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Theory of angular momentum transfer from light to molecules
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We present a theory describing the interaction of structured light, such as light carrying orbital angular
momentum, with molecules. The light-matter interaction Hamiltonian we derive is expressed through couplings
between spherical gradients of the electric field and the (transition) electric multipole moments of a particle
of any nontrivial rotation point group. Our model can therefore accommodate an arbitrary complexity of the
molecular and electric field structure, and it can be straightforwardly extended to atoms or nanostructures.
Applying this framework to rovibrational spectroscopy of molecules, we uncover the general mechanism of
angular momentum exchange between the spin and orbital angular momenta of light, molecular rotation, and its
center-of-mass motion. We show that the nonzero vorticity of Laguerre-Gaussian beams can strongly enhance
certain rovibrational transitions that are considered forbidden in the case of nonhelical light. We discuss the
experimental requirements for the observation of these forbidden transitions in state-of-the-art spatially resolved
spectroscopy measurements.
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I. INTRODUCTION

Light-matter interactions are at the heart of many disci-
plines, from imaging [1] and spectroscopy [2,3], to quantum
control [4] and sensing [5], to quantum information [6] and
ultracold chemistry [7]. In many of these systems, rota-
tions of some sort—whether of molecules, spins, or light
polarization—play a major role in defining the emergent
physics. While being an elementary class of spatial trans-
formations, they form a non-Abelian group [8,9], which
makes them promising for foundational studies of topological
physics [10,11] and the design of quantum computing codes
[12,13].

Rotations are directly associated with the concept of angu-
lar momentum (AM). The spin, or intrinsic, AM of light has
been extensively studied in the past [14–16]. However, only
a couple of decades ago, it was shown that, in addition to the
spin, light can possess extrinsic, or orbital, angular momentum
(OAM) in the form of a helical beam phase [15–17]. So-called
twisted photons with large values of OAM can be generated
by combining fundamental laser modes [17,18], i.e., using a
diffraction grating [19], a spiral phase plate [20], or a meta-
surface [21]. Outside the regime, where the spin and OAM
are strongly coupled [22,23], they represent two conceptually
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different characteristics of light. The former is related to the
polarization of the electric field, while the latter is induced by
its spatial gradient [15,16].

Here, motivated by the multifaceted nature of the AM of
light, as well as by the ubiquity of light-matter interactions,
we introduce a general theoretical framework of angular mo-
mentum exchange between an optical field and a particle.
To narrow down our explanation and make it illustratory,
we choose the rovibrational spectroscopy of molecules as
the prototypical system of interest. Unlike in other scenarios,
where the interaction with an optical field induces interwoven
relaxation subprocesses that are hard to trace, rovibrational
spectroscopy can be described with sufficient accuracy involv-
ing relatively few rotational degrees of freedom. Moreover,
the emergent angular momentum exchange is characterized
by selection rules, which encapsulate the essential physical
behavior and are accessible through a direct experimental
measurement.

Our theoretical approach is conceptually similar to the
Wigner-Eckart theorem [24]. We suggest addressing the gen-
eral problem of the light-matter interaction via an analytical
framework that is designed around the concept and algebra
of angular momentum. This way most of the interaction’s
complexity can be absorbed by the coefficients of the resulting
spherical expansion, similar to the reduced matrix elements of
the Wigner-Eckart decomposition.

Previous studies on rovibrational spectroscopy using
twisted light [25–28] attempted to track the full problem of
the light-matter interaction to get access to the selection rules
for the AM exchange. As a result, they are only applicable
to a narrow class of systems. In particular, they are restricted
to specific point-charge models or electric field profiles. In
contrast, our approach circumvents the detailed analysis of
the molecular or optical field structure, replacing it with the
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analysis of the coupling between electric field gradients and
molecular multipole moments. The resulting selection rules
depend only on whether the spherical expansion coefficients
are vanishing or not, providing a direct connection of AM
exchange to the molecular and optical field symmetry.

As in the case of the Wigner-Eckart theorem, the transition
rates within our theory are interrelated. This creates a possibil-
ity to calculate rates of experimentally inaccessible transitions
by linking them to their respective measurable counterparts.
This feature of our theory might be important for future exper-
imental developments, e.g., in metrology. It allows bypassing
complex ab initio computations that are prone to inaccuracies
due to simplifying assumptions, stemming, for example, from
the Born-Oppenheimer approximation, relativistic effects, or
spin-orbit coupling.

To benchmark our theory and demonstrate its predictive
power, we use the suggested framework to derive the selection
rules for the rovibrational spectroscopy using Laguerre-
Gaussian beams. We reveal that the helicity of light (OAM)
can substantially enhance rotational transitions that are con-
sidered forbidden in the case of a spin-only light. Notably,
instead of merely estimating amplitudes of the enhanced tran-
sitions, our theory allows us to determine the origin of the
enhancement. Finally, we suggest a possible experimental
scheme that may be capable of verifying our findings by
measuring the rovibrational spectrum of gas phase molecules.

The paper is structured as follows. In Sec. II, we intro-
duce the effective model for the multipole moments. On the
example of a molecule, we explain how internal degrees of
freedom, like vibrations and rotations, can be embedded into
the model. Our general idea can be applied to other scenarios
of the light-matter interaction, as explained in Appendix A.
In Sec. III, we derive the general expression for the inter-
action of an optical field with multipoles. Our derivation is
designed to highlight the angular momentum exchange and is
valid for any rotating particle and any profile of the electric
field. Motivated by the rovibrational spectroscopy, we derive
the general selection rules for the relevant optical fields. In
Sec. IV, we consider Laguerre-Gaussian beams and study
the impact of electric field gradients on the OAM transfer
to the molecular (internal) rotation. We infer scenarios in
which vortex beams offer an advantage over the nontwisted
light. In Sec. V, we calculate transition rates of rovibrational
transitions. In Sec. VI, we suggest a prototypical experimental
scheme that might be capable of measuring the changes to
the rovibrational spectrum, induced by the OAM of light. We
conclude the paper with a summary of possible extensions and
applications of our theory in Sec. VII.

II. MOLECULAR MULTIPOLE MOMENTS

The principal analytical tool for studying the interaction
of particles with optical fields is the multipole expansion
[29–31]. Within this paradigm, the electromagnetic field is
considered to interact with the multipole moments of the en-
tire particle rather than its individual constituents, like nuclei
and electrons in a molecule. In the case of the rovibrational
spectroscopy, the accuracy of this expansion is assured by
the immense separation of particle and field lengthscales.
For instance, for the carbon monosulfide (CS) molecule, the

wavelength corresponding to the lowest vibrational transition
(ν = 0 → 1) is λvib ≈ 8 µm, while the bond length is a ≈
1.5 Å [32]. With the appropriate calculation of multipole mo-
ments, the multipole expansion can be exact, as demonstrated
in Ref. [33] for Mie scattering. The multipole expansion does
not eliminate any complexity from the general problem of the
light-matter interaction. Instead, it provides a simple analyti-
cal framework for the interaction of the field with multipoles,
which embed the internal structure of the particle.

Motivated by rovibrational spectroscopy, we consider a
nonmagnetic molecule and define the dependence of its elec-
tric multipole moments on the rotation and internal vibrations.
To keep our model simple, we omit other field-induced
displacements of intramolecular charges, like electronic tran-
sitions. Although we focus on the particular case of molecules,
our idea applies to small particles in general. Following our
example, one can add other degrees of freedom to the molec-
ular model or adapt the model to describe nanostructures or
electronic transitions in atoms (see Appendix A). Notably,
our model does not aim at replacing state-of-the-art quan-
tum chemistry methods for calculating multipole moments. It
rather provides a simple analytical formulation that is built on
top of these ab initio calculations.

We begin by considering a body-fixed reference frame,
which we herewith call the molecular frame. In particular,
we consider the coordinate axes, coaligned with the molecular
orientation �̂mol and with the origin at its center of mass. The
orientation of the molecule is uniquely defined in a way that
respects the symmetries of the molecular point group Gmol.
The mathematical apparatus behind this process is summa-
rized in Appendix B. In the molecular frame, we suggest
an effective model for the molecular multipole moments. In
particular, we introduce a charge distribution ρ(r′) on a sphere
of an infinitesimally small radius χ → 0, centered at the
molecular frame origin [see Fig. 1(a)]. We expand ρ(r′) in
terms of the real-valued spherical harmonics

ρ(r′) =
∑
λ,μ

αλ,μYλ,μ(�′)δ(r′ − χ )/χλ+2, (1)

where λ = 1, 2, . . . , |μ| � λ, r′ = {r′, θ ′, φ′} = {r′,�′} are
the molecular-frame spherical coordinates, and the real-
valued harmonics Yλ,μ(�′) are defined as

Yλ,μ(�′) =

⎧⎪⎨⎪⎩
i(Yλ,μ(�′) − Y ∗

λ,μ(�′))/
√

2, μ < 0,

Yλ,0(�′), μ = 0,

(Yλ,−μ(�′) + Y ∗
λ,−μ(�′))/

√
2, μ > 0,

(2)

where Yλ,μ(�′) are the complex-valued spherical harmonics
with the Condon-Shortley phase [34].

The choice of the charge distribution (1) is not accidental.
Harmonics Yλ,μ(�′) form the complete basis on the sphere,
parametrized by the angle �′. The expansion coefficients
αλ,μ, called spherical multipole moments [29], fully reflect
the structure of the molecular (symmetry) point group Gmol,
as discussed in Ref. [35]. For instance, for a heteronuclear
diatomic molecule, like CS, αλ,μ �=0 = 0. Note that the λ = 0
term is excluded from Eq. (1), as we restrict our analysis to the
particles of zero net charge. In an experiment, it is practical
to define axial multipole moments, like the Cartesian dipole
moment components dx, dy, and dz. They can be mapped

033277-2



THEORY OF ANGULAR MOMENTUM TRANSFER FROM … PHYSICAL REVIEW RESEARCH 6, 033277 (2024)

(a)

(b)

(c)

FIG. 1. Outline of the effective model for molecular multipole
moments. (a) At equilibrium, the molecular point group Gmol is
described by spherical multipole moments αλ,μ that can be ob-
tained experimentally or via ab initio calculations. We encode these
multipole moments into a charge distribution ρ(r′) on a sphere
with a radius χ → 0 in the molecular frame (left). The corre-
sponding laboratory-frame charge distribution ρ(r, �̂mol) can be
obtained using the rotation operator D̂(�̂mol), where �̂mol is the
molecular orientation operator (right). (b) The spherical multipole
moments αλ,μ can be directly mapped to axial multipole moments,
as exemplified here by the quadrupole moment matrix Qi, j , where
i, j ∈ {x, y, z}. (c) The quadrupole moment matrix Qν,ν′

i, j , associated
with the vibrational transition ν → ν ′, can be calculated numerically
using DFT. For the CS molecule, we obtain the adiabatic potential
energy curve E vib(q) (markers) and the associated eigenenergies
E vib

ν (dashed lines) and eigenstates ψν (q) (shades), where q is the
vibrational coordinate. Both the spectrum and eigenstates are asym-
metric with respect to the equilibrium internuclear distance qeq. Inset:
The coordinate dependence of the quadrupole moment Qzz(q). To
obtain transition quadrupole moments, we calculate the expecta-
tion values of Qzz(q) with respect to different eigenstates ψν(ν′ )(q)
[see Eq. (5)].

to αλ,μ by integrating the charge distribution ρ(r′) with the
Cartesian tensor of a rank λ.1 For instance, for the given dipole
moment vector d = {dx, dy, dz}, the condition⎛⎝dx

dy

dz

⎞⎠ = lim
χ→0

∫
ρ(r′)

⎛⎝x′ ≡ r′ sin θ ′ cos φ′
y′ ≡ r′ sin θ ′ sin φ′

z′ ≡ r′ cos θ ′

⎞⎠d3r′ (3)

yields {α1,−1, α1,0, α1,1} =
√

3
4π

{dy, dz, dx}. Similar map-
pings can be derived for all higher-order multipole moment
tensors, e.g., quadrupole, as shown in Fig. 1(b). When cal-
culating the corresponding integrals, which are similar to
Eq. (3), the denominator 1/χλ+2 in Eq. (1) balances out the
χ contributions stemming from the Cartesian tensor1 and Ja-
cobian, assuring that the multipole moments are finite in the
limit χ → 0.

To transform the effective charge distribution ρ(r′) into
the laboratory frame distribution ρ(r, �̂mol), one needs to cast
the molecular-frame spherical harmonics (of the angle �′) in
terms of the laboratory-frame angle �, using the rotation rule

Yλ,μ(�′) = D̂(�̂mol)Yλ,μ(�) =
∑

ζ

Dλ
ζ ,μ(�̂mol)Yλ,ζ (�), (4)

where D̂(�̂mol) is the rotation operator that connects
the molecular and laboratory frames [see Fig. 1(a)], and
Dλ

ζ ,μ(�̂mol) are the irreducible representations of the molec-
ular rotation group (see Appendix B). Provided that the
spherical multipole moments αλ,μ already embed the symme-
tries of the molecular point group Gmol, when applying the
transform to the distribution (1) one can simply use Wigner
D-matrices [34] in Eq. (4).

In addition to reflecting the point group Gmol [35], multi-
pole moments also describe the longitudinal geometry of the
molecule [36], including its vibrations. In particular, numer-
ous studies have shown that the dipole [37,38] and quadrupole
[39] moments are different in the ground and excited vi-
brational states. The vibrational dependence of multipoles is
difficult to formalize in the case of an arbitrary polyatomic
molecule. One requires an accurate model of the coupling
between molecular rotations and different vibrational exci-
tations, like the Watson Hamiltonian [40,41], discussed in
Appendix A. Apart from complicating the definition of the
molecular orientation �̂mol (see Appendix B), the rovibra-
tional coupling effectively mixes light-induced excitations of

1We define the multipole moment of an order 2λ as:

Oλ
i1,i2,...,iλ

= lim
χ→0

∫
d3rρ(r)(ri1 ri2 ...riλ ) ,

where (ri1 ri2 ...riλ ) is the non-traceless Cartesian tensor of a rank
λ. Standard references, such as Refs. [29,32], include a detracer in
the definition of a multipole moment. For instance, to define the
quadrupole moment, inside the integral, they would use the trace-
less tensor: (3ri1 ri2 − |r|2δi1,i2 ), where δi1,i2 is the Kronecker delta,
instead of the non-traceless one: (ri1 ri2 ). Therefore, when applying
our framework to the values of multipole moments, obtained using
numerical methods, one needs to make sure that the mapping (3) uses
the same definition as the numerical method.
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the molecule, which severely complicates the analysis of the
AM exchange, as explained in Sec. III. For this reason, we
restrict our focus only to certain molecules. In particular, we
assume that symmetries of the molecule in all vibrationally
excited states form the same point group Gmol as in the ground
state, which makes it possible to decouple rotations and vibra-
tions. Nonetheless, as discussed in Sec. VI, we still account
for the shift in rovibrational energies due to this coupling.

After separating vibrations from rotations, vibrational tran-
sition multipole moments in the molecular frame can be ob-
tained using numerical ab initio methods [42,43]. In Fig. 1(c),
we present our calculation for the CS molecule, which has
a single vibrational mode. Our analysis is based on the
StoBe-deMon implementation [44] of density functional
theory [45]. By using the local Perdew-Wang exchange-
correlation potential of Ref. [46] and constraining the Kohn-
Sham orbitals [45,47] to be rotationally invariant around the
interatomic axis, we obtain the adiabatic potential energy
curve Evib(q) (markers). Here the vibrational coordinate q
is the shift of the internuclear distance from its equilibrium
value qeq ≈ 1.552 Å. The resulting curve can be reasonably
approximated by the anharmonic Morse potential (solid line).
We also calculate the vibrational levels Evib

ν (dashed lines)
and the corresponding wave functions ψν (q) (shades), which
are asymmetric with respect to the equilibrium coordinate
qeq. In the inset of Fig. 1(c), we plot the dependence of
the quadrupole moment Qzz on the vibrational coordinate q
(markers), which has a nonlinear profile (cf. solid line). The
transition quadrupole moment matrix can be straightforwardly
obtained by calculating the integral

Qν,ν ′
i, j =

∫
ψ∗

ν ′ (q)Qi, j (q)ψν (q)dq, (5)

where i, j ∈ {x, y, z}.
Finally, we summarize our model using the particular ex-

ample of a heteronuclear diatomic molecule, like CS. Due to
the U1 symmetry of such a molecule, the dipole moment vec-
tor d = {0, 0, d̂vib

z } and the quadrupole moment matrix Qi, j =
−Q̂vib

z,z diag{1/2, 1/2,−1}, where d̂vib
z and Q̂vib

z,z are operators
with respect to molecular vibrational states. Omitting all the
higher multipole moments, the effective charge distribution
reads

ρdiatomic
(
r, d̂vib

z , Q̂vib
zz , �̂mol

)
=
∑

μ

d̂vib
z Y1,μ(�̂mol)Y1,−μ(�)

δ(r − χ )

χ3

+
∑

μ

3

2
Q̂vib

z,z Y2,μ(�̂mol)Y2,−μ(�)
δ(r − χ )

χ4
. (6)

Note that multipole moment tensors d and Qi, j have a more
complicated structure for polyatomic (nonlinear) molecules.
Nonetheless, provided that the analytical or numerical depen-
dence of multipole moment tensors on internal degrees of
freedom is known, our multipole model of the light-matter
interaction is valid for any molecular geometry.

III. LIGHT-MATTER INTERACTION AND ANGULAR
MOMENTUM EXCHANGE

After specifying how the internal degrees of freedom of
a particle can be embedded into the definition of its multi-
pole moments, we define the Hamiltonian of the interaction
between the optical field and multipoles.

Our starting point is the nonrelativistic multipolar QED
Hamiltonian, which can be obtained from the Coulomb
gauge Hamiltonian by performing the unitary Power-Zienau-
Woolley (PZW) transformation [48–50]. Both the aforemen-
tioned Hamiltonians are fully identical for the on-energy-shell
processes, while the PZW Hamiltonian gives, arguably, a bet-
ter representation for the off-energy-shell processes [48,51].
In this study, we focus exclusively on the effects stemming
from electric fields. Thus, we intentionally leave out the
magnetic contribution to the PZW Hamiltonian. This implies
omitting both external as well as the emergent internal, i.e.,
induced by the redistribution of molecular constituents, mag-
netic fields. In systems where magnetic interactions play a
major role, they could be studied using a framework similar
to ours, as discussed in Sec. VII. The resulting Hamiltonian
reads H = H0 + Hint, where the light-matter interaction can
be expressed as

Hint = −
∫

(P (rEF) · E(rEF))d3rEF + H.c., (7)

where rEF is a coordinate in the laboratory frame. The Hamil-
tonian H0 describes the “unperturbed” system, i.e., the electric
field and particle that do not interact. In the case of a molecule,
this term includes the kinetic energy of the center of mass,
rotational, and vibrational molecular energies, which are dis-
cussed in Sec. VI, as well as the energy of the electric field

EEF = ε0

2

∫
|E(rEF)|2d3rEF, (8)

where ε0 is the vacuum permittivity. Following common prac-
tice, we also put the infinite self-energy term

∫ |P (rEF)|2d3rEF

into H0. The divergence of this integral, its origin, and the
remedy are discussed in Ref. [51].

To define the polarization field P (rEF), we begin with the
polarization PPZW(rEF) of the PWZ Hamiltonian. It provides
the exact description of the generic system of N point-charges

PPZW(rEF) =
N∑

i=1

qiri

1∫
0

dη δ(rEF − R − ηri ), (9)

where qi and ri are the charges and their coordinates in
the center-of-mass reference frame, and R is the center-of-
mass position in the laboratory frame. This relation can be
straightforwardly generalized to describe the polarization field
P (rEF), generated by the continuous charge distribution ρ(r),
introduced in Sec. II,

P (rEF) = lim
χ→0

∫
d3r ρ(r)r

1∫
0

dη δ(rEF − R − ηr). (10)
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Substituting the polarization field (10) into Eq. (7), we obtain

Hint = − lim
χ→0

∫
d3r ρ(r)

1∫
0

dη (r · E(R + ηr)) + H.c. (11)

To proceed, we expand the spatial electric field profile
E(R + ηr) around the center-of-mass position R, provided
r 
 R. Unlike the previous studies [25–28] that considered
the Cartesian Taylor expansion, we employ the spherical ex-
pansion [52–54]

E(R + ηr) = exp(ηr · ∇R)E(R) =
∑
n,l,m

cn,l (ηr)2n+lY ∗
l,m(�r)[Rl,m(∇R)E(R)], (12)

where cn,l = π2l+2κ2n(l+n)!
n!(2l+2n+1)! , n, l � 0, |m| � l , and κ is the wave number of the electric field. Rl,m(∇R) are the solid harmonics

of the gradient operator ∇R, also known as spherical tensor gradient operators. Their detailed overview is the subject of
Refs. [52–54]. For the sake of simplicity, we refer to the term [Rl,m(∇R)E(R)] as the spherical gradient. For differentiable
optical fields E(R) and specific values of l and m, it can be calculated analytically, after expanding the solid harmonics in
Cartesian coordinates,

Rl,m(∇R) =
√

(2l + 1)(l + m)!(l − m)!

4π

∑
k

(−∂X − i∂Y )m+k (∂X − i∂Y )k∂ l−m−2k
Z

2m+2k (m + k)!k!(l − m − 2k)!
, (13)

where ∂X , ∂Y , and ∂Z are the Cartesian components of the gradient vector ∇R, max(−m, 0) � k � � l−m
2 �, with �x� being the

floor function yielding the largest integer less than x.
We substitute the electric field expansion (12) into the Hamiltonian (11). We consider the rotating-frame charge distribution,

given by Eq. (1), and apply the rotation rule (4) to obtain the distribution ρ(r, �̂) in the laboratory coordinates. After integrating
over η and r, and taking the limit χ → 0, we obtain the interaction Hamiltonian (for details, refer to Appendix C)

Hint =
∑

l,m,σ,μ

γl,m,σ α̂l+1,μ[Rl,m(∇R)Eσ (R)]
∣∣
R=R̂

⎧⎪⎪⎨⎪⎪⎩
Dl+1

m−σ,μ(�̂) − (−1)μDl+1
m−σ,−μ(�̂), μ < 0,√

2Dl+1
m−σ,0(�̂), μ = 0

Dl+1
m−σ,−μ(�̂) + (−1)−μDl+1

m−σ,μ(�̂), μ > 0,

+ H.c., (14)

where γl,m,σ = c0,l Cl,m
l+1,m−σ ;1,σ

/
√

4l2 + 6l + 1, with

CL,M
l,m;l ′,m′ being the Clebsch-Gordan coefficients [34], and

{E±(R), E0(R)} ≡ {[Ex(R) ± iEy(R)]/
√

2, Ez(R)} are the
circular polarization components of the electric field
E(R). Operators R̂, α̂l+1,μ, and �̂ act, respectively, on
the center-of-mass, vibrational, and rotational states of the
particle.

The Hamiltonian (14) is the major result of our model.
Provided all of its building blocks can be properly defined,
it is valid for any rotating particle and any profile of the
optical field. The main idea behind Hint is to absorb most of
the light-matter interaction’s complexity into the definitions
of multipole moments α̂l+1,μ and electric field components
Eσ (R). Afterwards, the resulting expression (14) by its design
reveals the angular momentum exchange and the correspond-
ing selection rules. Notably, the Hamiltonian (14) describes
only the coupling of light to rotational and vibrational degrees
of freedom that are decoupled from one another. In the case,
when the rotations and vibrations of the particle are coupled,
one needs to consider the rovibrational Hamiltonian HRV

as an additional perturbation to the aforementioned Hamil-
tonian H, which would intermix the excitations, induced
by Hint.

Motivated by rovibrational spectroscopy, we introduce two
assumptions that are characteristic of the optical fields used
in such experiments and substantially simplify the deriva-
tions. First of all, we restrict ourselves to the electric field
E(R) of a non-tightly-focused beam. It allows us to use the

small-angle approximation, i.e., to separate the polariza-
tion vector and spatial profile of the electric field: Eσ (R) =
εσ E (R). The circular polarization σ and spatial profile E (R)
are associated, respectively, with the spin and OAM of light
[15,16]. In the case of a tightly focused beam, where the focal
spot spans just a few wavelengths, these two angular momenta
are strongly coupled [22,23], which noticeably complicates
the analysis of the AM transfer from the electric field to
the particle. Besides that, the selection rules for tightly fo-
cused beams depend on the particularities of the electric field
and cannot be generalized. In particular, such a calculation
requires obtaining focal fields that depend on nonanalytic
integrals of the moments of the apodization function [55].
Nevertheless, tight focusing was shown to improve the OAM
transfer, as discussed in Sec. VII. This renders the character-
ization of the interaction of such light sources with matter an
important future extension to our theory.

As the second simplification, we assume that the optical
field has a characteristic axis. For a beam, one can consider the
time average of the Poynting vector and, for a standing wave
in a cavity, the axis would be one of the cavity’s symmetry
axes. We assume that the characteristic field axis is oriented
along the laboratory frame z-axis. By choosing the specific
coordinate system with respect to the electric field orientation,
we explicitly define quantization axes for the AM operators,
such as L̂z. Therefore, the particular selection rules that we
derive are only valid in the chosen coordinates. The selection
rules for a different orientation of coordinate axes can be
obtained from our results using the rotational transformation
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(4). In addition, we formulate the selection rules in terms
of magnetic quantum numbers, i.e., eigenvalues of the L̂z

operator. Since beams and cavity fields are often cylindri-
cally rather than spherically symmetric, they do not have
a well-defined value of the azimuthal quantum number (L̂

2

eigenvalue).
To derive the selection rules, we consider cylindrical co-

ordinates R = {R,�, Z} and expand the electric field profile
into Fourier series with respect to the polar angle �: E (R) =∑

M EM (R, Z )eiM�. Each term in the series is an eigenvalue of
the L̂z,� = −ih̄ ∂/∂� operator with the corresponding mag-
netic quantum number M. The spherical gradient can be
straightforwardly calculated using Eq. (13),

[Rl,m(∇R)E (R)] =
∑

M

ẼM,l (R, Z )ei(M+m)�. (15)

Applying the spherical gradient operator changes the Fourier
amplitudes: EM (R, Z ) → ẼM,l (R, Z ), and it shifts the mag-
netic quantum numbers: M → M + m.

The nonzero spherical gradient (15) for certain l and m
represents the transfer of M + m quanta of angular momentum
from the beam to the center-of-mass motion (R̂). The ability
to directly associate each term of the Taylor expansion to a
specific angular momentum transfer process is the main ben-
efit of using the spherical expansion in Eq. (12) instead of the
Cartesian one. Similarly, Wigner D-matrices Dl+1

m−σ,±μ(�̂mol)
describe the transfer of σ -m quanta of AM from the electric
field to the molecular (internal) rotation (�̂mol). Note that for
the given value of l , the angular momentum transfer to the
internal rotation is bounded: |σ − m| � l + 1. This happens
because spherical harmonics, used in the expansion (1), are
associated with the angular momentum λ = l + 1, and this
property is inherited by the spherical multipoles α̂l+1,μ. The
aforementioned selection rules, summarized in Fig. 2, satisfy
the angular momentum conservation: M + σ quanta of AM of
the electric field get redistributed into M + m quanta of center-
of-mass AM and σ − m quanta of molecular AM. Apart from
the angular momentum exchange, Eq. (14) infers two major
corollaries.

If one considers only the electric-dipole contribution
to the light-matter interaction, the remaining terms in the
Hamiltonian (14) are those with l = 0. The spherical gradient
[R0,0(∇R)E (R)]|R=R̂ ∝ E (R̂) is independent of summation
indices and can be extracted outside the sum. As a result,
the electric field profile E (R̂) is unable to influence molecular
rotational transitions. In this case, molecular transitions are
affected only by the circular polarization σ , i.e., spin of light.
This result is in agreement with previous studies [25,27]. In
fact, for a diatomic molecule, described by the charge density
(6), the contribution to the light-matter interaction from the
electric dipole reads

Hdip
int = −

√
4π

3
d̂vib

z E (R̂)
∑

σ

εσY1,σ (�̂) + H.c., (16)

which is identical to the result of Ref. [27]. In the case of a
tightly focused beam, the polarization-dependent electric field
cannot be extracted outside the sum in Eq. (16). As a result,
apart from the spin, the spatial dependence of the polarization,
which is characteristic of the spin and OAM interaction, also

FIG. 2. Summary of the angular momentum exchange rules re-
vealed by the Hamiltonian (14). This general pattern applies to
any beam with an insignificant spin-orbit coupling of light. Top:
Within the electric-dipole interaction, only the spin σ of the optical
field E(R) can be transferred to the molecular (internal) rotation,
described by the angle �̂. OAM of the beam, if present, is fully
absorbed by the center-of-mass motion (R̂). Bottom: Within higher
orders of the light-matter interaction, OAM of the electric field can
be transferred to the molecular rotation. Within the 2l+1-pole inter-
action, this transfer is limited to l quanta at most and the transfer
probability is determined by the spherical gradient (13) of the electric
field.

affects the molecular (internal) rotation at the dipole level of
interaction.

In contrast to the dipole case, if one considers the electric-
quadrupole interaction, i.e., terms with l = 1 in Eq. (14), the
spherical gradient [R1,m(∇R)E (R)]|R=R̂ is coupled to the D-
matrix of the molecular orientation �̂ through the summation
index m. In this case, apart from the polarization σ , molecular
rotational transitions are also determined by the gradients of
the electric field, which are thoroughly discussed in Sec. IV.
Gradients with m = ±1 represent the transfer of a single
quantum of orbital angular momentum to the molecular (in-
ternal) rotation (see Fig. 2). This has also been demonstrated
in previous works [25–27], albeit for specific molecular and
electric field structures. For a diatomic molecule, the electric-
quadrupole interaction term is given by

Hquad
int = π

√
2/3 Q̂vib

z,z

∑
mσ

εσC1,m
2,m−σ ;1,σY ∗

2,m−σ (�̂)

× [R1,m(∇R)E (R)]|R=R̂ + H.c. (17)

033277-6



THEORY OF ANGULAR MOMENTUM TRANSFER FROM … PHYSICAL REVIEW RESEARCH 6, 033277 (2024)

Overall, Eqs. (16) and (17) demonstrate the compatibility
of our general treatment with the previous findings [25–28].
Beyond merely generalizing, our theory provides a more
streamlined pathway to the selection rules and clearly il-
lustrates that within the electric-quadrupole (as well as the
higher-order) interaction, the spatial profile of the beam,
hence its OAM, affects the selection rules on molecular ro-
tational transitions.

IV. LAGUERRE-GAUSSIAN BEAMS
AND THE ENHANCEMENT OF ROTATIONAL

TRANSITIONS

To analyze in detail how the spatial profile of the elec-
tric field E (R) affects molecular rotational transitions, one
needs to choose the specific beam profile. We consider an
electric field that can be expressed as a superposition of
Laguerre-Gaussian (LG) modes. These modes are solutions
to the paraxial Helmholtz equation in cylindrical coordinates
R = {R,�, Z}. The magnitude of the electric field in a LG
mode is given by [17]

EP,M (R) = γP,M

(
R

ωZ

)|M|
exp

[
− R2

ω2
Z

]
e−iM�e−iκZ

×
{

ω0

ωZ
exp

[
− i

(
κR2

2RZ
− ψZ

)]
L|M|

P

(
2R2

ω2
Z

)}
,

(18)

where κ = 2πn/λbeam is the wave number, n is the refrac-
tion index, λbeam is the wavelength of light, and L j

i (x) with
i = 0, 1, 2, . . . and j ∈ R are the generalized Laguerre poly-
nomials. The beam is focused at Z = 0, with the waist
function ωZ = ω0

√
1 + (Z/ZR)2 along the z-axis, where ω0

is the waist at the focus and ZR = πω2
0n/λbeam is the

Rayleigh length. The radius of the wavefront curvature RZ =
Z[1 + (ZR/Z )2] and the Gouy phase ψZ = (2P + |M| +
1) atan(Z/ZR). The electric field (18) is normalized in the
sense of the Dirac δ function with respect to the axial coordi-
nate Z , and to unity with respect to coordinates R and �, with
the normalization constant γP,M =

√
2|M|+1P!/[π (P + |M|)!].

According to Ref. [17], the angular momentum density
of the electric field (18) precesses about the beam axis. Its
projection on the z-axis is well defined and depends only
on the beam parameters, but its projection on the transverse
plane changes its amplitude and orientation depending on
coordinates R and �. As a consequence, the total angular mo-
mentum of the beam, in a sense of the L̂

2
operator eigenvalue,

cannot be defined. Instead, the electric field EP,M (R) is an
eigenfunction of the L̂z,� operator, defined in Sec. III, with the
corresponding magnetic quantum number M. Equation (18)
with M = 0 describes a Gaussian beam without OAM, and it
serves within this manuscript as a benchmark representation
of the nonhelical light.

As discussed in Sec. III, the leading term in the Hamilto-
nian (14), which describes the OAM transfer to the molecular
(internal) rotation, is the electric-quadrupole interaction, i.e.,
the general case of Eq. (17). In what follows, we choose the
absolute value of the spherical gradient |R1,m(∇R)EP,M (R)|
with m = ±1 as the quantitative measure of this OAM

FIG. 3. Spherical gradients [R1,±1(∇R)E (R)] quantify the OAM
transfer to the molecular (internal) rotation. (a) Dependence of
the spherical gradients on radial (R) and axial (Z ) coordinates of
the molecular center-of-mass, calculated for the Laguerre-Gaussian
beam profile E0,M (R). For the optical field with nonzero helicity
M = 1, the gradient is substantially enhanced around the central
(axial) focal point of the beam (|R| � ω0, |Z| � ZR ), when compared
with the nontwisted light (M = 0). This enhancement is present
only if sgn(m) = sgn(M ). (b) Spherical gradients (denoted here by
the prime symbol) of the four main components of the Laguerre-
Gaussian mode (18). The left (right) half of each panel corresponds
to a beam without (with) the OAM. In all cases, the results are
equivalent for both m = ±1 gradients. In contrast to the nonhelical
light, gradients of the in-center radial distribution (leftmost panel)
and spiral beam phase (third panel from the left) have sizable ampli-
tudes in the case of a vortex beam. Even though m = ±1 gradients
are equivalent for all individual components, their corresponding
contributions constructively interfere for mM > 0, while they de-
structively interfere for mM < 0 resulting in the overall enhancement
and suppression observed in (a).

transfer. For simplicity, we abuse the notation R = R̂ while
preserving its meaning in the Hamiltonian (14), namely that R
is the coordinate of the molecular center of mass. The action
of the spherical gradient on the electric field EP,M (R) is readily
given by Eq. (15), where the transformed Fourier amplitude
can be calculated using Eq. (13). Note that we disregard
the gradient with m = 0, as it describes a different angular
momentum transfer process, namely the transfer of the entire
OAM of the field to the center-of-mass motion, accompanied
by the transfer of the spin of light to the molecular rotation
(see Fig. 2).

In Fig. 3(a), we plot the dependence of spherical gra-
dients |R1,±1(∇R)E0,M (R)| on (cylindrical) center-of-mass
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coordinates R and Z . For simplicity, we demonstrate our
findings for P = 0; however, other values of P display
qualitatively similar physics. As expected, the shape of the
gradient profile roughly follows the shape of the beam profile
(18). We observe that, for the optical field with M = 1, the
gradient is substantially enhanced, in comparison with the
nontwisted light with M = 0. The enhancement is present
only if sgn(m) = sgn(M ). In the opposite case, the OAM
transfer is only marginally increased, due to the different nor-
malization constants γP,M and radial distributions for helical
and nonhelical beams. Notably, the enhancement is localized
around the center (axis) and focus of the beam, i.e., in the
region with |R| � ω0 and |Z| � ZR. This indicates that the
experimental observation of such an enhancement would re-
quire the molecules to be placed around this region in the
beam. Alternatively, if placement of molecules is difficult to
control, the experiment should be designed to predominantly
collect the light that transmits through this region. The latter
experimental configuration is further discussed in Sec. VI.

To figure out the origin of the observed enhancement, we
consider different fundamental components of the electric
field (18) separately. In particular, we distinguish between
the spiral beam phase e−iM�, the in-center radial distribution
(R/ωZ )|M|, relevant for R 
 ω0, the off-center exponential
decay e−R2/ω2

Z , relevant for R � ω0, as well as the wavefront
curvature e−iκR2/(2RZ ). The nonzero curvature of the wave-
front becomes relevant in the out-of-focus regime, i.e., when
Z � ZR. It effectively deforms the radial distribution of the
optical field in the transverse plane at a given axial coordinate
Z , leading to a change in the gradient.

In Fig. 3(b), we plot the contributions to the spherical
gradient |R1,±1(∇R)E0,M (R)| for each of the aforementioned
four components of the electric field (18). For brevity, we de-
note the spherical gradient by the prime symbol. As expected,
gradients of the exponential decay and wavefront curvature
term are not sensitive to the change in beam vorticity M
and only change marginally. The in-center radial distribution
(power term) and spiral phase, in contrast, are absent for the
nontwisted light, but their gradients have sizable amplitudes
in the case of a helical beam. The gradients, presented in
Fig. 3(b), are identical for both values of the index m = ±1.
However, the way these contributions add up to form the
overall spherical gradient |R1,±1(∇R)E0,M (R)| is different.
The relative phase between the terms depends on the index m.
If sgn(m) = sgn(M ), all contributions are “in-phase,” which
results in the enhancement of the spherical gradient, depicted
in Fig. 3(a).

Our findings indicate that the overall magnitude of the
OAM transfer is an interplay between spherical gradients of
the aforementioned fundamental components of the optical
field. To illustrate this fact in a simple way, we calcu-
late the spherical gradient |R1,±1(∇R)E0,M (R)| analytically.
The expression for the full electric field profile (18) is too
cumbersome and we omit it here. Instead, we consider an
approximation to the electric field (18),

E foc
M (R) = γ0M (R/ω0)|M|e−R2/ω2

0 e−iM�e−iκZ . (19)

This corresponds to a LG beam with P = 0 within the in-focus
approximation, which is valid when Z 
 ZR, thus ωZ → ω0,

1/RZ → 0, and ψZ → 0. We choose this approximation be-
cause, as indicated in Fig. 3(a), the enhancement of the
spherical gradient occurs in the focal region of the beam.
Unlike previous studies [26,27], approximation (19) includes
the exponential decay, as it is needed for an accurate analysis.
The comparison between different approximations is given in
Appendix D. The spherical gradients of E foc

M (R) read[
R1,±1(∇R)E foc

M (R)
]

= −
√

3

8π
e±i�

[
M

R
±
( |M|

R
− 2R

ω2
0

)]
E foc

M (R). (20)

Looking back at the full electric field profile (18), the three
terms in the square brackets of Eq. (20) correspond, in this
order, to spherical gradients of the spiral beam phase, in-
center radial distribution, and off-center exponential decay.
The former two contributions are absent in the case of a
beam with zero vorticity. In the case of a vortex beam, they
either interfere constructively (if mM > 0) or destructively (if
mM < 0). Notice that the latter term is present for a Laguerre-
Gaussian beam with any value of M, implying that, in the
electric-quadrupole order of the light-matter interaction, the
OAM transfer to the molecular (internal) rotation is happening
for both helical and nonhelical light.

Overall, we conclude that the sizable enhancement of
the spherical gradient, which is the quantitative indicator of
the OAM transfer to the molecular rotation, is enabled by the
components of the optical field that are present only in beams
with nonzero helicity.

V. ROVIBRATIONAL TRANSITION RATES

The enhancement of the OAM transfer from the beam to
the molecular (internal) rotation, discussed in Sec. IV, could
be experimentally verified using rovibrational spectroscopy.
Here, we calculate the rates of the corresponding rovibrational
transitions.

We assume that the state of a single molecule
can be described by the following tensor product:
|�〉 = |ψvib

ν 〉|ψ rot
J,N1,N2

〉|ψCM
RCM

〉. This implies that we neglect
weak correlation effects, like correlations stemming from
the rovibrational coupling (see Appendix A). We leave
the vibrational state |ψvib

ν 〉 implicit, since we calculate the
transition multipole moments directly using numerical
methods, as discussed in Sec. II. The rotational state
|ψ rot

J,N1,N2
〉 = |J, N1, N2〉 is a generic state in the angular mo-

mentum basis. In particular, it is the simultaneous eigenstate
of the laboratory-frame Ĵ

2
and Ĵz, and the molecular-frame Ĵ ′

z
angular momenta of the molecule, with the eigenvalues J , N1,
and N2, respectively. The corresponding wave function in the
basis of molecular angle states |�mol〉, i.e., eigenstates of the
molecular orientation operator �̂mol, reads〈

�mol

∣∣ψ rot
J,N1,N2

〉 = DJ
N1,N2

(�mol), (21)

where DJ
N1,N2

(�mol) are the irreducible representations of
the molecular rotation group (see Appendix B for details).
Provided that the definition of �mol already embeds the
molecular (symmetry) point group Gmol, one can simply use
the Wigner D-matrices as representations.
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For most molecules at relevant experimental temperatures,
the thermal de Broglie wavelength is significantly smaller
than the wavelength of the probe light. For instance, for a CS
molecule at T = 20 K, the de Broglie wavelength is λdB =
h
√

β/(2πM) ≈ 0.6 Å, where M is the molecular mass, and
β = 1/(kBT ) is the Boltzmann factor with the Boltzmann
constant kB. At the same time, the wavelength corresponding
to the lowest vibrational transition is λbeam ∼ 8 µm. For a non-
tightly-focused beam, like the LG beam (18), the beam waist
is larger than the wavelength, leading to ω0 > λbeam � λdB.
Therefore, the wave function that describes the center-of-mass
position inside the beam can be approximated by the three-
dimensional δ-function〈

R
∣∣ψCM

RCM

〉 = δ(3)(R − RCM), (22)

where |R〉 is an eigenstate of the center-of-mass position op-
erator R̂.

The amplitude of the transition between the initial
|�i(Ri

CM)〉 and final |� f (R f
CM)〉 molecular states with respect

to the full light-matter interaction Hamiltonian (14) reads

Mi→ f
(
Ri

CM, R f
CM

) = 〈
� f
(
R f

CM

)∣∣Hint

∣∣�i
(
Ri

CM

)〉
=
∑
lmμ

Ivib; l,μ
ν,ν ′ ICM; l,m

Ri
CM,R f

CM

I rot; l,m,μ

J,N1,N2,J ′,N ′
1,N

′
2
,

(23)

where states |�i( f )(R
i( f )
CM )〉 are characterized by sets of

quantum numbers: i( f ) ≡ {ν (′), J (′), N (′)
1 , N (′)

2 }, and the vibra-
tional integral Ivib; l,μ

ν,ν ′ = 〈ψvib
ν ′ |αl+1,μ|ψvib

ν 〉 can be expressed
through the transition multipole moments, as discussed in
Sec. II. The rotational and center-of-mass integrals are

I rot; l,m,μ

J,N1,N2,J ′,N ′
1,N

′
2
=
[∑

σ

8π2

2l + 3
γl,m,σ εσC

J ′,N ′
1

l+1,m−σ ;J,N1

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

J ′,N ′
2

l+1,μ;J,N2
− (−1)μC

J ′,N ′
2

l+1,−μ;J,N2
, μ < 0,

√
2C

J ′,N ′
2

l+1,0;J,N2
, μ = 0,

C
J ′,N ′

2
l+1,−μ;J,N2

+ (−1)−μC
J ′,N ′

2
l+1,μ;J,N2

, μ > 0,

(24)

ICM; l,m

Ri
CM,R f

CM

= 〈
ψCM

R f
CM

∣∣[Rl,m(∇R)E (R)]
∣∣
R=R̂

∣∣ψCM
Ri

CM

〉 = δ(3)
(
Ri

CM − R f
CM

)[
Rl,m

(∇Ri
CM

)
E
(
Ri

CM

)]
. (25)

After defining the amplitude Mi→ f (Ri
CM, R f

CM), we obtain
the corresponding transition rate using Fermi’s golden rule

�i→ f
(
ω, Ri

CM, R f
CM

)
= 2π

h̄

∣∣Mi→ f
(
Ri

CM, R f
CM

)∣∣2δE (h̄ω − �Ei→ f ), (26)

where ω is the angular frequency of the photon that drives
the transition, and �Ei→ f = E f − Ei is the energy difference
between the initial and final states. The δ-function in Eq. (26)
denotes the density of energy states and has therefore the units
of inverse energy.

VI. POSSIBLE EXPERIMENTAL SCHEME

After defining the transition rates of molecular rovibra-
tional transitions, we proceed with a suggestion for the generic
proof-of-principle experimental scheme. The proposed setup
may be capable of revealing the enhancement of rovibrational
transition amplitudes induced by the nonzero vorticity of the
probe light.

We consider a vacuum chamber of characteristic length L
(along the z-axis) that contains molecules in the gas phase un-
der pressure p and at temperature T . As discussed in Sec. IV,
the OAM-induced rotational enhancement depends on the po-
sition of the molecular center of mass with respect to the beam
axis. For this reason, we suggest measuring the absorbance
of light in a spatially resolved manner. In particular, we pro-
pose measuring the ratio between the absorbed and incident
power for the molecules that reside within the optical path
of light that is collected by an adjustable circular aperture R̃0,
placed outside the chamber and centered on the beam axis. For
small chambers (L < ZR), such molecules are approximately

confined to the cylinder, described by the effective aperture
R0 [see Fig. 4(a)]. Note that due to the small average ther-
mal center-of-mass velocity of molecules, 〈vT 〉 ≈ √

3kBT/M,
their motion within the chamber is negligible on the timescale
of the photon propagation (≈ L/c). For instance, 〈vT 〉L/c ≈
44 nm for L = 15 cm and T = 20 K.

The experimentally observable absorbance A(ω) of pho-
tons with angular frequency ω can be calculated using Beer-
Lambert’s law [56]: A(ω) = 1 − exp ( − χtot(ω)), where the
total attenuation χtot(ω) = ∑

i, f χi→ f (ω), and χi→ f (ω) is the
attenuation associated with the single rovibrational transition
i → f , herewith referred to as a channel. Note that here, as
in Sec. V, indices i and f denote only the vibrational and ro-
tational quantum numbers. The single-channel attenuation is
defined as the integral χi→ f (ω) = ∫ L/2

−L/2 χ̃i→ f (ω, Z ) dZ . The
local attenuation at the position Z is the ratio χ̃i→ f (ω, Z ) =
P i→ f

abs (Z )/Iinc(Z ), where Iinc(Z ) is the energy transfer rate of
the incident electric field, given by

Iinc(Z ) = cε0

2

∫
SA

|E (R)|2 d2R, (27)

where
∫

SA
d2R ≡ ∫ R0

0 R dR
∫ 2π

0 d�, and P i→ f
abs (Z ) is the en-

ergy flux, i.e., energy transfer rate per unit length, absorbed
by molecules, undergoing the transition i → f and residing
in a thin section of the chamber (dZ ). The absorbed energy
flux is given by

P i→ f
abs

(
Zi

CM = Z
) = ρ0

ρB(Ei, T )

Z

×
∫

SA

d2Ri
CM

∫
R3

d3R f
CM

(
h̄ω �i→ f

(
ω, Ri

CM, R f
CM

))
, (28)
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FIG. 4. (a) Schematic of the proof-of-principle experiment to
reveal OAM-enabled selection rules. A beam with the focal waist
length ω0 passes through the molecular chamber of length L. The
transmitted light is collected by the aperture R̃0 outside the chamber.
If L ∼ ZR, most of the molecules that interact with the light, which
is collected by the aperture, are found within the cylinder, defined
by the effective aperture R0 (dotted line). (b) Matrices of the single-
channel attenuation χ

quad
i→ f (ωi→ f ) within the electric-quadrupole order

of the interaction. The rotational transitions |J, NJ〉 → |J ′, N ′
J〉 are

associated with the fundamental vibrational transition (ν = 0 →
ν ′ = 1) of the CS molecule. Compared to a nonhelical light (left),
a vortex beam (right) enables additional transitions with χ

quad
i→ f (ω) >

10−8, like those within the rotational O-branch (�J = 2, boxed).
(c) Absorbance spectrum A(ω) of CS molecules for parameters:
T = 20 K, p = 1 mbar, L = 15 cm, R0 = 150 µm, and ω0 = 400 µm.
The displayed frequency range corresponds to electric-quadrupole
transitions within the O-branch of the fundamental vibrational tran-
sition ωvib ≈ 1250 cm−1. OAM of light induces the substantial
enhancement of |�NJ | = 2 transition. The closest electric-dipole
transition (arrow) is far outside the given frequency range and does
not affect the signal. Transitions with different |�NJ | values are
separated as a result of applying a static field EStark = 7 kV/cm
along the z-axis. The ratio between the Stark-splitting of |�NJ | = 1
and 2 lines and the characteristic Doppler broadening for different
temperatures and amplitudes of the Stark field is presented in the
inset.

where ρ0 = βp is the equilibrium density of molecules,
ρB(Ei, T ) = exp(−βEi ) is the Boltzmann probability to oc-
cupy the initial state, and Z = ∑

i ρB(Ei, T ) is the canonical
partition function. The integral over the initial center-of-mass
position (Ri

CM) is two-dimensional and covers the effective
aperture R0 [see Fig. 4(a)]. The integral over the final position
(R f

CM) is three-dimensional and covers the whole space. At a
finite temperature T , spectral lines are broadened, so instead
of a δ-function, used in the definition of the transition rate
(26), we employ the Doppler-broadened line profile

δE (h̄ω − �Ei→ f )) → ρDB(ω,�Ei→ f , T )

=
√

βMc2

2π (�Ei→ f )2
exp

(
− βMc2(h̄ω − �Ei→ f )2

2(�Ei→ f )2

)
.

(29)

We consider the Doppler-broadened profile as it is relevant
to any experimental setting. For specific measurement setups,
other mechanisms, such as pressure broadening, might be-
come dominant and would need to be taken into account.

To demonstrate our findings, we consider a gas of
CS molecules with mass M = 44.076 amu at pressure
p = 1 mbar and temperature T = 20 K. The rotational state of
a linear molecule, like CS, can be described by two quantum
numbers {J, NJ} instead of three {J, N1, N2}, as required in the
case of an asymmetric molecule (see Appendix B). For the
molecular state, defined in Sec. V, the difference in energy
between the initial and final states �Ei→ f is the difference in
rotational and vibrational energies. The combined rotational-
vibrational energy for a linear molecule can be calculated
using the Dunham expansion [57] with coefficients for CS
provided in Ref. [58]. We consider irradiating molecules with
a Laguerre-Gaussian beam (18) with a width at focus ω0 =
400 µm. The beam is circularly polarized with ε−1 �= 0, i.e.,
σ = −1 in Eq. (14). The wavelength of light is close to the
fundamental vibrational transition of CS, i.e., the beam excites
the transition ν = 0 → ν ′ = 1 with the characteristic angular
frequency ωvib = 1250 cm−1. Note that, compared to Eq. (18),
the Rayleigh range in the experimental setup is given by ZR =
πω2

0/(λM2), where M2 is the beam quality factor [59]. For
a Laguerre-Gaussian beam, M2 ∼ 2|M| + 1. We calculate the
corresponding (vibrational) transition dipole |d0,1

z | = 0.156 D
and quadrupole |Q0,1

zz | = 0.234 D Å moments using density
functional theory, as described in Sec. II. In an actual experi-
ment, the transition multipole moments can also be measured
directly. Our numerical analysis has shown that the cham-
ber length L = 15 cm and the effective aperture R0 = 150 µm
maximize the overall transition amplitudes.

We focus on the electric-quadrupole order of the light-
matter interaction, described by transition amplitudes (23)
with l = 1. We plot single-channel attenuation matrices
χ

quad
i→ f (ωi→ f ), where h̄ωi→ f = �Ei→ f , for LG beams with

M = 0 and 2 in Fig. 4(b). To visually distinguish “forbidden”
and “allowed” transitions, we set the cutoff for the attenuation
to 10−8. Despite the fact that matrices for helical and nonheli-
cal light have very similar structure, our calculation reveals
additional “forbidden” rotational transitions, enabled by the
OAM of light. These transitions are a manifestation of the
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main argument of Sec. IV, namely that the nonzero helicity
of light can substantially enhance the OAM transfer to the
molecular (internal) rotation. From Fig. 4(b), one can notice
that the selection rules on the azimuthal quantum number
J remain the same for M = 0 and 2. In other words, �J
transitions are not modified by the OAM of light. As discussed
in Sec. IV, the electric field in a vortex beam is an eigenstate
of the L̂z,� operator, as it is cylindrically symmetric. Quantum
number J is the eigenvalue of the Ĵ2 operator and describes
the spherical symmetry of the molecular state. Since for the
molecule [Ĵz, Ĵ2] = 0, the beam, which induces an effective
Ĵz-interaction onto the molecule, is incapable of modifying the
spherical symmetry of molecular states.

The inability of a vortex beam to affect the selection rules
on the azimuthal quantum number J necessitates an addi-
tional requirement for the experiment. In particular, in the
aforementioned setup, molecular rovibrational energies are
degenerate with respect to the magnetic quantum number NJ .
This implies that, by means of the absorption spectroscopy,
one can only measure a weighted sum of single-channel at-
tenuations χ

quad
i→ f (ωi→ f ) with the same frequencies ωi→ f , i.e.,

the superposition of peaks for all possible �NJ ∈ [−J, J]. The
transition with �NJ = σ , which corresponds to the spin-only
transfer to the molecular (internal) rotation, is a few orders
of magnitude stronger than the transitions, related to the
OAM transfer. Mixing these transitions in the spectrum ren-
ders it impossible to distinguish between M = 0 and M �= 0
beams. The straightforward solution is to lift the degeneracy
of molecular energies with respect to NJ . For instance, this
can be done by applying a strong static electric field EStark

along the beam axis. Such a field induces the AC Stark shift of
rovibrational energy levels with different values of |�NJ |. The
rovibrational energies of the molecule in the presence of EStark

can be calculated by diagonalizing the Hamiltonian: Hmol =
HDun + HStark, where HDun is the Dunham expansion Hamil-
tonian, which is diagonal with respect to molecular rotational
states |J, NJ〉, and HStark = dzEStarkC

J ′,NJ
J,NJ ;1,0|J ′NJ〉〈JNJ |, where

CJ ′,NJ
J,NJ ;1,0 are the Clebsch-Gordan coefficients [34] and dz is the

equilibrium dipole moment at the given vibrational level.
We present the absorbance spectrum in Fig. 4(c). The

positions of spectral lines that correspond to rovibrational
transitions with �ν = 1 and �J = 2, associated with the
electric-quadrupole interaction (17), are marked by dotted
lines. Out of three peaks for |�NJ | = {0, 1, 2}, we observe
two: the higher peak corresponds to the spin-only transi-
tion with �NJ = σ and the lower peak corresponds to the
OAM transfer to the molecular (internal) rotation. As ex-
pected, the OAM-enabled peak is strongly suppressed for the
Gaussian beam with zero vorticity (M = 0). Another peak,
associated with the OAM transfer to molecular (internal)
rotation (with |�NJ | = 0), is not enhanced, as discussed in
Sec. IV, and is therefore indistinguishable in the vicinity of
the strong |�NJ | = 1 transition. The nearest �J = 1 tran-
sition, associated with the electric-dipole interaction (16),
is marked with an arrow. Even though it is fully saturated
(with A ≈ 1), it is sufficiently distant not to affect the signal
from quadrupole transitions. This large splitting between the
dipole and quadrupole transitions is a manifestation of the

rovibrational coupling, described by the Dunham expansion.
To achieve a visible splitting between spectral lines with
different |�NJ | values, we choose the Stark field amplitude
EStark = 7 kV/cm. In the inset of Fig. 4(c), we plot the ra-
tio between the splitting of |�NJ | = 1 and 2 spectral lines,
induced by the AC Stark shift, and the Doppler-broadening
of the |�NJ | = 1 transition, as a function of the electric field
magnitude EStark. Different curves correspond to commonly
used cryogenic temperatures: of liquid He (4.222 K), Ne
(27.1 K), and N2 (77.36 K) [60].

Figure 4(c) reveals that the vorticity-induced changes to the
rovibrational spectrum are already traceable in a rather simple
proof-of-principle measurement. Of course, some aspects of
the suggested experimental scheme can be optimized. In par-
ticular, our numerical analysis reveals several ways to improve
a possible experimental protocol:

(i) Choice of the molecule. The absorbance values of
�NJ �= σ spectral lines are proportional to squares of vibra-
tional transition quadrupole moments, as revealed by Eqs. (23)
and (26). At the same time, the AC Stark splitting between
different |�NJ | lines is quadratic in terms of the equilibrium
dipole moment. This implies that one should search for the
molecule or, specifically, for the particular rovibrational tran-
sition that enables the right balance between high equilibrium
dipole and high transition quadrupole moments.

(ii) Length ratios. As discussed in Sec. IV, the rotational
enhancement occurs close to the axial focal point of the beam
(|R| � ω0, |Z| � ZR). The interaction of light with molecules
outside this domain does not display enhanced absorbance. To
achieve the optimal spectral signal, one should target L ≈ ZR

and R0 < ω0. We do not have the definitive suggestion on the
choice of geometry, since the lengths are interconnected with
one another as well as other parameters of the system. For
instance, a lower beam waist ω0 would imply a lower Rayleigh
range ZR and, thus, necessitate using a shorter chamber. Also,
although a smaller aperture (compared to the beam waist)
results in higher absorbance values, it also implies that fewer
photons are participating in the interaction, since the vortex
beam has a dark core. Nevertheless, our approach can be used
to optimize the geometric parameters on a case-by-case basis
by considering the particular limitations of the experimental
apparatus.

(iii) Pressure. The effect of the pressure in the gas chamber
on the absorbance values is ambivalent. On the one hand,
increasing the pressure would increase the number of ab-
sorbers (molecules) within the optical path. On the other hand,
higher pressure would result in a sizable pressure broadening
of the spectral lines. There are various perturbative forces
that result in such a broadening, which makes the accurate
calculation of it difficult without knowing the specifics of the
experimental setup. Nevertheless, one can employ the Voigt
line profile [3] to roughly estimate the scale of the pressure
broadening.

(iv) Temperature. Unlike the other parameters, the effect of
temperature on the spectrum is unambiguous. It is beneficial
to have a lower temperature. This would result in lower center-
of-mass velocities as well as weaker Doppler broadening.
Ideally, one could even consider optical trapping and laser
cooling of molecules [61–67].
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Apart from the rovibrational spectroscopy of molecules,
there may be other effective methods to measure the enhance-
ment of the OAM transfer to the internal rotation of a particle,
induced by the nonzero helicity of the beam. Some of these
methods, such as levitated optomechanics, are discussed in
Appendix A.

VII. CONCLUSION AND OUTLOOK

Motivated by the ubiquity of light-matter interactions in
modern-day physics, as well as the multifaceted nature of the
angular momentum of light, we developed a general analytical
framework that describes the angular momentum exchange
associated with the interaction of particles with the spin and
OAM of light. To keep our explanation concise and illustra-
tive, while introducing the general idea, we focused on the
rovibrational spectroscopy of molecules. This is a prototypical
system, where the emergent angular momentum exchange is
encapsulated by the selection rules, which have direct experi-
mental signatures.

Our analytical framework is based on the multipole ex-
pansion of the light-matter interaction. In the example of the
rotation and vibrations of a molecule, we explain how internal
degrees of freedom of a particle can be embedded into the
definition of its multipole moments. Since our main focus is
on the AM exchange that is associated with the light-matter
interaction, we restrict our model to molecules without strong
rovibrational coupling. However, the general idea behind our
model can be applied to a broad range of systems, where
the AM exchange is of the main interest, by introducing the
additional couplings of rotations to the relevant degrees of
freedom (see Appendix A).

Our derivation of the light-matter interaction Hamiltonian
(14) takes full advantage of the notions of rotations and angu-
lar momentum. In particular, we describe the molecule using
spherical multipole moments, which reflect its (symmetry)
point group, and we expand the electric field in terms of its
spherical gradients. As a result, our theory unambiguously
describes the angular momentum exchange in the case of
the rovibrational spectroscopy. Our treatment is conceptually
similar to the Wigner-Eckart theorem. It allows us to cir-
cumvent the detailed analysis of the molecular and optical
field structure by absorbing their specifics into the definition
of the spherical expansion coefficients. This is the definitive
feature of our framework. Previous studies on rovibrational
spectroscopy using vortex beams [25–28] addressed the full
problem of the light-matter interaction, which required intro-
ducing restrictive models of either a molecule or optical field.

To demonstrate the predictive power of our theory, we cal-
culated the selection rules for the rovibrational spectroscopy
using Laguerre-Gaussian beams. We confirmed a well-known
result [25,27,68] that, for non-tightly-focused beams within
the electric-dipole interaction, the OAM of light cannot couple
to the molecular (internal) rotation irrespective of the beam
profile. At the quadrupole order of the interaction, however,
we demonstrate that the helicity of the beam strongly en-
hances certain rovibrational transitions, which are considered
“forbidden” in the case of nontwisted light. The enhancement
strongly depends on the mean position of the molecular center
of mass with respect to the focal point of the beam. Recent

years have seen a rapid development in trapping, cooling,
and quantum control of molecules [61–67]. Therefore, it is
realistic to suggest measuring the rovibrational enhancement
in these new setups. Another pathway is to study the gas-phase
absorption spectroscopy in a spatially and frequency-resolved
manner. We provide proof-of-principle calculations by sug-
gesting an experiment that may be capable of probing the
enhancement. Based on our findings, we discuss the exper-
imental requirements for the observation of the enhanced
ro-vibrational transitions.

Being straightforward and general, our theory opens new
research avenues for studies involving angular momentum
exchange induced by light-matter interaction. Its applications
can reach beyond rovibrational spectroscopy. In particular,
our analysis establishes four main actors of the interaction
process, namely the spin and the OAM of light, as well as
the AM-related (rotational) and the AM-unrelated (e.g., vibra-
tional) degrees of freedom of a particle. The scenario in which
the intralight and intramatter couplings are negligible can be
described by our perturbative argumentation. Nevertheless,
the introduction of either of these couplings can lead to richer
physics, as it introduces a competition between the different
interaction pathways.

Apart from the pure theoretical interest, studies of AM
exchange in the presence of additional couplings are highly
relevant for the experiment. Considering intralight inter-
actions, tight focusing was shown to benefit the OAM
interaction with chiral molecules and nanostructures [69,70].
In such electric fields, the spin and OAM of light are strongly
coupled [22,23], which enables OAM transfer already at
the dipole order of the light-matter interaction. Hence, a
detailed analysis of such systems within our framework is
a promising endeavor. In a related note, the first step to-
wards understanding the AM transfer in systems with more
complicated material response concerns the study of heli-
cal dichroism [70–76]—a novel experimental technique for
enantiomer resolution. The current understanding of this phe-
nomenon revolves around the interplay of different multipolar
orders of the light-matter interaction [77], which can be en-
abled by the rovibrational interaction. Hence, analyzing the
AM exchange in the presence of strong rovibrational coupling
can outline the efficacy of the helical dichroism for enan-
tiomer resolution.

Finally, in addition to the electric multipole interactions,
chirality-related physics was also argued to involve the mag-
netic multipoles. Their interaction with magnetic fields could
be analyzed using the magnetic counterpart of Eq. (7). Such
an analysis would require writing down the remainder of the
PZW Hamiltonian, which was left out in Sec. III, as well as
defining an effective magnetization density for the molecule
(see also Appendix A).
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APPENDIX A: EXTENSIONS
TO THE MULTIPOLE MODEL

The effective model of molecular multipole moments,
introduced in Sec. II, describes only the dependence of
multipoles on the molecular rotation and vibrations. Our
particular suggestion for the charge distribution (1) is not
capable of describing other degrees of freedom or other parti-
cle types. However, the underlying principle can be applied
to other systems, where the angular momentum exchange
between the particle and surrounding electric field is our
main interest. Here, we discuss possible extensions to our
model.

1. Rovibrational coupling

Instead of resorting to numerical methods to calculate
vibrational transition multipole moments, as in Sec. II, one
could introduce an analytical model of vibrations to reveal
more information about the coupling mechanism between dif-
ferent excitations.

The naive approach is to model the vibrational dependence
of multipoles with the modes of the quantum harmonic os-
cillator. If one considers a molecule with a single vibrational
degree of freedom, like a diatomic molecule, multipole mo-
ments can be expanded in Taylor series with respect to the
vibrational coordinate q̂. For instance, for the quadrupole mo-
ment matrix Qi, j , the expansion reads

Qi, j (q̂) = Qi, j (q̂ = 0) +
[
∂Qi, j

∂q

]
q̂=0

q̂ + · · ·

=
∞∑

ν,ν ′=0

Qν,ν ′
i, j (â†)ν

′
(â)ν, (A1)

where i, j ∈ {x, y, z} and q̂ = q0(â† + â), where â(†) is the
(creation) annihilation operator of the vibrational mode, and
q0 is the characteristic distance. The coefficient Qν,ν ′

i, j is the
quadrupole moment matrix associated with the transition from
the vibrational state |ν0 + ν > to |ν0 + ν ′ >, where ν0 � 0
is arbitrary. In Sec. II, we show that, in order to simulate
the specific molecule, matrices Qν,ν ′

i, j could be extracted from
numerical ab initio calculations. Alternatively, these matrix
elements can be considered as free parameters of the model
and used to study its emergent physics. In this case, it is
important to explicitly constrain the multipole moments in a
way that reflects the molecular (symmetry) point group Gmol

(see Appendix B). This approach can be straightforwardly
generalized to the case of multiple contributing vibrational
modes q̂n.

The main downside of the naive model is that it does not
allow for the coupling between the molecular rotation and
its vibrational modes. In other words, it requires the ground
state and all excited vibrational states to be characterized by
the same molecular point group Gmol, which is not true for
an arbitrary molecule. In situations in which the rovibrational
coupling is sizable, it is necessary to consider a more accu-
rate model than the naive oscillator model. For instance, one
can work with the molecule in the Eckart reference frame
[78], which helps to approximately separate vibrations and
rotations. Although the full separation is impossible, Eckart
conditions help to minimize the rovibrational coupling in the
equilibrium configuration. In this reference frame, a Watson
Hamiltonian provides the complete description of the rotation
and vibrations of a linear [41] or nonlinear [40] molecule,
omitting excitations of their electronic structure.

2. Molecular electronic transitions

The multipole model from Sec. II is adiabatic with respect
to molecular electronic transitions. This is justified by our
focus on the rovibrational spectroscopy of molecules. In such
experiments, the time required for the reshaping of the elec-
tronic cloud is much shorter than the characteristic time of the
rotation or vibration of the molecular nuclear backbone. Thus,
one can assume that electrons readjust instantaneously during
molecular transitions. In contrast, when one directly probes or
drives electronic transitions, e.g., in vibronic spectroscopy [2],
one needs to account for the coupling of electronic transitions
to other degrees of freedom. In particular, one can no longer
consider only vibrational transitions within a single potential
energy surface, like we did in Sec. II. Instead, one needs
to calculate the multipole moments associated with transi-
tions between vibrational levels of two (or more) different
potential energy surfaces. Apart from this vibronic coupling,
electronic transitions are also capable of changing the molec-
ular (symmetry) point group Gmol. This should be reflected
in the definition of the molecular orientation �̂ and spherical
multipole moments αλ,μ (see Appendix B). For instance, in
the case of a homonuclear diatomic molecule, which has zero
dipole moment at equilibrium, i.e., electronic ground state, it
is possible to induce the nonzero dipole moment by exciting
the electronic cloud around the molecule.

3. Electronic orbitals in atoms

In contrast to the molecular case, it is not possible to define
the orientation of an atom at equilibrium. As a result, it is
not possible to introduce the reference frame, corotating with
the atom, which renders the charge distribution (1) unusable.
Nonetheless, it may still be possible to apply our theory to
the electronic orbitals. Energy levels of the electronic cloud
around the atom can be described by spectroscopic term sym-
bols [3], which are sets of “good” quantum numbers, namely
the spin, orbital, and total angular momenta of an atom’s
electrons. The Wigner-Eckart theorem [24] states that a ma-
trix element, associated with a transition between two energy
levels of an atom, can always be expressed as a product of
two factors. The first factor is the reduced matrix element,
which is independent of the orientation of angular momenta
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and is the same for all transitions between energy levels,
characterized by the same term symbol. The second factor
is the Clebsch-Gordan coefficient that encapsulates the an-
gular momentum exchange during the transition. Due to the
Wigner-Eckart theorem, our model can be extended to the
atomic case by defining an “effective atomic frame,” which
depends on the initial and final term symbols and reproduces
the decomposition of the transition matrix elements. Inside
this reference frame, one can introduce a charge distribution,
similar to Eq. (1), and perform the analysis in a similar way to
Sec. II.

4. Chiral particles

From the geometric standpoint, optical beams with a spiral
beam phase, such as Laguerre-Gaussian modes, discussed
in Sec. IV, are chiral as they lack the axis of an improper
rotation. Similar to other chiral electric fields [79–81], vortex
beams were argued to be a natural tool for the molecular enan-
tiomer resolution [71]. In particular, the interplay between
optical and material chirality is subject to dichroism [77],
which is manifested by the dissimilarity of an optical activity
indicator, like absorbance, for different values of the “hand-
edness” of the field or particle. The dichroism associated with
the change to the OAM of light is often called helical or vortex
dichroism [71,72]. This effect was proven to be absent in the
dipole order of the light-matter interaction [68,82], but it was
argued to be observable either using electric quadrupole fields
[73–75] or tightly focused laser beams [69,70]. Moreover, the
magnitude of the effect was shown to depend on the position
of the phase singularity [76], similar to the OAM transfer that
is discussed in Sec. IV.

Formally, one of the possible mechanisms for the heli-
cal dichroism is the so-called E1-E2 interaction. It implies
driving the (molecular) transition, which is associated with
the simultaneously nonzero values of (transition) dipole and
quadrupole moments. Such transitions are known to be found
between the molecular states with an ill-defined AM parity
[83]. Mixed-parity states cannot be derived using a rigid rotor
model (see Appendix B), since the Hamiltonian of a rigid rotor
commutes with the molecular AM operator Ĵ2, which necessi-
tates that every rotational state has a well-defined parity (J). It
may be possible to describe the mixed-parity molecular states
if one takes proper care of the rovibrational coupling, e.g., by
using the Watson Hamiltonian [40,41]. Alternatively, one can
consider other effective models, for instance, based on local
currents [84], which might give rise to a more intuitive picture
of the light-matter interaction. Moreover, (effective) currents
may be instrumental for the calculation of toroidal multipole
moments, which were shown to be associated with the order
parameters that describe chirality [85].

Another possible cause for the chirality-dependent optical
activity is the E1-M1 interaction [70,73], i.e., the interplay
between the electric-dipole and magnetic-dipole couplings of
a particle to an electromagnetic field. An accurate description
of such an interaction would require considering the full PZW
Hamiltonian, which includes the magnetic contribution, omit-
ted in Sec. III, as well as properly describing the longitudinal
components of the optical field [70]. Importantly, the effects
stemming from magnetic multipole moments could also occur

for nonmagnetic molecules, due to the field-induced changes
to the electronic orbital distributions.

5. Optically levitated nanoparticles

Recent years have seen a tremendous improvement in
the field of levitated optomechanics [86]. Optically levitated
nanoparticles, such as silicon nanorods, are among the highest
quality sensors for various forces and fields. They can be con-
trolled with an exquisite precision in an experiment [87]: their
dimensions can be tailored, allowing for the high degree of
reproducibility, and their orientation and rotation can be con-
trolled using the radiation pressure. Such nanorotors were also
shown to interact with the OAM of light [88], which makes
them a possible experimental platform for benchmarking our
theory. In particular, it might be possible to use these sensitive
nanorotors to measure the dependence of the OAM transfer
on the position of the center of mass, thus experimentally
verifying the findings of Sec. IV.

In addition to the experiment, the theoretical analysis of
nanoscale rotating objects is also of a fundamental interest.
For instance, Ref. [89] suggests that quantum rotations of
thermal asymmetric nanorotors exhibit a more robust coherent
flipping dynamics, known as the tennis racket effect, than their
classical analogs. Contrasted with molecules, the characteris-
tic sizes of nanoparticles can be comparable to the wavelength
of light. Although in this scenario the multipole expansion still
holds, if the multipole moments are properly defined [33],
the magnetic multipole moments of a particle may become
relevant for describing the light-matter interaction. In this
case, alongside the charge distribution (1) discussed in Sec. II,
one would need to define a distribution of local currents that
reflects the dependence of magnetic multipoles on internal
degrees of freedom.

APPENDIX B: MOLECULAR ROTATION GROUP

Defining the orientation of a completely asymmetric rigid
rotor in three dimensions is straightforward. Rotations of such
an object form the SO(3) group [8], known simply as the ro-
tation group. Each element of this continuous group, denoted
as the rotation operator D̂(�rot ), can be parametrized by three
Euler angles �rot ≡ {α, β, γ }. Euler angles �rot uniquely de-
fine the orientation of a rotor, except for the case of β = 0,
known as the problem of a gimbal lock.

The action of the rotation operator D̂(�rot ) on the
Euclidean space R3 is determined by the irreducible repre-
sentations (or irreps) of the SO(3) group. The representation
of an odd degree l is an orthogonal set of l matrices, called
Wigner D-matrices Dl

m,n(�rot ) [34], defined in the (2l +
1)-dimensional vector space Hl . This vector space is the
SO(3)-invariant subspace of the linear space Pl of all homo-
geneous polynomials of the degree l on R3 [9]. Therefore,
it is irreducible. The space Hl is spanned by the spherical
harmonics Yl,m(�), with � ∈ S2. The action of the group
element D̂(�rot ) on the spherical harmonic Yl,m(�) is defined
by Eq. (4).

Besides serving as irreducible representations of the rota-
tion group, Wigner matrices Dl

m,n(�rot ) also function as the
Fourier transform, due to the Pontryagin duality [9]. For a
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rigid rotor, it is common to consider two bases: the basis
of Euler angles |�rot〉, defined on the SO(3) manifold as the
eigenbasis of the orientation operator �̂rot, and the conjugate
basis of angular momenta |l, m, n〉, defined on the tangent
space ̂SO(3) as the simultaneous eigenbasis of the laboratory-
frame L̂

2
and L̂z and body-fixed-frame L̂′

z angular momentum
operators, respectively. The Fourier transform between the
two bases reads

|�rot〉 =
∑

{l,m,n}∈̂SO(3)

√
2l + 1

8π2
Dl,∗

m,n(�rot )|l, m, n〉. (B1)

The inverse of this transform is commonly used in quantum
mechanics to define the wave functions with a given angular
momentum in the basis of Euler angles.

Defining the orientation of a molecule �mol is different
from the case of the asymmetric rigid rotor. Molecules are
usually characterized by a certain (symmetry) point group
Gmol. Therefore, their rotations comprise only a subgroup of
the full rotation group. Namely, they form the quotient group:
Q ≡ SO(3)/Gmol [12]. For instance, for the linear molecule,
like CS: Gmol = C∞ = U1 and the quotient group is a two-
sphere S2 = SO(3)/U1. This can be understood intuitively.
Unlike the rigid rotor case, where all three Euler angles �rot ≡
{α, β, γ } are required to define the orientation, for a linear
molecule, which is symmetric with respect to the rotation
around the molecular axis, only two angles �mol ≡ {β, α} ∈
S2 are sufficient.

Irreducible representations of the quotient group Q are
integrals of the irreps of the SO(3) group with respect to
the point group Gmol. In the case of a linear molecule, the
representations are spherical harmonics

Dl
m,n(�mol) =

∫
U1

Dl
m,n(α, β, γ )

dγ

|U1| ∝ δn,0Y
∗

l,m(�mol),

(B2)

where |U1| = 2π is the volume of the group U1 as a manifold.
Similar to Eq. (B1), irreducible representations (B2) serve
as the Fourier transform between the molecular angle basis
|�mol〉 and the conjugate angular momentum basis, defined on
Q̂. For a linear molecule, the angular momentum eigenstates
are denoted as |l, m〉, since L̂′

z ≡ 0 renders index n irrelevant.
If the rotational operator D̂(�mol) is being applied to the

charge distribution (1), instead of the correct representations
of the quotient group Q, one can simply use the represen-
tations of the full SO(3) group. The values of the spherical
multipole moments αλ,μ already embed the molecular (sym-
metry) point group Gmol [35]. Therefore, if the transformation
(4) with incorrect irreducible representations was to generate
any excess terms, they would be removed by the vanishing
multipole moments associated with them.

Internal molecular degrees of freedom are capable of
changing the molecular (symmetry) point group Gmol by ef-
fectively coupling to rotations. For instance, in the case of
a polyatomic linear molecule, like OCS, vibrational bending
modes or molecular electronic transitions can break the U1

symmetry, which characterizes the molecule at equilibrium.
This fact necessitates introducing different definitions �

g(e)
mol

for the orientation of the molecule in the ground and excited
vibrational or electronic states. Subsequently, the rotation
rules (4), which define the transformation into the body-
fixed frame, are no longer the same for the molecule at and
outside equilibrium. As a result, for polyatomic molecules
and other types of particles, it is not possible to simply de-
tach rotations from other excitations, like we did in Sec. II
for molecular vibrations. In such cases, a more accurate
model should be introduced. For instance, in the case of
vibrations, one could consider a Hamiltonian that includes
the rovibrational coupling (see Appendix A), like a Watson
Hamiltonian [40,41], together with the light-matter Hamilto-
nian (14). In this case, the molecular frame should be defined
so that it properly accounts for the configuration of lowest
symmetry.

APPENDIX C: DERIVATION OF THE LIGHT-MATTER
INTERACTION HAMILTONIAN

We consider the light-matter interaction part of the Power-
Zienau-Woolley Hamiltonian [48–50] after the generalization
to the case of a continuous charge distribution ρ(r), i.e.,
we begin with Eq. (11). We expand the spatial electric field
profile E(R + ηr) into the spherical Taylor series [52–54]
around the center-of-mass position R, using Eq. (12). As a
result, we obtain the following expression for the interaction
Hamiltonian:

Hint = −
√

4π

3

∑
n,l,m,σ

cn,l

2n + l + 1
[Rl,m(∇R)Eσ (R)]

× lim
χ→0

∫
d3r r2n+l+1ρ(r)Y1,σ (�r)Y ∗

l,m(�r) + H.c.,

(C1)

where the scalar product is evaluated using the spherical
expansion: (A · B) = √

4π/3 |A|∑σ BσY1σ (�A), where A =
{|A|,�A} and B are vectors in the laboratory frame, and
Bσ ≡ {B±, B0} = {(Bx ± iBy)/

√
2, Bz} are the components of

vector B in the spherical basis. Spherical components Eσ (R)
of the electric field vector E(R) are often called circular
polarization components.

We further substitute ρ(r) in Eq. (C1) with the generic
charge distribution (1) of a system of multipoles. Note that
the charge distribution (1) is defined in the rotating reference
frame, which is uniquely characterized by the orientation �̂,
discussed in Appendix B. The rotating-frame coordinate r′
is a function of both the laboratory-frame coordinate r and
the orientation �̂, i.e., r′ ≡ r′(r, �̂). Since |r| = |r′|, one can
easily evaluate the radial integral over r ≡ |r| and the limit
χ → 0, obtaining

lim
χ→0

∫
d3r r2n+l+1ρ(r)Y1,σ (�r)Y ∗

l,m(�r)

=
∑
λ,μ

α̂λ,μ

∫
d�r Yλ,μ(�r′ )Y1,σ (�r)Y ∗

l,m(�r), (C2)

with the additional condition 2n + l − λ + 1 � 0 such that
the limit is nonvanishing. To evaluate the integral over the
solid angle �r, one needs to express the molecular-frame
real-valued harmonics Yλ,μ(�r′ ) through the laboratory-frame
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complex-valued harmonics Yλ,ζ (�r), with the help of Eqs. (2) and (4). The result reads

Yλ,μ(�r′ ) = D̂(�̂)Yλ,μ(�r) = 1√
2

∑
ζ

⎧⎪⎪⎨⎪⎪⎩
i
(
Dλ

ζ ,μ(�̂)Yλ,ζ (�r) − Dλ∗
ζ ,μ(�̂)Y ∗

λ,ζ (�r)
)
, μ < 0,

√
2Dλ

ζ ,0(�̂)Yλ,ζ (�r), μ = 0,

Dλ
ζ ,−μ(�̂)Yλ,ζ (�r) + Dλ∗

ζ ,−μ(�̂)Y ∗
λ,ζ (�r), μ > 0.

(C3)

Finally, the angular integral in Eq. (C2) is evaluated using [34]∫
d�r Yλ,ζ (�r)Y1,σ (�r)Y ∗

l,m(�r)

=
√

3(2λ + 1)

4π (2l + 1)
Cl,0

λ,0;1,0Cl,m
λ,ζ ;1,σ , (C4)

where λ � l + 1 is required for the Clebsch-Gordan coef-
ficients to be nonzero. This condition, together with the
condition from Eq. (C2), implies that n = 0.

APPENDIX D: APPROXIMATIONS
TO THE LAGUERRE-GAUSSIAN PROFILE

The electric field profile EP,M (R) of a Laguerre-Gaussian
mode, defined in Eq. (18), is a convoluted function of cylin-
drical coordinates R ≡ {R,�, Z}. While it is possible to
calculate spherical gradients (13) of EP,M (R) analytically, the
resulting expressions are not straightforward to analyze. Thus,
in Eq. (19), we define the approximation E foc

M (R) to the full
profile EP,M (R). This expression corresponds to a LG beam
with P = 0 within the in-focus approximation. It accurately
describes the electric field EP,M (R) inside the Rayleigh range
(Z 
 ZR). Previous studies on the interaction of molecules
with vortex beams [26,27] have already introduced a similar
approximation,

E foc,cent
M (R) = 1√|M|!

(
R

ω0

)|M|
e−iM�e−ikZ , (D1)

which corresponds to Eq. (19) with the additional in-center
approximation. It is valid inside the beam waist close to the
beam axis (R 
 ω0).

Even though Eq. (D1) includes both major features of
the LG profile, namely the spiral beam phase and the radial
magnitude scaling near the beam center, the electric field
E foc,cent

M (R) diverges at large distances R. While this problem
can be solved by introducing a radial cutoff ωcut ∼ ω0, some-
times called the impact parameter, the value of this cutoff was
argued to affect the results of numerical calculations [90].
Moreover, the light-matter interaction was shown to depend
on the average position of a molecule’s center of mass with
respect to the cutoff distance ωcut [27]. Therefore, to ensure
the accuracy of our findings, we choose the cutoff-free ap-
proximation (19) to the electric field (18).

Another reason to use the approximation (19) over the
approximation (D1) becomes apparent after the calculation of
the spherical gradient (13). In the case of E foc,cent

M (R), the term
in Eq. (20) associated with the radial exponential decay of
EP,M (R) is absent from the expression for the gradient. Hence,
for the Laguerre-Gaussian beam with M = 0, the spherical
gradient and thus the magnitude of the OAM transfer is
zero, as also shown in Ref. [27]. The possible conclusion is
that a nonhelical beam cannot transfer any additional angular
momentum, apart from the spin, to the molecule. This con-
clusion, however, does not hold when a more accurate profile,
like E foc

M (R), is taken into account. As revealed by Eq. (20)
with M = 0, even a nonvortex Gaussian beam has a small
impact on molecular rotations, in agreement with Ref. [25].
This physical behavior has a simple explanation. For in-
stance, in the case of a diatomic molecule, the two nuclei,
in general, experience a slightly different magnitude of the
electric field. Within the electric-quadrupole interaction, this
spatial gradient induces the OAM transfer, as suggested by
Eq. (17).
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