
On the Efficiency and Security of
Secure Group Messaging

by

Guillermo Pascual-Pérez

September, 2024

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Beatriz Vicoso, Chair

Krzysztof Pietrzak
Joël Alwen
Alon Rosen

The thesis of Guillermo Pascual-Pérez, titled On the Efficiency and Security of Secure
Group Messaging, is approved by:

Supervisor: Krzysztof Pietrzak, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Joël Alwen, AWS Wickr

Signature:

Committee Member: Alon Rosen, Bocconi University, Milan, Italy

Signature:

Defense Chair: Beatriz Vicoso, ISTA, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Guillermo Pascual-Pérez, September, 2024
CC BY-NC-SA 4.0 The copyright of this thesis rests with the author. Unless oth-
erwise indicated, its contents are licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. Under this license, you may copy
and redistribute the material in any medium or format. You may also create and
distribute modified versions of the work. This is on the condition that: you credit the
author, do not use it for commercial purposes and share any derivative works under the

same license.

ISTA Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other
people’s work without this being so stated; this thesis does not contain my previous
work without this being stated, and the bibliography contains all the literature that I
used in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee, and that this thesis has not been submitted for a higher degree
to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved
by the relevant publishers and co-authors.

Signature:

Guillermo Pascual-Pérez
September, 2024

Signed page is on file

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract

Instant messaging applications like Whatsapp, Signal or Telegram have become ubiq-
uitous in today’s society. Many of them provide not only end-to-end encryption, but
also security guarantees even when the key material gets compromised. These are
achieved through frequent key update performed by users. In particular, the compro-
mise of a group key should preserve confidentiality of previously exchanged messages
(forward secrecy), and a subsequent key update will ensure security for future ones
(post-compromise security). Though great protocols for one-on-one communication
have been known for some time, the design of ones that scale efficiently for larger
groups while achieving akin security guarantees is a hard problem. A great deal of
research has been aimed at this topic, much of it under the umbrella of the Messaging
Layer Security (MLS) working group at the IETF. Started in 2018, this joint effort by
academics and industry culminated in 2023 with the publication of the first standard
for secure group messaging [BBR+23].

At the core of secure group messaging is a cryptographic primitive termed Continuous
Group Key Agreement, or CGKA [ACDT21], that essentially allows a changing group
of users to agree on a common key with the added functionality security against
compromises is achieved by users asynchronously issuing a key update. In this thesis we
contribute to the understanding of CGKA across different angles. First, we present a
new technique to effect dynamic operations in groups, i.e., add or remove members, that
can be more efficient that the one employed by MLS in certain settings. Considering the
setting of users belonging to multiple overlapping groups, we then show lowerbounds on
the communication cost of constructions that leverage said overlap, at the same time
showing protocols that are asymptotically optimal and efficient for practical settings,
respectively. Along the way, we show that the communication cost of key updates in
MLS is average-cost optimal. An important feature in CGKA protocols, particularly for
big groups, is the possibility of executing several group operations concurrently. While
later versions of MLS support this, they do at the cost of worsening the communication
efficiency of future group operations. In this thesis we introduce two new protocols that
permit concurrency without any negative effect on efficiency. Our protocols circumvent
previously existing lower bounds by satisfying a new notion of post-compromise security

vii

that only asks for security to be re-established after a certain number of key updates have
taken place. While this can be slower than MLS in terms of rounds of communication,
we show that it leads to more efficient overall communication. Additionally, we introduce
a new technique that allows group members to decrease the information they need to
store and download, which makes one of our protocols enjoy much lower download cost
than any other existing CGKA constructions.

viii

Acknowledgements

As I grow older, I increasingly realize of the importance that external influences and
stimuli have on one’s mood, opinions, ideas and, in fact, in almost every aspect of one’s
life. Milestones like completing a PhD are no different, and indeed it would be incredibly
naïve to think that I would have gotten here without the support and inspiration of
a huge number of people out there (some of which I am probably forgetting). It is a
delight to be able to thank them here: this section is possibly the most rewarding to
write.

I would like to start by thanking my supervisor Krzysztof Pietrzak for his continued
support and for creating a pressure free working environment with lots of creative
freedom. I am also grateful to the rest of my PhD defense committee: Alon Rosen,
and Joël Alwen, as well as Beatriz Vicoso, for kindly agreeing to chair. Joël deserves
a special mention as he has been an insatiable source of problems and ideas, and of
valuable advice. I am lucky to have been part of a research group that shares much
more than discussions about cryptography. Hamza, Chethan, Karen, Michael, Michelle,
Ahad, Miguel, Benedikt, Charlotte, Christoph, Suvradip, Akin and Anshu, it has been a
pleasure. They have offered guidance and a helping hand when needed, and have been
excellent company in conferences, trips and other outings. A special thanks goes to
Ben, who has made work so much more enjoyable with his humor and patience, and
has been my steady companion in almost every research venture, and even beyond in
our shared woodworking shop.

I would also like to thank PQShield and, in particular, Thomas Prest, for welcoming me
in Paris and for insightful discussions, and Shuichi Katsumata, who has been a wonderful
collaborator and whose excitement for new ideas is admirable. My gratefulness also
goes to the rest of my co-authors Keitaro Hashimoto, Marta Mularczyk and Yiannis
Tselekounis. To Martin Albrecht, for welcoming me in London and for inspiring
discussions about cryptography, its social foundations, and woodworking. Also to
Cory Myers and Giulio Berra at the Freedom of the Press Foundation, for their initial
trust and their tireless patience and humbleness during our discussions. Further, deep
gratitude goes to the people in the wider cryptography community who make it feel
so welcoming, particularly to the wonderful David Balbás and Paul Rösler. I am also

ix

grateful to the SICT community, and especially Sophia, for giving me new hope and
perspectives about our role and responsibilities as technologists.

I would also like to thank those that supported my professional journey before arriving
to ISTA. In particular, Christophe Petit and Giacomo Micheli for getting me interested
in cryptography in the first place during a summer project back in my undergraduate
years, and for the real attention and patience they showed me. Finally, I am grateful to
Zubin, who was the most excellent tutor I could have wished for through university,
and who continued to be a reliable source of support afterwards.

Now, it would be even more naïve to think that I am here only thanks to people that
belong to my work sphere. I am indescribably lucky to have people around me that not
only support me, but make my human experience so rich and worthwhile. Even though
the work presented here is not the subject of most (if any) of our conversations – and
will likely not be read by (m)any –, the journey to write this thesis would lack meaning
without them. They all, whether part of my present or my past, have my sincerest love.

First and foremost, I would like to thank my parents, for their pride in me, for getting
me here, for believing in me and having worked and cared more for me than anyone will
ever do. Despite the physical distance that separates us, I hope we can keep feeling
close to each other.

I would like to thank all the people at ISTA that made my settling in here so much more
smooth and enjoyable: Mims, Michelle, Djordje, Dario, Mariano, Sarath, Martin, Lizzie,
Patricia, Sebastiano and, especially, Nataliia, for all of her love and caring support.

I am beyond grateful to everyone that contributed to making Vienna feel cozy and
exciting and, above all, human. Beginning with my housemates Lara, Nadine and Matzi,
who make me feel so at home and so cared for. To Rebecca, Raquel and Jaime, for
our adventures in the world of crafting and creativity and for enabling me to keep my
connection with my spanish identity in Vienna. To Ruth, for our beautiful conversations
and friendship, and for her coherence and being an endless source of inspiration. To
Manu, for sharing my passion for wood, for allowing me to see her and for seeing
me, in all of our weirdness and beauty. To Sven, for his kindness and sweetness. To
Charlie, for her honesty and inspiring transparency. To Lukas, for his honest and deep
care, towards me and everyone around him. To Juro and Maggie, for teaching me
the value of slowness and being present. To the XwhY community, for showing me
spaces of softness and vulnerability. To Bella, for her beautiful and supportive way of
communication. To Franzi, Ruby, Lydia, Martin, Mareike, Lea, Jana, Lisa, Kerstin, Mila,
Kathi, Rosalie, Christian, Camille, Lukas, Consi, Schaki and all the others who have
gifted me fond memories and with whom I have shared moments of joy and difficulty.
And to Auri, my most fervent supporter, for her deepest warmth and love, for teaching
about the joy of living and the power of loving and trusting oneself. I learn from you

x

every day.

Finally, I am also grateful to those friends that are far away. To Kat, for our adventures
together, for being a source of inspiration and glee, and for a friendship that, even
after 6 years living apart, still feels like home. To Aneeka, for her continued care of
our friendship through my unreliability when using the very motivation for this thesis:
messaging apps. To Nere, for her honesty and vulnerability, and for a friendship that
still grows after being apart for so many years. To Tom, for his humor and daring trust
when joining me in wild adventures. To Alex, Vero and Leo, for being so selfless and
inspiring, and for making possible that we share joy and dreams in the most beautiful
rural community: Frondeira. And to everyone that I could thus share this joy and
dreams with: Beltrán, Raúl A., Miguel, Raúl G., Marco, Cheska, Lorenzo, Angie, Emilie,
Emma. . . To Jesus, Maria, Ale, Leire, Cris, Cesar and the many others that make
going back to Madrid a joyful experience. And last, but most definitely not least, to
Javi and Lu, thanks to whom I never feel alone. Javi for knowing me better than myself
and for being my most consistent and loving source of support, kindness and honesty
throughout the years. Lu for her contagious illusion for life, her ability to get people
together, and her deep love, curiosity and humbleness. They both inspire me, and I
have the luxury and pride of walking this life with them.

Funding. This work was funded by the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.

xi

About the Author

Guillermo Pascual-Perez obtained a Master of Mathematics (MMATH) degree from
the University of Oxford, specializing in pure mathematics before deciding to jump to
cryptography and joining ISTA in September 2018. He is interested in the interplay
between theory and practice in cryptography, and the impact that it has in society.
His work, thanks in no small part to his able collaborators, has been published at
premier venues in cryptography (EC, TCC, CT-RSA, PKC, SCN) and security (S&P)
communities. Outside of his research activities, he can be found compensating his
intellectual work with hands-on hobbies like gardening and woodworking.

xii

List of Collaborators and Publications

1. Chapter 3 is based on “Karen Klein†, Guillermo Pascual-Perez†, Michael Walter†,
Chethan Kamath, Margarita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo,
Joël Alwen, Krzysztof Pietrzak. Keep the Dirt: Tainted TreeKEM, Adaptively
and Actively Secure Continuous Group Key Agreement. In 42nd IEEE Symposium
on Security and Privacy, SP 2021 [KPPW+21]”.

[significant contributions to the protocol design and efficiency analysis]

2. Chapter 4 is based on “Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel
Cueto Noval, Karen Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael
Walter‡ Grafting Key Trees: Efficient Key Management for Overlapping Groups.
In Theory of Cryptography TCC 2021 [AAB+21b]”.

[significant contributions to the protocols design, minor contributions to the lower
bounds proofs]

3. Chapter 5 is based on “Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval,
Karen Klein, Guillermo Pascual-Perez, Krzyzstof Pietrzak, Michael Walter‡. Co-
CoA: Concurrent Continouous Group Key Agreement. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques - EU-
ROCRYPT 2022[AAN+22b]”.

[main responsible for the security proof; significant contributions to the protocol
design, main responsible for the partial states technique]

4. Chapter 6 is based on “Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen
Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak‡. DeCAF: Decentralizable
Continuous Group Key Agreement with Fast Healing. In 14th International
Conference on Security and Cryptography for Networks - SCN 2024[AAN+22a]”.

[significant contributions to the protocol design and security analysis]
†Shared first authors
‡Authors in alphabetical order

xiii

The following list contains other works written during the PhD period but are not
included in the thesis.

5. Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, Michael Walter, Michelle Yeo‡. Inverse-Sybil Attacks in Auto-
mated Contact Tracing. In Topics in Cryptology - CT-RSA 2021 - Cryptographers’
Track, CT-RSA 2021 [ACK+21].

6. Benedikt Auerbach, Charlotte Hoffmann, Guillermo Pascual-Perez‡.Generic-Group
Lower Bounds via Reductions Between Geometric-Search Problems: With and
Without Preprocessing. In Theory of Cryptography. TCC 2023 [AHPP23].

7. Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez, Krzysztof
Pietrzak‡.On the cost of post-compromise security in concurrent continuous
group-key agreement. In Theory of Cryptography TCC 2023 [ACNPPP23].

8. Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval,
Matthew Kwan, Guillermo Pascual-Perez, Krzysztof Pietrzak‡.The Cost of Main-
taining Keys in Dynamic Groups with Applications to Multicast Encryption and
Group Messaging. TCC 2024 [AAB+24b].

9. Keitaro Hashimoto, Shuichi Katsumata, Guillermo Pascual-Perez‡. Revisiting
How to Authenticate Application Messages in MLS: More Efficient, Anonymous
Blocklistable, and Post-Quantum. To appear.

xiv

Table of Contents

Abstract vii

Acknowledgements ix

About the Author xii

List of Collaborators and Publications xiii

Table of Contents xv

List of Figures xvi

List of Tables xix

1 Introduction 1
1.1 Secure (group) messaging and CGKA 2
1.2 The Social Context of Secure Group Messaging 11
1.3 Related Work . 18
1.4 Outline and Contributions . 21

2 Preliminaries 25
2.1 Notation . 25
2.2 Cryptographic building blocks . 26
2.3 Continuous Group-key Agreement 29
2.4 Security Model for CGKA . 31
2.5 Ratchet Trees . 36
2.6 ART and TreeKEM . 40

3 Tainted TreeKEM 45
3.1 Introduction . 45
3.2 Description of Tainted TreeKEM 49
3.3 Tainting versus Blanking . 58

xv

4 Multiple Groups 63
4.1 Introduction . 63
4.2 Preliminaries . 69
4.3 Key-derivation Graphs for Multiple Groups 70
4.4 Key-derivation Graphs in the Asymptotic Setting 76
4.5 A Greedy Algorithm Based on Huffman Codes 81
4.6 Dynamic Operations . 96
4.7 Lower Bound on the Update Cost of CGKA 99
4.8 Direct Comparison of Trivial Algorithm and Algorithm 1 106
4.9 Multicast Encryption Lower Bound 109
4.10 Open problems . 115

5 CoCoA 119
5.1 Introduction . 119
5.2 Preliminaries . 123
5.3 The CoCoA Protocol . 124
5.4 Efficiency . 144
5.5 Security . 148

6 DeCAF 181
6.1 Introduction . 181
6.2 Preliminaries . 189
6.3 Protocol description . 194
6.4 Security . 203

7 Conclusion 215

Bibliography 217

xvi

List of Figures

2.1 A schematic diagram showing the critical window for a user ID in the view
of another user ID∗ with respect to query q∗. An arrow from a user to the
timeline is interpreted as a request by the user, whereas an arrow in the
opposite direction is interpreted as the user processing the message. The
figure at top (resp., bottom) corresponds to the first (resp., second) case
in Definition 2.4.2. 35

2.2 Algorithm re-key for node v and descendant w. It outputs a vector of
hierarchically derived seeds, and another vector of corresponding keys for
all nodes in v’s path to w. λ is the security parameter, with S the seed
space. It admits an additional optional fresh randomness. We will often
write simply re-key(v) for re-key(v, vroot) 39

2.3 Top: Illustration of an update in the ART protocol. The state of the tree
changes from (a) to (b) when Dave (node d) updates his internal state to
d′. Bottom: update and remove in TreeKEM and TreeKEM with blanking.
The state of a completely filled tree is shown in (c). The state changes
from (c) to (d) when Alice (node A) performs an update operation. This
changes to (e) when Alice removes Harry (node H) in naïve TreeKEM
(with the nodes that Alice should not know in red) or to (f) in the actual
TreeKEM protocol which uses blanking. 44

3.1 Path partition resulting from an update by Charlie (3rd leaf node), with
nodes tainted by him shown in black. To process it the grey node must be
updated before the green path and the blue path before Charlie’s (in red). 52

3.2 Example of an update operation by Alice (left-most leaf), who had tainted
nodes (filled) as a result of, e.g., adding a party to the 5th leaf. The state
of the tree before the update is in a lighter shade. 54

3.3 Example of a remove operation: Alice (left-most leaf) removes Frank
(dotted) and in the process has to update his tainted nodes (filled). Old
state is again showed in gray. Note that a node that was tainted by Frank
is now untainted, as it lies on Alice’s path. 54

3.4 Example of an add operation. (a) illustrates the state of the tree before
Alice adds Frank (6th node), after which it turns into (b). 55

3.5 Tainted TreeKEM algorithms . 56
3.6 Helper algorithms. All updates values for node states take place in the

copy of the ratchet tree stored in the pending state γ′. It will only be when
executing process that those changes will make it to the ratchet tree γ.T . 57

3.7 Cost for non-administrators . 59

xvii

3.8 Cost for administrators . 59
3.9 Average cost per user . 59
3.10 Updaters follow uniform dist. 60
3.11 Updaters follow Zipf dist. 60

4.1 Key graphs for group systems. Top left; Venn diagram of the considered
group system. Top right; trivial key graph using one balanced binary tree per
group. Bottom left; Asymptotically optimal key graph using one balanced
binary tree per partition PI . Bottom right; asymptotically optimal key graph
obtained using Algorithm 1. In the depictions of key trees the horizontal
thick lines indicates the users’ personal keys. 66

4.2 Illustration of Triv(S↑
N) (left) and Opt(S↑

N) for N = 5. For each user, the
update cost (i.e., the indegree 2 nodes reachable) is indicated. 80

4.3 Algorithm 1 . 82
4.4 Working principle of the algorithm. Top left; Venn diagram of the considered

group system. Top right; resulting lattice graph after the first phase.
Node vI has associated set S(vI) = PI , the set of users in exactly the
groups indicated by I. Nodes and edges of the Boolean lattice that are not
part of Glat are depicted in gray. Bottom left; final key derivation graph.
Bottom right; resulting trees corresponding to groups S1, S2, S3. Note
that components of the same color are shared among different trees. . 84

4.5 Key-derivation graphs of the trivial algorithm (left) and Algorithm 1 (right)
for two subgroups. Users that are members of both subgroups are marked
in thick. 87

5.1 Comparison of number of rounds required to recover from corruption for
different TreeKEM variants, ND stands for “Naïve Delivery”, ID for “Ideal
Delivery”. Red nodes indicate key material known to the adversary. In each
round all parties (try to) update. In columns (a) and (d) update requests are
prioritized from left to right. In column (b) update requests are prioritized
from left to right among all parties that did not update yet. In column (c)
all parties propose an update, then the leftmost party commits. 126

5.2 Example; concurrent updates in the CoCoA protocol. The former state
of the ratchet tree (black) is changed by concurrent updates of A (blue),
C (green), and G (red). The ordering is UC ≺ UA ≺ UG. In the updates
solid edges correspond to seeds obtained by hashing, dashed edges to
encryptions. 127

5.3 Round Hash algorithms . 133

xviii

5.4 Example; CGKA graph and challenge graph. Sequence of operations;
we write update(X ≺ Y), to indicate that parties X and Y updated
concurrently and X’s update took precedence over Y ’s. A group with 8
parties is set up (black), update(A ≺ B) (blue), update(C ≺ B) (green),
update(G ≺ B) (red), G’s update is challenged. Vertices and edges that
are part of the challenge graph are shaded in gray. Note that even though
B updated three times her leaf key in the challenge graph lags behind by
3 = log(8) steps. 154

6.1 (left): Illustration of how TreeKEM, CoCoA, and DeCAF handle a con-
current update by parties A and B who want to replace their (potentially
compromised) keys. TreeKEM I refers to the conservative approach where
users commit one at a time. In DeCAF instead of replacing old keys, the
new key-material is merged with the existing one. (right): An illustration of
blanking used to commit an update proposal (removing B would be similar,
with their leaf node blanked instead.) 182

6.2 Comparison of the number of rounds required to recover in CoCoA (a) and
DeCAF (b) for n users, of which t are corrupted. Red nodes correspond
to compromised keys. In each round all parties update concurrently, in
CoCoA update requests are prioritized from left to right. CoCoA requires
⌈log(n)⌉+ 1 = 4 rounds to recover, DeCAF only ⌊log(t)⌋+ 1 = 2. . . 185

6.3 DeCAF Algorithms for initializing the group, generating updates, adding and
removing users. Algorithm gen-tree takes as input a list of user identifiers
and outputs the ratchet tree with leaves having public state given by the
identifiers and corresponding public keys. They employ the helper functions
detailed in Fig. 6.5. For the algorithm that describes how to process the
operations see Fig. 6.4. 199

6.4 DeCAF Algorithm to process a block. We write the internal state of
users not yet part of the groups as γ = (ID, sk, ssk), i.e., containing their
identifier, together with the secret decryption and signing keys. 200

6.5 Helper Functions for DeCAF. The function ctxt_decrypt takes as input
a list of ciphertexts C encrypting the seed of a given node to all nodes
in its resolution and a ratchet tree T , and outputs the decryption of the
ciphertext in C that corresponds to a node whose secret key is included in
T . 201

xix

List of Tables

5.1 State γ(v) of non-blank node v. 124
5.2 User’s local state γ. 130
5.3 Contents of user generated messages. 139
5.4 Contents of Round message Mi to party IDi. 141
5.5 Comparison of the communication complexity of different CGKA protocols.

For a detailed discussion of the table see Section 5.4. The values x
depicted in the last 5 columns are to be understood as O(x). We assume
that the ratchet-tree based protocols start with a fully unblanked tree.
†: In the uncoordinated case, the protocol’s recipient communication is
n2 (case (a)) and t2(1 + log(n/t)) (case (b)), respectively. Regarding
the subsequent update cost, while the protocol formally has a worst case
subsequent update cost of log(n), it is only secure in a weak security model.
Modifying it to obtain PCS guarantees similar to the other protocols, e.g.
by tainting [KPPW+21], would lead to future worst-case update cost of n
(case (a)) and t(1 + log(n/t)) (case (b)), respectively. 144

6.1 Overview of the cost incurred to heal t corruptions in a group of size n
(it is not known which t of the n users are corrupted). Column ‘Conc.’
indicates, whether the protocol allows for concurrent updates, col-
umn ‘Rounds’ the number of rounds required to recover from corruption,
column ‘Sender comm.’ the cumulative uploaded communication, col-
umn ‘Recipient comm.’ the per-user download communication cost,
and column ‘Cost after rec.’ the sender communication incurred by
an update of a single user after the recovery process has concluded.
TreeKEM I corresponds to the conservative approach of only healing
by sending commits, TreeKEM II to using update proposals to heal
at the expense of extra blanking. ∗: [BDR20] only achieves weak PCS,
obtaining PCS guarantees similar to the rest would need O(n) cost after
healing, due to extensive tainting. 187

6.2 User ID’s state. 195

xx

CHAPTER 1
Introduction

Architecture is politics,
but it should not be understood
as a substitute for politics

Philip Agre, 2003

This thesis main motivation is secure group messaging (SGM) and, in particular, the
understanding and improvement of the cryptographic key-exchange protocols that
makes modern constructions practical and efficient.1 Let us start introducing the topic
through its different terms.

When we talk about messaging, we refer to the communication between individuals2

through electronic devices, assuming the features that users have come to be expected
when using modern applications like Whatsapp, Telegram, Slack, Signal or similar. Fea-
tures such as immediate delivery of messages or the possibility of users communicating
not being online at the same time. As one would expect, the term group refers to the
fact that messaging does not only occur between two individuals, but within bigger
sets of people (or devices, as one person often will own several devices within which
conversations will be synchronized). While this extension is natural when it comes to
the functionality of these apps, whose usability would be greatly reduced should only
one-on-one conversations be supported, on a technical level it comes with a variety of

1This Chapter replicates, with permission, parts of our publications [KPPW+21, AAB+21b,
AAN+22b, AAN+22a]

2Beyond individuals, communication between smart devices is also present in a growing number
of situations, though we will not focus on that here.

1

1. Introduction

challenges. In fact, maintaining the underlying cryptographic protocols efficient – and
thus usable – beyond a relatively small number of users requires of new tools,3 and
research in developing these has been extensive in the last few years.

Finally, we wish these applications to be secure, meaning that we hope to have certain
guarantees regarding the confidentiality, integrity and authenticity of the messages
exchanged. One could see cryptography as (among other things) allowing us to bring
the certainties of the real world into the online one. In the former, physical cues –
seeing someone’s face, hearing someone’s voice, knowing we are in a secluded place
without anyone else around, etc. – allow us to asses, for instance, who is speaking or
who can learn: what is being spoken, when it was spoken, or even whether anything
was spoken. Secure messaging protocols aim to provide us with similar guarantees
regarding our online communications. These certainties about the context in which we
are communicating give us agency over our participation in a conversation, empowering
us to make an informed choice about what and how to communicate. A clear example
of this is political talk, where users will use messaging apps as vehicle for communicating
what they would not share in other, more public, social media [VV17]. Other examples
include the need for a variety of collectives to protect their communications: journalists
and their sources, activists in social movements, threatened minorities like refugees or
people belonging to the LGBTQIA+ community, victims of targeted (e.g. domestic)
violence, or employees at a company discussing a trade secret. The list could be
endless. The existence of secure online communication tools is thus essential given our
ever-growing reliance on online communications. As could be guessed, the intuitive
translation between physical to online worlds will only go so far, since threat models in
the latter can be quite different. Nonetheless, it gives us a good starting point.

We will dedicate the remainder of this Chapter to introduce the history and nature of
SGM from a more technical lens (Section 1.1), discuss the social context in which it takes
place (Section 1.2), present related work (Section 1.3), and outline the contributions
of this thesis (Section 1.4).

1.1 Secure (group) messaging and CGKA
The protection of remote communication, which is vulnerable to interception in transit,
is a longstanding goal. Early encryption tools designed to secure such communications
can be traced back to Ancient Rome with the Caesar cipher, and possibly even earlier to

3While this is true already for powerful devices with fast network speeds, efficiency is key for
demographics, particularly in the majority world [Ala08], that do not have such luxury. Data plans
can be extremely expensive, with Zimbabwe being the most expensive in 2023 with 43.75 USD per
GB [Cab23]. The median download speed also varies widely world-wide, with Cuba being the slowest
country in May 2024, with a mere median 2.69 Mbps [Spe24].

2

1.1. Secure (group) messaging and CGKA

Ancient Greece.4 However, all the way from the Caesar cypher to the famous Enigma
machine, used most notably by Germany during WWII, the use of these tools has been
limited to a small number of people, mainly related to state or military affairs.

The advent of the internet, which rapidly became accessible to the average person,
implied that most of the world population could engage in remote communication as we
are used to today. E-mails became standard in businesses, universities and governments
in the 1980s and 1990s. Though communication over the internet can much more
easily be intercepted, secure alternatives like PGP for encrypting email were not popular,
mainly for usability reasons [WT99].5 And alternatives that came with the introduction
of mobile devices, designed for communication with lower latency, like the Short Message
Service (SMS), introduced in 1993, are not encrypted. Instant-messaging apps beyond
SMS emerged in the late 2000s as a result of the popularization of smartphones,
with Whatsapp being launched in 2009. Only a few years later, in 2013, chat apps
surpassed SMS in global message volume for the first time [EM22]. This speaks of
their success, as SMS boasted the staggering 6.1 trillion messages exchanged gobally in
2010 [107]. Nowadays, instant-messaging apps count billions of users worldwide, with
Whatsapp alone having 2 billion. Early after the inception of Whatsapp, other apps,
including TextSecure (now Signal), started deploying their own messaging protocols
with adversarial threat models in mind. Around the same time, the Snowden revelations
took place, bringing light to the extent ot the USA surveillance program, and acting
as a catalyzer in the development of secure messaging protocols [EM22]. Currently,
E2EE secure messaging protocols are ubiquitous tools in the daily life of billions of
people. Indeed, E2EE is essentially the norm in instant messaging, with even companies
like Meta implementing it into non-flagship products like Messenger and Instagram
DMs [Met22].

A pioneering secure messaging protocol is Off-The-Record messaging (OTR) [BGB04],
introduced in 2004. At the time, it not only provided end-to-end encryption, but
also deniable authentication and forward secrecy, though at the cost of synchronicity,
i.e. users needing to be online at the same time. Deniable authentication allows
conversation participants to verify the authenticity of the messages while, at the same
time, preventing any third parties from doing so. Forward secrecy, in turn, is a security
feature that protects past messages from exposures of the key material, which could
result from the adversary gaining physical access to the device, or hacking it. The
general idea of providing security guarantees even in the presence of key exposures,
which is particularly sensible given how long-lived sessions can be, would be key in the
subsequent development of secure asynchronous messaging.

4Despite common folklore, the use of the scytale as an encryption tool in Ancient Greece is
contested [Kel98], though it might have been used as an authentication method [Rus99].

5And are still not [RAZS16].

3

1. Introduction

In fact, the main difference between modern secure messaging protocols and previous
communication protocols is the adoption of regular key updates, designed to limit the
effect of adversarial exposures of this key material. In particular, these key updates not
only protect the confidentiality of already sent messages, as was the case of OTR, but,
by infusing fresh randomness into the new keys, also allow for the confidentiality of
future messages to be recovered. This is what is known as post-compromise security
(PCS) [CCG16]. The most well-known and influential secure-messaging protocol
achieving these notions, while allowing for asynchronous communication, is the Double
Ratchet [MP16], introduced as part of the Signal protocol. The protocol is now employed
by a great number of messaging apps like Signal, Whatsapp, Messenger or Skype. Other
apps, most notably Telegram, have also developed their own secure-messaging protocols,
and we will discuss this a bit more in detail in Section 1.2.

The double ratchet protocol is a two-party protocol, but a expected functionality of
messaging apps is the support for group conversations. Almost all “1st generation”
secure group messaging protocols made black-box use of this two-party protocol.
However, this approach seems to unavoidably result in the complexity of (at least some
critical) operations scaling linearly in the group size n.6 This has resulted in practical
limits in the groups sizes for deployed SGM protocols (often in 10s or low 100s and
never more than 1000).7

Motivated by this, Cohn-Gordon et al. [CCG+18] initiated the study of SGM protocols
whose complexity scales logarithmically in n. This work was the starting point for the
Message Layer Security (MLS) working group at the Internet Engineering Task Force
(IETF), back in 2018, with the objective to create a protocol scalable for groups of
up to 50, 000 users. This process culminated in the publication of the first standard
for group messaging in 2023 [BBR+23]. Even though some of the main standard
development organizations bodies, like the IETF or W3C, have no legislative power
and can only make recommendations, the reality is that they have an enormous impact
in real-world deployments, with examples such as TLS8 or TCP9, the main protocols
used to encrypt and transmit web communications, respectively, or, more recently,
Privacy Pass10 or OAuth 11, among many others. This impact is indeed wider than
those of organizations like ISO or ITU, even though these do have closer affiliations
with transnational organizations, like the United Nations [EM22, HCS20]. Thus, the

6In fact, this holds true even for the few 1st generation SGM protocols designed from the ground
up with groups in mind [HLA19].

7https://9to5google.com/2023/01/18/google-messages-group-
encryption-limit/ Accessed on 25.07.2024.

8https://datatracker.ietf.org/group/tls/about/
9https://datatracker.ietf.org/doc/html/rfc9293

10https://datatracker.ietf.org/wg/privacypass/about/
11https://datatracker.ietf.org/wg/oauth/about/

4

https://9to5google.com/2023/01/18/google-messages-group-encryption-limit/
https://9to5google.com/2023/01/18/google-messages-group-encryption-limit/
https://datatracker.ietf.org/group/tls/about/
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/wg/privacypass/about/
https://datatracker.ietf.org/wg/oauth/about/

1.1. Secure (group) messaging and CGKA

publication of this standard is bound to greatly shape the future of secure group
messaging. And indeed it already has: MLS has either already been deployed, or soon
will be, by companies and organizations like AWS, Cisco, Cloudflare, Google, Matrix,
Meta, Mozilla, or Wire12.

At the core of secure group messaging is a cryptographic primitive called Continuous
Group Key Agreement (CGKA).13 Intuitively, CGKA is to, say, SGM messaging what
Key Agreement is to Public Key Encryption. That is, CGKA protocols capture many of
the challenges involved in building practical higher-level E2EE secure applications (like
messaging) while still providing enough functionality to make building such applications
comparatively easy using known techniques [ACDT21]. Thus they present a very useful
subject for research in the area.

1.1.1 Continuous Group Key Agreement
Continuous group key agreement (CGKA) was identified as the key primitive under-
lying group group messaging by Alwen et al. in [ACDT20, ACDT21]. In particular,
the ART protocol [CCG+18], from which the MLS working group originated, can be
seen as the first CGKA scheme, though it predates the formalization of the primi-
tive. TreeKEM [BBR18] was proposed shortly after, substituting ART, and eventually
becoming the CGKA employed by the MLS standard. Given the importance of the
primitive, and of TreeKEM in particular, a variety of works have studied it, proposing
alternative CGKA instantiations (often inspired by TreeKEM), analyzing the security
of constructions, proving lower bounds, or targeting additional properties like CGKA
for multiple groups, hiding metadata, etc. See Section 1.3 for references and a wider
account of related work.

A CGKA protocol allows a set of users to maintain a shared key in an asynchronous
setting, and protocol messages are relayed by an untrusted server. The operations
CGKA must support are the users’ addition and removal, and a key update functionality
by which a user can rotate its secret key material so as to achieve forward secrecy and
post-compromise security. More in detail, a CGKA has the following properties.

Dynamic membership. A CGKA protocol allows an evolving set of group members
to continuously agree on a fresh symmetric key. Every time a new party joins, or an
existing one leaves or refreshes (a.k.a. “updates”) their cryptographic state, a new
epoch begins in the session. Each epoch E is equipped with its own group key kE,
which can be derived by all parties that are members of the group during E. This
contrasts with earlier primitives that model parties interactively agreeing on keys.

12https://www.ietf.org/blog/mls-protocol-published/
13Also referred to as Group Ratcheting [BDR20] or Continuous Group Key Distribution [BCK21].

5

https://www.ietf.org/blog/mls-protocol-published/

1. Introduction

PCFS. CGKA protocol sessions are expected to last for very long periods of time (e.g.
years). Thus, as opposed to prior primitives like dynamic group key agreement, they
must provide a property sometimes referred to as post compromise forward security
(PCFS) [ACJM20]. This means that the group key of a target epoch should look
random to an adversary despite having compromised any number of group members in
both earlier and later epochs. This should hold true as long as the compromised parties
either left the group or performed an update between their compromise and the target
epoch. 14

Asynchronicity. Most CGKA protocols today ([CCG+18, BBR18, ACDT20, KPPW+21,
ACJM20, AJM22, AAN+22b, AFM24]) were designed with an asynchronous commu-
nication setting in mind (likely motivated by the application of secure asynchronous
messaging). That is, parties may remain offline for extended periods of time, not
ever actually being online at the same time as each other. Once they do come online,
though, they should be able to immediately “catch up” and even initiate a new epoch
(e.g. by unilaterally adding a new member to the group). This is in contrast to previous
primitives modeling parties interactively agreeing on keys.

Untrusted network. In the spirit of distributed E2E security (and unlike, say, broad-
cast encryption, multicast encryption, or dynamic group key agreement) CGKA protocols
must achieve all of the above without the help of trusted group managers or other
specially designated trusted parties. Protocols are designed to communicate via an
untrusted network which buffers protocol packets for parties until they come online
again. Nevertheless, proposals to make multicast encryption amenable to the SGM
setting by adding a key-updating functionality have been made [BDT22]. Additionally,
several works [AHKM22, AAN+22b] assume a server than not only acts as a relay, but
additionally provides extra functionalities, defining the server-aided CGKA primitive.
Finally, several works [WKHB21a, AAN+22a] do not rely on a central server and assume
a decentralized network.

14We note that PCFS is strictly stronger than providing the two more commonly discussed properties
of Forward Security (FS) and Post Compromise Security (PCS). Indeed, a successful attack on an
epoch E may require compromises both before and after E. Such an attack is neither an FS attack
nor a PCS attack. Moreover, literature usually speaks informally of FS and PCS as separate notions
asking that they both hold. Yet the notions do not necessarily compose and indeed protocols exist that
have FS and PCS, but significantly worse PCFS [ACDT20]. Fortunately, all formal security definitions
for CGKA we are aware of do in fact capture (some variation of) PCFS instead of treating FS and
PCS separately.

6

1.1. Secure (group) messaging and CGKA

1.1.2 Security Models: modeling the real world.
Designing systems secure against adversaries requires thinking in terms of worst-
case scenarios, as there is no such thing as being secure against 95% of attacks.
One cannot claim something secure as long as one attack that succeeds with non-
negligible probability exists. At the same time, no model can abstract all real-world
conditions [Box76] and capture all possible attacks. Further, the stronger the model,
the more complex it becomes to prove any statement about a protocol in it. This posits
a trade-off between the meaningfulness of a model and its practicality. The messaging
literature contains a variety of models, varying across different axes such as the ability
of the adversary to leak users secrets or randomness, to inject malicious messages, to
control the delivery server (if one exists)... Further, the literature contains different
definitions of what constitutes security, i.e., what properties should a protocol aim
to achieve. This great amount of possible combinations gives raise to a plethora of
security definitions, which are often incomparable.

In this section we aim to give an introduction to some of then main aspects present in
different security models, together with an overview of those used in this thesis. We
will start by reviewing the notions of adaptiveness and activeness. Then, we will shortly
consider different frameworks used to prove security in the literature. We will end the
section by discussing FS and PCS.

Adaptiveness. The literature distinguishes between selective and adaptive adversaries.
In the selective case, an adversary is required to make all or some of its choices (here
this means the sequence of operations and which key it is going to break) at the
beginning of the security experiment, without seeing any public keys or the results of
previous actions. While it is often more convenient to prove security in this setting,
it is clearly unrealistic, since in the real world adversaries may adjust their behaviour
based on what they observe during the attack. So obviously, security against adaptive
adversaries is desirable. Most CGKA protocols have been proven adaptively secure,
though some techniques for doing so are relatively recent, as we will discuss below.15

Activeness. One can classify adversaries with respect to their power to interact with
the protocol during the attack. For example, the weakest form of adversary would be a

15Understanding adaptive security is still ongoing in some SGM-related areas though, like multi-
party KEMs or mKEMs. This is a primitive allowing to reduce the communication cost of encrypting
to multiple recipients, and which has been proposed as a building block of efficient SGM protocols
by several works [KKPP20, HKP+21, AHKM22, AHK+23]. The most efficient and post-quantum-
secure construction of mKEM is not known to be adaptively secure, though no attacks are known
either [ACH+24]. While it is known how to turn it into an adaptively secure one, this transform
doubles the public key and ciphertext size. Proving the former construction adaptively secure, or
coming up with a better secure construction are interesting open problems.

7

1. Introduction

passive adversary, i.e. an eavesdropper that only observes the communication but does
not alter any messages. While the strongest notion would be an active adversary who
can behave completely arbitrarily. Another notion is that of insider security, capturing
safety against malicious group members. Earlier versions of MLS were susceptible to
such a attack, where a user could create a malformed group and retain access to the
group key even after being removed [AJM22].
Many works in the literature consider the intermediate notion of “partially” active
adversaries[ACD19, CHK21, JMM19, KPPW+21, AAN+22b] (also somewhat implied
by the model of [DV19], where communication must halt after an active attack). These
adversaries can arbitrarily schedule the messages of the delivery server, and thus force
different users into inconsistent states, but cannot inject messages, or force corrupted
parties to arbitrarily deviate from the protocol and create malformed messages. The
idea that an adversary can expose a user’s key material, but not learn or be able to use
the user’s signature keys can be seen as quite a restrictive model. However, in practice,
there are several mitigating aspects to this problem, that go beyond the difficulty of
proving protocols actively secure. As was observed already during the design of MLS,
in some real-world deployments of CGKAs fresh signature keys may be much harder to
come by than simply locally generating new ephemeral key material. That is because
each new signature key is typically bound to some external identity (like an account
name) via some generic “authenticator” and this binding may be an expensive and
slow process. E.g. a certificate that must be obtained manually from a CA. For this
reason many CGKA protocols (including TreeKEM) explicitly permit lite updates; that
is, updates which refresh all secret key material of the sender except for their signature
keys. While lite updates are clearly not ideal from a security perspective, they do allow
for frequently refreshing the remaining key material without being bogged down by
the cost of certifying fresh signature keys. Moreover, TreeKEM and other CGKAs
derive authenticity of packets not just from signatures but also by requiring senders to,
effectively, prove knowledge of the previous epoch’s group key. Thus, leaking a group
members’ signing keys does not automatically confer the ability to forge on their behalf.
Indeed, if the victims all perform a lite update, a fresh epoch is initiated with a secure
group key.

Security frameworks. When it comes to formalizing and proving security for CGKA
(e.g. confidentiality, authenticity and group agreement), there are at least three ap-
proaches.
The first approach is game-based, where security is captured through a game in which
the adversary gets to interact with the protocol. A proof essentially shows that it will
be hard for the adversary to win the game, typically by reducing it to the security of
the building blocks used in the protocol. This is the approach used to argue security
of the protocols introduced in Chapters 3, 5 and 6, and indeed the approach used as

8

1.1. Secure (group) messaging and CGKA

well by many other works, e.g. [CCG+18, ACDT20, ACDT21]. In this setting, there is
a generic reduction from selective to adaptive adversaries that simply guesses what the
adversary may choose (this is the approach effectively taken in [CCG+18]). However,
this involves a loss in the advantage that is exponential (or even superexponential) in
the size of the group. This means that in order to provably achieve meaningful security,
one needs to set the underlying security parameter linear in the group size, which results
in the update messages having size linear in the group size (since they usually consist
of encryptions of secret keys). But the trivial construction based on pairwise channels
also has message size that is linear in the number of group members, so such a security
proof defeats the whole purpose of the design of efficienct CGKA protocols: having
small update messages! Klein et al. [KPPW+21] are the first to prove meaningful
security bounds against an adaptive adversary (and also introduced the basic GSD
proof technique used in most subsequent game-based security proofs for adaptively
secure CGKA). A somewhat different approach to the one above is taken by [ACDT21],
which introduced the history graph technique to describe the semantics of any given
CGKA executions. While it constitutes an extension of previous techniques that allows
them to prove adaptive security of further schemes (like that of [ACDT20]), their game
based notion still placed some restriction on when an active adversary could inject new
packets. Game-based security comes with the advantage over other approaches of
usually easier and more comprehensible proofs, achieving or even defining meaningful
security against fully active adversaries is challenging, with no work in this setting doing
so, to the extent of our knowledge.

A different approach to security notions is simulation-based definitions. This entails
defining an ideal functionality, i.e., an idealized version of the protocol. Security is then
argued by showing that an execution between the adversary and the real protocol is
indistinguishable from one between the simulator and the ideal functionality. This was
the route taken in [ACJM20] which presented the first ideal functionality for CGKA.
Their notion captures security against powerful adaptive and fully active adversaries (i.e.
they can deliver arbitrary packets without any restrictions) that can corrupt parties at
will and even set their random coins.16 Finally, building on that work, [AJM22] extend
their adversaries to also account for how corrupt insiders might interact with a (very
weak) PKI. The resulting notion is called insider security.

A third approach to defining adaptive and active security is through machine-checked
formal analysis. This approach is first taken in [BBN19], who use an “event driven”
language to define adaptive security for CGKA. E.g. authenticity is captured by roughly
stating that if Alice believes a packet came from Bob then this must be preceded by an
event where Bob sends such a packet. While currently unable to formally capture the

16The paper also proposes several protocols achieving this security notion at the cost of using
impractical cryptographic primitives.

9

1. Introduction

entirety of MLS, such an approach has proven very useful to identify subtle attacks
that had otherwise been missed.

Forward Secrecy & Post-Compromise Security. FS and PCS are standard notions
expected to hold in modern messaging protocols. In contrast to the two-party setting,
formalizing these notions in the group setting is more nuanced. To start with FS, one
natural approach is to require that a key is secure if all parties have performed an
update before being corrupted. This is effectively what [CCG+18] does, and what we
will adopt throughout this thesis. In contrast, [ACDT20] defines a stronger notion we
refer to as strong FS. It requires keys to be secure as soon as possible, subject to not
violating basic completeness of the CGKA protocol. However, this is only required in
executions where protocol packets are delivered in the same order to all group members.
Going even further, the work of Alwen et al. [ACJM20] introduces the notion of optimal
FS, where, keys must become secure as soon as possible for arbitrary delivery order. To
date, all protocols achieving these notions of stronger FS make use of either impractical
primitives like hierarchical identity-based encryption (HIBE) [ACJM20], or of updatable
public-key encryption (UPKE). Until the very recent work by Alwen et al. [AFM24],
however, no UPKE constructions could satisfy the insider security notion introduced
in [AJM22], which has become the goal in the literature. They achieve this through
the enhanced notion of joiner-secure UPKE, which is secure even in the presence of
forks in the key-updating execution.17

When it comes to PCS, the standard notion similarly requires that a key is secure if
all parties performed a key-update after being corrupted. It is difficult to imagine a
version of PCS requiring any less than this, since PCS requires new keys to be infused
with new randomness, as the adversary is assumed to gain knowledge of the whole
user’s state after a corruption. Nevertheless, an alternative to this is introduced in the
work of Fondevik, Hale and Tian, who propose the notion of guardian PCS, whereby
a device might be paired with a “guardian” device that can update on its behalf. A
different relaxation is the one introduced in [AAN+22b, AAN+22a] (Chapters 5 and 6),
and generalized in [ANPPP23], where security is only required after each corrupted
party updates a certain number of times from the time they were compromised (this
number is fixed to log(n) in [AAN+22b] and to log(c) in [AAN+22a], where c is the
number of corrupted parties).

17Their accompanying construction is not post-quantum secure, making it an interesting open
problem to build a post-quantum, joiner-secure UPKE scheme. This would imply an SGM construction
that is post-quantum and insider secure and has optimal FS.

10

1.2. The Social Context of Secure Group Messaging

1.2 The Social Context of Secure Group Messaging
Cryptographic work should not be separated from the social context in which it takes
place, even if most of this work can be classified as theoretical. Many within the
community have called for effectively acknowledging this and reassessing whether its
work is aligned with its social implications, most notably Rogaway in his famous essay
“The Moral Character of Cryptographic Work” [Rog15].18 This is not new: a big
influence in the development of cryptography are the cypherpunks, a strongly ideological
group with motivations around individual privacy and autonomy, and institutional
transparency [Hug93, And22]. Many tools and systems like Bitcoin, PGP, Tor and
Wikileaks, which have had a profound impact on both society and the academic
community, can be traced back to this community [Rog15]. This is also clear when
considering E2EE, often discussed in the context of balancing the principles of “security
through encryption” and “security despite encryption” [EM22]. E2EE is also the subject
of significant regulatory scrutiny from governments [Kno23].19

On the one hand, cryptography is indispensable for a great number of systems in today’s
world, so cryptographers should ensure that the tools built serve their intended purpose.
This starts with definitions, which play a very important role in what is visible, and how
we approach working (in cryptography) on the problem [Rog19]. The choice of adversary,
security goals, etc. are influenced by our view of what is desirable and realistic, and most
often what is already part of our (academic cryptographic, in this case) community’s
assumptions and beliefs, meaning cryptography is strongly socially constructed [Rog09].
Even more, secure messaging tools and their building blocks (or any other cryptographic
protocols) are “shaped by designers who make technical decisions that consider risk,
threat models, [...], sociopolitical context and technical constraints. Decentralised
versus centralised? Localisation versus globalisation? Anonymous or pseudonymous
approaches? What counts as ‘good’ or ‘desirable’ security? The standardisation process
itself, and design decisions about arrangements of architecture, are also arrangements
of power” [EM22]. Indeed, when we develop or analyze protocols designed (or even
amenable) for specific uses, such as for whistleblowers, we are making a normative
statement about society – in this case, that whistleblowing is a valuable and beneficial
activity.

On the other hand, it is important to be aware of the impact that cryptography (and
more widely, technology) can realistically have. To begin with, internet access is very
unevenly distributed globally with, e.g., 95% of the population of Italy having access to
5G while many territories around the world only have 2G networks (allowing just SMS and

18One initiative worth noting is the Re-Imagining Cryptography and Privacy Workshop (https:
//recapworkshop.online/).

19A comprehensive treatment of the social aspect and implications of encryption and secure
messaging can be found in the book by Ermoshina and Musiani [EM22].

11

https://recapworkshop.online/
https://recapworkshop.online/

1. Introduction

calls), or no network coverage exists at all [Cab23]. Further, many social and political
issues are extremely complex and require of multi-disciplinary approaches that cannot
rely solely on technology. The idea that technology alone will improve society or solve its
problems can be very problematic [Rog24, GT24]. Additionally, our growing dependence
on these tools also enable surveillance and political persecution [McL16, New19], as
well as create new attack vectors on users [The19].

In this section we will discuss these issues applied to secure messaging more in depth.
With this we also want to steer away from the techno-utopian self-indulgent view
that cryptography will solve our social problems, while at the same time highlighting
the many (and often subtly multi-layered) scenarios where it plays a big role. While
the topic of this thesis is of a technical nature, we believe it a useful context. At
the same time, we acknowledge our lack of expertise in this area and call for further
multi-disciplinary approaches to the topic.20

1.2.1 Cryptography as a tool
We will start by identifying some settings in which encrypted messaging acts as a
positive and important tool.21

Online communications have played a big role in social protest and activist movements
over the last decade. Examples of this can be found in their use social media in the
Gezi protests in Turkey in 2015 [HZ15], in the use of Whatsapp in Occupy Nigeria
protests [URW18], in activist circles in Spain and Mexico [Tre20], or in the Hong Kong
protests of 2014 and 2019, that were organized with the crucial help of social media and,
in particular, through Telegram and internet forums [LC16, Tin20, KNC20, LCC20].
More generally, social media has played a major role in collective organization and
action in the last decades [Cas12, MJHY15, Shi11, MNP18, LA10]. While some of
the tools used by participants in the settings described above are not E2EE, there is a
change in the last years towards relying on tools providing stronger security guarantees
(though this comes with many hurdles, as we will discuss below). To take the example
of Hong Kong, interviews with participants in the later protest movement showed that
pseudonimity needs were very strong among protesters. This marked a shift in the
security mindset with respect to earlier protests, particularly the Umbrella Movement
from 2014, where an interviewee says “most was organized over Facebook” [ABJM21a].
Another example is the recent widespread use of E2EE apps like Whatsapp and the
positive influence it has had on activism [GdZAACR21], and in users feeling more
free to express their opinions, as showed by Valeriani and Vaccari [VV17], whose
work “suggest[s] that MIMS [mobile instant messaging services] make a distinctive

20Such as this one: https://social-foundations-of-cryptography.gitlab.io/
2023/12/14/announcement-blog-post-martin/.

21For the not so glamorous aspect of it see Section 1.2.3.

12

https://social-foundations-of-cryptography.gitlab.io/2023/12/14/announcement-blog-post-martin/
https://social-foundations-of-cryptography.gitlab.io/2023/12/14/announcement-blog-post-martin/

1.2. The Social Context of Secure Group Messaging

contribution to contemporary repertoires of political talk, with important implications
for the quality and inclusiveness of interpersonal political discussion”.

Encrypted communications are essential for journalists [LZR17, MCHR15, MFK16],
who not only need to protect their data from adversarial entities but often rely on
sources feeling safe to whistle-blow without personal repercussions [Di 20]. One of the
most famous whistle-blowing tools is SecureDrop22, created in 2013 to provide secure
communication between journalists and sources. Recently, a new version incorporating
end-to-end encryption and forward-secrecy guarantees for journalists has been announced
to be in development [Sec24].

Additionally, many other collectives benefit from access to secure communication tools.
A plethora of works have studied the privacy and information security needs for different
groups, starting from civil society [SR16] and including transgender people [LHK+20],
refugees [JCKT20, SLI+18], or undocumented migrants [GMS+18]. These works – and
others, like that of Rosenbloom [Ros22] surveying Black Lives Matter (BLM) activists –
suggest the populations studied have different needs that are often not satisfied and
that need to be understood in order to design technologies meeting them [ABJM21a].

The question is thus: given the presence of such different threat models and needs,
what to build and how to make sure it satisfies the intended purpose for which it is
being built? And even more basic: is the cryptographic community focus on a few
select tools like MLS or Signal the way forward? To what extent can a single tool
satisfy the wishes of so many different groups?23

1.2.2 Building the right tools, and getting them used
The development of useful and secure digital tools is complex, as there is no such a
thing as “uniform” user and tools are being used across different social contexts. Even
within considered high-risk users, there is no such thing as a unique profile. On the
one hand, there is a struggle between one’s personal and “activist” identity [Bob07].
On the other, e.g., activists within the same group can be differentiated according
to different roles and categories [Hor17]. Even the same groups might have different
concurrent needs, such as protesters in Hong Kong, who differentiated between big
open groups used for information distribution, which should be easily accessible, and
smaller private groups for trusted core and collective decision making, where access is

22https://securedrop.org/
23When it comes to understanding what tools are needed by activists that might be targeted by

bigger powers, an interesting approach is Ethan Zuckerman’s famous “Cute Cat Theory of Digital
Activism” [Zuc13].It posits that activists can benefit more from using mainstream platforms (those
“primarily user to share cute cat pictures”), that bespoke ones that are easier to target.

13

1. Introduction

heavily controlled[ABJM21a].24 This paints a picture that is difficult to abstract in a
cohesive threat model.

The point above is supported by the advice that digital security trainers give. Indeed,
they take a person-based rather than tool-based approach, understanding that the
context plays a huge role in what leads to a safer experience for the user. We can see
this in the context of the recent war in Ukraine, where:

“The mere fact of having certain apps on one’s phone (such as Signal, Tor or even
Telegram) can raise suspicion and result in bodily harm or even life-threatening situations
at the routine phone checks conducted by Russian soldiers. [...] digital security trainers
aware of this context advice their high-risk users to use Whatsapp and Gmail instead
of Signal or a PGP-encrypted form of email [...] The Ukrainian approach to security
underlines that risk is relational and local. Security should be considered a multi-layered
complex process in which the digital layer is just one of many.”

(K. Ermoshina and F. Musiani [EM23])

The issue is further compounded by the commonplace discrepancies between the
needs and wishes of users and the aims of designers and developers of SGM protocols
and applications, as can be seen through the works of Ermoshina, Halpin and Mu-
siani [EHM17, HEM18].25 The first work [EHM17] relies on interviews with developers,
privacy and security experts, and everyday users. The main lessons are: (a) protocol
properties are often not understood by users26 (b) high-risk users have different needs
than low-risk ones, and (c) security trainers in countries with high-risk users due to,
e.g., persecution of political dissidents, will suggest different practices and tools than
those in low-risk countries. The second work [HEM18] follows on this and finds, for
example, that “client device seizures are considered more dangerous than compromised
servers by high-risk users”, that “Key verification was important to high-risk users,
but they often did not engage in cryptographic key verification, instead using other
‘out of band’ means for key verification” (this is further supported by [FK23]), or that
developers placed too much priority on open standards, open-source or decentralization
from the point of view of high-risk users.

Within the cryptographic academic community, this issue can be found as well in
the attention that different protocols receive. For instance, a large amount of work

24Davidson, Virdia and Soezima recently proposed the notion of “semi-open group messaging” [DVS],
addressing some of these needs.

25While the authors of both works are the same, we note that the second work presents the authors
in a different ordering, with Halpin being first.

26Misconceptions and difficulties in understanding the security of applications are also shown
by [ABJM21a] in the contexts of the 2019 Hong Kong protests; by [BSJCU21] in the context of BLM
protesters; and, more widely, by many other studies [IRC15, ASSB+17, DNDS19]

14

1.2. The Social Context of Secure Group Messaging

has studied in the last years both the security guarantees of the double ratchet al-
gorithm, and the problem of developing optimally secure protocols[BSJ+17, DV19,
JS18, JMM19, PR18, ACD19]. This makes sense, since Signal’s protocol boasts great
security guarantees. Nevertheless, the reality is that Telegram is a major tool used in
social movements, commonly perceived as the most trust-worthy app, and yet until
recently it had not received much attention from the cryptography or information
security communities [Kob18, ABJM21a].27

Another example is the prioritization of certain security properties by the academic
community, with forward secrecy and post-compromise security being clear examples
in the context of SGM. PCS is one of the main reasons for the development of a new
generation of SGM protocols. It is motivated by the danger of an adversary gaining
knowledge of the key-material of the device and thus retaining access to contents
of the conversation from that point onwards. It is particularly concerned with such
compromises happening without the user’s knowledge, as updates are designed to be
efficient enough to be able to occur with high regularity. However, it is unclear how
common the latter type of compromises are and,28 in turn, compromises that the user
(and possibly other group members) becomes aware of do happen, and are a common
cause of concern for e.g. activists [HEM18]. However, in the latter case users will
often not rely on the security of key updates, but rather resort to more pro-active
measures like re-creating the potentially compromised group.29 On the other hand,
forward secrecy in practice requires of the user using the disappearing messages feature
to regularly delete messages from their phone. Indeed, a key-compromise not allowing
to decrypt past ciphertexts is pointless if the underlying plaintexts are leaked together
with the key. The disappearing messages feature, though present in many apps (e.g.,
Signal, Whatsapp, Telegram), is opt-in for most of them. The latter is an example of a
great dilemma when building secure applications: the tension between usability and
security.

Usability vs. Security As frustrating as it might be for the security community, the
public will often favour usability over security. For example, adoption of messaging

27We should point out, nonetheless, that Telegram has been analyzed as of late by several
works [MV23, AMPS22].

28Though this is to be expected since these compromises are, by definition, hard to identify, it
shows the subjective nature of threat modelling.

29To make matters worse, many messaging apps that claim to have PCS were shown to be
susceptible to cloning-attacks, where the adversary gains physical control of the device, clones its
state, and attempts to impersonate the user [CFKN20].

15

1. Introduction

platforms is often driven by features of the interface,30, the ease of use,31 the reputation
of the app’s creator, or the not-for-profit commercial status of the company, as is the
case with Telegram [EM22].32 And this makes total sense, oftentimes security is not
really needed, whereas practicality is: the ability to make polls in a group might totally
change the user experience. But sometimes security is relevant, and in these cases
usability is often at odds with it. For example, it will be much harder to implement an
anonymous SGM app if it needs to load an external service employed for sticker making.
And average users will likely not make use of an app that requires to physically scan a
QR code of your contact to verify their public key before communication can take place.
Still, not caring about usability in these cases leads to “a ‘forced responsibilisation’ of
users” [EM22] which implies the delegation of that responsibility to a few, hindering
the development of collective approaches to security [AGRS15, Kaz15]. For example,
usability and thus low adoption are still an issue in systems such as modern versions of
PGP [RAZS16], despite being more than 30 years old and until now in development.
Thus, developing secure applications needs both attention when designing and also
when communicating to the public, making them aware of the choice they are making.

Ultimately, the reasonable conclusion is that it is unfeasible to design an app that can
satisfy the needs of every user. A concrete example of this is the publication of the
“Secure Messaging Scorecard” by the EFF [EFF16], aiming towards advising users on
which apps to choose, and the criticism and revisions that followed [EFF18, EM22].

1.2.3 Cryptography and policy
In spite of the hurdles discussed in the development and deployment of SGM and
related technologies, one could argue that existing technology is very advanced and
that “[...] the most pressing issues of our time related to encryption may be not only
legal and technical, but also social” [EM22]. Many national and international bodies
have, in the last years, put forth legislative measures seeking to increase their oversight
over security and privacy-related technologies.33 An example of regulation of E2EE is

30Iranian users explained in an interview-based study that the possibility to use “stickers representing
Muslims in their everyday environment [...] was a very important feature that differentiates Telegram
from ‘first world’ apps that only focus on Western lifestyles and emoticons” [EM22].

31Users prefer convenience and, though are generally interested in using secure tools, are often
unclear as to their personal benefit, or would not want to use them regularly [RAH+16].

32The reputation of Telegram founders, particularly Pavel Durov, is partly due to the russian
government declaring him persona non-grata after refusing to collaborate with Russia’s Federal
Security Service. This ideological factor when choosing Telegram can be seen by its massive increase
in downloads when Facebook bought Whatsapp [EM22]. This is in contrast to the fact that group
conversations in Telegram are not E2EE, and nor are one-on-one conversations by default.

33A great and somewhat related example of governmental regulation targeting technology is the
General Protection Data Regulation (GDPR), issued by the European Union in 2016. The current
focus in these areas follows unequivocal statements like that of Meglena Kuneva, European Consumer

16

1.2. The Social Context of Secure Group Messaging

the Yarovaya law [Luh16], going into effect in 2018 in Russia, which requires telecom
providers to store the contents of voice calls, data, images and text messages and asks
any company using encrypted data to allow the Federal Security Service of the Russian
Federation (FSB) access to its content.34 Another example is the call in 2018, by state
members of the ‘Five-Eyes’ (Australia, Canada, New Zealand, United Kingdom and
United States), together with India and Japan, for technology companies to make it
possible for law enforcement to have access to content, where justified by law [OoPA].
The will to regulate E2EE is reasonable given the dark side of messaging applications,
which can be used to harass others [TAB+21], spread violence and encourage mob
lynchings [Muk20, Aru19], to spread misinformation [Sta21, Bel], or as a vehicle to
share other harmful content such as Child Sexual Abuse Material (CSAM).35

An issue when discussing such regulation is that it is hard to agree on regulation
when not agreeing on definitions. For example, defining E2EE properly is not a trivial
task, and encompasses subtleties beyond the intuitive combination of authenticity and
confidentiality. Indeed, the formalization of these notions (e.g. through primitives
like Authenticated Encryption (AE)), is not enough to accurately abstract real-world
needs, where one additionally needs to properly define what we understand by an
end [HK22]. This is shown by companies claiming to offer E2EE services while actually
providing just client-to-server encryption (the case of Zoom [MSR20] is a notable one).
Another revealing example of this issue is the controversy regarding content moderation
in encrypted communications, brought about to the public discourse by proposals
like Apple’s client-side scanning (CSS) solution to the distribution of CSAM [App21].
Roughly speaking (see, e.g., [AAB+24a] for a technical discussion), this would allow
external parties to learn whether the contents of a user’s encrypted data matches
those of a centralized database, which is a substantial modification from the folklore
understanding of E2EE, where no one except the users communicating can learn anything
about the contents of the transmitted data. Yet, if the contents of said database are
trusted and limited, it could be argued that it would be reasonable to refer to it as
E2EE. What is hence the right definition for E2EE that can balance “security through
encryption and security despite encryption”? This is an ongoing discussion across
different parts in the globe, as evidenced by the recent postponement of a proposal
along these lines by the EU [Tim]. The preference for CSS by many stakeholders is
often borne out of the perceived lack of alternatives [BGD+24]. Nevertheless, whether
technical solutions are the best approach to solving such complex social challenges is
another entirely different and crucial question [FN21, Kno24, Tro23, EE].

Commissioner, from 2009: “Personal data is the new oil of the internet and new currency of the digital
world” [Kun09].

34This triggered Telegram to famously leave the country [EM21].
35Mitigating some of these downsides through technical means is the object of ongoing re-

search [IAV22].

17

1. Introduction

Interoperability One last notable piece of legislation is the Digital Markets Act
(DMA)36 law by the EU, that mandates, among many other things, for messaging
apps with enough share of the market to interoperate [RS23]. This is aimed at
preventing monopolies from the so-called gate-keepers.37 Furthermore, this would
potentially help prevent the silo effect [SH15] of having the user base fragmented across
different apps, which has been one of the main drawbacks towards the adoption of
E2EE apps [EM22, ASKP+17]. However, doubts have been raised about the potential
contradiction between interoperability and the preservation of security [BA23]. While
some solutions have been suggested [LGGR23] our collective understanding of this
problem is limited.38 Further, a potential solution such as the adoption of a common
standard like MLS by most messaging apps seems unlikely. This unification would also
come at the cost of reducing the user’s ability to choose based on their threat model.

1.3 Related Work
In Section 1.1 we discussed some works and how they fit in understanding the different
security models and history of the development of CGKAs. In this section we additionally
mention some works that are relevant to understand the group messaging landscape.
Further ones that are relevant mostly for a particular section of this thesis will be
mentioned in the corresponding chapter.

Even though CGKA is relatively recent, a closely related and much older primitive is that
of Group Key Exchange (GKE), which allows a fixed group of users to derive a common
key. These can be traced to early publications like [ITW82, BD95]. In contrast to
CGKA, GKE protocols do not target PCS and are designed for the synchronous setting.
That is, they are highly interactive e.g. requiring all parties to contribute to any one
operation via interactive rounds. Initial GKE results were followed by a long list of works
exploring additional features; notably, supporting changes to group membership mid-
session (aka. Dynamic GKE) [BCP02, DB05]. A paper by Poettering et al. [PRSS21]
surveys the different models used in the GKE literature, including some CGKA ones.

Another related notion is that of Multicast Encryption (ME) [Pan07], which allows a
changing group of users to maintain a common key with the help of a trusted group
manager. Logical Key Hierarchies (LKH) [WHA98, WGL98, CGI+99] were introduced
as efficiency ingredients for building ME protocols. Ratchet trees, the graph structures

36https://digital-markets-act.ec.europa.eu/index_en
37Whatsapp and Messenger were identified as the only gatekeepers within the instant messaging

categoryhttps://digital-markets-act.ec.europa.eu/gatekeepers_en.
38This problem is the focus of the IETF “More Instant Messaging Interoperability” working group

(https://datatracker.ietf.org/wg/mimi/about/.)

18

https://digital-markets-act.ec.europa.eu/index_en
https://digital-markets-act.ec.europa.eu/gatekeepers_en
https://datatracker.ietf.org/wg/mimi/about/

1.3. Related Work

used by TreeKEM and most existing CGKA protocols, can be seen as simple adaptations
of LKH to the CGKA setting.

The study of CGKA based protocols (group key agreement protocols with the explicit
goal of PCS, asynchronous communication and no trusted parties) was initiated by the
ART protocol [CCG+18], based on which the first version of MLS [BBR+23] was built
shortly before transitioning to TreeKEM [BBR18].

Many variants of TreeKEM, aiming to improve it across different axes have been
proposed since its inception, starting with Tainted TreeKEM [KPPW+21], presented in
Chapter 3, and which presents an alternative method to remove or add users to the
group. The recent work of Chevalier et al. [CLMP24] analyzes the efficiency deficits of
using binary left-balanced trees and proposes optimized algorithms for adding users and
expanding ratchet trees. Metadata protection is an important aspect of privacy. Signal
employs techniques such as Sealed Sender [Sig18] and Private Groups [CPZ20], which
hide the identity of senders and group members from the server, respectively. Metadata-
hiding modifications of MLS have been proposed in [HKP22], and [BRT23] studies
anonymous messaging using mesh networks. In response to the interoperability mandates
by the European Union’s DMA, [LGGR23] identifies its effects on encrypted messaging
systems, putting forth a proposal for a protocol, as well as open problems. The paper by
Bienstock, Dodis and Tang [BDT22] studied the enhancement of ME schemes for their
application to group messaging. Recently, Alwen, Fuchsbauer and Mularczyk [AFM24]
introduce a stronger notion of updatable PKE that is more appropriate for its use in
multi-party settings and, in particular, secure group messaging.

In [ACJM20] zero-knowledge proofs are used to improve the robustness of CGKA
protocols. The approach was made a bit more practical in [DDF21] by, amongst
other things, introducing tailor-made ZK proofs. Very recently, [EKN+22] initiated
the study of membership privacy for CGKAs. Other works have focused on tools
for cryptographic administration of group membership [BCV23], or resilience against
network splits [AMT23]

The work of [KKPP20] initiated the study of post-quantum primitives for CGKA by
building primitives designed for use in TreeKEM (and similar CGKAs). This was
followed up by the work of Hashimoto et al. [HKP+21], who propose the use of multi-
recipient PKE in order to improve the download cost of users, at the cost of linear
size commits. This primitive, in combination with reducible signatures, is also used by
Alwen et al. in [AHKM22]. This work introduces the notion of server-aided CGKA as
well as notable efficiency improvements by greatly reducing constant factors (though
communication stays similar to TreeKEM’s asymptotically). Further improvements over
previous results are given in [AHK+23]. The notion of multi-recipient KEM has recently
been proposed for standardization at NIST [ACH+24].

19

1. Introduction

The later versions of TreeKEM support a certain degree on concurrency between
group operations. Outside of TreeKEM, concurrency was initially approached by
Weidner [Mat19], who proposed the Causal TreeKEM protocol. Later, it was more
formally analyzed by Bienstock et al. [BDR20], who study the trade-off between PCS,
concurrency and communication complexity, showing a lower bound for the latter and
proposing a close to optimal protocol efficiency-wise, though in a static-group model,
and with weaker security. A further paper by Weidner et al. [WKHB21b] proposes a
decentralized and concurrent protocol, at the cost of linear communication cost for
updates. Recently, Cong et al. [CEST24] proposed the so-called key-lattice framework
and a concrete instantiation, allowing for commutative updates, which also incurs
linear communication costs. Processing concurrent operations, together with a relaxed
notion of PCS, is also the aim of protocols CoCoA [AAN+22b] and DeCAF [AAN+22a],
presented in Chapters 5 and 6, respectively.

A variety of papers have been devoted to understanding TreeKEM and the wider CGKA
landscape. First, we have papers showing lower bounds on the communication cost that
CGKA protocols satisfying certain properties need to achieve. In this setting, the work
of Alwen et al. [AAB+21b] show lower bounds on the communication cost of updates
in potentially overlapping groups, along the way proving that the logarithmic cost of a
single update in ratchet trees is optimal. Bienstock, Dodis and Rösler [BDR20] give a
lower bound on the cost of a group healing from a compromise through concurrent
updates in two rounds of communication (which is the minimal number of round
needed without the need of some powerful primitive like multi-party non-interactive
key-exchange). This lowerbound is generalized by Auerbach et al. [ANPPP23] to the
setting where PCS can be achieved in k ≥ 2 rounds of communication. Further, the
recent paper by Anastos et al. [AAB+24b] presents a lower bound on the cost of group
operations that change the set of group members, showing that current solutions are
optimal. A paper by Bienstock et al. [BDG+22] proves no CGKA can be instantiated
in a black-box way from PKE with sublinear cost, and that no optimal (with respect to
any sequence of operations) protocol exists.

Further, we have papers that have attempted to formalize TreeKEM in terms of smaller,
simpler to analyze, building blocks. From this lens, Alwen et al. [ACDT21] formalize
secure group messaging and cast it modularly in terms of the primitives CGKA, forward-
secure group AEAD and PRF-PRNG. A somewhat different abstraction of MLS is put
forth by Wallez et al. [WPBB23], which splits it into TreeKEM, TreeDEM, similar
to the concept of FS-GAEAD above, and TreeSync, a new abstraction capturing the
guarantees regarding state consistency between users. Finally, others have studied the
security guarantees of TreeKEM, along the way extending previously existing security
models. In terms of security, the first security proof for any CGKA was for ART
in [CCG+18]. Their proof has an exponential loss against adaptive adversaries. The
first proof of adaptive security with sub-exponential loss (in fact, polynomial in the

20

1.4. Outline and Contributions

random oracle model) for a variant of TreeKEM was given in [KPPW+21]. While
their security proof captured adversaries who can make adaptive choices, it did not
capture fully active adversaries who can arbitrary deviate from the protocol specification
and send malformed messages. Subsequent works [ACJM20] and [AJM22] propose
stronger security models, allowing the adversary to set the random coins of parties,
and to corrupt and impersonate them, respectively. Formal analyses of TreeKEM’s
security were carried out in [BCK21], [BBN19] and [WPBB23]. In the multi-group
setting, Cremers et al. [CHK21] study the PCS guarantees earlier versions of TreeKEM
provided for users belonging to different groups. The work of Alwen et al. [ACDT20]
analyzes the forward security guarantees of TreeKEM, proposing an improvement based
on updatable PKE, which achieves optimal FS: parties need only process an update
from any other party, as opposed to issuing one update. This work was the first one to
introduce the definition of CGKA.

Finally, a number of recent works have focused on assessing the security of existing mes-
saging apps, like Bridgefy [ABJM21b, AEP22], Telegram [AMPS22], DeltaChat [SMP24],
Threema [PST23], or the Sender Keys protocol, used by both Signal and What-
sapp [BCG23].

.

1.4 Outline and Contributions
The rest of this thesis is structured as follows. Chapter 2 covers some preliminary
concepts, including the formal definition of CGKA and its security, as well as an
overview of ART and TreeKEM. Chapter 3 introduces the Tainted TreeKEM protocol,
an alternative for executing membership changes in the group. Chapter 4 studies
the setting of multiple (possibly overlapping groups) and the protocol-design space in
it. Chapter 5 introduces the CoCoA protocol, designed to enable concurrent group
operations without efficiency downsides. Chapter 6 introduces the DeCAF protocol. As
CoCoA, it allows for concurrency, but introduces different trade-offs with respect to it.
More in detail, our contributions are the following.

Chapter 3: Alternative handling of Dynamic Operations. The main method for
executing membership changes in TreeKEM and most CGKA protocols is through a
technique called blanking (see Section 2.5), which effectively erases from the common
state of group users that would otherwise be used to efficiently communicate state
changes to the group. The obvious downside of this approach is that it increases
the communication cost of future group operations. In Chapter 3 we present Tainted
TreeKEM (TTKEM), a variant of TreeKEM that employs a different approach, which
we termed tainting, to handle these operations. Tainting does not delete keys and

21

1. Introduction

instead replaces them by new ones. While doing so preserves the structure of the
common group state, in order to preserve security certain operations will still incur an
overhead in communication. This presents a trade-off between TreeKEM (and similar
protocols) and TTKEM. We complement the description of tainting and the resulting
protocol with a comparison based on simulations, showing that our protocol can be
more efficient in several natural scenarios.

Chapter 4: Efficiency Optimizations through Overlapping Groups. Users of
a messaging service will typically be part of different groups, often with overlapping
membership sets. In Chapter 4 we initiate the study of protocols that make use of
these overlaps to improve on the overall efficiency of the system.

Our contributions in this regard are twofold. On the one hand, we look are the problem
from a more theoretical lens in order to gauge the potential that such a solution can
have over the trivial one where the overlap is not exploited, in the setting where the
number of users grows to infinite. Here, we prove a lower bound on the cost of key
updates and complement it with an algorithm that matches this bound. On the other
hand, we approach the problem from a more practical side, taking into account concrete
efficiency, and we propose an algorithm that is better suited for certain concrete set
systems, analyzing its efficiency. We complete the chapter by showing a lower bound
on the average update cost of arbitrary CGKA and ME schemes in a symbolic model.
This lower bound both improves and extends that of Micciancio and Panjwani [MP04]
for ME. In particular, it extends it to both the settings of CGKA and multiple groups,
and lifts it from worst to average communication complexity.

Chapters 5 and 6: Concurrent Key Updates and their Effect on PCS. For
groups containing many users, key updates occur with a high frequency, which creates a
need to handle the case where several parties concurrently issue such a protocol message.
Schemes allowing for several members to rotate their keys in a single communication
round not only solve this problem, but further open the door to stronger PCS guarantees,
as security can be restored more quickly following a compromise. This was already
identified as an important aim in the original version of TreeKEM, and was one of the
factors leading to the introduction of the Propose & Commit paradigm in later versions.
While this approach and others did (partially) solve the concurrency issue, they did
so at a high cost in communication complexity. In Chapters 5 and 6 we propose two
schemes that allow for members to rotate their keys concurrently and efficiently and
without degrading future communication complexity. In doing so, we introduce a new,
more flexible notion of PCS that only requires security to be restored after a certain
number of updates per party have been performed.

In Chapter 5 we introduce CoCoA, a protocol which supports concurrent operations

22

1.4. Outline and Contributions

without the need of the P&C paradigm and thus without the need of blanking. We show
that users in CoCoA achieve PCS in a number of rounds that is logarithmic in the number
of parties updating their keys. Before CoCoA no scheme was known that could heal
from a compromise without incurring either a linear number of communication rounds
(non-concurrent schemes) or a degradation in subsequent communication (concurrent
ones).

Further, in Chapter 6 we introduce DeCAF, a variant of CoCoA employing a form of
updatable public key encryption, and which achieves PCS in a number of rounds that
is independent of the number of concurrent updating members, and in fact is only
logarithmic in the number of state compromises (which will typically be much lower
than the number of users).

Chapter 5: Reduced Download Complexity. The bulk of communication cost in
secure group messaging is concentrated around downloading, since users will typically
witness (and download) operations from other group members linearly many (in the
group size) more times than issue them. An additional contribution of Chapter 5 is the
introduction of the notion of partial states, a building block in CoCoA, which allows
users to store (and download) only a fraction of the information uploaded by other users.
This effectively reduces the download cost per-user per-round from linear to logarithmic
in the size of the group. CGKA schemes preceding CoCoA required either a linear
upload communication cost, or a linear total download communication cost (across the
process of healing from a compromise). CoCoA was the first scheme introduced that
achieved poly-logarithmic communication cost on both sides.

23

CHAPTER 2
Preliminaries

2.1 Notation

• Throughout the thesis log denotes the logarithm with respect to base 2.

• Given natural numbers a, b ∈ N and a ≤ b, we write [a, b] to denote the set
{a, a + 1, . . . , b− 1, b}. Further, we use the notation [a] as shorthand for [1, a],
and [a]0 for [0, a].

• We write a∥b ∈ {0, 1}∗ to denote the bit-string resulting from concatenating a
and b when viewed as bit-strings.

• For a probability distribution X, we write x← X to denote that x was randomly
sampled from X. Likewise, for a set X, x ← X denotes sampling uniformly
at random from X. Further, for a (possibly randomized) algorithm X, x ← X
denotes the output of X. Finally, we also express that variable x gets assigned
value v by x← v. Given a set S, we write S ∪← s as shorthand for S ← S ∪{s}.

• We write X ≈c Y to express that X and Y are to computationally-indistinguishable
probability distributions.

• Finally, we say that a function negl : N→ R>0 is negligible if for every polyno-
mial p there is an integer Np such that, for all n > Np, |negl(n)| < 1/p(n).

25

2. Preliminaries

2.2 Cryptographic building blocks
In this section we define some basic cryptographic functions we will use throughout the
thesis. For more detailed explanations we refer the reader to [KL14], from which most
of these definitions were adapted.

2.2.1 MACs

Defintion 2.2.1. A message authentication code (MAC) consists of three probabilistic
polynomial algorithms (MAC.Gen, MAC.Tag, MAC.Ver) such that:

1. Algorithm MAC.Gen takes as input the security parameter 1n and outputs a key
k with |k| ≥ n.

2. Algorithm MAC.Tag takes as input a key k and a message m ∈ {0, 1}, and
outputs a tag t.

3. The deterministic algorithm MAC.Ver takes as input a key k, a message m and
a tag t and outputs a bit b.

We require that for every n, every key k output by MAC.Gen(1n), and every m ∈
{0, 1}∗, it holds that MAC.Verk(m, t) = 1.

To define security, consider the following experiment Mac-forgeAdv,MAC(n).

1. A key k is generated by running MAC.Gen(1n).

2. The adversary is then given input 1n and oracle access to MAC.Tagk(·). The
adversary eventually outputs (m, t). Let Q denote the set of all queries that A
submitted to its oracle.

3. A succeeds if and only if MAC.Verk(m, t) = 1 and m /∈ Q. In that case the
output of the experiment is defined to be 1.

We say that a MAC MAC = (MAC.Gen, MAC.Tag, MAC.Ver) is secure if, for all
probabilistic polynomial adversaries A, there is a negligible function negl(·) such that

Pr[Mac-forgeAdv,MAC(n) = 1] ≤ negl(n)

.

26

2.2. Cryptographic building blocks

2.2.2 PRFs
We will use the following definition for pseudorandom functions. It is an easy exercise
to prove that the below definition is equivalent to the standard textbook definition of
PRFs (i.e., only a polynomial loss in security is involved by the respective reductions).
We show this, since it is the definition that the security proof of Tainted TreeKEM (see
Chapter 3) needs, even if proof in question is not included in this thesis.

Defintion 2.2.2. [Pseudorandom function, alternative definition] Let H : {0, 1}n ×
{0, 1}n → {0, 1}n be a keyed function. We define the following game PRF(n):

1. A key k ← {0, 1}n is chosen uniformly at random and the adversary is given
access to an oracle H(k, ·).

2. The adversary outputs a string x← {0, 1}n, a uniformly random bit b← {0, 1} is
chosen and the adversary receives either H(k, x) in the case b = 0, or y ∈ {0, 1}n

uniformly at random if b = 1.

3. The adversary outputs a bit b′. If x was never queried to the oracle H(k, ·) and
b′ = b, then the output of the game is 1, otherwise 0.

We call H (ε, t)-pseudorandom if for all adversaries A running in time t we have

AdvPRF(A) := |Pr[1← PRF(n)|b = 0]− Pr[1← PRF(n)|b = 1]| < ε.

2.2.3 PKE
In order to encrypt data, MLS makes use of authenticated encryption with associated
data (AEAD) [ACDT21]. Nevertheless, the more straightforward definition of standard
public-key encryption (PKE) will be sufficient for this thesis, as we make a number of
simplifications. Since the security model under which the different protocols are proven
secure does not consider fully active adversaries (see Section 2.4), we will only require
IND-CPA security from the PKE scheme.

Defintion 2.2.3. A public-key encryption scheme is a triple of probabilistic algorithms
(PKE.Gen, PKE.Enc, PKE.Dec) such that:

1. Algorithm PKE.Gen takes as input the security parameter 1n and outputs a pair
of keys (pk, sk), where pk defines some message space Mpk.

2. Algorithm PKE.Enc takes as input a public key pk and a message m ∈ Mpk,
and outputs a ciphertext c.

27

2. Preliminaries

3. Algorithm PKE.Dec takes as input a private key sk and a ciphertext c and
outputs a message m or a special symbol ⊥, noting failure.

We require that, except with negligible probability over the randomness of PKE.Gen
and PKE.Enc, we have PKE.Decsk(PKE.Encpk(m) = m for any m ∈Mpk.

Defintion 2.2.4. Consider the following experiment PubKIND-CPA
A,Π (n) defined with re-

spect to an adversary A and a PKE scheme PKE = (PKE.Gen, PKE.Enc, PKE.Dec).

1. PKE.Gen(1n) is run to obtain keys (pk, sk).

2. A is given pk, and outputs a pair of equal-length messages m0, m1 ∈Mpk.

3. A uniform bit b← {0, 1} is chosen, and then a ciphertext c← PKE.Encpk(mb)
is computed and given to A. We call c the challenge ciphertext.

4. A outputs bit b′. The output of the experiment is 1 if b′ = b, and 0 otherwise.

We say PKE is IND-CCA secure if, for all adversaries A, there is a negligible function
negl such that:

Pr[PubKIND-CPA
A,PKE (n) = 1] ≤ 1

2 + negl(n)

2.2.4 Signature Schemes

Defintion 2.2.5. A signature scheme SIG consists of three probabilistic polynomial-
time algorithms (SIG.Gen, SIG.Sig, SIG.Ver) such that:

1. Algorithm SIG.Gen takes as input the security parameter 1n and outputs a pair
of keys (svk, ssk), which we will refer to as the verification and signing keys,
respectively.

2. Algorithm SIG.Sig takes as input a singing key ssk and a message m from
some message space (possibly dependent on svk) and outputs a signature σ ←
SIG.Sigssk(m).

3. Deterministic algorithm SIG.Ver takes as input a verification key svk, a message
m and a signature σ. It outputs a bit b = SIG.Versvk(m, σ), with b = 1 meaning
the signature is valid, b = 0 meaning invalid.

It is required that, except with negligible probability over the output of SIG.Gen, it
holds that SIG.Versvk(m, SIG.Sigssk(m)) = 1 for every m.

28

2.3. Continuous Group-key Agreement

Defintion 2.2.6. Consider the following experiment Sig-forgeA,SIG(n) given a signature
scheme SIG = (SIG.Gen, SIG.Sig, SIG.Ver) and adversary A:

1. SIG.Gen(1n) is run outputting (svk, ssk).

2. Adversary A is given svk and oracle access to SIG.Sigssk(·). The adversary then
outputs (m, σ). Let Q denote the set of all queries that A made to its oracle.

3. A succeeds if and only if SIG.Versvk(m, σ) = 1 and m /∈ Q. In this case, the
output of the experiment is defined to be 1.

We say that SIG is existencially-unforgeable under an adaptive chosen-message attack,
or EU-CMA secure, if, for all probabilistic polynomial-time adversaries A, there is a
negligible function negl such that:

Pr[Sig-forgeA,SIG(n) = 1] ≤ negl(n)

2.2.5 The Random Oracle Model
In order to simplify and make more approachable (some of) the security proofs in this
thesis, we will employ the random oracle model (ROM), a commonly used idealized
model which treats hash functions as truly random functions. A hash function is thus
a map H : {0, 1}∗ ↦→ {0, 1}l taking arbitrary strings to ones of fixed length that the
adversary will only have oracle-access to. That is, given an input x ∈ {0, 1}∗, the only
way to obtain output y such that y = H(x) is by querying the oracle on x.

The claim is not that a real random oracle exists, and indeed it is known that there
exist schemes proven secure under the ROM that are insecure under any instantiation
of hash function in the standard model (where no random oracle is present) [MRH04].
Rather, the hope is that the employed hash function is “sufficiently good” at emulating
a random oracle, so that security of the real-world instantiation of the scheme follows
from the (idealized) security proof [KL14].

2.3 Continuous Group-key Agreement
To begin with, we define the notion of continuous group-key agreement (CGKA). Parties
participating in the execution of a CGKA protocol will maintain a local state γ, allowing
them to keep track of a common group information and, in particular, to derive a
shared secret. Parties will be able to add and remove users to the execution, and to
rotate the keys along sections of the tree, thus achieving FS and PCS. Our definition
is essentially that of [AAN+22b], which itself can be seen as a generalization of the

29

2. Preliminaries

definition of [KPPW+21], with the main difference that operations can be concurrently
processed by users through a single message curated by the server. The (potentially
stateful) server works in rounds, collects operations into batches and sends (potentially
processed versions of) them out at the end of each round (note that setting the batch
size equal to 1 would just return the definition from [KPPW+21]).

Defintion 2.3.1 (Asynchronous Continuous Group-key Agreement). An asynchronous
continuous group-key agreement (CGKA) scheme is an 8-tuple of algorithms CGKA =
(CGKA.Keygen, CGKA.Init, CGKA.Add, CGKA.Rem, CGKA.Upd, CGKA.Dlv, CGKA.Proc,
CGKA.Key) with the following syntax and semantics:

Key Generation: Fresh InitKey pairs ((pk, sk), (ssk, svk))← CGKA.Keygen(1λ)
consist of a pair of public key encryption keys and a pair of digital signing keys.
They are generated by users prior to joining a group, where λ denotes the security
parameter. Public keys are used to invite parties to join a group.

Initialize a Group: Let G = (ID1, . . . , IDn). For i ∈ [2, n] let pki be an InitKey
PK of party IDi. Party ID1 creates a new group with membership G by running:

(γ, [W2, . . . , Wn])← CGKA.Init (G, [pk1, . . . , pkn] , [svk1, . . . , svkn] , (sk1, ssk1))

which outputs a list of welcome messages Wi for each party IDi, and a local
state for ID1.

Adding a Member: A group member with local state γ can add party ID to the
group by running (γ, W, M)← CGKA.Add(γ, ID, (pk, svk)), which outputs a
welcome message W for party ID, and an add message M , potentially update
the state in the process.

Removing a Member: A group member with local state γ can remove group
member ID by running (γ, M)← CGKA.Rem(γ, ID), which outputs the remove
message M and potentially updates the state in the process.

Update: A group member with local state γ can perform an update by running
(γ, M)← CGKA.Upd(γ), which outputs update message M and a (potentially)
updated state.

Collect and Deliver: The delivery server, upon receiving a set of CGKA protocol
messages M = (M1, . . . , Mk) (including welcome messages) generated by a set of
parties, sends out a round message (γser, (M̂1, . . . , M̂n)) = CGKA.Dlv(γser, M),
where T̂ i is the message for user i and γser is the server’s internal state.

Process: Upon receiving an incoming CGKA message M̂ i, a party immediately
processes it by running γ ← CGKA.Proc(γ, M̂ i).

30

2.4. Security Model for CGKA

Get Group Key: At any point a party can extract the current group key I from its
local state γ by running I ← CGKA.Key(γ).

2.4 Security Model for CGKA
Throughout this thesis, unless otherwise expressed, we anticipate an adversary who
works in rounds, and that in each round may adaptively choose an action, including
start/stop corrupting a party, instruct a party to initalize an operation, or relay a
message.1 The adversary can choose to corrupt any party, after which its state becomes
fully visible to the adversary. In particular, corrupting a party gives the adversary
access to the random coins used by said party when executing any group operation,
deeming the party’s actions deterministic in the eyes of the adversary throughout the
corruption, which the adversary can choose when to stop. We would like to stress
that security in this strong model implies security in weaker and potentially more
realistic models, e.g. consider the setting where malware in a device leaks some of the
randomness bits but cannot modify them. The adversary can also instruct a party to
initalize an init/update/remove/add operation. This party then immediately outputs
the corresponding message to be sent to the delivery server.

The goal of the adversary is to break the security of a target group key that was,
at some point in the execution, considered to be the current group key by at least
one group member, and that given the actions taken by the adversary so far is not
trivially insecure. This means this key cannot be trivially decrypted from ciphertexts
observed so far using secret keys leaked by corrupted parties. This can be ensured by
defining predicates that specify for which group keys this is the case. Deciding whether
this predicates holds can be determined by just looking at the transcripts (including
corruption queries) of the individual group members and not some complicated global
structure like the relative position of parties in the tree. Having such a simple predicate
is important as we want a security notion which has a simple intuition behind it and in
particular clearly captures FS and PCS.

The model will assume the existence of some public key infrastructure (PKI) that
all users have access to. That is, a service that allows users to fetch encryption and
signature keys from any other user in the network. Deploying such a system in practice
is no easy task, particularly when we want to have the certainty that we are fetching
correct and up-to-date keys. This falls outside the scope of this thesis and we refer the

1This section essentially replicates, with permission, parts of the full version [ACC+19] of our
publication [KPPW+21]. The parts replicated here have been used in the thesis of co-author Karen
Klein [Kle21]. These are not claimed as contributions of the present thesis, and rather are included
here to serve an introduction to the framework used to prove security of many CGKA protocols and,
in particular, to the security proofs that are part of Chapters 5 and 6.

31

2. Preliminaries

reader to works tackling this for a centralized server, such as [MKKS+23, LCG+24], or
the Key Transparency IETF working group 2. On the more impractical side of things,
one could also consider a decentralized system, in the style of PGP’s Wed of Trust,
which offloads key management to users.

Finally, only a single challenge per game is considered for simplicity; a standard hybrid
argument allows one to extend security to multiple challenges, with a loss linear in the
number of challenges (see, e.g., Lemma 6 in [ACDT20]).

Defintion 2.4.1 (Asynchronous CGKA Security). The security for CGKA3 is modelled
using a game between a challenger C and an adversary A. At the beginning of the
game, the adversary queries create-group(G) and the challenger initialises the group
G with identities (ID1, . . . , IDℓ). The adversary A can then make a sequence of queries,
enumerated below, in any arbitrary order. On a high level, add-user and remove-user
allow the adversary to control the structure of the group, whereas the queries confirm
and process allow it to control the scheduling of the messages. The query update
simulates the refreshing of a local state. Finally, start-corrupt and end-corrupt
enable the adversary to corrupt the users for a time period. The entire state (old and
pending) and random coins of a corrupted user are leaked to the adversary during this
period.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.

2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from the
group.

3. update(ID): the user ID requests to refresh its current local state γ.

4. confirm(q, β): the q-th query in the game, which must be an action a ∈
{add-user, remove-user, update} by some user ID, is either confirmed (if β =
1) or rejected (if β = 0). In case the action is confirmed, C updates ID’s state
and deletes the previous state; otherwise ID keeps its previous state).

5. process(q, ID′): if the q-th query is as above, this action forwards the (W or
T) message to party ID′ which immediately processes it.

6. start-corrupt(ID): from now on the entire internal state and randomness of
ID is leaked to the adversary.

2https://datatracker.ietf.org/wg/keytrans/about/
3Here we reproduce the security model, introduced in [KPPW+21, Kle21] used to prove security

of Tainted TreeKEM (the protocol introduced in Chapter 3). The security proofs in Chapters 5 and 6
are inspired in those of [KPPW+21, Kle21], and their models are very similar, though slightly adapted.

32

https://datatracker.ietf.org/wg/keytrans/about/

2.4. Security Model for CGKA

7. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness
to the adversary.

8. challenge(q∗): A picks a query q∗ corresponding to an action a∗ ∈ {add-user,
remove-user, update} or the initialization (if q∗ = 0). Let k0 denote the group
key that is sampled during this operation and k1 be a fresh random key. The
challenger tosses a coin b and – if the safe predicate below is satisfied – the key
kb is given to the adversary (if the predicate is not satisfied the adversary gets
nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a
CGKA scheme (Q, ε, t)-CGKA-secure if for any adversary A making at most Q queries
of the form add-user(·, ·), remove-user(·, ·), or update(·) and running in time t it
holds that

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ε.

Additionally, one needs to define a safe predicate to rule out trivial winning strategies
and, at the same time, restrict the adversary as little as possible. For example, if the
adversary challenges the first (create-group) query and then corrupts a user in the
group, it can trivially distinguish the real group key from random. Thus, intuitively,
a query q∗ is called safe if the group key generated in response to query q∗ is not
computable from any compromised state. Since each group key is encrypted to at most
one key for each party, this means that the users which are group members4 at time
q∗ must not be compromised as long as these keys are part of their state. However,
defining a reasonable safe predicate in terms of allowed sequences of actions is very
subtle.

To gain some intuition, consider the case where query q∗ is an update for a party ID∗.
Then, clearly, ID∗ must not be compromised right after it generated the update. On
the other hand, since the update function was introduced to heal a user’s state and
allow for PCS, any corruption of ID∗ before q∗ should not harm security. Similarly, any
corruption of ID∗ after a further processed update operation for ID∗ should not help
the adversary either (compare FS). Finally, also in the case where the update generated
at time q∗ is rejected to ID∗ and ID∗ processes this message of the form confirm(q∗, 0)
by returning to its previous state, any corruption of ID∗ after processing the reject
message should not affect security of the challenge group key. All these cases should
be considered safe.

4To be precise, since parties might be in inconsistent states, group membership is not unique but
rather depends on the users’ views on the group state.

33

2. Preliminaries

Additionally, the predicate has to take care of other users which are part of the group
when the challenge key is generated: For a challenge to be safe, it must be that the
challenge group key is not encrypted to any compromised key. At the same time, one
has to be aware of the fact that in the asynchronous setting the view of different users
might differ substantially. As mentioned above, the model considers inconsistency of
user’s states rather a matter of functionality than security, and aims to define the safe
predicate as unrestrictive as possible, to also guarantee security for inconsistent group
states. For example, consider the following scenario: user ID generates an update
during an uncompromised time period and processes a reject for this update still in the
uncompromised time period, but this update is confirmed to and processed by user
ID∗ before they do their challenge update q∗; this results in a safe challenge, since
the challenge group key is only encrypted to the new init key, which is not part of
ID’s state at any compromised time point. However, one has to be careful here, since
in a similar scenario where ID does not process the reject for their own update, the
challenge group key would clearly not be safe anymore.

The following definitions consider discrete time steps measured in terms of the number
of queries that have been issued by the adversary so far. We first identify for each user
a critical window in the view of a specific user ID∗. The idea is to define exactly the
time frame in which a user may leak a group key if ID∗ generates it at a specific point
in time and distributes it to the group. Clearly, the users may not be corrupted in this
time frame if this happens to be the challenge group key.

Defintion 2.4.2 (Critical window, safe user). Let ID and ID∗ be two (not necessarily
different) users and q∗ ∈ [Q] be some query. Let q− ≤ q∗ be the query that set ID’s
current key in the view of ID∗ at time q∗, i.e. the query q− ≤ q∗ that corresponds to
the last update message a−

ID := update(ID) processed by ID∗ at some point [q−, q∗]
(see Figure 2.1). If ID∗ does not process such a query then we set q− = 1, the first
query. Analogously, let q+ ≥ q− be the first query that invalidates ID’s current key, i.e.
ID processes one of the following two confirmations:

1. confirm(a−
ID, 0), the rejection of action a−

ID; or

2. confirm(a+
ID, 1), the confirmation an update a+

ID := update(ID) ̸= a−
ID.

If ID does not process any such query then we set q+ = Q, the last query. We say
that the window [q−, q+] is critical for ID at time q∗ in the view of ID∗. Moreover, if
the user ID is not corrupted at any time point in the critical window, we say that ID is
safe at time q∗ in the view of ID∗.

We are now ready to define when a group key should be considered safe. The group
key is considered to be safe if all the users that ID∗ considers to be in the group are

34

2.4. Security Model for CGKA

1 q−

ID ID∗

q∗ q+

ID

Q

a−
ID a−

ID confirm(a−
ID, 0)

1 q−

ID ID∗

q∗

ID

q+

ID

Q

a−
ID a−

ID a+
ID confirm(a+

ID, 1)

Figure 2.1: A schematic diagram showing the critical window for a user ID in the view of another
user ID∗ with respect to query q∗. An arrow from a user to the timeline is interpreted as a request by
the user, whereas an arrow in the opposite direction is interpreted as the user processing the message.
The figure at top (resp., bottom) corresponds to the first (resp., second) case in Definition 2.4.2.

individually safe, i.e., not corrupted in its critical window, in the view of ID∗. We point
out that there is a exception when the action that generated the group key sk∗ is a
self-update by ID∗ where, to allow healing, instead of the normal critical window we
use the window [q∗, q+] as critical.

Defintion 2.4.3 (Safe predicate). Let sk∗ be a group key generated in an action

a∗ ∈ {add-user(ID∗, ·), remove-user(ID∗, ·), update(ID∗), create-group(ID∗, ·)}

at time point q∗ ∈ [Q] and let G∗ be the set of users which would end up in the group
if query q∗ was processed, as viewed by the generating user ID∗. Then the key sk∗ is
considered safe if for all users ID ∈ G∗ (including ID∗) we have that ID is safe at time
q∗ in the view of ID∗ (as per Definition 2.4.2) with the following exceptional case: if
ID = ID∗ and a∗ = update(ID∗) then we require ID∗ to be safe the window [q∗, q+].

Looking ahead, in order to show security, the key step will be to show that if the safe
predicate is satisfied for a group key ∆∗ generated while playing the CGKA game, then
none of the seeds or secret keys used to derive this group key are leaked to the adversary
(Lemma 2.4.4). Given this security of the protocol can be argued as in [ACC+19] using
the framework of Jafargholi et al. [JKK+17] (see the full paper for details). To this
end, the general approach is to view the CGKA security game as a game on a graph
and then define the challenge graph for challenge group key ∆∗ as a sub-graph of the
whole CGKA graph.

The CGKA graph. A node i in the CGKA graph for TTKEM is associated with
seeds ∆i and si := H2(∆i) and a key-pair (pki, ski) := Gen(si). The edges of the
graph, on the other hand, are induced by dependencies via the hash function H1 or
(public-key) encryptions. To be more precise, an edge (i, j) might correspond to either:

35

2. Preliminaries

1. a ciphertext of the form Encpki
(∆j); or

2. an application of H1 of the form ∆j = H1(∆i) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add-user or
remove-user queries made by the adversary, and is therefore generated adaptively.

The challenge graph. The challenge graph for ∆∗, intuitively, is the sub-graph of
the CGKA graph induced on the nodes from which ∆∗ is trivially derivable. Therefore,
according to the definition of the CGKA graph, this consists of nodes from which ∆∗ is
reachable and the corresponding edges (used to reach ∆∗). For instance, in the case
where the adversary maintains all users in a consistent state the challenge graph would
simply be the binary tree rooted at ∆∗ with leaves corresponding to the leaf keys of
users in the group at that point. When the group view is inconsistent among the users
these leaves would correspond to the leaf keys of users in the view of ID∗. Below we
state the key lemma which connects the safe predicate to the challenge graph of the
corresponding CGKA protocol CGKA.

Lemma 2.4.4. For any safe challenge group key in CGKA it holds that none of the
seeds and secret keys in the challenge graph is leaked to the adversary via corruption.

2.5 Ratchet Trees
Most CGKA constructions are inspired by TreeKEM and thus use the same underlying
structure of a ratchet tree, a type of key-derivation graph, to manage keys. 5

A ratchet tree is a directed left-balanced binary tree T = (VT , ET), with edges pointing
towards the root node vroot

6 and each user in the group associated to a leaf, i.e. a node
without any children. We will use the notation T i = (V i

T , Ei
T) to refer to the ratchet

tree associated to round i. We say that a tree is full when all its number of leaves is a
power of 2. When adding a new leaf to a full tree, a new root node is created, with
said leaf and the previous root node being its parents.

Each node v is identified with a key-pair (skv, pkv) of a public-key encryption scheme.
Roughly, each edge (w, v) corresponds to a ciphertext Encpkw

(skv)7 and each leaf node
5This Section replicates, with permission, parts of our publications [AAN+22b] and [AAB+21b].
6While many works in the literature consider edges going in the opposite direction, this non-

standard direction of the edges better the hierarchical nature of secrets in the tree. In particular,
the fact that knowledge of (the secret key associated to) the source node implies knowledge of (the
secret key associated to) the sink node. Moreover, this definition of trees is much more intuitive in
highlighting the connection between the protocols presented and the GSD game, which many CGKA
security proofs use [KPPW+21]. Note that nodes therefore have one child and two parents.

7this is a simplification: in practice what is encrypted is a seed used later to generate the key-pair

36

2.5. Ratchet Trees

v with a user uv. A user uv will know the (secret) key skv, and from the ciphertexts
can then retrieve all the keys on the path from its leaf to the root vroot. The root key
k is thus known to all users, and can be used for secure communication to or among
the group members.

What makes this tree structure so appealing is the fact that in a group of size N ,
the key material of a user u can be completely rotated by replacing only the keys on
the path from u to vroot, which in a balanced tree has length at most d = ⌈log(N)⌉.
Moreover, as the nodes in a tree all have indegree two, one only needs to compute two
fresh ciphertexts for each new key (in practice, as we will see, the new keys are derived
via a hash-chain, so just one ciphertext per key will be needed).

The communication and computational efficiency of a key rotation are important
aspects, as this is the main operation performed to add or remove users, or for a user
to update their keys in order to recover from a potential compromise.

We will use the following notation:

• child(v) denotes the child of node v

• parents(v) = (lparent(v), rparent(v)) denotes the tuple of v’s left and right
parent nodes.

• partner(v) denotes the partner of v, i.e., the parent of child(v) that is not equal
to v.

• path(v, w) returns ⊥ if w is not a descendant of v. Else, it returns v’s path to
w as path(v, w) = (v0 = v, v1, . . . , vk = w), where vi = child(vi−1). We will
often simply write path(v) for path(v, vroot).

• co-path(v) denotes v’s co-path, i.e., the sequence of partners of nodes on
path(v).

• Int(v, w) denotes their least common descendant, i.e., the node furthest away
from the root in path(v) ∪ path(w). In a slight abuse of notation we will
sometimes write Int(P, Q) for paths P and Q to denote the furthest node from
the root in their intersection

• isLeaf(v) returns true if v is a leaf and false otherwise.

As hinted above, a node v in a ratchet tree have an associated node state γ(v),
containing a key-pair (sk, pk) from a PKE scheme, with the exception of the root
node vroot, which simply contains an update secret k shared by all group members.
Additionally, leaf nodes associated a user identifier ID, and a key-pair (ssk, svk) from a

37

2. Preliminaries

signature scheme. Given a node v, we will refer to specific values in its state using .
notation: e.g. v.sk to refer to its secret PKE key (for simplicity, particularly in Chapter 5
where notation is abundant, we will also sometimes just write skv). We will differentiate
sometimes between the secret state of a node, containing the secrets keys sk and ssk
(and possibly extra values), and the public state of a node pγ(v), containing the rest.
Similarly, we will denote the collection of public states of nodes in a ratchet tree T by
pT . While the public part of nodes’ states can be accessed by all users, users should
only have partial knowledge of the secret parts. Indeed, the protocol ensures that the
secret part of γ(v) is known only by users whose leaf is in the sub-tree rooted at v;
this is known as the tree invariant.

Further we will define leaf(ID) to return the leaf node associated to user ID. Sometimes
we will consider several trees containing the same (or similar subsets of) nodes, such as
the different versions of a ratchet tree throughout protocol epochs. When needed, we
will write vT to clarify that we refer to node v in ratchet tree T . Different protocols
will additionally contain extra values in the nodes states, which will be defined in the
relevant chapters.

Hierarchical derivation As mentioned above, a key update operation in protocols
using ratchet trees is that by which users sample new keys along their leaves’ paths.
This operation of hierarchical derivation of keys is captured in the algorithm re-key(v)
(Figure 2.2). This methods can be traced back to TreeKEM, but is employed by most
CGKA protocols (though sometimes with slight tweaks). Given a leaf v, the algorithm
outputs a list of seeds and key-pairs for nodes along v’s path. Here we define a more
general version that can sample keys along incomplete paths, as this will be needed in
Chapter 3. The algorithm uses two independent hash functions H1 and H2. These can
be easily defined by taking a hash function H, fixing two different tags x1 and x2 and
defining Hi(·) = H(·, xi).

Blank nodes and node resolution A node might be blank, meaning that its state
is set to ⊥. This will be the case for most nodes after group initialization and might
also be the result of performing dynamic operations, or even certain key-updating
operations, as we will see below. Each node in a ratchet tree will have an associated
field v.blank ∈ {true, false} denoting whether it is blank of not. In particular, no
secret can be encrypted to a blank node, which brings us to the notion of a resolution.
Intuitively, the resolution of a node v, Res(v), is the minimal set of non-blank nodes
such that, for all leaves l in the subtree rooted at v, there is w ∈ path(l) ∪ Res(v).
We can define it recursively as follows:

• If v is not blank, then Res(v) = v

38

2.5. Ratchet Trees

Algorithm re-key(v, w; r)

00 Require w = ⊥ ∨ path(v, w) ̸= ⊥
01 If w = ⊥: w ← vroot

02 ∆0 ←$ S(λ)
03 (sk0, pk0)← PKE.Gen(H2(∆0∥r))
04 d← |path(v, w)|
05 For i ∈ (1, . . . , d− 1):
06 ∆i = H1(∆i−1)
07 (ski, pki)← PKE.Gen(H2(∆i))
08 ∆d ← H1(∆d−1)
09 ∆← (∆1, . . . , ∆d)
10 If w = vroot:
11 K←

(︂
(sk1, pk1), . . . , (skd−1, pkd−1), ∆d

)︂
12 Else:
13 (skd, pkd)← PKE.Gen(H2(∆d−1))
14 K← ((sk1, pk1), . . . , (skd, pkd))
15 Return (∆, K)

Figure 2.2: Algorithm re-key for node v and descendant w. It outputs a vector of hierarchically
derived seeds, and another vector of corresponding keys for all nodes in v’s path to w. λ is the security
parameter, with S the seed space. It admits an additional optional fresh randomness. We will often
write simply re-key(v) for re-key(v, vroot)

• If v is a blank leaf, then Res(v) = ∅

• Else, Res(v) = ∪u∈parents(v)Res(u)

In an slight abuse of notation, we will use the term co-path resolution or Resco to refer
to the union of the resolutions of the nodes in the co-path of a node, i.e.

Resco(v) = ∪w∈co-path(v)Res(w)

.

User states Each group member should have a view of the public and secret informa-
tion in the tree, namely keys, credentials, etc. that is consistent (though not overlapping
since different users will know different secret information in order to preserve the
tree invariant). More precisely, this is formalized by every user having an associated
protocol state γ(ID) (or state for short when there is no ambiguity), which represents
everything users need to know to stay part of the group, and which might satisfy certain
properties (we implicitly assume a particular group, considering different groups secrets
independent).

39

2. Preliminaries

Different protocols will require this state to contain different fields, and thus the concrete
definitions will be introduced in the relevant chapters. Nevertheless, states will typically
include a copy of the ratchet tree, with the corresponding node states, a pending
state γ′ storing information from issued operations not yet processed, and additional
values such as a hash of the protocol transcript, or MAC keys used to ensure/enhance
robustness of the protocol. As with node states γ.X will be used to refer to field X
inside γ.

2.6 ART and TreeKEM
Asynchronous Ratcheting Tree (ART). The first proposal of (a simplified vari-
ant of) a CGKA is the Asynchronous Ratcheting Tree (ART) by Cohn-Gordon et
al. [CCG+18].8 This protocol uses ratchet trees where, recall, each party IDi in the
group is assigned their own leaf. In the case of ART, this is labelled with an ElGamal
secret key xi (known only to IDi) and a corresponding public value gxi . The values of
internal nodes are defined recursively: an internal node whose two parents have secret
values a and b has the secret value gab and public value gι(gab), where ι is a map to the
integers. The secret value of the root is the group key. As illustrated in Figure 2.3, a
party can update its secret key x to a new key x′ by computing a new path from x′ to
the (new) root, and then sending the public values on this new path to everyone in
the group so they can switch to the new tree. Note that the number of values that
must be shared equals the depth of the tree, and thus (as the tree is balanced) is only
logarithmic in the size of the group. A downside of ART is that, while possible, adding
new users is not as practical as in other constructions. Indeed, the approach for doing
so, as outlined in the original paper, requires the added user to become the partner
of the user adding, by introducing a new node above the latter’s leaf, and adding the
former as the co-parent of it. This can easily create imbalances in the tree, with the
alternative requiring synchronization between the parties.

The authors prove the ART protocol secure even against adaptive adversaries. However,
in this case, their reduction loses a factor that is super-exponential in the group size. To
get meaningful security guarantees based on this reduction requires a security parameter
for the ElGamal scheme that is super-linear in the group size, resulting in large messages
and defeating the whole purpose of using a tree structure.

TreeKEM. The TreeKEM proposal [BBR18], which is the CGKA underlying the
MLS protocol [BBR+23], is similar to ART, as a group is still mapped to a ratchet
tree where each node is assigned a public and secret value. In TreeKEM those values
are the public/secret key pair for an arbitrary public-key encryption scheme. Unlike in

8This section replicates, with permission, parts of our publications [KPPW+21] and [AAB+21b].

40

2.6. ART and TreeKEM

ART, TreeKEM does not require any relation between the secret key of a node and the
secret key of its parent nodes. Instead, an edge u→ v in the tree (recall that edges
are directed and pointing from the leaves to the root) denotes that the secret key of v
is encrypted under the public key of u. This ciphertext can now be distributed to the
subset of the group who knows the secret key of u to convey the secret key of v to
them. We will refer to this as “encrypting v to u”. Ever since its introduction on 2018,
TreeKEM (through being part of MLS) has undergone a number of versions, at times
with major changes between them, eventually leading to the current standard, published
on July 2023. We will refer to version X ∈ (1, . . . , 20) of TreeKEM as TreeKEMvX.
Below we will very roughly outline the protocol, along the way describing some of the
changes happening between versions 7 to 9, which will be the most relevant for this
thesis, as they together comprise most of the concepts used in both our protocols and in
modern TreeKEM. More in detail, the transition from 7 to 8 is key, as it introduces the
Propose & Commit (P&C) framework, which enables the execution of concurrent group
operations. Version 9 introduces the notion of unmerged leaves in order to add parties.
This is the way the current MLS standard handles additions and the main method used
by related protocols, though not the only one, as we will see in Chapter 3. We will
start introducing TreeKEMv7, together with the unmerged leaves technique, as it is
conceptually simpler, to later outline the changes introduced by the P&C framework.

To initialise a group, the initiating party creates a ratchet tree, assigning its leaves to
the keys of the invited parties. They then call algorithm re-key (Figure 2.2) on their
path. That is, they sample fresh secret/public-key pairs for the nodes along their path
and compute the ciphertexts corresponding to all the edges in the tree, i.e., they will
encrypt the seed of each node to the keys of nodes in the resolution of its parent not in
the initiator’s path. (Note that leaves have no ingoing edges and thus the group creator
only needs to know their public keys.) Finally they send all ciphertexts and public keys
to the delivery server. If a party comes online, they receives from the server the public
keys and the ciphertext corresponding to the node in the intersection between their
path and that of the initiator and decrypts it (as it has the secret key of the leaf). This
allows them to derive all the keys corresponding to nodes from said intersection all they
way up to the root, including the group key.

To update, i.e., rotate their key material to achieve security against compromises, a user
calls the re-key algorithm, generating new keys for the nodes in their path, together
with the corresponding ciphertexts. These are then uploaded to the server, together
with the new public keys. As with the group initialization, a user coming online can
download the public keys and corresponding ciphertext and derive all the necessary new
secret keys.

In order to remove a party, the remover simply issues a removal operation including
the identifier of the removed party. When processing it, users will simply blank all the

41

2. Preliminaries

nodes on the path of the removed user, effectively deleting all key material that was
known to the removed user from the group state. Note that, in order to resume private
communication, an update operation will need to follow in order to establish a new
group key that the removed user does not have knowledge of. The concept of blanking
and why it is needed will be discussed further in Chapter 3.
To add a party ID using the unmerged leaves technique, the adder ID′ simply issues an
add operation containing the public key and identifier of the added user, together with
an update. The reason for the update is to ensure forward secrecy, i.e., that the added
party only can only learn secrets generated after them joining the group. The added
party will then be assigned an empty leaf on the tree, either the left-most free leaf,
or a new one resulting from growing the tree. Then, ID′ will send the corresponding
keys and ciphertexts to the rest of the group as one would expect. As the new user
will not have knowledge of intermediate keys on their path, ID′ will encrypt the seed
corresponding to the node in the intersection of their paths under the added party’s
leaf. When processing the message, group members will simply add the ID’s identifier
and key to the corresponding leaf, and then add the ID’s identifier as unmerged to
every node in ID’s path from their leaf up to the node Int(ID, ID′). A party being
unmerged at a node signals that they do not have knowledge of the keys below it.
Thus, when encrypting to a node, user’s will also send additional encryptions under the
public keys of the leaves of any unmerged parties. One can picture these as new leaves
being connected directly to the node in the intersection between their path and that of
the party adding them. As keys under said intersection get rotated, the party will learn
them, thus becoming merged, not needing that extra personalized encryption.

Propose and Commit The Propose & Commit framework allows operations to be
executed concurrently. Group operations are of two types: proposals and commits. The
former can be either add, remove or update proposals and will not trigger any change
in the group state when issued. Commits, on the other hand, will usher the group into
a new epoch, generating a new group key while executing at the same time a set of
proposals sent from the last epoch change.
More in detail, add and remove proposals will simply include the information of the
added or removed party. Update proposals, in turn, will contain a new public key for
the leaf of the updating party. When sending a commit, a user will sample new keys
along their path by means of the re-key algorithm, and additionally collect all proposals
received since they last processed a commit. When processing a commit, a user will
update the keys along the committer’s path, add or remove users as appropriate using
the unmerged leaves technique and blanking, respectively, and update the leaf keys of
all parties for which the commit contains an update proposal. Finally, they will blank
all the nodes in the paths of said parties, up until the intersection with the path of the
committer. This way, PCS can be achieved for any user that either proposed an update

42

2.6. ART and TreeKEM

or committed in that epoch, as any secret that was part of their state on the previous
epoch gets either updated or erased.

It is clear that this approach allows for a more flexible and faster group evolution. In
fact, it also allows for external proposals, coming from outside the group (e.g. the server
suggesting a new user in the network be added, or a user that has not been online for
a long time removed) to be committed by group members. The downside, however,
comes from the introduction of blank nodes when committing update proposals, which
can have a serious effect on efficiency, as we will discuss in Chapter 5.

Application Secrets. CGKA constructions employing key-derivation graphs like
ratchet trees9 rely on an additional mechanism to improve their forward-secrecy guar-
antees. Instead of directly using group keys k, associated with the root node, to
communicate within the group, these keys are used to derive a so called application
secret K that serves as the symmetric key for group communication. Whenever an
update occurs, the new application secret of the group is computed as K ← H(k, K)
the output of a hash function on input of the new group key and the previous application
secret. Then, the old application secret is deleted from memory. The effect of this
is that when a user’s state leaks (including the current application secret Kt), no
old application secret Ki can be recomputed from old update messages, unless Ki−1

was already known to the adversary by former corruptions. In short, users gain the
advantage of forward secrecy not only by issuing but also by processing updates of other
users in the group. On top of the application secrets, other values serving different
purposes are derived in a similar manner, making what is known as the key-schedule.
We refer the reader to the standard [BBR+23] for more information.

9See Chapter 4 for a more general approach to building CGKA from key-derivation graphs that
need not be ratchet trees.

43

2. Preliminaries

Asynchronous Ratcheting Tree (ART)

a b c d

e = gab f = gcd

gef

(a)

a b c d

e = gab f = gcd

gef

d′

f ′ = gcd′

gef ′

(b)

TreeKEM

A H

(c)

A HA

(d)

A H

(e)

A H

(f)
Figure 2.3: Top: Illustration of an update in the ART protocol. The state of the tree changes from
(a) to (b) when Dave (node d) updates his internal state to d′. Bottom: update and remove in
TreeKEM and TreeKEM with blanking. The state of a completely filled tree is shown in (c). The
state changes from (c) to (d) when Alice (node A) performs an update operation. This changes to (e)
when Alice removes Harry (node H) in naïve TreeKEM (with the nodes that Alice should not know in
red) or to (f) in the actual TreeKEM protocol which uses blanking.

44

CHAPTER 3
Tainted TreeKEM

3.1 Introduction
In this Chapter1 we introduce Tainted TreeKEM, a variant of TreeKEM characterized
by an alternative method to remove and add parties, which we termed tainting. Let us
start by recalling how membership changes in TreeKEM take place.

The ratchet tree structure of TreeKEM discussed in 2.6 and illustrated in Figure 2.3
would naïvely allow for adding and removing parties as follows. If IDi wants to remove
IDj, they simply sample a completely fresh path from a (fresh) leaf to a (fresh) root
replacing the path from IDj’s leaf to the root. They then compute and shares all the
ciphertexts required for the parties to switch to this new path except the ciphertext
that encrypts to IDj’s leaf. IDi can add IDj similarly, they just sample a fresh path
starting at a currently not occupied leaf, using IDj’s key as the new leaf node, and
communicates the new keys to IDj . As mentioned before, this process can be optimized
if the keys are derived hierarchically, from a hash chain of seeds, so that a single seed
needs to be encrypted to each party.

Unfortunately, adding and removing parties like this creates a new problem. After IDi

added or removed IDj, it knows all the secret keys on the new path (except the leaf).
To see why this is a problem, assume IDi is corrupted while adding (or removing) IDj

(and no other corruptions ever take place), and later – once the adversary loses access

1This Chapter essentially replicates, with permission, large parts of the full version [ACC+19] of
our publication [KPPW+21]. Some parts of said paper, in particular those related to adaptive security,
have been used in the thesis of co-author Karen Klein [Kle21]. There is no overlap in the technical
results used in the two theses, just some parts of the introduction and informal protocol description
have been used in both.

45

3. Tainted TreeKEM

to IDi’s state – IDi executes an update. Assume we use a naïve protocol where this
update replaces all the keys on the path from IDi’s leaf to the root (as in ART) but
nothing else. As IDi’s corruption also leaked keys not on this path, thus not replaced
with the update, the adversary will potentially still be able to compute the new group
key, so the update failed to achieve PCS.

To address this problem, TreeKEM introduced the concept of blanking, as mentioned in
Section 2.6. In a nutshell, TreeKEM wants to maintain the invariant that parties know
only the secrets for nodes on the path from their leaf to the root. However, if a party
adds (or removes) another party as outlined above, this invariant no longer holds. To fix
this, TreeKEM declares any nodes violating the invariant as not having any secret (nor
public) value assigned to them. Such nodes are said to be blanked, and the protocol
basically specifies to act as if the child of a blank node is connected directly to the
blanked node’s parents. In particular, when TreeKEM calls for encrypting something to
a blank node, users will instead encrypt to this node’s parents. In case one or both
parents are blanked, one recurses and encrypts to their parents and so forth.

This saves the invariant, but hurts efficiency, as we now no longer consider a binary tree
and, depending on the sequence of adds and removes, can end up with a “blanked” tree
that has effective indegree linear in the number of parties, and thus future update, add
or remove operations can require a linear number of ciphertexts to be sent. The reason
one can still hope for TreeKEM’s efficiency to not degrade too much and stay close to
logarithmic in practice comes from the fact that blanked nodes can heal: whenever a
party performs an update operation, all the blank nodes on the path from its leaf to
the root become normal again.

The protocol studied in this paper builds closely on TreeKEM, particularly on versions
pre-TreeKEMv8, where the P&C framework was introduced.

3.1.1 Our Contribution
In this chapter we formalize an alternative CGKA design, stemming from TreeKEM,
first proposed by Millican on the MLS mailing list on February 20182, which we call
Tainted TreeKEM, or simply TTKEM. Further, we discuss how its efficiency compares
to that of TreeKEM and, in particular, show it to be more efficient on certain realistic
scenarios. The full version [ACC+19] of the work on which this chapter is based on also
proves that TTKEM satisfies a comprehensive security statement which captures the
intuition that an update fixes a compromised state. This proof can be easily adapted
to TreeKEM, for which we can get exactly the same security statement. This result

2[MLS] Removing members from groups Jon Millican {jmillican@fb.com} 12 February 2018
https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

46

https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-LGbWoUS7DKGYG65lkxs

3.1. Introduction

was featured in Karen Klein’s PhD thesis [Kle21] and is therefore not included in the
main body, nor claimed as a contribution of this thesis.

Tainted TreeKEM (TTKEM) As just outlined, the reason TreeKEM can be
inefficient comes from the fact that once a node is blanked, we cannot simply encrypt
to it, but instead must encrypt to both its parents, if those are blanked, to their parents,
and so forth. The rationale for blanking is to enforce an invariant which states that
the secret key of any (non-blanked) node is only known to parties whose leaves are
ancestors of this node. This seems overly paranoid, assume Alice removed Henry as
illustrated in Figure 2.3, then the red nodes must be blanked as Alice knows their
value, but it is instructive to analyze when this knowledge becomes an issue if no
blanking takes place: If Alice is not corrupted when sending the remove operation
to the delivery server there is no issue as she will delete secret keys she should not
know right after sending the message. If Alice is corrupted then the adversary learns
those secret keys. But even though now the invariant doesn’t hold, it is not a security
issue as an adversary who corrupted Alice will know the group key anyway. Only once
Alice updates (by replacing the values on the path from her leaf to the root) there is a
problem, as without blanking not all secret keys known by the adversary are replaced,
and thus he will be able to decrypt the new group key; something an update should
have prevented (more generally, we want the group key to be safe once all the parties
whose state leaked have updated).

Keeping dirty nodes around, tainting versus blanking In TTKEM we use an
alternative approach, where we do not blank nodes, but instead keep track of which
secret keys of nodes have been created by parties who are not supposed to know them.
Specifically, we refer to nodes whose secret keys were created by a party IDi which is
not an ancestor of the node as tainted (by IDi). The group keeps track of which nodes
are tainted and by whom. A node tainted by IDi will be treated like a regular node,
except for the cases where IDi performs an update or is removed, in which it must get
updated.

Let us remark that tainted nodes can heal similarly to blanked nodes: once a party
performs an update, all nodes on the path from its leaf to the root are no longer tainted.

Efficiency of TTKEM vs TreeKEM Efficiency-wise TreeKEM and TTKEM are
incomparable. Depending on the sequence of operations performed either TreeKEM or
TTKEM can be more efficient (or they can be identical). Thus, which one will be more
efficient in practice will depend on the distribution of operation patterns we observe. In
Section 3.3 we show that for some natural cases TTKEM will significantly outperform
TreeKEM. This improvement is most patent in the case where a small subset of parties
perform most of the add and remove operations. In practice, this could correspond

47

3. Tainted TreeKEM

to a setting where we have a small group of administrators who are the only parties
allowed to add/remove parties. The efficiency gap grows further if the administrators
have a lower risk of compromise than other group members and thus can be required
to update less frequently. In this setting, TTKEM approaches the efficiency of naïve
TreeKEM.

When we compare the efficiency of the CGKA protocols we focus on the upload cost,
i.e. the number of ciphertexts a party must exchange with the delivery server when
issuing an (update, add or remove) operation.

3.1.2 Related work
Beyond the related work already mentioned in Section 1.3, we highlight here some
results that are particularly relevant in the context of this Chapter.

To begin, it should be noted that, although current versions of MLS use the P&C
framework and thus differ substantially from our protocol, TTKEM can also be easily
cast in that same fashion, with commiters sampling (tainted) keys for all the nodes in
the paths of users who submitted an update proposal. This is indeed done in [ACJM20].
As with TreeKEM, the application of this framework would bring an efficiency tradeoff
that should be studied carefully and which we consider an interesting open question,
though noting the challenge in doing so without real world data.

Even though the impact on subsequent operations of removals and adds have in
TreeKEM and Tainted TreeKEM is different (see Section 3.3), the communication cost
of the actual operations is the same, namely O(d log(n/d)) to remove or add d users
(if done concurrently). A recent paper by Anastos et al. [AAB+24b] shows that this is
actually optimal for CGKA (or Multicast Encryption) protocols built from PRGs, PRFs,
dual PRFs, secret sharing, and standard or updatable PKE (symmetric encryption,
respectively).

Additionally, the work of Bienstock et al. [BDR20] proposes an upper bound that the
authors show to have optimal communication complexity when it comes to a set of
users healing concurrently, though with respect to a weak security model. In this model,
the adversary is passive and corruptions do not leak randomness, and thus nor any keys
sampled by the parties not later stored in their states. This means users in the protocol
can sample keys for nodes outside their path without the need to blank or taint those
nodes to ensure security. Thus the protocol can be seen as an instantiation of TTKEM
in the P&C framework but without the need for tainting due to the different security
model.

Regarding security, Hofheinz, Kastner and Klein [HKK23] propose an alternative ap-
proach to showing adaptive security which directly applies to the TTKEM’s security

48

3.2. Description of Tainted TreeKEM

proof from [KPPW+21], giving a reduction in the standard model achieving only
polynomial loss (in the original work this loss was only possible in the ROM).

3.2 Description of Tainted TreeKEM
3.2.1 Asynchronous Continuous Group Key Agreement Syntax
In this Chapter we use the already introduced Definition 2.3.1 of CGKA. Nonetheless,
said definition is more general that this protocol needs. In particular, Tainted TreeKEM
assumes implicit authentication and thus nor CGKA.Keygen nor CGKA.Init will
output or input any signing keys (see the discussion on partially active adversaries from
Section 1.1.2 for why this can be a reasonable approach). Additionally, since no concur-
rency between issued group operations, nor server interaction is considered, algorithm
CGKA.Dlv will simply input single messages, which are then output unchanged.

Finally, we remark that while the protocol allows any group member to add a new
party to the group as well as remove any member from the group it is up to the
higher level message protocol (or even higher level application) to decide if such an
operation is indeed permitted, in which case clients can always simply choose to ignore
the add/remove message. At the CGKA level, though, all such operations are possible.

3.2.2 Overview
The protocol uses a directed binary tree T as described in 2.5 as an underlying structure,
with node states additionally containing a tainter ID taintID.

Recall that to achieve FS and PCS, and to manage group membership, it is necessary
to constantly renew the secret keys used in the protocol. We will do this through the
group operations update, remove and add. We will use the term refresh to refer to the
renewal of a particular (set of) key(s) (as opposed to the group operation). Each group
operation will refresh a part of the tree, always including the root and thus resulting
in a new group key which can be decrypted by all members of the current group. As
explained earlier (see Sections 2.4), we will assume the existence of a PKI that users
have access to and ensures consistency between the users’ views of the initialization
keys of other users. Accordingly, when adding a new user, the relevant algorithm will
simply input a public key that is assumed to be correct and up-to-date.

We assume that a party will only process operations issued by parties that (at the time
of issuing) shared the same view of the tree. This can easily be enforced by adding
a (collision-resistant) hash of the operations processed so far [DV19, JMM19]3. In

3For efficiency reasons one could use a Merkle-Damgård hash so that from the hash of a (potentially
long) string M we can efficiently compute the hash of M concatenated with a new operation t.

49

3. Tainted TreeKEM

particular, we will consider users having a protocol state γ = (ID,L, T ,H, γ′), where:

• ID is the user’s identifier

• L denotes the set of group members, i.e. ID’s that are part of the group

• T denotes the current ratchet tree and such that, for each group member, their
credential is associated to a leaf node.

• H denotes the hash of the group transcript so far, to ensure consistency.

• γ′ stores the updated group state resulting from the last group operation issued
by ID while they wait for confirmation.

Recall a user will generally not have knowledge of the secret keys associated to all tree
nodes. However, if they add or remove parties, they will potentially gain knowledge of
secret keys outside their path. We observe that this will not be a problem as long as
we have a mechanism to keep track of those nodes and refresh them when necessary,
and so towards this end we introduce the concept of tainting.

Tainting. Whenever party IDi refreshes a node not lying on their path to the root,
that node becomes tainted by IDi. Whenever a node is tainted by a party IDi, that
party has potentially had knowledge of its current secret in the past. So, if IDi was
corrupted in the past, the secrecy of that value is considered compromised (even if IDi

deleted that value right away and is no longer compromised). Even worse, all values
that were encrypted to that node are compromised too. We will assign a tainter ID
v.taintID to all nodes. This can be empty, i.e. the node is untainted, or corresponds
to a single party’s ID, that who last generated this node’s secret but is not supposed to
know it. The tainter ID of a node is determined by the following simple tainting rules.

• After ID initialises, all internal nodes not on ID’s path become tainted by ID.

• If ID updates or removes someone, refreshed nodes on ID’s path become un-
tainted.

• If ID updates or removes someone, all refreshed nodes not on ID’s path become
tainted by ID.

50

3.2. Description of Tainted TreeKEM

Hierarchical derivation of updates. We employ the same hierarchical derivation
function re-key(·) as introduced in 2.5. It is worth noting that to prove security of
the scheme in the standard model it suffices for the functions Hi to be pseudorandom
functions (see Definition 2.2.2), with ∆i the key and xi the input.

With the introduction of tainting, however, it is no longer the case that all nodes to be
refreshed lie on a path. Hence, we partition the set of all the nodes to be refreshed into
paths and use a different seed for each path. For this we need a unique path cover, as
users processing the update will need to know which nodes secrets depend on which.
Formally, for a user ID, we want a set of paths Pi = {vi,0, . . . , vi,mi

} such that every
tainted node is in some path Pi and moreover:

1. child(vi,j) = vi,j+1 for j < mi (Pi is a path)

2. vi,j ̸= vk,l if i ̸= k for any j, l (each node is only in one path)

3. vi,0.taintID = ID (the start of each path is a node tainted by id)

4. ∀i, j : child(vi,mi
) ̸= vj,0 (paths are maximal)

5. Pi
⋂︁

Pid = ∅ (paths are disjoint from main path to root)

6. child(vi,mi
) ∈ Pid ∨ child(vj,mj

) ∈ Pi with i < j (the partition is unique)

7. vi,0 < vj,0 if i < j (there is a total ordering on paths)

where PID is the path from the user’s leaf to the root and vi < vj if vi is more to the
left in a graphical representation of the tree (any total ordering on vertices suffices). We
denote this ordered partition by tainted-paths(ID). Note that the first five conditions
ensure that the partition contains only the nodes to be refreshed and that its size is
minimal, while the sixth and seventh conditions guarantee that the partition is unique.
A common ordering of the paths is needed, since when we refresh two paths that
“intersect” (such that child(vi,mi

) ∈ Pj, as the blue and red paths in the image below
for example), the node secret in the “upper” path (the red path in this example) needs
to be encrypted under the new public key of the node in the “lower” path (the new
blue node) to achieve PCS. Thus, in this case, the blue path will need to be refreshed
before the red one when processing the update. In general we will refresh paths right
to left, i.e. Pi will be refreshed after Pj if i < j.

Let us stress that a party processing an update involving tainted nodes might need to
retrieve and decrypt more than one encrypted seeds, as the refreshed nodes on its path
might not all be derived hierarchically. Nonetheless, party needs to decrypt at most
log n ciphertexts in the worst case.

51

3. Tainted TreeKEM

Figure 3.1: Path partition resulting from an update by Charlie (3rd leaf node), with nodes tainted by
him shown in black. To process it the grey node must be updated before the green path and the blue
path before Charlie’s (in red).

3.2.3 Tainted TreeKEM Operations
Whenever a user wants to perform a group operation, they will generate the appropriate
update, add or remove message and send it to the delivery server, which will then
either confirm or reject it. If the (honest) delivery server confirms an operation it will
also deliver it to all the group members, who will process it and update their states
accordingly. The initiator of a group operation creates a message M which contains
all information needed by the other group members to process it (though different
members might only need to retrieve a part of M for performing the update) and in
case of an add also a welcome message W for the new member. A protocol message
M = (ID, op, C, pk̄,H) contains the following fields:

• M.ID - ID of the sender

• M.op - type of operation (remove/add/update), with potentially additional
information about the added or removed user.

• M.C - vector of ciphertexts which encrypt the seeds under the appropriate keys
of all refreshed nodes

• M.pk̄ - vector of new public keys (derived from the new seeds) for all refreshed
nodes

• M.H - hash-transcript

A welcome message W = (ID, wel, c, T ,L,H) would also contain the type of operation
(wel) and the sender ID, but additionally include:4

4In a functional group messaging protocol, a new member should also be communicated the
current symmetric epoch key used to communicate text messages. As this is not strictly part of the

52

3.2. Description of Tainted TreeKEM

• W.c - an encryption of the child node’s seed

• W.T - the current tree structure, with public keys

• W.L - current list of group members

• W.H - current hash-transcript of the group

We describe the protocol with the help of two helper algorithms refresh and proc-refresh,
which are defined in Figure 3.6. The former will take as input the state of the issuing
user, as well as a user identifier ID, whose keys are to be refreshed (the same as the
issuing user in the case of an update, a different one in the case of an add or remove),
and will do as follows. It will generate new seeds for all nodes on ID’s path, as well
as all nodes tainted by ID, compute all the corresponding encryptions and keys for
these nodes, store the resulting tree in the pending state γ′, and output the updated
state together with the ciphertexts and new public keys. As its counterpart, the former
algorithm will take as input a user’s state, a list of ciphertexts and public keys, and the
identifiers of both the updated path’s user and the issuer. It will decrypt the appropriate
ciphertexts and update the ratchet tree with the obtained seeds and received public
keys, outputting the resulting state.

Here and in the protocol description (Figure 3.5) we use the following helper functions:

• recover-ctxt(C, v) returns the ciphertext from the list of ciphertexts C that is
encrypted under the public key of v.

• recover-pk(pk̄, v) returns the new public key from pk̄ that corresponds to v.

• add-party(T , ID) assigns the identifier ID to the left-most empty leaf of T ,
growing the tree if it is full.

Below we provide intuitive overviews of each algorithm together with pseudocode in
Figure 3.5. The description is accompanied by Figures 3.2, 3.3, and 3.4, showing
examples of a update, remove and add operations, respectively. Note that, for the
sake of simplicity, we assume that all received messages are well-formed and honestly
generated. As a result, we do not, e.g., check that the public keys derived from a
decrypted seed match those sent in the clear.

GCKA we ignore it for simplicity.

53

3. Tainted TreeKEM

Figure 3.2: Example of an update operation by Alice (left-most leaf), who had tainted nodes (filled)
as a result of, e.g., adding a party to the 5th leaf. The state of the tree before the update is in a
lighter shade.

Figure 3.3: Example of a remove operation: Alice (left-most leaf) removes Frank (dotted) and in the
process has to update his tainted nodes (filled). Old state is again showed in gray. Note that a node
that was tainted by Frank is now untainted, as it lies on Alice’s path.

Initialize. To create a new group with parties {ID1, . . . , IDn}, a user ID1 generates a
new tree where the leaves correspond to the parties of the group (including themselves),
with associated public keys the ones used to add them. The group creator then samples
new key pairs for all the other nodes in the tree (optimizing with hierarchical derivation)
and crafts welcome messages for each party.

Update. To perform an update, a user refreshes the nodes in its path to the root
and also all the nodes tainted by him. We do this using the function refresh. It outputs
the corresponding ciphertexts and new public keys.

Remove. To remove a user j, user i performs an update on behalf of j, refreshing
all the nodes in j’s path to the root as well as all nodes tainted by j (which will now
become tainted by i). As with updates, we do this by calling the function refresh,
adding information about the type of operation and the initiator of that operation.
Note that a user cannot remove itself. Instead, we imagine a user that wants to leave
the group could request for someone to remove her and delete her state.

54

3.2. Description of Tainted TreeKEM

(a)

(b)
Figure 3.4: Example of an add operation. (a) illustrates the state of the tree before Alice adds Frank
(6th node), after which it turns into (b).

Add. To add a new member to the group, Alice identifies a free spot for them (for
consistency, the left-most free spot), hashes her secret key together with some freshly
sampled randomness to obtain a seed ∆, and derives seeds for the path to the root,
overwriting the previous ones. They then encrypt the new seeds to all the nodes in the
path (one ciphertext per node suffices given the hierarchical derivation). The reason
for such a derivation of ∆ is that the new keys will be secure against an adversary
that does not have either knowledge of Alice’s secret key or control/knowledge of the
randomness used. We use h to refer to the hash function used.

Process. When a user receives a protocol message M , it identifies which kind of
message it is and performs the appropriate update of their state. If it is a confirm or
a reject it updates the current local state accordingly and remove the information in
the pending local state.

55

3. Tainted TreeKEM

Algorithm add(γ, ID′, pk′)

00 (ID,L, T ,H, γ′)← γ
01 Require ID ̸= ID′

02 γ′ ← (ID,L, T ,H,⊥)
03 γ′.T ← add-party(γ′.T , ID′)
04 (γ′, C, pk̄)← refresh(γ′, ID′)
05 (leaf(ID′)γ′.T .pk← pk′

06 γ′.L ← γ′.L ∪ {ID′}
07 γ′.H ← H(γ′.H∥(ID, (add, ID′, pk′), C, pk̄))
08 γ ← (ID,L, T ,H, γ′)
09 M ← (ID, (add, ID′, pk), C, pk̄, γ′.H)
10 W ← (ID, wel, γ′.L, C[0], γ′.pT , γ′.H)
11 Return (γ, M, W)

Algorithm remove(γ, ID′)

12 (ID,L, T ,H, γ′)← γ
13 Require ID ̸= ID′

14 γ′ ← (ID,L, T ,H,⊥)
15 (γ′, C, pk̄)← refresh(γ′, ID′)
16 γ′.H ← H(γ′.H∥(ID, (rem, ID′), C, pk̄))
17 γ′.L ← γ′.L \ {ID′}
18 γ ← (ID,L, T ,H, γ′)
19 M ← (ID, (rem, ID′), C, pk̄, γ′.H)
20 Return (γ′, M)

Algorithm upd(γ)

21 (ID,L, T ,H, γ′)← γ
22 γ′ ← (ID,L, T ,H,⊥)
23 (γ′, C, pk̄)← refresh(γ′, ID)
24 γ′.H ← H(γ′.H∥(ID, upd, C, pk̄))
25 γ ← (ID,L, T ,H, γ′)
26 M ← (ID, upd, C, pk̄, γ′.H)
27 Return (γ, M)

Algorithm process(γ, M)

28 If M [1] = wel ∧ γ = (ID, (sk, pk)):
29 (ID′, wel,L, c, T ,H)←M
30 γ ← (ID,L, T ,H,⊥)
31 γ ← proc-refresh(γ, c,⊥, ID, ID′)
32 (leaf(ID).sk, leaf(ID).pk)← (sk, pk)
33 Elseif (ID,L, T ,H, γ′)← γ:
34 (ID′, op, C, pk̄, h)←M
35 Require h = H
36 If op = upd:
37 γ ← proc-refresh(γ, C, pk̄, ID′, ID′)
38 If op = (rem, IDr):
39 If ID′ = ID:
40 γ ← ⊥
41 Else:
42 γ ← proc-refresh(γ, C, pk̄, IDr, ID′)
43 γ.L ← γ.L \ {ID′}
44 If op = (add, IDa, pk) ∧ IDa ̸= ID:
45 γ.T ← add-party(T , IDa)
46 γ ← proc-refresh(γ, C, pk̄, IDa, ID′)
47 leaf(IDa).pk← pk
48 γ.L ← γ.L ∪ {IDa}
49 If op = confirm:
50 γ ← γ′; γ′ ← ⊥
51 ElseIf op = reject:
52 γ′ ← ⊥
53 Else:
54 γ.H ← H(γ.H∥M)
55 Return (γ, CGKA.Key(γ))

Figure 3.5: Tainted TreeKEM algorithms

56

3.2. Description of Tainted TreeKEM

Algorithm refresh(γ, ID′)

00 (ID,L, T ,H, γ′)← γ
01 P0 ← path(leaf(ID′))
02 γ′ ← (ID,L, T ,H,⊥)
03 C ← ∅
04 pk̄← ∅

\\refresh all paths from tainted nodes to root
05 {P1, . . . , Pn} ← tainted-paths(ID′)
06 For i = n, . . . , 0:
07 vi,0, . . . , vi,m ← Pi

08 (∆, K)← re-key(vi,0, vi,m)
09 \\encrypt first to parents of lowest node
10 For p ∈ parents(vi,0):
11 C ∪← PKE.Enc(p.pk, ∆[0])
12 If vi,0 ∈ path(leaf(ID)):
13 (vγ′.T

i,0 .sk, vγ′.T
i,0 .pk)← K[0]

14 Else: vγ′.T
i,0 .pk← K[0][1]

15 pk̄ ∪← K[0][1]
16 vγ′.T

i,j .taintID← ID
17 For j = 1, . . . , m:
18 If vi,j ∈ path(leaf(ID)):
19 (vγ′.T

i,j .sk, vγ′.T
i,j .pk)← K[j]

20 Else:
21 vγ′.T

i,j .pk← K[j][1]
22 pk̄ ∪← K[j][1]
23 vγ′.T

i,j .taintID← ID
24 γ ← (ID,L, T ,H, γ′)
25 Return (γ, C, pk̄)

Algorithm proc-refresh(γ, C, pk̄, ID′, IDt)

26 (ID,L, T ,H, γ′)← γ
27 P0 ← path(leaf(ID′))
28 {P1, . . . , Pn} ← γ.tainted-paths(ID′)
29 \\update all paths of tainted nodes
30 For i = n, . . . , 0:
31 v ← Int(Pi, path(leaf(ID)))
32 If v ̸= ⊥:
33 p← parents(vi) ∩ path(leaf(ID))
34 c← recover-ctxt(C, p)
35 ∆← PKE.Dec(p.sk, c)
36 (vi,0, . . . , vi,ji

)← Pi

37 For j ∈ (0, . . . , ji):
38 If vi,j ∈ path(leaf(ID)):
39 (sk, pk)← PKE.Gen(H2(∆))
40 (vi,j.sk, vi,j.pk)← (sk, pk)
41 ∆← H1(∆)
42 Else:
43 vi,j.pk← recover-pk(pk̄, vi,j)
44 vi,j.taintID← IDt

45 Return γ

Figure 3.6: Helper algorithms. All updates values for node states take place in the copy of the ratchet
tree stored in the pending state γ′. It will only be when executing process that those changes will
make it to the ratchet tree γ.T .

57

3. Tainted TreeKEM

3.3 Tainting versus Blanking
In terms of security there is little difference between what is achieved using tainting and
using blanking. Updates have the same function: they refresh all known secrets, allowing
for FS and PCS through essentially the same mechanism in both approaches. However,
as mentioned before, tainting seems to be a more natural approach: it maintains the
desired tree structure, and its bookkeeping method gives us a more complete intuition
of the security of the tree. It also corresponds to a more flexible framework: since
blanking simply forbids parties to know secrets outside of their path, it leaves little
flexibility for how to handle the initialization phase.

With regards to efficiency, the picture is more complicated. TTKEM and TreeKEM5

are incomparable in the sense that there exist sequences of operations where either
one or the other is more efficient. Thus, which one is to be preferred depends on the
distribution of operation sequences. We observe that there are two major differences in
how blank and tainted nodes affect efficiency. The first one is in the set of affected
users: a blank node degrades the efficiency of any user whose copath contains the
blank. Conversely, a tainted node affects only one user; that who tainted it, but on
the down side, it does so no matter where in the tree this tainted node is. The second
difference is the healing time: to “unblank” a node v it suffices that some user assigned
to a leaf in the tree rooted at v refreshes it (thereby overwriting the blank with a fresh
key). However, to “untaint” v, simply overwriting it this way is necessary but not
sufficient. In addition, it must also hold that no other node in the tree rooted at v is
tainted.

Thus, intuitively, in settings where the tendency is for adds and remove operations
(i.e. those that produce blanks or taintings) to be performed by a small subset of
group members it is more efficient to use the tainting approach. Indeed, only update
operations done by that subset of users will have a higher cost. As mentioned in the
introduction, such a setting can arise quite naturally in practice – e.g. when group
membership is managed by a small number of administrators.

To test this, we ran simulations comparing the number of ciphertexts (cost) users need
to compute on average as a consequence of performing updates, adds and removes.
Ideally, we would like to sample a sequence of group operations, execute them in both
protocols and compare the total cost. However, this seems infeasible: in TreeKEM
operations are collected into Commits, whereas in TTKEM these are applied one by
one, separately. Hence, we compared TTKEM (referred to as tainted in the graphs)
against two different simplified versions of TreeKEM, between which real TreeKEM
lies efficiency-wise. The first version (TKEM), more efficient than actual TreeKEM,
ignores Commits and just executes operations one by one, without the update that

5We compare TTKEM with the most recent version TreeKEMv9.

58

3.3. Tainting versus Blanking

Figure 3.7: Cost for non-
administrators

Figure 3.8: Cost for adminis-
trators

Figure 3.9: Average cost per
user

would follow every Commit. The second version (TKEM_commit), less efficient than
the real TreeKEM, enforces that every operation is committed separately, essentially
performing an extra update operation after every add or remove.

We simulated groups of sizes between 23 and 215 members. Trees of size 2i were
initialized with 2i−1 members and sequences of 10 ∗ 2i update/remove/add operations
were sampled according to a 8 : 1 : 1 ratio. One would expect for many more updates
than add/removes to take place; but also, the more common updates are, the closer
that efficiency is going to be to that of naïve TreeKEM for both TreeKEM and TTKEM.
Thus, this seems a reasonable ratio that also highlights the differences between the
protocols - it is also the ratio used by previous simulations used to analyze the efficiency
of blanking in TreeKEM6. We test two different scenarios. In the first one we limit the
ability of adding and removing parties to a small subset of users, the administrators. In
the second, we make no assumption on who performs adds and removes and sample
the authors of these uniformly at random.

To simulate the administrator setting (figures 3.7, 3.8 and 3.9), we set a small (1 per
group in groups of size less tan 128 and 1 per every 64 users in bigger groups) random
set of users to be administrators. Adds and removes are then performed by one of
those administrators sampled uniformly at random. The removed users, as well as the
authors of the updates were also sampled uniformly at random. Figures 3.7 and 3.8
illustrate that TTKEM allows for an interesting trade-off, where non-administrators
enjoy more efficient updates at the expense of potentially more work for administrators.
This would be favourable in settings where administrators have more bandwidth or
computational power. When considering the average cost incurred by group member,
admins or non-admins (figure 3.9), all three protocol perform similarly for smaller
groups, with TTKEM behaving better asymptotically.

In the second scenario (figures 3.10 and 3.11), where adds and removes are performed

6[MLS] Cost of the partial-tree approach. Richard Barnes {rlb@ipv.sx} 01 October 2018 https:
//mailarchive.ietf.org/arch/msg/mls/hhl0q-OgnGUJS1djdmH1JBMqOSY/

59

https://mailarchive.ietf.org/arch/msg/mls/hhl0q-OgnGUJS1djdmH1JBMqOSY/
https://mailarchive.ietf.org/arch/msg/mls/hhl0q-OgnGUJS1djdmH1JBMqOSY/

3. Tainted TreeKEM

Figure 3.10: Updaters follow uniform dist. Figure 3.11: Updaters follow Zipf dist.

by users sampled uniformly, the results are similar: all protocols perform comparably
on smaller groups, with TTKEM behaving more efficiently on larger groups. Here, we
distinguish two further situations depending on the distribution on update authors (or
updaters for short). Figure 3.10 shows the results of sampling updaters uniformly at
random. This would reflect scenarios where updates are executed periodically, as in
e.g. devices that are always online and where a higher level policy stipulates to update
daily. In contrast, figure 3.11 shows the results of sampling updaters following a Zipf
distribution. The Zipf distribution is used widely to model human activity in interactive
settings. Recently, a study on messages sent on internet communities shows that the
growth of messages sent per individual over time follows Gibrat’s law [RBH+09]. This
in turn implies that the distribution of the number of messages sent per individual at a
point in time converges asymptotically to a Zipf distribution [Gab99]. Thus, the latter
scenario models a setting where updates are correlated with the level of activity of the
users, e.g. when the devices used are not always online.

Overall, while we cannot say TTKEM will be more efficient than TreeKEM in every
setting, it is clear that it constitutes a promising CGKA candidate, which can bring
efficiency improvements over TreeKEM in different realistic scenarios. Moreover, we
would also like to point out that to improve the efficiency of these protocols, different
policies can be implemented, such as strategically placing users on the tree: e.g.
distributing administrators or frequent updaters closer to the right side of the tree,
where more new users will be added.

In fact, the efficiency benefits of tainting can be further compounded if the users
initiating add/remove operations also perform update operations less frequently than
others. It turns out that this type of asymmetry between frequency of updates can arise
through unrelated (yet realistic) reasons. Suppose, for example, we determine that Bob
is at a significantly higher risk of compromise than Alice. Concretely, consider Alice – an
admin – who works from the office and Bob, a non-IT professional who communicates
using his cellphone in the field. On the one hand, Alice might (be instructed to) only
use a well maintained and locked down high security device at the office while accessing
the internet through a well defended corporate network. Conversely, Bob’s mobile

60

3.3. Tainting versus Blanking

device has a significantly higher risk of falling in the adversaries hands (at least briefly)
compared to Alice’s device that never leaves the office. Bob might access the internet
through a variety of public and private networks. He may also be running a host of other
apps on the same device, further raising his risk profile compared to Alice’s. Finally, not
being a trained IT professional like Alice, he might not be as proficient at preventing
compromise; e.g. by detecting fishing attempts, avoiding dubious websites and apps
and by using powerful but complicated defensive tools on the device. Under these and
similar (quite realistic) types of conditions, it is reasonable to conclude that Bob’s
device is more likely to be compromised than Alice’s, so it is rational to spend a larger
proportion of the bandwidth dedicated to a given group chat session on updates for
Bob than the bandwidth spent on Alice’s updates. In particular, this better minimises
the probability at any given point that the sessions privacy has been compromised when
compared to (say) using the available bandwidth equally between the two.

Finally, since our simulations above are initialized with a fully healed tree (no blanks
or taints), we discuss the different costs of the initialization phase, i.e. the process
of creating a group and clearing all blanks or taints, in both protocols. We find that
TTKEM can achieve such a healed tree considerably faster than TreeKEM.

Efficiency of Initialisation.

For many group chat sessions, the initialisation phase will be the most inefficient phase
of the session’s life-cycle, as inefficiencies arise by adding and removing members to a
session. A group will certainly see at least as many adds as removes, and likely most of
those adds will happen at the beginning of the group’s life (either batched within init
or just after it). Thus, the process by which a group goes from a initial state to a fully
“healed” tree (that without blanks or taints) is of great importance. We will henceforth
consider the scenario where a group is initialised with a large number of members and
will study the cost (in particular, the number of ciphertexts) of transitioning to a fully
healed ratchet tree in the least number of group operations (without further adds,
removes or redundant updates).

While this is obviously quite a restrictive assumption, we believe it would be quite
similar to the initial behaviour of most groups. In fact, a similar sequence of group
operations could be somehow encouraged by a higher level protocol: a main aim for a
group should be to achieve the ratcheting tree structure that gives log size packages
for each operation as soon as possible.7 We will assume that groups with blanking
are initialised as fully blanked trees, except for the creator’s path (To the best of our
knowledge, mitigating double-joins via blanking does not allow for any other more

7In particular, the less bandwidth used per update the more updates can be performed and so the
stronger the expected security properties for the session will be.

61

3. Tainted TreeKEM

efficient initialisation procedure than this). We also recall that groups with tainting are
initialised with a tree fully tainted by the initiator Alice.

In order to fully unblank (resp. untaint) the tree, we need every second member to
update. In the tainted case, the order is irrelevant, as any update by a member other
than the group creator involves log n ciphertexts, meaning we can achieve a fully
untainted tree with a total communication cost of (⌊n/2⌋ − 1) log n. This is not the
case with blanking, where the order matters.

Lemma 3.3.1. To transition from a fully blanked (except for the group creator’s -
the first leaf - path to root) tree to a fully unblanked tree, the following sequence of
updates has minimal cost:

n/2 + 1, n/4 + 1, 3n/4 + 1, n/8 + 1, 3n/8 + 1, 5n/8 + 1, 7n/8 + 1, n/16 + 1, . . .

Proof. Let T1 denote the left subtree, and T2 the right subtree. If any user (with a
leaf) in T1 updates before anyone in T2 does, T2 will be blank and hence one ciphertext
per user in T2 will be needed. On the contrary, if some update from T2 has already
taken place, all updates from T1 will just need one ciphertext to be communicated to
T2, they will just need to encrypt the new group secret under the head of T2. Moreover,
note that the cost of any update from T2 will be independent from the structure of T1,
as, being on the group creator’s path, the head of T1 will not be blank. Therefore, the
optimal scenario is that someone from the right subtree updates first, assume its the
user with the leaf in position n/2 + 1 without loss of generality. Following a similar
argument, an update should then come from the right subtree of T1 before one from
its left subtree (similarly for T2), and so on.

Now, the cost (i.e. number of required ciphertexts) to update in this order is (n/2−1)+1
for the first member, (n/4− 1) + 2 for each of the two next ones, (n/8− 1) + 3 for the
4 next, and so on. We end up with the following lower-bound on the cost of healing:

n

2 + 2
(︃

n

4 + 1
)︃

+ 4
(︃

n

8 + 2
)︃

+ . . . + n

4

(︄
n

n/2 + log n− 2
)︄

= (3.1)

= n

2 (log n− 1) +
log n−1∑︂

i=1
(i− 1)2i−1 (3.2)

= n

2 (log n− 1) + 2
(︂
2log n−2(log n− 2)− 2log n−2 + 1

)︂
(3.3)

= n (log n− 2) + 2 (3.4)

Thus, even for the optimal update ordering, blanking is more costly by about a factor
of 2.

62

CHAPTER 4
Multiple Groups

4.1 Introduction
In this Chapter1 we consider an extension of the definition of ratchet tree from 2.5. We
are given a base set [N] = {1, . . . , N} of users with a set system S = {S1, . . . , Sk}
(each Si ⊆ [N]), and we ask for a key managing structure such that for any set Si ∈ S,
the users in Si share a group key. This is a natural and well motivated setting; consider
for example a university, where one might want to have a shared key for all students
attending particular lectures; or an organization where members belong to (possibly
several) different teams.

A trivial solution to this problem is to simply use a different key-tree for every group Si.
In this chapter we explore more efficient solutions.

Key-graphs beyond trees. For a set system S as above, instead of using disjoint
trees, any directed acyclic graph (DAG) G = (V , E) with the following properties is
sufficient to maintain group keys:

1. Every user i ∈ [N] corresponds to a source vi (a node of indegree 0).

2. Every group Si ∈ S corresponds to a sink vSi
(a node of outdegree 0).

3. For every Si ∈ S and j ∈ [N], there is a directed path from vj to vSi
if and only

if j ∈ Si.
1This Chapter essentially replicates, with permission, large parts of the full version [AAB+21a] of

our publication [AAB+21b].

63

4. Multiple Groups

4. The indegree of any node is at most 2.

The first three properties ensure that any user j ∈ [N] can learn the keys associated
with the nodes of groups they are in. The last property is not really necessary, but it is
without loss of generality in the sense that any graph can be turned into a graph with
at most as large update cost (as we show in Section 4.3), and where every node other
than the leaves has indegree at most 2. We call this a key-derivation graph for S.

Update cost. If we rotate the keys of a user i we need to replace all keys that can be
reached from vi, which we denote by D(vi), and encrypt each new key under the keys of
its co-path. We thus define the update cost of a user i ∈ [N] as ∑︁v∈D(vi)(indeg(v)−1),
which with item 4 above roughly simplifies to the number of vi’s descendants |D(vi)|.
The update cost Upd(G) of a DAG G is the sum over the update cost of all its leaves,
which is proportional to the average update cost of users.
Towards constructing more efficient key-derivation schemes when we have multiple
overlapping groups, we thus address the problem of determining how small the update
cost of a key-derivation for a given set system S = {S1, . . . , Sk} over [N] can be, and
how to find graphs which achieve, or at least come close to, this minimum.

Our contributions. We look at this problem from two perspectives. To get an
insight on how much can be saved compared to the trivial solution, we first adapt
a qualitative, asymptotic perspective, where we assume a fixed set system, but the
number of users N goes to infinity while the relative size of the sets and intersections
remains the same. We prove a lower bound on the update cost in this setting and give
an algorithm computing graphs matching this bound.
As this solution turns out to be far from optimal for certain concrete set systems, we
then also look at a quantitative non-asymptotic setting, where we consider concrete
bounds and care about things like additive constants. We propose an algorithm that
seems better equipped to handle such systems and prove upper and lower bounds on
the update costs of graphs generated by it. Finally, we prove lower bounds on the
update cost of any continuous group-key agreement scheme and multicast encryption
scheme in a symbolic model.

4.1.1 The asymptotic setting
Given a set system S = (S1, . . . , Sk) over some base set [n], we let S(N) denote the
system with base set [N] we get by considering each element in S with multiplicity
N/n. E.g. if S = ({1, 2}, {2, 3}) then S(6) = ({1, 2, 4, 5}, {2, 3, 5, 6}).2 Thus, as the

2S(N) is only well defined if N/n is an integer, we ignore this technicality as we will be interested
in the case N →∞.

64

4.1. Introduction

number of users N grows the relative sizes of the groups and their intersections remain
fixed.

Let si := |Si|/n denote the relative size of Si and s = ∑︁m
i=1 si be the average number

of groups users are in. We assume wlog. that each user is in at least one group,
implying s ≥ 1. Let Opt(S) denote the update cost of the best key-graph for a set
system S and Triv(S) the update cost of the Trivial algorithm (which makes a key-tree
for every Si ∈ S). We will show that (the hidden constants in the big-Oh notation all
depend on k, the number of groups).

Opt(S(N)) = N log(N) + Θ(N) (4.1)
Triv(S(N)) = s ·N log(N)−Θ(N) (4.2)

thus Triv(S(N))
Opt(S(N)) = s− o(1) (4.3)

As s is the average number of groups users are in, this shows that

asymptotically (for a fixed set system S but with increasing number N of
users) the update cost of an optimal key-derivation graph depends only on
N (but not on S). In this regime, the gain we get by using more cleverly
chosen key-derivation graphs (as opposed to using a key-tree for every
group) can be up to linear in s, the number of groups an average user is
in, but not, say, the number of groups |S|.

While we do not know how to efficiently find the best key graph for a given set system
S, in Section 4.4 we define a family Gao(S(N)) which is asymptotically optimal, i.e.,
matches Equation 4.1. Intuitively, it first partitions the universe of users [N] into
the sets of users that are members of exactly the same groups. More precisely, for
I ⊆ [k] let PI be the set of users that are members of the groups specified by I. Then,
the asymptotically optimal algorithm builds a balanced binary tree for every PI , and
in a second step connects the roots of these trees to the appropriate group keys by
another layer of binary trees. For an illustration of the trivial and asymptotically optimal
algorithms see Figure 4.1.

4.1.2 The non-asymptotic setting
Asymptotics can kick in slowly. The asymptotic setting gives a good idea about
the efficiency we can expect once the number of users N is large compared to the
number k = |S| of groups. Nevertheless, it should be noted that this asymptotic effect
can kick in only slowly: assume the artificial example where for some small base set
[n] we have a set system S = {S1, . . . , Sk} with k = 2n − 1 groups where for every

65

4. Multiple Groups

S1

S2 S3
Group system S = (S1, S2, S3) Trivial solution

S1

S2 S3

Asymptotically optimal solution

S1 S2 S3

Algorithm 1

S1

S2 S3

Figure 4.1: Key graphs for group systems. Top left; Venn diagram of the considered group system.
Top right; trivial key graph using one balanced binary tree per group. Bottom left; Asymptotically
optimal key graph using one balanced binary tree per partition PI . Bottom right; asymptotically
optimal key graph obtained using Algorithm 1. In the depictions of key trees the horizontal thick lines
indicates the users’ personal keys.

non-empty subset of users we have a group. Then each user is in 2n−1 groups and thus
needs at least that many keys, and so the Θ(1) term in the asymptotic update cost
log(N) + Θ(1) of a single user is also at least 2n−1. For the log(N) term to dominate
we need log(N)≫ 2n−1, or N ≫ 22n−1 , so the number of users needs to grow doubly
exponential in the base set [n].

Moving on to the non-asymptotic setting, consider a group system S for a fixed set of
users [N]. The discussion above indicates that for S the asymptotic update cost per
user of log(N) could be very far off the truth unless N becomes fairly large compared
to the number of groups. This leaves the possibility that for concrete group systems
where N is not huge relative to S, already the trivial key-graph performs fairly well in
practice. This, however, turns out to not be the case.

First, let us observe that the gap in update cost can never be larger than log(N), for

66

4.1. Introduction

any S over [N]
Triv(S) ≤ log(N) ·Opt(S) (4.4)

To see this we observe that the update cost for every user i ∈ [N] is at most a factor
log(N) larger in the trivial solution: a user i that is in si = |{S ∈ S : i ∈ S}| groups
has an update cost of at least si in any key graph, in particular in Opt(S), and at most∑︁

S∈S,i∈S log(|S|) ≤ si · log(N) in the trivial key graph.

In Section 4.4.2 we will show that this is not merely a theoretical gap by giving an
example of a natural system S for which the update costs of both the trivial and the
asymptotically optimal algorithms match the gap of log(N).

A greedy algorithm based on Huffman codes. The discussion above indicates
that for set systems mapping groups that we might encounter in practice, one should
not simply use an asymptotically optimal solution, but aim for a solution that is optimal,
or at least close to optimal, for all instances.

Algorithm 1 that we propose in Section 4.5 is an algorithm for computing a key-graph
given a set system S. In a first step, the algorithm computes a “Boolean-lattice graph”
for S, and in a second iteratively runs the algorithm to compute Huffman Codes to
compute the key graph. As the algorithm is basically a composition of greedy algorithms,
it is very efficient. We leave it as an open question whether it really is optimal, and if
not, whether there’s an efficient (polynomial time) algorithm to compute Opt(S) and
find the corresponding key graph for a given S in general.3

We present Algorithm 1 in Section 4.5 and discuss its connection to Boolean lattices.
Then, we derive concrete lower and upper bounds on its update cost, that can serve
as a good estimate on how much it saves compared to the trivial algorithm and the
asymptotically optimal algorithm of Section 4.1.1. We further show that Algorithm 1
and a class of algorithms generalizing the approach taken are optimal in the asymptotic
setting. While the same is true for the algorithm discussed in Section 4.1.1, Algorithm 1
seems better suited for practical applications as key-derivation graphs constructed by it
reflect the hierarchical structure inherent to such systems. An example of a key graph
generated by it is in Figure 4.1.

Our analysis concerns static group systems, but in Section 4.6 we show how known
techniques that allow adding and removing users from groups in the settings of
continuous group-key agreement and multicast encryption for a single group, can be
adapted to key-derivation graphs generated by the greedy algorithm.

3The question whether a polynomial time algorithm for computing Opt(S) exists can be naturally
asked in various ways. We discuss it in more detail in Section 4.10.

67

4. Multiple Groups

Lower bounds. To get a feeling for how close to optimal our approach is, we prove
a lower bound on the average update cost for arbitrary schemes for continuous group-
key agreement (in Section 4.7), and the related primitive of multicast encryption (in
Section 4.9), that are based only on simple primitives such as encryption, pseudorandom
generators, and secret sharing in a symbolic security model. This closely follows ideas
from Micciancio and Panjwani [MP04], who considered such a symbolic model to
analyze the worst-case update cost of multicast encryption schemes. We improve on
their results by considering the setting of multiple potentially overlapping groups and
proving a lower bound on the average communication complexity.

Our bound essentially shows that on average the cost of a user in any CGKA scheme
or multicast encryption scheme for group system S1, . . . , Sk constructed from the
considered primitives satisfies

Upd(G) ≥ 1
N
·
∑︂

∅≠I⊆[k]
|PI | · log(|PI |) ,

where PI ⊆ [N] is the set of users exactly in the groups specified by index set I ⊆ [k].
We consider it an interesting open question to either improve on this bound or to
construct an algorithm matching it.

4.1.3 Related Work
On top of the related work discussed in Section 1.3, we discuss here some works that
are of particular relevance for this chapter.

In the setting of a single group, key graphs have been used to construct secure multicast
encryption, e.g. [WHA98, WGL00, CGI+99], and continuous group-key agreement
(CGKA), e.g. ART [CCG+18] and TreeKEM[BBR+23] and all of it’s variants. In the
setting of multiple groups, the approach to use binary trees for every set of users
that are members of exactly the same groups similarly to the asymptotically optimal
algorithm, has been suggested in [MSAAA14, ZLC17]. However, the trees are then
combined in a way that induces an overhead that is linear in the number of trees.

In [CHK21], Cremers et al. consider the post-compromise security guarantees of CGKA
protocols for multiple groups. They show that in certain update scenarios, protocols
based on pairwise channels have better healing properties than protocols based on key
trees, as updates in a single group also benefit all subgroups of it. We stress that these
issues do not arise in our approach, as updates in our setting are global and thus affect
all groups the updating user is a member of.

The symbolic security model was first introduced by Dolev and Yao [DY83] and, as
mentioned above, first used in this context by Micciancio and Panjwani [MP04] to

68

4.2. Preliminaries

prove worst case bounds on the update cost of multicast encryption schemes using
PRFs, secret sharing and symmetric encryption for a single group. In the context of
CGKA schemes, it was used by Bienstock et al. [BDR20] to prove a lower bound on the
communication cost of achieving PCS in 2 rounds for a single group, for protocols built
using (dual) PRFs, (updatable) PKE and broadcast encryption. Recently, Auerbach et
al. [ACNPPP23] extended the above results to the general setting of achieving PCS
in arbitrary k rounds for protocols built from PRFs and PKE. Finally, Anastos et
al. [AAB+24b] use it to prove a lower bound on the cost of adding and removing users
in CGKA and ME schemes built from (dual) PRFs, secret sharing and encryption.

4.2 Preliminaries

4.2.1 Notation
We introduce some notation specific for this chapter.

Graph notation. Let G = (V , E) be a directed acyclic graph (DAG). To node v ∈ V
we associate the sets A(v) = {v′ ∈ V | ∃ path from v′ to v} of ancestors of v, and
D(v) = {v′ ∈ V | ∃ path from v to v′} of descendants of v. Here, we allow paths of
length 0 and hence v ∈ A(v) and v ∈ D(v). Let G ′ = (V ′,G ′) be a subgraph of G and
v ∈ V ′. We denote the set of parents of v by P(v). The set of co-parents CP(v,G ′) ⊆ V
of v with respect to G ′ in G is the set of vertices that are parents of v in G but not in
G ′. Even though there will be a notion of users, in this chapter we want to focus more
on the properties of the key-derivation graphs and less on the real-world connection.
Therefore, we will refer to them simply by integers ß ∈ [N], as opposed to through
their identifier ID, as we do in other chapters.

Probability distributions. Let X be a random variable with outcomes x1, . . . , xℓ

with probability p1, . . . , pℓ. Then we denote by E[X] its expectation and by H(X) =
−∑︁ℓ

i=1 pi log(pi) its Shannon entropy.

4.2.2 Huffman Codes
Given a collection v1, · · · , vℓ of disconnected leaves of weight w1, . . . , wℓ ∈ N a Huffman
Tree is constructed as follows. From the set {v1, . . . , vℓ} two nodes vi1 , vi2 with the
smallest weights are picked. Then a node v and edges (vi1 , v), (vi2 , v) are added to the
graph. v’s weight is set to wi1 + wi2 and the set of nodes to be considered updated to
{v1, . . . , vℓ} ∪ {v} \ {vi1 , vi2}. This step is repeated until all leaves are collected under
a single root.

69

4. Multiple Groups

Since all nodes have indegree 2 the Huffman tree defines a prefix-free binary code for
(v1, . . . , vℓ). We will make use of the following property of Huffman Codes.

Lemma 4.2.1 (Optimality of Huffman Codes [Huf52]). Consider a Huffman tree T
over leaves v1, . . . , vℓ of weight w1, . . . , wℓ ∈ N. Let w = ∑︁ℓ

i=1 wi and let UT denote
the probability distribution that picks leaf vi with probability wi/w proportional to its
weight. Then, if len(UT) denotes the random variable measuring the length of the
path from a leaf picked according to UT to the root, we have that the average length
of such paths is bounded by

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1 .

4.3 Key-derivation Graphs for Multiple Groups
In this section we discuss key-derivation graphs for systems consisting of multiple groups.
In Section 4.3.1 we briefly recall two applications of such graphs; continuous group-key
agreement and multicast encryption. In Section 4.3.2 we formally define key-derivation
graphs, discuss how key material in a graph is refreshed, and define its update cost.

4.3.1 Continuous Group-key Agreement and Multicast
Encryption

Continuous group-key agreement. Continuous group-key agreement (CGKA)
schemes [ACDT20] are an important building block in the construction of secure
asynchronous group messaging schemes, as we have discussed previously. As the name
indicates, the goal of a CGKA scheme is to establish a common key that is to be used
to secure the communication between members of a group.

In this chapter, however, we are interested in the more general setting in which
users n ∈ [N] want to agree on keys for a system of groups S1, . . . , Sk ⊆ 2[N]. After
the groups have been established in a setup phase user n can use the procedure Upd(n)
to produce an update message that rotates the key material known to them, thus
eliminating any keys that may have leaked during a compromise. As before, this update
message is broadcast to the other users using the untrusted delivery server. Given their
own secret keys, users are then able to retrieve the refreshed keys that should be known
to them. A natural goal to aim for is to minimize the communication cost incurred by
such update messages.

Naturally, one would like to additionally support dynamic operations also in this setting.
While here we will focus on the update costs of schemes for a system of static groups,
in Section 4.6 we show that the known techniques of blanking and unmerged leaves

70

4.3. Key-derivation Graphs for Multiple Groups

used in the MLS protocol [BBR+23] can be adapted to schemes obtained from our
approach.

Multicast encryption. The goal of a multicast encryption scheme [WHA98, WGL00,
CGI+99] is to establish a key for a group of users to enable them to decrypt ciphertexts
broadcast to the group. Every user holds a personal long-term key, but opposed to
CGKA there also exists a central authority that has access to all secret key material.
After a setup phase, the central authority is able to add and remove users from the group
by refreshing key material and broadcasting messages to the group. The central goal in
the construction of multicast schemes is to minimize the communication complexity
incurred by such operations. Typically, multicast encryption schemes also rely on
key-derivation graphs.

As in the case of CGKA, we are interested in the more general setting of a system of
potentially overlapping groups of users.

4.3.2 Key-derivation Graphs
We now discuss key-derivation graphs, which can be seen as a generalization of ratchet
trees. In our exposition we will focus on graphs for continuous group-key agreement.
At the end of the section we discuss the differences to graphs for multicast encryption.

Consider a set of parties [N] and a collection S ⊆ 2[N] of subgroups of [N]. A
key-derivation graph (kdg) for [N] and S organizes key pairs in a way that allows the
members of a particular subgroup to agree on a key, and further enables parties to
refresh the key material known to them. Every node v in the graph is associated to a key
pair (pkv, skv) of a public-key encryption scheme (PKE.Gen, PKE.Enc, PKE.Dec),
and edges (v, v′) indicate that parties with access to skv also posses skv′ . The personal
keys of users correspond to sources and every group is represented by a node that holds
the corresponding secret group key. We formalize the structural requirements on the
graph in the multi-group setting as follows.

Defintion 4.3.1. Let N ∈ N, S ⊆ 2[N], and G = (V , E) a DAG. We say that G is a
key-derivation graph for universe of elements [N] and groups S if

1. For every n ∈ [N] there exists a source vn ∈ V and for every S ∈ S there exists
a node vS ∈ V . We further require that vn ̸= v′

n for n ̸= n′.

2. For n ∈ [N] and S ∈ S we have vS ∈ D(vn) exactly if n ∈ S.

In the definition above node vn correspond to user n’s personal key, and nodes vS to
group keys. The second property encodes correctness and security, intuitively saying
that n is able to derive the group key of S exactly if n ∈ S.

71

4. Multiple Groups

Updates. Let G be a key-derivation graph for [N] and S. If party n wants to perform
an update they have to refresh all key-material corresponding the subgraph D(vn)
known to them and communicate the change to the other parties. To this end they
pick a spanning tree Tn = (V ′, E ′) of D(vn), as well as a random seed ∆vn . Then
starting from the source vn, if v′ is the ith child of node v they define the seed of
v′ as ∆v′ = H(∆v, i), where H is a hash function. ∆v′ is then used to derive a new
key-pair (pkv′ , skv′) ← PKE.Gen(∆v′) for v′. Finally, for every v ∈ V ′ and every
co-parent v′ ∈ CP(v, Tn), n computes the ciphertext cv,v′ = PKE.Enc(pkv′ , ∆v). The
set of all ciphertexts together with the set of new public keys forms the update message.
Finally, n deletes all seeds ∆v.
We now show that the construction preserves correctness, i.e., users n′ ≠ n are able to
deduce all new secret keys in D(vn′) from the update message and thus in particular
the group keys of all groups they are a member of. To this end, let v ∈ D(vn)∩D(vn′).
Then there exists a path (vn′ = v1, . . . , vℓ = v) in D(vn′). Let i be maximal with
vi /∈ D(vn) (Note that such i must exist as vn′ is a source). By maximality of i the
node vi must be a coparent of vi+1 with respect to D(vn). Thus, the update message
contains an encryption of ∆vi+1 to pkvi

. As skvi
was not replaced by the update and

is known to n′ the user can recover ∆vi+1 and in turn skvi+1 . Now, n′ can recover the
remaining ∆vi+2 , . . . , ∆vℓ

and the corresponding secret keys as the seeds were either
derived by hashing or, in the case that vj+1 is a coparent of vj with respect to D(vn),
encrypted to the new key pkvj

, the secret key of which was already recovered by n′.

Update cost. Using the size of ciphertexts as a unit, the update cost of n is given
by Upd(n) = ∑︁

v∈Tn
|CP(v, Tn)| = ∑︁

v∈Tn
(|P(v)| − 1). Note that this quantity is

independent of the particular choice of spanning tree Tn. In this work we are interested
in minimizing the average update cost, assuming that every user updates with the same
probability. We define the total update cost Upd(G) = ∑︁

n∈[N] Upd(n) of G. Note
that Upd(G)/N is the average update cost of a user, and we can thus focus on trying
to minimize Upd(G), which will allow for easier exposition. The following lemma shows
that we can restrict our view to graphs in which every non-source has indegree 2. Note,
that for graphs G with this property we have |CP(v, Tn)| = 1 for every n, Tn, and
v ∈ Tn that is not a source and thus in this case we can compute the update cost as

Upd(G) =
∑︂

n∈[N]
(|Tn| − 1) =

∑︂
n∈[N]

(|D(n)| − 1) =
∑︂

n∈[N]
|D(n)| −N . (4.5)

Lemma 4.3.2. Let n ∈ N, S ⊆ 2[N], and G a key-derivation graph for [N] and S.
Then there exists a key-derivation graph G ′ for [N] and S satisfying Upd(G ′) ≤ Upd(G)
such that for every non-source v ∈ V ′ we have indeg(v) = 2.

Proof. We first show that we can iteratively decrease the indegree of nodes in G in
a way that preserves correctness and only improves the update cost. Thus let v ∈ V

72

4.3. Key-derivation Graphs for Multiple Groups

and P(v) = {v1, . . . , vk} with k ≥ 3 and consider the graph G ′ with V ′ = V ∪ {v′}
and E ′ = E ∪ {(v1, v′,), (v2, v′), (v′, v)} \ {(v1, v), (v2, v)}. Note that the correctness
requirements of Definition 4.3.1 are unaffected by this modification. Let n ∈ [N]. If
v /∈ D(n) n’s update cost remains the same after the change. Thus, assume v ∈ D(v).
In G we have |P(v)| = k. In G ′, on the other hand, |P(v)| = k − 1 and |P(v′) = 2|.
Thus if n’s spanning trees in G uses edge (v1, v) or (v2, v), then their update cost
remains unchanged in G ′. If, on the other hand, neither (v1, v) nor (v2, v) lie in n’s
spanning trees, then their update cost decreases by one. after repeating the step
sufficiently many times we end up with a graph G ′ with indeg(v) ≤ 2 for all v ∈ V ′.

Finally note that non-sources with indegree 1 can be simply merged with their parent,
which does not affect correctness and update cost of the graph.

Key-derivation graphs for multicast encryption. Opposed to kdgs for CGKA
key-derivation graphs for multicast encryption rely on symmetric encryption. Let (E, D)
be a symmetric encryption scheme. Every node v in a kdg G for [N] and S is associated
to a key sskv

4, and an edge (v, v′) indicates that a party with access to sskv knows
sskv′ . We require structural requirements on G that are analogous to Definition 4.3.1.
Updates with respect to leaf vn, which for multicast encryption are computed by the
central authority, and their update cost, are defined analogous to the setting of CGKA
as well.

While the main goal of multicast encryption is not to recover from compromise of
keys by updating, but instead to allow the central authority to dynamically change the
structure of the groups S1, . . . , Sk, the notion of an update with respect to a leaf vn

still turns out to be useful. Assume that the central authority performed an update
for vn starting with seed ∆. We can distinguish two cases. If ∆ is not known to the
owner n of leaf vn then n lost access to all keys corresponding to D(vn). Thus, by
updating, the central authority can remove a party from all groups they are a member
of. Assume on the other hand that the leaf was previously unpopulated and that ∆ can
be derived from n’s long term key. Then n gained access to all group keys that can
be reached from vn. In Section 4.6 we discuss how updates can be used as the basic
building block of implementing more fine grained operations, i.e., adding or removing
a user from particular group Si. The efficiency of these operations is significantly
determined by the update cost as defined in this section.

4Outside of this chapter, this notation is used to denote the secret key of a signature scheme.
Nevetheless, since signature keys are not used in this chapter, and symmetric keys rarely mentioned
outside of it, we consider it acceptable to reuse the notation.

73

4. Multiple Groups

4.3.3 Security
The main focus of this work is to investigate the communication complexity of key-
derivation graphs for group systems. We do not give formal security proofs in this
work. The structural requirements on kdgs and definition of update procedures are
chosen with the goal of the resulting CGKA to achieve post-compromise forward-
secrecy (PCFS) [ACJM20] roughly corresponding to post-compromise security (PCS)
and forward-secrecy (FS) simultaneously. In the following paragraphs we provide an
intuition on the security properties of kdgs. For ease of exposition we will discuss PCS
and FS separately instead of PCFS.

Recall that CGKA schemes constructed from kdgs employ further mechanisms to ensure
authenticity and prevent a malicious sever to send users inconsistent update messages.
We consider the construction of such mechanisms as well as a formal security analysis
of kdgs to be important open questions for future work.

Preserving the graph invariant. We first discuss how updates preserve the invariant,
that users n know exactly the secret keys corresponding to D(vn), which by Condition 2
of Definition 4.3.1 implies that n will never be able to derive a group key for some
group they are not a member of. Note that if n is the updating user then they will only
replace keys in D(vn). If n receives an update message, on the other hand, then they
will only be able to recover a key skv if either the corresponding seed ∆v was encrypted
to a key known to n or if ∆v was derived by hashing from a seed ∆v′ recoverable by n.
By iteratively applying this argument to ∆v′ we obtain that there must exist some ∆v′′

that was encrypted to a key known to n such that v′′ has a path to v. Thus, it must
hold that v ∈ D(vn). (Note that the one-wayness of the used hash function ensures
that seeds derived by hashing can only be recovered from each other in the correct
direction.)

Post-compromise security. The goal of PCS is to allow users whose secret state
has been exposed to recover from this exposure by performing an update. Using the
example of a single compromised user we now discuss how kdgs for group systems
achieve this property. Assume that an adversary knows exactly the secret state of
user n, i.e., all keys skv for v ∈ D(vn), and that n then performs an update. Then the
adversary is not able to deduce any of the replaced keys: Note that the initial random
seed ∆vn is not encrypted to any key and thus cannot be leaked to the adversary.
Thus, all other seeds ∆v can only be derived by the adversary if ∆v itself, or a seed
from which ∆v was derived by iterated hashing was encrypted to a key known to the
adversary. However, the adversary only knows the keys corresponding to D(vn) before
the update, and those keys were replaced by freshly sampled ones before computing the

74

4.3. Key-derivation Graphs for Multiple Groups

ciphertexts. Thus, seeds are encrypted to either “old” keys not known to the adversary
or new keys, and so after the update all keys are secure again.

Forward secrecy. Forward secrecy requires that compromising a user’s secret state
does not allow the adversary to recover previous group keys. In key-derivation graphs
old keys get deleted over time providing a limited form of forward-secrecy. Concretely, if
a user n is corrupted all group keys before their last update remain secure. This holds,
since seeds that were generated before this point in time and can be used to recover
group keys were encrypted to keys no longer in n’s memory. Note however, that group
keys generated in between n’s last update and the time of n’s corruption might leak to
the adversary. For example, a seed from which such keys can be derived might have
been encrypted to the key skvn , which remained unchanged until the corruption.

Improved forward secrecy using supergroups. Recall that CGKA constructions
employing kdgs like TreeKEM [BBR18] rely on an additional mechanism to improve
their forward-secrecy guarantees. Namely, to use application secrets, resulting from
hashing the epoch’s shared secret into a hash chain of application secrets, to encrypt
messages. This allows users to gain the advantage of forward secrecy not only by
issuing but also by processing updates of other users in S

In the setting of a group system S we can further improve on this: Consider some
group S ∈ S and let S1, . . . , Sℓ be the maximal (with respect to inclusion) groups in S
that contain S. We denote the application secrets for S and the Si by KS and KSi

respectively. Now, whenever a member of any of the Si issues an update the application
secret of S is updated to KS ← H2(skvS

, KS1 , . . . , KSℓ
).5 Note that for every i since

S ⊆ Si all members of S do indeed have access to KSi
and thus are able to compute

KS, and that an update by users in S implies that all Si are updated as well. The
effect of this modification is that even updates by users outside of S —more precisely
in any of the sets Si \ S— imply forward secrecy of users in S. Note that this is in
particular helpful in the case where |S| ≪ |Si| and updates in the large group occur
much more frequently than in the small group, for example in the case of two members
of a large group having a private conversation.

4.3.4 The Trivial Algorithm
To construct a key-derivation graph for a single group S the parties n ∈ S are typically
arranged as the leaves of a balanced binary tree T . The tree’s root serves as the group
key. In this case the length of paths from leaf to root is at most ⌈log(|S|)⌉ and in turn
Upd(T) ≤ |S| · ⌈log(|S|)⌉. On the other hand, T defines a prefix-free binary code for

5Regarding PCFS it might even be advantageous to include KS′ for all S′ ⊇ S.

75

4. Multiple Groups

the set S. Thus, by Shannon’s source coding theorem the average length of paths from
leaf to root is at least log(|S|) which implies Upd(T) ≥ |S| · log(|S|).

An algorithm for multiple groups. A trivial approach to construct a key derivation
graph for parties [N] and group system S = {S1, . . . , Sk} is to simply apply the method
described above to all Si in parallel. That is, for i ∈ [k] construct a balanced binary
tree Ti with |Si| leaves such that for n ∈ [N] the node vn is a leaf of exactly the trees Ti

with n ∈ Si. Let G denote the resulting graph. The conditions of Definition 4.3.1
clearly hold and we can bound the total update cost of G by∑︂

i∈[k]
|Si| · log(|Si|) ≤ Upd(G) ≤

∑︂
i∈[k]
|Si| · ⌈log(|Si|)⌉ .

Further, the update cost of a single user n ∈ [N] is bounded by Upd(n) ≤ ∑︁i:n∈Si
⌈log(|Si|)⌉.

4.4 Key-derivation Graphs in the Asymptotic
Setting

In this section we investigate the update cost of key-derivation graphs for multiple
groups in an asymptotic setting. More precisely, for a system consisting of a fixed
number of groups, we consider the setting in which the number of users tends to infinity
while the relative size of the groups stays constant. In Section 4.4.1 we first compute
the asymptotically optimal update cost of key-derivation graphs and then show that
the trivial algorithm does not achieve it. We then present an algorithm achieving the
optimal update cost. In Section 4.4.2 we show that both approaches can perform badly
for concrete group systems.

4.4.1 Key-derivation Graphs in the Asymptotic Setting
We investigate the update cost of key derivation graphs in an asymptotic setting. That
is, we consider N parties that form a subgroup system S = {S1, . . . , Sk} and fix values
pI ∈ [0, 1] for I ⊆ [k] that indicate the fraction of users that are members of exactly
the groups specified by I.

More precisely, let k ∈ N≥2 be fixed and let {pI}I⊆[k] be such that ∑︁I⊆[k] pI = 1. For
N ∈ N let S(N) = {S1(N), . . . , Sk(N)} ⊆ 2[N] be a subgroup system that satisfies
|PI(N)| = N · pI for all I, where PI(N) = ⋂︁

i∈I Si(N) \ ⋃︁j∈[k]\I Sj(N) is the set of
users exactly in the groups specified by I.6 Throughout this section we assume that

6S(N) is only well defined if N · pI is an integer for all I, we ignore this technicality as we are
interested in the case N →∞.

76

4.4. Key-derivation Graphs in the Asymptotic Setting

p∅ = 0, i.e., every user is in at least one group, and that at least two groups are
non-empty. We are interested in the update cost of key-derivation graphs for S(N)
when N tends to infinity.

Lower bound in the asymptotic setting. We first compute a lower bound on the
update cost of kdgs in the asymptotic setting. The bound follows from the following
combinatorial result on concrete graphs, that will also turn out to be useful for our
symbolic lower lower bound of Section 4.7. Recall that for graphs G ′ ⊆ G and a vertex v
the set CP(v,G ′) is the set of co-parents of v with respect to G ′ in G.

Lemma 4.4.1. Let M ∈ N be fixed, S1, . . . , Sk ⊆ [M], and let G = (V , E) be a DAG
such that there exist pairwise disjoint sets of sources Vn, n ∈ [M], and nodes vSi

,
i ∈ {1, . . . , k} such that

n ∈ Si ⇒ ∃vn ∈ Vn such that there is a path from vn to vSi
.

Further let Tn be a spanning forest of D(Vn) = ⋃︁
vn∈Vn

D(vn). Then

M · E
[︃ ∑︂

v∈Tn

|CP(v, Tn)|
]︃
≥

∑︂
∅≠I⊆[k]

|PI | · log(|PI |) ,

where the expectation is to be understood with respect to the uniform distribution on
[N].

Proof. As a first step we show that we may assume that all Vn consist of a single
source vn. Indeed, we could replace G with a graph G ′ that for every n has an additional
source vn which has outgoing edges to all elements of Vn. As now all former sources
have indegree 1 and all other nodes are unaffected ∑︁v∈Tn

|CP(v, Tn)| is the same in
both graphs, and every bound on for G ′ carries over to G.

Further, using the same argument as in the proof of Lemma 4.3.2 we can replace G ′ by
a graph G ′′ satisfying the same correctness properties as G ′ such that all non-sources v
of G ′′ satisfy indeg(v) = 2 and ∑︁

v∈Tn
|CP(v, Tn)| can only decrease, implying that

every bound for G ′′ carries over to G ′ and in turn to G. Thus assume that G satisfies
Vn = {vn} for all n and that all non-sources have indegree 2.

Note that

M · E[
∑︂

v∈Tn

|CP(v, Tn)|] =
∑︂

n∈[N]

∑︂
v∈Tn

|CP(v, Tn)|

=
∑︂

∅≠I⊆[k]

∑︂
n∈PI

∑︂
v∈Tn

|CP(v, Tn)| ,

77

4. Multiple Groups

where we used that the PI form a partition of [M] and that P∅ = ∅. Thus, to
prove the lemma it suffices to show that for every nonempty I ⊆ [k] we have∑︁

n∈PI

∑︁
v∈Tn
|CP(v, Tn)| ≥ |PI | · log(|PI |). Fix a nonempty index set I ⊆ [k] and let

i ∈ I. By assumption for all n ∈ PI there exists a path P from vn to vSi
. Thus there

exits a subgraph G ′ of G in which every vn has exactly one path to vSi
.

As all vn are sources and indeg(v) ≤ 2 for all v ∈ G ′ the graph G ′ defines a prefix-free
binary code for the set PI . By Shannon’s source coding theorem this implies that the
average length of the paths from source to sink in G ′ is at least H(UPI

) = log(|PI |),
where UPI

denotes the uniform distribution over PI . Summing over all elements of PI

we obtain ∑︂
n∈PI

∑︂
v∈Tn

|CP(v, Tn)| =
∑︂

n∈PI

(|Tn| − 1) ≥ |PI | · log(|P |I) ,

where in the equality we used that all non sources have indegree 2 and in the inequality
that Tn contains paths of average length log(PI).

Note that Lemma 4.4.1 in the case |Vn| = 1 for all n can be seen as a lower bound
on the total update cost of key-derivation graphs as defined in Section 4.3 since
M · E[∑︁v∈Tn

|CP(v, Tn)|] = ∑︁
v∈Tn
|CP(v, Tn)|.

Turning to the asymptotic setting we have∑︂
I⊆[k]

N · pI · log(N · pI) = N ·
∑︂

I⊆[k]
pI log(N) + N ·

∑︂
I⊆[k]

pI log(pI)

= N log(N) + N ·
∑︂

I⊆[k]
log(pI) = N log(N) + Θ(N) ,

where we used that ∑︁I pI = 1. As we will show below, there exist key-derivation graphs
matching this bound. We conclude that the optimal update cost in the asymptotic
setting only depends on the overall number of users but not the particular set system:

Opt(S(N)) = N log(N) + Θ(N) .

Note, however, that the term Θ(N) hides a constant (with respect to N), that can be
exponential in k.

Asymptotic update cost of the trivial algorithm. The trivial algorithm constructs
a separate balanced binary tree for every group Si(N). For i ∈ [k] let si be such that
N ·si = |Si(N)| and further let s = ∑︁k

i=1 si be the average number of groups a user are
member of. Then, we can bound the update cost Triv(S(N)) of the trivial algorithm
in the asymptotic setting as follows, showing that is does not match the optimal cost.

78

4.4. Key-derivation Graphs in the Asymptotic Setting

Claim 1. For I ⊆ [k] let pI ∈ [0, 1] be such that ∑︁I⊆[k] pI = 1 and p∅ = 0. Let S(N)
be the corresponding group system and si, s as defined above. Then

Triv(S(N)) = s ·N log(N) + Θ(N) .

Proof. As discussed in Section 4.3.4, key-derivation graphs G for S(N) constructed by
the trivial algorithm satisfy∑︂

i∈[k]
|Si(N)| · log(|Si(N)|) ≤ Upd(G) ≤

∑︂
i∈[k]
|Si(N)| · ⌈log(|Si(N)|)⌉ .

Thus, on the one hand,

Triv(S(N)) ≥
m∑︂

i=1
(si ·N) · log(N · si) =

m∑︂
i=1

(si ·N) · log(N) + log(si)

=
m∑︂

i=1
si ·N log N +

m∑︂
i=1

si ·N · log(si) = s ·N log(N) + Θ(N)

and, on the other hand,

Triv(S(N))

≤
m∑︂

i=1
(si ·N) · log(N · si) + O(N) =

m∑︂
i=1

(si ·N) · log(N) + log(si) + O(N)

=
m∑︂

i=1
si ·N log N +

m∑︂
i=1

si ·N · log(si) + O(N) ≤ s ·N log(N) + O(N) .

An asymptotically optimal graph. We will sketch how to construct an asymptoti-
cally optimal key graph Gao(N) for a given set system S over [n]. In a first step, for
every I with PI(N) ̸= ∅, the algorithm constructs a balanced binary tree with root vI

using as leafs the elements of PI(N). Then, in a second step, for every group Si(N) it
builds a balanced binary tree with root vSi

using as leafs the nodes {vI | I : i ∈ I}.
An illustration of the algorithm’s working principle is in Figure 4.1. Correctness of the
construction follows by inspection.

To bound the update cost Upd(Goa(N)) we split it in two parts; the first accounts
for the contribution of the nodes generated during the first step, the second for the
contribution of the second step. As ∑︁I pI = 1, the first part contributes at most∑︁

I⊆[k] pI ·N ·log(N ·pI) ≤ N ·log N , while the contribution of the second part for every
single user is constant as {vI} is independent of N , implying that with respect to the
total update cost it is Θ(N). Thus, overall we get Upd(Goa(N)) ≤ N · log N + Θ(N),
matching the optimal update cost.

79

4. Multiple Groups

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Cost: 7 7 5 5 3 27
Trivial solution

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Optimal solution
4 4 3 2 1 14

Figure 4.2: Illustration of Triv(S↑
N) (left) and Opt(S↑

N) for N = 5. For each user, the update cost
(i.e., the indegree 2 nodes reachable) is indicated.

4.4.2 Update Cost for Concrete Group Systems
Now consider a concrete group system S = {S1, . . . , Sk} for a fixed set of users [N].
As already discussed in Section 4.1.2, it is possible that the number k of groups can be
as large as 2N − 1. Thus, for concrete group systems the asymptotic update cost per
user of log(N) (that contains hidden constants dependent on k) derived in Section 4.4.1
could be very far off the truth unless N becomes fairly large compared to the number
of groups. This leaves the possibility that in the case where N is not huge relative
to k, already the trivial key-graph performs fairly well in practice. In this section we
show that this is not the case by giving an example where not only the trivial key-graph
(which has a balanced tree for every set), but also our asymptotically optimal Goa,
perform poorly.

Recall that by Equation 4.4 the update costs of the trivial and optimal solutions always
satisfy Triv(S) ≤ log(N) · Opt(S). The above argument seems very loose, but we
show an example where we indeed have a gap of ≈ log(N)− 1 and thus almost match
this seemingly loose log(N) bound. Define the “hierarchical” set system S↑

N over [N]
as

S↑
N := {S1, . . . , SN} where Si = {i, i + 1, . . . , N} .

Note that while S↑
N is defined for all N , it is not asymptotic in the sense discussed in

Section 4.4.1, as the number of groups grows with the number of users N . Further,
for this group system the key derivation graphs output by the trivial and asymptotically
optimal algorithms coincide, as for every PI with PI ̸= ∅ we have |PI | = 1. As the
optimal solution for S is just a path, as illustrated in Figure 4.2, we obtain update

80

4.5. A Greedy Algorithm Based on Huffman Codes

costs of

Triv(S↑
N) =

N∑︂
i=1

i log(i) ≈ N2

2 log(N) and Opt(S↑
N) =

N∑︂
i=1

i = N(N + 1)
2 ≈ N2

2 .

Thus Triv(S↑
N)/Opt(S↑

N) ≈ log(N) matching the (4.4) bound. An interesting obser-
vation is the fact that an optimal solution can have much larger depth than the trivial
one: for S↑

N the depth of the optimal solution is N , while in the trivial solution it is just
log(N). The discussion above indicates that neither the trivial nor the asymptotically
optimal algorithm are well-equipped to handle certain group systems. In the following
section we propose an algorithm that is not only asymptotically optimal, but also gen-
erates key-derivation graphs better reflecting the hierarchical nature of group systems,
and, in particular, recovers the optimal solution for the example above.

4.5 A Greedy Algorithm Based on Huffman Codes
In this section we propose an algorithm to compute key-derivation graphs for group
systems. Its formal description is in Section 4.5.1. In Section 4.5.2 we compute bounds
on its total update cost and compare it to the trivial algorithm and the asymptotically
optimal algorithm of Section 4.4.1 and in Section 4.5.3 we compute bounds on its
worst-case update cost. Finally, in Section 4.5.4 we show that the algorithm, as well as
a class generalizing it, are asymptotically optimal.

4.5.1 Algorithm Description
We now describe Algorithm 1 that, on input parties [N] and a set of groups S ⊆ 2[N],
constructs a key-derivation graph. Its formal description is in Figure 4.3.

Conceptually, the algorithm proceeds in two phases. The first phase (lines 1 to 11)
determines the macro structure of the key-derivation graph. For reasons explained
below we will refer to the graph generated in this phase as the lattice graph. In the
second phase (lines 12 to 20), sources for the individual users are added at the correct
position in the lattice graph, which afterwards is binarized to reduce the update size.

More precisely, at the beginning of the first phase the algorithm initializes a graph G =
(V , E) consisting of isolated nodes vS′ with S ′ ∈ S that, looking ahead, will represent
the group keys. Every node vS′ is associated to a set S(vS′) that is initialized to
group S ′. The algorithm then determines nodes v1, v2 such that the intersection of
their associated sets is maximal and adds a node v3 as well as the edges (v3, v1), (v3, v2)
to the graph. The associated set of v3 is set to S(v1) ∩ S(v2) and the associated sets
of v1 and v2 are updated to S(v1) \ S(v3) and S(v2) \ S(v3) respectively. This step is
repeated until the associated sets of all nodes are pairwise disjoint.

81

4. Multiple Groups

Input: (N,S)

1 : G = (V, E)← (∅, ∅)
2 : for S′ ∈ S
3 : V ← V ∪ {vS′}
4 : S(vS′)← S′

5 : while the sets associated to V are not disjoint
6 : v1, v2 ← arg max

v1,v2∈V
(|S(v1) ∩ S(v2)|)

7 : add the node v3

8 : S(v3)← S(v1) ∩ S(v2)
9 : S(v1)← S(v1) \ S(v3)

10 : S(v2)← S(v2) \ S(v3)
11 : add the edges (v3, v1), (v3, v2)
12 : for v ∈ V
13 : for n ∈ S(v)
14 : add the node vn

15 : add the edge (vn, v)
16 : S(v)← S(v) \ {n}
17 : compute the weight of each node as the number of sources below it
18 : for every node with indegree > 1
19 : build a Huffman tree from the parents to the node
20 : return G

Figure 4.3: Algorithm 1

Let Glat = (Vlat, Elat) denote the resulting lattice graph. In the second phase, for every
node v ∈ Vlat for all n ∈ S(v), a source vn representing user n together with edge
(vn, v′) is added to the graph. Finally, for every node v with indeg(v) ≥ 3, a Huffman
tree from the parents to the node is built. Here, the weight of a source is 1, and the
weight of non-sources is given as the number of sources below it.

Properties of the lattice graph. We now derive several properties of the lattice
graph, which will be used to prove correctness and compute bounds on the total update
cost of the generated key-derivation graph. Thus, let Glat = (Vlat, Elat) be the lattice
graph generated on input of [N] and set of k groups S = {S1, . . . , Sk} ⊆ 2[N]. For

82

4.5. A Greedy Algorithm Based on Huffman Codes

index set I ′ ⊆ [k] we denoted by

PI′ :=
⋂︂
i∈I′

Si \
⋃︂

j∈[k]\I′

Sj ,

the set of parties that are members of exactly the groups specified by I. Further, for
v ∈ Vlat we define

I(v) := {i ∈ [k] | exists path from v to vSi
} ,

the index set of group nodes that can be reached from v. Finally, for a collection V ′ ⊆ V
of nodes we generalize the notation for associated sets to S(V ′) := ∪v∈V ′S(v). We
obtain the following.

Lemma 4.5.1. Let N, k ∈ N, S = {S1, . . . , Sk} ⊆ 2[N], and let Glat = (Vlat, Elat) be
the lattice graph generated on input ([N],S). Then the following holds.

1. Let v, v′ ∈ Vlat be such that I(v) = I(v′). Then v = v′.

2. I(v) ̸= ∅ for all v ∈ Vlat.

3. For every v ∈ Vlat and every i ∈ I(v) there is exactly one path from v to vSi
.

4. Consider the ancestor graph A(v) for v ∈ Vlat. Then⋃︂
v′∈A(v)

S(v′) ⊆
⋂︂

i∈I(v)
Si .

If |I(v)| = 1 then the equation holds with equality, i.e., ⋃︁v′∈A(vS) S(v′) = S for
all S ∈ S.

5. Consider some v ∈ Vlat. Then we have S(v) = PI(v) .

Before turning to the proof, we briefly discuss how Lemma 4.5.1 allows us to interpret
the lattice graph as a subgraph of the Boolean lattice with respect to the power set
of [k], i.e., the graph GB = (VB, EB) with VB = {vI | I ⊆ [k]} and edges EB =
{(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)}. Indeed, Properties 1 and 2 allow us to map every
v ∈ Vlat to a unique index set I ⊆ [k]. Since the existence of an edge (v, v′) ∈ Elat
implies that I(v) ⊇ I(v′) all edges adhere to the structure of GB. Summing up, the
map G → GB; v ↦→ vI(v) is an injective graph homomorphism. This allows us to identify
nodes of the lattice graph with nodes of GB and sometimes write vI′ for a unique
node v ∈ Vlat with I(v) = I ′ ∈ P([k]). By Property 5 the associated set of v is PI ,
the set of users exactly in the groups specified by I. Figure 4.4 depicts an example
execution of Algorithm 1.

83

4. Multiple Groups

S1

S2 S3
Group system S = (S1, S2, S3) Lattice graph Glat

v{1} v{2} v{3}

v{1,2} v{1,3}

v{1,2,3}

Key-derivation graph G

vS1

vS2 vS3

Resulting group trees

vS1

vS2 vS3

Figure 4.4: Working principle of the algorithm. Top left; Venn diagram of the considered group system.
Top right; resulting lattice graph after the first phase. Node vI has associated set S(vI) = PI , the
set of users in exactly the groups indicated by I. Nodes and edges of the Boolean lattice that are
not part of Glat are depicted in gray. Bottom left; final key derivation graph. Bottom right; resulting
trees corresponding to groups S1, S2, S3. Note that components of the same color are shared among
different trees.

Proof of Lemma 4.5.1. For t ∈ N let Gt = (Vt, Et) be the graph after the tth execution
of the loop while loop of line 5. We will further use St and At to denote associated
sets and ancestor sets with respect to Gt.

We show via induction on t that Properties 2 to 4 hold in Gt and that additionally for all
v ∈ V the sets associated to At(v) are pairwise disjoint. For t = 0 the graph consists
of isolated nodes vS1 , . . . , vSk

with associated sets S1, . . . , Sk and corresponding index
sets {1}, . . . , {k}. Thus, all properties stated above clearly hold.

Assume that the properties hold for all steps up to t − 1 and consider Gt. The only
change to E in the tth step is the addition of two new edges (v3, v1) and (v3, v2).
Thus, by the induction hypothesis we have I(v) ̸= ∅ for all v ∈ Vt \ {v3}. Further
I(v3) = I(v1) ∪ I(v2) ̸= ∅ and Property 2 still holds.

Regarding Property 3 note that the new node v3 added in the tth execution of the

84

4.5. A Greedy Algorithm Based on Huffman Codes

loop is a source. Thus, by the induction hypothesis for all v ̸= v3 there still exists
exactly one path to every corresponding vSi

. We have I(v3) = I(v1) ∪ I(v2). Since v3
is connected to both v1 and v2, by the induction hypothesis there is at least one path
from v3 to vSi

for all i ∈ I(v3). Now assume that there is an i such that there are at
least two different paths from v3 to vSi

. By the induction hypothesis these paths must
diverge in v3, i.e., there are paths from v1 to vsi

and v2 to vSi
. But since v1 and v2

were chosen by the algorithm in the tth execution of the loop this implies that after
the (t− 1)th execution there were two ancestors of vSi

with non-disjoint associated
sets. A contradiction to the induction hypothesis. Thus Property 3 holds.

Regarding Property 4 consider v ∈ Vt. Note that we either have At(v) = At−1(v)
or At(v) = At−1(v) ∪ {v3}, v3 being the newly added node. In the former case
Property 4 and disjointness of associated ancestor sets follow immediately from the
induction hypothesis. For the latter, first consider the case v ̸= v3. Note that the
index set I(v) of v remains unchanged. Assume without loss of generality that for the
two nodes v1, v2 processed by the algorithm in the tth execution of the loop we have
v1 ∈ At−1(v). Then the associated set of v1 is updated to St(v1) = St−1(v1)\St−1(v2),
St(v3) = St−1(v1) ∩ St−1(v2), and all other associated sets stay unchanged. Thus all
sets are still pairwise disjoint and cover the same subset of ⋂︁i∈I(v) Si. In particular
if |I(v)| = 1 we still have ⋃︁v∈A(v) S(v) = ⋂︁

i∈I(v) Si. Now consider v3. We have
I(v3) = I(v1) ∪ I(v2) which in particular implies |I(v3)| ≥ 2. By the induction
hypothesis we obtain that

St(v3) = St−1(v1) ∩ St−1(v2) ⊆ (
⋂︂

i∈I(v1)
Si) ∩ (

⋂︂
i∈I(v2)

Si) =
⋂︂

i∈I(v3)
Si .

This concludes the induction.

We now prove Property 1. Note that |I(v)| = 1 implies v = vSi
for some index i.

In this case the property holds by construction. Thus let v, v′ ∈ Vlat be such that
I(v) = I(v′) and |I(v)| ≥ 2. Consider the sets D(v) and D(v′) of descendants of v
and v′ respectively. We first show that either v ∈ D(v′) or v′ ∈ D(v). To this end,
note that by Property 3 the set M := {vSi

| i ∈ I(v)} is a subset of D(v)∩D(v′). Let
v1, v2 ∈M be such that v3 was the first node of D(v) ∪D(v′) added by the algorithm
together with the corresponding edges (v3, v1), (v3, v2), and let t be the point in time
when v3 was added.

Assume without loss of generality that v3 ∈ D(v). We show that v3 ∈ D(v′) holds as
well. Since I(v) = I(v′) there must exist paths from v′ to v1 and v2. Let v∗

1 and v∗
2

be the parents of v1 and v2 on those paths respectively, and let t1 and t2 denote the
points in time when v∗

1 and v∗
2 where added to the graph. Note that by choice of v3

all nodes that were added before v3 must have a path to some vSi
with i /∈ I(v) and

hence by Property 3 cannot be elements of D(v′), which implies that both t1 > t and

85

4. Multiple Groups

t2 > t. If v∗
1 ̸= v3 ̸= v∗

2 then we have

St1(v∗
1) ⊆ St−1(v1) \ St−1(v2) and St2(v∗

2) ⊆ St−1(v2) \ St−1(v1)

since v∗
1 and v∗

2 were added to the graph after v3. Thus, the nodes’ associated sets are
disjoint which excludes the possibility of t∗

1 = t∗
2 and v∗

1 = v∗
2. Further, the associated

sets of v∗
1 and v∗

2 being disjoint at the time of their creation contradicts that the nodes
share an ancestor v′ in the lattice graph. we conclude that the paths must go via v3
and obtain v3 ∈ D(v′).
Note that by Property 3 v3 is the only node in D(v) and D(v′) that has edges to v1
or v2. By replacing M with (M ∪ {v3}) \ {v1, v2} we can use the same argument to
show that also the node of D(v) ∪ D(v′) added second must be an element of both
D(v′) and D(v′). After finitely many steps we either obtain v ∈ D(v′) or v′ ∈ D(v).
Assume without loss of generality the former holds, and assume v ≠ v′. Then there
exists a path from v′ to v that uses one of the two outgoing edges of v′. Further,
the second outgoing edge must be part of a path to some vSi

, where by correctness
i ∈ I(v′). Since I(v) = I(v′) there also must exist a path from v to vSi

. Thus, there
are at least two paths from v′ to vSi

contradicting Property 3. We obtain v = v′, which
concludes the proof of Property 1.
We now prove Property 5. Consider v ∈ Vlat. As v ∈ A(v) we have by Property 4
that S(v) ⊆ ⋂︁

i∈I(v) Si. Assume that there is n ∈ S(v) such that n ∈ Sj for some
j ∈ [k] \ I(v). By Property 4, we have that Sj = ⋃︁

v′∈A(vSj
) S(v′) which would imply

that v ∈ A(vSj
). This however contradicts j /∈ I(v) and we obtain

S(vI′) ⊆
⋂︂

i∈I(v)
Si \

⋃︂
j∈[k]\I(v)

Sj = PI(v) .

For the other direction consider n ∈ PI(v) and let v′ ∈ V be the node such that
n ∈ S(v′). By Property 4, we have that n ∈ ⋃︁

u∈A(vSi
) S(u) for all i ∈ I(v) and

n /∈ ⋃︁u∈A(vSj
) S(u) for all j ∈ [k] \ I(v). This implies that I(v′) = I(v). By Property 1

we obtain v = v′ and in turn PI(v) ⊇ S(v).

Correctness. We show that key-derivation graph G output by Algorithm 1 satisfies
the correctness properties of Definition 4.3.1. Note that the first property holds by
construction.
To see that the second property holds as well, consider the lattice graph. By Lemma 4.5.1,
Property 4 for every group S ′ ∈ S the associated sets of the ancestors of vS′ form a
partition of S ′. In the second phase of the algorithm a source vn is added for every
user and connected to corresponding node in the lattice graph. Thus, after this step
the set of users with a path to vS′ is exactly S ′. As this property remains unaffected by
the binarization step of line 19 the final key-derivation graph is indeed correct.

86

4.5. A Greedy Algorithm Based on Huffman Codes

K

S1

N1

T ′
1

K

S2

N2

T ′
2

S1

N1

T1

K

T1,2

S2

N2

T2

Figure 4.5: Key-derivation graphs of the trivial algorithm (left) and Algorithm 1 (right) for two
subgroups. Users that are members of both subgroups are marked in thick.

4.5.2 Total Update Cost
In this section we analyze the total update cost Upd(G) = ∑︁

n∈[N] Upd(n) of key-
derivation graphs G generated by Algorithm 1. To this end, we will split Upd(G) into
the contribution made by the constituting Huffman trees T . Tree T has a single root
and all non-sources in T have indegree 2. Let L(T) denote the set of leaves of T . As
argued in Lemma 4.3.2, the update cost of a leaf u with respect to T corresponds
to the length len(u) of its path to the root. Note, however, that leaves of T may
represent more than one user in the key-derivation graph. Indeed, by construction of
the algorithm, the weight wu of u counts the number of leaves in G below u. Thus,
the contribution of Huffman tree T towards the total update cost of G is given by
Upd(T) = ∑︁

u∈L(T) wulen(u). If UT is the probability distribution that picks u ∈ L(T)
with probability proportional to its weight wu, we can express the update cost of T in
terms of the expected length from leaves to the root as

Upd(T) = E[len(UT)] ·
∑︂

u∈L(T)
wu . (4.6)

We first consider Algorithm 1 for the simplest case of two subgroups and compare it to
the trivial algorithm.

Example 4.5.1. Let N ∈ N and let S consist of two subgroups S1, S2 of sizes N1 and
N2 respectively. Further assume that |S1 ∩ S2| = K. Consider the key derivation graphs
generated by the trivial algorithm and Algorithm 1, which in both cases decompose into
several Huffman trees. The trivial algorithm essentially generates two trees T ′

1 and T ′
2 ,

the first containing all members of S1, the other all members of S2. Algorithm 1 first
collects the K parties that are members of both groups in a tree T1,2. The remaining
(N1 −K) members of S1 and the root of T1,2 are collected in a tree T1, the remaining
(N2 −K) members of S2 and the root of T1,2 in a tree T2 (See Figure 4.5).
By Equation 4.6 we have

Upd(Gtriv) = Upd(T ′
1) + Upd(T ′

2) = N1 E[len(UT ′
1
)] + N2 E[len(UT ′

2
)]

87

4. Multiple Groups

and

Upd(Ga1) = Upd(T1) + Upd(T2) + Upd(T1,2)
= N1 E[len(UT1)] + N2 E[len(UT2)] + K E[len(UT1,2)] .

By optimality of Huffman codes (Lemma 4.2.1) we have that

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1

for T ∈ {T ′
1 , T ′

2 , T1, T2, T1,2}, where H(UT) is the Shannon entropy of UT . For T ′
1 ,

T ′
2 , and T1,2 the leaves are distributed uniformly and we have H(T ′

1) = log(N1),
H(T ′

2) = log(N2), H(T1,2) = log(K). Let i ∈ {1, 2} and consider Ti. Then the
first Ni − K leaves have probability 1/Ni and the last leaf K/Ni. Thus H(UTi

) =
(Ni −K)/Ni log(Ni) + K/Ni log(Ni/K) = log(Ni)−K/Ni log(K). Summing up we
obtain

Upd(Gtriv)− Upd(Ga1)
≥N1 log(N1) + N2 log N2 −N1(log(N1)−K/N1 log(K) + 1)

−N2(log(N2)−K/N2 log(K) + 1)−K(log(K) + 1)
=K(log(K)− 1)− (N1 + N2) .

Note that for K ≥ 2 the first term is non-negative (For K = 1 it is easy to see that
Algorithm 1 performs better than the trivial algorithm.).

Before turning to arbitrary group systems, we derive a generalized statement on the
update cost Upd(T) contributed by Huffman trees as defined above.

Lemma 4.5.2. Let T be a Huffman tree over leaves v1, . . . , vℓ of weight w1, . . . , wℓ ∈
N. Let w = ∑︁ℓ

i=1 wi. Then T ’s update cost is bounded by

w log(w)−
ℓ∑︂

i=1
wi log(wi) ≤ Upd(T) ≤ w(log(w) + 1)−

ℓ∑︂
i=1

wi log(wi) .

Proof. Let UT denote the probability distribution that picks leaf vi with probability wi/w
proportional to its weight. The entropy of UT is given by

H(UT) = −
ℓ∑︂

i=1

wi

w
log(wi/w) =

ℓ∑︂
i=1

wi

w
log(w)−

ℓ∑︂
i=1

wi

w
log(wi)

= log(w)−
ℓ∑︂

i=1

wi

w
log(wi) .

The claim follows since by Equation 4.6 the update cost of T with respect to the
weights is given by E[len(UT)] · w and by optimality of Huffman codes H(UT) ≤
E[len(UT)] ≤ H(UT) + 1.

88

4.5. A Greedy Algorithm Based on Huffman Codes

Regarding general systems of subgroups we obtain the following .

Theorem 4.5.3. Let N ∈ N, S1, . . . , Sk ⊆ [N], and G the key-derivation graph output
by Algorithm 1. Let Glat = (Vlat, Elat) be the corresponding lattice graph. Then

k∑︂
i=1
|Si| · log(|Si|)−

∑︂
v∈Vlat : |I(v)|≥2

⃓⃓⃓⃓ ⋃︂
v′∈A(v)

PI(v′)

⃓⃓⃓⃓
· log

(︃⃓⃓⃓⃓ ⋃︂
v′∈A(v)

PI(v′)

⃓⃓⃓⃓)︃
(4.7)

≤Upd(G)

≤
k∑︂

i=1
|Si| · (log(|Si|) + 1)−

∑︂
v∈Vlat : |I(v)|≥2

⃓⃓⃓⃓ ⋃︂
v′∈A(v)

PI(v′)

⃓⃓⃓⃓
·
(︃

log
(︃⃓⃓⃓⃓ ⋃︂

v′∈A(v)
PI(v′)

⃓⃓⃓⃓)︃
− 1

)︃
,

(4.8)

whereA(v) denotes the set of ancestors of v in Glat, I(v) = {i ∈ [k] : ∃ path from v to vSi
},

and for I ′ ⊆ [N] the set PI′ := ⋂︁
i∈I′ Si \

⋃︁
j∈[k]\I′ Sj indicates the users exactly in the

subgroups corresponding to I ′.

Proof. As in Example 4.5.1 we decompose the total update cost of G into parts
contributed by Huffman trees. Note that every node v′ ∈ Vlat of the lattice graph
serves as the root of a Huffman tree Tv′ in the final key-derivation graph G and we can
compute the total update cost of G as Upd(G) = ∑︁

v′∈Vlat Upd(Tv′).

The leaves L(Tv′) of Tv′ are either sources that were added in the second phase of the
algorithm, or nodes that are a parent of v′ in the lattice graph.

Recall that the weight of leaves is defined as 1 and for general nodes as the number
of leaves below it. This implies that node v′′ in line 17 of the algorithm gets assigned
weight |S(A(v′′))| =

⃓⃓⃓⋃︁
ṽ∈A(v′′) S(ṽ)

⃓⃓⃓
.

Let v′
1, . . . , v′

ℓ denote the parents of v′ in Glat and consider Huffman tree Tv′ . Then
Tv′ has leaves v′

i with weight wv′
i

= |S(A(v′
i))| for i ∈ {1, . . . , ℓ}, and |S(A(v′))| −∑︁ℓ

i=1|S(A(v′
i))| additional leaves, each of which has weight 1.

In the following we will use f as shorthand for the function f : n ↦→ n log(n). We
now bound Upd(Tv′) using Lemma 4.5.2. As the negative terms in Lemma 4.5.2’s
statement contributed by leaves of weight 1 are 1 · log(1) = 0 we obtain that

Upd(Tv′) ≥ f(|S(A(v′))|)−
ℓ∑︂

i=1
f(|S(A(v′

i))|)

and

Upd(Tv′) ≤ f(|S(A(v′))|) + |S(A(v′))| −
ℓ∑︂

i=1
f(|S(A(v′

i))|) .

89

4. Multiple Groups

To compute the total update cost of G we have to sum over all trees Tv′ with v′ ∈ Vlat.
Note that every node v′ in Vlat with |I(v′)| ≥ 2 has outdegree 2. Thus if we sum over
the update cost of all trees the term f(|S(A(v′))| appears twice with a negative sign
(in the cost of v′’s children) and once with a positive (in Upd(Tv′)). Thus∑︂

v′∈Vlat : |I(v′)|=1
f(|S(A(v′))|)−

∑︂
v′∈Vlat : |I(v′)|≥2

f(|S(A(v′))|)

≤Upd(G) =
∑︂

v′∈Vlat

Upd(Tv′)

≤
∑︂

v′∈Vlat : |I(v′)|=1
(f(|S(A(v′))|) + |S(A(v′))|)

−
∑︂

v′∈Vlat : |I(v′)|≥2

(︂
f(|S(A(v′))|)− |S(A(v′))|

)︂
.

This is equivalent to the claim of the theorem since the nodes v′ with |I(v′)| = 1
are exactly the group-key nodes of the form v′ = vSi

and since by correctness of the
algorithm |S(A(vSi

))| = |Si| and by Lemma 4.5.1, Property 5 S(vI′) = PI′ where the
partitions PI′ are disjoint.

The bounds of Theorem 4.5.3 depend on the structure of the lattice graph generated
by the algorithm. Using Properties 4 and 5 of Lemma 4.5.1 to bound |S(A(v′))| it is
possible to obtain a weaker bound on Upd(G) that only depends on [N] and S.

We conclude the section by comparing the update cost of Algorithm 1 to that of the
trivial algorithm and the asymptotically optimal algorithm of Section 4.4.1.

Comparison to the trivial algorithm. Note that the terms ∑︁k
i=1|Si| · log(|Si|) and∑︁k

i=1|Si| · (log(|Si|) + 1) in Theorem 4.5.3 match the bounds on the update cost of
the trivial algorithm derived in Section 4.3.4. Thus the second term of∑︂

v∈Vlat : |I(v)|≥2

⃓⃓⃓⃓ ⋃︂
v′∈A(v)

PI(v′)

⃓⃓⃓⃓
·
(︃

log
(︃⃓⃓⃓⃓ ⋃︂

v′∈A(v)
PI(v′)

⃓⃓⃓⃓)︃
− 1

)︃

provides a good estimate on how much Algorithm 1 saves compared to the trivial one.
For the group system depicted in Figure 4.4, for example, this would amount to

|S1 ∩ S2|·log(|S1 ∩ S2|)+|S1 ∩ S3 \ S2|·log(|S1 ∩ S3 \ S2|)+|S1 ∩ S2 \ S3|·log(|S1 ∩ S2 ∩ S3|) .

Due to the “rounding error” of +1 in ∑︁k
i=1|Si| · (log(|Si|) + 1), Theorem 4.5.3 unfor-

tunately does not allow us to conclude that the update cost of Algorithm 1 always
improves on the one of the trivial algorithm. In Appendix 4.8, we provide an alternative
analysis of Upd(G) that directly compares the two algorithms and gives conditions that
imply Algorithm 1 outperforming the trivial one.

90

4.5. A Greedy Algorithm Based on Huffman Codes

Comparison to the asymptotically optimal algorithm of Section 4.4.1. The
algorithm of Section 4.4.1 in a first step constructs a binary tree for every non-empty
partition PI′ and then, in a second step, builds a binary tree for every group using
the roots of the “partition trees” as leafs. We can interpret this as an algorithm that,
similarly to Algorithm 1, in the first phase chooses a lattice graph Glat, concretely the
graph that connects every node vI′ directly with edges to all corresponding group nodes
{v{i} | i ∈ I ′}, and in the second phase builds Huffman trees for every lattice node.7

Thus, by Lemma 4.5.2, we can lower bound the update cost of key graphs Gasopt
generated by it by

Upd(Gasopt) ≥
k∑︂

i=1

(︃
|Si|·log(|Si|)−

∑︂
I′⊆[N]:i∈I′∧|I′|≥2

|PI′|·log(|PI′|)
)︃

+
∑︂

I′⊆[N]:|I′|≥2
|PI′ |·log(|PI′ |) ,

which, taking into account that every I ′ with |I ′| = ℓ corresponds to exactly ℓ groups,
simplifies to

Upd(Gasopt) ≥
k∑︂

i=1
|Si| · log(|Si|)−

∑︂
I′⊆[N]:|I′|≥2

(|I ′| − 1)|PI′| · log(|PI′ |) . (4.9)

For a comparison to Algorithm 1, consider a key derivation graph Ga1 output by it. We
now compute a lower bound on Upd(Gasopt)−Upd(Ga1). Let G ′

lat be the lattice graph
of Ga1 and vI′ ∈ G ′

lat such that |I ′| ≥ 2. Every non-sink in G ′
lat has outdegree 2 and

vI′ is connected to all v{i} with i ∈ I ′ by exactly one path. Thus, the subgraph of G ′
lat

induced by these paths is a binary tree with root vI′ and |I ′| leafs, and thus consists
of exactly 2|I ′| − 1 nodes, |I ′| of which have an index set of size 1. This implies that
there exists |I ′| − 1 many nodes vI′′ in G ′

lat with |I ′′| ≥ 2 such that vI′ ∈ A(vI′′).

Using f as shorthand for the function f : N ↦→ N log(N) and pI′ = |PI′|, we now can
distribute the expressions |PI′| · log(|PI′ |) of Equation 4.9 on the negative summands
of Equation 4.8 and obtain

Upd(Gasopt)− Upd(Ga1) ≥
∑︂

v∈V ′
lat : |I(v)|≥2

(f
(︂ ∑︂

v′∈A(v)
pI(v′)

)︂
−

∑︂
v′∈A(v)

f(pI(v′))− 1) .

Note that the function f grows super-linearly implying that the terms f(∑︁v′∈A(v) pI(v′))−∑︁
v′∈A(v) f(pI(v′)) are non-negative, and can even be of order N as for example

f(2N/2) − 2f(N/2) = N . While, again due to the terms −1, we are unfortu-
nately not able to conclude that Algorithm 1 is always more efficient, this shows that it
still can save substantially in terms of update cost, in particular if the pI′ are large.

7Formally, the algorithm as described in Section 4.4.1 collects all users that are only in group Si

in a tree before computing the tree for Si, while in the lattice-graph variant these users are directly
included in the tree for Si. Note, however, that the latter approach can only improve the total update
cost.

91

4. Multiple Groups

4.5.3 Maximal Update Cost per User
In the previous section we were considering the total update cost of key-derivation
graphs generated by Algorithm 1, which relates to the average update cost of parties.
As we have shown this metric will typically improve compared to the trivial algorithm.
However, it might still be possible, that the update cost of particular, fixed users
increases. In this section we show that while this may indeed happen, the increase is
essentially bounded by a small constant.

As Algorithm 1 builds on Huffman codes, the results of this section make use of weight
distributions that maximize the codeword length of such codes, concretely, weights
corresponding to the Fibonacci numbers Fi that are recursively defined by

F0 = 0, F1 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 2 .

We will make use of the following facts from [AMM00]:

k∑︂
i=1

Fi = Fk+2 − 1 (4.10)

k − 2 < logΦ(Fk) < k − 1 , (4.11)

where Φ = (1 +
√

5)/2.

We first consider an example in which the update cost of a fixed user increases compared
to the trivial solution.

Example 4.5.2. Recall that for a system of subgroups S = {S1, · · · , Sk} the set
of parties exactly in the subgroups specified by index set I ⊆ [k] is given by PI =⋂︁

i∈I Si \
⋃︁

j∈[k]\I Sj. Now assume that S satisfies⃓⃓⃓
P{1}

⃓⃓⃓
= 1,

⃓⃓⃓
P{1,i}

⃓⃓⃓
= Fi ∀i ∈ {2, · · · , k}, and |PI | = 0 for all other I .

We are interested in the update cost of the single party n ∈ P{1}. Since by choice of the
PI we have that |S1| =

∑︁k
i=1 Fi, we obtain by Equations 4.10 and 4.11 that n’s update

cost with respect to the trivial algorithm is maximally Updtriv(n) ≤ ⌈(k + 1) log(Φ)⌉.
Now consider n’s update cost in a key-derivation graph G generated by our algorithm.
Then vn is a leaf of weight 1 in the Huffman tree with root vS1 , while the other
leaves k − 1 have weights corresponding to the Fibonacci sequence. Thus, the length
of vn’s path to the root and in turn her update cost Upd(n) is k − 1.
Summing up, for the considered set system the maximal update cost with respect to
Algorithm 1 is larger by a factor of roughly 1/ log(Φ) ≈ 1.44 compared to the one of
the trivial algorithm.

92

4.5. A Greedy Algorithm Based on Huffman Codes

Below we show that the behavior exhibited in the example above is essentially the worst
case. We first recall a fact about the maximal length of paths in Huffman trees that
follows from plugging Equation 4.11 into [AMM00, Theorem 5].

Fact 1. Let T be a Huffman tree over leaves v1, . . . , vℓ of weight w1, . . . , wℓ ∈ N. Let
w = ∑︁ℓ

i=1 wi. Then for all j ∈ {1, . . . , ℓ} the length of the path from wj to the root
of T is bounded by

len(wj) ≤ logΦ(w)− logΦ(wj) + 1 ,

where Φ = (1 +
√

5)/2.

Lemma 4.5.4. Let N ∈ N, S = {S1, . . . , Sk} ⊆ 2[N], and G the key-derivation graph
output by Algorithm 1. Fix a party n ∈ [N] and let I ′ =:= {i ∈ [k] | n ∈ Si}. Then
n’s update cost in G is bounded from above by

Upd(n) ≤
∑︂
i∈I′

(︂
⌈logΦ(|Si|)⌉+ |I ′| − 1

)︂
≈
∑︂
i∈I′

(︂
⌈1.44 · log(|Si|)⌉+ |I ′| − 1

)︂
.

Proof. Let Glat = (Vlat, Elat) denote the lattice graph corresponding to G. By
Lemma 4.5.1, Property 5 the node v′

0 ∈ Vlat that the source vn is connected to
in the second phase of the algorithm satisfies I(v′

0) = I ′. Fix i ∈ I ′. By Property 3 v′
0 is

connected to group node vSi
by exactly one path (v′

0, · · · , v′
ℓ = vSi

). Since I(v′
0) = I ′

and I(v′
j−1) ⊋ I(v′

j) for all j we have ℓ ≤ |I ′| − 1. In the key-derivation graph v′
j is

connected to v′
j−1 by a path Pj for j ∈ {1, . . . , ℓ} and party n’s source vn is connected

to v′
0 by a path P0.

Since the weight of v′
j is

⃓⃓⃓
S(A(v′

j))
⃓⃓⃓

we obtain by Fact 1 that

len(Pj) ≤
⌈︃

logΦ(
⃓⃓⃓
S(A(v′

j))
⃓⃓⃓
)− logΦ(

⃓⃓⃓
S(A(v′

j−1))
⃓⃓⃓
)
⌉︃

and that len(P0) ≤ ⌈logΦ(|S(A(v′
0))|)⌉ since vn has weight 1. Using that ⌈a− b⌉ +

⌈b⌉ ≤ ⌈a⌉+ 1 for b, a− b ≥ 0 it follows that

ℓ∑︂
j=0

len(Pj) ≤ ⌈logΦ(|S(A(v′
0))|)⌉+

ℓ∑︂
j=1

⌈︃
logΦ(

⃓⃓⃓
S(A(v′

j))
⃓⃓⃓
)− logΦ(

⃓⃓⃓
S(A(v′

j−1))
⃓⃓⃓
)
⌉︃

≤ ⌈logΦ(|S(A(vℓ))|)⌉+ ℓ

≤ ⌈logΦ(|S(A(vℓ))|)⌉+ |I ′| − 1 .

Summing over all i ∈ I ′ and taking into account that by Lemma 4.5.1, Property 4
S(A(vSi

)) = Si yields the claim of the lemma.

93

4. Multiple Groups

Note that in the analysis above the component of n’s update cost contributed by the
Huffman tree rooted at lattice node vI is included in the bound of the update cost of
all Si with i ∈ I, and thus overestimated by a factor of |I|. Thus, the actual update
cost of users (in particular if they are members of many groups) will typically be better
than Lemma 4.5.4 indicates.

4.5.4 Asymptotic Optimality of Boolean-lattice based Graphs
As discussed in Section 4.5.1, we can interpret our algorithm as follows. On input
([N],S = {S1, . . . , Sk}), in the first phase the algorithm picks a subgraph of the
Boolean lattice GB = (VB, EB) with respect to the power set of [k], where

VB = {vI | I ⊆ [k]} and EB = {(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)} .

We refer to this subgraph as the lattice graph. In the second phase, for I ⊆ [k], a
source for every party in PI , i.e., the set of parties belonging exactly to the groups
specified by I, is added and connected to node vI . Each node in the graph is assigned
a weight; sources have weight 1 and the weight of all other nodes is the sum of the
weights of their parents. Finally, for every vI a Huffman tree to its parents according
to the weight distribution is built, resulting in the key-derivation graph.
In this section we consider key-derivation graphs for general choices of the lattice graph,
i.e., key derivation graphs G obtained by executing the second phase of the algorithm
as described above with respect to a lattice-graph Glat = (Vlat, Elat) ⊆ GB.8 We say G
is the key-derivation graph associated to Glat, [N] and S. The following theorem shows
that the update cost of every lattice-based key derivation graphs, and in particular
graphs generated by Algorithm 1, is optimal in the asymptotic setting of Section 4.4.

Theorem 4.5.5. Let k ∈ N be fixed, and for I ⊆ [k] let pI ∈ [0, 1] be such that∑︁
I⊆[k] pI = 1 and p∅ = 0. For N ∈ N let S(N) be the subgroup system associated to

the pI .
Let Glat = (Vlat, Elat) be a subgraph of the Boolean-lattice graph with respect to [k]
satisfying that vI ∈ Vlat for all I with pI > 0, and let G(N) be the key-derivation graph
associated to Glat and S(N). Then

Upd(G(N)) N→∞−−−→
∑︂

I⊆[k]
|N · pI | · log(|N · pI |) + Θ(N) = N log(N) + Θ(N) .

Proof. For node vI ∈ Vlat let T N
vI

denote the Huffman-tree in G(N) rooted at vI .
Further, let v1, · · · , vℓ be the parents of vI in Glat. We will analyze the contribution
T N

vI
makes to the total update cost of G(N).

8Naturally, one would require that the resulting key-derivation graph satisfies correctness. However,
this is not necessary for our analysis of its update cost.

94

4.5. A Greedy Algorithm Based on Huffman Codes

First, we show that if pI > 0 then

Upd(T N
vI

) N→∞−−−→ NpI · log(NpI) .

To this end, for i ∈ {1, . . . , ℓ} let qi be such that the weight of vi in G(N) is given
by qiN . Since T N

vI
has pI ·N leaves of weight 1 additional to v1, . . . , vℓ this implies

that the weight of vI in G(N) is N · (pI +∑︁ℓ
i=1 qi). We now bound Upd(T N

v) using
Lemma 4.5.2. As the negative terms contributed by leaves of weight 1 are 1 · log(1) = 0
we obtain that

Upd(T N
vI

)

≤N
(︃

(pI +
ℓ∑︂

i=1
qi) · log

(︂
N(p +

ℓ∑︂
i=1

qi)
)︂
−

ℓ∑︂
i=1

qi log(N · qi)
)︃

=N
(︃

pI log(N) +
ℓ∑︂

i=1
qi log(N) + pI log(pI +

ℓ∑︂
i=1

qi) +
ℓ∑︂

i=1
qi log(pI +

ℓ∑︂
i=1

qi)

−
ℓ∑︂

i=1
qi log(N)−

ℓ∑︂
i=1

qi log(qi)
)︃

,

Note that the terms ∑︁ℓ
i=1 qi log(N) cancel out and that c := pI log(pI + ∑︁ℓ

i=1 qi) +∑︁ℓ
i=1 qi log(pI +∑︁ℓ

i=1 qi)−
∑︁ℓ

i=1 qi log(qi) is independent of N . We thus have

Upd(T N
vI

) ≤ N · (pI log(N) + c)

and obtain in the case p > 0 that

1 ≤ Upd(TvI
)

NpI · log(NpI) ≤
pI log(N) + c

pI log(N) + pI log(pI) ,

where the first inequality is due to Lemma 4.5.2 and the last term converges to 1 as
claimed.

Now consider the case pI = 0. In this case the Huffman tree T N
vI

for all N has exactly
ℓ leaves, the proportional weight of which stays unchanged. Thus T N

vI
is the same for

all N and in particular has constant average update size. Recall that by Equation 4.6
the update cost of T N

vI
is given by

Upd(T N
vI

) = E[len(UT N
vI

)] · wvI
.

Since E[len(UT N
vI

)] as argued above is constant, and since all weights wvI
are linear in

N we obtain that Upd(T N
vI

) ∈ O(N).

Summing over all Huffman trees yields the claim of the theorem.

95

4. Multiple Groups

4.6 Dynamic Operations
So far we considered the setting of systems S of static groups for a universe of users [N],
i.e., while the keys in the key-derivation graph are rotated, the set of groups that a
particular party is a member of stays unchanged. Naturally, we would like to be able to
add or remove users from groups. In this section, we first analyze what these operations
correspond to with respect to boolean lattice based key-derivation graphs and then
discuss how techniques for adds and removes in CGKA and Multicast schemes in the
single-group setting can be adapted to multiple groups.

Dynamic operations with respect to key-derivation graphs. Let N ∈ N, S =
{S1, . . . , Sk} ⊆ 2[N], and let G be a key-derivation graph generated by our algorithm
on input (N,S). Further, let Glat = (Vlat, Elat) be the corresponding lattice graph.
Consider a party n ∈ [N] with index set I = I(n) = {i ∈ [k] | n ∈ Si}. As discussed
in Section 4.5 n’s node is a leaf of the Huffman tree rooted at vI ∈ Vlat. Our goal is to
support operations Add(n, i) which refreshes group key skSi

and gives n access to it,
and Rem(n, i) which removes n from group i, i.e., replaces skSi

with a key not known
to n.

Conceptually, Add(n, i) and Rem(n, i) correspond to changing n’s index set I to
I ′ = I ∪ {i} or I ′ = I \ {i} respectively.9 We can break down this process in two
steps. The first corresponds to changing the structure of the key-derivation graph. The
leaf vn needs to be removed from the tree rooted at vI while a new leaf v′

n (Owned
by party n) has to be added to the tree rooted at vI′ . If I ′ = ∅ no leaf is added. It
is possible that the node vI′ , i.e, a node that has paths to exactly the nodes vSj

for
j ∈ I ′, is not yet part of the lattice graph and has to be added as well. Note that in
the case I ′ = I ∪ {i} the new node vI′ can be connected in the lattice graph using the
two edges (vI′ , vI) and (vI′ , v{i}). If I ′ = I \ {i} more edges might be necessary. After
Glat has been updated the Huffman trees with leaf vI′ have to be updated.

As, after changing the structure of G, the invariant that every party only knows the
secret keys corresponding to the descendants of their leaf no longer holds, in a second
step key material needs to be refreshed. More precisely all keys corresponding to
descendants D(vn) of n’s former leaf have to be replaced with fresh ones, and similarly
all key material corresponding to D(v′

n) has to be refreshed starting with leaf key skv′
n

that has to be accessible to n. We discuss how this can be implemented for CGKA and
Multicast in greater detail below.

9One could also imagine a more general operation Change(n, I ′) subsuming Add and Rem which
changes n’s index set to I ′ ⊆ [k]. The techniques of this section easily extend to this setting.

96

4.6. Dynamic Operations

Continuous group-key agreement. In the setting of continuous group-key agree-
ment there exists no central authority that holds all secret keys and administers structural
changes in the groups. Accordingly, the action of adding party n to group Si or re-
moving n from Si has to be initiated by a party m. To be able to do so without
having party m sample key material for nodes outside of D(vm), we will rely on the
techniques of blanking paths and unmerged leaves of [BBR+23]. To every node v in
the key-derivation graph G we associate a flag blanked ∈ {0, 1} and a list of unmerged
leaves Unm(v). Finally the resolution Res(v) of v is defined as follows.

Res(v) = {v} if blanked(v) = 0
Res(v) = ⋃︁

v′∈P(v) Res(v′) else

where P(v) denotes the parents of v in G. Intuitively, Unm(v) indicates leaves below
v that have not yet been integrated in the key derivation graph, and Res(v) is used to
address all leaves under v with a minimal set of unblanked nodes.

As discussed above, adding or removing user n from a group proceeds in two steps,
the first computing structural changes in G, the second refreshing key material. Let vn

denote the “old” leaf of n and v′
n the new leaf to be added to the Huffman tree with

root vI′ .

To carry out the first step, firstly, vn is removed from G and all remaining nodes v
in D(vn) \ {vn} blanked, i.e. blanked(v) ← 1, the keys (pkv, skv) deleted, and the
resolution Res(v) updated accordingly. Secondly, the new leaf v′

n is added to the
Huffman tree rooted at vI′ , and for every v ∈ D(v′

n) the list of unmerged leaves is
updated to Unm(v) ← Unm(v) ∪ {v′

n}. Finally, if the operation was of the form
Add(n, i) additionally the group key corresponding to i is deleted. Note that in the
setting where the whole structure of G is known to the initiating party m, all changes
can be computed by m and then communicated to the remaining parties via the delivery
server. In a setting where users only know the part of G relevant to them, i.e., D(vm)
and the public keys of the co-parents with respect to D(v), m simply poses a request
of the form Add(n, i) or Rem(n, i) to the server, which in turn computes the changes
in G and sends personalized messages to all parties.

As to the second step, note that all group keys corresponding to I ∪ I ′ have been
deleted. Thus, in order to resume communication in group Si ∈ I ∪ I ′ a member m of
this group has to perform an update - this is similar to the case of [BBR+23]. We now
highlight how updates with respect to blanked nodes and unmerged leaves are computed
compared to the version for a static key-derivation graph described in Section 4.3.2. Let
Tm be the (in the case of our algorithm, unique) spanning tree of D(v). Then, starting
from leaf vm, new key pairs (pkv, skv) are generated from seeds ∆v for all v ∈ D(v) in
the way defined in Section 4.3.2. The set of ciphertexts corresponding to v is computed

97

4. Multiple Groups

starting from leaf vm as follows. For every co-parent v′ ∈ CP(v, Tm) with respect to
the spanning tree and every v′′ ∈ Res(v′) ∪ Unm(v′), a ciphertext Enc(pkv′′ , ∆v) is
generated. After computing the ciphertexts corresponding to v, the flag blanked(v) is
set to 0, the resolution is recomputed accordingly, and the set of unmerged leaves is
updated to Unm(v)← ∅. The update message consists of all ciphertexts.

Consider the case that an operation Rem(n, i) was carried out followed by an update
by party m ∈ Si. Since by correctness vSi

∈ D(vm), the group key for Si was refreshed.
Further, all nodes with key material known to n were blanked (except for the new
leaf v′

n, which does not have a path to vSi
). This implies that all new keys generated

by m were encrypted to keys not known by n, and so, n does not have access to the
new group key for Si. Note that all users in Si \ {n} have a path from their leaf to
one of the v′′ and hence are able to derive the new group key.

Now assume that a user m ∈ Sj where j is an element of n’s new index set I ′,
performed an update. Then there must exist a node in D(vm)∩D(v′

n). All elements of
D(v′

n) contain v′
n as an unmerged leaf. Thus m must have encrypted a seed to pkv′

n

from which n can derive the new group key of Sj. A similar argument shows that the
algorithm works as intended also for operation Add(n, i).

Summing up, if an add or remove operation for party n was carried out and I ′ and v′
n

denote n′s new index set and leaf respectively, then:

(i) If a party m ∈ Sj performs an update, then n can derive the group key of Sj

exactly if j ∈ I ′.

(ii) The graph invariant still holds, i.e., if n knows the secret key corresponding to
node v ∈ G then it must hold that v ∈ D(v′

n).

Multicast. In the setting of multicast encryption, a central authority holds all keys sskv

with v ∈ G and administers changes in the group structure. This makes adding users
to or removing them from groups considerably easier. As discussed above, assume
that the index set of party n changes from I to I ′ and let vn and v′

n denote the old
deleted leaf and the new leaf, respectively. To refresh the keys in D(vn) the central
authority derives them from a random seed and computes the corresponding ciphertexts
as discussed in Section 4.3.2. Similarly, starting from a seed ∆v′

n
all key material for

nodes in D(v′
n) is resampled and corresponding ciphertexts are prepared. Note that n

needs to be given access to ∆v′
n
. An easy way to is to simply update the old leaf seed

by hashing it with a secure hash function, i.e, by setting ∆v′
n
← H′(∆vn). Now n can

compute the new seed locally.

98

4.7. Lower Bound on the Update Cost of CGKA

4.7 Lower Bound on the Update Cost of CGKA
In this section we prove a lower bound on the average update cost of continuous
group-key agreement schemes for multiple groups. As an intermediate step we will
further prove a bound on the update cost of key-derivation graphs. To this aim, we
follow the approach of Micciancio and Panjwani [MP04], who analyzed the worst-case
communication complexity of multicast key distribution in a symbolic security model,
where cryptographic primitives are considered as abstract data types. We will first recall
their security model, adapt it to CGKA, and then prove how to extend their results
to our setting. In Appendix 4.9, using a similar approach, we prove a lower bound for
multicast encryption.

4.7.1 Symbolic Model
We first define a symbolic model in the style of Dolev and Yao [DY83] for CGKA
schemes. It follows the approach of Micciancio and Panjwani [MP04], but as it admits
the uses of public-key encryption also includes elements of the model of Bienstock et
al. [BDR20], who analyze the communication cost of concurrent updates in CGKA
schemes.

Building blocks. We restrict the analysis to schemes that are constructed from
the following three primitives. Note that our construction is a special case of the
constructions analyzed in this section.

• Public-key Encryption: Let (KGen, Enc, Dec) denote a public-key encryption
scheme, where

– KGen on input of secret key sk returns the corresponding public key pk.
– Enc takes as input a public key pk and a message m, and outputs a ciphertext

c← Enc(pk, m).
– Dec takes as input a secret key sk and a ciphertext c, and outputs a message

m = Dec(sk, c). We assume perfect correctness: Dec(sk, Enc(pk, m)) = m
for all sk, pk = KGen(sk), and messages m.

• Pseudorandom generator: The algorithm G takes as input a secret key sk and
expands it to a sequence of keys G0(sk), . . . , Gℓ(sk).

• Secret sharing: Let S, R denote the sharing and recovering procedures of a secret
sharing scheme: For some access structure Γ ⊆ 2[h], the algorithm S takes as
input a message m and outputs a set of shares S1(m), . . . , Sh(m) such that for
any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I ̸⊆ Γ the message m
cannot be recovered from {Si(m)}i∈I .

99

4. Multiple Groups

We consider the following data types that can be derived from other objects according
to the following rules.

Data type Grammar rules
Message m ← sk, pk, Enc(pk, m), S1(m), . . . , Sh(m)

Public key pk ← KGen(sk)
Secret key sk ← R, G0(sk), . . . , Gℓ(sk)

To describe the information that can be recovered from a set of messages M , the
entailment relation is defined by the following rules:

m ∈M ⇒ M ⊢ m
M ⊢ sk ⇒ M ⊢ G0(sk), . . . , Gl(sk)

M ⊢ Enc(pk, m), sk : pk = KGen(sk) ⇒ M ⊢ m
∃I ∈ Γ : ∀i ∈ I : M ⊢ Si(m) ⇒ M ⊢ m

By restricting to these relations we essentially assume secure encryption and secret
sharing schemes. Examples and further comments (in the setting of multicast encryption)
can be found in [MP04, Section 3.2]. The set of messages which can be recovered
from M using relation ⊢ is denoted by Rec(M).

Continuous group-key agreement. We now define continuous group-key agreement
protocols in the symbolic model. We consider the case of CGKA for a static system of
users [N] and groups S1, . . . , Sk ⊆ [N]. Note that a lower bound for schemes in this
setting in particular also excludes schemes which allow dynamic operations, i.e., adding
and removing users from groups.

A CGKA scheme for [N] and S1, . . . , Sk specifies two procedures:

• Initially, Setup assigns each user n ∈ [N] a personal set SK0
n of secret keys.

Furthermore, Setup generates a set msgs(0) of so-called rekey messages to
establish for every group Sj a group secret key sk0

Sj
. We require that the initial

sets of personal keys consist of uniformly random keys, and that for all n′ ̸= n
and sk ∈ SK0

n we have sk /∈ Rec(SK0
n′ , msgs(0)).

• In round t, the algorithm Update takes as input a user identity n ∈ [N], establishes
new sets SKt

n′ for all users n′, and outputs some rekey messages msgs(t) to
establish for every group Sj an epoch t group key skt

Sj
. We do not require the

new sets and group keys to be distinct from the ones of round t− 1. We denote
the set of new uniformly random keys that were generated during the update
procedure by the updating party by Ft

n.

100

4.7. Lower Bound on the Update Cost of CGKA

Note that the only party generating new keys during update t is the updating party n.
For ease of notation we define Ft

n′ = ∅ for all n′ ̸= n, and set F0
n′ = ∅ for all n′.

For correctness, we require that, (a) at all times members of a group are able to derive
the current group key from their set of personal keys and the sent messages, and (b) if
some user updated in round t, then all users are able to derive their new set of personal
keys from their old one, the sent messages, and in the case of the updating party the
new keys generated during the update. The latter condition accounts for the fact that
changes to a user’s set of personal keys need to be communicated to them.

More precisely, for (a) we require that for any subgroup structure and any sequence of
updating users (n1, . . . , nt), for all j ∈ [k] each member n of subgroup Sj can recover
skt

Sj
:

skt
Sj
∈ Rec

(︃
SKt

n ∪
⋃︂

ι∈[t]0
msgs(ι)

)︃
.

For (b) we require that for any subgroup structure and any sequence of updating users
(n1, . . . , nt), we have for all n that

SKt
n ⊆ Rec

(︃
SKt−1

n ∪ Ft
n ∪

⋃︂
ι∈[t]0

msgs(ι)
)︃

.

For security, we assume the minimal requirement of post-compromise security (PCS),
which essentially says that users can recover from compromise, which leaks their state
and the keys generated during the time period of being compromised, by updating. Note
that a lower bound in this setting in particular excludes protocols achieving stronger
security notions desired in practice, like post compromise forward security [ACJM20].

More precisely, we formalize PCS as the condition that no group key can be recovered
from members outside the group, and/or members’ personal keys and the keys generated
by them before their last update. To this end, for round t and user n ∈ [N], let tup(t, n)
denote the round in which n performed their last update, where we set tup(t, n) = 0
if no such update occurred. I.e., we require that for any group system, any update
pattern, in every round t we have that

skt
Sj

/∈ Rec
(︃ ⋃︂

n∈[N]\Sj ,
t′∈[t]0

(SKt′

n ∪ Ft′

n) ∪
⋃︂

n∈Sj

⋃︂
t′∈[tup(t,n)−1]0

(SKt′

n ∪ Ft′

n) ∪
⋃︂

t′∈[t]0
msgs(t′)

)︃
.

Note that in the definition above, excluding all sets of personal secret keys since a
user’s last update is necessary even in the case that another user’s update might have

101

4. Multiple Groups

replaced them before round t, as otherwise SKt
n and in turn skt

Sj
could trivially be

recovered by the two correctness conditions.

Our goal is to derive a lower bound on the communication complexity of CGKA schemes
achieving PCS, i.e., the number of messages |∪t′∈[t]0msgs(t′)| sent by the protocol.

Key Graphs. The execution of any CGKA scheme can be reflected by a graph
structure representing recoverability of the keys involved (cf. [MP04]). To define this
graph, we first need to recall the definition of useful keys and messages.

A secret key sk is called useless at time t if it can be recovered from old key material,
i.e., if

sk ∈ Rec
(︃ ⋃︂

n∈[N]

⋃︂
t′∈[tup(t,n)−1]0

(SKt′

n ∪ Ft′

n) ∪
⋃︂

t′∈[t]0
msgs(t′)

)︃
,

otherwise sk is called useful. As we will show below, if a CGKA scheme satisfies
correctness and post-compromise security, then for all t ∈ N, n ∈ [N], j ∈ [k] it
must hold that at least one of the user’s personal keys skt

n ∈ SKt
n as well as all group

keys skt
Sj

are useful at time t.

To decide whether a message is useful, one has to consider the information it contains,
where messages can be arbitrarily nested applications of encryption Enc and secret
sharing S. Thus, a message m is said to encapsulate a (pseudo)random key sk if
m = e1(e2(. . . (ej(sk)) . . .)) where ei = Encpki

or ei = Shi (for some public key pki

and hi ∈ [h]). A message is then called useful if it encapsulates a useful key.

Defintion 4.7.1 (Key graph [MP04]). The key graph KGt = (Vt, Et) for a CGKA
scheme at time t is defined as follows. Vt consists of all the keys that are useful at time
t, and E ⊆ V × V consists of all ordered pairs (sk1, sk2) such that one of the following
is true:

1. There exists j ∈ [l] auch that sk2 = Gj(sk1).

2. There exists a message m ∈ ⋃︁j∈[t]0 msgs(j) with m = e1(Enc(pk1, e2(sk2))) with
pk1 = KGen(sk1). Here e1 and e2 are some sequences of encryption and secret
sharing, and we require that e2 does not contain any encryption under a public
key that has a matching secret key that is useful at time t.

Edges of the second type are called communication edges.

One can show that for any node sk in KG there is at most one edge of the first type
incident to sk (the proof is analogous to [MP04, Proposition 1]). Note that edges of
the first type do not incur any communication cost, while edges of the second type

102

4.7. Lower Bound on the Update Cost of CGKA

require at least one message. Thus, in the following we will be interested in the number
of communication edges. To this aim, we prove the following properties of key graphs.
In particular, we show that even if a CGKA scheme does not rely on the use of a fixed
key-derivation graph as discussed in Section 4.3, after every update the key graph must
still have the properties of Definition 4.3.1.

We will rely on the following Lemma that can be proved analogously to [MP04, Lemma
1].

Lemma 4.7.2. Consider a secure and correct CGKA scheme for N ∈ N, S1, . . . , Sk ⊆
[N]. Then, for any t ∈ N and sequence of updates (n1, . . . , nt), the corresponding key
graph KGt satisfies the following. For every set of keys SK, and key sk2 that is useful
at time t, such that sk2 ∈ Rec

(︂
SK ∪ ⋃︁t′∈[t]0 msgs(t′)

)︂
, there exists a useful sk1 ∈ SK

such that there is a path from sk1 to sk2 in KGt that only consists of keys sk with
sk ∈ Rec

(︂
SK ∪ ⋃︁t′∈[t]0 msgs(t′)

)︂
.

Note that the converse of Lemma 4.7.2 is not true, since, for example, a message
Enc(pk1, S1(sk2)) with useful keys sk1, sk2 and pk1 = KGen(sk1) incurs an edge
(sk1, sk2) while sk2 can only be recovered from sk1 if {1} ∈ Γ.

4.7.2 Lower Bound on the Average Update Cost.
The communication complexity of a CGKA scheme after t updates is given by⃓⃓⃓⋃︁

t′∈[t]0 msgs(t′)
⃓⃓⃓
. To measure the efficiency of the scheme we will consider the amor-

tized communication complexity

ComA :=
⃓⃓⃓⃓ ⋃︂

t′∈[t]0
msgs(t′)

⃓⃓⃓⃓
/t .

We now are ready to compute a bound on the expectation of ComA in the scenario where,
in every round, the updating party is chosen uniformly at random. In Appendix 4.9 we
prove an analogous bound for multicast encryption that improves on [MP04, Theorem 1]
in two aspects. It generalizes the bound to the setting of several, potentially overlapping
groups, and further gives a bound on the average communication complexity of updates,
as opposed to a worst case bound.

Theorem 4.7.3. Consider a CGKA scheme CGKA for N ∈ N, S1, . . . , Sk ⊆ [N] that
is secure in the symbolic model. Then the expected amortized average communication
cost after t updates is bounded from below by

E[ComA] ≥ (1− 1/t) · 1
N

∑︂
∅≠I⊆[k]

|PI | · log(|PI |) .

103

4. Multiple Groups

and the asymptotic (in the number of update operations) update cost of the protocol
is at least 1

N

∑︁
∅≠I⊆[k]|PI | · log(|PI |).

Proof. We prove the result by showing that the average communication complexity
after the tth update has size at least (t− 1) 1

N

∑︁
∅̸=I⊆[k]|PI | · log(|PI |). To this end, we

will show that with every update on average at least 1
N

∑︁
∅≠I⊆[k]|PI | · log(|PI |) useful

messages become useless. We will rely on the following claim.

Claim 2. There exists a CGKA scheme CGKA′ that is secure in the symbolic model
such that:

1. If CGKA and CGKA′ are executed with respect to the same update pattern,
then their communication costs coincide.

2. Consider a sequence of t updates. For every t′ < t there exist a subgraph H′
t′

of the keygraph G ′
t′ of CGKA′ at time t′, such that for every n ∈ [N] there

exists a set V t′
n of useful sources of H′

t′ with V t′
n ⊆

⋃︁
t′′∈[t′]0(SKt′′

n ∪ Ft′′
n) such

that (H′
t′ , {V t′

n }) satisfies the requirements of Lemma 4.4.1.

Before proving the claim we show that it implies Theorem 4.7.3. To this end, recall, that
at most one of the edges incident to a node in a key graph is not a communication edge.
For t′ < t consider the key graph G ′

t′ . By applying Lemma 4.4.1 to the subgraph H′
t′ of

G ′
t′ the number of useful messages encapsulating secret keys that can be reached from

useful keys in ⋃︁t′′∈[t′]0(SKt′′

n ∪ Ft′′
n) is on average at least 1

N

∑︁
∅≠I⊆[k]|PI | · log(|PI |).

Note that by definition of PCS all useful keys in ⋃︁t′′∈[t′]0(SKt′′

n ∪ Ft′′
n) become useless if

party n updates in the (t′ + 1)th round. By Lemma 4.7.2 all descendants of these keys
and in turn messages encapsulating descendants become useless as well. We obtain that
with update (t′ + 1) on average at least 1

N

∑︁
∅̸=I⊆[k]|PI | · log(|PI |) messages become

useless. By linearity of expectation and since useless messages never become useful again
this implies that after the t updates on average at least (t−1) 1

N

∑︁
∅≠I⊆[k]|PI | · log(|PI |)

messages must have been sent in CGKA′. As CGKA by Claim 2 has the same
communication cost as CGKA′ this bound carries over to it. Now dividing by t yields
the claim of the theorem.

All that remains to do is to prove Claim 2. We define CGKA′ to be the scheme
that works uses the same initialization procedure as CGKA and computes updates in
the same way, except that whenever a uniformly random secret key sk is generated
in CGKA then CGKA′ samples a uniformly random key sk′ and sets sk ← G0(sk′)
instead of the uniformly random key; this modified key sk is then used just the same as
in CGKA in all further operations.

104

4.7. Lower Bound on the Update Cost of CGKA

Note that the communication cost of both schemes coincides since CGKA′ only makes
additional calls to the pseudorandom generator but no additional use of the encryption
and secret sharing schemes and that CGKA′ preserves correctness. Further, CGKA′

is secure since CGKA is secure: To see this, note that in the symbolic model there
is no difference between a uniformly random key and a pseudorandom key, as long as
the seed of the latter is not revealed. But the additional seeds sk′ which we introduce
in CGKA′ are never used in any messages, nor are they used to derive any further
keys; they only occur in the sets Ft

n where they replace the keys sk. Thus, security of
CGKA′ indeed directly follows from security of CGKA.

We now show that the second part of Claim 2 holds as well. In fact, for a sequence
of t updates we will prove the following stronger statement. For all t′ < t (a)
there exists a subgraph H′

t′ of G ′
t′ with distinct nodes vSi

and pairwise distinct sets
V t′

n ⊆
⋃︁

t′′∈[t′]0(SKt′′

n ∪ Ft′′
n) of sources such that

n ∈ Si ⇒ ∃vn ∈ V t′

n such that there is a path from vn to vSi
,

and that (b) for all n ̸= n′ and v ∈ V t′
n it holds that v /∈ Rec(Vt′

n′ ∪ SKt′−1
n′).

We argue inductively in t′ that a subgraph and sets with the properties (a) and (b)
must always exist. First consider the case t′ = 0. Note that the group keys vSj

= sk0
Sj

by definition are useful at time 0. Fix Sj and let n ∈ Sj. By correctness and
Lemma 4.7.2 there exists a useful vn,j ∈ SK0

n that has a path to vSj
in G ′

0. We define
V 0

n = {vn,j | j : n ∈ Sj} and H′0 to be the subgraph of G ′0 induced by the union over
n and j of paths from vn,j to vSj

. Then the correctness condition of (a) holds and
we only have to show that the V 0

n consist of pairwise distinct sources. By definition
we have vn,j /∈ Rec(SK0

n′) for n′ ̸= n implying that the V 0
n are pairwise distinct, and

further by Lemma 4.7.2 that vn,j in H′
0 cannot be reached by any vn′,j′ with n′ ̸= n.

Note that if vn,j can be reached by vn,j′ with j′ ≠ j then we can simply remove vn,j

from V 0
n without changing the correctness condition. Thus, we end up with pairwise

disjoint sets V 0
n of sources and (a) holds.

Now assume that (a) and (b) hold for all t′′ < t′. Let nt′ denote the party that issued
update t′. First consider a party n ̸= nt and a group Sj with n ∈ Sj. Note that by
correctness and security the group key vSj

= skt
Sj

is useful at time t′. Further, by
correctness we have

skt′

Sj
∈ Rec

(︃
SKt′

n∪
⋃︂

t′′∈[t′]0

msgs(t′′)
)︃

and SKt′

n ⊆ Rec
(︃

(SKt′−1
n ∪Ft′

n)
⋃︂

t′′∈[t′]0

msgs(t′′)
)︃

.

Thus, by Lemma 4.7.2 there exists a useful node v ∈ SKt′

n with a path to vSj
and a

useful node v′ ∈ SKt′−1
n that has a path to v, where we used that Ft′

n = ∅. As v′ already
existed at time t′ − 1 and lies in ⋃︁t′′∈[t′−1]0(SKt′′

n ∪ Ft′′
n) by the induction hypothesis

105

4. Multiple Groups

there must exist a node vn,Sj
∈ V t′−1

n that is a source in H′
t′−1 ⊆ G ′

t′−1 and has a path
to v′ and in turn to v and vSj

. We set V t′
n = {vn,Sj

| j : n ∈ Sj}.

Now consider the party n = nt′ that issued update t′ and let Sj be such that n ∈ Sj . By
the first correctness property we have skt′

Sj
∈ Rec(SKt′

n ∪
⋃︁

t′∈[t′]0 msgs(t′)). Since the
node vSj

= skt′

Sj
is useful at time t′ by Lemma 4.7.2 there exists a useful node v ∈ SKt′

n

with a path to vSj
. Further, by the definition of PCS it is not possible that v can

be recovered from SKt′′

n for any t′′ < t′ and thus, must have been generated during
the t′th update. More precisely, since n is the updating party, by security all elements
of SKt′−1

n are useless at time t′ and since by correctness v ∈ Rec(SKt′−1
n ∪ Ft′

n) we
obtain by Lemma 4.7.2 that there exists useful vn,j ∈ Ft′

n that has a path to v and in
turn to vSj

. Note that vn,j by definition of Ft′
n is a uniformly random secret key. By

construction of CGKA′ the only operation applied to vn,j was an application of G0,
which in particular implies that it never was encrypted under any key. Thus vn,j is a
source in G ′

t′ and we can define V t′
n = {vn,j | j : n ∈ Sj}.

Now we can define H′
t′ to be the subgraph of G ′

t′ induced by the union over n and j of
paths from vn,j to vSj

. Note that for any party n ≠ nt′ that did not update in round t′

any vn,j ∈ V t′
n can only be reachable from some other node v ∈ (V t′

n′) with n ̸= n′ in
Ht′ if during the t′th update it was encrypted under some key that can be recovered
from V t′−1

n′ ⊆ V t′−1
n′ ∪ SKt′−1

n′ . This however, would contradict induction hypothesis (b).
Thus all elements of V t′

n must indeed be sources in Ht′ .

Finally, note that (b) holds as well: For n ̸= nt this follows from the induction hypothesis
and correctness and for nt as discussed above by construction of CGKA′.

4.8 Direct Comparison of Trivial Algorithm and
Algorithm 1

Tighter Analysis of Example 4.5.1. We now give an analysis of Example 4.5.1 that
shows that at least in such a situation our algorithm performs always better than the
trivial solution, even including rounding. For simplicity, assume n1 is a power of 2 (but
k is arbitrary). Consider the following hypothetical construction of T1 and T1,2: first
build the complete binary tree and keep all k users in S12 = S1 ∩ S2 to the right. Let v
be the node highest up in the tree such that all its parents are in S12. Now remove
all users in S12 from the tree and call the result T1. Build a new binary tree T1,2 (as
balanced as possible) from the nodes in S12 and attach it to node v. Clearly, all users
in S1 \ S2 have path length log n1 in T1 and node v has path length log n1 − ⌊log k⌋.

106

4.8. Direct Comparison of Trivial Algorithm and Algorithm 1

Also, all users in S12 have path length < ⌈log k⌉ < ⌊log k⌋+ 1 in T1,2. So we get

E[len(UT1)] = n1 − k

n1
log n1 + k

n1
(log n1 − ⌊log k⌋) = log n1 −

k

n1
⌊log k⌋

and E[len(UT1,2)] ≤ ⌊log k⌋ + 1. Note that the same construction also works for T2
and yields

E[len(UT2)] = log n2 −
k

n2
⌊log k⌋

Since Huffman is optimal, creating T1, T2 and T1,2 by using Huffman cannot yield worse
expected path lengths. Putting these together

Upd(Ga1) ≤ n1E[len(UT1)] + n2E[len(UT2)] + kE[len(UT1,2)]
≤ n1 log n1 + n2 log n2 − k(⌊log k⌋ − 1).

Clearly, for k ≥ 2 this is always negative.

Now we obtain an upper-bound in which the approach of the example and the use of
Lemma 4.5.2 are combined in order to obtain a sufficient condition under which Ga1
outperforms Gtriv. We generalize the example to build the trees that correspond to
nodes of the form v{i} in Vlat and then use Lemma 4.5.2 for the rest of nodes in Vlat.

Comparison of Trivial Algorithm and Algorithm 1. Let S1, . . . , Ss ⊆ [N] and
Glat = (Vlat, Elat) be the corresponding lattice graph. Let T{i} :=

⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
−⃓⃓⃓

S(v{i})
⃓⃓⃓

= ∑︁
J⊆2[s] st

v{i}∪J ∈P(v{i})∩P(vJ)

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
. For each i ∈ [s] first build a binary

tree (as balanced as possible) using all users in S(A(v{i})) and keeping 2⌊log T{i}⌋

users in ⋃︁v′∈P(v{i}) S(A(v′)) to the right. Just as in the example, let v be the node
highest up in the tree such that P(v) ⊆ ⋃︁v′∈P(v{i}) S(A(v′)). Then remove all users in⋃︁

v′∈P(v{i}) S(A(v′)) from the tree and call the resulting tree T{i}. We build a Huffman
tree, T aux

{i} , with
⃓⃓⃓
P(v{i})

⃓⃓⃓
many leaves and weights S(A(v′)) for each v′ ∈

⃓⃓⃓
P(v{i})

⃓⃓⃓
and attach it to v. Each leaf of T aux

{i} corresponds to a node v{i}∪J for some J ⊆ 2[s].
We add an edge between each leaf of T aux

{i} and the root of the corresponding T{i}∪J .
For |I| ≥ 2 we just consider a Huffman tree TI . We can bound the update cost of
G as Upd(G) ≤ ∑︁

i∈[s](Upd(T{i}) + Upd(T aux
{i})) + ∑︁

vI∈Vlat : |I|≥2 Upd(TI). We can
upper-bound the update cost of T aux

I using Lemma 4.5.2;

Upd(T aux
{i}) ≤ T{i} log T{i} + T{i} −

∑︂
J⊆2[s] st

v{i}∪J ∈P(v{i})∩P(vJ)

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
log
⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
.

There exist 0 ≤ a{i}, b{i} ≤ 1 such that a{i} + b{i} = 1, there are a{i}

⃓⃓⃓
S(v{i})

⃓⃓⃓
users

that have path length at most ⌊log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌋ in T{i} and there are b{i}

⃓⃓⃓
S(v{i})

⃓⃓⃓
users

107

4. Multiple Groups

that have path length ⌈log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉ in T{i}. The node v has path length at most

⌈log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉ − ⌊log T{i}⌋ in T{i}. Therefore we have

Upd(T{i}) ≤
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓(︄ aI

⃓⃓⃓
S(v{i})

⃓⃓⃓
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓⌊log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌋+

b{i}

⃓⃓⃓
S(v{i})

⃓⃓⃓
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓⌈log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉

+ T{i}⃓⃓⃓
S(A(v{i}))

⃓⃓⃓(⌈log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉ − ⌊log T{i}⌋)

)︄

≤
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓(︄ aI

⃓⃓⃓
S(v{i})

⃓⃓⃓
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓⌊log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌋+

b{i}

⃓⃓⃓
S(v{i})

⃓⃓⃓
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓⌈log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉

+ T{i}⃓⃓⃓
S(A(v{i}))

⃓⃓⃓(⌊log
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌋+ 1− ⌊log T{i}⌋)

)︄

≤ Upd(Gtriv of Si) + T{i}(1− ⌊log T{i}⌋)

The last inequality follows from the fact that there cannot be less than b{i}

⃓⃓⃓
S(v{i})

⃓⃓⃓
users whose path length is ⌈log

⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
⌉ in the tree constructed by the trivial

algorithm.

We can upper-bound the update cost of TI for |I| ≥ 2 using Lemma 4.5.2;

Upd(TI) ≤ |S(A(vI))|(1 + log|S(A(vI))|)−
∑︂

J⊆2[s] st
vI∪J ∈P(vI)∩P(vJ)

|S(A(vI∪J))| log|S(A(vI∪J))|.

We sum over all I ⊆ 2[s] such that vI ∈ V ′ and we get

Upd(Ga1) ≤
∑︂
i∈[s]

(Upd(T{i}) + Upd(T aux
{i})) +

∑︂
vI∈Vlat : |I|≥2

Upd(TI)

≤
∑︂
i∈[s]

(︄
Upd(Gtriv of Si) + 3T{i} −

∑︂
J⊆2[s] st

v{i}∪J ∈P(v{i})∩P(vJ)

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
log
⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓)︄

+
∑︂

vI∈Vlat : |I|≥2

(︄
|S(A(vI))|(1 + log|S(A(vI))|)−

∑︂
J⊆2[s] st

vI∪J ∈P(vI)∩P(vJ)

|S(A(vI∪J))| log|S(A(vI∪J))|
)︄

Using the fact that T{i} :=
⃓⃓⃓
S(A(v{i}))

⃓⃓⃓
−
⃓⃓⃓
S(v{i})

⃓⃓⃓
= ∑︁

J⊆2[s] st
v{i}∪J ∈P(v{i})∩P(vJ)

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓

108

4.9. Multicast Encryption Lower Bound

yields

Upd(Ga1) ≤
∑︂
i∈[s]

Upd(Gtriv of Si) +
∑︂
i∈[s]

∑︂
J⊆2[s] st

v{i}∪J ∈P(v{i})∩P(vJ)

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
(3− log

⃓⃓⃓
S(A(v{i}∪J))

⃓⃓⃓
)

+
∑︂

vI∈Vlat : |I|≥2

(︄
|S(A(vI))|(1 + log|S(A(vI))|)−

∑︂
J⊆2[s] st

vI∪J ∈P(vI)∩P(vJ)

|S(A(vI∪J))| log|S(A(vI∪J))|
)︄

For |I| ≥ 2, the term |S(A(vI))| log|S(A(vI))| appears twice with a negative sign and
once with a positive sign. Hence

Upd(Ga1) ≤ Upd(Gtriv) +
∑︂

vI∈Vlat : |I|=2
|S(A(vI))|(7− log|S(A(vI))|)

+
∑︂

vI∈Vlat : |I|>2
∃i∈[s] : vI∈P(v{i})

|S(A(vI))|(4− log|S(A(vI))|) +
∑︂

vI∈Vlat : |I|>2
∄i∈[s] : vI∈P(v{i})

|S(A(vI))|(1− log|S(A(vI))|)

In particular, if

• |S(A(v′))| ≥ 2 for every vI ∈ Vlat with |I| > 2 and such that ∄i ∈ [s] with
vI ∈ P(v{i}), and

• |S(A(v′))| ≥ 23 = 8 for every vI ∈ Vlat with |I| > 2 and such that ∃i ∈ [s] with
vI ∈ P(v{i}), and

• |S(A(v′))| ≥ 27 = 128 for every vI ∈ Vlat with |I| = 2,

Ga1 outperforms Gtriv. The first condition applies to nodes which do not correspond to
the intersection of two of the original subsets. The second condition applies to nodes
that correspond to the intersection of two subsets of [N] , of which exactly one is
among the original subsets. The last condition applies to nodes with |I| = 2, that is,
nodes that correspond to the intersection of Si and Sj for some i, j ∈ [s].

4.9 Multicast Encryption Lower Bound
In this Section we prove a lower bound on the average update cost of multicast encryption
schemes for multiple groups. To this aim, we follow the approach of Micciancio and
Panjwani [MP04], who analyzed the worst-case communication complexity of multicast
key distribution in a symbolic security model, where cryptographic primitives are
considered as abstract data types. We will first recall their security model and then
prove how to extend their results to our setting.

109

4. Multiple Groups

4.9.1 Symbolic Model
We restrict the analysis to schemes that are constructed from the following three
primitives. Note that our construction is a special case of the constructions analysed in
this section.

• Encryption: Let (E, D) denote a symmetric-key encryption scheme, where

– E takes as input a secret key ssk and a message m, and outputs a ciphertext
c← Essk(m),

– D takes as input a secret key ssk and a ciphertext c, and outputs a message
m = Dssk(c). We assume perfect correctness, i.e. Dssk(Essk(m)) = m for all
keys ssk and messages m. Furthermore, the encryption scheme is secure,
i.e., informally, without knowledge of the key ssk one cannot recover m
from c.

• Pseudorandom generator: The algorithm G takes as input a key ssk and expands
it to a sequence of keys G0(ssk), . . . , Gl(ssk), that are indistinguishable from a
sequence ssk0, . . . , sskl of uniformly random keys sski ← R (i ∈ [l]0) without
knowledge of the key ssk.

• Secret sharing: Let S, R denote the sharing and recovering procedures of a secret
sharing scheme: For some access structure Γ ⊆ 2[h], the algorithm S takes as
input a message m and outputs a set of shares S1(m), . . . , Sh(m) such that for
any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I ̸⊆ Γ the message m
cannot be recovered from {Si(m)}i∈I .

There are two types of data structures: messages and keys, which can be derived by
repeatedly applying the above algorithms:

m← {ssk, Essk(m), S1(m), . . . , Sh(m)}, ssk← {R, G0(ssk), . . . , Gl(ssk)}

where R denotes some set of random keys. All functions E, Gi, Si are assumed to output
messages of approximately the same length as the keys in R; hence, the update cost
can be measured as the number of transmitted messages.

To describe the information that can be recovered from a set of messages M , the
entailment relation is defined by the following rules:

m ∈M ⇒ M ⊢ m
M ⊢ ssk ⇒ M ⊢ G0(ssk), . . . , Gl(ssk)

M ⊢ Essk(m), ssk ⇒ M ⊢ m
∃I ∈ Γ : ∀i ∈ I : M ⊢ Si(m) ⇒ M ⊢ m

110

4.9. Multicast Encryption Lower Bound

By restricting to these relations we essentially assume secure encryption and secret
sharing schemes. Examples and further comments can be found in [MP04, Section 3.2].
The set of messages which can be recovered from M using relation ⊢ is denoted by
Rec(M).

A multicast key distribution protocol for a (static) set of N users and k subsets
S1, . . . , Sk ⊆ [N] consists of two components – the setup algorithm Setup and an
update procedure Update. For simplicity, we assume that each user is member of at
least one group.

• Initially, Setup assigns each user n ∈ [N] a secret key ssk(0)
{n}, which is either

a uniformly random key from R, or a pseudorandom key that was derived
through a sequence of applications of G to another key ssk′

n, i.e. ssk(0)
{n} =

Gl1(Gl2(. . . (Glj(ssk′
n)) . . .)) with j ≥ 0, where ssk′

n must not coincide with any
of the keys assigned to users in [N]. Furthermore, Setup generates a set msgs(0)
of so-called rekey messages to establish group keys ssk(0)

Si
(for all i ∈ [k]) among

all members of the groups Si.

• In round t, the algorithm Update takes as input a user identity n ∈ [N], assigns
this user a fresh key ssk(t)

{n} and outputs some rekey messages msgs(t) to establish
a fresh group key for each group of which i was a member. For all other members
n′ ∈ [N] \ {n}, we set ssk(t)

{n′} := ssk(t−1)
{n′} .

For correctness, we require that, for any adversarially chosen subgroup structure and
any sequence of updating users (n1, . . . , nt), for all j ∈ [k] each member i of subgroup
Sj can recover ssk(t)

Sj
, i.e.

ssk(t)
Sj
∈ Rec

⎛⎝{ssk(t)
{n}} ∪

⋃︂
ι∈[t]0

msgs(ι)
⎞⎠ .

For security, we assume the minimal requirement of post-compromise security, namely
that no group key can be recovered from members outside the group and/or old key
material, i.e.

ssk(t)
Sj

/∈ Rec

⎛⎜⎜⎜⎝ ⋃︂
n∈[N]\Sj

{ssk(t)
{n}} ∪

⋃︂
n∈[N],

ι∈[t−1]0

(︂
{ssk(ι)

{n}} \ {ssk
(t)
{n}}

)︂
∪
⋃︂

ι∈[t]0
msgs(ι)

⎞⎟⎟⎟⎠ .

111

4. Multiple Groups

4.9.2 Key Graphs
The execution of any multicast key distribution protocol can be reflected by a graph
structure representing recoverability of the keys involved (cf. [MP04]). To define this
graph, we first need to recall the definition of useful keys and messages.

A secret key ssk is called useless at time t if it can be recovered from old key material, i.e.

if ssk ∈ Rec
(︄⋃︁

n∈[N],
ι∈[t−1]0

(︂
{ssk(ι)

{n}} \ {ssk
(t)
{n}}

)︂
∪ ⋃︁ι∈[t]0 msgs(ι)

)︄
, otherwise ssk is called

useful. If a multicast key distribution protocol satisfies correctness and post-compromise
security, then for all t ∈ N, n ∈ [N], j ∈ [k] it must hold that the user’s keys ssk(t)

{n} as
well as the group keys ssk(t)

Sj
are useful at time t.

To decide whether a message is useful, one has to consider the information it contains,
where messages can be arbitrarily nested applications of encryption E and secret
sharing S. Thus, a message m is said to encapsulate a (pseudo)random key ssk if
m = e1(e2(. . . (ej(k)) . . .)) where ei = Esski or ei = Shi (for some key sski and hi ∈ [h]).
A message is then called useful if it encapsulates a useful key.

Defintion 4.9.1 (Key graph [MP04]). The key graph KGt = (Vt, Et) for a multicast
key distribution protocol at time t is defined as follows. Vt consists of all the keys that
are useful at time t, and E ⊆ V × V consists of all ordered pairs (ssk1, ssk2) such that
one of the following is true:

• There exists j ∈ [l] auch that ssk2 = Gj(ssk1).

• There exists some message m ∈ ⋃︁j∈[t]0 msgs(j) such that m = e1(Essk1(e2(ssk2)))
for some sequences of encryption and secret sharing e1 and e2, and e2 does not
contain any encryption under a key that is useful at time t.

Edges of the second type are called communication edges.

One can show that for any node ssk in KG there is at most one edge of the first type
incident on ssk (see [MP04, Proposition 1] for a proof). Note that edges of the first
type do not incur any communication cost; thus, in the following we will be interested
the number of communication edges. To this aim, we prove the following properties of
key graphs, which in particular show that key-derivation graphs as defined in Section
4.3.2 are just a special case of key graphs (cf. Definition 4.3.1).

Lemma 4.9.2. Consider a secure multicast key distribution protocol for N ∈ N,
S1, . . . , Sk ⊆ [N]. Then, for any t ∈ N and sequence of updates (n1, . . . , nt), the
corresponding key graph KGt satisfies the following two conditions.

112

4.9. Multicast Encryption Lower Bound

1. For n ∈ [N] and j ∈ [k] there exist nodes vn and vSj
in KGt, and for n ̸= n′ ∈ [N]

it holds vn ̸= vn′ .

2. For every pair of keys ssk1, ssk2 that are useful at time t, such that ssk2 ∈
Rec

(︂
{ssk1} ∪

⋃︁
ι∈[t]0 msgs(ι)

)︂
, there exists a path from ssk1 to ssk2 in KGt that

only consists of keys ssk such that ssk ∈ Rec
(︂
{ssk1} ∪

⋃︁
ι∈[t]0 msgs(ι)

)︂
.

Proof. By definition the keys ssk(t)
{n} for users n ∈ [N] are distinct and there exists a

group key ssk(t)
Sj

for each group Sj (j ∈ [k]). To prove property 1, it remains to prove
that these keys are useful, hence represent a node in KGt. For group keys ssk(t)

Sj
this

follows immediately from security of the scheme. For the users’ private keys, recall that
we assume that for all n ∈ [N] there exists some j ∈ [k] such that n ∈ Sj . We assume
for contradiction that the user’s current key ssk(t)

{n} was useless, i.e. could be recovered
from users’ old keys that have been replaced in rounds [t] and the rekey messages. But
by correctness it must hold that user n can recover the group key ssk(t)

Sj
from its own

key and the rekey messages. This, however, would imply that ssk(t)
Sj

can be recovered
from old keys and rekey messages, hence ssk(t)

Sj
would be useless – a contradiction.

For the second property, we refer to [MP04, Lemma 1] for a proof.

Note that the converse of property 2 is not true, since e.g. a message Essk1(S1(ssk2))
with useful keys ssk1, ssk2 incurs an edge (ssk1, ssk2) while ssk2 can only be recovered
from ssk1 if {1} ∈ Γ.

4.9.3 Lower Bound on the Average Update Cost
The communication complexity of a multicast encryption scheme after t updates is
given by

⃓⃓⃓⋃︁
ι∈[t]0 msgs(ι)

⃓⃓⃓
. To measure the efficiency of the protocol we will consider

the amortized communication complexity

ComA :=
⃓⃓⃓⃓ ⋃︂

ι∈[t]0
msgs(ι)

⃓⃓⃓⃓
/t .

We now are ready to compute a bound on the expectation of ComA in the scenario
where in every round the updating party is chosen uniformly at random. The result
improves on [MP04, Theorem 1] in two aspects. It generalizes the bound to the setting
of several potentially overlapping groups, and further gives a bound on the average
communication complexity of updates opposed to a worst case bound.

113

4. Multiple Groups

Theorem 4.9.3. Consider a multicast key-distribution protocol for N ∈ N, S1, . . . , Sk ⊆
[N] that is secure in the symbolic model. Then the expected amortized average com-
munication cost after t updates is bounded by

E[ComA] ≥ (1− 1/t) · 1
N

∑︂
∅̸=I⊆[k]

|PI | · log(|PI |) .

and the asymptotic update cost of the protocol is at least 1
N

∑︁
∅≠I⊆[k]|PI | · log(|PI |).

Proof. We prove the result by showing that the average communication complexity
after the tth update has size at least (t− 1) 1

N

∑︁
∅̸=I⊆[k]|PI | · log(|PI |). To this end, we

will show that with every update on average at least 1
N

∑︁
∅≠I⊆[k]|PI | · log(|PI |) useful

messages become useless.

Let 1 ≤ t′ ≤ t. Consider the useful nodes vn guaranteed to exist by Lemma 4.9.2,
Property 1 after the (t′ − 1)st update (where the 0th update is to be understood as
Setup). We show that the key graph KGt−1 contains a subgraph G ′

t−1 which satisfies
the requirements of Lemma 4.4.1:

By Lemma 4.9.2, Property 2, for each n ∈ [N] and j ∈ [k] such that n ∈ Sj there
exists a path Pn,j from vn to vSj

in KGt−1 such that all keys associated to nodes
in Pn,j can be recovered from ssk(t−1)

{n} and the sent messages. Let G ′
t−1 denote the

union of these paths. It remains to argue that all nodes vn are sources in G ′
t−1. For

contradiction, assume there exists n, n′ ∈ [N], j ∈ [k] such that n′ ∈ Pn,j . But Update
only replaces one user’s private key; thus, if in the next round an update for n was
generated, only n’s private key would be replaced, but not n′’s. Hence, security would
be broken because n′’s current key ssk(t)

{n′} = ssk(t−1)
{n′} can be recovered from n’s old key,

and by correctness, for any j′ ∈ [k] such that n′ ∈ Sj′ , the key ssk(t)
Sj′ can be recovered

from ssk(t)
{n′}. This proves that G ′ indeed satisfies the properties of Lemma 4.4.1.

Now, recall, that at most one of the edges incident to a node in the key graph is
not a communication edge. Thus, by Lemma 4.4.1 the number of useful messages
encapsulating keys that can be reached from vn is on average at least 1

N

∑︁
∅≠I⊆[k]|PI | ·

log(|PI |).

Note that one of the keys vn becomes useless after the t′th update. By Lemma 4.9.2,
Property 2 all other nodes in D(vn) ⊆ G ′

t−1 and in turn messages encapsulating
descendants become useless as well. With the argument above we obtain that with
the t′th update on average at least 1

N

∑︁
∅̸=I⊆[k]|PI | · log(|PI |) messages become useless.

By linearity of expectation and since useless messages never become useful again this
implies that after the t’th update on average at least (t− 1) 1

N

∑︁
∅≠I⊆[k]|PI | · log(|PI |)

messages have been sent. Now dividing by t yields the claim.

114

4.10. Open problems

4.10 Open problems
We conclude by discussing some open problems.

4.10.1 Optimal Key-derivation Graphs
Unfortunately we are not able to tell how far from optimal the solutions generated
by Algorithm 1 are for concrete group systems. We consider it an interesting open
question to resolve this issue.

General kdgs. We first discuss this problem in its general form. I.e., given a
system S = {S1, . . . , Sk} of subgroups of the set [N] of users compute the key-
derivation graph for S (as defined in Definition 4.3.1) that has minimal update cost.
The question of whether a polynomial time algorithm for solving this problem exists
can be naturally asked in various ways. E.g., when polynomial means polynomial in the
number of users N (think of N being given in unary), or polynomial in a reasonable
description of the set system S, say, when we are given the sizes of all non-empty
intersections of sets in S. Here N can be exponential in the input length, so a potential
solution would need to have a very succinct description. Algorithm 1 (which we do not
know whether is optimal) can be turned into one of the latter kind by using an implicit
representation during the Huffman coding step.
We are thankful to one reviewer of this work, who pointed out an interesting connection
of key-derivation graphs for a group system S = {S1, . . . , Sk} to the disjunctive
complexity of S, which, given variables x1, . . . , xN ∈ {0, 1}, corresponds to the size of
the smallest circuit of fanin-2 OR-gates computing⋁︂

i∈S1

xi, . . . ,
⋁︂

i∈Sk

xi . (4.12)

Note that circuits computing (4.12) correspond exactly to key-derivation graphs for S.
So the two problems differ only by the used metric; while disjunctive complexity counts
the number of non-sources in the graph, the update cost of a kdg weighs each of these
nodes by the number of sources below it. As there exist upper and lower bound on the
disjunctive complexity of group systems (see e.g. [Juk12]), we consider it an interesting
open questions whether these can be used to establish bounds on the update cost
of kdgs. We want to point out, however, that this metric might be not fine-grained
enough to capture certain properties of kdgs: E.g., for N ∈ N the systems S1 = {[N]}
and S2 = {[1], [2], . . . , [N]} both have disjunctive complexity N − 1, but their total
update costs as kdgs are of order N · log(N) and N2 respectively.

Lattice based kdgs. If we restrict our view to algorithms using Boolean-lattice based
graphs as defined in Section 4.5.4, and are willing to make simplifying assumptions,

115

4. Multiple Groups

the question of optimality translates to an optimization problem on graphs: we are
going to (a) consider only lattice graphs Glat where all nodes v are connected with their
descendants v′ ∈ D(v) by an unique path, and (b) assume in our analysis of the update
cost that the algorithms second step (i.e., the generation of Huffman trees) is instead
implemented with an idealized code, that has average codeword length matching the
entropy of the leaf distribution. This essentially corresponds to ignoring the terms of
+1 in Lemma 4.2.1.

Recall that for groups system {S1, . . . , Sk} the nodes vI ∈ Vlat of a lattice graph
correspond to index sets I ⊆ [k]. It is easy to see that the correctness of Glat together
with condition (a), are equivalent to requiring that the only sinks in the graph are the
singleton sets {i}, and that for every vI ∈ Vlat

I = I1 ·∪ · · · ·∪ Iℓ (4.13)

holds, where vI1 , . . . , vIℓ
are the children of vI and disjointness enforces unique paths.

The total update cost of a graph satisfying this property can be computed as follows.
To every node vI we associate the weight wI =

⃓⃓⃓⋂︁
i∈I Si \

⋃︁
j∈[k]\I Sj

⃓⃓⃓
corresponding to

the number of users exactly in the groups specified by I. Further, we inductively define
the total weight tI of vI as

tI =

⎧⎨⎩wI if vI is source
wI +∑︁

I′ : vI′ ∈P(vI) tI′ else
,

where P(vI) denotes the set of parents of vI . By assumptions (a) and (b), and
Lemma 4.5.2, the update cost contributed by node vI thus corresponds to

Upd(vI) = tI log(tI)−
∑︂

I′ : vI′ ∈P(vI)
tI′ log(tI′) , (4.14)

and we end up with the following optimization problem on lattice graphs.

Problem 4.10.1. Let k ∈ N. Given weights {wI}I⊆[k] with wI ∈ N among the
subgraphs of the Boolean lattice with respect to the power set of [k] that satisfy
Condition 4.13 find the subgraph Glat of minimal total update cost

Upd(Glat) =
∑︂

I⊆[k]
Upd(vI) .

We consider it an interesting open question whether Algorithm 1 solves this problem
and, if not, to find an efficient algorithm that does.

116

4.10. Open problems

4.10.2 Security
In this work we focused on the communication complexity of key-derivation graphs and
only gave an intuition on their security. Security proofs for secure group messaging are
typically quite complex, and protocols rely on additional mechanisms (e.g. confirmation
tag, transcript hash, and parent hash) ensuring that users of the system can not be
tricked into inconsistent views of the graph. We consider it an important open question
to adapt these mechanisms to kdgs for several groups and give a formal security proof
for the resulting CGKA protocols.

4.10.3 Efficiency of Dynamic Operations
As discussed in Section 4.6 the techniques of blanking and unmerged leaves can be
adapted to key-derivation graphs in order to allow dynamic changes to the group
membership. As is the case for singular groups, blanking and unmerged leaves decrease
the efficiency of updates of a user n, since they destroy the binary structure of the
graph, resulting in potentially more than a single ciphertext per node in D(vn) having
to be generated. However, the graph gradually recovers from this, assuming that parties
with update trees overlapping D(vn) update. It is an interesting open question how
the decrease in efficiency compares to that of the trivial algorithm.

117

CHAPTER 5
CoCoA

5.1 Introduction
As mentioned in the introduction1, most CGKA protocols today were designed with
an asynchronous communication setting in mind, meaning that parties should be able
to come online whenever and be able to receive and send messages and perform any
group operations (add or remove members, or update their key material) regardless of
the online status of the remaining group members.

The Problem Of Coordination. One property the first generation of CGKA pro-
tocols [KPPW+21, ACDT20, BBR18, CCG+18] share is that they require all protocol
packets to be processed in exactly the same order by every group member. However,
ensuring this level of coordination can present real challenges in a variety of settings;
especially for large groups (e.g. with 50, 000 members as is targeted by the IETF’s
upcoming E2E secure messaging standard MLS [BBR+23]). In particular, it might lead
to the problem sometimes called “starvation” where a client’s packets are constantly
rejected by the group (e.g. when the client is on a slow network connection and so can
never distribute its own packets fast enough).

There do not seem to be any practical solutions to convincingly provide this level of
coordination without significant drawbacks. Implementing the buffering mechanism via
a single server does not automatically address the issue of starvation of clients with a
slow connection. Nor is a round-robin “speaking slot” approach a satisfactory solution
(even assuming universal time), as it would severely impact responsiveness; especially

1This Chapter essentially replicates, with permission, large parts of the full version [AAN+22c] of
our publication [AAN+22b].

119

5. CoCoA

for larger groups. It is also not just responsiveness that suffers from a reduction of the
rate at which parties can send new packets to the group. The quality of the security of
a session (e.g. the speed with which privacy is recovered after a group member’s local
state is leaked) is also tightly dependent on the rate at which participants can send out
packets. After all, if a compromised party has not even been able to send anything new
to the group since a compromise, they cannot have updated the leaked cryptographic
material to something the adversary cannot simply derive itself.

Concurrency At A High Price. To mitigate this problem, version 8 of MLS
introduced a new syntax referred to as the “propose-and-commit” (P&C) paradigm.
This has been adopted by most second generation CGKA protocols [ACJM20, AJM22]
as it allows for some degree of concurrency. In particular, group members (and even
designated external parties) may concurrently propose changes to the group state e.g.
“Alice proposes adding Bob”, “Charlie proposes updating his keys”, etc. At any point, a
group member can collect such proposal into a commit message which is broadcast to
the group and actually effects all changes in the referenced proposals. Note, however,
that commit messages must still be processed in a globally unique order. Moreover, in
each of these protocols there is a high price being paid for large amounts of concurrency.
Namely, the greater the number of proposals in a single commit message, the less
efficient (e.g. greater packet size) certain future commits will be. In fact, efficiency can
degenerate to the point where (starting from an arbitrary group state) a commit to
Θ(n) proposals can produce a state where the next commit packet is forced to have
size Ω(n); a far cry from the desired O(log(n)).

Lower-Bounds on Communication Complexity. Bienstock et al. [BDR20] showed
that there are limits to what we could hope for in terms of reducing communication
complexity. Specifically, they show that T group members updating concurrently
incurs a communication cost per user in the following round that is linear in T in any
“reasonable” protocol.2 In fact, if all n parties wish to update concurrently within 2
rounds then this has complexity at least Ω(n2).

5.1.1 Our Contributions
In this paper we propose a new CGKA protocol called CoCoA (for COncurrent COntinu-
ous group key Agreement) which is designed specifically to allow for efficient concurrent
group operations. The way in which CoCoA handles conflicts of concurrent operations
is very similar to the way the original TreeKEM paper [BBR18] suggested. The PCS

2For the lower bound, [BDR20] considered a symbolic model of execution which only applies to
protocols constructed through black-box use of (possibly dual) PRFs, (possibly updatable) PKE, and
broadcast encryption. Both our protocol and most TreeKEM variants fall into this category.

120

5.1. Introduction

guarantees of such an approach were discussed since its inception3, but saw no formal
analysis. This approach was later dropped in future versions, perhaps due to the, at the
time, unclear effect on PCS4. In this work, we formalize this approach into a protocol,
and carefully analize the security guarantees it provides. Indeed, we show that in
contrast to past CGKA protocols, healing may require more than 2 rounds (in the worst
case log(n) rounds). However, even when all n users update their keys concurrently in
log(n) rounds, the total communication complexity of any user is only roughly (log(n))2

(constant size) ciphertexts. This circumvents [BDR20] as their lower-bound only holds
for updates that complete healing in at most 2 rounds. So, for the price of more
interaction CoCoA can greatly decrease the actual bandwidth consumed.

To emphasize this even more, consider the cost of transitioning from a fully blanked
tree to a fully unblanked one. We believe this to be a particularly interesting case as
it captures the transition from any freshly created group into a bandwidth-optimal
one. The faster/cheaper this transition can be completed, the faster an execution can
begin optimal complexity behaviour. TreeKEM [BBR18], the CGKA scheme used in
the MLS messaging protocol, needs n/2 rounds with receiver complexity, i.e. number
of ciphertexts downloaded per user, Ω(n log(n)). The protocol in [BDR20], in turn,
would be able to unblank the whole tree in 2 rounds with linear sender and recipient
communication per user. In contrast, in CoCoA the tree could be unblanked in 1 round
with linear sender cost, but only logarithmic recipient cost. For big groups this difference
is very significant.

With such low communication, a user cannot learn all the 2n− 1 fresh public-keys in
the ratchet tree. Fortunately, users in CoCoA only need to know the log(n) secret keys
and another 2 log(n) public keys. So in our protocol, users will not have a complete
view of the public state as in previous protocols, but only know the partial state that is
relevant to them. As a consequence, the server no longer acts as a relay but instead
computes packets tailored to the individual receiving user. This comes with a new
challenge that we address in this work: ensuring consistency across all users is not as
straightforward anymore. This is crucial for security, since users disagreeing e.g. on the
set of group members can lead to severe attacks.

Once we take into account operations like adding and removing group members, effi-
ciency might degrade (though not to anything worse than past protocols). Nevertheless,
in a typical execution we can expect to see far more updates than adds/removes. In
particular, the more updates parties perform the faster the protocol heals from past
compromises so it is generally in users’ interest to perform updates as regularly as
they can. By (greatly) reducing the cost of updates compared to past CGKA proto-

3https://mailarchive.ietf.org/arch/msg/mls/9u6BGEqWTfjDjbWaSmU2Z2JJniY/
4https://mailarchive.ietf.org/arch/msg/mls/HbFcflhaxfobZugCGI-

jDLPDvGM/

121

https://mailarchive.ietf.org/arch/msg/mls/9u6BGEqWTfjDjbWaSmU2Z2JJniY/
https://mailarchive.ietf.org/arch/msg/mls/HbFcflhaxfobZugCGI-jDLPDvGM/
https://mailarchive.ietf.org/arch/msg/mls/HbFcflhaxfobZugCGI-jDLPDvGM/

5. CoCoA

cols, we allow groups to have quantitatively better security for the same amount of
communication complexity spent.

In terms of security, we prove CoCoA secure in a “partially active setting”, where,
recall, the adversary can (repeatedly) leak parties local states including any random
coins they use and query users to generate protocol messages. As opposed to the
model of [KPPW+21], our adversary not only controls the delivery server but is also
allowed to send arbitrary (potentially malformed) messages. Still, corruptions do not
leak signature keys, thus considering insider attacks outside of our model. While the
latter is a strong assumption, it is common in the literature, and we discuss it in more
detail in Section 2.4.

5.1.2 Related Work

On top of the related work discussed in Section 1.3, we discuss here some works that
are of particular relevance for this chapter.

Several works have studied CGKA’s supporting varying degrees of concurrent operations,
since it was first mentioned in TreeKEM’s original proposal [BBR18]. In the first place,
Weidner’s Causal TreeKEM [Mat19] explores the idea of updates re-randomizing key
material instead of overwriting it. Even though the protocol lacks forward secrecy
and a complete security proof, it is the first to explicitly propose a protocol where
updates do not need to come in a total order. This was followed by [WKHB21a], which
proposed a decentralized CGKA protocol, thus admitting any level of un-coordination
between the parties; albeit with linear communication complexity. Finally, a paper
by Bienstock et al. [BDR20] studies the trade-off between PCS, concurrency and
communication complexity, showing a lower bound for the latter and proposing a close
to optimal protocol in their synchronous model for a fixed group in a weak security
model (see Section 5.4).

Following the publication of [AAN+22b], which this Chapter is based on, the work
of Alwen et al. [AAN+22a] proposed a protocol that achieves PCS concurrently in a
number of rounds that only depends logarithmically in the number of corruptions. In
particular, independent of the group size. Chapter 6 is based on this work.

The notion of server-aided CGKA was first formalized in [AHKM22]. They introduced
the SAIK protocol, which reduces receiver communication costs by as much as 1000
fold in groups of size 10, 000. However, the earlier work of [DDF21] and the concurrent
work of [HKP+21] both include (implicit) server-aided CGKAs as well.

Our protocol CoCoA is shown to be close to optimal in [ACNPPP23], which shows a
lower bound on the communication complexity of healing in log(n) rounds which is a

122

5.2. Preliminaries

factor of log(n) log(log(n)) away from CoCoA’s cost. This work further generalizes
CoCoA to trees of arbitrary in-degree, which allows for healing in an arbitrary number
k of rounds, and further proposed a modification of CoCoA that can achieve PCS in k
rounds with a cost that is lower by a factor of roughly k −k/2

√
n (note that this is only

an improvement for larger values of k).

5.2 Preliminaries
In this Chapter, we will use the definition of CGKA introduced earlier (Definition 2.3.1).

5.2.1 Ratchet Trees
Our protocol builds on TreeKEM, and thus uses the same underlying structure of a
ratchet tree for deriving shared secrets among the group members, which was described
in Section 2.5. Recall that a ratchet tree is a directed binary tree T = (VT , ET), with
edges pointing towards the root node vrootand each user in the group associated to a
leaf. We will use the notation T i = (V i

T , Ei
T) to refer to the ratchet tree associated to

round i.

Node states. On top of the basic node state defined in Section 2.5, the state of
nodes in CoCoA additionally contains the following information. A vector of public
keys PKpr called the predecessor keys which correspond to the public keys of the nodes
in the resolution of v in the round right before the current key pkv was first introduced,
see Section 5.3.4; a pair of hash values hv called the parent hash of v; an identifier
corresponding to the party IDv generating the node’s key pair (note that this is the
case for all nodes); a signature σv under the private signing key of IDv; a transcript
hash value, Htrans, committing to the state of IDv at the time of sampling that node’s
key pair (defined below in Section 5.3.3); a confirmation tag value confTag (defined
below in Section 5.3.4); an optional pair of hash values ov = (ov,1, ov,2) corresponding
to partial openings of a Merkle commitment sent by the server and encoding the state
of the parent nodes of v; and a set of of so called unmerged leaves γ(v).Unmerged, or
simply Unmerged(v), corresponding to the leaves (and their associated public keys) of
the subtree rooted at v whose users have no knowledge of skv (this will be the case,
temporarily, for newly added users). In a slight abuse of notation, given a set of nodes
S, we define its set of unmerged nodes to be Unmerged(S) = ∪v∈SUnmerged(v).
Finally, for an internal node v, we will write sskv to refer to the secret signing key of
party IDv. The secret part of γ(v) consists just of skv, and sskv in case v is a leaf.
Looking ahead, parties might end up (through a misbehaving delivery server) having
different views on the state of a given node, and so we will refer to the view of party
IDi of v at round n as γn

i (v). For a summary of node states see Table 5.1.

123

5. CoCoA

(γ(v).sk = skv, γ(v).pk = pkv) The node’s key-pair
(sskv, svkv) Signing key-pair (Only present if v is a leaf)
PKpr vector of predecessor keys
hv = (hv,1, hv,2) Parent hash value
IDv Identifier of party setting v’s key
σv Signature under IDv’s key
Htrans,v Transcript hash
confTagv Confirmation tag
ov = (ov,1, ov,2) Pair of partial Merkle commitment openings
γ(v).Unmerged = Unmerged(v) Set of unmerged leaves keys

Table 5.1: State γ(v) of non-blank node v.

5.3 The CoCoA Protocol
We start with a high level description of the CoCoA protocol in Section 5.3.1. Sec-
tion 5.3.2 covers users’ states and the key schedule, Section 5.3.3 robustness and
the round hash, Section 5.3.4 the parent hash mechanism, and Section 5.3.5 formally
defines the protocol procedures.

5.3.1 Overview
Concurrent updates in CGKA. To recover from compromise, CGKA protocols allow
users to refresh the secret key material known to them. Recall that a user does this by
re-sampling all keys they know (those on the user’s path in the case of a ratchet tree),
encoding them in an update message, and sending this to the server, which broadcasts
it to the other group members. However, it is unclear how to handle concurrent update
attempts by several users.

As a first approach, it seems natural to simply reject all but one update. Using a
fixed rule to determine whose update to implement, however, might lead to starvation,
with users blocked from updating and thus not recovering from compromise (compare
Fig. 5.1, column (a)). Even if parties that did not update for the longest time are
prioritized, it may take a linear number of update attempts to fully recover security of
the ratchet tree (compare Fig. 5.1, column (b)).

The more recent versions of the MLS protocol partially deal with this through the
“propose and commit” paradigm (see Section 2.6). Roughly, update proposals refresh a
user’s leaf key and signal the intent to perform an update. A commit then allows a
user to implement several concurrent update proposals. While this allows the ratchet
tree to fully recover within two rounds, this comes at the cost of destroying the binary

124

5.3. The CoCoA Protocol

structure of the tree, as, in order to preserve the tree invariant, nodes not on the path
of the committing party are blanked. In the worst case, this can lead to future updates
having a size linear in the number of parties (compare Fig. 5.1, column (c)).

The approach we take with the CoCoA protocol is to introduce concurrency as originally
suggested in the pre-P&C versions, and implement all updates simultaneously, albeit
some of them only partially. Intuitively, while the ratchet tree might not fully recover
immediately, every updating party still makes progress towards recovery; and after
logarithmically many updates of every compromised user, security is restored (compare
Fig. 5.1, column (d)).

Updates in the CoCoA protocol. The main idea in the CoCoA protocol is, given
several concurrent update messages, to apply all of them simultaneously, while resolving
conflicts by means of an ordering of the operations. As a consequence, some updates
might only be applied partially. More precisely, the protocol parameters contain an
ordering ≺. This could be, e.g. the lexicographic ordering, however, the particular choice
does not affect our security results. Then, given a set of update messages {U1, . . . , Uk},
if a node in the ratchet tree would be affected by several Ui, the one that is minimal
with respect to ≺ takes precedence and replaces its key pair. Consider the example
of Fig. 5.2, in which the users A, C, G in a group of size 8 concurrently update, with
C’s update taking precedence over the other two. Note that since the updates are
concurrent, new keys get encrypted to keys of the previous round. Assume, e.g., that C
and G were compromised. Then, after the updates, all compromised keys are replaced.
However, only the first three keys in C’s and G’s update paths are secure, while the
new ∆root was encrypted to an old, compromised key and hence is known to the
adversary. So, while the ratchet tree did not fully recover, it made progress towards it.
In Section 5.5 we discuss the security of CoCoA in more detail.

Adds and Removes. To be able to add users to and remove users from the group,
CoCoA combines features from different versions of TreeKEM. In general, it follows
the approach of TreeKEM v7 in that it does not distinguish between proposals and
commits. However, add operations are handled in a way reminiscent of the latter
technique, as they are executed in two rounds: a first round where they get announced
to the rest of group members, and a second where the parties actually join the group,
after receiving a welcome message. We stress that add operations taking two rounds
seems to be an inherent consequence of allowing concurrency: an updating user cannot
compute encryptions for a user added to the group in the same round by a different
party. Moreover, adds are executed following the unmerged leaves technique (see
Section 2.6), which can be thought of as initially connecting a new user’s leaf directly
to vroot and progressively connecting it to lower nodes as the keys for these get rotated.

125

5. CoCoA

(a) ND TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...
Update 7

Update 8

(b) ID TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...
Update 7

Update 8

(c) TreeKEM v11 (P&C)

Propose

Commit

(d) CoCoA

Update 1

Update 2

Update 3

Update 4

Figure 5.1: Comparison of number of rounds required to recover from corruption for different TreeKEM
variants, ND stands for “Naïve Delivery”, ID for “Ideal Delivery”. Red nodes indicate key material
known to the adversary. In each round all parties (try to) update. In columns (a) and (d) update
requests are prioritized from left to right. In column (b) update requests are prioritized from left to
right among all parties that did not update yet. In column (c) all parties propose an update, then the
leftmost party commits.

126

5.3. The CoCoA Protocol

A B C D E F G H

Figure 5.2: Example; concurrent updates in the CoCoA protocol. The former state of the ratchet
tree (black) is changed by concurrent updates of A (blue), C (green), and G (red). The ordering
is UC ≺ UA ≺ UG. In the updates solid edges correspond to seeds obtained by hashing, dashed edges
to encryptions.

As in MLS, it is assumed that parties have a public (list of) key(s) available to all other
users, termed init keys, which can be used to add them to groups.

Removes can also be seen as a two-round process, as the removal of a party will cause
vroot to get blanked, and an extra round will be needed to create a new group key - this
is the same dynamic already existing in TreeKEM versions up to v7. Note that while
this does not apply to later versions, these do need two rounds: one for the removal to
be proposed, and another for it to be committed.

Note that concurrent operations could be conflicting: consider the case of two parties
removing each other, a removed party adding a new one, or a removed party updating.
Thus, special care needs to be taken in how to handle these conflicts. We refer the
reader to Section 5.3.5 for more details.

Saving on communication complexity. A consequence of allowing concurrent
operations is that arbitrarily many keys can change in a given round (even all the keys
in the tree if all parties decide to update). In previous protocols, like MLS, every user
stores a complete copy of the current ratchet tree. Sticking to this principle while
allowing concurrent updates would imply that the communication cost of a round could
be linear, as a party would have to download all new public keys in the tree. To avoid
this, in the CoCoA protocol users only keep track of the state of nodes that are relevant
to them when issuing an operation: those in their path and in the resolution of nodes
in their co-path, since the latter will be the ones they need to encrypt to when sending
an update. As an important consequence, the server no longer only acts as a relay
server broadcasting the same message to all users. Instead, given a set of update, add,
and remove operations, it prepares an individual packet for every user. We discuss the
efficiency benefits of this approach in more detail in Section 5.4.5

5One could also imagine a variant of CoCoA that sticks closer to the principles of TreeKEM v11,
by having the server forward complete update messages. While in this case t concurrently updating

127

5. CoCoA

Authenticity. Naturally, protocol messages have to be authenticated in any real-world
deployment. In the MLS protocol, all users keep track of signature verification keys of
the other users, and sign the update, add, and remove messages that they generate.
As these messages are no longer simply forwarded by the server, in the CoCoA protocol
users sign every component of the message separately. Removes and adds (and therefore
initialization messages) consist of a single block of information that everyone needs to
receive, so a single signature suffices. In case of an update, on the other hand, every
ciphertext, and public key needs to be signed individually. However, this increase in
computational cost and size of sender packets allows us to greatly decrease recipient
packets in the way discussed above.

Robustness. An important property CGKA protocols aim for is robustness: ensuring
that parties have consistent views of the tree. TreeKEM achieves what [AJM22] refers
to as weak robustness: all honest parties accepting some message M (potentially
generated adversarially) will transition to compatible states.6

To capture the CoCoA protocol, the definition of weak robustness needs to be slightly
adapted: parties now receive different personalized packages as opposed to a unique
one that gets broadcast to everyone, and do not have access to the complete ratchet
tree. Accordingly, we require that if two parties receive and accept messages Mi and Mj

satisfying a certain relation, they will transition into consistent states (where malformed
messages not satisfying this relationship will immediately force users into inconsistent
states). TreeKEM achieves weak robustness through a value called confirmation
tag [AJM22]. This consists of a MAC of the entire CGKA transcript (encoded in a
running hash, called the transcript hash) up to and including that epoch, which is
sent together with every Commit message. The MAC key, a.k.a. the confirmation key,
is derived from the new epoch key schedule, which ensures correct processing of the
commit message and also that the sender had knowledge of the previous epoch’s key
schedule. To ensure consistency, users compute the transcript hash locally and verify
the MAC. There are two issues when attempting to apply this to our scheme: 1) a user
issuing an operation at a given round n will not have knowledge of the operations taking
place concurrently, and thus will not be able to pre-compute the resulting transcript
hash at the moment of crafting their message. And 2), since users only have a partial
view of the ratchet tree, they are not able to compute the transcript hash. Note that
users need to ensure they received consistent sets of operations, as e.g. in Figure 2, if

users would lead to a recipient complexity of t · log(n), the protocol would still allow for concurrent
updates that preserve the binary structure of the ratchet tree and thus outperform TreeKEM v11 for
certain sequences of operations at the cost of slower healing.

6We mention in passing that [AJM22] also defines a notion of strong robustness, seemingly hard
to achieve using practically efficient protocols, so we do not discuss it further.

128

5.3. The CoCoA Protocol

C is not sent A’s partial update, they will disagree on the key for node Int(A, B) after
processing.

We solve 1) by effectively only authenticating the transcript up to the last round, i.e.
not including the current operations. This ensures that if ID accepts a packet, it comes
from a user whom they agreed with up until the beginning of that round. We solve 2)
by what we call a round hash: a hash value computed over the public part of the new
state of the ratchet tree (and any add and remove operations applied concurrently in
that round). Clearly, none of the users can compute this hash value from their local
state, so we shift this computation to the delivery server, who sends the round hash
value to every party. However, the delivery server might act maliciously, and hence we
need to ensure that the users can verify this computation. We do this by letting the
round hash be a Merkle commitment to the current state. Users then expect the server
to provide the openings of the commitment necessary to verify that it matches their
partial view of the tree, which ensures consistency. See Section 5.3.3 for details.

Parent hash. TreeKEM aims for further security through two different mechanisms,
mainly targeted at allowing new group members to verify the legitimacy of the received
information. Informally, the first one, parent hashing, provides newly added users
with the guarantee that the ratchet tree was well formed, i.e., that it resulted from
a legitimate execution of the protocol. The second, tree hashing, introduced in
TreeKEMv9 [BBR+23], consists of a locally-computed hash commitment to the whole
ratchet tree, which the new users can verify upon joining. Our round hash can be seen
as subsuming it, just with the difference that it can no longer be computed locally.

We adapt the parent hash construction from TreeKEM into our protocol, with some
modifications. While TreeKEM relies on parent hash to ensure new users can verify the
tree received when joining a group, we also use it to verify any new keys sent by the
server to current users. This is needed since, as a result of blanks, the set of nodes
whose states users need to keep track of varies.

5.3.2 Users’ states and the Key Schedule

Each user keeps track solely of the state of nodes on either their path or the resolution
of their co-path; we define P(ID) = path(ID) ∪ Res(co-path(ID)) to be the set
comprising exactly those nodes. More in detail, each user stores a local state γ,
described in Table 5.2, which gets updated after every round message. We will write
γn to refer to a state corresponding to round n.

129

5. CoCoA

γ.ID An identifier for the party.
γ.G The set of current members of the group.
γ.ssk The party’s signing key
γ(v) Node state for every v ∈ P(γ.ID), only public part for v ∈ Res(co-path(γ.ID)).
γ.Htrans Current value of the transcript hash.
γ.appSecret Current round’s application secret.
γ.confKey Current round’s confirmation key.
γ.initSec Current round’s initialization secret.
γ′ Pending state encoding operations not yet confirmed.

Table 5.2: User’s local state γ.

Key schedule. CoCoA’s key schedule for round n is defined via hash function H5 as
follows:

γ.epochSecret(n) = H5(γ.initSec(n− 1) ||∆root(n) || Htrans(n))
γ.appSecret(n) = H5(γ.epochSecret(n) || ′appsecret′)

γ.confKey(n) = H5(γ.epochSecret(n) || ′confirm′)
γ.initSec(n) = H5(γ.epochSecret(n) || ′init′)

The epoch secret γ.epochSecret(n) is used to derive all other keys from it; the
application secret γ.appSecret(n) serves as the group key in epoch n and is to be
used in higher level protocols, e.g. secure group messaging; the confirmation key
γ.confKey(n) will be used to authenticate next epoch’s protocol messages through
a MAC termed the confirmation tag;7 and the initialization secret γ.initSec(n) seeds
next round’s key schedule, tying it to the current one. Finally, the transcript hash
Htrans(n) encodes the transcript of the execution up until round n - it is defined in the
following section.

5.3.3 Robustness, Round Hash, and Transcript Hash
In this section we discuss CoCoA’s robustness. We show that two parties accepting
messages containing the same round hash value, will transition into consistent states.
We start by defining the concept of a round hash and consistent states.

In the following we assume a fixed rule, that can be locally computed by the users on
input a ratchet tree T and a set of operations that determines a total ordering of said

7This MAC, also present in TreeKEM, is there to mitigate active attacks. The latter are not
reflected in our security model, but we chose to keep it, as it is the main security mechanism in
response to a leaking of signature keys.

130

5.3. The CoCoA Protocol

operations. This ordering ensures all users will compute the same round hash and also,
when applied to adds Ai, determines the free leaf that the user added by Ai is assigned
to.

Defintion 5.3.1. Let H3 be a hash function, and n a round with associated protocol
messages T = (U, R, A) = ((U1, . . . , Uk), (R1, . . . , Rl), (A1, . . . , Am)), where the Ui

correspond to update messages; and the Ri and Ai correspond to the packets, as sent
by their issuers, of any remove and add operation, respectively; and let each vector
U, R, A be ordered with respect to the ordering ≺. Let T n be the ratchet tree resulting
from applying the operations in T with respect to ≺ to T n−1, and pγ(v) the public
state of v in T n (note that pγ(v) = blank if the node is to be blanked as a result of
some removal in R). We define the map ℓ taking nodes in T n to labels as follows:

ℓ(v) =

⎧⎨⎩H3(pγ(v)), if v is a leaf.
H3(ℓ(lparent(v)), ℓ(rparent(v)), pγ(v)), if v is an internal node.

The round hash Hround(n) of n is defined to be

Hround(n) = H3 (ℓ(vroot), R, A) .

In short, the round hash is essentially a Merkle commitment to the ratchet tree’s public
keys and the round’s dynamic operations. The benefit of this approach is that every
user can verify that the round hash sent by the server faithfully encodes the operations
affecting their local state, by just receiving at most a logarithmic number of values
irrespective of the number of updates (note that a user will necessarily need to hear
about all dynamic operations). In particular, a user ID receiving the appropriate group
operations should have access to the inputs corresponding to dynamic operations, and
to the new keys of nodes in P(ID). The server does this by sending the user Hround(n),
as well as the output of openRH (Figure 5.3), which, on input a user ID, returns a
vector of hash values, corresponding to the labels of nodes not in P(ID), but that are
parents of a node in P(ID). Given these values, the user is able to verify the received
round message by running verifyRH (Figure 5.3), which recomputes Hround(n) with
respect to their updated ratchet tree and compares it to the round hash provided by the
server. In order to formally define the above algorithms, we make use of the following
helper functions:

• extract on input a round message M and a state γ, outputs a list of updates
(U1, . . . , Up), removes (R1, . . . , Rq), and adds (A1, . . . , As), a list of indices i
corresponding to the leaves users added by the Ai are assigned to, and a round
hash value h.

131

5. CoCoA

• update-info on input vectors U, R, A of update, remove and add operations,
ordering ≺, a state γ corresponding to ID and a node v ∈ P(ID), outputs a node
public state pγv corresponding to the public state of v resulting from applying the
input operations with respect to ≺ and state γ (pγv = blank if v is blanked as
a result of some Ri); and, if v is a leaf node, additionally, outputs the identifier
ID∗ corresponding to v after applying the operations as above.

• retrieve-labels on input a local state γ, a node v and a vector O of tuples of the
form (vi, h, h′), outputs vector (v, hl, hr) if there is a unique vector in O with
vi = v, where hl = h and hr = h′, and ⊥ otherwise.

• tree on input a set of nodes V outputs the smallest subtree of T which contains
V .

• depth on input a local state γ and a node v, outputs the depth of v, as defined
by the length of the path from v to vroot in tree(P(γ.ID)).

Correctness of algorithm verifyRH follows by inspection. The following lemma shows
that we get the desired robustness. Note that if two users process a round message
containing different round hash values, they will immediately be forced into inconsistent
states, so we can just concern ourselves with the case where the round hash values are
the same.

The transcript hash is defined as Htrans(0) = 0, and, for subsequent rounds, given a
verified round hash:

Htrans(n) = H3(Htrans(n− 1)||Hround(n)) .

With this we can define what it means for parties to have consistent states, which
informally requires them to have consistent views of the tree (i.e. agree on the states of
nodes on the intersection of their states), and agree on the group key, group members,
and group history, i.e. on the transcript hash.

Defintion 5.3.2. Let ID and ID∗ be two group members with states γ and γ∗. They
have consistent states if pγ(v) = pγ∗(v) for all v ∈ P(ID) ∩ P(ID∗), γ.appSecret =
γ∗.γ.appSecret, and (γ.G, γ.Htrans) = (γ∗.G, γ∗.Htrans).

Note that we only define consistency of states for users who have joined the group.
More in detail, we say that a user ID has (in their view) joined the group if there exists
a query CGKA.Proc(ID, ·) in the execution, where ID accepts the corresponding round
message, i.e. where the state for ID changes (is initialized) as a result of said query.

132

5.3. The CoCoA Protocol

Algorithm openRH(ID, Tℓ)

00 O := ()
01 For v ∈ Res(co-path(ID)):
02 If v.isLeaf = false:
03 O ← O ∪ (v, ℓ(lparent(v)), ℓ(rparent(v)))
04 Return O

Algorithm verifyRH(γ, M, O)

05 (U, R, A, i, h)← extract(M, γ)
06 For d ∈ {depth(leaf(γ.ID)), . . . , 0}:
07 For v ∈ tree(P(γ.ID)) s.t. depth(v) = d:
08 If v.isLeaf = true:
09 pγv ← update-info(U, R, A,≺, γ, v)
10 ℓ(v) = H3(pγv)
11 Else If v ∈ Res(co-path(ID)):
12 pγv ← update-info(U, R, A,≺, γ, v)
13 (v, hl, hr)← retrieve-labels(O, γ, v)
14 ℓ(v) = H3(hl, hr,

pγv)
15 Else
16 pγv ← update-info(U, R, A,≺, γ, v)
17 ℓ(v) = H3(ℓ(lparent(v)), ℓ(rparent(v)), pγv)
18 If h = H(ℓ(vroot), R, A, λ):
19 b← 1
20 Else b← 0
21 Return b

Figure 5.3: Round Hash algorithms

The following proposition shows that we get the desired robustness. Note that if
two users process a round message containing different round hash values, they will
immediately be forced into inconsistent states, so we can just concern ourselves with
the case where the round hash values are the same.

Proposition 1. Let IDi and IDj be two group members with consistent local state after
round n and let them receive round messages Mi and Mj respectively, both containing
the same round hash value h, and opening vectors Oi and Oj . If verifyRH(γn

i , Mi, Oi) =
verifyRH(γn

j , Mj, Oj) = 1, then they will have consistent states after processing their
respective round messages.

Proof. Assume for contradiction that the parties arrive to inconsistent states after

133

5. CoCoA

processing their respective messages, we will show that this implies a collision for H.
Since we assumed them to start the round in a consistent state, and the received round
hash is the same, they will agree on the transcript hash. Similarly, agreement on the
group ID and round follows trivially from the agreement in the previous round. Thus,
disagreement over the group state must come from either membership or key material in
the tree. First, let (Uk, Rk, Ak,≺k, λk, h)← extract(Mk, γk) for k ∈ {i, j} and denote
by ℓk the map from nodes to labels as derived by party IDk when running algorithm
verifyRH. Define αk = (ℓk(vroot), Rk, Ak, λk). We know from verifyRH(γn

i , Mi, Oi) =
verifyRH(γn

j , Mj, Oj) = 1 that H(αi) = H(αj). Now, if γn+1
i .G ̸= γn+1

j .G, it follows
that (Ri, Ai) ̸= (Rj, Aj), since γn

i .G = γn
j .G. In particular, this implies that αi ̸= αj,

i.e. a collision for H. Assume, therefore, that γn+1
i .G = γn+1

j .G and that there is
v ∈ P(IDi) ∩ P(IDj) such that pγn+1

i (v) ̸= pγn+1
j (v). If hi ≠ hj, a collision for H

follows as before, so assume that hi = hj. Let u, u′ be the left and right parents,
respectively, of vroot. By definition, we have that hk = H(ℓk(u), ℓk(u′), pγn+1

k (vroot)).
If any of ℓi(u) ̸= ℓj(u), ℓi(u′) ̸= ℓj(u′) and pγn+1

i (vroot) ̸= pγn+1
j (vroot) hold, a collision

for H follows. Assume thus equality of the labels and public states, and assume w.l.o.g
that v is on the left subtree, i.e. is an ancestor of u. We know that ℓi(u) = ℓj(u),
and that ℓk(u) = H(ℓk(w), ℓk(w′), pγn+1

k (u)), by definition, where wk, w′
k are the left

and right parents of u. Thus, as before, either we have some inequality between the
corresponding values for i and j, from which a collision can be extracted, or the labels
for the parents are the same for both parties. We can repeat this process until arriving
to v, for which we know pγn+1

i (v) ̸= pγn+1
j (v). We will therefore eventually find a

collision for H.

Therefore, an adversarial delivery server making IDi and IDj accept messages with
a consistent round hash value, which prompt them into inconsistent states would
equivalently be able to derive a collision for H. Since we assume H to be collision
resistant, it follows that no such adversary exists.

The next proposition shows that, in fact, it is to consider the group keys or transcript
hash values in users states to determine if these are consistent.

Proposition 2. If H3 and H5 are modeled as random oracles then, with all-but-
negligible probability, the states γ and γ∗ of users ID and ID∗ are consistent if and only
if CGKA.Key(γ) = CGKA.Key(γ∗). Equivalently, if they have the same transcript
hash value γ.Htrans = γ∗.Htrans.

Proof. The only if implication is clear by definition. Assume thus that CGKA.Key(γ) =
CGKA.Key(γ∗). Since the application secret in their states is the same, so must be
Htrans, by collision resistance of H5. If the states of the two parties differ in the group
membership, then one of them must have processed some add or remove operation the

134

5.3. The CoCoA Protocol

other has not. These operations are directly hashed into the appropriate round hash,
which itself gets hashed into Htrans. Thus, there must have been a collision in either
H3 or H5. Finally, the public states for all nodes in a user’s state get hashed by the
user in order to compute the round hash. As before, if any of the values in the states
of nodes in the intersection of user’s states P(ID) ∩ P(ID∗) differs, we can extract a
collision for either H3 or H5. Hence, the states of the two users must be consistent.

Finally, to see that two users having the same transcript hash value implies them having
the same epoch secret CGKA.Key(γ), recall that γ.epochSecret(n) = H5(γ.initSec(n−
1) ||∆root(n) || Htrans(n)), where γ.initSec(n) = H5(γ.epochSecret(n) || ’init’). More-
over, a user always checks that the secret key at any node v, and in particular at
vroot, is consistent with the public key set at that node. The former is derived from
∆v, and the latter is input into the computation of the round hash, and therefore
of Htrans. Thus, were the seeds ∆root(n) used by ID and ID∗ to compute their re-
spective epochs secrets different, so would be their transcript hash values, up to the
negligible probability of collisions of PKE.Gen and the random oracle H2 (since, recall,
(ski, pki ← PKE.Gen(H2(∆i))). Last, suppose for contradiction that the initialization
secrets are different while their transcript hash values match. Since the γ.initSec are
derived deterministically from γ.epochSecret, if γ.initSec(n− 1) ̸= γ.initSec∗(n− 1),
then we would have γ.epochSecret(n− 2) ̸= γ.epochSecret∗(n− 2). By the collision
resistance of the random oracle H3, Htrans(n) = Htrans

∗(n) implies Htrans(n− 1) =
Htrans

∗(n − 1), so we could apply the same argument, eventually reaching the first
epoch where the last one of them joined, i.e. to the first point in the execution where
Htrans = Htrans

∗. If at this point one of the users, say w.l.o.g. ID, was already a part
of the group (i.e. this was not the value with which one of them initialized their state),
then ID∗ got both their γ.initSec∗ and Htrans

∗ from another party ID′, so we can
repeat the argument with respect to ID and ID′. If, instead, these values corresponded
to those with which both of them initialized their state, then by collision resistance,
they must have been sent by different parties ID1 and ID2, for which the same must be
true: their transcript hash values match, but not their initialization secrets. Eventually,
since the number of users in the group is finite and there is a single initial user, the
group creator, it must be that these two users are the same or were added by the same
party with respect to the same state (by collision resistance of the random oracle H3),
which is a contradiction.

5.3.4 Parent Hash
Ratchet trees in TreeKEM contain so-called parent hashes, which were introduced to
the standard in TreeKEM v9, and analyzed and improved by Alwen et al. [AJM22].
These ensure, on the one hand, that for every node v ∈ T , whoever sampled skv had

135

5. CoCoA

knowledge of the secret signing key for some leaf l of the subtree rooted at v; and on
the other, that at the moment this secret was generated it was not communicated to
any user whose leaf is not in this subtree. This protects against active attacks where
a user is added to a malformed group where the tree invariant is violated, potentially
causing him to communicate to a set of users different to the one he believes to be
communicating to.

To adapt parent hash to CoCoA we have to overcome the two issues that (a), since
parties update concurrently, parent hash values can be defined with respect to keys on
the copath that were overwritten by a concurrent update, and (b), since the resolution
of a user’s copath and in turn the corresponding public keys that are known to the user
may change from round to round, the user needs to be able to verify the authenticity
of such keys without having access to the state of leaves below it. We address the
first issue by having users store the public keys of one previous round: each node
state γ(v) now contains an associated list of predecessor keys, PKpr, containing the
public keys corresponding to nodes in the resolution of v in the epoch when the current
key was sampled, and excluding those that where unmerged at child(v);8 i.e. if the
update sampling pkv unblanked v, the predecessor keys will be a list, else it will just
contain the previous public key. The second issue we solve by not only signing the
parent hash value of users’ leaves but by introducing a signature at every node in their
update path (that which is sent with the packet containing the new public key when
it is first announced). Last, to ensure consistency between users’ views, we add two
further values to the parent hash and node state: a commitment to the subtree under
the node’s sibling and a commitment to the whole ratchet tree. We now define more
formally the slightly modified parent-hash algorithm, compatible with our construction,
with respect to signature scheme SIG.

As in TreeKEM, parent hash values of a node are updated whenever the key cor-
responding to the node is updated. More in detail, let ID compute an update U
containing new keys for nodes along their path (see full definition in Section 5.3.5),
which get stored in pending state γ′. Parent hashing algorithm PHash.Sig on input
(ID, γ′) first fetches ID’s update path path(vID) = (v0 = vID, v1, . . . , vk = vroot). For
i ∈ {0, . . . , k − 1} let v′

i denote the parent of vi+1 that is not part of path(vID), and
let R = Res(v′

i) \ Unmerged(vi+1). Then, we define h1,k = h2,k = 0 , and using hash
function H4, compute:

8The exclusion of these unmerged leaves responds to the fact that these could correspond to
parties added after the state for child(v) was last updated.

136

5.3. The CoCoA Protocol

h1,i ← ℓ(v′
i) for i ∈ (k − 1, . . . , 0)

h2,i ← H4(pkvi+1 , PKpr
vi+1

, h2,i+1, {pkv}v∈R) for i ∈ (k − 1, . . . , 0)

σi ← SIG.Sig
(︂
γ(ID).ssk, (pkvi

, PKpr
vi

, (h1,i, h2,i),Htrans, confTag)
)︂

for i ∈ (0, . . . , k)

where ℓ(v) is the label of v as in Def. 5.3.1 above, PKpr
v ← 0 if v did not have a key

before U , hi = (h1,i, h2,i).

Algorithm PHash.Sig then adds the values (H, Σ) = (h0, . . . , hk, σ0, . . . , σk) to U ,
substitutes the parent hash values hi and signatures σi in γ′ by the newly computed
ones, and returns U .

Verification. A user receiving a tree T from the server can verify its authenticity
by running the algorithm PHash.Ver(T). This will be run by users in two different
scenarios: on the one hand, when joining the group, they will verify the whole ratchet
tree (in this case T = T); on the other, when processing a round message containing
one or more removes, they will verify the received keys for nodes in the new resolution
of their co-path (in this case T is the union of P(IDi) for all removed IDi). The
algorithm runs as follows:

The algorithm first checks that all non-blank nodes in the tree have a complete public
state, and that for any internal node v, the associated identifier IDv is associated to
one of the leaves of the sub-tree rooted at v.9 If any of these checks does not pass,
the algorithm aborts. Next, it checks that h2,vroot , and then, verifies the following
conditions hold:

1. For any non-blank non-leaf node v in T the following equalities hold with either
p and p′ being the left and right parents of v or, if not, with p′ being the left
parent of v and p the right parent, setting p← lparent(p) if p is blank, until p
is either non-blank or an empty leaf, in which case 0← PHash.Ver(T).10

(a) h2,p = H4(pkv, PKpr
v , h2,v, {pkw}w∈R) and h1,p = ℓ(p′) or

(b) h2,p = H4(pkv, PKpr
v , h2,v, PKpr

p′) and Htrans,p = Htrans,p′ .

where R = Res(p′) \ Unmerged(v).
9A user who is already part of the group will have knowledge of the leaf index of each group

member, and can check this without necessarily having a full view of the tree.
10The recursion in the second case is needed to account for the possible blank nodes introduced

between p and v as a result of adding to new leaves to accomodate new parties, so that p and p′

correspond to the parents of v at the time the state of v was created.

137

5. CoCoA

2. SIG.Versvkw((pkw, PKpr
w , hw,Htrans,w, confTagw), σw) = 1 for all w ∈ T .

We say that p and p′ as defined above are the effective parents of v. If p is the effective
parent satisfying condition 1, we say that v verifies through p, and note that this
corresponds to the situation where p’s key was sampled in the same update as v’s.
Observe that if we have two concurrent updates, the parent hash value of the node
at the intersection cannot possibly have been computed with respect to the new key
in its co-path, as these were generated at the same time, by different parties. Thus,
the parent hash value will be computed w.r.t. the predecessor key - condition (b)
corresponds to this case. Moreover, we check that in this case the users computing
the concurrent updates where actually in consistent states, by checking that transcript
hash values they included in their update packets are the same. In case v is not the
intersection between two concurrent updates, the public state of the nodes in the
resolution of the co-parent will not have changed, so we only need to check with respect
to the newest key in the resolution nodes. However, we also check that the user who
sampled v indeed had in their view the same (commitment to) subtree under the parent
of v not in their path, by checking that the parent hash value h1 is consistent with
the label of p′. Finally, unmerged leaves are excluded from R since these might differ
between the time the parent hashes were computed and the new user joins the group.

5.3.5 The Protocol: CoCoA and Partial Updates
In the description below, we use γ for the state of the party issuing the appropriate
operation. The ordering used to resolve conflicts caused by concurrent updates is
denoted by ≺. An overview of the content of user-generated messages can be found in
Table 5.3, and one for the contents of round messages in Table 5.4.

Initialization. To initialize a group with parties G = {ID1, . . . , IDn}, ID1 cre-
ates a ratchet tree as follows. First, ID1 retrieves the public initialization keys
(pk̄, svk¯) = ({pkID1 , . . . , pkIDn

}, {svkID1 , . . . , svkIDn}) of all group members (includ-
ing themselves), redefines G ← (G, pk, svk) to include these, and initializes a left-
balanced binary tree with n leaves, assigning each pair of keys in (pk̄, svk¯) to a leaf.
Let v be ID1’s leaf. They then sample new secrets for v’s path (∆, K)← re-key(v),
store the new keypairs (skj, pkj) in the corresponding nodes on the created tree
and compute and store in γ′ the parent hashes and signatures for the nodes in
path(v): (H, Σ)← PHash.Sig(ID1, γ′), where recall that each σj ∈ Σ is a signature of
(pkj, 0, hj,Htrans, 0) for some vj ∈ path(v) with hj ∈ H its corresponding new parent
hash pair (here PKpr

v and confTag are set to 0 initially). For every vj ∈ path(v)\ v, let
wj be the parent of vj not in path(v). Then, for each yj,l ∈ Res(wj), ID1 computes
ej,l = PKE.Enc(pkyj,l

, ∆j), together with the signature σs
j,l = SIG.Sigsski

(ej,l). Next,

138

5.3. The CoCoA Protocol

Init
ID The identifier of the group creator.
G List of group members.
P = (pj = (pkj, hj,Htrans, σj) : j ∈ [|path(ID)|]) Public states for every vj ∈ path(ID).
S = (sj,l = (ej,l, σs

j,l) : j ∈ [|path(ID)|], l ∈ Lj) Encryptions of the seeds along ID’s path.
Update

ID The identifier of the updating user.
ci Update counter
P = (pj = (pkj, hj,Htrans, confTag, σj) : j ∈ [|path(ID)|]) New public states for every vj ∈ path(ID).
S = (sj,l = (ej,l, confTag, σs

j,l) : j ∈ [|path(ID)|], l ∈ Lj) Encryptions of the new seeds.
Remove/Add

ID Identifier of removed/added party.
confTag Confirmation tag.
σ Signature of message contents under sender’s signing key.
pkID Public key of added party (Only adds).
W = (Hround, γ.Htrans, γ.G, γ.confKey, γ.initSec) Welcome message (Sent next round, signed, only adds).

Table 5.3: Contents of user generated messages.

they send out the initialization message I = (′init′, ID1, G, pk̄, P, S); where P is the
vector with entries pj = (pkj, hj,Htrans, σj), one per node in path(ID1); and S is the
vector with entries sj,l = (ej,l, σs

j,l), containing all the necessary encryptions and values
to be authenticated, for each vj ∈ path(v). Finally, ID1 erases the seeds ∆i, and sets
all internal nodes outside their path in their local tree copy to be blank.

Update. To issue an update, user IDi with state γ and at leaf v, first computes
new secrets along their path (∆, K) ← re-key(v), stores the new keys in γ′ and
computes and stores the parent hashes and signatures for the nodes in path(v):
(H, Σ) ← PHash.Sig(IDi, γ′). Second, they set confTag = MAC.Tag(γ.confKey,
γ.Htrans). For every vj ∈ path(v) \ v, let wj be the parent of vj not in path(v)
and let Lj = Res(wj) ∪ Unmerged(Res(wj)) be the set of nodes that are either in
the resolution of wj or are leaves that are unmerged at some node in said resolution.
Then, for each yj,l ∈ Lj, IDi computes ej,l = PKE.Enc(pkyj,l

, ∆j), together with the
signature σs

j,l = SIG.Sigsski
(ej,l, confTag). Next, they send out the update message

U = (IDi, P, S, ci); where P is a vector of entries pj = (pkj, hj,Htrans, confTag, σj,)
containing the new public states and necessary authentication values for each vj ∈
path(v);11 S is the vector with entries sj,l = (ej,l, confTag, σs

j,l), containing all the
necessary encryptions and values to be authenticated, for each vj ∈ path(v); and a
counter ci, the number of updates (including this one) sent by IDi since they last
processed a round message. Last, they erase the seeds ∆.

11note that, as in an initialization message, the signature included in each of the pj does not
exactly cover the rest of the elements of pj , but also includes the predecesor key PKpr at that node.
This is not a problem for verification, as this is set to 0 for new groups, and in any other cases, parties
will have access to the key at that node before they processed said update.

139

5. CoCoA

Remove. To remove party IDj, IDi sends out a remove(IDj) plaintext request
together with confTag = MAC.Tag(γ.confKey, γ.Htrans), and a signature σ under
their signing key of the remove message and the confirmation tag. This will have the
effect of blanking the nodes in IDj’s path. Following a removal, an update operation
must be issued immediately so that a new group key is created.

Add. Additions of parties work in two rounds. To add party IDj, IDi first sends a
plaintext add request add(IDj, pk, svk) containing IDj’s public init key pair (pk, svk),
confTag = MAC.Tag(γ.confKey, γ.Htrans) and a signature under IDi’s signing key
of the add request and the confirmation tag. This will allow all group members to
learn the identity of the new party and therefore to encrypt future protocol messages
to them. In the following round, IDi

12 must send IDj a signed welcome message
W = (Hround, γ.Htrans, γ.G, γ.confKey, γ.initSec), encrypted under pk, containing
the necessary information to initialize their local state and seed that round’s key schedule,
as well as check the received tree from the server is correct. Moreover, some user must
send an update during that round, ensuring that way that a new application secret will
be created.

Collect and Deliver. Whenever the server receives an initialization message I, it
just forwards it to all the new group members, initializing its local state γser with the
members of the new group and the public information of the ratchet tree included
in I. For all other messages, it does as follows: given concurrent group messages
T = (U, R, A, W) = (Ua, Rb, Ac, Wd : a ∈ [p], b ∈ [q], c ∈ [r], d ∈ [s]) sent during a
round, corresponding to updates, removes, adds, and welcome messages, respectively,
the delivery server will first check if any two or more updates come from the same
user, deleting all of them except for the one received last. The server first updates its
local copy of the public state of T , stored in γser, by updating the public keys of nodes
refreshed by any Ua, blanking any nodes affected by any Rb, and adding a public key
and identifier to any leaf newly populated as a result of an Ac; here if two or more
operations affect a given node, the operation that is minimal with respect to ≺ will be
the one determining the state of the node. A few considerations must be observed here,
which we discuss further below: first, all removes must precede any updates, so that a
node is blanked whenever a leaf under it is removed, irrespective of which updates take
place; second, conflicting removes take effect simultaneously, blanking nodes in both
paths; third, new users are added on the left-most free leaves in the tree according to
some fixed rule that the receiving parties can reproduce locally. Once the server’s view
T is updated, it computes the labels for it, defining Tℓ, and the round hash Hround, as
prescribed in Definition 5.3.1; and computes opening vectors Oi ← openRH(IDi, Tℓ)
for all group members IDi ∈ G (note that these will be computed with respect to the

12an alternative specification could allow any group member online to do this instead

140

5.3. The CoCoA Protocol

R Vector of remove operations
A Vector of add operations
ci Update counter
Hround Round hash value
Oi Openings to verify Hround

γ(v) for v ∈ Ni public states of nodes needed to update P(IDi)
uv = (ID, p, s) public state and encryption (if appropriate) of each relevant updated v
W Welcome message (only for new joiners)
T Entire ratchet tree (only for new joiners)

Table 5.4: Contents of Round message Mi to party IDi.

set P(IDi) resulting from (un)blanking nodes as implied by T). Then, it crafts round
messages Mi for each user, containing the following information: first, the vectors R
and A or removes and adds; second the vector Oi and the round hash Hround; third,
the public states γ(v) = (pkv, PKpr

v , hv, IDv, σv,Htrans,v, confTagv, ov, Unmerged(v))
at the beginning of the round of the nodes v ∈ Ni = (∪j∈Rid

P(IDj)) \ P(IDi) where
Rid is the set of indices of parties removed by R, i.e., the new nodes on the resolution
of IDi’s and the extra states needed to verify the validity of the received keys13; and
fourth, for each node v ∈ P(IDi) (after the (un)blanking implied by T) whose keys
get rotated as a result of some (winning w.r.t. ≺) update Ua = (ID, P, S), the server
adds uv = (ID, pj) to Mi, where pj ∈ P is the public state of corresponding to v; if,
besides, v ∈ path(IDi) and is the lowest node in path(IDi) updated by Ua, the server
also includes the tuple sj,l ∈ S into uv, corresponding to the encryption of v’s seed to
the node in path(IDi) which is in the resolution of the co-path of Ua’s author. Last,
the server also includes a counter ci, equal to that of IDi’s update included in Mi if
there is one, and 0 otherwise. Finally, for each newly-added IDi, the round message Mi

additionally contains the corresponding W , as well as a copy of the public state of T .

Process. Upon receipt of a round message M containing associated updates U =
(U1, . . . , Up), removes R = (R1, . . . , Rq), adds A = (A1, . . . , Ar), openings vector O,
public states for nodes in N , round hash Hround, and counter c, user ID processes it as
follows. First, if c ̸= 0, they check if, from the time they last processed a round message,
they issued an update with counter c, aborting if not. Next, for every update, remove
and add, they check that MAC.Ver(γ.confKey, confTag) = 1; that for the all update
packets Ua the transcript hash value included with the new public values for a node is
the same as γ.Htrans; and that the associated signature verifies under the public key of

13note that the leaves of the sub-tree of T with vertex set Ni correspond to the new nodes in the
resolution of ID that were not part of their state

141

5. CoCoA

the sender (using the current node key in place of PKpr to verify signatures of updates);
and similarly abort if any of these verifications does not pass. 14 If these checks pass,
they copy their local state γ corresponding to the current round to γ′, incorporating
into it any node states previously stored there as part of the generation of said update
with counter c (this update is empty if c = 0). Then, they update the public state of
nodes needed to verify the round hash, as prescribed by the received operations: first,
for every v ∈ P(ID), they blank v if it is in the path affected by some Ri and update
P(ID) to include its new resolution as follows: they check that the set of nodes N
consists of the nodes outside P(ID) that are in the paths and resolutions of co-paths of
removed users. If more than one user is removed, it could be that N consists of several
disconnected subtrees of T . For each such subtree T , ID checks that its leaves are all
non-blank; that all the leaves (w.r.t to T) of removed parties as described in R are
included in it; and, finally, that PHash.Ver(γ, T) = 1. Moreover, for each blanked node
w (as a result of M), they will use the received openings for the leaves of T , together
with the received states, to reconstruct the Merkle hash openings ov associated to v
and check that the stored values match these. If all the checks pass, ID incorporates in
γ′ the public states of the nodes in N that belong to the new nodes in P(ID), together
with the received openings for each such node, and aborts otherwise. Next, if any v in
the new P(ID) set is affected by an update Ua, they overwrite its public key, parent
hash value, signature, identifier, transcript hash value, and confirmation tag to the
one set by Ua, and update the unmerged leaves and predecessor keys appropriate; and
else, if corresponding to a newly populated leaf, determine the corresponding added
party from (U, R, A) and add the new public key and identifier ID∗ to the leaf. If
several nodes in their state are affected by updates, they also check that for every
such node in their path, the update setting a new state for it is the same setting a
state for one of its parents. Once the updating of the public state of T is done, they
run verifyRH(γ′, M), aborting if the output is 0. Once those verifications are passed,
for all nodes affected by some Ui, they decrypt the appropriate seed, derive the new
key-pairs from it as in algorithm re-key, check that the received public key matches
the derived one, aborting if not, and otherwise, overwrite the public and secret keys
with them; set Unmerged(v)← ∅, and then Unmerged(v)← Unmerged(v) ∪ łi for
each leaf li that is an ancestor of v corresponding to an added party. After that, they
update γ.G to account for membership changes as per R and A. Finally, they compute
the key schedule for the current round, set γ ← γ′, deleting both the old key schedule
and the old key material from node states, and delete γ′ ← ∅.

14Observe that this could allow an active adversary to continuously send inconsistent messages,
preventing users from updating. Since this falls outside of our model, we do not consider it here for
simplicity, but note that it could be prevented by having users process all operations that do verify
and compute an updated round hash, hashing together the received value and the operations that
failed verification, inputting this into the transcript hash instead. This would ensure that parties agree
on the transcript hash if and only if they processed exactly the same operations.

142

5.3. The CoCoA Protocol

If the user is not yet part of the group, M will also contain a welcome message
W = (Hround,Htrans, G, confKey, initSec) together with a copy of the public state
of the ratchet tree T , allowing the user to initialize their state prior to executing the
instructions above. The newly added user IDi will first check that G matches the leaf
identifiers in T , compute the round hash from T , R and A as in Def. 5.3.1, and check
that it matches the received value Hround (and skip this step when later processing the
rest of the round message). If any of these checks fails, the user immediately aborts.
Next, they will initialize their state γ by setting γ.ID ← IDi, γ.Htrans ← Htrans,
γ.G← G, γ.confKey← γ.confKey, and γ.initSec← γ.initSec. Finally, they set the
state γ(l) of the leaf l to contain the init key with which they were added - note that
they will not have at this point knowledge of the secret keys of any other node, but
they will obtain some as soon as they process any Ua. When doing so, note that for
the verification of the signature they will need to make use of the keys in T . Last, to
process an initialization message I = (′init′, ID̃, G, P, S), ID verifies the parent hash
for the node public states in P , using PKpr

v = 0 for all nodes v ∈ pathID̃, derives the
keys for ID̃’s path from S, and creates a ratchet tree with users in G as leaves and the
obtained keys. Last, they initialize the key schedule, with initial value 0 for γ.initSec
and Htrans, storing all in the newly created state γ.

Get group key. To extract the current group key a user ID with local state γ fetches
I = γ.appSecret.

Handling concurrent changes to the group membership. Regarding the consid-
erations on handling concurrent dynamic operations in the collect and deliver operation,
note that it is mandatory that removes precede updates, as the new keys sampled by
the latter might be encrypted to keys under the knowledge of some of the removed
parties; thus, if the node is not blanked, there is not guarantee the removed party will
no longer have knowledge of any node’s state - our restriction on the ordering prevents
this, enforcing that a node is blanked whenever a leaf under it is removed, irrespective
of which updates take place. With regards to conflicting removes, i.e., those where the
removed party in one is the remover in the other, so that processing the one would
render the other syntactically incorrect, this could be left up to the group policy. For
example, if two parties IDi and IDj concurrently remove each other, different policies
could be a) both take effect, b) none take effect and c) only one takes effect. We
consider the first option to be the most desirable, e.g. so users could not avoid being
removed by issuing removals of other parties, and so apply this one in the protocol.

143

5. CoCoA

Protocol type Rounds to heal Cumulative sender Per-user recipient Subsequent per-user
t corruptions communication communication update cost

no coordination coordination worst average

(a) corrupted parties unknown
Original TreeKEM & variants [ACDT20, BBR18, KPPW+21, Mat19] n n2 log(n) n log(n) n log(n) log(n) log(n)
Propose-commit TreeKEM [BBR+23] 2 n2 n n n n
Bienstock et al. [BDR20] 2 n2 n n† log(n)† log(n)
Bidirectional channels [WKHB21a] 2 n2 n2 n n n
This work ⌈log(n)⌉+ 1 n log2(n) n log2(n) log2(n) log(n) log(n)

(b) corrupted parties known
Original TreeKEM & variants [ACDT20, BBR18, KPPW+21, Mat19] t t2 log(n) t log(n) t log(n) log(n) log(n)
Propose-commit TreeKEM [BBR+23] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t2+(n−t) log(n)

n

Bienstock et al. [BDR20] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t))† log(n)† log(n)
Bidirectional channels [WKHB21a] 2 tn tn t n n
This work ⌈log(n)⌉+ 1 t log2(n) t log2(n) log(n) ·min(t, log(n)) log(n) log(n)

Table 5.5: Comparison of the communication complexity of different CGKA protocols. For a detailed
discussion of the table see Section 5.4. The values x depicted in the last 5 columns are to be
understood as O(x). We assume that the ratchet-tree based protocols start with a fully unblanked
tree. †: In the uncoordinated case, the protocol’s recipient communication is n2 (case (a)) and
t2(1 + log(n/t)) (case (b)), respectively. Regarding the subsequent update cost, while the protocol
formally has a worst case subsequent update cost of log(n), it is only secure in a weak security model.
Modifying it to obtain PCS guarantees similar to the other protocols, e.g. by tainting [KPPW+21],
would lead to future worst-case update cost of n (case (a)) and t(1+log(n/t)) (case (b)), respectively.

5.4 Efficiency
In this section we discuss the communication complexity of our protocol and compare
it with other CGKA schemes. We focus on the cost incurred by several users updating
concurrently to recover from compromise, as this is the main setting we aim to tackle
with this work. An overview is given in Table 5.5.

Considered setting. Not only does the sequence of operations preceding concurrent
update operations (in the case of ratchet-tree based CGKA schemes) have a crucial
impact on the resulting communication cost, but also, whether the participating parties
know which of the other parties have been compromised and when they are planning
to update. Among the different settings one could compare, we restrict our view to the
following, quite natural in our opinion.

We consider a group of n users, t of which have been compromised. For ratchet-tree-
based protocols we assume that the tree is fully unblanked / untainted, as this should
typically be the case, with updates being the most common operation. Our analysis
differentiates between the settings (a) where it is only known that the group has been
compromised, but not who the particular t corrupted users are, and (b) where the set of
compromised users is known to everyone. Note that the former essentially forces every
member of the group to update, while in the latter scenario only the t compromised
users have to act.

The first value we are interested in is the number of rounds of (potentially) concurrent

144

5.4. Efficiency

updates, after which the group key is guaranteed to be secure again. The second is the
cumulative sender complexity (measured over all rounds), which essentially corresponds
to the number of public keys and ciphertexts sent to the server. Here, we again
distinguish between two settings. Namely, whether the parties act coordinated or not.
In the latter case the participating parties are not aware of whether other parties are
concurrently preparing updates/commits, which, depending on the scheme, potentially
leads to the server having to reject packages. In the former case, on the other hand,
they have this knowledge. In practice, this could be implemented by introducing an
additional mechanism, that requires parties to wait for a confirmation by the server
before preparing and sending update packages. We further track the per-user recipient
communication complexity, again measured as a total over all rounds required to recover
from compromise. The final considered value is the sender communication cost of a
single, non-concurrent, update/commit in a subsequent round. Here, we state both the
cost of the worst-case party as well as the average cost.

In Table 5.5 we mark schemes that perform substantially better or worse in one of the
categories in green and red, respectively.

The communication complexity of CoCoA. We first discuss the number of rounds
required to recover from compromise of t users. As we will show in Section 5.5, it
is sufficient for the group to recover that all corrupted users concurrently update in
⌈log(n)⌉+ 1 rounds.

Regarding the sender communication complexity, the size of update packages sent by a
user ID to update in the CoCoA protocol is proportional to the size of the resolution of
ID’s co-path, which will be of order log(n) for a fully unblanked tree15. However, this
value could be up to linear in a tree with many blanks, as is the case in TreeKEM and
its variants, where blanks (or taints in the case of TTKEM) degrade communication
efficiency. In CoCoA concurrent updates are merged and thus none are ever rejected
by the server. Hence, in the considered scenario CoCoA in both the coordinated
and uncoordinated setting has the same sender communication complexity of order
n log(n)2 (corresponding to n users sending an update of size log(n) in ⌈log(n)⌉+ 1
many rounds) and t log(n)2 (corresponding to t users sending an update of size log(n)
in ⌈log(n)⌉+ 1 many rounds), for cases (a) and (b) respectively.

With regards to the recipient communication complexity, user ID in our protocol needs
to only receive at most a single ciphertext per update (zero if said update does not
rotate the keys of any node in their state), and never more than path(ID) = ⌈log(n)⌉ in
total. They will also receive at most |P(ID)| public keys per round.16 Thus in case (a)

15an additional ciphertext would need to be sent for each unmerged leaf across ID’s path, but this
will not account for much in typical protocol executions.

16Note that the size of P(ID) grows at most by 1 per every blank node.

145

5. CoCoA

ID would incur a download cost of order log(n) per round, and O(log(n)2) across the
⌈log(n)⌉+ 1 rounds. In case (b) only t parties are updating per round, implying that
the per round recipient cost is of order min(t, log(n)) and the cost over all ⌈log(n)⌉+ 1
rounds is of order log(n) ·min(t, log(n)). Finally, as in CoCoA concurrent updates do
not affect the ratchet tree structure and in particular do not require blanks, the cost of
subsequent updates remains of order log(n).

The communication complexity of other CGKA schemes. We now give a brief
overview on the communication cost of other CGKA schemes in the considered scenarios
as presented in Table 5.5. The first considered class are ratchet-tree based schemes
that do not rely on the propose-commit framework, as (the original non-concurrent)
TreeKEM v7 and earlier versions [BBR18], rTreeKEM [ACDT20], TTKEM [KPPW+21],
and Causal TreeKEM [Mat19]. These schemes require n (in case (a)) or t (in case (b))
rounds to recover, as only one update per round can be implemented17. Regarding
the sender communication complexity, in the uncoordinated case every (in case (b)
corrupted) user would try to update in every round, thus leading cost of order n2 log(n)
(case (a)) and t2 log(n) (case (b)), respectively. In the coordinated case, only one user
per round would send an update attempt, leading to costs of n log(n) and t log(n).
The per-user recipient cost is of order n log(n) as n packets of size log(n) have to be
downloaded, and, finally, the cost of subsequent updates is of order log(n), as updating
does not result in blanks.

The second class of protocols are ratchet-tree based protocols following the propose-
commit paradigm as TreeKEM v8 [BBR+23] and later versions, and the protocol by
Bienstock et al. [BDR20]. In these protocols the group can recover very quickly, by
all compromised users proposing an update in the first round, and having someone
send a commit to all updates of the previous round in a second round. But this
comes at the elevated cost of blanking (or tainting in the case of a PCS version of
[BDR20]) the paths of all those T users. This leads to the commit having a cost
roughly proportional to the number of updates of the previous round. In case (a) this
leads to a cumulative sender communication of n2 in the uncoordinated case (all n
user try to commit at cost n) and, with coordination, of n (only one user commits). In
case (b) the authors of [BDR20] show that the cost of a commit to t updates in their
protocol is of order t(1 = log(n/t)) that also applies to propose-commit TreeKEM.
Thus, in this case the sender complexity is given by t2(1 = log(n/t)) (no coordination)
and t(1 = log(n/t)) (coordination), respectively. The per-user recipient communication
is of order n (case (a)) and t(1 = log(n/t)) (case (b)). The ability to recover in only

17Causal TreeKEM proposes an interesting idea of re-randomizing node secrets through a concrete
homomorphic operation, instead of re-sampling them. Thus it actually allows for concurrent updates.
However, the presented security statement still requires updates of every compromised party in different
rounds, thus leading to communication complexity as presented in the table.

146

5.4. Efficiency

two rounds in propose-commit TreeKEM comes at the cost of introducing blank nodes
in the ratchet tree. Concretely, in case (a) the commit to n updates would lead to
a fully blanked tree, meaning that the average (and worst case) cost of subsequent
updates is going to be linear in n. Note that fully recovering from this state requires
linearly many commits to single updates. In case (b) there always exists a user with
a subsequent update cost of order t(1 + log(n/t)) and the average update cost is at
least of order (t2 + (n − t) log(n))/n. While the protocol of [BDR20] formally has
a worst case subsequent update cost of log(n), it is only secure in a weak security
model. Modifying it to obtain PCS guarantees similar to the other protocols, e.g. by
tainting [KPPW+21], would lead to future worst-case update costs matching the ones
of propose-commit TreeKEM.
Finally, the protocol by Weidner et al. [WKHB21a] based on bidirectional channels also
supports concurrent operations and allows the group to recover in 2 rounds. We point
out that this work targets a different network model and has thus a different focus
than ours. In particular, the communication complexity for each update is linear in the
number of parties, which is considered impractical in the contexts we are interested
in. The protocol has a cumulative sender complexity of order n2 (case (a)) and tn
(case (b)) both in the coordinated and uncoordinated case, and a per-user recipient
complexity of order n and t, respectively. The cost of subsequent updates is of order n.

Summary and comparison. CoCoA diverges across two different axes from what
could be considered a common paradigm until now. On the one hand, users are
no longer required to keep track of the full state of the ratchet tree, reducing the
recipient communication cost and the storage costs for users, and making this cost
differ substantially from the total amount of upload communication. Indeed, this is a
big change, as this distinction is not really present in previous works, where the majority
of uploaded packets are downloaded by everyone. On the other hand, we consider a
more flexible PCS guarantee that only requires users to heal after ⌈log(n)⌉+ 1 rounds.
This is in contrast to previous works requiring PCS to hold after a constant number
of rounds or only after n rounds. The effect of allowing concurrent updates to be
merged is that, on one hand, the protocol is agnostic to coordination, i.e., no additional
mechanism is needed that ensures that users do not send update/commit packages
that will be rejected by the server, and, on the other hand, it allows the protocol to
handle concurrent update operations without introducing blanks in the ratchet tree.
The trade-off with (the non-concurrent) TreeKEM versions that precede the P&C
paradigm is clear: we are paying a log(n) factor in sender communication in exchange
for faster PCS that is independent from the number of compromised users. The
comparison with P&C TreeKEM is not as straightforward, as the t compromised users
can heal in only 2 rounds. The main advantage CoCoA over has this scheme is that
it does not introduce blanks in the ratchet tree when handling concurrent operations,

147

5. CoCoA

which leads to an improved update cost in subsequent rounds. However, this comes
at the cost of slower healing and a factor of log2(n) (or roughly log(n) in case (b))
in sender communication cost. We point out that the P&C framework of TreeKEM
allows for more flexibility, e.g. by performing the required updates in several batches
over multiple rounds. The exact trade-off achieved by such an intermediate approach
is hard to quantify, but, again, due to blanking the cost of future updates will suffer.
Finally, CoCoA has the advantage, over all versions of TreeKEM, of reduced recipient
communication complexity and that users can prepare updates without the need of
extra communication with the server to prevent rejection of said updates.

As a final remark, CoCoA seems to have a slightly worse efficiency than TreeKEM
based protocols predating the P&C paradigm, since it requires slightly larger sender
communication overall. However, as we show in Section 5.5, this is only the case if fast
PCS is required for many users. In fact, a round with a single update will immediately
grant PCS to its sender, just as in TreeKEM. Thus, CoCoA can be seen as an extension
of pre-P&C TreeKEM, which incorporates the possibility of trading bandwidth for faster
collective healing.

5.5 Security
Given a set of parties whose state has leaked, TreeKEM and related variants achieve
PCS exactly after all of them perform an update. This is still true in our protocol as
long as the updates are applied sequentially. Furthermore, we also allow for concurrent
updates, which results in some updates only being applied partially. Not surprisingly, it
is not sufficient for every party to perform a partial update in order to achieve PCS.
Consider the following scenario: parties IDi and IDj, both of which were corrupted
since their last update, update concurrently by generating and processing simultaneously
messages Mi and Mj, respectively, resulting in a round message that refreshes both
their paths; and let’s say that Mi ≺Mj . Then, the seed of the node at the intersection
of both paths gets encrypted under a node in the path of IDj; in particular, it gets
encrypted under a key the adversary knows. Thus, PCS is not achieved. However, as
a group the two users have made progress towards achieving PCS: all nodes up to
that intersection have healed. And hence, if at least one of the parties (potentially
concurrently with other users) updates again, the ratchet tree will recover. In our
security proof we capture this in more generality. In particular, we show that parties
may heal after an individual, non-concurrent update, or by at most logarithmically many
updates.

We consider our security proof a significant contribution of this work, not only because
it increases our confidence in the security of our protocol, but also because there are
significant differences to prior work. There are two main sources of obstacles for us to

148

5.5. Security

overcome: 1) Parties only have partial views of the key material in the tree and are
potentially not even aware of changes to the key material outside of their view. This
introduces difficulties in defining when a party should consider another party as safe. 2)
The delivery server is not purely a relay server that one can force to behave honestly
using signatures. In our case, the server is expected to actively compute parts of the
messages that are exchanged, but still we do not want to put any trust in the server.
Accordingly, the adversary gains additional active capabilities compared to prior works
of similar flavor. Another aspect new to our proof is a combinatorial result over the
challenge graph that establishes the ratchet tree’s healing after log(n) updates.

5.5.1 Security Model and Safe Predicate
To analyze the security of CoCoA, we essentially use the security model from [KPPW+21],
introduced in Section 2.4, which allows the adversary to act partially actively and fully
adaptively: in this model, the adversary can adaptively decide which users perform
which operations, and can actively control the delivery server; however it can not
issue messages on behalf of the users. In [KPPW+21] this is enforced by assuming
authenticated channels. Since in CoCoA the signing of protocol messages is more
involved, parent hash plays an important role also for security against partially active
adversaries, and the server no longer just relays messages, we make the use of signatures
explicit in this work. As we restrict our analysis to partially active adversaries, the
adversary does not get access to signing keys via corruptions. While this might look
artificial, it has importance in practice as discussed in Section 1.1.2, and we still obtain
meaningful results in the vein of [KPPW+21]. Nevertheless, we consider the analysis of
CoCoA’s security against fully active adversaries an important question for future work.

Except for explicit signatures, the differences in the setting of concurrent CGKA to the
one of [KPPW+21] are that 1) users process concurrent messages, 2) no messages are
ever rejected by the server, and 3) the server is allowed to send arbitrary (potentially
malformed) messages. Regarding 2), it is however possible that messages get lost and
even that a user does not process an update they generated. Whether a user IDi’s
update message (and which one) is contained in a round message Mi, is represented
by a counter ci. Finally, regarding 3), while our security notion is strictly stronger than
the one from [KPPW+21] (where the server could only forward existing messages), the
security of protocols such as TreeKEM and TTKEM can trivially be upgraded to our
notion: This is true since round messages in these protocols only consist of signed
messages and the adversary does not learn any party’s signing key. In our protocols, in
contrast, the server is assumed to perform some computation on users’ messages, hence
it makes sense to consider a stronger model where this computation is not trusted.

Defintion 5.5.1 (Asynchronous CGKA Security). The security for CGKA is modeled
using a game between a challenger C and an adversary A. At the beginning of the

149

5. CoCoA

game, the adversary queries create-group(G) and the challenger initializes the group
G with identities (ID1, . . . , IDℓ). The adversary A can then make a sequence of queries,
enumerated below, in any arbitrary order. On a high level, add-user and remove-user
allow the adversary to control the structure of the group, whereas process allows it to
control the scheduling of the messages. The query update simulates the refreshing
of a local state. Finally, start-corrupt and end-corrupt enable the adversary to
corrupt the users for a time period. The entire state and random coins of a corrupted
user are leaked to the adversary during this period, except for the user’s signing key.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.

2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from the
group.

3. update(ID): the user ID requests to refresh its current local state γ.

4. process(M, ID): for some message M and party ID, this action sends M to
ID which immediately processes it.

5. start-corrupt(ID): from now on the entire internal state and randomness of
ID except for the signing key sskID is leaked to the adversary.

6. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness
to the adversary.

7. challenge(q∗): A picks a query q∗ corresponding to an action a∗ = update(ID)
or the initialization (if q∗ = 0). Let I0 denote the group key that is sampled
during this operation and I1 be a fresh random key. The challenger tosses a
coin b and – if the safe predicate below is satisfied – the key Ib is given to the
adversary (if the predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a
CGKA scheme CGKA-secure if for any PPT adversary A it holds that

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]|

is negligible.

In contrast to the security definition of [KPPW+21], process queries do not point to
specific queries here. Thus, in order to define our safe predicate, we first need to define
what we mean by saying that a party processed another party’s update.

150

5.5. Security

Defintion 5.5.2. Let ID and ID∗ be two (not necessarily different) users and (γq, M)
← CGKA.Upd(γq−1) an update with associated counter c, generated by ID in query
q. Let R(ID, γq) be the set of round messages M that

(a) are efficiently computable from the public transcript and private states of all
parties,

(b) have counter c for party ID, and

(c) will be accepted by ID in state γq, i.e., CGKA.Proc(γq, M) outputs a new state
γq+1 such that CGKA.Key(γq+1) ̸= CGKA.Key(γq).

Then we say that ID∗ processes the update T (or equivalently q) at time q∗ > q
if ID∗ processes some round message M∗ at time q∗ resulting in state γq∗ , and
CGKA.Key(γq∗) ∈ {CGKA.Key(CGKA.Proc(γq, M)) |M ∈ R(ID, γq)}.
As a special case we say that ID∗ processes the single update T (or equivalently q), if
in item (c) additionally the only changes to P(ID) resulting from updates are due to T .

With this notion in place, we will now define the safe predicate similar to the one in
[KPPW+21]. In particular, it rules out all trivial winning strategies, while preserving
simplicity by ignoring protocol-specific details such as the relative position of users
within the tree.

Defintion 5.5.3 (Critical window, safe user). Let ID and ID∗ be two (not necessarily
different) users and q∗ ∈ [Q]0 be some update(·) or create-group(·) query. Let
q− < q∗ be maximal such that one of the following holds:

• There exist L := ⌈log(n)⌉+ 1 update queries ai
ID := update(ID) (i ∈ [L]) that

were generated for ID and processed by ID∗ within the time interval [q−, q∗]. If
ID∗ does not process L such queries then we set q− = 1, the first query. We
denote the last such update query as qL.

• There exists an update query a−
ID := update(ID) that was generated by ID and

processed by ID∗ as a single update within the time interval [q−, q∗]. In this case,
we set qL := q−.

Furthermore, let q+ > qL be the first query that invalidates ID’s current key (in the
view of ID∗), i.e., in query q+, ID processes a (partial) update a+

ID := update(ID) /∈
{ai

ID}i∈[L]. If ID does not process any such query then we set q+ = Q, the last query.
We say that the window [q−, q+] is critical for ID at time q∗ in the view of ID∗.
Moreover, if the user ID is not corrupted at any time point in the critical window, we
say that ID is safe at time q∗ in the view of ID∗.

151

5. CoCoA

Similar to [KPPW+21], we define a group key as safe if all the users that ID∗ considers
to be in the group are individually safe, i.e., not corrupted in their critical windows, in
the view of ID∗.

Defintion 5.5.4 (Safe predicate). Let I∗ be a group key generated in an action

a∗ ∈ {update(ID∗), create-group(ID∗, ·)}

at time point q∗ ∈ [Q]0 and let G∗ be the set of users which would end up in the group
if query q∗ was processed, as viewed by the generating user ID∗. Then the key I∗ is
considered safe if for all users ID ∈ G∗ (including ID∗) we have that ID is safe at time
q∗ in the view of ID∗ (as per Definition 5.5.3).

Note that the second case in Definition 5.5.3 exactly captures the case where only single
updates are accepted in each round. Thus, the security of CoCoA is strictly stronger
than sequential variants of TreeKEM. Further, the bound of ⌈log(n)⌉+ 1 updates as
required in Definition 5.5.3 is indeed tight, an example is shown in Section 5.5.2, Figure
5.4.

Remark. We make the following observations about Definition 5.5.4.

• If we were to consider a weaker security model where the delivery server is honest,
Definitions 5.5.3 and 5.5.4 could be considerably simplified as follows: Let G∗ be
the group of users at time q∗. Then q∗ is safe, if all users ID ∈ G∗ either did
⌈log(n)⌉+ 1 partial or one full update before q∗, and one update (partial or full)
after q∗, and are not compromised between/during these updates.

• A more permissible safe predicate could be defined when considering the relative
position of updating users within the tree. To this aim, one could define a
function that evaluates the progress a user makes during a concurrent update.
This progress corresponds to the number of keys the party updates along its path
to the root and depends on the ordering imposed on concurrent updates. e.g.
a single update refreshes the entire path, hence makes progress ⌈log(n)⌉+ 1, a
concurrent update makes progress at least 1. An even stronger notion of safe
group keys could be defined by also considering the effect updates of other users
have on a member ID’s path: E.g. if ID does a single concurrent update, all keys
along her path can heal if her sibling continues to update. In this work, however,
we prefer to define a simple and protocol-independent security notion that allows
to compare our scheme to other constructions.

152

5.5. Security

5.5.2 Security of CoCoA
Regarding the security of CoCoA we obtain the following.

Theorem 5.5.5. If the encryption scheme used in CoCoA is IND-CPA-secure, the
signature scheme is UF-CMA-secure, and the used hash functions are modeled as
random oracles, then CoCoA is CGKA-secure.

To prove security of CoCoA, we follow the approach of [KPPW+21] and consider the
graph structure that is generated throughout the security experiment. A node i in the
so-called CGKA graph is associated with seeds ∆i and si := H2(∆i), and a key-pair
(pki, ski) := Gen(si). The edges of the graph, on the other hand, are induced by
dependencies via the hash function H1 or (public-key) encryptions. To be more precise,
an edge (i, j) corresponds to either:

(a) a ciphertext of the form Encpki
(∆j); or

(b) an application of H1 of the form ∆j = H1(∆i) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add-user or
remove-user queries made by the adversary, and is therefore generated adaptively. To
argue security of a challenge group key, we consider the subgraph of the CGKA graph
that consists of all ancestors of the node associated to the challenge group key – the
so-called challenge graph. By functionality of the CGKA protocol, the challenge group
key can be derived from any secret key/seed associated to a node in the challenge
graph. For an example of CGKA graph and challenge graph see Figure 5.4. To argue
security, none of the secret keys in the challenge graph must be leaked to the adversary
by corruption. We prove (in Lemma 5.5.6 below) that this is indeed the case for CoCoA
if the safe predicate is satisfied. Our proof follows the ideas from [KPPW+21], but
involves a new combinatorial argument to establish the upper bound of ⌈log(n)⌉+ 1
updates for healing the state of every user. Further, the fact that in CoCoA users
only keep track of a part of the ratchet tree substantially complicates the proof of this
statement.

In more detail, the proof for the protocol in [KPPW+21] relies on the property that
every key in the challenge graph must stem from an update that the party ID∗, who
generated the challenge key, processed. This can easily be ensured for protocols keeping
track of the full ratchet tree, by forcing parties, who do not agree for every point in
time in the protocol execution on every key associated to a node in the ratchet tree,
into inconsistent states, thus making future communication between them impossible.
Note that this implies the desired property. In this case, if a user ID, while generating
an update, encrypts the seed of a key pk to some pk′, and later ID∗ encrypts to pk,

153

5. CoCoA

A B C D E F G H

Figure 5.4: Example; CGKA graph and challenge graph. Sequence of operations; we write update(X ≺
Y), to indicate that parties X and Y updated concurrently and X’s update took precedence over
Y ’s. A group with 8 parties is set up (black), update(A ≺ B) (blue), update(C ≺ B) (green),
update(G ≺ B) (red), G’s update is challenged. Vertices and edges that are part of the challenge
graph are shaded in gray. Note that even though B updated three times her leaf key in the challenge
graph lags behind by 3 = log(8) steps.

then ID∗ must have had pk′ in their state at some point in time, and thus in particular
processed the update establishing it.

Unfortunately, while in an execution where the server behaves honestly, this property
would also be true with respect to the relatively simple definition of processing an
update of Definition 5.5.2, it is no longer true if we allow an untrusted server. Since in
CoCoA the server might send malformed round messages, this property turns out to
not hold anymore. We overcome this issue by giving a more involved definition (which
is equivalent to Definition 5.5.2 in the honest server setting) of weakly processing
an update and then essentially show, in the ROM, that every key in a user’s state
must stem from a weakly processed update (Lemma 5.5.11). Further, we show that
users that do not agree on the same history of weakly processed updates transition to
inconsistent states (Lemma 5.5.10). For this we have to show, for example, that all
keys introduced into a user’s state after a change to the resolution of their copath must
have been weakly processed in an earlier round (even in the case that at this point in
time this update did not affect the user’s limited view of the ratchet tree). To prove
these properties we rely on the consistency mechanisms of transcript hash and parent
hash.

With these statements in place we are finally able to show that no key in the challenge
graph is leaked to the adversary, where we use the observation that this property holding
with respect to processing an update as defined in Definition 5.5.2 is implied by it
holding with respect to the relaxed definition.

154

5.5. Security

5.5.3 Overview of Proof Structure
In this section we give an overview of the proof structure, introducing the definition of
weakly processing and a few small preliminary results, along with the statements of the
main lemmas we build the proof on. For all security statements in the remainder of
the paper we assume all hash function Hi, i ∈ [5], to be random oracles. Our security
proof of CoCoA is based on the proof of the following Lemma.

Lemma 5.5.6. Assume that Sig is a secure signature scheme and H3 a hash function.
Then, for any safe challenge group key in the asynchronous CGKA security game
instantiated with CoCoA, it holds that none of the seeds and secret keys in the
challenge graph are leaked to the adversary via corruption.

With this Lemma in place, Theorem 5.5.5 now follows from the corresponding results
in [KPPW+21, Section 3.5]. There, security of a variant of TreeKEM called TTKEM is
proven by reducing to a game that is known as generalized selective decryption (GSD),
where the adversary can query for encryptions of secret keys under other keys, corrupt
keys, and finally has to distinguish a key from random that it did not trivially learn
by its previous queries. While GSD had only been defined in the secret-key setting, in
[KPPW+21] the authors introduce and analyze a public key variant of this game in the
random oracle model, which allows to consider the security experiment of ratchet-tree
based CGKA protocols as a special case of GSD. This is true thanks to Lemma 5.5.6,
which guarantees that any safe challenge in the CGKA security game implies a valid
challenge in the GSD game. The security bound for CoCoA now follows analogously to
the corresponding result for TTKEM [KPPW+21, Theorem 4] from the more general
result on public-key GSD in the ROM [KPPW+21, Theorem 3].

In order to prove Lemma 5.5.6 we will rely on the notion of weakly processing an update.
Since an adversarial server can send wrong openings to a user, when ID processes a
round message, they might still be introducing into their state some keys or some hash
values that depend on updates they have not processed as per the definition above.
For example, consider the case of a round message sent to ID, containing a single
update from a user ID∗ who is not their sibling: a malicious server could include the
correct keys and encryptions in the round message, but substitute the new Merkle
commitment by an arbitrary value; this will cause ID to still accept the message and
update the corresponding keys in their state, while not having processed ID∗’s update
(since the server cannot fool the latter into accepting a round message with a round
hash dependent on the wrong opening). Below we define a notion of weakly processing
an update, which captures this scenario. Before we do that, however, we will define
the further notion of explicitly processing, capturing the process of users introducing
keys into their state by means of (weakly) processing an update. Note, however that

155

5. CoCoA

explicitly processing an update will not imply processing it, for the above mentioned
reason.

In what follows the adversary queries as defined in the security game (Definition 5.5.1)
are also denoted using the protocol notation (Definition 2.3.1) in order to explicit refer
to the CGKA protocol in use.

Defintion 5.5.7 (Explicitly Process). We say that a user ID∗ has explicitly processed
the update U generated by user ID in query q = CGKA.Upd(γID) if ID∗ processed
and accepted a round message M in query q∗ > q and either

• M contained a counter c corresponding to update U generated by ID, or

• M contained a tuple pv = (pkv, hv,Htrans, confTag, σv) corresponding to the
public state of some node v, where pv ∈ U and its transcript hash value Htrans

is the same as the one in the state of ID.

Defintion 5.5.8. We say that a user ID∗ has weakly processed the update U generated
by user ID in query q = CGKA.Upd(γID) if ID∗ processed a round message M∗ in
query q∗ > q and either:

• q∗ was the first query ID∗ processed, and the full tree which ID∗ received in the
welcome message contained a node state sampled in U ,

• there exists ID′ (not necessarily different from ID∗), in the group in the view
of ID∗, such that the following conditions below hold. Let first q′ be either
q′ = CGKA.Upd(γ′) the last update from ID′ weakly processed by ID∗ or, if
such update does not exist, the query in which ID′ processed their welcome
message into the group, initializing state γ′. Then:

– there exists a series of efficiently computable round messages (given access
to the RO queries, the public transcript, and private states of all parties)
M ′

1, . . . , M ′
t such that ID′ with respect to state γ′ would process (and

accept) all M ′
i in order, where γ′

i is the state resulting from processing and
accepting M ′

i with respect to state γ′
i−1 (and γ′

0 = γ′).
– ID′ explicitly processed U by processing M ′

t .
– CGKA.Key(CGKA.Proc(γq∗

ID∗ , M∗)) = CGKA.Key(γ′
t), i.e. they derive

the same group key after processing the respective messages,

A few remarks regarding this definition: first, note that the update query q′ in the
second case of the definition is required to have been weakly processed by ID∗. In fact,
it must also hold that if this case is satisfied, such query was also processed by ID∗,

156

5.5. Security

since weakly processing but not processing an update implies the user processing will
never have consistent states with the update issuer. Second, note that considering the
case where ID′ = ID∗ is equivalent to saying ID∗ explicitly processed U . In particular,
explicitly processing an update means weakly processing it. Similarly, by considering the
case where ID′ = ID, we can see that processing also implies weakly processing. We
recall again that explicitly processing does not imply processing. From this definition,
we can define the predicate wProcess(ID, U, q), which evaluates to 1 if ID weakly
processed U at time q; and else evaluates to 0.

Below we define formally what it means for a user to join the group at the same time
or after another user. Note that this is defined with respect to the views that users
have of the group. With regards to the situation where a user leaves the group and
joins again, we assume that it does so with a new identifier. That is, party identifiers
are assumed unique and cannot rejoin once removed. Further, for security we assume
also that init keys are only used once.

Defintion 5.5.9. We say that user ID∗ is added at the same time or after ID (in the
view of ID) if there exist qA = CGKA.Add(·, ID) and q∗

A = CGKA.Add(·, ID∗) and
queries q and q∗ such that γq

ID ≡ γq∗

ID∗ and, moreover, either ID processed q∗
A in some

query ≤ q, or the equivalence holds for q and q∗ corresponding to the first process
queries for each party.

Throughout the following, for simplicity of notation, we assume that the state of a
party is the same before and after issuing an add, remove and update operation, i.e. if
q is a query of the form CGKA.Add(ID, ·), CGKA.Rem(ID, ·) or CGKA.Upd(γq−1

ID),
we consider the states of party ID at q − 1 and q the same. While in practice this is
not the case, since issuing any of these operations will change the pending state γ′

ID,
which is a part of the local state, it will not change any value in the rest of the state,
and thus will not influence any statement regarding states consistency.

When a user ID is added to the group, we count them as effectively processing two
round messages, the first one corresponding to the welcome message, the second
corresponding to the round message that comes with it. Thus, we will say ID∗ has a
state consistent with that of ID at the time the latter joined the group if the state
of ID∗ is consistent with the contents of the welcome message or, equivalently, with
the user that added ID. Note that although the welcome message contains no group
key γ.appSecret, it does contain a transcript hash value Htrans, and users having the
same transcript hash value in their state is equivalent (up to collision resistance of the
random oracle) to users having the same group key, by Proposition 2.

Before beginning with the proofs, we present here an observation that will be used
throughout most of them. Informally, this is the following: due to updates being signed
and the adversary not having access to signing keys, every key in a user’s state and, in

157

5. CoCoA

turn, in the challenge tree, must stem from an update or add query. More precisely,
any key stemming from an add query, that is introduced in the state, gets delivered
in a packet that comes with a signature by the party who authored the add, together
with a signature of the party whom that leaf belongs to; and any key introduced in
the state by either explicitly processing an update, or by receiving a node state from
the server after a removal, is received as part of a tuple (pkv, hv,Htrans, confTag, σv),
together with a party identifier IDv. Before accepting, a user will check that σv is a
signature for (pkv, hv, PKpr

v ,Htrans, confTag) under IDv’s verification key. Thus, any
key, and moreover, any of those signed values in the state of any v ∈ P(ID), must
have come from an update by IDv. In other words, if some state in P(ID) contained
a key, or value from the ones above, not corresponding to a query, we could build a
forger for the signature scheme with a loss of n in the advantage by guessing the user
that supposedly generated the key in question. Note that every update, add, or remove
query requires at most n + 2 log(n) signatures (this happens, e.g., in the case of a fully
blanked tree).

The following small proposition shows that, as we would expect of the more general
definition of weak processing, users can only weakly process updates issued by parties
with a consistent state.

Proposition 3. Let U be an output from q∗ = CGKA.Upd(γq∗−1
ID∗), for some user

ID∗ with state γq∗−1
ID∗ at time q∗ − 1. Let ID be a party with state γID and such that

wProcess(ID, U, q) = 1 for some query q, and such that ID was already part of the
group before q. Then the states of ID at time q − 1 and ID∗ at time q∗ are consistent.

Proof. If ID weakly processed U after joining the group, then, by definition there must
exist a user ID′ and some message M ′ such that ID′ would explicitly process U by
processing M ′ in query q′ and such that its state right after would be consistent with
the state of ID at q. Now, for ID′ to explicitly process U , their state just before
processing M ′, at q′ − 1, must have been consistent with the state of ID∗ at the time
they issued U , i.e. at q∗. This is the case since for ID′ to accept M ′, the signed packet
contained in said round message and which corresponded to U must have contained the
same transcript hash value as ID′ had at q′ − 1 that moment in their state. However,
by collision resistance of the random oracle H3, since the states of ID at q and ID′ at
q′ were consistent, so were their respective states at q − 1 and q′ − 1. But this implies
that ID’s state at q − 1 was consistent with that of ID∗ at q∗.

It follows from the proposition above that no user can weakly process the same update
twice:

Corollary 5.5.9.1. Let wProcess(ID, U, q) = 1 for some ID, U and q. Then, except
with negligible probability, for any q′ ̸= q, wProcess(ID, U, q′) = 0.

158

5.5. Security

Proof. Assume for contradiction that there is an update U and distinct queries q, q′

with wProcess(ID, U, q) = 1 and wProcess(ID, U, q′) = 1. Let q < q′, and assume
first that ID did not join the group in q. By Proposition 3, the state of ID at both
q − 1 and q′ − 1 must be consistent with the state of U ’s author at the time U was
generated. But this is not possible, since ID has processed and accepted some round
message (and therefore updated its state) in between these times.

Suppose now that ID did join the group in q. Since the welcome packet that they
received was (except with negligible probability) part of the output of a query, the
transcript hash Htrans in it was computed with respect to the round hash value Hround

in it. Further, we know Hround is consistent with the tree that ID received upon joining,
which contained some node state from U , by the assumption that ID weakly processed
U at q. However, this node state from U also contained a transcript hash value. By
Proposition 3, ID at q′ − 1 was consistent with U ’s author at the time they issued U .
In particular, the transcript hash value in U must be the same as the transcript hash
value in ID’s state at q′ − 1 ≥ q, by Proposition 2. But this is a contradiction to the
properties of the random oracle H3, since the transcript hash value of ID at this time
depended on that of ID at q, which itself depended on the transcript hash value in
U .

With this in place, we will be ready to prove Lemma 5.5.6 above, with the help of two
further Lemmas, capturing the consistency guarantees given by our round hash and
parent hash mechanisms.

The first one states that users with consistent states have weakly processed equivalent
sequences of operations.

Lemma 5.5.10. Let ID and ID∗ be two users with consistent states at time q, and
such that ID∗ joined the group at the same time or after ID. Then:

{U : ∃q′ ≤ q s.t. wProcess(ID∗, U, q′) = 1} ⊆ {U : ∃q′ ≤ q s.t. wProcess(ID, U, q′) = 1}

and, for any q∗
1, q∗

2, with q∗
1 < q∗

2 and any updates U, U ′ such that wProcess(ID∗, U, q∗
1) =

wProcess(ID∗, U ′, q∗
2) = 1, there exist q1 and q2, with q1 < q2 such that wProcess(ID, U, q1) =

wProcess(ID, U ′, q2) = 1.

The second one states that all the keys that a user incorporates into their state as part
of the protocol execution stem from adds or updates that they have weakly processed,
and moreover, that these do not correspond to operations that have already been
superseded by other weakly processed updates.

Lemma 5.5.11. For any user ID and any key pkv in their local state γ associated to
a node v ∈ P(ID) at time q∗, the following hold:

159

5. CoCoA

1. there is a query q ∈ {1, . . . , q∗}, such that pkv is either the InitKey of a party
whose add operation was processed by ID in query q, or was sampled in some
update U that the user had weakly processed in q; i.e., wProcess(ID, U, q) = 1;

2. for any update U ′ generated before q∗, which affects v and such that wProcess(ID, U ′, q′) =
1 for some q′ ≤ q∗, it holds that q′ ≤ q.

To conclude the security proof, in Section 5.5.4 we give the proof of Lemma 5.5.6
assuming Lemmas 5.5.10 and 5.5.11, which are proven afterwards, in Section 5.5.5.

5.5.4 Proof of Lemma 5.5.6
We now prove Lemma 5.5.6. To do so, we first argue that all parties associated to
leaves in the challenge graph belong to the group as viewed by the party generating
the challenge key.

Lemma 5.5.12. Let ID∗ be the party who generated the challenge key I∗ in query q∗.
Then, all parties associated to leaves in the challenge graph belong to G∗, the set of
group members at time q∗ in ID∗’s view.

Proof of Lemma 5.5.12. Let ID /∈ G∗ and assume for contradiction that ID is associ-
ated to a leaf in the challenge graph. Let v1, . . . , vk be the path in the challenge path
from ID’s leaf v1 to the root vk. Further, let i1 < · · · < iℓ be such that the edges from
(vij−1, vij

) correspond to encryptions, while the other edges on the path stem from
hierarchical derivation. Note that either ID∗ never considered ID to be in the group,
or ID∗ processed a remove-user(·, ID) message (and no subsequent add-user(·, ID)
message). Further, it is not possible that ℓ = 1 since in this case ID∗ would have
encrypted a seed to the key of vi1−1 that in this case was generated by ID. However,
in the course of processing any round message, before incorporating any key into their
local state ID∗ checks that it comes with a signature which verifies under the key of
some user from the corresponding sub-tree, in particular from a user in G∗.

Thus, we may assume ℓ ≥ 2. We denote the user that generated the key at vij
by IDj

and the corresponding update query by qj . So, when ID1 generated the key at vi1 they
encrypted its seed to the a key that was generated by ID, implying that ID1 considered
ID to be in the group at this point in time. Further, user ID2 encrypted the seed of
node vi2 to a key generated in update q1 implying in particular that at time q2 they
had weakly processed the same operations (and in particular the same add/remove
operations) as ID1 at q1 by Proposition 3 and Lemma 5.5.10, plus potentially some
others, but none affecting nodes on the the subtree under vi2−1 (since any such operation
would overwrite the keys created in q1). In particular, they cannot have processed any

160

5.5. Security

remove-user(·, ID) between q1 and q2, so they must consider ID to be part of the
group.

By repeatedly applying this argument we obtain that IDℓ−1, when generating update qℓ−1,
considered ID to be part of the group. Similarly, as ID∗ = IDℓ processed this update,
they also must have considered ID to be in the group at this point in time and, further,
cannot have processed a remove-user(·, ID) message before generating the root of the
challenge graph at qℓ, as, again, otherwise the key at viℓ−1 would have been blanked or
overwritten; a contradiction.

Proof of Lemma 5.5.6. Let ID∗ be the party who generated the challenge key I∗ in
query q∗. Since I∗ is safe, for all parties ID in G∗, the set of group members at time
q∗ in ID∗’s view, ID must be safe in the view of ID∗. We will show that any key in the
challenge graph can only be in the state of ID during the critical window [q−

ID, q+
ID] of ID

in the view of ID∗. Together with Lemma 5.5.12 this will show the result. We note that
all the secret keys in the state of ID during its critical window are overwritten in the
state of ID before the next corruption of ID. This is the case because, by definition of
the safe predicate, after ID generated the last update aL

ID they (partially) process some
further update a+

ID before the next corruption. Even though her own update a+
ID might

only be partially processed, the way updates are merged in CGKA.Dlv guarantees that
all keys along ID’s path will be refreshed. Moreover, by Corollary 5.5.9.1, ID will not
add to their state any keys that were already part of it. It is sufficient to prove that
any key in the challenge graph was generated by a party that had already entered its
critical window in the view of ID∗ when generating the update resulting in this key.
This is because seeds can only be encrypted to keys that have already been generated
– since every key in the challenge graph must stem from a query, as argued above –,
which means that all receiving parties are already in their respective critical window.
Accordingly, we now prove that each key in the challenge graph was generated by some
user ID ∈ G∗ within the first period [q−

ID, qL
ID] of ID’s critical window for q∗ in the view

of ID∗.

To this aim, first note that the challenge node was generated by user ID∗ in query
q∗, and q∗ by definition lies in the first period of the critical window of ID∗. We will
proceed by induction: consider an arbitrary internal node v in the challenge graph, and
assume it was generated at time qv (which is in the first period of the critical window
of the generator). Then, all except one parent of v must have been generated before
query qv. More precisely, for all parents w of v in the challenge graph it holds: Either
(1) w was generated in the same query qv (this happens for exactly one parent), or (2)
w was generated by a party ID ∈ G∗ in the subtree rooted at w, by Lemma 5.5.12,
at some time qw < qv. In case (1), if v was generated during the first period of the

161

5. CoCoA

critical window of its generator, then clearly the same holds for w. In case (2), since
ID∗ only processes messages from parties with a consistent state, and qw was weakly
processed by the party who generated qv before it generated qv (by Lemma 5.5.11),
having weakly processed qv, user ID∗ must have also weakly processed qw before. This
follows from Lemma 5.5.10, as both users must have then weakly processed the same
updates. In other words, we have q+

w < q+
v , where q+ refers to the query when ID∗

weakly processes q. Similarly, we can deduce that qw must have been the last update
generated by ID before qv, which was weakly processed by ID∗. This means that, for
all update queries q′

ID > qw generated by ID that are weakly processed by ID∗, we have
(q′

ID)+ ≥ q+
v .

We will now look at the critical window of ID. Consider first the case where ID’s critical
window is defined through a single update q−

ID that was processed individually by ID∗.
We will show that q−

ID ≤ qw (so that, in fact, equality holds here), which means that ID
generated qw in the first period of its critical window. Assume for contradiction that
q−

ID > qw, so that q∗ > (q−
ID)+ > q+

v . Consider the partition of the path in the challenge
graph from v to I∗ given by encryption edges, as in the proof above of Lemma 5.5.12:
let v1, . . . , vk be the nodes in such path, and let i1 < · · · < iℓ be such that the edges
(vij−1, vij

) correspond to encryptions, while the other edges correspond to hierarchical
derivations. If ℓ = 1 then, by Lemma 5.5.11, in q∗ ID∗ encrypted to a key generated
in q−

ID, but q−
ID overwrote all keys generated by qv, so v cannot be in the challenge

graph, which contradicts our assumption on v. Assume, thus ℓ ≥ 2 and denote the
user that generated the key at vij

by IDj and the corresponding update query by qj.
In that case, by the same argument as in the previous case, ID1 must have not weakly
processed q−

ID, before qv, since otherwise they would encrypt vi1 under a key sampled
by the former, and not the latter, and v would not be in the challenge graph. But
we can recursively apply this argument to deduce that IDℓ = ID∗ must also not have
weakly processed q−

ID at q∗, a contradiction.

Finally, consider the case where ID’s critical window is defined through a sequence
of L = ⌈log(n)⌉ + 1 updates q−

ID = q1, . . . , qL. We will argue with respect to the
potentially larger sequence q−

ID = q1, . . . , qL′ of weakly processed updates in the first
period of the critical window; here L′ ≥ L = ⌈log(n)⌉ + 1, since processing implies
weakly processing. Applying the same argument as in the previous paragraph, we can
deduce that at most one of these updates qi could have been weakly processed by
ID∗ in the window [q+

w + 1, q+
v], and if this is the case, then this update must have

been weakly processed concurrently with qv. Note that if q+
i = q+

v for any i > 1, we
have q+

1 ≤ q+
w , which by Lemma 5.5.10 implies q1 ≤ qw and thus ID is in its critical

window when it generates qw. If this is not the case, no qi can belong to the mentioned
interval, meaning it suffices to show that q+

1 < q+
v , as this implies q1 ≤ qw. Assume for

contradiction q+
1 ≥ q+

v . Consider v’s child u1; following the same argument, at most
one of ID’s queries can be weakly processed in the time interval [q+

v + 1, q+
u1]. But

162

5.5. Security

there are at most ⌈log(n)⌉ − 1 descendants of (non-leaf node) v, let these be denoted
by u1, . . . , ul with l ∈ [⌈log(n)⌉ − 1] and u0 := v. Now, by the above, for each time
interval [q+

ui−1
+ 1, q+

ui
] (i ∈ [⌈log(n)⌉ − 1]) there is at most one (concurrent) update

from ID weakly processed by ID∗. Since ul is the root of the challenge graph, which
was created in query q∗, and by assumption q+

1 ≥ q+
v , a simple counting argument

implies that (qL′)+ > q∗, a contradiction.

5.5.5 Proofs of Lemmas 5.5.10 and 5.5.11
At the core of the proofs of both of the lemmas in the previous section (Lemmas 5.5.6
and 5.5.12) lies the fact that an adversary cannot commit to subtrees outside the users’
states containing wrong information in a way that will not push users out of consistent
states. This is captured by the following game and lemma:

Defintion 5.5.13. The ability of the adversary to open wrong commitments to the
parts of the ratchet tree the users do not see is modeled through the following OPEN
game, played by an PPT adversary A. The game is syntactically equivalent to the CGKA
security game from Definition 5.5.1, except for the challenge queries, which now take a
different shape, and the winning condition. In this game, A is able to issue a query
OPEN.Chall(q) at any point, with q being a query of the form q = CGKA.Proc(ID, ·)
already made in the CGKA game, and output a ratchet tree Tq.
The game outputs 1← OPEN if, after such a OPEN.Chall(q) query, the following is
true for Tq:

• Tq is a well-formed ratchet tree, every node except for its leaves has indegree
two, it has no blank leaves and it contains at least one ratchet tree leaf (i.e., one
containing a public verification key);

• PHash.Ver(Tq) = 1, i.e. parent hash verifies;

• the state of every node v in Tq corresponds to that output by some add or update
query qv < q;

• the label ℓ(vTq

root) (as in Def. 5.3.1) of the node at the root of Tq is the same as
the label of some node in Pq(ID);

• there exist a query qi to which some node state in Tq correspond to, that has
not been weakly processed by ID at time q or before.

Else, 0← OPEN. Finally, we say that A wins the OPEN game if 1← OPEN.

163

5. CoCoA

We now show that no adversary can win game OPEN with more than negligible
probability.

Lemma 5.5.14. The probability that any adversary A making at most Q queries in the
CGKA security game wins the OPEN game with respect to any q ∈ [Q] is negligible.

In order to prove this, we first prove the existence of an extractor algorithm that can
return the queries (weakly) processed by any user at any point in the game. This is
formalized in the following lemma.

Lemma 5.5.15. There exists an efficient algorithm E that, given access to the
random oracle queries, the public transcript, and private states of all parties, can
compute the set of operations Q that any user ID has weakly processed in any query
q = CGKA.Proc(γID, M).

Proof. Note first that, having access to the private states of the party, E can learn
if ID accepts M , just by running CGKA.Proc. Also, it is clear from M which adds
and removes are processed, as well as any update that is explicitly processed. We will
prove the statement of the lemma by induction, showing that E can compute the set
of operations weakly but not explicitly processed by ID, as well as the set of users in
the group with whom ID could still have consistent states with.

To begin, note that if M is the first message ID processes, either because they set up
the group, or are added to it, E can easily extract all the updates weakly processed
by ID. In the first case, these are none, and in the second they are given by the
ratchet tree ID receives as part of the welcome message, as by the first bullet point
of Definition 5.5.8. Before continuing, we argue that in the latter case these are all
updates ID weakly processes, i.e. any update satisfying the second bullet point of said
definition must be one of those given by the ratchet tree ID receives. Suppose that
was not the case, and that there was some user ID′ whom, after processing some round
message and, through it, explicitly processed some update U , was in a consistent state
with ID. From the fact the states were consistent, we know the respective round hash
values for both parties must be the same. However, that of ID′ was computed using as
input some key sampled in U which, by assumption, was not used in the computation
of ID’s round hash value. This is however, a contradiction to the collision resistance of
the RO H3.

Now, let U i
ID be the set of users with whom ID could still have consistent states with

respect to their state γi
ID; i.e. those for which a sequence of round messages as described

in the second case of Definition 5.5.8 exists. More in detail, if ID′ ∈ U i
ID, there is a

sequence of round messages M ′
1, . . . , M ′

ri
that ID′ would process with respect to their

state at query q′ (recall this corresponds to either the last update query issued by id′

164

5.5. Security

and weakly processed by ID or the time ID′ joined the group), and which would bring
them to a state consistent with γi

ID. We will show how E can compute the sets U i
ID

along with the queries weakly processed by ID. The initial set U i
ID can be determined

by E as follows. If ID sets up the group, this set starts empty; whereas if ID is added
to the group by ID′ through an add query CGKA.Add sampled in query q′, this set
is U1

ID = U q′

ID′ . Further, E can track the impact of adds and removes in these sets as
follows. Whenever ID processes and accepts a round message in query q̃ containing a
remove or an add, E respectively removes the corresponding party from U q̃

ID, and adds
it if it was added by a party that is in U q̃−1

ID . To justify the latter, observe that a newly
added party will be added with a state consistent with that of the party who added
them.

It remains to show that E, given knowledge of the updates weakly processed by ID up
until that point, and the set U q−1

ID of parties with whom ID has not been pushed to
inconsistent states with, can extract the updates that are weakly processed by ID when
processing M and compute U q

ID. Let γq be the state of ID after processing M , and let
γq−1 be its state before it. In particular, we want to identify the set Q′ of updates that
were weakly processed but not explicitly processed by ID when transitioning from γq−1

to γq.

We start with some terminology and a couple of observations. Given a pair of openings
ov = (ov,1, ov,2) associated to node v, received in M during query process q (and
supposed to be commitments to the keys on the subtree under v’s parents), we say
that ov is a correct opening pair if there is are queries to the RO with output ov,1 and
ov,2 and input a tuple (ovi,1, ovi,2, pkvi

), for i ∈ {1, 2} where ovi,j are hash values in
the image of the RO, and pki is either equal to blank, or is the public key associated
to the corresponding parent of v in the output of some update query q′ issued by user
ID′ and taking place before q. In the former case, we require that ovi,1 and ovi,2 are
also correct openings, or their parents, should the corresponding key be blank, and
so on. Moreover, we require that, either the update pki to which belongs to was (one
of, if several were concurrent) the last affecting that node which ID weakly processed,
or that the state of ID′ at time q′ is consistent with that of ID at q − 1. This will
ensure that if it corresponds to an update not yet weakly processed by ID, this it will
be possible for ID to weakly process it at q. Last, we further require that one of the
pkvi

belongs to the same update as the pkv. This, is also needed to ensure ID would
process any such update, as any user for which those two nodes are in their state will
not accept a round message not satisfying that.

Now, we observe that, for ID to weakly process in q the query to which pk corresponds
to or, in fact, any update query coming from a user in v’s subtree other than that
setting the new key for v, it must be that the opening pair ov is a correct opening pair.
Indeed, for ID to weakly process such update query, there must exist a user ID∗ in

165

5. CoCoA

the subtree under v that would, with respect to some of its states and a certain chain
of round messages, ultimately explicitly process said update, and end up in a state
consistent with γq. However, said user’s state will necessarily include a key for (the
resolution of) the parents of v, as well as two openings corresponding to the node’s
parents (of the nodes in the resolution). Thus, were these openings not correct, either
because they were never output by the RO, or because their inputs were not of the right
format, or sampled by a user with an inconsistent state, we would have a contradiction
to either the preimage or collision resistance of the RO, or the fact that said user would
explicitly process the update, respectively. Also, note that that user, before processing
that last message in the chain, would have a state consistent with that of ID at q − 1,
and would thus accept said update.

Further, observe that it must be the case that, for any update coming from a user in
v’s subtree to be weakly (and only weakly) processed by ID, there must be a path of
correct openings all the way from v to a leaf. Indeed, ID∗’s state will contain public
keys (and implicitly openings) for each of the nodes in its path. Were the above not
true, the fact that ID and ID∗ end up sharing the same round hash would again imply
a contradiction with the properties of the RO.

In order to identify the exclusively weakly processed updates and update U q
ID, E performs

the following steps for each of the non-leaf nodes v ∈ Resq(co-path(ID)), i.e. in the
resolution of ID’s co-path after processing M , for which its opening pair is correct,
following the observations above.

We distinguish several cases. Case (1), v ∈ Resq−1(co-path(ID)), i.e. v is not a node
introduced in ID’s state in q. E now looks at each of the two openings ov,1 and
ov,2 and distinguishes two further situations in each case, depending on whether the
opening values are new. Case (1.1) oq

v,i = oq−1
v,i , i.e. the opening ov,i does not change

by processing M , and (1.2) the opposite, oq
v,i ̸= oq−1

v,i . In case (1.1), E does not add
any update to Q′ and stops further examining any values or nodes in the subtree under
the corresponding parent of v. The reason being that in this case it is not possible
for ID to have weakly processed any update coming from a user in said subtree. To
see why this is the case, assume for contradiction that it is not. Then there exists
some user under said subtree that could explicitly process some update and end up in
a state consistent with ID, making ID to have weakly processed it. This user must
have been in consistent states with ID before processing the update, and in particular
have the same transcript hash value as ID at that time. However, when processing
the message through which they explicitly processed this update, the labels for v must
necessarily change for them, i.e. the labels for v they input into their computation of
the round hash must be different for this process query and the previous one. But then
it is impossible for the two of them to have the same round hash value in both rounds
and therefore impossible for them to have consistent states, by the collision resistance

166

5.5. Security

of random oracle H3.

In case (1.2), E recovers the inputs (owi,1, owi,2, pki) of the RO query with output
ov,i (these exist and have this form by the assumption on ov,i belonging to a correct
opening pair), where wi is the corresponding effective parent of v. Then it checks
that (owi,1, owi,2) is a correct opening pair, ignoring the subtree under wi if not, and
makes the same distinction as before, now applied on the owi,j, iteratively excluding
subtrees under any node for which its opening pair is not correct, or for which its key
corresponds to updates already weakly processed by ID. At the end of this iterative
process, E compiles a list of all the updates given by the keys in the correct openings,
which had not yet been weakly processed by ID. It remains to determine for which
of these updates there are users in U q−1

ID which could explicitly process them through
processing some round message and arrive at a state consistent with γq. To this end,
first note that, following the observation above, only users for which there is a path
of correct opening pairs from their path to v will be able to process some message
and end up in such a consistent state. Thus, E considers the users in U q−1

ID for which
such a path exists, and looks at the nodes in this path and the resolution of its copath
which contained keys (those the openings were committing to) belonging to updates in
the previously mentioned list. The updates from this list for which this is the case are
then added to Q′. To see why, note that if ID∗ is such a user, the message M∗ output
by collecting all the operations and updates processed or explicitly processed by ID in
M , together with those in Q′, with the same ordering applied, will be accepted by ID∗

(with respect to their state after processing the corresponding messages M∗
1 , . . . , M∗

rq−1

given by the fact ID∗ ∈ U q−1
ID). Moreover, by setting the openings in M∗ corresponding

to the parents of nodes in the resolution of ID∗’s copath, to be the same as those given
by the RO queries, we ensure that ID∗ will derive a state consistent with γq. Last, E
removes from U q

ID those user for which such path of correct opening pairs from their
leaf to v does not exist.

We now examine case 2), where v has been added to ID’s state as a result of processing
M . In particular, this means that v is in the resolution of a node blanked by some
removal in M . Recall that ID receives from the server the states of nodes in a subtree
spanning the paths and (resolutions of) co-paths of removed members. A subtree
that, in particular, contains a state from v. E first checks whether the key at v after
processing M matches that in the subtree (this will not be the case if there was some
update concurrent with the removal included in the round message), and adds no query
to Q′ if this is the case. If it is not, then whichever update the new key at v corresponds
to was explicitly processed by ID at q, and E then performs the same steps as in the
previous case, looking at the keys commited in the openings if these are correct, and
working its way down the subtree under v through examining the RO queries, all the
way to the ratchet tree leaves. Note that the removals taking place in M would also be

167

5. CoCoA

processed by whichever users under v’s subtree could still remain in consistent states
with ID, since these will receive node states for the same nodes in the resolutions of all
blanked descendants of v (and any openings sent to ID can also be mirrored in the last
round message M ′

t sent to said user).

Proof of Lemma 5.5.14. Now, in order to prove the statement of the Lemma, we will
argue for contradiction, assuming an adversary A that wins the OPEN game exists. We
will show that if A had a non-negligible probability of winning the game at some given
query, then it must have had it also with respect to an earlier query. Since there is no
chance for A to win the game with respect to the first process query (as this must
correspond to either the group creator processing their own update or a user joining the
group right after initialization), this will show that all queries corresponding to node
states in Tq must have been processed by ID at time or before q, giving us the desired
contradiction. Accordingly, consider an execution of the OPEN game, and let q be the
first query of the form q = CGKA.Proc(ID, ·) where A could win, i.e. the first query
for which a tree Tq, computable in polynomial time by A and satisfying all conditions
in Def. 5.5.13 exists.

By assumption, there is a node v ∈ Pq(ID) in the state of ID at time q, with label
ℓv, which is the same as the label of the root node of Tq. Recall that if the state of v
contains openings ov = (ov,1, ov,2) and a public key pkv, then ℓv = H3(o1

v, o2
v, pγ(v)).

Note that we could assume w.l.o.g. that v ∈ Res(co-path(ID)). Indeed, note that
for any node in Tq

⋂︁Pq(ID), by collision resistance of H3, the states of that node
in Tq and Pq(ID) must match. Moreover, ID must have weakly processed (in fact,
explicitly processed) any query setting any keys for nodes in path(ID). Thus if Tq

satisfies the conditions of Def. 5.5.13, then so must a subtree of it rooted at a node in
Res(co-path(ID)).

Moreover, by assumption, we know that PHash.Ver(Tq) = 1. Recall this means that
every non-blank node in the Tq has a complete public state; and that for any internal
node w, its associated IDv is that of a user whose leaf is in the sub-tree rooted at w,
and if w1 and w2 are w’s effective parents, we have that either:

(a) h2
w1 = H4(pkw, PKpr

w , h2
w, {pky}y∈R) and h1

w1 = ℓ(w2) or

(b) h2
w1 = H4(pkw, PKpr

w , h2
w, PKpr

w2) and Htrans,w1 = Htrans,w2 .

for R = Res(w2) \ Unmerged(w).
Moreover, SIG.Versvkw((pkw, PKpr

w , hw,Htrans,w, confTagw), σw) = 1.

Let ID1 be the user located at the end of the path from a ratchet tree leaf in Tq to v
which, again, we know exists by assumption. For ease of exposition, we will assume

168

5.5. Security

w.l.o.g. that ID1 is the left-most leaf in the subtree of T q under v .(where T q is the
ratchet tree of the whole group in the view of ID; even though ID does not have a full
view of Tq, they do know which users are associated to which leaves.) ID1’s path in
Tq will contain a number of updates from some of the users under v’s subtree, which
allow us to partition said path as follows. Let v1 be the leaf of ID1, and v1, . . . , vk = v
the nodes in said path. As noted above, every key associated to the vi must stem from
either an add 9in the case of v1 or an update query, since all the signature at each v’s
state verifies. We can partition this path into sub-paths given by sets of nodes that
were sampled in the same update: vi and vi+1 are in the same sub-path exactly when
vi+1 verifies through vi, according to PHash.Ver. We denote the different updates that
make up said path, and such that each corresponds to one element in the partition, as
q1, . . . , qm, in order, with q1 being the update setting the key for v1, and qm the one
setting the key for v. Accordingly, we denote by IDi the user who authored qi. Let qi

be an update corresponding to a partition element with two or more nodes, i.e. to which
two or more nodes in the path correspond to. Then, we denote by qi,j , j ∈ (1, . . . , mi)
the updates that correspond to the nodes that are in Res(co-path(ID1)), i.e. in the
resolution of ID1’s co-path, which for which their child corresponds to qi. If there any
blank nodes in between those sampled by qi and qi+1, we denote by qb

i,j those updates
corresponding to nodes in the resolution of said blank nodes, and which are not q1.
Here j < j′ if qi,j (resp. qb

i,j) was sampled by a party whose index is to the left of the
party who sampled qi,j′ (resp. qb

i,j′). As before, we denote the user who sampled qi,j

(resp. qb
i,j) by IDi,j (resp. IDb

i,j).

Along the way we will distinguish based on whether the parent hash of the lowest node
in path(ID1) sampled by any given qi verifies through conditions (a) or (b) above.
Recall that condition (a) corresponds to the case where IDi was aware of qi−1 at the
time qi, and had already weakly processed it by that time (as we will now show). In
turn, condition (b) corresponds to the case where qi and qi−1 were concurrent, in the
sense that both users were in consistent states when sampling them and were not
aware of the existence of the opposite update when sampling theirs. Thus, for ease of
notation, we will write qi−1 ◁ qi to represent the first case, and qi−1 ∼ qi, to represent
the second one. For any query qi,j, i.e. those affecting only the nodes on v’s copath,
we say, similarly, that qi,j ◁ qj and qi,j ∼ qj if the node Int(IDi, IDi,j) verifies through
condidions (a) and (b), respectively.

We will now prove the following claim, from which the Lemma will follow easily.
Informally, it states that from its state at q1 onwards, there is a chain of round messages
that ID1 would accept and that would bring them to a state consistent with ID’s
current state, along the way explicitly processing all updates corresponding to nodes in
the path and copath of ID1.

Claim. For any j ∈ (1, . . . , m−1), such that qj ◁qj+1, there is a sequence of efficiently

169

5. CoCoA

computable round messages M1, . . . , Mrj
that ID1 would process and accept with

respect to their state at q1, and such that the state of ID1 after processing that last
message Mrj

, γ
qrk
ID1 , is consistent with that of IDj+1 at time qj+1, i.e. with γ

qj+1
IDj+1

.

Proof of Claim. First, we make the following observation: if q̃ ◁ q̂ < q, then it must
be that the user ID̂ that issued the update in q̂ had already weakly processed q̃ at the
time q̂. Indeed, by the fact that parent hash verifies at the node where the both update
paths meet, we know that ID̂ had some key from q̃ in their state. If there are not blank
nodes in between the nodes set by q̂ and the node set by q̃, then the update in q̃ must
have been explicitly processed by ID̂, since a node they sampled belongs to the copath
of ID̂. If, instead, there is at least one blank node in between q̂ and q̃ and (̂ID) did
not explicitly process (̃q) at any point, then, by the minimality of q, it must be that ID̂
had already weakly processed q̃ at q̂. To see why, note that ID̂ introduced the node
corresponding to q̃ into their state at some point before ID̂, by processing a round
message containing at least one remove operation. However, since ID̂ accepted that
round message, it must be that the parent hash verification of said tree passed and,
moreover, that it was a well-formed tree containing at least one user leave (that of the
removed party). Further, all node states in it must have corresponded to past queries,
except with negligible probability, since the adversary is not allowed use of signing keys
and all node states come with a signature. Thus, that tree would have satisfied all
constraints in Def. 5.5.13 and, moreover, have contained a node state corresponding to
an operation not yet weakly processed by ID̂. In particular, this means A could have
won the OPEN game with respect to some query earlier than q, which is a contradiction
to the minimality of q.

We will prove the claim by induction on j, but will first start with a couple of simplified
case, capturing most of the arguments used in the inductive argument, in order to build
intuition. Suppose first j = 1, i.e. q1 ◁ q2, and we assume that there are no blank nodes
between the nodes sampled by q1 and those sampled by q2. We will show the claim is
true for this particular case.

We first show that ID2 was at some point in a state consistent with that of ID1 at q1.
To see this, first note that at least one node state set by q1 is part of ID2’s state at q2,
from parent hash verification. Now, if q1 corresponds to the query where ID1 processed
their welcome message, then the state of ID1 after processing the corresponding round
message must have been consistent with that of IDA, the party who added them, at
the time they issued the add operation. However, since ID2 also must have processed
the corresponding add query from IDA, their state must have also been consistent with
IDA’s at that time and, by transitivity of =, also with ID1’s at q1. If, in turn, q1 was
sampled by ID1 after they joined the group, then we know it must have been explicitly
processed by ID2 (since by assumption there are no blank nodes between nodes from q1

170

5.5. Security

and nodes from q2, i.e. the highest node sampled by q1 is the parent of a node sampled
in q2 and therefore a node in the copath of ID2), which, by Proposition 3, means their
state before processing it was consistent with that of ID1 at q1.

Now, from the time the state of ID2 was consistent with ID1’s at q1 all the way to q2,
ID2 must have processed a series of round messages (we know they processed at least
one: the one containing q1). For any q1,j such that q1,j ◁ q1, we know that ID had
already weakly processed q1,j at q1, by the observation at the beginning of the claim’s
proof. Now, note that all packets from the q1,j such that q1,j ∼ q1 will be accepted by
ID1 with respect to its state at q1, since by parent hash verification of nodes sampled by
q1 (in particular the check involving Htrans), ID1 was in consistent states at that time
with the corresponding user ID1,j, and moreover, by the equality check involving the
predecessor keys PKpr, ID considered those parties as belonging to the corresponding
subtree. This is necessary, as ID1 will only accept an packet corresponding to some
node u if it is signed by a user belonging to the subtree under u. Note that if PKpr was
not part of the state or not included in the signatures, a tree resulting from rearranging
update paths from users that update concurrently and from consistent states, would
pass parent hash verification. For example, consider the case where all users update
concurrently, with the left update always winning; the tree where the update paths of
any even-index users are rearranged would still verify (this issue is similar as the one
that earlier versions of parent hash for TreeKEM suffered of [AJM22]).

Consider now all other packets included in the round message MID2,1 that ID2 processed
and through which they processed q1, which were either adds or removes, or corresponded
to node states for nodes that are either Int(ID1, ID2), nodes above it, or parent of these.
All this packets would also be accepted by ID1 with respect to γq1

id1 , since they were
accepted by ID2 at a time where their state was consistent with it; and the information
used to determine aceptance of this packets is based on values that lie in the intersection
of the states of both parties. Indeed, the acceptance of update or add packets is based
uniquely on values corresponding to the key schedule and membership set, and the
acceptance of removes is based also on values stored on node states. Since the nodes
mentioned are in the states of both parties, and the node states must match by the fact
that the states are consistent, the statement follows. Thus, the message M1 containing
the packets corresponding to the q1,j such that q1,j ∼ q1, and all other packets from
MID2,1 that are either adds, removes or correspond to the node states above will be
accepted by ID1. Moreover, if this message contains, for packets corresponding to the
q1,j , the same openings as the corresponding nodes in Tq, and, for all other node states,
the same openings included in the message MID2,1 to ID2, then ID1 after processing
M1 will be in a state consistent with ID2 after they weakly processed q1. To see this,
note that the states of nodes in ID1’s state below Int(ID1, ID2) will match exactly
those in Tq, and that those for the remaining nodes must match those in ID2’s state.
Since by parent hash verification, we know h1

w2 = ℓ(w1), where w1 and w2 are the

171

5. CoCoA

left and right parents of Int(ID1, ID2), we know the label both parties compute for w1
must be the same as well.

As to the remaining round messages processed by ID2 from this time until q2, it must be
that none of this included any changes to the subtree under the highest node sampled
by q1. Indeed, since we are for now assuming that there are no blank nodes in between
those sampled by q1 and q2, for ID2 to process something affecting that node after
processing q1, they would have to explicitly process q1 again in order to have a node
state from that query in their state at q2. However, by Corollary 5.5.9.1, we know this
cannot be the case, since explicitly process implies weakly process. Thus, all other
messages processed by ID2 from that point onwards until q2 must have only affected
nodes that are, are above, or are parents of Int(ID1, ID2). By the same argument as
before, ID1 would process and accept the corresponding round messages M2, . . . , Mr1 ,
containing those same packets, in the same order, bringing them to a state consistent
with ID2’s at q2. This proves the claim above for simpler case where j = 1, there are
no blank nodes between the nodes sampled by q1 and q2.

Before we move on, we will now discuss the effect of blank nodes between the nodes
sampled by q1 and q2 in the above argument. First note that now we do not have
the guarantee that ID2 explicitly processed q1, however this is taken care of by the
observation from the beginning of the claim, which implies ID2 weakly processed q1
before q2. By Proposition 3, this implies ID2 was at some point in a state consistent
with that of ID1 when issuing q1.

Further, we now need to show that ID2 did not process any other operations affecting
nodes on the subtree under the highest node sampled in Tq by q1. Above we relied
on the fact that ID1 would have to explicitly process q1 twice but, again, we do
not have this guarantee. We argue as follows. In the case wjere blanks between q1
and q2, if ID2 weakly processed but did not explicitly process q1, say by processing
round message MID2,1, it must be that they processed and accepted a round message
containing some removal after they processed MID2,1. Let MID2,2 be some round
message, processed and accepted by ID2 between weakly processing q1 (through
processing MID2,1) and issuing q2, where ID2 weakly processed such an operation
affecting the nodes on the subtree under the highest node sampled in Tq by q1. First,
note that if ID2 processed no round messages including removals between processing
MID2,2 and time q2, then they must have processed some round message in that interval
setting the key of some node in Res(lparent(Int(ID1, ID2))) to one set by q1. But
this node must have already been part of ID2’s state at that time, meaning they
would have explicitly processed q1 after already weakly processing it, a contradiction to
Corollary 5.5.9.1. Thus, ID2 must have processed some round message containing a
remove after processing MID2,2 and, in particular, it must have been such a message
that put the key from q1 into their state. However, for ID2 to accept such a message

172

5.5. Security

the received tree corresponding to the removed user(s) path and co-path resolution
must have been consistent with said key from q1. Since we know the openings left
by MID2,2 were not consistent with it, ID2 must have processed yet another MID2,3
in between these two messages, in particular including openings now again consistent
with the key from q1. Assume MID2,3 is the last such round message processed by
ID2 before they the aforementioned round message that put the key from q1 into their
state. We know that that round message containing a remove must have contained a
tree T that was consistent with the openings sent in MID2,3 (and thus such that all
queries corresponding to node states in T had already been weakly processed by ID2
at the time, by the argument at the beginning of the claim’s proof). Now T must
contain some query q′ that ID2 weakly processed between (and including) MID2,2 and
MID2,3, such that q1 ◁ q′ in T . If there are no blank nodes between q′ and q1, then
whoever issued q′ must have explicitly processed q1, implying ID2 weakly processed q1
a second time in that interval, a contradiction. Else, we can recurse and repeat the
same argument with respect to ID′, which must eventually lead us to some user weakly
processing q1 twice, since we are considering progressively lower nodes in the tree.

The remaining part of the argument that is affected by these blank nodes is that now
there are queries qb

1,j that we need to show ID1 would weakly process by the time
they process Mr1 . To see this is the case, note that all such blank nodes between
q1 and q2 must have been created (in the view of ID2) between (possibly including)
them processing q1 and the query q2. Moreover, during this interval, ID2 cannot have
processed any removes coming from the subtree under the highest node sampled by
q1 in Tq, following the argument above. However, note that if we were to construct
the sequence of round messages for ID1 as before, we would now need to include any
updates affecting nodes in the subtree under Int(ID1, ID2) but outside the subtree
under the highest node sampled by q1. Further, note that these might no longer be
reflected in Tq, since there could have been several of them, and earlier ones could
have been overwritten. Nevertheless, we can use the algorithm E from Lemma 5.5.15
to determine which operations affecting these nodes were processed by ID2 in this
time interval, and add those to the crafted messages to ID1, with the corresponding
openings. Further, tree that the server would need to send to ID1 for each message
containing a remove would contain exactly the same node states as the tree received
by ID2 in their corresponding messages. Thus, they would be accepted by ID1. In
particular, any of the nodes corresponding to the qb

1,i either corresponds to an update
ID2 explicitly processed (either after or in one of the messages where the blanks were
created), or would have been included in at least one of such trees. In the first case,
ID1 would also explicitly process such query in the process; in the second, again, by
minimality of q, we know that ID1 must have weakly processed the corresponding
query. This proves the claim for j = 1 in the general case, where blank nodes can exist
between q1 and q2.

173

5. CoCoA

Now, we will start the induction proof of the claim. Let j ∈ (2, . . . , m − 1) and
suppose that qj ◁ qj+1 and, further, that for any j′ < j for which qj′ ◁ qj′+1, a sequence
M1, . . . , Mr′

j
as in the claim exists. For the base case, we consider the case where j is

the minimal such index for which qj ◁ qj+1. In that case all, for all j′ < j, qj′ ∼ qj′+1,
and thus, by parent hash verification (in particular by the fact that the transcript
hash values in those updates match), we know that all IDj′ were consistent with each
other with respect to their respective states γ

qj′
ID′j

. In particular, it means that ID1

would accept any packet from those updates that was included in a round message.
Moreover, as above, we will show that IDj+1 must have weakly processed q1 at some
point, which in turn implies that IDj+1 must have at some point had a state consistent
with that of ID1 at q1. To show this, note that by parent hash or verification of the
node Int(IDj+1, ID1), we know that, at qj+1, the label of the left parent of said node,
in the view of IDj+1 corresponded exactly to the label of that subtree of Tq, to which
the node(s) sampled by q1 belong to. By minimality of q, we know then that IDj+1
must have weakly processed q1.

Similar to above, M1 can now be constructed as containing all qj′ for j′ ∈ {1, . . . , j},
together with all the q

j′,j ′̂ such that q
j′,j ′̂ ∼ qj′ , as well as all queries contained in

the message that IDj+1 processed when they weakly processed q1, and which affected
nodes outside of the subtree under the highest node sampled by qj . A similar argument
to the one above shows that ID1 would accept all these individual packets and thus the
round message, and, if this round message contained the correct openings (those given
by T for nodes the subtree under the highest node sampled by qj, and those given by
the round message for IDj+1 for the remaining nodes), then ID1 will transition to a
state consistent with that of IDj+1 at the time the latter processed q1. The exact same
argument above shows that there is a sequence M2, . . . , Mrj

of round messages ID1
would process and accept after processing M1 that bring them to a state consistent
with that of IDj+1 at qj+1. Moreover, along the way, ID1 processes all qb

j,ĵ
that they

had not already weakly processed, as before, those would correspond to nodes whose
states must have been included by the server in the corresponding round messages
including the removals that caused any blank nodes between the nodes sampled by qj

and those sampled by qj+1 (note that no such qb
j,ĵ

) exist if no such blank nodes exist).
Finally, just as before, ID1 must also before q1 have processed any qj′,ĵ for j′ ≤ j for
which qj′,ĵ ◁ qj′ . Indeed, we know the label of the highest node sampled by qj in T
matches the label of the same node in ID1’s state after processing q1, so by minimality
of q, ID1 must have processed all queries corresponding to this subtree. This concludes
this case.

Now, we consider the inductive step, where j is not minimal, i.e. there exist queries qκ

satisfying qκ ◁qκ+1 with κ < j, and we assume that the claim is true for any such κ < j.
Let qj′ be the query where j′ < j, qj′−1 ◁ qj′ , and such that j′ is maximal satisfying

174

5.5. Security

those two properties. In particular, j′ is such that for all ĵ ∈ {j′ + 1, . . . , j − 1} (if
such interval exists) we have qj′ ∼ qĵ. By the induction hypothesis there is a sequence
of messages M1, . . . , Mrj′−1 which ID1 would process with respect to their state at q1
and which ushers them into a state consistent with that of IDj′ at time qj′ .

In this case, using the same argument as above, IDj+1 processed all qj′ , . . . , qj, by
minimality of q, before qj+1. Thus, IDj+1 was at some point in the past in a state
consistent with IDj′ at qj′ , and thus with ID1 after they processed Mrj′−1 . Moreover, it
must be that since that point and all the way to qj+1, IDj+1 has not weakly processed
any updates, adds or removes affecting nodes in the subtree under the left parent of
Int(ID1, IDj′). To see why, note first that all the qj′ , . . . , qj, must have processed at
the same time since they all had the same transcript hash values. At the time just
before processing those, qj′ had to have already weakly processed all updates below
qj′ . Indeed, we know that there is a tree that would agree with IDj′ ’s state at that
time and which would contain the nodes for all those queries (following the fact that
the parent hash verification of Int(ID1, IDj′) is through condition (a)). But since the
state IDj′ had at time qj′ , is consistent with IDj’s state at the time they processed
qj′ , such tree must have also been consistent with IDj+1’s state, showing, again, by
minimality of q, that IDj+1 had weakly processed those queries by then. Moreover, we
know that at qj+1 their state was also consistent with the subtree under the highest
node affected by qj in Tq. Thus, if IDj+1 processed anything else in between weakly
processing qj′ and time qj+1 affecting those nodes on the subtree under the highest
node affected by qj′ , then must have processed some other round message afterwards
that brought their state consistent with the subtree under qj+1 again. In particular,
they must have processed something that affected the left parent of Int(ID1, IDj+1),
and later processed something that set the key at the highest node sampled by qj in T
to be the same one as they already had in their state at the time of weakly processing
qj′ (and therefore also qj). This means that they must have weakly processed qj twice,
which is a contradiction to Corollary 5.5.9.1. Thus, it must be that since the time
IDj+1 weakly processed qj′ and all the way to qj+1, IDj+1 has not weakly processed
any updates, adds or removes affecting nodes in the subtree under the left parent of
Int(ID1, IDj′).

In particular, this means that we can treat this as the case where j is minimal, and
argue that there is a sequence of round messages M ′

1, . . . , M ′
r′

j
that IDj′ would process

from time qj′ that would put them into a state consistent with IDj+1 at qj+1, where
IDj′ would along the way weakly process all queries corresponding to nodes between
qj′ and qj; and, moreover, such that those messages would contain no changes from
the subtree under qj′ . But then, the corresponding sequence of round messages
M1

1 , . . . , M1
r′

j
, sent this time to ID1 after they processed Mrj′−1 , and containing the

same packets as the M ′
1, . . . , M ′

r′
j
, would have the same effect and would also be

175

5. CoCoA

accepted, since they only concern nodes that in the intersection of the states of the
two parties. Thus, if we let Mrj′−1+k ← M1

k for k ∈ {1, . . . , r′
j} then the sequence

of messages M1, . . . , Mrj′−1+r′
j

=: Mrj
brings ID1 from their state at q1 to a state

consistent to IDj+1’s at qj+1, along the way weakly processing all the necessary queries.
This completes the proof of the claim.

(End of proof of Claim)

If qj is the maximal query in ID1’s path in Tq for which qj−1 ◁ qj, then we know from
the proved claim above that there is a sequence of round messages that ID1 would
process from its state in q1 that lead them to a state consistent with that of IDj at qj .
Moreover, for any j′ > j, qj′−1 ∼ qj′ , just by definition of qj. Thus, we will argue now
that there exists one last message Mm that ID1 would process with respect to their
state after processing Mrj−1 , and which will take them to a state consistent with that of
ID at the time they weakly processed qm. First, observe that ID’s state before weakly
processing qm, in particular the corresponding openings, must have been consistent
with the subtree of Tq below qj, since they must have been in consistent states with
IDm at qm and therefore with IDj at qj (since qj ∼ qm). Moreover, after processing
the round message through which they weakly processed qm, their state must still be
consistent with said subtree of Tq, just because of the assumption that ℓ(T) is equal to
the label ℓ(v) is ID’s state. This implies that this round message through which they
processed qm contained no changes for that subtree of Tq in question, following the
same argument used above. Thus, following the arguments in the proof of the claim,
the round message, now sent to ID1 containing the same packets as the one sent to
ID would be accepted and would prompt ID1 into a state consistent with that of ID.

However, this implies that all queries q̃ in Tq such that q̃ ∼ qj would be explicitly
processed by ID1 by processing this message, and thus weakly processed by ID at this
time. Moreover, all other queries corresponding to all other nodes in Tq were already
weakly processed by ID1 at the time before they processed Mm. In particular, since the
states of ID and ID1 before they each weakly processed qj were consistent, so must
have been their round hash value at that round. Thus, by minimality of q, again, ID
must have already weakly processed all those queries by that time. This concludes the
proof.

Finally, we turn to the proofs of Lemmas 5.5.10 and 5.5.11.

Proof of Lemma 5.5.10. Before starting the proof we make the following observa-
tion. Let ID and ID∗ be in consistent states after each processing queries q =
CGKA.Proc(γID, M) and q∗ = CGKA.Proc(γID∗ , M), respectively, and assume that
ID∗ joined the group at the same time or after than ID. Then, by collision resistance of
H5, the sequence of transcript hash values (and round hash values) ID∗ has computed

176

5.5. Security

throughout their execution, up to time q∗, must be a suffix of those ID has computed
up to time q. In particular, for any query of the form CGKA.Proc(γ∗

ID, ·) in the
protocol execution where ID∗ accepts the received round message, there must be a
query CGKA.Proc(γID, ·) where ID accepts the received round message; and moreover,
their states between any two pairs of such corresponding queries must be consistent,
by Proposition 2. Indeed, this must be the case since accepting and processing a
round message always changes the users’ state, as e.g. the transcript hash is updated
by hashing in a new round hash value. We can thus draw a 1-to-1 correspondence
between processed messages by one and the other. More formally, if (q∗

1, . . . , q∗
k) are

the process queries q∗
i = CGKA.Proc(γq∗

i−1
ID∗ , ·) that ID∗ processed since joining the

group up until q, then there is a bijection q∗
i ↦→ qi between those and the k last process

queries (q1, . . . , qk), qi = CGKA.Proc(γqi−1
ID , ·), that ID processed before q, such that

the states of ID and ID∗ between qi and qi+1 and between q∗
i and q∗

i+1, respectively,
are consistent.

We will start by arguing that every update U that ID∗ weakly processed at or before
time q was also weakly processed at or before time q by ID. Consider first the case
where ID∗ weakly processed U at the moment of joining the group, i.e. ID the tree
T that ID received as part of the welcome message contained a node with a public
key which was part of U . Because ID∗ accepted the welcome message, we know that
PHash.Ver(T) = 1, and that it has the format required in Def. 5.5.13, that is, indegree
two everywhere except at the leaves, no blank leaves, the state at each node corresponds
to some update sampled during the protocol execution (since the signatures at each
node verify), and at least one of its leaves contains a public signing key. Moreover,
since the state of ID∗ after processing q∗

1 is consistent with that of ID after processing
q1, it holds that the label of T must match the label of vroot in ID’s state, γq1

ID, at
that time. However, if T contained a node state corresponding to some query not yet
processed by ID, we could then build an adversary against the OPEN game that would
win using T with respect to query where ID processed q1. It follows that ID had at
that time already processed U .

Next, consider the alternative case, where ID∗ weakly processed an update U after
joining the group, through query q∗

i , i ≥ 2. By definition, there exists a user ID′ and a
series of efficiently computable round messages M ′

1, . . . , M ′
t such that ID′, with respect

to their state γ′ at time q′
ID∗ , would process (and accept) all M ′

i in order; and such
that ID′ would explicitly process U by processing M ′

t and arrive at a state consistent
with γ

q∗
i

ID∗ . Here, recall q′
ID∗ is either q′

ID∗ = CGKA.Upd(γ′) the last update from
ID′ weakly processed by ID∗ or, if such update does not exist, the query in which
ID′ processed their welcome message into the group, initializing state γ′. Now, note
that since the state of ID at qi is consistent with that of ID∗ at q∗

i , then so it is with
the state of ID′ after processing M ′

t. We will show that there must exists a similar

177

5. CoCoA

sequence of round messages from q′
ID, the query where ID′ last issued an update weakly

processed by ID or, if such update does not exist, the query in which ID′ processed
their welcome message into the group. Assume first that q′

ID∗ is the query where ID′

processed their welcome message. In that case, q′
ID∗ ≤ q′

ID, so (a subsequence of) the
M ′

i satisfy the definition with respect to ID, meaning ID weakly processed U in qi. If
that is not the case, ID∗ must have weakly processed query q′

ID∗ at or after joining. If
ID∗ did so at the moment of joining, then we know that ID must have also weakly
processed said query, so q′

ID∗ ≤ q′
ID (in fact, equality holds here) so, again, the M ′

i

satisfy the definition with respect to ID. Last, assume ID∗ weakly processed q′
ID∗ in q∗

i ,
with i ≥ 2. But then, we know that the state of ID′ at q′

ID∗ is consistent with ID∗’s
state, γ

q∗
i−1

ID∗ , and therefore also with ID’s, γ
qi−1
ID . Thus the M ′

i , preceded with whatever
round messages ID′ processed between q′

ID and q′
ID∗ satisfy the definition with respect

to ID∗.

Finally, this last argument shows, in fact, that if ID∗ weakly processes U in q∗
i , for

i ≥ 2, then so does ID in qi. This completes the last part of the lemma statement,
regarding the ordering of weakly processed queries (and, in particular, implies that
q′

ID∗ = q′
ID in the last case above).

Proof of Lemma 5.5.11. There are three actions that trigger ID to add a key to their
local state: processing an add operation, and adding the new InitKey of the added
party; explicitly processing an update operation; and processing a remove operation,
where they add extra keys to the resolution of their copath. Statement 1 is trivially true
for keys added through the first or second action. We will first show that statement 2
is also true for these keys.

Consider now the case where ID added pkv to their state by processing an add operation,
adding party IDA, and assume for contradiction that they weakly processed an update U ′

affecting v in query q′ ∈ {q + 1, . . . , q∗}. This update must be authored by IDA, but
since their leaf v is in the state of ID, they must have then explicitly processed it, which
would mean v would no longer be in ID’s state, a contradiction.

Now, consider the case where pkv was introduced in ID’s state by explicitly processing
update Uv in q and, again, assume for contradiction they weakly processed some U ′ in
q′ ∈ [q + 1, . . . , q∗] affecting v. For pkv to still be part of ID’s state at q∗, they must
have not explicitly processed any update coming from the subtree under v. However,
by the definition of weakly processing, there must be a user ID̂ under v’s subtree whose
update was explicitly processed by ID in q′, which is a contradiction.

Thus, it remains to show the lemma for keys pkv that were added by ID to their state
by processing a remove operation. This is, however, a straight forward application
of Lemma 5.5.14. Observe that pkv must have then been part of a tree sent by the
server which satisfied all conditions in Def. 5.5.13, because ID accepted them round

178

5.5. Security

message containing it. Indeed, the checks a party does on this tree before accepting
the round message that contains it ensure that it satisfies the requirements estipulated
in the lemma: parent hash verifies and, by virtue of consisting of the path(s) and
co-path resolution(s) of one (or more) user(s), it will have no blank leaves, indegree
two except at the leaves, and contain a leaf with a public verification key. The fact
that all node states correspond to previous queries follows, in turn, by the fact the
adversary is not allowed to corrupt signatures. Moreover, its label must match that of
the intersection of the removed user(s)’s path(s) and P(ID). Thus, it must be that all
keys in it correspond to operations ID had already weakly processed. If that was not
the case, we could build an adversary for the OPEN game which would win using the
mentioned tree. with respect to ID and the tree(s) received from the server as part of
the round message.

It remains to show that statement 2 is true for v, i.e. that ID cannot have weakly
processed an update U+ coming from a user in the subtree under v, after weakly
processing U . However, note that if this is the case, ID must have explicitly processed
an update between q and q∗, and later process another round message again making them
weakly process U twice, following the same argument as in the proof of Lemma 5.5.14,
which is a contradiction to Corollary 5.5.9.1.

179

CHAPTER 6
DeCAF

6.1 Introduction
As we discussed in the previous Chapter,1 while updates in the initial versions of
TreeKEM only need log(n) communication, they are inherently sequential: a user can
only send an update request after processing the previous one. If two (or more) users
A and B send an update request each re-keying their full paths to the server for the
same previous ratchet tree state (as shown on the left in Figure 6.1), the server will
simply reject all but one of the requests. In fact, this is true for all CGKA variants with
two exceptions discussed below.

Recall that recent versions of TreeKEM do allow for a different type of concurrent
updates through the “Propose and Commit” framework. Concurrent updates, however,
will not re-key the paths of both users, and will instead blank the paths of users
proposing. Figure 6.1 (right side) shows the tree we get if A commits to an update
proposal by B in this way. Note that the more concurrent updates, the more blanking
occurs, and the more expensive future operations become e.g., to commit A must send
4 ciphertexts before blanking B, but 6 after. In general the cost can grow from log(n)
to n. If the group members want communication efficiency, they will have to commit to
as few updates as possible at a time, relying instead on sequential commits to refresh
keys. That means concurrency is not possible anymore, as commits need to be totally
ordered, and the issue outlined above returns.

1This Chapter essentially replicates, with permission, large parts of the full version [AAN+22a]
of our publication to appear at the 14th International Conference on Security and Cryptography for
Networks (SCN 2024).

181

6. DeCAF

A B
Concurrent update/commit requests by A and B

A BTreeKEM I:
B’s commit dropped

A BCoCoA:
B’s update cropped

A BDeCAF:
updates merged

+ + =
+ =
+ =

A B
B proposes, A commits

A BTreeKEM II:
B’s path is blanked

Figure 6.1: (left): Illustration of how TreeKEM, CoCoA, and DeCAF handle a concurrent update by
parties A and B who want to replace their (potentially compromised) keys. TreeKEM I refers to the
conservative approach where users commit one at a time. In DeCAF instead of replacing old keys, the
new key-material is merged with the existing one. (right): An illustration of blanking used to commit
an update proposal (removing B would be similar, with their leaf node blanked instead.)

Causal TreeKEM. The first CGKA protocol supporting concurrent updates was
Causal TreeKEM [Mat19]. This protocol builds on a public key encryption primitive
allowing for keys to be combined in a commutative way. This way, updates will no
longer overwrite the previous key, but instead update it by combining the fresh key
with the existing one. Since this combining process is commutative, several updates
can me merged at the same time, without regard for the order in which users received
them. As a downside, the protocol does not guarantee FS, and PCS requires a number
of updates equal to the amount of corrupted group members, each of which needs to
take place in a different round. Additionally, it does not formalize the security of the
“key merging” functionality, and does not give full security proofs.

CoCoA. The protocol CoCoA [AAN+22b], which we presented in Chapter 5, processes
concurrent update proposals in a “greedy” manner and simply accepts as many keys
from concurrent updates as possible. As illustrated in Figure 6.1, if there is a conflict,
i.e. two concurrent updates want to replace the same node, then one of the two updates
is rejected from this point upwards. While this process does not guarantee that the
key is safe after every compromised party updated,2 somewhat surprisingly [AAN+22b]
proves that the tree does heal after every party updated log(n) times in the worst
case (independent of the number of compromised parties and allowing the adversary to
schedule all operations and also decide which of any two concurrent updates “wins” in
every case).

2In the example from Figure 6.1, if B was compromised, after the update the two topmost red
nodes would still be compromised, as their keys were encrypted to compromised keys.

182

6.1. Introduction

Moreover, CoCoA enjoys extremely low communication complexity, as each party must
only download at most log(n) ciphertexts to process each set of concurrent updates.
Note that this is independent of both the number m of parties that update in this
round, which can be as large as m = n, as well as the number t of corruptions, which
can be as small as t = 1. For this to be theoretically possible, the untrusted server
must be more sophisticated than just relaying every protocol message it gets to all
users in the group. Instead, it only sends a subset of the ciphertexts to each user based
on their position in the tree, together with some commitment to its actions, allowing
users to check that they received consistent messages.

Server- and blockchain-aided CGKA. In order to distribute protocol messages
among the members of the group, CGKA protocols typically rely on an untrusted server.
Most CGKA protocols like TreeKEM [BBR+23], rTreeKEM [ACDT20], and Tainted
TreeKEM [KPPW+21] require a simple relay server. CoCoA, however, is a server-aided
CGKA protocol, a primitive formally defined in [AHKM22], and where the server is
expected to do non-trivial computation and provide users with personalized packages.
This reliance on the server can still be problematic. For example, it allows it to reject
protocol messages by a particular user, thus preventing them from healing. Or to
selectively forward messages to only part of the users, leading to a group split.

These issues could be amended by replacing the server with a decentralized solution, an
example of which would be a blockchain. Throughout the paper we will use the term
blockchain for convenience to refer to any append-only data structure with the following
property. When the data is distributed among multiple nodes there is a consensus
mechanism that guarantees that the data is arranged into totally-ordered blocks that
all nodes agree on. New data can be added by making use of a peer-to-peer network
or any other suitable type of channels. The use of such an append-only structure
(permissioned or permissionless) allows us to realize group messaging which enjoys the
same robustness and security guarantees as the underlying structure. More concretely,
instead of sending their CGKA protocol messages (update/add/remove) to the server,
the users would post them on the append-only ledger. Only the key-management must
be on-chain, text messages (encrypted under the current group key) can be gossiped or
shared on a public bulletin board.

Note that any CGKA in the classical setting can be “compiled” to the blockchain setting:
in the latter, the block producer simply emulates the server to compile the protocol
messages that would be broadcast in the classical setting, and adds this message to the
block. In the case of server-aided CGKA, after downloading all protocol messages stored
on chain, the users can simply locally emulate the computation that would be done by
the smart server. This potentially increases the download communication-complexity

183

6. DeCAF

though, as the users no longer receive personalized packages.3 The opposite holds
as well, any server being able to emulate the outputs of the decentralized consensus
protocol.

There are at least three separate properties which are achieved in the decentralized
setting, but not in the “classical” server setting. Namely (1) security against splitting
attacks, (2) censorship resistance, and (3) robustness. Regarding (1), an attack which
is unavoidable in the classical setting is a splitting attack, where the (corrupted) server
splits the users into two or more groups, and then only relays messages within those
groups, forcing parties in different groups into different and inconsistent states. With
such an attack one can, for example, enforce that only a particular subset of users
sees some set of messages. If the protocol messages are on a blockchain, all parties
will agree on the same view, and thus this attack is prevented. With regards to (2),
another attack that is unavoidable in the single server setting is the censoring of a
particular party. The server can ignore messages from a party, this way preventing them
from ever updating. This is severe as, should this party be corrupted, the corrupted
key can be indefinitely prevented from healing. In the blockchain setting, the “liveness
property” of the blockchain, in combination with the fact that our protocol allows for
concurrent updates (so there are no denial-of-service-type attacks where some parties
prevent another one from updating by flooding the mempool) prevents this attack: if a
user wants to update, their request will be added with high probability within a few
blocks. Finally, concerning (3), in the single server setting the group can be shut down
by taking out a single server. Better resilience can be achieved with several servers,
but then one needs to solve the state machine replication problem. This is what our
protocol does if using a permissioned blockchain. With a permissionless blockchain,
resilience would be even stronger.

Let us mention that in order to avoid all three issues mentioned above we need to
record all the protocol messages on chain, which is probably no problem in the permis-
sioned setting, but could be expensive in a permissionless blockchain. Permissionless
blockchains like Bitcoin or Ethereum have slow block arrival rates (and even slower
confirmation times), there also is a non-trivial cost incurred by recording transactions on
chain. A permissioned blockchain, on the other hand, just requires a fixed small number
of servers and provides the required security as long as a majority of the servers behave
honestly (e.g., 3 out of 5). The cost of running such a protocol is only a small constant
factor larger than just having a single server, but greatly reduces the trust required. If
we are only interested in (1) and (2), but not (3), one can just post a single hash of
all the messages which each block contains on chain, while the actual messages are

3While the use of smart contracts might seem like a natural strategy to address this, the suitability
of this approach is not clear: who executes the smart contract? can one justify or avoid storing the
server state on the blockchain?

184

6.1. Introduction

(a) CoCoA

Update 1 Update 2 Update 3 Update 4

(b) DeCAF

Update 1 Update 2

Figure 6.2: Comparison of the number of rounds required to recover in CoCoA (a) and DeCAF (b)
for n users, of which t are corrupted. Red nodes correspond to compromised keys. In each round
all parties update concurrently, in CoCoA update requests are prioritized from left to right. CoCoA
requires ⌈log(n)⌉+ 1 = 4 rounds to recover, DeCAF only ⌊log(t)⌋+ 1 = 2.

stored off chain. This loses property (3) unless we solve the data availability problem
separately4.

6.1.1 Our Contribution
DeCAF. In this work we consider a new CGKA protocol, DeCAF (for DEcentralizable
Continuous group key Agreement with Fast healing), that allows for concurrent updates.
In DeCAF we use a key-updatable PKE scheme, and updates no longer replace keys,
but update them. We show that the protocol provides forward security in the same vein
as most other CGKAs (albeit slightly weaker than TreeKEM due to a potential delay
until update messages are received and processed by other users), and only needs log(t)
epochs to heal, with t being the number of corrupted parties. The latter point contrasts
to CoCoA, where it is only guaranteed that the tree healed once each compromised
party updated log(n) times. This difference is illustrated in Figure 6.2. The root of
this difference is the fact that, while in CoCoA we must drop one of two concurrent
updates for the same node, in DeCAF we can perform both, which turns out to have a
significant impact on security. As we can expect t to be small compared to n (in fact,
for most of the lifetime one should hope that t = 0), DeCAF will provide comparable
security to CoCoA with fewer updates. On the downside, as in DeCAF every user
must process all updates by other users (while in CoCoA at most log(n) other updates
matter), the download communication (from server to users) will be larger.

The above discussion suggests a trade-off between DeCAF and CoCoA, and which one
is better will depend on the context. If run using a server, CoCoA and DeCAF are
incomparable; DeCAF heals faster (log(t) vs log(n) rounds) and therefore has lower
sender communication, but CoCoA has lower recipient communication (since the server
crafts individual messages for each party). However, in the decentralized setting (where

4https://blog.polygon.technology/the-data-availability-problem-6b74b619ffcc/

185

6. DeCAF

we do not want to rely on a(n intelligent) server to relay protocol messages), CoCoA
loses its advantage in recipient communication and DeCAF is strictly better in all
aspects as we discuss in more detail below.

Our protocol is also similar to Causal TreeKEM [Mat19] in some aspects, but differs
largely in others. In particular, the main element in common is the above-mentioned
use of updatable PKE, which is exclusive to these two protocols. While the primitive
is also part of other constructions, such as rTreeKEM [ACDT20], it is employed in a
very different way, as the focus is another (improved FS, in that case). However, while
Causal TreeKEM requires the key-update functionality to be commutative, we do not.
Furthermore, mechanisms for adding and removing parties are different, with those
used by DeCAF being both simpler and in line with what is currently used by MLS,
making a potential adoption by the standard much easier. Another big difference is
the security guarantees provided by both protocols. Indeed, Causal TreeKEM does not
consider FS, and PCS is only claimed after each corrupted user issues an update in a
separate round, thus needing t rounds to heal. The latter claim lacks a formal security
proof. We conjecture that for static groups, Causal TreeKEM might enjoy a similar
PCS guarantee, but this is unclear for dynamic groups.

Maintaining a Group on Chain. Given the particular suitability of DeCAF in a
decentralized network, we cast it as making use of a blockchain, access to which is
shared by all group members. The use of blockchain for CGKA protocols is novel as
far as we know, but note that there exist previous messaging protocols making use
of it, like Elixxir [Coi]. We stress that this is not a requirement for the protocol to
run, which could instead simply rely on a central server, as discussed above. Now we
explain how to make use of such an structure to maintain a group. In its simplest
instantiation, a group would be initialized once some ith block Bi in the blockchain
contains the welcome messages which defines a ratchet tree Ti for some group. Users
in the group can post add/remove/update messages on the blockchain, and the ratchet
tree Tj is defined to be the ratchet tree Tj−1 after processing the protocol messages
contained in block Bj. One issue with this basic protocol is the fact that a message
created referring to Ti can only be created after learning block Bi and must be added
to the next block Bi+1. Depending on the block-arrival time of the chain, we might
want to give messages more time to get included in the blockchain. We use a simple
way to achieve this by introducing a parameter k, and only update the ratchet tree
every k blocks, so messages referring to this tree can be included in any of the k blocks
following the block specifying the tree. The parameter k should not be chosen larger
than necessary, as only one update per k-block epoch will contribute towards healing
(except if a corruption occurs in between two updates from the same epoch). If a
message is not included in time this just means it can no longer be included, so the
user can simply create a new message referring to the new ratchet tree.

186

6.1. Introduction

Protocol Conc. Rounds Sender comm. Recipient comm. Cost after rec.
TreeKEM I [BBR18] No n O(n log(n)) O(n log(n)) O(log(n))
TreeKEM II [BBR18] Yes 2 O(n) O(n) O(n)
Causal TreeKEM [Mat19] Yes n O(n log(n)) O(n log(n)) O(log(n))
Bienstock et al. [BDR20] Yes 2 O(n2) O(n2) O(log(n))∗

Weidner et al. [WKHB21a] Yes 2 O(n2) O(n) O(n)
CoCoA [AAN+22b] Yes ⌈log(n)⌉+ 1 O(n log2(n)) O(log2(n)) O(log(n))
DeCAF (this work) Yes ⌊log(t)⌋+ 1 O(n log(n) log(t)) O(n log(n) log(t)) O(log(n))

Table 6.1: Overview of the cost incurred to heal t corruptions in a group of size n (it is not known
which t of the n users are corrupted). Column ‘Conc.’ indicates, whether the protocol allows for
concurrent updates, column ‘Rounds’ the number of rounds required to recover from corruption,
column ‘Sender comm.’ the cumulative uploaded communication, column ‘Recipient comm.’ the
per-user download communication cost, and column ‘Cost after rec.’ the sender communication
incurred by an update of a single user after the recovery process has concluded. TreeKEM I
corresponds to the conservative approach of only healing by sending commits, TreeKEM II to
using update proposals to heal at the expense of extra blanking. ∗: [BDR20] only achieves weak
PCS, obtaining PCS guarantees similar to the rest would need O(n) cost after healing, due to
extensive tainting.

To achieve FS, users should delete secret keys of outdated ratchet trees as soon as
possible. For blockchains with immediate finality (i.e., no forks) this means old keys
can be deleted immediately once a new ratchet tree is computed, while in longest-chain
protocols one should wait to delete keys until the corresponding blocks are considered
confirmed. Otherwise they might lose access to the group should a fork occur.

Efficiency. We now discuss the efficiency of DeCAF in healing a group with t
compromises, and how it compares to related protocols. Throughout we refer to
Table 6.1. There, we distinguish between two modes of TreeKEM (Propose and
Commit). TreeKEM I corresponds to the conservative approach of only healing by
sending commits (which would be expected behaviour, as argued below), hence is not
concurrent. TreeKEM II, in turn corresponds to using update proposals to heal at
the expense of extra blanking. Note that an execution where, as a rule, users achieve
PCS by sending update proposals instead of commit is not compatible with retaining
logarithmic communication in the long term, due to the large amount of blanks, as
illustrated on the last column of Table 6.1. Thus, the data shown for the communication
complexity of the latter mode of TreeKEM during healing is only short term. In order to
have the fairest comparison, we consider the complexity of DeCAF in the decentralized
setting and that of CoCoA in the centralized one, in which it was proposed.

We consider the process by which the group heals from t compromises. We first stress
that since a party does not know if they are corrupted, they cannot decide whether to
update based on this. The main novelty of our protocol is that the number of rounds
that it takes to heal depends on the number of corrupted parties, but not on the relative
update behaviour of users. Indeed, while several previous protocols could heal faster

187

6. DeCAF

than what is shown on the table in an optimal execution, this execution needs for the
users and/or the server to coordinate and/or make “optimal” choices obliviously (since,
again, there is no reason the identities of corrupted parties are known); for instance,
give preference to the corrupted parties in the case of concurrency, or coordinate to not
concurrently commit or update. In the table we consider thus all users updating. This
is the case for TreeKEM I and Causal TreeKEM, who could heal optimally in t rounds,
and thus reduce the communication complexity accordingly; but also for TreeKEM
II, [BDR20] and [WKHB21a], for which the number of rounds is not affected, but
whose communication complexity could be reduced in an optimal execution.

One can see that, among the protocols that provide sub-linear communication costs for
sending updates over the long term, our protocol manages to heal in the least amount
of rounds. On the recipient side, our protocol performs within a logarithmic factor of all
others, except for CoCoA, which naturally outperforms all other in this regard, due to
users only storing a partial view of the tree. We stress that, if run in the decentralized
setting, CoCoA loses its advantage in terms of recipient communication, leading to
a cost of O(n log(n)2). Thus, in this setting it is outperformed by DeCAF in every
aspect.

6.1.2 Related Work
Sections 1.3 and 5.1.2 already introduced most relevant literature regarding (concurrent)
secure (group) messaging. Here, we discuss some works regarding updatable encryption
that are of particular relevance for this chapter, as well as examples of decentralized
messaging apps.

The paper by Jost et al. [JMM19] first introduced the primitive of secret key updatable
public key encryption (skuPKE) in the context of two-party messaging. In the context
of group messaging, rTreeKEM [ACDT20] was the first protocol to formally use a
(somewhat different to that of [JMM19]) version of updatable public key encryption,
where decryption keys are updated upon being used. Nevertheless, though never
formalized as a standalone primitive, a bit earlier Causal TreeKEM [Mat19] employed
an enhanced version of PKE that can be seen as a modification of skuPKE where
keys and update tokens have the same distribution. In our paper, we use the primitive
and syntax from [JMM19], albeit with different security requirements. Many papers
have proposed UPKE schemes with varying syntax and security definitions [DKW21,
EJKM22, HLP22, AW23, HPS23]. Notably, a recent paper by Alwen, Fuchsbauer and
Mularczyk [AFM24], enhanced prior UPKE notions to capture extra properties that
are important for multi-party protocols, such as group messaging. In particular, it is
the first to capture so-called forking security, i.e., security even allowing the adversary
to update a key using different sequences of updates. The authors also propose an
efficient pairing-based construction satisfying the stronger definition.

188

6.2. Preliminaries

Last, some deployed messaging apps built around decentralization are Matrix [Fou],
ToxChat5, and Delta Chat6 [SMP24]. The use of blockchain for CGKA protocols is
novel as far as we know, but note that there exist previous messaging protocols making
use of it, like Elixxir [Coi].

6.2 Preliminaries

6.2.1 Blockchain-aided Continuous Group-key Agreement
We now introduce blockchain-aided continuous group-key agreement (baCGKA), which
allows the set up of a group G = (ID1,IDn) of users sharing an evolving group key.
The definition is, naturally, similar to Definition 2.3.1, though it lacks an algorithm
CGKA.Dlv for the server, since there is none in this setting. Additionally, it includes
algorithms to explicitly send a previously crafted protocol message, and to fetch blocks
of messages from the append-only data structure.

For the convenience of the reader, we describe the primitive below. Recall that we
assume all users ID have an initialization key packet ((pkID, skID), (svkID, sskID)),
known to all other users.

A baCGKA scheme baCGKA specifies a tuple of algorithms baCGKA.Init, baCGKA.Upd,
baCGKA.Add, baCGKA.Rem, baCGKA.Proc, baCGKA.Key, baCGKA.Send, and
finally baCGKA.Fetch. The first six algorithms are local, in the sense that they only
affect the executing user’s state, and generate protocol messages to be sent to the rest
of the group. The last two algorithms, on the other hand, interact with the distributed
protocol by sending transactions and fetching blocks, respectively.

We consider a setting in which an append-only data structure is used to store the
protocol messages and the data is distributed among several nodes. Users send their
protocol messages to these nodes and then these nodes run a consensus algorithm that
guarantees that they agree on their view of the data and on a total ordering of the
blocks formed by the protocol messages. A blockchain is an example of this, and that
is why we use the term “blockchain-aided” CGKA.

Initialization. User ID1 runs (γ, W)← baCGKA.Init(G, (pkID1 , . . . , pkIDn
), sskID1)

to initialize a session . Here G = (ID1, . . . , IDn) specifies the group, pkIDi
is the ini-

tialization encryption public-key of user IDi, and sskID1 the initialization authentication
secret key of the party setting up the group. The output consists of user ID1’s initial
state and a welcome message W .

5https://tox.chat
6https://delta.chat/en/

189

6. DeCAF

Updates. To update their state, ID runs (γ, U)← baCGKA.Upd(γ), updating their
state and generating an update message.

Adding a group member. To add user ID′ to the group member ID can run
(γ, A) ← baCGKA.Add(γ, ID′, pkID′). Here pkID′ is the initialization public key of
ID′ and A an add message.

Removing a group member. User ID can remove a (not necessarily different)
user ID′ from the group by running (γ, R) ← CGKA.Rem(γ, ID′). The output
consists of an updated state and a removal message R.

Processing a block. To process a block B consisting of update, welcome, add, and re-
move messages, and move to an updated state, user ID runs γ ← baCGKA.Proc(γ, B).

Retrieving the group key. At any point a party ID in the group can extract the
current group key K from its local state γ by running K ← baCGKA.Key(γ).

Sending a transaction. To send a transaction, i.e. a protocol message M generated
by one of the previous algorithms, user ID runs algorithm baCGKA.Send(γ, M).

Fetch new blocks. Algorithm (B1, . . . , Bℓ)← baCGKA.Fetch(γ) returns all blocks
added to the chain since the user last fetched them.

6.2.2 Secretly Key-Updatable Public-Key Encryption
We now recall the definition of secretly key-updatable public-key encryption (skuPKE)
schemes [JMM19]. A skuPKE scheme is essentially a public-key encryption scheme, that
additionally allows the sampling of pairs (∆, δ) of public and secret update information,
which can be used to update secret and public keys, in a consistent way.

Defintion 6.2.1. A secretly key-updatable public-key encryption scheme kuPKE con-
sists of the tuple of algorithms (kuPKE.Gen, kuPKE.Enc, kuPKE.Dec, kuPKE.Sam,
skuPKE.UpdP, skuPKE.UpdS).
Key-generation algorithm kuPKE.Gen on input of the security parameter 1λ returns
a key pair (pk, sk). Encryption algorithm kuPKE.Enc on input of public key pk and
message m returns a ciphertext c. The deterministic decryption algorithm kuPKE.Dec
receives as input a secret key sk and a ciphertext c and returns either a message m or
the symbol ⊥ indicating a decryption failure. Sampling algorithm kuPKE.Sam(1λ) is
used to sample pairs (∆, δ) consisting of public and secret update information. The
key-update algorithms skuPKE.UpdP and skuPKE.UpdS get as input (pk, ∆) and
(sk, δ), respectively, and output a rerandomized key pk′ or sk′.

190

6.2. Preliminaries

Correctness essentially requires that updating the public and secret key of a key-pair
with the same sequence of rerandomization factors preserves compatibility of the up-
dated keys with each other. More precisely let λ, k ∈ N, and each pair (pk0, sk0) ∈
[kuPKE.Gen(1λ)], and (∆0, . . . , ∆k), (δ0, . . . , δk) be vectors with (∆i, δi) ∈ [kuPKE.Sam(1λ)]
for all i. Further, for i ∈ {0, . . . , k} let pki+1 = skuPKE.UpdP(pki, ∆i) and
ski+1 = skuPKE.UpdS(ski, δi). We require that for all messages m and all i,
PKE.Dec(ski, PKE.Enc(pki, m)) = m.

Security. For security we essentially require that, on one hand, messages encrypted
to a secret key that was generated by updating a potentially compromised secret key
are secure as long as the secret update information to do so was not leaked, and, on the
other hand, that leaking an updated key does not compromise ciphertexts encrypted to
its predecessor as long as the secret update information was not leaked. More precisely,
we say that kuPKE is secure with respect to an upper bound L on the number of key
updates, if it satisfies the following security guarantees:

Defintion 6.2.2. Let (pk0, sk0) ← kuPKE.Gen(1λ) and also let (∆0, . . . , ∆Q−1),
(δ0, . . . , δQ−1) with (∆i, δi)← kuPKE.Sam(1λ), and let s and si denote the random
coins used by kuPKE.Gen and kuPKE.Sam, respectively. For i ∈ [Q − 1]0 define
pki+1 = skuPKE.UpdP(pki, ∆i) and ski+1 = skuPKE.UpdS(ski, δi). Then, kuPKE
is IND-CPA secure, if for any choice ρ, j−, j+ with −1 ≤ j− < ρ ≤ j+ ≤ Q and
messages m0, m1 it holds that

kuPKE.Enc(pkρ, m0) ≈c kuPKE.Enc(pkρ, m1) ,

even given access to (pki)i∈[L]0 , (ski)i∈[Q]0\[j−+1,j+], (∆i)i∈[Q−1]0 , (δi)i∈[Q−1]0\{j−,j+},
as well as random coins s if j− ≥ 0, and (si)i∈[Q−1]0\{j−,j+}.

Our variant of IND-CPA is incomparable to the one required for two party ratchet-
ing [JMM19]; in this work the update information can be generated using adversarially
chosen randomness, and the challenge ciphertext encrypts a message, that contains
secret update information, giving the security notion a circular flavor. On the other
hand, only one secret key is ever exposed to the adversary, while in our notion several
are. Compared to [ACDT20] our security notion is stronger; in this work the authors
use kuPKE mainly to achieve improved forward secrecy. Accordingly, their variant
of IND-CPA roughly requires that access to updated secret keys does not allow to
compromise encryption to previous keys, as long as the update information used to
generate the corrupted key remains secure.

Instantiations. A very efficient instantiation of skuPKE can be constructed in prime
order groups (G, g, p). The scheme is essentially the Hashed ElGamal scheme [ABR01],

191

6. DeCAF

where update information is of the form (∆ = gδ, δ) with δ ∈ Zp uniformly random, and
key pairs (X = gx, x) are updated as x + δ and X ·∆ respectively. For standard-model
instantiation see [DKW21, HPS23].

Definition of the scheme. The key-generation, encryption and decryption algorithms
work as in the Hashed ElGamal scheme. That is, kuPKE.Gen(1λ) outputs a pair
(pk, sk) = ((G, p, g, gx, H), (G, p, g, x, H)), where G is a group of prime order p (the
bit length of p is λ), g is a generator of G, x is sampled at random from Zp and H is
a hash function that takes elements in G as input and outputs strings in {0, 1}λ. An
encryption of a message m ∈ {0, 1}λ using the public key gx is a pair (gy, H((gx)y)⊕m)
where y is sampled at random from Zp. The decryption algorithm takes as input a
ciphertext (c1, c2) and a private key x and outputs H((c1)x)⊕ c2.

The sampling algorithm kuPKE.Sam(1λ) outputs a pair (∆ = gδ, δ) where δ is sampled
from the uniform distribution over Zp. Public-key-update algorithm skuPKE.UpdP
gets as input (gx, ∆) and outputs gx∆, while skuPKE.UpdS takes (x, δ) as input and
outputs x + δ.

The security proof is based on a standard IND-CPA security proof of Hashed ElGamal
like the one that can be found on textbooks and it is provided for completeness. It
relies on the hardness of the computational Diffie-Hellman (CDH) problem and uses
the random oracle model.

We say that the CDH problem is hard with respect to kuPKE.Gen if for every PPT
algorithm A there exists a negligible function ε(n) such that

Pr[A(G, q, g, gx, gy) = gxy] ≤ ε(n),

where the probabilities are taking over the randomness used by kuPKE.Gen to generate
(G, q, g) and x and y are sampled uniformly from G.

Theorem 6.2.3. If the CDH problem is hard with respect to kuPKE.Gen and H is
modeled as a random oracle, the Hashed ElGamal skuPKE scheme is IND-CPA secure.

Proof. Let ρ, j−, j+ be a set of indices such that −1 ≤ j− < ρ ≤ j+ ≤ L and A be a
PPT adversary trying to distinguish

kuPKE.Enc(pkρ, m0) ≈c kuPKE.Enc(pkρ, m1)

as in Definition 6.2.2.

Let (gy, H((pkρ)y)⊕mb) denote a ciphertext. As the hash function is modeled as a
random oracle, A cannot distinguish the ciphertexts with probability greater than 1/2
unless it makes a query to the random oracle on (pkρ)y. Let E denote the event that

192

6.2. Preliminaries

such a query is made. Therefore the probability that A is able to distinguish the two
distributions is bounded by 1/2 + Pr[E].

We now show that Pr[E] is negligible. We define an algorithm B that takes as input
a CDH challenge (G, p, g, gx, gy) and uses A as a subroutine. It samples b ← {0, 1}
and (∆i, δi) ← kuPKE.Sam(1λ) for i ∈ {0, . . . , j− − 1} ∪ {j− + 1, . . . , j+ − 1} ∪
{j+ + 1, . . . , L− 1}. It chooses gx as the ρ-th public key, (pkj− , skj−) = (gr−

, r−) and
(pkj++1, skj++1) = (gr+

, r+) where r−, r+ are uniformly chosen in Zp. It computes
∆j− = gx(∏︁ρ−1

i=j−+1 ∆i)−1g−r− and ∆j+ = g−x(∏︁j+−1
i=ρ ∆i)−1gr+ . The remaining public

and private keys are chosen accordingly, that is,

pki = pki+1 ·∆−1
i for i ∈ {ρ− 1, . . . , 0}

pki = pki−1 ·∆i−1 for i ∈ {ρ + 1, . . . , L}
ski = ski+1 − δi for i ∈ {j− − 1, . . . , L}
ski = ski−1 + δi−1 for i ∈ {j+ + 2, . . . , L}

Then B sends to A (pki)i∈[L]0 , (ski)i∈[L]0\[j−+1,j+], (∆i)i∈[L−1]0 , (δi)i∈[L−1]0\{j−,j+}
as well as the random coins used by kuPKE.Gen and kuPKE.Sam as specified in
Definition 6.2.2.

As an observation, B can actually compute those secret keys because it first chooses
skj− and skj++1, and then it proceeds recursively using the δi that it sampled before.
The construction also guarantees that the pairs (pki, ski) satisfy gski = pki.

When A makes a random oracle query u ∈ G, B sends a random string su and keeps a
list of pairs (u, su). When A sends two messages m0, m1, B replies with a ciphertext
(gy, k ⊕mb) where k is sampled uniformly at random.

Finally, B chooses a random pair in the list of random oracle queries A made and
outputs the first component.

Since the view of A as an IND-CPA adversary and when run as a subroutine of B before it
makes a query to the random oracle on (pkρ)y is the same, the probability that E happens
is the same in both cases. This is because if A does not make said query then B perfectly
simulates the IND-CPA game. Let Q denote the number of random oracle queries. By
construction, when A is run as a subroutine of B, Pr[E]/Q ≤ Pr[B(G, q, g, gx, gy) =
gxy] ≤ ε(λ) for some negligible function by hypothesis. Hence the probability that A is
able to distinguish the two distributions is bounded by 1/2 + Q · ε(λ), i.e., the Hashed
ElGamal skuPKE scheme is IND-CPA secure.

193

6. DeCAF

6.3 Protocol description
We now describe DeCAF in detail. Section 6.3.1 describes how the protocol proceeds
in epochs determined by the blockchain’s blocks, Section 6.3.2 describes the contents
of a user’s state, Section 6.3.3 how the structure of the ratchet tree is modified when
handling changes to the group membership, and Section 6.3.4 how update information
for a path in the ratchet tree is samped and applied. Finally, in Section 6.3.5 we give
the formal description of the protocol’s algorithms.

6.3.1 Blocks and Epochs
DeCAF proceeds in epochs consisting of k blocks. More precisely the ith epoch
corresponds to blocks i + 1, . . . , i + k of the blockchain. Updates are generated with
respect to the ratchet tree of the first block of the current epoch. This is to handle
potential delays of up to k blocks from the moment a user sends a message containing
group operations information to the moment it makes it into the blockchain. At the
beginning of a new epoch, the group switches to a new ratchet tree that incorporates
all updates of the last epochs, as well as the dynamic changes made to the group. One
consequence of having to accommodate for such delays is that users need to store at
least the keys at the beginning of an epoch for the entire duration of it, and if the
underlying blockchain does not have immediate finality potentially keys from further
back. This translates into weaker FS guarantees than in the server setting as a user
cannot immediately delete keys after updating to the next state. But this difference
will be marginal as the length of an epoch (or confirmation time of the blockchain,
whichever is larger) will still be tiny compared to the duration for which users are
typically offline. A second consequence is that these delays introduce a further delay in
the execution of dynamic operations. Indeed, updating information generated during
an epoch is computed without taking into account users that were being removed or
added during that round. Thus, in the case of epochs with adds, the key at the end
of that epoch will not be known to the new parties, who will need to wait another
round to learn it. In the case of epochs with removes, the key at the end of that epoch
will be blank, so a new key will be necessary to establish a new group key that the
removed users do not have knowledge of. We remark that this seems to be somewhat
inherent. In fact, if we set k = 1, the situation is not that different than that in other
protocols like CoCoA or TreeKEM, where a first round of dynamic operations needs
to be followed by a subsequent one where the commit effecting the operations takes
place. In summary, using a blockchain for decentralization gives improved consistency
and security guarantees, but the delay between protocol rounds is now dictated by the
block arrival and typical inclusion times of the underlying blockchain. Therefore, FS is
(marginally) affected by the confirmation time of blocks.

194

6.3. Protocol description

ID user identifier
T ratchet tree at the beginning of the current epoch
Tnext working copy of the ratchet tree for the next epoch
Onext dynamic operations to be implemented before next epoch
Upend pending update
ectr epoch counter
I the epoch’s group key
Inext working copy of next epoch’s group key
(pkc, skc) dummy key pair

Table 6.2: User ID’s state.

6.3.2 Users’ States
User ID’s state ID.γ contains the user’s identifier ID, two ratchet trees T = (V, E) and
Tnext = (Vnext, Enext), lists Onext, and Upend, epoch counter ectr, a key pair (pkc, skc),
the (potentially empty) group key I, and a working copy of the group key Inext for the
next epoch. For an overview see Table 6.2.

T contains the state of the ratchet tree at the beginning of the current epoch. More
precisely, this encompasses the public states pγ(v) of all nodes v ∈ V and, if we
denote ID’s leaf in T by vID, additionally the secret node states for all nodes v in ID’s
update path path(vID). Ratchet tree Tnext serves as a working copy for the next epoch,
i.e., it contains keys updated according to the blocks already processed in the current
epoch—excluding dynamic operations. Note that the two trees differ only in the node
states, but not the general tree structure. To clarify whether we consider nodes in T or
Tnext, we will denote nodes in the latter by vn. Onext is a list of the dynamic operations
included in the blocks of the current epoch that were already processed. These changes
will be applied to Tnext at the end of the epoch. List Upend stores pending update
information. The epoch counter ectr is used to generate and confirm protocol messages
for the current epoch. Finally (pkc, skc) is the dummy key-pair used for blank nodes.

6.3.3 Implementing Dynamic Operations
As a result of dynamic operations, the tree structure will change. Here, we describe
this change, ahead of the protocol description.

To add parties we use an adaptation of the unmerged leaves technique (see Section 2.6)
introduced in TreeKEM v9[BBR+23]. In particular, whenever ID, whose path contains
a node where another party ID′ is unmerged, generates an update, they need to encrypt
the current key for that node, together with the seed used to sample the update
information to ID′. However, this key might already have been present in an epoch

195

6. DeCAF

which preceded that in which ID′ was added. Hence, sending it to ID could cause
problems with forward secrecy—ID must ensure that the key sent to ID′ was updated
after they joined the group. Thus, this process is done in two steps. First, upon being
added to the group, ID′ is included into the set v.unm0 for all v in their path, except
for the root. Updates that apply to v, issued while ID′ is in this set v.unm0, do not
encrypt any secret information about v to ID. Whenever an epoch first contains such
an update for v, however, ID′ is removed from the set v.unm0 and added to v.unm1,
at the end of the epoch. This signals that the key at v is now safe to be communicated
to ID′. Any following update that applies to v once ID′ ∈ v.unm1, will then encrypt
the current key plus the update information to ID′. Once such an update occurs, ID′

learns the key at v, and is then removed from v.unm1. The one exception to this is the
root node vroot, where ID′ is directly added to vroot.unm1. The reason for this is that
all add operations are coupled with an update from the issuing party, thus ensuring that
the root key at the end of that epoch is updated, and thus safe to communicate to ID′.

Removes are handled via blanking, where the keys that removed users had knowledge
of get set to the dummy key-pair (pkc, skc) and get ignored by users encrypting new
secret update information δi until they get updated again in a subsequent epoch.

All these changes are executed once at the end of each epoch. While all group operations
in the following epoch will take the new tree into account, added and removed users will
not be properly added and removed until the end of that following epoch, though. This
seems inherent if we want to allow concurrency: the author of an operation concurrent
with a dynamic one will be oblivious to the latter, thus unable to prepare their operation
taking it into account.

More in detail, at the end of an epoch where adds A = (A1, . . . , Aℓa), removes
R = (R1, . . . , Rℓr), and modifications M = (M1, . . . , Mℓm) to the sets of unmerged
users took place, users will call algorithm upd-tree(Tnext, A, R, M), which will output
the tree resulting from applying these operations. First, the algorithm in order processes
the Mi, which are lists of nodes that were affected by updates in the current epoch
(their exact definition is given in Section 6.3.4 below). For every v ∈ M the sets
of unmerged leaves are updated to v.unm1 ← v.unm0 and v.unm0 ← ∅. Then, the
algorithm will set the state of all in the paths of any of the removed users to blank, and
associate with them the dummy key-pair (pkc, skc). Added parties will get assigned
a leaf in the tree in a canonical way, determined by the ordering of operations in the
corresponding block. The first leaves to be assigned will be blank ones, and new leaves
to the right of the existing ones will be added, if there are not enough blanked ones,
adding any internal nodes necessary to maintain the binary structure of the tree. If a
new root node must be added to accommodate for the new parties, this will be given
the dummy key-pair until it gets updated at the end of the next epoch. Then, for
each newly-added party IDi with init key pkID, it sets the state of their new leaf vID to

196

6.3. Protocol description

(pkID, svkID), and for any v ∈ path(li) except the root vroot, it adds IDi to v.unm0.
The root idi is added to vroot.unm1. Finally, it outputs the resulting tree.

Whenever an update including new update information for a node v takes place, v will
become unblanked if it was not so already, as expected. Moreover, unmerged leaves in
unm1 will become merged, and those in unm0 will then pass to unm1.

6.3.4 Updating the States of an Update Path
During the initialization of a group and when updating, users will update the keys along
some path. Before turning to the description of our protocol’s algorithms, we detail
this operation.

Consider user ID with associated leaf vID. Update information for the keys of path(vID)
is sampled using

((∆i, δi, Ci)i, κ)← gen-path-upd(γ) .

The algorithm, on input of the user’s state, first fetches (v1 = vID, . . . , vr = vroot) =
path(vID) with respect to ratchet tree T corresponding to the beginning of the epoch.
Let m be maximal such that ID ∈ vm−1.unm0 ∪ vm−1.unm1. If no such m exists,
we set m = 2. The algorithm samples a seed s1 uniformly at random and computes
sm = H1(s1) as well as si = H1(si−1) for i = m + 1, . . . , r. For i ∈ {1, m, . . . , r}
it samples update information (∆i, δi) ← kuPKE.Sam(H2(si)) using randomness
H2(si). It then for i ∈ {m, . . . , r} computes vectors of ciphertexts Ci = (ci,j)zj

with
ci,j ← kuPKE.Enc(zj.pk, si), where the nodes zj are chosen as

zj ∈ Res(vi−1) ∪ vi.unm1 \ vi−1.unm1

for i = m + 1, . . . , r and

zj ∈ Res(lparent(vi)) ∪ Res(rparent(vi)) ∪ vi.unm1 \ {ID}

for i = m. Finally, κ = H1(sr) will be used to update the group key. The algorithm’s
output is ((∆i, δi, Ci)i, κ). Looking ahead, (∆i, Ci)i will be sent out as the update
message and ((∆i, δi)i, κ) saved in the user’s pending state.

When user ID′ wants to apply a path update (∆i, Ci)i with i ∈ {1, m, . . . , r} generated
by user ID, they call algorithm

ID′.γ ← proc-path-upd(ID′.γ, (∆i, Ci)i) .

It first fetches user ID’s update path (vn
1 = vn

ID, . . . , vn
r = vn

root) = path(vn
ID) from the

working copy Tnext of the ratchet tree. Then, for all i it updates the public keys along
the path, i.e., vn

i .pk ← skuPKE.UpdP(vn
i .pk, ∆i). Here, if vn

i was blank and thus

197

6. DeCAF

has no associated public key, the public key of a constant dummy key-pair (pkc, skc) is
used as vn

i .pk. Note that this implies that vn
i ’s resolution is now {vn

i }.

Let vi denote the first node that is shared between path(vID) and path(vID′) and for
which ID′ /∈ vi.unm0. Then, if the update was generated during the current epoch,
Ci contains an encryption ci,j of seed si under the public key of some node wi,j for
which the secret key is contained in ID’s copy of tree T that is part of vID′ .γ. The
algorithm recovers si ← kuPKE.Dec(wi,j.sk, ci,j) and for j ∈ {i + 1, . . . , r} computes
sj = H1(sj−1) and update information (∆j, δj) ← kuPKE.Gen(H2(sj)). It then
updates the corresponding secret keys in Tnext as vn

j .sk ← skuPKE.UpdS(vn
j .sk, δj),

where, analogous to the above, if vj is blank, skc takes the role of vj.sk. Finally, the
algorithm computes group key update information κ = H1(sr), incorporates it in the
working copy of the group key Inext ← Inext ⊕ κ, and adds the list M = (vm, . . . , vr)
to Onext. The latter will be used to update the sets of unmerged users at the end of
the epoch.

6.3.5 Protocol Algorithms
Initialization. To initialize a group for users (ID1, . . . , IDn), user ID1 first generates
the dummy key-pair (pkc, skc)← kuPKE.Gen(1λ). They then set up a left-balanced
binary ratchet tree T = (V, E). Every node in T is blank, except for the leaves. The
public state of the ith leaf contains the corresponding user’s initialization public key
and their signature verification key. Further, the secrets state of ID1, contains ID1’s
secret decryption and signing keys. Group creator ID1 incorporates (pkc, skc), T , a
copy Tnext of T , and an empty list Onext in their state and computes ((∆i, δi, Ci)i, κ)←
gen-path-upd(ID1.γ). The tuple ((∆i, δi)i, κ) is added to ID1’s state together with
epoch counter ectr = (1, 1) (where the first coordinate denotes the epoch and the
second one the block inside the epoch) and Inext ← 0. The algorithm outputs the
resulting state and welcome message W = (pT , (∆i, Ci)i, (pkc, skc), σ, ID1), where σ
is a signature of (pT , (∆i, Ci)i, (pkc, skc)) under sskID1 .

Update. To issue an update, ID computes ((∆i, δi, Ci)i, κ)← gen-path-upd(ID.γ).
The secret update information (δi)i and κ are stored in ID’s pending state Upend. Let
(v1, . . . , vr) = path(vID) be ID’s update path. Update messages also communicate
the current secret key of nodes to unmerged users that have already processed an
update on this node. More precisely, the updating user for all i ∈ [2, . . . , r] such
that ID /∈ vi.unm0 ∪ vi.unm1 computes a vector of ciphertexts C̃i = (c̃i,j)zj

, where
c̃i,j = kuPKE.Enc(zj.pk, vi.sk) and zj are the nodes satisfying zj ∈ vi.unm1. The
algorithm outputs message U = ((∆i, Ci)i, (C̃)i, ectr, σ, ID), where σ is a signature of
((∆i, Ci)i, (C̃)i, ectr) under sskID.

198

6.3. Protocol description

Alg DeCAF.Init(G, (ID1, sk, ssk), (ID1, . . . , IDn))

00 (pkc, skc)← kuPKE.Gen(1λ)
01 T ← gen-tree(ID1, . . . , IDn)
02 (vID.sk, vID.ssk)← (sk, ssk)
03 γ ← (ID1, T , T , ∅, ∅, (0, 0), (pkc, skc), 0, 0))
04 ((∆i, δi, Ci)i∈(1,...,r), κ)← gen-path-upd(γ)
05 (v1, . . . , vr)← path(vT

ID)
06 For i ∈ [r]:
07 vi.pk← skuPKE.UpdP(pkc, ∆i)
08 vi.sk← skuPKE.UpdS(skc, δi)
09 Inext ← κ
10 K ← H1(‘key′, Inext)
11 Inext ← H1(‘next′, Inext)
12 γ ← (ID, T , T , ∅, ∅, (0, 0), (pkc, skc), K, Inext)
13 σ ← Sig(ssk, (pT , (∆i, Ci)i∈(1,...,r), (pkc, skc)))
14 W ← (pT , (∆i, Ci)i∈(1,...,r), (pkc, skc), σ, ID1)
15 Return (γ, W)

Alg DeCAF.Add(γ, ID′)

16 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
17 (γ, U)← DeCAF.Upd(γ)
18 σ ← Sig(sskID, (‘add(ID′)′, pT , (pkc, skc), U, ectr))
19 A← (‘add(ID′)′, pT , (pkc, skc), U, ectr, σ, ID)
20 Return (γ, A)

Alg DeCAF.Upd(γ)

21 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
22 ((∆i, δi, Ci)i∈(1,m,...,r), κ)← gen-path-upd(γ)
23 Upend ← ((δi)i∈(1,m,...,r), κ)
24 (v1, . . . , vr)← path(vID)
25 \\Encryptions to unmerged users
26 For i ∈ (m, . . . , r):
27 If ID /∈ vi.unm0 ∪ vi.unm1:
28 C̃i ← ∅
29 For z ∈ vi.unm1:
30 If vi = vroot:
31 C̃i

∪← kuPKE.Enc(z.pk, Inext)
32 Else:
33 C̃i

∪← kuPKE.Enc(z.pk, vi.sk)
34 σ ← Sig(sskID, ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ectr)
35 U ← ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ectr, σ, ID)
36 Return (γ, U)

Alg DeCAF.Rem(γ, ID′)

37 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
38 σ ← Sig(sskID, (‘remove(ID′)′, ectr))
39 R← (‘remove(ID′)′, ectr, σ, ID)
40 Return (γ, R)

Alg DeCAF.Key(γ)

41 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
42 Return K

Figure 6.3: DeCAF Algorithms for initializing the group, generating updates, adding and removing
users. Algorithm gen-tree takes as input a list of user identifiers and outputs the ratchet tree with
leaves having public state given by the identifiers and corresponding public keys. They employ the
helper functions detailed in Fig. 6.5. For the algorithm that describes how to process the operations
see Fig. 6.4.

199

6. DeCAF

Alg DeCAF.Proc(γ, B)

00 (W, U, A, R)← B
01 \\Case: ID is already part of the group
02 If γ ̸= (ID, sk, ssk):
03 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
04 For Ui ∈ U :
05 ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ectr˜ , σ, ID̃)← Ui

06 Require Verify(svkID̃, σ) = 1 ∧ ectr˜ [0] = ectr[0]
07 If ID̃ = ID:
08 ((δi)i∈(1,m,...,r), κ)← Upend
09 \\Update nodes in Tnext

10 (vn
1 , . . . , vn

r)← path(vn
ID)

11 vn
i .pk← skuPKE.UpdP(vn

i .pk, ∆i)
12 vn

i .sk← skuPKE.UpdS(vn
i .sk, δi)

13 Inext ← Inext ⊕ κ
14 Upend ← ∅
15 Else:
16 j ← min{i : vn

i ∈ path(vn
ID) ∩ path(vn

ID̃)}
17 For i ∈ (m, . . . , j − 1):
18 If ID ∈ vn

i .unm1:
19 κ← ctxt-decrypt(C̃i, T)
20 If vn

i = vn
root:

21 Inext ← κ
22 Else: vn

i .sk ← κ
23 γ ← proc-path-upd(γ, (∆i, Ci)i∈(1,j,...,r))
24 For Ai ∈ A:
25 (‘add(ID′)′, pT , (pkc, skc), U, ectr˜ , σ, ID̃)← Ai

26 Require Verify(svkID̃, σ) = 1 ∧ ectr˜ [0] = ectr[0]
27 Execute lines 05 to 23 with input U
28 Onext

∪← {‘add(ID′)′}
29 For Ri ∈ R:
30 (‘remove(ID′)′, ectr, σ, ID̃)← Ri

31 Require Verify(svkID̃, σ) = 1 ∧ ectr˜ [0] = ectr[0]
32 Onext

∪← {‘remove(ID′)′}
33 If ectr = (e1, e2) = (e1, k − 1) :
34 ectr ← (e1 + 1, 0)
35 Tnext ← upd-tree(Tnext, Onext)
36 Onext ← ∅
37 T ← Tnext
38 K ← H1(‘key′, Inext)
39 Inext ← H1(‘next′, Inext)
40 Else ectr ← (e1, e2 + 1)
41 γ ← (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)

42 \\Case: ID is not part of the group yet
43 Else:
44 (ID, sk, ssk)← γ
45 \\Sub-case: ID is added during the initialization of the group
46 If W ̸= ⊥:
47 (T , (∆i, Ci)i∈(1,...,r), (pkc, skc), σ, ID1)← W
48 Require Verify(svkID1 , σ) = 1
49 (vID.sk, vID.ssk)← (sk, ssk)
50 γ ← (ID, T , T , ∅, ∅, (0, 0), (pkc, skc), 0, 0)
51 γ ← proc-path-upd(γ, ID1, (∆i, Ci)i∈(1,...,r))
52 K ← H1(‘key′, Inext)
53 Inext ← H1(‘next′, Inext)
54 γ ← (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)
55 \\Sub-case ID is added as part of an add operation
56 \\Let Bp

1 , . . . , Bp
k be the blocks from the previous epoch e

57 Else:
58 Require ∃j ∈ [k] , Ãℓ ∈ A ∈ Bp

j : Ãℓ[0] = ‘add(ID)′

59 (‘add(ID)′, pT , (pkc, skc), U, ectr˜ , σ, ID̃)← Ãℓ

60 Require Verify(svkID̃, σ) = 1 ∧ ectr˜ [0] = e
61 Process public part blocks Bp

1 , . . . , Bp
k

(i.e., as in 33 to 35 of proc-path-upd,
and 24 to 41 of DeCAF.Proc)

62 (vID.sk, vID.ssk)← (sk, ssk)
63 γ ← (ID, T , T , ∅, ∅, e, (pkc, skc), 0, 0)
64 DeCAF.Proc(γ, B)
65 Return γ

Figure 6.4: DeCAF Algorithm to process a block. We write the internal state of users not yet part of
the groups as γ = (ID, sk, ssk), i.e., containing their identifier, together with the secret decryption
and signing keys.

200

6.3. Protocol description

Alg gen-path-upd(γ)

00 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
01 (v1, . . . , vr)← path(vID)
02 \\Determine height at which user is merged into tree
03 If u = max{i : ID ∈ vi−1.unm0 ∪ vi−1.unm1} ≠ ⊥:
04 m← u
05 Else: m← 2
06 \\Generate seeds and update tokens
07 s1 ←$
08 For i ∈ (1, m, . . . , r):
09 If i = m : si ← H1(s1)
10 Elseif i > m : si ← H1(si−1)
11 (∆i, δi)← kuPKE.Sam(H2(si))
12 Ci ← ∅
13 \\Encrypt seeds
14 Zm ← Res(lparent(vm)) ∪ Res(rparent(vm)) ∪ vm.unm1 \ {vID}
15 For z ∈ Zm:
16 Cm

∪← kuPKE.Enc(z.pk, sm)
17 For i ∈ (m + 1, . . . , r):
18 If lparent(vi) = vi−1 : wi ← rparent(vi)
19 Else: wi ← lparent(vi)
20 Zi ← Res(wi) ∪ vi.unm1 \ wi.unm1
21 For z ∈ Zi:
22 Ci

∪← kuPKE.Enc(z.pk, si)
23 κ← H1(sr)
24 Return ((∆i, δi, Ci)i∈(1,m,...,r), κ)

Oracle proc-path-upd(γ, ID̃, (∆i, Ci)i∈(1,...,r̃))

25 (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)← γ
26 (vn

1 , . . . , vn
r)← path(vn

ID)
27 \\Determine height at which sender was merged into tree
28 If u = max{i : ID̃ ∈ vn

i−1.unm0 ∪ vn
i−1.unm1} ≠ ⊥:

29 m← u
30 Else: m← 2
31 ((∆m, Cm), . . . , (∆r, Cr))← ((∆2, C2), . . . , (∆r̃, Cr̃))
32 \\Update public keys
33 For i ∈ (1, m, . . . , r):
34 If vn

i .blank = 1 : vn
i .pk← skuPKE.UpdP(pkc, ∆i)

35 Else: vn
i .pk← skuPKE.UpdP(vn

i .pk, ∆i)
36 \\Decrypt seed at intersection of paths and update secret keys
37 j ← min{i : vn

i ∈ path(vn
ID) ∩ path(vn

ID̃) ∧ ID /∈ vn
i .unm0}

38 sj ← ctxt-decrypt(Cj, T)
39 For i ∈ (j, r):
40 If i ̸= j : si ← H1(si−1)
41 (∆i, δi)← kuPKE.Gen(H2(si))
42 If vn

i .blank : vi.sk← skuPKE.UpdS(skc, δi)
43 Else : vn

i .sk← skuPKE.UpdS(vi.sk, δi)
44 \\Update group key
45 κ← H1(sr)
46 Inext ← Inext ⊕ κ
47 \\Keep track of which unmerged-users sets need to be updated
48 Onext

∪← {vm, . . . , vr}
49 γ ← (ID, T , Tnext, Onext, Upend, ectr, (pkc, skc), K, Inext)
50 Return γ

Figure 6.5: Helper Functions for DeCAF. The function ctxt_decrypt takes as input a list of ciphertexts
C encrypting the seed of a given node to all nodes in its resolution and a ratchet tree T , and outputs
the decryption of the ciphertext in C that corresponds to a node whose secret key is included in T .

Add. To add a user, when called by ID, the addition algorithm outputs Ã =
(A, pT , (pkc, skc), U, ectr, σ, ID), containing an add request A = ‘add(ID′)′, where
ID′ is the new user. Further, it contains a copy of the public ratchet tree state, the
dummy key pair, an update message U generated as described in the previous paragraph,
the epoch counter, a signature σ of the message (A, pT , (pkc, skc), U, ectr) under sskID,
and the identity ID.

Remove. To remove a user, when called by user ID, the removal algorithm outputs
R̃ = (R, ectr, σ, ID), with R = ‘remove(ID′)′ for ID′ the removed user, and where σ is
a signature of (R, ectr) under sskID.

201

6. DeCAF

Processing a Block. To process a block, user ID processes a block B = (W, U, Ã, R̃)
consisting of (a potential) welcome message W , update messages U = (U1, . . . , Uℓu),
add messages Ã = (Ã1, . . . , Ãℓa), and removal messages R̃ = (R̃1, . . . , R̃ℓr) as follows.
We first describe the case of users already in the group. User ID starts by processing
the update messages given by the block as follows. Update message Uℓ for ℓ ∈ [ℓu] has
the form ((∆i, Ci)i, (C̃)i, ectr, σ, ID). First, the user checks whether the signature σ
verifies under svk′

ID and that ectr matches the value stored in ID.γ. If one of the checks
fails the update is discarded.

If ID = ID′, i.e., Uℓ is an update generated by the processing user, ID retrieves
from Upend the corresponding update information ((∆i, δi)i, κ) with i = {1, m, . . . , r}
for some m, deletes it from Upend, and applies it to their update path path(vn

ID) =
(vn

1 , . . . , vn
r) with respect to Tnext as vn

i .pk← skuPKE.UpdP(vn
i .pk, ∆i) and vn

i .sk←
skuPKE.UpdS(vn

i .sk, δi) (note that this updates all key pairs on ID’s update path for
which the user has access to the secret key). Then they set Inext ← Inext ⊕ κ. Else,
let vu1 , . . . , vut be the nodes in path(vID) ∩ path(vID′) such that ID ∈ vui

.unm1 and
ui ≥ m. Then, C̃ui

contains an encryption of vui
.sk under ID’s leaf key vID.pk. For

i ∈ [u1, . . . , ut], ID uses the corresponding secret key to recover vui
.sk and adds it

to the node’s state vui
.γ in T and Tnext unless the state already contains a secret

key. Then ID calls ID.γ ← proc-path-upd(ID.γ, (∆i, Ci)i), which updates the keys
affected by the update in the working copy Tnext of the ratchet tree (note that the
secret keys added in the previous step ensure ID is able to decrypt the ciphertext
relevant to them), the working copy of the group key, and the list of merges to be
implemented at the end of the epoch.

After processing all update operations, ID processes adds Ã and subsequently removes R̃.
First, they check that the signature included in a message verifies and that the
message was generated for the current epoch, discarding it if not. In the case of
an add message Ãℓ = (Aℓ,

pT , (pkc, skc), U, ectr, σ, ID) the user processes the update
message U as described above and appends Aℓ to Onext. For valid remove message R̃ℓ =
(Rℓ, ectr, σ, ID) the request Rℓ is added to Onext. Finally, if B was the last block of
an epoch, i.e., B is the ith block with i = 0 mod k, then ID prepares the transition to
the next epoch. To this end, ID recovers from Onext the ordered lists of merges M =
(M1, . . . , Mℓm), adds A = (A1, . . . , ALa), and removes R = (R1, . . . , RLr) that were
included in the blocks of the current epoch. Then they apply these changes to the
working copy of the ratchet tree Tnext ← upd-tree(Tnext, A, R, M) to be used in the
next epoch, update T ← Tnext, increase the epoch counter to ectr ← ((ectr)1 + 1, 0),
set Onext to the empty list, and update the group key to I ← H1(‘key′, Inext), and
afterwards Inext ← H1(‘next′, Inext).

Let us now describe the second case, that is, that of users not in the group. We
distinguish two further cases according to whether ID (a) was added in an add operation

202

6.4. Security

or (b) in the group initialization (i.e., W ̸= ⊥). In case (a) let Bp
1 , . . . , Bp

k be the blocks
of the previous epoch. Then one of these blocks contains an add message Ã = (A, pT ,
(pkc, skc), U, ectr, σ, ID) with A = ‘add(ID′)′ being the add request for user ID. The
user, after validating the signature and epoch, incorporates pT , (pkc, skc) in ID.γ. As
pT is the ratchet tree of the previous epoch, ID brings it up to date by processing, in
order, the blocks Bp

1 , . . . , Bp
k . Here, as they do not have access to any secret keys of

the tree, they only update the public keys. After this operation, T and its copy Tnext
match the current epoch, and the user adds to their secret state their init decryption
key and sskID. They then processes the current block B = (U, A, R) as described
above.
Finally, assume that ID was added as part of the group initialization, i.e., case (b)
above, with W = (pT , (∆i, Ci)i, (pkc, skc), σ, ID1). In this case ID checks that the
signature σ verifies under svkID1 , rejecting it if this is not the case. If ID is the user
who issued the initialization message, they recover ((∆i, δi)i, κ) from their state, apply
the update information to their update path, set Inext ← κ, and I ← H1(‘key′, Inext).
If ID did not issue the initialization message, they incorporate (pT , (pkc, skc)) in their
state, as well as their init decryption key and sskID, set Inext to the zero string, and run
ID′.γ ← proc-path-upd(ID′.γ, (∆i, Ci)i) to update Tnext. I is set to H1(‘key′, Inext),
Onext is initialized as empty list, as there are no merge, add, or remove operations yet,
and ectr ← (1, 1).

Retrieving the Group Key. To extract the current group key, a user ID fetches I
from its state, and deletes this value afterwards.

Sending a Transaction. To send a protocol message, ID simply uses the underlying
blockchain protocol to send it as a transaction to the blockchain.

Fetching new Blocks. To fetch the last blocks of operations, ID uses the underlying
blockchain protocol to retrieve the blocks added to it since it last did.

6.4 Security
6.4.1 Security model and safe predicate
To analyze the modified protocol, we essentially use the security model from [KPPW+21],
which allows the adversary to act partially active and fully adaptive (see Section 2.4).
The only differences in the setting of baCGKA are that 1) users are processing concurrent
messages, and 2) no messages will ever be rejected. Regarding 2) it is however possible
that messages get lost and hence, even if a user generated an update it might not
process this update.

203

6. DeCAF

Defintion 6.4.1 (Asynchronous baCGKA Security). The security for baCGKA is
modeled using a game between a challenger C and an adversary A. At the beginning of
the game, the adversary queries create-group(G) and the challenger initialises the
group G with identities (ID1, . . . , IDn′). The adversary A can then make a sequence
of queries, enumerated below, in any arbitrary order. On a high level, add-user
and remove-user allow the adversary to control the structure of the group, whereas
store-on-blockchain and process allow it to control the scheduling of the messages.
The query update simulates the refreshing of a local state. Finally, start-corrupt
and end-corrupt enable the adversary to corrupt the users for a time period. The
entire state and random coins of a corrupted user are leaked to the adversary during
this period.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.

2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from the
group.

3. update(ID): the user ID requests to refresh its current local state γ.

4. store-on-blockchain(q1, . . . , ql): for queries q1, . . . , ql, all of which must be
actions of the form ai ∈ {create-group, add-user, remove-user, update} by
some users IDi (for i ∈ [l]), this action stores the outputs of the queries in the
next block of the blockchain.

5. process(ℓ′, ID): for (B1, . . . , Bℓ) ← baCGKA.Fetch(ID.γ) and ℓ′ ∈ [ℓ], this
action forwards all blocks B1, . . . , Bℓ′ to ID, who immediately processes them.

6. start-corrupt(ID): from now on the entire internal state and randomness of
ID is leaked to the adversary, with the exception of sskID.7

7. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness
to the adversary.

8. challenge(ℓ∗): A picks a block Bℓ∗ . Let I0 denote the group key that is
established by processing the first ℓ∗ blocks B1, . . . , Bℓ∗ in the blockchain and
I1 be a fresh random key; if there is no group key established after block Bℓ∗ ,8
then set I0 = I1 := ⊥. The challenger tosses a coin b and – if the safe predicate
below is satisfied – the key Ib is given to the adversary (if the predicate is not
satisfied the adversary gets nothing).

7Note, we assume all operations to be done instantly, i.e. parties can only be corrupted before or
after they have done some operation.

8This could happen if the root of the tree is blanked, e.g. if no update was stored on the blockchain
yet.

204

6.4. Security

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a
baCGKA scheme (ε, t, Q)-baCGKA-secure if for any adversary A making at most Q
queries of the form update(·) and running in time t it holds

AdvbaCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ε.

We define the safe predicate to rule out all trivial winning strategies, such as challenging
a block while some current group member is corrupted.

Defintion 6.4.2 (Critical window, safe user). Let L be the length of the blockchain,
C the number of users A corrupts throughout the security game, and ℓ∗ ∈ [L]. For
user ID, define q−

ID ∈ [Q]0 to be maximal such that the following holds:

• There exist c := ⌊log(C)⌋ + 1 blocks Bℓ1
ID

, . . . , Bℓc
ID

in distinct epochs within
the first ℓ∗ blocks in the blockchain such that each contains an update query
ai

ID := update(ID) (i ∈ [c]) that

1. was generated by ID in or after query q−
ID,

2. is successful, i.e. refers to block B
ℓ̄

i
ID

with ℓ̄
i

ID = ℓi
ID − (ℓi

ID mod k).9

If there do not exist c such blocks then we set q−
ID = 0, the first query.

• There exists a block Bℓ−
ID

with ℓ−
ID ≤ ℓ∗ that contains an update a−

ID :=
update(ID) for user ID for which 1) and 2) hold, but the entire epoch does not
contain any more successful updates for corrupted users. We call such an update
a single update.

Furthermore, let q+
ID be the first query that invalidates ID’s current keys, i.e., in query

q+
ID, ID processes an initial block Bℓ+

ID
of some subsequent epoch10 (i.e. ℓ+

ID/k =
⌊ℓ+

ID/k⌋ > ⌊ℓ∗/k⌋) such that one of the blocks Bℓ∗+1, . . . , Bℓ+
ID

contains an update
a+

ID := update(ID) referring to block Bℓ+
ID−k. If ID does not process any such query

then we set q+
ID = Q, the last query.

We say that the window [q−
ID, q+

ID] is critical for ID with respect to challenge ℓ∗.
Moreover, if the user ID is not corrupted at any time point in the critical window, we
say that ID is safe w.r.t. ℓ∗.

9Recall, by definition of the process operation in our protocol, condition 2) is necessary for the
update ai

ID in block Bℓi
ID

to be indeed processed by users processing block Bℓi
ID

.
10Recall, in order to be able to process messages in the current epoch, a user keeps the keys of the

first round of the current epoch in its state and will only release these keys once it proceeded to the
next epoch.

205

6. DeCAF

In Section 6.4.3 we discuss a strenghtening of this definition, that our protocol would
also satisfy, but which we omit for now for the sake of simplicity. Similar to [KPPW+21],
we define a group key as safe if all the users in the group are individually safe, i.e., not
corrupted in their critical windows.

Defintion 6.4.3 (Safe predicate). Let I∗ be a group key established by processing the
first ℓ∗ blocks of the blockchain and let G∗ be the set of users which end up in the
group after block Bℓ∗ was processed. Then the key I∗ is considered safe if for all users
ID ∈ G∗ we have that ID is safe w.r.t. ℓ∗ (as per Definition 6.4.2).

6.4.2 Security of the protocol

Theorem 6.4.4. If the secretly key-updatable public key encryption scheme used in
DeCAF is (εEnc, t)-IND-CPA-secure and the used hash functions are modeled as random
oracles, then DeCAF is (O(εEnc · 2(nQ2)2), t, Q)-baCGKA-secure.

In order to prove Theorem 6.4.4, we first argue that a safe group key is not leaked
to the adversary via corruption. We make this formal in the following definition and
Lemma 6.4.6. In fact, we define leakage of arbitrary secret information which the
adversary could potentially learn through corruption.

Defintion 6.4.5 (Secure keys, update information, and seeds). For a seed s we say s
is leaked if it is sampled by a user while this user is corrupted, or it is encrypted to the
public key associated to a leaked secret key, or s was derived through s := H1(s−) and
s− is leaked.
A key Inext derived through Inext := I−

next ⊕ κ is leaked if it is contained in a user’s
state while this user is corrupted, or I−

next and κ are both leaked. If Inext was derived
through Inext := H1(“next”, I−

next) then it is leaked if it is contained in a user’s state
while this user is corrupted, or I−

next is leaked. A group key I that was derived through
I ← H1(“key”, Inext) is leaked if I is contained in a user’s state while this user is
corrupted, or Inext is leaked.
Let δ be secret update information that was generated by first sampling a seed s,
then computing s′ := Hi

1(s) for some i ∈ [⌈log(n)⌉]0, and then computing (∆, δ)←
kuPKE.Sam(H2(s′)). The secret update information δ is leaked if δ is contained in a
user’s state while this user is corrupted, or s′ is leaked.
The secret key skc of the dummy key pair (pkc, skc) is always considered leaked. For a
user’s initial key pair (pk, sk), sk is leaked if sk was in the user’s state while the user was
corrupted. Let sk′ be a secret key that was generated as sk′ ← skuPKE.UpdS(sk, δ).
The key sk′ is leaked if sk′ is contained in a user’s state while this user is corrupted, or
sk and δ are both leaked.
A secret key/secret update information/seed is called secure if it is not leaked. We say

206

6.4. Security

that a corruption of some user ID does not leak key sk, if leakage of sk is independent
of that corruption of ID.

Remark. Note that the above definition only defines security for honestly generated
secret keys/secret update information/seeds. This is enough for our purpose, since in
our security model the adversary can only act through honest users. Furthermore, the
definition might look circular at first sight; however, this is not the case since any seed
associated with some node in the tree is only encrypted to keys that are associated
with nodes lower in the tree.

Lemma 6.4.6. Assume there are no collisions among seeds, update information and
keys throughout the security experiment. If a group key I∗ is safe as per Definition 6.4.3
then it is secure as per Definition 6.4.5.

In order to prove Lemma 6.4.6, we rely on the fact that the users who can derive the
challenge key I∗ are exactly those in G∗, where the set of group members G∗ is defined
to be the users for which either an add-user(·, ID) operation was included in block
ℓa ≤ ℓ∗ − (ℓ∗ mod k), or ID ∈ G for the initial group set up by create-group(G)
(in which case we let ℓa = 0); and such that no remove-user(·, ID) was included in
block ℓr, with ℓa + k − (ℓa mod k) ≤ ℓr ≤ ℓ∗ − k − (ℓ∗ mod k).

Note that, on the one hand, any operation included in a block and accepted by users
must come from a user itself, as the adversary is not allowed to create messages itself.
On the other hand, since all users share a common view of the blockchain, they will
accept the same operations and have the same view of the group members set.

Lemma 6.4.7. Assume there are no collisions among seeds, update information and
keys throughout the security experiment. Then corruption of users not in G∗ does not
leak I∗.

Proof. Assume I∗ is leaked. We show that I∗ must have been leaked through corruption
of some user ID ∈ G∗. By definition, either a user who had I∗ in its state was corrupted
or the key I∗

next used to derive I∗ was leaked. In the first case, since all users share a
common view of the blockchain and a user holding I∗ must have processed the update
in which I∗ was generated, clearly this user must be in G∗ and hence leakage of I∗ is
independent of any further corruptions of users outside G∗. Now, consider the second
case. Similarly, a user holding I∗

next in its state must be in G∗, and the same is true
for a user holding I−

next if I∗
next was derived as I∗

next := H1(‘next′, I−
next). Hence we

consider the case where I∗ is leaked because for some Inext, which was derived as
Inext = I ′

next ⊕ κ, both I ′
next and κ were leaked.

Let ID /∈ G∗ and assume for contradiction that ID during the game learns a seed that
was used to derive κ. Clearly, since ID /∈ G∗, ID cannot have produced κ itself. Let

207

6. DeCAF

ℓ ≤ ℓ∗ be the last block index such that ℓ ≡ 0 mod k, and let ℓ− = ℓ− k. We must
have that either no add-user(·, ID) operation was included in any block before time ℓ,
or that a block ℓr ≤ ℓ− contained a remove-user(·, ID) operation. Now, if there was
never an add-user(·, ID) before or at time ℓ (for convenience, here we count time in
blocks on the blockchain), no seed was ever encrypted to an initkey of ID at any time
before ℓ. Moreover, if ID is added to the group after ℓ, it will not be sent any key or
new seed until it belongs to the set v.unm1 for some v on the update path of the user
generating κ, meaning that at least one update affecting the v took place after ℓ, thus
updating its key at this time. Similarly, if such an operation was included in a block in
[ℓ + 1, ℓ∗] (if such an interval exists), ID will still not receive any encryption by block
ℓ∗, and will thus learn no seeds used to derive κ either.

Assume, thus, that ID was removed in block ℓr. Since the group key I∗ is generated
w.r.t. time ℓ, there must have been an entire epoch between [ℓr, ℓ] (the first following
the epoch to which ℓr belongs to, and where any updates took place), where all new
secret update information values were encrypted under keys outside the then blanked
path of ID. In particular, ID cannot have learnt a seed that was used to derive κ.

This implies that κ was leaked through corruption of a user in G∗ at a time when it
did not yet process the update generating I∗. By correctness of the scheme, this user
must be able to derive I ′

next, hence I ′
next is leaked through the same corruption and,

hence, leakage of I∗ is independent of any corruption of users outside G∗.

Proof (of Lemma 6.4.6). By Lemma 6.4.7 leakage of the challenge key I∗ is indepen-
dent of corruption of users outside G∗, hence we only have to consider users id ∈ G∗

in the following. Since the challenge group key I∗ is safe, all users ID ∈ G∗ are
safe, i.e. not corrupted during their respective critical windows. This implies for
every user ID ∈ G∗ that 1) ID is not corrupted during the current epoch; 2) either
ID was not corrupted before it processed Bℓ∗ , or ID successfully updated in at least
c := ⌊log(C)⌋+ 1 epochs before the current one and after its last corruption (where C
denotes the number of corrupted parties), or ID had a successful single update in some
previous epoch; and 3) after it processed Bℓ∗ , either ID was never corrupted again,
or an update for ID gets included into a block after Bℓ∗ and ID processed the initial
block of the subsequent epoch before it’s next corruption started.

We will first argue that due to 3), corruption of safe users after they already processed
Bℓ∗ does not leak the challenge key I∗. To this aim, note that through successfully
updating and processing the initial block of the subsequent epoch, a user completely
refreshes its state and, in particular, does not have any of the keys associated with the
tree established in block Bℓ∗ or with any previous tree state in its state, neither does it
have any seeds used to derive such keys in its state. Furthermore, all the seeds used to
derive the keys in the tree established in Bℓ∗ were encrypted to tree states associated

208

6.4. Security

with blocks before block Bℓ∗ , and the seed used for the successful update was freshly
sampled after processing block Bℓ∗ and deleted when processing the initial block of
the subsequent epoch. On the other hand, if for some node on the update path the
associated seed derived during such a successful update is leaked through another user,
then also the key associated to that node in the beginning of the respective epoch
is already leaked through that user. In other words, while leakage of some update
information could allow an adversary who is given the new key to reverse that update
and derive the old key, this old key is already leaked through the same corruption that
leaked the update information. This proves that corruption of safe users after they
processed Bℓ∗ does not leak I∗.

Now, consider a node v in the tree established in block Bℓ∗ and assume that every party
under v, that was corrupted before it processed Bℓ∗ , since corruption ended successfully
updated in at least i previous epochs or had a successful single update in some previous
epoch, and furthermore every party under v, that was corrupted after it processed
Bℓ∗ , successfully updated after it processed Bℓ∗ and processed the initial block of the
subsequent epoch before its next corruption starts. We will show by induction on i
that if the secret key, which is associated to v (resp. the challenge key in case v is
the root) after block Bℓ∗ was processed, is leaked, then at least 2i of the corrupted
parties {ID1, . . . , IDC} have update paths through v. Since for i = ⌊log(C)⌋+ 1 we
have that 2i > C, it follows that the key associated to node v cannot be leaked. Hence,
for v = vroot we obtain that I∗ is secure.

For the inductive argument, note that for i = 0 the statement is true since if
the key associated to v is leaked there must be at least 1 = 20 corrupted parties
with an update path through v. Now, let i ≥ 1 and assume that the statement
holds for all integers smaller than i. Let l be the epoch in which the last of the
corrupted parties with update paths through v updates for the ith time or had a
successful single update. During this epoch, key skv at node v is replaced with
skuPKE.UpdS(. . . skuPKE.UpdS(skuPKE.UpdS(skv, δ1), δ2) . . . , δJ), where the reran-
domization terms δj and sj stem from the J parties which update node v during epoch
l. The group key I, on the other hand, which is associated with the root of the tree, is
derived as H1(“key”, Inext) where Inext is replaced with Inext ⊕

⨁︁
j∈[J] κj . Note that in

order for skv (resp. I∗ if v is the root of the tree) to be leaked it is necessary that the
adversary learns all δj (resp. κj), which implies that for all j ∈ [J] the seed used to
derive δj (resp. κj) is leaked, i.e. was either derived from a leaked seed, or encrypted
to a leaked key. We consider the three cases that after epoch l − 1 (a) there are at
least two nodes v1, v2 in the resolution of the parents of v whose associated keys are
leaked, (b) there is exactly one node v′ in the resolution of the parents of v whose
associated key is leaked and at least one update path in epoch l goes through v′, and
(c) there is exactly one node v′ in the resolution of the parents of v whose associated
key is leaked and all of the update paths of epoch l do not go through v′. Note that

209

6. DeCAF

one of the cases has to occur since otherwise the key associated to v would be secure
after epoch l.

Consider case (a). After epoch l − 1, by minimality of l, it must hold that either 1)
every corrupted party under v1 and v2 has updated in at least i− 1 epochs or had a
successful single update, or 2) all but one corrupted party under v1 and v2 has updated
in at least i epochs or had a successful single update. In case 1), we obtain by the
induction hypothesis that at least 2i−1 corrupted parties have update paths through
v1 and v2 respectively. In turn there are at least 2i corrupted parties under v. In case
2), we have that all corrupted users under vb for some b ∈ {1, 2} have successfully
updated in at least i epochs preceding l − 1 or had a successful single update before
epoch l − 1. Furthermore, the number of corrupted users below vb is strictly smaller
than the number of corrupted parties below v. We denote by l′ the epoch in which the
last of the corrupted parties with update paths through vb updates for the ith time or
had a successful single update and can now do the same case distinction for epoch l′

and node vb.

In case (b), for every update path of epoch l which goes through v′ the seed used
to derive the δj is encrypted to secure keys. Thus, in order for skv to be leaked it is
necessary that the seeds used to derive the key associated to node v′ were leaked as
well. This implies that the key associated to v′ is leaked even after epoch l. Thus we
can set l′ ← l and make the same case distinction for v′.

Now consider case (c) and let v′ be the only node in the resolution of the parents of v
that has a leaked associated key. Node v′ is not part of the update paths of epoch l.
Thus, every corrupted party with update path through v′ must have updated in at least
i epochs before epoch l or had a successful single update before epoch l, and further
by definition of l the number of such parties is strictly smaller than the number of
corrupted parties below v. Analogous to above let l′ denote the epoch in which the
last corrupted party under v′ updated for the ith time. We can now make the same
case distinction as above.

Summing up, if case (a)1) occurs, then at least 2i of the corrupted parties {ID1, . . . , IDC}
have update paths through v. If, on the other hand, cases (a)2), (b) or (c) occur, then
there exist a parent v′ of v and an epoch l′ such that all corrupted parties under v′

updated at least i times or had a single update, and the last to do so did in epoch l′.
Note that repeated application of the case distinction reduces the height of node v′ in
the tree. Thus if we assume that case (a)1) never occurs, at some point we end up
with a leaf node v′ such that the associated key is leaked and the user associated with
that leaf either was not corrupted or updated at least once since its last corruption; in
both cases the associated key would be secure. Thus, at some point case (a)1) has to
occur, which implies the desired statement.

210

6.4. Security

Lemma 6.4.6 in place, the proof of Theorem 6.4.4 follows the security proof from
[KPPW+21]. The main difference here is that we reduce baCGKA security of DeCAF
to the IND-CPA security of the underlying secretly key-updatable public-key encryption
scheme kuPKE as per Definition 6.2.2 (as opposed to IND-CPA security of a simple
public-key encryption scheme as in [KPPW+21]). Looking into the details of our
protocol, another difference is that the update information for the group key is derived
by hashing a seed associated to the root of the challenge tree, but this update information
is never encrypted (as opposed to [KPPW+21], where the seed is directly applied to
derive the new group key); this slight modification in our current protocol will allow for
quite some simplification of the proof from [KPPW+21].
Repeating the entire rather technical argument of [KPPW+21] would be outside the
scope of this work; instead we give a high level overview on the proof of [KPPW+21]
and discuss how the proof can be adapted.

Proof sketch (of Theorem 6.4.4). The main idea in [KPPW+21] is the following: If
H1 and H2 are modeled as random oracles, then all the public-key pairs (pk, sk)
sampled through kuPKE.Gen as well as the update information (∆i, δi) have the same
distribution as if they were sampled independently (to ensure consistency, the random
oracles can be programmed accordingly). Furthermore, by Lemma 6.4.6, the challenge
key I∗ := H1(“key”, Inext) is secure, i.e. I∗ is not contained in a user’s state while the
user is corrupted and (the seed) Inext is secure.
Now, if the adversary never queries a secure seed to the random oracles H1 and H2, then
the group key I∗ is identically distributed to a uniformly random, independent string.
Thus, any adversary that has advantage > 0 in breaking the security of DeCAF must
query the oracles H1 or H2 on some secure seed; we call this event E.11 As long as E
doesn’t happen, every secure seed is information-theoretically hidden unless encrypted
to some (secure) key. The idea for our (fully black-box) reduction R now is to embed
an IND-CPA challenge (with two uniformly random seeds as messages) for kuPKE and
hope that the query that makes E turn true will be the seed that was encrypted in the
challenge ciphertext; when E turns true, the reduction stops the experiment. To see
why this works, note that by Definition 6.4.5, for every secure key pair (pk∗, sk∗) there
exist ρ, j−, j+ with −1 ≤ j− < ρ ≤ j+ ≤ Q such that

• (pk∗, sk∗) was derived by ρ times updating either some dummy key pair (pk0, sk0)
or an init key of some user; we write (pkρ, skρ) := (pk∗, sk∗),

11In fact, this property of our scheme would allow us to prove security based on a weaker security
assumption than IND-CPA security for kuPKE, where given an encryption of a random message the
adversary has to compute the message.

211

6. DeCAF

• secret keys (ski)i∈[j−+1,j+] as well as secret update information δj− , δj+ are
secure.

Now, as long as E does not happen, the secret update information δj− , δj+ is identically
distributed to freshly sampled, independent update information, hence, the reduction
can indeed embed an IND-CPA challenge for kuPKE within the baCGKA security
experiment.

To bound the security loss involved by our reduction, note that seeds associated to leaves
are information-theoretically hidden unless compromised through corruption, and also
the respective other message used in the IND-CPA security experiment is information-
theoretically hidden as long as E did not happen12. Thus, except with negligible
probability, whenever the reduction R correctly guessed ρ∗, j−, j+ and embedded the
challenge key pair (pkρ, skρ) of the kuPKE challenge and the two seeds at the right
position in the challenge tree, then R succeeds in embedding its challenge and turning
the adversary into an adversary against IND-CPA security of the kuPKE scheme. More
precisely, before the game starts, R guesses uniformly at random the query q∗ in which
the seed s∗ that makes event E turn true is generated. Furthermore, for the key pk∗

to which s∗ will be encrypted during the game, R guesses uniformly at random the
position v∗ in the tree as well as the number of updates ρ∗ through which the key pair
(pk∗, sk∗) was derived, as well as the indices j−, j+ for the kuPKE challenge. Thus, R
succeeds with probability 1/(2nQ4), and additionally taking into account unmerged
leaves, and the probability of a collision between the seeds, we end up with a security
loss of roughly 2(nQ2)2 + (log(n)Q)2/|H2|, where |H2| is the size of the range of
H2.

6.4.3 A stronger safe predicate
The safe predicate in the section above, or, in particular, the definition of critical
window, is written with respect to the users corrupted by A since the beginning of
the security game. Here, we will briefly argue that, while we presented it like this for
simplicity, in practice one would want to consider a stronger version, that takes into
account the users corrupted only from the last time a group key was safe. We will
argue that such a strenghthening follows easily, if only at the cost of a more convoluted
presentation.

Example: A safe group key not covered by the safe predicate. First, to see
why the predicate defined above (Definitions 6.4.2 and 6.4.3) is suboptimal, observe

12For simplicity of exposition, we ignore the issue of unmerged leaves here; the general case
including unmerged leaves and therefore multiple encryptions of the same seed follows by a hybrid
argument, losing another multiplicative factor n in security.

212

6.4. Security

that by defining it in such a fashion, we exclude several situations where a key is safe
(but would be marked as unsafe by said predicate). This is because it ignores the
possibility of healing at some point throughout the game execution, some time before
the challenge query. For instance, consider the game execution where the adversary
corrupts every user at some point, but does so by corrupting users two by two, in order
from left to right, say. Further, A ends each pair of corruptions before starting the
next and, moreover, in between each pair of corruptions, A has the last two corrupted
users, concurrently, issue two updates each, thus healing their state. I.e., A first
corrupts ID1 and ID2, ends the corruption of both of them, makes them issue updates
q1, q2 respectively, calls store-on-blockchain(q1, q2), makes both users process this
last block, then issue new updates q′

1, q′
2, and then process the block resulting from

store-on-blockchain(q′
1, q′

2). Done that, then A corrupts ID3 and ID4, stops the
corruption, and proceeds in the same fashion as before, making these two users update
twice, before corrupting ID5 and ID6, and so on. In this execution of the game, it
is clear that the group key will be secure every time a pair of users execute their
pair of concurrent updates. However, from the time the adversary has corrupted 4 or
more users, the predicate above will consider any future group key insecure, as C ≥ 4
corruptions would require either c ≥ 3 concurrent updates or a single update, from
each corrupted user. Since each user only ever updates twice, and those updates are
concurrent, the safe predicate will indeed never be satisfied.

A stronger safe predicate. This issue, however, can be solved rather easily by intro-
ducing a slightly modified, recursive definition of the safe predicate safe(ℓ∗) associated
to block ℓ∗ (equivalently, to its corresponding epoch). For this, to ℓ∗ we associate
ℓ−(ℓ∗) < ℓ∗, the last block before ℓ∗ that satisfied safe(ℓ−), where we set ℓ−(ℓ∗) = 0 if
no such block before ℓ∗ exists. Now, safe can be defined as in Section 6.4.1, the only
difference being that in Definition 6.4.2 the number of corrupted users C(ℓ∗) is defined
as the number of users A corrupts between ℓ−(ℓ∗) and ℓ∗ (instead of the number of all
users corrupted up to ℓ∗).

In order to see that the proof would carry over to this new predicate, note that we
would only need to ensure that Lemma 6.4.6 still holds. Namely, that if the stronger
safe predicate holds for key I∗, then I∗ is not leaked. This can indeed be showed
through an inductive argument on the sequence of secure epochs. Note that the base
case, i.e. ℓ−(ℓ∗) = 0 corresponds to the already existing predicate and is taken care of
by the current proof. For the inductive step, one would need to show that key I∗ is
secure (as per Definition 6.4.5) given that the group key defined by ℓ−(ℓ∗) is secure.
This follows from the existing proof together with two observations, which we will
briefly argue in the paragraphs below. On the one hand, the fact that the ratchet tree
defined by processing blocks up to the safe one ℓ−(ℓ∗) exclusively contains keys that
have not leaked. On the other, the fact that if a seed set by any update included in any

213

6. DeCAF

block after ℓ−(ℓ∗) is encrypted under a key pk belonging to a tree associated to some
block ℓ̃ < ℓ−(ℓ∗), then pk also belongs to the tree associated to ℓ−(ℓ∗). These two
observations ensure that the leakage of any key generated during the period between
ℓ−(ℓ∗) and ℓ∗ can be traced back to a corruption taking place during that same period.
This, in turn, allows to use essentially the same proof of Lemma 6.4.6 to argue for the
inductive step.

To see why the first observation is true, one can look at the simpler case: if u and v are
two nodes in the ratchet tree, with u being the child of v, then it is not possible for the
secret key at v to be leaked, while the secret key for u is secure (since, by assumption,
the group key at ℓ−(ℓ∗) is secure, the statement follows). Indeed, let skv be leaked and
qv be the time at which A first learnt the value of a secret key at v (and such that from
qv to the present there was no time when A did not have knowledge of the secret key at
v). At this time, A must have learnt this key through a corruption, and so must have
also learnt the secret key at u at the time. However, since A has knowledge of the key
at v throughout the interval from qv to the time skv was set, they, in particular, must
also have learnt all seeds used to derive secret update informations updating the key at
v during that time. Consider now the different secret update informations evolving the
key at u. Any such δ that comes from an update by a user below v is derived from a
seed, itself derived by a hash evaluation of a seed that A learnt. For the other δ coming
from the other sub-tree under u, the corresponding seed gets encrypted to a key at v,
which A also knows, by assumption. This shows that A would also know the key at u,
i.e. it is leaked.

The second observation follows easily from the consistency properties that the blockchain
ensures, in particular the agreement of all users on the transcript of the execution so far.
Indeed, for the statement of the above observation to not be true, an update consistent
with the transcript so far up to some block ℓ̂ ≤ ℓ̃ would have needed to be included
and processed by users in some block between ℓ̃ and ℓ−(ℓ∗), which is not possible.

214

CHAPTER 7
Conclusion

In this thesis we explored the problem of better understanding and improving different
aspects of continuous group key agreement. We started by seeing that, while blanking is
the primarily used method for removing users in CGKA protocols, tainting is a promising
alternative which should be further studied (Chapter 3). Better appreciating how both
approaches compare under real-life circumstances, both in the non-concurrent and,
specially, within the P&C framework (since the latter has not yet been attempted) is
an interesting open problem.

We continued by studying the problem of multiple (overlapping) groups (Chapter 4),
where we made considerable progress understanding both lower and upper bounds on the
communication cost that one could expect from protocols in this setting. Nevertheless,
many open problems remain, from formalizing security of such protocols, including e.g.
notions of membership privacy, to more thoroughly understanding the impact of known
techniques for performing dynamic operations, and whether better ones exist here.

We finished by presenting two solutions for the problem of concurrency in CGKA
protocols (Chapters 5 and 6). Importantly, we introduced a new notion of post-
compromise security and showed it can bring compelling trade-offs to the CGKA
design space. Adapting techniques presented in these protocols to MLS or other
CGKA protocols is an interesting open problem. On the one hand, adapting the
update-merging feature to MLS could, for example, not only provide a remedy to the
inefficiencies introduced by update proposals, but also potentially allow for concurrent
commits. On the other, generalizing the partial states technique from CoCoA and the
accompanying download cost reduction, to a wider family of CGKA protocols would be
a great contribution.

Overall, CGKA and, more widely, secure group messaging, is an exciting research area

215

7. Conclusion

with much development well beyond the topics we focused on: PCS and the efficiency
of group operations. This is particularly true given the publication of MLS, the first
standard for SGM, which is bound to expand the applications for these algorithms and
usher in an array of new open problems.

216

Bibliography

[AAB+21a] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto,
Karen Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael
Walter. Grafting key trees: Efficient key management for overlap-
ping groups. Cryptology ePrint Archive, Report 2021/1158, 2021.
https://eprint.iacr.org/2021/1158.

[AAB+21b] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval,
Karen Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael
Walter. Grafting key trees: Efficient key management for overlapping
groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th
Theory of Cryptography Conference, Part III, volume 13044 of Lec-
ture Notes in Computer Science, pages 222–253, Raleigh, NC, USA,
November 8–11, 2021. Springer, Heidelberg, Germany.

[AAB+24a] Harold Abelson, Ross Anderson, Steven M Bellovin, Josh Benaloh, Matt
Blaze, Jon Callas, Whitfield Diffie, Susan Landau, Peter G Neumann,
Ronald L Rivest, Jeffrey I Schiller, Bruce Schneier, Vanessa Teague,
and Carmela Troncoso. Bugs in our pockets: the risks of client-side
scanning. Journal of Cybersecurity, 10(1):tyad020, 01 2024.

[AAB+24b] Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto
Noval, Matthew Kwan, Guillermo Pascual-Perez, and Krzysztof Pietrzak.
The cost of maintaining keys in dynamic groups with applications to
multicast encryption and group messaging. Cryptology ePrint Archive,
Paper 2024/1097, 2024. https://eprint.iacr.org/2024/
1097.

[AAN+22a] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual-Perez, and Krzysztof Pietrzak. DeCAF: Decentral-
izable continuous group key agreement with fast healing. Cryptology
ePrint Archive, Report 2022/559, 2022. https://eprint.iacr.
org/2022/559.

217

https://eprint.iacr.org/2021/1158
https://eprint.iacr.org/2024/1097
https://eprint.iacr.org/2024/1097
https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2022/559

[AAN+22b] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Co-
CoA: Concurrent continuous group key agreement. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptology – EURO-
CRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer
Science, pages 815–844, Trondheim, Norway, May 30 – June 3, 2022.
Springer, Heidelberg, Germany.

[AAN+22c] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Co-
CoA: Concurrent continuous group key agreement. Cryptology ePrint
Archive, Report 2022/251, 2022. https://eprint.iacr.org/
2022/251.

[ABJM21a] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka
Mareková. Collective information security in large-scale urban protests:
the case of hong kong. In Michael Bailey and Rachel Greenstadt,
editors, USENIX Security 2021: 30th USENIX Security Symposium,
pages 3363–3380. USENIX Association, August 11–13, 2021.

[ABJM21b] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka
Mareková. Mesh messaging in large-scale protests: Breaking Bridgefy.
In Kenneth G. Paterson, editor, Topics in Cryptology – CT-RSA 2021,
volume 12704 of Lecture Notes in Computer Science, pages 375–398,
Virtual Event, May 17–20, 2021. Springer, Heidelberg, Germany.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-
Hellman assumptions and an analysis of DHIES. In David Naccache,
editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture
Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer, Heidelberg, Germany.

[ACC+19] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen
Klein, Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael
Walter, and Michelle Yeo. Keep the dirt: Tainted TreeKEM, adaptively
and actively secure continuous group key agreement. Cryptology ePrint
Archive, Report 2019/1489, 2019. https://eprint.iacr.org/
2019/1489.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet:
Security notions, proofs, and modularization for the Signal protocol.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –

218

https://eprint.iacr.org/2022/251
https://eprint.iacr.org/2022/251
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489

EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Com-
puter Science, pages 129–158, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the IETF MLS standard for
group messaging. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of
Lecture Notes in Computer Science, pages 248–277, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[ACDT21] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Modular design of secure group messaging protocols and the security
of MLS. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021:
28th Conference on Computer and Communications Security, pages
1463–1483, Virtual Event, Republic of Korea, November 15–19, 2021.
ACM Press.

[ACH+24] Joël Alwen, Matthew Campagna, Dominik Hartmann, Shuichi Kat-
sumata, Eike Kiltz, Jake Massimo, Marta Mularczyk, Guillermo Pascual-
Perez, Thomas Prest, and Peter Schwabe. How Multi-Recipient KEMs
can help the Deployment of Post-Quantum Cryptography. 5th NIST
PQC Standardization Conference, 2024.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Con-
tinuous group key agreement with active security. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptogra-
phy Conference, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 261–290, Durham, NC, USA, November 16–19, 2020.
Springer, Heidelberg, Germany.

[ACK+21] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, Michael Walter, and Michelle Yeo.
Inverse-sybil attacks in automated contact tracing. In Kenneth G. Pa-
terson, editor, Topics in Cryptology – CT-RSA 2021, volume 12704
of Lecture Notes in Computer Science, pages 399–421, Virtual Event,
May 17–20, 2021. Springer, Heidelberg, Germany.

[ACNPPP23] Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez,
and Krzysztof Pietrzak. On the cost of post-compromise security in
concurrent continuous group-key agreement. In Guy Rothblum and
Hoeteck Wee, editors, Theory of Cryptography, pages 271–300, Cham,
2023. Springer Nature Switzerland.

219

[AEP22] Martin R. Albrecht, Raphael Eikenberg, and Kenneth G. Paterson.
Breaking bridgefy, again: Adopting libsignal is not enough. In Kevin R. B.
Butler and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX
Security Symposium, pages 269–286, Boston, MA, USA, August 10–12,
2022. USENIX Association.

[AFM24] Joël Alwen, Georg Fuchsbauer, and Marta Mularczyk. Updatable public-
key encryption, revisited. In Marc Joye and Gregor Leander, editors,
Advances in Cryptology – EUROCRYPT 2024, Part VII, volume 14657 of
Lecture Notes in Computer Science, pages 346–376, Zurich, Switzerland,
May 26–30, 2024. Springer, Heidelberg, Germany.

[AGRS15] Miriyam Aouragh, Seda Gurses, Jara Rocha, and Femke Snelting. FCJ-
196 Let’s First Get Things Done! On Division of Labour and Techno-
political Practices of Delegation in Times of Crisis. The Fibreculture
Journal, pages 209–238, 12 2015.

[AHK+23] Joël Alwen, Dominik Hartmann, Eike Kiltz, Marta Mularczyk, and
Peter Schwabe. Post-quantum multi-recipient public key encryption. In
Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin
Kirda, editors, ACM CCS 2023: 30th Conference on Computer and
Communications Security, pages 1108–1122, Copenhagen, Denmark,
November 26–30, 2023. ACM Press.

[AHKM22] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk.
Server-aided continuous group key agreement. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th
Conference on Computer and Communications Security, pages 69–82,
Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

[AHPP23] Benedikt Auerbach, Charlotte Hoffmann, and Guillermo Pascual-Perez.
Generic-group lower bounds via reductions between geometric-search
problems: With and without preprocessing. In Guy Rothblum and
Hoeteck Wee, editors, Theory of Cryptography, pages 301–330, Cham,
2023. Springer Nature Switzerland.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security
of MLS. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology – CRYPTO 2022, Part II, volume 13508 of Lecture
Notes in Computer Science, pages 34–68, Santa Barbara, CA, USA,
August 15–18, 2022. Springer, Heidelberg, Germany.

[Ala08] Shahidul Alam. Majority world: Challenging the west’s rhetoric of
democracy. Amerasia Journal, 34:87–98, 01 2008.

220

[AMM00] Y.S. Abu-Mostafa and R.J. McEliece. Maximal codeword lengths in Huff-
man codes. Computers & Mathematics with Applications, 39(11):129 –
134, 2000.

[AMPS22] Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors
Stepanovs. Four attacks and a proof for Telegram. In 2022 IEEE
Symposium on Security and Privacy, pages 87–106, San Francisco, CA,
USA, May 22–26, 2022. IEEE Computer Society Press.

[AMT23] Joël Alwen, Marta Mularczyk, and Yiannis Tselekounis. Fork-resilient
continuous group key agreement. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, Part IV,
volume 14084 of Lecture Notes in Computer Science, pages 396–429,
Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg,
Germany.

[And22] Patrick D. Anderson. Cypherpunk Ethics: Radical Ethics for the Digital
Age. Routledge, 2022.

[ANPPP23] Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez,
and Krzysztof Pietrzak. On the cost of post-compromise security in
concurrent continuous group-key agreement. In Guy N. Rothblum
and Hoeteck Wee, editors, TCC 2023: 21st Theory of Cryptography
Conference, Part III, volume 14371 of Lecture Notes in Computer
Science, pages 271–300, Taipei, Taiwan, November 29 – December 2,
2023. Springer, Heidelberg, Germany.

[App21] Apple. CSAM Detection - Technical Summary. https://
www.apple.com/child-safety/pdf/CSAM_Detection_
Technical_Summary.pdf, August 2021. Accessed: 17-06-2024.

[Aru19] Chinmayi Arun. On whatsapp, rumours, and lynchings. Economic and
Political Weekly, 54:30–35, 01 2019.

[ASKP+17] Ruba Abu-Salma, Kat Krol, Simon Parkin, Victoria Koh, Kevin Kwan,
Jazib Mahboob, Zahra Traboulsi, and Angela Sasse. The security
blanket of the chat world: An analytic evaluation and a user study of
telegram. In European Workshop on Usable Security EuroUSEC’17, 04
2017.

[ASSB+17] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia
Danilova, Alena Naiakshina, and Matthew Smith. Obstacles to the
adoption of secure communication tools. In 2017 IEEE Symposium

221

https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

on Security and Privacy, SP 2017 - Proceedings, Proceedings - IEEE
Symposium on Security and Privacy, pages 137–153. Institute of Elec-
trical and Electronics Engineers Inc., June 2017. Publisher Copyright:
© 2017 IEEE.; 2017 IEEE Symposium on Security and Privacy, SP 2017
; Conference date: 22-05-2017 Through 24-05-2017.

[AW23] Kyoichi Asano and Yohei Watanabe. Updatable public key encryp-
tion with strong CCA security: Security analysis and efficient generic
construction. Cryptology ePrint Archive, Paper 2023/976, 2023.
https://eprint.iacr.org/2023/976.

[BA23] Jenny Blessing and Ross Anderson. One Protocol to Rule Them All? On
Securing Interoperable Messaging. In Security Protocols XXVIII: 28th
International Workshop, Cambridge, UK, March 27–28, 2023, Revised
Selected Papers, page 174–192, Berlin, Heidelberg, 2023. Springer-
Verlag.

[BBN19] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg.
Formal Models and Verified Protocols for Group Messaging: Attacks
and Proofs for IETF MLS. Research report, Inria Paris, December 2019.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic
Groups. https://mailarchive.ietf.org/arch/attach/
mls/pdf1XUH6o.pdf, May 2018.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer Security
(MLS) Protocol. RFC 9420, July 2023.

[BCG23] David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with
sender keys? Analysis, improvements and security proofs. In Jian Guo
and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,
Part V, volume 14442 of Lecture Notes in Computer Science, pages
307–341, Guangzhou, China, December 4–8, 2023. Springer, Heidelberg,
Germany.

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic
security of the mls rfc, draft 11. Cryptology ePrint Archive, Report
2021/137, 2021. https://eprint.iacr.org/2021/137.

[BCP02] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic
group Diffie-Hellman key exchange under standard assumptions. In

222

https://eprint.iacr.org/2023/976
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://eprint.iacr.org/2021/137

Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 321–336, Am-
sterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg,
Germany.

[BCV23] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic
administration for secure group messaging. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1253–1270, Anaheim, CA,
August 2023. USENIX Association.

[BD95] Mike Burmester and Yvo Desmedt. A secure and efficient conference key
distribution system (extended abstract). In Alfredo De Santis, editor,
Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture
Notes in Computer Science, pages 275–286, Perugia, Italy, May 9–12,
1995. Springer, Heidelberg, Germany.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan,
Mohammad Hajiabadi, and Paul Rösler. On the worst-case inefficiency
of CGKA. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022:
20th Theory of Cryptography Conference, Part II, volume 13748 of
Lecture Notes in Computer Science, pages 213–243, Chicago, IL, USA,
November 7–10, 2022. Springer, Heidelberg, Germany.

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of
concurrency in group ratcheting protocols. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference,
Part II, volume 12551 of Lecture Notes in Computer Science, pages 198–
228, Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg,
Germany.

[BDT22] Alexander Bienstock, Yevgeniy Dodis, and Yi Tang. Multicast key
agreement, revisited. In Steven D. Galbraith, editor, Topics in Cryptology
– CT-RSA 2022, volume 13161 of Lecture Notes in Computer Science,
pages 1–25, Virtual Event, March 1–2, 2022. Springer, Heidelberg,
Germany.

[Bel] Luca Belli. WhatsApp skewed Brazilian election, show-
ing social media’s danger to democracy. The Conversation.
https://theconversation.com/whatsapp-skewed-
brazilian-election-showing-social-medias-
danger-to-democracy-106476.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record commu-
nication, or, why not to use PGP. In Proceedings of the 2004 ACM

223

https://theconversation.com/whatsapp-skewed-brazilian-election-showing-social-medias-danger-to-democracy-106476
https://theconversation.com/whatsapp-skewed-brazilian-election-showing-social-medias-danger-to-democracy-106476
https://theconversation.com/whatsapp-skewed-brazilian-election-showing-social-medias-danger-to-democracy-106476

Workshop on Privacy in the Electronic Society, WPES ’04, page 77–84,
New York, NY, USA, 2004. Association for Computing Machinery.

[BGD+24] Divyanshu Bhardwaj, Carolyn Guthoff, Adrian Dabrowski, Sascha Fahl,
and Katharina Krombholz. Mental models, expectations and implications
of client-side scanning: An interview study with experts. In Proceedings
of the CHI Conference on Human Factors in Computing Systems, CHI
’24, New York, NY, USA, 2024. Association for Computing Machinery.

[Bob07] Chris Bobel. ‘I’m not an activist, though I’ve done a lot of it’: Doing
Activism, Being Activist and the ‘Perfect Standard’ in a Contemporary
Movement. Social Movement Studies, 6:147–159, 09 2007.

[Box76] George E. P. Box. Science and statistics. Journal of the American
Statistical Association, 71(356):791–799, 1976.

[BRT23] Alexander Bienstock, Paul Rösler, and Yi Tang. ASMesh: Anonymous
and secure messaging in mesh networks using stronger, anonymous
double ratchet. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, ACM CCS 2023: 30th Conference
on Computer and Communications Security, pages 1–15, Copenhagen,
Denmark, November 26–30, 2023. ACM Press.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati,
and Igors Stepanovs. Ratcheted encryption and key exchange: The
security of messaging. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part III, volume 10403 of
Lecture Notes in Computer Science, pages 619–650, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[BSJCU21] Maia J. Boyd, Jamar L. Sullivan Jr., Marshini Chetty, and Blase Ur.
Understanding the security and privacy advice given to black lives
matter protesters. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI ’21, New York, NY, USA,
2021. Association for Computing Machinery.

[Cab23] Cable.co.uk. The cost of 1GB of mobile data in 237 coun-
tries. https://www.cable.co.uk/mobiles/worldwide-
data-pricing/, 2023. Accessed: 17-06-2024.

[Cas12] Manuel Castells. Networks of Outrage and Hope: Social Movements in
the Internet Age. John Wiley & Sons, 2012.

224

https://www.cable.co.uk/mobiles/worldwide-data-pricing/
https://www.cable.co.uk/mobiles/worldwide-data-pricing/

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-
compromise security. In Michael Hicks and Boris Köpf, editors, CSF
2016: IEEE 29th Computer Security Foundations Symposium, pages
164–178, Lisbon, Portugal, June 27–1, 2016. IEEE Computer Society
Press.

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and
Kevin Milner. On ends-to-ends encryption: Asynchronous group mes-
saging with strong security guarantees. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018: 25th Conference on Computer and Communications Security,
pages 1802–1819, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

[CEST24] Kelong Cong, Karim Eldefrawy, Nigel P. Smart, and Ben Terner. The key
lattice framework for concurrent group messaging. In Christina Pöpper
and Lejla Batina, editors, ACNS 24: 22nd International Conference on
Applied Cryptography and Network Security, Part II, volume 14584 of
Lecture Notes in Computer Science, pages 133–162, Abu Dhabi, UAE,
March 5–8, 2024. Springer, Heidelberg, Germany.

[CFKN20] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. Clone
detection in secure messaging: Improving post-compromise security
in practice. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-
vanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer
and Communications Security, pages 1481–1495, Virtual Event, USA,
November 9–13, 2020. ACM Press.

[CGI+99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor,
and Benny Pinkas. Multicast security: A taxonomy and some efficient
constructions. In IEEE INFOCOM’99, pages 708–716, New York, NY,
USA, March 21–25, 1999.

[CHK21] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of
healing in secure group messaging: Why cross-group effects matter.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021: 30th USENIX Security Symposium, pages 1847–1864. USENIX
Association, August 11–13, 2021.

[CLMP24] Céline Chevalier, Guirec Lebrun, Ange Martinelli, and Jérôme Plût. The
art of bonsai: How well-shaped trees improve the communication cost
of MLS. Cryptology ePrint Archive, Paper 2024/746, 2024. https:
//eprint.iacr.org/2024/746.

225

https://eprint.iacr.org/2024/746
https://eprint.iacr.org/2024/746

[Coi] XX Coin. Elixxir architecture brief v2.0. https://xx.network/
elixxir-architecture-brief-v1.0.pdf.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private
group system and anonymous credentials supporting efficient verifiable
encryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-
vanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer
and Communications Security, pages 1445–1459, Virtual Event, USA,
November 9–13, 2020. ACM Press.

[DB05] Ratna Dutta and Rana Barua. Dynamic group key agreement in tree-
based setting. In Colin Boyd and Juan Manuel González Nieto, editors,
ACISP 05: 10th Australasian Conference on Information Security and
Privacy, volume 3574 of Lecture Notes in Computer Science, pages
101–112, Brisbane, Queensland, Australia, July 4–6, 2005. Springer,
Heidelberg, Germany.

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS group
messaging: How zero-knowledge can secure updates. In Elisa Bertino,
Haya Shulman, and Michael Waidner, editors, ESORICS 2021: 26th
European Symposium on Research in Computer Security, Part II, volume
12973 of Lecture Notes in Computer Science, pages 587–607, Darmstadt,
Germany, October 4–8, 2021. Springer, Heidelberg, Germany.

[Di 20] Philip Di Salvo. Digital Whistleblowing Platforms in Journalism: En-
crypting Leaks. Palgrave Macmillan, 01 2020.

[DKW21] Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. Updatable
public key encryption in the standard model. In Kobbi Nissim and Brent
Waters, editors, TCC 2021: 19th Theory of Cryptography Conference,
Part III, volume 13044 of Lecture Notes in Computer Science, pages 254–
285, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg,
Germany.

[DNDS19] Sergej Dechand, Alena Naiakshina, Anastasia Danilova, and Matthew
Smith. In Encryption We Don’t Trust: The Effect of End-to-End
Encryption to the Masses on User Perception. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 401–415, 06
2019.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratch-
eted key agreement with linear complexity. In Nuttapong Attrapadung
and Takeshi Yagi, editors, IWSEC 19: 14th International Workshop

226

https://xx.network/elixxir-architecture-brief-v1.0.pdf
https://xx.network/elixxir-architecture-brief-v1.0.pdf

on Security, Advances in Information and Computer Security, volume
11689 of Lecture Notes in Computer Science, pages 343–362, Tokyo,
Japan, August 28–30, 2019. Springer, Heidelberg, Germany.

[DVS] Alex Davidson, Fernando Virdia, and Luiza Soezima. Securing semi-open
group messaging. CAW 2024. https://fundamental.domains/
presentations/caw24/caw.pdf.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[EE] EFF and EDRi. Statement on the future of the CSA Regulation.
https://edri.org/wp-content/uploads/2024/07/
Statement_-The-future-of-the-CSA-Regulation.pdf.
Accessed: 08.07.2024.

[EFF16] EFF. Secure Messaging Scorecard. https://www.eff.org/es/
pages/secure-messaging-scorecard, 2016.

[EFF18] EFF. Why We Can’t Give You A Recommendation.
https://www.eff.org/deeplinks/2018/03/why-we-
cant-give-you-recommendation, March 2018.

[EHM17] Ksenia Ermoshina, Harry Halpin, and Francesca Musiani. Can Johnny
build a protocol? Co-ordinating developer and user intentions for privacy-
enhanced secure messaging protocols. In European Workshop on Usable
Security ’17, 01 2017.

[EJKM22] Edward Eaton, David Jao, Chelsea Komlo, and Youcef Mokrani. Towards
post-quantum key-updatable public-key encryption via supersingular
isogenies. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021:
28th Annual International Workshop on Selected Areas in Cryptography,
volume 13203 of Lecture Notes in Computer Science, pages 461–482,
Virtual Event, September 29 – October 1, 2022. Springer, Heidelberg,
Germany.

[EKN+22] Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, and Go Ohtake.
Membership privacy for asynchronous group messaging. Cryptology
ePrint Archive, Report 2022/046, 2022. https://eprint.iacr.
org/2022/046.

[EM21] Ksenia Ermoshina and Francesca Musiani. The telegram ban: How
censorship “made in russia” faces a global internet. First Monday, 26(5),
Apr. 2021.

227

https://fundamental.domains/presentations/caw24/caw.pdf
https://fundamental.domains/presentations/caw24/caw.pdf
https://edri.org/wp-content/uploads/2024/07/Statement_-The-future-of-the-CSA-Regulation.pdf
https://edri.org/wp-content/uploads/2024/07/Statement_-The-future-of-the-CSA-Regulation.pdf
https://www.eff.org/es/pages/secure-messaging-scorecard
https://www.eff.org/es/pages/secure-messaging-scorecard
https://www.eff.org/deeplinks/2018/03/why-we-cant-give-you-recommendation
https://www.eff.org/deeplinks/2018/03/why-we-cant-give-you-recommendation
https://eprint.iacr.org/2022/046
https://eprint.iacr.org/2022/046

[EM22] Ksenia Ermoshina and Francesca Musiani. Concealing for Freedom:
The Making of Encryption, Secure Messaging and Digital Liberties.
Mattering Press, Manchester, 2022.

[EM23] Ksenia Ermoshina and Francesca Musiani. Encryption as a battleground
in Ukraine. In Corinne Cath, editor, Eaten by the Internet, pages 82–88.
Meatspace Press, 2023.

[FK23] Matthias Fassl and Katharina Krombholz. Why I Can’t Authenticate —
Understanding the Low Adoption of Authentication Ceremonies with
Autoethnography. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, CHI ’23, New York, NY, USA,
2023. Association for Computing Machinery.

[FN21] Sharon Bradford Franklin and Greg Nojeim. International
Coalition Calls on Apple to Abandon Plan to Build Surveil-
lance Capabilities into iPhones, iPads, and other Prod-
ucts. https://cdt.org/insights/international-
coalition-calls-on-apple-to-abandon-plan-to-
build-surveillance-capabilities-into-iphones-
ipads-and-other-products/, 09 2021. Accessed: 17-06-2024.

[Fou] The Matrix.org Foundation. Matrix specification. https://matrix.
org/docs/spec/.

[Gab99] Xavier Gabaix. Zipf’s law for cities: An explanation. The Quarterly
Journal of Economics, 114(3):739–7675, 1999.

[GdZAACR21] Homero Gil de Zúñiga, Alberto Ardèvol-Abreu, and Andreu Casero-
Ripollés. WhatsApp Political Discussion, Conventional Participation
and Activism: Exploring Direct, Indirect and Generational Effects. In-
formation Communication and Society, 24:201–218, 01 2021.

[GMS+18] Tamy Guberek, Allison Mcdonald, Sylvia Simioni, Abraham Mhaidli,
Kentaro Toyama, and Florian Schaub. Keeping a Low Profile? Technol-
ogy, Risk and Privacy among Undocumented Immigrants. ACM SIGCHI
Bulletin, 04 2018.

[GT24] Timnit Gebru and Émile Torres. The TESCREAL bundle: Eugenics
and the promise of utopia through artificial general intelligence. First
Monday, 04 2024.

[HCS20] Alison Harcourt, George Christou, and Seamus Simpson. Global Stan-
dard Setting in Internet Governance. Oxford University Press, 01 2020.

228

https://cdt.org/insights/international-coalition-calls-on-apple-to-abandon-plan-to-build-surveillance-capabilities-into-iphones-ipads-and-other-products/
https://cdt.org/insights/international-coalition-calls-on-apple-to-abandon-plan-to-build-surveillance-capabilities-into-iphones-ipads-and-other-products/
https://cdt.org/insights/international-coalition-calls-on-apple-to-abandon-plan-to-build-surveillance-capabilities-into-iphones-ipads-and-other-products/
https://cdt.org/insights/international-coalition-calls-on-apple-to-abandon-plan-to-build-surveillance-capabilities-into-iphones-ipads-and-other-products/
https://matrix.org/docs/spec/
https://matrix.org/docs/spec/

[HEM18] Harry Halpin, Ksenia Ermoshina, and Francesca Musiani. Co-ordinating
Developers and High-Risk Users of Privacy-Enhanced Secure Messag-
ing Protocols: 4th International Conference, SSR 2018, Darmstadt,
Germany, November 26-27, 2018, Proceedings, pages 56–75. 11 2018.

[HK22] Britta Hale and Chelsea Komlo. On end-to-end encryption. Cryptology
ePrint Archive, Report 2022/449, 2022. https://eprint.iacr.
org/2022/449.

[HKK23] Dennis Hofheinz, Julia Kastner, and Karen Klein. The power of undi-
rected rewindings for adaptive security. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, Part II,
volume 14082 of Lecture Notes in Computer Science, pages 725–758,
Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg,
Germany.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas
Prest, and Bas Westerbaan. A concrete treatment of efficient continuous
group key agreement via multi-recipient PKEs. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and
Communications Security, pages 1441–1462, Virtual Event, Republic of
Korea, November 15–19, 2021. ACM Press.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to
hide MetaData in MLS-like secure group messaging: Simple, modular,
and post-quantum. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and
Communications Security, pages 1399–1412, Los Angeles, CA, USA,
November 7–11, 2022. ACM Press.

[HLA19] Chris Howell, Tom Leavy, and Joël Alwen. Wickr mes-
saging protocol : Technical paper, 2019. https:
//1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-
ssl.com/wp-content/uploads/2019/12/WhitePaper_
WickrMessagingProtocol.pdf.

[HLP22] Calvin Abou Haidar, Benoît Libert, and Alain Passelègue. Updatable
public key encryption from DCR: Efficient constructions with stronger
security. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022: 29th Conference on Computer and Communi-
cations Security, pages 11–22, Los Angeles, CA, USA, November 7–11,
2022. ACM Press.

229

https://eprint.iacr.org/2022/449
https://eprint.iacr.org/2022/449
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf

[Hor17] Jonathan Horowitz. Who Is This “We” You Speak of? Grounding
Activist Identity in Social Psychology. Socius, 3:2378023117717819,
2017. PMID: 30221196.

[HPS23] Calvin Abou Haidar, Alain Passelègue, and Damien Stehlé. Efficient
updatable public-key encryption from lattices. In Jian Guo and Ron
Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part V,
volume 14442 of Lecture Notes in Computer Science, pages 342–373,
Guangzhou, China, December 4–8, 2023. Springer, Heidelberg, Germany.

[Huf52] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[Hug93] Eric Hughes. A Cypherpunk’s Manifesto. 1993.

[HZ15] Gulizar Haciyakupoglu and Weiyu Zhang. Social Media and Trust
during the Gezi Protests in Turkey. Journal of Computer-Mediated
Communication, 20, 03 2015.

[IAV22] Rawane Issa, Nicolas Alhaddad, and Mayank Varia. Hecate: Abuse
reporting in secure messengers with sealed sender. In Kevin R. B.
Butler and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX
Security Symposium, pages 2335–2352, Boston, MA, USA, August 10–
12, 2022. USENIX Association.

[IRC15] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...No one can hack
my mind”: comparing expert and non-expert security practices. In
Proceedings of the Eleventh USENIX Conference on Usable Privacy and
Security, SOUPS ’15, page 327–346, USA, 2015. USENIX Association.

[107] International Telecommunication Union (ITU). The World in 2010: The
rise of 3G. https://www.itu.int/ITU-D/ict/material/
FactsFigures2010.pdf, 2010.

[ITW82] I. Ingemarsson, D. Tang, and C. Wong. A conference key distribution
system. IEEE Transactions on Information Theory, 28(5):714–720,
1982.

[JCKT20] Rikke Bjerg Jensen, Lizzie Coles-Kemp, and Reem Talhouk. When the
Civic Turn turns Digital: Designing Safe and Secure Refugee Resettle-
ment. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020.
Association for Computing Machinery.

230

https://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
https://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcom-
mitting. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 133–163, Santa Barbara, CA, USA, Au-
gust 20–24, 2017. Springer, Heidelberg, Germany.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part I, volume 11476 of Lecture Notes in Computer Science, pages
159–188, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany.

[JS18] Joseph Jaeger and Igors Stepanovs. Optimal channel security against
fine-grained state compromise: The safety of messaging. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 33–62, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers,
volume 27. Springer Science & Business Media, 2012.

[Kaz15] Becky Kazansky. FCJ-195 Privacy, Responsibility, and Human Rights
Activism. The Fibreculture Journal, pages 190–208, 12 2015.

[Kel98] Thomas Kelly. The myth of the skytale. Cryptologia, 22(3):244–260,
1998.

[KKPP20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas
Prest. Scalable ciphertext compression techniques for post-quantum
KEMs and their applications. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2020, Part I, volume
12491 of Lecture Notes in Computer Science, pages 289–320, Daejeon,
South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. CRC Press, second edition, 2014.

[Kle21] Karen Klein. On the adaptive security of graph-based games.
PhD thesis, Institute of Science and Technology Austria, 2021.
10.15479/at:ista:10035.

231

[KNC20] Yong Ming Kow, Bonnie Nardi, and Wai Kuen Cheng. Be water:
Technologies in the leaderless anti-elab movement in hong kong. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20, page 1–12, New York, NY, USA, 2020. Association
for Computing Machinery.

[Kno23] Mallory Knodel. Encryption regulation, and what to do about it? In
Corinne Cath, editor, Eaten by the Internet, pages 89–95. Meatspace
Press, 2023.

[Kno24] Mallory Knodel. Children’s Rights at the Centre of Digital Technology
Standards by Design. https://www.orfonline.org/expert-
speak/children-s-rights-at-the-centre-of-
digital-technology-standards-by-design, 02 2024.
Accessed: 17-06-2024.

[Kob18] Nadim Kobeissi. Formal verification for real-world cryptographic pro-
tocols and implementations. Phd thesis, Université Paris sciences et
lettres, Dec 2018.

[KPPW+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath,
Margarita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen,
and Krzysztof Pietrzak. Keep the dirt: Tainted TreeKEM, adaptively
and actively secure continuous group key agreement. In 2021 IEEE
Symposium on Security and Privacy, pages 268–284, San Francisco,
CA, USA, May 24–27, 2021. IEEE Computer Society Press.

[Kun09] Meglena Kuneva. Keynote Speech - Roundtable on Online Data
Collection, Targeting and Profiling. https://ec.europa.eu/
commission/presscorner/detail/en/SPEECH_09_156,
March 2009.

[LA10] Jeroen Laer and Peter Aelst. Internet and social movement action
repertoires. Information, Communication & Society, pages 1146–1171,
12 2010.

[LC16] Francis L.F. Lee and Joseph Man Chan. Digital media activities and
mode of participation in a protest campaign: a study of the Umbrella
Movement. Information, Communication & Society, 19(1):4–22, 2016.

[LCC20] Francis Lee, Michael Chan, and Hsuan-Ting Chen. Social Media and
Protest Attitudes During Movement Abeyance: A Study of Hong Kong
University Students. International Journal of Communication, 14:4932–
4951, 09 2020.

232

https://www.orfonline.org/expert-speak/children-s-rights-at-the-centre-of-digital-technology-standards-by-design
https://www.orfonline.org/expert-speak/children-s-rights-at-the-centre-of-digital-technology-standards-by-design
https://www.orfonline.org/expert-speak/children-s-rights-at-the-centre-of-digital-technology-standards-by-design
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_09_156
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_09_156

[LCG+24] Julia Len, Melissa Chase, Esha Ghosh, Kim Laine, and Radames Cruz
Moreno. OPTIKS: An Optimized Key Transparency System. In 33rd
USENIX Security Symposium (USENIX Security 24). USENIX Associa-
tion, aug 2024.

[LGGR23] Julia Len, Esha Ghosh, Paul Grubbs, and Paul Rösler. Interoperability
in end-to-end encrypted messaging. Cryptology ePrint Archive, Paper
2023/386, 2023. https://eprint.iacr.org/2023/386.

[LHK+20] Ada Lerner, Helen Yuxun He, Anna Kawakami, Silvia Catherine Zeamer,
and Roberto Hoyle. Privacy and activism in the transgender community.
In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020.
Association for Computing Machinery.

[Luh16] Alec Luhn. Russia passes ’big brother’ anti-terror laws. https:
//www.theguardian.com/world/2016/jun/26/russia-
passes-big-brother-anti-terror-laws, June 2016.

[LZR17] Ada Lerner, Eric Zeng, and Franziska Roesner. Confidante: Usable
Encrypted Email: A Case Study with Lawyers and Journalists. In 2017
IEEE European Symposium on Security and Privacy (EuroS&P), pages
385–400, 04 2017.

[Mat19] Matthew A. Weidner. Group Messaging for Secure Asynchronous
Collaboration. Master’s thesis, University of Cambridge, June 2019.

[MCHR15] Susan E. McGregor, Polina Charters, Tobin Holliday, and Franziska
Roesner. Investigating the computer security practices and needs of
journalists. In 24th USENIX Security Symposium (USENIX Security 15),
pages 399–414, Washington, D.C., August 2015. USENIX Association.

[McL16] Jenna McLaughlin. Report: Arab gulf states are surveiling, impris-
oning, and silencing activists for social media posts. https:
//web.archive.org/web/20201015114424/https:
//theintercept.com/2016/11/01/report-arab-
gulf-states-are-surveiling-imprisoning-and-
silencing-activists-for-social-media-posts/,
2016.

[Met22] Meta. Independent Assessment: Expanding End-to-End Encryption
Protects Fundamental Human Rights. https://about.fb.com/
news/2022/04/expanding-end-to-end-encryption-

233

https://eprint.iacr.org/2023/386
https://www.theguardian.com/world/2016/jun/26/russia-passes-big-brother-anti-terror-laws
https://www.theguardian.com/world/2016/jun/26/russia-passes-big-brother-anti-terror-laws
https://www.theguardian.com/world/2016/jun/26/russia-passes-big-brother-anti-terror-laws
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://web.archive.org/web/20201015114424/https://theintercept.com/2016/11/01/report-arab-gulf-states-are-surveiling-imprisoning-and-silencing-activists-for-social-media-posts/
https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/
https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/
https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/

protects-fundamental-human-rights/, 04 2022. Accessed:
17-06-2024.

[MFK16] Susan E. McGregor, Roesner Franziska, and Caine Kelly. Individual ver-
sus organizational computer security and privacy concerns in journalism.
Proceedings on Privacy Enhancing Technologies, 2016(4):418–435, 07
2016.

[MJHY15] Helen Margetts, Peter John, Scott Hale, and Taha Yasseri. Political
Turbulence: How Social Media Shape Collective Action. Princeton
University Press, 11 2015.

[MKKS+23] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha
Ghosh, Ercan Oztürk, Kevin Lewi, and Sean F. Lawlor. Parakeet:
Practical key transparency for end-to-end encrypted messaging. In 30th
Annual Network and Distributed System Security Symposium, NDSS
2023, San Diego, California, USA, February 27 - March 3, 2023. The
Internet Society, 2023.

[MNP18] Mette Mortensen, Christina Neumayer, and Thomas Poell. Social Media
Materialities and Protest: Critical Reflections. Routledge, 2018.

[MP04] Daniele Micciancio and Saurabh Panjwani. Optimal communication
complexity of generic multicast key distribution. In Christian Cachin and
Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 153–170,
Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[MP16] Moxie Marlinspike and Trevor Perrin. The Double Ratchet Al-
gorithm. https://signal.org/docs/specifications/
doubleratchet/, November 2016.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentia-
bility, impossibility results on reductions, and applications to the random
oracle methodology. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer
Science, pages 21–39, Cambridge, MA, USA, February 19–21, 2004.
Springer, Heidelberg, Germany.

[MSAAA14] Trust Tshepo Mapoka, Simon Shepherd, Raed Abd-Alhameed, and
Kelvin OO Anoh. Novel rekeying approach for secure multiple multicast
groups over wireless mobile networks. In 2014 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages
839–844. IEEE, 2014.

234

https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/
https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/
https://about.fb.com/news/2022/04/expanding-end-to-end-encryption-protects-fundamental-human-rights/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

[MSR20] Bill Marczak and John Scott-Railton. Move Fast and Roll Your Own
Crypto: A Quick Look at the Confidentiality of Zoom Meetings. Tech-
nical report, Citizen Lab, 04 2020. Accessed: 17-06-2024.

[Muk20] Rahul Mukherjee. Mobile witnessing on WhatsApp: Vigilante virality and
the anatomy of mob lynching. South Asian Popular Culture, 18:1–23,
04 2020.

[MV23] Marino Miculan and Nicola Vitacolonna. Automated verification of
telegram’s mtproto 2.0 in the symbolic model. Computers & Security,
126:103072, 2023.

[New19] The Stand News. In hong kong, authorities arrest the administrator of
a telegram protest group and force him to hand over a list of its members.
https://web.archive.org/web/20240627141400/https://globalvoices.org/2019/06/14/in-
hong-kong-authorities-arrest-the-administrator-of-a-telegram-protest-
group-and-force-him-to-hand-over-a-list-of-its-members/, 2019.

[OoPA] U.S. Department of Justice Office of Public Affairs. Interna-
tional statement: End-to-end encryption and public safety.
=https://www.justice.gov/opa/pr/international-statement-end-
end-encryption-and-public-safety.

[Pan07] Saurabh Panjwani. Tackling adaptive corruptions in multicast encryp-
tion protocols. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of
Cryptography Conference, volume 4392 of Lecture Notes in Computer
Science, pages 21–40, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg, Germany.

[PR18] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted
key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 3–32, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila.
SoK: Game-based security models for group key exchange. In Kenneth G.
Paterson, editor, Topics in Cryptology – CT-RSA 2021, volume 12704
of Lecture Notes in Computer Science, pages 148–176, Virtual Event,
May 17–20, 2021. Springer, Heidelberg, Germany.

[PST23] Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong Truong. Three
lessons from threema: Analysis of a secure messenger. In 32nd USENIX

235

=

Security Symposium (USENIX Security 23), pages 1289–1306, Anaheim,
CA, August 2023. USENIX Association.

[RAH+16] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark O’Neill, Elham
Vaziripour, Justin Wu, Daniel Zappala, and Kent Seamons. “we’re on
the same page”: A usability study of secure email using pairs of novice
users. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, CHI’16. ACM, May 2016.

[RAZS16] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. Why
johnny still, still can’t encrypt: Evaluating the usability of a modern
pgp client. https://arxiv.org/abs/1510.08555, 2016.

[RBH+09] Diego Rybski, Sergey V. Buldyrev, Shlomo Havlin, Fredrik Liljeros,
and Hernán A. Makse. Scaling laws of human interaction activity.
Proceedings of the National Academy of Sciences, 106(31):12640–
12645, 2009.

[Rog09] Phillip Rogaway. Practice-Oriented Provable Security and the Social
Construction of Cryptography. https://www.cs.ucdavis.edu/
~rogaway/papers/cc.pdf, May 2009.

[Rog15] Phillip Rogaway. The moral character of cryptographic work. Cryptology
ePrint Archive, Report 2015/1162, 2015. https://eprint.iacr.
org/2015/1162.

[Rog19] Phillip Rogaway. An obsession with definitions. In Tanja Lange and
Orr Dunkelman, editors, Progress in Cryptology – LATINCRYPT 2017,
pages 3–20, Cham, 2019. Springer International Publishing.

[Rog24] Phillip Rogaway. Radical CS. https://web.cs.ucdavis.edu/
~rogaway/papers/radical.pdf, June 2024.

[Ros22] Leah Namisa Rosenbloom. Activists Want Better, Safer Technology.
https://arxiv.org/abs/2209.01273, 2022.

[RS23] Paul Rösler and Jörg Schwenk. Interoperability between
messaging services secure implementation of encryption.
https://www.bundesnetzagentur.de/DE/Fachthemen/
Digitalisierung/Technologien/Onlinekomm/Study_
InteropEncryption.html, 04 2023.

[Rus99] Frank Santi Russell. Information gathering in classical Greece. University
of Michigan Press, 1999.

236

https://arxiv.org/abs/1510.08555
https://www.cs.ucdavis.edu/~rogaway/papers/cc.pdf
https://www.cs.ucdavis.edu/~rogaway/papers/cc.pdf
https://eprint.iacr.org/2015/1162
https://eprint.iacr.org/2015/1162
https://web.cs.ucdavis.edu/~rogaway/papers/radical.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/radical.pdf
https://arxiv.org/abs/2209.01273
https://www.bundesnetzagentur.de/DE/Fachthemen/Digitalisierung/Technologien/Onlinekomm/Study_InteropEncryption.html
https://www.bundesnetzagentur.de/DE/Fachthemen/Digitalisierung/Technologien/Onlinekomm/Study_InteropEncryption.html
https://www.bundesnetzagentur.de/DE/Fachthemen/Digitalisierung/Technologien/Onlinekomm/Study_InteropEncryption.html

[Sec24] SecureDrop. Introducing SecureDrop Protocol. https:
//securedrop.org/news/introducing-securedrop-
protocol/, May 2024.

[SH15] Elijah Sparrow and Harry Halpin. LEAP: The LEAP Encryption Access
Project, pages 367–383. 10 2015.

[Shi11] Clay Shirky. The political power of social media: Technology, the public
sphere, and political change. Foreign Affairs, 90:28–41, 2011.

[Sig18] Signal. Technology preview: Sealed sender for Signal. https://
signal.org/blog/sealed-sender/, October 2018.

[SLI+18] Lucy Simko, Ada Lerner, Samia Ibtasam, Franziska Roesner, and Ta-
dayoshi Kohno. Computer security and privacy for refugees in the united
states. 2018 IEEE Symposium on Security and Privacy (SP), pages
409–423, 2018.

[SMP24] Yuanming Song, Lenka Mareková, and Kenneth G. Paterson. Crypto-
graphic Analysis of Delta Chat. In 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, aug 2024.

[Spe24] Speedtest. Speedtest Global Index. https://www.speedtest.
net/global-index, May 2024. Accessed: 17-06-2024.

[SR16] John Scott-Railton. Security for the high-risk user: Separate and
unequal. IEEE Security & Privacy, 14:79–87, 03 2016.

[Sta21] Kate Starbird. Online rumors, misinformation and disinformation: The
perfect storm of COVID-19 and election2020. In Enigma 2021. USENIX
Association, February 2021.

[TAB+21] Kurt Thomas, Devdatta Akhawe, Michael Bailey, Dan Boneh, Elie
Bursztein, Sunny Consolvo, Nicola Dell, Zakir Durumeric, Patrick Gage
Kelley, Deepak Kumar, Damon McCoy, Sarah Meiklejohn, Thomas
Ristenpart, and Gianluca Stringhini. SoK: Hate, harassment, and the
changing landscape of online abuse. In 2021 IEEE Symposium on
Security and Privacy, pages 247–267, San Francisco, CA, USA, May 24–
27, 2021. IEEE Computer Society Press.

[The19] TheCitizenLab. Nso group / q cyber technologies over one hun-
dred new abuse cases. https://web.archive.org/web/
20200419152528/https://citizenlab.ca/2019/10/
nso-q-cyber-technologies-100-new-abuse-cases/,
2019.

237

https://securedrop.org/news/introducing-securedrop-protocol/
https://securedrop.org/news/introducing-securedrop-protocol/
https://securedrop.org/news/introducing-securedrop-protocol/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/
https://web.archive.org/web/20200419152528/https://citizenlab.ca/2019/10/nso-q-cyber-technologies-100-new-abuse-cases/

[Tim] The Brussels Times. Belgian EU Presidency widely criti-
cised over ’chat control’ vote: What happened? https:
//www.brusselstimes.com/1102673/belgian-eu-
presidency-widely-criticised-over-chat-control-
vote-what-happened. Accessed: 08.07.2024.

[Tin20] Tin-Yuet Ting. From ‘be water’ to ‘be fire’: Nascent smart mob and
networked protests in hong kong. Social Movement Studies, 19:362–368,
02 2020.

[Tre20] Emiliano Treré. The banality of whatsapp: On the everyday politics of
backstage activism in mexico and spain. First Monday, 25, 01 2020.

[Tro23] Carmela Troncoso et al. Joint statement of scientists and researchers on
eu’s proposed child sexual abuse. https://docs.google.com/
document/d/13Aeex72MtFBjKhExRTooVMWN9TC-pbH-
5LEaAbMF91Y/edit, 07 2023. Accessed: 17-06-2024.

[URW18] Temple Uwalaka, Scott Rickard, and Jerry Watkins. Mobile social
networking applications and the 2012 occupy nigeria protest. Journal
of African Media Studies, 10:3–19, 03 2018.

[VV17] Augusto Valeriani and Cristian Vaccari. Political talk on mobile instant
messaging services: a comparative analysis of germany, italy, and the
uk. Information, Communication & Society, 21:1–17, 08 2017.

[WGL98] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group
communications using key graphs. In Proceedings of ACM SIGCOMM,
pages 68–79, Vancouver, BC, Canada, August 31 – September 4, 1998.

[WGL00] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group
communications using key graphs. IEEE/ACM Transactions on Net-
working, 8(1):16–30, February 2000.

[WHA98] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for
multicast: Issues and architectures. Internet Draft, September 1998.
http://www.ietf.org/ID.html.

[WKHB21a] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R.
Beresford. Key agreement for decentralized secure group messaging
with strong security guarantees. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021: 28th Conference on Computer and Communi-
cations Security, pages 2024–2045, Virtual Event, Republic of Korea,
November 15–19, 2021. ACM Press.

238

https://www.brusselstimes.com/1102673/belgian-eu-presidency-widely-criticised-over-chat-control-vote-what-happened
https://www.brusselstimes.com/1102673/belgian-eu-presidency-widely-criticised-over-chat-control-vote-what-happened
https://www.brusselstimes.com/1102673/belgian-eu-presidency-widely-criticised-over-chat-control-vote-what-happened
https://www.brusselstimes.com/1102673/belgian-eu-presidency-widely-criticised-over-chat-control-vote-what-happened
https://docs.google.com/document/d/13Aeex72MtFBjKhExRTooVMWN9TC-pbH-5LEaAbMF91Y/edit
https://docs.google.com/document/d/13Aeex72MtFBjKhExRTooVMWN9TC-pbH-5LEaAbMF91Y/edit
https://docs.google.com/document/d/13Aeex72MtFBjKhExRTooVMWN9TC-pbH-5LEaAbMF91Y/edit
http://www.ietf.org/ID.html

[WKHB21b] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R.
Beresford. Key agreement for decentralized secure group messaging with
strong security guarantees. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’21, page
2024–2045, New York, NY, USA, 2021. Association for Computing
Machinery.

[WPBB23] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and
Karthikeyan Bhargavan. TreeSync: Authenticated group management
for messaging layer security. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1217–1233, Anaheim, CA, August 2023.
USENIX Association.

[WT99] Alma Whitten and J. Doug Tygar. Why johnny can’t encrypt: A
usability evaluation of PGP 5.0. In G. Winfield Treese, editor, USENIX
Security 99: 8th USENIX Security Symposium, Washington, DC, USA,
August 23–26, 1999. USENIX Association.

[ZLC17] Hong Zhong, Weiya Luo, and Jie Cui. Multiple multicast group key
management for the internet of people. Concurrency and Computation:
Practice and Experience, 29(3):e3817, 2017. e3817 CPE-15-0502.R1.

[Zuc13] Ethan Zuckerman. Cute Cats to the Rescue? Participatory Media and
Political Expression. https://dspace.mit.edu/handle/1721.1/78899, 05
2013.

239

	Abstract
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Secure (group) messaging and CGKA
	The Social Context of Secure Group Messaging
	Related Work
	Outline and Contributions

	Preliminaries
	Notation
	Cryptographic building blocks
	Continuous Group-key Agreement
	Security Model for CGKA
	Ratchet Trees
	ART and TreeKEM

	Tainted TreeKEM
	Introduction
	Description of Tainted TreeKEM
	Tainting versus Blanking

	Multiple Groups
	Introduction
	Preliminaries
	Key-derivation Graphs for Multiple Groups
	Key-derivation Graphs in the Asymptotic Setting
	A Greedy Algorithm Based on Huffman Codes
	Dynamic Operations
	Lower Bound on the Update Cost of CGKA
	Direct Comparison of Trivial Algorithm and Algorithm 1
	Multicast Encryption Lower Bound
	Open problems

	CoCoA
	Introduction
	Preliminaries
	The CoCoA Protocol
	Efficiency
	Security

	DeCAF
	Introduction
	Preliminaries
	Protocol description
	Security

	Conclusion
	Bibliography

