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Abstract
An automaton A is history-deterministic if its nondeterminism can be resolved on the fly, only
using the prefix of the word read so far. This mild form of nondeterminism has attracted particular
attention for its applications in synthesis problems. An automaton A is guidable with respect to a
class C of automata if it can fairly simulate every automaton in C, whose language is contained in
that of A. In other words, guidable automata are those for which inclusion and simulation coincide,
making them particularly interesting for model-checking.

We study the connection between these two notions, and specifically the question of when they
coincide. For classes of automata on which they do, deciding guidability, an otherwise challenging
decision problem, reduces to deciding history-determinism, a problem that is starting to be well-
understood for many classes.

We provide a selection of sufficient criteria for a class of automata to guarantee the coincidence
of the notions, and use them to show that the notions coincide for the most common automata
classes, among which are ω-regular automata and many infinite-state automata with safety and
reachability acceptance conditions, including vector addition systems with states, one-counter nets,
pushdown-, Parikh-, and timed-automata.

We also demonstrate that history-determinism and guidability do not always coincide, for
example, for the classes of timed automata with a fixed number of clocks.
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1 Introduction

Language inclusion between automata is a key problem in verification: given an automaton
representing a program and another representing a specification, language inclusion of the
former in the latter captures precisely whether all executions of the program satisfy the
specification. Unfortunately, in the presence of nondeterminism, inclusion is algorithmically
hard. For instance, for regular automata it is PSpace-hard on both finite and infinite words.
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12:2 History-Determinism vs Fair Simulation

Fair simulation is a more syntactic approximation of inclusion, defined by the simulation
game [12]. In this game, one player, in the role of the spoiler, builds, transition by transition,
a run in one of the automata, say A, while the other, in the role of the duplicator, chooses at
each turn a matching transition in the other automaton, say B. The second player’s task
is to build a run that is accepting if the first player’s run is accepting. If the duplicator
has a winning strategy, then B is said to simulate A, which, in particular, implies that A’s
language is included in B’s language. Simulation, due to its local and syntactic nature, is
generally easier to check than inclusion: for instance it is in PTime for nondeterministic
Büchi automata. As a result, automata for which language inclusion and simulation coincide
are particularly well-suited for model-checking. We call such automata guidable, after a
similar notion used previously as an alternative to determinism for tree automata [9]. Despite
their clear usefulness for model checking, guidable automata have so far been mostly used as
a tool, but not studied much in their own right, with the notable exception of [17].

Guidability is not easy to decide: it is contingent on an automaton simulating a potentially
infinite number of language-included automata. We would like to have, whenever possible, a
characterisation that is more amenable to algorithmic detection.

Deterministic automata are of course always guidable, and so are history-deterministic
automata. These are mildly nondeterministic automata, in which nondeterministic choices
are permitted, but can only depend on the word read so far, rather than the future of the
word. These automata have received a fair bit of attention recently due, in particular, to
their applications in synthesis problems [6]. In general, they offer an interesting compromise
between the power of nondeterministic automata and the better algorithmic properties of
deterministic ones. In particular, they can simulate all equivalent, or language-contained,
automata as they only need the history to resolve nondeterministic choice in the best possible
way – in other words, they are guidable. In fact, at first it might appear that history-
determinism and guidability should coincide; indeed, this is the case if we consider guidability
with respect to all labelled transition systems [13, Theorem 4]. However, there are also
classes of automata for which this is not the case.

Guidability and history-determinism coinciding on a class C of automata is equivalent to
the description “for every automaton A ∈ C that is not history-deterministic, there is some
A′ ∈ C that is language-included in A but that A does not simulate” (D). Then it is easy
enough to hand-pick automata to build classes where guidability and history-determinism
do not coincide (for example, a class of inclusion-incomparable automata that are not
all history-deterministic). However, as we will see, there are also more natural classes of
automata, such as timed automata with a bounded number of clocks, for which guidability
and history-determinism differ.

The characterisation (D) is too abstract to be much use for analysing the usual automata
classes we are interested in. We therefore prove that several more concrete criteria (The-
orem 1) imply that guidability and history-determinism coincide, and use each of these in a
comprehensive analysis of standard automata classes. Roughly, each of the criteria describes
some sufficient closure properties which guarantee the existence of A′ from description (D).
If some automaton can simulate another automaton that is sufficiently difficult to simulate
(for example a deterministic one, since they simulate all equivalent automaton), then it must
be history-deterministic; as a result, a class of automata having sufficient closure properties
(such as closure under determinisation), implies that guidability and history-determinism
coincide. The challenge is to identify, for a variety of different classes of automata C, an
automaton that is sufficiently difficult to simulate, while remaining in C.
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In order to discuss our sufficient criteria in more detail, we need to start with a couple of
key notions, the first of which is the 1-token game and the second is the 1-token ghost.

History-determinism of an automaton is tricky and expensive to decide directly [11]; As
an alternative, Bagnol and Kuperberg used k-token games as potential characterisations for
history-determinism [2]. Roughly, they resemble a (fair) simulation-like game, played on a
single automaton, where one player, Eve (in the role of Duplicator), must build transition-
by-transition a run on a word dictated letter-by-letter by Adam, who, after each of Eve’s
choices, also builds k runs transition-by-transition. Eve then wins if her run is accepting
whenever Adam’s run is accepting. Bagnol and Kuperberg showed that for Büchi automata,
the 2-token game indeed characterises history-determinism, which means that deciding
history-determinism for Büchi automata is in PTime [2]. Since then, the 1- or 2-token games
have been shown to characterise history-determinism for various automata classes, including
coBüchi [4], DSum, LimInf, and LimSup automata [5]. These games contrast with the letter
game, a game which always characterises history-determinism, but which is often challenging
to solve directly [11].

In this work, we make heavy use of token-games, this time to understand the connection
between history-determinism and guidability. In particular, we extend token games to be
played over two automata (Definition 3), separating between Eve’s and Adam’s automata,
and define, given an automaton A, that an automaton A′ is a 1-token ghost of A if A′ is
language-equivalent to A and Eve wins the 1-token game between A′ and A. For some
classes of automata such a ghost is easy to construct, while for other classes it might not
exist due to lacking closure properties.

With these notions, we can now state our criteria.

▶ Theorem 1. The notions of history-determinism and guidability coincide for a class C of
labelled transitions systems (LTSs) if at least one of the following holds:
1. Determinisation. C is closed under history-determinism, i.e., for each nondeterministic

LTS in C, there is a language-equivalent history-deterministic (or deterministic) LTS in
C as well. (Lemma 4)

2. 1-token ghost. 1-token games characterise history-determinism in C, and C is closed
under 1-token ghost. (Lemma 8)

3. Strategy ghost. For every A ∈ C that is not history-deterministic, there is a deterministic
LTS B over the alphabet of transitions of A, such that B recognises the plays of a winning
strategy of Adam in the letter game on A, and B, projected onto the alphabet of A, has a
1-token ghost in C. (Lemma 9)

We prove the criteria of Theorem 1 in Section 4, and use them in Section 5 to show that
the notions of history-determinism and guidability coincide for numerous classes of automata,
listed in Table 1. We also provide counter-examples of classes for which history-determinism
and guidability do not coincide, as listed in Table 1, and elaborated on in Section 6. We
restrict our analysis to automata over infinite words, which are better behaved in this context,
and discuss how to adapt our techniques for finite words in Section 7.

A practical corollary of our result is that guidability is decidable, with the complexity
of deciding history-determinism, for ω-regular automata (ExpTime for parity automata,
PTime for Büchi and coBüchi), safety and reachability timed automata (ExpTime) and
visibly pushdown automata (ExpTime). For details on the complexity of these procedures,
we refer the reader to a recent survey [6].
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Table 1 History-determinism vs guidability.

Automata Class HD = Guidability by

ω-regular Determinisation
or Strategy ghost

Fixed-index parity (e.g., Büchi), Weak Strategy ghost Corollary 10

Linear Strategy ghost Theorem 19.
(Not ghost-closed Theorem 18)

Safety & Reachability
pushdown automata, VASS, timed, one-counter

automata, one-counter net, Parikh

1-token ghost
Theorem 17 and Corollary 15

VPA with any ω-regular acceptance condition Strategy ghost Theorem 16

Classes for which HD ̸= guidability:

– Büchi automata with a bounded number of states. Theorem 20

– Timed automata with a bounded number of clocks. Theorem 21

Notable classes for which we leave the question HD =? guidability open:

– PDA/OCA/OCN/Timed automata with general ω-regular acceptance

2 Preliminaries

We use N and N+ to denote the set of non-negative and positive integers respectively. We
use [i..j] to denote the set {i, . . . , j} of integers, and [i] for the set [1..i]. An alphabet Σ is a
non-empty set of letters. A finite or infinite word is a finite or infinite sequence of letters
from Σ respectively. We let ε be the empty word, and Σε the set Σ ∪ {ε}. The set of all
finite (resp. infinite) words is denoted by Σ∗ (resp. Σω). A language is a set of words.

2.1 Labelled transition systems
A labelled transition system (LTS) A = (Σ, Q, ι, ∆, α) consists of a potentially infinite
alphabet Σ, a potentially infinite state-space Q, an initial state ι ∈ Q, a labelled transition
relation ∆ ⊆ Q × Σε × Q, and a set of accepting runs α, where a run ρ is a (finite or
infinite) sequence of transitions starting in ι and following ∆. We may write q

σ−→ q′ instead
of (q, σ, q′) ∈ ∆ for σ ∈ Σε. Given a finite run ρ = q0

σ1−→ q1
σ2−→ · · · σk−→ qk on the word

v = σ0 · σ1 · σ2 · · · σk ∈ Σk+1
ε , we write q0

v,ρ==⇒ qk to denote that ρ is a transition sequence
on the word v that starts at q0 and ends at qk. An LTS is deterministic if for every state q

and letter σ ∈ Σ, there is at most one transition q
σ−→ q′ from q on the σ, and there are no

transitions on ε.
A word w ∈ Σω is accepted by an LTS A if there is an accepting run of A on w. The

language L(A) of A is the set of words that it accepts. An LTS A is contained in an LTS
B, denoted by A ≤ B, if L(A) ⊆ L(B), while A and B are equivalent, denoted by A ≡ B if
L(A) = L(B).

A transducer is like an LTS without acceptance condition and ε-transitions but with
an output labelling: it is given by a tuple (ΣI , ΣO, Q, ι, ∆, γ), where ΣI and ΣO are the
input and output alphabets, respectively, ∆ ⊆ Q × ΣI × Q is the transition relation, and
γ : ∆ → ΣO is the output function. A strategy in general is a deterministic transducer. It is
finite memory if the transducer has a finite state space.
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2.2 Automata
We briefly recall the automata types considered here, which we assume to operate on infinite
words unless stated otherwise, and leave the formal definitions to the appendix.

LTSs are represented concisely by various automata. An automaton A induces an LTS
B, whose states are the configurations of A, and whose runs are the same as A’s runs. If
A’s states and configurations are the same, as is the case with ω-regular automata which we
define below, then B is identical to A, but with the acceptance condition given by a set of
runs (as opposed to an ω-regular conditions). If the configurations of A contain additional
data, as is the case for example with pushdown automata, then B and A have different states.
Notice that A is deterministic iff B is. The acceptance condition of A induces the acceptance
condition on B.

In a parity condition, α assigns priorities in N to either states or transitions, and a run is
accepting if the highest priority that occurs infinitely often along it is even. An [i, j]-parity
automaton, for i < j two natural numbers is a parity automaton whose priorities are in [i, j].
A parity automaton is said to be a weak automaton if there is no cycle in the automaton
containing both an even and odd priority. In a reachability condition, some states are labelled
final; a run accepts if it reaches a final state. In a safety automaton, some states are labelled
safe; a run accepts if it remains within the safe region.

In a nondeterministic ω-regular automaton (Σ, Q, ι, δ, α), Σ and Q are finite, and the
acceptance condition α is based on the set of states (or transitions) visited infinitely often
along a run. A timed automaton (TWA) (Σ, Q, ι, C, δ, α) has a set of clocks C and its
transitions are guarded by inequalities between the clock values and can reset clocks. It
reads timed words, which consist of letters of a finite alphabet Σ paired with delays from R.
A timed automaton recognises a timed language, for example “at some point an event occurs
twice exactly one time-unit apart.”

We also handle pushdown automata, one-counter automata, vector addition systems
with states, one-counter nets and Parikh automata with reachability and safety acceptance.
We define these classes of infinite state systems uniformly in Section 5.2 as classes of finite
state automata with transitions that modify an infinite content space. A visibly pushdown
automaton (VPA) is a pushdown automaton without ε-transitions, in which the input
alphabet is partitioned into pop, push and noop letters that induce only transitions that
pop, push and have no effect on the stack respectively.

3 History-determinism, simulation and related games

Different simulation-like games that capture either a relationship between automata or prop-
erties of a single automaton are at the heart of our technical developments. In this section we
go over the various games – both known and newly defined – that will be played throughout
this article, and which allow us to connect guidability and history-determinism. These games
are all based on Adam (the spoiler) building a word letter by letter, and potentially a run in
an automaton over that word, while his opponent Eve (the duplicator) tries to build a single
accepting run transition by transition. The differences between these games are based on
whether they are played on one or two automata, whether Adam picks transitions, and if
so, whether he does it before Eve. The winning condition is similar in all cases: Eve’s run
must be accepting whenever Adam’s run is accepting, or if Adam does not have a run, then
whenever the word built by Adam’s moves is in the language of a specified automaton. This
results in three styles of games: (i) simulation games, played on two automata, in which
Adam plays before Eve, and each builds a run in their respective automaton; (ii) token-games,
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12:6 History-Determinism vs Fair Simulation

which can be played on one or two automata, in which Adam first declares the letter, and
then Eve plays her transition before Adam plays his; and (iii) the letter game, played on a
single automaton, in which Adam only chooses letters and does not build a run at all.

Fair simulation between two LTSs (or automata) is captured by the simulation game
defined below:

▶ Definition 2 (Simulation game). Consider LTSs A = (Σ, QA, ιA, ∆A, αA) and B =
(Σ, Q, ιB , ∆B , αB). The simulation game Sim(B, A) between B and A is a two player-
game played between Adam and Eve with positions in QA × QB which starts at the position
(p0, q0) = (ιA, ιB). At round i of the play, for i ≥ 0, when the position is (pi, qi):

Adam picks σi ∈ Σ and a transition (or transition sequence, in the presence of ε-
transitions) pi

σi,ρi===⇒ pi+1 in A;

Eve picks a transition (or transition sequence, in the presence of ε-transitions) qi
σi,ρ′

i===⇒
qi+1 in B; they proceed from (pi+1, qi+1).

An infinite play produces a run ρA in A consisting of transitions chosen by Adam and a run
ρE in B of transitions chosen by Eve, both on σ0σ1σ2 · · · . We say that Eve wins the play if
ρE is accepting or ρA is rejecting.

If Eve has a winning strategy in this game, we say that B simulates A, denoted by Sim(B, A).
It is easy to observe that if B simulates A, then L(A) ⊆ L(B). An LTS A is guidable with
respect to a class C of LTSs if A simulates every LTS A′ in C that satisfies L(A′) ⊆ L(A).

The following letter game based definition of history-determinism, was introduced by Hen-
zinger and Piterman [11], and coincides with Colcombet’s notion of translation strategies [8].

Given an LTS A, the letter game on A, denoted by HD(A) is similar to the simulation
game except that instead of playing transitions in an automaton, Adam just chooses letters
and builds a word w, letter by letter, which should be in the language of A, while Eve tries
to build a run of A over w. More precisely, the letter game starts with Eve’s token at the
initial state ι, and proceeds in rounds. At round i, where Eve’s token is at qi:

Adam chooses a letter σi in the alphabet Σ of A;
Eve chooses a transition qi

σi−→ qi+1 (or a transition sequence qi
σi,ρi===⇒ qi+1 in the presence

of ε-transitions) of A over σi; Eve’s token moves to qi+1.
In the limit, a play consists of the word w = σ0σ1 · · · and the run ρ = ρ0 · ρ1 · ρ2 · · · . Eve
wins the play if w /∈ L(A) or ρ is accepting. We say that A is history-deterministic (HD) if
Eve has a winning strategy in the letter game over A.

Token games are known to characterise history-determinism on various classes of auto-
mata [2, 5, 6]. We generalise token games to be played on two LTSs below, which makes
them more akin to a variation of simulation. This will help us relate simulation and
history-determinism in Section 4. We only use the 1-token version here.

▶ Definition 3 (1-token games over two LTSs (or automata)). Consider LTSs A′ and A with
initial states p0 and q0 respectively. In the 1-token game on A′ and A denoted by G1(A′, A),
Eve has a token with which she constructs a run in A′, and Adam has a token with which he
constructs a run in A. The game proceeds in rounds, and at round i of the play with token
positions (pi, qi), for each i ≥ 0:

Adam chooses a letter σi in Σ;
Eve chooses a transition (or a transition sequence, in the presence of ε-transitions)
pi

σi,ρ′
i===⇒ pi+1 in A′;

Adam chooses a transition (or transition sequence, in the presence of ε-transitions)
qi

σi,ρi===⇒ qi+1; the game proceeds from (pi+1, qi+1).



U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:7

An infinite play produces a word w = σ0 . . . , a sequence of transitions ρE of A′ chosen by
Eve, and a sequence of transitions ρA in A chosen by Adam. Eve wins if ρE is accepting or
if ρA is rejecting.

A strategy for Eve here is a function s : (∆+)∗ × Σ → (∆′)∗, where Σ is the alphabet of
A and A′, and ∆ and ∆′ are the sets of transitions of A and A′, respectively. When clear
from context, G1(A′, A) also denotes the claim that Eve has a winning strategy in the game
G1(A′, A). As an automaton and its induced LTS have the same runs, G1(A′, A) holds for
automata A and A′ iff it holds for their induced LTSs. We also write G1(A) for G1(A, A).

Note that the 1-token game and the simulation game differ in one key aspect: in the
simulation game, Adam plays first, and Eve can use the information of the transition to
inform her choice, while in the 1-token game, Eve must choose her transition based only on
the letter chosen by Adam, who plays his transition after Eve.

4 Criteria for when History-Determinism = Guidability

We now provide criteria which guarantee that history-determinism and guidability coincide
for a class of LTSs. In Section 5, we use these to show the coincidence of the two notions for
many standard automata classes.

4.1 Closure under (history-)determinism
A first observation is that if every LTS A can be determinised within the class C, or even if
there exists an equivalent HD LTS A′ within C then A is HD if and only if it is guidable.

▶ Lemma 4. History-determinism and guidability coincide for any class C of LTSs in which
the languages expressed by history-deterministic (or deterministic) LTSs are the same as
languages expressed by nondeterministic LTSs.

The proof is simple: one direction is trivial (HD always implies guidability) and conversely,
if an automaton A is not HD, then it cannot simulate any equivalent HD automaton, implying
that A is not guidable.

Various examples of such classes are provided in Section 5.1, as summarised in Table 1.
In particular, the general class of all labelled-transition systems [13], safety/reachability
visibly pushdown automata [1], as well as finite-state automata on finite words (NFAs), and
co-Büchi, Parity, Rabin, Streett, and Muller automata on infinite words. Yet, this is not the
case for Büchi automata or parity automata with a fixed parity index. History-determinism is
also strictly less expressive than nondeterminism for pushdown automata, Parikh automata,
timed automata and one-counter nets.

4.2 Via token games
For classes that are not closed under determinisation, we have to find some other type of
automaton that is difficult to simulate. To do so, we revisit token games, previously used to
help decide history-determinism, to relate history-determinism and guidability. Recall that
we extended the definition of 1-token games, so that they are played on two automata, rather
than one. In the next definition, we use this extended notion of 1-token game to identify, for
each automaton A, an automaton A′ such that Eve wins the the 1-token game on A if and
only if A simulates A′.

▶ Definition 5 (1-token ghost). An LTS (or an automaton) A′ is a 1-token ghost of an LTS
A, denoted by 1-TokenGhost(A′, A), if A′ ≡ A and G1(A′, A).
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12:8 History-Determinism vs Fair Simulation

To show that the ghost automaton has the property that Sim(A, A′) if and only if Eve
wins G1(A, A), we compose the strategies in Sim(A, A′) and G1(A′, A).

▶ Lemma 6. Consider LTSs A and A′, such that A simulates A′ and 1-TokenGhost(A′, A).
Then Eve wins G1(A).

Proof. Let ssim be a winning strategy of Eve in the simulation game between A and A′,
and s′ her winning strategy in G1(A′, A). Eve then has a winning strategy s in G1(A): she
plays the strategy ssim in Sim(A, A′) against her imaginary friend Berta, who plays the
strategy s′ in G1(A′, A) against Adam. In more detail: In each round i of the game G1(A),
Adam chooses a transition sequence ρi−1 in A on σi−1 (except for the first round) on his
token and a letter σi, then Berta chooses the transition sequence ρB

i = s′ (ρ0 . . . ρi−1, σi) over
the letter σi in A′ on her token in G1(A′, A), and then Eve chooses the transition sequence
ρi = ssim(ρB

0 . . . ρB
i−1) in A.

The run built by Eve with the strategy s is accepting if the run built by Berta is, which
is in turn accepting if Adam’s run is. Hence, s is a winning strategy for Eve in G1(A). ◀

Then, for classes in which token games characterise history-determinism and which are
closed under the ghost relation, guidability and history-determinism coincide.

▶ Definition 7. A class C of LTSs is closed under 1-token ghost if for every A ∈ C there
exists A′ ∈ C such that 1-TokenGhost(A′, A).

▶ Lemma 8. Given a class C of LTSs closed under 1-token ghost for which G1 characterises
history-determinism, history-determinism and guidability coincide for C.

Proof. Being HD always implies guidability, so one direction is easy. For the other direction,
if A simulates every LTS A′ ∈ C, such that A′ ≤ A, then in particular it simulates an LTS
A′ ∈ C, such that 1-TokenGhost(A′, A), as C is closed under the 1-token ghost. By Lemma 6,
Eve wins G1(A), implying that A is HD, as G1 characterises history-determinism in C. ◀

A 1-token ghost is often easy to build, by delaying nondeterministic choices by one letter
(Definition 12), as shown in Section 5.2 for pushdown automata, one-counter automata,
vector addition system with states, one-counter nets and Parikh automata.

For some automata classes, however, showing closure under 1-token ghosts is trickier: for
VPA the stack action must occur as the letter is read, and for timed automata configuration
updates are sensitive to the current timestamp. We handle these complications in Section 5.3.
We can also only use Lemma 8 with respect to automata classes for which 1-token games
characterise history-determinism, which is not the case for parity automata or ω-VPA [2].

4.3 Via Adam’s strategy in the letter game
As we will see in detail in Section 5.4, some classes, such as linear automata, are neither
closed under 1-token ghost nor determinisation, so there is no hope for the above criteria to
apply. Our final criterion is an alternative which, instead of requiring all automata to admit a
1-ghost, builds a difficult-to-simulate automaton from Adam’s winning strategy in the letter
game. The intuition is that Adam’s winning strategy in the letter game on an automaton A
captures behaviour that is difficult for A to simulate, so if we can turn Adam’s strategy into
an automaton (which will be language-contained in A since Adam must play a word in the
language of A), then this automaton will not be simulated by A. To build this automaton,
we first project an automaton B recognising Adam’s winning plays from his strategy onto
the alphabet of A, to obtain an automaton BΣ that recognises the words played by Adam’s
strategy. Then, by taking the 1-token ghost of BΣ, we obtain an automaton B′ against which
the simulation game is essentially the letter game against Adam’s strategy. If the resulting
automaton is always still in the class C, guidability and history-determinism coincide.
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▶ Lemma 9. History-determinism and guidability coincide for classes C of LTSs in which,
for each A ∈ C that is not history-deterministic, there is a deterministic LTS B over the
alphabet of transitions of A that recognises the plays of a winning strategy of Adam in the
letter game on A, and B, projected onto the alphabet of A, has a 1-token ghost in C.

Proof. Consider a winning strategy τ of Adam in the letter game on A, and let B be a
deterministic LTS that recognises the plays of τ , seen as runs of A. Let BΣ be the projection
of B onto Σ: it is otherwise like B, except that its alphabet is Σ instead of the transitions
∆A of A and as a result it has additional nondeterminism. Crucially, every transition in B is
still a transition in BΣ. Given a sequence of transitions t0t1 . . . ti ∈ ∆∗

A, we call t′′
0 t′′

1 . . . t′′
i

its run in B, which is uniquely defined since B is deterministic. Note that this sequence
of transitions is also a run over the word of t0t1 . . . ti in BΣ. This also extends to infinite
sequences. Since every run accepted by B is a play winning for Adam in the letter game over
A, their projection onto Σ must be in L(A), so L(BΣ) ⊆ L(A).

Now, let B′ be the 1-token ghost of BΣ, witnessed by a strategy s1 of Eve in the game
G1(B′, BΣ). Assume, towards contradiction, that Sim(A, B′) via some strategy ssim. We
construct a strategy s of Eve in the letter game on A that is winning against τ , in which
Eve plays ssim against her imaginary friend Berta in Sim(A, B′), who in turn is playing s1
against Adam in G1(B′, BΣ).

In more detail, Adam begins by playing σ0 according to τ in the letter game on A;
Berta responds with a transition (or sequence of transitions in the presence of ε-transitions)
ρ′

0 = s1(σ0); and then Eve responds with s(σ0) = ρ0 = ssim(ρ′
0). On the ith round, when

Adam chooses the letter σi, after the sequence ρ0 . . . ρi−1 of Eve’s moves in the letter game,
and the sequence ρ′′

0 , . . . , ρ′′
i−1 of transitions in BΣ, which is the Σ-projection of the unique run

of B on ρ0 . . . ρi−1, viewed as a word over ∆A, Berta makes the move ρ′
i = s1(ρ′′

0 , . . . , ρ′′
i−1, σi)

in G1(B′, BΣ), and then Eve the move s(σ0, ρ0, . . . , ρi−1, σi) = ρi = ssim(ρ′
0, . . . , ρ′

i−1) in
Sim(A, B′) and in the letter game.

We argue that s is winning against τ . Indeed, the run ρ′′
0ρ′′

1 . . . in BΣ must be accepting
since the sequence of transitions ρ0ρ1 . . . that Eve plays agrees with τ . Then, since Berta is
playing a winning strategy in G1(B′, BΣ), the sequence ρ′

0ρ′
1 . . . is also an accepting run over

the same word. Since Eve is playing a winning strategy in Sim(A, B′), the sequence ρ0ρ1 . . .

is also an accepting run over the same word. This contradicts τ being a winning strategy for
Adam. We conclude that A does not simulate B′ and is therefore not guidable. ◀

Lemma 9 can be applied to various automata classes, as summarised in Table 1, including
ω-regular automata with an [i, j]-parity acceptance condition (Section 5.1), linear automata
(Section 5.4), and visibly pushdown automata (Section 5.3).

This concludes our criteria. Concerning the necessity of each criterion, notice that:
The first criterion (Theorem 1.1) is not subsumed by the others, as demonstrated with
the class of all LTSs – it is closed under determinization [7, Theorem 3.4], but G1 does
not characterise history-determinism, which is required for the second criterion, and the
letter game need not always be determined, which is required for the third.
The second criterion (Theorem 1.2) does not imply the first one, as demonstrated by, for
instance, safety pushdown automata [10, Theorem 4.1]. The implication from the second
criterion to third criterion is unclear, however, and connects to the case of PDA, where
the strategies for the players in letter game are not yet understood [10, Section 6].
Finally, the third criterion (Theorem 1.3) is not subsumed by the other two, as evident
from the case of linear automata (Section 5.4).
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5 Automata Classes for which History-Determinism = Guidability

5.1 Straightforward cases
By Theorem 1.1, history-determinism and guidability coincide for all automata classes closed
under determinisation, including: regular automata (NFAs); VPAs on finite words; ω-regular
automata [15]; co-Büchi [16]; and subclasses of ω-regular automata whose deterministic
fragment is ω-regular-complete, such as parity, Rabin, Streett, Muller, and Emerson-Lei.
Some subclasses of ω-regular automata are not closed under determinisation, e.g., Büchi
automata, but as long as they subsume safety automata, we can build on the fact that
Adam’s letter-game strategies are recognised by deterministic safety automata, and apply
Theorem 1.3: since safety automata are determinisable they are closed under 1-token ghost.

▶ Corollary 10. History-determinism and guidability coincide for classes of ω-regular auto-
mata with an [i, j]-parity acceptance condition, as well as for the class of weak automata.

5.2 Uniform infinite state systems
In this section, we show that the notions of history-determinism and guidability coincide on
the following classes with safety and reachability acceptance conditions: pushdown automata,
one-counter automata, vector addition system with states, one-counter nets and Parikh
automata. We take a unified approach by defining all of these classes as cases of “uniform
automata classes”, and showing that the two notions coincide for such classes (Theorem 14).

These uniform automata classes are specified by a content space C (e.g., stack contents)
and a set K of partial functions f : C ⇀ C that contains the identity function fid that maps
each element in C to itself (e.g., stack updates). The class specified by C and K contains all
the automata A = (Σ, Q, ι, c0, ∆, FA, FC) that have a finite alphabet Σ, a finite state space
Q, and finitely many transitions (q, σ, f, q′) ∈ ∆, labelled by a letter σ ∈ Σε = Σ ∪ {ε} and
a function f ∈ K. The automaton A induces an LTS that has states (q, c) ∈ Q × C, with
transitions (q, c) σ−→ (q′, c′), such that (q, σ, f, q′) is a transition in A and f(c) = c′.

The acceptance semantics of an automaton in such a class is specified by a set of accepting
states FA ⊆ Q and a set of accepting contents FC ⊆ C. We will often desire some structure
on FC , so we impose the restriction that FC belongs to a set S ⊆ P(C) of subsets of C. We
call “(C, K, S)-automata” the class of all automata A = (Σ, Q, ι, c0, ∆, FA, FC) as above with
FC ∈ S. Safety automata require an accepting run to have all states in FA and all content in
FC . We distinguish between synchronous reachability that requires an accepting run to reach
an accepting state and an accepting content at the same time, and asynchronous reachability
that requires an accepting run to just reach an accepting state and an accepting content, not
necessarily at the same time.

▶ Definition 11. A class of automata is uniform if it can be specified as (C, K, S)-automata
with either safety, synchronous reachability, or asynchronous reachability acceptance semantic.

We show that uniform automata classes are closed under 1-token ghost by explicitly
constructing for each automaton A in the class a 1-token ghost, called Delay(A), inspired by
Prakash and Thejaswini [18, Lemma 11]. For each run in A, we will have a run in Delay(A)
that lags one transition behind. This one-step lag is implemented by storing the previous
letter in the state space of A, in addition to the state of A; transitions are then taken based
on the previous letter, while reading the current letter, which is now stored.



U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:11

▶ Definition 12 (Delay). Let A = (Σ, Q, ι, c0, ∆, FQ, FC) be an automaton in a uniform class
(C, K, S). The automaton Delay(A) = (Σ, Q′, ι′, c0, ∆′, F ′

Q, FC) is the Delay of A, where
1. The set of states Q′ is (Q × Σ) ∪ {ι′}
2. The set of transitions ∆′ is given by the union of:

{(ι′, σ, fid, (ι, σ)) | σ ∈ Σ}
{((q, σ), σ′, f, (q′, σ′)) | σ, σ′ ∈ Σ, and (q, σ, f, q′) ∈ ∆}
{(q, σ), ε, f, (q′, σ) | σ ∈ Σ, and (q, ε, f, q′) ∈ ∆}

3. The set F ′
Q consists of state of the form (q, σ) such that q ∈ FQ, and ι′ if ι ∈ FQ.

The automaton Delay(A) has the same acceptance semantics as A (safety, synchronous
reachability or asynchronous reachability).

▶ Lemma 13. Given an automaton A in a uniform automata class C, the automaton
Delay(A) is in C and is a 1-token ghost of A.

We show that G1 characterises history-determinism on all uniform automata classes in the
full version [3][Lemma 22], by reducing to safety and reachability LTSs [7]. With Lemma 13
and Theorem 1.2, we get that history-determinism and guidability coincide on all uniform
automata classes.

▶ Theorem 14. History-determinism and guidability coincide for uniform automata classes.

It now suffices to represent various automata classes as uniform ones to show that
guidability and history-determinism coincide on them. For pushdown and one-counter
automata, vector addition systems and one-counter nets, as well as for Parikh automata, the
contents are the counter or stack contents, while the update functions are their increments,
decrements, pops and pushes. The update partial functions also implement which parts of
the contents can be used to enable transitions: for example, for pushdown automata, the
partial functions are either defined for all contents where the stack is empty, or undefined
for all such contents; for Parikh automata, the contents do not influence which transitions
are enabled, so the functions are fully defined. (Formal definitions can be found in the full
version [3][Section C.1].)

▶ Corollary 15. History-determinism and guidability coincide for the classes of pushdown
automata, one-counter automata, vector addition systems with states, one-counter nets
with safety and reachability acceptance conditions, and for Parikh automata with safety,
synchronous reachability and asynchronous reachability acceptance conditions.

Non-uniform classes

The class of visibly pushdown automata is not uniform, as there are additional constraints
on transitions, namely the kind of function that changes content depends on the letter
seen. Timed automata also do not constitute a uniform class, since the alphabet is infinite
as it consists of all timed letters, and the clock valuations are updated according to both
the transition (resets) and the delay of the input letter. In Section 5.4, we consider linear
automata: these are Büchi automata that have no cycles apart from self-loops. Linear
automata also does not form a uniform class, since they restrict the state-space. In what
follows, we give alternative constructions of 1-token-ghosts for these classes. The case of
linear automata is trickier, as we show that it is not closed under 1-token ghost. We therefore
use, in Section 5.4, a more involved argument that allows us to use Theorem 1.3.
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5.3 Visibly pushdown and timed automata
Visibly pushdown automata over infinite words (ω-VPAs) are neither (history-) determinisable,
nor does G1 characterise history-determinism on them. Nevertheless, we can use Theorem 1.3
to show that history-determinism and guidability coincide for this class.

▶ Theorem 16. History-determinism and guidability coincide for the class of visibly pushdown
automata with any ω-regular acceptance condition.

Proof sketch. First we show that the class is closed under 1-token ghost. Like in the previous
cases, we build an automaton that executes the same transitions, but one step later. The
technical challenge is executing transitions with a delay, as an ω-VPA must respect the stack
discipline of the input alphabet. We overcome this by maintaining a “semantic stack” that
consists of the actual stack and one additional letter that is embedded in the state space and
stores, when necessary, the letter that should have been in the top of the stack.

Then, we describe the letter-game for an ω-VPA as a game on a visibly pushdown arena
with a “stair parity” acceptance condition, to show that Adam’s winning strategies can be
implemented by ω-VPA transducers. We then turn this transducer into a deterministic
ω-VPA recognising the plays that agree with Adam’s strategy, and apply Theorem 1.3. ◀

We turn to safety and reachability timed automata, for which we apply Theorem 1.2, yet
with a specially tailored Delay construction.

▶ Theorem 17. For the class of timed automata with safety or reachability acceptance
conditions, the notions of history-determinism and guidability coincide.

Proof sketch. The goal is to simulate such an automaton A with a delay, as in Definition 12.
Yet, the difficulty is that delaying a clock-reset by a step will affect the value of the clock
for future comparisons, and there is no delaying of the passage of time. Hence a naive
construction would end up recognising the timed language of words in which timestamps are
shifted by one. We overcome the difficulty by duplicating in the 1-token ghost construction
each clock of A, using one copy for comparisons in guards and the other to simulate retroactive
resets. In addition, the state-space stores the effect of the previous delay, by remembering the
corresponding region, that is, how the timestamp compares to existing clocks and constants.
With this construction, and the G1-characterisation of history-determinism for safety and
reachability automata, we complete the proof. ◀

5.4 Linear automata
A linear (also called very weak) automaton is a Büchi automaton in which all cycles are self
loops. (In linear automata, the acceptance condition does not really matter, since over an
automaton with only self loops, all the standard ω-regular acceptance conditions coincide.)

First, observe that linear automata are not closed under (history-)determinisation. (The
standard Büchi automaton over the alphabet Σ = {a, b} recognizing the language of finitely
many a’s is linear.) We show that they are also not closed under 1-token ghost, by proving
that the linear automaton depicted in Figure 1 admits no 1-token ghost in the class.

▶ Theorem 18. The class of linear automata is not closed under 1-token ghost.

Proof. Let A be the linear automaton depicted in Figure 1, and assume toward contradiction
that there is a linear automaton A′, satisfying 1-TokenGhost(A′, A), witnesses by a winning
strategy s of Eve in G1(A′, A).
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q0

q1

q2

q3

a, b
a

b

c

d

a, b

Figure 1 A linear automaton which admits no linear automaton that is a 1-token ghost of it.

In a play π1 of G1(A′, A) in which Eve plays along s and Adam plays (ab)∗ while staying
in q0, at some points of time 2k−1 and 2k, Eve must remain in the same state q′ of A′ after
Adam chose the letters a and b, respectively, since A′ is linear.

In a play π2 of G1(A′, A) in which Eve plays along s and Adam starts with (ab)k−1a

while staying in q0, Eve reaches, as per the previous claim, the state q′ of A′. Then, if Adam
continues with the word caω, while moving from q0 to q1 (over the previous a) and then to
q3 (over c), Eve has some accepting continuation run ρ from the state q′ over the suffix caω,
since s is winning for Eve in G1(A′, A) and Adam’s run is accepting.

Thus, there is an accepting run of A′ on the word w = (ab)kcaω, following in the first 2k

steps the run of Eve in the play π1, reaching the state q′, and then in the next steps following
her accepting continuation in π2. Yet, A does not have an accepting run on w, contradicting
the equivalence of A and A′, and thus the assumption that 1-TokenGhost(A′, A). ◀

Yet, history-determinism and guidability do coincide for the class of linear automata. The
underlying reason is that when a linear automaton A is not history-deterministic, Adam’s
winning strategy in the letter game can be adapted to a linear automaton that does have a
1-token ghost within the class of linear automata, thus satisfying Theorem 1.3.

▶ Theorem 19. History-determinism and guidability coincide for the class of linear automata.

Proof sketch. History-determinism implies guidability with respect to all classes. For the
other direction, consider a linear automaton A = (Σ, Q, ι, ∆, α) that is not HD, and let
M = (∆, Σ, M, m0, ∆M : M × ∆ → M, γ : M → Σ) be a deterministic finite-state transducer
representing a finite-memory winning strategy sM of Adam in the letter game.

We then build, by taking a product of M and A, a deterministic safety automaton P , that
recognises the set of plays that can occur in the letter game on A if Adam plays according
to sM . From P, we take its projection N onto the alphabet Σ of A. N need not be linear,
but we adapt it into a linear N ′ that will still correspond to a winning strategy of Adam in
the letter game. N ′ will thus constitute a projection of a deterministic automaton P ′ onto
the alphabet Σ, where P ′ is over the alphabet of transitions of A and recognises the plays of
a winning strategy of Adam in the letter game. Once achieving that, we can apply the Delay
construction on N ′ – it will not introduce, in this case, non-self cycles, since the states of
N ′ (as the projection of the states of P ′), have outgoing transitions only on a single letter.
Hence, we satisfy Theorem 1.3, proving the stated claim. ◀

6 Automata Classes for which History-Determinism ̸= Guidability

In this section we study classes which admit guidable automata that are not history-
deterministic. They offer insight into how, in practice, the criteria can fail to hold, and
witness that even on arguably natural automata classes, guidability and history determinism
do not necessarily coincide. The main reason for the equivalence between the notions to fail
for these classes is a bound on the allowed resources – the number of states in the first class
and the number of clocks in the second.
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Our first example of when history-determinism and guidability differ are Büchi automata
with a bounded number of states, witnessed by the automaton in Figure 2.

▶ Theorem 20. For every n ∈ N+, history-determinism and guidability are distinct notions
for the class of Büchi automata with up to 2n states.

q1 q2 q3 q4 ... q2n−1 q2n
a, b

a, b b

a, b a, b

a, b b
a, b

a, b

b

Figure 2 A Büchi automaton that accepts words with a finite number of a’s. To simulate any
equivalent small enough Büchi automaton B, Eve moves to the next accepting state once the other
automaton is in a maximally strongly connected component with an accepting state. The size
constraint on B, and the observation that a such a component can not both have a transition on a

and an accepting state guarantees that this strategy wins in the simulation game. However, B is not
history-deterministic.

This counter-example is simple, but quite artificial. We proceed with a class which is,
arguably, more natural: timed automata with a bounded number of clocks.

▶ Theorem 21. History-determinism and guidability are distinct notions for the class Tk of
timed-automata over finite words with at most k clocks, for each k ∈ N.

Proof sketch. We consider the language of infinite words in which there are k event pairs
that occur exactly one time-unit apart both before and after the first occurence of a $
letter. Then, the guidable automaton for this language can freely reset its clocks until the
$-separator, which allows it to ensure it tracks all delays tracked by a smaller automaton
with up to k clocks. Crucially, any automaton that only accepts words in this language must
keep track of k clock values when the separator occurs, as otherwise, it will also accept some
word in which the second of matching pair of event is shifted a little. ◀

7 Conclusions

We have presented sufficient conditions for a class of automata to guarantee the coincidence
of history-determinism and guidability, and used them to show that this is the case for
many standard automata classes on infinite words. As a result, we get algorithms to decide
guidability for many of these classes. Guidable automata allow for simple model-checking
procedures, and once guidability check is simple, one can take advantage of it whenever
applicable. For example, consider a specification modelled by a Büchi or coBüchi automaton
A. Model-checking whether a system S satisfies A is PSpace-hard. Using our results, one can
check first in PTime whether A is guidable, and in the fortunate cases that it is, conclude the
model checking in PTime, by checking whether A simulates S. We have also demonstrated
automata classes for which guidability and history-determinism do not coincide.

We believe that our positive results extend to additional automata classes, such as register
automata [14], which behave quite similarly to timed automata. Furthermore, we believe
them to extend to additional families of automata classes:

Finite words. We have focused on automata over infinite words, which in this context, are
better behaved. Ends of words bring additional complications to our constructions, but
overall we believe our approach to be amenable to the analysis of finite word automata.
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Quantitative automata. In quantitative automata, transitions carry additional information
in the form of weights. As a result, there is an additional difference between the letter
game and simulation game, which makes extending our analysis to the quantitative setting
particularly relevant. We believe that many of our techniques adapt to that setting.

One could argue that for model-checking, the more interesting property is whether a (not
necessarily safety) automaton is guidable by just safety automata, since we typically represent
specifications by safety automata. Interestingly, this property often coincides with guidability
w.r.t. the full class of automata, as demonstrated in by our third criterion (Theorem 1.3): if
Adam’s strategies in the letter game can be translated into automata, these automata are
safety ones, and therefore guidability w.r.t. safety automata is just as hard as guidability
w.r.t. the full class of automata with the more complex acceptance conditions.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

2 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2018), page 16, 2018.

3 Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash. History-
determinism vs fair simulation, 2024. arXiv:2407.08620.

4 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On succinctness
and recognisability of alternating good-for-games automata. arXiv preprint, 2020. arXiv:
2002.07278.

5 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative
automata. In FoSSaCS, pages 120–139, 2022. A submitted journal version is available at
arXiv:2110.14308.

6 Udi Boker and Karoliina Lehtinen. When a little nondeterminism goes a long way: An
introduction to history-determinism. ACM SIGLOG News, 10(1):24–51, 2023. doi:10.1145/
3584676.3584682.

7 Sougata Bose, Thomas A. Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick Totzke.
History-deterministic timed automata, 2023. arXiv:2304.03183.

8 Thomas Colcombet. Fonctions régulières de coût. Habilitation à diriger les recherches, École
Doctorale de Sciences Mathématiques de Paris Centre, 2013.

9 Thomas Colcombet and Christof Löding. The non-deterministic mostowski hierarchy and
distance-parity automata. In Proc. of ICALP, volume 5126, pages 398–409, 2008. doi:
10.1007/978-3-540-70583-3_33.

10 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A bit of
nondeterminism makes pushdown automata expressive and succinct. Log. Methods Comput.
Sci., 20(1), 2024. doi:10.46298/LMCS-20(1:3)2024.

11 Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings
of CSL, pages 395–410, 2006.

12 Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair simulation. Inf.
Comput., 173(1):64–81, 2002. doi:10.1006/inco.2001.3085.

13 Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. History-deterministic timed
automata. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International
Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland,
volume 243 of LIPIcs, pages 14:1–14:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

CONCUR 2024

https://doi.org/10.1145/1007352.1007390
https://arxiv.org/abs/2407.08620
https://arxiv.org/abs/2002.07278
https://arxiv.org/abs/2002.07278
https://arxiv.org/abs/2110.14308
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://arxiv.org/abs/2304.03183
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.46298/LMCS-20(1:3)2024
https://doi.org/10.1006/inco.2001.3085


12:16 History-Determinism vs Fair Simulation

14 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

15 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and Control, 9:521–530, 1966.

16 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

17 Damian Niwiński and Michał Skrzypczak. On Guidable Index of Tree Automata. In Fil-
ippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2021), volume 202 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 81:1–81:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2021.81.

18 Aditya Prakash and K. S. Thejaswini. On history-deterministic one-counter nets. In Orna
Kupferman and Pawel Sobocinski, editors, Foundations of Software Science and Computation
Structures - 26th International Conference, FoSSaCS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science, pages 218–239.
Springer, 2023. doi:10.1007/978-3-031-30829-1_11.

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.MFCS.2021.81
https://doi.org/10.1007/978-3-031-30829-1_11

	1 Introduction
	2 Preliminaries
	2.1 Labelled transition systems
	2.2 Automata

	3 History-determinism, simulation and related games
	4 Criteria for when History-Determinism = Guidability
	4.1 Closure under (history-)determinism
	4.2 Via token games
	4.3 Via Adam's strategy in the letter game

	5 Automata Classes for which History-Determinism = Guidability
	5.1 Straightforward cases
	5.2 Uniform infinite state systems
	5.3 Visibly pushdown and timed automata
	5.4 Linear automata

	6 Automata Classes for which History-Determinism ! = Guidability 
	7 Conclusions

