≤ cst.||ϕ1 + PrF1||L2 ≤ cst.||F1||h.

Therefore,

||ϕ1 + F1||h ≤ ||ϕ1 + PrF1||h + ||(I − Pr)F1||h ≤ cst.||F1||h ≤ cst. ||ϕ||2h
h2(h− h1)2

.

Let ϕ1 = ϕ1 + F1, ϕ0 = ϕ, h0 = h. Inductively, we can find hj = h
2 + h

2j+1 , cj ∈ R, 
ϕj , ψj ∈ Cω

hn
(T , so(3, R)), j = 1, · · · , n such that

exp(ψj(x + α)) exp(2π(dx + cj−1)J1) exp(ϕj−1(x)) exp(−ψj(x))

= exp(2π(dx + cj)J1) exp(ϕj(x)),

with estimates

||ϕj ||hj
≤ cst.

||ϕj−1||2hj−1

h2
j−1(hj−1 − hj)2

, j = 1, · · · , n.

Now we deal with ϕn. By Corollary 4.1, there exists cn+1 ∈ R, ψn+1, Fn+1 ∈
Cω

hn+1
(T , so(3, R)), hn+1 = h

2 + h
2n+1 < hn, such that for ϕn+1 = Pα,d,cnϕ

n,

exp(ψn+1(x + α)) exp(2π(dx + cn)J1) exp(ϕn(x)) exp(−ψn+1(x)) (4.2.4)

= exp(2π(dx + cn+1)J1) exp(ϕn+1(x) + Fn+1(x)),

with estimates

||ϕn+1||hn+1 ≤ cst. ||ϕ
n||hn

hn
, ||Fn+1||hn+1 ≤ cst.

||ϕn||2hn

h2
n(hn − hn+1)2

.

Then Lemma 4.3 gives that

||Pr(ϕn+1 + Fn+1)||L2 ≤ C||(I − Pr)∂(ϕn+1 + Fn+1)||L2 . (4.2.5)

As ϕn+1 = Pα,d,cϕn, we have ϕn+1 = Prϕn+1. Then (4.2.5) gives that

||ϕn+1 + PrFn+1||L2 ≤ C||(I − Pr)∂Fn+1||L2 ≤ C||Fn+1||hn+1 ≤ cst.
||ϕn||2hn

h2
n(hn − hn+1)2

.

Hence we deduce that

||ϕn+1 + Fn+1||hn+1 ≤ ||ϕn+1 + PrFn+1||hn+1 + ||(I − Pr)Fn+1||hn+1

≤ C||ϕn+1 + PrFn+1||L2 + cst.||Fn+1||hn+1 ≤ cst.
||ϕn||2hn

2 2 .
hn(hn − hn+1)
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Let ϕn+1 = ϕn+1 + Fn+1. Then we have

||ϕn+1||hn+1 ≤ cst.
||ϕn||2hn

h2
n(hn − hn+1)2

= cst.22n||ϕn||2hn
. (4.2.6)

Let εn = ||ϕn||hn
. We have the following result for the convergence of the sequence.

Lemma 4.4. Let the positive real sequence {εj} satisfy

εj+1 ≤ c4jε2j , j ∈ N (4.2.7)

for some constant c > 0. If ε0 small enough, then there exists δ > 0 such that

εj ≤ e−2jδ, j ∈ N.

Proof. Let vj = ln εj , ηj = ln(c4j) = c + j ln 4. Then (4.2.7) gives

vj+1 ≤ 2vj + ηj .

Inductively we get

vj+1 ≤ 2j+1( ηj
2j+1 + · · · + η1

22 + η0

2 + v0).

Notice that 
∑∞

j=0
ηj

2j+1 converges. Denote the limit by η∞. Choose v0 < −η∞, then

vj < 2j(v0 + η∞) < 0, j ∈ N.

Let δ = |v0 + η∞| > 0. Therefore, εj = evj ≤ e−2jδ, which completes the proof. �
We choose ε be small enough. Then we could inductively define ϕn ∈ Bhn

(ε) satisfying

||ϕn||hn
≤ e−2nδ, n ∈ Z.

Therefore,

||ψn+1||hn+1 ≤ cst. ||ϕn||hn

hn(hn − hn+1)
≤ cst.2ne−2nδ, n ∈ Z. (4.2.8)

Let ψ̃n ∈ Cω
hn

(T , so(3, R)) such that exp(ψ̃n) = exp(ψ1) · · · exp(ψn). Then (4.2.8)
gives that ψ̃n converges in Cω

h
2
(T , so(3, R)). We denote the limit by ψ̃. As ||cn+1 − cn|| =

||P0ϕ
n|| ≤ ||ϕn||hn

, cn converges. We denote the limit by c̃. By (4.2.4),

exp(−ψ̃(x + α)) exp(2π(dx + c)J1) exp(ϕ(x)) exp(−ψ̃(x)) = exp(2π(dx + c̃)J1),

i.e., (α, A) is Cω
h -conjugate to (α, exp(2π(dx + c̃)J1)). �

2
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5. Proof of main results

5.1. Proof of Theorem B

In this subsection, we establish the equivalence of acceleration and degree. We firstly 
study the accelerations along renormalization, which can be seen as generalization of [4, 
Corollary 14].

Lemma 5.1. Let α ∈ R\Q, G be a subgroup of GL(s, R), s ∈ N∗, A ∈ Cω
h (T , G), 

(αn, Ã(n)) be a representative of nth renormalization, n ∈ N. Then

Li(αn, Ã
(n)
ε ) = 1

βn−1
Li(α,Aβn−1ε), i = 1, 2, · · · , s.

Consequently, we have

wi(α,A) = wi(αn, Ã
(n)), i = 1, 2, · · · , s.

Proof. Let N ∈ Cω
h (R, GL(s, R)) be a normalizing map of nth renormalization of (α, A), 

i.e.,

N(x + 1)A(−1)n−1qn−1(x0 + βn−1x)N(x)−1 = I,

N(x + αn)A(−1)nqn(x0 + βn−1x)N(x)−1 = Ã(n).

Then for any k, l ∈ Z.

Ak(−1)nqn+l(−1)n−1qn−1(x0 + βn−1x) = N(x + kαn + l)−1Ã
(n)
k N(x). (5.1.1)

As there exists a canonical ring endomorphism from End(Rs) to End(ΛkRs), we have 
for P, Q ∈ GL(s, R),

Λi(PQ) = ΛiP · ΛiQ.

Hence by (5.1.1), we have

(ΛiA)k(−1)nqn+l(−1)n−1qn−1(x0 + βn−1x) = (ΛiN(x + kαn + l))−1(ΛiÃ(n))kΛiN(x).

Let ε0 > 0 be such that Ã(n) ∈ Cω
ε0(T , G) and N admits an analytic extension to a 

open neighborhood of R containing V = [0, 2] × [−ε0, ε0]. Let Λ0 = supz∈V ||ΛiN(z)||2. 
For k ∈ Z, let l = l(k) be the unique integer such that 0 ≤ kαn + l < 1 and t = t(k) =
k(−1)nqn + l(−1)n−1qn−1, then we have

Λ−1
0 ≤ ‖(ΛiA)t(y + βn−1εi)‖

i ˜(n)
≤ Λ0,
‖(Λ A )k(x + εi)‖
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where x, y ∈ C/Z are related by y = x0 + βn−1x and we assume that |�(x + εi)| < ε0. 
It follows that

|
∫
T

ln ||(ΛiÃ(n))k(x + εi)||dx−
∫
T

ln ||(ΛiA)(−1)nt(x + βn−1εi)||dx|

=|
∫
T

ln ||(ΛiÃ(n))k(x + εi)||dx−
∫
T

ln ||(ΛiA)t(x + βn−1εi)||dx| ≤ ln Λ0.

Notice that when k is large, t satisfies

(−1)n t

k
= qn − l

k
qn−1 = qn + αnqn−1 + o(1) = 1

βn−1
+ o(1).

It follows that for large k,

1
k

∫
T

ln ||(ΛiÃ(n))k(x + εi)||dx = 1 + o(1)
βn−1

1
(−1)n

∫
T

ln ||(ΛiA)(−1)nt(x + βn−1εi)||dx.

Taking the limit, we get

Li(αn, Ã
(n)
ε ) = 1

βn−1
Li(α,Aβn−1ε), i = 1, 2, · · · , s,

which immediately implies wi(α, A) = wi(αn, Ã(n)). �
With preceding lemma, now we can prove Theorem B by renormalization.

Proof of Theorem B. Let Ã(n)
t = Ã(n)(· + it), t ∈ R. We rewrite the convergence of 

renormalization from Theorem 2.1 to be

Ã
(nk)
t

Cω

−−→ exp(C + D(x + it)) on R, t ∈ [−h, h], (5.1.2)

for some subsequence of even integers {nk} and C ∈ z(D). We assume that Li(α, A) is 
affine on (0, h0) for some h0 > 0. By Lemma 5.1, Li(αn, Ã(n)) is also affine on (0, h0)
and

ωi(αn, Ã
(n)) = ωi(α,A) =: ωi, i = 1, · · · , s, n ∈ N.

By compactness of SO(s, R), Li(αn, Ã(n)) = 0. We deduce that for t ∈ (0, h0),

Li(αn, Ã
(n)
t ) = 2πtωi, i = 1, · · · , s, n ∈ N.

By continuity of Lyapunov exponent [7], (5.1.2) gives that
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Li(α, exp(C + D(x + it))) = lim
n→∞

Li(αn, Ã
(n)
t ) = 2πtωi, i = 1, · · · , s, t ∈ (0, h0).

(5.1.3)
Meanwhile, we recall the definition of Lyapunov exponents through singular value. As 

C, D ∈ so(s, R) commute with each other, C will not contribute in Li(α, exp(C +D(x +
it))). Moreover, compactness shows that there exist Q ∈ SU(s) and integers d1 ≥ · · · ≥ ds
such that D = Q · 2πidiag(d1, · · · , ds) ·Q−1. We then compute explicitly that

Li(α, exp(C + D(x + it))) = 2πtdi, i = 1, · · · , s.

Comparing with (5.1.3), we deduce that

(ω1, · · · , ωs) = (d1, · · · , ds),

which completes the proof of Theorem B. �
5.2. Proof of Theorem A (1) ω1 = 0

Now we start to prove Theorem A. Since the case when ω1 zero or not has different 
dynamical nature, we separate the proof of Theorem A into two subsections. We deal with 
ω1 = 0 here. To study almost reducibility along renormalization, we need the following 
lemma.

Lemma 5.2. Let h > 0, α ∈ R\Q, A ∈ Cω
h (T , SO(3, R)), n ∈ N. There exists a constant 

δ(h) > 0, such that if a representative of nth deep renormalization (αn, Ã(n)) satisfies 
||Ã(n)−A0||h < δ(h) for some constant A0 ∈ SO(3, R), then (α, A) is Cω-almost reducible 
and accumulated by reducible cocycles.

Proof. We apply Theorem 3.1 for h > 0 and L = 4, denoting δ(h, 4) briefly by δ(h), 
when ||Ã(n) − A0||h < δ(h), Theorem 3.1 gives that (αn, Ã(n)) is Cω-almost reducible. 
More precisely, for j ∈ N, there exist hj > 0, Bj ∈ Cω

hj
(T , SO(3, R)), Cj ∈ SO(3, R), 

such that for Ãj = Bj(· + αn)Ã(n)(·)Bj(·)−1, εj = ||Ãj − Cj ||hj
, we have

‖Bj‖4
hj
εj → 0, as j → ∞. (5.2.1)

We will work with large j so that εj small.
Let (αn, Ãj)m = (mαn, Ãj,m), m ∈ N. As

||Ãj,m+1(x) − Cm+1
j ||hj

= ||Ãj(x + mα)(Ãj,m(x) − Cm
j ) + (Ãj(x + mα) − Cj)Cm

j ||hj

≤ (1 + εj)||Ãj,m(x) − Cm
j ||hj

+ εj ,

inductively we deduce that ||Ãj,m(x) −Cm
j || ≤ (1 + εj)m − 1. We choose j large enough 

so that εj << 1 . Then we have
qn



38 X. Hou et al. / Advances in Mathematics 457 (2024) 109943
||Ãj,qn − Cqn
j ||h ≤ qnεj . (5.2.2)

Now we define the distance for commuting pairs. We start with a notation of maximal 
norm. Let J ⊂ R be an interval, h > 0, f : J × i[−h, h] → SO(3, R) be a continuous 
map. We define

||f ||h,J = sup
x∈J×i[−h,h]

||f(x)||.

We recall that Λω is the space of analytic fibered Z2-actions. Let Λω
h,J be the set of all 

Φ ∈ Λω with AΦ
1,0, A

Φ
0,1 analytically defined on a set containing J×i[−h, h]. For Φ ∈ Λω

h,J , 
we denote by ||Φ||h,J the quantities

||Φ||h,J := sup(||AΦ
1,0||h,J , ||AΦ

0,1||h,J ),

and then define a distance on Λω
h,J as

dh,J(Φ1,Φ2) := sup(||AΦ1
1,0 −AΦ2

1,0||h,J , ||AΦ1
0,1 −AΦ2

0,1||h,J ), Φ1,Φ2 ∈ Λω
h,J .

If Φ, Φ′ ∈ Λω
h,J are Cω-conjugated via B ∈ Cω(R, SO(s, R)) analytically defined on a set 

containing J × i(−h, h), then

||Φ′||h,J ≤ ||B−1||h,J max(||B||h,J+γΦ
1,0

, ||B||J+γΦ
0,1

)||Φ||h,J .

Let Φ1, Φ2 ∈ Λω
h,J , B ∈ Cω(R, SO(3, R)) analytically defined on a set containing J ×

i(−h, h), Φ′
i = ConjB(Φi), i = 1, 2, then

dh,J(Φ′
1,Φ′

2) ≤ ||B−1||h,J max(||B||h,J+γΦ
1,0

, ||B||h,J+γΦ
0,1

)dh,J (Φ1,Φ2). (5.2.3)

Let Φ1 = ConjBj

(
1, I

αn, Ã
(n)

)
, Φ2 =

(
1, I

αn, Cj

)
. Then almost reducibility provides 

that dωhj ,J
(Φ1, Φ2) ≤ εj for any interval J ⊂ R. It is easy to see that

dωhj ,βn−1J(Mβ−1
n−1

(Φ1),Mβ−1
n−1

(Φ2)) = β−1
n−1d

ω
hj ,J(Φ1,Φ2). (5.2.4)

By (5.2.2),

dωhj ,βn−1J (Q−1
n ◦Mβ−1

n−1
(Φ1), Q−1

n ◦Mβ−1
n−1

(Φ2)) ≤ qnβ
−1
n−1εj . (5.2.5)

Assume that N ∈ Cω(R, SO(3, R)) is the normalizing map such that(
1, I

α , Ã(n)

)
= ConjN ◦Mβn−1 ◦Qn

(
1, I
α,A

)
.

n
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Let Φ3 := ConjN−1(β−1
n−1·)

◦ConjB−1
j (β−1

n−1·)
◦Q−1

n ◦Mβ−1
n−1

(Φ2), I = β−1
n−1[−1

2 , 1]. Then by 

(5.2.3) and (5.2.5),

dωhj ,[− 1
2 ,1]

(
(

1, I
α,A

)
,Φ3) ≤ ||N |[0,2β−1

n−1]
||2hj

qnβ
−1
n−1||Bj ||2hj

εj =: ε̄j . (5.2.6)

By (5.2.1), ε̄j → 0 as j → ∞. We work with j large so that ε̄j small enough.
To continue analysis, we recall the quantitative normalizing lemma, based on normal-

izing lemma in [10], with a detailed proof in [47, Lemma 8.1.1].

Lemma 5.3. For any Φ ∈ Λω
0 , Φ is Cω-conjugated to a normalized action. Moreover, there 

exist an ε > 0 and a constant cst such that for any Φ ∈ Λω
0 satisfying ||AΦ

1,0−I||h,[− 1
2 ,1] ≤

ε, for some h > 0, we can construct a normalizing map B ∈ Cω(R, SO(3, R)) such that

B(· + 1)AΦ
1,0(·)B(·)−1 = I, ||B − I||h,[0,2] ≤ cst.||AΦ

1,0 − I||h,[− 1
2 ,1].

Notice that Φ3 is not necessarily normal. Since (5.2.6) shows that

||AΦ3
1,0 − I||hj ,[− 1

2 ,1] ≤ ε̄j ,

we can construct from Lemma 5.3 a conjugacy B̃ ∈ Cω
hj

(R, SO(3, R)) such that

B̃(· + 1)AΦ3
1,0B̃(·)−1 = I

and satisfying

||B̃ − I||hj ,[0,2] ≤ cst.ε̄j .

As we can express B̃−1(x) by entries of B̃(x), we get

||B̃−1 − I||hj ,[0,2] ≤ cst.ε̄j .

Then

||B̃(x + α)AΦ3
0,1(x)B̃(x)−1 −AΦ3

0,1||hj ,[0,1]

=||B̃(x + α)AΦ3
0,1(B̃(x)−1 − I) + (B̃(x + α) − I)AΦ3

0,1(x)||hj ,[0,1] ≤ cst.ε̄j ,

as ε̄j is small enough. Together with (5.2.6), we deduce that

dhj ,[0,1](
(

1, I
α,A

)
,ConjB̃Φ3) ≤ cst.ε̄j . (5.2.7)

This means that there exist Ăj ∈ Cω
hj

(T , SO(s, R)), B̆j ∈ Cω
hj

(T , SO(s, R)), where 

B̆j(·) = B̃j(·)Bj(β−1
n−1·)N(β−1

n−1·) satisfies
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||B̆j ||hj
≤ cst.||Bj ||hj

, (5.2.8)

such that

||A− Ăj ||hj
≤ cst.ε̄j (5.2.9)

and

(α, Ăj) = (0, B̆j) ◦ (α,Cj) ◦ (0, B̆j)−1. (5.2.10)

Thus A is approximated by reducible cocycles. By (5.2.8), (5.2.9), (5.2.10) and the con-
vexity inequality, we have

||B̆j(x + α)−1A(x)B̆j(x) − Cj ||hj
≤ cst.||Bj ||2hj

ε̄j .

By (5.2.1), ||Bj ||2hj
ε̄j = ||Bj ||4hj

εj → 0 as j → ∞. Hence (α, A) is Cω-almost re-
ducible. �
Proof of Theorem A (1). We prove the equivalence of ω1 = 0 and almost reducibility for 
analytic SO(3, R)-cocycles.

If (α, A) is Cω-almost-reducible, i.e., there exists Bn ∈ Cω(T , SO(3, R)), A0 ∈
SO(3, R) such that

Bn(x + α)−1A(x)Bn(x) → A0.

As acceleration is invariant by conjugation and upper semi-continuous in Cω-space, we 
deduce that ω1 = 0.

Conversely, if ω1 = 0, by Theorem B, the dynamical degree of (α, A) is zero. Then 
Theorem 2.1 provides the convergence of renormalization to constant. In other word, 
for δ(h) > 0, there exists n0 ∈ N, such that Ã(n) is δ(h) close to constant. Lemma 5.2
therefore shows that (α, A) is Cω-almost reducible. �
5.3. Proof of Theorem A (2) ω1 	= 0

To prove the main theorem, we will find a conjugation representative when ω1 	= 0. 
As conjugation is preserved along renormalization, we firstly compute how the normal 
form change along renormalization.

Lemma 5.4. Let α ∈ R\Q, D ∈ so(3, R) satisfying expD = I, C ∈ z(D). Then the cocycle 
(α, exp(Dx +C)) has representative of renormalization ({ 1

α}, exp(−Dx −D( 1
2α+ 1

2 ) −C
α )).

Proof. Let a = a1 = 1
α − { 1

α}, Υ(x) = exp(Dx + C). We start with the commuting pair

Mα ◦
(

0 1
1 −a

)(
(1, I)
(α,Υ)

)
=

(
(1,Υ(αx))

( 1 , I) ◦ (1,Υ(αx))−a

)
. (5.3.1)
α
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We define J(x) = exp(−α
2D(x2 − x) − Cx). Then

Υ(αx) = J(x + 1)−1J(x), ConjJ(1,Υ(α·)) = (1, I). (5.3.2)

Hence J is a normalizing map of the one-step renormalization (5.3.1).
Now, inversing (5.3.2) and computing its a power, we get

ConjJ(1,Υ(α·))−a = (1, I)−a = (−a, I).

Then we compute

ConjJ(( 1
α
, I) ◦ (1,Υ(α·))−a) =ConjJ( 1

α
, I) ◦ ConjJ(1,Υ(α·))−a

=(0, J) ◦ ( 1
α
, I) ◦ (0, J)−1 ◦ (−a, I)

=({ 1
α
}, J(x + { 1

α
})J(x− a)−1). (5.3.3)

Let

Υ̃(x) =J(x + { 1
α
})J(x− a)−1 = exp(−D(x + 1

2 + 1
2α ) − C

α
). (5.3.4)

We then get a representative ({ 1
α}, Υ̃) of one-step renormalization of (α, Υ),(

(1, I)
({ 1

α}, Υ̃(x))

)
= ConjJ(α,d,c) ◦Mα ◦

(
0 −1
−1 a

)(
(1, I)
(α,Υ)

)
. �

Proof of Theorem A (2). When ω1 	= 0, by Theorem B, we only need to prove that if 
dynamical degree D is nonzero, then the cocycle (α, A) is Cω-conjugate to (α, exp(Dx +
C)) for some C ∈ z(D).

By Theorem 2.1, we have convergence of renormalization, namely for a sequence of 
Cn ∈ z(D), ϕn ∈ Cω

h (T , so(3, R)),

Ã(n)(x) = exp(ϕn(x)) exp((−1)nDx + Cn),

lim
n→∞

||ϕn||h = 0. (5.3.5)

As α ∈ RDC, there exist κ > 0, τ > 0 such that αn ∈ DC(κ, τ) for infinitely many n ∈ N. 
For such n large enough, by (5.3.5), Theorem 4.1 gives that (αn, Ã(n)) is Cω-conjugate 
to (αn, exp((−1)nDx + C ′)) for some C ′ ∈ z(D).

By Lemma 5.4, the form (α, exp(±Dx + ·)) with · ∈ z(D) is preserved by renormal-
ization. Hence there exists C ∈ z(D) such that (α, exp(Dx +C)) has a representative of 
nth renormalization as (αn, exp((−1)nDx + C ′)).

In other word, (α, A) has a representative of nth renormalization (αn, Ã(n)) conjugate 
to (αn, exp((−1)nDx + C ′)), a representative of nth renormalization of (α, exp(Dx +
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C)). Then Lemma 2.3 gives that (α, A) is Cω-conjugate to (α, exp(Dx + C)). Hence we 
complete the proof of Theorem A. �
Appendix A. Floquet theory

We introduce the following quantitative Floquet Theory. In [31], we have introduced 
a quantitative Floquet Theory for quasi-periodic linear system on SL(2, R). Here we 
consider the case of SO(3, R), but the conclusion and the proof also hold for general 
compact matrix group.

Lemma A.1. Let α ∈ R\Q, suppose that F =
∑

l∈Z F̂ (lq, −lp)e2πil(qθ1−pθ2) ∈ Bh. Then 
there exists B ∈ Cω

h (T 2, SO(3, R)) which conjugates the system{
ẋ = F (θ)x
θ̇ = ω = (α, 1)

to the constant system {
ẋ = Cx

θ̇ = ω = (α, 1)

with estimates

||B||h ≤ exp
{

(|q| + |p|)h
|τ | ||F ||#h

}
, τ := qα− p. (A.1)

Proof. Let x = qθ1 − pθ2, ̃h = (|q| + |p|)h, G(φ) =
∑

l∈Z F̂ (lq, −lp)e2πilφ. Then we have 
F (θ1, θ2) = G(qθ1 − pθ2), and

||G||h̃ ≤
∑
l∈Z

||F̂ (lq,−lp)||e2π|l|h̃ = ||F ||#h . (A.2)

Let Φ(t) be its basic matrix solution of the 1
|τ | -periodic ODE

dx

dt
= G(τt)x (A.3)

with Φ(0) = I. Let C := |τ | log Φ( 1
|τ | ) ∈ so(3, R), i.e., C satisfies

Φ( 1
|τ | ) = exp( 1

|τ | · C), ‖C‖ ≤ ||G||h̃ ≤ ||F ||#h . (A.4)

We consider the complexification of (A.3), and consider the case of t + is with some fixed 
t ∈ R and |s| < h̃ ,
|τ |
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dx

d(is) = G(t + τsi)x. (A.5)

Then, by Grownwall inequality and (A.2), as long as |s| < h̃
|τ | ,

‖Φ(t + is)‖ ≤ ‖Φ(t)‖e|s|||G||h̃ ≤ ‖Φ(t)‖e|s|||F ||#h ≤ e|s|||F ||#h , (A.6)

(‖Φ(t)‖ = 1 for t ∈ R and Φ(t) is then SO(3, R)-valued). Then,

sup
|�t|< h̃

|τ|

||Φ(t)|| ≤ exp
{
||F ||#h h̃

|τ |

}
≤ exp

{
(|q| + |p|)h

|τ | ||F ||#h
}
. (A.7)

And, for fixed t ∈ R and |s| < h̃
|τ | , by (A.4)

‖e(t+is)C‖ ≤ ‖etC‖‖eisC‖ ≤ | exp{|s|‖C‖} ≤ ‖e|s|||F ||#h (A.8)

(C ∈ so(3, R) and t ∈ R means that etC ∈ SO(3, R)), which leas to

sup
|�t|< h̃

|τ|

‖etC‖ ≤ exp
{
||F ||#h h̃

|τ |

}
≤ exp

{
(|q| + |p|)h

|τ | ||F ||#h
}
. (A.9)

Let B1(t) = Φ(t) exp(−Ct). By the definition of C, B1(t) = B1(t + 1
|τ | ), and B1

conjugate (A.3) to dxdt = Cx. It means

B′
1(t) = B1(t)G(τt) − CB1(t). (A.10)

Define B(θ1, θ2) := B1( 1
τ (qθ1 − pθ2)) ∈ Cω

h (T 2, so(3, R)). By (A.10), it satisfies

∂ωB = α
∂

∂θ1
B(θ1, θ2) + ∂

∂θ2
B(θ1, θ2)

= qα− p

τ

d

dt
B′

1(
1
τ

(qθ1 − pθ2)) = B′
1(

1
τ

(qθ1 − pθ2))

= B1(
1
τ

(qθ1 − pθ2))G(qθ1 − pθ2) − CB1(
1
τ

(qθ1 − pθ2))

= BF − CB. (A.11)

Thus B conjugate 

{
ẋ = F (θ)x
θ̇ = ω

to 

{
ẋ = Cx

θ̇ = ω
. By (A.7), (A.9), (A.1) follows. �
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