Ann. Henri Poincaré 26 (2025), 2859—2900
© 2024 The Author(s)
1424-0637/25/082859-42

published online September 5, 2024
https://doi.org/10.1007/s00023-024-01482-7

I Annales Henri Poincaré

®

Check for
updates

Aharonov—Casher Theorems for Dirac
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Abstract. The Aharonov—Casher theorem is a result on the number of
the so-called zero modes of a system described by the magnetic Pauli
operator in R?. In this paper we address the same question for the Dirac
operator on a flat two-dimensional manifold with boundary and Atiyah—
Patodi-Singer boundary condition. More concretely we are interested in
the plane and a disc with a finite number of circular holes cut out. We
consider a smooth compactly supported magnetic field on the manifold
and an arbitrary magnetic field inside the holes.
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Qp Open ball in C with centre at wy € C and radius Ry,

(1, oK) Polar coordinates around the point wy, we set @ = 0 to
be the axis parallel with the Cartesian positive z-axis

Cl(V) Clifford algebra on a vector space V/

C§°(X) Smooth functions with compact support in X

const A general constant which can be of different value from
one (in)equality sign to another

ity Interior of a curve y

(e Inner product on fibres of a bundle E

I'M,E) Smooth sections of a bundle E over a manifold M

L3*(M,E) Square integrable sections of the bundle E over a Rie-
mannian manifold M

L?(M, g;C?) C2-valued square integrable functions on a Riemannian
manifold M with metric g

Me° Interior of a manifold M

™ Tangent space of a manifold M

M Cotangent space of a manifold M

TyM Fibre of the cotangent space above the point p € M

() Vector transposition

0X Boundary of a region X

X Closure of a subset X C C

ly)

-1l

The biggest integer strictly less than y € R
The norm on a space S

1. Introduction

This paper is inspired by work of Aharonov and Casher (AC), [2], discussing
the number of zero modes (i.e. of eigenfunctions corresponding to the zero
eigenvalue) of the Dirac operator with magnetic field. We extend their result
on R? to a plane with holes, Theorem 8, a disc with holes, Theorem 10, and
finally to a sphere with holes, Theorem 24. All our results are concerning a
particular choice of the extension of the Dirac operator, given by the Atiyah—
Patodi-Singer (APS) boundary condition. In [2] the zero modes have a definite
chirality, which depends on the sign of the flux ® of the magnetic field. The
number of zero modes then depends on the magnitude of the flux, namely it is

{%J . On the plane with holes we reproduce the same result. We would like to

point out that considering a self-adjoint realisation D of the Dirac operator,
the zero modes of D coincide with the zero modes of its square D? which we
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may refer to as an operator of Pauli type. Such operators describe the non-
relativistic limit of Dirac operators, and due to its positivity the zero energy
states are also its ground states.

The analytic index of the Dirac operator is a closely related quantity
as it computes the difference of the number of zero modes with positive and
negative chirality!. These are also referred to as modes with spin-up or spin-
down. Atiyah and Singer proved in [6] that the analytic index is equal to the
topological index of the underlying closed manifold. Using the stereographic
projection the AC theorem can be reformulated as a result on a sphere (see
e.g. [18, Theorem 8.3.]). Since the sphere and the disc with holes are compact
manifolds, we also have the index theorem for them. It gives the formula for the
difference between the number of the zero modes with positive and negative
chirality. Our adaptation of the AC theorem then gives each of these numbers
separately and is thus a stronger result. However, one should of course keep in
mind that the index theorem is valid for a very general setting.

A continuation of Atiyah and Singer’s work resulted in the generalisa-
tion of the index formula for manifolds with boundary by Atiyah, Patodi and
Singer in the series of papers [3-5]. The authors introduced a boundary condi-
tion, nowadays known as the APS boundary condition, which we adopted here
for the definition of the domain of our Dirac operator. It is a global boundary
condition based on preservation of chirality upon reflection on the boundary. A
manifold X that has a product structure near the boundary can be extended
by an infinite cylinder. From the analytical point of view the APS bound-
ary condition is tailored so that any zero mode of the Dirac operator on X
satisfying this condition can be extended to this infinite cylinder as a square
integrable function plus a function constant along the infinite direction of the
cylinder. For more details see [10, Sect. 22E].

The literature on zero modes is vast, and we will mention only a couple
of works generalising the AC theorem. A proof of the result on a two-sphere is
due to Avron and Tomaras (but was not published) and it can be found, for
example, in [27] or [18, Appx. A.3]. For generalisation to measure-valued mag-
netic fields see [19]. Singular Aharonov—Bohm-type fields were considered by
Hirokawa and Ogurisu in [25], by Persson in [30] and by Geyler and Stovicek in
[22]. Rozenblum and Shirokov, [32], showed that for certain singular magnetic
fields there could be an infinite dimensional space of zero modes with having
possibly both spin-up and spin-down modes. Results for the case of even di-
mensional Euclidean spaces were discussed by Persson in [31]. Bony, Espinoza
and Raikov investigate almost periodic potentials in [9]. On a bounded domain
with Dirichlet boundary condition the related result was studied in [17].

The aim of this paper is to extend the Aharonov—Casher theorem exactly
to these cases when a compact boundary is present. Since the APS boundary

1 A reader that is not familiar with the notion of positive (negative) chirality can, for
purposes of the results in this paper, think of the eigenvectors of the third Pauli matrix
which is the diagonal matrix o3 := diag(1, —1), corresponding to eigenvalue +1 (—1). The
concept will be more generally introduced in Sect. 1.1.
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condition is a condition forged for the index theorem it seems to be a rea-
sonable candidate to start with when studying the AC formula (due to the
relation between the AC and index formulas mentioned above) for Dirac oper-
ators on manifolds with boundary. Of course, there are many other choices of
boundary conditions that would make the Dirac operator self-adjoint (that are
not discussed here) and the validity of the AC formula is heavily dependent on
the realisation we use. For a detailed classification of self-adjoint realisations
of Dirac-type operators on manifolds with boundary we refer an interested
reader to works [7,8].

Our main motivation to study this problem is the mathematical interest
to see how could the AC theorem be influenced by a presence of a boundary.
We also find it a curious problem to explore the zero modes on a non-compact
manifold, where the index theorem is not applicable. The particular setting
of a plane or a ball with holes is of interest also due to the Aharonov-Bohm
(AB) effect. This phenomenon gives a possibility to observe magnetic field in
quantum mechanics even if the field is supported in a region inaccessible to the
particle. The net observable effect then depends only on the flux of the field
in this region. In our setting of magnetic field supported in the holes the AC
formula precisely demonstrates such properties. Let us mention that the AB
effect is often studied using the model of an infinitesimally thin and infinitely
long solenoid. This corresponds to the magnetic field formally given as «ady,
where « is the magnetic flux and dg the delta distribution with support at {0}.
There are many works considering the Schrédinger-type operators with such
a point interaction (also referred to as the AB field). The domain of a realisa-
tion is then characterised by the behaviour of the functions at the singularity
occurring at the origin. The self-adjoint extensions were classified in [1] and
[14] for Schrodinger and Pauli operators with the AB field, respectively. From
the recent literature studying such singular interaction let us mention [11,30]
for results related to Pauli and Dirac operators, [13,29] studying Schrodinger
operators and [15,16] investigating Bessel operators that include Schrodinger
operators with the AB field.

Let us sketch the central points of the proofs of our main results in The-
orems 8 and 10. The first steps rely on the idea used in the original Aharonov—
Casher paper. In particular the equation for the zero modes decouples and
we can analyse each component separately. Each of the components then fac-
torises as a product of an (anti)analytic function g and an exponential whose
argument depends on the magnetic scalar potential. While AC consider the
simply connected manifold R?, where the function g has a Taylor series, in our
case g has only the Laurent series on a neighbourhood of each of the holes. To
achieve the starting point of Aharonov and Casher we use the APS boundary
condition to extend g (anti)analytically to the interior of the holes. The main
difficulty here is to find a suitable way to compare the boundary values to the
boundary condition. This is a local analysis and this step requires that the
boundaries of our holes are indeed circular. In the unbounded case of R? with
holes we then complete the analysis by cutting off the Taylor series of g. For
that we use the condition that the zero modes need to be in the domain of
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the operator and therefore have to be square integrable at infinity. This is the
same mechanism as in [2]. For the case of a disc the eigenfunctions have to
again satisfy the APS boundary condition, which provides us with the cut off
on the Taylor series of g. The highest possible power in the series determines
the number of the zero modes. Due to the different source of the constraint
on this power we arrive at different results. In Remark 11 we, however, show
that for those values of fluxes, where the results yield a different number of
zero modes, the extra zero mode on the disc is not square integrable at infinity
when considered on a disc of a growing radius.

Finally, we briefly outline the content of this paper. In this introduction
we give the definition of the Dirac operator on an orientable two-dimensional
Riemannian manifold and the APS boundary condition. We further discuss the
magnetic field. Introducing our particular setting we find an explicit form of
the APS boundary condition and establish the gauge invariance of the problem
in Lemma 7. Using Lemma 7 we can without loss of generality study only fluxes
mod 27 inside each hole. We refer to this as “gauging away” integer multiples
of 27 of the flux.

In Sect. 2 we state and prove the main results. To briefly summarise,
we obtain the same result as Aharonov and Casher in the case of the Dirac
operator on a plane with holes. On a disc with holes our statement is in
accordance with the index theorem.

We extend the Aharonov—Casher theorem to a sphere with holes in Sect. 3.
Despite this being a direct consequence of our result on a disc with holes, due
to the fact that the two cases are related by stereographic projection, we first
need some theoretical preparation in form of treating the Dirac operator with
APS boundary condition in a conformal metric. The proof also requires anal-
ysis of the spinors under the change of coordinates by the Mdbius transform
which we discuss in Appx. B.

In Sect. 4 we use the generalised index formula by Grubb [24] and Gilkey
[23] of the index theorem on manifolds with boundary, to compute the index
of the magnetic Dirac operator and compare it to our result on the disc region.
Let us remark that the original result in [3] cannot be applied directly since it
was restricted to manifolds that have a product structure near the boundary.

Let us mention that this work is based on the author’s PhD thesis [21].

1.1. Dirac Operator and the APS Boundary Condition

Let M be a two-dimensional oriented Riemannian manifold with compact
boundary OM and metric g. Let further E be a two-dimensional complex
vector bundle equipped with an inner product (-,-)g on the fibres of E. De-
note by End(E) the bundle of endomorphisms of the bundle E. If there is a
vector bundle map

o:T*"M — End(FE)
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which is Hermitian, i.e. o(¢) = o(¢)* for all { € T* M, and satisfies the Clifford
relations

o(Qo(n) + o(w)o(Q) =29(Cu)  forany CueT;M atallpe M, (1)

we call £ a Spin® spinor bundle.? over M. The mapping o is called the Clif-
ford multiplication. The Clifford multiplication further extends to a unique
mapping from the bundle of Clifford algebras CI(T*M). That is the quotient
®T*M/1, of the bundle of tensor algebras @T*M = @p>o(T*M)®* by the
bundle of ideals I, generated by {{ ® ¢ —2¢((,¢) | ¢ € T*M}. In even di-
mensions we call the i3 4™(M)/2_myltiple of the Clifford multiplication by the
volume form (which is an involution) the chirality operator and refer to its
eigenvectors with eigenvalue +1 (or —1) as spin-up (or down) vectors. Lo-
cally we can always choose the representation of C1(R?) by the constant Pauli
matrices

ol =o(dz) = ((1) (1)) and o%=o(dy) = (? 61> . (2)
Note that in R? with the standard metric the chirality operator corresponds
to the third Pauli matrix o3 = diag(1, —1). In what follows we use the stan-
dard notation T'(M, E) for smooth sections of the bundle E and L?(M, E)
for the square integrable sections w.r.t. the volume element generated by the
Riemannian metric on M. Let us next equip E with a connection V. We call
V a Spin®¢ connection if it is

1. metric:
X(Gwe=VxGue+((Vxpe,
for any sections ¢, u € I'(M, E) and any vector field X € TM, and,
2. compatible with the Clifford multiplication o:
Vx,o(w)] =o(Vin),

for all vector fields X and one-forms yz on M. Here, V€ is the Levi-Civita
connection on the cotangent space T*M of M.

Definition 1. Let E be a Spin€ spinor bundle over M with Clifford multiplica-
tion ¢ and a Spin® connection V. The Dirac operator D : T'(M, E) — T'(M, E)
is the following composition
D= —iZU(ej)Vej ,
Jj<2
where (e;)jeq1,2} is an orthonormal basis on TM and (e’);<s is the corre-
sponding dual basis on T*M.

Note that the definition is independent of a particular choice of (e;);<2,
so D is well defined globally. We remark, that one can use a Spin® connection
on a Spin® bundle to form a Dirac operator with magnetic field (see further

2 One might rather call E a bundle of irreducible complex Clifford modules. These two
concepts were, however, shown to be identical, see [12, Sect. 3]
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Sect. 1.2). The Dirac operator is a first order operator which is elliptic, sym-
metric and whose principal symbol is the Clifford multiplication. Furthermore,
it can be extended as a closed linear map to the maximal domain of D

dom(D™) := {u € L>(M,E) | Du € L*(M,E)}. (3)

To introduce the Atiyah-Patodi-Singer (APS) boundary condition we are fol-
lowing the formalism for elliptic boundary conditions used in [7,8]. We, how-
ever, diverted with the convention for the Clifford multiplication which in the
cited papers is considered to be anti-hermitian and satisfies the Clifford rela-
tions (1) with an extra minus sign on the right-hand side.

Notation 2. Let v¥ be the normalised inner normal vector field on OM. We
will denote by v € T*M the local co-vector field on the boundary OM dual to
vk, The local space of co-vectors tangent to the boundary is defined by

T*OM = {¢ € T*M | g(&,v) = 0}.

We further write & for the normalised tangent vector which is dual to & €
T*OM.

With this notation we can locally write the Dirac operator in the neigh-
bourhood of the boundary as

D = —io(v)(V,: + Ag) with Ag = o(v)o(§) Ve, (4)

where we used that by the Clifford relations o(v)? is the identity on fibres of
E (restricted to OM). As in the Appx. 2 of [8] we then define the canonical
boundary operator which anti-commutes with o(v).

Definition 3. Let E be a Spin® spinor bundle over M with Clifford multipli-
cation o and a Spin® connection V and let D be a Dirac operator on E. We
define the canonical boundary operator adapted to D by

K

5 )

where k is the eigenvalue of the shape operator of the boundary w.r.t. the
normal field v, i.e. Vécz/ = k€. In fact k is the principal curvature of the
boundary.

A= %(Ao —0(§)Veio(v)) = Ag —

Note that A was chosen so that the anti-commutator {A,o(v)} van-
ishes. In our two-dimensional case it is also not difficult to check by a direct
computation that Ay is symmetric. For a general dimension this is shown in
[8, Appx. 1]. By definition the canonical boundary operator A is thus also
symmetric. It follows that it is essentially self-adjoint on L?(0M;C?), since
OM is a compact manifold. The importance of boundary operators is that
one can use them for a construction of elliptic boundary conditions (see [7,
Defs. 1.9, 1.10, and Theorem 1.12]) which give rise to domains that are sub-
sets of H (M,FE) ={u€ L} .(M,E)|Vue L (M,E)}. Here L? (M, E)
denotes sections of E that are square integrable over each compact subset
K C M and, in particular, we may have K N 9M # ().
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Since A is a self-adjoint elliptic operator on the compact manifold OM,
it has purely discrete spectrum. Let us denote by {v | k € Z \ {0}} a set of
orthonormal eigenvectors of A corresponding to eigenvalues A\r # 0. We order
these eigenvalues as ... < A < Apy1... <A1 <0< A <0< X <
Ak+1 < .... Let us further assume that there is the decomposition into two
mutually orthogonal spaces ker A = span{vg} @ span{o(v)vp}. In general vy
could be a set of vectors but in our case it is only one vector. We define the
APS (Atiyah—Patodi-Singer) boundary condition as the following closure of a
subset of smooth sections on the boundary

BCaps = span({vg <o U o). (5)

We point out that vg and o(r)vy are exchangeable and that we are making a
choice here. The closure in (5) is w.r.t. the norm

2
E CLUk

o= Y alPAEADY D P+ 272, aeC.
H(A) Ar<0 Ap>0
(6)

Further, H(A) denotes the closure of C>(dM,C?) in this norm. We call the
realisation DAFS of D on the domain

dom(DAPS) = {u € dom(D™*) | you € BCaps}, (7)

the Dirac operator with APS boundary condition. The trace map you = u}aM
is well defined for u € C§°(M, C?), in particular supp uNdM can be non-empty,
and by [7, Theorem 1.7.(2)] it extends to a bounded linear map

Yo : dom(D™™) — H(A). (8)

Theorem 4.12. in [8] tells us that (7) is a self-adjoint realisation. Recalling that
o(v) and A anti-commute, the self-adjointness can be also seen directly from
the Green’s formula (cf. [8, Proposition 2.1])

/M(Dw,so)E = /M(w,D*@)E —/‘9M(—ia(y)¢7<p)E,

Here 9, p are compactly supported functions on M. In particular their sup-
port and the boundary M can have a non-empty intersection. By D* we
denoted the adjoint of D. Let us remark that there are also other choices of
more general APS boundary conditions (see [7, Example 1.16(b)]). If M is
compact then Theorem 5.3 in [8] implies that the Dirac operator DATS with
the APS boundary condition is Fredholm. We recall that Fredholm operator
is an operator with closed range and a finite dimensional kernel and cokernel.

In this work we are also interested in M being a plane with holes. In this
case zero is an eigenvalue of finite geometrical multiplicity embedded in the
essential spectrum (see Theorem 8 and Cor. 9 bellow) and therefore DAFS does
not have a closed range (¢f. [26, Theorem 5.2]). Thus, it is not Fredholm. Since
we will consider manifolds with several components of boundary, we introduce
the notation BC4pg |an for the APS boundary condition on the component
081 of the boundary.
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1.2. Magnetic Field and Minimal Coupling

Let us consider the connection V = d—i« on a the trivial bundle E over C with
fibre C2. The term —ia is called the local connection one-form and it satisfies
—ia(Y) € iR for all vector fields Y on C. Writing o = £(adz + adz), a €
C°°(C) and using the standard notation 8, = (9, —i8,), 0; = (0, +19,) we
obtain the Dirac operator (cf. the representation of the Clifford multiplication

(2))
oen(l 90 )

known from physics to be (by the principle of correspondence and the mini-
mal coupling) the Hamiltonian of a relativistic charged mass-less particle in a
magnetic field of vector potential a. The field strength is the closed two-form
8 = da and two different connection one-forms a"), a(?) correspond to the
same magnetic field § if they differ by an exact form. This ambiguity is the
well-known gauge invariance. To put this in the context of the vector formal-
ism we can write a = a, + ia,, for some ay,a, € C*°(R?). Then defining?
a’ = g'*ay, for j,k € {x,y}, the vector potential @ = (a®,a¥) corresponds
to the magnetic field B = (0,0, B) such that curl(a®,a¥,0) = (0,0, B) with
B = B(z)5dz A dz. We will introduce the Aharonov—Casher gauge

O:h(x) = -5, (9)
using the scalar potential h satisfying —Ah = B on C. For B decaying suffi-
ciently fast at infinity (not necessarily smooth) we can write the solution of
this Poisson equation

1 i _
h(z) = —— / log |z — #/|B(z') % do' A 7. (10)
2T C 2
Notice that this gauge is automatically divergence free
O0y0y + Oya, = Re (20za) = Re (410:0,h) = Re (—iB) = 0.

Another quantity that describes the magnetic field is called the magnetic
flux

@::/BidzA dz.
2

Remark 4. Let us now consider a smooth magnetic field B with compact sup-
port. By elliptic regularity (see e.g. [20, Sec. 6.3, Thm. 3]) the potential h is
then also a smooth function. Note that the Poisson equation —Ah = B deter-
mines h up to an addition of a harmonic function and our particular choice
corresponds to the unique gauge choice via the relation (9). It yields a diver-
gence free vector potential a(z) that is bounded at infinity. We will refer to
the choice (9), (10) of a(z) as the Aharonov—Casher gauge.

3g7F here refers to the components of the metric g in the coordinate basis (dz, dy) of
one-forms.
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To see the boundedness, let R > 0 be such that R’ > 2|7/| for all 2’ €
supp B and taking |z| > R’ > 2|2/| we can use the bound

B(%')
z—2z

2
< B € L(C), 2 esuppB,

to apply the dominated convergence theorem and obtain

const / |B(2' const

J d /\d’< const
|Z|2

2

10.h(2) /|B Jide' A T <

2|

for |z| large.
From (10) one also deduces the asymptotic behaviour of the scalar po-
tential

(=) =~ log|el + O(1=|), ()

as |z| tends to infinity. Moreover, in the case of a spherically symmetric B
there is no error term and for z outside of support of B

d
h(z) = —5—log|z], (12)
2w
by the Newton’s law.

Remark 5. In the flat space R? we clearly have a, = a® and ay = a¥. Notice
that if we consider the polar coordinates (r,¢) = (v/22 +y?,arctan £) and
write a = (ar,a,) for the components in the normalised basis (dr,r dy) and
d = (a", a¥) for the components in the dual basis (5;, 67“") we also have a, = a”

— ¥
and a, = a¥.

1.3. Problem Set-up
We start by establishing some notation:

e Let .4 be either the complex plane or a disc ,,¢+ C C with centre at the
origin with radius Rqy:.

Q; C,je{l,2,...,N} refers to a ball with centre at w; € .# and
radius R; > 0.

M = #\ U<y Q, N € N is our two-dimensional manifold of interest.
(rj, ;) denote the polar coordinates at w; € €2;.

Bj, j < N denotes the magnetic field with support inside €2;, while
By € C§°(M°).

Complementing the above notation for magnetic field on .#Z we denote

B = Bging + Bo, (13)

where supp Bsing C Ur<n€d. Later in Lemma 7 we will show that without
loss of generality we may assume Bying = Y.<y 40w, , Where &} € [—m,7)*

4 we can choose any interval of length 27, but this choice is the most convenient one for the

purposes of our analysis.
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differs by an integer multiple of 27 from the flux of B through the k-th hole
o, ;:/ B(z)~dz A dz.
O 2

We refer to @), as a normalised flux through the hole Q. The total flux is then
the sum

=0y + » D},
k<N

where ®9 = [,, Bo(z)3 dz A dz is the flux through the bulk of M.

The Dirac Operator and the APS Boundary Condition Explicitly. For finding
more concrete form of the APS boundary condition for the above described
setting we will make use of the Dirac operator expressed in polar coordinates

(T )

Do 0 e ¥, —i%)) ( 0 e % (ay — iaw)>
a= e (0, + 187“’) 0 e'?(ar +1iay) 0 ’

where we use notation from Remark 5.
To gain some intuition for the abstract setting, we first work out an
example of finding the boundary condition for the case of one hole.

Ezample 6. Consider the manifold M = C\ 2 with Q being a ball of radius R centred
at the origin. We assume there is no magnetic field in the bulk (i.e. By = 0) and put
magnetic field formed by one Aharonov—Bohm flux B = ®¢ inside the hole. Later,
in Lemma 7 we show that without loss of generality we can always consider that the
magnetic field inside a hole is of this form and, moreover, that ® € [—m, 7). The key
simplifying point is that for this field we can choose the gauge so that a, = 0 and
ap = %. Note, that in this setting the inward normal one-form on the boundary
is simply v = dr. In accordance we will denote o(v) = o". The Clifford connection
along the radial field 0 is given by Vj,. = 9r —ia,. To find the boundary operator Ag
we compare (4) to the expression (14) for D in polar coordinates near the boundary
0f) and conclude

o = (0 0) = (@) =(")".

With (4) this further yields 49 = ¢® (i%" + aw), where ¢ = diag(1, —1) is the third
Pauli matrix. Finally, using that the principal curvature of the circular boundary 92
is % we obtain by Definition 3 the canonical boundary operator on 92

A=0"R" (10, + ®/27) — (2R)"".

A simple analysis of the eigenvalueproblem Au = Au then reveals the eigenfunctions

ke P 1 0
e o Iy . e ¢ ,
( 0 ) with eigenvalue A = R ( k 5 2) and (ellw)

with eigenvalue A = R™' [ k — ® 1 .
2r 2
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The APS boundary condition is therefore given by the closure of the set

eik:g;' 0
BCaps |so= span 0 o [\ gike (15)
. e

2

in the A norm (6). For completion we write down the domain of the operator DAPS
in this setting, acting as (14) on

dom(D3"%) = {¥ € dom(DF™) | y09p € BCaps |on} -

Notice that the sign of the eigenvalues of the boundary operator is independent
of the radius of the hole and the boundary condition is invariant under the scaling.
However, it does not directly make sense to consider R — 0 which might otherwise
be interesting to investigate in view of the many extensions of the Dirac operator
with Aharonov—Bohm field (¢f. [11,30]).

Now, let us fix an index j < N and work out the boundary condition
on the boundary of a j-th hole in the general setting. We choose the polar
coordinates (7, ;) around the centre of the hole ;. Then noting that in

10,
our case V,: = 0p, — ia,, we obtain by (4) Ay |aq,= o3 (1;? —l—a%.> and
J

consequently, Definition 3 yields

i0,, 1
Alp,= 0 [ 2 ) - 1
o0,= 7 <Rj +%]> 2R, 1o

Solving the eigenvalue problem for A |50, on the circle 9€2; we find

A |an (’(/(J)%) = )\g (1/6%> and
0 (0
o, (3) = ()

where ¢ is an integer and the path v; C 0, connects the points (R;,0) and
(Rj, ;) € 092;. This further leads to the APS boundary condition (5) on our
chosen component of the boundary

sevstmewe{ ()] o (0] o} o

1

3
where the closure is in the norm of H(Alsq,) (see (6)). Denotmg (r,p) the
polar coordinates at the origin we notice that the inner normal vector on the
boundary 9, corresponds to —0,.. Taking this into account means that for-
looks like (16) with a minus sign, A |sq,,,= —0° (éa“" + a@) +
5 R . Therefore, we infer the solution of the eigenvalue problem immediately

from (17)

Alpo,., (%4) Y (%f) and

0\ 0 [ Rowthe=®/2m —1/2 ¢
A o0, (W) =Ae-1 <W> with {W — il B AT (19)

1/’% :ei%éei'ﬁ*: a-ds— .2"‘% ’ (17)

. {R]A;; =®;/2m —1/2 —

mally A lsa

out




Vol. 26 (2025) Aharonov—Casher Theorems 2871

where vour C OQu: connects the points (Rout, 0) and (Ryut, ). The APS
boundary condition on the outer component of the boundary thus reads

W)} {( ; )]
BC = ’ ’ 2
AP |09 Span{ [( 0 <zt —3 Ye 25+ .

where the closure is in the norm of H(A|aq,,,) (see (6)).
The canonical APS boundary condition is gauge invariant in the sense of
the following lemma.

Lemma 7. Let D25 and DATS be two Dirac operators with the APS bound-

ary condition on M corresponding to magnetic fields with fluxes ® and CT),
respectively, such that

(I):Z(I)]—‘rq)o and &):Z&)j—f—q)o,
JE<N J<N

where ®; and E’j are the fluzes through the hole Q;, j < N of a and a,
respectively, and ®q is the fluz of a smooth magnetic field supported inside the
interior of M. If for all j < N

(I)j = CI)] + mj27r,
for some m; € Z, then DATS and DaAPS are unitarily equivalent
APS APS
%*Da % == Da 5
with the unitary operator

U : L*(M,C?) — L*(M,C?),
U :ur exp [i/("—%dé’]u,
gl
where v connects a fived point zg € M and the point z € M.

Proof. First we notice that % is independent of a particular choice of the path
v in its definition as for an arbitrary loop v C M it is an identity operator

exp {i f’y(d — g) d§} = 1. Thus, we can see immediately from the equalities

f@—md&i/ B-B=-2r >  my,
¥ int y

{7192, Cint v}

where in the first equality we used the relation curld = (0,0, B) and Stokes
theorem. Notice also that choosing another point 21 € M as a starting point
of v instead of 29 amounts to multiplication by a constant K = e i @-a)ds
Since K = K~' the map K~'% is also unitary. An explicit computation of

the partial derivatives

@%:%m—a@%, and @%:%m—a@%
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shows that the action of the unitarily transformed Dirac operator is indeed
the one with the potential a, as

X N B U R o 0 i(la—a)
U D% = D, — 2i% (32 O)%—Da l(i(a—a) 0 >

Moreover, taking our observation that K = K ~! into account we see that the
relation % *D,% = Dj holds independently of the starting point of .

Finally we need to check that the boundary condition is preserved by % .
To do so, we show that the boundary operators are unitarily equivalent

A@) = 2" Ala) . (21)

Here A(a) denotes the canonical boundary operator adapted to D, and ~ in

the definition of % ends at a point on the boundary z € 0f). From this we

see that the restriction to the boundary of a spinor u’ 5. 1s In the negative
J

spectral subspace of A(a) if and only if (Zu is in the negative spectral

o,
subspace of A(a). To see that (21) holds, we write o = a,v + as§ with some
smooth functions a,,as on a neighbourhood of the boundary and consider
z = ~(s) € 8Q;. By path independence we have % = Ke'Jo (4:=0)ds with s
the arc parameter of v C 012;. In this notation the boundary operator from
Definition 3 reads

A(a) = U(V)U(E) (85 - ias) - H/Q,

and we can easily compute its commutator with % using the fundamental
theorem of calculus

[Ala), %] = o(v)a(§)0s(%) = o(v)o ()% (2)(ias(2) —ias(2)),
which yields A(a)% u = % A(a)u + [A(a), % |u = % A(a)u. O

Note that Lemma 7 holds also in case of a smooth non-circular boundary.

Our results are stated in the Aharonov—Casher gauge. It is important to
stress out that this is just for the convenience in the computations. Of course,
the spectral results are independent of this gauge choice as established by
Lemma 7.

2. Main Results

Using the set-up introduced in Sect. 1.3 we are in a position to state the main
theorems of this paper. The first result concerns an Aharonov—Casher-type
theorem for Dirac operators on R? with circular holes. More precisely we will
prove

Theorem 8. Let M = C\ Up<n$; and let D(?PS be the Dirac operator with
the magnetic field (13) in the gauge (9), (10). If & # 0 then there are

2|
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zero modes of the operator DTS with the APS boundary conditions (18) on
the inner components of the boundary. These states have spin-up (i.e. are
eigenvectors of g = diag(1l, —1) with eigenvalue +1) if ® > 0 and spin-down
(i.e. are eigenvectors of o3 with eigenvalue —1) if ® < 0. If ® = 0 then there
are no zero modes.

Corollary 9. Under the assumptions of Theorem 8, zero is an eigenvalue em-
bedded in the essential spectrum of the operator DATS.

Proof. Due to the unboundedness of M and the existence of the zero modes
we can construct a Weyl sequence as follows. Let B denote a ball centred at the
origin such that Up<n€; C B. Consider a compactly supported radial smooth
function ¢ on C\ B. If ® # 0, choose a zero mode u € dom(DAPS). Denote
©n(2) == Lp(2). Then u,(z) = u(2)gy(z) C dom(DiPS) tends weekly to
zero, while

Doy, = (Dou)gn + uDopn, = uDopy, .

—iv
Using that in polar coordinates Dy acts as Dy = —i (e?ﬂ © 0 ) O, on radial

functions, one concludes ||Dyu,|| — 0 as n — oo.

If ® = 0, there are no zero modes. In view of Remark 4 the vector
potential corresponding to the smooth compactly supported magnetic field in
the bulk is bounded. Moreover, thanks to Lemma 7 we can, without loss of
generality, consider that the magnetic field inside the holes is formed by the
Aharonov Bohm fluxes. The vector potential of such field is bounded outside
of B. Consequently the proof works with sequence u,, = ¢,. O

For the case when the underlying manifold is a disc with holes, the
number of zero modes differs. In particular for the total flux in the range
(m, 27 mod 27k, for 0 < k € Z or [—27,—w]mod 2wk’, for 0 > k' € Z, we
obtain an extra zero mode as opposed to the unbounded case, see Remark 11.

Theorem 10. Let M = Qyy \Up<n S and let D(‘?PS be the Dirac operator with
the magnetic field (13) in the gauge (9), (10). Then there are

<I>+1
2r 2

zero modes of the operator DS with the APS boundary conditions (18) on
the inner components and (20) on the outer component of the boundary. In
particular, there are no zero modes in the case ® € (—m,w]. If & > 0 then all
the zero modes have spin- up. If ® < 0 then they have spin-down.

Remark 11. e The particular form of the (non-normalised) zero modes of
the Dirac operator in the Aharonov—Casher gauge with the APS bound-
ary condition is also known from the proof. Depending on the sign of the
total flux @, they are purely spin-up or purely spin-down

) (@)
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where
ut(z) = e Z an2", u(z) =e M) Z byz", it #4=C,
0<n<s2 -1 0<n<—22 -1
and,

h / - —h / — .
ut(z)=e =) E apz", u (z)=e = E bpz", if M =Qout,
0<n<s2—3 0<n<—42 -1

(22)

. . P
with some coefficients a,, by, a,,,b;, € C.

e Notice that for certain values of fluxes there is an extra zero mode for
the bounded region. This happens in particular if there exists an integer

k such that
i} 1/2,1 if k>
—=k+e withee (1/2,1] %k‘_O. (23)
2 [—1,-1/2] k<0

If we let the radius of the disc £2,,+ grow to infinity we can compare the
asymptotics of the zero modes (22) as |z| — oo and easily check that the
zero mode with the highest power of z in g* (or Z in g~ in case of spin-
down zero modes) satisfying the APS boundary condition would not be
square integrable at infinity exactly for the values of fluxes in (23). They
exhibit the behaviour u®(z) ~ |z|T¢* as |z| — oo with e, € (1/2,1] and
e_ € [-1,—1/2]. Therefore, they are decaying at infinity and thus are
resonances of the Dirac operator in the unbounded case when .Z = C,
i.e. the operator from Theorem 8. To complete the picture we recall that
for values ®/2m € (—1/2,1/2] there are no zero modes on either plane or
a disc with holes.

The standard argument of Aharonov and Casher from [2] will be very
useful for showing Theorems 10 and 8. We will first use it to prove the following

Proposition 12. Let D** be the maximal extension (3) of the Dirac operator
on M with the magnetic field (13) in the gauge (9), (10) and let D>y = 0
for some u € dom(D™**). Then u is of the form u = (u™,u™) with

+ _ oth

u 9,

where g© is analytic on M and g~ is anti-analytic on M. Vice versa, any
function of this form such that v € dom(D*) satisfies D7*u = 0.

Proof. To find solutions of DMy = 0, u = (u*,u~) € L*(M;C?) we rewrite
the problem using the Aharonov—Casher gauge (9) as
"oz (e MuT) = {5% 1;} ut =0, e "o, (c"uT) = [82 - w} u =0.

h

This is satisfied if and only if the function g := e "u™ is analytic and ¢~ :=
h

e"u~ is anti-analytic on M. O
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Remark 13. To avoid any confusions, we would like emphasise that by taking
u € L?(M;C?) in the previous proof, we are not claiming that this is the
maximal domain dom(D™#). If 4 € L?(M;C?) such that D™*y = 0 it is by
definition in the maximal domain.

2.1. Proof for Unbounded Region with Holes

The main idea of the proofs of Theorems 10 and 8 is to show that if u €
dom(DAPS) and hence, (ut,u™)7T satisfies the APS boundary condition (18),
then the functions g+ and g~ from Proposition 12 can be extended analytically
in z and Z respectively inside the holes of M. In the following example we
demonstrate that for the case of a single hole with a magnetic field inside the
hole this extension is a straightforward process.

Ezample 14. For one hole in the plane we worked out the APS boundary condition in
Example 6. Here we use the set up and notation from that example. For the functions
g* from Proposition 12 we can write the Laurent series

g+ = Z anz" and g = Z bnz",
nez nez

with some complex coefficients a.,, b,. Taking into account (12), the formal restriction
of u* = et ¢* to the boundary 9 then reads

you = R™®/?7 Z an R ™ and You = RY/?7 Z b Re ™%
nez nez
Here 7o is the trace map as in (8). By Lemma 7 we can restrict ourselves to ® €
[, 7). The boundary condition (15) then yields that a, = 0 = b, for n < 0.
Consequently, g7 has to be analytic and g~ anti-analytic on C.
We leave the argument that the trace 7o is indeed given by the formal restriction
to the boundary to the general case, which is worked out in Sect. 2.1.1

While the argument in our example is rather simple, extending g& (anti-
)analytically inside the holes requires a new approach if we have several holes.
Let us fix an index j and denote A an open annulus co-centred with the hole
Q; of inner radius R; and outer radius R such that ANsupp B = () with B as
in (13). In particular the scalar potential h(z) is bounded on .A.

Recall that g7 is analytical and ¢~ is anti-analytical on M. Thus, on A
they have the Laurent series

g () =D az—w)", g ()= balz—wy), (24)
neZ nez

with some a,,,b, € C. To find the boundary values of 4 and compare them
to the boundary condition (18), it is convenient to introduce the following
functions for z € AU Q;\{w;}

P’
—i/ ads + / /73 dz’,
v(z0j,2) ¥(20j,2) 27T(Z - wj)

P’
- 71/ 6d§f/ _ gz,
7(205,2) Y(z05,2) 2m(2" — wy)

Q

F
©
N~—

|

X
—
I\
~—
\
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where by v(z07,2) C AU Q;\{w;} we denoted the path of integration with

the endpoints zp; = wj + R; and z € AUQ;\{w;}. We stress that throughout

the whole section we are, owing to Lemma 7, assuming B|Q_ =DB; = @96%.,
J

with the normalised flux @} € [—m,m). This, further, allows us to extend
the definition of the vector potential a that is given by (9) inside the region
1\ {uy}.

The definition (25) is motivated by the fact that the restrictions of Gj[ (2)
to the boundary 0€2; satisfy

P’
G7(2) |zcon,= —iL d’d§+iﬁ<pj,

i
where v; C 0€); is the curve connecting the points zp; = w; + R; and z
counter-clockwise. The lemma below further shows that G;t (z) are well defined

on AUQ; \ {w;}.

Lemma 15. G;-t (z) are independent of the choice of the path v(zo;, %) contained
in AU Q;\{w;}.

Proof. We show the equivalent statement that G;t(z) = 0 for any loop v =

(205, 2 = z0;) C AUQ;\{w;}. By definition of the flux the first summands
on the right-hand sides of (25) read

—i/ads": —i6®’;,
Y

where ¢ € Z is the winding number of the loop « around the point w;. The
result then follows from the definition of the winding number

1 1 -1 1
627\/\ ; dz’z—, /7d2/
2mi 5 2= wj 2mi 52— wj

Now we show that Gji satisfy another important property.

Proposition 16. Define
F(z) == £h(2) + GF(2), (26)

J

with h given by (10). The functions Fj‘(z) and F; (z) are analytic on AUQ;
in z and z, respectively. And, in particular, there are the following series of
the exponentials

- — %
eFﬁ:ZcZ‘(z—wj)k, el =ch(z—wj) ,

k>0 k>0
with c& # 0.

Before we prove this statement let us present a lemma.
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Lemma 17. Let g be defined on a domain in C. If either

Jan(2) == /g(w)dw = /(g1 +ige)(dt; +idta),

Ganti(2) == /g(w) dw = /(91 +igo)(dty —idty),

are independent of the path ~ connecting a fixed point zo € C and a point
z € C, then gan or ganti(2) are analytic in z or Z, respectively.

Proof. Due to the independence on path « it holds 8, fv (g1 +igo) dty = 0 and
Oy f7(91 +ige) dt; = 0. So we have

5z/g(w) dw = 0, /(91 +igo) dt; = g(2)

9, / g(w)dw = 8, / (g1 + iga) db = ig(2)
Y Y

where in the second equalities we used the fundamental theorem of calculus.
Hence, (8, +i0,) J, 9(w)(dt; £idts) = 0. O

Proof of Proposition 16. The analyticity follows from the fact, which will be
proved below, stating that Fji have the following forms on AU ; \ {w;}

F]+(Z) = h(Zoj) +/ Z (25Z/h[k]) dZ/,

v(205,2) E<N

k#j (27)
Fj (2) = —h(z0;) —/ > (20zhy) 42,
¥(z05,2) k<N
=
where hp; = _2?“ log |z — wg| for z # wy is the scalar potential of the

field By inside the hole Q. A direct computation (or the “defining” Pois-
son equation —Ahyy = By, for hy)) yields that the integrands 3, . 20.hy
and Zk# 20zh(i) are analytic on A U (); in 2 and Z, respectively. It follows
from Lemma 17 that this indeed implies analyticity of Fji.

Now we will show that the equalities (27) hold. To that end we use the
relation (9), i.e.

az = Oyh, ay, =—0,h,

and write with the aid of the fundamental theorem of calculus

h(z) = h(zo;) +/ Ozhdx + 0yhdy,

'Y(z()jaz)
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where (207, 2) C AUQ;\{w,} is an arbitrary path connecting zo; and z. Thus,
we get

hfi/ @d3 = h(zo) +/ dphdz + d,hdy — i0,hdz + i0,h dy
v(205,2) v(205,2)
= h(ZOj) + 2/ athdz’ 5
¥(205:2)
and similarly (or by complex conjugation), —h — ifv(z()j .y @ds = —h(z05) —

2]‘7(203_ Z) 85/hd2/
Finally, we recall that the concrete form (10) of the potential function

for Bj = @70y, is h;) = ;i;' log |z — w;| and compute the derivatives
-’ 1 @
zh . _ J 21 o 12— J
0:hyj)(2) = ——0: log |z — wj] yr———_
1 P
d  O:hi(z) = ——— —L—,
an 1(2) 4Tz — w;
which together with the definitions (26) and (25) give (27). O

2.1.1. Trace of the Eigenfunctions. Using the properties of G;t we are able to

find the trace vy of functions that have a form of the zero modes on A. For

brevity we will denote by H; the space H (A‘ o0, ) recall (6) for the definition
J

of the norm on H(A).

Lemma 18. Consider the function u = (u*,u~)T which has a convergent Lau-
rent series on A

u= Z(ehan(z —w;)", e ", (z—w;)")T € L*(A,C?),  an,b, €C.

nez
Then we have the convergence
+,Q h o\ +
Q_ [(u _: e"an(z —wj) u
u (UQ> : ||Z<Q (e_hbn(z —a)" =) o Q— oo (28)

in the operator graph norm | - | p, .4 = | - H%Z(A,@) + ”Da(‘)”%%A,CZ)'

Proof. By Proposition 12 it holds that D,u® = D,u = 0 on A. Hence, the op-
erator graph norm of v has contribution only from ||“H2L2(A o2y = ||u+||i2(A) +

[l ”%2@4)' We compute the first summand.

R
||U+||2L2(A) = QW/R rdr <92h Z |an|27°2">
3

neZ
R 2n+2 7R2n+2
>C |\ JaafP g+ D7 Janf? .

i oaTh 2n+ 2
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where the constant C' = 27 min, ¢ 4 €2**) is non-zero. This shows that the sum

on the right-hand side is convergent and therefore

lu* —ut Q)20 < 27 rggi}gma Z |an|?
n>Q

R2n+2 _ R2n+2

oo 0 mE@oo

The proof for u~ is a matter of substituting e** by e™2" and the coefficients

an by b, in the computation above. O

As a corollary we obtain from [7, Theorem 1.7] the convergence in H; of
the traces of u® to the trace of the zero mode u.

Lemma 19. Let u® be as in Lemma 18. In Hj we have the following conver-
gence of the traces VO(uQ)

+,Q anc+1/}j ut
hm ~ (u ) R"HC Tk Ttk =: ( 9) . 29
0 Z Z bncy, wi(n%) Ug (29)

nEZ k>0

The vectors 1/1? were introduced in (17) and c,f are the coefficients from Propo-
sition 16.

Proof. First we show that the sum in (29) is an element of ﬁj. Note that
due to the definite chirality of eigenvectors of Algn, we have |[(vF,v7)|% =
J

(v, )||2 + [|(0,v )||?{J for any (vt,v™)T € H;. Therefore, we work out
the proof only for the spin-up part and leave out the spin-down part which is
analogous. Let u™ be as in Lemma 18. Then boundedness of % on A implies
eClut e 12 (A). We compute its norm explicitly

27
||e Tu ||L2(A) / dT/ rdele

2m
/ dr/ rdep Za cfritneiehtn)

k>0

G+h+

2

nez
2 2
_ + 2042 2042
=27 Z ancy, lnR—+27rZ Zanc: m(R + _Rj+)7
k+n=—1 0#—1" k+n=¢t
k>0 k>0

where in the second equality we used that G (D+h() — oFF g the analytic
function on AUL; from Proposition 16. This expression can be used to bound
the H; norm of the spin-up component of (29)
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> > Rlancie] 0 =y (L+[X1%)°
eZ  n,k LEL
n+k=~¢ i,

Z Rean ¢z

n+k L
>0

— TV
{3—1/2 if Ay <0 (30)

s=-1/2 ifX>0"
with AZ from (17). Indeed, observing that
1. If K € [~1,0), then for any n > 0 and C' < 1/+/5 it holds

1 1
n+1>Cy(n—K)2+1, >C
n+1= \/int K2+

2. There exist constants C< -~ o such that In R%_ & and

(!

R~ Ry = (RR;)" Ry (1= (RR™)") = Con®Ry L ifn >0,

Ry - R =R} (1- (Rr )™ = CoRy, ifn <0,

we deduce ||eG;ru+||%2(A) > const| (ug ,0)7[|3 -

Applying Proposition 16 and using the definition of wg we obtain

+ + ;
Yol[(ut?,0)" Z Rl'a,e™%i~ GJ (2)g(htGj )(Z)‘zeaﬂj = Z R;-“Lkancﬁ S
[n|<Q In|<Q
which with the convergence of the sum in (29) in ; norm finishes the proof for
the spin-up component. Similarly, one shows ||e% u’||2L2( 4 = const||(0,ug )%

and the convergence in the spin-down component of (29). g

With these technical preliminaries we are ready to present a key state-
ment for the proof of Theorem 8.

Proposition 20. Let (u™,u™) be a zero mode of the Dirac operator DS with
the magnetic field (13) that satisfies the APS boundary condition (18) on 02;.
Then the functions g© and g~ from Proposition 12 can be analytically extended
inside the region Q; in z and Z, respectively.

Proof. On 0f); we compare the trace given by Lemma 19 with the APS bound-
ary condition (18). We remind that we are using the normalised fluxes through
the holes (see Lemma 7) which satisfy ® € [, 7) and therefore

j + .10
Rn+k anCy, ¢n+k ) — (Zezo @_%) )
TZ:ZI;) (b kY. (k) > e<0 Be

Here ﬂf € C are some constant coefficients. Hence, anc;: = byc;, = 0 whenever
n + k < 0. In particular, since c(ﬂf # 0, it holds a, = b, = 0 for all n < 0.
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This in turn means that g™ and g~ can be analytically extended inside ©; in
variables z and Z respectively. O

Applying now the L? integrability condition at infinity to u® the Aharonov—
Casher-type result for our setting .# = C follows.

Proof of Theorem. 8. By Proposition 20 the zero modes are of the form

T
nt n-

u=|e" g anz", e " E b, z"
n=0 n=0

with @y, b, € C and some integers n*. Since the requirement v € dom(D,) in
particular implies square integrability at infinity, we obtain from the asymp-
totics (11) of the potential function h the conditions nt — % < —1 and
n~ 4 5= < —1, where ® = & + > k<n ®j. From this we infer that there are
L%J zero modes of spin-up and L—%J zero modes of spin-down provided that

|®| > 27. O
2.2. Proof for the Bounded Region with Holes

In the case of the bounded domain the condition of the square integrability,
responsible for cutting off the infinite series in the final step in proof of Theo-
rem 8, is substituted by the APS boundary condition (20) on the outer bound-
ary 9Q,u¢. We denote by A°“* C M an open annulus whose outer boundary is
0y such that it satisfies A°“*Nsupp B = () and by ) the union (Qout)C LA
where (-)¢ stands for the complement in C. To apply the boundary condition
on JQ,,; we follow a similar process as in the case of checking the boundary
conditions on the inner components of the boundary. Let v(z§*!, z) be a path
connecting 28'” = Ryt and a point z € Q. We define

)
Gt (z):= —i/ d’d§'+/ -d2’,
A(=5.2) Wzt z) 22

P
G (z) = —i/ d’dé’—/ —dz’.
A(=5,2) Waget,z) 2T

By definition the restrictions to the boundary 0, satisfy

>
G*(2) |c00,.,= —i/ dditis_g.

Yout

where Your C 00 connects the points 25 = Ry and 2 € 9Qpys. A direct
adaptation of the proof of Lemma 15 shows that G*(z) are independent of the
choice of path v(z§"!, z) contained in (.

We prove another key property of these functions.
Lemma 21. Let us define
FE(2) := +h(2) + GE(2).

Then F*(z) and F~(2) are analytic in z and z, respectively, on Q. Moreover,
F*(2) — const as |z| — co.
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Proof. Similarly as in the proof of Proposition 16, it can be shown that it holds
Ft(z) = h(z") + / 20, h + o dz’
out 2mz!

(=8
— out o =/
P = hisg) - | ) e e
v(2

(23z1h +

gut ,Z)

where 7(23%, z) C Q is an arbitrary path connecting zg* and z. Then F'* is

analytic on Q as 20,h + %Z is analytic, and F'~ is anti-analytic as 20sh + %
is anti-analytic on that region (recall the Poisson equation —Ah = B and

Remark 17).

Since we are further interested in the limit |z| — oo, let us assume that
|z| > R’ for some R’ > 2R,,;. We will show that the absolute value of the
integrand in (31) decays like |2|=2 when |z| tends to infinity. First for the
singular parts of the magnetic field B; = @;5% we have for any z € 0

I B

20 hij + —— = 1 32
0¥ o, = on z(z — wy) (32)
with hpj = %{;j log |z —w,| as before, in the proof of Proposition 16. In partic-

ular, the absolute value of the right-hand side is indeed bounded by a constant
multiple of |z|72 for |z| > R’. For the bulk part of the magnetic field By €
C§° (M) with the scalar potential ho(z) = —5= [, Bo(2')log |z — 2|3 d2' A d2’
on € we compute the derivative 0,ho using the dominated convergence the-
orem similarly as in Remark 4. Then using the definition of the flux ®; we

obtain the following estimate

P 1 By(2' By(7' i —_—
20.ho + 20 | — _7/ Bol#) _ Bo(Z)\ i 4, qm
2mz 21 Je \z— 2 z 2
1 B !/ !/ 3 -
< —/ Bo)= Laandr < const|z| 7%, (33)
2 Jolz(z—2")| 2

Bo(z')2’

2(z—2) ][22 < 2|B0(Z/)Z/| S

for all |z| > R’. In the last inequality we used that
LY(C). Let us define

o o
= 2 St t) .
Co /0 ( 0. h(z§ t) 2(zgt t)) dt

Then this is a well-defined constant. Indeed, since an integral of analytic func-
tion along a bounded interval is bounded we have with use of (33) and (32)

o0

C
|00\gcl+/ t—;dt<oo,

with some constants C 2 > 0. Further by independence on the path v C Q
(we can choose v along the real axis and then along the arc corresponding to
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|z| = const) and by (33), (32) we estimate

) < q¢ 1 [ee)
20.h dz — C, - = d
[v o 0 /z Ea || /0 v

which is arbitrarily small as |2| — oo and hence concludes the proof for F'T.
The proof of asymptotics for F'~ at infinity is analogous. O

< const

)

Corollary 22. The exponentials of F* have the following series on Q

TR = Zdjz" and e ) = Zd;é",
n<0 n<0

for some df € C with cloi £ 0.

Proof. By the previous lemma and by analyticity of exp(z) on C the function
eF (@™ ig analytic and e (") is anti-analytic on the interior of C\Q and
converge to a non-zero constant as w — 0. This implies existence of the Taylor
—1 — —1
series ef (v 7") = Spsodiwk and e (0T =30 dw* with df # 0. Thus,
on the complement Q we have
) = Zd:{z" and ef (*) = Zd;é”.
n<0 n<0

O

To apply the boundary condition on the outer boundary we find the
boundary values of a function that has the form of our zero modes when re-
stricted to A°“* C M. For conciseness we denote by H,,; the space H(A|sq,,,)-

Lemma 23. Let u = (ut,u™)? = ano(ehanz”,e*hbnén)T € L?(A°, C?).
Then its trace on O°% is
+ +
+ \T __ n+k andk ¢n+k ) . (U())
Yo(u™,u = Ry ( Z = 2. (34
( ) nzz;)kz:go i bndy Y- (n+r) Vo )

The vectors 1y were introduced in (19), and the coefficients dki are from Corol-
lary 22.

Proof. 1t is not difficult to see that Lemma 18 holds also with A substituted
by A" and z — w; substituted by z. Hence, 7o(u) = limg—oo > gcn<g Rout

(ehanew",e_hbne_w"):r in H,,;. Mildly alternating the steps of the proof of
Lemma 19 we find the bound
+ - _ _
(€9 ut, e u™)| L2 (aou c2) > const||(v],v5) | g

out ’

showing that the sum in (34) converges in H,.:. The statement then follows
from this convergence and by applying Corrolary 22 to the expression

> Row (anei“’"e—“(z)e(hw*)(ﬂ, bne—iwe—G*<z>e<h+G*><z>)T

0<n<Q

2€0Q0ut

O
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The proof of the Aharonov—Casher result in the case of the bounded
domain with holes and a circular outer boundary now comes out along the
lines of the proof of Proposition 20.

Proof of Theorem 10. Since the zero modes need to satisfy the APS boundary
condition on the inner components of the boundary, 9€2;, 7 < N, they have
by Proposition 20 and Proposition 12 the form

ut ela,, 2"
()= ()
n>0

on the interior of Q°“*. Using Lemma 23 and the boundary condition (20) we

have
% (“+> = > > Rk ( andi i > _ (Zeeny Bl
v n>0 k<0 o ) Zez%Jr% By e ]’

with some ﬁei € C, which imposes the restrictions and;r =0ifn+k> % — %
and b,d, = 0if —(n+k) < 2= + 1. We recall that dj # 0 to deduce that
there are L% - %J +1= L% + %J spin-up and {—% — %} +1= g—f + %}
spin-down zero modes. The symbol {y} denotes the biggest integer smaller
or equal to y > 0. The proof is now concluded by noticing that the equality

ly+ 4| = —{—y+ 3} holds for any y < 1. O

3. Aharonov—Casher on a Sphere with Holes

In this section we will prove a version of the Aharonov—Casher theorem for
the magnetic Dirac operator on a sphere with holes whose boundaries are
equipped with APS boundary conditions. This corresponds to our set-up from
Sect. 1.3 putting .# = S?. In particular, let us consider the manifold M =
S\ Uk<nN sk, where Up<n$;, is a union of mutually disjoint open discs on S2.
We again consider the magnetic field (13) on M for which we additionally pose
a requirement that the overall flux on the sphere sums to zero

/S Byt Bung =0. (35)

To motivate the condition (35), recall that the vector potential one-form « is
globally defined on M and therefore the flux through the N-th hole is &5 =
—WU, where ¥ is the total flux minus ®p. This is so, since faQN a can be
integrated either as —W or as ®5 as 0Qy is boundary of both Qy and Q%
which are both bounded regions. Here (-)¢ denotes the complement in S?. We
will consider a semi-total flux which we define as the bulk contribution ®g
plus the normalised fluxes (¢f. Sectt1.3) through all the holes but one and we
choose to omit the flux of the N-th hole

D =D+ Z P, L€ [-m, 7).
JEN-1
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The reasoning behind this comes from Lemma 28 establishing the gauge in-
variance of this problem which we state later. It turns out that the problem of
finding the zero modes is again gauge invariant and one can gauge away inte-
ger multiples of 27 of the flux inside each of the holes apart from exactly one.
The number of zero modes then depends on the semi-total flux. Moreover, the
result does not depend on which hole was left out with non-normalised flux.
More precisely the following theorem holds.

Theorem 24. Let D be the Dirac operator on M with magnetic field (13) in
the Aharonov-Casher gauge that satisfies the condition (35). Then there are

e 1
2T 2

zero modes of the operator D with the domain given by the APS boundary
conditions. Ifq) > 0 then all the zero modes have spin-up. If d < 0 then they
have spin-down.

The definition of the Dirac operator on a sphere is covered in Appx. A
which also includes a proof of the statement that it is unitarily equivalent to
the Dirac operator on a disc with holes with a conformal metric.

Proof. We can rotate the sphere so that the centre of the hole Q2 becomes the
north pole N’'. Then we perform a transformation P which is the stereographic
projection from N’ composed with a reflection (see also (41)), to obtain a
bounded region P(M) C C ~ R? whose all components of the boundary are
circles. This way we get the Dirac operator D' on the region P(M) with
metric

2 2\ —1
gV =W?3(d2® + dy?), where W<1+xiy) , (36)

which is unitarily equivalent to the Dirac operator on M, by Cor. 35 in
Appx. A. The statement is then a direct consequence of Proposition 29 proved

below. ]
Remark 25. 1. Notice that in particular, there are no zero modes in the case
¢ e (—m, .

2. Let us point out that the number H% + %H where & = dien P

does not depend on the numbering of the holes. This is because we sum
only over the normalised values of the fluxes and due to the condition
that the global flux is zero, expressed by (35). Hence, if we fix an index
Jo < N —1 and put

(I)I = (I)/. + (I)restv
where @, = ZJ'SN*LJ'#]O %, we have by (35) the flux —&! through

the hole Q. To normalise thls value we note that for any y € R it holds
y—|y+ 3] €(—3, 3] Thus,

'y ol ol 1 11
=\~ |- *3 € T 570 )
2T 2 2r 2 2°2
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is the (5= multiple of the) normalised flux through the N-th hole. The
total flux 1 = &5 + @'y, i.e. omitting the contribution from jo, then

satisfies
\‘(PH_’_IJ — (I)TESt_F}_gI_’_ \‘(I)I—’—lJJ
27 2 | 27 2 27 2T 2
= _(I);U +1J + \‘(I)I_i_lJ
| 27 2 27 2
ol 1
= _% + QJ s
where in the last equality we used that q;—i? el-1.1).

To see that this result is a direct consequence of the bounded case we
need to investigate the Dirac operator with the APS boundary condition under
Mbobius transform, which is a particular case of a conformal transform.

3.1. The Dirac Operator with APS Boundary Condition in the Conformal
Metric g"

Let M be a two-dimensional manifold with metric g and let F be a Spin®
spinor bundle over M with Clifford multiplication ¢ and Spin® connection V.
In [18, Sect. 4] the authors showed how o, V and the Levi-Civita connection
VL€ are modified under a general conformal transformation taking the metric
g to a metric g"' = W2g for some W : M — R\ {0}. We summarise their
results in the following proposition.

Proposition 26. In the conformal metric g"V = W?2g we have
o (p) =Wl (n),

1
VE{U =V, su+ ZW_l[U(,u),a(dW)]u,

VW) = VECC— WA W)+ WG AW — W () d W

for any spinor u, vector field u* and a one form (. We denoted by ju the one-
form dual to u with respect to the metric g.

We point out that for any ¢ € T*M it holds oV (W () = o(¢) and that if
¢ is normalised in the metric g then W is normalised in the conformal metric
g"'. As a consequence of Proposition 26 we then obtain the relations of the
Dirac operators and their boundary operators under a conformal transform.
In what follows, we will use the earlier introduced Notation 2 on page 5, where
the normalisation refers to normalisation in metric g.

Corollary 27. Consider a two-dimensional manifold M with the metric g which
is conformally transformed to a manifold M"Y with metric g" = W?g. The
Dirac operators D on M and DV on MW and their respective adapted bound-
ary operators are related by

DV = wW32DpwW? gnd
AV = w14,
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In particular we see that the APS boundary condition is not conformally in-
variant.

Proof. The proof for DY is presented in [18, Theorem 4.3], so we show only
the relation for A" Writing locally on the boundary D = o(v)V,: 4+ 0(£) Vs
and using o(v)? = 1 we recall that by Definition 3 the canonical boundary
operator A adapted to D in the metric g reads

2A =0(v)o(§)Ver — 0(§)Vero(v).

Changing the metric from g to ¢"¥' = W?2g in this formula, Proposition 26
further gives

24W = o (V) (E )W IV — o (OW 'V a(v)
=W (o) (€) (Ves + ;W [o(€), o (aW)))

- U(f)(vgn + iWﬁl[a(f),J(dW)])a(VD
=Wt (o’(l/)a(«f)vgn — U(g)vgﬁg(y)) T W472R — W24 4 W2

R,
where

R = o(v)o(€)[0(&), o(dW)] - 0(&)[o/(), o(dW)]o(v)
= o (©){[0(€), o (dW)], 0(v)} -

Since the pair (v, ) forms a local orthonormal basis of the one-forms, we can
write dW = (dW, £)& + (dW, v)v to obtain

[0(§), o (dW)] = (AW, v) ({o(§),0(v)} = 20(v)o(£)) = =2(dW, v)a(v)o ().

Therefore, using the anti-commutation identity { EF, G} = E{F,G} — [E,G|F
holding for any operators E, F, G, we infer R = 0, which concludes the proof
of AW =w-1A. O

Let us restrict to the specific case of the Dirac operator on P(M) with
M = S?\ Uj<n €; and P the stereographic projection composed with a re-
flection defined in Appx. A. Note that P(M) is a conformal transformation of
Qout \Uj<n—19; and the new metric g" is given by (36). As in the case of the
standard metric we can use the arguments for gauge invariance from Lemma 7
for the holes P(€;), j < N — 1 to find the following.

Lemma 28. Let a and @ be two magnetic vector potentials whose fluxes differ
by an integer multiple m; of 2w on the inner hole Q;, for all j < N —1. Then
we have the unitary equivalence between the Dirac operators on P(M) in the
metric gV with APS boundary condition, corresponding to the magnetic fields
a and a

%Dy U =Dy,
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with the unitary
% : L*(C,g";C?%) — L*(C,¢"; C?)

U :ur exp [i/("g)d,?]u,
¥

where v C P(M) is a curve connecting a fized point zg € P(M) and the point
z.

We recall from the proof of Lemma 7 that replacing the starting point
20 of v by a different point z; € P(M) amounts merely to a multiplication by
the constant K = exp [i fzzol (@ — a) dg} satisfying K = K.
Proof. Taking the commutativity of % and W into account, the statement
follows directly from Lemma 7 and Cor. 27. O

By this lemma we can without loss of generality work with the normalised
fluxes ®/; € [—m, ) inside the holes Q; C §? for j < N — 1 as well as assume
that the magnetic field inside the holes is modelled by such a normalised flux
multiple of the Dirac delta function d,,,, at the centre w; of €2;. Harvesting all
this preparation we are able to find the zero modes of the conformal Dirac op-
erator on C and prove the following proposition whose immediate consequence
is Theorem 24.

Proposition 29. The zero modes of the Dirac operator DV on P(M) in the
metric ¢"V' and magnetic field satisfying the condition 35 in the Aharonov—
Casher gauge with the APS boundary condition are of the form

u’t + —1/2 h(z) n
(0>, ut(z) = W=2(2)e"? Z anz",

0<n<2-1

(O>, w(2) = W) D ST pan

u ~
P 1
0<n<-97—3

for some coefficients a,, b, € C.

Proof. Consider a zero mode u € ker(D"). Then by Cor. 27 we know that
for v(z) = W(2)"/?u it holds Dv(z) = 0 on P(M) with D = W3/2DWWw~1/2
being the Dirac operator on P(M) in the standard metric on C. We choose
coordinates Z on P(S? \ {N’}) with origin at P((0,0,-1)T) and mark with
tilde functions on P(M) expressed in these coordinates. Let us fix an arbitrary
index j < N — 1. We write similarly f;(z;) for a function f on P(M) in the
coordinates z; obtained by the Mdbius transform Y, : Z +— 2; (see Appx. B
and Lemma 36) with ¢; being the antipodal point of the centre w; of the
hole 2; C S, An important observation is that W;(z;) is a positive constant
on (Y3, o P)(9%2;) and therefore u satisfies the APS boundary condition on
(Y3, 0 P)(0%;) for D' if and only if v satisfies the boundary condition (18) on
(Y;, o P)(09;). By Proposition 12 the spin-up component vt takes the form

vi(z) =eMPgi(z), j<N-1, (37)



Vol. 26 (2025) Aharonov—Casher Theorems 2889

where g;f (2) is analytic on (Y3, o P)(M) and can be analytically extended to
the hole (Y3, o P)(€2;) by Proposition 20. In Appx. B we argue that under the
change of coordinates given by the Md&bius transform

az+b

czZ+d’

for some a, b, ¢, d complex numbers dependent on ¢; (the number a here should
not be confused with the vector potential a), the spinor u needs to satisfy the
relation (51), and therefore,

Yi, 02025 =

WSR3, ()] (1, (2) = W@ 2), 9) = ot

for all j < N — 1. Employing (49) and (37) this now leads to analyticity of
gt (2) on P(Q,) as

+ N R(E)—h; (Ve ()] .n czZ+d .
07 (¥, () = "0 ez 4 dl g

(2) = (2 +d)g* (%),

where we used that the functions h;(Y;;(2)) and h(Z) are in fact the same
function h expressed in different sets of coordinates. Hence, using that (cZ +
d)~! is analytic on P(£2;)® and that j < N — 1 was arbitrary we conclude that
g7 is analytic on P(S?\ Qu). Similarly as above thanks to W (%) = const > 0
on P(9Qy) the boundary conditions on P(9Qy) for u € dom(D") and v €
dom(D) coincide (see Cor. 27). Therefore, we may apply the same steps as in
the proof of Theorem 10 and obtain

ut(z) = W12 () Z anz"
n<

on P(M). The form of the modes v~ on P(M
the previous to be

u”(z) = W2(z)e™h) Z bz" .

Py
n<—or—

o

3
Nl

~—

is shown by an adaptation of

Nl

Here both a,, and b,, are some complex coeflicients. O

4. Relation to the Index Theorem

Here we assume for a moment that the dimension n of the base manifold M is
even (not necessarily two). In that case a Spin® spinor bundle E with Clifford
multiplication o and a Spin® connection can be defined, provided that a certain
topological condition® is imposed on M. We refer to e.g. [28, Appx. D] or [33,
Sec. 10.8]) for the precise definitions of the above terms in dimension n > 2, for
n = 2 recall Sec. 1.1. Due to the Clifford relations the chirality operator then
anti-commutes with o (¢) for all ( € T*M C CI(R™) with CI(R™) denoting the

5Note that the point Z = —d/c ¢ P(§;) is in fact the image of the antipodal point t; of w;
under the mapping P.
6For further details on this condition see [28, Theorem D.2].
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Clifford algebra on R™ and induces thus a Zs grading of the bundle E. This
means that we can write £ = E; @& E_ where E. are the 1 eigenspaces or
the chirality operator. If D is the Dirac operator on E, it can be then written

in the following form
0 D_
v <D+ 0 ) ’

where Dy : T'(Ey) — T'(E4) are mutual formal adjoints. We remark that
the Dirac operator is defined by the same formula as in two dimensions with
the difference that now the index j in Definition 1 runs up to n. We wish to
introduce the quantity index, which is well defined for Fredholm operators.
Therefore, in the following we assume that D is Fredholm. That is, for exam-
ple, true when M is a compact manifold and D satisfies the APS boundary
condition on M, cf. [8, Definition 5.1, Ex. 5.2, Theorem 5.3]".

Definition 30. We define the analytical index (or index) of the Dirac operator
D by

ind(D) = dimker(D; ) — dimker(D_). (38)

Atiyah and Singer showed in [6] that if the manifold M is compact and
has no boundary, then the analytical index is equal to the topological index

ind(D) = /M AS . (39)

The integrand AS depends both on the Riemannian curvature Ry, of M and
the magnetic two-form® 3 on the bundle E. For flat manifolds, i.e. Ry =
0, it corresponds to the Chern character of the bundle AS = Ch(E);, =

(exp %) ol where the subscript [n] refers to the n-th degree part of the form.

The expression exp is to be understood as the series expansions.

The index theorem was extended to manifolds with boundary in [3], where
Atiyah, Patodi and Singer proved the formula for the index assuming, that M
has a product structure near the boundary. Neglecting this assumption one
obtains an additional boundary term that vanishes in the case of a product
structure. The extended formula was proven by Grubb in [24, Cor. 5.3]. More
explicit expression of the boundary term was given by Gilkey in [23]. From
Gilkey’s formula it follows that in case of the APS boundary condition given
by the canonical boundary operator (cf. Definition 3) the above-mentioned
additional boundary term vanishes. In particular in our two-dimensional case
we obtain by Theorem 8.4.d and Theorem 1.4 in [23]

ind(D) = /M AS — %(Tl([A]n) + dim ker[A]11), (40)

7 [8] shows that it is true even for all D-elliptic boundary conditions, see [8, Definition 4.7]
for the definition.

8In a general dimension the magnetic two-form is the trace 27 ™/2Tr(iR) of the End(E)-
valued curvature R(X,Y) = VxVy — VyVx — V[x y] of the Spin® connection V. Here
X,Y are arbitrary vector fields on E.



Vol. 26 (2025) Aharonov—Casher Theorems 2891

and [A]1; is its top left component of the canonical boundary operator.

We will consider the Dirac operator D, with magnetic field (13). Recall
that A was computed in Sec. 1.3. The first term in the integral is the bulk
contribution as in (39). Since in our case M is flat, and, since we are in two
dimensions, we have |’ uAS = I} e %. The n-invariant n(A) is defined as
the analytic extension of the function

ns(A) = D A TCsgn(n),

Aespec(A)\{0}

at the value s = 0 and is well defined for Dirac operators as was shown in [3].
The sum runs over the non-zero eigenvalues of the boundary operator A. For
the simple case T = —id; — ¢, ¢ € R, on the first Sobolev space H([0,2n])
with periodic boundary condition, it is shown in a greater detail for example
in [21, Appx. D] that the analytic continuation yields

n(—if) ) = {0—1+2<c> if ce R\ Z |

ifceZ
where (c) is the unique number ¢ € (0,1) such that ¢ — ¢ € Z. Note that
the eta-invariant 7(7") depends only on the eigenvalues of 7' and hence the
formula for n(T) yields directly a result for the n-invariant of any operator
whose spectrum is of the form {n + ¢},ez. Solving the eigenvalue problem for

the top left component of the boundary operator [A11] restricted to the inner
and outer components of the boundary gives the spectra

. <I>; 1

5pec([A‘89j]11): —Rj n— 2— 3 |n€Z
[} 1

spec([Alo,. J11) = {R;;t (n 2 2) Inc z}

Employing then the property n(cL) = sgn(c)n(L) for a constant ¢ and an
elliptic operator L we deduce form (17) and (19)

/

n({Aloa ) =1~ 2<(2I)7r - ;> and  n([Alaq,,.J11) = -1 +2<;I7’T _ ;>

for all j < N. Let us denote by I; the set of indices j such that 1 =
dim ker([Alaq,]11) € {0,1}, by [I1| the number of elements in I; and let
Iy = dim([A]sq,,,]11) € {0,1}. We make the following observations

1. By definition of the normalised fluxes (recall Sec. 1.3) if j ¢ I; we have

P’ 1 P’ 1
—J _ = = 7 =
<27‘r 2>_27r+ '

2. For j € I; it holds Q—J — 2 =—1 and thus, djen (&> =1l

2m 2
if I, =1

1
3. (A + 1y = ’
1([Aloe,..J11) + To {1+2<; — 1y i =0
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Omitting the outer boundary contribution in the index formula (40) for now,
we arrive at the expression

1 ) %y 1 ]
/M AS — 5 Z(n([Aij]n) + dim ker[A|sq,]11) = o 2 -2 (271_
J<N J¢I
_ 4]
2
) N _ @
“m+ 2 () -5
J<N

Finally, for the index of the Dirac operator D, with magnetic field (13) in the
gauge (9), (10) and with domain (7) we have

® i if Ip =1 ® 1
nd(Dy) = — -2, o . L0° :{+J,
2w —§+<§—§> lfI():O 27 2
where in the last equality we used that % + % € 7 if Iy = 1. Note that this
formula is in agreement with our result Theorem 10, by which we immediately
infer:

Corollary 31. Under the assumptions of Theorem 10 we obtain the index for
D, (defined by (38)),
ind(D,) = {(I) + 1J .

o | 2

5. Conclusion

We showed a version of the Aharonov—Casher theorem on some two-dimensional
manifolds with boundary. In particular our manifolds are a plane with holes
(Theorem 8), a disc with holes (Theorem 10) and a sphere with holes (Theo-
rem 24). We consider the APS boundary condition on the boundary and show
that the number of zero modes depends only on the sum of the flux corre-
sponding to the smooth magnetic field on the manifold and the rational part
of the fluxes through the holes. In particular our results imply the index the-
orem for these special choices of the manifolds. Moreover, since the index is a
topological invariant, the index theorem is implied also for arbitrarily shaped
holes. To prove the Aharonov—Casher theorem, i.e. that all zero modes have a
definite chirality, is, for such domains still an open problem.
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Appendix A: The Dirac Operator Under the Stereographic
Projection

For conciseness we will write in the following M = S2\{N'} for the sphere
without the north pole N’ = (0,0,1)7 € §? and M = S*\ Uj<y Q; for the
sphere without the holes Q; C S2, j < N. It is convenient to map the Dirac
operator on the sphere to the plane by the stereographic projection. Here we
will argue that due to this mapping we can perform the analysis for finding
the zero modes of the Dirac operator on S? by investigating the problem on C
with a metric that is conformal to the standard metric on C. We will denote
by P : M — C the stereographic projection from the north pole composed
with reflection across the x axis. In particular a point

cos ¢ sin ¥
w=|singsingd | , 9€(0,7],¢ € (0,27],
cos v


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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is mapped by P to the point P(w) = 2cot gefi“” e, i.e.
x = (P(w))y =2cot(¥/2)cosp, y:=(P(w))y =—2cot(d/2)sinp. (41)

Lemma 32. The tangent map P, : (TM,¢%) — (TR2,gW), where ¢5 is the
standard metric on S? and

2 2\ —1
“y) 7 (42)

gW:WQ(dx2—|—dy2), W = (1+ 1
18 an isometry.

Proof. Using the definition of the push-forward map (+), the statement follows
by a direct computation from (41). O

We further obtain a unitary between the square integrable functions over
C with the metric ¢" and the square integrable functions over the pre-image
P~1(C) with the standard metric on S%.

Lemma 33. The pullback of the stereographic projection composed with reflec-
tion across the x axis P* : L*(C,g";C?) — L2(P*1(C),gs2;(C2) acting as
(P*u)(w) := u(P(w)) is a unitary operator.

Proof. Finding the differentials dz and dy from (41) one easily verifies that
the volume form changes as

$2+y2

-2
d A sind dp = sin? (9/2) dz A dy = (1+ ) dz A dy.

With the notation (-,-)s2 for the inner product on L2(S2,¢5°;C2?) and (-, )
for the inner product on L?(C, g"'; C?) we then obtain

™ 2m
(P* 1, P* fa)es — / f1 0 P(9,0) Fo o P(D,9) d9 Asind d
o Jo
22 4 2 -2
= [ nafle (14555 ) dendy= (g
R2
for any f12 € L*(C, ¢g";C?) and for W given by (42). O

Definition 34. We define the Spin® spinor bundle over M as the pullback of the
Spin® spinor bundle S over C ~ R? by the stereographic projection composed
with reflection P

P*S = {(w,u) € $* x S | n(u) = P(w)},
where 7 is the bundle projection of S. We have as in Lemma 33 the map P* :
[(R%,S) — I'(M, P*S) given by (P*u)(w) = (u o P)(w). The corresponding
Clifford multiplication and the Clifford connection on such bundle are given
by

M (P*)P* =P eV (), ¢eT'R? "
VAP = PVY ., X eTM,
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where ¢ and VW refer to the Clifford multiplication and Clifford connection

on S.

Now we are ready to state a corollary which will reduce our analysis
of the Dirac operator on the sphere with holes to the investigation of the
corresponding Dirac operator on a disc with holes in a metric conformal to the
standard metric on R? ~ C.

Corollary 35. The Dirac operator DM on M is unitarily equivalent to the
Dirac operator D" on P(M) C (C,g"),

DMp* = p*DW .

Proof. We denote by s/, j = 1,2 an orthonormal (in gSQ) basis on T M, by s;
the dual basis and by e’ its counterpart on T*R? such that P*e/ = s/. Note,
that by Lemma 32 the last relation defines e’/ that form an orthonormal frame
on T*R? in the metric ¢g"'. Using the definitions (43) we obtain for any section
u on R?

DM Pru =Y oMV Pu=>" P (c"()V u) = P*(DVu).
J<2 j<2

For the canonical boundary operators A™ on dM and A" on P(OM)
adapted to DM and D" respectively it holds again by (43)

2AM p* = oM (P*v) oM (P* )V P* — oM (PO VY oM (P*v) P*
=P (0" (1) (Ve x) — P (0" () Vp xo™ (v)) = 2P* AV,
where v and £ are the normal and tangent co-vector fields on the boundary
P(OM) and X is the dual vector field to P*{. We see that A is an eigenvalue

of AW with eigenfunction v if and only if it is an eigenvalue of AM with an
eigenfunction P*v. Hence, dom(D™) = P*dom(D"W). O

Appendix B: Remarks on Mobius Transform

az+b
cz+d
that ad — be = 1. Notice that it is an analytic mapping on C \ {—%} whose z
derivative reads

Mbobius transform is a mapping Y : C — C of the form Y (z) = such

ad — be 1
Y = ovar ~ v ar (44)

Such transforms can be obtained by the composition of the inverse stereo-
graphic projection from the plane to a sphere, a rotation on the sphere and
stereographic projecting back to the plane.

Lemma 36. The Mdbius transformY,, = PRP~', where P is the stereographic
projection from the morth pole N' followed by the reflection across the x awis
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(see (41)) and R is the rotation on S* along ¢ = const (i.e. along a certain
meridian) which maps a point w € S*\{N'} to the north pole N’

€os g sin ¥y 0
w= |singgsindg | —» Rw)=N" =10, Y€ (0,7],90€ (0,27],
cos Yy 1

has the form Y, (z) = ‘;Zis with the matriz of coefficients

ab) cos’920 2e” wosm‘?0 det (@ b 1
cd) — \—iel#osin %o cos % ’ c d)

Moreover, for the composition Y, oY, for anywi o € S*\{N'}, the coefficients
satisfy the following relations

_ 1
a=d, b=—4c, \a|2+4|c|2:|d|2+1\b|2:1. (45)

Proof. One can easily check that +2ie™1%0 are the two fixed points of Y,,, which
with the additional conditions

; 9
ad—bc=1 and Y, : Plw)=2e"'¥0 cot?O — 00,

leads to the result

cos ’90 2 4 2e~1%0 gin 190

71 IL,D() "97 %
5€ sin 2ercos 5

Yo (2) = (46)
In particular, let us point out that the relations between the coefficients of
the Mébius transform (46) satisfy (45). For a composition of two such M&bius
transforms Y, oY, for
cos p; sind;
wj = | sinp;sind; | ,j=1,2,
cos U,

we compute using (46)
az+b

Y, 0Y,,(2) = e d with
a = cos % cos % —e 192 gip % sin %
d = cos % cos 2 _ el(P1=92) gip % sin % =a
b= QCos%sin 192e ez 4 9e~in sm%cos%
c= —% cos % sin 19;6“” — ;e“ﬁl sin % cos % = —g .

O

In what follows the particular choice of the point w is not important so
we will generally use the notation Y instead of Y. Notice that Lemma 32
implies that the tangent mapping Y., “pushforwarding” vectors at a point z
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to vectors at Y(z), is an isometry on the tangent space of (C,¢"") with the
conformal metric " = W2 g = (1+|2]?/4)~'g where g is the standard metric
on C.

In the last part of this section we will find the relation between the spinor
u expressed in a set of coordinates on C and in the coordinates which are their
Mobius transform. Let u be a section of the trivial Spin® spinor bundle over C
and denote by u;(z;) this section in coordinates z;, j € {1,2}. Then we have
the relation

u1(z1) = G(z2)ua(22) (47)
for some G € GL(2).

Remark 37. In fact the structure group of a Spinc-spinor bundle over M is
the group Spin®(2) := Spin(2) x U(1)/{£(1,1)}, where /{£(1,1)} refers to
the identification of classes [(1,1)] and [(—1,—1)], and, Spin(2) ~ SO(2) is
the spin group of R?, so more precisely G € Spin¢(2) C GL(2). More details
on Spin and Spin® groups can be found e.g. in [28,33].

Assume further that the coordinates are related by the Mobius transform

Y 29— 2z = ZZIZ Since we know how the one-forms on C transform

under a change of coordinates, we can find G by applying relation (47) on a
spinor o (T )u. Here 0" (7) is the Clifford multiplication in metric g (see
Proposition 26) by a real one form

1~
T = 5(?dz—|—7’d2),

where dz = W(z)dz and similarly dz = W(z)dz denote the orthonormal
basis of one forms on C in metric g"V'. We denote by 7; = Re (?ja;j) the one
form 7 in the bases (a\zj, an), j € {1,2} and note that
W(z) lez + d|?
n(Y(z)) = WW@) = mﬁ(z)- (48)
The second equality is a result of (44) and the relations (45) for the coefficients
of a Mobius transform as

W(z)  4lez+d* + |az + b
W(Y(2)) 4+ |22
laz +b)* = |az|® + |b]? + 2Re (azb) = 4 + |2|* — 4|cz + d|?. (49)
By (47) (taking " (7 )u instead of u) we now obtain
o (T)ui (Y (2)) = G(2)0" (B)us(2) = G(2)0 " (T2)GH(2)ua (Y (2)) -

Therefore, we require

lcz+d|7? = |cz+d|™?, since

G(z) "M (T1)G(2) = o™ (T2). (50)

Proposition 26 implies aw(a;) =o(dz) ,O’W(E\Z) = 0(dz) and hence by (2)

oW (T) = (2 g) .
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We can check that setting

() = |ez + d| ! <(Czo+d) (CZOHD € S0(2),

it indeed solves (50), as

(eTd)?
G(z) e (T1)G(2) = < 0 [cz+d]? Tl)

czt+d?
|cz+d|? 1 0

corresponds to the correct transformation (48) of the components of the one

form 7 establishing the equality between the right-hand side and o'V (73).
For a reference we write the transformation relation for spinors on C

under the Mobius transform once more with the particular form of G(z)

(czo +d) 0
0 (czo + d)) uz(22) - (51)

u1(z1) = |ezg +d| ! <
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