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Abstract

In this thesis, we are dealing with both arithmetic and geometric problems coming from the
study of rational points with a particular focus on function fields over finite fields:

(1) Using the circle method we produce upper bounds for the number of rational points of
bounded height on diagonal cubic surfaces and fourfolds over Fq(t). This is based on
joint work with Leonhard Hochfilzer.

(2) We study rational points on smooth complete intersections X defined by cubic and
quadratic hypersurfaces over Fq(t). We refine the Farey dissection of the “unit square”
developed by Vishe [202] and use the circle method with a Kloosterman refinement to
establish an asymptotic formula for the number of rational points of bounded height on
X when dim(X) ≥ 23. Under the same hypotheses, we also verify weak approximation.

(3) In joint work with Hochfilzer, we obtain upper bounds for the number of rational points of
bounded height on del Pezzo surfaces of low degree over any global field. Our approach
is to take hyperplane sections, which reduces the problem to uniform estimates for the
number of rational points on curves.

(4) We develop a version of the circle method capable of counting Fq-points on jet schemes
of moduli spaces of rational curves on hypersurfaces. Combining this with a spreading
out argument and a result of Mustaţă [150], this allows us to show that these moduli
spaces only have canonical singularities under suitable assumptions on the degree and the
dimension.

In addition, we give an overview of guiding questions and conjectures in the field of rational
points and explain the basic mechanism underlying the circle method.
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CHAPTER 1
Introduction

Given polynomials F1, . . . , FR ∈ Z[x1, . . . , xn], seeking integer or rational solutions to the
system of equations F1(x) = · · · = FR(x) = 0 is one of the most foundational problems
in number theory. Such equations are called Diophantine equations, named after the Greek
mathematician Diophantus of Alexandria, who studied them more than 2000 years ago.
However, the investigation of these equations already started before the times of Diophantus.
For example, it has already known to the Babylonians how to compute Pythagorean triples in
1800 BC. In most cases it is already highly non-trivial to decide whether a given system of
Diophantine equations has a solution. For example, for an integer n ≥ 1, let

Fn(x, y, z) = xn + yn − zn.

When n = 1, the equation Fn = 0 is linear and all the infinitely many solutions can be described
quite easily. For n = 2 there are infinitely many solutions, the so-called “Pythagorean triples“
that are known since antiquity. However, as soon as n ≥ 3, the picture suddenly changes.
Fermat claimed in the 1670s that the trivial solutions satisfying xyz = 0 are the only ones
and remarked “I have discovered a truly marvelous proof of this, which this margin is too
narrow to contain.” This innocuous assertion became the motivation for one of the biggest
achievements in number theory and all of mathematics in the 20th century. Andrew Wiles
together with Richard Taylor [208, 193] proved the modularity theorem in 1995, more than
300 years after Fermat, and thus completed the proof of Fermat’s claim.
However, Diophantine equations are not only interesting for their own sake, or because of
their impact on number theory. One the one hand, mathematicians have borrowed tools from
diverse areas of mathematics such as algebraic geometry and logic to tackle Diophantine
equations. On the other hand, Diophantine equations have had a massive impact on other
areas such as algebraic geometry. For example, the igniting spark for the revolution of algebraic
geometry and the development of étale cohomology by Grothendieck and his collaborators was
an attempt to solve the Weil conjectures. The connection between Diophantine equations and
geometry is given by the fact that the system of equations F1(x) = · · · = FR(x) = 0 defines
an algebraic variety inside the affine space An, and if the Fi are all homogeneous, inside the
projective space Pn−1. Therefore, integer solutions to a system of homogeneous equations
correspond to rational points on the variety defined by that system.
One point of view that crystallized over the last century is that the geometry of the underlying
variety governs the behaviour of its set of rational points. We shall expand upon this perspective
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1. Introduction

in Chapter 2. In particular, we introduce some of the guiding questions in the field of rational
points and explain how certain geometric properties can be used to (at least conjecturally)
answer them.
This entails qualitative aspects, such as criteria for the existence of solutions, but also finer
measures for the quantitative distribution of rational points. Given a parameter B ≥ 0, we
can for example consider the counting function

NF1,...,FR
(B) = #{x ∈ Zn : F1(x) = · · · = FR(x) = 0, |x| < B}

and try understand to how it behaves as B → ∞. Manin and his collaborators [76] put
forward a conjecture for an analogue of this counting function for rational points of bounded
height on Fano varieties that we explain in Section 2.3. For the particular case of complete
intersections in projective space, one of the most versatile tools to study this counting function
is the circle method that goes back to the pioneering work of Hardy and Ramanujan on the
partition function [93]. The starting point is the simple identity

∫︂ 1

0
e2πiαndα =

⎧⎨⎩1 if n = 0,
0 if n ∈ Z \ {0}.

When F ∈ Z[x1, . . . , xn] and x ∈ Zn, we can apply this identity to n = F (x). This allows us
express the counting function NF (B) as the integral∫︂ 1

0
S(α)dα,

where S(α) is the exponential sum

S(α) =
∑︂

x∈Zn

|x|<B

e2πiαF (x).

Via this approach one can study Diophantine equations through the lens of harmonic analysis.
We explain the basic mechanism underlying the circle method in the setting of function fields
in Chapter 4.
In the specific context that we are working in, a function field will typically refer to Fq(t),
where Fq is a finite field with q elements. The function field Fq(t) and the rational numbers
share many of similarities and both fall under the more general context of global fields. The key
advantage of function fields is that their geometric nature allows for new tools to be brought
into play, with the effect that many big open problems over the rationals are in fact theorems
over function fields. Roughly speaking, this thesis is mostly dealing with problems related to
counting rational points over function fields. A key role is played by the circle method and to
set it up, we develop the basic theory for harmonic analysis over function fields in Chapter 3.
Let us now discuss the genuinely new contributions of this thesis. In Chapter 5 we use the
circle method to study the analogue of the counting function NF (B) over function fields when
F is a diagonal cubic form in 4 or 6 variables, which is based on joint work with Hochfilzer [88].
This investigation parallels work of Hooley [111] and Heath-Brown [103] over the integers,
but the crucial difference is that our work is unconditional, whereas they rely on unproved
hypotheses about Hasse–Weil L-functions coming from cubic hypersurfaces. In addition, we
give applications to the asymptotic Waring problem for cubes and weak approximation for
cubic hypersurfaces defined by diagonal forms in at least 7 variables.

2



Chapter 6 is concerned with producing an asymptotic formula for the counting function
associated to smooth complete intersections of cubic and quadratic hypersurfaces over Fq(t)
and is based on the author’s work [85]. The quantitative result about the distribution of
rational points is also used to establish weak approximation for these complete intersections.
Our main tool is again the circle method. The key technical advancement is a refinement of
a Farey dissection developed by Vishe [202] that opens up the possibility for a Kloosterman
refinement.
Chapter 7 departs from the circle method and uses more geometric methods. Here we present
work that stems from a collaboration with Hochfilzer [89]. We produce upper bounds for
the number of rational points of bounded height on del Pezzo surfaces of degree at most
5 over arbitrary global fields. Our approach generalises the work of Heath-Brown [102] on
cubic surfaces over Q. Simply speaking, the idea is to reduce the problem to producing
uniform estimates for the number of rational points of bounded height on elliptic curves. In
characteristic 0, the bounds we require follow from a deep conjecture relating the rank of an
elliptic curve to its conductor, whereas in positive characteristic our bounds are unconditional
thanks to work of Brumer [46].
Over function fields, rational points of bounded height can be understood more geomet-
rically. Specifically, if X ⊂ Pn−1 is the hypersurface defined as the vanishing locus of
F ∈ Fq[x1, . . . , xn], then Fq(t)-rational points of bounded height can be related to the Fq-
points of the variety More(P1, X) of degree e morphisms from P1 to X. We will explain this
in more detail in Section 2.4. Via a combination of spreading out arguments and the Lang–
Weil estimate, this can be used to deduce geometric information about More(P1, X) from
sufficiently uniform point count estimates over finite fields. This was heavily exploited in work
of Browning and Vishe [44], where they showed irreducibility and determined the dimension of
the moduli space M0,0(X, e) of rational curves of degree e lying on a smooth hypersurface
X ⊂ Pn−1 of degree d, providing n is sufficiently large with respect to d. In Chapter 8 we
develop a suitable version of the circle method that allows us to count Fq[t, s]/(sm+1) points
on hypersurfaces defined over Fq of bounded degree in t. In conjunction with the work of
Mustaţă [150] relating singularities to jet schemes, this enables us to deduce that M0,0(X, e)
only has canonical singularities if n is sufficiently large with respect to d and e.

3



1. Introduction

Conventions
We will make use of the big-O and Vinogradov’s notation O, o,≪≫,≍, . . . . Moreover, we
will indicate a dependence of the implied constant on certain parameters by subscripts, unless
specified otherwise. The letter ε will denote an arbitrarily small real number whose exact value
may change from one occurrence to the next. Its appearance together with one of the symbols
O, o,≪,≫, . . . indicates that the implied constant depends on ε.

4



CHAPTER 2
Rational points on varieties

In 1900 Hilbert posed a famous list of 23 problems, of which the tenth asks for the existence
of an algorithm that can decide whether a given Diophantine equation has integer solutions. It
took mathematicians more than 70 years to find an answer to this problem: Matiyasevich [140]
proved that such an algorithm cannot possibly exist! So despite their innocuous appearance,
finding solutions to Diophantine equations or proving their non-existence, is an incredibly
difficult problem in general.
It is natural to study polynomial equations not just over the integers or the rationals, but also
over other rings or fields of arithmetic interest. The main bulk of this thesis is concerned with
precisely this problem and we shall now delve into the basic questions underlying this field.
A guiding principle in the study of polynomial equations is that geometry determines arithmetic,
as we will explain in the subsequent sections based on various examples and conjectures, with
a particular focus on hypersurfaces and complete intersections. There is no need to restrict
ourselves to the rational numbers or the integers, and so we shall take K to be a global field.
Given F1, . . . , FR ∈ K[x1, . . . , xn] we assume for simplicity that all the Fi’s are homogeneous
and consider the projective variety X = V (F1, . . . , FR) ⊂ Pn−1 defined as the common
vanishing locus of the Fi’s. Studying the set of non-trivial solutions of F1 = · · · = FR = 0
therefore amounts to understanding the set X(K) of K-rational points of X. To simplify the
following discussion, we shall henceforth assume that X is smooth and geometrically integral.

2.1 Kodaira dimension and Zariski density
We begin with a very coarse question about the distribution of rational points.

Question 2.1.1. Suppose that X(K) ̸= ∅. Is X(K) Zariski dense in X?

In terms of geometry, the simplest case is when X defines a curve. In this case Zariski density
is equivalent to X(K) being infinite. We can attach a geometric invariant g ∈ Z≥0 to X,
called the genus. For example, if g = 0, then either X(K) = ∅ or X is K-isomorphic to P1

and hence there are infinitely many K-rational points on X. Table 2.1 explains the trichotomy
for the set of K-rational on curves in terms of the genus.
When g = 1, then either X(K) = ∅ or X is an elliptic curve. The Mordell–Weil theorem
asserts that the set of K-rational points is a finitely generated abelian group. In particular,

5



2. Rational points on varieties

genus rational points
g = 0 X(K) = ∅ or #X(K) = ∞
g = 1 #X(K) < ∞ or #X(K) = ∞
g ≥ 2 #X(K) < ∞

Table 2.1: Rational points on curves.

X(K) is infinite if and only if the underlying group has positive rank. When g ≥ 2 and K
is a number field, then the finiteness of X(K) was conjectured by Mordell [148] in 1922
and proved by Faltings [74] 61 years later. An analogous result in positive characteristic was
established by Samuel [170]. In particular, we see that for curves the answer to Question 2.1.1
is completely determined by their genus.
Turning to the higher dimensional situation, a rough classification of the geometry of X is
provided by its Kodaira dimension, which measures the positivity of the canonical divisor KX

of X. Given any integer m ≥ 1, we can consider the associated rational map ϕm : X ‧‧➡ PN

induced by the linear system |mKX | and the Kodaira dimension of X is defined to be

κ(X) = sup
m≥1

dimϕm(X).

If |mKX | = ∅ for all m ≥ 1, then we set κ(X) = −∞. With this convention it is clear that
κ(X) ∈ {−∞} ∪ {0, . . . , dimX}. To get an idea of what the Kodaira dimension measures,
we will now give some examples.

Example 2.1.2. If X is a curve, then

κ(X) =

⎧⎪⎪⎨⎪⎪⎩
−∞ if g = 0,
0 if g = 1,
1 if g ≥ 2.

In particular, we could have rephrased Table 7.1 in terms of the Kodaira dimension.

Example 2.1.3. If X = V (F1, . . . , FR) ⊂ Pn−1 is a complete intersection defined by forms
Fi of degree di for i = 1, . . . , R, then

κ(X) =

⎧⎪⎪⎨⎪⎪⎩
−∞ if n > d1 + · · · + dR,

0 if n = d1 + · · · + dR,

n− 1 −R else.

In some sense varieties with κ(X) = −∞ are special, while the majority of varieties will have
maximal Kodaira dimension.

Definition 2.1.4. We say that X is of

1. general type if κ(X) = dimX,

2. intermediate type if 0 ≤ κ(X) < dimX.

An important class of varieties of negative Kodaira dimension is formed by those whose
anti-canonical divisor is ample.

6



2.2. The Hasse principle and weak approximation

Definition 2.1.5. A variety X is called a Fano variety if its anti-canonical divisor −KX is
ample.

Example 2.1.6. A curve is Fano if and only if it has genus 0. A complete intersection inside
projective space is Fano if and only if it has negative Kodaira dimension.

Recall that a variety X of dimension n is called uniruled over K if there exists a variety Y of
dimension n− 1 and a dominant K-rational map ϕ : Y × P1 ‧‧➡ X. Moreover, we say that
X is separably uniruled if there exists such a ϕ which is separable. These two notions agree
in characteristic 0. If X is uniruled over K and X(K) ̸= ∅, then X(K) is in fact Zariski
dense. We know that if X is separably uniruled, then κ(X) = −∞ [124, Chapter IV, Corollary
1.10] and in fact, it is conjectured κ(X) = −∞ implies that X is uniruled [124, Chapter IV,
Conjecture 1.12]. This is known if dimX ≤ 3 and char(K) = 0 due to work of Miyaoka [147].
However, if κ(X) = −∞, it is not necessarily true that X is separably uniruled, as was shown
by Sato [171]. It is therefore natural to conjecture that rational points of X are at least
potentially Zariski dense if κ(X) = −∞, which means that X(L) is Zariski dense for some
finite field extension L/K.
At the other and of the spectrum, we have the following conjecture generalising Mordell’s
conjecture to higher dimensions.

Conjecture 2.1.7 (Bombieri–Lang). Suppose that X is a variety of general type over a
number field. Then X(K) is not Zariski dense.

The conjecture seems very difficult to prove at present and only very few cases are known. In
addition, it also has strong consequences for rational points on curves: Caporaso, Harris and
Mazur [49] have shown that the Bombieri–Lang conjecture implies for any number field K
and any integer g ≥ 2 the existence of a constant C(K, g) > 0 such that any smooth genus g
curve over K has at most C(K, g) rational points.
In positive characteristic the analogue of the Bombieri–Lang conjecture is false. Indeed,
if char(K) = p, then the Fermat hypersurface ∑︁n

i=1 x
d
i is uniruled and smooth whenever

d = pr + 1 for any r ≥ 1. In particular, rational points are dense, although the hypersurface
is of general type if r is large with respect to n. This example seems to be first considered
systematically by Shioda [184]. The analogue of the result by Caporaso, Harris and Mazur
does not hold either. Assuming p > 3, Conceição, Ulmer and Voloch [55] give an example of
an infinite family F of non-isotrivial genus g curves C over Fp(t) whose number of rational
points is unbounded as C varies over F .
We have thus seen that – apart from pathological examples in positive characteristic – varieties
of general type are expected to have few rational points, while varieties of negative Kodaira
dimension are expected to have an abundance. We have not said anything about varieties of
intermediate type and the reason is that anything can happen in this case. This can already be
seen by considering curves, where intermediate type varieties with a rational point correspond
to elliptic curves. So the set of rational points can be dense or not.

2.2 The Hasse principle and weak approximation
The previous section was concerned with a coarse classification of the abundance of rational
points in terms of Zariski density, with the guiding invariant the Kodaira dimension. We will

7



2. Rational points on varieties

now turn to the more difficult question of finding criteria guaranteeing the existence of rational
points and introduce a finer measure for the distribution of rational points.
Let ΩK be the set of places of K for ν ∈ ΩK denote by Kν the completion of K at ν.
Since K ⊂ Kν , an obvious necessary condition for X(K) to be non-empty is that X(Kν) is
non-empty for every place ν. Writing AK for the ring of adeles of K, this is equivalent to
X(AK) ̸= ∅. The Hasse principle asks about the converse.

Definition 2.2.1. We say that a family of varieties X satisfies the Hasse principle if X(AK) ̸= ∅
implies X(K) ̸= ∅ for any X ∈ X.

The name of the Hasse principle goes back to pioneering work of Hasse [96] and Minkowski [146],
who proved the Hasse principle for quadrics. However, in general the Hasse principle is too
much to hope for.

Example 2.2.2. Let C be the curve given by 3x3
1 +4x3

2 +5x3
3 = 0 inside P2. Then Selmer [181]

has shown that C has solutions over Qp for every prime p and over R, but not over Q.

Example 2.2.3. The surface defined as the intersection of two quadrics x1x2 = x2
3 − 5x2

4
and (x1 + x2)(x1 + 2x2) = x2

3 − 5x2
5 fails the Hasse principle over Q. This example is due to

Birch and Swinnerton-Dyer [15].

To explain failures of the Hasse principle, Manin in his 1970 ICM address proposed the following
construction. Let Br(X) = H2

ét(X,Gm) be the Brauer group of X. Class field theory provides
us with a natural paring

⟨ , ⟩ : X(AK) × Br(X) → Q/Z

and we define the Brauer–Manin set

X(AK)Br = {x ∈ X(AK) : ⟨x, α⟩ = 0 for all α ∈ Br(X)}.

The Albert–Brauer–Hasse–Noether theorem implies that X(K) ⊂ X(AK)Br. This prompts
the following definition.

Definition 2.2.4. We say that there is a Brauer–Manin obstruction to the Hasse principle if
X(AK) ̸= ∅, but X(AK)Br = ∅.

Both Examples 2.2.2 and 2.2.3 have a Brauer–Manin obstruction to the Hasse principle.
However, Skorobogatov [187] has given examples of bi-elliptic surfaces whose failure of the
Hasse principle cannot be explained by a Brauer–Manin obstruction.
Recall that X(K) injects into X(AK). As AK is a locally compact ring with respect to the
restricted product topology, we can endow the adelic points X(AK) with a natural topology.

Definition 2.2.5. We say that X satisfies weak approximation if X(K) is dense in X(AK).

It is clear that if X satisfies weak approximation, then the Hasse principle holds as well.
Moreover, weak approximation also implies Zariski density. It turns out that X(AK)Br is closed
in X(AK) and so

X(K) ⊂ X(AK)Br,

where X(K) denotes the topological closure of X(K) inside X(AK).
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2.2. The Hasse principle and weak approximation

Definition 2.2.6. We say that there is a Brauer–Manin obstruction to weak approximation if
X(AK)Br ⊊ X(AK).

Definition 2.2.7. The Brauer–Manin obstruction is the only one to the Hasse principle
(respectively weak approximation) if X(AK)Br ≠ ∅ (respectively X(AK)Br = X(AK)) implies
X(K) ̸= ∅ (respectively X(K) = X(AK)).

Both the Hasse principle and weak approximation are invariant under birational equivalence
for smooth projective K-varieties. Moreover, as in the case of Zariski density, there is a
conjectural geometric description of a large class of varieties for which the Brauer–Manin
obstruction is expected to be the only one to the Hasse principle and weak approximation.

Definition 2.2.8. A variety X is (separably) rationally connected if any two general points of
X can be joined by a (separable) rational curve.

Examples of rationally connected varieties are Fano varieties. This was independently proved
by Campana [48] and Kollár–Miyaoka–Mori [125]. In characteristic 0 the notions of being
separably rationally connected and rationally connected agree. It is still an open problem
whether Fano varieties are separably rationally connected.

We then have the following conjecture about the Hasse principle and weak approximation put
forward by Colliot-Thélène [54] for number fields.

Conjecture 2.2.9. Let X be a separably rationally connected variety. Then the Brauer–Manin
obstruction is the only one to the Hasse principle and weak approximation.

Colliot-Thélène’s conjecture lies very deep and is far from being proven. For instance, an
affirmative resolution would solve the inverse Galois problem [183, Chapter 3.5]. Originally,
Colliot-Thélène stated his conjecture only for number fields. We have chosen to state it here
for separably rationally connected varieties in positive characteristic to avoid pathological
behaviour.

In fact, this conjecture has been extended by Skorobogatov [188] to a particular class of
surfaces of intermediate type.

Conjecture 2.2.10. Let X be a K3 surface. Then the Brauer–Manin obstruction is the only
one to the Hasse principle and weak approximation.

We have already mentioned that quadrics over global fields satisfy the Hasse principle. Moreover,
since any quadric with a rational point is birational to projective space, they also satisfy weak
approximation. Indeed, satisfying the weak approximation property is invariant under birational
maps between smooth projective varieties [183, Lemma 3.5.5].

Let now X ⊂ Pn−1 be a Fano smooth complete intersection of dimension n − 1 − R.
If dimX ≥ 3 and char(K) = 0, then the Brauer–Manin obstruction is vacuous [160,
Appendix A] and so Conjecture 2.2.10 implies that X satisfies weak approximation. A
foundational result is provided by work of Birch [16], in which he proves the Hasse principle
for smooth complete intersections X ⊂ Pn−1 defined by R forms of degree d over Q provided
n > R + (d− 1)2dR(R + 1). This was later extended to number fields by Skinner [186], in
which he also establishes the weak approximation property. Birch’s work has subsequently
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2. Rational points on varieties

been generalized to complete intersections of not necessarily the same degree by Browning
and Heath-Brown [40].
In the function field setting the Hasse principle turns out to be a rather easy consequence of
the Lang–Tsen theory if n > d2

1 + · · · + d2
R. Indeed, with this condition [91, Theorem 3.6]

implies the existence of a rational point on X, thereby verifying the Hasse principle. However,
establishing weak approximation remains a substantial challenge. Building on the work of
Kubota [127], Lee [131] showed that Birch’s work can be translated to the function field
setting and further demonstrated that weak approximation holds under the same conditions on
the number of variables when char(K) > d. All the results mentioned thus far make use of
the circle method, which we will explain in more detail in Chapter 4. Moreover, if the degree
of the hypersurface is small, there are substantially stronger results available. We will give an
overview of the results obtained using the circle method in Section 4.5.

2.3 Manin’s conjecture
Instead of just studying qualitative questions about X(K), we can try to quantify the
distribution of rational points on X(K). If #X(K) = ∞, then of course we cannot just
simply count all points and so we have to make this problem more precise.
First of all, we want to begin with a simple heuristic for hypersurfaces. Let F ∈ Z[x1, . . . , xn]
be a form of degree d. Then for any B ≥ 1, there are approximately Bn available x ∈ Zn

with |x| < B. Moreover, for such x we will have |F (x)| ≪F Bd. Assuming that the values
of F are evenly distributed, this leads to the expectation that the “probability” for F (x) = 0
to hold should be of order B−d. In particular, it is reasonable to expect that

#{x ∈ Zn : F (x) = 0, |x| < B} ≍ Bn−d. (2.3.1)

Therefore, if n > d — which corresponds precisely to X = V (F ) ⊂ Pn−1 being Fano —
there is a reason to believe that there should be many solutions to F (x) = 0 (provided that
there are any). Strictly speaking we are not counting rational points on X, but going from
the counting function above to only counting rational points is straightforward using Möbius
inversion.
We will now explain how to extend this counting mechanism to any projective variety, beginning
with the case of projective space. Given x ∈ Pn−1(Q), we can always find a representative
x = (x1, . . . , xn) ∈ Zn \ {0} of x such that gcd(x1, . . . , xn) = 1. In this case we define the
height of x to be H(x) = max{|x1|, . . . , |xn|}. This construction generalises to arbitrary
global fields and is explained in more detail in Chapter 7. Moreover, given a variety X together
with an ample line bundle L, a suitable multiple L⊗m will be very ample and hence corresponds
to an embedding φL⊗m : X → PN for some N . We can then define the associated height
function

HL : X(K) → R≥0, x ↦→ H(φL⊗m(x))1/m.

Note that the height function depends on the choice of the embedding.
For W ⊂ X(K), we are then interested in the counting function

NL,W (B) := #{x ∈ W : HL(x) ≤ B}. (2.3.2)

Since we assume that L is ample, the height function HL satisfies the Northcott property,
meaning that NL,X(K)(B) is finite for any B ≥ 1.
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2.3. Manin’s conjecture

Example 2.3.1. If X = V (F ) ⊂ Pn−1 is a hypersurface of degree d over Q with n > d, then
its anti-canonical divisor corresponds to the very ample line bundle ω−1

X = OX(n− d) and the
corresponding height function is Hω−1

X
(x) = max{|x1|, . . . , |xn|}n−d, where (x1, . . . , xn) ∈ Zn

is a representative for x ∈ Pn−1(Q) with gcd(x1, . . . , xn) = 1.

If W ⊂ X(K) is infinite, then it is natural to ask for an asymptotic formula for NL,W (B) as
B → ∞. For Fano varieties the anti-canonical bundle ω−1

X gives a natural choice of ample line
bundle and as explained in Section 2.2, the set of rational points is expected to be dense as
soon as it is non-empty. Manin and his collaborators [76] put forward a conjectural asymptotic
formula for the number of rational points on Fano varieties over number fields, which was
later refined and extended to the case of positive characteristic by Peyre [156, 157]. Before
stating it, let us recall the notion of a thin set.

Definition 2.3.2. Let X be a variety over K and A ⊂ X(K). If A is not Zariski dense in X,
then A is a called a thin set of type I. If there exists a dominant K-morphism φ : Y → X
with Y geometrically integral, dim Y = dimX and degφ ≥ 2 such that A ⊂ φ(Y (K)), then
A is a thin set of type II. In general, a subset of X(K) is thin if it is contained in a finite
union of thin sets of type I and II.

Conjecture 2.3.3 (Manin–Peyre). Let X be a Fano variety over a global field K. Then there
exists a thin set Z ⊂ X(K) such that for W = X(K) \ Z, we have

Nω−1
X ,W (B) ∼ cPeyreB(logB)rk Pic(X)−1 as B → ∞,

where cPeyre is Peyre’s constant and rk Pic(X) is the rank of the Picard group of X. Moreover,
if char(K) > 0, we require B to run through the values of Hω−1

X
(X(K)).

The constant in the Manin–Peyre conjecture is defined as

cPeyre = α(X)β(X)τ(X),

where

α(X) = 1
(rk Pic(X) − 1)!

∫︂
Ceff(X)∨

e−⟨ω−1
X ,y⟩dy,

β(X) = #H1(Q,Pic(X)),
τ(X) = ω(X(AK)Br).

Here Ceff(X)∨ denotes the dual cone of the cone of effective divisors on X and ω is the
Tamagawa measure on the adelic points of X. Roughly speaking, α(X) measures the size of
the line bundle, while τ(X) measures the size of the closure of the rational points of X inside
its adelic points.
Remark. The reason for removing a thin set is that sometimes special accumulating subsets
can dominate the point count. Indeed, let X ⊂ P3 be a cubic surface over Q containing a
line M , which is defined over Q. Then it is easy to see that rational points on M will already
contribute ≫ B2 to Nω−1

X ,X(Q)(B) and M(Q) is a thin set of type I.
Remark. In its original form Manin suggested that the removal of a thin set of type I of X(K)
might be sufficient for the asymptotic formula in Conjecture 2.3.3 to hold. However, Batyrev
and Tschinkel [7] provide the following counterexample over number fields containing third
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2. Rational points on varieties

roots of unity. Let X ⊂ P3 × P3 be the bi-degree (1,3) hypersurface given by ∑︁3
i=0 xiy

3
i = 0

and denote by π : X → P3 the projection onto the first factor. The adjunction formula implies
that ω−1

X = O(3, 1), so that an anti-canonical height function for X is given by H(x)3H(y),
where H is the naive height on P3. An application of the Lefschetz hyperplane theorem
shows that rk Pic(X) = 2, so that for some complement of a thin set W ⊂ X(K) Manin’s
conjecture predicts Nω−1

X ,W (B) ∼ cB logB as B → ∞. However, if we let φ : P3 → P3 be the
morphism given by [x0, . . . , x3] ↦→ [x3

0, . . . , x
3
3], then for any x ∈ φ(P3(K)), the assumption

that K contains the third roots of unity implies that π−1(x) is a split cubic surface. A split
cubic surface has Picard rank 7 and Batyrev and Tschinkel managed to show that it contains
≫ B(logB)3 rational points of anti-canonical height at most B. The set of (x,y) ∈ X(K)
for which x ∈ φ(P3(K)) is Zariski dense and so Manin’s conjecture cannot hold if one only
allows for the removal of a thin set of type I.
Since then more counterexamples have been found over any global field [130, 138, 19] and
Batyrev and Tschinkel’s counterexample has been extended to number fields not containing
third roots of unity [77], but of all them can be explained by the removal of a thin set.

If X ⊂ Pn−1 is a Fano hypersurface with n ≥ 5, then it follows from the Lefschetz hyperplane
theorem that rk Pic(X) = 1. In view of Example 2.3.1 the order of growth presented in our
naive heuristic (2.3.1) therefore matches the order of growth predicted by Manin’s conjecture.
Remark. Instead of working with heights as introduced above, we could have worked with
Arakelov heights, which are constructed using locally metrized line bundles. Peyre [156] states
his conjecture in this more general setting and for different choices of line bundles. This can
change the exponents of both B and log(B) and the Tamagawa measure ω depends on the
choice of the metrized line bundle.

Manin’s conjecture for projective spaces is a classical result of Schanuel [175] over number
fields and also known over function fields [182, Section 2.5]. Moreover, in the previous section
we have already mentioned work of Birch [16], Skinner [186] and Lee [131] establishing the
Hasse principle and weak approximation for complete intersections X ⊂ Pn−1 of low degree. In
fact, what they do is to produce an asymptotic formula for the counting function Nω−1

X ,X(B)
and show that the constant is positive if the necessary local conditions are satisfied. Birch’s
result predates the conjectures of Manin and Peyre and was one of the guiding results in
formulating them.
When the degrees of the defining equations are small, one can sometimes do substantially
better than Birch’s result. In particular, working over Fq(t) in Chapters 5 and 6 we will prove
asymptotic formulae for the number of rational points of bounded height on diagonal cubic
hypersurfaces and complete intersections of cubic and quadratic hypersurfaces respectively.
Let us now turn to varieties of small dimension. If X is a Fano curve with X(K) ̸= ∅, then
X is K-isomorphic to P1 and so Manin’s conjecture holds as well. For surfaces the situation
is already more mysterious and Manin’s conjecture appears to be out of reach in most cases.
In Chapter 7 we shall thus tackle the problem of producing upper bounds for the number of
rational points of bounded height on Fano surfaces and give a more detailed overview of the
current state of results.
Remark. An aesthetic and conceptual weakness of the Manin–Peyre conjecture is that there is
no description of the exceptional thin set to be removed. This issue has been addressed by
Lehmann, Sengupta and Tanimoto [132, 133], who proposed a geometric description of the
exceptional set. In another direction, Peyre [158, 159] suggested two alternatives to bypass
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the necessity of removing a thin set. The “freeness” approach only counts rational points
whose tangent space is sufficiently well-rounded, while the “all the heights” approach takes
into account a tuple of height functions associated to a basis of the Picard group. However,
Sawin [172] has shown that le Rudulier’s work [130] also provides a counterexample to Peyre’s
freeness alternative. In addition, smooth cubic threefolds with an infinite family of lines defined
over the ground field are most likely not compatible with the all the heights approach.

2.4 Moduli spaces of rational curves
We will now explain the connection between rational points on varieties over global function
fields and moduli spaces of rational curves. We have already mentioned the guiding principle
that geometry determines arithmetic. This section is concerned about the converse: sometimes
tools from number theory can be used to shed light on problems in algebraic geometry.
To streamline the exposition, we assume that K = Fq(t) is the function field of P1 over Fq

and take X ⊂ Pn−1 to be a hypersurface defined over Fq. It would be possible to work in the
more general setting where K is the function field of a smooth projective curve C of genus
g ≥ 1 and X is defined over K and not just over its field of constants.
As in the setting over Q, any rational point x ∈ Pn−1(Fq(t)) has a representative x ∈ Fq[t]n
such that gcd(x1, . . . , xn) = 1. In this case the height with respect to the line bundle O(1)
is just H(x) = maxi=1,...,n q

deg xi . By definition, a K-rational point on X is a morphism
SpecK → X. One the one hand, since P1 is smooth and X is proper, the valuative criterion of
properness implies that any morphism SpecK → X extends to a morphism P1 → X over Fq.
On the other hand, given a morphism P1 → X over Fq, the composition SpecK → P1 → X
produces a K-rational point of X. In particular, if we define

More(P1, X) = {f : P1 → X : deg f = e}

to be the variety of morphisms of degree e from P1 to X, then we obtain a natural bijection
between More(P1, X)(Fq) and the set

{x ∈ Pn−1(K) : F (x) = 0 and H(x) = qe}.

In the context of Manin’s conjecture, this means that understanding the counting function
Nω−1

X ,X(qe) as e → ∞, is equivalent to understanding the number of Fq-points of More(P1, X)
as e → ∞.
In algebraic geometry when trying to understand the geometry of a variety, it is often useful
to understand its rational curves. For example, a variety is separably unirational if and only if
there exists a free rational curve on X and separably rationally connected if and only if there
is a very free rational curve [64, Corollary 4.17]. For this reason it bears fruit to study the
geometry of More(P1, X). This space does not precisely parameterise rational curves and so
algebraic geometers instead often work with the stack M0,0(X, e) of rational curves of degree
e on X or its Kontsevich compactification M0,0(X, e).
Over finite fields a key link between the geometry of a variety and its arithmetic is established
via the Lang–Weil estimate [129].

Theorem 2.4.1 (Lang–Weil). Let X ⊂ Pn−1 be a variety over Fq. Then

#X(Fq) = cX(Fq)qdim X(1 +O(q−1/2))
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uniformly in q, where cX(Fq) is the number of top dimensional geometrically irreducible
components of X defined over Fq.

In particular, if we start with a variety X over Fq, then there exists a positive integer l0 such
that its (top dimensional) geometrically irreducible components are all defined over Fql0 and
hence we can determine their number if we get an asymptotic for #X(Fqkl0 ) as k → ∞.

A crucial difference between number fields and global function fields is that we can consider a
“horizontal problem” by letting q vary. For example, if X is a scheme defined over Z, we can
consider its reduction modulo any prime p and thus also over any field extension of Fp. It is
possible to apply a similar procedure in more geometric situations, which sometimes allows
one to reduce geometric problems to the analogous problems in a family of finite fields.

This was heavily exploited in work of Browning and Vishe [44], in which they used tools
from analytic number theory to count Fq-points on More(P1, X) for hypersurfaces X of small
degree and then deduced via the Lang–Weil estimate that More(P1, X) is irreducible and
determined its dimension. In Chapter 8 we will make use of a similar strategy and count
Fq-points on the jet schemes of More(P1, X) to deduce that More(P1, X) only has canonical
singularities if n is large compared to e and the degree of the hypersurface X. This will be
complemented by a thorough discussion of existing results.

It turns out that the horizontal problem of letting the size of the finite field tend to infinity
is somewhat easier than the vertical problem of letting the degree e go to infinity. This
phenomenon has been observed in many occasions, such as Katz and Sarnak’s work on the
connection between random matrix theory and L-functions [120], or the resolution of the
Bateman–Horn conjecture by Entin [73]. In particular, in the context of counting rational
points, it seems that whenever we can prove Manin’s conjecture for a class of varieties over
Fq(t), then we can also prove that the corresponding moduli spaces of rational curves are
irreducible and of the expected dimension.

Typically methods from algebraic geometry only give information for generic hypersurfaces,
which is of little use for counting points. However, if they work for concrete examples, these
results can be used to deduce at least upper bounds for the number of rational points, as we
shall now explain. Let X ⊂ Pn−1 be a hypersurface of degree d over Fq. Then we can realise
More(P1, X) as an open subset of a closed subset defined by de+ 1 equations of degree d
inside Pn(e+1)−1, leading to the expectation that

dim More(P1, X) = n(e+ 1) − de− 2 = e(n− d) + n− 2.

In particular, if More(P1, X) is of the expected dimension, then it is an open subset of a
complete intersection of degree dde+1.

Given a variety Y ⊂ An over Fq, we define δ(Y ) = ∑︁N
i=1 deg(Yi), where Y = ∪N

i=1Yi is the
decomposition of Y into its geometrically irreducible components. Note that if Y is equi-
dimensional, then δ(Y ) = deg(Y ). In addition, the Bézout inequality δ(Y ∩ Z) ≤ δ(Y )δ(Z)
always holds. We then have the following simple estimate due to Cafure and Matera [47,
Lemma 2.1].

Lemma 2.4.2. Let Y ⊂ An be a variety over Fq. Then

#Y (Fq) ≤ δ(Y )qdim Y .
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Note that strictly speaking Lemma 2.1 of [47] is only stated for varieties defined over Fq, but
an inspection of the proof reveals that it remains valid for varieties defined over Fq.
As explained by Debarre [64, Theorem 2.6], Riemann–Roch implies that any geometrically
irreducible component of More(P1, X) has at least the expected dimension. The number of
Fq-points of More(P1, X) is clearly bounded by the number of Fq-points on its affine cone.
Consequently, we immediately obtain the following estimate from Lemma 2.4.2.

Corollary 2.4.3. Let X ⊂ Pn−1 be a hypersurface of degree d over Fq and suppose that
More(P1, X) is of the expected dimension e(n− d) + n− 2. Then

NX(e) := #{x ∈ X(Fq(t)) : H(x) = qe} ≪ ddeqe(n−d),

where the implied constant only depends on d, n and q.

Example 2.4.4. If X is a cubic threefold over C, Coskun and Starr [57] have shown that
More(P1, X) has 2 irreducible components and is of the expected dimension for any e ≥ 1. In
particular, if their methods continue to hold in positive characteristic, then we would obtain

NX(e) ≪ 27eq2e.

Manin’s conjecture suggests that NX(e) ∼ cq2e. If ε > 0 is given, and q > 271/ε, then
NX(e) ≪ qe(2+ε), so that we could get arbitrarily close to the expected growth upon taking q
sufficiently large. The most powerful tool available to deal with NX(e) is the circle method
and it seems that without the injection of radical new ideas, we cannot do better than
NX(e) ≪ q9e/4. Even the implementation of the ratios conjecture into the circle method by
Wang [204], which was carried over to function fields by Browning, Wang and the author [39],
might only be able to produce the conditional estimate qe(9/4−δ) for a small value of δ > 0.

Example 2.4.5. If X is a smooth cubic surface over Fq, then it follows from work of
Beheshti, Lehmann, Riedl and Tanimoto [8] that the only irreducible components of the space
M0,0(X, e) that do not have the expected dimension parameterise multiple covers of lines.
These correspond to Fq(t)-points lying on lines, and so letting U ⊂ X be the complement of
lines, in the notation of Section 2.3 we obtain the upper bound

NU,ω−1
X

(qe) ≪ 27eqe.

In particular, if q is sufficiently large we again come arbitrarily close to the linear growth
predicted by Conjecture 2.3.3. This estimate should be compared with NU,ω−1

X
(qe) ≪ qe(4/3+ε)

that we establish in Chapter 7. In addition, the work [8] applies to del Pezzo surfaces of any
degree, and so a modified version of Lemma 2.4.2 would imply an analogous bound. However,
note that our bound from Chapter 7 also applies to cubic surfaces over Fq(t) (and in fact any
function field over Fq), and not just to those defined over the constant field Fq.

Remark. It is natural to try to use the Lang–Weil estimate to also produce lower bounds for
NX(e) or NU,ω−1

X
(qe). However, applied to More(P1, X) the best explicit bounds we have

either require q to grow in the degree [47] or the implied constant in the error term has order of
growth ee [84]. A possible route to bypass this issue would be a uniform homological stability
result, which in conjunction with the Grothendieck–Lefschetz trace formula could yield sharper
estimates.
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CHAPTER 3
Harmonic analysis over function fields

While number theory is a subject of mathematics with a long history, its extension to function
fields over finite fields is quite recent. It has already been known in the 19th century that
there is a strong analogy between number fields and the theory of Riemann surfaces, which
inspired Dedekind and Weber [65] to re-build the theory of Riemann surfaces from a completely
algebraic point of view via valuations. A big step towards the incorporation of function fields
over finite fields into number theory was taken by Artin in his thesis [4], where he worked
on quadratic extensions of function fields in close parallel to the case of number fields. This
was continued with the work of Hasse [97] on the Riemann hypothesis over finite fields, with
important contributions from F. K. Schmidt [179], that eventually culminated in a proof
of the Riemann hypothesis for curves by Weil [206]. Subsequently, Weil proposed a vast
generalisation of his achievements, commonly referred to as the “Weil conjectures”. These were
the driving force in Grothendieck’s attempt to put algebraic geometry on a modern footing
and the development of étale cohomology, allowing him and his collaborators to prove all of
Weil’s conjectures but one. What remained was a general form of the Riemann hypothesis
that was eventually resolved by Deligne [66]. It should be mentioned though that Dwork [70]
was the first to prove the rationality of the zeta function, which is part of the Weil conjectures.
The geometric nature of function fields gives access to tools from geometry that are not
available over number fields. For this reason, function fields have been a prominent testing
ground for conjectures whose counterpart over number fields is beyond the reach of current
methods. The Riemann hypothesis already mentioned is one such example. To name just a
few recent instances, let us mention the work of Ellenberg, Venkatesh and Westerland [72] on
the Cohen–Lenstra heuristics using homological stability properties of Hurwitz spaces; of Sawin
and Shusterman resolving the twin prime conjecture [174] and the quadratic Bateman–Horn
conjecture [173] in a strong quantitative sense; and the work of Bergström, Diaconu, Petersen
and Westerland [9] that reduces the moment problem of quadratic Dirichlet L-functions to a
(uniform) homological stability property of representations of the Braid group with twisted
coefficients, that was later proved by Miller, Patzt, Petersen and Randall-Williams [145].
In most chapters of this thesis we tackle number theoretic problems with tools from analysis.
We will therefore focus on building the infrastructure needed to conduct harmonic analysis.
This will be of especial importance for Chapters 5 and 6. Since we are only working over the
function field K = Fq(t) in these chapters, we limit ourselves to that case, although it would
not present much difficulty to extend the theory to other global function fields. All of the
material presented here can be found in [35, Chapter 5] or [161]. A systematic treatment of
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3. Harmonic analysis over function fields

harmonic analysis over global fields was first given by Tate in his thesis [192] to unify the
treatment of Hecke L-functions.

Norms and places

Let K = Fq(t) and O = Fq[t]. The set of places of K is in bijection with monic irreducible
polynomials ϖ ∈ Fq[t] and the infinite place t−1. Unlike in characteristic 0, every place of
Fq(t) is non-archimedean. For any place ν of K, let vν : K → Z be the associated valuation
that we normalise in such a way that it is surjective. We then obtain a norm

| · |ν : K → qZ, x ↦→ qdeg(ν)vν(x).

If ν = t−1, then we will use the shorthand notation | · | = | · |∞. For ν = t−1 this means
explicitly the following. Let x ∈ K be given. Then we can write x = a/r with a, r ∈ Fq[t]
coprime and obtain

|x| = qdeg a−deg r,

with the convention |0| = 0. The field K∞ = Fq((t−1)) of Laurent series in t−1 arises naturally
as the completion of K with respect to | · |. Any non-zero α ∈ K∞ can be written uniquely as

α =
∑︂
i≤M

ait
i, (3.0.1)

for some M ∈ Z, where ai ∈ Fq and aM ̸= 0. With this representation the extension of | · |
to K∞ is then given by |α| = qM . Although the field K∞ can be thought of as a positive
characteristic analogue of R, the norm | · | behaves very differently to the usual absolute value
on R. As we have already mentioned, the norm is non-archimedean, meaning that it satisfies
the ultrametric property

|α + β| ≤ max{|α|, |β|} for any α, β ∈ K∞.

In many occasions this heavily simplifies the analysis compared to the situation in characteristic
0.
For any n ≥ 1, we can extend the norm to Kn

∞ by setting |α| = max1≤i≤n |αi| whenever
α = (α1, . . . , αn) ∈ Kn

∞. For α ∈ K∞, in the notation of (3.0.1) we define its integer part
and fractional part to be

[α] =
∑︂
i≥0

ait
i and {α} =

∑︂
i≤−1

ait
i,

respectively. In particular, α = {α} + [α] and [α] ∈ Fq[t]. The distance to the nearest integer
is then given by ∥α∥ = |{α}|.

Characters

Let eq : Fq → C× be the standard additive character given by

eq(x) = exp
(︄

2πiTrFq/Fp(x)
p

)︄
,

where TrFq/Fp : Fq → Fp ≃ Z/pZ is the standard field trace and p = char(Fq). The function
ψ : K∞ → C× given by

ψ(α) = eq(a−1)
in the notation of (3.0.1) then defines an additive character of K∞ that is trivial on the
subgroup {α ∈ K∞ : |α| < q−1}, but not on the “unit interval”

T = {α ∈ K∞ : |α| < 1}.
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Integration

The field K∞ is a locally compact Hausdorff group with respect to addition. In particular, it
comes with a Haar measure dα that is unique if we require∫︂

T
1dα = 1.

The measure extends naturally to Kn
∞ by dα = dα1 · · · dαn for α = (α1, . . . , αn) ∈ Kn

∞ for
any n ≥ 1. Given a measureable subset A ⊂ Kn

∞, we will use the shorthand notation

vol(A) =
∫︂

A
1dα.

A key property of the Haar measure is the following change of variables formula established by
Igusa for any local field [118, Lemma 7.4.2].

Lemma 3.0.1. Let Γ ⊂ Kn
∞ be a measurable set and g : Γ → C be a measurable function.

Then for any M ∈ GLn(K∞) we have∫︂
Γ
g(α)dα = |detM |

∫︂
Mβ∈Γ

g(Mβ)dβ.

Having introduced the most basic concepts, it is helpful to compare them with their counterparts
over Q.

Q Fq(t)
ring of integers Z Fq[t]

finite places primes p monic irreducible polynomials ϖ
infinite place absolute value on R | · | induced by t−1

Pontryagin dual of ring of integers [0, 1) = R/Z T = K∞/Fq[t]
Haar measure Lebesgue measure dα such that ∫︁T 1dα = 1

additive character R ∋ x ↦→ e2πix ψ : K∞ → C×

Remark. We have already mentioned that in contrast to characteristic 0, there is nothing
special about the place at infinity t−1. In fact, our choice of t was already arbitrary and we
could have instead replaced t with a different degree 1 element of K. More generally, if one
works with a function field K in positive characteristic, there is no natural candidate for “the”
ring of integers and there is always a choice of places involved.

Orthogonality relations

In Chapter 4 we will explain how the circle method works. The starting point for the circle
method is the orthogonality relation

∫︂
T
ψ(αx)dα =

⎧⎨⎩1 if x = 0,
0 if x ∈ Fq[t] \ {0},

(3.0.2)

which expresses the characteristic function of {0} on Fq[t] as an oscillatory integral over its
Pontryagin dual T = K∞/Fq[t]. It will be convenient to have the following more general
orthogonality at our disposal, where for any R ∈ R we adopt the notation ˆ︁R = qR.
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3. Harmonic analysis over function fields

Lemma 3.0.2. Let N ∈ Z and x ∈ K∞. Then

∫︂
|α|< ˆ︁N−1

ψ(αx)dα =

⎧⎨⎩ˆ︂N−1 if |x| < ˆ︂N,
0 else.

Similarly, we have the following orthogonality relation for exponential sums.

Lemma 3.0.3. For any α ∈ K∞ and integer N ≥ 1, we have

∑︂
x∈O

|x|< ˆ︁N
ψ(αx) =

⎧⎨⎩ˆ︂N if ∥α∥ < ˆ︂N−1,

0 else.

Poisson summation

In harmonic analysis over R, one works with S(Rn), the space of Schwartz functions consisting
of smooth functions with the property that all their derivatives decay rapidly. Thanks to the
non-archimedean nature, over K∞ one again works with a simpler notion.

Definition 3.0.4. Let n ≥ 1 and f : Kn
∞ → C be a function. We say that f is a Schwartz–

Bruhat function if it is locally constant and has compact support. We denote by S(Kn
∞) the

space of all Schwartz–Bruhat functions on Kn
∞.

Being a locally compact field, K∞ is self-dual, meaning that we can identify it with its
Pontryagin dual. For f ∈ S(Kn

∞), we can therefore define its Fourier transform to be a
function F(f) : Kn

∞ → C given by

F(f)(v) =
∫︂
Tn
f(x)ψ(x · v)dx,

where x · v denotes the usual inner product. A key property of the Fourier transform is that it
is a linear automorphism of S(Kn

∞). In addition, with our normalisation of the Haar measure
and the choice of the character ψ, the Fourier inversion formula F(F(f)) = f holds. A crucial
input in Chapters 5 and 6 to analyse the exponential sums involved is the Poisson summation
formula.

Proposition 3.0.5. Let f ∈ S(Kn
∞). Then∑︂

x∈On

f(x) =
∑︂

v∈On

F(f)(v).

Remark. More generally, one can prove an adelic version of the Poisson summation formula
over any global field. Over function fields this seemingly purely analytic statement implies the
Riemann–Roch theorem, a fundamental result in the theory of algebraic curves.
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CHAPTER 4
The circle method

The goal of this chapter is to introduce the circle method, which serves as the main technical
apparatus for Chapters 5, 6 and 8. The circle method goes back to pioneering work of Hardy
and Ramanujan [93] on the partition function. Its modern incarnation via exponential sums is
based on the work of Vinogradov on Waring’s problem in 1926 and found its role as a central
player in the study of rational points through the agency of Davenport [62, 59, 60]. Within
its century of existence, the circle method has seen spectacular applications in a diverse area
of mathematics and was the subject of intense research. This ranges from a sheaf theoretic
version by Browning and Sawin [41] to a motivic version suitable for stabilisation results in the
Grothendieck ring of varieties by Bilu and Browning [13], both of which have applications to
the study of moduli spaces of rational curves on hypersurfaces. In Chapter 8 we shall develop
an extension of the circle method to show that under favourable circumstances these moduli
spaces only have canonical singularities. A more thorough discussion and historical account of
the circle method can be found in the classical books of Davenport [61] and Vaughan [200] or
the more recent treatise of Browning [35].

In this chapter we explain the basic mechanism underlying the circle method by means of
applying it to count rational points on hypersurfaces over K = Fq(t). In particular, we will
present a proof of Weyl’s inequality and indicate some of the refinements that have been
developed in the context of the circle method. We will then end this chapter by giving a
summary of results in the realm of rational points that have been obtained using the circle
method.

Kubota [127] was the first to develop a version of the circle method over Fq(t) and applied it
to Waring’s problem. The setting we are dealing with here loosely follows work of Lee [131].
We will write O = Fq[t] and define O+ to be the collection of monic polynomials in O. We
also make use of the notation of Chapter 3, so that K∞ is the completion at the infinite place,
T = K∞/O is the Pontryagin dual of O and ψ : K∞ → C× is a non-trivial character that is
non-trivial on T, but not on any smaller compact subgroup. In addition, | · | : K∞ → R≥0
denotes the norm induced by the infinite place. The igniting spark in the circle method is the
orthogonality relation ∫︂

T
ψ(αx)dα =

⎧⎨⎩1 if x = 0,
0 if x ∈ O \ {0},

(4.0.1)

that was already stated in (3.0.2). Given F ∈ O[x1, . . . , xn] homogeneous of degree d and
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4. The circle method

P ∈ O, we can consider the counting function

NF (P ) = #{x ∈ On : |x| < |P |, F (x) = 0}

as |P | → ∞ that we already encountered in Section 2.3 in the context of Manin’s conjecture.
Strictly speakingNF (P ) does not count rational points on the hypersurfaceX = V (F ) ⊂ Pn−1,
but it is straightforward to pass from an asymptotic formula for NF (P ) to one for

NX(P ) = #{x ∈ Pn−1(K) : F (x) = 0, H(x) < |P |},

where H : Pn−1(K) → R≥0 denotes the naive height on projective space. Recall that if
x = (x1, . . . , xn) ∈ On is a representative for x ∈ Pn−1(K) with gcd(x1, . . . , xn) = 1, then
H(x) = |x|. In addition, x has precisely |F×

q | = q − 1 such representatives. Suppose that

NF (P ) = cF |P |n−d +O(|P |n−d−κ)

for some κ > 0. Then we may use the function field analogue of the Möbius function
µ : Fq[t] → {±1} to detect the coprimality condition gcd(x1, . . . , xn) = 1. This gives

NX(P ) = 1
q − 1

∑︂
x∈On\{0} : |x|<|P |

F (x)=0

∑︂
k∈O+

k|gcd(x1,...,xn)

µ(k)

= 1
q − 1

∑︂
k∈O+

|k|<|P |

µ(k)NF (P/k) +O(|P |)

= cF

q − 1 |P |n−d
∑︂

k∈O+

|k|<|P |

µ(k)
|k|n−d

+O(|P |n−d−κ)

= cF

(q − 1)ζK(n− d) |P |n−d +O(|P |n−d−κ),

assuming n − d > 1 and where ζK(s) = (1 − q1−s)−1 is the zeta function of K = Fq(t).
If n = d + 1, the situation is a bit more delicate, see for example the discussion before
Corollary 2 [100] for quadrics. However, apart from the case d = 2 we are very far from
producing an asymptotic in this case.

Applying (4.0.1) to NF (P ), we immediately obtain the identity

NF (P ) =
∫︂
T
S(α)dα, (4.0.2)

where
S(α) :=

∑︂
x∈On

|x|<|P |

ψ(αF (x)).

The basic strategy now is to divide T into a set of major arcs, on which we wish to asymptotically
evaluate S(α), and a set of minor arcs, on which we want to show that |S(α)| is sufficiently
small. The workhorse in the circle method is Weyl’s inequality, for which we present a proof in
the next section.
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4.1. Weyl differencing

4.1 Weyl differencing
A versatile tool for estimating S(α) is through the process of Weyl differencing. The key
idea behind Weyl differencing is to successively square |S(α)| and reduce the degree of the
polynomial involved to end up with a linear exponential sum that we understand well. We
will explain this when F ∈ O[x1, . . . , xn] is a polynomial of degree d over K = Fq(t) with
char(Fq) > d. We will see that the quality of our estimates only depends on the degree d
homogeneous part of F , which we shall denote by Fd. We can thus write

Fd(x) =
∑︂

1≤i1,...,id≤n

fi1,...,id
xi1 · · · xid

,

where the coefficients fi1,...,id
∈ O are symmetric in the indices. It will be convenient to

introduce the multilinear forms
Li(x(1), . . . ,x(d−1)) = d!

∑︂
1≤i1,...,id−1≤n

fi1,...,id−1,ix
(1)
i1 · · ·x(d−1)

id−1
(4.1.1)

for i = 1, . . . , n, where x(j) = (x(j)
1 , . . . , x(j)

n ) for j = 1, . . . , d− 1. Observe that we have the
identity

∂Fd

∂xi

(x) = 1
(d− 1)!Li(x, . . . ,x). (4.1.2)

Given y ∈ On, we define the differencing operator ∆y : K∞[x1, . . . , xn] → K∞[x1, . . . , xn]
via its action on G ∈ K∞[x1, . . . , xn] by

∆y(G)(x) = G(x + y) −G(x).

For k ≥ 2 we define recursively ∆y1,...,yk
(G) = ∆yk

(∆y1,...,yk−1(G)). The key property of the
differencing operator is that if degG = e and char(K) ∤ e, then deg ∆y(G) = e− 1 for y ̸= 0.
Squaring |S(α)| gives

|S(α)|2 =
∑︂

|x1|<|P |

∑︂
|x2|<|P |

ψ(α(F (x1) − F (x2))).

We can now make the change of variables x = x2 and y = x1 − x2. Then by the ultrametric
property we have |x2| < |P | if and only |y| < |P |, so that

|S(α)|2 =
∑︂

|y|<|P |

∑︂
|x|<|P |

ψ(α(∆y(F )(x))). (4.1.3)

Inductively we obtain via an application of Cauchy–Schwarz

|S(α)|2d−1 ≤

⎛⎝|P |(2d−2−(d−1))n ∑︂
|x(1)|<|P |

· · ·
∑︂

|x(d−2)|<|P |

⃓⃓⃓⃓
⃓⃓ ∑︂
|x|<|P |

ψ(α(∆x(1),...,x(d−2)(F )(x)))

⃓⃓⃓⃓
⃓⃓
⎞⎠2

≤ |P |(2d−1−d)n ∑︂
|x(1)|<|P |

· · ·
∑︂

|x(d−2)|<|P |

⃓⃓⃓⃓
⃓⃓ ∑︂
|x|<|P |

ψ(α(∆x(1),...,x(d−2)(F )(x)))

⃓⃓⃓⃓
⃓⃓
2

≤ |P |(2d−1−d)n ∑︂
|x(1)|<|P |

· · ·
∑︂

|x(d−1)|<|P |

∑︂
|x|<|P |

ψ(α(∆x(1),...,x(d−1)(F )(x))).

We now observe that

∆x(1),...,x(d−1)(F )(x) =
n∑︂

i=1
Li(x(1), . . . ,x(d−1))xi + ψ,

where ψ is a term that is independent of x. In particular, after bringing absolute values inside,
we have obtained the following result.
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4. The circle method

Lemma 4.1.1. Let F ∈ O[x1, . . . , xn] be a polynomial of degree d. Then

|S(α)|2d−1 ≤ |P |(2d−1−d)n ∑︂
|x(1)|<|P |

· · ·
∑︂

|x(d−1)|<|P |

⃓⃓⃓⃓
⃓⃓ n∏︂
i=1

∑︂
|x|<|P |

ψ(αLi(x(1), . . . ,x(d−1))x)

⃓⃓⃓⃓
⃓⃓ .

Remark. The factor d! in the definition of Li is the reason for our assumption char(K) > d.
Indeed, if char(K) ≤ d, then Li = 0 and so the inequality of Lemma 4.1.1 reduces to the
trivial estimate |S(α)|2d−1 ≤ |P |2d−1n.

The crucial point at this stage is that each expression in the sum above is linear in x and
linear exponential sums are easy to understand. Let 0 ≤ s ≤ degP be an integer and define

Ks(P ) = #
{︄

(x(1), . . . ,x(d−1)) ∈ O(d−1)n :
|x(j)| < |P |q−s for 1 ≤ j ≤ d− 1,⃦⃦⃦
αLi(x(1), . . . ,x(d−1))

⃦⃦⃦
< |P |−1q−s(d−1)

}︄
.

Then upon combining Lemma 4.1.1 with the orthogonality relation of Lemma 3.0.3, we
immediately arrive at the following result.

Corollary 4.1.2. We have

|S(α)|2d−1 ≤ |P |(2d−1−(d−1))nK0(P ).

To estimate K0(P ), Davenport came up with an ingenious idea that relates K0(P ) to Ks(P ),
where s is eventually chosen in such a way that the Diophantine inequality⃦⃦⃦

αLi(x(1), . . . ,x(d−1))
⃦⃦⃦
< |P |−1q−s(d−1)

forces Li(x(1), . . . ,x(d−1)) to vanish. The key ingredient is his “shrinking lemma”, whose
function field version is for example proven in Lemma 6.4 of [41].

Lemma 4.1.3. Let γ ∈ Matn×n(K∞) be a symmetric matrix. Given integers a, c, s such
that c > 0 and s ≥ 0, let Nγ,a,c denote the number of x ∈ On such that ∥γx∥ < q−c and
|x| < qa. Then

Nγ,a,c

Nγ,a−s,c+s

≤ qns+n max{⌊ a−c
2 ⌋,0}.

Corollary 4.1.4. Suppose that 0 ≤ s ≤ degP . Then

K0(P ) ≤ qs(d−1)nKs(P ).

Proof. We can fix all but one of x(1), . . . ,x(d−1) in the definition of K0(P ) and apply
Lemma 4.1.3 to each x(i) individually for 1 ≤ i ≤ d − 1. At the ith step, we have
c = degP + s(i− 1) and a = degP , so that for any x(1), . . . ,x(i−1),x(i+1), . . . ,x(d−1) ∈ On,
we have

#{x(i) ∈ On : |x(i)| < |P |,
⃦⃦⃦
αLj(x(1), . . . ,x(d−1))

⃦⃦⃦
< |P |−1q−s(i−1) for 1 ≤ j ≤ n}

≤ qsn#{x(i) ∈ On : |x(i)| < |P |q−s,
⃦⃦⃦
αLj(x(1), . . . ,x(d−1))

⃦⃦⃦
< |P |−1q−si for 1 ≤ j ≤ n}

by Lemma 4.1.3. Indeed, a − c = −s(i − 1) ≤ 0 and the matrix underlying the linear map
x(i) ↦→ α(L1(x(1), . . . ,x(d−1)), . . . , Ln(x(1), . . . ,x(d−1))) is symmetric since the coefficients
in the definition (4.1.1) of the Li’s are symmetric in the indices.
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4.1. Weyl differencing

Our goal is now to apply Corollary 4.1.4 and choose s in such a way that the Diophantine
inequality in the definition of ns(P ) forces Li(x(1), . . . ,x(d−1)) = 0 for 1 ≤ i ≤ n. Before
doing so, we need an elementary estimate for the number of integral points on affine varieties.

Lemma 4.1.5. Let W ⊂ AN be an equi-dimensional variety of degree D. Then

#{x ∈ W (O) : |x| < ˆ︁Z} ≪ ˆ︁Zdim W ,

where the implied constant only depends on N and D.

Proof. We proceed by induction on dimW . If dimW = 0, then W (O) is a union of at most
D points, so that the estimate holds trivially. Suppose now that dimW ≥ 1. This implies that
there exists an index 1 ≤ i0 ≤ N such that the hyperplane {xi0 = a} intersects W properly
for any a ∈ Fq(t). Thus we have

#{x ∈ W (O) : |x| < ˆ︁Z} ≤
∑︂
a∈O

|a|<ˆ︁Z
#{x ∈ W (O) : xi0 = a, |x| < ˆ︁Z}.

The intersection W ∩ {xi0 = a} has dimension at most dimW − 1 ≥ 0 and degree at most D,
because W is equi-dimensional. Thus we can apply the induction hypothesis to deduce that

#{x ∈ W (O) : |x| < ˆ︁Z} ≪
∑︂
a∈O

|a|<ˆ︁Z
ˆ︁Zdim W −1 ≤ ˆ︁Zdim W

as desired.

Let σ denote the dimension of the singular locus of the affine hypersurface V (Fd) ⊂ An. In
particular, σ = 0 if and only if the projective hypersurface defined by Fd = 0 inside Pn−1 is
smooth.

Lemma 4.1.6. Let Z ⊂ A(d−1)n be the variety defined by Li(x(1), . . . ,x(d−1)) = 0 for
i = 1, . . . , n and suppose that char(K) > d. Then any irreducible component of Z has
dimension at most (d− 2)n+ σ.

Proof. Let ∆ ⊂ An(d−1) be the diagonal defined by

∆ = {(x(1), . . . ,x(d−1)) ∈ An(d−1) : x(1) = · · · = x(d−1)},

so that ∆ is irreducible of dimension n. If x = (x, . . . ,x) belongs to ∆ ∩ Z, then as we
assume char(K) > d by (4.1.2) we must have ∇F (x) = 0. This forces x to lie on the
singular locus of the affine hypersurface defined by F = 0, which by assumption has dimension
σ. Thus we have

σ ≥ dim ∆ ∩ Z ≥ dim ∆ + dimZ − (d− 1)n

and hence dimZ ≤ (d− 2)n+ σ.

We now have everything at hand to establish the main estimate for S(α). For a polynomial
G ∈ K∞[x1, . . . , xn], let HG be the maximum of the absolute values of its coefficients.
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4. The circle method

Proposition 4.1.7. Let F ∈ O[x1, . . . , xn] be of degree d and let Fd be its homogeneous
degree d part. Suppose that α = a/r + θ, where α, θ ∈ T and a, r ∈ O are coprime with
|a| < |r|. If σ is the dimension of the singular locus of the hypersurface V (Fd) ⊂ An and
char(K) > d, then

|S(α)| ≪ |P |n
(︄

|P | +HFd
|P dθr| + qd−1|r|
|P |d

+ qd−1

qd−1HFd
|r| + |rθP d|

)︄ n−σ

(d−1)2d−1

,

where the implied constant only depends on n and d, but not on q.

Proof. Let 0 ≤ s ≤ degP be an integer satisfying

(1) q−(d−1)HFd
|rθP d−1| < qs(d−1),

(2) |rP−1| < qs(d−1)

(3) (i) q−(d−1)HF |r|−1|P |d−1 < qs(d−1) or
(ii) |rθP |−1 < qs(d−1).

Then by Corollaries 4.1.2 and 4.1.4 we have

|S(α)|2d−1 ≤ |P |(2d−1−(d−1))nqs(d−1)nKs(P ).

Suppose that (x(1), . . . ,x(d−1)) ∈ On(d−1) is counted by Ks(P ). Let 1 ≤ i ≤ n and set
m = Li(x(1), . . . ,x(d−1)). Our goal is to show that m = 0. First, observe that HLi

≤ HFd
for

1 ≤ i ≤ n. Second, by the definition of Ks(P ) we have |x(j)| ≤ |P |q−s−1 for 1 ≤ j ≤ d− 1,
so that by the ultrametric property |m| ≤ HFd

(|P |q−s−1)d−1. In particular, (1) implies that

|θm| ≤ HFd
|θ|(|P |q−s−1)d−1 < |r|−1 ≤ 1

and hence ∥θm∥ = |θm|. Therefore, by the definition of Ks(P ), we obtain⃦⃦⃦⃦
am

r

⃦⃦⃦⃦
≤ max{∥θm∥, ∥αm∥}

< max{|r|−1, |P |−1q−s(d−1)}
≤ |r|−1

by (2). This implies that r | m. If the first alternative of (3) holds, then |m| < |r| and thus
m = 0. If the second alternative is true, then r | m implies

|θm| = ∥θm∥ = ∥αm∥ < |P |−1q−s(d−1)

and so |m| < |θP |−1q−s(d−1) ≤ |r|, which again implies m = 0. The choice

1 +
⌊︄

logq max{q−(d−1), q−(d−1)HFd
|rθP d−1|, |rP−1|, |r|−1 min{q−(d−1)HFd

|P |d−1, |θP |−1}}
d− 1

⌋︄

for s satisfies (1)–(3) and s ≥ 0. In particular, every (x(1), . . . ,x(d−1)) counted by Ks(P )
must satisfy Li(x(1), . . . ,x(d−1)) = 0 for i = 1, . . . , n. Assuming s ≤ degP we obtain

|S(α)|2d−1 ≤ |P |(2d−1−(d−1))nqs(d−1)n#{x ∈ Z(O) : |x| < |P |q−s} ≪ |P |2d−1n

(︄
qs

|P |

)︄n−σ

(4.1.4)
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4.1. Weyl differencing

by Lemmas 4.1.5 and 4.1.6. If s > degP , then since σ ≤ n, this estimate is worse than the
trivial bound and so the estimate holds in any case. The term qs is at most

q
(︂
max{q−(d−1), q−(d−1)HFd

|rθP d−1|, |rP−1|, |r|−1 min{q−(d−1)HFd
|P |d−1, |θP |−1}

)︂ 1
d−1

≤ |P |
(︄

|P | +HFd
|rθP d| + qd−1|r|
|P |d

+ qd−1

qd−1HFd
|r| + |rθP d|

)︄ 1
d−1

,

which upon inserting into (4.1.4) completes the proof.

For some applications, such as establishing weak approximation, it is convenient to have an
estimate available for a slight generalisation of the sum S(α). Let x0 ∈ Kn

∞, M ∈ O \ {0}
and b ∈ On be given. For a parameter L ≥ 0 and α ∈ T, we then define

˜︁S(α) =
∑︂

x∈On

|x/P −x0|<ˆ︁L−1

x≡b mod M

ψ(αF (x)).

Corollary 4.1.8. For |P | > |M |ˆ︁L, under the same assumptions as in Proposition 4.1.7, we
have

| ˜︁S(α)| ≪
(︄

|P |ˆ︁L|M |

)︄n

×
(︄

(ˆ︁L|M |)d−1|P | +HFd
|M |d|rθP d| + qd−1|r|(ˆ︁L|M |)d

|P |d

+ qd−1(ˆ︁L|M |)d

qd−1HFd
(ˆ︁L|M |2)d|r| + |rθ|

)︄ n−σ

(d−1)2d−1

,

where the implied constant only depends only on n and d, but not on q.

Proof. Without loss of generality, we may assume that |b| < |M |. We can write Px0 = y0+z0
for some y0 ∈ Tn and z0 ∈ On. As |b| < |M |, we then have |x/P − x0| < ˆ︁L−1 and
x ≡ b mod M if and only if x = My + z0 + b for some y ∈ On with |y| < |P |

|M |ˆ︁L . Upon
defining G(y) = F (My + z0 + b), we thus have

˜︁S(α) =
∑︂

|y|< |P |
|M|ˆ︁L

ψ(αG(y)). (4.1.5)

The polynomial G(y) has coefficients in O and its homogeneous degree d part is MdFd(y),
so that HGd

= HFd
|M |d. In particular, the corollary follows from Proposition 4.1.7 applied to

the sum on the right hand side of (4.1.5).

A variant of the squaring and differencing process explained above is van der Corput differencing.
Let H ⊂ On be a finite subset. For a function f : Kn

∞ → C that is supported on the set
{x ∈ Kn

∞ : |x| < |P |}, the starting point is the identity

#H
∑︂

x∈On

f(x) =
∑︂
h∈H

∑︂
x∈On

f(x + h) =
∑︂

x∈On

∑︂
h∈H

f(x + h).

Applying Cauchy–Schwarz yields

#H2
⃓⃓⃓⃓
⃓ ∑︂
x∈On

f(x)
⃓⃓⃓⃓
⃓
2

≤ |P |n
∑︂
h∈H

N(h)
∑︂

x∈On

f(x + h)f(x),
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4. The circle method

where N(h) = #{(h1,h2) ∈ H2 : h1 − h2 = h}. Taking

f(x) =

⎧⎨⎩ψ(αF (x)) if |x| < |P |,
0 else,

thus gives

|S(α)|2 ≤ |P |n#H−2 ∑︂
h∈H

N(h)
∑︂

|x|,|x+h|<|P |
ψ(α(F (x + h) − F (x))).

Note that by choosing H = {x ∈ On : |x| < |P |} we can recover the inequality (4.1.3)
obtained by the standard squaring and differencing process, so nothing has been lost. However,
the advantage is that one can freely choose the set H, thereby allowing for greater flexibility.
Heath-Brown [105] has introduced averaged van der Corput differencing that allowed him to
establish that any cubic form over Q in at least 14 variables possesses a non-trivial zero. This
improves upon an old result of Davenport [60], who showed that having at least 16 variables
is sufficient for the existence of a non-trivial zero.

4.2 Major and minor arcs
Having established a sufficiently strong estimate for |S(α)| in Proposition 4.1.7, we will now
proceed to explain the main steps in the circle method. It is clear that the quality of the
estimate in Proposition 4.1.7 is controlled by “how well” α can be approximated by a fraction
a/r ∈ Fq(t). The following result is the function field analogue of Dirichlet’s approximation
theorem and quantifies the quality of a rational approximation. A proof can be found in [35,
Lemma 5.7].

Proposition 4.2.1. Let Q ≥ 1 be an integer and α ∈ T. Then there exist a ∈ O, r ∈ O+

such that |a| < |r| ≤ ˆ︁Q, gcd(a, r) = 1 and⃓⃓⃓⃓
α− a

r

⃓⃓⃓⃓
<

1
|r| ˆ︁Q.

Remark. An important difference to characteristic 0 is that Dirichlet’s approximation already
provides us with an exact decomposition of the unit interval. What we mean by this is that
the intervals in the union

T =
⨆︂

r∈O+

|r|≤ˆ︁Q
⨆︂

|a|<|r|
gcd(a,r)=1

{α ∈ T : |α− a/r| < |r|−1 ˆ︁Q−1}

are non-overlapping thanks to the ultrametric property of the norm, for any positive integer
Q. This analogue of a Farey dissection drastically simplifies the possibility of exhibiting extra
cancellation when averaging S(a/r + θ) over the numerators a or even the denominators r.
We will explain this in more detail in Section 4.4

Let α ∈ T and suppose that α = a/r + θ, where a, r ∈ O are coprime, |a| < |r| and r is
monic. Dirichlet’s approximation theorem guarantees the existence of such a, r and θ with
|r| ≤ |P |d/2 and |θ| < |r|−1|P |−d/2. In this case, Proposition 4.1.7 simplifies to

|S(α)| ≪ |P |n|r|−
n−σ

(d−1)2d−1 max{1, |θP d|}− n−σ

(d−1)2d−1 . (4.2.1)
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4.2. Major and minor arcs

In particular, we see that we get a power saving over the trivial bound |S(α)| ≤ |P |n if
|r| ≥ |P |∆ or |θ| ≥ |P |∆−d for some fixed ∆ > 0. Motivated by this, for a small parameter
0 < ∆ < 1/2 we define the major arcs to be

M(∆) =
⋃︂

r∈O+

|r|≤|P |∆

⋃︂
a∈O

|a|<|r|
gcd(a,r)=1

{︂
α ∈ T : |α− a/r| < |P |∆−d

}︂
(4.2.2)

and our goal is to evaluate S(α) asymptotically for α ∈ M(∆). The exact value of ∆ is of no
importance and only affects the quality of the error term.
The minor arcs are defined to be the complement m(∆) = T \ M(∆) and we wish to show
that the contribution from them makes up an acceptable error term.

Proposition 4.2.2. Assuming n > σ + (d− 1)2d and char(K) > d, we have∫︂
m(∆)

|S(α)|dα ≪ |P |n−d−κ

for some κ > 0.

Proof. Let α ∈ m(∆). Then by Proposition 4.2.1 there exist coprime a, r ∈ O such that
|a| < |r| ≤ |P |d/2, r is monic and |α − a/r| < |r|−1|P |−d/2. As α ∈ m(∆), we must either
have |r| > |P |∆ or |r| ≤ |P |∆ and |α− a/r| ≥ |P |∆−d. It follows that∫︂

m(∆)
|S(α)| ≤ Σ1 + Σ2,

where
Σ1 =

∑︂
r∈O+

|P |∆<|r|≤|P |d/2

∑︂
|a|<|r|

gcd(a,r)=1

∫︂
|θ|<|r|−1|P |−d/2

|S(a/r + θ)|dθ

and
Σ2 =

∑︂
r∈O+

|r|≤|P |∆

∑︂
|a|<|r|

gcd(a,r)=1

∫︂
|P |∆−d≤|θ|<|r|−1|P |−d/2

|S(a/r + θ)|dθ.

In particular, under our assumption n > σ + (d− 1)2d, by (4.2.1) we have

Σ1 ≪ |P |n
∑︂

|P |∆<|r|≤|P |d/2

|r|1− n−σ

(d−1)2d−1
∫︂

|θ|<|r|−1|P |−d/2
max{1, |θP d|}− n−σ

(d−1)2d−1 dθ

≪ |P |n−d
∑︂

|P |∆<|r|
|r|1− n−σ

(d−1)2d−1

≪ |P |n−d−δ,

where δ = −∆(2 − n−σ
(d−1)2d−1 ) > 0. Similarly, for Σ2 we have

Σ2 ≪ |P |n
∑︂

|r|≤|P |∆
|r|1− n−σ

(d−1)2d−1
∫︂

|P |∆−d≤|θ|<|r|−1|P |−d/2
|θP d|−

n−σ

(d−1)2d−1 dθ

≪ |P |n−d−δ′
,

where δ′ = −∆(1 − n−σ
(d−1)2d−1 ) > 0.
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4. The circle method

We now commence with our analysis of the major arcs. Let α = a/r + θ ∈ M(∆), so that
a, r ∈ O are coprime satisfying |a| < |r| ≤ |P |∆ with r monic and |θ| < |P |∆−d. Any x ∈ On

can be written uniquely as x = ry + z with y, z ∈ On satisfying |y| < |P ||r|−1 and |z| < |r|.
Thus

S(α) =
∑︂

|z|<|r|
ψ

(︄
aF (z)
r

)︄ ∑︂
|y|< |P |

|r|

ψ(θF (ry + z)). (4.2.3)

Using Taylor expansion, we see that

|θ(F (ry + z) − F (ry))| < HF |P |∆−d max
1≤i≤d

max{|z|i(|r||y|)d−i}

< HF |P |∆−d max
1≤i≤d

{|r|i|P |d−i}

≤ HF |P |∆−d max
1≤i≤d

{|P |d−i(1−∆)}

≤ HF |P |2∆−1,

(4.2.4)

where we used that the maximum in the penultimate line occurs at i = 1, because ∆ < 1/2.
In particular, as ∆ < 1/2, we have |θ(F (ry + z) − F (ry))| < q−1 for |P | sufficiently large
and hence ψ(θF (ry + z)) = ψ(θF (ry)) for α ∈ M(∆). Taking a = 0 and r = 1 in (4.2.3)
shows that

S(θ) = |r|n
∑︂

|y|< |P |
|r|

ψ(θF (ry)).

If we define
Sa,r =

∑︂
|x|<|r|

ψ

(︄
aF (x)
r

)︄

for a ∈ O, we can thus conclude

S(α) = |r|−nSa,rS(θ) (4.2.5)

for α ∈ M(∆).
The next step is to replace S(θ) by an integral. Using the fact that |θ| < |P |∆−d, an argument
parallel to (4.2.4) shows that ψ(θF (y)) = ψ(θF (y + z)) for any z ∈ Tn. Integrating z over
Tn implies

S(θ) =
∫︂
Tn

∑︂
|y|<|P |

ψ(θF (y + z))dz =
∫︂

|x|<|P |
ψ(θF (x))dx (4.2.6)

upon making the change of variables x = y + z. In addition, after two obvious changes of
variables we have∫︂

|θ|<|P |∆−d

∫︂
|x|<|P |

ψ(θF (x))dxdθ = |P |n
∫︂

|θ|<|P |∆−d

∫︂
Tn
ψ(θP dF (x))dxdθ

= |P |n−d
∫︂

|θ|<|P |∆

∫︂
Tn
ψ(θF (x))dxdθ,

(4.2.7)

where we used that F (Px) = P dF (x), which holds because F is homogeneous of degree d.
For r ∈ O+, let us define the complete exponential sum

Sr =
∑︂

|a|<|r|
gcd(a,r)=1

Sa,r
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4.2. Major and minor arcs

and for θ ∈ K∞ the integral
I(θ) =

∫︂
Tn
ψ(θF (x))dx.

As explained in Remark 4.2 the union in the definition (4.2.2) is disjoint, so that combining
(4.2.5), (4.2.6) and (4.2.7) hands us the identity∫︂

M(∆)
S(α)dα = |P |n−dS(|P |∆)σ∞(|P |∆), (4.2.8)

where for R > 0,
S(R) =

∑︂
r∈O+

|r|≤R

|r|−nSr

is the truncated singular series and

σ∞(R) =
∫︂

|θ|<R
I(θ)dθ

is the truncated singular integral.
Observe that taking |P | = |r| and θ = 0 in Proposition 4.1.7 hands us the estimate

|Sr| ≪ |r|1+n− n−σ

(d−1)2d−1 . (4.2.9)

In addition, the identity (4.2.6) may be used to derive the upper bound

I(θ) ≪ (1 + |θ|)− n−σ

(d−1)2d−1 . (4.2.10)

We can use (4.2.9) to deduce that the completed singular series

S =
∑︂

r∈O+

|r|−nSr

converges absolutely for n > σ + (d− 1)2d and that

|S − S(|P |∆)| ≪ |P |−δ (4.2.11)

for some δ > 0. Similarly, (4.2.10) shows that the completed singular integral

σ∞ =
∫︂

K∞
I(θ)dθ

converges absolutely if n > σ + (d− 1)2d and that

|σ∞ − σ∞(|P |∆)| ≪ |P |−δ′ (4.2.12)

for some δ′ > 0. Combining (4.2.8) with (4.2.11) and (4.2.12) therefore yields the following
result.

Proposition 4.2.3. Let n > σ + (d − 1)2d and suppose that char(K) > d. Then for
0 < ∆ < 1/2 we have ∫︂

M(∆)
S(α)dα = σ∞S|P |n−d +O(|P |n−d−κ)

for some κ > 0.
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In particular, Propositions 4.2.2 and 4.2.3 in conjunction with the identity (4.0.2) deliver us
the sought-after asymptotic formula

NF (P ) = σ∞S|P |n−d +O(|P |n−d−κ).

To understand when the main term in the asymptotic formula is positive, we have to take a
closer look at the constants σ∞ and S. We begin with the latter. A straightforward application
of the Chinese remainder theorem shows that

Sr1r2 = Sr1Sr2

whenever r1, r2 ∈ O+ are coprime. In particular, the singular series factors into the Euler
product

S =
∏︂
ϖ

σϖ,

where the product runs over all monic irreducible polynomials ϖ ∈ O+ and σϖ denotes the
ϖ-adic density

σϖ =
∑︂
k≥0

|ϖ|−knSϖk .

Note that for k ≥ 1, we have

Sϖk =
∑︂

|x|<|ϖ|k

⎛⎝ ∑︂
|a|<|ϖ|k

ψ

(︄
aF (x)
ϖk

)︄
−

∑︂
|a|<|ϖ|k−1

ψ

(︄
aF (x)
ϖk−1

)︄⎞⎠
= |ϖ|kv(ϖk) − |ϖ|k−1+nv(ϖk−1),

where for r ∈ O+ we have defined
v(r) = #{x ∈ (O/rO)n : F (x) ≡ 0 mod r}.

Therefore, for any m ≥ 1 we have a telescoping sum
m∑︂

k=0
|ϖ|−knSϖk = 1 +

m∑︂
k=1

|ϖ|k(1−n)v(ϖk) −
m∑︂

k=1
|ϖ|(k−1)(1−n)v(ϖk−1)

= |ϖ|m(1−n)v(ϖm)

which shows that
σϖ = lim

k→∞
|ϖ|k(1−n)v(ϖk).

The exponent 1 − n should be understood as a normalising factor which comes from the
fact that the dimension of V (F ) ⊂ An is n− 1. We can interpret σϖ thus as measuring the
density of ϖ-adic solutions to F (x) = 0. In particular, with the help of Hensel’s lemma one
can show that σϖ > 0 providing there exists a non-singular solution x ∈ On

ϖ to F (x) = 0,
where Oϖ is the ring of integers of Kϖ. If this holds for every monic irreducible polynomial
ϖ, then in view of the absolute convergence of S this is enough to guarantee that S > 0. If
n is small, then in some cases the truncated singular series S(R) grows like a power of log.
This is related to the logarithmic factor in Manin’s conjecture and may be interpreted roughly
as saying that a large Picard rank leads to “many” solutions modulo primes.
Turning to the singular integral, the orthogonality relation from Lemma 3.0.2 and Fubini’s
theorem imply that

σ∞ = lim
|P |→∞

∫︂
Tn

∫︂
|θ|<|P |

ψ(θF (x))dθdx

= lim
|P |→∞

|P | vol({x ∈ Tn : |F (x)| < |P |−1}).
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In complete analogy to the finite places one can show that σ∞ > 0 if there exists a non-singular
solution x ∈ Tn to F (x) = 0. In other words, the circle method allows us to not only establish
an asymptotic formula, but also the Hasse principle for the smooth locus of the projective
hypersurface V (F ) ⊂ Pn−1. Interpreted as a product of local densities, the term σ∞S matches
(up to a constant factor coming from the fact that we count all solutions and not just primitive
ones) the Tamagawa measure of the associated hypersurface that is part of Peyre’s constant
in Conjecture 2.3.3.

Theorem 4.2.4. Let n > σ + (d− 1)2d and suppose that char(K) > d. Then

NF (P ) = σ∞S|P |n−d +O(|P |n−d−κ)

for some κ > 0. In addition, σ∞ > 0 if there exists a non-singular solution x ∈ Tn to
F (x) = 0 and S > 0 if there exists a non-singular solution x ∈ On

ϖ to F (x) = 0 for every
monic irreducible ϖ ∈ O+.

Theorem 4.2.4 was first proved by Lee in his PhD thesis [131]. It is the function field analogue
of the seminal work by Birch [16] over Q. In fact, both Birch and Lee work in the more
general context of complete intersections X ⊂ An that are defined by R homogeneous forms
of degree d. In this case the asymptotic formula has leading term σ∞S|P |n−dR, where σ∞
and S are the corresponding singular integral and singular series for the complete intersection
F1 = · · · = FR = 0. For complete intersections one has to replace σ by

σX = dim{x ∈ An : rk(J(x)) < R},

where J(x) = (∂Fi

∂xj
)1≤i≤R,1≤j≤n is the Jacobian matrix of X. Note that unless X is a

hypersurface, σX does not necessarily agree with the dimension of the singular locus of X.
This has led to a lot of confusion in the literature and is for example incorrectly stated in
Lee’s thesis [131]. Birch and Lee are able to produce an asymptotic formula for the counting
function associated to F1, . . . , FR providing that

n ≥ σX + 1 +R(R + 1)(d− 1)2d−1.

Skinner [186] generalised Birch’s result to general number fields and in fact Lee [131] also
proved the analogous result over arbitrary global function fields, assuming char(K) > d.
One of the main features of the circle method is that when it works, it allows one to establish the
smooth Hasse principle for the underlying variety. In addition, by imposing extra congruence
conditions one can also verify the weak approximation property. This was done by both
Lee [131] and Skinner [186]. Over function fields, the Hasse principle is less interesting in the
range of variables where the circle method applies. Indeed, the theory of Lang–Tsen fields
implies that any variety Y ⊂ Pn−1 defined by forms F1, . . . , FR of degrees d1, . . . , dR has a
rational point over a global function field providing only that n > d2

1 + · · · + d2
R. However,

establishing weak approximation or an asymptotic formula for the number of rational points of
bounded height remains a challenging problem.
In most applications of the circle method the bottleneck lies within the estimation of the minor
arcs and requires n to be very large with respect to d. Over Q, the asymptotic evaluation
of the major arcs in Proposition 4.2.3 is already known for hypersurfaces to hold as soon as
n > σ + 4(d − 1) thanks to work of Nguyen [152]. For most α ∈ T, we expect the values
ψ(αF (x)) to be uniformly distributed among the unit circle for x ∈ On, so that an application

33



4. The circle method

of the central limit theorem suggests that typically |S(α)| ≈ |P |n/2. As the expected main
term is of order |P |n−d, with the circle method alone it appears to be very difficult to establish
an asymptotic formula for NF (P ) unless n > 2d, even though Manin’s conjecture suggests
an asymptotic already for n > d. In practice, we usually stay very far from the “square root
barrier”. However, there are examples where one can get very close to the theoretical limit
and one such instance will be the subject of Chapter 5.

4.3 Diagonal forms
A form of the shape F (x) = ∑︁n

i=1 aix
d
i ∈ O[x1, . . . , xn] with a1 · · · an ̸= 0 is called a diagonal

form. In applications of the circle method, diagonal forms have a special place, because their
particular shape allows for new arguments to be brought into play. An important ingredient
consists of employing mean value estimates, as we shall now explain. Let

T (α) =
∑︂
x∈O

|x|<|P |

ψ(αxd),

so that
NF (P ) =

∫︂
T

n∏︂
i=1

T (aiα)dα.

Remark. At this moment it is good to see why the circle method is particularly powerful when
the number of variables is large compared to the degree. Indeed, if we achieve an upper
bound of the form |T (α)| ≪ |P |1−δ for α ∈ m(∆), then since |ai| ≪ 1 we immediately get∏︁n

i=1 |T (aiα)|n ≪ |P |n−nδ, so that increasing the number of variables amplifies the saving we
get in the estimates for the exponential sum involved.

For any 0 ≤ s ≤ ⌊n
2 ⌋, an application of Hölder’s inequality yields

∫︂
m

n∏︂
i=1

|T (aiα)|dα ≤
n∏︂

i=1

(︃∫︂
m

|T (aiα)|ndα
)︃1/n

≤ sup
α∈m

i=1,...,n

|T (aiα)|n−2s
n∏︂

i=1

(︃∫︂
T

|T (aiα)|2sdα
)︃1/n

.
(4.3.1)

Upon defining

Kd(P ) = #{x ∈ O2s : |x| < |P |, xd
1 + · · · + xd

s = xd
s+1 + · · · + xd

2s}

and using the orthogonality relation (4.0.1), the integral above may be evaluated as∫︂
T

|T (aiα)|2sdα = Kd(P ).

If α ∈ m(∆), then Weyl’s inequality in Proposition 4.1.7 gives

|T (aiα)| ≪ |P |1−δ (4.3.2)

for some δ > 0. Thus, if we have an upper bound of the expected order of magnitude

Kd(P ) ≪ |P |2s−d+ε, (4.3.3)
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4.3. Diagonal forms

we can show that the contribution from the minor arcs to NF (P ) is negligible. The main
ingredient to achieve (4.3.3) is Vinogradov’s mean value theorem. For any d, s ≥ 1, let

Js,d(P ) = #{x ∈ O2s : |x| < |P |, xk
1 + · · · + xk

s = xk
s+1 + · · · + xk

2s for 1 ≤ k ≤ d}.

By taking xi = xs+i for i = 1, . . . , s, we easily obtain the lower bound

Js,d(P ) ≫ |P |s. (4.3.4)

Alternatively, for h ∈ Od, we may consider Js,d(P,h), which counts solutions x ∈ O2s with
|x| < |P | to the system of equations

s∑︂
i=1

(xk
i − xk

s+i) = hk for k = 1, . . . , d.

Upon defining
U(α) =

∑︂
x∈O

|x|<|P |

ψ(α1x+ · · · + αdx
d)

for α ∈ Td, by (4.0.1) we have

Js,d(P,h) =
∫︂
Td

|U(α)|2sψ(−h · α)dα ≤ Js,d(P ).

A necessary condition for the system of equations in the definition of Js,d(P,h) to be soluble
is clearly |hk| ≪ |P |k for k = 1, . . . , d and the number of such h ∈ Od is O(|P |d(d+1)/2), so
that ∑︂

h∈Od

|hk|≪|P |k

Js,d(P,h) ≪ |P |d(d+1)/2Js,d(P ).

The left hand side is easily seen to be ≫ |P |2s, so that

Js,d(P ) ≫ |P |2s−d(d+1)/2. (4.3.5)

The main conjecture of Vinogradov asserts that there is a matching upper bound to (4.3.4)
and (4.3.5):

Js,d(P ) ≪ε |P |s+ε + |P |2s−d(d+1)/2+ε (4.3.6)
for any s, d ≥ 1. After a great body of work, the conjectured estimate (4.3.6) has been
resolved in full by Bourgain, Demeter and Guth [20] and Wooley [211, 212]. The former work
is only concerned about Q, while Wooley’s method of nested efficient congruencing is flexible
enough to establish (4.3.6) over any global field K as long as char(K) = 0 or char(K) > d.
The connection between Js,d(P ) and Kd(P ) is revealed through the following simple observa-
tion. If |x| < |P |, then certainly |∑︁s

i=1(xk
i − xk

s+i)| ≪ |P |k, so that

Kd(P ) =
∑︂

h∈Od−1

|hk|≪|P |k

∫︂
Td

|U(α)|2sψ(−α1h1 + · · · − αd−1hd−1)dα

≪ |P |d(d−1)/2Js,d(P ).

In particular, taking s = d(d+ 1)/2, it follows from (4.3.6) that

Kd(P ) ≪ |P |d(d+1)−d+ε = |P |2s−d+ε.
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4. The circle method

Together with (4.3.1) and (4.3.2) this shows that
∫︂
m(∆)

n∏︂
i=1

|T (aiα)|dα ≪ |P |n−d−δ

for some δ > 0 if char(K) > d and n > d(d+ 1). In addition, for a diagonal form it is known
that ∫︂

M(∆)

n∏︂
i=1

T (aiα)dα = σ∞S|P |n−d +O(|P |n−d−δ)

assuming only that n > 2d and char(K) ∤ d by [127, Theorem 30]. In particular, for a diagonal
form we can obtain an asymptotic formula, and likewise establish weak approximation by
adding extra congruence conditions whenever n > d(d+ 1) and char(K) > d. This should be
compared with Theorem 4.2.4, where the number of variables grows exponentially with d.

An alternative to Vinogradov’s mean value theorem is Hua’s inequality. It states that∫︂
T

|T (α)|2ddα ≪ε |P |2d−d+ε

whenever char(K) > d. It is a classical result over Q and was extended to Fq(t) by Kubota in
his PhD thesis [127]. Unlike Vinogradov’s mean value theorem, Hua’s inequality can be proved
fairly easily, only relying on the divisor estimate. It allows one to establish an asymptotic
formula for NF (P ) when F is diagonal whenever n > 2d. Observe that this is superior to
what can be achieved using Vinogradov’s mean value theorem only when d ∈ {2, 3, 4}.

4.4 Delta method
A major innovation in the circle method is found in the work of Kloosterman [123], in which he
essentially uses the Farey dissection of the unit interval together with the Poisson summation
formula to obtain cancellations in the sum S(a/r+θ) when averaged over a modulo r such that
gcd(a, r) = 1. Exploiting this extra averaging is called a Kloosterman refinement. A classical
implementation of the circle method for non-singular quadratic forms F ∈ O[x1, . . . , xn]
requires n ≥ 5 to get an asymptotic formula for NF (P ), while Kloosterman’s approach is
capable of handling n = 4.

Building on work of Duke, Friedlander and Iwaniec [69], Heath-Brown [100] used a smooth
decomposition of the delta symbol to develop an alternative to the classical circle method
that is particularly powerful when dealing with forms of small degree. Following work of
Browning and Vishe [37], we will now explain the delta method in more detail in the case
K = Fq(t), where it is much simpler to set up. In fact, it turns out to be a direct consequence
of combining Dirichlet’s approximation theorem with the Poisson summation formula, so that
it is disputable whether it should really be called “delta method” over Fq(t).

Let Q ≥ 1 be an integer. Then thanks to the ultrametric property of the norm, Proposition 4.2.1
already gives a partition of the unit interval. Indeed, we have

T =
⨆︂

r∈O+

|r|≤ˆ︁Q
⨆︂

a∈O
|a|<|r|

gcd(a,r)=1

{︄
α ∈ T :

⃓⃓⃓⃓
α− a

r

⃓⃓⃓⃓
<

1ˆ︁Q|r|

}︄
,
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4.4. Delta method

which via the orthogonality relation (4.0.1) implies

∑︂
r∈O+

|r|≤ˆ︁Q
∑︂
a∈O

|a|<|r|
gcd(a,r)=1

ψ
(︃
ax

r

)︃ ∫︂
|θ|<ˆ︁Q−1|r|−1

ψ(θx)dθ =

⎧⎨⎩1 if x = 0,
0 if x ∈ O \ {0}.

The analogue of this identity is the starting point in Heath-Brown’s delta method and paves
the way for a double Kloosterman refinement, meaning that one also exploits cancellation
when averaging over r. Over the integers the integral over θ is replaced by a more complicated
function. The reason why the set-up in positive characteristic is so much simpler can be
attributed to the fact that the indicator functions of intervals are already smooth in an
appropriate sense, while over the integers one has to “smoothen” them first.
The next step is to evaluate the exponential sum S(a/r + θ) via the Poisson summation
formula as stated in Proposition 3.0.5, which after maneuvering some of the terms and a
change of variables leads to an identity of the form

NF (P ) = |P |n
∑︂

r∈O+

|r|≤ˆ︁Q
|r|−n

∫︂
|θ|<ˆ︁Q−1|r|−1

∑︂
v∈On

Sr(v)Ir(v, θ)dθ, (4.4.1)

where
Sr(v) =

∑︂
a mod (r)
(a,r)=1

∑︂
x mod (r)

ψ

(︄
aF (x) + v · x

r

)︄

and
Ir(v, θ) =

∫︂
Tn
ψ
(︃
θF (Px) + Pv · x

r

)︃
dx

are a complete exponential sum modulo r and an oscillatory integral respectively.
A crucial difference to the classical circle method is that there is no division into major and
minor arcs. Instead, via Poisson summation we are aiming at evaluating the exponential sum
S(α) asymptotically on the whole unit interval, with the expectation that the main term is
coming from v = 0 and the remaining contribution makes up a negligible error term. This
is not always true, however. In Chapter 5 we will see that for cubic surfaces, zeros of the
dual form make up a main term in the asymptotic formula that corresponds precisely to the
contribution coming from rational points on lines.
Let us now explain how to deal with the expression (4.4.1). Firstly, via the method of non-
stationary phase, one can show that Ir(v, θ) = 0 unless |v| ≪ |r|/|P |. Moreover, if one goes
through the analysis carefully, it transpires that the optimal choice of ˆ︁Q is of size |P |d/2. In
particular, in the generic case |r| = ˆ︁Q, we can truncate the sum to |v| ≪ |P |d/2−1. This
already makes the sum shorter if d ≤ 3, but offers no advantage if d ≥ 4. Secondly, the sums
Sr(v) are multiplicative with respect to r. To estimate them, we can thus reduce to the case
of prime powers r = ϖk. The most difficult case is when k = 1, in which case Sϖ(v) is a
complete exponential sum over a finite field that can be estimated efficiently using Deligne’s
resolution of the Weil conjectures [66, 67], providing the singular locus of the hypersurface
under consideration is not too large. Thirdly, to estimate Sϖk(c) when k ≥ 2, one typically
uses more elementary techniques that resemble the stationary phase approach that one can
use to estimate Ir(c, θ). However, this does not always lead to upper bounds of the desired
strength. Instead one can estimate the average ∑︁|v|≪|r|/|P | |Sr(v)| when r is square-full, which
turns out to be rather involved.
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4. The circle method

When estimating the exponential sum Sr(c) one can already exhibit a Kloosterman refinement
by taking into account the sum over the numerator. Moreover, in the case of quadratic forms,
for generic square-free r, they can be evaluated explicitly through Gauss sums. Via Mellin
inversion this allows one to relate the average ∑︁r Sr(c) to certain Dirichlet L-functions and gain
extra cancellation when summing over r, which is precisely the double Kloosterman refinement
mentioned earlier. For cubic forms, the same strategy leads to a family of Hasse–Weil L-
functions associated to hyperplane sections of the corresponding cubic hypersurface. Little is
known about these L-functions in the integer setting, but assuming standard conjectures such
as the generalised Riemann hypothesis, analytic continuation and the existence of a functional
equation, Hooley [116] was able to deal with cubic forms in 8 variables. Over Fq(t) these
standard conjectures about Hasse–Weil L-functions are known thanks to work of Grothendieck
and Deligne’s resolution of the Riemann hypothesis. Browning and Vishe [37] exploited this
fact and proved the analogue of Hooley’s result unconditionally over Fq(t). In Chapter 5 we
will follow a similar strategy to obtain almost optimal upper bounds for diagonal cubic forms
in 6 variables over Fq(t).
So far we have only talked about applications of the circle method to counting rational points
on hypersurfaces. In fact, with the classical circle method one can already deal with complete
intersections, as demonstrated by Birch [16]. If one would like to use an analogue of the delta
method, the situation becomes more complicated. Munshi [149] used a nested version of the
delta method to produce an asymptotic formula for the number of rational points of bounded
height on smooth complete intersections of two quadrics in 11 variables over the integers. A
major step forward was made by Vishe [202]. He developed a Farey dissection of T2 over
Fq(t), thereby allowing for a double Kloosterman refinement. This enabled him to deal with
smooth complete intersections of two quadrics in 9 variables. Chapter 6 is concerned with
generalising his approach to handle intersections of a cubic and a quadratic hypersurface. This
requires extending his Farey dissection to lopsided boxes to take into account the different
degrees of the defining forms.

4.5 Results obtained using the circle method
Having explained the basic mechanism underlying the circle method and some of its extensions,
we conclude this chapter by a survey of results in the context of rational points that have been
obtained using the circle method. Let K be a global field and F1, . . . , FR ∈ K[x1, . . . , xn] be
homogeneous forms of degree d1, . . . , dR respectively. We shall write d = (d1, . . . , dR).
We denote by X ⊂ Pn−1 the projective variety cut out by F1 = · · · = FR = 0 and assume
that it is a complete intersection. We write U ⊂ An for the affine cone of X. Recall the Birch
singular locus

BSing(X) = {x ∈ An : rk(J(x)) < R},

where J(x) = (∂Fi

∂xj
(x))1≤i≤R,1≤j≤n is the Jacobian matrix of U . Let σX be the dimension of

BSing(X) and define
Bd,n = 1 +R(R + 1)(d− 1)2d−1.

Birch [16] has obtained an asymptotic formula for

NF1,...,FR
(P ) = #{x ∈ Zn : F1(x) = · · · = FR(x) = 0, |x| < P}

as P → ∞ precisely when F1, . . . , FR ∈ Z[x1, . . . , xn] are forms of degree d and n ≥ σX +Bd,n.
We will use this result as a benchmark, which we will compare other results to. Let us begin by
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4.5. Results obtained using the circle method

reviewing some general results in Table 4.1 for complete intersections when d = d1 = · · · = dR

that improve upon Birch’s result.

number of variables field conditions author(s)
n ≥ σX + (d− 1

2

√
d)2d Q R = 1 Browning–Prendiville [31]

n ≥ 1 + σX + 3
4d2

d − 2d Q 3 ≤ d ≤ 9 and R = 1 Browning–Prendiville [31]
n ≥ d2 − d+ 2⌊

√
2d+ 2⌋ − 1 char(K) = 0 or char(K) > d diagonal form Wooley [212]

n ≥ 1 +R(d2d + 1) Q F1, . . . , FR generic when d > 3 Rydin Myerson [165, 166, 167]

n ≥ 1 +R(d(d− 1)2d + 1) Fq(t), q > (d− 1)n

and char(Fq) > d
F1, . . . , FR ∈ Fq[x1, . . . , xn]

and X smooth Browning–Vishe–Yamagishi [45]

Table 4.1: Improvements on Birch’s result for arbitrary degrees.

The result of Browning and Prendiville [31] essentially uses a combination of all the tools we
have at our disposal to estimate |S(α)|. This includes d− 3 applications of van der Corput
differencing, which is followed by the Poisson summation formula to estimate the resulting
cubic exponential sum, Weyl differencing or a combination of both. Wooley’s work uses the
advances on Vinogradov’s mean value theorem, that we have already mentioned in Section 4.3.
Rydin Myerson result is particularly powerful compared to Birch’s result when R is large, since
the number of variables is only required to grow linearly in R compared to the quadratic
growth stipulated by Birch. To achieve this, he establishes a sort of “respulsion principle” for
the exponential sums involved, from which he deduces that the measure of the set on which
the exponential sum is large must be small. This involves a certain auxiliary inequality, which
he can only show to hold for generic systems of forms. When d ∈ {2, 3}, he is able to remove
the genericity assumption [166, 167]. The work of Browning, Vishe and Yamagishi is the
function field analogue of Rydin Myerson’s approach. They are able to remove the genericity
assumption for any degree. The price they pay is that they require q to be somewhat larger
than in usual applications of the circle method, that the forms are already defined over the
constant field Fq and slightly stronger assumptions on the number of variables involved.
One of the disadvantages of Birch’s theorem is that it only applies to systems of forms of equal
degree. A priori it is not clear whether a generalisation to systems of forms of different degrees
is even possible, since the process of Weyl differencing eliminates the appearance of any form
of small degree. Schmidt [180] was the first one to find a way that overcomes this difficulty.
However, the bound he obtains on the required number of variables grows quite rapidly and is
difficult to compute. This was substantially improved when Browning and Heath-Brown [40]
revisited the problem in 2014. Although their most general result is too complicated to state
here, we illustrate the strength of their result with two examples. Let X ⊂ Pm be a smooth
variety. Then they are able to obtain an asymptotic formula for the number of rational points
of bounded height on X and establish the Hasse principle whenever

dim(X) ≥ (deg(X) − 1)2deg(X) − 1.

What is surprising about this result is that apart from the smoothness assumption, there is
no extra assumption about the geometry of X. In particular, it is not even required to be a
complete intersection. If U ⊂ An is a complete intersection defined by two forms of degrees
d1, d2 with d1 > d2 such that X ⊂ Pn−1 is smooth, then they obtain an asymptotic formula
for the counting function involved as soon as

n > (2 + d2)(d1 − 1)2d1−1 + d22d2−1.

Frei and Madritsch [78] worked out the number field analogue of Browning and Heath-Brown’s
work.
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An alternative point of view is through the h-invariant of a form. Recall that the h-invariant
of a form F ∈ K[x1, . . . , xn] is the least positive integer h such that F can be written as

F = G1H1 + · · · +GhHh,

where G1, H1, . . . , Gh, Hh ∈ K[x1, . . . , xn] are forms of positive degree. Schmidt’s result [180]
already mentioned adopts this point of view and produces an asymptotic formula for the
relevant counting function if the h-invariant is large enough compared to the degree. In
general it seems difficult to compare the h-invariant to other geometric invariants of F . In
his recent work, Bernert [10] established an asymptotic formula for NF (P ) over Q when
F ∈ Z[x1, . . . , xn] is a cubic form whose h-invariant is at least 14.
There is a great deal of work in the literature on forms of small degree. Table 4.2 summarises
some of the results, in which “non-singular” refers to smoothness of the projective variety
X. A few remarks are in order to explain its content. Of course, we have already mentioned

d Bd,n number of variables field conditions author(s)
2 5 n ≥ 4 Q non-singular Kloosterman [123]

n ≥ 3 Q non-singular Heath-Brown [100]
n ≥ 4 even char(K) = 0 non-singular Getz [83]

3 17 n ≥ 10 Q non-singular Heath-Brown [98]
n ≥ 10 char(K) = 0 non-singular Browning–Vishe [33]
n ≥ 9 Q at worst isolated singularities Hooley [112, 113, 114, 115]
n = 8 Q non-singular, conditional Hooley [116]
n = 8 Fq(t), char(Fq) > 3 non-singular Browning–Vishe [34]
n ≥ 8 Q F diagonal Vaughan [201]
n ≥ 7 Q F diagonal, conditional Hooley [111]
n ≥ 7 Fq(t), char(Fq) ̸= 3 F diagonal Glas–Hochfilzer [88]
n = 6 Q F = ∑︁6

i=1 x
3
i , conditional Wang [204]

n = 6 Fq(t), char(Fq) > 3 F = ∑︁6
i=1 x

3
i , conditional Browning–Glas–Wang [38]

4 49 n ≥ 41 Q non-singular Browning–Heath-Brown [29]
n ≥ 40 Q non-singular Hanselmann [92]
n ≥ 30 Q non-singular Marmon–Vishe [139]

(2,2) 13 11 Q non-singular Munshi [149]
10 Q X contains 2 singular points

conjugate over an imaginary quadratic field Arala [2]

9 Q X contains two singular points
conjugate over Q(i) Browning–Munshi [30]

9 Fq(t), char(Fq) > 2 non-singular Vishe [202]
(3,2) - 29 Q non-singular Browning–Dietmann–Heath-Brown [37]

26 Fq(t), char(Fq) > 3 non-singular Glas [85]
(3,3) 49 39 Q non-singular Northey–Vishe [153]

Table 4.2: Improvements on Birch’s result for small degrees.

Kloosterman’s seminal work [123] on quadratic forms introducing what is now called a
“Kloosterman refinement”. Based on a smooth decomposition of the delta symbol by Duke,
Friedlander and Iwaniec [69], Heath-Brown [100] systematically developed the “delta method”
that we discussed in Section 4.4 and applied it to quadratic forms. Getz [83] pushed his
methods further by extending Heath-Brown’s work to the number field setting and even exhibits
a secondary main term in the asymptotic formula for quadratic forms in an even number of
variables. His student Tran [197] also worked out a secondary main term for diagonal quadratic
forms over Q in an odd number of variables.
The “conditional” in the work of Hooley [116] refers to standard conjectures about Hasse-Weil
L-functions attached to cubic hypersurfaces that we already discussed in Section 4.4. The
work of Wang [204] additionally assumes a square-free sieve conjecture and most importantly
a form of the ratios conjecture for averages of Hasse-Weil L-functions parameterised by
hyperplane sections of the Fermat cubic fivefold. Browning, Wang and the author [38] have
adapted Wang’s approach in the function field setting and were able to remove all conditional
assumptions except for the ratios conjecture.
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Aside from the results listed in Table 4.2, there is other important work established using the
circle method, even though it falls short of producing an asymptotic formula. Most notably, in
a body of work Davenport [62, 59, 60] showed that any cubic form in at least 16 variables over
Q admits a non-trivial zero. His argument considers two alternatives: either the cubic form
has a zero for “geometric reasons”, or there is enough extra structure which makes the circle
method applicable. This was subsequently improved upon in Heath-Brown’s seminal work [105]
on cubic forms in 14 variables, in which he adds averaged van der Corput differencing into the
circle method’s arsenal. Bernert and Hochfilzer [11] have translated his approach to imaginary
quadratic fields and it would be interesting to see whether one can make it work over arbitrary
number fields.
Browning and Heath-Brown’s treatise [29] on quartic forms in 41 variables is a precursor
of Browning and Prendiville’s work [31] on forms in arbitrary degree, whose method we
already explained above. Hanselmann [92] was able to save an extra variable by introducing
Heath-Brown’s averaged version of van der Corput differencing compared to the pointwise
van der Corput differencing employed by Browning and Heath-Brown. This was substantially
improved by Marmon and Vishe [139], who managed to save 10 more variables by incorporating
a Kloosterman refinement.
Considering the case of complete intersections, most effort has been concentrated on the
intersection of two quadrics. Munshi [149] has developed a nested version of the delta method,
allowing him to obtain an asymptotic formula for as few as 11 variables. Browning and
Munshi [30] are even able to reduce this to 9 variables in very special circumstances. This was
generalised by Arala [2], whose most general result requires 10 variables, where the loss of one
variable is solely attributed to the case when an imaginary quadratic number field does not
have class number one. In positive characteristic, Vishe [202] has made substantial progress by
developing a Farey dissection of the “unit square” T2, which leads to an identity that should
be thought of as analogous to a two-dimensional version of the delta method. In forthcoming
work of Li, Rydin Myerson and Vishe this approach is adapted to the rational numbers.
Browning, Dietmann and Heath-Brown [37] combined Poisson summation with a sophisticated
version of Weyl differencing to treat non-singular intersections of cubic and quadratic forms
over Q in 29 variables or more. By refining Vishe’s Farey dissection of the unit square, the
author [85] could incorporate a Kloosterman refinement over Fq(t), thereby reducing the
number of variables required to 26.
For intersections of two cubic forms, Northey and Vishe [153] use an averaged version of van
der Corput differencing followed by Kloosterman refinement to save 10 variables compared to
Birch’s result.
Finally, we want to end this chapter by highlighting applications of the circle method to the
study of rational points that go beyond the setting of complete intersections inside projective
space. Schindler [176] generalised Birch’s result to bi-projective hypersurfaces inside Pn1 ×Pn2

over Q of bi-degree (d1, d2). Whereas a naive adaptation of Weyl differencing would require
d1 + d2 − 1 differencing steps, the key observation here is that d1 − 1 iterations of differencing
for one variable and d2 − 1 for the other suffice. Hochfilzer [109] obtained results for systems
of forms in bi-projective space by combining Schindler’s approach with Rydin Myerson’s version
of the circle method.
Another generalisation is due to Brandes [23]. In her work, she is able to asymptotically count
Q-linear subspaces contained in complete intersections that go beyond a naive adaptation of
Birch’s approach. Flores [75] has shown how to adapt the circle method to quartic forms in
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weighted projective space, which under favourable circumstances allow him to achieve the
theoretical limit of the circle method that is suggested by the “square root barrier”. Another
instance where one can get close to the “square root barrier” is that of special forms that are
built out of norm forms, as demonstrated by the work of Birch, Davenport and Lewis [14]
that was generalised to number fields independently by Schindler and Skorobogatov [178] and
Swarbrick-Jones [191].
There has also been some activity surrounding the Birch singular locus. In particular, the
work of Schindler [177], Dietmann [68] and Yamagishi [213] is concerned with replacing it by
another invariant that in some instances can be strictly smaller than σX .
Recently Getz and his collaborators [3] introduced a “non-abelian” version of the delta method
that is capable of handling forms of low degree over central division algebras.
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CHAPTER 5
Diagonal cubic forms over function fields

This chapter is based on joint work with Hochfilzer [88].

5.1 Introduction
Given a non-singular cubic form F ∈ K[x1, . . . , xn] with coefficients in a global field K, we
are interested in the counting function

N(P ) = #{x ∈ On : |x| < |P |, F (x) = 0}, (5.1.1)

where O ⊂ K is the ring of integers, P ∈ O and | · | is a suitable absolute value on K. For
n ≥ 5, one generally expects an asymptotic formula of the form

N(P ) ∼ c|P |n−3 (5.1.2)

as |P | → ∞ for some constant c ≥ 0. For large values of n, this has been successfully
achieved using the Hardy–Littlewood–Ramanujan circle method. For K = Q, the current
state of the art is due to Hooley [112], who showed that n ≥ 9 suffices for (5.1.2) to hold. In
fact, conditional on unproved hypotheses about certain Hasse–Weil L-functions, in [116] he
pushed his approach further with the outcome that n ≥ 8 is enough. For K = Fq(t), using
the fact that the analogous hypotheses are in fact theorems by virtue of Deligne’s work [67],
Browning–Vishe [34] proved unconditionally the asymptotic formula (5.1.2) for n ≥ 8 and
char(K) > 3. However, for small values of n, an asymptotic remains largely out of reach.
Assuming F to be non-singular and diagonal, which means

F (x) =
n∑︂

i=1
Fix

3
i , Fi ∈ O \ {0}, (5.1.3)

Heath-Brown [106] has provided an upper bound of the form N(P ) ≪ |P |3+ε for n = 6 and
K = Q, matching the predicted asymptotic up to a factor of |P |ε. However, his work relies
on deep unproven conjectures about certain Hasse–Weil L-functions.

Our first goal of this work is to prove the analogous result unconditionally for K = Fq(t). One
of the main novelties of our work is that we also obtain results when char(K) = 2. Usually
the circle method breaks down in small characteristic due to a Weyl differencing process. We

43



5. Diagonal cubic forms over function fields

manage to bypass this issue by applying Poisson summation instead, along with a recursion
argument regarding the density of solutions of the dual form F ∗ of F .

From now on we write O = Fq[t] and we work with the absolute value given by |P | = qdeg P

for P ∈ O. By abuse of notation we also write |x| := maxi |xi| for x = (x1, . . . , xn) ∈ On.

Theorem 5.1.1. Let K = Fq(t) with char(K) ̸= 3. Suppose F is given by (5.1.3). Then for
n = 6 we have

N(P ) ≪ |P |3+ε.

As explained in Section 4.3, in applications of the circle method one frequently uses upper
bounds for the counting function

M(P ) = #
{︂
x ∈ O6 : x3

1 + x3
2 + x3

3 = x3
4 + x3

5 + x3
6 : |x| < |P |

}︂
to estimate the contribution from the minor arcs. Until now the strongest estimate followed
from Hua’s lemma, which gives M(P ) ≪ |P |7/2+ε. In a 1964 letter to Keith Matthews [63]
Davenport asked whether one could achieve the bound M(P ) ≪ |P |3+ε. Theorem 5.1.1
provides an affirmative answer to his question. In addition, in recent work Browning, Wang
and the author [39] were able to remove the epsilon for a certain weighted version of N(P ),
conditional on a suitable form of the ratios conjecture.

For n = 4 the situation is more complicated and one does not expect (5.1.2) to hold in general.
The cubic surface X ⊂ P3 might contain rational lines and any such will contribute ≫ |P |2
rational points to the counting function N(P ). According to Manin’s conjecture [76], one
expects

N◦(P ) ∼ c|P |(log|P |)ρ−1, (5.1.4)
where N◦(P ) only counts rational points that do not lie on any rational line contained in X
and ρ is the rank of the Picard group of X.

Over K = Q, partial progress was made by Heath-Brown [106], who showed how to isolate
the contribution to N(P ) coming from points on rational lines when F is diagonal in the delta
method. He also managed to give an upper bound of the form N◦(P ) ≪ |P |3/2+ε, again only
conditionally on certain conjectures about Hasse–Weil L-functions. As for n = 6, working
over K = Fq(t) allows us to establish the estimates unconditionally and we also succeed in
isolating the contribution coming from points on rational lines under certain restrictions on
the characteristic of K.

Theorem 5.1.2. Suppose F is given by (5.1.3). If char(K) > 3, then for n = 4, we have

N◦(P ) ≪ |P |3/2+ε,

where N◦(P ) is defined as N(P ) with the extra condition that x does not lie on any rational
line contained in the surface F = 0. These lines, if they exist, are of the form

bixi + bjxj = bkxk + blxl = 0,

for some bi, bj, bk, bl ∈ K such that
(︄
bi

bj

)︄3

= Fi

Fj

, and
(︄
bk

bl

)︄3

= Fk

Fl

,
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where {i, j, k, l} = {1, 2, 3, 4}.

While if char(K) = 2, then for n = 4 we have

N(P ) ≪ |P |2+ε.

In characteristic 2 the shape of the dual form of F prevents us from isolating the contribution
coming from rational points on rational lines to N(P ). However, we still manage to give a
non-trivial upper bound for the counting function N(P ), thereby providing evidence that the
main contribution to N(P ) comes from points on rational lines.

In Chapter 7, using different methods we will establish the estimate N◦(P ) ≪ |P |4/3+ε for
any smooth cubic surface over any global function field whose characteristic exceeds 3.

Our work also shares some similarity with the recent findings of Wang. In [204] he established
an asymptotic formula for N(P ) for diagonal cubic forms over Q when n = 6 conditional on
conjectures about mean values of ratios of L-functions and the square-free sieve. His approach
required to isolate the contribution coming from rational points on rational linear subspaces,
which he achieved in [205], similar to Heath-Brown’s [106] treatment when n = 4. Recently,
Browning, Wang and the author [39] translated Wang’s work to Fq(t) and were able to remove
all conditional hypotheses except for the ratios conjecture.

So far we have ignored the constant c appearing in the asymptotic formula (5.1.2), despite
its arithmetic significance. It encapsulates information about the existence of rational points
on X and has received a conjectural interpretation as an adelic volume by Peyre [156]. For
n ≥ 5 it is expected to be positive as soon as X(Kν) ̸= ∅ for all completions Kν of K, or in
other words, it reflects that X is expected to satisfy the Hasse principle. A key feature of the
circle method is that when it provides an asymptotic formula, it automatically confirms the
Hasse principle. So in particular, thanks to Hooley [112], we know that the Hasse principle
holds for non-singular cubic forms in n ≥ 9 variables over Q and the work of Browning–Vishe
establishes the Hasse principle for non-singular cubic forms over Fq(t) in at least 8 variables.

In fact, by imposing further congruence conditions on x in the definition of N(P ) in (5.1.1)
Browning–Vishe show that X satisfies weak approximation. Recall from Chapter 2 that this
means that under the diagonal embedding

X(K) −→
∏︂
ν

X(Kν)

the image of X(K) is dense with respect to the product topology. Using Theorem 5.1.1 as a
mean value estimate for the minor arc contribution, we can apply a classical version of the
circle method to draw the same conclusions for diagonal cubic forms in n ≥ 7 variables.

Theorem 5.1.3. Let K = Fq(t) with char(K) > 3 and F be a diagonal cubic form in n ≥ 7
variables. Then the hypersurface X ⊂ Pn−1 cut out by F satisfies the Hasse principle and
weak approximation.

One reason for being able to deal with fewer variables than Browning–Vishe is that when F is
diagonal we have better control over the exponential sums involved and that we get stronger
estimates for the density of solutions of bounded height of the dual form F ∗ of F . However,
this alone along with the estimates by Browning–Vishe on averages of exponential sums would
not be sufficient to prove Theorem 5.1.1–5.1.3. We additionally make use of slightly better
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5. Diagonal cubic forms over function fields

estimates through an argument that enables us to bypass the lack of a convenient form of
partial summation over K.

It should be noted that the Hasse principle over K = Fq(t) is an easy consequence of the
Lang–Tsen theory of Ci fields for n ≥ 10, which in fact establishes that X(K) ̸= ∅ in
this case. For smaller values of n, only little is known about the Hasse principle or weak
approximation over Fq(t). Colliot-Thélène [54] has established the Hasse principle for diagonal
cubic forms in n ≥ 5 variables when q ≡ 2 mod 3 and for n = 4 for the same range of q
under some additional combinatorial constraints on the coefficients of F . Furthermore, for
arbitrary non-singular cubic hypersurfaces X ⊂ Pn−1 Tian [195] has shown that the Hasse
principle holds when char(K) > 5 and n ≥ 6. Assuming the existence of a rational point,
Tian–Zhang [196] have also verified that X satisfies weak approximation at places of good
reduction whose residue fields have at least 11 elements as soon as n ≥ 4. In fact, the results
by Colliot-Thélène, Tian and Tian–Zhang were all shown to hold for any global function field
K of a smooth curve over a finite field.

As a further application of Theorem 5.1.1, we are able to improve the asymptotic version
of Waring’s problem over Fq(t) for cubes. Waring’s problem in degree d in this context is
concerned with finding the smallest value of n such that

P = xd
1 + · · · + xd

n

has a solution in x ∈ On for every P ∈ O with sufficiently large degree. Over Fq(t), in
contrast to the integer setting, there might be global obstructions for P to be representable
as a sum of d-th powers, for example if its leading coefficient is not a sum of n d-th powers in
Fq. Therefore, one usually restricts to P ∈ Jd

q [t], which is defined as the additive closure of
d-th powers in Fq[t]. In order to avoid cancellation in the xi variables coming from the terms
of degree larger than degP , it is more natural to consider the strict Waring problem. There,
one is concerned with finding the minimal number Gq(d) = n such that every sufficiently large
polynomial P ∈ Jd

q [t] can be written as

P = xd
1 + · · · + xd

n,

where deg xi ≤
⌈︂

deg P
d

⌉︂
. In order to study a more refined version of Waring’s problem,

we introduce the quantity ˜︁Gq(d), which is the smallest number n such that we obtain an
asymptotic formula for

Rn(P ) = #{x ∈ On : |x| ≤ q⌈
deg(P )

d ⌉, xd
1 + · · · + xd

n = P},

for P ∈ Jd
q [t] as deg(P ) → ∞. In his PhD thesis [127] Kubota tackled the asymptotic strict

Waring problem over Fq(t) and showed ˜︁Gq(d) ≤ 2d +1 whenever char(Fq) > d. The restriction
in Kubota’s work on the characteristic comes from Weyl differencing, producing a factor of d!
and hence rendering trivial bounds when estimating exponential sums if char(Fq) ≤ d. For
degrees d ≥ 4 this was improved by Liu–Wooley [136] by replacing Weyl differencing with an
application of the large sieve to also obtain results for char(Fq) ≤ d.

Returning to the case of cubes, in characteristic 2 the current state of the art is due to
Car–Cherly [51] who showed ˜︁G2h(3) ≤ 11. They managed to avoid Weyl differencing with an
application of Poisson summation along with a version of Weyl’s inequality in characteristic 2
developed in [50].

46



5.1. Introduction

Further, work by Gallardo [81] and Car–Gallardo [52] shows

Gq(3) ≤

⎧⎪⎪⎨⎪⎪⎩
7, if q /∈ {7, 13, 16}
8, if q ∈ {13, 16}
9, if q = 7.

Rather than using a circle method approach, the last set of bounds are achieved using
elementary arguments. As a result these methods do not produce an asymptotic formula,
hence do not yield new bounds for ˜︁Gq(3).
We can again use Theorem 5.1.1 as a minor arc mean value estimate in order to improve the
current best known bound for ˜︁Gq(3) for any q not divisible by 3 as well as for G7(3), G13(3)
and G16(3). Our work on Waring’s problem for cubes constitutes a significant improvement
on the current state of the art. In particular, our result improves the previously best known
upper bound of ˜︁Gq(3) by 4 variables if q is even and by 2 variables if q is odd.

Theorem 5.1.4. If char(Fq) ̸= 3, then we have ˜︁Gq(3) ≤ 7 and thus also Gq(3) ≤ 7.

This theorem is the function field counterpart of a result by Hooley [111], who proved the
asymptotic Waring problem for cubes over integers in n ≥ 7 variables conditional on hypotheses
on certain Hasse–Weil L-functions. We also obtain a power saving error term in the asymptotic
formula for Rn(P ). The best unconditional result in the integer setting is due to Vaughan [201],
who resolved the asymptotic Waring problem for cubes in 8 variables, although he obtained
only log savings in the error term.
To deduce Theorem 5.1.4 from Theorem 5.1.1, we require a power saving when estimating a
certain Weyl sum. For Waring’s problem this has been carried out by Car [50], which allows us
to establish Theorem 5.1.4 in characteristic 2. Although it would be possible to adapt the work
of Car adequately to handle the Weyl sums appearing in the treatment of weak approximation
and thus extend Theorem 5.1.3 to the case char(K) = 2, we have decided against including
such an adaptation here given the length of our paper .
While the techniques used to prove Theorems 5.1.1 – 5.1.4 are not applicable when char(K) =
3, one can almost trivially deal with the problems directly. In fact, studying the solutions
to the diagonal cubic equation (5.1.3) reduces to solving a system of linear equations. In
particular, the Hasse principle and weak approximation hold trivially. Further it is easy to see
that ˜︁Gq(3) = 1 holds when char(K) = 3.

Outline
To prove Theorem 5.1.1 and Theorem 5.1.2 we employ a technique known as the delta method
over Fq(t) developed by Browning–Vishe [34], but which is much simpler than the version
of Heath-Brown [106] invoked over the integers. The starting point of the delta method
is a smooth decomposition of the Kronecker delta function, a technique that goes back to
Duke–Friedlander–Iwaniec [69]. Over Fq(t), indicator functions of intervals are smooth in an
appropriate sense and so this decomposition is essentially rendered trivial.
In Section 5.2, we set up the circle method and arrive at an expression of the form

N(w,P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∑︂

c∈On

Sr(c)Ir(c),
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5. Diagonal cubic forms over function fields

for a weighted version of the main counting function, involving certain exponential sums Sr(c)
and oscillatory integrals Ir(c).
In Sections 5.3 and 5.4, we estimate the integrals Ir(c) and the exponential sums Sr(c),
respectively. More precisely, we obtain cancellations when averaging Sr(c) over r giving
essentially optimal bounds. These estimates are possible due to work by Deligne [67] and
the required analysis of the relevant L-functions has been carried out in [34, Section 3]. The
quality of the estimates of the exponential sums is connected to the dual form of the cubic
form. This prompts us to study its rational solutions in Section 5.5.
Classically, to combine these estimates one would use partial summation, a tool that is not
available in a useful form to us in the function field setting. In [34] this causes significant
difficulty, and in fact the approach by Browning–Vishe comes with a slight loss in the estimates
rendering them insufficient for our purposes. We can resolve this issue with Lemma 5.3.5,
where we show that Ir(c) only depends on the absolute value of r and so via q-adic summation
we can separate the quantities without any loss.
In Section 5.6, we combine the estimates using this new approach and finish our treatment in
the case n = 6, thereby proving Theorem 5.1.1. In the case char(K) = 2, it turns out that
the dual form F ∗ of F is again a non-singular cubic form. For this reason, in Section 5.6.3,
we can introduce a self-improving process in the proof of Theorem 5.1.1 and the second
part of Theorem 5.1.2 that turns any saving into the desired upper bound. Finally, we use
Theorem 5.1.1 as a mean value estimate in an application of the classical circle method to
deal with the asymptotic Waring’s problem for cubes and weak approximation for diagonal
cubic hypersurfaces in n ≥ 7 variables in Section 5.7.
If n = 4 and char(K) > 3 we need to deal separately with the terms coming from special
solutions of the dual form. This is the content of Section 5.8, where we show that these terms
correspond to points coming from rational lines on X.
We follow the convention that ε denotes and arbitraryily small positive real number whose
exact value might change from one line to the next. All of the implied constants throughout
this chapter are allowed to depend on ε, the cardinality of the constant field q and on the
form F .

5.2 Setting up the circle method
We will use the notation and material from Chapter 3.
Given a polynomial F ∈ O[x1, . . . , xn] and w ∈ S(Kn

∞), we are interested in the counting
function

N(w,P ) =
∑︂

x∈On

F (x)=0

w
(︃

x

P

)︃
.

For estimating the integrals appearing in our work, it is necessary to work with such a weighted
counting function, since we require ∇F to be bounded away from 0 on supp(w). To estimate
our original counting function defined in (5.1.1), it suffices to take w to be the characteristic
function of the set {x ∈ T : |x| = q−1}. Indeed, it follows that

N(w,P ) = #{x ∈ On : F (x) = 0, |x| = q−1|P |},

so that an upper bound of the shape N(P,w) ≪ |P |k yields N(P ) ≪ |P |k by summing over
|P |.
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For a fixed parameter Q ≥ 1 to be specified later, we deduce from Proposition 4.2.1 and the
remark directly afterwards together with the orthogonality relation from Lemma 3.0.2 that

N(w,P ) =
∑︂

r monic
|r|≤ˆ︁Q

∑︂′

|a|<|r|

∫︂
|θ|<|r|−1 ˆ︁Q−1

S(a/r + θ)dθ,

where ∑︁′
|a|<|r| means that we sum over a ∈ O with (a, r) = 1 only and

S(α) =
∑︂

x∈On

ψ(αF (x))w(x/P )

for α ∈ T. As explained in [34, Chapter 4], since w is a Schwartz-Bruhat function we can
evaluate S(θ + a/r) using the Poisson summation formula from Proposition 3.0.5 to obtain

N(w,P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∫︂

|θ|<|r|−1 ˆ︁Q−1

∑︂
c∈On

Sr(c)Ir(θ, c)dθ, (5.2.1)

where
Sr(c) =

∑︂′

|a|<|r|

∑︂
|x|<|r|

ψ

(︄
aF (x) + c · x

r

)︄
(5.2.2)

and
Ir(θ, c) =

∫︂
Kn

∞

w(x)ψ
(︃
θP 3F (x) + Pc · x

r

)︃
dx. (5.2.3)

The expression (5.2.1) is the starting point for our work and from now on we will mostly be
concerned about estimating the integrals Ir(θ, c) and the sums Sr(c).

5.3 Integral estimates
For f ∈ K∞[x1, . . . , xn], we denote by Hf its height, that is, the maximum of the absolute
values of its coefficients. Given γ ∈ K∞, w ∈ Kn

∞ and f ∈ K∞[x1, . . . , xn], integrals of the
form

Jf (γ,w) :=
∫︂

Kn
∞

w(x)ψ(γf(x) + w · x)dx (5.3.1)

appear quite frequently in our work. We shall now collect the required estimates for them.
Upon noting that w(x) = χT(x)−χt−1T(x), the next lemma follows directly from [34, Lemma
2.4].

Lemma 5.3.1. Let γ ∈ K∞ and w ∈ Kn
∞ be such that |w| > q and |w| ≥ Hf |γ|. Then

Jf (γ,w) = 0.

The next result [34, Lemma 2.7] is the main ingredient for estimating the integrals Jf (γ,w).

Lemma 5.3.2. We have ∫︂
Tn\Ω

ψ(γf(x) + w · x)dx = 0,

where Ω ⊂ Tn is given by

Ω =
{︂
x ∈ Tn : |γ∇f(x) + w| ≤ Hf max

{︂
1, |γ|1/2

}︂}︂
.
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In our setting, this leads to the following estimate.

Lemma 5.3.3. Suppose F ∈ K∞[x1, . . . , xn] is a non-singular cubic form. Let γ ∈ K∞ and
w ∈ Kn

∞ \ {0} be such that |w| ≫ 1. Then JF (γ,w) = 0, unless

|w| ≪ |γ| ≪ |w|,

in which case

JF (γ,w) ≪ vol({x ∈ supp(w) : |γ∇F (x) + w| ≪ |w|1/2}).

Proof. First note JF (γ,w) = 0 if |w| > max{q,HF |γ|} by Lemma 5.3.1. Since by assumption
1 ≪ |w|, we may thus assume 1 ≪ |w| ≪ |γ|. For a ∈ Fn

q \ {0}, let

wa(x) =

⎧⎨⎩1 if |x − at−1| < |t|−1,

0 else.
(5.3.2)

We can then write w(x) = ∑︁
a∈Fn

q \{0} wa(x), so that

JF (γ,w) =
∑︂

a∈Fn
q \{0}

∫︂
Tn
wa(x)ψ(γF (x) + w · x)dx

=
∑︂

a∈Fn
q \{0}

q−nψ(t−1w · a)
∫︂
Tn
ψ(γGa(y) + t−1w · y)dy,

(5.3.3)

where we performed the change of variables y = tx − a and wrote Ga(y) = F ((y + a)t−1).
From Lemma 5.3.2 we deduce that each inner integral is bounded by

vol({y ∈ Tn : |γ∇Ga(y) + t−1w| ≪ HGa|γ|1/2}),

which in turn may be bounded from above by

vol({x ∈ supp(wa) : |γ∇F (x) + w| ≪ HF |γ|1/2}), (5.3.4)

since HGa ≤ HF . Denote the set in (5.3.4) by Ωa. Note that since F is assumed to be
non-singular, we have ∇F (x) ̸= 0 for all x ∈ Ωa. Since supp(wa) is compact for every a,
this implies ∇F (x) ≫w 1 for all x ∈ Ωa. In particular, unless |w| ≫ |γ∇F (x)| ≫ |γ| the
sets Ωa are all empty and the integral vanishes. Finally the Lemma follows upon noting

vol(Ωa) ≪ vol({x ∈ supp(w) : |γ∇F (x) + w| ≪ |w|1/2}),

for any a ∈ Fn
q \ {0} and substituting this into (5.3.3).

Since we work with a diagonal cubic form F (x) = ∑︁n
i=1 Fix

3
i with Fi ∈ O \ {0}, we have

∇F (x) = (3F1x
2
1, . . . , 3Fnx

2
n). Therefore in order to find an upper bound for JF (γ,w) the

following lemma will be useful.

Lemma 5.3.4. Let a, b ∈ K∞ and consider the set

Pa,b = {x ∈ T : |x2 − a| < |b|}.

Then we have
vol(Pa,b) ≪ min{|b|1/2, |b||a|−1/2}.
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Proof. Note first that the result is trivial if a = 0 or b = 0. Hence we may write

a =
∑︂
i≤K

ait
i, and b =

∑︂
j≤M

bjt
j,

where aK , bM ̸= 0. We will proceed in two cases.
Case 1: |a| < |b|. Then via the ultrametric triangle inequality we note

|x2 − a| < |b| ⇐⇒ |x|2 < |b|,

for any x ∈ T. Thus vol(Pa,b) ≪ |b|1/2 = min{|b|1/2, |b||a|−1/2}.
Case 2: |a| ≥ |b|. Let x = ∑︁

i≤−1 xit
i ∈ T. Then |x2 − a| < |b| can only hold if |x|2 = |a|.

In particular K must be even, K ≤ −1 must hold and xK/2+1 = · · · = x−1 = 0. Write

x2 =
∑︂
ℓ≤K

Xℓt
ℓ,

where Xℓ = ∑︁
i+j=ℓ xixj. Then, requiring

|x2 − a| < |b| = qM

implies Xℓ = aℓ for ℓ = M, . . . ,K. Now XK = x2
K/2, so the condition XK = aK yields at

most two possible solutions for xK/2. Further, since

XK−r = 2xK/2xK/2−r +
∑︂

i+j=K−r
K/2−r<i,j<K/2

xixj,

we find inductively that a solution to x2
K/2 = aK uniquely determines xK/2−r for r =

1, . . . ,M +K. To summarise, in this case, there are at most two possibilities for the values
of the coefficients x−1, . . . , xM−K/2. Therefore we obtain

vol(Pa,b) ≪ vol
(︂
tM−K/2T

)︂
= qM−K/2 = |b||a|−1/2.

Finally, noticing that |b||a|−1/2 ≤ |b|1/2 if |a| ≥ |b| finishes the proof of this lemma.

In light of Lemma 5.3.4 we thus find

vol({x ∈ supp(w) : |γ∇F (x) + w| ≪ |w|1/2}) ≪
n∏︂

i=1
min{|w|−1/4, |wi|−1/2}

if F is a diagonal cubic form. Noting that the expression on the right hand side is ≫q 1 if
|w| ≪ 1 we infer from Lemma 5.3.3

JF (γ,w) ≪
n∏︂

i=1
min{|w|−1/4, |wi|−1/2}, (5.3.5)

for all γ ∈ K∞ and all w ∈ Kn
∞ \ {0}.

We will also have to deal with averages of Ir(θ, c) over θ, which are of the form

Ir(c) :=
∫︂

|θ|<|r|−1 ˆ︁Q−1
Ir(θ, c)dθ.

While we do not have a convenient form of partial summation available in the function field
setting, the next lemma will be crucial in replacing this tool.
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Lemma 5.3.5. Let r1, r2 ∈ O be such that |r1| = |r2|. Then Ir1(c) = Ir2(c).

Proof. Write r = r1 for brevity. We shall show that Ir(c) only depends on the absolute value
of r. Indeed, recalling (5.2.3), for c fixed we have

Ir(c) =
∫︂

|θ|<|r|−1 ˆ︁Q−1

∫︂
Kn

∞

w(x)ψ
(︃
θP 3f(x) + Pc · x

r

)︃
dxdθ

= |r|n
∫︂

Kn
∞

w(ry)ψ(Pc · y)
∫︂

|θ|<|r|−1 ˆ︁Q−1
ψ(θP 3r3f(y))dθdy, (5.3.6)

where we used Fubini’s theorem and applied the change of variables y = xr−1. It follows from
Lemma 3.0.2 that∫︂

|θ|<|r|−1 ˆ︁Q−1
ψ(θP 3r3f(y))dθ =

⎧⎨⎩(|r| ˆ︁Q)−1 if |P 3f(y)| < |r|−2 ˆ︁Q,
0 else.

We conclude that the value of the inner integral in (5.3.6) only depends on |r| for y and c
fixed. The claim now follows, since w only depends on the absolute value of its argument.

By the previous lemma, to estimate Ir(c) it thus suffices to consider the case r = tY for
integers Y ≥ 0. In the notation above, for r ∈ O \ {0}, c ∈ On, θ ∈ T and P ∈ O we have

Ir(θ, c) = JF

(︃
P 3θ,

P

r
c
)︃
.

Since Ir(θ, c) vanishes unless |P ||c|
|r| ≪ |θ||P |3 ≪ |P ||c|

|r| , we deduce from (5.3.5) the following
integral estimate.

Lemma 5.3.6. Let Y ≥ 0, c ∈ On \ {0}, and P ∈ O. Then

ItY (c) ≪ min
{︄

|c|ˆ︁Y |P |2
, ˆ︁Y −1 ˆ︁Q−1

}︄
n∏︂

i=1
min

⎧⎨⎩
(︄

|P ||c|ˆ︁Y
)︄−1/4

,

(︄
|P ||ci|ˆ︁Y

)︄−1/2
⎫⎬⎭ .

So far we have not yet achieved any non-trivial estimates for ItY (0) and in fact we will have
to do slightly better than the trivial bound for our treatment.

Lemma 5.3.7. Assume n ≥ 4. Let P ∈ O \ {0}. Then for any Y ≥ 1 we have

ItY (0) ≪ |P |−3.

Proof. Note that (5.3.3) together with (5.3.4) imply that

ItY (θ,0) ≪
∑︂

a∈Fn
q \{0}

vol(Ωa),

where wa is defined in (5.3.2) and

Ωa = {x ∈ supp(wa) : |θ∇F (x)| ≪ max{1, |θP 3|}1/2}.

As ∇F (x) ̸= 0 for any x ∈ wa and supp(wa) is compact, we have |∇F (x)| ≫ 1 for any
x ∈ supp(wa). As there are qn − 1 = O(1) possibilities for a, this implies that the set above
is empty unless |θ| ≪ |P |−3. As we have the trivial estimate vol(Ωa) ≪ 1, the claim of the
lemma easily follows.
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5.4. Exponential sum estimates

5.4 Exponential sum estimates
We want to estimate the sum

Sr(c) =
∑︂′

|a|<|r|

∑︂
|x|<|r|

ψ

(︄
aF (x) + c · x

r

)︄

=
∑︂′

|a|<|r|

n∏︂
i=1

∑︂
|x|<|r|

ψ

(︄
aFix

3 + cix

r

)︄
,

(5.4.1)

where F (x) = ∑︁n
i=1 Fix

3
i . The corresponding sum over the integers has already been subject

to thorough investigation by Heath-Brown [98] and Hooley [111]. Browning–Vishe [34] have
translated many of the properties to the function field setting, some of which we shall record
here.
The quality of our estimates is intimately connected to the dual form F ∗ of F , which is an
absolutely irreducible polynomial of degree 2n−2 ×3 whose zero locus parameterises hyperplanes
that have a singular intersection with the projective hypersurface cut out by F . As explained
by Wang [203, Appendix D], if F is diagonal and char(K) > 3, we can take

F ∗(c) =
(︄

n∏︂
i=1

Fi

)︄2n−2 ∏︂(︂
(F−1

1 c3
1)1/2 ± · · · ± (F−1

n c3
n)1/2

)︂
, (5.4.2)

where the inner product runs through all possible combinations of ±. In fact, in [203] this is
only shown for K = Q, but one can check that the requirement char(K) > 3 is sufficient
for (5.4.2) to hold. In characteristic 2, we have the following result.

Lemma 5.4.1. Let K be a field of characteristic 2 and F (x) = ∑︁n
i=1 Fix

3
i ∈ K[x1, . . . , xn]

be a non-singular cubic form. Then the dual form of F is given by

F ∗(c) =
(︄

n∏︂
i=1

Fi

)︄
n∑︂

i=1
F−1

i c3
i .

Proof. By definition the zero locus V (F ∗) ⊂ Pn−1 parameterises points c ∈ Pn−1 such that
the hyperplane c · x = 0 has a singular intersection with V (F ∗). This means, that there exists
x ∈ Pn−1(K) such that

rk
(︄

∇F (x)
c

)︄
= 1, c · x = 0 and F (x) = 0. (5.4.3)

Since we assume F to be non-singular, the rank condition implies that c is proportional to
∇F (x), that is, x2

i = λF−1
i ci for some λ ∈ K

× and i = 1, . . . , n. Any pair (x, c) having
this property then satisfies F (x) = 0 if and only if c · x = 0. Moreover, the third condition
in (5.4.3) is equivalent to

n∑︂
i=1

F
−1/2
i c

3/2
i = 0,

where we used that every element of K has a unique square-root as char(K) = 2. However,
again since we are in characteristic 2, this is is equivalent to

n∑︂
i=1

F−1
i c3

i = 0.

The result now follows after clearing denominators.
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5. Diagonal cubic forms over function fields

Note that if r1, r2 ∈ O are coprime, then

Sr1r2(c) = Sr1(c)Sr2(c), (5.4.4)

which follows readily from the Chinese remainder theorem. This essentially reduces the task of
estimating Sr(c) to prime power moduli. Indeed, suppose Sϖk(c) ≤ C|ϖ|kα for some α > 0
and some absolute constant C. Let ω(r) be the number of prime divisors of r. Then by
multiplicativity of Sr(c) we have

Sr(c) =
∏︂

ϖk∥r

Sϖk(c) ≤
∏︂

ϖk∥r

C|ϖ|kα = Cω(r)|r|α ≪ τ(r)|r|α ≪ |r|α+ε

by the usual estimate for the divisor function τ(r), see [35, Lemma 5.9].
Further, if ϖ is irreducible such that ϖ ∤ F ∗(c), then Browning–Vishe [34, Section 5] show

Sϖk(c) = 0 for k ≥ 2. (5.4.5)

5.4.1 Square-free moduli contribution
Deligne’s resolution of the Weil conjectures [66] shows that we get square-root cancellation
for the sums Sϖ(c) whenever ϖ is suitably generic:

Sϖ(c) ≪ |ϖ|(n+1)/2|(ϖ,∇F ∗(c))|1/2. (5.4.6)

However, this is not sufficient for our purposes. In the integer setting Hooley [111] was
the first to achieve an extra saving when averaging the sums Sr(c) over r by appealing to
certain hypotheses about Hasse–Weil L-functions associated to cubic threefolds. By virtue
of Deligne’s proof of the Weil conjectures [67] these hypotheses are in fact theorems in the
function field setting. This enabled Browning–Vishe [34, Lemma 8.5] to establish the following
result unconditionally.

Lemma 5.4.2. Suppose n is even and F ∗(c) ̸= 0. Then for any Z ≥ 0 and ε > 0, we have

∑︂
|r|≤ˆ︁Z

(r,∆F F ∗(c))=1

Sr(c)
|r|(n+1)/2 ≪ |c|ε ˆ︁Z1/2+ε,

where ∆F is the discriminant of F and by virtue of (5.4.5) r ranges over square-free values
only.

Remark. In fact Browning–Vishe have to consider averages of Sr(c) twisted by a Dirichlet
character of K∞ since they were unable to separate the integral Ir(θ, c) from summation.
However, we can resolve this issue with Lemma 5.3.5 allowing us to combine Lemma 5.4.2
with the integral bounds from Lemma 5.3.6 more efficiently.

5.4.2 Pointwise estimates
For B ∈ O fixed and a, r ∈ O \ {0} with (a, r) = 1, let

Sr(a, c) =
∑︂

|x|<|r|
ψ

(︄
aBx3 + cx

r

)︄
.
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In view of (5.4.1) upper bounds for Sr(a, c) directly transform into estimates for Sr(c). More-
over, by (5.4.4) it suffices to consider the case r = ϖk, where ϖ is irreducible. Hooley [111]
has provided upper bounds for the integer-analogue of the sum Sϖk(a, c) whenever ϖ ∤ B.
As explained by Heath-Brown [106], these estimates also hold if ϖ | B when we allow the
implied constant to depend on B. Hooley’s and Heath-Brown’s proofs of these results go
through almost verbatim in the function field setting and so we spare the reader from the
tedious exercise of reproducing them here. To state the final outcome, we need some notation.
First, we set {ϖk, c} = (ϖk, c) for k = 2 and for k ≥ 3, we define {ϖk, c} = |ϖ|−1 if ϖ ∥ c
and {ϖk, c} = (ϖk, c) else. For later use, we generalise this to square-full r by setting

{r, c} :=
∏︂

ϖk∥r

{ϖk, c}.

We then have

Sϖk(a, c) ≪ |ϖ|k/2|{ϖk, c}|1/4 for k ≥ 2. (5.4.7)

We shall also use an estimate of Hua [117, Lemma 1.1], whose proof, again, readily translates
to the function field setting. If g(x) = ∑︁d

i=0 gix
i ∈ O[x], then for any ϖ ∈ O irreducible we

have ∑︂
|x|<|ϖ|k

ψ

(︄
g(x)
ϖk

)︄
≪ |ϖ|k(1−1/d)|(ϖk, g0, . . . , gd)|1/d, (5.4.8)

where the constant depends only on ε and d. Originally this was stated in the case when
ϖ ∤ (g0, . . . , gd), but the factor |(ϖk, g0, . . . , gd)|1/d in the estimate accounts for the possibility
of ϖ | (g0, . . . , gd). Therefore we obtain

Sϖk(a, c) ≪ |ϖ|2k/3,

where the implied constant depends on ε but crucially not on a since we assumed ϖ ∤ a.
Using (5.4.1), we can immediately deduce the following lemma from (5.4.7) and (5.4.8), which
is the analogue of [106, Lemma 5.1.].

Lemma 5.4.3. It holds that
Sϖ2(c) ≪ |ϖ|2+n.

In addition, if (ϖk, c) = Hϖ and there at least m indices i such that (ϖk, ci) = Hϖ, then

Sϖk(c) ≪ |ϖ|k+2(n−m)k/3+mk/2|Hϖ|m/4.

5.4.3 Averages over square-full moduli
Suppose we are given a set of t indices T ⊂ {1, . . . , n} and positive integers Ci for i ∈ T .
For C := (Ci)i∈T we define R(C) ⊂ On to be the set of tuples c = (c1, . . . , cn) such that
|ci| = ˆ︁Ci if i ∈ T and cj = 0 whenever j ̸∈ T . Given Y ∈ Z>0, we are interested in averages
of the form

A(R(C), ˆ︁Y ) :=
∑︂

c∈R(C)
F ∗(c)̸=0

∑︂
r∈O

|r|=ˆ︁Y
|Sr(c)|, (5.4.9)

where r is restricted to square-full polynomials.
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Lemma 5.4.4. With the notation from above, we have

A(R(C), ˆ︁Y ) ≪ε
ˆ︁Y 1+n/2+(n−t)/6( ˆ︁Y ˆ︁C)ε#R(C),

where ˆ︁C = maxi∈T
ˆ︁Ci.

The proof of Lemma 5.4.4 is along the same lines as that of [106, Lemma 5.2], and so we
shall be brief.

Proof. First of all, we introduce some notation. Fix c ∈ R(C). For r ∈ O monic square-full,
we write

r = r∗
∏︂
i∈T

ri, (5.4.10)

where the various coprime factors r∗, ri are defined as follows. We let r∗ be the product of
those monic prime powers ϖk such that ϖk ∥ r and k = 2 or ϖ ∤ ci for i ∈ T . Moreover,
for i ∈ T , we define ri to be the product of monic prime powers ϖk ∥ r such that ϖ | ci,
but ϖ ∤ cj for any j ∈ T with j < i. In particular, any ri is cube-full. Since all the factors
in (5.4.10) are coprime, it follows from (5.4.4) that

Sr(c) = Sr∗(c)
∏︂
i∈T

Sri
(c).

Using the fact that Sϖk(c) = 0 if ϖ ∤ F ∗(c) for k ≥ 2 and the estimates (5.4.7) and (5.4.8),
we deduce that

Sr(c) ≪ η(r, c)|r|1+n/2+(n−t)/6+ε
∏︂

i,j∈T
|{ri, cj}|1/4,

where η(r, c) = 1 if ϖ | F ∗(c) for all primes ϖ | r∗ and η(r, c) = 0 else. Let us now fix the
absolute values of r∗ and of the various ri’s, say |r∗| = ˆ︁Y∗ and |ri| = ˆ︁Yi, and denote their
contribution to A(R(C), ˆ︁Y ) by A(Y∗,Y ), where Y = (Yi)i∈T . We then have

A(Y∗,Y ) ≪ ˆ︁Y 1+n/2+(n−t)/6+ε
∑︂

c∈R(C)
F ∗(c)̸=0

∑︂
|ri|=ˆ︁Yi

i∈T

∏︂
i,j∈T

|{ri, cj}|1/4Sc,

where we have suppressed the dependence of r∗ and of the ri’s on c in the notation and where

Sc =
∑︂

|r∗|=ˆ︁Y∗

η(r, c).

Heath-Brown’s argument for estimating Sc goes through almost verbatim in our setting and
gives Sc ≪ ( ˆ︁Y ˆ︁C)ε. Therefore, we have

A(Y∗,Y ) ≪ ˆ︁Y 1+n/2+(n−t)/6+ε( ˆ︁Y ˆ︁C)ε
∑︂

c∈R(C)
F ∗(c)̸=0

∑︂
|ri|=ˆ︁Yi

i∈T

∏︂
i,j∈T

|{ri, cj}|1/4.

To achieve the desired upper bound, we shall now only require that each ri is cube-full and
that ϖ | ci whenever ϖ | ri, so that in particular the ri’s do not depend on c anymore. Thus,
after setting

S(j) =
∑︂

|cj |=ˆ︁Cj

∏︂
i∈T

|{ri, cj}|1/4,
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we obtain
A(Y∗,Y ) ≪ ˆ︁Y 1+n/2+(n−t)/6+ε( ˆ︁Y ˆ︁C)ε

∑︂
|ri|=ˆ︁Ci

i∈T

∏︂
j∈T

S(j). (5.4.11)

It is again straightforward to verify that Heath-Brown’s argument continues to hold in our
setting, yielding ∑︂

|ri|=ˆ︁Ci
i∈T

∏︂
j∈T

S(j) ≪ ˆ︁Y (n+1)ε#R(C).

With a new choice of ε, we conclude

A(Y∗,Y ) ≪ ˆ︁Y 1+n/2+(n−t)/6( ˆ︁Y ˆ︁C)ε#R(C),

so that the statement of the lemma follows from the fact that there are only ˆ︁Y ε possibilities
for admissible tuples (Y∗,Y ).

5.5 Rational points on the dual hypersurface
In this section we study roots of the dual form F ∗ of F that was defined in (5.4.2). Our first
goal is to find an upper bound for the number of solutions F ∗(c) = 0 with |c| ≤ ˆ︁C when
char(K) > 3. In order to achieve this we closely follow the strategy of Heath-Brown [98,
Section 7]. The result of Lemma 5.5.2 is standard over the rational numbers, however we
could not find a proof in the literature for our setting and so we included a proof here.
If n = 4 and char(K) > 3 we call a solution c to F ∗(c) = 0 special if c1, . . . , c4 ̸= 0 and
there are indices i, j, k, l such that {i, j, k, l} = {1, 2, 3, 4} and

(F−1
i c3

i )1/2 + (F−1
j c3

j)1/2 = (F−1
k c3

k)1/2 + (F−1
l c3

l )1/2 = 0

holds for a suitable choice of square roots. We call a solution c to F ∗(c) = 0 ordinary if it is
not special. In particular, if char(K) = 2 every solution is ordinary.

Lemma 5.5.1. Assume char(K) > 3. If n = 6, then the number of solutions to F ∗(c) = 0
with |c| ≤ ˆ︁C is bounded by O( ˆ︁C3+ε). Moreover, if n = 4, then the number of ordinary
solutions to F ∗(c) = 0 with |c| ≤ ˆ︁C is bounded by O( ˆ︁C1+ε).

Before we can begin with the proof of this lemma, we need an auxiliary result. In the following
we fix ζ ∈ F×

q to be a representative of a non-trivial element in F×
q /F×,2

q . If char(Fq) > 2 this
certainly exists — we may for example pick ζ to be a primitive root of F×

q .

Lemma 5.5.2. Suppose char(K) > 3. Let m1, . . . ,mn ∈ O be a collection of distinct
square-free polynomials such that each mi is either monic or has leading coefficient ζ. Then
{√

m1, . . . ,
√
mn} is a linearly independent set over K.

Proof. We will prove the result by induction on n. The cases 1 ≤ n ≤ 3 can easily be verified
directly, so suppose n ≥ 4. Assume for a contradiction that λ1, . . . , λn ∈ K not all zero are
such that

n∑︂
k=1

λk

√
mk = 0.

Note that we may assume λi ≠ 0 for all i = 1, . . . , n since otherwise the result would follow
immediately from the induction hypothesis. In particular it is sufficient to show that there
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exists some index k with λk = 0. Since n ≥ 3 there exist two distinct indices i, j such that
mi/mj /∈ F×

q . From the n = 3 case it follows that Ki,j := K(√mi,
√
mj) is a Galois extension

of degree 4 over K. Thus there exists σ ∈ Gal(Ki,j/K) such that σ(√mi) = −√
mi and

σ(√mj) = √
mj. We may lift this to an element ˜︁σ ∈ Gal(Ks/K) where Ks is the separable

closure of K. Then we find

0 = ˜︁σ (︄ n∑︂
k=1

λk

√
mk

)︄
+

n∑︂
k=1

λk

√
mk = 2λj

√
mj +

∑︂
k ̸=i,j

˜︁λk

√
mk,

where ˜︁λk ∈ {0, 2λk}. From the induction hypothesis we get λj = 0, which yields the desired
result as remarked above.

Proof of Lemma 5.5.1. First note that F ∗(c) = 0 if and only if

(F−1
1 c3

1)1/2 + · · · + (F−1
n c3

n)1/2 = 0, (5.5.1)

for a suitable choice of square roots. Let mk ∈ O be a square-free polynomial, which is
either monic or has leading coefficient ζ. Say i ∈ I(k) if there exists some di ∈ O such that
Fic

3
i = mkd

2
i . From Lemma 5.5.2 we find that (5.5.1) implies∑︂

i∈I(k)
F−1

i di = 0.

We have c2
i | mkd

2
i and consequently ci | di since mk is square-free. Thus there exists ei ∈ O

such that di = ciei. Substituting this into the relation Fic
3
i = mkd

2
i we find ci = mkF

−1
i e2

i

and hence di = ciei = mkF
−1
i e3

i . Therefore F−1
i di = mkFi

(︂
ei

Fi

)︂3
and the preceding display

gives ∑︂
i∈I(k)

Fi

(︃
ei

Fi

)︃3
= 0. (5.5.2)

We will now estimate the number of solutions e to (5.5.2) such that |e| ≤ ˆ︁E =
√︂ ˆ︁C/|mk|.

This will then enable us to estimate the number of solutions of (5.5.1). Via Hölder’s inequality
and Hua’s Lemma in this context (cf. [35, Lemma 5.12]) we find

#

⎧⎨⎩|e| ≤ ˆ︁E :
∑︂

i∈I(k)
Fi

(︃
ei

Fi

)︃3
= 0

⎫⎬⎭ ≪

⎧⎪⎪⎨⎪⎪⎩
1 if #I(k) = 1,ˆ︁E2+ε if 2 ≤ #I(k) ≤ 4,ˆ︁E#I(k)−2+ε if 5 ≤ #I(k) ≤ 6.

Note that at this point it is crucial to assume char(K) > 3, because the Weyl differencing
argument in the proof of Hua’s lemma breaks down otherwise. Therefore for a fixed partition⨆︁

j I(kj) = {1, . . . , n} corresponding to {mkj
} the number of |c| ≤ ˆ︁C satisfying (5.5.1) is

bounded above by ∏︂
j

(︄ ˆ︁C
|mkj

|

)︄ekj
/2+ε

,

where

ekj
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if #I(kj) = 1
2, if 2 ≤ #I(kj) ≤ 4
3, if #I(kj) = 5
4, if #I(kj) = 6.
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By considering all possible square-free elements |mkj
| ≪ ˆ︁C, we see that the total number of

solutions of (5.5.1) corresponding to a fixed partition is bounded above by

∑︂
|mkj

|≤ˆ︁C
∏︂
j

(︄ ˆ︁C
|mkj

|

)︄ekj
/2+ε

≪
∏︂
j

ˆ︁Cekj
/2+ε.

It is easily checked that for any possible partition this is bounded above by O( ˆ︁C3+ε) if n = 6.
Therefore the total number of solutions to F ∗(c) = 0 with |c| ≤ ˆ︁C has the same upper bound.
In the case n = 4 one can similarly obtain O( ˆ︁C1+ε) for the number of solutions corresponding
to any partition, except in the case where #I(k1) = #I(k2) = 2. But solutions arising from
such partitions are precisely the special solutions. This finishes the proof of the lemma.

5.6 Circle method
As explained in the introduction, we are considering a diagonal cubic form F ∈ O[x1, . . . , xn]
of the shape

F (x) =
n∑︂

i=1
Fix

3
i , Fi ∈ O \ {0}.

Recall from (5.2.1) that the associated counting function can be written as

N(w,P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∫︂

|θ|<|r|−1 ˆ︁Q−1

∑︂
c∈On

Sr(c)Ir(θ, c)dθ.

Throughout the parameter Q is chosen in such a way that

|P |3/2 ≤ ˆ︁Q ≤ q|P |3/2 (5.6.1)

ensuring that the measure of the set {|θ| < |r|−1 ˆ︁Q−1} is O(|P |−3) when |r| = ˆ︁Q. It follows
from Lemma 5.3.1 that Ir(θ, c) vanishes unless |c| < |r||P |−1 max{q,HF |P |3θ}. Since
HF |P |3|θ| ≤ HF |P |3 ˆ︁Q−1|r|−1 and |P |3 ˆ︁Q−1|r|−1 ≫ 1, we can truncate the sum over c
in (5.2.1) at |c| ≪ ˆ︁C, where ˆ︁C := |P |2 ˆ︁Q−1.
We now split up N(w,P ) according to the quality of our available estimates into

N(w,P ) = N0(P ) + E1(P ) + E2(P ),

where

N0(P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∫︂

|θ|<|r|−1 ˆ︁Q−1
Sr(0)Ir(θ,0)dθ, (5.6.2)

E1(P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∫︂

|θ|<|r|−1 ˆ︁Q−1

∑︂
c∈On

F ∗(c)̸=0

Sr(c)Ir(θ, c)dθ, (5.6.3)

E2(P ) = |P |n
∑︂

r monic
|r|≤ˆ︁Q

|r|−n
∫︂

|θ|<|r|−1 ˆ︁Q−1

∑︂
c∈On\{0}
F ∗(c)=0

Sr(c)Ir(θ, c)dθ. (5.6.4)

For n = 4 we will later divide the term E2(P ) into special and ordinary solutions of F ∗(c) = 0
as defined in Section 5.5. Usually one expects that the main term in an asymptotic formula for
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N(w,P ) should come from N0(P ). As we are only interested in an upper bound for N(w,P ),
the contribution from N0(P ) will be rather straightforward to deal with. Handling the terms
E1(P ), E2(P ) turns out to be a more challenging task and will occupy most of the remainder
of our work. For E1(P ) we can make use of the full power of our exponential sum estimates,
in particular we gain an extra saving when averaging Sr(c) over r. This is not possible for
E2(P ), but we shall benefit from the sparsity of c’s such that F ∗(c) = 0, at least for ordinary
solutions when n = 4.

5.6.1 Contribution from N0(P )
For this we write again r = r1r2, where r1 is cube-free and r2 is cube-full. It thus follows
from (5.4.6) and Lemma 5.4.3 with m = 0 that

Sr(c) ≪ |r1|1+n/2+ε|r2|1+2n/3+ε.

From Lemma 5.3.7 we obtain the estimate Ir(0) ≪ |P |−3. We thus get

N0(P ) ≪ |P |n−3 ∑︂
|r1|≤ˆ︁Q |r1|−nSr1(c)

∑︂
|r2|≤ˆ︁Q/|r1|

|r2|−nSr2(c)

≪ |P |n−3 ∑︂
|r1|≤ˆ︁Q |r1|1−n/2+ε

∑︂
|r2|≤ˆ︁Q/|r1|

|r2|1−n/3+ε

≪ |P |n−3+ε,

since there are O( ˆ︁Y 1/3) cube-full r2 with |r2| = ˆ︁Y and n ≥ 4.

5.6.2 Contribution from E1(P )
We begin with some preparations for the term E1(P ). Let 0 ≤ Y ≤ Q and fix the absolute
value of r to be ˆ︁Y . As in Section 5.4.3, we will also fix a set of indices T ⊂ {1, . . . , n} of
cardinality t, as well as a tuple C = (Ci)i∈T , where 1 ≤ Ci ≤ C and denote by R(C) the
set of vectors c = (c1, . . . , cn) ∈ On such that |ci| = ˆ︁Ci if i ∈ T and cj = 0 if j ̸∈ T . Let
us put C = maxi∈T Ci, so that |c| = ˆ︁C whenever c ∈ R(C). We then define E1(R(C), ˆ︁Y )
to be the contribution coming from c ∈ R(C) and |r| = ˆ︁Y in the definition of E1(P ) given
in (5.6.3). Explicitly, this means

E1(R(C), ˆ︁Y ) = |P |nˆ︁Y n

∑︂
c∈R(C)
F ∗(c)̸=0

∑︂
r monic
|r|=ˆ︁Y

Sr(c)ItY (c), (5.6.5)

where we recall that
ItY (c) =

∫︂
|θ|<ˆ︁Y −1 ˆ︁Q−1

ItY (θ, c)dθ.

Note that here we used Lemma 5.3.5, which shows that the value of the double integral in the
definition of Ir(c) only depends on the absolute value of r for c fixed.

Note that there are Q+ 1 ≪ |P |ε possibilities for Y and O(Cn) = O(|P |ε) choices for C. In
particular, if we can show that E1(R(C), ˆ︁Y ) ≪ |P |3n/4−3/2+ε holds, then the same estimate
will be true for E1(P ) with a new value of ε > 0. Next we tansform E1(P ) in such a way
that Lemma 5.4.2 and Lemma 5.4.4 are applicable. For this we write r = b′

1b1r2, where r2 is
the square-full part of r and b′

1b1 is the square-free part of r. Moreover, if we let S be the set
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of prime divisors of ∆FF
∗(c), then we further require that (b1, S) = 1 and each prime ϖ | b′

1
satisfies ϖ ∈ S. It then follows from (5.4.4) that E1(R(C), ˆ︁Y ) is given by

|P |nˆ︁Y (n−1)/2

∑︂
c∈R(C)
F ∗(c) ̸=0

ItY (c)
∑︂

|r2|≤ˆ︁Y
Sr2(c)

|r2|(n+1)/2

∑︂
|b′

1|≤ ˆ︁Y
|r2|

Sb′
1
(c)

|b′
1|(n+1)/2

∑︂
|b1|= ˆ︁Y

|r2b′
1|

(b1,S)=1

Sb1(c)
|b1|(n+1)/2 . (5.6.6)

We can now apply Lemma 5.4.2 to the innermost sum to obtain∑︂
|b1|= ˆ︁Y

|r2b′
1|

(b1,S)=1

Sb1(c)
|b1|(n+1)/2 ≪ ˆ︁Cε( ˆ︁Y |r2b

′
1|−1)1/2+ε. (5.6.7)

Moreover, by (5.4.6) and (5.4.4) we also have
∑︂

|b′
1|≤ ˆ︁Y

|r2|

|Sb′
1
(c)|

|b′
1|n/2+1 ≪ |P |ε

∑︂
|b′

1|≤ˆ︁Y /|r2|

|(b′
1,∇F ∗(c))|1/2

|b′
1|1/2 ≪ |P |ε, (5.6.8)

where we used that there at most O(( ˆ︁Y |r2|−1|F ∗(c)|)ε) = O(|P |ε) possibilities for square-
free b′

1 whose prime divisors are restricted to S with |b′
1| ≤ ˆ︁Y |r2|−1. After inserting (5.6.7)

and (5.6.8) into (5.6.6), we see that

E1(R(C), ˆ︁Y ) ≪ |P |n+εˆ︁Y n/2−1

∑︂
c∈R(C)
F ∗(c)̸=0

|ItY (c)|
∑︂

|r2|≤ˆ︁Y
|Sr2(c)|
|r2|n/2+1 .

We can now estimate ItY (c) with Lemma 5.3.6:

ItY (c) ≪ ˆ︁Y −1 ˆ︁Q−1
n∏︂

i=1
min

⎧⎨⎩
(︄

|P ||c|ˆ︁Y
)︄−1/4

,

(︄
|P ||ci|ˆ︁Y

)︄−1/2
⎫⎬⎭

= ˆ︁Y −1 ˆ︁Q−1
(︄ ˆ︁Y

|P | ˆ︁C
)︄(n−t)/4 ∏︂

i∈T
min

⎧⎨⎩
(︄

|P | ˆ︁Cˆ︁Y
)︄−1/4

,

(︄
|P | ˆ︁Ciˆ︁Y

)︄−1/2⎫⎬⎭ ,
where we used that min

{︄(︃
|P |ˆ︁Cˆ︁Y

)︃−1/4
,
(︂

|P ||ci|ˆ︁Y )︂−1/2
}︄

= (|P | ˆ︁C ˆ︁Y −1)−1/4 if i ̸∈ T . Denote the
last product above by Π. Then after dividing r2 into q-adic ranges, Lemma 5.4.4 implies

E1(R(C), ˆ︁Y ) ≪ |P |n+εˆ︁Y n/2 ˆ︁Q
(︄ ˆ︁Y

|P | ˆ︁C
)︄(n−t)/4

Π
∑︂

c∈R(C)
F ∗(c)̸=0

∑︂
|r2|≤ˆ︁Y

|Sr2(c)|
|r2|n/2+1

≪ |P |n+εˆ︁Y n/2 ˆ︁Q
(︄ ˆ︁Y

|P | ˆ︁C
)︄(n−t)/4 ˆ︁Y (n−t)/6Π#R(C).

From the fact that #R(C) ≪ ∏︁
i∈T

ˆ︁Ci we deduce that

#R(C)Π ≪
∏︂
i∈T

min

⎧⎨⎩ ˆ︁Ci

(︄ ˆ︁Y
|P | ˆ︁C

)︄1/4

,

(︄ ˆ︁Ci
ˆ︁Y

|P |

)︄1/2⎫⎬⎭
≪ ˆ︁C t

(︄ ˆ︁Y
|P | ˆ︁C

)︄t/4

min
{︄

1,
ˆ︁Y

|P | ˆ︁C
}︄t/4

,
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where we used that ˆ︁Ci ≤ ˆ︁C. Recalling (5.6.1), we therefore have

E1(R(C), ˆ︁Y ) ≪ |P |n−3/2+εˆ︁Y n/2

(︄ ˆ︁Y
|P | ˆ︁C

)︄n/4 ˆ︁Y (n−t)/6 ˆ︁C t min
{︄

1,
ˆ︁Y

|P | ˆ︁C
}︄t/4

.

One easily sees that the expression above is maximal either at t = 0 or t = n. For t = 0, we
get

|P |n−3/2+εˆ︁Y n/2

(︄ ˆ︁Y
|P | ˆ︁C

)︄n/4 ˆ︁Y n/6 = |P |3n/4−3/2+ε ˆ︁Y −n/12 ˆ︁C−n/4

≪ |P |3n/4−3/2+ε

as desired. For t = n, we have

|P |n−3/2+εˆ︁Y n/2

(︄ ˆ︁Y
|P | ˆ︁C

)︄n/4 ˆ︁Cn min
{︄

1,
ˆ︁Yˆ︁C|P |

}︄n/4

≪ |P |n/2−3/2+ε ˆ︁Cn/2

≪ |P |3n/4−3/2+ε

since ˆ︁C ≤ ˆ︁C ≪ |P |1/2. This finishes our treatment of E1(P ).

5.6.3 Contribution from E2(P ) for ordinary solutions
Now we turn our attention to the term E2(P ). For n = 4 we further divide it into E2(P ) =
Eord

2 (P ) + Espec
2 (P ), where Espec

2 (P ) is restricted to special solutions of F ∗(c) = 0 in the
sense of Section 5.5 and Eord

2 (P ) to ordinary solutions of F ∗(c) = 0. In this section we deal
with E2(P ) for n = 6 and Eord

2 (P ) for n = 4.

We shall again fix the absolute value of r to be ˆ︁Y for some 0 ≤ Y ≤ Q and the absolute
value of c to be ˆ︁C for some 0 < C ≤ C. We will then consider the sum

E2(Y, C) := |P |nˆ︁Y n

∑︂
|c|=ˆ︁C

F ∗(c)=0

∑︂
r monic
|r|=ˆ︁Y

Sr(c)ItY (c),

where the sum over c is restricted to ordinary solutions of F ∗(c) = 0 for n = 4. Once we
have shown E2(Y, C) ≪ |P |3n/4−3/2+ε the same estimate will follow for E2(P ) for n = 6 and
for Eord

2 (P ) for n = 4, because there are only O(|P |ε) possible pairs of Y ’s and C’s.

Lemma 5.6.1. Let F be a non-singular cubic form in 4 or 6 variables, and let F ∗ be its dual
form. Suppose there exists some η > 0 such that for any ˆ︁C ≥ 1 the following bound holds

#{x ∈ On : x is an ordinary solution to F ∗(x) = 0, |x| ≤ ˆ︁C} ≪ ˆ︁Cn−3+η.

Then we have
E2(P ) ≪ |P |3n/4−3/2+η/2+ε.

Proof. If D = degF ∗, then we see from (5.4.2) and Lemma 5.4.1 that F ∗ has non-zero
monomials of the form Gix

D
i for every i = 1, . . . , n. In particular, if |c| = ˆ︁C and F ∗(c) = 0,
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5.6. Circle method

then there must be at least two indices i ̸= j such that ˆ︁C ≪ |ci| ≪ |cj| ≪ ˆ︁C. Therefore, from
Lemma 5.3.6 we deduce

ItY (c) ≪
ˆ︁C

|P |2 ˆ︁Y
n∏︂

i=1
min

⎧⎨⎩
(︄ ˆ︁Y

|P ||ci|

)︄1/2

,

(︄ ˆ︁Y
|P | ˆ︁C

)︄1/4⎫⎬⎭ ≪
(︄ ˆ︁Y

|P | ˆ︁C
)︄(n−2)/4

|P |−3. (5.6.9)

Next we deal with the sum Sr(c). Write r = r1r2r3 into coprime monic factors ri, where r1 is
cube-free, r2 is cube-full and each prime divisor of r3 divides ∏︁Fi.
Let us begin with Sr2(c). Suppose ϖk ∥ r2 and write Hϖ = (ϖk, c). It follows that c = Hϖc′

for some c′ ∈ On with (ϖ, c′) = 1. It is again easy to see that any prime divisor of the
coefficients Gi of the top-degree monomials xD

i of F ∗ divides ∏︁Fi. In particular, if Hϖ ̸= ϖk,
then F ∗(c′) = 0 implies that at least two entries of c′ are coprime to ϖ. On the other hand,
if Hϖ = ϖk, then (ϖk, ci) = ϖk for every i = 1, . . . , n, so that in any case there are always
least two distinct indices i ̸= j such that (ϖk, ci) = (ϖk, cj) = Hϖ. Consequently it follows
from Lemma 5.4.3 with m = 2 that

Sr2(c) ≪ |r2|2/3+2n/3+ε|H|1/2,

where H = ∏︁
ϖ|r2 Hϖ divides each entry of c.

In addition, (5.4.6) and Lemma 5.4.3 give us Sr1(c) ≪ |r1|1+n/2+ε and (5.4.8) tells us that
Sr3(c) ≪ |r3|1+2n/3+ε. To sum up, we have

Sr(c) ≪ |r|ε|r1|1+n/2|r2|2/3+2n/3|r3|1+2n/3|H|1/2.

Let us fix |ri| = ˆ︁Yi, where 0 ≤ Yi ≤ Y and Y1 + Y2 + Y3 = Y . We want to give an upper
bound for

S :=
∑︂

|ri|=ˆ︁Yi,i=1,2,3

∑︂
|c|=ˆ︁C

F ∗(c)=0

|Sr(c)|.

Taking into account that the number of available r1 and r3 is O( ˆ︁Y1) and O(|P |ε) respectively,
we see that

S ≪ |P |ε ˆ︁Y 2+n/2
1

ˆ︁Y 2/3+2n/3
2

ˆ︁Y 1+2n/3
3

∑︂
|r2|=ˆ︁Y2

∑︂
H|r2

|H|1/2 ∑︂
|c|=ˆ︁C/|H|
F ∗(c)=0

1

≪ |P |ε ˆ︁Cn−3+η ˆ︁Y 2+n/2
1

ˆ︁Y 2/3+2n/3
2

ˆ︁Y 1+2n/3
3

∑︂
|r2|=ˆ︁Y2

∑︂
H|r2

|H|7/2−n−η,

where we used the main assumption of the lemma in order to bound the number of ordinary
solutions of F ∗(c) = 0 with |c| = ˆ︁C/|H| for the second inequality. Since n ≥ 4 clearly
7/2 − n− η ≤ 0 holds and since the number of available r2 is O( ˆ︁Y 1/3

2 ), it follows that

S ≪ |P |ε ˆ︁Cn−3+η ˆ︁Y 2+n/2
1

ˆ︁Y 1+2n/3
2

ˆ︁Y 1+2n/3
3 ≪ |P |ε ˆ︁Cn−3+η ˆ︁Y 2+n/2, (5.6.10)

because 2 + n/2 ≥ 1 + 2n/3 for n ≤ 6. As there are only O(|P |ε) possibilities for permissible
triples (Y1, Y2, Y3), we deduce from (5.6.9) and (5.6.10) that

E2(Y, ˆ︁C) ≪ |P |3n/4−5/2+ε ˆ︁Y 3/2−n/4 ˆ︁C3n/4−5/2+η.

In particular, since ˆ︁C ≪ |P |1/2 and ˆ︁Y ≪ |P |3/2, we thus obtain
E2(Y, C) ≪ |P |3n/4−5/2+ε|P |9/4−3n/8|P |3n/8−5/4+η/2

≪ |P |3n/4−3/2+η/2+ε,

which completes the proof.
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At this point our treatment of E2(P ) differs depending on the characteristic of K.
If char(K) > 3, then by virtue of Lemma 5.5.1 we know that the number of ordinary
solutions of the dual form F ∗(c) = 0 such that |c| ≤ ˆ︁C is bounded by O( ˆ︁Cn−3+ε). Therefore
Lemma 5.6.1 with η = 0 implies

Eord
2 (P ) ≪ |P |3n/4−3/2+ε and E2(P ) ≪ |P |3n/4−3/2+ε,

for n = 4 and n = 6, respectively. This finishes our treatment of E2(P ) in this case.
If char(K) = 2, then we need to argue differently. We begin by considering the case when
n = 6. According to Lemma 5.4.1 the dual form takes the shape of a non-singular diagonal
cubic form. In particular, we can trivially bound the number of solutions to F ∗(c) = 0 such
that |c| ≤ ˆ︁C by O( ˆ︁C6) = O( ˆ︁Cn−3+η), where η = 3. Therefore, Lemma 5.6.1 gives

E2(P ) ≪ |P |3n/4−3/2+η/2+ε = |P |n−3+η/2+ε.

This, together with our bounds for N0(P ) and E1(P ) established earlier in this section, shows
that

N(P ) ≪ |P |n−3+η/2+ε.

This holds for any non-singular, diagonal cubic form over K when char(K) = 2. In particular,
as a result we can bound the number of solutions to F ∗(c) = 0 with |c| ≤ ˆ︁C by O( ˆ︁Cn−3+η/2+ε).
Another application of Lemma 5.6.1 yields

E2(P ) ≪ |P |3n/4−3/2+η/4+ε

and we may argue as above to deduce

N(P ) ≪ |P |n−3+η/4+ε.

If we repeat this process k-times, where 2−k+1 ≤ ε we find

E2(P ) ≪ |P |3n/4−3/2+2ε,

which concludes our treatment for E2(P ) in this case.
On the other hand, if n = 4 we can trivially estimate the number of solutions to F ∗(c) = 0 of
bounded height ˆ︁C by O( ˆ︁C4) = O( ˆ︁Cn−3+η), where η = 3. Lemma 5.6.1 then yields

E2(P ) ≪ |P |3n/4−3/2+η/2+ε = |P |n−3+1/2+η/2+ε,

which in turn implies
N(P ) ≪ |P |n−3+1/2+η/2+ε.

Repeating this process k-times, where k > 1/ε we thus find

E2(P ) ≪ |P |3n/4−3/2+1/2+2ε = |P |2+2ε.

5.7 Waring’s problem and weak approximation
Having completed our task for n = 6, we will now apply it to Waring’s problem and weak
approximation for diagonal cubic hypersurfaces of dimension at least 5.
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5.7.1 Waring’s problem for n ≥ 7
Recall that J3

q[t] is the additive closure of all cubes in O. Given P ∈ J3
q[t], we define

B :=
⌈︂

deg(P )
3

⌉︂
+ 1 and the counting function

Rn(P ) := #{x ∈ On : |x| < ˆ︁B, x3
1 + · · · + x3

n = P}.

Our next goal is to deduce Theorem 5.1.4 from our findings. We shall accomplish this goal
with a classical version of the circle method. For α ∈ T, we define

T (α) :=
∑︂
x∈O

|x|<ˆ︁B
ψ(αx3).

It then follows from Lemma 3.0.2 that we can write our counting function as

Rn(P ) =
∫︂
T
T (α)nψ(−αP )dα.

We then define our set of major arcs to be

M :=
⋃︂

|r|≤ˆ︁B
r monic

⋃︂
|a|<|r|
(a,r)=1

{α ∈ T : |rα− a| < ˆ︁B−2}

and m := T \ M constitutes our set of minor arcs. The following lemma is a consequence
of [127, Theorem 30].

Lemma 5.7.1. Suppose char(K) ∤ 3 and n ≥ 7. Then there exists δ > 0 such that for all
P ∈ J3

q[t] we have∫︂
M
T (α)nψ(−αP )dα = S(P )σ∞(P ) ˆ︁Bn−3 +O

(︂ ˆ︁Bn−3−δ
)︂
,

where S(P ) and σ∞(P ) are the singular series and singular integral associated to P . Further-
more, they satisfy

1 ≪ S(P )σ∞(P ) ≪ 1.

Remark. In fact, Kubota states Lemma 5.7.1 only for n ≥ 10. However, as explained by
Liu–Wooley in [136, Lemma 5.2], this is a result of an oversight and Kubota’s argument
already works for n ≥ 7.

We now have ⃓⃓⃓⃓∫︂
m
T (α)nψ(−αP )dα

⃓⃓⃓⃓
≤ sup

α∈m
|T (α)|n−6

∫︂
T

|T (α)|6dα. (5.7.1)

If α ∈ m, then Proposition 4.2.1 with ˆ︁Q = ˆ︁B implies the existence of a, r ∈ O with r
monic such that |a| < |r| ≤ ˆ︁B, (a, r) = 1 and |rα − a| < ˆ︁B−1. As α ∈ m, we must have
|α− a/r| ≥ ˆ︁B−2|r|−1. Under these circumstances Weyl’s inequality, see [35, Lemma 5.10] for
char(K) > 3 and [50, Proposition IV.4] for char(K) = 2, guarantees the existence of δ > 0
such that

sup
α∈m

|T (α)|n−6 ≪ ˆ︁B(n−6)(1−δ). (5.7.2)

Since ∫︂
T

|T (α)|6dα = #{x ∈ O6 : |x| < ˆ︁B, x3
1 + x3

2 + x3
3 = x3

4 + x3
5 + x3

6},
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Theorem 5.1.1 implies ∫︂
T

|T (α)|6dα ≪ ˆ︁B3+ε. (5.7.3)

Plugging (5.7.2) and (5.7.3) into (5.7.1) yields∫︂
m
T (α)nψ(−αP )dα ≪ ˆ︁B(n−6)(1−δ)+3+ε

= ˆ︁Bn−3−δ(n−6)+ε.

After choosing ε = δ(n− 6)/2, we see that the contribution of the minor arcs is∫︂
m
T (α)nψ(−αP )dα ≪ ˆ︁Bn−3−δ(n−6)/2.

Since n ≥ 7, combining this with Lemma 5.7.1 therefore completes the proof of Theorem 5.1.4.

5.7.2 Weak approximation for cubic diagonal hypersurfaces
We will show that weak approximation holds for the diagonal cubic hypersurface defined by
F (x) = ∑︁n

i=1 Fix
3
i if n ≥ 7. Fix x0 ∈ Tn such that F (x0) = 0, M ∈ O, b ∈ On and

N ∈ Z≥0 such that |b| < |M | and such that N is bounded in terms of M . Define the weight
function ˜︁w : Kn

∞ → R via

˜︁w(x) =

⎧⎨⎩1 if |x − x0| < ˆ︂N−1,

0 otherwise.

Further for P ∈ O we introduce the counting function

N(P, ˜︁w) :=
∑︂

x∈On

F (Mx+b)=0

˜︁w(︄Mx + b

P

)︄
.

As usual, we can write this as an integral over an exponential sum

N(P, ˜︁w) =
∫︂
T
˜︁S(α)dα,

where ˜︁S(α) =
∑︂

x∈On

ψ (αF (Mx + b)) ˜︁w(︄Mx + b

P

)︄
.

Since F is diagonal we may factorise ˜︁S(α) as

˜︁S(α) =
n∏︂

i=1

˜︁Ti(α),

where ˜︁Ti(α) =
∑︂
x∈O

|Mx+bi−x0,i|<|P | ˆ︁N−1

ψ(αFi(Mx+ bi)3).

Note that our counting function N(P, ˜︁w) agrees with the function ρM,b(n) and ˜︁S(α) agrees
with T (α) in [131, Chapter 4]. In order to show weak approximation for the variety X =
V (F ) ⊂ Pn−1, by the same argument as the one provided in Section 4.9 of [131], it is enough
to show the following result.
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Theorem 5.7.2. Suppose char(K) > 3. Then there exists some δ > 0 such that

N(P, ˜︁w) = |M |−3SI|P |n−3 +O(|P |n−3−δ),

where S and I are the singular series and the singular integral respectively as defined in (5.7.6)
and (5.7.8).

We tackle this using a traditional circle method argument.
We define the major arcs to be the set M ⊂ T given by

M =
⋃︂

r∈O
|r|<|P |1/2

r monic

⋃︂
a∈O

|a|<|r|
(a,q)=1

{︂
α ∈ T : |rα− a| < H−1

F |M |−3|r||P |−5/2
}︂
,

and we take the minor arcs to be the complement m = T \ M.
In this context, provided char(K) > 3, Weyl’s inequality, as recorded in [131, Lemma 4.3.6]
or Corollary 4.1.2, tells us that

| ˜︁Ti(α)| ≪ |P |1+ε

(︄
|P | + |r| + |P |3|rα− a|

|P |3
+ 1

|r| + |P |3|rα− a|

)︄1/4

for i = 1, . . . , n if a, r ∈ O are such that |a| < |r|, r monic and (a, r) = 1. Using
Proposition 4.2.1 and the definition of the minor arcs, a similar argument that handed
us (5.7.2) gives

sup
α∈m

⃓⃓⃓ ˜︁Ti(α)
⃓⃓⃓
≪ |P |7/8+ε, (5.7.4)

for any ε > 0. We are now ready to finish our treatment of the minor arcs. If n ≥ 7 we obtain
∫︂
m
| ˜︁S(α)|dα =

∫︂
m

⃓⃓⃓⃓
⃓

n∏︂
i=1

˜︁Ti(α)
⃓⃓⃓⃓
⃓ dα ≪ sup

α∈m

⃓⃓⃓ ˜︁T7(α) · · · ˜︁Tn(α)
⃓⃓⃓ ∫︂

T

⃓⃓⃓⃓
⃓

6∏︂
i=1

˜︁Ti(α)
⃓⃓⃓⃓
⃓ dα.

The integral can be dealt with as follows. By Hölder’s inequality we find
∫︂
m

⃓⃓⃓⃓
⃓

6∏︂
i=1

˜︁Ti(α)
⃓⃓⃓⃓
⃓ dα ≤

6∏︂
i=1

(︃∫︂
T

| ˜︁Ti(α)|6dα
)︃1/6

.

Now the last quantity is equal to

6∏︂
i=1

#

⎧⎨⎩x ∈ O6 : xj ≡ bi modM, |xj/P − x0,i| < ˆ︂N−1, for all j,
3∑︂

j=1
x3

j =
6∑︂

j=4
x3

j

⎫⎬⎭
1/6

,

which in turn is bounded by
6∏︂

i=1
#{x ∈ O6 : |x| < |x0||P |, x3

1 + x3
2 + x3

3 = x3
4 + x3

5 + x3
6}1/6,

if |P | is sufficiently large. An application of Theorem 5.1.1 therefore yields
∫︂
T

⃓⃓⃓⃓
⃓

6∏︂
i=1

˜︁Ti(α)
⃓⃓⃓⃓
⃓ dα ≪ |P |3+ε.
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Once combined with (5.7.4) we thus obtain∫︂
m
| ˜︁S(α)|dα ≪ |P |n−3−(n−7)/8+ε

for any ε > 0, which is satisfactory if n ≥ 7. We now turn to the major arcs. Given a, r ∈ O
write ˜︁Sr(a) :=

∑︂
|x|<|r|

ψ

(︄
aF (Mx + b)

r

)︄
.

For any Y ∈ R we define the truncated singular series

S( ˆ︁Y ) :=
∑︂

|r|<ˆ︁Y
r monic

∑︂
|a|<|r|
(a,r)=1

|r|−n ˜︁Sr(a),

and the truncated singular integral to be

I( ˆ︁Y ) =
∫︂

|γ|<H−1
F
ˆ︁Y I(γ)dγ,

where
I(γ) =

∫︂
Tn
ψ(γF (x)) ˜︁w(x)dx.

Then from (4.6.30) in [131] it follows that we have∫︂
M

˜︁S(α)dα = |M |−3S(|P |1/2)I(|P |1/2)|P |n−3.

It remains to study the convergence of the singular integral and singular series. In order to
handle the singular series we will need upper bounds for ˜︁Sr(a). First, we record the following
multiplicative property, which is shown in [131, Lemma 4.7.2]. If r1, r2 ∈ O are coprime then

˜︁Sr1r2(a) = ˜︁Sr1(a1) ˜︁Sr2(a2),

where ai ∈ O are such that a1 ≡ a˜︁r2 mod r1 and a2 ≡ a˜︁r1 mod r2, where ˜︁r1, ˜︁r2 denote
the multiplicative inverses modulo r2, r1, respectively. Thus, from (5.4.8) in combination with
the divisor estimate, it follows that we have

˜︁Sr(a) ≪ |r|2n/3+ε, (5.7.5)

where the constant may depend on M, b and ε.
Using this we see that ∑︂

|r|=ˆ︁Y
r monic

∑︂
|a|<|r|
(a,r)=1

|r|−n
⃓⃓⃓ ˜︁Sr(a)

⃓⃓⃓
≪ ˆ︁Y (2−n/3+ε).

Since n ≥ 7 we deduce absolute convergence of the series

S =
∑︂

r monic

∑︂
|a|<|r|
(a,r)=1

|r|−n ˜︁Sr(a), (5.7.6)

which is the singular series. Moreover choosing positive ε < (n− 6)/6 we find

S − S(|P |1/2) ≪ |P |1−n/6+ε, (5.7.7)
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if n ≥ 7 upon redefining ε. We turn to the singular integral. Assuming N to be sufficiently
large, in [34] it is shown in Lemma 7.5 and the paragraphs preceding it that

I( ˆ︁Y ) = I(ˆ︂N/|∇F (x0)|) = 1
|∇F (x0)|ˆ︂Nn−1

whenever ˆ︁Y ≥ ˆ︂N/|∇F (x0)|. Thus clearly limˆ︁Y →∞ I( ˆ︁Y ) exists and is equal to

I := limˆ︁Y →∞
I( ˆ︁Y ) = 1

|∇F (x0)|ˆ︂Nn−1
. (5.7.8)

We conclude that

N(P, ˜︁w) = |M |−3SI|P |n−3 +O(|P |n−3−1/8+ε),

as desired.

5.8 Special solutions and the case n = 4
In this section we will concern ourselves with understanding how the special solutions of
F ∗(c) = 0 in the case n = 4 relate to the solutions of F (x) = 0 on rational lines. The goal of
this section is to prove the following lemma, from which Theorem 5.1.2 immediately follows.

Lemma 5.8.1. For any ε > 0 the following holds

|P |4
∑︂

r monic
|r|≤ˆ︁Q

|r|−4
∫︂

|θ|<|r|−1 ˆ︁Q−1

∑︂
c

spec
Sr(c)Ir(θ, c)dθ =

∑︂
x

line
w(P−1x) +O(|P |3/2+ε),

(5.8.1)
where ∑︁spec

c denotes the sum over the special solutions c ∈ O4 \ {0} of F ∗(c) = 0 such that

(F−1
1 c3

1)1/2 ± (F−1
2 c3

2)1/2 = (F−1
3 c3

3)1/2 ± (F−1
4 c3

4)1/2 = 0 (5.8.2)

and ∑︁line
x denotes the sum over points x ∈ O4 satisfying

F1x
3
1 + F2x

3
2 = F3x

3
3 + F4x

3
4 = 0. (5.8.3)

For notational convenience, this lemma only considers the case of lines such that (i, j, k, l) =
(1, 2, 3, 4) in the language of Theorem 5.1.2. By the symmetry of the situation at hand it is
clear that the result follows for any permutation of indices.

5.8.1 Analysis of special solutions
We begin by noting that with an error of O(|P |3/2+ε) we may include tuples c ∈ O4 \ {0}
satisfying (5.8.2) such that ci = 0 for at least one i in the sum appearing in the left hand side
of (5.8.1). Write ∑︁˜︃spec

c for the sum over such tuples c. Note for such c Lemma 5.3.6 gives

Ir(c) ≪ |P |−5/2|c|−1,

for any r ∈ O. Also note that Ir(θ, c) = 0 if |c| ≫ |P |1/2. From (5.4.6) and Lemma 5.4.4,
where we apply the second part with m = 0, we obtain

Sr(c) ≪ |r|ε|r1|3|r2|4−1/3,
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where r1 denotes the cube-free and r2 the cube-full part of r. Hence

∑︂
r monic
|r|≤ˆ︁Q

|r|−4Sr(c) ≪ |P |ε
⎛⎜⎝ ∑︂

|r1|≤ˆ︁Q|r1|−1

⎞⎟⎠
⎛⎜⎝ ∑︂

|r2|≤ˆ︁Q|r2|−1/3

⎞⎟⎠ ≪ |P |ε,

since the number of cube-full r2 of a fixed absolute value of ˆ︁Y , say, is at most P ( ˆ︁Y 1/3). To
summarise, we found that the contribution to the left hand side of (5.8.1) is at most

|P |4
∑︂

r monic
|r|≤ˆ︁Q

|r|−4∑︂
c

˜︃spec
Sr(c)Ir(c) ≪ |P |3/2+ε

∑︂
0<|c|≤|P |1/2

˜︃spec|c|−1 ≪ |P |3/2+ε,

where the last estimate follows since there are only O( ˆ︁C) vectors c of absolute value ˆ︁C, say,
appearing in ∑︁˜︃spec

c .
We may assume that both F1/F2 and F3/F4 are cubes in K. Otherwise the conclusion of
the lemma is easily seen to be true, since there are no special solutions and O(|P |) points x
satisfying (5.8.3). Therefore there exist at most O(1) many different possible ρi ∈ O with
(ρ1, ρ2) = (ρ3, ρ4) = 1 and λ, µ ∈ O such that

F1 = λρ3
1, F2 = λρ3

2, F3 = µρ3
3, F4 = µρ3

4.

The different possibilites for ρi come from the potential existence of non-trivial third roots of
unity in K. For a choice of ρi ∈ O if we write

c1 = ρ1d1, c2 = ρ2d1, c3 = ρ3d2, c4 = ρ4d2,

then as we run through the possible choices of ρi and as d runs through O2, then c runs
through solutions of F ∗(c) = 0 satisfying (5.8.2) . Given a choice of ρi there exist ρ′

i ∈ O
such that

ρ1ρ
′
2 − ρ2ρ

′
1 = ρ3ρ

′
4 − ρ4ρ

′
3 = 1.

Then the change of variables (x1, x2, x3, x4) ↦→ (y1, y2, z1, z2) given by⎛⎜⎜⎜⎝
y1
z1
y2
z2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ρ1 ρ2 0 0
ρ′

1 ρ′
2 0 0

0 0 ρ3 ρ4
0 0 ρ′

3 ρ′
4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎟⎠
is unimodular. Moreover the inverse of this is easily seen to be⎛⎜⎜⎜⎝

x1
x2
x3
x4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ρ′

2 −ρ2 0 0
−ρ′

1 ρ1 0 0
0 0 ρ′

4 −ρ4
0 0 −ρ′

3 ρ3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y1
z1
y2
z2

⎞⎟⎟⎟⎠ .
We will write x(y, z) for x arising from this linear transformation. An easy calculation reveals

F (x(y, z)) = y1Q1(y1, z1) + y2Q2(y2, z2) =: ˜︁F (y, z),

where Qi are the quadratic forms given by

Q1(y, z) = λ

4
(︂
y2 + 3{2ρ1ρ2z − (ρ1ρ

′
2 + ρ′

1ρ2)y}2
)︂
,
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and
Q2(y, z) = µ

4
(︂
y2 + 3{2ρ3ρ4z − (ρ3ρ

′
4 + ρ′

3ρ4)y}2
)︂
.

With this notation we then find

Sr(c) =
∑︂′

|a|<|r|

∑︂
|g|,|h|<|r|

ψ

(︄
a ˜︁F (g,h) + g · d

r

)︄
,

and
Ir(θ, c) =

∫︂
K2

∞

∫︂
K2

∞

w(x(y, z))ψ
(︄
θP 3 ˜︁F (y, z) + P

y · d

r

)︄
dydz.

We make the change of variables y = P−1(g + rv) in the integral to obtain

Ir(θ, c) = |r|2|P |−2
∫︂

K2
∞

∫︂
K2

∞

w(x(P−1(g + rv), z))

× ψ

(︄
θP 3 ˜︁F (P−1(g + rv), z) + g · d

r

)︄
ψ(v · d)dvdz.

Hence we find∑︂
c

spec
Sr(c)Ir(θ, c) = |r|2|P |−2∑︂

ρi

∑︂
|g|<|r|

∫︂
K2

∞

∑︂
d∈O2

∫︂
K2

∞

fg,z(θ,v)ψ(v · d)dvdz,

where ∑︁ρi
sums over the finitely many possible choices for ρi ∈ O as above and where

fg,z(θ,v) =
∑︂′

|a|<|r|

∑︂
|h|<|r|

w(x(P−1(g + rv), z))ψ
(︄
θP 3 ˜︁F (P−1(g + rv), z) + a ˜︁F (g,h)

r

)︄
.

Poisson summation as in Proposition 3.0.5 yields∑︂
d∈O2

∫︂
K2

∞

fg,z(θ,v)ψ(v · d)dv =
∑︂

s∈O2

fg,z(θ, s).

We make the change of variables j = g + rs and the substitution z = P−1t in order to obtain∑︂
c

spec
Sr(c)Ir(c) = |r|2|P |−4∑︂

ρi

∑︂
j∈O2

Tr(j)Jr(j, θ),

where
Tr(j) =

∑︂′

|a|<|r|

∑︂
|h|<|r|

ψ

(︄
a ˜︁F (j,h)

r

)︄
,

and
Jr(j, θ) =

∫︂
K2

∞

w(P−1x(j, t))ψ(θ ˜︁F (j, t))dt.

Further we will write
Jr(j) :=

∫︂
|θ|<|r|−1 ˆ︁Q−1

Jr(j, θ)dθ.

We can summarise our findings until now as follows.

Lemma 5.8.2. We have

|P |4
∑︂

r monic
|r|≤ˆ︁Q

|r|−4∑︂
c

spec
Sr(c)Ir(c) =

∑︂
ρi

∑︂
r monic
|r|≤ˆ︁Q

|r|−2 ∑︂
j∈O2

Tr(j)Jr(j) +O(|P |3/2+ε). (5.8.4)

We now follow a strategy that is very similar to the usual delta method. The main term will
come from j = 0 and it then remains to estimate Tr(j) and Jr(j, θ) for j ̸= 0.
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5.8.2 The main term

Lemma 5.8.3. For all P ∈ O \ {0} we have

∑︂
ρi

∑︂
r monic
|r|≤ˆ︁Q

|r|−2Tr(0)Jr(0) =
∑︂

x

line
w(P−1x) +O(1).

Proof. Since ˜︁F (0, z) = 0 for all z ∈ K2
∞ we have

Tr(0) =
∑︂′

|a|<|r|
|r|2,

and
Jr(0, θ) =

∫︂
K2

∞

w(P−1x(0, t))dt.

Therefore, the term arising from j = 0 on the right hand side of (5.8.4) is equal to

∑︂
ρi

∫︂
K2

∞

w(P−1x(0, t))dt
∑︂

r monic
|r|≤ˆ︁Q

∑︂′

|a|<|r|

∫︂
|θ|<|r|−1 ˆ︁Q−1

dθ.

But from Proposition 4.2.1 we deduce that

∑︂
r monic
|r|≤ˆ︁Q

∑︂′

|a|<|r|

∫︂
|θ|<|r|−1 ˆ︁Q−1

dθ = vol (T) = 1.

Further, it is easily seen that

∑︂
x

line
w(P−1x) =

∑︂
ρi

∑︂
z∈O2

w(P−1x(0, z)).

But since K2
∞ = ⨆︁

z∈O2(z + T) we have
∫︂

K2
∞

w(P−1x(0, t))dt =
∑︂

z∈O2

∫︂
T2
w(P−1x(0, z + α))dα.

If z ∈ O \ {0} then |x(0, z + α)| = |x(0, z)| for all α ∈ T2 and so
∫︂
T2
w(P−1x(0, z + α))dα = w(P−1x(0, z))

for such z. We also clearly have ∫︁T2 w(P−1x(0,α))dα ≪ 1 and so
∫︂

K2
∞

w(P−1x(0, t))dt =
∑︂

z∈O2

w(P−1x(0, z)) +O(1),

whence the Lemma follows.
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5.8.3 Estimating the error term
In this section we make a choice of ρ1, . . . , ρ4 and bound the contribution made from terms
such that j ̸= 0. Once we showed the desired bound for a particular choice, Lemma 5.8.1 will
follow since there are only O(1) different possibilities for ρi.
We begin by bounding Jr(j) in the case where j ̸= 0. Note first that w(P−1(x(j, t))) = 0 if
j ≫ |P | and so Jr(j) = 0 if j ≫ |P |. Further this allows us to exchange the integral over θ
with the sum over j in (5.8.4). Note that Lemma 3.0.2 implies∫︂

|θ|<|r|−1 ˆ︁Q−1
ψ(θ ˜︁F (j, t))dθ =

⎧⎨⎩|r|−1 ˆ︁Q−1, if | ˜︁F (j, t)| < |r| ˆ︁Q
0, otherwise.

Thus we find
Jr(j) ≪ µ(j, r)|r|−1 ˆ︁Q−1,

where
µ(j, r) = vol

(︂{︂
t ∈ K2

∞ : |t| ≪ |P |, | ˜︁F (j, t)| < |r| ˆ︁Q}︂)︂ .
To estimate this measure we simplify the expressions involved by making the substitution

u1 = 2ρ1ρ2t1 − (ρ1ρ
′
2 + ρ′

1ρ2)j1, u2 = 2ρ3ρ4t2 − (ρ3ρ
′
4 + ρ′

3ρ4)j1.

After this linear change of variables ˜︁F takes the form˜︁G(j,u) = λj1(3u2
1 + j2

1) + µj2(3u2
2 + j2

2).

Since the change of variables is linear of constant, non-vanishing Jacobian it is sufficient to
consider

µ˜︁G(j, r) := vol
(︂{︂

u ∈ K2
∞ : |u| ≪ |P |, | ˜︁G(j,u)| < |r| ˆ︁Q}︂)︂ .

If j2 = 0 then using Lemma 5.3.4 it is easily seen that

µ˜︁G(j, r) ≪ |P |
(︄

|r| ˆ︁Q
|j1|

)︄1/2

,

and similarly if j1 = 0. So assume j1j2 ̸= 0. In this case, note that we have

µ˜︁G(u, r) ≪
logq |P |∑︂

k,m=−∞

∑︂
U1=qk

U2=qm

µ˜︁G(j, r, U1, U2),

where
µ˜︁G(j, r, U1, U2) = vol

(︂{︂
u ∈ K2

∞ : |u1| = U1, |u2| = U2,
⃓⃓⃓ ˜︁G(j,u)

⃓⃓⃓
< |r| ˆ︁Q}︂)︂ .

In the case where U1 or U2 < |P |−1 we can use the trivial bound O(U1U2) for µ˜︁G(j, r, U1, U2)
to deduce that the total contribution arising from such U1, U2 is bounded by O(1). For the
remaining contribution note if u satisfies ˜︁G(j,u) = 0 then u2

1 = A+O(|r| ˆ︁Q/|j1|) for some
function A(j1, j2, u2) and thus u1 lies in a subset of measure O(|r| ˆ︁Q/(U1|j1|)). Therefore
µ˜︁G(j, r, U1, U2) ≪ U2|r| ˆ︁Q/(U1|j1|). Similarly, µ˜︁G(j, r, U1, U2) ≪ U1|r| ˆ︁Q/(U2|j2|). Putting
this together yields

µ˜︁G(j, r, U1, U2) ≪ |r| ˆ︁Q|j1j2|−1/2.

Since there are |P |ε pairs U1, U2 such that |P |−1 ≤ U1, U2 ≤ |P | we deduce
µ(j, r) ≪ 1 + |P |ε|r| ˆ︁Q|j1j2|−1/2.

We summarise our observations in the following lemma.
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Lemma 5.8.4. Let j ∈ O2 \ {0} be such that |j| ≪ |P |. If j1j2 ̸= 0, then we have

Jr(j) ≪ |P |ε|j1j2|−1/2. (5.8.5)

If j2 = 0, then we have

Jr(j) ≪ |P |1/4

(|j1||r|)1/2 . (5.8.6)

Next, we turn to estimating the exponential sums Tr(j). Via the Chinese remainder theorem
we have for all r1, r2 ∈ O such that (r1, r2) = 1 that

Tr1r2(j) = Tr1(j)Tr2(j). (5.8.7)

Thus we may put our focus on Tr(j) where r = ϖk for irreducible ϖ ∈ O. Note that⃓⃓⃓⃓
⃓⃓ ∑︂
|h|<|r|

ψ

(︄
a ˜︁F (j,h)

r

)︄⃓⃓⃓⃓
⃓⃓ ≤

⃓⃓⃓⃓
⃓⃓ ∑︂
|h1|<|r|

ψ

(︄
aj1Q1(j1, h1)

r

)︄⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ ∑︂
|h1|<|r|

ψ

(︄
aj2Q2(j2, h2)

r

)︄⃓⃓⃓⃓
⃓⃓ .

A simple Weyl differencing type of argument further yields⃓⃓⃓⃓
⃓⃓ ∑︂
|h1|<|r|

ψ

(︄
aj1Q1(j1, h1)

r

)︄⃓⃓⃓⃓
⃓⃓
2

=
∑︂

|h|,|h1|<|r|
ψ

(︄
aj1(Q1(j1, h+ h1) −Q1(j1, h1))

r

)︄

≪
∑︂

|h|<|r|

⃓⃓⃓⃓
⃓⃓ ∑︂
|h1|<|r|

ψ

(︄
6aλj1ρ

2
1ρ

2
2j1h1h

r

)︄⃓⃓⃓⃓
⃓⃓

= |r| #{h ∈ O : |h| < |r|, r | 6aλj1ρ
2
1ρ

2
2j1h}

≪ |r| |(r, 6aλj1ρ
2
1ρ

2
2j1h)|

≪ |r| |(r, j1)|.

We can find a similar estimate for the sum over h2, which gives

Tr(j) ≪ |r|2|(r, j1)|1/2|(r, j2)|1/2.

This will be sufficient for our purposes if r is cube-full. However, for r = ϖ or r = ϖ2 we
can do better. We begin by considering the case when r = ϖ and we will further assume
ϖ ∤ (j1, j2). Note first that

∑︂′

|a|<|ϖ|
ψ

(︄
a ˜︁F (j,h)

ϖ

)︄
=

∑︂
|a|<|ϖ|

a̸=0

ψ

(︄
a ˜︁F (j,h)

ϖ

)︄
=

⎧⎨⎩|ϖ| − 1, if ϖ | ˜︁F (j,h),
−1, otherwise.

Therefore we get

Tϖ(j) = (|ϖ| − 1)#
{︂
|h| < |ϖ| : ϖ | ˜︁F (j,h)

}︂
− #

{︂
|h| < |ϖ| : ϖ ∤ ˜︁F (j,h)

}︂
= |ϖ|#

{︂
|h| < |ϖ| : ϖ | ˜︁F (j,h)

}︂
− |ϖ|2.

The equation ˜︁F (j,h) ≡ 0 mod ϖ may be regarded as Q(h1, h2, 1) for a ternary quadratic
form Q(x, y, z). The quadratic form Q is non-singular in O/ϖ if ϖ ∤ j1j2F0(j), where
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F0(j) = λj3
1 + µj3

2 . Since ϖ is irreducible we have O/ϖ ∼= F|ϖ| and so if ϖ ∤ j1j2F0(j) then
Theorem 6.26 in [135] gives

#
{︂
|h| < |ϖ| : ϖ | ˜︁F (j,h)

}︂
= |ϖ| +O(1).

We deduce Tϖ(j) ≪ |ϖ| in this case. Since ϖ ∤ (j1, j2) the form Q does not vanish identically
in O/ϖ and so we have

#
{︂
|h| < |ϖ| : ϖ | ˜︁F (j,h)

}︂
≪ |ϖ|,

whence Tϖ(j) ≪ |ϖ|2 if ϖ | j1j2F0(j).
We now turn to analysing Tϖ2(j). We assume ϖ ∤ λµ∏︁5

i=1 ρi. This condition affects only
finitely many primes ϖ and so the estimates that we obtain under this condition hold in general
by adjusting the resulting constant. Put

k1 = 2ρ1ρ2h1 − (ρ1ρ
′
2 + ρ′

1ρ2)j1, and k2 = 2ρ3ρ4h2 − (ρ3ρ
′
4 + ρ′

3ρ4)j2,

so that after this change of variables we have

˜︁F (j,k(h)) = 1
4F0(j) + 3

4(λj1k
2
1 + µj2k

2
2).

By our assumption on ϖ, as h ranges through values |h| < |ϖ2| we also have that k ranges
through |k| < |ϖ2| under this change of variables. Hence we obtain

Tϖ2(j) =
∑︂′

|a|<|ϖ|2
ψ

(︄
aF0(j)
4ϖ2

)︄ ∑︂
|k|<|ϖ|2

ψ

(︄
3a(λj1k

2
1 + µj2k

2
2)

4ϖ2

)︄
.

We can write k = u +ϖv where |u|, |v| < |ϖ|. Then
∑︂

|ki|<|ϖ|2
ψ

(︄
3aλjik

2
i

4ϖ2

)︄
=

∑︂
|ui|<|ϖ|

ψ

(︄
3aλjiu

2
i

4ϖ2

)︄ ∑︂
|vi|<|ϖ|

ψ

(︄
3aλjiuivi

4ϖ2

)︄

= |ϖ|
∑︂

|ui|<|ϖ|
ϖ|jiui

ψ

(︄
3aλjiu

2
i

4ϖ2

)︄
,

for i = 1, 2 since ϖ ∤ aλ. If ϖ ∤ j1j2 the above expression is just |ϖ| and so we get in this
case

Tϖ2(j) = |ϖ|2
∑︂′

|a|<|ϖ|2
ψ

(︄
aF0(j)
4ϖ2

)︄
=

⎧⎪⎪⎨⎪⎪⎩
0, if ϖ ∤ F0(j),
−|ϖ|3 if ϖ ∥ F0(j),
|ϖ|4 − |ϖ|3 if ϖ2 | F0(j),

and so in particular
Tϖ2(j) ≪ |ϖ|2|(ϖ2, F0(j))|.

If, on the other hand, ϖ | j1 we claim that Tϖ2(j) = 0. Due to the standing assumption
ϖ ∤ (j1, j2) it follows that ϖ ∤ j2 and thus the above gives

Tϖ2(j) = |ϖ|2
∑︂

|u1|<|ϖ|

∑︂′

|a|<|ϖ|2
ψ

(︄
a(F0(j) + 3λj1u

2
1)

4ϖ2

)︄
.

This vanishes unless ϖ | F0(j) + 3λj1u
2
1. But since ϖ | j1 this would imply ϖ | µj3

2 and hence
ϖ | j2. As we excluded this case by assumption the claim follows. We summarise our analysis
of Tr(j) in a lemma.
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5. Diagonal cubic forms over function fields

Lemma 5.8.5. Let j ∈ O2 \ {0}. Then we have

Tr(j) ≪ |r|2|(r, j1)|1/2|(r, j2)|1/2

for any r ∈ O \ {0}. Further, if r = ϖ or r = ϖ2 for some irreducible ϖ ∈ O and if
ϖ ∤ (j1, j2) then we get

Tr(j) ≪ |r||(r, j1j2F0(j))|.

We are now finally in a position to give a sufficiently good upper bound for the right hand
side of (5.8.4) and thus complete the proof of Theorem 5.1.2. For this we fix a choice of ρi

and estimate the sum
S :=

∑︂
r monic
|r|≤ˆ︁Q

|r|−2 ∑︂
j∈O2

|j|≪|P |

Tr(j)Jr(j).

Since there are O(1) possibilities for the ρi’s, this will be enough to show S ≪ |P |3/2+ε.
We begin with the case when j1j2F0(j) ̸= 0. In this situation Lemma 5.8.4 yields

S ≪ |P |ε
∑︂

j

|j1j2|−1/2 ∑︂
r monic
|r|≤ˆ︁Q

|r|−2|Tr(j)|. (5.8.8)

Next we write r = r1r2 where r1, r2 monic are coprime, and where r1 is cube-free and ϖ | r1
implies ϖ ∤ (j1, j2). We can then factor Tr(j) by (5.8.7) to obtain

S ≪ |P |ε
∑︂

j

|j1j2|−1/2∑︂
r2

|r2|−2|Tr2(j)|
∑︂
r1

|r1|−2|Tr1(j)|

≪ |P |ε
∑︂

j

|j1j2|−1/2∑︂
r2

|r2|−2|Tr2(j)|
∑︂
r1

|(r1, j1j2F0(j))|
|r1|

,

where we used Lemma 5.8.5 to estimate Tr1(j). For the inner sum we have∑︂
r1

|(r1, j1j2F0(j))|
|r1|

≪ |P |ε|j1j2F0(j)|ε ≪ |P |2ε,

since we assume j1j2F0(j) ̸= 0 and in general it holds ˆ︁Y −1∑︁
|r|=ˆ︁Y |(G, r)| ≪ (|G| ˆ︁Y )ε for any

Y ∈ Z≥0 and G ∈ O.
Note that if ϖ ∥ r2 or ϖ2 ∥ r2, then ϖ | (j1, j2). In particular, if we put η(r2) = ∏︁

ϖ, where
the product is over all ϖ | r2 such that ϖ ∥ r2 or ϖ2 ∥ r2, then we have j = η(r2)k for some
|k| ≪ |P |/|η(r2)|. It follows that

S ≪ |P |ε
∑︂

r monic
|r|≤ˆ︁Q

|η(r)|−1 ∑︂
|k|≪|P |/|η(r)|

k1k2 ̸=0

|(r, η(r)k1)|1/2|(r, η(r)k2)|1/2

|k1k2|1/2

≪ |P |ε
∑︂

r monic
|r|≤ˆ︁Q

∑︂
|k|≪|P |/|η(r)|

k1k2 ̸=0

|(r, k1)|1/2|(r, k2)|1/2

|k1k2|1/2 .

The sum over k above factors into (∑︁k |(r, k)|1/2|k|−1/2)2, which we can estimate as
∑︂

|k|≪|P |/|η(r)|
k ̸=0

|(r, k)|1/2

|k|1/2 ≪
∑︂
d|r

|d|1/2 ∑︂
|k′|≪|P |/|η(r)d|

(r,k′)=1

|k′d|−1/2

≪
∑︂
d|r

|P |1/2|η(r)|−1/2.
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5.8. Special solutions and the case n = 4

Since ∑︁d|r 1 ≪ |r|ε ≪ |P |ε, we thus arrive at

S ≪ |P |1+ε
∑︂

|r|≤ˆ︁Q |η(r)|−1.

Next we write r = st21t3, where s, t1, t3 are pairwise coprime and monic, t3 is cube-full
and s is square-free. With this notation we clearly have η(r) = st1 and there are at most
O( ˆ︁Q1/3) = O(|P |1/2) available t3, so that

S ≪ |P |3/2+ε
∑︂

|s|≤ˆ︁Q |s|−1 ∑︂
|t1|≤(ˆ︁Q/|s|)1/2

|t1|−1

≪ |P |3/2+ε
∑︂

|s|≤ˆ︁Q |s|−1( ˆ︁Q/|s|)ε/2

≪ |P |3/2+ε ˆ︁Q3ε/2.

With a new choice of ε this estimate suffices for our purpose.

Next we consider the case when j1j2F0(j) = 0. If j1j2 ̸= 0 but F0(j) = 0, then there exist
some j, νi ∈ O such that ji = νij. The number of possible νi can be estimated by O(1). In
this case Lemma 5.8.4 and Lemma 5.8.5 yield

Jr(j) ≪ |P |ε|j|−1, and Tr(j) ≪ |r|2|(r, j)|.

The total contribution to S of such j is therefore bounded by

|P |ε
∑︂

r monic
|r|≤ˆ︁Q

∑︂
j≪P
j ̸=0

|j|−1|(r, j)| ≪ |P |3/2+ε,

which is sufficient.

Finally we need to consider the case when one of ji = 0. We may assume j2 = 0 since the
other case is analogous. Write j1 = j, then the second part of Lemma 5.8.4 gives

Jr(j) ≪ |P |1/4

(|j||r|)1/2 .

Combining the estimates in Lemma 5.8.5 also gives

Tr(j) ≪ |r|5/2+ε|(j, r)|m(r)−1/2,

where m(r) = ∏︁
ϖ∥r ϖ. The contribution to S of j under consideration is therefore bounded

by
|P |1/4 ∑︂

r monic
|r|≤ˆ︁Q

∑︂
j≪P
j ̸=0

|(j, r)||j|−1/2m(r)−1/2.

Since ∑︁0<j≪P |(j, r)||j|−1/2 ≪ qε|P |1/2+ε we get an overall bound

|P |3/4+ε
∑︂

r monic
|r|≤ˆ︁Q

m(r)−1/2.
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5. Diagonal cubic forms over function fields

Write r = r1r2 where r1 is square-free and r2 is square-full. Note that then m(r) = r1 and
there are at most O

(︃(︂ ˆ︁Q/|r1|
)︂1/2

)︃
available r2. Hence

∑︂
r monic
|r|≤ˆ︁Q

m(r)−1/2 ≪ ˆ︁Q1/2 ∑︂
r1 monic
|r1|≤ˆ︁Q

|r1|−1 ≪ |P |3/4+ε,

and so the desired bound of O(|P |3/2+ε) contributed from j’s such that either j1 = 0 or
j2 = 0 follows. Altogether, we have shown

S ≪ |P |3/2+ε,

which completes the proof of Lemma 5.8.1.
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CHAPTER 6
Rational points on complete

intersections of cubic and quadratic
hypersurfaces over Fq(t)

This chapter is based on [85].

6.1 Introduction
If X ⊂ Pn−1 is a variety over a global field K, then one key aspect entails understanding the
counting function

NX(B) := #{x ∈ X(K) : H(x) < B}

for a suitable height function H : X(K) → R≥0. In this chapter we shall focus on the case
when X = V (F1, F2) ⊂ Pn−1 is a non-singular complete intersection of a cubic and a quadric
hypersurface over K = Fq(t). To state our main result, recall that |x| = max qdeg xi for
x ∈ Fq[t]n. We take a smooth weight function w : Fq((t−1))n → R≥0 that is supported around
a suitable point x0 ∈ Fq((t−1))n with F1(x0) = F2(x0) = 0. For non-zero P ∈ Fq[t], we
consider the counting function

N(P ) :=
∑︂

x∈Fq [t]n
F1(x)=F2(x)=0

w
(︃

x

P

)︃
as |P | → ∞.

Theorem 6.1.1. Let X ⊂ Pn−1 be a non-singular complete intersection of a cubic and a
quadric hypersurface over Fq(t). If n ≥ 26 and char(Fq) > 3, then there exists δ > 0 such
that

N(P ) = c|P |n−5 +O
(︂
|P |n−5−δ

)︂
,

for some c > 0.

To put our result into context, Browning–Dietmann–Heath-Brown [37] proved the analogue of
Theorem 6.1.1 over K = Q for n ≥ 29. Another result in this direction when both F1 and F2
are diagonal is due to Wooley [209, 210]. Again working over Q, he restricted the range of
possible integer solutions to those having only small prime factors. Appealing to the theory of

79



6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

smooth Weyl sums this allowed him to provide an asymptotic formula for the number of such
restricted solutions for n ≥ 13 whenever F1 and F2 have at least 7 and 5 non-zero coefficients
respectively.

A smooth complete intersection of a cubic and a quadratic hypersurface inside Pn−1 is Fano as
soon as n ≥ 6. In particular, Theorem 6.1.1 falls under the realm of Conjecture 2.3.3 that was
put forward by Manin and his collaborators. The order of growth established in Theorem 6.1.1
agrees with this prediction. For an overview of results for more general complete intersections,
we refer the reader to Section 4.5.

As explained in Section 4.5, the Hasse principle for complete intersections defined by forms of
degree d1, . . . , dR inside Pn−1 holds trivially as soon as n > d2

1 + · · · + d2
R by the theory of

Lang–Tsen fields. However, establishing weak approximation remains a substantial challenge.
Currently there are no results available regarding weak approximation for complete intersections
of cubic and quadric hypersurfaces over Fq(t). Our second main result remedies this deficiency.

Theorem 6.1.2. Let X ⊂ Pn−1 be a non-singular complete intersection of a cubic and
a quadric hypersurface over Fq(t). If n ≥ 26 and char(Fq) > 3, then X satisfies weak
approximation.

The restriction on the characteristic in both Theorems 6.1.1 and 6.1.2 arises naturally in
applications of the circle method. Typically, it comes from applications of Weyl differencing,
which renders any estimates trivial when the characteristic is smaller than the degrees of the
equations. In our situation we have to study both quadratic and cubic exponential sums that
we can only bound satisfactorily when char(K) > 3.

Browning and Vishe [44] have found a way to use the circle method over Fq(t) to obtain crude
geometric information about the space of rational curves of fixed degree inside a hypersurface
in sufficiently many variables compared to its degree. If one is willing to make all the estimates
uniform in q, then our work is likely to give access to the analogous properties when X is the
intersection of a cubic and a quadric hypersurface.

Using a geometric approach, Tian [195] has verified the Hasse principle for non-singular
cubic hypersurfaces X ⊂ Pn−1 when char(K) > 5 and n ≥ 6 and weak approximation for
non-singular intersections of quadratic forms when char(K) > 2 and n ≥ 6. It would be
interesting to see whether his methods carry over to say something useful about intersections
of cubic and quadric hypersurfaces.

When the degree of a form F is small, the delta method developed by Duke, Friedlander and
Iwaniec [69] and further refined by Heath-Brown [100] is capable of dealing with significantly
fewer variables than the classical circle method. In particular, it has been successfully applied
to quadratic forms [100] and cubic forms [116]. Over Fq(t) an identity analogous to the
delta method turns out to be much simpler thanks to the non-archimedean nature and was
successfully incorporated by Browning and Vishe [34]. However, until recently it was unclear
how to construct an analogue of the delta method for systems of equations. Vishe [202]
made substantial progress by developing a 2-dimensional analogue of the delta method over
K = Fq(t) that enabled him to produce an asymptotic formula for the number of rational
points of bounded height on non-singular intersections of two quadratic forms in n ≥ 9
variables when char(K) > 2. His innovation serves as the main input for our work and we
shall now proceed to outline the main steps of our proof.
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Outline of proof
In [202] the main new input is the development of a two-dimensional version of a Farey
dissection over Fq(t). While Vishe’s version only allows one to put squares around the
approximating rationals, our application requires lopsided boxes in order to take into account
the different degrees of the forms F1 and F2. In Section 6.2 we shall modify his development
to accommodate our needs. We expect that the argument would carry over inductively to
higher dimensions. In the case of hypersurfaces the delta method is particularly useful when
the degree is at most 3. Unless one appeals to a similar strategy as devised by Marmon and
Vishe [139] to deal with quartic hypersurfaces, it seems that when one considers intersections
of two hypersurfaces, our situation is just at the barrier. That is, when the sum of the degrees
of the individual hypersurfaces exceeds 5, it does not seem to give any improvements compared
to the classical circle method.

Once we have achieved the Farey dissection, a standard application of the Poisson summation
formula leads us to study certain oscillatory integrals and exponential sums. We provide upper
bounds for the oscillatory integrals in Section 6.5 and for the exponential sums and averages
thereof in Sections 6.6 and 6.7. When the modulus is square-free, we estimate the exponential
sums by appealing to work of Katz [119], that ultimately relies on Deligne’s resolution of
the Riemann hypothesis over finite fields [67] and obtain cancellations when summing over
the numerators. This is usually referred to as a “Kloosterman refinement”. As in [202] and
[34] it would have been desirable to obtain a double Kloosterman refinement, in which we
extract cancellations when summing over both the numerators and denominators. In [202]
and [34] the corresponding exponential sums are multiplicative and their averages over the
denominator can be studied via the associated L-functions that satisfy a suitable version of
the Riemann hypothesis. In our setting, we consider exponential sums associated to linear
combinations of the cubic and quadratic form. That these are not homogeneous only allows
for a “twisted” form of multiplicativity and it is not clear how to associate an L-function to
study their averages. There remains the substantial task of providing estimates for exponential
sums when the modulus is not square-free. We are unable to give upper bounds directly, but
rather study averages of them over the dual variable in Section 6.7. The underlying arguments
go back to work of Heath-Brown [98], but are significantly more complicated in our situation.

Any implied constant in this chapter is allowed to depend on q. Any further dependencies will
be indicated by a subscript, unless mentioned otherwise.

6.2 Farey dissection
Vishe’s strategy is to find a suitable family of lines in the unit square so that when we consider
rational points on these lines they cover the whole square and at the same time stay sufficiently
far away from each other to ensure an exact partition. Before reviewing his results in more
detail, we need some notation. Let K = Fq(t) and O = Fq[t] be its ring of integers. We will
again use the notation introduced in Chapter 3.

If c = (c1, c2) ∈ O2, then we say that c is primitive if (c1, c2) = 1 and either c1 is monic or
c1 = 0 and c2 is monic. For d, k ∈ O with (d, k) = 1 and c ∈ O2 primitive we define the
affine line

L1(dc, k) := {x ∈ K2
∞ : dc · x = k} (6.2.1)
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and the generalised line

L(dc) := {a/r ∈ T2 ∩K2 : (a, r) = 1, a/r ∈ L1(dc, k) for some k ∈ O with (k, d) = 1}.
(6.2.2)

Note that since (k, d) = 1, we must have d | r if a/r ∈ L(dc) with (a, r) = 1. We refer to
|dc| as the height of L(dc). For x ∈ T2 and R ∈ Z, we let B(x, ˆ︁R) := {θ ∈ T2 : |θ−x| < ˆ︁R}
be the ball of radius ˆ︁R centered around x. Similarly, for ˆ︁R = ( ˆ︁R1, ˆ︁R2) ∈ Z we set

R(x, ˆ︁R) := {θ ∈ T2 : |θi − xi| < ˆ︁Ri for i = 1, 2}

to be a rectangle of sidelengths ˆ︁R1 and ˆ︁R2 centered around x. In addition, ˆ︁R−1 denotes the
vector ( ˆ︁R−1

1 , ˆ︁R−1
2 ). We are now in a position to state Vishe’s partition of the unit square.

Theorem 6.2.1. Let Q ≥ 1. Then

T2 =
⨆︂

r monic
|r|≤ˆ︁Q

⨆︂
d|r monic

c∈O2 primitive
|r|ˆ︁Q−1/2≤|dc|≤|r|1/2

|dc2|<|r|1/2

⨆︂′

|a|<|r|
a/r∈L(dc)

B(a/r, |r|−1 ˆ︁Q−1/2),

where ⨆︁′ indicates that we only consider vectors a such that (a, r) = 1.

A few remarks are in order to explain the conditions on the lines in the theorem. First, from a
standard application of Dirichlet’s approximation theorem [131, Lemma 4.5.1] one obtains

Tk =
⋃︂

|r|≤ˆ︁Q
r monic

⋃︂′

|a|<|r|
B(a/r, |r|−1 ˆ︁Q−1/k) (6.2.3)

for any Q > 0 and k ≥ 1. Furthermore, using the pigeon-hole principle one can show that
that any a/r ∈ K2 with |a| < |r| and (a, r) = 1 lies on a line L(dc) with |dc| ≤ |r|1/2 and
|dc2| < |r|1/2. It also clear from the definition (6.2.2) that we must have d | r. So the key
condition in Theorem 6.2.1 is |r| ˆ︁Q−1/2 ≤ |dc|. This guarantees that

(i) rational points on an individual line stay sufficiently far away from each other,

(ii) rational points on distinct lines stay sufficiently far away from each other,

(iii) distinct lines don’t intersect at rationals with small denominator.

With (i)–(iii) at hand it only remains to show that we can still cover T2 with balls centered
on rationals a/r on lines L(dc) such that |r| ˆ︁Q−1/2 ≤ |dc|. This is a consequence of one-
dimensional Diophantine approximation, where in fact (6.2.3) already provides an exact
partition of the unit interval.

We will follow this blueprint closely to obtain an analogue of Theorem 6.2.1 that allows for
lopsided boxes. This requires us to go through most of Vishe’s steps again, since we have to
modify some of the proofs to get control over the distance between the individual coordinates
of rational vectors. We begin with a two-dimensional version of Dirichlet’s approximation
theorem with rectangles.
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6.2. Farey dissection

Lemma 6.2.2. let R1 ≥ R2 ≥ 1 be integers. Then

T2 =
⋃︂

|r|≤ˆ︁R1ˆ︁R2
r monic

⋃︂′

|a|<|r|
R(a/r, |r|−1 ˆ︁R−1).

Proof. For any x ∈ T2 the rectangle R(x, ˆ︁R−1) has volume ( ˆ︁R1
ˆ︁R2)−1. We can therefore write

T2 =
ˆ︁R1ˆ︁R2⨆︂
i=1

R(xi,
ˆ︁R−1) (6.2.4)

for some xi ∈ T2. Observe that there are ˆ︁R1
ˆ︁R2q polynomials r ∈ O with |r| ≤ ˆ︁R1

ˆ︁R2. In
particular, if x ∈ T2 and r runs through all r ∈ O with |r| ≤ ˆ︁R1

ˆ︁R2, then two of them, say
r1 ̸= r2, must satisfy

{rix} ∈ R(xj,
ˆ︁R−1),

for i = 1, 2 and some 1 ≤ j ≤ ˆ︁R1
ˆ︁R2, where {·} denotes the fractional part. If we let

r = r1 − r2, then this implies

rx− a ∈ R(0, ( ˆ︁R−1
1 , ˆ︁R−2

2 )),

where a is the integer part of (r1 − r2)x. We can divide through by (a, r) to ensure that
(a, r) = 1 and also multiply by a unit if necessary to guarantee that r is monic.

Next we show that every rational lies on a generalised line of suitable height. This is the
analogue of [202, Lemma 3.1], where the difference is that we allow the extra parameter T .

Lemma 6.2.3. Let T ≥ 1. Then for any a/r ∈ T2 with |a| < |r| and (a, r) = 1, there
exists d | r monic and c ∈ O2 primitive such that |dc1| ≤ ˆ︁T |r|1/2, |dc2| < ˆ︁T−1|r|1/2 and
a/r ∈ L(dc).

Proof. The set
{c ∈ O2 : |c1| ≤ ˆ︁T |r|1/2, |c2| < ˆ︁T−1|r|1/2}

has cardinality strictly bigger than |r|. In particular, there exists two distinct vectors c1, c2 in
this set such that c1 · a ≡ c2 · a mod r. Let c′ = c1 − c2. It then follows that c′ · a = k′r for
some k′ ∈ O. Now let d′ = gcd(c1, c2), d = d′/ gcd(d′, k′), c = c′/d′ and k = k′/ gcd(d′, k′).
We then have dc · a = kr. Moreover, by construction (d, k) = 1, which also implies d | r. We
can further guarantee that c is primitive and d monic by multiplying with a unit and changing
k if necessary.

For any c = (c1, c2) ∈ O2 we let c⊥ = (−c1, c1). We also need the following result, which is
[202, Lemma 3.5], about the distribution of rational points on an individual line.

Lemma 6.2.4. Let d ∈ O be monic and c ∈ O2 be primitive. Then for every a/r ∈ L(c)
there exists a unique a ∈ O with |a| < |r|, (a, r) = 1 and a unique d ∈ O2 with |d| < |c| such
that a/r = a

r
c⊥ + d. Moreover, for every a/r ∈ L(dc) there exists a unique a′/(r/d) ∈ L(c)

with |a′| < |r/d| and a unique d′ ∈ O2 with |d|′ < |d| such that a/r = a′/r + d′/d.

Next we turn to studying the distance between rational points on lines of the form L(c). The
following result is the analogue of [202, Lemma 3.6].
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

Lemma 6.2.5. Let c ∈ O2 be primitive and a/r ̸= a′/r′ ∈ L(c). Then⃓⃓⃓⃓
⃓ai

r
− a′

i

r′

⃓⃓⃓⃓
⃓ ≥ |c⊥

i |
|rr′|

for both i = 1, 2 or max
i=1,2

{︄
|ci|

⃓⃓⃓⃓
⃓ai

r
− a′

i

r′

⃓⃓⃓⃓
⃓
}︄

≥ 1.

The first case happens if a/r, a′/r′ ∈ L1(c, k) for some k ∈ O. Moreover, if a/r is an element
of L(c) ∩ L1(c, k) with |c| ≤ |r|2, there exists b/r1 ∈ L(c) ∩ L1(c, k) such that |r1| = q|r|
and |ai/r − bi/r1| = |c⊥

i |/|rr1|.

Proof. We begin with the first part of the lemma. Since a/r, a′/r′ ∈ L(c), it follows from the
definition of L(c) that there exist k, k′ ∈ O such that (a/r − a′/r′) · c = k − k′. If k ̸= k′,
then by the ultrametric property we have maxi=1,2 |ai/r − a′

i/r
′||ci| ≥ 1, which is sufficient.

Thanks to Lemma 6.2.4 we can also write a/r = a
r
c⊥ + d and a′/r′ = a′

r′ c
⊥ + d′. If k = k′,

then the conditions |d|, |d′| < |c| and the fact that c is primitive imply that d = d′. Therefore,
we have |ai/r − a′

i/r
′| = |a/r − a′/r||c⊥

i | ≥ |c⊥
i |/|rr′|. Furthermore, we have k = k′ if and

only if a/r, a′/r′ ∈ L1(c, k).
For the second part of the lemma, one can check that Vishe’s proof of [202, Lemma 3.6] in
fact gives control over the distance of both coordinates of a/r − b/r1. Moreover, he requires
|c|2 ≤ |r|, but his proof shows that |c| ≤ |r|2 is in fact sufficient.

We can also extend this result to arbitrary lines.

Lemma 6.2.6. Let d ∈ O be monic and c ∈ O2 be primitive. Then for a/r ̸= a′/r′ ∈ L(dc),
at least one of the following must hold:

(i)
⃓⃓⃓

ai

r
− a′

i

r′

⃓⃓⃓
≥ |dc⊥

i |
|rr′| for both i = 1, 2,

(ii)
⃓⃓⃓

a
r

− a′

r′

⃓⃓⃓
≥ max{|r|−1, |r′|−1},

(iii) maxi=1,2
{︂
|dci|

⃓⃓⃓
ai

r
− a′

i

r′

⃓⃓⃓}︂
≥ 1.

Moreover, if a/r ∈ L1(dc, k), then there exists a/r ̸= b/r2 ∈ L1(dc, k) such that

|ai/r − bi/r2| ≤ |dc⊥
i |/|rr2|

for both i = 1, 2.

Proof. We begin with the first part of the statement. Recall from Lemma 6.2.4 that we
can write a/r = a1/r + d/d and a′/r′ = a2/r

′ + d′/d where a1/(r/d), a2/(r′/d) ∈ L(c) and
d, d′ ∈ O2. We thus have ⃓⃓⃓⃓

⃓ai

r
− a′

i

r′

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓a1,i

r
− a2,i

r′ + di − d′
i

d

⃓⃓⃓⃓
⃓

for i = 1, 2. If d ̸= d′, then this is clearly at least 1/|d| ≥ max{|r|−1, |r′|−1} for one of
i = 1, 2, since d | r, r′ . One the other hand, if d = d′, we can use Lemma 6.2.5: In its first
case we obtain |a1,i/(r/d) − a2,i/(r′/d)| ≥ |d2||c⊥

i |/|rr′| for both i = 1, 2, which implies

|ai/r − a′
i/r

′| ≥ |dc⊥
i |/|rr′| for i = 1, 2,
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6.2. Farey dissection

whereas in the second case maxi=1,2{|ci||a1,i/(r/d) − a2,i/(r/d)|} ≥ 1, which implies

max
i=1,2

|dci||ai/r − a′
i/r

′| ≥ 1.

For the second part of the lemma, we use Lemma 6.2.4 to write a/r = b′/r + d′/d, where
b′/(r/d) ∈ L1(c, k) for some k ∈ O. It follows from the second part of Lemma 6.2.5 that
there exists b′′/r1 ∈ L1(c, k) with |r1| = q|r/d| and |b′

i/(r/d) − b′′
i /r1| = |dc⊥

i |/|rr1| for
i = 1, 2. Now set b/r2 = b′′/(r1d) + d′/d. We then have dc · b/r2 = k + c · d′ = dc · a/r,
so that b/r2 ∈ L1(dc, k). Moreover, we also have |bi/r2 − ai/r| = |b′′

i /r1 − b′
i/(r/d)|/|d| =

|c⊥
i |/|rr1| ≤ |dc⊥

i |/|rr2|, where we used that |r2| ≤ |r1d|.

We also need the following lemma, which is the second part of [202, Lemma 3.9].

Lemma 6.2.7. Let a/r ∈ L(dc) ∩ L(d′c′), where d, d′ ∈ O are monic and c, c′ ∈ O2 are
primitive. If |c1c

′
2|, |c2c

′
1| < |r/(dd′)|, then dc = d′c′.

Note that in [202, Lemma 3.9] the extra condition |dc|2, |d′c′|2 ≤ |r| is required, but this is in
fact not used in the proof. The next lemma is concerned with the distance between rational
points that lie on distinct lines.

Lemma 6.2.8. Let a/r ∈ L(dc) and a′/r′ ∈ L(d′c′) with dc ̸= d′c′, |dd′c1c
′
2| < |rr′|1/2

and |dd′c2c
′
1| < |rr′|1/2. Then we have |ai/r − a′

i/r
′| ≥ |dcir

′|−1 for one of i = 1, 2 and
|ai/r − a′

i/r
′| ≥ |d′c′

ir|−1 for one of i = 1, 2.

Proof. First note that a/r and a′/r′ must be distinct by Lemma 6.2.7 . By the second part
of Lemma 6.2.6 there exists b/r1 ∈ L(dc) such that |ai/r − bi/r1| ≤ |dc⊥

i |/|rr1|. Let

C =
(︄
a/r − b/r1
a/r − a′/r′

)︄
.

Since a′/r′ ̸∈ L(dc), it follows that det(C) ̸= 0. It is therefore clear that | det(C)| ≥ |rr′r1|.
This implies that |ai/r − a′

i/r
′| ≥ 1/|dcir

′| for one of i = 1, 2. Finally we can replace the role
of r and r′ to obtain the second inequality of the statement.

We now have all ingredients at hand to prove the main result of this section.

Theorem 6.2.9. Let R1 ≥ R2 ≥ 1 be integers. If we set T = (R1 −R2)/2, then

T2 =
⨆︂

|r|≤ˆ︁R1ˆ︁R2
r monic

⨆︂
d|r monic

c∈O2 primitive
|dc1|≤ˆ︁T |r|1/2,|dc2|<ˆ︁T −1|r|1/2

max{ˆ︁Ri|dc⊥
i |}≥|r|

⨆︂′

|a|<|r|
a/r∈L(dc)

R(a/r, |r|−1 ˆ︁R−1). (6.2.5)

Proof. We first show the union on the right hand side of (6.2.5) is disjoint. Let a/r ̸= a′/r′

appear on the right hand side of (6.2.5) and suppose |r′| ≥ |r|. We now have to distinguish
a few cases. First, if a/r, a′/r′ ∈ L(dc) for some L(dc) appearing on the right hand side of
(6.2.5), then in case (i) of Lemma 6.2.6 we have⃓⃓⃓⃓

⃓ai

r
− a′

i

r′

⃓⃓⃓⃓
⃓ ≥ |dc⊥

i |
|rr′|

≥ 1ˆ︁Ri|r|
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

for one of i = 1, 2, where we used that |dc⊥
i | ≥ ˆ︁R−1

i |r′| for one of i = 1, 2. This is
clearly sufficient to show R(a/r, |r|−1 ˆ︁R−1) is disjoint from R(a′/r′, |r′|−1 ˆ︁R−1). On the other
hand, case (ii) of Lemma 6.2.6 yields |a/r − a′/r′| ≥ max{|r|−1, |r′|−1}. However, then the
rectangles around a/r and a′/r′ must be disjoint since ˆ︁R1 ≥ ˆ︁R2 ≥ 1. If case (iii) in Lemma
6.2.6 holds for i = 1, then dc1 ̸= 0 and⃓⃓⃓⃓

⃓a1

r
− a′

1
r′

⃓⃓⃓⃓
⃓ ≥ 1

|dc1|
≥

ˆ︁R2|dc1|ˆ︁R1|r|
≥ 1ˆ︁R1|r|

.

A similar calculation shows that if the inequality holds for i = 2, then we obtain
|a2/r − a′

2/r
′| ≥ ˆ︁R−1

2 |r|−1. This finishes the case a/r, a′/r′ ∈ L(dc). Next we are con-
cerned about the case a/r ∈ L(dc), a′/r′ ∈ L(d′c′) with dc ̸= d′c′. Our constraints on dc, d′c′

guarantee that the requirements in Lemma 6.2.8 are met, and so we get |ai/r−ai/r
′| ≥ |dcir|−1

for one of i = 1, 2. Note that |dc1| ≤ ( ˆ︁R1/ ˆ︁R2)1/2|r|1/2 ≤ ˆ︁R1, since |r| ≤ ˆ︁R1
ˆ︁R2. Similarly we

get |dc2| ≤ ˆ︁R2, so that |ai/r − ai/r
′| ≥ |dcir|−1 ≥ ˆ︁R−1

i |r|−1, which is sufficient. Finally, it
remains to show that every rational a/r in the right hand side of (6.2.5) appears precisely
once. This is a consequence of Lemma 6.2.7. Therefore, we have established that the right
hand side of (6.2.5) is a disjoint union.

Now we show that if a/r ∈ T2 is a rational with |a| < |r| ≤ ˆ︁R1
ˆ︁R2 and (a, r) = 1, then there

exists a rational a′/r′ appearing on the right hand side of (6.2.5) such that

R(a/r, |r|−1 ˆ︁R−1) ⊂ R(a′/r′, |r′|−1 ˆ︁R−1).

By Lemma 6.2.3 this is enough to show the equality of sets in (6.2.5). It follows from Lemma
6.2.3 that there exist d ∈ O monic and c ∈ O2 primitive such that d | r, a/r ∈ L(dc)
and |dc1| ≤ T |r|1/2, |dc2| < T−1|r|1/2. If max{ ˆ︁Ri|dc⊥

i |} ≥ |r| we are done. Otherwise, let
M = max{ ˆ︁Ri|c⊥

i |} so that M < |r|. Lemma 6.2.4 allows to write a/r = a
r
c⊥ + d/d for some

a ∈ O and d ∈ O2, where a/(r/d) ∈ L(c). The one dimensional Dirichlet approximation
theorem implies the existence of a rational a′/r1 such that |a′| < |r1| ≤ M |d|−1, (a′, r1) = 1
and |a/(r/d) − a′/r1| < |r1|−1|d|M−1. Now set a′/r′ = a′

r1d
c⊥ + d/d. We then have

dc · a′/r′ = c · d = dc · a/r, which implies a′/r′ ∈ L(dc) and d | r′. Moreover, by construction
we have |r′| ≤ |dr1| ≤ M . We also have

|ai/r − a′
i/r

′| = |d|−1|ai/(r/d) − a′/r1| < |r1|−1M−1 ≤ |r′|−1 ˆ︁R−1
i

for both i = 1, 2. This completes the proof of Theorem 6.2.9.

Remark. Note that in the particular case R1 = R2 we recover Theorem 6.2.1 with Q = 2R1
from Theorem 6.2.9.

The following corollary will be useful when evaluating the main contribution to our asymptotic
formula.

Corollary 6.2.10. Let R1 ≥ R2 ≥ 1 be integers. Then
⨆︂

|r|≤ˆ︁R2
r monic

⨆︂
d|r monic

c∈O2 primitive
|dc1|≤ˆ︁T |r|1/2

|dc2|<ˆ︁T −1|r|1/2

⨆︂′

|a|<|r|
a/r∈L(dc)

R(a/r, |r|−1 ˆ︁R−1) =
⨆︂

|r|≤ˆ︁R2
r monic

⨆︂′

|a|<|r|
R(a/r, |r|−1 ˆ︁R−1)
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Proof. Clearly the left hand side of the claimed equality is contained in the right hand side.
Moreover, by Lemma 6.2.3 the right hand side is contained in the left hand side. Theorem
6.2.9 implies that the left hand side is disjoint, since the condition max{ ˆ︁Ri|dc⊥

i |} ≥ |r| is
vacuously true for |r| ≤ ˆ︁R2. It remains to prove that the right hand side is disjoint. Suppose
that α ∈ R(a1/r1, |r1|−1 ˆ︁R−1) ∩R(a2/r2, |r2|−1 ˆ︁R−1) with a1/r1 ̸= a2/r2. We then have

1
|r1r2|

≤
⃓⃓⃓⃓
a1

r1
− a2

r2

⃓⃓⃓⃓
=
⃓⃓⃓⃓(︃
a1

r1
− α

)︃
+
(︃
α− a2

r2

)︃⃓⃓⃓⃓
< max

{︄
1

|r1| ˆ︁R2
,

1
|r2| ˆ︁R2

}︄
,

which is impossible since |r1|, |r2| ≤ ˆ︁R2.

6.3 Geometry
If the complete intersection X ⊂ Pn−1 is defined by a cubic form F1 and a quadratic form
F2, then it is also defined by F1 + LF2 and F2 for any linear form L ∈ O[x1, . . . , xn]. In
particular, given the degree of freedom we have, it is reasonable to expect that we can define
X as the intersection of a non-singular cubic hypersurface and a quadratic hypersurface. This
is indeed the case as demonstrated in Lemmas 3.2–3.3 of [37], whose proof we adjust to cope
with positive characteristic.

Lemma 6.3.1. Let X ⊂ Pn−1 be a non-singular complete intersection of a cubic and
a quadratic hypersurface over K. Then X = V (F1, F2), where F1 ∈ O[x1, . . . , xn] is a
non-singular cubic form and F2 is a quadratic form of rank at least n− 1.

Proof. Suppose X = V (G1, G2), where G1 is a cubic and G2 a quadratic form respectively.
For U = Pn−1 \ V (G2) define the morphism

φ : U → Pn, (x1 : · · · : xn) ↦→ (G1(x) : x1G2(x) · · · : xnG2(x)).

Assume for a moment that there exists a hyperplane H ⊂ Pn defined over K such that
φ−1(H) is smooth. This means that there exist λ0, . . . , λn ∈ K such that

F1 = λ0G1 + λ1x1G2 + · · · + λnxnG2

satisfies U ∩ {F1 = 0} is smooth. However, U ∩ {F1 = 0} = {F1 = 0} \ {G2 = 0}, from
which it follows that F1 is non-singular since X is non-singular.
To prove the existence of the claimed λi’s, Browning–Dietmann–Heath-Brown appeal to
Bertini’s Theorem, which does not hold in general in positive characteristic. However, it follows
from work of Spreafico [189, Corollary 4.3] that the fiber above a general hyperplane H ⊂ Pn

is smooth provided the induced extension of residues fields κ(x)/κ(φ(x)) is separable for any
x ∈ U . Let Y = V (G1 − x0G2) ⊂ Pn. Then φ factors into

U → Y \ V (G2) → Y → Pn,

where the first arrow is an isomorphism, the second an open embedding and the third a closed
immersion. Indeed, if G2(x) ̸= 0 with x = (x1, . . . , xn) and (x0 : · · · : xn) lies on Y , then
x0 = G1(x)/G2(x) and hence

(x0 : · · · : xn) = (G1(x) : x1G2(x) : · · · : xnG2(x)) = φ(x).
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

Moreover, Y \ V (G2) is an open subset of Y and Y a closed subset of Pn. Both open
embeddings and closed immersions are unramified, as is the composition of unramified
morphisms. It follows that φ is unramified and hence all the residue field extensions are
separable.

It remains to show that G2 has rank at least n− 1. Aiming at a contradiction, suppose the
opposite holds. This implies that G2 is singular along a line. However, this line will intersect
{F1 = 0} in a point that will then be a singular point of X, which is impossible.

To deal with the exponential integrals appearing in our work, we will have to concentrate our
weight function near a point such that linear combinations of its Hessian associated with F1
and the matrix underlying the quadratic form F2 always have large rank. This is only possible
when char(K) > 3 and so we assume this holds for the rest of our work. Let us now fix a
symmetric matrix M ∈ On×n such that F2(x) = xtMx. Moreover, for x ∈ Kn

∞ we shall
denote by H(x) = ( ∂F1

∂xi∂xj
)1≤i,j≤n the Hessian of F1 evaluated at x.

Lemma 6.3.2. For 1 ≤ k ≤ n− 1, let Vk be the Zariski closure of

V ′
k := {x ∈ An : F1(x) = 0 and rk(t1H(x) + t2M) ≤ k for some (t1, t2) ∈ A2 \ {0}}

inside An. Then dim Vk ≤ k.

Proof. For 1 ≤ k ≤ n− 1 consider the incidence correspondence

I := {(x,y) ∈ An × An : F1(x) = 0 and rk(H(x)y,My) ≤ 1}.

Let V be an irreducible component of Vk. Since V × {0} ⊂ I and V × {0} is irreducible,
there exists an irreducible component W of I containing V × {0}. Then the projection of I
onto the first factor restricts to a surjective morphism ψ : W → V of irreducible varieties. We
can therefore apply Chevalley’s theorem [90, Proposition 14.109] to deduce the existence of an
open dense subset U ⊂ V such that dimψ−1(x) = dimW − dim V for all x ∈ V . Note that
since V ′

k is dense in Vk and V is an irreducible component of Vk, we must have U ∩ V ′
k ̸= ∅.

In addition, by the definition of V ′
k we have dimψ−1(x) ≥ n− k for all x ∈ V ′

k, so that we
must also have dimψ−1(x) ≥ n− k for all x ∈ U .

Our next task is to bound the dimension of I. For this, let ∆: An → An × An the diagonal
embedding, that is x ↦→ (x,x), and let S = ∆(An) ∩ I. If x ∈ S, then there exists
(t1, t2) ∈ A2 \ {0} such that t1∇F1(x) + t2∇F2(x) = 0. One the one hand, if t2 = 0, then
we get ∇F1(x) = 0, which implies x = 0 since F1 is non-singular. On the other hand, if
t2 ̸= 0, then after taking the inner product with x, we get F2(x) = 0, so that x is a singular
point on the affine cone of the non-singular complete intersection of F1 and F2, which implies
x = 0. Altogether we obtain dimS = 0.

Having established an upper bound for dimS, we are now in a position to get control over
dim I. From what we have just shown, it follows that

0 = dim I ∩ ∆(An) ≥ dim I + dimAn − 2n = dim I − n

and thus dim I ≤ n, from which we immediately deduce dimW ≤ n. Combining this with
the information about the dimension of the fibers of ψ, we obtain for any x ∈ U the inequality
n− k ≤ dimψ−1(x) = dimW − dim Vk and therefore dim Vk ≤ k as claimed.
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Corollary 6.3.3. Let n ≥ 14. There exists x0 ∈ Kn
∞ such that F1(x0) = F2(x0) = 0,

rk(H(x0)) ≥ n− 2 and rk(t1H(x) + t2M) ≥ n− 2 for all (t1, t2) ∈ K2
∞ \ {0}.

Proof. Let X ′ ⊂ An be the affine cone of the non-singular complete intersection
X = V (F1, F2) ⊂ Pn−1. It follows from Lemma 6.3.2 that Vn−3 is a Zariski closed subset in
An of dimension at most n− 3. As n ≥ 13, Lang–Tsen theory [91, Theorem 3.6] implies that
X(K∞) ̸= ∅ and since X is non-singular, it follows that X ′(K∞) is Zariski dense in X ′. In
particular, the fact that dimX ′ = n− 2 implies that X ′(K∞) \ Vn−3 is non-empty and any
point contained therein satisfies the conditions required in the statement of the corollary.

We also need strong upper bounds for the number of integral points on an affine hypersurface,
which are a special case of [155, Theorem 1.10] in the Fq[t] setting.

Theorem 6.3.4. Let G ∈ O[x1, . . . , xn] be a polynomial of degree d ≥ 5 whose degree d
part is absolutely irreducible and let B ≥ 1. Then there exists a constant C > 0 depending
only on d, n and q such that

#{x ∈ On : |x| < ˆ︁B,G(x) = 0} ≤ C ˆ︁Bn−2.

6.4 Activation of the circle method
In this section we collect the remaining facts needed to get the circle method started. Recall
from Lemma 6.3.1 that we can assume X = V (F1, F2) with F1 ∈ O[x1, . . . , xn] a non-singular
cubic form and F2 ∈ O[x1, . . . , xn] a quadratic form of rank at least n − 1. We shall fix
such a choice of F1 and F2 once and for all and write F = (F1, F2). Moreover, we assume
M ∈ Matn×n(O) is a symmetric matrix such that F2(x) = xtMx. In what follows, for
F ∈ K∞[x1, . . . , xn] we refer to the maximum of the absolute values of the coefficients of F
as the height of F and denote it by HF . We extend this definition to pairs of polynomials by
HG := max{HG1 , HG2}.

Corollary 6.3.3 implies that there exists x0 ∈ Kn
∞ such that

F1(x0) = F2(x0) = 0,
rk(H(x0)) ≥ n− 2 and
rk(γ1H(x0) + γ2M) ≥ n− 2 for all (γ1, γ2) ∈ K2

∞ \ {0},
(6.4.1)

where H(x0) denotes the Hessian of the cubic form F1 evaluated at x0. These properties are
clearly invariant under scaling and so we may additionally assume |x0| < H−1

F . We will then
work with the weight function w : Kn

∞ → R≥0 defined by

w(x) :=

⎧⎨⎩1 if |x − x0| < ˆ︁L−1,

0 else,
, (6.4.2)

where L is a large but fixed integer, whose exact value will be determined throughout our
work. The non-archimedean nature of K∞ ensures that rk(H(x)) ≥ n− 2 and |x| < 1/HF

whenever w(x) ̸= 0 and L is sufficiently large. Moreover, we have seen in the proof of
Corollary 6.3.3 that the set of points x ∈ Kn

∞ satisfying rk(γ1H(x) + γ2M) ≥ n − 2 for
all (γ1, γ2) ∈ K2

∞ \ {0} is Zariski dense in Kn
∞. In particular, if L is large enough, we can
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guarantee that any x ∈ supp(w) satisfies the third property in (6.4.1). Let us now fix b ∈ On

and N ∈ O such that N | F1(b), F2(b). The counting function we consider is now given by

N(P ) :=
∑︂

x∈On

F1(x)=F2(x)=0
x≡b (N)

w
(︃

x

P

)︃
.

Combining the orthogonality relation from Lemma 3.0.2 with Theorem 6.2.9 immediately
implies that N(P ) is given by

∑︂
|r|≤ˆ︁R1ˆ︁R2
r monic

∑︂
d|r monic

c∈O2 primitive
|dc1|≤ˆ︁T |r|1/2,|dc2|<ˆ︁T −1|r|1/2

max{ˆ︁Ri|dc⊥
i |}≥|r|

∑︂′

|a|<|r|
a/r∈L(dc)

∫︂
|θ1|<|r|−1ˆ︁R−1

1

∫︂
|θ2|<|r|−1ˆ︁R−1

2

S
(︃
a

r
+ θ

)︃
dθ2dθ1,

(6.4.3)
where

S(α) :=
∑︂

x∈On

x≡b (N)

ψ(α1F1(x) + α2F2(x))w(x/P ), (6.4.4)

for α ∈ T2 and ∑︁′ indicates the condition (a, r) = 1. After splitting x into residue classes
modulo rN , where rN = rN/(r,N), it is a standard argument, see [37, Lemma 4.4] for
example, to use the Poisson summation formula from Proposition 3.0.5 to evaluate S(θ+ a/r)
and transform (6.4.3) into

N(P ) = |P |n
∑︂

|r|≤ˆ︁R1ˆ︁R2
r monic

|rN |−n
∑︂

d|r monic
c∈O2 primitive

|dc1|≤ˆ︁T |r|1/2,|dc2|<ˆ︁T −1|r|1/2

max{ˆ︁Ri|dc⊥
i |}≥|r|

∫︂
D(|r|ˆ︁R)

∑︂
v∈On

Sdc,r,b,N(v)IrN
(θ,v)dθ,

(6.4.5)
where D(|r| ˆ︁R) = {θ ∈ T2 : |rθi| < ˆ︁R−1

i for i = 1, 2},

Sdc,r,b,N(v) :=
∑︂′

a/r∈L(dc)

∑︂
|x|<|rM |
x≡b (N)

ψ

(︄
a1F1(x) + a2F2(x)

r

)︄
ψ
(︃−v · x

rN

)︃
, (6.4.6)

and
Is(θ,v) :=

∫︂
Kn

∞

w(x)ψ
(︃
P 3θ1F1(x) + P 2θ2F2(x) + Pv · x

s

)︃
dx (6.4.7)

for s ∈ O \ {0}.
In our work we will assume throughout that R1 and R2 are chosen in such a way that

ˆ︁R1 ≍ |P |4/3 and ˆ︁R2 ≍ |P |1/3, (6.4.8)

so that ˆ︁T ≍ |P |1/2. This ensures that vol(D(|r| ˆ︁R)) ≍ |P |−5 and |Ir(θ,v)| ≍ 1 when
|r| = ˆ︁R1

ˆ︁R2. Let us now separate the terms from (6.4.5) that will go into the error term. For
this, we write

N(P ) = M(P ) + E1(P ) + E2(P ), (6.4.9)
where E2(P ) consists of the contribution in (6.4.3) for which

1. v ̸= 0 with |θ1| < |P |−9 ˆ︁R2 or |θ2| < |P |−9 ˆ︁R1 or
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6.4. Activation of the circle method

2. c2 = 0 with |θ1| > |r|−1|P |−δ, where δ = 8(n− 16)/(3n− 24), and |r| ≤ |P |1−η with
η = 2/n,

holds. Observe that the set of θ′ for which (2) holds is non-empty when n > 24, because
then δ > 4/3. The terms M(P ) and E1(P ) comprise the contribution from all r’s and θ’s
for which neither (1) nor (2) holds with the additional constraint that v = 0 for M(P ) and
v ̸= 0 for E1(P ) respectively.

We begin with estimating the contribution to E2(P ) defined by (1). Note that for any
r ∈ O the measure of θ ∈ T2 for which (1) holds is O(|P |−9|r|−1). Estimating trivially
S(a/r + θ) ≤ |P |n and using Lemma 6.6.3 to deduce that the number of a with |a| < |r|
such that a/r ∈ L(dc) is at most |dr|, we see that the contribution from (1) in (6.4.3) is

≪ |P |n−9 ∑︂
|r|≤ˆ︁R1ˆ︁R2

∑︂
|dc1|≤ˆ︁T |r|1/2

|dc2|<ˆ︁T −1|r|1/2

d|r

|d| ≪ |P |n−9 ∑︂
|r|≤ˆ︁R1ˆ︁R2

|r|1+ε ≪ |P |n−17/3+ε,

upon recalling (6.4.8) for our choice of R1 and R2.

The reason for separating the contribution coming from (2) is that the integral estimates we
provide in Section 6.5 are insufficient when |r| is small and |θ| is large. We eliminate this
shortfall by dealing with this contribution in a manner akin to the treatment of the minor arcs in
a classical application of the circle method. To begin with, let us fix the absolute values of r and
θ1 in the definition of E2(P ) to be |r| = ˆ︁Y and |θ1| = ˆ︁Θ1 with −Y −δP ≤ Θ1 ≤ −Y −4P/3.
The main tool to deal with this contribution is Weyl’s inequality, whose function field analogue
is provided by Lemma 4.3.6 in Lee’s PhD thesis [131] and that we reproved in Corollary 4.1.2.

Lemma 6.4.1. Let α ∈ T2 and a1/r ∈ K ∩ T be such that (a1, r) = 1 and α1 = a1/r + θ1.
Then for S(α) given by (6.4.4) we have

S(α) ≪b,N,F1 |P |n+ε

(︄
|P | + |r| + |P |3|r1θ1|

|P |3
+ 1

|r1| + |P |3|r1θ1|

)︄n/8

.

Remark. Lee states Lemma 4.3.6 without the appearance of the quadratic form that features in
the definition of S(α). However, as we saw in the proof of Corollary 4.1.2 the process of Weyl
differencing eliminates the effect of the quadratic form, so that the estimate in Lemma 6.4.1
only depends on F1.

We now wish to apply Lemma 6.4.1. The problem is that if a/r ∈ L(dc), we do not necessarily
have (a1, r) = 1. However, recall from (6.2.2) that a/r ∈ L(dc) if and only if da · c = kr for
some k ∈ O with (k, d) = 1. In particular, if c2 = 0, then c1 = 1 and so a/r ∈ L(d(1, 0)) if
and only if a1/r = k/d with (k, d) = 1. It is now easily checked that the constraints coming
from (2) together with Lemma 6.4.1 yield

S(a/r + θ) ≪ |P |n+ε(|P |−2 + |dθ1| + |P |−3|dθ1|−1)n/8.

Since c1 ̸= 0, the condition max{ ˆ︁Ri|dc⊥
i |} ≥ |r| implies |d| ≫ |r||P |−1/3. We deduce that
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

the contribution from |r| = ˆ︁Y with ˆ︁Y ≤ |P |1−η and |θ1| = ˆ︁Θ1 to E2(P ) via (6.4.3) is

≪
∑︂

|r|=ˆ︁Y
∑︂

|d|≤ˆ︁Y
|d|≫ˆ︁Y |P |−1/3

d|r

∑︂′

|a|<|r|
a/r∈L(d(1,0))

∫︂
|θ1|=ˆ︁Θ1

∫︂
|θ2|≪|P |−1/3ˆ︁Y −1

S(a/r + θ)dθ

≪ |P |n−1/3+ε ˆ︁Θ1
∑︂

|r|=ˆ︁Y
∑︂

|d|≤ˆ︁Y
|d|≫ˆ︁Y |P |−1/3

d|r

|d|
(︂
|P |−2 + |d| ˆ︁Θ1 + |P |−3|d|−1 ˆ︁Θ−1

1

)︂n/8

≪ |P |3n/4−5/3+ε ˆ︁Y + |P |n−1/3+ε ˆ︁Y 2+n/8 ˆ︁Θ1+n/8
1 + |P |2n/3−2/3+ε ˆ︁Y ( ˆ︁Θ1

ˆ︁Y )1−n/8

≪ |P |3n/4−2/3−η+ε + |P |5n/6−2/3−η+ε + |P |2n/3−2/3−δ(1−n/8)+ε ˆ︁Y
where we used again Lemma 6.6.3 to bound the number of a’s, that ˆ︁Θ1 ≪ ˆ︁Y −1|P |−4/3 and
(2) to estimate ˆ︁Y and ˆ︁Θ1. We have 3n/4 − 2/3 < n − 5 for n ≥ 18, so that he first term
is sufficiently small. Moreover, 5n/6 − 2/3 − η < n − 5 as soon as n ≥ 26, which is also
satisfactory. Lastly, the third term above is

|P |2n/3−2/3−δ(1−n/8)+ε ˆ︁Y ≪ |P |2n/3+1/3−η−δ(1−n/8)+ε = |P |n−5−η+ε,

where of course δ was chosen in such a way as to simplify the exponent above. Therefore,
this contribution is also satisfactory. Since there are O(|P |ε) choices for Y and Θ1, we have
thus shown that

E2(P ) ≪ |P |n−5−κ (6.4.10)
for some κ > 0 if n ≥ 26.
The goal for the remainder of this chapter is to establish the following result.

Proposition 6.4.2. If n ≥ 26 and char(K) > 3, then

N(P ) = c|P |n−5 +O
(︂
|P |n−5−δ′)︂

for some δ′ > 0, where c > 0 if for every prime ϖ there exists xϖ ∈ On
ϖ such that

F1(xϖ) = F2(xϖ) = 0 and |b − xϖ|ϖ < |N |ϖ and where the implied constant depends on
F1, F2, b and N .

Once we have established Proposition 6.4.2, there is no difficulty in deducing the weak
approximation property for X. The exact details do not merit repetition here and can for
example be found in Section 7.1 of [34] in the case of cubic hypersurfaces. Theorem 6.1.1 is the
special case N = 1, in which case a non-zero solution xϖ ∈ On

ϖ to F1(xϖ) = F2(xϖ) = 0 for
every prime ϖ is guaranteed by the Lang–Tsen theory [91, Theorem 3.6] and the homogeneity
of F1 and F2 under the weaker assumption n ≥ 14. Therefore, Theorems 6.1.1 and 6.1.2 are
a consequence of Proposition 6.4.2. In the light of (6.4.9) and (6.4.10) it will be enough to
show that

M(P ) = c|P |n−5 +O
(︂
|P |n−5−κ′)︂ and E1(P ) ≪ |P |n−5−κ′′

,

for some κ′, κ′′ > 0, where c satisfies the properties claimed in Proposition 6.4.2. This goal
will ultimately be achieved in Section 6.8 and requires a thorough analysis of the exponential
sums and oscillatory integrals that appear in (6.4.5). We carry out this investigation in the
subsequent three sections.
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6.5 Exponential integrals
To get control over Is(θ,v), we consider for w ∈ Kn

∞, γ ∈ K2
∞ and G1, G2 ∈ K∞[x1, . . . , xn]

the following oscillatory integral

JG(γ,w) :=
∫︂
Tn
ψ
(︂
γ ·G(x) + w · x

)︂
dx,

where we henceforth adopt the notation γ ·G(x) = γ1G1(x)+γ2G2(x). The main ingredients
to deal with the exponential integrals appearing in our work are [202, Lemma 2.1–2.2], which
we recall here for our convenience.

Lemma 6.5.1. We have JG(γ,w) = 0 if |w| > max{1, |γ1|HG1 , |γ2|HG2}.

Lemma 6.5.2. Let Ω = {x ∈ Tn : |γ1∇G1(x) + γ2∇G2(x) + w| ≤ HG max{1, |γ|1/2}}.
Then

JG(γ,w) =
∫︂

Ω
ψ
(︂
γ ·G(x) + w · x

)︂
dx.

To begin our treatment of Is(θ,v), note that by the definition of w in (6.4.2) we have

Is(θ,v) = ˆ︁L−nψ
(︃
Pv · x0

s

)︃ ∫︂
Tn
ψ
(︃
P 3θ1G1(y) + P 2θ2G2(y) + Pv · y

tLs

)︃
dθ

= ˆ︁L−nψ
(︃
Pv · x0

s

)︃
JG(P 3θ1, P

2θ2, (Pvt−L/s)),
(6.5.1)

where Gi(y) = Fi(x0 + t−Ly) for i = 1, 2 and we applied the change of variables
y = tL(x − x0). It is clear that Gi is a polynomial with coefficients in K∞ and HG ≤ HF .
Therefore, it follows from Lemma 6.5.1 that

Is(θ,v) = 0 if |v| > ˆ︁LHF |s|max{1, |P |3|θ1|, |P |2|θ2|}
|P |

. (6.5.2)

Before we can derive upper bounds for Is(θ, v) from Lemma 6.5.2, we need a preliminary step.

Lemma 6.5.3. Let C ⊂ K2
∞ be compact and bounded away from 0. If we define A(γ,x) to

be the maximum of the absolute values of the (n− 2) × (n− 2)-minors of γ1H(x) + γ2M ,
then

A(γ,x) ≫C,w,F 1

for γ ∈ C and x ∈ supp(w).

Proof. Suppose by contradiction that the statement of the lemma is false. Then there exists a
sequence (γ

k
,xk) ∈ C×supp(w) such that A(γ

k
,xk) ≤ 1/k for all k ≥ 1. Since C×supp(w)

is compact, we can pass to a convergent subsequence with limit (γ′,x′) ∈ C × supp(w).
However, since the map (γ,x) ↦→ A(γ,x) is continuous, this implies that every (n−2)×(n−2)
minor of γ′

1H(x′) + γ′
2M vanishes. Therefore, rk(γ′

1H(x′) + γ′
2M) ≤ n − 3, which is a

contradiction since any x ∈ supp(w) satisfies the third condition in (6.4.1).

When Θ = (Θ1,Θ2) ∈ Z2, then we shall henceforth adopt the convention that |γ| = ˆ︁Θ means
|θ1| = ˆ︁Θ1 and |θ2| = ˆ︁Θ2. We finally have all the ingredients at hand to provide an upper
bound for an average of Is(θ,v) over θ.
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Proposition 6.5.4. Let Θ ∈ Z2, v ∈ On, s ∈ O be monic and define the quantityˆ︁Z = max{1, |P |3 ˆ︁Θ1, |P |2 ˆ︁Θ2}. Then if |θ2| ≫F1,F2,w |P ||θ1|, we have∫︂
|θ|=ˆ︁Θ Is(θ,v)dγ ≪F1,F2,w

ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z−(n−1)/2

while if |θ2| ≪F1,F2,w |P ||θ1|, then∫︂
|θ|=ˆ︁Θ Is(θ,v)dγ ≪F1,F2,w

ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z−(n−2)/2.

Proof. For the ease of notation, let us write w = Pv(stL)−1 and γi = t(4−i)P θi for i = 1, 2.
If ˆ︁Z = 1, then we use the trivial estimate Is(θ,v) ≤ ˆ︁L−n that is an immediate consequence
of (6.5.1). We shall therefore assume ˆ︁Z > 1 from now on. It then follows from (6.5.1) and
Lemma 6.5.2 after an obvious change of variables that

|Is(θ,v)| ≤ ˆ︁L−n vol{x ∈ Tn : |P 3θ1∇G1(x) + θ2P
2∇G2(x) + w| < HG

ˆ︁Z1/2}
≤ vol{x ∈ Tn : |x − x0| < ˆ︁L−1, |θ1P

3∇F1(x) + θ2P
2∇F2(x) + w| < HF

ˆ︁Z1/2}.

Now let us denote the last set whose measure we want to estimate by Ω and suppose
x,x + x′ ∈ Ω. By definition of Ω, we must then have

|γ1(∇F1(x + x′) − ∇F1(x)) + γ2∇F2(x′)| < HF
ˆ︁Z1/2. (6.5.3)

We now distinguish between the relative sizes of γ1 and γ2. Firstly, suppose |γ2| ≫ |γ1|, so
that ˆ︁Z = |γ2|. Since rk(M) ≥ n− 1, there exists indices 1 ≤ i, j ≤ n such that the submatrix
M ′ obtained from M by deleting the ith row and jth column has rank n− 1. Let us now fix
a ∈ Tn and consider the set Ωa of x ∈ Ω whose jth entry is a. Assume Ωa is non-empty and
x′,x′ + x are both in Ωa. We shall now write x′ˆ︁j for the vector obtained from x′ by deleting
the jth entry and similarly for x and x + x′. Note that the jth entry of x must be 0. In
addition, H ′ denotes the submatrix of H after deleting the ith row and jth column. It then
follows from (6.5.3) that

|(γ1H
′(x + x′) + γ2M

′)xˆ︁j| ≤ |(γ1H(x + x′) + γ2M)x| ≪ ˆ︁Z1/2. (6.5.4)

Since rkM ′ = n − 1, we have M ′xˆ︁j ≫ |xˆ︁j|. In particular, the trivial estimate
H ′(x + x′)xˆ︁j ≪ |xˆ︁j| together with the assumption |γ1| ≪ |γ2| implies that (6.5.4) can
only hold if

|γ2M
′xˆ︁j| ≪ ˆ︁Z1/2.

We can now multiply the left hand side by M ′−1, whose entries have absolute value O(1), to
deduce that |xˆ︁j| ≪ ˆ︁Z−1/2 and thus

∫︂
|γ|=ˆ︁Θ Is(θ,v)dγ ≪

∫︂
|γ|=ˆ︁Θ

∫︂
Tn

vol(Ωa)dadγ ≪ ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z−(n−1)/2,

which is satisfactory.

We now treat the more complicated case when |γ1| ≫ |γ2|, so that ˆ︁Z = |γ1|. For
i = {i1, i2}, j = {j1, j2} ⊂ {1, . . . , n} and a matrix B ∈ Matn×n(K∞), we write Bi,j
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for the matrix obtained from B by deleting the i1th and i2th rows as well as the j1th and j2th
columns. It follows from Lemma 6.5.3 that

A := max
i,j⊂{1,...,n}

|i|=|j|=2

|det((γ1H(x) + γ2M)i,j| ≫ |γ1|

for x ∈ supp(w). Next we divide Ω into at most (n(n − 1)/2)2 subsets according to the
indices at which the maximum above occurs, that is for i, j ⊂ {1, . . . , n} we set

Ωi,j := {x ∈ Ω: A = |det((γ1H(x) + γ2M)i,j|}.

Moreover, to estimate the measure of Ωi,j we shall again fix the j1th and j2th entries of x
and denote by xj the vector obtained from x by deleting the j1th and j2th entries, so that

vol(Ωi,j) ≤
∫︂
T2

vol{x ∈ Ωi,j : xjk
= ak for k = 1, 2}da.

If x′,x + x′ are both in Ωi,j and x′
jk
, xjk

+ x′
jk

= ak for k = 1, 2, then (6.5.3) implies that

|(H(x + x′) + γ2γ
−1
1 M)i,jxj| ≤ |(H(x + x′) + γ2γ

−1
1 M)x| ≪ ˆ︁Z−1/2.

Since x + x′ ∈ Ωi,j, the entries of the inverse of (H(x + x′) + γ2γ
−1
1 M)i,j have absolute

value O(1). In particular, after multiplying the last equation above with it from the left we
get that |xi,j| ≪ ˆ︁Z−1/2. From what we have shown so far, it thus follows that∫︂

|γ|=ˆ︁Θ Is(θ,v)dγ ≪
∑︂

i,j⊂{1,...,n}
|i|=|j|=2

∫︂
|γ|=ˆ︁Θ vol(Ωi,j)dγ

≪ ˆ︁Z−(n−2)/2 ˆ︁Θ1
ˆ︁Θ2,

which completes the proof.

6.6 Exponential sums: pointwise estimates
The aim of this section is to collect estimates for the complete exponential sums Sdc,r,b,N(v)
defined in (6.4.6). These sums enjoy a twisted multiplicativity property, which essentially
reduces the task of estimating them to the case of prime power moduli. For r, R ∈ O, we
adopt the notation

r | R∞

to mean that every prime divisor of r also divides R.

Lemma 6.6.1. Suppose d | r and r = r1r2 with (r1, r2) = 1. If we write N = N1N2N3,
where Ni | r∞

i for i = 1, 2 and (r,N3) = 1, and let si = riNi/(ri, Ni) for i = 1, 2, then there
exist b′ ∈ (O/N3O)n and ti ∈ (O/siO)× for i = 1, 2 such that

Sdc,r,b,N(v) = Sd1c,r1,b,N1(t1v)Sd2c,r2,b,N2(t2v)ψ
(︄

−v · b′

N3

)︄
.

where d = d1d2 with di | ri for i = 1, 2.
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

Proof. By construction, s1, s2 and N3 are pairwise coprime so that rN = s1s2N3. In particular,
if yi runs through a complete sets of residues modulo si for i = 1, 2 and y3 modulo N3, then

x = s2N3y1 + s1N3y2 + s1s2y3

constitutes a complete set of residues modulo r. Next, for a/r ∈ L(dc), we write
a = r2a1 + r1a2, where |ai| < |ri| and (ai, ri) = 1. It is then clear that

ψ

(︄
a · F (x)

r

)︄
= ψ

(︄
a1 · F (s2N3y1)

r1

)︄
ψ

(︄
a2 · F (s1N3y2)

r2

)︄

and
ψ
(︃−v · x

rN

)︃
= ψ

(︃−v · y1

s1

)︃
ψ
(︃−v · y2

s2

)︃
ψ
(︃−v · y3

N3

)︃
.

Moreover, it is demonstrated in the proof of Lemma 5.2 in [202] that a/r ∈ L(dc) if and
only if ai/ri ∈ L(dic) for both i = 1, 2. The result now follows after the change of variables
x1 = s2N3y1 and x2 = s1N3y2 and taking t1 ≡ (s2N3)−1 (s1), t2 ≡ (s1N3)−1 (s2) and
b′ ≡ (s1s2)−1b (s3).

In some cases we will obtain estimates for the sums Sdc,r,b,N(v) by considering their relatives

T (a, r,v) :=
∑︂

|x|<|r|
ψ

(︄
a1G1(x) + a2G2(x) − v · x

r

)︄
(6.6.1)

for appropriate polynomials G1, G2 ∈ O[x1, . . . , xn]. These sums satisfy the following twisted
multiplicativity property.

Lemma 6.6.2. Let r = r1r2 with (r1, r2) = 1. Then

T (a, r,v) = T (ar2 , r1,v)T (ar1 , r2,v),

where as := (s2a1, sa2) for s ∈ O.

Proof. As xi runs over a full set of residues mod ri, x = r2x1 + r1x2 runs over a full set of
residues mod r. Moreover, using Taylor’s formula it is easy to see that

ψ

(︄
aiFi(x)

r

)︄
= ψ

(︄
air

4−i
2 Fi(x1)
r1

)︄
ψ

(︄
air

4−i
1 Fi(x2)
r2

)︄

for i = 1, 2 and
ψ
(︃−v · x

r

)︃
= ψ

(︃−v · x1

r1

)︃
ψ
(︃−v · x2

r2

)︃
,

from which the statement of the lemma follows.

For our investigation we shall also need a good understanding of the distribution of rational
points a/r on an individual line L(dc) when r is fixed. By Lemma 6.6.1 it suffices to consider
the case r = ϖk and d = ϖm with m ≤ k. The following lemma summarises the content of
equations (6.9)–(6.11) of [202].
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Lemma 6.6.3. If 1 ≤ m < k, then modulo ϖk we have the following equality of sets

{a : a/ϖk ∈ L(ϖmc)} ={ac⊥ +ϖk−md : |a| < |ϖ|k−m, (a,ϖ) = 1, |d| < |ϖ|m}\
{ac⊥ +ϖk−m+1d : |a| < |ϖ|k−m+1, |d| < |ϖ|m−1, (a,ϖ) = 1}

and for k = m we have

{a : a/ϖk ∈ L(ϖkc)} ={d : (d,ϖ) = 1, |d| < |ϖ|k}\
{ac⊥ +ϖd : (a,ϖ) = 1, |a| < |ϖ|, |d| < |ϖ|k−1}.

Moreover, when m = 0, then

{a : a/ϖk ∈ L(c)} = {ac⊥ : (a,ϖ) = 1, |a| < |ϖ|k}.

In particular, we have #{a : a/r ∈ L(dc)} ≤ |d||r|.

6.6.1 Square-free moduli
We will now deal with Sdc,r,b,N(v) when r is square-free. A key player in our estimates is the
dual form F ∗

1 ∈ O[x1, . . . , xn], whose zero locus parameterises hyperplanes that have singular
intersection with the projective hypersurface defined by F . It is well known [79, Example
4.4.3] that F ∗

1 is absolutely irreducible and of degree 3 × 2n−2, providing char(K) > 3. We
begin our treatment by assuming that d = 1. In this case Lemma 6.6.3 tells us that Sc,ϖ,0,1(v)
equals the familiar exponential sum

Sϖ(v) :=
∑︂′

a (ϖ)

∑︂
x (ϖ)

ψ

(︄
aFc(x) − v · x

ϖ

)︄
,

where Fc(x) = −c2F1(x) + c1F2(x). Let Fϖ = O/ϖO be the residue field of ϖ. Our main
ingredient is the following special case of a result due to Katz [119, Theorem 4].

Theorem 6.6.4. Let X ⊂ Pn
Fϖ

be a complete intersection of dimension r defined by forms of
degrees d1, . . . , dn−r and let L,H ∈ H0(Pn, OPn(1)). If

(i) X ∩ L ∩H has dimension r − 2,

(ii) the singular locus of X ∩ L has dimension ε and

(iii) the singular locus of X ∩ L ∩H has dimension δ ≥ ε,

then there exists a constant C > 0 depending only on n, d1, . . . , dn−r such that for f = H/L
it holds that ⃓⃓⃓⃓

⃓⃓ ∑︂
x∈X[1/L]

ψ

(︄
f(x)
ϖ

)︄⃓⃓⃓⃓
⃓⃓ ≤ C|ϖ|(r+1+δ)/2,

where X[1/L] is the affine variety defined as the complement of the hyperplane cut out by L
in X.

Remark. Katz states Theorem 4 for arbitrary closed subvarieties of projective space that are
geometrically integral or equidimensional and Cohen-Macauly. However, our assumption that
X is a complete intersection implies that X is Cohen-Macauly and equidimensional, thereby
allowing us to state the simplified version above.
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

Suppose that ϖ ∤ vc2. Using orthogonality of characters we see that

Sϖ(v) = |ϖ|
∑︂

x∈Fn
ϖ

Fc(x)=0

ψ
(︃−v · x

ϖ

)︃
.

Let F (x0,x) ∈ O[x0, x1, . . . , xn] be the homogenization of Fc, that is

F (x0,x) = −c2F1(x) + x0c1F2(x),

and define X = V (F ) ⊂ Pn
Fϖ

to be the projective variety cut out by the reduction of F
modulo ϖ. Note that the point (1, 0, . . . , 0) will always be a singularity of X.
Moreover, we also set L(x0,x) = x0 and H(x) = −v · x. In our situation we thus have
X ∩ L = V (F1) and X ∩ L ∩ H = V (F1,v · x). In particular, δ = ε = −1 provided
ϖ ∤ ∆F1F

∗
1 (v), where ∆F1 is the discriminant of F1. Indeed, the condition ϖ ∤ ∆F1

guarantees that the reduction of F1 modulo ϖ is non-singular and ϖ ∤ F ∗
1 (v) implies that

V (F1,v · x) ⊂ Pn−1
Fϖ

is non-singular.
We can thus apply Theorem 6.6.4 with δ = −1 and r = n− 1 to deduce that

|ϖ|−1|Sϖ(v)| ≤ C|ϖ|(n−1)/2,

where C is a constant that only depends on the degrees of F1 and F2 and n. Absorbing the
primes ϖ | ∆F1 into the constant and invoking Lemma 6.6.1, we have thus established the
following result.

Lemma 6.6.5. Suppose that r ∈ O is square-free with (r, F ∗
1 (v)c2) = 1. There exists a

constant C > 0 depending only on ∆F1 , degF1, degF2 and n such that

|Sc,r,0,1(v)| ≤ Cω(r)|r|(n+1)/2,

where ω(r) denotes the number of prime divisors of r

Let us now turn to the case d ̸= 1. We shall use the following estimate of Deligne [66,
Théorème 8.4], which states that for a polynomial F ∈ Fϖ[x1, . . . , xn] of degree d with
char(Fϖ) ∤ d such that the highest degree part cuts out a smooth projective hypersurface in
Pn−1
Fϖ

, one has ⃓⃓⃓⃓
⃓⃓ ∑︂
x∈Fn

ϖ

ψ

(︄
F (x)
ϖ

)︄⃓⃓⃓⃓
⃓⃓ ≤ (d− 1)n|ϖ|n/2. (6.6.2)

Recalling the definition of the sum T in (6.6.1) with Gi = Fi for i = 1, 2, the estimate (6.6.2)
implies

|T (a,ϖ,v)| ≤ 2n|ϖ|n/2

whenever ϖ ∤ a1∆F1 . On the other hand, if ϖ | a1, then ϖ ∤ a2 and then

|T (a,ϖ,v)| ≤ |ϖ|(n+1)/2, (6.6.3)

provided F2 is a quadratic form of rank at least n − 1 modulo ϖ, as for example follows
from [202, Lemma 3.5]. Now let us assume r ∈ O is square-free and write r = r1r2, with
(r1, r2) = 1 and r2 | N∞. If d = d1d2 with d1 | r1 and d2 | r2, then by Lemma 6.6.1 we have

Sdc,r,b,N(v) = Sd1c,r1,0,1(t1v)Sd2c,r2,b,N(t2v)
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for some ti ∈ (O/riO)×. After absorbing the primes ϖ | ∆F1 or for which the reduction of
F2 has rank strictly less than n− 1 into the constant, it now follows from the estimates we
just recorded and Lemma 6.6.3 that

Sd1c,r1,0,1(t1v) =
∑︂

a/r∈L(d1c)
T (a, r1, t1v) ≤ Cω(r1)|d1||r1|(n+3)/2,

for some constant C > 0.
We can now estimate Sd2c,r2,b,M(t2v) trivially to arrive at the following result.

Lemma 6.6.6. Suppose r is square-free and d | r. Then there exists a constant C > 0
depending only on degF1, F2,∆F1 and N such that

|Sdc,r,b,N(v)| ≤ Cω(r)|d||r|(n+3)/2.

Moreover, if (c2, r) = 1, then

|Sc,r,0,1(v)| ≤ Cω(r)|r|n/2+1.

6.6.2 Square-full moduli
To satisfactorily deal with square-full moduli, we begin with the case r = ϖ2. Our main
ingredient is the following result due to Heath-Brown [99, p. 395]. It should be noted that
Heath-Brown’s proves his result solely over the integers. However, it is a routine exercise and
the required adaptations are minor to check that his argument holds over Fq[t] as well. Let
F ∈ O[x1, . . . , xn] be a polynomial of degree d with char(Fq) > d and suppose the reduction
of the top degree part of F defines a smooth projective hypersurface modulo ϖ. Then it holds
that ⃓⃓⃓⃓

⃓⃓ ∑︂
x (ϖ2)

ψ

(︄
F (x)
ϖ2

)︄⃓⃓⃓⃓
⃓⃓ ≤ (d− 1)n|ϖ|n. (6.6.4)

After absorbing the contribution from the primes dividing ∆F1 into the constant and employing
Lemma 6.6.3, we arrive at the following estimate.

Lemma 6.6.7. If ϖ ∤ a1, then

T (a,ϖ2,v) ≪∆F1
|ϖ|n.

In particular, we also have
Sc,ϖ2,0,1(v) ≪∆F1

|ϖ|2+n

provided ϖ ∤ c2.

Since F2 is a quadratic form, there exists a matrix G ∈ GLn(K) with entries in O such that
after the change of variables y = Gx one has

F2(y) =
n∑︂

i=1
biy

2
i with b2 . . . bn ̸= 0.

If ϖ | det(G), we may still locally diagonalise F2 with a matrix Gϖ ∈ GLn(Kϖ) that has
coefficients in Oϖ, so that after the change of variables y = Gϖx we have

F2(y) =
n∑︂

i=1
bϖ,iy

2
i with bϖ,2 · · · bϖ,n ̸= 0.
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Let us define

∆F2 =

⎧⎨⎩b1 · · · bn
∏︁

ϖ|det(G) ϖ
νϖ(bϖ,1···bϖ,n) if rk(M) = n,

b2 · · · bn
∏︁

ϖ|det(G) ϖ
νϖ(bϖ,2···bϖ,n) if rk(M) = n− 1.

and
vϖ = νϖ(∆F2). (6.6.5)

We then have the following result [37, Lemma 6.2].

Lemma 6.6.8. Let k ≥ 2 and suppose ϖ1+vϖ | a1. Then for any v ∈ On we have

T (a,ϖk,v) ≪F2 |ϖ|(n+1)/2.

Lemma 6.2 in [37] is again only proved for the analogous sum over the integers. Moreover,
they assume that F2 is diagonal from the beginning, a difference we take care of by the
diagonalisation process above. The proof goes through verbatim in our setting, and so we
shall not repeat it here.

Corollary 6.6.9. Let r ∈ O be such that ϖ | r implies ϖ2 ∥ r. Then there exists a constant
C > 0 depending on F1, F2 and N such that

|Sdc,r,b,N(v)| ≤ Cω(r)|d||r|(n+3)/2.

Proof. Write r = r1r2 with coprime r1, r2 ∈ O such that (r1, N) = 1 and r2 | N∞. As in the
proof of Lemma 6.6.6 it suffices to obtain and upper bound for the sum Sd1c,r1,0,1(t1v), where
t1 ∈ (O/r1O)×, and estimate the sum corresponding to r2 trivially. By definition we then
have

Sd1c,r1,0,1(t1v) =
∑︂

a/r∈L(d1c)
T (a, r1, t1v).

Using the mulitplicativity property recorded in Lemma 6.6.2, we can now invoke Lemma 6.6.7
in conjunction with Lemma 6.6.8 to obtain |T (a, r1, t1v)| ≤ Cω(r1)|r1|(n+1)/2. Lemma 6.6.3
provides us with an upper bound for the number of a’s such that a/r1 ∈ L(d1c) that completes
the proof.

6.6.3 The case c2 = 0.
We now consider separately the case c2 = 0. This can only occur if c1 = 1 and so to ease
notation, we write c0 := (1, 0). By Lemma 6.6.1 we can reduce to the case when r = ϖk and
d = ϖm with m ≤ k and we again begin our treatment assuming that r = ϖ. When d = 1,
Lemma 6.6.6 already provides sufficiently good upper bounds. However, when d = ϖ, we have
to do better and establishing an estimate that is superior to Lemma 6.6.6 is our first goal.
For k ≥ 1, let us define
ρ1(ϖk) = #{x (ϖ) : F1(x) ≡ F2(x) ≡ 0 (ϖk)} and ρ2(ϖk) = #{x (ϖ) : F2(x) ≡ 0 (ϖk)}.

By Lemma 6.6.3 we have

Sϖc0,ϖ,0,1(v) =
∑︂′

a1 (ϖ)

∑︂
a2 (ϖ)

∑︂
x (ϖ)

ψ

(︄
a1F1(x) + a2F2(x) − v · x

ϖ

)︄

= |ϖ|

⎛⎝|ϖ|
∑︂

x (ϖ)
F1(x)≡F2(x)≡0 (ϖ)

ψ
(︃−v · x

ϖ

)︃
−

∑︂
x (ϖ)

F2(x)≡0 (ϖ)

ψ
(︃−v · x

ϖ

)︃⎞⎠.
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If ϖ | v, then the expression above simplifies to

Sϖc0,ϖ,0,1(v) = |ϖ|(|ϖ|ρ1(ϖ) − ρ2(ϖ)).

Since the reduction of X modulo ϖ is non-singular for |ϖ| sufficiently large, we have

ρ1(ϖ) = |ϖ|n−2 +O
(︂
|ϖ|(n−1)/2

)︂
,

as follows for example from Equation (3.12) in [34]. Moreover, because F2 has rank at least
n− 1, it holds that

ρ2(ϖ) = |ϖ|n−1 +O
(︂
|ϖ|(n+1)/2

)︂
.

So that in total we have
Sϖc0,ϖ,0,1(v) ≪ |ϖ|(n+3)/2 (6.6.6)

whenever ϖ | v, where the implied constant only depends on F1 and F2. Let us now deal
with the opposite case ϖ ∤ v. We want to apply Theorem 6.6.4 to our situation. For this, we
define X ′

ϖ = V (F1, F2) ⊂ Pn = Proj(Fϖ[x0, x1, . . . , xn]). In addition, we set L(x0,x) = x0
and H(x0,x) = −v · x. Provided |ϖ| is sufficiently large, X ′

ϖ is a complete intersection
of dimension n − 2 with the only singularity at (1 : 0 : · · · : 0) ∈ Pn. Moreover, we have
X ′

ϖ ∩ L = V (F1, F2) ⊂ Pn−1, which is non-singular. It follows from a result of Zak and
Fulton–Lazarsfeld [80, Remark 7.5] that X ′

ϖ ∩H ∩ L = V (F1, F1) ∩H ⊂ Pn−1 has at worst
isolated singularities, so that in the notation of Theorem 6.6.4 we have ε = −1 and δ ≤ 0. In
particular,

∑︂
x (ϖ)

F1(x)≡F2(x)≡0 (ϖ)

ψ
(︃−v · x

ϖ

)︃
≪ |ϖ|(n−1)/2.

Combining this with (6.6.3), we infer

Sϖc0,ϖ,0,1(ϖ) = |ϖ|2
∑︂

x (ϖ)
F1(x)≡F2(x)≡0 (ϖ)

ψ
(︃−v · x

ϖ

)︃
−

∑︂
a2 (ϖ)

∑︂
x (ϖ)

ψ

(︄
a2F2(x) − v · x

ϖ

)︄

≪ |ϖ|(n+3)/2 + |ϖ|(n+3)/2.

Estimating the contribution from the primes ϖ | N trivially, and using Lemma 6.6.1, it thus
follows from (6.6.6) that

|Sdc0,d,b,N(v)| ≤ Cω(d)|d|(n+3)/2 (6.6.7)

for some constant C > 0 that only depends on F1, F2 and N .

We also require strong upper bounds for the sums

S1 = Sϖc0,ϖ2,0,1(v) and S2 = Sϖ2c0,ϖ2,0,1(v).
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Let us begin with the former. In this case Lemma 6.6.3 implies

S1 =
∑︂′

|a|<|ϖ|

∑︂
|d|<|ϖ|

∑︂
|x|<|ϖ|2

ψ

(︄
(a+ϖd2)F2(x) +ϖd1F1(x) − v · x

ϖ2

)︄

= |ϖ|
∑︂′

|a|<|ϖ|2

∑︂
|x|<|ϖ|2

F1(x)≡0 (ϖ)

ψ

(︄
aF2(x) − v · x

ϖ2

)︄

= |ϖ|3
⎛⎝ ∑︂

|x|<|ϖ|2
F1(x)≡0 (ϖ)
F2(x)≡0 (ϖ2)

ψ
(︃−v · x

ϖ2

)︃
− |ϖ|−1 ∑︂

|x|<|ϖ|2
F1(x)≡0 (ϖ)
F2(x)≡0 (ϖ)

ψ
(︃−v · x

ϖ2

)︃⎞⎠

= |ϖ|3
(︂
Σ1 − |ϖ|−1Σ2

)︂
say. The conditions F1(x) ≡ 0 (ϖ) and F2(x) ≡ 0 (ϖ2) are invariant under scaling x by any
b with (b,ϖ) = 1 and so we deduce that that

Σ1 = 1
|ϖ|2(1 − |ϖ|−1)

∑︂
|x|<|ϖ|2

F1(x)≡0 (ϖ)
F2(x)≡0 (ϖ2)

∑︂′

|b|<|ϖ|2
ψ

(︄
bv · x

ϖ2

)︄

= 1
1 − |ϖ|−1

∑︂
x (ϖ)

F1(x)≡F2(x≡0 (ϖ)
v·x≡0 (ϖ)

(ρ1(x) − |ϖ|−1ρ2(x)),

where
ρ1(x) := #{y (ϖ2) : y ≡ x (ϖ), F2(x) ≡ v · x ≡ 0 (ϖ2)}

and
ρ2(x) := #{y (ϖ2) : y ≡ x (ϖ), F2(x) ≡ 0 (ϖ2)}.

Running the exact argument again yields

Σ2 = 1
1 − |ϖ|−1

∑︂
x (ϖ)

F1(x)≡F2(x)≡0 (ϖ)
v·x≡0 (ϖ)

(ρ′
1(x) − |ϖ|n−1),

where
ρ′

1(x) := #{y (ϖ2) : y ≡ x (ϖ),v · x ≡ 0 (ϖ2)}.
Suppose that y = x+ϖz. Then y is counted by ρ1(x) if and only if ϖ | (xtMy +ϖ−1F2(x))
and ϖ | (v · z + ϖ−1v · x). Similarly, y is counted by ρ2(x) if and only if ϖ divides
(xtMy +ϖ−1F2(x)). In particular, we see that ρ1(x) − |ϖ|−1ρ2(x) = 0 unless

rk
(︄

v
Mx

)︄
= rk(Mx) mod ϖ. (6.6.8)

Note that for x ̸≡ 0 (ϖ) and |ϖ| sufficiently large this can only happen if v and Mx are
proportional, since then the non-singularity of X implies that Mx ̸≡ 0 (ϖ). In particular, if
(6.6.8) holds and x ̸≡ 0 (ϖ), then ρ1(x)−|ϖ|−1ρ2(x) = |ϖ|n−1 −|ϖ|n−2, while if v ≡ 0 (ϖ),
then ρ1(0) − |ϖ|−1ρ2(0) = |ϖ|n − |ϖ|n−1. Moreover, we have ρ′

1(x) = |ϖ|n−1 unless ϖ | v,
in which case ρ1(x) = |ϖ|n. In total, we thus have
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S1 = |ϖ|3
(︄

|ϖ|n−1

(1 − |ϖ|−1)2 N1 − |ϖ|n−1

(1 − |ϖ|−1)2 N2

)︄
+O

(︂
|ϖ|n+3

)︂
.

The error term takes care of the contribution from x ≡ 0 (ϖ) in Σ1 and Σ2, and where we
have defined

N1 := #{∈ Fn
ϖ \ {0} : v · x = F1(x) = F2(x) = 0, (6.6.8) holds}

and
N2 := #{x ∈ Fn

ϖ \ {0} : F1(x) = F2(x) = 0,v ≡ 0 (ϖ)}.

Let us first deal with the case ϖ | v. It follows that N1 = N2 and thus

S1 = O(|ϖ|n+3).

Suppose next that ϖ ∤ v. In this case N2 = 0 and (6.6.8) holds if and only if Mx and v are
proportional. Since M has rank at least n− 1, this can happen for at most O(|ϖ|2) choices
of x, so that

S1 ≪ |ϖ|n+2N1 + |ϖ|n+3 ≪ |ϖ|n+4.

In total we have therefore established that

S1 ≪ |ϖ|n+4. (6.6.9)

Let us now turn to the sum S2. It follows from Lemma 6.6.3 that

S2 ≤
∑︂′

a1 (ϖ2)

∑︂
a2 (ϖ2)

⃓⃓⃓⃓
⃓⃓ ∑︂
x (ϖ2)

ψ

(︄
a1F1(x) + a2F2(x) − v · x

ϖ2

)︄⃓⃓⃓⃓
⃓⃓ .

Since (a1, ϖ) = 1, we can apply Lemma 6.6.7 to deduce that the sum over x is O(|ϖ|n) and
hence

S2 ≪ |ϖ|n+4, (6.6.10)

which completes our treatment of S1 and S2.

Finally, when ϖ ∤ ∆F2 and 0 ≤ m < k, we can invoke Lemma 6.6.8 to deduce that

Sϖmc0,ϖk,0,1(v) ≪ |ϖ|m+k(n+3)/2. (6.6.11)

Using Lemma 6.6.1 and estimating the contribution from N trivially, we see that the following
result summarises the content of (6.6.7) and (6.6.9)–(6.6.11).

Proposition 6.6.10. Let d1, d2, d3 ∈ O be square-free. Then there exists a constant C > 0
depending on F1, F2 and N such that

|Sd1d2d2
3c0,d1d2

2d2
3,b,N(v)| ≤ Cω(d1d2d3)|d1|(n+3)/2|d2d3|n+4.

In addition, let d, r ∈ O be both monic such that d | r and (r,∆F2) = 1. If νϖ(d) < νϖ(r)
for all ϖ | d, then

|Sdc0,r,0,1(v)| ≤ Cω(r)|d||r|(n+3)/2.

103



6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

6.7 Exponential sums: averages
We also need to deal with certain averages over exponential sums. Our first ingredient is the
following result, which we apply to our situation in the corollary directly afterwards.

Lemma 6.7.1. Let v0 ∈ Kn
∞ and V ≥ 1. If r is cube-full and a ∈ O2 is such that

|(a1, r)| ≪ 1, then
∑︂

v∈On

|v−v0|<ˆ︁V
|T (a, r,v)| ≪F1 |r|n/2+ε

(︂ ˆ︁V n + |r|n/3
)︂
.

The Lemma we just stated follows from equation (6.9) in [34]. There only the case when
(a1, r) = 1 is considered. However, as explained in the paragraph after Lemma 6.4 in [37], the
argument leading to the estimate continues to hold when |(a1, r)| ≪ 1 after employing some
minor modifications.

Corollary 6.7.2. Let v0 ∈ Kn
∞ and V ≥ 1. Suppose r is cube-full such that d | r and define

P1(r) := {ϖk ∥ r : (ϖ,∆F2c2) = 1, ϖk ∤ d} and P2(r) = {ϖk ∥ r : (ϖ,∆F2) = 1, ϖk | d}.

If we write r = r1r2, where

r1 =

⎧⎪⎪⎨⎪⎪⎩
∏︁

ϖk∈P1(r)
ϖk if c2 ̸= 0,∏︁

ϖk∈P2(r)
ϖk else,

(6.7.1)

and r2 = r/r1, then
∑︂

v∈On

|v−v0|<ˆ︁V
|Sdc,r,b,N(v)| ≪F1,F2,N |d||r|n/2+1+ε|r2|1/2

(︂ ˆ︁V n + |r|n/3
)︂
.

Note that since d | r, the condition ϖk ∤ d in the definition of P1(r) means that every prime
factor of d that divides r1 in fact properly divides r1 when c2 ̸= 0.

Proof. Denote the sum to be estimated by S. After making the change of variables
x = yN + b, we obtain the identity

Sdc,r,b,N(v) = ψ

(︄
−b · v

rN

)︄ ∑︂
a/r∈L(dc)

T (a, r/(r,N),v)

with underlying polynomials Gi(y) = (r,N)−1Fi(Ny + b) for i = 1, 2 in the definition (6.6.1).
Since N | Fi(b), it follows that Gi has coefficients in O. Moreover, the cubic part of G1
is given by the non-singular polynomial g0(y) = (r,N)−1N3F1(y). We now factor r/(r,N)
into its cube-free part t and its cube-full part s. Since r is cube-full, we must have |t| ≤ |N |.
Using Lemma 6.6.2 and estimating the contribution from the sum corresponding to t trivially,
we see that

|Sdc,r,b,N(v)| ≤ |N |n
∑︂

a/r∈L(dc)
|T (at, s,v)|. (6.7.2)
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Next we write s = s1s2, where

s1 =
∏︂

ϖk∥s
ϖ1+vϖ ∤a1

ϖk and s2 =
∏︂

ϖk∥s
ϖ1+vϖ |a1

ϖk,

with vϖ defined in (6.6.5). It then follows from Lemma 6.6.8 that T (ats1 , s2,v) ≪ |s2|(n+1)/2+ε.
Therefore, after applying Lemma 6.6.2 and Lemma 6.7.1 together with the identity (6.7.2),
we obtain

S ≪ |r|ε
∑︂

a/r∈L(dc)
|s1|n/2|s2|(n+1)/2

(︂ ˆ︁V n + |s1|n/3
)︂

≪ |r|n/2+ε
∑︂

a/r∈L(dc)
|s2|1/2

(︂ ˆ︁V n + |r|n/3
)︂
.

Let us write r = r1r2 as in the statement of the lemma and d = d1d2 with di | r∞
i for

i = 1, 2. The explicit description of L(dc) in Lemma 6.6.3 implies that if b/r1 ∈ L(d1c), then
(b1, r1) = 1. It is shown in the proof of [202, Lemma 5.2] that if |a| < |r| and a = r2b+ r1b

′

with |b| < |r1|, |b′| < |r2|, then a/r ∈ L(dc) if and only if b/r1 ∈ L(d1c) and b′/r2 ∈ L(d2c).
In particular, we must have |s2| ≤ |r2|. Thus it follows from Lemma 6.6.3 that

S ≪ |d||r|n/2+1+ε|r2|1/2
(︂ ˆ︁V n + |r|n/3

)︂
as desired.

Our next result is concerned about averages of Sdc,s,b,N(v) over a sparse set of v ∈ On. Let
V ≥ 1, C1 ≥ C2 ≥ 1 and v0 ∈ Kn

∞. For d, s ∈ O with d | s and s cube-full, we proceed to
consider the average

S(V,C1, C2) :=
∑︂

c∈O2
prim

|ci|≤ˆ︁Ci

∑︂
|v−v0|<ˆ︁V
F ∗

1 (v)=0

|Sdc,s,b,N(v)|, (6.7.3)

where F ∗
1 is the dual form of F1 that we already met in Section 6. Note that upon replacing

v0 with the nearest integer vector, we can assume without loss of generality that v0 ∈ On.

Our basic strategy is to relate Sdc,s,b,N (v) to a point-counting problem and gain savings when
summing this problem over v and c first. For this let us write s = r′˜︁s into coprime r′, ˜︁s ∈ O
with

r′ :=
∏︂

νϖ(s)≥νϖ(N)+3
ϖνϖ(s).

Note that r′ is cube-full and ϖ | ˜︁s implies νϖ(N) ≥ 1 since s is cube-full. In particular, we
have |˜︁s| ≤ |N |3 and thus by Lemma 6.6.1 that

|Sdc,s,b,N(v)| ≤ |N |3(n+2)|Sd′c,r′,b,N ′(tv)| (6.7.4)

for some N ′ | r′, d′ | r′ and t ∈ (O/(r′N ′/(r′, N ′))O)×. Next we write r′ = r(r′, N ′) and
make the change of variables x = yN ′ + b, so that

Sd′c,r′,b,N ′(tv) = ψ

(︄
−b · v

rN ′

)︄ ∑︂
a/r′∈L(d′c)

T (a, r, tv). (6.7.5)
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Let us now further write r = e2f , where f | e and

f :=
∏︂

2∤νϖ(r)
ϖ. (6.7.6)

Our first step is to deduce to a congruence condition for v from the sum T (a, r, tv). This will
be achieved in the next lemma.

Lemma 6.7.3. Let r ∈ O be cube-full, a ∈ O, v ∈ On and r = e2f with f | e and f given
by (6.7.6). Then

T (a, r,v) = |e|n
∑︂

|y|<|ef |
∇(a·F )(y)≡v (e)

ψ

(︄
a · F (y) − v · y

r

)︄
.

Proof. Let us write x = y + efz with |y| < |ef | and |z| < |e|. Then Taylor’s formula implies

T (a, r,v) =
∑︂

|y|<|ef |

∑︂
|z|<|e|

ψ

(︄
a · F (y + efz) − v(y + efz)

r

)︄

=
∑︂

|y|<|ef |
ψ

(︄
a · F (y) − v · y

r

)︄ ∑︂
|z|<|e|

ψ

(︄
z · (∇(a · F )(y) − v)

e

)︄

= |e|n
∑︂

|y|<|ef |
∇(a·F )(y)≡v (e)

ψ

(︄
a · F (y) − v · y

r

)︄
.

Next we want to establish extra congruence conditions for F1(y) and F2(y) by considering the
sum over a/r ∈ L(dc). This step underpins the first substantial deviation from the treatment
of the averages of exponential sums in [34] and results in a significant complication of the
argument. The reason for this extra difficulty is that in the setting of one polynomial the
underlying exponential sum is a Ramanujan sum, whose behaviour is well understood, while
in our case the orthogonality relations we obtain stem from the more involved structure of
rational points on the lines L(dc).

Before we begin our treatment, we make the following convention to ease notation. Whenever
we have a sum of the form ∑︁′

|ai|<|gi|, we understand ′ to mean that (ai, r
′
i) = 1. It then follows

from (6.7.4) and (6.7.5) combined with Lemma 6.7.3 that

S(V,C1, C2) ≤ |N |3(n+2)|e|n
∑︂

c∈O2
prim

|ci|≤ˆ︁Ci

∑︂
|v−v0|<ˆ︁V
F ∗

1 (v)=0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
∑︂

|y|<|ef |
ψ
(︃−tv · y

r

)︃ ∑︂
a/r′∈L(d′c)

∇(a·F )(y)≡tv (e)

ψ

(︄
a · F (y)

r

)︄⃓⃓⃓⃓⃓⃓⃓⃓
⃓ .

(6.7.7)
Our goal is now to investigate the sum

Γ(v,y) :=
∑︂

a/r′∈L(dc)
∇(a·F )(y)≡v (e)

ψ

(︄
a · F (y)

r

)︄
.
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for r, r′ ∈ O with r | r′. To do so, let us write (r′, N) = kk′, where (k, k′) = (r, k′) = 1.
Then we factor r′ = r′

1r
′
2r

′
3 with pairwise coprime ri’s, (r′

1, d) = 1 and

r′
2 :=

∏︂
νϖ(ek′)≥νϖ(r′)−νϖ(d)+1

νϖ(d)>0

ϖνϖ(r′). (6.7.8)

Accordingly we shall also write d = d2d3, e = e1e2e3, f = f1f2f3, k = k1k2k3, k′ = k′
1k

′
2k

′
3

and r = r1r2r3 with di, ei, fi, ki, k
′
i, ri | r′

i, so that ri = e2
i fi for i = 1, 2, 3. Moreover, we

let d′
3 be the maximal divisor of d3 that divides r3. In particular, we have |d′

3| ≍ |d3|. The
definition of L(dc) implies that a/r′ ∈ L(dc) if and only if ϖνϖ(r′)−νϖ(d) ∥ a ·c when νϖ(d) ≥ 1
and ϖνϖ(r′) | a · c when νϖ(d) = 0 for all ϖ | r′.

Since ri | r′
i, it is therefore clear that the sum we are investigating is multiplicative and

accordingly we shall denote the sum corresponding to r′
i by Si for i = 1, 2, 3, so that

Γ(v,y) = S1S2S3.

We now treat each sum individually and start with S1. When |a| < |r′
1|, then by Lemma 6.2.4

we have a/r′
1 ∈ L(c) if and only if a ≡ ac⊥ (r′

1) with a ∈ (O/r′
1O)×. Since r′

1 = r1(r′
1, N),

we can write a = a1 + e1k
′
1a2 with |a1| < |e1k

′
1| and |a2| < |r′

1||e1k
′
1|−1 = |e1f1k1|. From the

definition of e1 and k′
1 it is clear that (a, r′

1) = 1 if and only if (a1, r
′
1) = 1. Therefore, after

splitting a2 into residue classes modulo e1f1 and using the fact that (k′
1, e1f1) = 1, we have

S1 = |k1|
∑︂′

|a1|<|e1k′
1|

a1∇Fc(y)≡v (e1)

ψ

(︄
a1Fc(y)
r1

)︄ ∑︂
a2 (e1f1)

ψ

(︄
a2k

′
1Fc(y)
e1f1

)︄

= |k1e1f1|
∑︂′

|a1|<|e1k′
1|

a1∇Fc(y)≡v (e1)
Fc(y)≡0 (e1f1)

ψ

(︄
a1Fc(y)
r1

)︄
.

(6.7.9)

Next we deal with the sum S2. As before we make the change of variables a = a1 + k′
2e2a2

with |a1| < |e2k
′
2| and |a2| < |e2f2k2|, so that (a, r′

2) = 1 if and only if (a1, r
′
2) = 1.

Moreover, it follows from the definition of r2 that νϖ(r′
2) − νϖ(d2) = νϖ(a · c) if and only if

νϖ(r′
2) − νϖ(d2) = νϖ(a1 · c), so that a/r′

2 ∈ L(d2c) if and only if a1/r
′
2 ∈ L(d2c). We can

again divide a2 into residue classes modulo e2f2 to obtain

S2 = |k′
2|2

∑︂
|a1|<|e2k′

2|
a1/r′

2∈L(d2c)
∇(a1·F )(y)≡v (e2)

ψ

(︄
a1 · F (y)

r2

)︄ ∑︂
a2 (e2f2)

ψ

(︄
k′

2a2 · F (y)
e2f2

)︄

= |e2f2k
′
2|2

∑︂
|a1|<|e2k′

2|
a1/r′

2∈L(d2c)
∇(a1·F )(y)≡v (e2)

F1(y)≡F2(y)≡0 (e2f2)

ψ

(︄
a1 · F (y)

r2

)︄
,

(6.7.10)

where we used that (k′
2, e2f2) = 1.

Finally, we begin our treatment of the sum S3, which is slightly more involved. First, we
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introduce character sums to detect the condition νϖ(r′
3) − νϖ(d3) = νϖ(a · c):

S3 =|r′−1
3 d3|

∑︂′

a (r′
3)

∇(a·F )(y)≡v (e3)

ψ

(︄
a · F (y)

r3

)︄

×
∏︂

ϖk∥r′
3

ϖm∥d3

⎛⎝ ∑︂
b0 (ϖk−m)

ψ

(︄
b0a · c
ϖk−m

)︄
− |ϖ|−1 ∑︂

b1 (ϖk−m+1)
ψ

(︄
b1a · c
ϖk−m+1

)︄⎞⎠ .

Then we make the change of variables a = a1 + e3k
′
3a2, with |a1| < |e3k

′
3| and |a2| < |k3e3f3|.

It follows from the definition of e3 and k3 that (a, r′
3) = 1 if and only if (a1, r

′
3) = 1. Moreover,

r′
3 was defined in such a way that νϖ (e3k

′
3) ≤ k −m for all ϖ | r′

3. Slightly abusing notation,
note that we have

∑︂
|a2|<|e3f3k3|

ψ

(︄
k′

3a2 · F (y)
e3f3

)︄ ∏︂
ϖk∥r′

3
ϖm∥d3

⎛⎝ ∑︂
b0 (ϖk−m)

ψ

(︄
b0a · c
ϖk−m

)︄
− |ϖ|−1 ∑︂

b1 (ϖk−m+1)
ψ

(︄
b1a · c
ϖk−m+1

)︄⎞⎠

=
∏︂

ϖk∥r′
3

ϖm∥d3

⎛⎝ ∑︂
b0 (ϖk−m)

ψ

(︄
b0a1 · c
ϖk−m

)︄
S0(ϖ) − |ϖ|−1 ∑︂

b1 (ϖk−m+1)
ψ

(︄
b1a1 · c
ϖk−m+1

)︄
S1(ϖ)

⎞⎠ ,

where

Si(ϖ) :=
∑︂

a2 (ϖk−l)
ψ

(︄
k′

3a2 · (F (y) +ϖm−ibic)
ϖk′−l

)︄

= |ϖ|2(k−l)δ−k′
3Fj(y)≡ϖm−ibicj (ϖk′−l)

for i = 0, 1 and where we temporarily wrote l = νϖ (e3k
′
3) and k′ = νϖ(r3). Observe that for

ϖ | k′
3 the sums Si(ϖ) are independent of bi. For ϖ | r3, it follows upon making the change

of variables bi = b′
i +ϖk′−m−l+ib′′

i with |b′
i| < |ϖ|k′−m−l+i and |b′′

i | < |ϖ|k−k′+l that

∑︂
bi (ϖk−m+i)

ψ

(︄
bia1 · c
ϖk−m+i

)︄
Si(ϖ) = |ϖ|2(k−l) ∑︂

bi (ϖk−m+i)
−k′

3Fj(y)≡ϖm−ibicj (ϖk′−l)

ψ

(︄
bia1 · c
ϖk−m+i

)︄

= |ϖ|2(k−l) ∑︂
|b′

i|<|ϖ|k′−l−(m−i)

−k′
3Fj(y)≡ϖm−ibicj (ϖk′−l)

ψ

(︄
b′

ia1 · c
ϖk−m+i

)︄

×
∑︂

b′′
i (ϖk−k′+l)

ψ

(︄
b′′

i a1 · c
ϖk−k′+l

)︄

= |ϖ|3k

|ϖ|l+k′ δϖk−k′+l|a1·c
∑︂

|b′
i|<|ϖ|k′−l−(m−i)

−k′
3Fj(y)≡ϖm−ib′

icj (ϖk′−l)

ψ

(︄
b′

ia1 · c
ϖk−m+i

)︄

for i = 0, 1. Note that since (c1, c2) = 1, we have (ci, ϖ) = 1 for i = 1 or i = 2. In particular,
there is a unique b′

i with |b′
i| < |ϖ|k−l−m+i and Fj(y) ≡ ϖm−ib′

ik
′
3cj (ϖk−l) for j = 1, 2. In
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addition, the latter equation implies Fc(y) ≡ 0 (ϖk′−l) and Fj(y) ≡ 0 (ϖm) for j = 1, 2.
Using that k′ − l = νϖ(e3f3) for ϖ | r3 and k − k′ = νϖ(k3), we arrive at the identity

S3 = |d3e3f3k
2
3||k′

3|−1δF1(y)≡F2(y)≡0 (d′
3)δFc(y)≡0 (e3f3)

∑︂′

|a1|<|e3k′
3|

∇(a1·F )(y)≡v (e3)
ϖνϖ(k3e3)∥a1·c

ψ
(︃
a1 · c
r3

)︃
Π(a1),

(6.7.11)
where d′

3 is the maximal divisor of d3 dividing r3 and

Π(a1) :=
∏︂

ϖk∥r′
3

ϖm∥d3
ϖ|r3

⎛⎝ ∑︂
|b′

0|<|ϖ|k′−l−m)
Fi(y)≡ϖmb′

1ci (ϖk′−l)

ψ

(︄
b′

0a1 · c
ϖk−m

)︄
− |ϖ|−1 ∑︂

|b′
1|<|ϖ|k′−l−(m−1))

Fi(y)≡ϖm−1b′
2ci (ϖk′−l)

ψ

(︄
b′

1a1 · c
ϖk−m

)︄⎞⎠

×
∏︂

ϖk∥r′
3

ϖm∥d3
ϖ∤r3

⎛⎝ ∑︂
b0 (ϖk−m)

ψ

(︄
b0a1 · c
ϖk−m

)︄
S0(ϖ) − |ϖ|−1 ∑︂

b1 (ϖk−m+1)
ψ

(︄
b1a1 · c
ϖk−m+1

)︄
S1(ϖ)

⎞⎠.

Moreover, since there is a unique b′
i with |b′

i| < |ϖ|k−l−m−i and Fi(y) ≡ ϖm−ib′
ik

′
3ci (ϖk−l) it

is easy to see that Π(a1) ≤ |k′
3|. After relabelling the variables, (6.7.9), (6.7.10) and (6.7.11)

show that we have established the following result.

Lemma 6.7.4. Let r′ ∈ O be cube-full, d ∈ O with d | r, v ∈ On. Define r = r′/(r′,M)
and r = e2f with f | e and f given by (6.7.6). Then with the notation introduced in (6.7.8)
for y,v ∈ On, we have

∑︂
a/r′∈L(dc)

∇(a·F )(y)≡v (e)

ψ

(︄
a · F (y)

r

)︄
= |k1e1f1||e2f2k

′
2|2|d3e3f3k

2
3||k′

3|−1δF1(y)≡F2(y)≡0 (e2f2d′
3)

× δFc(y)≡0 (e1f1e3f3)
∑︂(1)

ψ

(︄
a1Fc(y)
r1

)︄ ∑︂(2)
ψ

(︄
a2 · F (y)

r2

)︄ ∑︂(3)
ψ
(︃
a3 · c
r3

)︃
Π(a3),

where (1) indicates that we are summing over |a1| < |e1k
′
1| subject to (a1, r

′
1) = 1,

a1∇Fc(y) ≡ v (e1); (2) that |a2| < |e2k
′
2| with (a2, r

′
2) = 1, a2/r

′
2 ∈ L(d2c) and

∇(a2 · F )(y) ≡ v (e2); and (3) that |a3| < |e3k
′
3| with (a3, r

′
3) = 1, ∇(a3 · F )(y) ≡ v (e3)

and ϖνϖ(k3e3) ∥ a3 · c. In addition, |Π(a3)| ≤ |k′
3|.

Recall that N, ki, k
′
i are all O(1). In particular, once we combine Lemmas 6.7.3 and 6.7.4 with

the Chinese remainder theorem, we obtain from (6.7.7) that

|Sdc,s,b,N(v)| ≪ |e|n+1|fe2f2d3|
∑︂′

|a1|<|e1k′
1|

∑︂′

|a2|<|e2k′
2|

a2/r′
2∈L(d2c)

∑︂′

|a3|<|e3k′
3|

ϖνϖ(k3e3)∥a3·c

⃓⃓⃓⃓
⃓⃓ ∑︂(4)

|y|<|ef |
ψ

(︄
a · F (y) − tv · y

r

)︄⃓⃓⃓⃓
⃓⃓ ,

(6.7.12)

where a = a1c
⊥r2r3 + a2r1r3 + a3r1r2 and (4) denotes the conditions ∇(a · F )(y) ≡ tv (e),

F1(y) ≡ F2(y) ≡ 0 (e2f2d
′
3) and Fc(y) ≡ 0 (e1f1e3f3).
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Recall that r = e2f . Next we write y = y1 + ey2 with |y1| < |e| and |y2| < |f |. Note that
the definition of r3 implies that νϖ(d′

3) ≤ νϖ(e3f3). We shall therefore write

d′
3 = e′

3f
′
3, where f ′

3 =
∏︂

νϖ(d′
3)=νϖ(e3)+1

ϖ, (6.7.13)

so that e′
3 | e3 and f ′

3 | f3. Hence Fi(y) ≡ 0 (e2f2d
′
3) if and only if Fi(y1) = e2e

′
3mi say and

f2f
′
3 | (mi + e/(e2e

′
3)y2 · ∇Fi(y1)) for i = 1, 2. Similarly, if Fc(y1) = e1e3n, then it must

hold that f1f3 | (n + e2y2 · ∇Fc(y1)). In addition, if ∇(a · F )(y1) = tv + ek, then upon
writing a = (a1, a2) we have

a · F (y) − tv · y ≡ a · F (y1) − tv · y1 + e2 (a1y1 · ∇F1(y2) + a2F2(y2) + y2 · k) (r).

It thus follows that⃓⃓⃓⃓
⃓⃓ ∑︂(4)

|y|<|ef |
ψ

(︄
a · F (y) − tv · y

r

)︄⃓⃓⃓⃓
⃓⃓

≤
∑︂

|y1|<|e|
e2e′

3|Fi(y1), i=1,2
e1e3|Fc(y1)

∇(a·F )(y1)≡tv (e)

max
k

⃓⃓⃓⃓
⃓⃓∑︂(5)

y2 (f)
ψ

(︄
a1y1 · ∇F1(y2) + a2F2(y2) + y2 · k

f

)︄⃓⃓⃓⃓
⃓⃓ , (6.7.14)

where (5) denotes the conditions

f2f
′
3 | (mi + e/(e2e

′
3)y2 · ∇Fi(y1)) and f1f3 | (n+ e2y2 · ∇Fc(y1)).

By abuse of notation we denote the sum over y2 by Σ(5). We can then use orthogonality of
characters to detect the congruence conditions in (5). After employing the triangle inequality,
a standard squaring and differencing argument delivers

∑︂(5) ≤ |(f2f
′
3)2f1f3|−1 ∑︂

b0 (f1f3)

∑︂
b2 (f2f ′

3)

⃓⃓⃓⃓
⃓⃓ ∑︂
y2 (f)

ψ

(︄
a1y1 · ∇F1(y2) + a2F2(y2) + y2 · k′

f

)︄⃓⃓⃓⃓
⃓⃓

≤ |f |n/2Nf (a,y1)1/2,

(6.7.15)

where k′ is a term that depends at most on m1,m2,y1 and the ei’s, and

Nf (a,y) := #{z (e) : (a1H(y) + a2M)z ≡ 0 (f)}.

We now pause for a moment and collect what we have achieved so far. Inserting (6.7.14) and
(6.7.15) into (6.7.12), we get

|Sdc,s,b,N(v)| ≪ |e|n+1|f |n/2+1|e2f2d3|
∑︂′

|a1|<|e1k′
1|

×
∑︂′

|a2|<|e2k′
2|

a2/r′
2∈L(d2c)

∑︂′

|a3|<|e3k′
3|

ϖνϖ(k3e3)∥a3·c

∑︂
|y1|<|e|

e2e′
3|Fi(y1),i=1,2
e1e3|Fc(y)

∇(a·F )(y1)≡tv (e)

Nf (a,y)1/2. (6.7.16)
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The innermost sum is clearly multiplicative, and so our next step is to focus on the sums

S1(e1, f1) :=
∑︂

y (e1)
Fc(y)≡0 (e1)

F1(y)F2(y)≡0 (f1)

Nf1(c⊥,y)1/2,

S ′
1(e1, f1) :=

∑︂
y (e1)

Fc(y)≡0 (e1)
F1(y)F2(y)̸≡0 (f1)

Nf1(c⊥,y)1/2,

S2(e2, f2) :=
∑︂

y (e2)
F1(y)≡F2(y)≡0 (e2)

Nf2(a,y)1/2

S3(e3, f3) :=
∑︂

y (e3)
F1(y)≡F2(y)≡0 (e′

3)
Fc(y)≡0 (e3)

Nf3(a,y)1/2.

We will establish sufficiently strong estimates for Si(ei, fi) when i = 1, 2, 3, while we will
obtain an additional saving by averaging S ′

1(e1, f1) over c. Before we can provide upper bounds
for them, we prove the following intermediate step.

Lemma 6.7.5. Let r′, r ∈ O with r′ | r and n ≥ 13. Then we have

N1(r) := #{x (r) : Fc(x) ≡ 0 (r)} ≪ |r|n−1+ε,

N2(r) := #{x (r) : F1(x) ≡ F2(x) ≡ 0 (r)} ≪ |r|n−2+ε and
N3(r) := #{x (r) : F1(x) ≡ F2(x) ≡ 0 (r′), Fc(x) ≡ 0 (r)} ≪ |r|n−1+ε|r′|−1.

Proof. All the quantities are mutliplicative by the Chinese remainder theorem, and so we may
assume that r = ϖk and r′ = ϖm with m ≤ k during the proof. Let us begin with the
treatment of N3(ϖk) by detecting the congruence condition with character sums:

|ϖ|2m+kN3(ϖk) =
∑︂

a (ϖm)

∑︂
b (ϖk)

∑︂
x (ϖk)

ψ

(︄
(ϖk−ma+ bc⊥) · F (x)

ϖk

)︄

Suppose now that 0 ≤ l ≤ k − 1 is such that ϖl ∥ ϖk−ma + bc⊥. Then we claim that the
sum over x above is

|ϖ|ln
∑︂

x (ϖk−l)
ψ

(︄
ϖ−l(ϖk−ma+ bc⊥) · F (x)

ϖk−l

)︄
≪ |ϖ|ln+5(k−l)n/6.

Indeed, if ϖ1+vϖ | ϖ−l(ϖk−ma1 − bc2), then the sum is O(|ϖ|ln+(k−l)(n+1)/2) by Lemma 6.6.8,
while if ϖ1+vϖ ∤ ϖ−l(ϖk−ma1 − bc2), then we can apply Lemma 6.7.1 with v0 = 0 and ˆ︁V = 1
to obtain the claimed estimate.

For 0 ≤ l ≤ k fixed, let us now determine the number of triples (a1, a2, b) such that
ϖk−ma+ bc⊥ ≡ 0 (ϖl). If l ≤ k −m, then this holds if and only if ϖl ∥ b since c is primitive,
so that the number of available (a1, a2, b) is O(|ϖ|2m+k−l). On the other hand, if l > k −m,
then again because c is primitive, we can without loss of generality assume that (c1, ϖ) = 1.
This implies

b ≡ ϖk−ma2c
−1
1 (ϖl),
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which determines b uniquely modulo ϖl. We thus also have

ϖk−ma1 ≡ −c2b ≡ ϖk−ma2c2c
−1
1 (ϖl),

which determines a1 uniquely modulo ϖl−k+m provided a2 is given. In total we get that the
number of such (a1, a2, b) is at most |ϖ|m+k−l+m−(l−k+m) = |ϖ|2(k−l)+m. We conclude that

|ϖ|2m+kN3(ϖk) ≪ |ϖ|m+nk + |ϖ|m+nk
k−1∑︂
l=0

|ϖ|(n/6−2)(l−k) ≪ |ϖ|m+nk + |ϖ|m+nk

for n/6 − 2 > 0.
The proof of the statement for the quantities N1(r) and N2(r) runs along the same lines and
is in fact less involved. The argument again relies on the estimates provided by Lemmas 6.6.8
and 6.7.1 and we do not provide details here.

Before we continue with our study of the sums Si(ei, fi), we make some preliminary observations.
First of all, if (a1, f) ≪ 1, then it follows from Equation (6.12) in [34] that∑︂

y (f)
Nf (a,y) ≪ |f |n+ε. (6.7.17)

Moreover, if f | a1, then rk(M) ≥ n− 1 readily implies Nf (a,y) ≪ |f |.

Lemma 6.7.6. Let ei, fi ∈ O with fi | ei and fi square-free for i = 1, 2, 3. Then for n ≥ 13,
we have

S1(e1, f1) ≪ |e1|n−1+ε|f1|1/2,

S2(e2, f2) ≪ |e2|n−2+ε|f2| and
S3(e3, f3) ≪ |e3|n−1+ε|e′

3|−1|f3|.

Proof. All of the sums under consideration are multiplicative, and so we only have to prove
the corresponding estimates when ei = ϖk and fi = 1, ϖ. Moreover, we shall write
m = νϖ(e′

3), so that k ≥ m ≥ 1.
Let Xϖ be the reduction of V (F1, F2) modulo ϖ. When i = 2, 3, we begin with the case
when fi = 1 or a1 ≡ 0 (ϖ), while when i = 1 we assume fi = 1 or c2 ≡ 0 (ϖ). Since
Nϖ((0, a2),y) ≪ |ϖ|, in our situation we thus see that

Si(ϖk, fi) ≪ |fi|1/2Ni(ϖk).

Lemma 6.7.5 provides estimates for Ni(ϖk) that are satisfactory for the statement of the
lemma.
Moreover, when c1 ≡ 0 (ϖ), then it follows from the second display after Equation (6.15) in
[34] that S1(ϖk, f1) ≪ ϖk(n−1)|f1|1/2, which is also sufficient.
We may therefore assume that fi = ϖ from now on. When i = 1, we are left with the case
(c2, ϖ) = (c1, ϖ) = 1, while for i = 2, 3 we have to deal with the case when (a1, ϖ) = 1. Let
us first assume that Xϖ, the reduction of V (F1, F2) modulo ϖ, is singular. Since this can
only happen for at most finitely ϖ’s, it must hold that Nϖ(a,y) ≪ 1. In particular, we obtain

Si(ϖk, fi) ≪ Ni(ϖ)
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in this case, which is again satisfactory by Lemma 6.7.5.
So let us now assume that Xϖ is non-singular. We first provide an upper bound for the
contribution from y ̸≡ 0 (ϖk) to Si(ϖk, ϖ). If Fc(y) ≡ 0(ϖl) and F1(y)F2(y) ≡ 0(ϖ), then
Fc(y + ϖlz) ≡ 0 (ϖl+1) if and only if ϖ−lFc(y) ≡ −z · ∇Fc(y) (ϖ). Since c1c2 ̸≡ 0 (ϖ),
the condition F1(y)F2(y) ≡ 0 (ϖ) forces that ∇Fc(y) ̸≡ 0 (ϖ) as otherwise y would be a
singular point of Xϖ. In particular for y ̸≡ 0 (ϖ), inductively we obtain

M1(y) := #{z (ϖk) : z ≡ y (ϖ), Fc(z) ≡ 0 (ϖk)} ≪ |ϖ|(k−1)(n−1).

Similarly, if F1(y) ≡ F2(y) ≡ 0 (ϖl), then F1(y +ϖlz) ≡ F1(y +ϖlz) ≡ 0 (ϖl+1) holds if
and only if ϖ−lFi(y) ≡ −z · ∇Fi(y) (ϖ). As Xϖ is non-singular and y ̸≡ 0 (ϖ), we must
have rk(∇F1(y),∇F2(y)) = 2. Therefore, it follows by induction that

M2(y) := #{z (ϖk) : z ≡ y (ϖ), F1(z) ≡ F2(z) ≡ 0 (ϖk)} ≪ |ϖ|(k−1)(n−2).

Finally, if F1(y) ≡ F2(y) ≡ 0 (ϖm), then Fc(y + ϖmz) ≡ 0 (ϖm+1) if and only if
ϖ−mFc(y) ≡ −z · ∇Fc(y) (ϖ). As F1(y) ≡ F2(y) ≡ 0 (ϖ), we must have ∇Fc(y) ̸≡ 0 (ϖ),
as otherwise y would be a singular point of Xϖ. Combing this with the arguments that were
used to estimate M1(y) and M2(y), we obtain

M3(y) := {z (ϖk) : z ≡ y, F1(z) ≡ F2(z) ≡ 0 (ϖm), Fc(z) ≡ 0 (ϖk)}
≪ |ϖ|(m−1)(n−2)+(k−m)(n−1).

It now follows from an application of the Cauchy-Schwarz inequality that the contribution
from y ̸≡ 0 (ϖ) to Si(ϖk, ϖ) is at most

max
y ̸≡0 (ϖ)

Mi(y)Ni(ϖ)1/2(
∑︂

y (ϖ)
Nϖ(a,y))1/2 ≪ |ϖ|n/2 max

y ̸≡0 (ϖ)
Mi(y)Ni(ϖ)1/2

by (6.7.17). Combining the estimates we just provided for Mi(y) with Lemma 6.7.5 to bound
Ni(ϖ), we see that this contribution is sufficient for the conclusion of the lemma to hold.
We are thus left with estimating the contribution from y ≡ 0 (ϖ) to Si(ϖk, ϖ). In this case
we have Nϖ(a,y) ≪ |ϖ|, so that

Si(ϖk, ϖ) ≪ |ϖ|1/2Ni(ϖk),

which is again satisfactory by Lemma 6.7.5.

We now return to the main task of this section: estimating the quantity S(V,C1, C2) that
was defined in (6.7.3). Equation (6.7.16) gives

S(V,C1, C2) ≪ |e|n+1|f |n/2+1|e2f2d3|
∑︂

c∈O2
prim

|ci|≤ˆ︁Ci

∑︂′

|a1|<|e1k′
1|

∑︂′

|a1|<|e2k′|
a1/r′

2∈L(d2c)

∑︂′

|a′
1|<|e3k′

3|
ϖνϖ(k3e3)∥a1·c

×
∑︂
y (e)

Nf (a,y)1/2 ∑︂
|v−v0|≤ˆ︁V
F ∗

1 (v)=0
∇(a·F )(y)≡tv (e)

1. (6.7.18)

Let us now write v = v0 +v1 +v2e, where |v1| < |e|, tv1 ≡ ∇(a ·F )(y)(e) and |v2| < ˆ︁V |e|−1.
Observe that (e, t) = 1 implies that v1 is unique. Note that G(v2) = F ∗

1 (v0 + v1 + v2e) is of
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degree 3 × 2n−2 and its leading degree part is absolutely irreducible, so that we may invoke
Lemma 6.3.4 to deduce that

∑︂
|v−v0|≤ˆ︁V
F ∗

1 (v)=0
∇(a·F )(y)≡tv (e)

1 ≪ 1 +
(︄ ˆ︁V

|e|

)︄n−2

. (6.7.19)

Using the Chinese remainder theorem together with Lemma 6.7.6, we obtain∑︂
y (e)

Nf (a,y)1/2 = S2(e2, f2)S3(e3, f3) (S1(e1, f1) + S ′
1(e1, f1))

≪ |e2|n−2+ε|f2||e3|n−1+ε|e′
3|−1|f3|

(︂
|e1|n−1+ε|f1|1/2 + S ′

1(e1, f1)
)︂
.

(6.7.20)

Moreover, the conjunction of the conditions F1(y)F2(y) ̸≡ 0 (f1) and Fc(y) ≡ 0 (f1) can
only hold if (c1, f1) = (c2, f1) = 1. Therefore, for C1 ≥ C2 ≥ 1 we have∑︂

c∈O2
prim

|ci|≤ˆ︁Ci

S ′
1(e1, f1) ≤ max

a (f1)
(a1,f1)=(a2,f1)=1

∑︂
y (e1)

F1(y)F2(y)̸≡0(f1)

Nf1(a,y)1/2 ∑︂
c∈O2

prim

|ci|≤ˆ︁Ci

Fc(y)≡0 (e1)

1

≤ ˆ︁C2

(︄
1 +

ˆ︁C1

|e1|

)︄
max
a (f1)

(a1,f1)=(a2,f1)=1

(︄
|e1|
|f1|

)︄n ∑︂
y (f1)

Nf1(a,y)1/2

≪ |e1|n ˆ︁C2

(︄
1 +

ˆ︁C1

|e1|

)︄
,

(6.7.21)

where we used (6.7.17) together with the Cauchy-Schwarz inequality to arrive at the last
estimate.
Next observe that a2/r

′
2 ∈ L(d2c) implies that ϖνϖ(r′

2d−1
2 ) | a2 · c, so that that

#{|a2| < |e2k
′| : a2/r

′
2 ∈ L(d2c)} ≤

(︄
|e2k

′|
|r′

2d
−1
2 |

)︄2

|r′
2d

−1
2 | = |e2k

′|2|r′
2|−1|d2|. (6.7.22)

A similar argument delivers
#{|a3| < |e3k

′
3| : ϖνϖ(e3) | a3 · c} ≤ |k′

3|2|e3|. (6.7.23)
Recall that e = e1e2e3, f = f1f2f3 and d = d2d3. Then since k, k′ are O(1) and |s| ≍ |r|,
we can combine (6.7.19) – (6.7.23) with (6.7.18) to obtain

S(V,C1, C2) ≪|e|n+1|f |n/2+1|e1e3|2|e2||f1|1/2|f2|2|f3||d2d3||r′
2|−1|e′

3|−1
(︂
|e| + ˆ︁V )︂n−2

× ˆ︁C2
(︂ ˆ︁C1 + |e1||f1|−1/2 + ˆ︁C1|f1|−1/2

)︂
≪|d||s|(n+3)/2 |f 3

2 f3|1/2

|r′
2e

′
3|

ˆ︁C2
(︂
|e| + ˆ︁V )︂n−2 (︂ ˆ︁C1 + |e1||f1|−1/2

)︂
,

where we used that |e2f | ≍ |s| and d2d3 = d. Since r2 is cube-full and |r′
2| ≍ |r2|, we have

f 3
2 | r2 and thus |f2|3/2|r′

2|−1 ≪ 1. Moreover, since νϖ(d′
3) ≥ 1 for all ϖ | e3, the definition

of e′
3 in (6.7.13) implies that f3 | e′

3 and hence |f3|1/2|e′
3| ≪ 1. We have thus established the

following result.
Lemma 6.7.7. Let s ∈ O be cube-full and d | s. Then with the notation of (6.7.8), it holds
that

S(V,C1, C2) ≪F1,F2,N |d||s|(n+3)/2 ˆ︁C2
(︂
|s|n/2−1 + ˆ︁V n−2

)︂ (︂ ˆ︁C1 + |e1|f1|−1/2
)︂
.
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6.8 Return to the circle method
In this section we combine the estimates for the various exponential sums and integrals that
we have produced so far to finish our treatment of N(P ). To ease of notation, for d ∈ O
and c ∈ O2 we abbreviate the properties d monic, c primitive, |dc1| ≤ min{ ˆ︁T |r|1/2, |r|},
|dc2| < ˆ︁T−1|r|1/2 and max{ ˆ︁Ri|dc⊥

i |} ≥ |r| by P (d, c). In addition, throughout this section
we shall assume n ≥ 26. We will not make the dependence of the implied constants explicit
anymore, but allow them to depend at most on F1, F2, w and N as well as on ε if it appears
in the inequality. Recall the decomposition of N(P ) in (6.4.9).

6.8.1 The main term
We begin to carry out the analysis of M(P ). Since we chose ˆ︁R2 ≍ |P |1/3 in (6.4.8), it follows
from Corollary 6.2.10 that

M(P ) = |P |n
∑︂

|r|≪|P |1/3

r monic

|rN |−nSrKr + |P |n
∑︂

|P |1/3≪|r|≤ˆ︁R1ˆ︁R2
r monic

|rN |−1 ∑︂
dc : P (d,c)

d|r

Sdc,r,b,N(0)Kr,

(6.8.1)
where

Sr =
∑︂′

a (r)

∑︂
|x|<|rN |
x≡b (N)

ψ

(︄
a · F (x)

r

)︄

and
Kr =

∫︂
|θ1|<ˆ︁R−1

1 |r|−1

∫︂
|θ2|<ˆ︁R−1

2 |r|−1
IrN

(θ,0)dθ.

It is a consequence of Proposition 6.5.4 that

Kr ≪ |P |−5+ε (6.8.2)

and from Corollary 6.7.2 with v0 = 0 and ˆ︁V = 1 we deduce

Sdc,r,b,N(v) ≪ |d||r|5n/6+3/2+ε. (6.8.3)

Note that if c2 ̸= 0, then since ˆ︁T ≍ |P |1/2, the condition |dc2| < ˆ︁T−1|r|1/2 can only hold if
|r| ≫ |P |. In particular, it is now easy to see that∑︂

dc : P (d,c)
d|r

|d| ≪ |r|1+ε. (6.8.4)

It follows from (6.8.2)–(6.8.4) that the rightmost term in (6.8.1) is of order

|P |n−5+ε
∑︂

|P |1/3≪|r|≤ˆ︁R1ˆ︁R2
r monic

|r|5n/6+3/2

|rN |n
∑︂

dc P (d,c)
d|r

|d| ≪ |P |n−5+ε
∑︂

|P |1/3≪|r|≤ˆ︁R1ˆ︁R2
r monic

|r|5/2−n/6

≪ |P |n−5−(7/2−n/6)/3+ε,

where we used that that 7/2 − n/6 < 0 for n > 21. Consequently, the contribution from this
term is negligible and it remains to investigate the first term on the right hand side of (6.8.1).
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The first step we take is to analyse the integral Kr. Let C > 0 be a fixed positive integer,
whose exact value will be determined in due course. We then split up the integral Kr into

Kr =
∫︂

|θ1|<ˆ︁C−1|P |−3

∫︂
|θ2|<ˆ︁C−1|P |−2

IrN
(θ,0)dθ +

∫︂
Ξ
IrN

(θ,0)dθ, (6.8.5)

where Ξ is defined by

Ξ := {θ ∈ T2 : |θi| < ˆ︁R−1
i |r|−1 for i = 1, 2 and ˆ︁C−1|P |−3 ≤ |θ1| or ˆ︁C−1|P |−2 ≤ |θ2|}.

Note that Ξ is non-empty only if |r| < maxi=1,2{ ˆ︁C ˆ︁R−1
i |P |4−i}. Since ˆ︁R−1

i |P |4−i ≍ |P |5/3 by
(6.4.8), this will certainly hold for |r| ≪ |P |1/3 and P sufficiently large. We will show that
the second integral vanishes and produce a lower bound for the first one. Beginning with the
former task, we have by (6.5.1) that the second integral is equal to

ˆ︁L−n
∫︂

Ξ

∫︂
Tn
ψ
(︂
P 3θ1G1(x) + P 2θ2G2(x)

)︂
dxdθ,

where Gi(x) = Fi(x0 + t−Lx) for i = 1, 2. Let Γ = ({1} × T) ∪ (T × {1}) and define

λ = min
γ∈Γ

|γ1∇F1(x0) + γ2∇F2(x0)|.

Observe that 0 < λ < 1 since Γ is compact and x0 a non-singular point of the variety defined
by F1 and F2 with |x0| < H−1

F . To simplify notation, we write γ1 = P 3θ1 and γ2 = P 2θ2.
Let now γ ∈ T be such that |γ| = |γ|. Then by the ultrametric property we have

|γ1∇G1(x) + γ2∇G2(x)| = ˆ︁L−1|γ||γ1∇F1(x0)/γ + γ2∇F2(x0)/γ| ≥ ˆ︁L−1|γ|λ,

provided L is sufficiently large. Moreover, all higher partial derivatives of γ1G1(x) + γ2G2(x)
are of order O(ˆ︁L−2|γ|). By the second derivative test [34, Lemma 2.5] we thus have Kr = 0
if ˆ︁L−1|γ|λ ≥ 1. Since |γ| ≥ ˆ︁C−1, this can be ensured if we make the choice ˆ︁C = λˆ︁L−1, which
we henceforth assume.
We proceed to investigate the first integral in (6.8.5). After making the change of variables
γi = t(4−i)P θi, by (6.5.1) we have

Kr = ˆ︁L−n|P |−5
∫︂

|γ|<ˆ︁C−1

∫︂
Tn
ψ (γ1G1(x) + γ2G2(x)) dxdγ.

It is now clear that Kr is in fact independent of r and to emphasise this, we define

σ∞ := ˆ︁L−n
∫︂

|γ|<ˆ︁C−1

∫︂
Tn
ψ (γ1G1(x) + γ2G2(x)) dxdγ.

The integral σ∞ is the singular integral associated to our counting problem and our next step is
to show that σ∞ > 0. To do so, we exchange the order of integration and apply Lemma 3.0.2
to deduce that

σ∞ = ˆ︁L−n ˆ︁C−2 vol
(︂
{x ∈ Tn : |Gi(x)| < ˆ︁C for i = 1, 2}

)︂
.

Using Taylor expansion and the fact that Fi(x0) = 0 for i = 1, 2, it follows that

G1(x) = t−Lx · ∇F1(x0) + 1
2t

−2LxtH(x0)x + t−3LF1(x)
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and
G2(x) = t−Lx · ∇F2(x0) + t−2LF2(x).

Provided L is sufficiently large, we must then have
|G1(x)| = ˆ︁L−1|x · ∇F1(x0)| and |G2(x)| = ˆ︁L−1|x · ∇F2(x0)|.

However, if we recall that ˆ︁C = ˆ︁L−1λ, then for |x| < λ it is clear thatˆ︁L−1|x · ∇Fi(x0)| < ˆ︁L−1λ = ˆ︁C,
so that σ∞ > ˆ︁L−n ˆ︁C−2λn. We summarise our investigation of the integral Kr in the following
result.

Lemma 6.8.1. Let |r| ≪ |P |1/3. Then

Kr = σ∞|P |−5,

where σ∞ > 0 depends only on the weight function w.

It follows from Lemma 6.8.1 and the upper bound provided after (6.8.1) that

M(P ) = σ∞Sb,N(1/3)|P |n−5 +O
(︂
|P |n−5−δ′)︂

,

for some δ′ > 0, where for ∆ > 0 we have defined
Sb,N(∆) :=

∑︂
|r|≪|P |∆
r monic

|rN |−NSr

to be the truncated singular series associated to our counting problem. Let
Sb,N :=

∑︂
r monic

|rN |−nSr

be the completed singular series. It follows from Lemma 6.7.1 and Lemma 6.6.8 that

Sr =
∑︂′

a (r)
T (a, r,0) ≪ |r|2+5n/6+ε,

so that Sb,N converges absolutes for n > 18 and
|Sb,N(∆) − Sb,N | ≪

∑︂
|r|>|P |∆

|r|2−n/6+ε ≪ |P |∆(3−n/6+ε).

It is a routine exercise to show that Sb,N > 0 provided there exists xϖ ∈ On
ϖ such that

F1(xϖ) = F2(xϖ) = 0 and |b − xϖ|ϖ < |N |ϖ for all ϖ, see for example Corollary 4.4.7 of
[131] for arbitrary complete intersections. In particular, we have established the following
result.

Proposition 6.8.2. For n > 18 we have

M(P ) = σ∞Sb,N |P |n−5 +O
(︂
|P |n−5−δ′′)︂

for some δ′′ > 0 with σ∞ > 0. Moreover, Sb,N > 0 if for every ϖ there exists xϖ ∈ On
ϖ such

that F1(xϖ) = F2(xϖ) = 0 and |b − xϖ|ϖ < |N |ϖ.

To prove Proposition 6.4.2 and hence also Theorems 6.1.1 and 6.1.2, it remains to give a
satisfactory upper bound for the error term E1(P ) defined in (6.4.9). This will occupy the
remainder of our work and makes use of the various estimates we have provided for the
oscillatory integrals and exponentials sums under consideration.
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6.8.2 Preparation for the error terms
We continue our investigation of the error term E1(P ). Before doing so, we take some
preliminary steps. Firstly, we shall fix the absolute value of r to be ˆ︁Y and of θi to be ˆ︁Θi for
i = 1, 2 respectively, where

1 ≤ Y ≤ R1 +R2, −9P +R2 ≤ Θ1 < −Y −R1 and − 9P +R1 ≤ Θ2 < −Y −R2.
(6.8.6)

and neither of the conditions (1) nor (2) recorded after (6.4.9) hold. Observe that by our choice
of R1 and R2 in (6.4.8) the number of admissible triples (Y,Θ1,Θ2) is O(|P |ε). Secondly, we
treat separately the contribution from c2 ̸= 0 and c2 = 0 and denote the contribution of such
r’s, θ’s and c’s to E1(P ) by E1,a(Y,Θ1,Θ2) and E1,b(Y,Θ1,Θ2) respectively, so that

E1,a(Y,Θ1,Θ2) = |P |n
∑︂

|r|=ˆ︁Y
r monic

|rN |−n
∑︂

dc:P (dc)
c2 ̸=0
d|r

∫︂
|θi|=ˆ︁Θi

∑︂
v∈On\{0}

Sdc,r,b,N(v)IrN
(θ,v)dθ (6.8.7)

and

E1,b(Y,Θ1,Θ2) = |P |n
∑︂

|r|=ˆ︁Y
r monic

|rN |−n
∑︂

|d|≤ˆ︁Y 1/2P 1/2

d|r

∫︂
|θi|=ˆ︁Θi

∑︂
v∈On\{0}

Sdc0,r,b,N(v)IrN
(θ,v)dθ,

(6.8.8)
where c0 = (1, 0) since by our convention c with c2 = 0 can only be primitive when c1 = 1. If
we can show that E1,i(Y,Θ1,Θ2) ≪ |P |n−5−κ for i = a, b and some κ > 0, then since the
number of admissible triples (Y,Θ1,Θ2) is O(|P |ε), the same estimate will hold with a new
choice of κ for E1(P ). Moreover, if we let ˆ︁Z = max{1, |P |3 ˆ︁Θ1, |P |2 ˆ︁Θ2}, then (6.5.2) implies
that the summation range of v in the definition of E1,i(Y,Θ1,Θ2) is empty unless

|v| ≪ ˆ︁V , where ˆ︁V =
ˆ︁Y ˆ︁Z
|P |

. (6.8.9)

In particular, since v ̸= 0, it must also hold that

ˆ︁Y ˆ︁Z ≫ |P |. (6.8.10)

Finally, we use the convention that ε > 0 is an arbitrarily small real number whose exact value
may change from one appearance to the next.

Treatment of E1,a(Y,Θ1,Θ2)

Note that we must have ˆ︁Y ≫ |P |, (6.8.11)

because as c2 ≠ 0 and ˆ︁T ≍ |P |1/2, the inequality |dc2| < ˆ︁T−1 ˆ︁Y 1/2 can only hold if ˆ︁Y ≫ |P |.
Since we assume that c2 ̸= 0, Lemma 6.6.5 gives strong upper bounds for Sc,r,b,N (v) provided
r is square-free and (r, F ∗

1 (v)) = 1. Accordingly, we shall further split up E1,a(Y,Θ1,Θ2) into
the contribution from those v with F ∗

1 (v) ̸= 0 and F ∗
1 (v) = 0 and denote it by E ′

1 and E ′
2

respectively. In the treatment of E ′
2 we compensate the worse exponential sum estimates

compared to E ′
1 by exploiting the sparsity of vectors v such that F ∗

1 (v) = 0.
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Let us begin by dealing with the term E ′
1. Applying (6.5.1) and Lemma 6.5.1 to the integral

IrN
(θ,v) in (6.8.7), it follows that

E ′
1 ≤ |N |n ˆ︁L−n |P |nˆ︁Y n

∑︂
dc : P (dc)

c2 ̸=0

∫︂
|θ|=ˆ︁Θ

∫︂
Tn

∑︂
|v−v0|<ˆ︁V ˆ︁Z−1/2

F ∗
1 (v) ̸=0

∑︂
|r|=ˆ︁Y

d|r

|Sdc,r,b,M(v)|dxdθ, (6.8.12)

where v0 = −rN t
L(P 3∇F1(x0 + t−Lx) + P 2∇F2(x0 + t−Lx)). Our next goal is to estimate

the sum
S :=

∑︂
|v−v0|<ˆ︁V ˆ︁Z−1/2

F ∗
1 (v) ̸=0

∑︂
|r|=ˆ︁Y

d|r

|Sdc,r,b,N(v)|.

For this we write r = b1b
′
1b2b

′
2r3 into pairwise coprime b1, b

′
1, b2, b

′
2, r3 ∈ O, where b1b

′
1 is the

square-free part of r satisfying (b1, dNF
∗
1 (v)c2) = 1; b2b

′
2 is such that νϖ(b2b

′
2) = 2 for all

ϖ | b2b
′
2 and (b2, dNc2) = 1 and r3 is the cube-full part of r. Accordingly we shall also write

d = d1d2d3 with d1 | b′
1, d2 | b′

2 and d3 | r3. We can then use the multiplicativity of Sdc,r,b,N (v)
recorded in Lemma 6.6.1 to deduce for appropriate t1, t′1, t2, t′2, t3, N1, N2, N3 ∈ O that

|Sdc,r,b,N(v)| = |Sb1(t1v)Sd1c,b′
1,b,N1(t′1v)Sb2(t2v)Sd2c,b′

2,b,N2(t′2v)Sd3c,r3,b,N3(t3v)|
≪ |r|ε|b1|(n+1)/2|b2|n/2+1|d1d2||b′

1b
′
2|(n+3)/2|Sd3c,r3,b,N3(t3v)|,

(6.8.13)

where we used Lemmas 6.6.5, 6.6.6 and 6.6.7 to estimate the sums corresponding to b1, b′
1

and b2 respectively and Corollary 6.6.9 for the sum corresponding to b′
2. Moreover, by Corollary

6.7.2 we have∑︂
|v−v0|<ˆ︁V ˆ︁Z−1/2

F ∗
1 (v)̸=0

|Sd3c,r3,b,N3(t3v)| ≪ |d3||r3|n/2+1+ε|r′′
3 |1/2

(︂ ˆ︁V n ˆ︁Z−n/2 + |r3|n/3
)︂
, (6.8.14)

where r3 = r′
3r

′′
3 with (r′

3, d) = 1 are defined in (6.7.1). Consequently, plugging (6.8.13) and
(6.8.14) into the definition of S yields

S ≪ ˆ︁Y (n+1)/2+ε|d|
(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3

)︂ ∑︂
|r|=ˆ︁Y

d|r

|b2r
′
3|1/2|b′

1b
′
2r

′′
3 |

= ˆ︁Y (n+3)/2+ε|d|
(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3

)︂ ∑︂
|r|=ˆ︁Y

d|r

|b1|−1|b2r
′
3|−1/2,

since |b1b
′
1b2b

′
2r

′
3r

′′
3 | = ˆ︁Y . By definition, we must have b′

1b
′
2r

′′
3 | (dNc2F

∗
1 (v))∞. The number

of available b′
1, b

′
2, r

′′
3 with |b′

1b
′
2r

′′
3 | ≤ ˆ︁Y is hence O( ˆ︁Y ε). Moreover, since b2r

′
3 is square-full,

the number of b2 and r′
3’s of fixed absolute value ˆ︁B is O( ˆ︁B1/2). After summing over q-adic

intervals it thus follows that

S ≪ ˆ︁Y (n+3)/2+ε|d|
(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3

)︂
and hence

E ′
1 ≪ |P |n ˆ︁Y 3/2−n/2+ε ˆ︁Θ1

ˆ︁Θ2
∑︂

dc : P (dc)
|d|
(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3

)︂
≪ |P |n−5 ˆ︁Y 5/2−n/2+ε ˆ︁Z2

(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3
)︂
,
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where we used that ˆ︁Θ1
ˆ︁Θ2 ≪ |P |−5 ˆ︁Z2 and ∑︁

dc : P (dc) |d| ≪ ˆ︁Y 1+ε. If the first term in the
brackets dominates, we get

E ′
1 ≪ |P |−5 ˆ︁Y 5/2+n/2+ε ˆ︁Z2+n/2 ≪ |P |5n/6−5+10/3 ˆ︁Y 1/2+ε ≪ |P |5n/6−5/3+5/6+ε,

because ˆ︁Z ≪ |P |5/3 ˆ︁Y −1 and ˆ︁Y ≪ |P |5/3. Thus, the contribution from E ′
1 in this case is

O(|P |n−5−κ) for some κ > 0 as soon as n > 25. If the second term dominates, then

E ′
1 ≪ |P |n−5 ˆ︁Y 5/2−n/6+ε ˆ︁Z2 ≪ |P |n−5+10/3 ˆ︁Y 1/2−n/6+ε ≪ |P |n−5+10/3+1/2−n/6+ε,

where we used that ˆ︁Y ≫ |P | by (6.8.11). This is satisfactory as soon as n > 23, which
completes our treatment of E ′

1.
Next we consider the contribution from E ′

2. This time we apply Lemma 6.5.2 to the integral
IrN

(θ,v) and obtain

E ′
2 ≪ |P |nˆ︁Y n

ˆ︁Z1−n/2 ˆ︁Θ1
ˆ︁Θ2

∑︂
|d|≤ˆ︁T −1/2|ˆ︁Y |1/2

∑︂
|ci|<ˆ︁Ci

c2 ̸=0

∑︂
0<|v|≤ˆ︁V
F ∗

1 (v)=0

∑︂
|r|=ˆ︁Y

d|r

|Sdc,r,b,N(v)|,

where ˆ︁C1 = ˆ︁T ˆ︁Y 1/2|d|−1 and ˆ︁C2 = ˆ︁T−1 ˆ︁Y 1/2|d|−1. We proceed to consider the sum

S ′ :=
∑︂

|ci|<ˆ︁Ci

c2 ̸=0

∑︂
0<|v|≤ˆ︁V
F ∗

1 (v)=0

∑︂
|r|=ˆ︁Y

d|r

|Sdc,r,b,N(v)|.

For this we first factor r = b1b2r3 into pairwise coprime b1, b2, r3 ∈ O and d = d2d3 with
d2 | b2 and d3 | r3, where b1 is square-free, b2 is cube-free, (b1, dNc2) = 1 and r3 is the
cube-full part of r. Parallel to our argument for E ′

1 we use Lemma 6.6.1 to factor Sdc,r,b,N (v)
and invoke Lemmas 6.6.6 and 6.6.7 to bound the sum corresponding to b1 as well as Lemma
6.6.6 and Corollary 6.6.9 to bound the sum corresponding to b2 to obtain

Sdc,r,b,N(v) ≪ |r|ε|d2||b1|n/2+1|b2|(n+3)/2|Sd3c,r3,b,N ′(tv)|

for appropriate t, N ′ ∈ O. We wish to apply Lemma 6.7.7 to estimate the average

A :=
∑︂

|ci|<ˆ︁Ci

∑︂
0<|v|≤ˆ︁V
F ∗

1 (v)=0

|Sd3c,r3,b,N ′(tv)|.

For this note that with the notation of Lemma 6.7.7 for P sufficiently large we have
|e1| ≤ ˆ︁Y 1/2 ≪ ˆ︁Y 1/2 ˆ︁T |d|−1 = ˆ︁C1, since ˆ︁T ≍ |P |1/2 and |d| ≤ ˆ︁Y 1/2 ˆ︁T−1 ≪ |P |1/3. In particular,
Lemma 6.7.7 hands us

A ≪ |d3||r3|n/2+3/2+ε ˆ︁C1
ˆ︁C2
(︂
|r3|n/2−1 + ˆ︁V n−2

)︂
. (6.8.15)

We may also forget about the condition F ∗
1 (v) = 0 and use Corollary 6.7.2 to obtain the

alternative estimate

A ≪ ˆ︁C1
ˆ︁C2|d3||r3|n/2+1+ε|r′′

3 |1/2
(︂ ˆ︁V n + |r3|n/3

)︂
, (6.8.16)

where r3 = r′
3r

′′
3 with r′

3 given by (6.7.1). In particular, we have shown so far that

A ≪ ˆ︁C1
ˆ︁C2|d3||r3|n/2+1+ε min

{︂
|r3|1/2

(︂ ˆ︁V n−2 + |r3|n/2−1
)︂
, |r′′

3 |1/2
(︂ ˆ︁V n + |r3|n/3

)︂}︂
.

(6.8.17)
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We begin with the contribution from ˆ︁V ≥ |r3|1/2 or ˆ︁V ≤ |r3|1/3. Since b2r
′′
3 | (Ndc2)∞,

there are at most O(|P |ε) pairs (b2, r
′′
3). Moreover, since r3 is cube-full, there are O(|r3|1/3)

available r3 of fixed absolute. One now easily derives∑︂
|r|=ˆ︁Y

d|r

|b2r3|1/2 ≪ ˆ︁Y 1+ε.

In addition, we also have∑︂
|d|≤ˆ︁T −1ˆ︁Y 1/2

ˆ︁C1
ˆ︁C2|d| = ˆ︁Y ∑︂

|d|≤ˆ︁T −1ˆ︁Y 1/2

|d|−1 ≪ ˆ︁Y 1+ε. (6.8.18)

After employing the estimates ˆ︁Θ1
ˆ︁Θ2 ≪ |P |−5 ˆ︁Z2 and |r3| ≤ ˆ︁Y , we have in the cases under

consideration
E ′

2 ≪ |P |n−5 ˆ︁Y 3−n/2 ˆ︁Z3−n/2
(︂ ˆ︁V n−2 + ˆ︁Y n/3

)︂
. (6.8.19)

If the first term dominates, we obtain

E ′
2 ≪ |P |−3 ˆ︁Y 1+n/2+ε ˆ︁Z1+n/2 ≪ |P |5n/6−3+5/3+ε,

which is satisfactory if n > 22. On the other hand, if ˆ︁Y n/3 ≥ ˆ︁V n−2, then

E ′
2 ≪ |P |n−5 ˆ︁Y 3−n/6+ε ˆ︁Z3−n/2 ≪ |P |n−5+(3−n/6)+ε,

by (6.8.11) and because ˆ︁Z ≥ 1. Thus this contribution is sufficiently small as soon as n > 18.
Finally, we have to deal with the contribution from |r3|1/3 < ˆ︁V < |r3|1/2. For this, we use that
for any real numbers A,B > 0 and 0 ≤ κ ≤ 1 that min{A,B} ≤ A1−κBκ with κ = 1/(n−2)
to deduce that

S ′ ≪ ˆ︁C1
ˆ︁C2|d| ˆ︁V n(1−κ) ˆ︁Y n/2+1+ε

∑︂
|r|=ˆ︁Y |b2|1/2|r′′

3 |(1−κ)/2|r3|κ(n−1)/2

≪ ˆ︁C1
ˆ︁C2|d| ˆ︁V n(1−κ) ˆ︁Y n/2+2+ε

∑︂
|b2r′

3r′′
3 |≤ˆ︁Y |b2|−1/2|r′

3|(n−1)/(2n−4)−1.

The number of available b2 of fixed absolute value is O(|b2|1/2). Moreover, there are at most
O( ˆ︁Y ε) possibilities for r′′

3 . Since (n− 1)/(2n− 4) − 1 < −1/3 for n ≥ 6 and the number of
|r′

3| of fixed absolute value is O(|r′
3|1/3), it follows that the sum above is O( ˆ︁Y ε). Therefore,

we have
S ′ ≪ ˆ︁C1

ˆ︁C2|d| ˆ︁V n(1−κ) ˆ︁Y n/2+2+ε. (6.8.20)
Therefore, the contribution to E ′

2 is at most

|P |nˆ︁Y n
ˆ︁Z1−n/2 ˆ︁Θ1

ˆ︁Θ2
∑︂

d

S ′ ≪ |P |n−5/3+ε ˆ︁Y 1−n/2 ˆ︁Z1−n/2 ˆ︁V n(1−κ)

= |P |−5/3+nκ+ε ˆ︁Y 1+n/2−κn ˆ︁Z1+n/2−κn

≪ |P |5n/6−2κn/3+ε,

where we used ˆ︁Θ1
ˆ︁Θ2 ≪ |P |−5/3 ˆ︁Y −2 and (6.8.18) to estimate the sum over d. One can check

that 5n/6 − 2n/(3n − 6) < n − 5 provided n ≥ 26, which completes our treatment of E ′
2

and thus also of E1,a(Y,Θ1,Θ2).
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

Treatment of E1,b(Y,Θ1,Θ2)

We differ our treatment according to the size of Y . When ˆ︁Y ≥ |P |1−η, where η is as in (2)
after (6.4.9), it is more efficient to estimate the sum over v via the same trick that we used to
arrive at (6.8.12), whereas when ˆ︁Y ≤ |P |1−η, we estimate the integral directly. Before doing
so, for W ≥ 1 we focus on the sum

Σ(W ) :=
∑︂

|v−v0|< ˆ︁W
∑︂

|d|≤ˆ︁K
∑︂

|r|=ˆ︁Y
d|r

|Sdc0,r,b,N(v)|,

where ˆ︂K = min{ ˆ︁Y , ˆ︁Y 1/2 ˆ︁T}.

To begin with, let us write r = sr3, where s is the cube-free part of r and r3 is cube-full.
Moreover, we write d = ef1f

2
2d3 into pairwise coprime e, f1, f2, d3 ∈ O, where ef1f2 is

square-free, e is the greatest common divisor of s and the square-free part of d, ef 2
1 f

2
2 | s and

d3 | r3. The multiplicativity of Sdc0,r,b,N(v) together with Proposition 6.6.10 then imply

Sdc0,r,b,N(v) ≪ ˆ︁Y ε|f1f2|1/2|s|(n+3)/2|Sd3c0,r3,b,N ′(tv)|,

for some N ′ | N and t ∈ O with (t, r3) = 1. Moreover, the number of available s is
O( ˆ︁Y |e1f

2
1 f

2
2 r3|−1), so that

S ≪ ˆ︁Y (n+5)/2+ε
∑︂

d

∑︂
v

∑︂
d=ef1f2

2 d2

|e1f1|−1|f2|−1/2 ∑︂
|r3|≤ˆ︁Y
d3|r3

|Sd3c0,r3,b,N ′(tv)|
|r3|(n+5)/2 .

Next we factor r3 into d′
3s1s2 into pairwise coprime d′

3, s1, s2, where d′
3 | d3, (s2, N

′∆F2) = 1
and νϖ(s2) > νϖ(d3), so that s1 | (N ′∆F2)∞. Accordingly we shall also write d3 = d′

3g1g2, so
that gi | si for i = 1, 2. Let u ∈ O and suppose that

u =
∏︂
bi

i, (bi, bj) = 1 if i ̸= j, bi square-free.

We then define the function
m(u) := b3

1b
3
2
∏︂
i≥3

bi+1
i .

Note that since s3 is cube-full and νϖ(s2) > νϖ(g2), we must then have m(g2) | s2. By
Lemma 6.6.1 we then have for some t1, t2 ∈ O with (t1, d′

3s1) = (t2, s2) = 1 and N ′′ | N ′

that
Sd3c0,r3,b,N ′(tv) = Sd′

3g1c0,d′
3s1,b,N ′′(t1v)Sg2c0,s2,0,1(t2v).

Therefore, it follows from Proposition 6.6.10 that

∑︂
|r3|≤ˆ︁Y
d3|r3

|Sd3c0,r3,b,N ′(tv)|
|r3|(n+5)/2 ≪ ˆ︁Y ε

∑︂
d3=d′

3g1g2

∑︂
|s1|≤ ˆ︁Y

|d′
3|

g1|s1

|Sd′
3g1c0,d′

3s1,b,N ′′(t1v)|
|d′

3s1|(n+5)/2

∑︂
|s2|≤ˆ︁Y

m(g2)|s2

|g2||s2|−1

≪ ˆ︁Y ε
∑︂

d3=d′
3g1g2

|g2||m(g2)|−1 ∑︂
|s1|≤ ˆ︁Y

|d′
3|

g1|s1

|Sd′
3g1c0,d′

3s1,b,N ′′(t1v)|
|d′

3s1|(n+5)/2 ,
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where we used that there are at most O(|s2|1/3) available s2 of fixed absolute value, because s2
is cube-full. Next we change the order of summation and make the sum over v the innermost
one. We then use Corollary 6.7.2 to deduce

∑︂
|s1|≤ ˆ︁Y

|d′
3|

g|s1

∑︂
|v−v0|< ˆ︁W

|Sd′
3g1c0,d′

3s1,b,N ′′(t1v)|
|d′

3s1|(n+5)/2 ≪ |d′
3|−1/2|g1|

∑︂
|s1|≤ ˆ︁Y

|d′
3|

g1|s1

|s1|−1
(︂ˆ︂W n + |d′

3s1|n/3
)︂

≪ |d′
3|−1/2ˆ︂W n + |d′

3|−1/2 ˆ︁Y n/3+ε.

From what we have shown so far, it follows that Σ(W ) is bounded from above by
ˆ︁Y (n+5)/2+ε

∑︂
|d|≤ˆ︁K

∑︂
d=e1f1f2

2 d3

∑︂
d3=d′

3g1g2

|e1f1|−1|f2|−1/2|g2||m(g2)|−1|d′
3|−1/2

(︂ˆ︂W + ˆ︁Y n/3
)︂
.

Let now k ∈ Z>0 be such that 1/k < ε and write

d = h′h1h
2
2 · · ·hk

khk+1, (h′, hi) = (hi, hj) = 1, h′ | (N∆F2)∞ for i ̸= j,

where hi is square-free for i = 1, . . . , k and hk+1 is (k+ 1)th-powerful. Recalling the definition
of m(g2) and that d′

3 is cube-full, it is then not hard to see that∑︂
|d|≤ˆ︁K

∑︂
d=e1f1f2

2 d3

∑︂
d3=d′

3g1g2

|e1f1|−1|f2|−1/2|g2||m(g2)|−1|d′
3|−1/2

≤
∑︂

|d|≤ˆ︁K |h1 · · ·hk|−1 ∑︂
d=ef1f2

2 d2

∑︂
d3=d′

3g1g2

1

≪
∑︂

|d|≤ˆ︁K |d|ε|h1 · · ·hk|−1

≪ ˆ︂K1/k+ε.

Therefore, the definition of S and our choice of k implies after redefining ε that

Σ(W ) ≪ ˆ︁Y (n+5)/2+ε
(︂ˆ︂W + ˆ︁Y n/3

)︂
. (6.8.21)

We now apply (6.8.21) to estimate E1,b(Y,Θ1,Θ2) in two different ways according to the size
of Y . Let us begin by assuming that ˆ︁Y ≥ |P |1−η. In this case, we deduce from (6.5.1) and
Lemma 6.5.1 that

E1,b(Y,Θ1,Θ2) ≤ |N |n ˆ︁L−n |P |nˆ︁Y n

∫︂
|θ|=ˆ︁Θ

∫︂
Tn

∑︂
|v−v0|<ˆ︁V ˆ︁Z−1/2

∑︂
|d|≤ˆ︁K

∑︂
|r|=ˆ︁Y

d|r

|Sdc0,r,b,N(v)|dxdθ,

where v0 = −rM t
L(P 3∇F1(x0 + t−Lx) + P 2∇F2(x0 + t−Lx)). We can now use (6.8.21)

with ˆ︂W = ˆ︁V ˆ︁Z−1/2 to deduce that

E1,b(Y,Θ1,Θ2) ≪ |P |n ˆ︁Y 5/2−n/2+ε ˆ︁Θ1
ˆ︁Θ2
(︂ ˆ︁V n ˆ︁Z−n/2 + ˆ︁Y n/3

)︂
= ˆ︁Y 5/2+n/2+ε ˆ︁Θ1

ˆ︁Θ2
ˆ︁Zn/2 + |P |n ˆ︁Y 5/2−n/6+ε ˆ︁Θ1

ˆ︁Θ2

≪ |P |5n/6−5/3 ˆ︁Y 1/2+ε + |P |n−5/3+(1−η)(1/2−n/6+ε).

The first term is O(|P |5n/6−5/6+ε), which is satisfactory as soon as n ≥ 26. Moreover,
n− 5/3 + (1/2 − n/6) < n− 5 if n ≥ 24. In particular, the second term is sufficiently small
provided ε is small.
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6. Complete intersections of cubic and quadratic hypersurfaces over Fq(t)

If ˆ︁Y ≤ |P |1−η we instead estimate the integral IrN
(θ,v) directly via Lemma 6.5.2 to obtain

E1,b(Y,Θ1,Θ2) ≪ |P |nˆ︁Y n

ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z1−n/2−µΣ( ˆ︁V ),

where

µ =

⎧⎨⎩1/2 if |P | ˆ︁Θ1 ≪ ˆ︁Θ2,

0 else.

We can now apply (6.8.21) with ˆ︂W = ˆ︁V to deduce that

E1,b(Y,Θ1,Θ2) ≪ |P |n ˆ︁Y 5/2−n/2+ε ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z1−n/2−µ

(︂ ˆ︁V n + ˆ︁Y n/3
)︂

= ˆ︁Y 5/2+n/2+ε ˆ︁Θ1
ˆ︁Θ2
ˆ︁Z1+n/2−µ + |P |n−5 ˆ︁Y 5/2−n/6+ε ˆ︁Z3−n/2−µ.

The second term is satisfactory by (6.8.10) if n > 15, so we may assume the first one dominates.
Recall that we already dealt with the case when ˆ︁Y ˆ︁Θ1 ≥ |P |−δ, where δ = 8(n−16)/(3n−24),
since we assume (2) after (6.4.9) does not hold. So we may suppose the contrary is true.
There are now two cases: First, we assume that ˆ︁Θ2 ≪ |P | ˆ︁Θ1. In this situation we haveˆ︁Z ≪ |P |3−δ ˆ︁Y −1 and µ = 0, so that

E1,b(Y,Θ1,Θ2) ≪ |P |(3−δ)(1+n/2)+1−2δ ˆ︁Y −1/2+ε.

A rather involved computation or a check with a computer algebra program verifies that
(3 − δ)(1 + n/2) + 1 − 2δ < n− 5 if n ≥ 25, which is satisfactory.
The only case that remains is when |P | ˆ︁Θ1 ≪ ˆ︁Θ2, in which case µ = 1/2 and hence

E1,b(Y,Θ1,Θ2) ≪ |P |5n/6+5/6−5/3 ˆ︁Y ε,

which is satisfactory for n > 25.
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CHAPTER 7
Rational points on del Pezzo surfaces of

low degree over global fields

The content of this chapter is based on the joint work [89] with Hochfilzer.

7.1 Introduction
Recall that if X is a Fano variety over a global field and U ⊂ X(K) is a suitable complement
of a thin set, then as explained in Section 2.3 Manin’s conjecture, predicts and asymptotic
formula of the shape

NU(B) ∼ cB(logB)rk Pic(X)−1,

where NU(B) counts rational points of X lying on U of anti-canonical height at most B.
While Manin’s conjecture for curves is well understood, the case of surfaces is already much
more mysterious. A surface X that is Fano is called a del Pezzo surface and is classified by
the degree d = K2

X , which satisfies 1 ≤ d ≤ 9. Moreover, it is generally believed that for
d ≥ 2 one can take U to be the complement of the exceptional curves in Manin’s conjecture.
If the degree satisfies 6 ≤ d ≤ 9 then any del Pezzo surface is a toric variety. Thanks to work
of Batyrev and Tschinkel [6] for number fields and Bourqui [22, 21] in positive characteristic,
Manin’s conjecture is therefore known for all del Pezzo surfaces of degree 6 ≤ d ≤ 9. If d ≤ 5,
much less is known. One of the notable exceptions is de la Bretèche’s work [25], in which
he proved Manin’s conjecture for split del Pezzo surfaces of degree 5 over Q. Recently, with
a different approach Browning [36] obtained the same result with a better error term. In
addition, de la Bretèche and Fouvry [26] verified Manin’s conjecture for del Pezzo surfaces
of degree 5 over Q that are the blow-up of a pair of points that are defined over Q and a
pair of conjugate points over Q(i). When d = 4, the tour de force [24] of de la Bretèche and
Browning provides us with the only example of a del Pezzo surface of degree 4 over Q for
which we know Manin’s conjecture. These results already reflect the guiding principle that
the arithmetic of del Pezzo surfaces becomes harder to understand the smaller the degree is.
In particular, for 1 ≤ d ≤ 3 we do not know the truth of Manin’s conjecture for any single
example of a del Pezzo surface and in fact, if the ground field is not Q, we do not even know
it for any del Pezzo surface of degree 1 ≤ d ≤ 5.
While an asymptotic formula remains largely elusive for small degrees, even providing upper
bounds remains a substantial challenge in itself. For 2 ≤ d ≤ 5, currently the best upper
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7. Rational points on del Pezzo surfaces of low degree over global fields

bounds are found in work of Salberger [169], in which he showed that NU(B) ≪X B3/
√

d+ε

when the ground field is Q. When X is a cubic surface over Q, he [168] is able to improve
his estimate to NU(B) ≪ B12/7+ε. Again working over Q, it follows from combining work of
Bhargava et al. [12] on pointwise bound for the ranks of elliptic curves with work of Helfgott
and Venkatesh [107] on integral points of elliptic curves that NU(B) ≪X B2.87 when X is a
del Pezzo surface of degree 1. In his thesis, Tschinkel [198] proved that NU(B) ≪ B1+ε for
any split quintic del Pezzo surface over any number field. Moreover, when K = Q and d = 3
Heath Brown [103] succeeded in showing that NU(B) ≪X B3/2+ε and the underlying cubic
forms is diagonal conditional on certain conjectures for Hasse-Weil L-functions associated
to a family of cubic threefolds. The authors [88] showed that the same upper bounds holds
unconditionally over Fq(t) when char(Fq) > 3.

Let us now consider the following conjecture and its consequences for Manin’s conjecture for
del Pezzo surfaces.

Conjecture 7.1.1. Let E be an elliptic curve over a global field K with char(K) ̸= 2, 3 and
CE its conductor. Then

rkE = o(log N(CE)) as N(CE) → ∞,

where N(CE) denotes the norm of CE.

Mestre [144] showed that Conjecture 7.1.1 is implied by the Birch and Swinnerton-Dyer
conjecture. Moreover, 2-descent shows that we always have rkE = O(log N(CE)). In fact,
when char(K) > 3, the conjecture was proven by Brumer [46]. The relevance of this conjecture
is that the pullback of a generic hyperplane under the rational map X → Pd induced by
the anti-canonical divisor is generically a smooth genus 1 curve. Assuming Conjecture 7.1.1,
Heath-Brown [102] obtained uniform upper bounds for the number of rational points of
bounded height on planar elliptic curves and showed that NU(B) ≪X B4/3+ε for any cubic
surface over K = Q. Our first main result extends this to any del Pezzo surface of degree at
most 5 and to any global field whose characteristic exceeds 3 if it is positive.

Theorem 7.1.2. Let X be a del Pezzo surface of degree 1 ≤ d ≤ 5 over a global field K
with char(K) ̸= 2, 3. Then

NU(B) ≪X B1+1/d+ε,

unconditionally when char(K) > 3 and assuming Conjecture 7.1.1 when char(K) = 0.
Moreover, when d = 1 the implied constant is independent of X.

Using an approach based on exponential sums, Bonolis and Browning [18] obtained the
estimate NU(B) ≪ B3−1/20(logB)2 for d = 1 over Q. While this estimate is weaker than
the one obtained by Bhargava et al. [12], it has the advantage that it is uniform with respect
to the underlying surface. The upper bound from Theorem 7.1.2 for d = 1 shares the same
uniformity.

Recall that if there is a dominant K-morphism X → P1 such that all fibers are plane conics,
we say that X admits a conic bundle structure. When a del Pezzo surface comes with such
extra structure, one can use it to get better control over the number of rational points. In
particular, Heath-Brown [101] has shown that NU(B) ≪X B4/3+ε for d = 3 over Q when X
has three coplanar lines defined over Q, which give rise to three inequivalent conic bundle

126



7.1. Introduction

structures. This result was later generalised to number fields by Broberg [27]. Moreover,
Browning and Sofos [32] proved that

B(logB)rk Pic(X)−1 ≪X NU(B) ≪X B(logB)rk Pic(X)−1

when d = 4 for K = Q assuming that X(K) ̸= ∅. Building on ideas of Salberger announced
at the conference “Higher dimensional varieties and rational points” at Budapest in 2001,
work of Browning an Swarbrick-Jones [43] gives NU(B) ≪X B1+ε when d = 4 and K is a
number field. When d = 2 and K = Q, Salberger announced at the conference “Géomètrie
arithmétique et variétés rationnelles” at Luminy in 2007 the result that NU(B) ≪X B11/6+ε

provided X is split. We are now ready to reveal our second main result.

Theorem 7.1.3. Let X be a del Pezzo surface of degree 4 or 5 over a global field K of
characteristic char(K) ̸= 2 with a conic bundle structure. Then NU(B) ≪X B1+ε for an
effectively computable implied constant.

This result is new when d = 4 and char(K) > 0 and new for any global field when d = 5.
We also note that the constants in Theorem 7.1.3 are all effectively computable, which is in
contrast to the result due to Browning and Swarbrick-Jones [43]. This is because we avoid an
application of the Thue–Siegel–Roth theorem, which we note is in general not true in positive
characteristic (cf. [154]).
The results listed so far are by no means exhaustive. In particular, when one considers singular
del Pezzo surfaces, one can even obtain an asymptotic formula when the degree is 2 or 3,
but we restrict to the more difficult case of smooth surfaces in this work. Moreover, in [77]
Frei, Loughran and Sofos studied lower bounds for del Pezzo surfaces with a conic bundle
structure and showed that NU(B) ≫ B(logB)rk Pic(X)−1 for del Pezzo surfaces over number
fields whose rank of the Picard group is sufficiently large with respect to d.

7.1.1 Outline.
The basic idea underlying the proof of Theorem 7.1.2 is simple: a generic hyperplane section
of a del Pezzo surface is a non-singular genus 1 curve and the rank growth hypothesis allows
us to obtain uniform upper bounds for the number of rational points of bounded height on
elliptic curves. In fact, in Section 7.4 we establish the following result.

Proposition 7.1.4. Let E ⊂ Pn be a non-singular genus 1 curve of degree d over a global
field K with char(K) ̸= 2, 3. Assuming that Conjecture 7.1.1 holds when char(K) = 0, we
have

#{x ∈ E(K) : H(x) < B} ≪ Bε,

where the implied constant only depends on d, n, K and ε and H : Pn(K) → R>0 is the
usual height on projective space.

Heath-Brown [102] previously proved Proposition 7.1.4 for plane elliptic curves over Q. However,
his results still had a dependence on the height of the elliptic curve, which we were able to
remove. Proposition 7.1.4 alone is not sufficient to prove Theorem 7.1.2. The hyperplane
sections can also be singular and we need uniform upper bounds for the number of rational
points of bounded height on curves. The determinant method developed by Heath-Brown
[104] has been used by many authors over the last two decades to establish such estimates.
Moreover, the recent work of Paredes and Sasyk [155] extended these results using the global
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determinant method due to Salberger [169] to any global field, which enables us to work
over arbitrary global fields. These results will also prove vital when bounding the number of
degenerate hyperplane sections, which correspond to rational points on the dual variety of X.
When d = 4 or d = 5, even the bounds coming from the determinant method are not strong
enough when the hyperplane section contains an irreducible component of degree d− 1, as
we need an additional saving with respect to the height of the hyperplane. To overcome this
difficulty, we show that such curves are in fact rational and provide upper bounds by exhibiting
a uniform parameterisation of the rational points.
Finally, to prove Theorem 7.1.3, we use uniform upper bounds for rational points on conics of
Browning and Heath-Brown [28], that we transfer to the setting of positive characteristic. For
quintic del Pezzo surface we combine them with techniques from the geometry of numbers
in a similar fashion as Bonolis, Browning and Huang [19]. In particular, in Section 7.3.1 we
prove a result regarding the number of lattice points in a box depending on the successive
minima of the lattice for all global fields, which is likely to be useful for applications outside
the context of this paper.

7.1.2 Conventions
In Sections 7.5 and 7.6 the letter A denotes an arbitrarily large constant, whose value can
change from line to the next. In particular, we may write expressions like B2A ≪ BA, which
has the advantage of avoiding introducing notation like A′, A′′, A′′′, . . . . Finally, we shall use
the notation α ∼ R to indicate that α lies in the dyadic interval (R, 2R].

7.2 Background
7.2.1 Geometry
Throughout this work a variety over a field K is a separated K-scheme of finite type. In this
section K denotes an arbitrary field.

del Pezzo surfaces

In this subsection we review some of the basic geometric properties of del Pezzo surfaces,
which can for example be found in the book by Manin [137]. A del Pezzo surface over a field
K is a smooth, projective and geometrically integral surface over K whose anti-canonical
divisor −KX is ample. Let X = X × Ksep, where Ksep denotes a separable closure of K.
The geometric Picard group Pic(X) is a finitely generated Z-module and since X is smooth,
we can identify Pic(X) with the class group of Weil divisors on X. Therefore, Pic(X) comes
with a symmetric bilinear intersection pairing ( · ) : Pic(X) × Pic(X) → Z. If C ∈ Pic(X),
then by abuse of notation we shall write C2 for C · C. The degree of X is defined to be K2

X

and satisfies 1 ≤ d ≤ 9.

Definition 7.2.1. Let C ⊂ X be an irreducible curve. Then we say that C is exceptional if
C2 = C ·KX = −1.

By the adjunction formula, an exceptional curve has arithmetic genus 0 and hence is K-
isomorphic to P1. There are at most finitely many exceptional curves on a del Pezzo surface
and their precise number is given in Table 7.1. The anti-canonical divisor induces a rational
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map X → Pd, which is in fact a morphism for d ≥ 2. When d ≥ 3 the map is an embedding
and realises X as a non-degenerate surface of degree d in Pd. If C ⊂ X is a geometrically
connected curve of arithmetic genus 0 with C ·KX = −2, we say that C is a conic.

Definition 7.2.2. We say that X admits a conic bundle structure over K if there is a
dominant K-morphism X → P1 all of whose fibers are plane conics.

It follows from Lemma 5.1 in [77] that X admits a conic bundle structure over K if and only
if it contains a conic defined over K. In [77] the authors assume the ground field to be perfect
in their statement; however, an inspection of the proof reveals that this assumption is not
used.

Dual varieties

Let X ⊂ Pn be a variety and denote by ˆ︁Pn the dual projective space parameterising hyperplanes
in Pn. We define the conormal variety of X to be

Z(X) = {(x,H) ∈ Xsm × ˆ︁Pn : TxX ⊂ H},

equipped with the reduced scheme structure, where TxX ⊂ Pn denotes the embedded tangent
space of X at x and Xsm denotes the smooth locus of X. Let ϕ : Z(X) → ˆ︁Pn denote the
projection onto the second factor. Then the image ϕ(Z(X)) ⊂ ˆ︁Pn is a variety, which is called
the dual variety of X and denoted by X∗. We always have the inequality dim(X∗) ≤ n− 1.
We say that X is reflexive if Z(X) = Z(X∗) under the natural identification Pn = ˆ︂ˆ︂Pn.

If X is smooth, then a hyperplane H ∈ ˆ︁Pn has singular intersection with X if and only if
H ∈ X∗, while if X is not smooth and X ∩H is singular, then H ∈ X∗ or H intersects the
singular locus of X.

Our goal of this section is to compute deg(X∗) when X is a del Pezzo surface. To do so,
we need to recall the properties of Chern classes as found in [79]. For a smooth variety X
over K, let CH(X) denote the Chow ring whose kth graded piece Ak is the group of cycles
of codimension k modulo rational equivalence and multiplication is given by the intersection
pairing. Associated to any vector bundle F over X are the Chern classes ci(F) ∈ Ai satisfying

(1) c0(F) = 1,

(2) ci(F) = 0 if i > rk(F),

(3) if F is of rank r, then c1(F) = c1(∧rF).

Moreover, if X is a smooth surface and L is a line bundle on X corresponding to a Weil
divisor D, then deg(c1(L) ∩ E) = D · E for any Weil divisor E of X, where · is the usual
intersection pairing on the class group of Weil divisors.

degree 9 8 7 6 5 4 3 2 1
0 0 or 1 3 6 10 16 27 56 240

Table 7.1: Number of exceptional curves
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Let TX be the tangent bundle on a smooth variety X ⊂ Pn of dimension k. Then we define
the delta invariants of X to be

δi(X) :=
k∑︂

j=i

(−1)k−j

(︄
j + 1
i+ 1

)︄
deg(ck−j(X)),

where ci(X) = ci(TX) and deg(ci(X)) = deg(ci(X) ∩Hk−i) with H the class of a hyperplane
section on X. We then have the following result due to Holme [110, Theorem 3.4].

Proposition 7.2.3. Let X ⊂ Pn be a smooth variety and suppose that r0 is such that
δ0(X) = · · · = δr0−1(X) = 0, but δr0(X) ̸= 0. Then dim(X∗) = n−1−r0 and X is reflexive
if and only if deg(X∗) = δr0(X).

Remark. In fact Holme’s result is even valid for singular varieties. However, in this case the
delta invariants may differ from the definition above.

We now have everything at hand to compute the degree of the dual variety of a del Pezzo
surface.

Proposition 7.2.4. Let X ⊂ Pd be a del Pezzo surface of degree d ≥ 3 embedded anti-
canonically over a field K with char(K) ̸= 2, 3. Then X∗ ⊂ ˆ︁Pd is a hypersurface with
deg(X∗) = 12.

Proof. Let us first compute δ0(X). Since X is embedded anti-canonically, the definition of
δ0(X) gives

δ0(X) = deg(c2(X)) − 2 deg(c1(X) ∩ (−KX)) + 3(−KX)2. (7.2.1)

We have by definition (−KX)2 = d. Moreover, as TX has rank 2, we have c1(X) =
c1(∧2TX) = c1(−KX) and hence deg(c1(X) ∩ (−KX)) = d as well. It thus remains to
compute deg(c2(X)). Let χ(X,OX) be the Euler characteristic of the structure sheaf on X.
By Lemma 3.2.1 of Kollár [124], we have χ(X,OX) = 1. Moreover, Noether’s formula (see
Example 15.2.2 of Fulton [79]) gives

χ(X,OX) = ((−KX)2 + deg(c2(X))/12,

which implies deg(c2(X)) = 12 − d. Once combined with (7.2.1), we obtain δ0(X) = 12.

In the light of Proposition 7.2.3 it thus remains to show that X is reflexive. To do so, we
make use of the Monge–Segre–Wallace criterion in the form given by Kleiman [122, (4)
Theorem], which asserts that X is reflexive if and only if the map ϕ : Z(X) → X∗ is separable.
The map ϕ is known to be finite and by definition its degree deg(ϕ) is the degree of the
induced extension of function fields K(X∗)/K(Z(X)). By the last equation on page 152 of
Holme [110], we have deg(ϕ) deg(X∗) = δ0(X). In particular, deg(ϕ) | 12. As we assume
that char(K) ̸= 2, 3, this automatically implies that K(X∗)/K(Z(X)) is separable and hence
X is reflexive by the Monge–Segre–Wallace criterion.

Remark. At least the condition char(K) ̸= 2 is necessary in the last proposition. Indeed,
it follows for example from Lemma 4.1 of the authors’ work [88] that if K = Fq(t)sep with
char(Fq) = 2, then the dual variety of the Fermat cubic surface is again a Fermat cubic
surface.
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7.2.2 Algebraic number theory
We call K a global field if it is a finite extension of Q or the function field of a curve over
a finite field. When K is a function field of positive characteristic p, suppose Fq is the field
of constants of K. We can then always find an element t ∈ K that is transcendental over
Fq and such that K/Fq(t) is separable. Note that the choice of t is not unique, but this is
irrelevant to us. We shall then write k = Fq(t) and if K is a number field, we write k = Q
and in either case define dK = [K : k].
The ring of integers OK of K is by definition the integral closure of Z and Fq[t] respectively. By
definition, a non-archimedean place p of K is a discrete valuation ring O(p) ⊂ K with field of
fractions K with the additional constraint Fq ⊂ O(p) when char(K) > 0. A non-archimedean
place corresponds to an embedding K → C and only exists in characteristic 0. We then define
ΩK,∞ to be the set of places lying above the infinite place t−1 in Fq(t) when char(K) > 0
and to be the set of archimedean places when char(K) = 0. In either case ΩK denotes the
set of all places of K and ΩK,f = ΩK \ ΩK,∞ the set of finite places. In addition, we let sK

be the cardinality of ΩK,∞.
If ν is a place of K and µ the corresponding place of k lying below it, we let Kν and kµ be
the completions of K and k with respect to ν and µ respectively and define the local degree
dν := [Kν : kµ]. If ν is non-archimedean, we let Oν ⊂ Kν be the ring of integers and mν its
maximal ideal. For any place ν, we define an absolute value on K via

|x|ν :=

⎧⎨⎩|x|dν
∞ if ν is archimedean,

#(Oν/mν)−vν(x) if ν is non-archimedean,

where | · |∞ denotes the usual absolute value on C and vν the normalised valuation on K
induced by ν. Via the embedding K → Kν corresponding to the place ν this gives rise to an
absolute value on K.
Remark. Note that if ν is a complex place, then strictly speaking | · |ν is not an absolute
value in the usual sense, as it does not satisfy the triangle inequality. However, it still satisfies
|x+ y|ν ≤ 4 max{|x|ν , |y|ν}.

When p is a prime ideal of OK , we define its norm to be N(p) := #(OK/p) and extend
it multiplicatively to all fractional ideals of OK . If α1, . . . , αm ∈ K, we let ⟨α1, . . . , αm⟩
be the fractional ideal generated by α1, . . . , αm. By abuse of notation, we shall then write
N(α1, . . . , αm) instead of N(⟨α1, . . . , αm⟩). Similarly, if ν is a non-archimedean place we also
write N(·) for the ideal norm on Oν . When K is a function field, a divisor is by definition a
formal sum a = ∑︁

ν∈ΩK
eνν, where eν ∈ Z is non-zero for at most finitely many ν. We then

define deg(a) = ∑︁
eν deg(ν), where deg(ν) = [(Oν/mν) : Fq] is the degree of the residue field

extension. We shall then also write N(a) = qdeg(a) and refer to it as the norm of a.
Further, given Kν there exists a standard additive character ψν : Kν → C× as defined in [161,
Chapter 7]. In particular, these have the property that when ν is a finite place then Oν ⊂ Kν is
the maximal subgroup on which ψν acts trivially. As a result we obtain the following character
orthogonality relation. The proof is standard, so we omit it here.

Lemma 7.2.5. Let ν be a finite place of K, let π be a uniformizer of Kν and let r ≥ 1 be
an integer. If a ∈ Oν we have

1
N(π)r

∑︂
x∈Oν/(πr)

ψν

(︃
ax

πr

)︃
=

⎧⎨⎩1 if a ∈ (π)r,
0 otherwise.

131



7. Rational points on del Pezzo surfaces of low degree over global fields

7.2.3 Height functions
We can construct an exponential height on Pn(K) via

H(x) =
∏︂

ν∈ΩK

max
0≤i≤n

|xi|ν

whenever x = [x0, . . . , xn] ∈ Pn(K). Note that our normalisation of the absolute values implies
that the product formula ∏︁ν∈ΩK

|x|ν = 1 holds for any x ∈ K, so that the height on Pn(K)
is indeed well defined. Observe that if x = [x0, . . . , xn] ∈ Pn(K) with (x0, . . . , xn) ∈ On+1

K ,
then

H(x) = 1
N(x0, . . . , xn)

∏︂
ν∈ΩK,∞

max
0≤i≤n

|xi|ν .

In addition, for x ∈ On+1
K we define the norms

∥x∥ := max
0≤i≤n

max
ν|∞

|xi|ν and ∥x∥∞ :=
∏︂
ν|∞

max
0≤i≤n

|xi|ν .

Given R = (Rν)ν|∞ ∈ RsK
>0 we define |R| = ∏︁

ν|∞ Rν and
L(R) = {x ∈ OK : |x|ν ≤ Rν for all ν | ∞}.

The following results are all standard over number fields and should be well known over
function fields. Due to a lack of statements in the literature, we provide full proofs in the case
of function fields.

Lemma 7.2.6. Let R = (Rν)ν|∞ ∈ RsK
>0 and let a ⊂ OK be an integral ideal. We have

|R|N(a)−1 ≪K #(L(R) ∩ a) ≪K max{1, |R|N(a)−1}.

Proof. If K is a number field, this is Theorem 0 in Chapter V§1 of Lang [128]. We may
therefore assume that K is a function field. Without loss of generality, we may assume that
Rν = qrν for some rν ∈ Z, where qrν ∈ |Kν |ν . In particular, we may choose elements aν ∈ Kν

such that |aν |ν = Rν for all ν | ∞. The condition x ∈ (L(R) ∩ a) is then equivalent to
vν(x) ≥ −vν(aν) for all ν | ∞ and vp(x) ≥ vp(a) for all p | a. (7.2.2)

Let C be the smooth projective curve associated to the function field K and let g be its genus.
We then define the divisor D ∈ Pic(C) to be D = ∑︁

ν|∞ vν(aν)ν −∑︁
p∤∞ vp(a)p. For x ∈ K,

denote by (x) = ∑︁
ν vν(x)ν the associated divisor inside Pic(C) and define the Riemann–Roch

space
L(D) = {x ∈ K∗ : (x) +D ≥ 0} ∪ {0},

where the notation (x) + D ≥ 0 means that the divisor is effective. It is then clear from
(7.2.2) that L(D) = L(R) ∩ a. The Riemann-Roch space defines an Fq-vector space and we
denote its dimension by ℓ(D).
Let deg : Pic(C) → Z be the degree map, which for the divisor D defined above satisfies
deg(D) = ∑︁

ν|∞ logq(Rν) − logq(N(a)). If deg(D) ≤ 2g − 2, then as the degree map has
finite fibers whose cardinality is given by the class number of K and L(D) only depends on
the class of D in Pic(C), there are only O(1) possibilities for ℓ(D). We may therefore assume
that deg(D) > 2g − 2 from now on. In this case the Riemann-Roch Theorem in the form
given by Rosen [164, Corollary 4] tells us that ℓ(D) = deg(D) − g + 1, so that

#(L(R) ∩ a) = qℓ(D) = q1−g|R|N(a)−1,

which completes the proof.
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Fix a1, . . . , ah ⊂ OK to be a full set of representatives in the class group of K once and for
all. Whenever we indicate that an implied constant depends on K, then it is implicitly allowed
to also depend on our choice of the ideal class group representatives.

Unless K is a principal ideal domain one cannot longer ensure that an element in Pn(K) has
a representative in On+1

K such that the coordinate entries generate OK . Instead in this more
general setting the set of primitive vectors is replaced by the set

Z ′
n :=

{︂
x ∈ On+1

K \ {0} : (x0, . . . , xn) = ai for some i = 1, . . . , h
}︂
.

Note that if x ∈ Z ′
n is a representative for an element x ∈ Pn(K) then we have H(x) ≍ ∥x∥∞.

Since ∥u∥∞ = 1 for any unit u ∈ OK the set {x ∈ Z ′
n : ∥x∥∞ ≤ B} is potentially infinite.

Lemma 7.2.7. Let λν ∈ R>0 be given for ν | ∞. Then there exists a unit u ∈ O×
K and t ∈ R

such that
λν ≍K

|u|ν
t
.

Proof. If K is a number field, this is proved in the Lemma on p. 187 of [182], so that we may
assume that K is a function field from now on. Upon defining λ′

ν = logq λν , the statement of
the lemma is equivalent to

|λ′
ν + logq(t) − logq(u)| ≤ C,

for some fixed constant C = C(K) > 0. If we define

ϕ : O×
K → RsK , u ↦→ (logq |u|ν)ν|∞,

then Γ = ϕ(O×
K) ⊕ 1Z is a lattice of rank sK , where 1 = (1, . . . , , 1). Thus the quotient

RsK/Γ is compact and we can find a unit u ∈ O×
K and t′ ∈ Z such that

|λ′
ν + t′ − logq(u)| ≤ C,

where C only depends on K. The statement now follows upon setting t = qt′ .

Lemma 7.2.8. There exist constants c1, c2 > 0 depending on K such that every member of
Pn(K) has a representative x ∈ Z ′

n such that c1∥x∥ ≤ ∥x∥1/sK

∞ ≤ c2∥x∥.

Proof. Let y ∈ Pn(K) and suppose x′ = (x′
0, . . . , x

′
n) ∈ Z ′

n is a representative for y. Define
λν = max{|x′

0|ν , . . . , |x′
n|ν}. Then by Lemma 7.2.7 we can find a unit u ∈ O×

K and t ∈ R
such that λν ≍K |u|ν/t for all ν | ∞. Taking the product over all infinite places, we deduce
that

1 ≍
∏︂
ν|∞

tmax{|x′
0|ν , . . . , |x′

n|ν} = tsK ∥x′∥∞,

which implies that t−1 ≍ ∥x′∥1/sK

∞ . Moreover, if we define x = u−1x′, then we have

max{|x0|ν , . . . , |xn|ν} ≍ t−1 ≍ ∥x∥1/sK

∞ ,

since ∥x∥∞ = ∥x′∥∞. As x is also a representative for y in Pn(K), the result follows.
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Let c1, c2 be the constants from Lemma 7.2.8. We then define

Zn := {x ∈ Z ′
n : c1∥x∥ ≤ ∥x∥1/sK

∞ ≤ c2∥x∥},

so that in particular every element in Pn(K) has a representative in Zn.
For x ∈ K, we define the affine height

h(x) := H(1, x).

Lemma 7.2.9. Let K be a global field. Then

{u ∈ O×
K : h(u) ≤ B} ≪dK

(logB)sK .

Proof. If K is a number field this is proved by Broberg [27, Proposition 4] and so we may
assume that K is a function field. Let Fq be the field of constants of K. If we define

ϕ : O×
K → ZsK , u ↦→ (logq |u|ν)ν|∞,

then ϕ(O×
K) is a lattice of rank sK − 1 inside ZsK and ϕ is a group homorphism with kernel

F×
q . Note that for any u ∈ O×

K we have h(u) = h(u−1), so that if h(u) ≤ B holds, then we
must have maxν|∞ | logq |u|ν | ≤ logq B. It follows that the number of units in question is
O((logB)sK ) as desired.

Lemma 7.2.10. Let L/K be an extension of degree d and let y ∈ OK \ {0}. Then

#{(y1, y2) ∈ O2
L : y1y2 = y and |yi|ν ≤ R for all ν ∈ ΩK,∞, i = 1, 2} ≪d,K (RN(y))ε,

where | · |ν is extended uniquely to L.

Proof. Note that by the usual divisor bound, there are O(N(y)ε) ideals in OK that divide (y).
Moreover, if p is a prime ideal of OK and we have a factorisation p = pe1

1 · · · pe1
r into prime

ideals of OL, then we must have ∑︁r
i=1 ei ≤ d. It follows that there O(N(y)εOd(1)) = Od(N(y)ε)

divisors of the ideal (y) in OL.
Now suppose that yi and zi generate the same ideal and y1y2 = z1z2. This implies that
z1 = uy1 and z2 = u−1y2 for some unit u ∈ OL. Thus if |zi|ν ≤ R, we have |u|ν ≤ R/|yi|ν
for i = 1, 2. Moreover, if ω is a place of L lying above ν, then |u|ω = |u|dω

ν , where dω is the
degree of the extension Kω/Kν . In particular,

h(u) =
∏︂

ω∈ΩL,∞

max{1, |u|ω} ≪
∏︂

ω∈ΩL,∞

Rdω |yi|−1
ω ≪ RdNL(yi)−1 ≤ Rd.

If char(K) > 0 and Fq is the field of constants of K, then the field of constants of L is an
extension of Fq of degree at most d. Therefore, sL ≤ dsK and Lemma 7.2.9 implies that
there are Od((logR)dsK ) = Od(Rε) available u, which completes the proof.

Suppose we are given a morphism ϕ : Pn → Pm of the form ϕ(x) = (ϕ0(x), . . . , ϕm(x)) where
ϕ0, . . . , ϕm ∈ OK [x0, . . . , xn] are homogeneous forms of degree e without a common zero in
K. Then functoriality of heights implies that

H(ϕ(x)) ≍ H(x)e,
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where the implied constant depends on n,m,K and ϕ.

Given f ∈ K[x1, . . . , xn] we define ∥f∥ = ∥f∥, where f is the coefficient vector of f . Similarly,
we can extend it to vectors F = (f1, . . . , fr) ∈ K[x1, . . . , xn]r by setting ∥F∥ = max ∥fi∥.
We require a version of the functoriality of heights for morphisms P1 → Pn with an explicit
dependence on the height of the morphism.

Lemma 7.2.11. Let ψ : P1 → Pn be a morphism over K given by

ψ([u, v]) = [ψ0(u, v), . . . , ψn(u, v)],

where ψi ∈ OK [u, v] is homogeneous of degree d for i = 0, . . . , n and the ψi do not share a
common non-constant factor. Then

∥ψ∥−BH([u, v])d ≪K,n,d H(ψ([u, v])) ≪K,n,d ∥ψ∥BH([u, v])d,

where the implied constants and B only depend on K,n and d.

Proof. The upper bound is easy: for any (u, v) ∈ Z1, the triangle inequality implies

H(ψ([u, v])) = N(ψ(u, v))−1 ∏︂
ν|∞

max{|ψi(u, v)|ν} ≪
∏︂
ν|∞

max{|ψij|ν} max{|u|ν , |v|ν}d,

from which the claim follows.

For the lower bound, a repeated application of the Euclidean algorithm gives

Cue =
n∑︂

i=0
fiψi(u, v) and Cve =

n∑︂
i=0

f ′
iψi(u, v)

for some homogeneous forms fi, f
′
i ∈ OK [u, v] of degree e − d and C ∈ OK . Moreover,

an inspection of the algorithm reveals that e only depends on n; that the fi and f ′
i can be

taken to satisfy ∥fi∥, ∥f ′
i∥ = O(∥ψ∥B) and ∥C∥ = O(∥ψ∥B′

) for some absolute constants
B,B′ > 0. It follows that if a | (ψ(u, v)) for (u, v) ∈ Z1, then a | (C)(a1 · · · ah)e, where
a1, . . . , ah are a set of representatives for CLK . Therefore, for any ν | ∞,

|C|ν max{|u|eν , |v|eν} = max
{︂⃓⃓⃓∑︂

fiψ(u, v)
⃓⃓⃓
ν
,
⃓⃓⃓∑︂

f ′
iψi(u, v)

⃓⃓⃓
ν

}︂
≪ ∥ψ∥B max{|u|e−d

ν , |v|e−d
ν } max{|ψi(u, v)|},

which implies

H(ψ(u, v)) = N(ψ(u, v))−1 ∏︂
ν|∞

max{|ψi(u, v)|ν}

≫ N(C)−1∥ψ∥−BH([u, v])d

≫ ∥ψ∥−B′′
H([u, v])d

for some constant B′′ > 0.
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7.2.4 Rational points on varieties
For c ∈ Pn(K), we shall write Hc ⊂ Pn for the hyperplane defined by c · x = 0. We then
have the following result, which follows for number fields from work of Bombieri and Vaaler
[17] and for function fields from work of Thunder [194].

Lemma 7.2.12 (Siegel’s Lemma). Let K be a global field and x ∈ Pn(K) with H(x) ≤ R.
Then there exists c ∈ Pn(K) with H(c) ≪n,k R

1/n and x ∈ Hc.

The next result [155, Theorem 1.8] will be helpful when dealing with singular hyperplane
sections.

Lemma 7.2.13. Let C ⊂ Pn be an irreducible curve of degree e ≥ 1. Then

#{x ∈ C(K) : H(x) ≤ B} ≪e,n,K B2/e.

We will need strong upper bounds for the number of rational points on irreducible varieties
of large degree to control the number of degenerate hyperplane sections. Let X ⊂ Pn be an
irreducible variety of degree d. Then the estimate

#{x ∈ X(K) : Pn(K)} ≪d,n,K Bdim(X)+1 (7.2.3)

is proved via a simple inductive process of taking hyperplane sections, see for example
Lemma 5.6 of [35] for the case K = Q. We omit a proof here. Using the determinant method,
one can do significantly better. The principal input is the following result [155, Theorem 1.11]
building on work of Salberger [169] and Heath-Brown [104], that demonstrates the truth of
the dimension growth conjecture for all global fields.

Proposition 7.2.14. Let X ⊂ Pn be an integral variety of degree d ≥ 5. Then

#{x ∈ X(K) : H(x) ≤ B} ≪d,n,K Bdim(X).

We shall also make us of the following result about representations by binary quadratic forms.

Lemma 7.2.15. Let Q ∈ OK [s, t] be a binary quadratic form without repeated roots and let
R ∈ RsK

>1. If char(K) ̸= 2, then for any γ ∈ OK we have

rQ(γ,R) := #{(s, t) ∈ O2
K : |(s, t)|ν ≤ Rv for all ν | ∞, Q(s, t) = γ} ≪K (|R|∥Q∥N(γ))ε.

Proof. As char(K) ̸= 2, we can always find P ∈ GL2(K) such that Q(P (s, t)) is diago-
nal. Moreover, it is clear that P can be chosen in such a way that its entries pij satisfy
∥pij∥ ≪ ∥Q∥B. Setting (x, y) = P (s, t), the equation then becomes ax2 + by2 = γ, where
∥(a, b)∥ ≪ ∥Q∥2 and |(x, y)|ν ≪ ∥Q∥BRν for all ν | ∞. Multiplying both sides by a suitable
element in OK , we may assume that a is a square in OK and a, b ∈ OK , so that after applying
another change of variables, it transpires that

rQ(k,R) ≤ #{(x, y) ∈ O2
K : |(x, y)|ν ≪ ∥Q∥BRν , x

2 + dy2 = γ′},

where ∥d∥ ≪ ∥Q∥B and |γ′|ν ≪ ∥Q∥B|γ|ν for all ν | ∞. Let L = K(
√
d) and note that in

L we have the factorisation of integral ideals

(x−
√
dy)(x+

√
dy) = (γ′).
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Let z1 = x−
√
dy and z2 = x+

√
dy. Since Q is square-free, the assignment (x, y) ↦→ (z1, z2)

is injective. Moreover, if we also denote by | · |ν the extension of | · |ν to L, then we have

|zi|ν ≪ |
√
d|ν max{|x|ν , |y|ν} ≪ ∥Q∥BRν ≤ ∥Q∥B|R|

for i = 1, 2. Therefore, Lemma 7.2.10 implies that the number of available (z1, z2) ∈ OL is
O((∥Q∥B|R|N(γ′))ε) = O((∥Q∥|R|N(γ))ε)) as desired.

Corollary 7.2.16. Let Q ∈ OK [s, t] be a square-free binary quadratic form. Suppose we are
given R ∈ RsK

>1 and S > 0. If a ⊂ OK is an ideal, then

#{(s, t) ∈ Z1 : |(s, t)|ν ≤ Rν , ∥Q(s, t)∥∞ ≤ S,Q(s, t) ∈ a} ≪K max
{︄

1, |S|
N(a)

}︄
(|R|S∥Q∥)ε.

Proof. There are O(1) possible (s, t) ∈ Z1 for which Q(s, t) = 0, and so it suffices to bound
the contribution from those with Q(s, t) ̸= 0. Fix a place ω | ∞ of K and let us split |Q(s, t)|ν
into dyadic intervals for ν ̸= ω, say |Q(s, t)|ν ∼ wν . The quantity we want to estimate is then
at most∑︂

wν

#
{︃

(s, t) ∈ O2
K : |(s, t)| ≤ Rν , Q(s, t) ∈ a, |Q(s, t)|ω ≪ S

∏︂
ν|∞
ν ̸=ω

w−1
ν , |Q(s, t)|ν ≤ wν

}︃
.

In the notation of Lemma 7.2.15, each term in the sum is at most∑︂
γ∈a

rQ(γ,R) ≪
∑︂
γ∈a

(∥Q∥N(γ)|R|)ε

≪ (∥Q∥S|R|)ε max
{︄

1, S

N(a)

}︄

where the sum over γ runs over all γ ∈ a such that |γ|ν ≤ wν for ν ̸= ω and |γ|ω ≪ S
∏︁
w−1

ν

and we successively applied Lemmas 7.2.15 and 7.2.6. We clearly have |Q(s, t)|ν ≪ ∥Q∥R2
ν and

hence also |Q(s, t)|ν ≫ ∥Q∥−sK−1|R|−2(sK+1), so that there are O((∥Q∥|R|)ε) possibilities
for wν , which gives the result.

We also need the following easy generalisation of a result due to Broberg [27, Lemma 9].

Lemma 7.2.17. Let G ∈ K[x1, . . . , xn] be a polynomial of degree d and R, S ≥ 1. Then

M(G,R, S) := #{x ∈ On
K : ∥x∥ ≤ R1/sK ,N(G(x)) ≤ S} ≪G Rn−1+εS1/d.

Proof. We first give a proof for the case n = 1, so that G ∈ K[x]. Upon dividing through by
the leading coefficient, we may assume that G is monic. Over an algebraic closure K of K
we then have the factorisation

G(x) =
d∏︂

i=1
(x− ai),

for some ai ∈ K. As L = K(a1, . . . , an) is a finite degree extension of K, every place
ν ∈ ΩK,∞ extends uniquely to L and by abuse of notation we shall also denote it by ν. We
then have

N(G(x)) =
d∏︂

i=1

∏︂
ν|∞

|x− ai|ν .
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In particular, if N(G(x)) ≤ S, then we must have∏︂
ν|∞

|x− ai|ν ≤ S1/d

for some 1 ≤ i ≤ d. Note that ∥G∥ +R1/sK−d ≪ |x− ai|ν ≪ ∥G∥ +R1/sK , where the upper
bound follows from |x|ν ≤ R1/sK and the lower bound is a consequence of the upper bound
and 1 ≤ N(G(x)). Let us now fix a place ω | ∞ of K and put |x− ai|ν into dyadic intervals
for ν ̸= ω. We thus have that M(G,R, S) is bounded above by

d∑︂
i=1

∑︂
wν

#
{︃
x ∈ OK : |x|ν ≤ R1/sK , |x− ai|ω ≪ S1/d

∏︂
ν ̸=ω

w−1
ν , |x− ai|ν ≤ wν for all ν ̸= ω

}︃
,

where the sum over wν is over all tuples of dyadic powers (wν)ν ̸=ω such that |wν | ≪ (R+∥G∥)
and 1 ≤ ∏︁

ν wν ≤ S1/d. If x, x′ ∈ OK satisfy |x − ai|ν ≤ wν and |x′ − ai|ν ≤ wν , then
|x− x′|ν ≪ wν . From Lemma 7.2.6 we thus obtain

M(G,R, S) ≪
∑︂
wν

S1/d ≪ (R∥G∥)εS1/d,

which is satisfactory.
Next we assume that n > 1. For a = (a2, . . . , an) ∈ On−1

K , define x′ = (x1, x2+a2x1, . . . , xn+
anx1). Let Gd be the homogeneous degree d part of G. We now claim that we can take a ∈
On−1

K such that degx′
1
(G(x′)) = d. Indeed, the assertion is equivalent to Gd(1, a2, . . . , an) ̸= 0

and since Gd is not the zero polynomial, we can always find such an a with ∥a∥ ≪ 1. The
new variables x′ now satisfy |x′|ν ≪ R1/sK , where the implied constant depends on a. Once
x′

2, . . . , x
′
n are fixed, then by construction g(x′

1) = G(x′
1, . . . , x

′
n) is a degree d polynomial

and since ∥x′
i∥ ≪ R1/sK for i = 2, . . . , n, we have ∥g∥ ≪ Rd/sK . In particular, from the case

n = 1 and Lemma 7.2.6, it follows that

M(G,R, S) ≪
∑︂

x′
2,...,x′

n∈OK

|x′
i|ν≪R1/sK

#{x′
1 ∈ OK : N(g(x′

1)) ≤ S, |x′
1|ν ≪ R1/sK } ≪ Rn−1+εS1/d.

For separable binary forms we can prove a stronger result, which we will require.

Lemma 7.2.18. Let f ∈ K[s, t] be a separable binary form of degree d and let R, S ≥ 1.
Then we have

M(f,R, S) = # {(s, t) ∈ Z1 : ∥(s, t)∥∞ ≍ R, N(f(s, t)) ≤ S} ≪f R
1+ε

(︃
1 + S

Rd−1

)︃

Proof. First note that there are O(1) many solutions in Z1 to f(s, t) = 0. For the remainder
we will therefore proceed to only count the contribution such that f(s, t) ̸= 0. After rescaling
f by a constant we may assume that it is of the form

f =
d∏︂

i=1
(s− ait),

where ai ∈ K. Since K(a1, . . . , ad) is a finite algebraic extension of K we may extend each
place ν | ∞. By an abuse of notation we will denote the extended place by ν. The elements
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ai are pairwise different since f was assumed to be separable. Therefore, if we take a constant
c > 0 sufficiently small in terms of the polynomial f , then given ν | ∞ there is at most one
index iν ∈ {1, . . . , d} such that

|s− aiν t|ν < cmax{|s|ν , |t|ν}.

Therefore we have

N(f(s, t)) =
∏︂
ν|∞

d∏︂
i=1

|s− ait|ν ≍ Rd−1 ∏︂
ν|∞

|s− aiν t|ν .

Fix a place ω | ∞ and divide the absolute values |s− aiν t|ν for ν ̸= ω into dyadic intervals
(γν , 2γν ], say. Then since N(f(s, t)) ≤ S we have that

|s− aiωt|ω ≪ S

Rd−1

∏︂
ν ̸=ω

γ−1
ν .

For fixed t these restrictions imply that there are at most O(1 + S/Rd−1) many s available.
Since ∥t∥ ≪ R, from Lemma 7.2.6 we see that each such dyadic decomposition contributes at
most O(R(1+S/Rd−1)). Clearly we must only consider dyadic intervals such that γν ≪ R1/sK .
Since N(f(s, t)) ≥ 1 whenever (s, t) ∈ O2

K is not a zero of f we have that

γν ≫ R−d−sK .

It follows that there are O(Rε) relevant dyadic intervals to consider, which completes the
proof of the lemma.

7.3 Geometry of numbers and rational points on conics
In this section we will first recall basic properties of OK-lattices and establish analogues of
classical results from the geometry of numbers. In the second part of this section, we use
them to obtain uniform upper bounds for the number of rational points on conics.

7.3.1 Lattices
Let R be a Dedekind domain with field of fractions K. We call a finitely generated torsion-free
module Λ an R-lattice and denote the corresponding vector space KΛ by V . The dimension
of V is called the rank of Λ. Suppose that Λ′ ⊂ V is another R-lattice of the same rank r as
Λ. By the invariant factor theorem [162, Theorem 4.14], there exist elements e1, . . . , er ∈ Λ
and unique fractional ideals b1, . . . , br, c1, . . . , cr ⊂ K such that c1 ⊂ · · · ⊂ cr and

Λ =
r⨁︂

i=1
biei and Λ′ =

r⨁︂
i=1

cibiei.

Moreover, Λ′ ⊂ Λ if and only if ci ⊂ R for i = 1, . . . , r. We then define the index
ideal of Λ′ in Λ to be the fractional ideal (Λ: Λ′) = c1 · · · cr. Note that if Λ′ ⊂ Λ, then
N((Λ: Λ′)) = [Λ: Λ′], where the right hand side denotes the ordinary index of abelian groups.
In addition, if a ∈ (Λ: Λ′), then we have Λ ⊂ a−1Λ′.
Let us now specialise to the case where R = OK is the ring of integers of a global field.
Suppose we are given an OK-lattice Λ. We can then form the Op-lattice Λp := Λ ⊗ Op
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for any finite prime p. If Λ′ ⊂ V is another lattice of full rank, then we have Λp = Λ′
p for

almost all p and so it is clear that we have (Λ: Λ′) = ⋂︁(Λp : Λ′
p), where the intersection takes

place in OK . If we are given sublattices Lp ⊂ Vp = KpV for all finite primes p such that
Lp = Λp for all but finitely many p, then Λ′ := ⋂︁

Lp defines an OK-lattice in V such that
Λ′

p = Lp for all p. It follows from the local description of the index ideal that if A ∈ GL(V ),
we have (Λ: AΛ′) = (det(A))(Λ: Λ′). For details we refer the reader to Sections 4 and 5 of
Reiner [162].
If V = Kn and Λ ⊂ V is an OK-lattice of rank n, then the determinant det(Λ) is defined to
be N((On

K : Λ)). For ν | ∞ let Sν be an open, symmetric, convex and bounded subset of Kn
ν

such that for all complex places ν we have Sν = αSν whenever α ∈ kν and |α|ν = 1. We
shall consider

S =
∏︂
ν|∞

Sν .

We may realize Λ via the diagonal embedding inside ∏︁ν|∞ Kn
ν . Let k∞ be the completion of k

at the infinite place and | · |∞ be the associated absolute value on k∞. That is, if k = Q then
k∞ = R and | · |∞ is the usual absolute value, whereas if k = Fq(t), then k∞ = Fq((t−1)) and
| · |∞ corresponds to the absolute value induced by the degree on the Fq(t). We define the
i-th successive minimum of Λ with respect to S to be

λi,S := inf{|λ|∞ : λ ∈ k∞ and Λ ∩ λS contains i linearly independent vectors}.

It is clear that we have
λ1,S ≤ λ2,S ≤ · · · ≤ λn,S.

Frequently we shall take

Sν = {x ∈ Kn
ν : |xi|ν < 1 for i = 1, . . . , n}, (7.3.1)

in which case we will denote the successive minima with respect to S simply by λi. Recall that
Kν is a locally compact abelian group, so that in particular it can be endowed with a Haar
measure dxν that we normalise in such a way that dxν is the usual Lebesgue measure when ν
is real, 2 times the Lebesgue measure when ν is complex and ∫︁Oν

dxν = |Dν |1/2
ν , where Dν is

the local different of the non-archimidean place ν. We can extend the Haar measure to Kn
ν

by dxν = dx1,ν · · · dxn,ν . If Sν ⊂ Kn
ν is measurable, we shall write vol(Sν) =

∫︁
Sν

dxν . We
have the following version of Minkwoski’s second theorem over global fields.

Lemma 7.3.1. Let Λ and S be as above and let λ1,S ≤ · · · ≤ λn,S the successive minima of
Λ with respect to S. Then we have

det(Λ) ≍K,n

∏︂
ν|∞

vol(Sν)(λ1,S · · ·λn,S)dK .

This was proven independently by Bombieri–Vaaler [17, Theorems 3 and 6] and McFeat [142]
for number fields and by McFeat [142] in the case of function fields. The formulation in the
respective works looks slightly different, but one can arrive at our presentation of the result by
the same considerations as in the proof of the Corollary to Lemma 5 by Broberg [27]. We
remark that if we choose Sν as in (7.3.1) then Lemma 7.3.1 states

det(Λ) ≍ (λ1 · · ·λn)dK . (7.3.2)

Note that if λ ∈ k∞, then |λ|∞ = |λ|dν
ν , where dν is the degree of the extension Kν/k∞.

Therefore, by the discreteness of Λ and the definition of the successive minima, (7.3.2) implies
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that Λ contains an element x with |x|ν ≤ λdν
1 with equality for at least one ν | ∞, so that in

particular
∥x∥∞ =

∏︂
ν|∞

|x|ν ≤
∏︂
ν|∞

λdν
1 = λdK

1 ≪ det(Λ)1/n.

A useful consequence of this is the following. Let a ⊂ OK be an ideal. Then a is clearly an
OK-module with det(a) = N(a) and by (7.3.2) it contains an element x ∈ OK such that
N(x) = ∥x∥∞ ≪ N(a). Moreover, because (x) ⊂ a, we also have N(a) ≤ N(x), so that in
fact N(a) ≍ N(x). We will make frequent use of this fact without further comment.
For the following lemma, we need to introduce some notation. For any place ν | ∞, we let
Pν denote the maximal compact subgroup of GLn(Kν). When Kν = R, this is just On(R),
when Kν = C this is Un(C), while for non-archimedean places it is GLn(Oν), where Oν is
the ring of integers of Kν . By the Iwasawa decomposition, as presented by Weil [207, Chapter
II, §2, Theorem 1], for any matrix M ∈ GLn(Kν), there exists a matrix Aν ∈ Pν such that
AνM is upper triangular. Moreover, we have |Aνx|ν ≍ |x|ν for any x ∈ Kn

ν and Aν ∈ Pν .

Lemma 7.3.2. Let Λ ⊂ Kn be a lattice with successive minima λ1 ≤ · · · ≤ λn. Then there
exists a free OK lattice Λ′ ⊂ Kn with basis b1, . . . , bn such that

(i) Λ ⊂ Λ′,

(ii) det(Λ) ≍K,n det(Λ′),

(iii) there exist matrices Aν ∈ Pν such that Aνbi = (b(1)
1,ν , . . . , b

(i)
i,ν , 0, . . . , 0) satisfying

|b(i)
i,ν |ν ≍K,n λ

dν
i for all 1 ≤ i ≤ n and ν | ∞,

(iv) if x ∈ Λ is given by x = ∑︁n
i=1 yibi with yi ∈ OK , then |yi|ν ≪K,n |x|νλ−dν

i for all
ν | ∞.

Proof. By definition of the successive minima, we can find K-linearly independent vectors
c1, . . . , cn ∈ Λ such that |ci|ν ≤ λdν

i for all ν | ∞ with equality for at least one ν. Let now L
be the free OK-lattice given by

L :=
n⨁︂

i=1
OKci.

Note that we clearly have L ⊂ Λ. Our next goal is to show that det(L) ≍ det(Λ).
To do so, observe that since L is free, we have det(L) = N(det(c1, c2, . . . , cn)), where
(c1, . . . , cn) is the n× n matrix having ci as its ith column. For every place ν | ∞, choose a
matrix Aν in the maximal compact subgroup of GLn(Kν) such that

Aνci = (c(1)
i,ν , . . . , c

(i)
i,ν , 0, . . . , 0), (7.3.3)

which is always possible by the Iwasawa decomposition. Since | det(Aν)|ν = 1, we then have

N(det(c1, . . . , cn)) =
∏︂
ν|∞

|c(1)
1,ν · · · c(n)

n,ν |ν . (7.3.4)

As Aν is norm preserving, we also have |c(i)
i,ν |ν ≪ |ci|ν ≤ λdν

i . Since L ⊂ Λ, we must have
det(L) ≥ det(Λ), whence

det(Λ) ≤ det(L) ≪ (λ1 · · ·λn)dK
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by (7.3.4). However, by Lemma 7.3.1 we have det(Λ) ≍ (λ1 · · ·λn)dK and thus

det(L) ≍ (λ1 · · ·λn)dK ≍ det Λ

as claimed.
We now continue with the construction of the lattice Λ′ whose existence we want to show.
Let us choose b ∈ (Λ: L), so that Λ ⊂ b−1L. We have

1 ≍ N(OK : L)
N(OK : Λ) = N(Λ: L),

so that upon multiplying b with a unit if necessary, we may assume that |b|ν ≍ 1 for all ν | ∞.
If we define the lattice Λ′ = b−1L, then by construction we have Λ ⊂ Λ′. In addition, it holds
that

det(Λ′) = N(OK : b−1Λ) = det(Λ)
N(b)n

≍ det(Λ),

as claimed in (ii). It thus remains to verify the properties asserted in (iii) and (iv) of the
lemma. If we define bi = b−1ci for i = 1, . . . , n, then by construction Λ′ is the free OK-lattice
with basis b1, . . . , bn. Let Aν ∈ Pν be the matrices in (7.3.3) and define b(j)

i,ν ∈ Kν to be the
jth entry of Aνbi. Note that this value is explicitly given by b−1c

(j)
i,ν . Returning to (7.3.4) and

recalling that det(Λ) ≍ det(L) = N(det(c1, . . . , cn)), we deduce from Lemma 7.3.1 that

(λ1 · · ·λn)dK ≍
∏︂
ν|∞

|c(1)
1,ν · · · c(ν)

n,ν |ν

≪ (λ1 · · ·λi−1)dKλdK−dν
i |c(i)

i,ν |ν(λi+1 · · ·λn)dK ,

for any 1 ≤ i ≤ n and ν | ∞, where we used that |c(i)
i,ν |ν ≪ |ci|ν ≤ λdν

i and that ∑︁ dν = dK .
It follows that |c(i)

i,ν |ν ≍ λdν
i . As |b|ν ≍ 1 for all ν | ∞ and |b(i)

i,ν |ν = |b|−1
ν |c(i)

i,ν |ν , this completes
the verification of (iii).
Turning to (iv), suppose that x ∈ Λ is given by x = ∑︁n

i=1 yibi with yi ∈ OK . Then we have

|x|ν ≍ |Aνx|ν =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

⎛⎜⎜⎜⎜⎜⎝
b

(1)
1,ν b

(1)
2,ν · · · b(1)

n,ν

0 b
(2)
2,ν · · · b(2)

n,ν... . . . · · · ...
0 · · · 0 b(n)

n,ν

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
y1
...
...
yn

⎞⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
ν

,

which implies |yn|ν = |(Aνx)n|ν |b(n)
n,ν |−1

ν , where (Aνx)n denotes the nth entry of Aνx and
hence

|yn|ν ≪ |x|ν/λdν
n

by (iii). Similarly, we get

b
(n−1)
n−1,νyn−1 = (Aνx)n−1 − ynb

(n−1)
n,ν

and thus
|yn−1|ν ≪ (|x|ν + |ynb

(n−1)
n,ν |ν)/|b(n−1)

n−1,ν |−1
ν ≪ |x|νλ−dν

n−1

again by (iii) and using that |b(n−1)
n,ν |ν ≪ λdν

n . Continuing in this fashion completes the
verification of (iv).
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Using this, by the same ideas and techniques as in chapter 12 of [61] one obtains very good
bounds on the number of lattice points within a bounded box.

Lemma 7.3.3. Let Λ be an OK-lattice of rank n and for R = (Rν)ν|∞ ∈ RsK
>0, define

N(Λ,R) := # {x ∈ Λ: |x|ν < Rν for all ν | ∞} .

Then if λ1, . . . , λn are the successive minima of Λ, we have

N(Λ,R) ≍K,n

n∏︂
i=1

max
{︄

1, |R|
λdK

i

}︄
.

Proof. For the lower bound, let a1, . . . ,an ∈ Λ be linearly independent over K such that
|ai|ν ≤ λdν

i for all 1 ≤ i ≤ n and ν | ∞. Then any x = ∑︁n
i=1 µiai with µi ∈ OK and

|µi|ν ≪ Rν/λ
dν
i will be counted by N(Λ,R) provided the implied constant is sufficiently small

with respect to n. By Lemma 7.2.6 we have

#{(µ1, . . . , µn) ∈ On
K : |µi|ν ≪ Rν/λ

dν
i for all 1 ≤ i ≤ n and ν | ∞} ≍

n∏︂
i=1

max
{︄

1, |R|
λdK

i

}︄
,

from which the lower bound follows.

Turning to the upper bound, let Λ′ be the lattice from Lemma 7.3.2. Then as Λ ⊂ Λ′ it clearly
suffices to prove the claimed upper bound for N(Λ′,R) instead of N(Λ,R). Let b1, . . . , bn

be the basis of Λ′ and write x = ∑︁n
i=1 yibi with yi ∈ OK . Then if |x|ν ≤ Rν , it follows from

(iv) of Lemma 7.3.2 that
|yi|ν ≪ |x|νλ−dν

i .

In particular, if |x|ν ≤ Rν , then |yi|ν ≪ Rνλ
−dν
i and by Lemma 7.2.6 the number of such

yi ∈ OK is O(max{1, |R|λ−dK
i }) as desired.

7.3.2 Rational points on conics
Suppose we are given R1, . . . ,Rn ∈ RsK

>0 with Ri = (Ri,ν)ν|∞ and set

L(R1, . . . ,Rn) = {x ∈ On
K : |xi|ν ≤ Ri,ν for all ν | ∞}.

Let F ∈ OK [x1, x2, x3] be a quadratic form. In this section we are concerned with upper
bounds for the number of elements in x ∈ L(R1,R2,R3) such that F (x) = 0 which are
uniform with respect to F . Given such F , we let M ∈ Mat3×3(K) denote the underlying matrix
and define ∆(F ) ⊂ OK and ∆0(F ) ⊂ OK to be the ideal generated by the determinant and
2 × 2 minors of M respectively. The following results were proved by Browning and Swarbrick-
Jones for number fields [43] and go back to work of Heath-Brown [101] and Broberg [27],
who proved a slightly weaker version in the context of the rational numbers and number fields
respectively.

Proposition 7.3.4. Suppose we are given a non-singular quadratic form F ∈ OK [x0, x1, x2]
and R1,R2,R3 ∈ RsK

>0. Then

NF (R1,R2,R3) := #{x ∈ P2(K)∩L(R1,R2,R2) : F (x) = 0} ≪K 1+(|R1||R2||R3|)1/3.
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Proof. If K is a number field, this is Theorem 4.7 of [43], so we may assume that K is a
function field. Moreover, the proof is almost identical, so we shall be brief. Note that if
|Ri| < 1 for some 1 ≤ i ≤ 3, then this forces xi = 0. In particular, every point counted by
NF (R1,R2,R3) lies on the intersection of a conic with a line. By Bézout’s theorem there
are at most 2 such points over K. Therefore, from now on we may and shall assume that
|Ri| ≥ 1 for 1 ≤ i ≤ 3. Define R = |R1||R2||R3| and choose prime ideals p1, . . . , pr ⊂ OK

such that
cR1/3 ≤ N(p1) ≤ · · · ≤ N(pr) ≪ R1/3,

where c > 0 and r are constants to be determined in due course. First suppose that
N(pi) | ∆(F ) for i = 1, . . . , r. Then we have N(∆(F )) ≫ Rr/3 and hence ∥F∥ ≫
N(∆(F ))1/3sK ≫ Rr/9sK . Letting B = ∏︁

ν|∞ max{R1,ν , R2,ν , R3,ν}, then it is clear that
B ≤ R and that any x ∈ Z2 with |xi|ν ≤ Ri,ν satisfies ∥x∥∞ ≤ B. In particular, if we choose
r > 108, it follows from Lemma 7.4.2 that NF (R1,R2,R3) ≪ 1, which is sufficient. We
may therefore assume from now on that there is a prime ideal p with N(p) ≍ R1/3 such that
p ∤ ∆(F ). Let Fp = Op/pOp. As the reduction of F modulo p is non-singular, the projective
conic defined by F = 0 over Fp has precisely N(p) + 1 points and our goal is to show that any
such solution gives rise to at most 2 projective points. Given that N(p) ≪ R1/3, this will be
sufficient to complete the proof.

Suppose that x0 ∈ F3
p \ {0} satisfies F (x0) ≡ 0 (p). Then by a Hensel lifting argument we

can always find x1 ∈ Op such that x1 ≡ x0 (p) and F (x1) ≡ 0 (p2). Suppose now that
x ∈ Z2 is such that x ≡ λx1 (p) for some λ ∈ OK and F (x) = 0. It follows that there exists
z ∈ O3

K such that x = λx1 + πz, where π is a uniformizer of Op. We then have

πλz · ∇F (x1) ≡ 0 (p2).

Moreover, we can assume that R is sufficiently large so that p is not equal to one of the fixed
representatives of the class group of K. As x ∈ Z2, we must then have λ ̸∈ p and hence
z · ∇F (x1) ≡ 0 (p). Therefore, x · ∇F (x1) ≡ 0 (p2) and x must belong to the set

{x ∈ O3
p : x ≡ λx0 (p) and x · ∇F (x1) ≡ 0 (p2)},

which defines an Op-lattice Lp of determinant N(p)3 and rank 3. Let now Λ be the unique
OK-lattice such that Λp = Lp and Λq = Oq for all q ̸= p. Moreover, choose elements
γ1, γ2, γ3 ∈ K such that |γi|ν ≍ ∏︁

j=1,2,3,j ̸=i Ri,ν and define

L′ = {(γ1x1, γ2x2, γ3x3) ∈ K3 : (x1, x2, x3) ∈ Λ},

which is an OK-lattice of determinant det(L′) = |R|2N(p)3. Let Λ′ be the lattice from
Lemma 7.3.2 containing L′ with basis b1, b2, b3 ∈ K3 and successive minima λ1 ≤ λ2 ≤ λ3.
If we write x = y1b1 + y2b2 + y3b3, then it follows from (iv) of Lemma 7.3.2 that |y3| ≪
|x|νλ−dν

3 ≪ R1,νR2,νR3,νλ
−dν
3 . Moreover, it follows from (7.3.2) that λ3dK

3 ≫ det(Λ′) ≍
R2N(p)3 and hence after taking the product over all places, we deduce

N(y3) ≪ R3

R2/3N(p)1/3 ≪ 1.

In particular, if we choose c from the beginning of the lemma sufficiently large, then we must
have y3 = 0. It follows that x lies on the intersection of the quadric with a line, and hence
contains at most 2 projective points by Bézout’s theorem.
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Lemma 7.3.5. Let x ∈ OK be such that F (x) = 0. If char(K) ̸= 2, then x must lie in at
least one of O(τ(∆(F ))) many lattices Γ such that det(Γ) ≫K

N(∆(F ))
N(∆0(F ))3/2 , where τ is the

divisor function on ideals.

Proof. If K is a number field, this is Corollary 4.6 of [43], so we may assume that char(K) > 2
from now on. Let p ⊂ OK be a prime such that p | ∆(F ) and π a uniformizer of Op. As in
the proof of [27, Lemma 4(b)], we may diagonalize F and assume that it is given by

F (x) = ε1π
α1x2

1 + ε2π
α2x2

2 + ε3π
α3x2

3,

where α1 ≥ α2 ≥ α3 ≥ 0 and εi are units. In particular, if we set ap = νp(∆(F )) and
bp = νp(∆0(F )), then ap = α1 + α2 + α3 and bp = α1 + α2. We now claim that if
x ∈ O3

p satisfies F (x) = 0, then there are Op-lattices L1, . . . , LM with M ≤ α3 + 1 and
det(Li) ≥ N(p)(2α3−α2−α1)/2 = N(p)(2ap−3bp)/2. The statement will then follow upon letting Γ
to be one of the lattices such that Γp = Li for some 1 ≤ i ≤ M and p | ∆(F ).

Suppose that xi = πξiui, where ui ∈ O×
p for i = 1, 2. Then if F (x) = 0, we must have

ε1u
2
1π

α1+2ξ1 + ε2u
2
2π

α2+2ξ2 ≡ 0 (πα3). (7.3.5)

We now consider two cases. First, let us assume that α3 ≤ mini=1,2{αi + 2ξi}. Then if we set

L1 = {x ∈ O3
p : xi ∈ (pOp)max{0,⌈ α3−αi

2 ⌉}, i = 1, 2},

it is clear that Lp is an Op-lattice of rank 3. We must have x ∈ L1 and in addition

det(L1) ≥ N(p)max{0,⌈ α3−α1
2 ⌉}+max{0,⌈ α3−α2

2 ⌉}

≥ N(p)(2α3−α1−α2)/2,

which is satisfactory.

Let us now assume that α3 > mini=1,2{αi + 2ξi}. In this case (7.3.5) implies that α1 + 2ξ1 =
α2 + 2ξ2 = η, say. Moreover, (7.3.5) also gives (u1/u2)2 ≡ −ε2/ε1 (πα3−η). As char(K) ̸= 2,
Hensel’s lemma implies that if this equation is solvable, that there are r1, r2 ∈ (Op/p

α3−ηOp)×

such that u1 ≡ riu2 (pα3−η). In particular, x must satisfy

xi ≡ 0 (pξi) and x1π
−ξ1 ≡ rix2π

−ξ2 (pα3−η).

These conditions define an Op-lattice of determinant N(p)α3+ξ1+ξ2 ≥ N(p)(2α3−α1−α2)/2 which
is sufficient. Moreover, taking into account the possible values that ξ1 and ξ2 can take, we
see that are at most α3 + 1 possible lattices in total.

Corollary 7.3.6. Suppose that char(K) ̸= 2. Let ∆(F ) and ∆0(F ) be the fractional ideals
in K generated by the discriminant and the 2 × 2 minors of F . Then

NF (R1,R2,R3) ≪ε

(︄
1 + |R1||R2||R3|N(∆0(F ))3/2

N(∆(F ))

)︄1/3

τ(∆(F )).

Proof. Let Γ be one of the lattices from Lemma 7.3.5 with det(Γ) ≫ N(∆(F ))/N(∆0(F ))3/2

and choose γ1, γ2, γ3 ∈ K such that |γi|ν ≍ ∏︁
j=1,2,3,j ̸=i Rj,ν . Put L = {(γ1x1, γ2x3, γ3x3) ∈
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7. Rational points on del Pezzo surfaces of low degree over global fields

K3 : (x1, x2, x3) ∈ Γ}, so that L is an OK-lattice of determinant R2 det(Γ). Moreover, note
that if x ∈ Γ satisfies |xi|ν ≤ Ri,ν , then |γixi|ν ≪ R1,νR2,νR3,ν .
Let Γ′ be the lattice from Lemma 7.3.2 such that L ⊂ Γ′ with basis b1, b2, b3. Suppose that
x ∈ Γ satisfies F (x) = 0 and write x = y1b1 + y2b2 + y3b3. Then according to (iv) of
Lemma 7.3.2 we must have |yi|ν ≪ |x|νλ−dν

i . In particular, it follows from Lemma 7.3.1 and
Proposition 7.3.4 that

#
{︄

y ∈ P2(K) : F (y1b1 + y2b2 + y3b3) = 0,
|yi|ν ≪ R1,νR2,νR3,νλ

dν
i

}︄
≪ 1 +

(︄
|R1||R2||R3|3

(λ1λ2λ3)dK

)︄1/3

≪ 1 +
(︄

|R1||R2||R3|
det(Γ)

)︄1/3

≪ 1 +
(︄

|R1||R2||R3|N(∆0(F ))3/2

N(∆(F ))

)︄1/3

.

As every x with F (x) = 0 is contained in at most O(τ(∆(F ))) different lattices Γ as above,
the result follows.

In addition we will at some point require the following result, which was proved for number
fields by Broberg [27, Proposition 7].

Lemma 7.3.7. Let q ∈ OK [x1, x2, x3] be a non-singular quadratic form such that q(0, x2, x3)
is also non-singular. Let R ∈ RsK

≥1 and R ≥ 1 be given. Then

#{x ∈ (L(R) × O2
K) ∩ Z2 : ∥xi∥ ≤ R, i = 2, 3, q(x) = 0} ≪K 1 + |R|(|R|∥q∥R)ε.

Proof. As q(0, x2, x3) is non-singular, we can find a matrix P ∈ GL2(K) with entries pij ∈ OK

satisfying ∥pij∥ ≪ ∥q∥B for some absolute constant B > 0 and such that q(x1, P (x2, x2))
takes the shape

αL1(x1, x2, x3)2 + βL2(x1, x2, x3)2 − γx2
1,

with non-zero coefficients α, β, γ and Li are linear forms such that L1(0, x2, x3) and
L2(0, x2, x3) are not proportional. Upon multiplying by a suitable constant, we may as-
sume that α, β, γ lie in OK and satisfy ∥α∥, ∥β∥, ∥γ∥ ≪ ∥q∥B, with possibly a new value of
B. If we set L = K(

√
β), then the equation q(x1, P (x2, x3)) = 0 becomes

L3(x1, x2, x3)L4(x1, x2, x3) = γx2
1,

where L3, L4 are linear forms with coefficients in OL. Note that if x1 = 0, then there
are O(1) possibilities for (0, x2, x3) ∈ Z3 such that q(0, x2, x3) = 0, so we may suppose
x1 ̸= 0 from now on. Set z2 = L3(x1, x2, x3) and z3 = L4(x1, x2, x3) and observe
that the assignment is injective, as q(0, x2, x3) is non-singular. We then have |zi|ν ≪
∥q∥B max{Rν , R} ≪ ∥q∥B|R|R, so that Lemma 7.2.10 implies that for x1 fixed, there are
O((∥q∥B|R|RN(γx2

1))ε) = O((∥q∥|R|R)ε) possible (z2, z3) such that z2z3 = γx2
1. As there

are O(|R|) available x1 ∈ L(R) by Lemma 7.2.6 this is sufficient.

7.4 Rational points on smooth genus 1 curves
Let E ⊂ Pn be a smooth genus 1 curve of degree d and for B ≥ 1 define

NE(B) := #{x ∈ E(K) : H(x) ≤ B},
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7.4. Rational points on smooth genus 1 curves

where H : Pn(K) → R>0 denotes the usual height function. Our goal of this section is to
produce a uniform upper bound for NE(B) and prove Proposition 7.1.4. Let DE and CE

denote the minimal discriminant and the conductor of E, which are either ideals or divisors
depending on whether K is a number field or a function field. The main input is the rank
growth hypothesis (RGH) stated in Conjecture 7.1.1 for elliptic curves E:

rE = o(log N(CE)) as N(CE) → ∞, (7.4.1)

where rE denotes the rank of E. In his remarkable work, Brumer [46, Proposition 6.9] proved
Conjecture(7.1.1) when char(K) > 3.

Proposition 7.4.1. Suppose char(K) > 3. Then (7.4.1) holds with the estimate

rE ≪K
log N(CE)

log log N(CE) .

We will prove Proposition 7.1.4 in several steps. Let us first show how (7.4.1) implies a uniform
upper bound for NE(B) when E is an elliptic curve given in Weierstrass form

E : zy2 = x3 + axz2 + bz3 (7.4.2)

with a, b ∈ OK . By abuse of notation we shall also write

E(x, y, z) = zy2 − (x3 + axz2 + bz3).

Let h : E(K) → R≥0 be the canonical height of E and define the height of E to be

HE :=
∏︂

ν∈ΩK

max{1, |a|1/2
ν , |b|1/3

ν }.

Provided char(K) ̸= 2, 3, it follows from work of Zimmer [214, p. 40] that

h(P ) = logH(P ) +O(logHE) (7.4.3)

for P ∈ E(K). The Mordell–Weil group E(K) is a finitely generated abelian group of rank
rE and so any point P ∈ E(K) may be uniquely written as

P = T +
rE∑︂
i=1

niTi,

where T ∈ E(K)tors is a torsion point and T1, . . . , TrE
are generators of E(K). In this case

we have
h(P ) = h

(︂∑︂
niTi

)︂
= QE(n1, . . . , nrE

)

where QE ∈ Z[x1, . . . , xrE
] is a positive-definite quadratic form. By work of Mazur [141]

for K = Q , Merel [143] for number fields and Levin [134] for non-isotrivial elliptic curves
over function fields, we know E(K)tors ≪ 1, where the implied constant only depends on the
degree of the number field in characteristic 0 or the genus of the function field in positive
characteristic. For isotrivial curves over function fields, it is explained in [199] that we always
obtain the bound E(K)tors ≪ q2, where q is the cardinality of the field of constants K. It
thus follows from (7.4.3) that for a suitable absolute constant C > 0 we have

NE(B) ≪K # {(n1, . . . , nrE
) ∈ ZrE : QE(n1, . . . , nrE

) ≤ C log(HEB)} .
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7. Rational points on del Pezzo surfaces of low degree over global fields

Lemma 4 of Heath-Brown [102] implies that

NE(B) ≪ 1 + (9C log(HEB)/B0,E)rE/2, (7.4.4)

where
B0,E = min{h(P ) : h(P ) ̸= 0}.

Hindry–Silverman [108, Corollary 4.2] show that

B0,E ≥ log(N(DE)) exp(−A log(N(DE))/ log(N(CE))),

where DE is the minimal discriminant of E and A > 0 is an absolute constant only depending
on K. Note that strictly speaking Corollary 4.2 of Hindry–Silverman is only stated for number
fields. However, it is an immediate consequence of Theorem 4.1 in the same work, which is
valid for any global field. For now assume that N(CE) ≥ C(ε) where C(ε) is a constant chosen
sufficiently large so that rE ≤ ε log N(CE)/A holds. Following the analysis of Heath-Brown
[102] on page 23 word by word, we arrive at the estimate

NE(B) ≪ε (BHE)ε. (7.4.5)

For the case when N(CE) < C(ε) our treatment differs according to whether K is a function
field or a number field. If K is a number field then there are only finitely many elliptic curves
of a given conductor (cf. [185, p. IX.6]). Thus we find

max
E : N(CE)≤C(ε)

rE ≪ε,K 1,

and
min

E : N(CE)≤C(ε)
B0,E ≫ε,K 1,

where the lower bound follows from the fact that the quadratic forms that determine the
height of a point are positive definite. Hence (7.4.4) delivers (7.4.5) for elliptic curves E with
N(CE) ≤ C(ε).
If K is now a function field, then Theorem 6.1 in [5] shows that unless HE = 1 we have

B0,E ≫K p−2e log N(DE),

where pe denotes the inseparability degree of the field extension K/Fq(j(E)), which by
convention is 1 if j(E) ∈ Fq. If j(E) is non-constant, then e is the maximal non-negative
integer such that j(E) ∈ Kpe . In particular, we have pe ≪ log N(j(E)) ≪ log N(DE).
Moreover, since log N(CE) ≪ε 1 again implies rE ≪ε 1, and noting log N(DE) ≪ logHE we
obtain (7.4.5) by substituting the aforementioned estimates into (7.4.4). Finally, if N(DE) = 1
then E has everywhere good reduction. This implies that E is isotrivial, meaning that its
j-invariant j(E) is an element of the field of constants Fq. In particular it follows from the
theory of elliptic curves over function fields that E is isomorphic to a twist of a constant
elliptic curve over K. Since twisting by any non-constant element of K increases the norm
N(DE), which is for example proved in Proposition 5.7.1 in [56] for quadratic twists (the other
twists follow analogously). We deduce that the number of elliptic curves E with everywhere
good reductions is bounded by OFq(1). In particular we have B0,E ≫Fq 1 for all such curves
and thus obtain (7.4.5).
Therefore it only remains to remove the dependence on HE in (7.4.5) to complete the proof
of Proposition 7.1.4 for elliptic curves in Weierstrass form. To do so, we reprove Theorem 4
of Heath-Brown [104] over arbitrary global fields.
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7.4. Rational points on smooth genus 1 curves

Lemma 7.4.2. Let F ∈ OK [x1, x2, x3] be an irreducible form of degree d whose coefficient
vector lies in ZN−1, where N = (d+ 1)(d+ 2)/2. Then

#{x ∈ P2(K) : F (x) = 0, H(x) ≤ B} ≤ d2 or ∥F∥ ≪ BdN/sK .

Proof. The proof is identical to that of Heath-Brown, and so we shall be brief. Write
N = (d + 1)(d + 2)/2 and suppose NF (B) ≥ d2 + 1. Let x1, . . . ,xN ∈ Z2 be such that
H(xi) ≤ B and F (xi) = 0. Consider the (d2 + 1) × N matrix M whose ith row consists
of all possible monomials of degree d formed by the coordinates of xi. If f ∈ ZN−1 is the
coefficent-vector associated to F , then we have Mf = 0. Moreover, as f ̸= 0, M must have
rank at most N − 1 and so there exists a non-zero solution g ∈ ZN−1 constructed out of the
minors of M , so that ∥g∥ ≪ BdN/sK . Let G be the form of degree d associated to g. Since
the hypersurfaces defined by F and G intersect in d2 + 1 points, Bézout’s theorem implies
that G is a multiple of F , so that ∥F∥ ≪ ∥G∥ ≪ BdN/sK since both f and g belong to
ZN−1.

It is clear that E given as in (7.4.2) is defined by a form whose coefficients define the unit
ideal and upon multiplying it by a unit u ∈ OK , we may assume that its coefficient vector lies
in Z9. We then have

HE ≤
∏︂
ν|∞

max{1, |a|ν , |b|ν |} =
∏︂
ν|∞

max{|u|ν , |ua|ν , |ub|ν} ≪ ∥E∥sK .

In particular, Lemma 7.4.2 implies that either NE(B) ≤ 9 or HE ≪ B10. The former case is
clearly sufficient and if the latter holds, then (7.4.5) hands us the estimate

NE(B) ≪ Bε, (7.4.6)

for any elliptic curve in Weierstrass form where the implied constant only depends on the
ground field K.

We will now use (7.4.6) to deduce Proposition 7.1.4. First let us suppose that E ⊂ P2 is a
smooth genus 1 curve given as the vanishing locus of a non-singular cubic form G ∈ OK [x, y, z].
If NE(B) = 0, then we clearly have the desired upper bound. If not, we can find t0 ∈ E(K)
with H(t0) ≤ B. and use t0 to construct a birational map θ : P2 → P2 defined over K
transforming E into an elliptic curve E ′ defined in Weierstrass form. It is clear that θ has
coefficents that are rational functions in the coefficients of G and the coordinates of t0. It
thus follows for any x ∈ E(K) with H(x) ≤ B that H(θ(x)) ≤ CH(t0)A∥G∥A for some
absolute constant C > 0 and hence

NE(B) ≪ NE′(CBA∥G∥A).

By Lemma 7.4.2 we have NE(B) ≤ 9 or ∥G∥ ≪ BA, so that in the latter case (7.4.6) yields

NE(B) ≪ (C∥G∥ABA)ε ≪ Bε,

which is sufficient for the proof of Proposition 7.1.4 for plane elliptic curves.

Next we suppose E ⊂ P3. If E is contained in any plane, say H ⊂ P3, we can find a point
p ∈ P3(K)\H(K) with H(p) ≪ 1. Projecting away from p gives a map φ : P3 \{p} → P2(K)
that restricts to an isomorphism E → φ(E) ⊂ P2(K). Since H(p) ≪ 1, it follows that there
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exists some absolute constant C > 0 such that H(φ(x)) ≤ CH(x) for any x ∈ P3(K) \ {p},
so that

NE(B) ≤ Nφ(E)(CB) ≪ Bε,

by what we have shown for planar curves. We may therefore assume that E is not con-
tained in any hyperplane. Suppose there exists t0 ∈ E(K) with H(t0) ≤ B. Then there
exists a change of variables L : P3 → P3 sending t0 to the point t1 = [1, 0, 0, 0], so that
H(L(x)) ≪ H(t0)AH(x) ≪ BAH(x). Let E ′ be the image of E under this linear transfor-
mation. Any elliptic curve in P3 that is not contained in a hyperplane may be defined as the
complete intersection of two quadrics. In particular, we may assume that E ′ is given by

x0L1(x1, x2, x3) = q1(x1, x2, x3) and x0L2(x1, x2, x3) = q2(x1, x2, x3) (7.4.7)
for some linear forms L1, L2 ∈ OK [x2, x3, x4] and quadratic forms q1, q2 ∈ OK [x2, x3, x4].
Since E ′ is non-singular, the Jacobian criterion implies that L1 and L2 are not proportional.
In particular, we can eliminate x0 from (7.4.7) to produce an equation

L2(x1, x2, x3)q1(x1, x2, x3) = L1(x1, x2, x3)q2(x1, x2, x3)

which gives a plane elliptic curve E ′′ containing the point corresponding to L1(x1, x2, x3) =
L2(x1, x2, x3) = 0. In particular, the map E ′ \ {t1} → E ′′ defines a birational map E ′ ‧‧➡ E ′′

which is one-to-one except when L1(x1, x2, x3) = L2(x1, x2, x3) = 0. There are are most
O(1) such points and thus

NE(B) ≪ NE′′(CBA) ≪ Bε,

again by our estimate for planar curves.
The only remaining cases are when n > 3, which we shall reduce to the case n = 3 shortly. So
suppose E ⊂ Pn is a non-singular genus 1 curve of degree d. If E is contained in a hyperplane
H ⊂ Pn, we can find a point p ∈ Pn(K)\H(K) such that H(p) ≪ 1. Projection away from p
defines an isomorphism φ : E → E ′ ⊂ Pn−1. Moreover, it is easy to see that H(p) ≪ 1 implies
H(φ(x)) ≪ H(x). We may therefore assume that E is not contained in any hyperplane from
now on. Let S(E) ⊂ Pn denote the secant variety of E, which by definition is the closure of
all lines that meet E in two points. It is well known that dim(S(E)) ≤ 3, S(E) is irreducible
and that projection away from a point p ∈ Pn restricts to a closed immersion of E if and
only if p ̸∈ S(E). Theorem 4.3 of [58] gives a formula for the degree of S(E) that only
depends on d and n, and since n > dim(S(E)) we may use (7.2.3) to deduce the existence
of a point p ∈ Pn(K) \ S(E)(K) such that H(p) ≪d,n,K 1 and φ : Pn \ {p} → Pn−1 restricts
to an isomorphism E → E ′ ⊂ Pn−1, where E ′ = φ(E) is a non-singular genus one curve of
degree at most d. Since H(p) ≪ 1, we again have H(φ(x)) ≪d,n,K H(x). Regardless of
whether E is contained in a hyperplane or not, we have shown the existence of an elliptic
curve E ′ ⊂ Pn−1 of degree at most d such that

NE(B) ≤ NE′(CB)

for some constant C only depending on d, n and K. As n > 3, it is clear that we can continue
this process until E ′ ⊂ P3, a case that we already dealt with. Therefore, we have completed
our proof of Proposition 7.1.4.
Remark. It is well known that any elliptic curve over a global field K with char(K) ̸= 2, 3
can be put into short Weierstrass form [185, Chapter III, Proposition 3.1]. This is usually
proved via the Riemann-Roch theorem. However, for our applications it is important that we
keep track of how the height of points is affected, which we could achieve by working with
projections instead.
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7.5 Conic bundles
The aim of this section is to prove Theorem 7.1.3. That is, we shall prove that if char(K) ̸= 2
and X is a del Pezzo surface of degree d = 4 or d = 5 admitting a conic bundle structure,
then we have

NU(B) ≪ B1+ε.

From now on until the end of this work, all implied constants are allowed to depend on the
del Pezzo surface under consideration.

7.5.1 del Pezzo surfaces of degree 5 with a conic bundle structure
According to Section 5 of [77] a del Pezzo surface of degree 5 with a conic bundle structure
may be realised as a nonsingular hypersurface defined by

sQ1(x0, x1, x2) + tQ2(x0, x1, x2) = 0 (7.5.1)

inside P1 × P2. At the beginning of Section 5 in [77] the authors make the assumption that
the field K is perfect. This is not necessary in order to show that the X can be realised as
described above, in particular their proof for (7.5.1) goes through as long as char(K) ̸= 2.
Since X is nonsingular the determinant

∆(s, t) = det(sM1 + tM2)

defines a separable cubic form in (s, t), where Mi are the 3 × 3 matrices defining Qi. The
associated height function is given by

H([s, t], [x0, x1, x2]) = H([s, t])H([x0, x1, x2]),

where the factors on the right hand side denote the usual height in P1 and P2, respectively.
Furthermore, the exceptional curves on X are given by the points such that Q1(x) = Q2(x) = 0
or ∆(s, t) = 0. We proceed in two cases.
Case 1: H([s, t]) ≤ B1/2. Since we wish to count points such that H(x)H([s, t]) ≤ B we
can cover the contribution to the counting function NU(B) by

∑︂
∥(s,t)∥∞≤B1/2

∆(s,t)̸=0

N(s,t)

(︄
B

∥(s, t)∥∞

)︄
,

where the sum runs over (s, t) ∈ Z1 and where

N(s,t)(R) := #
{︂
x ∈ Z2 : ∥x∥ ≪ R1/sK , sQ1(x) + tQ2(x) = 0

}︂
.

Note that we are permitted to exclude the zeroes of the discriminant from this summation,
since they lie on the exceptional locus. We can apply Proposition 7.3.4 to see that the
contribution is bounded above by

∑︂
∥(s,t)∥∞≤B1/2

Bε

(︄
1 + BN(∆0(s, t))1/2

∥(s, t)∥∞N(∆(s, t))1/3

)︄
.

The proof of Lemma 7 in [27], which is a basic application of elimination theory, carries over
identically to our setting and shows that we have N(∆0(s, t))1/2 ≪ 1. For the remaining range
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we will divide the values of ∥(s, t)∥ and N(∆(s, t)) into dyadic intervals. If ∥(s, t)∥ ∼ R1/sK

and N(∆(s, t)) ∼ S then Lemma 7.2.17 shows that there are at most R1+εS1/3 many points
(s, t) that lie within such a dyadic interval. Hence the contribution from this dyadic interval is
bounded by

R1+εS1/3
(︃

1 + B

RS1/3

)︃
≪ B1+ε,

since R ≤ B1/2 and S ≪ R3 ≪ B3/2. The number of dyadic intervals that we have to
consider is bounded by log2(B) and since each individual contribution is bounded by B1+ε

this suffices to show that the contribution to NU(B) is indeed bounded by B1+ε.
Case 2: H([s, t]) ≥ B1/2. In particular we must have H([x0, x1, x2]) ≤ B1/2. Let
([s, t], [x0, x1, x2]) be a point of the del Pezzo surface in question. Hence by (7.5.1) a
representative of [s, t] takes the shape

(s, t) = (Q1(x),−Q2(x)).

Writing d for the ideal generated by Q1(x) and Q2(x), we then have

H([s, t]) = ∥Q1(x), Q2(x)∥∞
N(d) .

In what follows, given an ideal d ⊂ OK such that N(d) ≪ B we will count the number of
x ∈ Z2 with Qi(x) ≡ 0 mod d. In particular, given α ≪ B1/2 we may divide the height of x
into dyadic intervals. We are therefore led to consider sums of the shape∑︂

x∈Z2 : ∥x∥∞∼α
(Q1(x),Q2(x))=d

∥Qi(x)∥∞≤ BN(d)
α

1. (7.5.2)

In view of this we define the set
˜︁Vd =

{︂
x ∈ (OK/d)3 : (x, d) ∈ Z3, Q1(x) ≡ Q2(x) ≡ 0 mod d

}︂
,

where the condition (x, d) ∈ Z3 is meant to indicate that the ideal generated by x0, x1, x2
and d is equal to one of the fixed representatives ai of the ideal class group of K. Further we
define

Vd = ˜︁Vd/(OK/d)×.

Given y ∈ Vd we further define

Λd(y) := {z ∈ O3
K : z ≡ λy mod d for some λ ∈ OK}.

Changing the order of summation in (7.5.2), using the notation introduced above it is easy to
see that it suffices to estimate

Sα :=
∑︂

N(d)≪α2

∑︂
y∈Vd

∑︂
x∈Z2 : ∥x∥∞∼α

∥Qi(x)∥∞≤ BN(d)
α

x∈Λd(y)

1. (7.5.3)

To this end, the following two lemmas help us deal with Vd and the lattice Λd(y). Since
the del Pezzo surface in question is non-singular it follows from the definition (7.5.1) that
Q1(x) = Q2(x) = 0 defines a non-singular intersection in P2.
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Lemma 7.5.1. Given an ideal I ⊂ OK we have

#VI ≪ N(I)ε.

Proof. The proof is the same as Lemma 2 in [30] adjusted to our more general setting and
therefore we will be brief. Note first that via multiplicativity and homogeneity it suffices to
show

# ˜︁Vps ≪ N(ps),
for any prime ideal p ⊂ OK and any positive integer s. Note also that unless p is one of
the O(1) many fixed representatives for the class group of K the condition (x, ps) ∈ Z3 is
equivalent to saying that (x1, x2, x3, p

s) generates OK . Also consider the isomorphism

OK/p
s ∼= Oν/(π)s,

where Oν ⊂ Kν , for ν the place corresponding to p, and where π is a uniformizer for Kν .
Then we find that it suffices to consider

ρ(πs) = #
{︂
x ∈ (Oν/(πs))3 : ⟨x1, x2, x3, π⟩ = Oν , Qi(x) ≡ 0 mod (πs), for i = 1, 2

}︂
.

For ease of notation write ψ for the additive character on Kν . Using the orthogonality relation
from Lemma 7.2.5 we find

ρ(πs) = 1
N(π)2s

∑︂
b mod πs

∑︂∗

x mod πs

ψ

(︄
b1Q1(x) + b2Q2(x)

πs

)︄
, (7.5.4)

where ∑︁∗ indicates that we only sum over tuples x such that ⟨x, πs⟩ = Oν , or equivalently
π ∤ xi. Extracting common factors between πs and b in the display above we obtain

ρ(πs) = 1
N(π)2s

∑︂
0≤i<s

N(π)3iS(s− i) + N(π)s

(︄
1 − 1

N(π)3

)︄
,

where
S(k) =

∑︂∗

b mod πk

∑︂∗

x mod πk

ψ

(︄
F (b,x)
πk

)︄
,

and where F (b,x) = b1Q1(x) + b2Q2(x). It suffices to show S(k) = O(1) for k ≥ 2 and
S(1) = O(N(π)3). Regarding S(1) note that by Bézout’s theorem we find that ρ(π) ≪ N(π)
since Oν/(π) ∼= OK/p ∼= FN(p). Note that there is a finite number of primes p the two
quadrics might share a common component and so Bézout’s theorem does not apply for these
cases. However, by choosing the implied constant large enough since there are only finitely
many primes involved we still obtain ρ(π) ≪ N(π) for all primes. Substituting this into (7.5.4)
for s = 1 we indeed find S(1) = O(N(π)3). If k ≥ 2 then after introducing a dummy sum
over a ∈ (Oν/π

k)×, and making a change of variables b ↦→ ab we may evaluate the arising
Ramanujan sums to obtain

S(k) =
(︄

1 − 1
N(π)

)︄−1 (︂
N (k) − N(π)4N (k − 1)

)︂
,

where N (k) denotes the number of solutions to F (b,x) ≡ 0 mod πk such that π ∤ b and
π ∤ x. Writing the discriminant D ∈ OK of the pair of quadrics Qi as the resultant of the
5 quadratic forms appearing in ∇F (b,x) (see [82, Chapter 13]) via elimination theory we
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obtain polynomials Gij(y) with coefficients in OK where y = (b,x) and a positive integer R
such that

DyR
i =

∑︂
1≤j≤5

Gij(y)∂F
∂yi

, for 1 ≤ i ≤ 5.

Since Qi define a non-singular intersection over K we have that D ̸= 0. Writing δπ = νp(D)
we thus obtain that if πm | ∇F (b,x) and π ∤ x and π ∤ b then m ≤ δπ. Since D ∈ OK is
nonzero we first note that δπ = 0 for all but finitely many p. In particular, if δπ > 0 and
2 ≤ k ≤ 2δπ + 1 then we may choose our implied constant sufficiently big, only depending on
Qi to get S(k) = O(1). If k ≥ 2δ + 2 then we may apply a standard Hensel lifting argument
to show that

Cm(k + 1) = N(π)4Cm(k),
where Cm(k) is the number of y mod πk with π ∤ b and π ∤ x such that πk | F (y) and
πm ∥ ∇F (y). We note that since Oν is a principal ideal domain the lifting argument goes
through completely analogously. Finally, noting that

N (k) =
∑︂

0≤m≤δ

Cm(k)

yields S(k) = 0 if k ≥ 2δ + 2, and thus S(k) = O(1) for all k ≥ 2, thereby completing the
proof.

Lemma 7.5.2. Given y ∈ O3
K such that (y1, y2, y3, d) generates one of the fixed representatives

ai of the ideal class group, the lattice Λd(y) has rank 3 and

det Λd(y) ≍K N(d)2.

Proof. First note that Λd(y) ⊃ (dOK)3 and therefore

det Λd(y) = [O3
K : Λd(y)] = [O3

K : (dOK)3]
[Λd(y) : (dOK)3] = N(d)3

[Λd(y) : (dOK)3] .

Hence it suffices to establish [Λd(y) : (dOK)3] ≍ N(d). First note that it is clear that
λy + (dOK)3 where λ runs through all possible elements of OK/d exhausts all possible cosets
in Λd(y)/(dOK)3 and hence [Λd(y) : (dOK)3] ≤ N(d).
For a lower bound regarding the index, given c > 0 we consider elements r ∈ OK such that
∥r∥ < cN(d)1/sK . We claim that if we choose c small enough, only depending on K, then the
elements ry + (dOK)3 where r runs through elements as above are all distinct cosets. Since
the number of elements r with the above property is ≫ N(d) this suffices in order to prove
the lemma. If not of all the above cosets are distinct then upon taking their difference we see
that there exists some r0 ∈ OK \ {0} with ∥r0∥ ≪ cN(d)1/sK and r0yi ∈ d for i = 1, 2, 3. In
particular we have

⟨r0y1, r0y2, r0y3, r0d⟩ ⊂ d

Since the ideal generated by yi and d is one of the fixed representatives of the class group of
K there exists some nonzero z ∈ ⟨y1, y2, y3, d⟩ such that ∥z∥ = OK(1). Hence r0z ∈ d and
so after multiplying r0 with a unit if necessary we find

N(d)1/sK ≤ ∥r0z∥1/sK

∞ ≪ ∥r0z∥.

Therefore we have

N(d)1/sK ≪ ∥r0z∥ ≪ ∥r0∥∥z∥ ≪ ∥r0∥ ≪ cN(d)1/sK ,
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and so upon choosing c > 0 small enough we obtain a contradiction. Thus the claim and
consequently the Lemma transpire.

We now return to estimating Sα as it was defined in (7.5.3). Since there are only Bε many
different values of α we need to consider, it suffices to show Sα ≪ B1+ε.

We denote the successive minima of Λd(y) by λ1 ≤ λ2 ≤ λ3, as they were defined in
Section 7.3.1. Note first that for every y ∈ Vd using Lemma 7.3.1 and Lemma 7.2.7 we
may take a representative y ∈ O3

K such that |y|ν ≪ N(d)dν/dK . Let x1,x2 ∈ O3
K with

|xi|ν ≪ 1 for all ν | ∞ and i = 1, 2 such that y,x1,x2 are linearly independent. Moreover,
choose δ ∈ d such that |δ|ν ≪ N(d)dν/dK , which is possible by Lemma 7.3.1. Then the set
{y,y + δx1,y + δx2} constitutes a linearly independent set inside Λd(y). The ν-adic absolute
value of each of these vectors is bounded by O(N(d)dν/dK ) for all ν | ∞. We deduce

λdK
3 ≪

∏︂
ν|∞

N(d)dν/dK = N(d),

and so Lemma 7.3.1 yields
1

(λ1λ2)dK
≪ 1

N(d) ,

since det Λd(y) ≍ N(d)2 by Lemma 7.5.2. We will use this fact as well as Lemma 7.3.3 in
order to estimate Sα. If α < λdK

2 then the number of lattice points with ∥x∥∞ ∼ α is bounded
by O(1) since we only consider the contribution from primitive points. Thus Sα is bounded by

∑︂
N(d)≪α2

∑︂
y∈Vd

1 ≪ α2+ε ≪ B1+ε.

If λdK
2 ≤ α < λdK

3 , then via Lemma 7.3.3 the number of lattice points that we count is
bounded by O(α2/(λ1λ2)dK ). Thus we obtain

Sα ≪
∑︂

N(d)≪α2

∑︂
y∈Vd

α2

N(d) ≪ α2+ε ≪ B1+ε.

Finally, if λdK
3 ≤ α then we divide the contribution into the range α3/B ≪ N(d) ≪ α2 and

the range N(d) ≪ α3/B. For the first range we may employ Lemma 7.3.3 to find that the
contribution is bounded by

∑︂
α3/B≪N(d)≪α2

α3

N(d)2 ≪ α3(α−2 +B/α3)αε ≪ B1+ε.

It remains to handle ∑︂
N(d)≪α3/B

∑︂
y∈Vd

∑︂
x∈Z2 : ∥x∥∞∼α

∥Qi(x)∥∞≤ BN(d)
α

x∈Λd(y)

1. (7.5.5)

At this point it does not suffice to just count the points contained in a ball inside the lattice,
and we need to take advantage of the additional restriction given by the quadratic forms. We
deal with this in the following Lemma.
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Lemma 7.5.3. Let Λ ⊂ K3 be a lattice with successive minima λ1 ≤ λ2 ≤ λ3 and let
Q ∈ OK [x1, x2, x3] be a quadratic form of rank at least 2. Let α,R ≥ 1 be real numbers
such that R1/2 ≪ α ≪ R. Consider

N(α,R) := # {x ∈ Z2 ∩ Λ: ∥x∥∞ < α, ∥Q(x)∥∞ < R} .

We have the bound

N(α,R) ≪ α4+ε

R2 + α3+ε

RλdK
1

+ α2+ε

(λ1λ2)dK
+ α1+εR

det Λ + α

(det Λ)1/3 .

Deferring the proof for now, applying Lemma 7.5.3 to the inner sum in (7.5.5) with R =
BN(d)/α we find that

Sα ≪ Bε
∑︂

N(d)≪α3/B

(︄
α6

B2N(d)2 + α4

BN(d)λdK
1

+ α2

(λ1λ2)dK
+ B

N(d) + α

N(d)2/3

)︄
.

Using the fact that λ1 ≫ 1 as well as 1/(λ1λ2)dK ≪ N(d)−1 one may easily check that the
above expression is bounded by B1+ε. Once we prove Lemma 7.5.3 this concludes the proof
of Theorem 7.1.3 for d = 5.

Proof of Lemma 7.5.3. First note that the contribution toN(α,R) from the vectors x ∈ Z2∩Λ
such that Q(x) = 0 is bounded above by O(1 + α/ det(Λ)1/3) by using the same argument
as in the proof of Corollary 7.3.6.
For the remaining contribution we begin by decomposing the possible local absolute values
that the quadratic forms may take into dyadic intervals. Note first that if Q(x) ̸= 0 then∏︁

ν |Q(x)|ν ≥ 1. Further, if x is counted by N(α,R) then |Q(x)|ν ≪ α2/sK holds for all ν.
We deduce that the vectors counted by N(α,R) satisfy

α−2 ≤ |Q(x)|ν ≪ α2/sK ,

for all ν | ∞. Fix now a place ω | ∞ and let r = (rν)ν ̸=ω. We define

N(α, r) = #
{︂
x ∈ Λ: |x|ν ≪ α1/sK , |Q(x)|ν ∼ rν and ∥Q(x)∥∞ ≤ R

}︂
.

It suffices to obtain establish the desired upper bound for N(α, r) whenever α−2 ≤ rν ≤ Rα2sK

is satisfied, since the number of dyadic decompositions we require in order to cover the set of
points counted by N(α,R) is bounded by αε. Writing rω = 21−sKR/

∏︁
ν ̸=ω rν we clearly see

that
N(α, r) ≤ #

{︂
x ∈ Λ: |x|ν ≪ α1/sK , |Q(x)|ν ≤ rν

}︂
Consider the set

S(α, (rν)ν) =
∏︂
ν

{︂
x ∈ K3

ν : |x|ν ≪ α1/sK , |Q(x)|ν ≤ rν

}︂
.

Writing ∆: K3 ↪→ ∏︁
ν K

3
ν for the diagonal embedding, we see that

N(α, r) ≪ #(∆−1 (S(α, (rν)ν)) ∩ Λ).

Given ν | ∞ such that Kν is not isomorphic to the complex numbers, consider the box

Bν =
{︂
x ∈ K3

ν : |x|ν ≤ rν/α
1/sK

}︂
.
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If Kν
∼= C then write

Bν =
{︃

x ∈ K3
ν : max

i
|(Re(xi), Im(xi)| ≤

√︂
rν/α1/sK

}︃
,

where the absolute value in the definition of Bν is taken to be the usual absolute value on R.
Note that for complex ν we have

{x ∈ K3
ν : |x|ν ≤ rν/α

1/sK } ⊂ Bν ⊂ {x ∈ K3
ν : |x|ν ≤ 2rν/α

1/sK }.

Define
B =

∏︂
ν

Bν .

Since S(α, (rν)ν) defines a bounded set we may cover it with M , say, translates of B, denoted
by Bi. We may choose the Bi such that the pairwise intersection of these boxes has trivial
measure, and also such that Bi ∩ S(α, (rν)ν) ̸= ∅.
By translating ∆−1(Bi) by a point contained in Λ ∩ ∆−1(Bi) if necessary, then via translation
invariance of the lattice we find

#(Λ ∩ ∆−1(Bi)) ≪ #
{︃

x ∈ Λ: |x|ν ≪ rν

α1/sK
for all ν | ∞

}︃
,

for all i = 1, . . . ,M . Lemma 7.3.3 therefore delivers

#(Λ ∩ ∆−1(Bi)) ≪ 1 +
∏︁

ν rν

αλdK
1

+ (∏︁ν rν)2

α2(λ1λ2)dK
+ (∏︁ν rν)3

α3 det(Λ) ,

and thus
N(α, r) ≪ M

(︄
1 +

∏︁
ν rν

αλdK
1

+ (∏︁ν rν)2

α2(λ1λ2)dK
+ (∏︁ν rν)3

α3 det(Λ)

)︄
. (7.5.6)

To obtain an upper bound on the number of boxes M that we need in order to cover this region,
consider (xν)ν ∈ Bi ∩ S(α, (rν)ν). Then all points inside Bi are of the form (xν)ν + (yν)ν

with |yν |ν ≪ rν/α
1/sK . Therefore we have that

|xν + yν |ν ≪ α1/sK + rν

α1/sK
≪ α1/sK ,

since we only consider (rν)ν such that rν ≪ α2/sK holds. Further we find

|Q(xν + yν)|ν = |Q(xν) + xT
ν ∇Q(yν) +Q(yν)|ν

≪ rν + α1/sK
rν

α1/sK
+
(︃

rν

α1/sK

)︃2

≪ rν .

Since i was arbitrary, we deduce that there exists a constant C > 0, only depending on the
quadratic form Q and K such that

M⋃︂
i=1

Bi ⊂ S(Cα,C(rν)ν).

Hence
M ≪

(︄
α∏︁
ν rν

)︄3

volS(α, (rν)ν). (7.5.7)
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We will now compute the volume of S(Q,α, (rν)ν). Note first that

volS(α, (rν)ν) =
∏︂
ν|∞

volSν(α, rν),

where
Sν(α, rν) =

{︂
x ∈ K3

ν : |x|ν ≪ α1/sK , |Q(x)|ν ≪ rν

}︂
.

We consider two different cases. Firstly, if Q is anisotropic over Kν then there exists some
constant D > 0 depending only on Q such that |Q(x)|ν ≥ D holds for all x ∈ K3

ν such that
|x|ν = 1. Therefore |Q(x)|ν ≥ D|x|2ν holds, and so x ∈ Sν(α,R) implies that we must have
|x|ν ≪ r1/2

ν . As a result we easily deduce

volSν(α,R) ≪ r3/2
ν ≪ α1/sKrν

via recalling that we only consider rν such that rν ≪ α2/sK . If Q is isotropic on the other
hand, then by the classical theory of quadratic forms after a linear transformation of the
coordinates in Kν we may assume that it is of the shape

Q(x, y, z) = yz −Dx2,

for some constant D ∈ Kν depending on Q that can be 0 if the rank of Q is 2. Note first
that away from the nullset z = 0 we clearly have

vol
{︂
y ∈ Kν : |yz −Dx2|ν ≪ rν , |y|ν ≪ α1/sK

}︂
≪ min

{︄
α1/sK ,

rν

|z|ν

}︄
,

for any x ∈ Kν . Hence we find

volSν(α, rν) ≪
∫︂

|x|ν≪α1/sK

∫︂
|z|ν≪α1/sK

min
{︄
α1/sK ,

rν

|z|ν

}︄
dzdx ≪ rνα

1/sK+ε.

We conclude that
volS(α,R) ≪ α1+ε

∏︂
ν|∞

rν .

From (7.5.7) it thus follows that

M ≪ α4+ε

(∏︁ν rν)2 .

Finally, recall ∏︁ν rν ≍ R. Using all of this along with (7.5.6) and recalling the contribution
from Q(x) = 0 we have

N(α,R) ≪ α4+ε

R2 + α3+ε

RλdK
1

+ α2+ε

(λ1λ2)dK
+ α1+εR

det Λ + α

(det Λ)1/3

which completes the proof of this Lemma.

7.5.2 del Pezzo surfaces of degree 4
Our proof is very similar to the one given by Browning and Swarbrick-Jones [43] except for
the fact that we avoid the Thue–Siegel–Roth theorem.
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A del Pezzo surface of degree 4 may be written as a complete intersection of two quadrics
inside P4. After a change of variables if necessary, if X contains a conic we may write the
system of quadrics as

x0x1 − x2x3 = Q(x0, x1, x2, x3) + x2
4 = 0

inside P4, where Q is a quadratic form defined over OK . Taking U ⊂ X to be the Zariski
open set obtained after removing the exceptional locus (in this case it consists of 16 lines) we
find two conic fibrations πi : U → P1 explicitly given by

π1(x) =

⎧⎨⎩[x0, x2] if (x0, x2) ̸= 0,
[x3, x1] if (x3, x1) ̸= 0,

and

π2(x) =

⎧⎨⎩[x0, x3] if (x0, x3) ̸= 0,
[x2, x1] if (x2, x1) ̸= 0.

In particular, this gives rise to a well-defined morphism π : X → P1 × P1. Denoting the Segre
embedding by ψ : P1 × P1 → P3 one can easily verify that we have

H(π1(x))H(π2(x)) = H(ψ(π(x)))

for all x ∈ X(K). One may further easily check that

ψ ◦ π([x0, x1, x2, x3, x4]) = [x0, x3, x2, x1]

holds, whenever [x0, x1, x2, x3, x4] ∈ U(K), and so the degree of ψ ◦ π : U → P3 is 1. The
functoriality of heights [182, Section 2.3] therefore shows that we have

H(π1(x))H(π2(x)) ≪ H(x),

for any x ∈ U(K). In particular it follows that given x ∈ U(K) we must have H(πi(x)) ≪
H(x)1/2 for i = 1 or i = 2. We deduce that

NU(B) ≤ n1(B) + n2(B),

where
ni(B) = #

{︂
x ∈ U(K) : H(x) ≤ B, H(πi(x)) ≪ B1/2

}︂
.

It suffices to show n1(B) ≪ B1+ε since dealing with n2(B) is identical. Given (s, t) ∈ Z1
denote by n1(B, s, t) the cardinality of the points in the fibre π−1

1 ([s, t]) ∩ U(k) of height at
most O(B1/2). In order to show the desired bound for n1(B) via a dyadic decomposition
argument it suffices to show the same bound for

n1(R,B) :=
∑︂

(s,t)∈Z1
∥(s,t)∥∞∼R

n1(B, s, t).

where R ≪ B1/2. Given (s, t) ∈ Z1 we have that a representative (ux, yv, xv, yu, z) ∈ Z4
lies in the fibre π−1

1 ([s, t]) ∩ U(k) precisely when

Q(sx, yt, xt, ys) + az2 = 0. (7.5.8)
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For fixed (s, t) we may regard the above as a ternary quadratic form in (x, y, z). Then the
discriminant ∆(s, t) defines a separable, homogeneous polynomial with deg ∆(s, t) = 4. Note
also that there are no points in π1([s, t])−1 ∩ U(k) such that ∆(s, t) = 0. We may bound
n1(B, s, t) by the number of (x, y, z) ∈ Z2 such that (7.5.8) and

|(sx, yt, xt, ys, z)|ν ≪ B1/sK

is satisfied for all ν | ∞. Thus we may employ Corollary 7.3.6 in order to find

n1(R,B) ≪
∑︂

(s,t)∈Z1
∥(s,t)∥∞∼R

∆(s,t)̸=0

Bε

(︄
1 + BN(∆0(s, t))1/2

R2/3N(∆(s, t))1/3

)︄
.

First note that the number of (s, t) ∈ Z1 such that ∥(s, t)∥∞ ∼ R is bounded by R2 ≪ B.
Further, an argument of Broberg [27, Lemma 7] shows that we have N(∆0(s, t)) ≪ 1 for all
(s, t) ∈ Z1 such that ∆(s, t) ̸= 0. We are thus left with estimating

∑︂
(s,t)∈Z1

∥(s,t)∥∞∼R
∆(s,t) ̸=0

B1+ε

R2/3N(∆(s, t))1/3 . (7.5.9)

We will proceed by further dividing the value of N(∆(s, t)) into dyadic intervals. Say
N(∆(s, t)) ∼ S, then we clearly have 1 ≤ S ≪ R4 and thus the number of dyadic in-
tervals we have to consider is bounded by O(Bε). We can apply Lemma 7.2.18 to find that
there are at most O(R1+ε(1 + S/R3)) many points (s, t) ∈ Z1 such that ∥(s, t)∥∞ ∼ R and
N(∆(s, t)) ∼ S. Hence if R ≤ S then we may bound (7.5.9) by

B1+εR

R2/3S1/3

(︃
1 + S

R3

)︃
≪ B1+εR1/3

S1/3 + B1+εS2/3

R8/3 ≪ B1+ε,

since S ≪ R4, which is satisfactory. It therefore remains to bound∑︂
(s,t)∈Z1

∥(s,t)∥∞∼R
N(∆(s,t))≪R

n1(B, s, t).

We would like to apply Lemma 7.3.7 in order to bound n1(B, s, t) so we need to make sure
the conditions are satisfied. Let q(x, y, z) = Q(sx, ty, tx, sy) + az2. Then we have

q(0, y, z) = y2Q(0, t, 0, s) + az2,

and
q(x, 0, z) = x2Q(s, 0, t, 0) + az2.

Given some (s, t) ∈ K2 both of the above binary forms are singular only if Q(s, 0, t, 0) =
Q(0, t, 0, s) = 0. This can happen for at most O(1) primitive points (s, t) ∈ Z1 unless
Q(s, 0, t, 0) and Q(0, t, 0, s) are both identically zero. If this were the case, however, then it
is straightforward to check that X has a singular point. We may bound the contribution to∑︁

(s,t)∈Z1 n1(B, s, t) such that Q(s, 0, t, 0) = Q(0, t, 0, s) = 0 clearly by O(B1+ε). Otherwise,
at least one of q(0, y, z) or q(x, 0, z) is non-singular, whence it follows from Lemma 7.3.7 that
for such (s, t) we have

n1(B, s, t) ≪ B1+ε

R
.
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Finally, via Lemma 7.2.18 the number of (s, t) ∈ Z1 such that ∥(s, t)∥∞ ∼ R and N(∆(s, t)) ≪
R holds is bounded above by R1+ε. We conclude that

∑︂
(s,t)∈Z1

∥(s,t)∥∞∼R
N(∆(s,t))≪R

n1(B, s, t) ≪ R1+εB
1+ε

R
≪ B1+ε,

as desired.

7.6 del Pezzo surfaces of degree 3–5
In this section we will prove Theorem 7.1.2 for the cases d = 3, 4, 5. Let X be a del Pezzo
surface of degree 3 ≤ d ≤ 5 over K and U the complement of the exceptional curves. The
anti-canonical divisor −KX induces an embedding X ⊂ Pd realising X as a smooth non-
degenerate surface of degree d. Let c ∈ Pd(K) and denote by Hc ⊂ Pd(K) the hyperplane
defined by x · c = 0. Moreover, we define Xc = Hc ∩X. By the adjunction formula, we have

2pa(Xc) − 2 = 0,

where pa denotes the arithmetic genus. It follows that if Xc is smooth and geometrically
irreducible, then either X(K) = ∅ or Xc defines an elliptic curve over K.
From Lemma 7.2.12 we know that every x ∈ Pd(K) with H(x) ≤ B lies in Hc for some
c ∈ Pd(K) with H(c) ≪ B1/d. We thus define

Nc(B) := {x ∈ (Xc ∩ U)(K) : H(x) ≤ B}

and infer that
N(B) ≤

∑︂
c∈Pd(K)

H(c)≪B1/d

Nc(B). (7.6.1)

Let 1 ≤ e ≤ d denote the maximum of the degrees of the irreducible components of Xc

defined over K. It will be convenient to consider separately the contribution from each e.
Note that if e ≤ 2, then Xc is either a union of lines, in which case we do not count its
rational points, or it contains a conic defined over K. In particular, in this case X admits a
conic bundle structure over K and we have the superior upper bound NU(B) ≪ B1+ε from
Theorem 7.1.3 for d = 4, 5, so that it suffices to consider the contribution from 3 ≤ e ≤ d
when d = 4 or d = 5.

e = d

Let us first consider the contribution from those c such that Xc is non-singular. In this case
Proposition 7.1.4 gives Nc(B) ≪ Bε. Moreover, the number of available c is O(B(d+1)/d)
by Lemma 7.2.6 so that we get an overall contribution of O(B(d+1)/d+ε) to (7.6.1), which is
sufficient.
Next we assume that Xc is irreducible but singular. In this case Nc(B) ≪ B2/d by Propo-
sition 7.2.13. In addition, Xc being singular implies that c ∈ X∗(K). We know that
deg(X∗) = 12 by Proposition 7.2.3, so that by Proposition 7.2.14 the number of such c with
H(c) ≪ B1/d is O(B(d−2)/d). Therefore, we get a contribution of O(B(d+1)/d), which is again
satisfactory.
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7. Rational points on del Pezzo surfaces of low degree over global fields

e = d − 1
This case turns out to be the most difficult one and we have to treat it individually for each
value of d. Note that this case occurs precisely when Xc = L∪D, where L ⊂ X is a line and
D ⊂ Xc is an irreducible curve over K of degree d− 1.

d = 5

We now treat the contribution from those hyperplanes for which Xc = D ∪ L, where D
is an irreducible quartic curve and L a line contained in X. There are at most 10 lines in
X defined over D, and so we may restrict our attention to a specific one. After a suitable
change of variables we can assume that L is given by x2 = · · · = x5 = 0. Furthermore,
any hyperplane containing L takes the shape Hc = {c2x2 + · · · + c5x5 = 0} for some
[0, 0, c2, . . . , c5] ∈ P5(K). We may take a representative c ∈ Z5 and assume without loss of
generality that ∥c5∥ = ∥c∥ ≍ H(c)1/sK .
Let p1 = [1, 0, . . . , 0] and consider the projection X \ {p1} → P4. Since p is a non-singular
point of X, the closure of the image Y ⊂ P4 is a surface of degree 4. In fact, the morphism
corresponds to blowing up the point p1 and then contracting the strict transforms of the
resulting (−2)-curve and so Y is a singular del Pezzo surface of degree 4. More explicitly,
since p1 lies on a line, the point p0 = [1, 0, 0, 0, 0] will be a singularity. Any (possibly singular)
del Pezzo surface of degree 4 inside P4 can be written as the intersection of two quadrics.
Since p0 ∈ Y , we can write Y = V (Q1, Q2) with

Q1(x) = x1L1(x2, x3, x4, x5) − q1(x2, x3, x4, x5),
Q2(x) = x1L2(x2, x3, x4, x5) − q2(x2, x3, x4, x5)

(7.6.2)

and where Li, qi ∈ OK [x2, . . . , x5] are linear and quadratic forms respectively. The Jacobian
criterion applied to the singular point p1 implies that L1 and L2 are proportional, so that there
exist J ∈ OK [x2, . . . , x5] and a ∈ OK such that L1 = J and L2 = aJ .
Let now Z ⊂ P3 be the quadric surface defined by aq1(x2, x3, x4, x5) = q2(x2, x3, x4, x5). The
projection [x1, . . . , x5] ↦→ [x2, . . . , x5] then defines a morphism Y \ {p0} → Z. Moreover, it
is easily seen that

ψ[(x2, . . . , x5]) = [q1(x2, . . . , x5), x2J(x2, . . . , x5), . . . , x5J(x2, . . . , x5)]
= [aq2(x2, . . . , x5), x2J(x2, . . . , x5), . . . , x5J(x2, . . . , x5)]

is a well-defined inverse to the projection map from Z → Y \{p0} away from the locus S ⊂ P3

defined by J = q1 = q2 = 0.
As there are O(1) rational points [x0, . . . , x5] in D \ L above a point [x1, . . . , x5], it suffices
to count x ∈ P4(K) that lie on on the image of D under the projection map with H(x) ≤ B.
Since D ⊂ Hc, any such rational point takes the shape

[t1, c5t2, c5t3, c5t4,−(c2t2 + c3t3 + c4t4)]

with t = [t1, . . . , t4] ∈ P3(K). For g ∈ K[x2, x3, x4, x5], define

gc(t2, t3, t4) = g(c5t2, c5t3, c5t4,−(c2t2 + c3t3 + c4t4)).

Similarly, for t ∈ P3(K), we define

H(c)(t) = H(t1, c5t2, c5t3, c5t4,−(c2t2 + c3t3 + c4t4)).
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Upon setting

N ′
c(B) = #{t ∈ P3(K) : H(c)(t) ≤ B, aq1,c(t2, t3, t4) = q2,c(t2, t3, t4) = t1J(t2, t3, t4)},

it transpires from (7.6.2) that Nc(B) ≪ N ′
c(B). Our goal is to show the following estimate,

where by abuse of notation we denote by Hc also the hyperplane in P3 defined by c2x2 +
c3x3 + c4x4 + c5x5 = 0.

Proposition 7.6.1. Assume that

(i) Hc ∩ S = ∅, where S ⊂ P3 is the variety defined by J = q1 = q2 = 0,

(ii) Hc and Z intersect transversally,

(iii) Hc and Z ∩ {J = 0} intersect transversally.

Then
N ′

c(B) ≪ B1/2+ε
(︂
∥c5∥−1/2

∞ + ∥c5∥1/2
∞ N(∆(c))−1/3

)︂
,

where ∆(c) is the discriminant of the quadratic form aq1,c − q2,c.

Suppose for a moment that Proposition 7.6.1 is proven already. After splitting |c5|ν for ν | ∞
into dyadic intervals, one readily verifies that∑︂

c∈Z3
∥c∥∞≪B1/5

∥c5∥−1/2
∞ ≪ B7/10.

Moreover, we can also split N(∆(c)) into dyadic intervals, say N(∆(c)) ∼ β and ∥c∥∞ ∼ α
with α ≪ B1/5 and β ≪ α6. As ∆(c) is homogeneous of degree 6, we can use Lemma 7.2.17
to deduce that

α1/2β−1/3 ∑︂
c∈Z3

∥c∥∞∼α
N(∆(c))∼β

1 ≪ α7/2β−1/6 ≪ α7/2.

Summing over α gives ∑︁α≪B1/5 α7/2 ≪ B7/10. As there are O(α6ε) = O(Bε) possibilities
for β, in total we obtain a contribution of B6/5+ε under the assumption that the conditions
of Proposition 7.6.1 are satisfied. To deal with the remaining cases, we need the following
lemma.

Lemma 7.6.2. There is a Zariski closed subset W ⊂ P3 whose irreducible components have
dimension at most 2 such that if c ∈ P3 fails (i), (ii) or (iii) in Proposition 7.6.1, then c lies
in W .

Proof. We begin with a preliminary observation. We claim that the variety S ⊂ P3 is 0-
dimensional. Suppose for a contradiction that there exists a positive dimensional irreducible
component E ⊂ S. Then by looking at the defining equations of Y , it becomes clear that the
closure E ′ of A1 ×E is contained in Y . However, E ′ has dimension 2 and Y is an irreducible
surface, so they must coincide. It is clear that E ′ is contained in the hyperplane defined by L
inside P4, but del Pezzo surfaces are not contained in any hyperplane under the anti-canonical
embedding.
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If c ∈ P3 fails (i), then Hc ∩ S ̸= ∅. From what we have just shown, it follows that S is a
union of O(1) points in P3. In particular, Hc ∩ S ̸= ∅ implies that Hc contains one of these
points, which forces c to lie in one of O(1) irreducible subvarieties of codimension at least 1
in P3.

Next, assume that c does not satisfy (ii). This implies that c lies on the dual variety of Z or
intersects the singular locus of Z. As Z is is birational to X, it is again a (possibly singular)
del Pezzo surface and hence has at most isolated singularities. This again implies that c lies
on O(1) irreducible subvarieties of codimension at least 1 in P2.

Finally, suppose that c fails (iii). Note that Z ∩ {J = 0} cannot be a double line, as it
corresponds birationally to a hyperplane section containing L of X. As X is smooth, this
implies that hyperplane sections are reduced. It follows that Z ∩ {J = 0} is isomorphic to a
plane conic. If it is smooth, then the failure of (iii) implies that c lies on the dual variety of
Z ∩ {J = 0} inside P3, which has codimension at least 1. When it is not smooth, then it is a
union of two lines that intersect in a unique point P ∈ P3 and Hc has tangential intersection if
and only if P ∈ Hc, which again forces c to lie on a linear subspace of P3 of dimension 2.

Suppose now that c does not meet the requirements of Proposition 7.6.1. By Proposition 7.2.13
we have Nc(B) ≪ B1/2. Moreover, it follows from Lemma 7.6.2 that c lies on O(1) irreducible
subvarieties of dimension at most 2 inside P3. By (7.2.3) the number of such c ∈ P3(K) with
H(c) ≪ B1/5 is O(B3/5). Hence we get an overall contribution of O(B11/10) to (7.6.1) from
this case, which is sufficient. To complete the case e = 4 and d = 5, we are therefore left
with proving Proposition 7.6.1.

Proof of Proposition 7.6.1. Let t = (t2, t3, t4) ∈ Z2 be a representative for t ∈ P2(K) such
aq1,c(t) = q2,c(t) and write

a = ⟨q1,c(t), c5t2Jc(t), c5t3Jc(t), c5t4Jc(t),−Jc(t)(c2t2 + c3t3 + c4t4)⟩.

Let C be the ideal generated by the resultant of the homogeneous forms q1,c, q2,c, Jc. Note
that if C = 0, then Jc, q1,c and q2,c share a common root in P1, which implies that Hc

has non-empty intersection with S. As we assume that (i) holds, this is impossible. Since
∥c∥∞ ≪ B1/5, we immediately get N(C) ≪ BA. In addition, because t ∈ Z2, we clearly have
a | AC⟨c5⟩, where A = a1 · · · ah and a1, . . . , ah are the fixed representatives of the class group
of K.

We then have H(c)(ψ(t)) ≤ B if and only if

∥q1,c(t), c5t2Jc(t), c5t3Jc(t), c5t4Jc(t),−Jc(t)(c2t2 + c3t3 + c4t4)∥∞ ≤ BN(a). (7.6.3)

Note that in the above display we may also replace q1,c by aq2,c. As we assume that q1,c, q2,c

and Jc do not have a common root in K, the inequality (7.6.3) together with Lemma 7.2.11
implies that

∥t∥∞ ≪ (BN(a))A.

Let us now write a = b1b2, where b1 = ⟨a, Jc(t)⟩, so that in particular b1 | C and b2 | A⟨c5⟩.
From (7.6.3) we get that

∥Jc(t)∥∞∥c5∥∞∥(t2, t3, t4)∥∞ ≤ H(c)(ψ(t))N(a) ≤ BN(a),
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and so we must have that Jc(s, t) ≤ B1/2N(b1)∥c5∥−1/2
∞ or ∥t∥∞ ≤ B1/2N(b2)∥c5∥−1/2

∞ ≪
B1/2∥c5∥1/2

∞ , where we used that b2 | A⟨c5⟩. In particular, it follows from our discussion so far
that

N ′
c(B) ≤

∑︂
b1|C

∑︂
b2|A⟨c5⟩

(︂
n1((BN(a))A, B1/2N(b1)∥c5∥−1/2

∞ ) + n2(B1/2∥c5∥1/2
∞ )

)︂
,

where for positive reals R1, R2 we have set

n1(R1, R2) = #{t ∈ Z2 : ∥t∥∞ ≪ R1, ∥Jc(t)∥∞ ≪ R2, b1 | Jc(t), aq1,c(t) = q2,c(t)}

and
n2(R1) = #{t ∈ Z2 : ∥t∥∞ ≪ R1, aq1,c(t) = q2,c(t)}.

Let us first focus on estimating n1(R1, R2). Let Cc be the conic defined by aq1,c(t) =
q2,c(t) inside P2(K) and note that since we assume that (ii) holds, Cc is geometrically
irreducible. There are two possibilities: Either there is no point t ∈ Cc(K) with H(t) ≪
R1, in which case n1(R1, R2) = 0, or such a point exists and we can use it to obtain a
parameterisation P1(K) → Cc(K). Explicitly, this is done by sending a line through the
point to its unique residual intersection point with the conic. In this way we obtain quadratic
forms g1, g2, g2 ∈ OK [u, v] without a common factor such that the map ψ : P1 → Cc given
by [s, t] ↦→ [g1(s, t), g2(s, t), g3(s, t)] gives a bijection of P1(K) with Cc(K). As we assume
that the height of the initial point is bounded by R1, it is clear that we can take the quadratic
forms in such a way that ∥gi∥ ≪ RA

1 .

Let us define Q(s, t) = Jc(g1(s, t), g2(s, t), g3(s, t)). We claim that Q(s, t) is square-free. To
see this, note that if it has a double root [s0, t0], then P0 = [g1(s0, t0), g2(s0, t0), g3(s0, t0)]
will satisfy Jc(P0) = 0 and P0 ∈ Cc. In particular, it will be a double point of Cc ∩ {Jc =
0} = Z ∩ {J = 0} ∩Hc. As we assume that (iii) holds, this is impossible, which verifies the
claim.

It is clear that ∥Q∥ ≪ ∥Jc∥ maxi=1,2,3 ∥gi∥ ≪ BARA
1 , so that if ∥Q(s, t)∥∞ ≪ R2 holds,

then we must also have ∥(s, t)∥∞ ≪ (BR1R2)A for any (s, t) ∈ Z1 by Lemma 7.2.11. In
particular, we have

n1(R1, R2) ≤ #{(s, t) ∈ Z1 : ∥(s, t)∥∞ ≪ (BR1R2)A, b1 | Q(s, t), ∥Q(s, t)∥∞ ≪ R2}.

As Q is square-free, we can invoke Corollary 7.2.16 to bound this last quantity and deduce
that

n1((BN(a))A, B1/2N(b1)∥c5∥−1/2
∞ ) ≪ (BAN(a)A∥Q∥)ε B1/2

∥c5∥1/2
∞

≪ B1/2+ε∥c5∥−1/2
∞ ,

where we used that N(a),N(b1), ∥Q∥ ≪ BA.

Next we turn to n2(R1). Let ∆(c) be the discriminant of the quadratic form aq1,c − q2,c and
let ∆0(c) be the ideal generated by the 2 × 2 minors of the matrix underlying aq1,c − q2,c.
Note that as we assume that (ii) holds, we must have ∆(c) ̸= 0. Applying Corollary 7.3.6
directly to n2(R1) gives

n2(B1/2∥c5∥1/2
∞ ) ≪

⎛⎝1 + B1/2∥c5∥1/2
∞ N(∆0(c))1/2

N(∆(c))1/3

⎞⎠N(∆(c))ε.
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We clearly have N(∆(c))ε ≪ Bε. Moreover, we claim that N(∆0(c)) is in fact bounded. To
see this, first assume that the 2 × 2 minors Mij(c) have a common zero in K. This would
imply that a hyperplane section of the quadric surface Z is a double line. However, hyperplane
sections of Z correspond birationally to hyperplane sections containing L of our original quintic
del Pezzo surface X and hence are reduced. By Hilbert’s Nullstellensatz we can find forms
fijk ∈ OK [x1, . . . , x4] and ak ∈ OK \ {0} such that

akx
d
k =

∑︂
fijkMij(x1, . . . , x4)

as an identity in OK [x1, . . . , x4] for k = 1, . . . , 4. It follows that

N(∆0(c)) ≪ N(a1c
d
1, . . . , a4c

d
4) ≪ 1

for c ∈ Z3, as claimed. Using the usual divisor bound for ideals, it follows from our discussion
so far that

Nc(B) ≪
∑︂
b1|C

∑︂
b2|c5

⎛⎝B1/2+ε∥c5∥−1/2
∞ + B1/2+ε∥c5∥1/2

∞
N(∆(c))1/3

⎞⎠
≪ B1/2+ε

(︂
∥c5∥−1/2

∞ + ∥c5∥1/2
∞ N(∆(c))−1/3

)︂
,

which is what we wanted to show.

d = 4
Next we assume Xc = D∪L, where L ⊂ X is a line and D ⊂ X is an irreducible cubic curve,
both defined over K. There are at most 16 lines in X, and so we may restrict our attention
to a specific one. After a suitable change of variables L is given by x2 = x3 = x4 = 0 if we
work with coordinates x0, . . . , x4 on P4. It follows that X is defined by

x0L1 + x1K1 +Q1 = x0L2 + x1K2 +Q2 = 0, (7.6.4)

where L1, L2, K1, K2 ∈ OK [x2, x3, x4] are linear and Q1, Q2 ∈ OK [x2, x3, x3] are quadratic
forms respectively. If L1 and L2 are proportional, then [1, 0, . . . , 0] is a singular point of X,
which is impossible. We can therefore eliminate x0 from (7.6.4) to obtain the equation

C(x2, x3, x4) + x1Q(x2, x3, x4) = 0 (7.6.5)

for some cubic form C ∈ OK [x2, x3, x4]. Any hyperplane containing L is defined by
c ∈ P4(K) of the shape c = [0, 0, c2, c3, c4]. Without loss of generality, we may assume that
(0, 0, c2, c3, c4) ∈ Z4 is a representative of c such that ∥c4∥ = ∥c∥, so that ∥c4∥ ≍ H(c)1/sK .
Any rational point t ∈ Hc takes the shape t = [t0, t1, c4t2, c4t3,−(c2t2 + c3t3)] with
[t0, . . . , t3] ∈ P3(K). In particular, the equation (7.6.5) transforms into

Cc(t2, t3) = t1Qc(t2, t3), (7.6.6)

where we write Gc(t2, t3) = G(c4t2, c4t3,−c2t2 − c3t3) for any G ∈ OK [x, y, z]. Moreover,
it suffices to count t′ = [t1, t2, t3] ∈ P2(K) such that (7.6.6) holds, since there are O(1)
available t lying above a given t′, and we redefine Nc(B) to be this quantity. Our goal is to
establish the following estimate.

Proposition 7.6.3. If Qc is square-free, then

Nc(B) ≪ B2/3+ε

∥c4∥2/3
∞

.
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Suppose for a moment that Proposition 7.6.3 holds. The contribution from such c to (7.6.1)
is then

B2/3+ε
∑︂

c∈Z2

∥c∥∞≪B1/4

∥c4∥−2/3
∞ ≪ B5/4+ε,

which is satisfactory. It remains to deal with the case when Qc has a repeated root. Note that
the cubic surface Y defined by (7.6.5) is birational to X and in particular again a (possibly
singular) del Pezzo surface. If the curve Z defined Q = 0 defines a double line in P2, then
one can check via the Jacobian criterion that the singular locus of Y has dimension at least
1, which is impossible. Thus Z has only isolated singularities. Now if Qc has a double
root, then Hc intersects the singular locus of Z, or c lies on the dual variety of Z inside P2.
Either case defines a variety inside P2 of dimension at most 1. In particular, there are most
O(B1/2) available c with H(c) ≪ B1/4 by (7.2.3). Moreover, Proposition 7.2.13 implies that
Nc(B) ≪ B2/3, so that we have a contribution of O(B7/6), which is sufficient.

Proof of Proposition 7.6.3. If D is irreducible, but not geometrically irreducible, then it
contains O(1) points by Bézout’s theorem, which is sufficient. So we assume from now on that
D is geometrically irreducible. In particular, Qc and Cc do not share a common factor. The
equation (7.6.6) therefore defines a singular cubic plane curve C ′ ⊂ P2 with a singularity at
t0 = [1, 0, 0] and hence is rational over K. We obtain an explicit bijective morphism P1 → C ′

by sending a line to the unique residual intersection point with C ′ and t0. Explicitly, this is
given by [s, t] ↦→ [Cc(s, t), sQc(s, t), tQc(s, t)]. It follows that Nc(B) is bounded from above
by

#{[s, t] ∈ P1(K) : H([Cc(s, t), c4sQc(s, t), c4tQc(s, t),−Qc(s, t)(c2s+ c3t)]) ≪ B}

and we define the last quantity to be N ′
c(B). As ∥c∥ ≪ B1/4sK , it is clear that ∥Qc∥, ∥Cc∥ ≪

BA. Thus if (s, t) ∈ Z1 is counted by N ′
c(B), then Lemma 7.2.11 implies that ∥(s, t)∥∞ ≪ BA.

Let C′ be the ideal generated by the resultant of Qc(s, t) and Cc(s, t) and define C = C′a1 · · · ah.
By construction, as (s, t) ∈ Z1, we must then have ⟨Cc(s, t), sQc(s, t), tQc(s, t)⟩ | C for any
(s, t) ∈ Z1 and N(C) ≪ max{∥Qc∥, ∥Cc∥}A ≪ BA. Suppose now that

a = ⟨Cc(s, t), c4sQc(s, t), c4tQc(s, t), Qc(s, t)(c2s+ c3t)⟩.

If we write b1 = ⟨a, Qc(s, t)⟩ and a = b1b2, then we must have b1 | C and b2 | ⟨c4, c2s+ c3t⟩.
Moreover, for any (s, t) ∈ Z1 we have

H([Cc(s, t),c4sQc(s, t), c4tQc(s, t),−Qc(s, t)(c2s+ c3t)])
= N(a)−1∥Cc(s, t), c4sQc(s, t), c4tQc(s, t),−Qc(s, t)(c2s+ c3t)∥∞

≥ N(a)−1∥c4∥∞∥Qc(s, t)∥∞∥(s, t)∥∞

In particular, if (s, t) is counted by N ′
c(B), then we must have

∥Qc(s, t)∥∞ ≤ N(b1)B2/3∥c4∥−2/3
∞ or ∥(s, t)∥∞ ≤ N(b2)B1/3∥c4∥−1/3

∞ . (7.6.7)

Let us first bound the contribution from those (s, t) for which the first alternative holds. As
we have b1 | Qc(s, t), by Corollary 7.2.16 we have that the contribution is up to a constant at
most

Bε∥Qc∥ε B2/3

∥c4∥2/3
∞

≪ B2/3+ε

∥c4∥2/3
∞

.
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7. Rational points on del Pezzo surfaces of low degree over global fields

Let us now deal with the contribution form those (s, t) for which the second alternative in (7.6.7)
holds. For any such (s, t), we must have b2 | c2s+ c3t. As b2 | c4 and N(⟨c2, c3, c4⟩) ≪ 1, it
follows that the cardinality of the image of Z1 in

#{(s, t) ∈ (OK/b2)2 : c2s+ c3t ≡ 0 mod b2}

is O(1). Denoting the the image of Z1 in the set above by T , any (s, t) must be congruent
to some element in T modulo b2, and hence the number of such (s, t) with ∥(s, t)∥∞ ≪
B1/3N(b2)∥c4∥−1/3

∞ is O(B2/3∥c4∥−2/3
∞ ). As b1 | b, b2 | c4 and N(C) ≪ BA, N(c4) ≪ B1/4,

the familiar divisor bound for ideals shows that number of available b1 and b2 is O(Bε). In
summary, we have

N ′
c(B) ≪ B2/3+ε

∥c4∥2/3
∞

,

which is what we wanted to show.

d = 3

Suppose that Xc contains a line L ⊂ X. Since there are at most 27 lines in X defined over
K, it suffices to bound Nc(B) when Xc contains a fixed line L ⊂ X. After a suitable change
of variables L is given by x1 = x2 = 0, in which case we may assume that F is of the shape

F (x) = x1Q1(x) + x2Q2(x)

for some quadratic forms Q1, Q2 ∈ OK [x1, . . . , x4]. Moreover, the fact that L ⊂ Vc also
implies that c = [s, t, 0, 0]. Any x ∈ P3(K) that lies on L is necessarily of the form
x = [tx1,−sx1, x2, x3]. In particular, if x satisfies F (x) = 0, then either x1 = 0, in which
case x ∈ L, or x is a root of

Qs,t(x) := tQ1(tx1,−sx1, x2, x3) − sQ2(tx1,−sx1, x2, x3).

It is clear that if (x1, x2, x3) ∈ Z2 satisfies H(tx1,−sx1, x2, x3) ≤ B, then we must have
∥x1∥∞ ≪ B∥(s, t)∥−1

∞ . Let ∆(s, t) be the discriminant of Qs,t considered as a ternary
quadratic form in (x1, x2, x3), so that ∆(s, t) is homogeneous of degree 5. In addition, define
∆0(s, t) to be the ideal generated by the 2 × 2 minors of the matrix underlying Qs,t. Then
Lemma 7 of [27] shows that N(∆0(s, t)) ≪ 1, and hence Proposition 7.3.4 implies

Ns,t(B) ≪ Bε + B1+ε

∥(s, t)∥1/3
∞ N(∆(s, t))1/3

,

where we used the divisor estimate τ(N(∆(s, t))) ≪ Bε, since N(∆(s, t)) ≪ B5/3. There are
O(B2/3) available (s, t) ∈ Z1 with H(s, t) ≪ B1/3 and hence if Bε dominates in the estimate
above, we get a contribution of O(B2/3+ε), which is sufficient. Let us now put ∥(s, t)∥∞ and
N(∆(s, t)) into dyadic intervals, say ∥(s, t)∥∞ ≍ α and N(∆(s, t)) ≍ β, where α ≪ B1/3

and β ≪ B5/3. By Lemma 7.2.17 the number of available (s, t) is O(αβ1/5), and hence if the
second term dominates we get a contribution of

B1+εα2/3β−2/15.

Summing over dyadic intervals shows that the overall contribution is O(B11/9+ε), which is
sufficient and therefore completes our treatment of cubic surfaces.
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e = d − 2
Note that this case is only relevant when e = 5 and hence d = 3. Suppose now that
Xc = B ∪ C, where C is irreducible of degree 3. If B is a conic, we are in the context of
Theorem 7.1.3, so that we may assume that B is the union of two skew lines L1, L2. There are
O(1) pairs of skew lines in X, and so we may restrict our attention to a fixed pair. Since L1
and L2 are skew, any hyperplane containing them must contain the three-dimensional linear
space they span. This forces c to lie on a line in P5, and hence the number of such hyperplanes
of height O(B1/5) is O(B2/5). Moreover, by Proposition 7.2.13 the curve C contains O(B2/3)
rational points of height B, so that the contribution is O(B2/5+2/3) = O(B16/15), which is
again satisfactory and thus completes our proof of Theorem 7.1.2 for d = 3, 4, 5.

7.7 del Pezzo surfaces of degree 2
The anti-canonical model of a smooth del Pezzo surface of degree 2 is given by a hypersurface
in weighted projective space P(2, 1, 1, 1) in the variables (y, u, v, w) of the form

X : y2 = g(u, v, w),

where g ∈ OK [u, v, w] is a non-singular quartic form. For [y, u, v, w] ∈ P(2, 1, 1, 1)(K), define

H(y, u, v, w) =
∏︂

ν∈ΩK

max{|y|1/2
ν , |u|ν , |v|ν , |w|ν}.

Let U ⊂ X be the complement of the exceptional curves of X. The counting function with
respect to the anti-canonical height function of X is then given by

N(B) = # {[y, u, v, w] ∈ U(K) : H([y, u, v, w]) ≤ B} .

Let π : X → P2 be the map induced by the anti-canonical divisor, that is π([y, u, v, w]) =
[u, v, w]. Given c ∈ P2(K) we let Hc ⊂ P2 be the line defined by x · c = 0. We may consider
the pullback of Hc under π. Writing Xc = π−1(Hc), the defining curve for Xc can be written
as

y2 = gc(x, t)
for a suitable binary quartic form gc. If we write

Nc(B) = # {t ∈ (Xc ∩ U)(K) : H(t) ≤ B} ,

then using Lemma 7.2.12 we find

N(B) ≤
∑︂

c∈P2(K)
H(c)≪B1/2

Nc(B).

We will split the study of Nc(B) into three cases.
First consider the case where gc(x, t) has no multiple factors. If Xc has no rational points of
height at most B then trivially Nc(B) = 0 for such c. Otherwise, let x0 be a rational point
of Xc with H(x0) ≤ B. Then Xc is non-singular and defines an elliptic curve, as is shown
in [53, Chapter 8]. In particular, it is shown there that there exists an isomorphism (which is
independent of c) that birationally maps Xc to an elliptic curve in Weierstrass normal form

Ec : ZY 2 = X3 + AcXZ
2 +BcZ

3.
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7. Rational points on del Pezzo surfaces of low degree over global fields

Note that any rational point x of Xc is mapped to a rational solution P (x), say. Since
the birational transformation only depends polynomially on the coefficients of gc there exist
absolute constants A,C > 0 such that

∥P (x)∥ ≤ C∥gc∥A∥x0∥A∥x∥A.

Finally, since different rational points are mapped to different rational points under this
birational transformation we find

Nc(B) ≪ N(Ec, CB
A),

where N(E,R) denotes the number of rational points of an elliptic curve E ⊂ P2 up to height
R with respect to the usual height on P2. Thus, by Proposition 7.1.4 we find that in this case

Nc(B) ≪ Bε.

There are O(B3/2) rational points c ∈ P2(K) with H(c) ≪ B1/2, so that the total contribution
in this case is bounded by Oε(B3/2+ε).
Next, we consider the case when gc(x, t) has a multiple factor but Xc is geometrically
irreducible. This implies that gc = L2Q, where L,Q ∈ K[x, t]. Note that in fact L and
hence also Q must have coefficients in OK , because we assume char(K) ̸= 2. Indeed, if
not then Q must also be square, which is impossible as then y2 − gc is reducible. Hence we
may assume that L and Q are both defined over K. There are most O(1) possible choices
(x, t) ∈ P1(K) such that L(x, t)Q(x, t) = 0, which also forces y = 0. It thus suffices to bound
the contribution from those (y, x, t) for which L(x, t)Q(x, t) ̸= 0. If we write z = y/L(x, t),
then the equation y2 = L2(x, t)Q(x, t) implies that z2 = Q(x, t). Moreover, if H(y, x, t) ≤ B,
then z will have a representative in OK with ∥z∥∞ ≪ B2 and (x, t) a representative in O2

K

with ∥(x, t)∥∞ ≪ B. It follows that

Nc(B) ≤ #{(z, x, t) ∈ P2(K) : ∥(x, t)∥∞ ≪ B, ∥z∥∞ ≪ B2, z2 = Q(x, t)}.

The binary form Q(x, t) must be square-free, as else y2 −L2Q would be reducible, a case that
we excluded by assumption. In particular, z2 = Q(x, t) defines an irreducible conic in P2 and
we can use Proposition 7.3.4 to deduce that

Nc(B) ≪ B4/3.

We will now bound the number of c ∈ P2(K) such that gc has a multiple factor. This happens
precisely if the hyperplane Hc has singular intersection with the quartic curve V (g) ⊂ P2 and
hence c must lie on the dual curve V (g)∗ ⊂ P2 of V (g). As V (g) is a smooth quartic curve
and char(K) ̸= 2, 3, the dual curve is an irreducible curve of degree 12. By Proposition 7.2.13
it follows that the number of c ∈ V (g)∗ with H(c) ≪ B1/2 is O(B1/12). Therefore in total
we get a contribution of O(B17/12) from this case.
Finally and lastly we assume that y2 −gc(x, t) is geometrically reducible. This happens precisely
if gc is a perfect square as a polynomial in K[x, t]. In particular, any such Hc is a bitangent
vector of V (g). The 56 exceptional curves in X correspond precisely to the preimages of the
28 bitangents of V (g) under π, and so any such point on Xc is excluded from our count.
We conclude that in total we obtain N(B) ≪ε B

3/2+ε, which suffices for Theorem 7.1.2 when
d = 2.
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7.8 del Pezzo surfaces of degree 1
Via the anticanonial embedding, a non-singular del Pezzo surface X of degree 1 may be
realised as a hypersurface in weighted projective space P(3, 2, 1, 1) in the variables (y, x, u, v)
given by an equation of the form

X : y2 = x3 + g(u, v)x+ h(u, v),
where g and h are binary forms of degrees 4 and 6, respectively. An anti-canonical height
function is given by

H(t) =
∏︂

ν∈ΩK

max{|y|1/3
ν , |x|1/2

ν , |u|ν , |v|ν}

for t = [y, x, u, v] ∈ P(3, 2, 1, 1)(K). The counting function of interest is then given by
N(B) = #{t ∈ X(K) : H(t) ≤ B}.

In this case we are aiming for an upper bound of the form O(B2+ε), and so we do not have
to remove any of the exceptional curves or singular members of | − KX |. Moreover, the
point [1, 1, 0, 0] is the unique base point of the anti-canonical linear system, which induces the
rational map [y, x, u, v] ↦→ [u, v] ∈ P1 and so we may restrict our attention to counting those
points for which (u, v) ̸= 0.
Note that upon replacing [y, x, u, v] ∈ P(3, 2, 1, 1)(K) with [µ3y, µ2x, µu, µv] for a suitable
unit µ ∈ O×

K , we see from Lemma 7.2.7 that every element of P(3, 2, 1, 1)(K) with height at
most B has a representative (y, x, u, v) ∈ O4

K with ∥y∥1/3, ∥x∥1/2, ∥(u, v)∥ ≪ B1/sK . It thus
follows that

N(B) ≤
∑︂

(u,v)∈O2
K

0<∥(u,v)∥≪B1/sK

Nu,v(B),

where
Nu,v(B) := #{(y, x) ∈ O2

K : ∥y∥ ≪ B3/sK , ∥x∥ ≪ B2/sK , y2 = x3 + g(u, v)x+ h(u, v)}.
Define ∆(u, v) = 4g(u, v)2 + 27h(u, v)3. Note that this is a homogeneous polynomial of
degree 12. If (u, v) ∈ O2

K is such that ∆(u, v) ̸= 0 then ZY 2 = X3 +g(u, v)XZ2 +h(u, v)Z3

defines an elliptic curve in P2 and any integral point (y, x) ∈ O2
K gives rise to a unique rational

point on the elliptic curve. By Proposition 7.1.4 we thus find N(u,v)(B) ≪ Bε in this case.
Since the number of (u, v) ∈ O2

K with ∥u, v∥ ≪ B1/sK is O(B2) by Lemma 7.2.6, we get a
total contribution of Oε(B2+ε), which is sufficient.
It remains to estimate ∑︁(u,v) Nu,v(B) where the sum runs over (u, v) ∈ O2

K that satisfy
∆(u, v) = 0. Note first that there are at most twelve solutions [ui, vi], i = 1, . . . , 12 to
∆(u, v) = 0 in P1(K). Further, any (u, v) ∈ O2

K such that [u, v] = [ui, vi] in P1(K) must be
an OK-multiple of (ui, vi). By Lemma 7.2.6 we know that there are most O(B∥(ui, vi)∥−1

∞ ) =
O(B) pairs (u, v) = λ(ui, vi) with ∥λ∥ ≪ B1/sK and N(λ) ≪ B∥(u, v)∥−1

∞ . We thus find
that the number of summands that we currently consider is bounded by O(B), where the
implied constant is independent of X. Moreover, it is clear that

Nu,v(B) ≤ #{(y, x) ∈ O2
K : ∥(y, x)∥ ≪ B3/sK , y2 = x3 + g(u, v)x+ h(u, v)}

and that the affine curve defined by y2 = x3 + g(u, v)x + h(u, v) ⊂ A2 is irreducible. The
affine version of the Bombieri-Pila bound generalised to global fields by Paredes and Sasyk [155,
Theorem 1.9], implies that the last quantity is bounded by O(B), where the implied constant
is independent of X. Hence we obtain a total contribution of O(B2), which completes the
proof of Theorem 7.1.2 for d = 1.
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CHAPTER 8
Canonical singularities on moduli spaces
of rational curves via the circle method

This chapter is based on [86].

8.1 Introduction
The interplay between geometry and number theory has a long and rich history. Examples
such as Deligne’s resolution of the Weil conjectures [66, 67], which serves as a powerful tool
for estimating exponential sums and makes crucial use of the heavy machinery of algebraic
geometry, shows that the impact of geometry on number theory cannot be underestimated.
Rather surprisingly, sometimes this flow of information can be reversed and tools from analytic
number theory can be used to give information about objects of geometric interest. In particular,
building on ideas of Ellenberg and Venkatesh, Browning and Vishe [42] have demonstrated how
one can use the circle method over function fields to deduce crude geometric properties of the
moduli space M0,0(X, e) of rational curves of degree e on a smooth hypersurface X ⊂ Pn−1

of degree d when n is large compared to d. The aim of this chapter is to enrich this flow of
information and develop a suitable form of the circle method to show that M0,0(X, e) has
only canonical singularities under suitable assumptions on n, d and e.
Let

µ = n(e+ 1) − de− 5. (8.1.1)
A naive heuristic based on Riemann–Roch leads one to expect that dim M0,0(X, e) = µ.
Assuming that n ≥ d + 3 and X is general, Riedl and Yang [163] have shown that this
is indeed the case and also established the irreducibility of M0,0(X, e). Assuming d ≥ 3,
the methods based on analytic number theory from Browning and Vishe [44] allow one to
deal with any smooth hypersurface at the cost of requiring the more stringent assumption
n > (5d− 4)2d−1. This was later refined to n > (2d− 1)2d−1 by Browning and Sawin [42].
Moreover, by developing a motivic version of the circle method, Bilu and Browning [13]
established a stabilisation result for More(P1, X) — the space of degree e morphisms from P1

to X — in the Grothendieck ring of varieties, which implies that M0,0(X, e) is irreducible
and of the expected dimension for smooth X as soon as n > (d− 1)2d−1.
Apart from this crude geometric information about M0,0(X, e), very little is known about
their singularities. When d ≥ 3 and n ≥ 2d+ 1, Harris, Roth and Starr [94] have shown that
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M0,0(X, e) is generically smooth. Moreover, Browning and Sawin [42] give upper bounds for
the dimension of the singular locus of M0,0(X, e). In this work we are concerned with the
qualitative nature of the singularities that can occur on M0,0(X, e). Even for smooth Fano
hypersurfaces one cannot hope in general that M0,0(X, e) is smooth, as shown by Example 2.2
of [42], and so a natural question is how bad the singularities can be.
When d = 1 or d = 2, then work of Kontsevich [126] and Pandharipande [121] shows that the
spaces M0,0(X, e) are smooth and irreducible for all e ≥ 1. Our main result is as follows.

Theorem 8.1.1. Suppose that X ⊂ Pn−1 is a smooth hypersurface of degree d ≥ 3 over a
field of characteristic 0. If

n >

⎧⎨⎩(d2 + d− 4)2d−1 when e = 1,
(de+ 1)(d− 1)2d−1 when e ≥ 2,

then M0,0(X, e) has only canonical singularities.

Turning to the particular case e = 1, the space F1(X) = M0,0(X, 1) is the Fano variety
variety of lines of X. It is a classical result due to Altman and Kleiman [1] that the Fano
variety of lines of any smooth cubic hypersurface X ⊂ Pn−1 is smooth for n ≥ 5. If X ⊂ Pn−1

is a hypersurface of degree d ≥ 4, then F1(X) is still known to be smooth, if one assumes
that X is general and d ≤ 2n− 5 [124, Theorem V.4.3]. In particular, Theorem 8.1.1 gives
new information about F1(X) for smooth X as soon as d ≥ 4 and n > (d2 + d− 4)2d−1.
Theorem 8.1.1 gives a partial answer to a question by Starr [190], where he asked which type
of singularities can occur on the spaces M0,0(X, e). In the same work he proved that for
e ≥ 2 and d ≥ 3 the spaces M0,0(X, e) have only canonical singularities if d+ e+ 1 ≤ n and
X is general. While Theorem 8.1.1 puts stronger constraints on the number of variables than
Starr’s result, it has the advantage that it applies to any smooth hypersurface and not just
generic hypersurfaces.
In forthcoming work with Hase-Liu [87], we generalise Theorem 8.1.1 to moduli spaces of
higher genus curves and also prove that these moduli spaces only have terminal singularities.
Along the way we are able to remove the dependence of n on e and show that the results hold
provided n ≫ d32d and e is sufficiently large with respect to g.

Outline
We will now give a brief overview of the main steps in the proof of Theorem 8.1.1. Instead
of working with M0,0(X, e) directly, it suffices to work with the naive parameter space
More(P1, X) of degree e morphisms from P1 to X. Our proof relies on studying the jet
schemes Jm(More(P1, X)) for any integer m ≥ 0. The link to canonical singularities is
provided by a result due to Mustaţă [150], which states that a variety Y has canonical
singularities if and only if Jm(Y ) is irreducible for all m ≥ 0. More precisely, we will deduce
Theorem 8.1.1 from the following result.

Theorem 8.1.2. Assume that X ⊂ Pn−1 is a smooth hypersurface of degree d ≥ 3 over a
field K with char(K) > d if it is positive. Then providing

n >

⎧⎨⎩(d2 + d− 4)2d−1 when e = 1,
(de+ 1)(d− 1)2d−1 when e ≥ 2,
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8.1. Introduction

the mth jet scheme Jm(More(P1, X)) is irreducible and of dimension (m+ 1)(µ+ 3) for all
m ≥ 0.

For any variety Y , the fiber of the morphism Jm(Y ) → Y above a smooth point is isomorphic
to Am dim Y . In addition, points on M0,0(X, e) correspond to PGL2 orbits on More(P1, X),
so that the expected dimension of More(P1, X) is µ + dim PGL2 = µ + 3. In particular,
Theorem 8.1.2 confirms the naive expectation that the dimension of Jm(More(P1, X)) is
(m+ 1)(µ+ 3).

Our strategy to prove that Jm(More(P1, X)) is irreducible and of the expected dimension
follows the path paved by Browning and Vishe [44]. More precisely, after performing a spreading
out argument, it suffices to prove the corresponding result over a finite field Fq. By appealing
to the Lang–Weil estimate this is equivalent to understanding the number of Fq-points on
Jm(More(P1, X)) as q goes to to infinity, which in turn correspond to Fq[t][s]/(sm+1)-points
on X whose degree in t is bounded by e, which we solve by developing a suitable version
of the circle method. This counting problem can be interpreted as counting the number of
Fq[t]-points of bounded height on a system of m+ 1 equations in n(m+ 1) variables. Classical
applications of the circle method require the number of variables to grow roughly quadratically
in the number of equations. In particular, since for n, d and e we want to count points for
all m ≥ 0, this approach seems hopeless and Browning and Sawin [42] wrote in their work
that it does not seem possible that their method will prove that M0,0(X, e) has canonical
singularities. Nevertheless, we succeed using a modified version of the circle method, as we
shall now explain.

The key point is that we do not treat the equations for Jm(More(P1, X)) as a system of
equations, but keep working with it as a single equation over Fq[t][s]/(sm+1). Our situation
may thus be compared to that over number fields: if one wants to count solutions to a single
equation over a number field, but uses Weil restriction to consider it as a system of equations
over Q, then a naive application of the circle method would require the number of variables to
grow quadratically in the degree of the number field. However, as demonstrated by Skinner
[186], if things are set up correctly, one can essentially still treat it as one equation and obtain
completely analogous results compared to Q.

In our approach we perform harmonic analysis over Fq[s]/(sm+1)((t−1)) and then continue
along the standard lines of attack of the circle method. This includes a division into minor
and major arcs followed by a suitable form of Weyl differencing to bound the exponential sums
that arise in this process. The extraneous factor of de+ 1 in Theorem 8.1.1 arises because the
bounds we obtain for the exponential sums involved only depend on rational approximation of
the parameter modulo s. In particular, our arcs are in some sense too coarse. The reason for
this is that Diophantine approximation is significantly more difficult modulo higher powers of
s due to the presence of zero divisors and non-constant units.

The results mentioned thus far have been generalised to the setting of smooth complete
intersections of the same degree by Browning, Vishe and Yamagishi [45]. Given p1, . . . , pb ∈ P1

and y1, . . . , yb ∈ X, they further generalised their method to deal with the parameter space
More(P1, X, p1, . . . , pb; y1, . . . , yb) of degree e morphisms f : P1 → X satisfying f(bi) = pi

for i = 1, . . . , b. Their approach is based on a function field version of Rydin Myerson’s work
[166, 167] that allows one to handle systems of forms with the circle method for which the
number of variables only grows linearly in the number of equations. It seems plausible that our
work extends to the setting of [45] and it would be interesting to see whether Rydin Myerson’s
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8. Canonical singularities via the circle method

approach could be useful in the study of canonical singularities. In another direction, Hase-
Liu [95] has extended the circle method approach to shed light on the geometry of More(C,X)
when C is a curve of genus g ≥ 1. We believe that a combination of Hase-Liu’s approach
with the one developed in this paper should be capable of establishing that More(C,X) only
has canonical singularities when g ≥ 1 for suitable ranges of e and n.

8.2 Preliminaries
We will typically work with the space More(P1, X) of degree e morphisms from P1 to X
instead of M0,0(X, e). We begin by recalling some basic facts about parameter spaces of
morphisms and jet schemes.

8.2.1 Parameter spaces of morphisms
Let X ⊂ Pn−1 be a smooth hypersurface over a field K defined as the vanishing of a
homogeneous polynomial F ∈ K[x1, . . . , xn] of degree d. Recall that a morphism f : P1 → X
of degree e over K is given by a tuple (f1(s, t), . . . , fn(s, t)) of binary forms f1, . . . , fn ∈ K[s, t]
of degree e such that f1(s, t), . . . , fn(s, t) do not all share a common non-constant factor
and F (f1(s, t), . . . , fn(s, t)) vanishes identically in s and t. By identifying the space of n-
tuples of binary forms of degree e modulo the action of K× with Pn(e+1)−1, we can thus
realise More(P1, X) as an open subscheme of the closed subset of Pn(e+1)−1 defined by
F (f1(s, t), . . . , fn(s, t)) = 0.

8.2.2 Jet schemes
We now recall some basic facts about jet schemes, all of which can be found in [71, Section 2].
Let Y be a scheme of finite type over K. For every integer m ≥ 0, there exists a scheme Jm(Y )
of finite type over K such that for any k-algebra A the set of A-valued points Jm(Y )(A) is
given by Y (A[s]/(sm+1)). The scheme Jm(Y ) is unique up to a canonical isomorphism and is
called the mth jet scheme of Y .
Jet schemes are functorial in the sense that a morphism f : Y → Z of K-schemes induces
a morphism fm : Jm(Y ) → Jm(Z) for every m ≥ 0. Moreover, if f is an open or a closed
immersion, then so is fm. In particular, if Y ⊂ Pn−1 is an open subset of a closed subvariety,
then we can think of Jm(Y ) as being contained Jm(Pn−1).

8.2.3 Spreading Out
We will now begin to relate the proof of Theorem 8.1.1 to a counting problem. We use the
notation from Subsection 8.2.1 and recall that µ defined in (8.1.1) is the expected dimension
of M0,0(X, e). Since two morphisms in More(P1, X) give rise to the same rational curve if
and only if they differ by an element in PGL2, the expected dimension of More(P1, X) is

µ := µ+ 3 = n(e+ 1) − de− 2. (8.2.1)

Our main ingredient is the following result due to Mustaţă [150].

Theorem 8.2.1. Let Y be a local complete intersection scheme over a field of characteristic
0. Then Y has only canonical singularities if and only if the mth jet scheme Y is irreducible
for all m ≥ 0.
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We want to apply Theorem 8.2.1 to More(P1, X). Note that under the hypotheses of
Theorem 8.1.1, it follows from [42, Theorem 1.1] that More(P1, X) is a local complete
intersection. Hence Mustaţă’s result is applicable and Theorem 8.1.2 implies that More(P1, X)
only has canonical singularities. Now to deduce Theorem 8.1.1 from Theorem 8.1.2, recall
that M0,0(X, e) is a Deligne–Mumford stack that can be realised as the stack quotient
[More(P1, X)/PGL2]. As PGL2 is a smooth group scheme, the natural projection map
More(P1, X) → M0,0(X, e) is a smooth atlas. Having canonical singularities is a smooth
local property and so M0,0(X, e) only has canonical singularities if More(P1, X) does.
Next, we briefly recall the spreading out process as described in [44, Section 2]. To do so,
define Xe = More(P1, X) and Xe,m = Jm(More(P1, X)), so that Xe,0 = Xe. For all m ≥ 0,
the schemes Xe,m are defined over a finitely generated Z-algebra Λ, that can be explicitly
realised by adjoining the coefficients of F to Z. For any maximal ideal m ⊂ Λ the quotient
Λ/m is a finite field and Xe,m will be irreducible once we can show that Xe,m × Spec(Λ/m) is
irreducible for any maximal ideal m ⊂ Λ. By inverting d! and enlarging Λ if necessary, we may
moreover assume that the reduction of X modulo m is smooth and char(Λ/m) > d.
It follows from [151, Corollary 2.7] that any irreducible component of Xe,m has dimension at
least (m+ 1) dimXe. In addition, by Chevalley’s upper semicontinuity there exists an open
subset U ⊂ Spec(Λ) such that dimXe,m ≤ dim(Xe,m × Spec(Λ/m)) for all maximal ideals
m ⊂ U .
In view of the Lang–Weil estimates, to show that Xe,m is irreducible and of the expected
dimension, if dimXe = µ, it therefore suffices to show that

lim
q→∞

#Xe,m(Fq)
q(m+1)µ ≤ 1. (8.2.2)

We are now ready to introduce our main counting function. Given a non-singular homogeneous
form F ∈ Fq[x1, . . . , xn] of degree d, we define

Nm(e) := #{x ∈ (Fq[s]/(sm+1)[t])n : F (x) ≡ 0 mod sm+1, degt x ≤ e}. (8.2.3)

Lemma 8.2.2. Let e ≥ 1. Suppose that

Nm(e) = q(m+1)(µ+1)(1 + o(1))

as q → ∞ for all m ≥ 0. Then

lim
q→∞

q−(m+1)µ#Xe,m(Fq) ≤ 1

for all m ≥ 0.

Proof. Identifying again the space of n-tuples of binary forms of degree e up to multiplication
by scalars with Pn(e+1)−1, we clearly have

Xe ⊂ {x ∈ Pn(e+1)−1 : F (x) = 0},

since we merely dropped the coprimality condition in the definition of Xe. By functoriality
of jet schemes, we can identify Xe,m(Fq) as a subset of the set of Fq-points of the mth jet
scheme of Pn(e+1)−1, which is given by Pn(e+1)−1(Fq[s]/(sm+1)). It follows that

Xe,m(Fq) ⊂ {x ∈ Pn(e+1)−1(Fq[s]/(sm+1)) : F (x) ≡ 0 mod sm+1}.
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As Fq[s]/(sm+1) is a local ring, the collection of the Fq[s]/(sm+1)-points of Pn(e+1)−1 is

(Fq[s]/(sm+1))n(e+1) \ {0})/(Fq[s]/(sm+1))×.

Since an element of Fq[s]/(sm+1) is a unit if and only if its reduction modulo s lies in F×
q , we

have #(Fq[s]/(sm+1))× = (q − 1)qm and thus

#Xe,m(Fq) ≤ #{x ∈ Pn(e+1)−1(Fq[s]/(sm+1)) : F (x) ≡ 0 mod sm+1}

= #{x ∈ ((Fq[s]/(sm+1))[t])n : F (x) ≡ 0 mod sm+1,x ̸≡ 0 mod s, degt(x) ≤ e}
(q − 1)qm

,

where have identified binary forms of degree e with polynomials in t of degree at most e.
Dropping the condition x ̸≡ 0 mod s, we therefore have

#Xe,m(Fq) ≤ Nm(e)
(q − 1)qm

.

In particular, if
Nm(e) = q(m+1)(µ+1)(1 + o(1))

for all m ≥ 0 as q → ∞, then

#Xe,m ≤ q(m+1)µ(1 + o(1))

holds as q → ∞.

In particular, Theorem 8.1.2 and hence also Theorem 8.1.1 will be a consequence of the
following result, whose proof will be carried out in the final section.

Proposition 8.2.3. Let d ≥ 3 and assume that e ≥ 1. Suppose that

n >

⎧⎨⎩(d2 + d− 4)2d−1 when e = 1,
(de+ 1)(d− 1)2d−1 when e ≥ 2,

and that F ∈ Fq[x1, . . . , xn] is non-singular of degree d. If d < char(Fq), then for any m ≥ 0,
we have Nm(e) = q(m+1)(µ+1)(1 + o(1)) uniformly in q.

8.3 Harmonic analysis
For m ≥ 0, let K∞ = Fq((t−1)) and K(m)

∞ = K∞[s]/(sm+1). We define O = Fq[t] and
Om = (Fq[s]/(sm+1))[t], which consists of elements of the form x = x0 + sx1 + · · · smxm

with xi ∈ O for i = 0, . . . ,m. Let α = ∑︁
i≤M ait

i ∈ K∞ be such that am ̸= 0. Then we
denote by |α|0 the norm on K∞ given by |α|0 = qM and we define ∥α∥0 = |∑︁i≤−1 ait

i|0 to
be the distance to the nearest integer. We extend both to all of K∞ by |0|0 = ∥0∥0 = 0. Any
α ∈ K(m)

∞ can be written as

α = α0 + sα1 + · · · + smαm (8.3.1)

with αi ∈ K∞. We then define a norm on K(m)
∞ via |α|m = max |αi|0 and similarly set

∥α∥m = max{∥αi∥0}. Moreover, we let

T(m) = {α ∈ K(m)
∞ : |α|m < 1}
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be the analogue of the unit interval. There are reduction maps πl : K(m)
∞ → K(l)

∞ for any
m > l and by abuse of notation we shall write |α|l = |πl(α)|l for α ∈ K(m)

∞ and similarly
∥α∥l = ∥πl(α)∥l.

Let eq : Fq → C× be the additive character defined by eq(x) = exp
(︂
2πiTrFq/Fp(x)/p

)︂
and

let ψ : K∞ → C× be the standard additive character defined by∑︂
ait

i ↦→ eq(a−1),

where ∑︁ ait
i ∈ K∞ and ai ∈ Fq. We define a character on K(m)

∞ by

ψm(α) =
m∏︂

i=0
ψ(αi),

if α is given by (8.3.1). Let dα be the usual Haar measure on K∞ normalised in such a way
that ∫︁T(0) dα = 1. It is clear that K(m)

∞ is an (m+ 1)-dimensional K∞-vector space and thus
we can extend the Haar measure from K∞ to K(m)

∞ by dα = dα0 · · · dαm if α is given by
(8.3.1). We begin by recording some useful orthogonality relations.
Lemma 8.3.1. Let x ∈ Om and N ≥ 0. Then∫︂

{α∈K
(m)
∞ : |α|m<q−N }

ψm(αx)dα =

⎧⎨⎩q−(m+1)N if |x|m < qN ,

0 else.

Proof. It is clear that BN := {α ∈ K(m)
∞ : |α|m < q−N} is a compact subgroup of K(m)

∞ under
addition and that the restriction of ψm to BN defines a continuous character on it. It therefore
follows from standard harmonic analysis arguments that∫︂

BN

ψm(αx)dα =

⎧⎨⎩vol(BN) if ψm(αx) = 1 for all α ∈ BN ,

0 else.

A straightforward computation shows that vol(BN ) = q−(m+1)N , so that it suffices to show that
α ↦→ ψm(αx) restricts to the trivial character on BN if and only if |x|m < qN . If |x|m < qN ,
then certainly ψm(αx) = 1 identically in α. So let us suppose that x = x0 + · · · + xlt

l with
l ≥ N , where xi ∈ Fq[s]/(sm+1) for 0 ≤ i ≤ l and xl ̸= 0. Let us write xl = sk(yl + sy′

l)
with 0 ≤ k ≤ m, where yl ∈ F×

q and y′
l ∈ Fq[s]/(sm−k). If we define α = sm−kt−l−1, then

by assumption |α|m < q−N and the coefficient of t−1 in αx is by construction smyl, whence
ψm(αx) = eq(yl) ̸= 1.
Lemma 8.3.2. Let α ∈ K(m)

∞ and N ≥ 1. Then
∑︂

x∈Om

|x|m<qN

ψm(αx) =

⎧⎨⎩q(m+1)N if ∥α∥m < q−N

0 else.

Proof. The collection of x ∈ Om with |x|m < qN forms a discrete subgroup O<N
m of Om

of order q(m+1)N and x ↦→ ψm(αx) an additive character on it. So as in the proof of the
previous lemma, it suffices to show that ψm(αx) is the trivial character on O<N

m if and only if
∥α∥m < q−N . The if part holds trivially. In addition, since translation by an element in Om

does not affect the value of ψm, we may assume without loss of generality that α ∈ T(m) is such
that |α|m ≥ q−N . So suppose α = ∑︁

i≤−M αit
i with M ≤ N , where αi ∈ Fq[s]/(sm+1) and

α−M ̸= 0. We can then write α−M = sk(a0 + sa1) for some a0 ∈ F×
q , a1 ∈ Fq[s]/(sm−k) and

0 ≤ k ≤ m. If we define x = sm−ktM−1, then by assumption |x|m < qN and by construction
we have ψm(αx) = eq(a0) ̸= 1 as desired.
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8.4 Circle method
Recall that for F ∈ Fq[x1, . . . , xn] homogeneous of degree d, we defined the counting function

Nm(e) := #{x ∈ On
m : |x|m ≤ qe, F (x) ≡ 0 mod sm+1}.

If we set
S(α) =

∑︂
x∈On

m
|x|m≤qe

ψm(αF (x))

for α ∈ T(m), then it follows from Lemma 8.3.1 with N = 0 that

Nm(e) =
∫︂
T(m)

S(α)dα.

Our approach to studying Nm(e) is to identify a set of major arcs, which will give the main
contribution to Nm(e), and a set of minor arcs on which |S(α)| is sufficiently small. More
precisely, let α = α0 + · · · + smαm with αi ∈ T(0) and M = ⌈de+1

2 ⌉. For −1 ≤ J ≤ M , we
then define

M(J) =
⋃︂

r∈O monic
|r|≤qJ

{α ∈ T(m) : ∥α0r∥0 < qJ−de−1}, (8.4.1)

where we note that M(−1) = ∅. It follows from Dirichlet’s approximation theorem over
K∞ as recorded in [35, Lemma 5.7] that every α ∈ T(m) lies in M(J + 1) \ M(J) for some
−1 ≤ J ≤ M − 1. In addition, it is easy to see that

vol(M(J)) ≤ q2J−de−1. (8.4.2)

8.4.1 Weyl differencing
Suppose that

F (x) =
n∑︂

i1,...,id=1
ci1,...,id

xi1 · · ·xid

is a non-singular form of degree d with symmetric coefficients ci1,...,id
∈ Fq. Associated to F

are the multilinear forms

ψi(x(1), . . . ,x(d−1)) = d!
n∑︂

i1,...,id−1=1
ci1,...,id−1,ix

(1)
i1 · · ·x(d−1)

id−1

for 1 ≤ i ≤ n. Let V ⊂ A(d−1)n be the variety defined by ψ1 = · · · = ψn = 0 and denote by
Vm the mth jet scheme of V .

Lemma 8.4.1. Let F be a non-singular form of degree d and suppose that char(K) > d.
If we define m0 = ⌈m+1

d−1 ⌉, then any irreducible component of Vm has dimension at most
(m+ 1)n(d− 1) − nm0.

Proof. We identify x(i) ∈ A(m+1)n for 1 ≤ i ≤ d− 1 with x
(i)
0 + sx

(i)
1 + · · · + smx(i)

m , where
x

(i)
j ∈ An. Since V ⊂ A(d−1)n, we have Vm ⊂ Jm(A(d−1)n) = A(m+1)n(d−1). Under this

description, Vm is given by

{(x(1), . . . ,x(d−1)) ∈ A(m+1)n(d−1) : ψi(x(1), . . . ,x(d−1)) ≡ 0 mod sm+1 for 1 ≤ i ≤ n}.
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Let now
∆ = {(x(1), . . . ,x(d−1)) ∈ A(m+1)n(d−1) : x(1) = · · · = x(d−1)}

be the diagonal, which has dimension (m+ 1)n. Suppose that (x, . . . ,x) ∈ ∆ ∩ Vm. Then
as char(K) > d we must have ∇F (x) ≡ 0 mod sm+1. If x ̸= 0, we can write x = slx′ with
x′ ̸= 0 mod s. Then as F is non-singular, this implies l(d − 1) ≥ m + 1, as otherwise the
reduction of x′ modulo s would produce a singular point of F over K. This is equivalent to
x0 = · · · = xm0−1 = 0 and hence

dim ∆ ∩ Vm ≤ n(m+ 1 −m0).

Therefore,

dim Vm ≤ dim(∆ ∩ Vm) + (m+ 1)n(d− 1) − dim ∆ = n(m+ 1 −m0) + (m+ 1)n(d− 2),

from which the result follows.

For α ∈ T(m) and r1, r2 ≥ 0, let

Mm(α, r1, r2) = #
{︄

x ∈ On(d−1)
m : |x(1)|m, . . . , |x(d−1)|m < qr1−r2 ,

∥αψi(x)∥m < q−r1−(d−1)r2 for 1 ≤ i ≤ n

}︄
.

We will now employ Weyl differencing to obtain upper bounds for S(α). Replacing Fq[t] with
Om, the argument leading to [131, Corollary 4.3.2] goes through verbatim and gives together
with Lemma 8.3.2 the following result.

Lemma 8.4.2. Let α ∈ T(m). Then

|S(α)|2d−1 ≤ q(e+1)(m+1)(2d−1−d+1)nMm(α, e+ 1, 0).

We require an analogue of Davenport’s shrinking lemma, which follows in our situation directly
from the analogous statement over Fq[t].

Lemma 8.4.3. Let L1, . . . , Ln ∈ K(m)
∞ [x1, . . . , xn] be linear forms and set

Km(a, b) := #{x ∈ On
m : |x|m < qa, ∥Li(x)∥m < q−b for 1 ≤ i ≤ n}

for a, b ≥ 1. Then for 0 ≤ r < a ≤ b, we have

Km(a, b) ≤ q(m+1)nrK(a− r, b+ r).

Proof. We can write
Li(x) =

m∑︂
j=0

sjLi,j(x)

for 1 ≤ i ≤ n and some Li,j ∈ K∞[x1, . . . , xn]. If we write x = x0 + sx1 + · · · + smxm with
xi ∈ Fq[t]n for 0 ≤ i ≤ m, then it follows that

Li(x) =
m∑︂

k=0
sk ˜︁Li,k(x0, . . . ,xm),
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as an identity in K(m)
∞ [x1, . . . , xn], where ˜︁Li,k is now the linear form over K∞ in (m + 1)n

variables given by ˜︁Li,k(x0, . . . ,xm) =
∑︂

j+l=k

Li,j(xl).

With this notation, for any 1 ≤ i ≤ n, we have that

∥Li(x)∥m < q−b if and only if
⃦⃦⃦ ˜︁Li,k(x0, . . . ,xm)

⃦⃦⃦
0
< q−b for 0 ≤ k ≤ m.

In particular, we can rewrite Km(a, b) as a problem over Fq[t] via

Km(a, b) = #

⎧⎪⎪⎪⎨⎪⎪⎪⎩(x0, . . . ,xm) ∈ Fq[t]n(m+1) :
|x0|0, . . . , |xm|0 < qa,⃦⃦⃦ ˜︁Li,k(x0, . . . ,xm)

⃦⃦⃦
0
< q−b

for 1 ≤ i ≤ n, 0 ≤ k ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We can now apply Lemma 5.3 of [42] to deduce that Km(a, b) ≤ q(m+1)nrKm(a− r, b+ r) as
desired.

We now have everything at hand to reveal our main estimate for the exponential sums involved.

Lemma 8.4.4. Let α ̸∈ M(J) and suppose l ∈ Z≥0 is such that

l ≤ 1 + J

d− 1 and l ≤ e+ 1.

Let m0 = ⌈m+1
d−1 ⌉. Then there exists a constant c > 0 depending only on d, n and m such that

|S(α)| ≤ cq(e+1)n(m+1)−lnm0/2d−1
.

Proof. Recall from Lemma 8.4.2 that

|S(α)|2d−1 ≤ q(e+1)(m+1)(2d−1−d+1)nMm(α, e+ 1, 0). (8.4.3)

We will now give an upper bound for Mm(α, e+1, 0) under the assumption that α ̸∈ M(J). Set
r = e+ 1 − l. We can apply Lemma 8.4.3 d− 1 times with this choice of r to Mm(α, e+ 1, 0),
by fixing all but one of x(1), . . . ,x(d−1). With the notation from the lemma, we always have
a = e+ 1 ≥ r = e+ 1 − l and in the ith step b = e+ 1 + l ≥ a, so that the hypotheses of
Lemma 8.4.3 are satisfied. This yields

Mm(α, e+ 1, 0) ≤ q(m+1)n(d−1)rMm(α, e+ 1, r).

Suppose that (x(1), . . . ,x(d−1)) ∈ On(d−1)
m is counted by Mm(α, e + 1, r) and define

ρ = ψi(x(1), . . . ,x(d−1)). Then upon writing ρ = ρ0 + · · · + ρms
m with ρj ∈ Fq[t] for

j = 0, . . . ,m, we have |ρj|0 ≤ q(d−1)(l−1). Moreover, if α = α0 + · · · + smαm with αj ∈ K∞,
then

∥αρ∥m = ∥α0ρ0 + s(α0ρ1 + α1ρ0) + · · · + sm(α0ρm + · · ·αmρ0)∥m

and hence ∥αρ∥m < q−(e+1)−(d−1)r = q(l−1)(d−1)−ed−1 holds if and only if

∥α0ρ0∥0, . . . , ∥α0ρm + · · · + αmρ0∥0 < q(l−1)(d−1)−de−1. (8.4.4)

Note that (8.4.4) does not change if we multiply ρ by an element in F×
q . In particular, we

may assume that ρ0 is monic. Therefore, as α ̸∈ M(J) and l ≤ 1 + J/(d− 1), the inequality
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∥α0ρ0∥0 < q(l−1)(d−1)−de−1 can only hold if ρ0 = 0 by the definition of M(J) in (8.4.1). Thus
(8.4.4) implies ∥α0ρ1∥0 < q(l−1)(d−1)−de−1 and hence again ρ1 = 0. Continuing in this fashion
we get ρ0 = · · · = ρm = 0 and thus ψi(x(0), . . . ,x(d−1)) = 0. It follows that

Mm(α, e+1, r) ≤ #

⎧⎨⎩(x(1), . . . ,x(d−1)) ∈ On(d−1)
m :

|x(1)|m, . . . , |x(d−1)|m ≤ qe−r,

ψi(x(1), . . . ,x(d−1)) = 0 for 1 ≤ i ≤ n

⎫⎬⎭ .
If x(i) = x

(i)
0 + · · · + smx(i)

m with x
(i)
j ∈ O, then by definition of jet schemes we have that

ψi(x(1), . . . ,x(d−1)) = 0 for i = 1, . . . , n if and only if (x(i)
j )1≤i≤d−1,0≤j≤m ∈ O(d−1)n(m+1)

0
lies on the mth jet scheme Vm of V . In particular, the upper bound for the dimension from
Lemma 8.4.1 combined with uniform estimates for the number of Fq[t]-points in terms of the
dimension and the degree [34, Lemma 2.8] imply that

Mm(α, e+ 1, 0) ≤ q(m+1)n(d−1)r#{x ∈ O(m+1)(d−1)n
0 : x ∈ Vm, |x|0 < ql}

≤ cd,n,mq
(m+1)n(d−1)(e+1−l)+l((m+1)n(d−1)−nm0),

for some constant cd,n,m > 0 that is independent of q. Once combined with (8.4.3), a
straightforward computation shows

|S(α)|2d−1 ≤ cd,n,mq
(e+1)n(m+1)2d−1−lnm0 ,

from which the statement of the lemma follows.

8.4.2 Deduction of Proposition 8.2.3
We will now assume that n > (de+ 1)(d− 1)2d−1 if e ≥ 1 and n > (d2 + d− 4)2d−1 if e = 1.
Note that since we also assume that d ≥ 3, we have d2 + d − 4 ≥ (d + 1)(d − 1), so that
n > (de+ 1)(d− 1)2d−1 also holds for e = 1. Our goal is to prove

Nm(e) = q(m+1)(n(e+1)−de−1)(1 + o(1)) (8.4.5)

for all m ≥ 0 as q → ∞. We will proceed by an induction on m. The case m = 0
is already handled by Browning and Sawin [42, Section 5.3] under the weaker assumption
n > (2d− 1)2d−1. We may therefore assume m > 0 from now on.

Major arcs
Let us now evaluate the contribution from J = 0 in (8.4.1). Note that if α = α0 + · · · + smαm

with αi ∈ T(0), then α ∈ M(0) implies |α0|0 < q−de−1. In particular, if x ∈ On
m is such

that |x|m ≤ qe, then we have |α0F (x)|m ≤ |α0|mqde < q−1. It follows that if we write
α′ = α1 + · · · + sm−1αm, then we must have ψm(αF (x)) = ψm(sα′F (x)) = ψm−1(α′F (x)),
which only depends on x modulo sm. Therefore,∫︂

M(0)
S(α)dα = q−de−1

∫︂
T(m−1)

S(α′)dα′

= qn(e+1)−de−1Nm−1(e)
= q(m+1)(n(e+1)−de−1)(1 + o(1))

as q → ∞ by the induction hypothesis.
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8. Canonical singularities via the circle method

Minor arcs
Recall the definition of the major arcs M(J) in (8.4.1). As noted earlier, every α ∈ T(m) \M(0)
lies in M(J + 1) \ M(J) for some 0 ≤ J ≤ M − 1, where M = ⌈de+1

2 ⌉. Let m0 = ⌈m+1
d−1 ⌉

and l = 1 + ⌊ J
d−1⌋. One can check that as long as e ≥ 1 and d ≥ 2, the hypotheses of

Lemma 8.4.4 are met. In particular, it follows from (8.4.2) and Lemma 8.4.4 that∫︂
M(J+1)\M(J)

|S(α)|dα ≪ q2J+2−de−1+n(e+1)(m+1)−lnm0/2d−1

= q(m+1)(n(e+1)−de−1)+m(de+1)+2J+2−lnm0/2d−1
.

If we write J = J1(d− 1) + J2 with 0 ≤ J2 ≤ d− 2, then the exponent becomes

(m+ 1)(n(e+ 1) − de− 1) +m(de+ 1) + 2J2 + 2 − nm0/2d−1 + J1(2(d− 1) − nm0/2d−1).

As m0 ≥ 1 and our assumptions on n imply that 2(d− 1) − n/2d−1 < 0, the term is maximal
at J1 = 0 and J2 = d−2, as we shall henceforth assume. Since there are at most M = Od,e(1)
choices for J , in order to establish (8.4.5) it suffices to show that

E := m(de+ 1) + 2d− 2 − nm0/2d−1 < 0. (8.4.6)

Firstly, suppose that m+ 1 ≤ d− 1, so that m0 = 1. We then have

E ≤ (d− 2)(de+ 1) + 2(d− 1) − n/2d−1.

If e = 1, we assume that n > (d2 + d− 4)2d−1, which implies

E < (d− 2)(d+ 1) + 2(d− 1) − (d2 + d− 4)
= 0,

while for e ≥ 2 the assumption n > (de+ 1)(d− 1)2d−1 gives

E < (d− 2)(de+ 1) + 2(d− 1) − (de+ 1)(d− 1)
= −(de+ 1) + 2(d− 1)
≤ −(2d+ 1) + 2(d− 1)
= −3,

which is both satisfactory.
Secondly, suppose that m+ 1 > d− 1 and hence m0 = ⌈m+1

d−1 ⌉ ≥ m+1
d−1 . Therefore,

E ≤ m(de+ 1) + 2(d− 1) − n(m+ 1)/2d−1(d− 1)
= m(de+ 1 − n/2d−1(d− 1)) + 2(d− 1) − n/2d−1(d− 1).

Under our assumptions on n and d, the coefficient of m is negative, so that m ≥ d− 1 and
n > (de+ 1)(d− 1)2d−1 implies

E ≤ (d− 1)(de+ 1 − n/2d−1(d− 1)) + 2(d− 1) − n/2d−1(d− 1)
< d− 1 − n/2d−1(d− 1),

which is negative since we assume that n > (d− 1)(de+ 1)2d−1 ≥ (d− 1)22d−1 and therefore
completes our treatment of (8.4.5).
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