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Abstract

This thesis consists of two separate parts. In the first part we consider a dilute Fermi gas
interacting through a repulsive interaction in dimensions d = 1, 2, 3. Our focus is mostly on
the physically most relevant dimension d = 3 and the setting of a spin-polarized (equivalently
spinless) gas, where the Pauli exclusion principle plays a key role. We show that, at zero
temperature, the ground state energy density of the interacting spin-polarized gas differs (to
leading order) from that of the free (i.e. non-interacting) gas by a term of order adpρ2+2/d with
ap the p-wave scattering length of the repulsive interaction and ρ the density. Further, we
extend this to positive temperature and show that the pressure of an interacting spin-polarized
gas differs from that of the free gas by a now temperature dependent term, again of order
adpρ

2+2/d. Lastly, we consider the setting of a spin-1
2 Fermi gas in d = 3 dimensions and show

that here, as an upper bound, the ground state energy density differs from that of the free
system by a term of order asρ2 with an error smaller than asρ

2(asρ1/3)1−ε for any ε > 0,
where as is the s-wave scattering length of the repulsive interaction.

These asymptotic formulas complement the similar formulas in the literature for the dilute
Bose and spin-1

2 Fermi gas, where the ground state energies or pressures differ from that of the
corresponding free systems by a term of order asρ2 in dimension d = 3. In the spin-polarized
setting, the corrections, of order a3

pρ
8/3 in dimension d = 3, are thus much smaller and requires

a more delicate analysis.

In the second part of the thesis we consider the Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity and in particular its associated critical temperature and energy gap. We
prove that the ratio of the zero-temperature energy gap and critical temperature Ξ(T = 0)/Tc
approaches a universal constant πe−γ ≈ 1.76 in both the limit of high density in dimension
d = 3 and in the limit of weak coupling in dimensions d = 1, 2. This complements the proofs
in the literature of this universal behaviour in the limit of weak coupling or low density in
dimension d = 3. Secondly, we prove that the ratio of the energy gap at positive temperature
and critical temperature Ξ(T )/Tc approaches a universal function of the relative temperature
T/Tc in the limit of weak coupling in dimensions d = 1, 2, 3.
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Preface

This thesis consists of two completely independent parts. They may be read in any order.
Each part begins with an introduction to the subject matter studied in the respective part.
These introductions are given in Chapters 1 and 8.

Apart from Chapters 1, 2 and 8 each chapter consists of one of the papers included in the
thesis [GSEUpp; GSELow; Spin-1/2; PressLow; PressUpp; LowDim; HighDen; AllTemp]. As
such, they are (mostly) self-contained and can in principle be read in any order. There are
however a few recommended dependencies/prerequisites illustrated in Figure 0.0.1. Note that
these chapters do not appear in chronological order of their arXiv submission date.

3 5.3 5.4

6

4

7

9

10 11

Figure 0.0.1: Recommended dependencies/prerequisites. The dashed arrows
indicate that the preceding chapter contains many of the same ideas treated in a
simpler setting and may thus suitably be read beforehand.

Chapters 1 and 2 serve as introduction and motivation for Chapters 3–7 and Chapter 8 serves
as introduction for Chapters 9, 10 and 11.
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Part I

Energies of Dilute Fermi Gases





Chapter1
Introduction to the theory of dilute

quantum gases

The study of dilute quantum gases with strong repulsive interactions has a long and rich
history in theoretical physics going back to the 1950s and 1960s, when the energy asymptotics
of both dilute Bose and Fermi gases were first computed to increasing levels of accuracy in the
particle density [Dys57; Efi66; EA65; HY57; LHY57; Wu59]. Renewed interest was sparked by
the experimental realization of Bose–Einstein condensates (BEC) [AEMWC95; Dav+95] and
of dilute quantum gases with tunable interactions using Feshbach resonances, see [BDZ08;
CGJT10; GPS08] and references therein. Further, in the recent years, it is now possible to
tune the interaction in a dilute Fermi gas such that the fermions interact as if they were
spinless, see references in [DZ19], where in particular the energy asymptotics of such a spinless
Fermi gas is calculated.

The energy asymptotics of such dilute quantum gases are of a certain universal nature. They
depend on the interaction only through a few parameters, being the s- and p-wave scattering
lengths and (to higher order) the s- and p-wave effective ranges, but otherwise not on the
microscopic details of the interaction. These are the relevant parameters of the interaction for
particles that are far apart. The “dilute” in “dilute quantum gases” means exactly that the
average interparticle distance is large compared to the length scale of the interaction. We
define the scattering lengths in detail below and motivate why these are (to leading order) the
only relevant parameters of the interaction.

On the mathematical physics side, the recent interest in the study of such dilute quantum
gases was sparked by the seminal work of Lieb and Yngvason [LY98], wherein they give a
rigorous lower bound for the leading order term in the asymptotic expansion of the ground
state energy of a dilute Bose gas complementing the rigorous upper bound of Dyson [Dys57].
Since then, much effort has been devoted to prove rigorously the claimed asymptotic formulas
from the 1950s and 1960s physics literature. These asymptotic formulas concern both the
ground state energy and the free energy (or pressure) at positive temperature.

In large parts, the main object of study has been the 3-dimensional dilute Bose gas. Here
only the s-wave scattering length of the interaction appears. For the Bose gas the validity
of the leading order term has been extended to positive temperature [Sei08; Yin10] and
recently also the next order term, the so-called Lee–Huang–Yang (LHY) term [LHY57] was
proved both as upper [BCS21; YY09] and lower [FS20; FS23] bounds and extended to positive
temperature [HHNST23; HHST24]. In addition, also the two-dimensional [FGJMO24; LY01]
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1. Introduction to the theory of dilute quantum gases

and one-dimensional [ARS22] Bose gases have been studied. While many of the asymptotic
formulas have thus been put on rigorous ground, it remains an important open problem to
verify the existence of Bose–Einstein condensation in a dilute interacting Bose gas [LSSY05].

The Fermi gas behaves quite differently compared to the Bose gas: For bosons, many of the
particles may occupy the same one-particle state. This is not so for fermions. The Pauli
exclusion principle dictates that at most q fermions may occupy the same one-particle state, q
being the number of spin components. In particular, even the non-interacting Fermi gas has a
non-zero ground state energy. Further, the effect of the interaction is highly dependent on the
spin. For two fermions with different spin, there is no effect from the Pauli exclusion, and
they interact similarly to two bosons. For fermions with the same spin, on the other hand, the
Pauli exclusion suppresses the probability of the two particles being close, and the interaction
is effectively much weaker. Following along this picture, Lieb, Seiringer and Solovej [LSS05]
proved that the leading order correction to the ground state energy of the non-interacting
Fermi gas is the same as that for the Bose gas if the number of spin components is q ≥ 2.
In particular here only the s-wave scattering length appears. This was later reproved using
different methods and getting improved error bounds in [FGHP21; Gia23a] (see also [Gia23b])
and extended to positive temperature in [Sei06b]. The two-dimensional setting is studied in
[LSS05; Sei06b] and the one-dimensional setting is discussed in the PhD thesis of Agerskov
[Age23].

Notably absent from the rigorous analysis is the study of the spin-polarized (equivalently
spinless) Fermi gas, with only one spin component q = 1. The only work on such a gas is
in 1 dimension [ARS22]. As the fermions here all have the same spin, the Pauli exclusion
plays an important role. An important consequence is that only the p-wave scattering length
(and to higher order the p-wave effective range) matters, but not the s-wave parameters.
Further, because of the Pauli exclusion suppressing the probability of two particles being close,
the energy contribution coming from the interaction is much smaller than that for bosons or
fermions of different spins. This means that the analysis of such a spinless Fermi gas is more
delicate and requires a more precise analysis than that of the Bose gas or Fermi gas with spin
in order to find the leading correction to the energy of a free (meaning non-interacting) gas.

Spin-polarized/spinless fermions may a priori seem somewhat academical — After all, real-world
fermions have spin ≥ 1

2 , meaning that the number of spin-components is q ≥ 2. However,
it is possible in experiments, using Feshbach resonances, to tune the interaction in a dilute
Fermi gas such that the s-wave scattering length vanishes and so that only p-wave (and higher
angular momentum) scattering appears, see references in [DZ19]. Such a Fermi gas then
behaves as if the particles were spinless and may thus be studied by considering a spinless
gas. A second physical setting, where a description of a spin-polarized/spinless Fermi gas is
applicable is exactly (as the name suggests) that of a completely spin-polarized gas, where all
the spins are aligned. This is for instance the case for a gas in a very strong magnetic field.
If all the particles have the same spin we can equivalently forget about the spin, and treat
the gas instead as a spinless gas. (This also explains the equivalence of the nomenclature of
‘spin-polarized’ and ‘spinless’.)

1.1 Asymptotic formulas
We describe next the results and in broad strokes the methods of Part I of the thesis (Chapters
3–7) beginning with the precise statement of the asymptotic formulas for the energies (and
pressures) of dilute Fermi gases.

4



1.1. Asymptotic formulas

To state the (conjectured) asymptotic formulas for the energies of dilute Fermi gases, we
first define the system precisely. At zero temperature the relevant object is the ground state
energy of an N -particle system in a large box Λ = [−L/2, L/2]d in d dimensions. (Our focus
is mostly on the physically most relevant case d = 3.) The ground state energy is the lowest
eigenvalue of the Hamiltonian describing the system. This Hamiltonian is

HN =
N∑︂
j=1

−ℏ2

2m ∆xj
+

∑︂
1≤j<k≤N

V (xj − xk),

and defined on some (appropriate domain in) some subspace of L2(ΛN ;C). (We shall work in
natural units, where ℏ = 1 and 2m = 1, to simplify the formulas by not having to carry around
the factor ℏ2/2m.) Concretely this means that if the particles are in the state ψN ∈ L2(ΛN ;C)
(with ∥ψN∥2

L2(ΛN ) =
¯

ΛN |ψN(x1, . . . , xN)|2 dx1 . . . dxN = 1) then the energy is given by

⟨ψN |HN |ψN⟩ =
̇

ΛN

⎡⎣ N∑︂
j=1

|∇xj
ψN(x1, . . . , xN)|2

+
∑︂

1≤j<k≤N
V (xj − xk)|ψN(x1, . . . , xN)|2

⎤⎦ dx1 . . . dxN .

The ground state energy is then defined as the lowest possible energy:

EN = inf
ψN :∥ψN ∥L2 =1

⟨ψN |HN |ψN⟩ ,

where the infimum is taken over appropriate states ψN . Exactly which states are appropriate
depends on the type of particles, be it bosons or fermions with q spin components. In the
following we restrict to the settings of fermions with either q = 2 or q = 1. Any gas of
fermions with q ≥ 2 behaves like a gas with q = 2 for our purposes, and it is notationally
simpler to just consider q = 2. The spin-polarized (spinless) fermions with q = 1 behave
significantly differently as discussed above. The particles being fermions, one has to consider
antisymmetric wave-functions ψN . This is the Pauli exclusion principle. Concretely this means
that for spin-polarized fermions, the relevant L2-space is

L2
a(ΛN ;C) =

N⋀︂
L2(ΛN ;C)

=
{︂
ψN ∈ L2(ΛN ;C) : ψN(xπ(1), . . . , xπ(N)) = (−1)πψN(x1, . . . , xN) ∀π ∈ SN

}︂
,

with SN the set of all permutations on N indices and (−1)π the sign of the permutation
π. For spin-1

2 fermions (meaning q = 2) we can consider a fixed number N↑ of spin-↑ and
N↓ = N − N↑ of spin-↓ particles. Then the relevant space of ψN ’s is L2

a(ΛN↑) ⊗ L2
a(ΛN↓).

The ground state energy is then EN↑,N↓ .

We consider the thermodynamic limit, where N and L are both large, but such that the
particle density ρ = N/Ld stays finite. (In the spin-1

2 case with q = 2 we require the particle
densities ρ↑ = N↑/L

d and ρ↓ = N↓/L
d = ρ− ρ↑ of spin-↑ respectively spin-↓ particles to stay

finite.) In this limit the ground state energy EN is proportional to the number of particles
(equivalently the volume Ld) and the following limits exist [Rob71]

e(ρ) = lim
N,L→∞
N/Ld=ρ

EN
Ld

, e(ρ↑, ρ↓) = lim
N↑,N↓,L→∞
N↑/L

d=ρ↑
N↓/L

d=ρ↓

EN↑,N↓

Ld
.
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1. Introduction to the theory of dilute quantum gases

This defines the ground state energy density in the thermodynamic limit for both the spin-
polarized and spin-1

2 Fermi gas. The asymptotic formulas of the energy discussed above are
then expansions of the function(s) e(ρ) (and e(ρ↑, ρ↓)) valid in the limit ρ → 0. To state
these we next define the scattering lengths properly.

Definition 1.1.1 (see also [LY01, Appendix A] and [SY20, Section 4]). The s- and p-wave
scattering lengths as and ap are defined (in 3 dimensions) by

4πas = inf
{︄ˆ

R3

(︃
|∇f |2 + 1

2V |f |2
)︃

dx : f(x) → 1 for |x| → ∞
}︄
,

12πa3
p = inf

{︄ˆ
R3

(︃
|∇f |2 + 1

2V |f |2
)︃

|x|2 dx : f(x) → 1 for |x| → ∞
}︄
.

In case V (x) = +∞ for some x we interpret V (x) dx as a measure. The minimizing f ’s are
the s- and p-wave scattering functions. They are denoted fs and fp respectively and satisfy
the scattering equations, being the Euler–Lagrange equations of the minimization problems:

−2∆fs + V fs = 0, fs(x) → 1 for |x| → ∞,

−2∆fp − 4 x

|x|2
· ∇fp + V fp = 0, fp(x) → 1 for |x| → ∞.

(1.1.1)

Remark 1.1.2. The scattering lengths can equivalently be defined using the scattering
equations (1.1.1) as the numbers as and ap appearing in fs(x) = 1 − as/|x| and fp(x) =
1−a3

p/|x|3 for x outside the support of V (for a compactly supported V ). This is the approach
used in Chapters 4 and 7 (where we consider the function φp = 1 − fp instead, however).

We give some intuition behind the scattering lengths in Chapter 2. They arise as the ground
state energies of systems of two interacting fermions in a large box. (They are essentially
defined by this fact.) Further, the ground state wave functions of such systems of two fermions
in a large box are to leading order given by the scattering functions (s- or p-wave depending on
the spins of the particles) times the ground states of the corresponding free (non-interacting)
systems. For the details, see Chapter 2.

Admitting this fact, the relevance of the scattering lengths in the many-body problem can then
be understood heuristically as follows: For the dilute system the particles are on average far
apart (at distances of order ρ−1/d ≫ ℓ compared to some order one length scale ℓ set by the
interaction). In particular, three particles being close enough to have all three particles interact
simultaneously is a very rare event. Thus, the many-body problem is, at least to leading order,
conceptually just given by a lot of two-particle problems, where the two particles are in some
large box and don’t interact with the remaining particles, which we can then ignore. As such,
the energy of a two-particle system should play a key role in the energy of the many-body
system.

Armed with this definition of the scattering lengths we can then state the conjectured formulas
from the physics literature [AE68; DZ19; Efi66; EA65; HY57; WDS20]. For the spin-polarized
Fermi gas (with q = 1 spin component), this formula reads (in 3 dimensions)

e(ρ)
ρ

= k2
F

[︄
3
5 + 2

5πa
3
pk

3
F − 1

35πa
6
pr

−1
p,effk

5
F + 2066 − 312 log 2

10395π2 a6
pk

6
F + o(a6

pk
6
F )
]︄
.

(1.1.2)
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1.1. Asymptotic formulas

For the Fermi gas with q = 2 spin components of equal population ρ/2 the formula reads

e(ρ/2, ρ/2)
ρ

= k2
F

[︄
3
5 + 2

3πaskF + 4
35π2 (11 − 2 log 2)a2

sk
2
F +O

(︂
(a3
s + a3

p + a2
srs,eff)k3

F

)︂]︄
.

(1.1.3)

Here kF = (6π2q−1)1/3ρ1/3 is the Fermi momentum, rs,eff and rp,eff are the s- and p-wave
effective ranges and O

(︂
(a3
s + a3

p + a2
srs,eff)k3

F

)︂
is an explicit term of this order.

The main theorem of Part I of the thesis is the validity of the formula in (1.1.2) to order a3
pk

5
F .

Theorem 1.1.3. Let V ≥ 0 be radial and compactly supported. Then the ground state energy
density of the 3-dimensional spin-polarized Fermi gas satisfies

e(ρ)
ρ

= k2
F

[︃3
5 + 2

5πa
3
pk

3
F + o(a3

pk
3
F )
]︃

for sufficiently small apkF .

The leading term 3
5k

2
F = 3

5(6π2)2/3ρ2/3 is the ground state energy per particle of a free
(non-interacting) Fermi gas and the next term (of order a3

pk
5
F ) is the leading correction arising

from the interaction. The proof of Theorem 1.1.3 as an upper bound is given in Chapter 3
and as a lower bound in Chapter 4. Theorem 1.1.3 is illustrated in Figure 1.1.1.

Remark 1.1.4. We remark that the upper bound in Chapter 3 in fact captures the formula
in (1.1.2) to order a6

pr
−1
p,effk

7
F and is valid also in dimensions d = 1, 2. The lower bound

in Chapter 4 is valid also in dimension d = 2. Further, the 1-dimensional analogue of
Theorem 1.1.3 is proved in [ARS22], see also [Age23]. For the details we refer to the respective
chapters.

Finally, we note that the interaction V need not be well-behaved. In particular Theorem 1.1.3
allows for a hard core (also known as a hard sphere) interaction, where formally V (x) = +∞
for |x| ≤ R0 and V (x) = 0 for |x| > R0.

In Chapter 5 we prove the validity of the formula in (1.1.3) to order ask3
F as an upper bound

with an error almost of order a2
sk

4
F . More precisely we show that

Theorem 1.1.5. Let V ≥ 0 be radial and compactly supported. Then for any ε > 0 there
exists a constant Cε > 0 such that the ground state energy density of the 3-dimensional spin-1

2
Fermi gas satisfies

e(ρ↑, ρ↓) ≤ 3
5(6π2)

(︂
ρ

5/3
↑ + ρ

5/3
↓

)︂
+ 8πasρ↑ρ↓ + Cεasρ

2(a3
sρ)1/3−ε

for sufficiently small a3
sρ.

This reproves the result of [LSS05] as an upper bound, but with an improved bound on the
error. This formula was also reproved in [FGHP21; Gia23a] both as upper and lower bounds
with improved errors compared to [LSS05] only there it is assumed that V is a smooth function.
In particular the upper bound in [Gia23a] says that the error term is bounded by a2

sρ
7/3. The

analysis in [FGHP21; Gia23a] only deals with smooth V , however, and thus in particular not
the case of a hard core interaction. In Theorem 1.1.5 no smoothness or regularity on V is
assumed, and we may take V to be a hard core interaction.
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1. Introduction to the theory of dilute quantum gases

Figure 1.1.1: (Copied from Chapter 3.) Energies of dilute spin-polarized Fermi
gases. The curves and points labelled HC are for a Hard Core interaction of
radius a, with then ap = a. The curves and points labelled SC are for a Soft Core
interaction of radius 2a and strength V0 chosen so that it’s p-wave scattering length
is a, (meaning V (x) = V0χ(|x|≤2a), χ being the characteristic function.) The points
(labelled QMC) are Quantum Monte Carlo simulations from [BTP23]. The curves
include the (conjectured) corrections up to the labelled order in kF = (6π2ρ)1/3.

1.1.1 Positive temperature
Further, we consider in Chapters 6 and 7 the dilute spin-polarized gas at positive temperature.
At positive temperature the natural quantity to consider is not the ground state energy (density)
but instead the pressure. The pressure of the interacting and free systems are defined as

ψ(β, µ) = lim
L→∞

1
L3β

log TrF e
−β(H+V−µN ), ψ0(β, µ) = lim

L→∞

1
L3β

log TrF e
−β(H−µN ),

with β = 1/kBT the inverse temperature, µ the chemical potential, F the fermionic Fock
space, and H, V and N the second quantized free Hamiltonian, interaction and number
operator respectively. (Here kB is Boltzmann’s constant. We choose units so kB = 1.)

The natural temperatures to consider are those at most on the order of the Fermi temperature
of the free gas TF . The Fermi temperature is the temperature scale at which the thermal
(kinetic) energy per particle is comparable to the (kinetic) energy per particle arising from
the Pauli exclusion. The thermal energy per particle is of order kBT = T ,1 and the energy

1A monoatomic gas has a thermal (kinetic) energy per particle of 3
2kBT , for instance.
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1.2. Gaudin–Gillespie–Ripka expansion

per particle from Pauli exclusion is of order ρ2/3
0 . That is, the Fermi temperature is of order

TF ∼ ρ
2/3
0 . The constraint that T ≲ TF is the same as the constraint that the fugacity

z = eβµ satisfies z ≳ 1. For temperatures larger than the Fermi temperature the thermal
energy exceeds that from quantum effects, and so the gas behaves more like a classical
(high-temperature) gas.

We prove in Chapters 6 and 7 the positive temperature analogue of the formula in (1.1.2) to
order a3

pk
5
F . This is the second main theorem of Part I of the thesis.

Theorem 1.1.6. Let V ≥ 0 be radial and of compact support. Then for small a3
pρ0 we have

ψ(β, µ) = ψ0(β, µ) − 24π2 − Li5/2(−z)
(− Li3/2(−z))5/3a

3
pρ

8/3
0 [1 + oz(1)] ,

where ρ0 = ∂µψ0(β, µ) is the particle density of the free gas (in infinite volume), Lis denotes
the polylogarithm of order s and oz(1) vanishes for a3

pρ0 → 0 uniformly for z = eβµ in compact
subsets of (0,∞).

Remark 1.1.7. We note that the lower bound in Chapter 6 holds also in dimensions d = 1, 2
and is in fact uniform in z ≳ 1, meaning that oz(1) vanishes uniformly for bounded 1/z. The
upper bound in Chapter 7 holds also in dimension d = 2.

Note further that the pressure is decreasing in the Hamiltonian, describing the energy. Thus,
a lower bound for the pressure corresponds to an upper bound for the ground state energy
and vice versa.

We describe next the two different methods used in the following Chapters 3–7 to prove
Theorems 1.1.3, 1.1.5 and 1.1.6. We discuss the reason for the two different methods in
Remark 1.3.1 below.

1.2 Gaudin–Gillespie–Ripka expansion
At the centre of the argument in Chapters 3, 5 and 6 lies the Gaudin–Gillespie–Ripka (GGR)
expansion [GGR71]. This is one example of a cluster expansion developed in the physics
literature in order to deal with strongly correlated systems. To explain this expansion and its
relevance in the many-body problem we first explain the overall structure of the proof of the
bounds in Chapters 3, 5 and 6.

In Chapters 3 and 5 we prove upper bounds on the ground state energy of a spin-polarized
and spin-1

2 Fermi gas respectively and in Chapter 6 we prove a lower bound on the pressure of
a spin-polarized Fermi gas at positive temperature. All of these bounds arise from computing
the energy (respectively pressure functional) of a trial state, being then an upper (respectively
lower) bound for the ground state energy (respectively pressure) by the variational principle.
The trial state we consider is of (Bijl–Dingle–)Jastrow type [Bij40; Din49; Jas55], meaning
that (in the spin-polarized setting) the trial state is given by

ψJas(x1, . . . , xN) = 1√
CN

∏︂
1≤j<k≤N

fp(xj − xk)ψ0(x1, . . . , xN), (1.2.1)

where fp is the p-wave scattering function defined in Definition 1.1.1, ψ0 is the ground state
of the free system, being a Slater determinant of the N smallest momenta, and CN is a

9



1. Introduction to the theory of dilute quantum gases

normalization constant. For the problem of spin-1
2 fermions or spin-polarized fermions at

positive temperature analogous trial states are constructed. (For technical reasons the trial
states we consider in Chapters 3, 5 and 6 are slightly modified.)
This type of trial state is motivated by the following picture: As discussed after Definition 1.1.1
above, we expect that the many-body system is essentially described by a bunch of two-particle
interacting systems. More precisely, we expect that keeping all but two particles fixed, the
wave function in the remaining two particles should be close to that of just the two-particle
ground state. As discussed above, the ground state for the two-particle system in a large
box is (to leading order) given by the scattering function times the ground state of the free
two-particle system. That is, between any pair of particles the wave function should be
modified by inclusion of the scattering function compared to the ground state of the free
system. This naturally leads to the idea that the ground state of the free system modified by
a factor ∏︁1≤j<k≤N fp(xj − xk) should be a good approximation to the ground state of the
many-body system. This motivates the choice of trial state in (1.2.1).
To calculate the energy of the trial state ψJas we use the following observation: For any
real-valued functions F,G we haveˆ

|∇(FG)|2 =
ˆ

|∇F |2|G|2 +
ˆ

|F |2G(−∆)G. (1.2.2)

(Verifying this is a simple exercise, which we leave to the reader.) We use (1.2.2) with
F = ∏︁

fp and G = ψ0 and note that ∑︁j −∆xj
ψ0 = E0ψ0 with E0 the ground state energy

of the free system. Then,

⟨ψJas|HN |ψJas⟩ = E0 +
¨

ρ
(2)
Jas(x1, x2)

⎛⎝⃓⃓⃓⃓⃓∇fp(x1 − x2)
fp(x1 − x2)

⃓⃓⃓⃓
⃓
2

+ 1
2V (x1 − x2)

⎞⎠ dx1 dx2

+
˚

ρ
(3)
Jas(x1, x2, x3)

∇fp(x1 − x2)∇fp(x2 − x3)
fp(x1 − x2)fp(x2 − x3)

dx1 dx2 dx3,

(1.2.3)
where ρ(2)

Jas and ρ(3)
Jas are the 2- and 3-particle reduced densities of ψJas. Thus, to compute the

energy, we need only compute the reduced densities ρ(2)
Jas and ρ(3)

Jas. Calculating these reduced
densities is essentially a complicated combinatorics problem. The solution of this combinatorics
problem is the contents of the GGR expansion, giving the formulas for the q-particle reduced
densities:

ρ
(q)
Jas(x1, . . . , xq) =

∏︂
1≤j<k≤q

fp(xj − xk)

⎡⎢⎣ρ(q)(x1, . . . , xq) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃q

p

Γqπ,G(x1, . . . , xq)

⎤⎥⎦ .
(1.2.4)

Here ρ(q) is the q-particle reduced density of the free state and the sets of diagrams L̃q

p and
their values Γqπ,G are described in detail in Chapters 3, 5 and 6.
All the terms in the theorems of Chapters 3, 5 and 6 are contained in the contribution of the
first two terms in (1.2.3) (suitably modified in the spin-1

2 setting or at positive temperature,
see the respective chapters for the details). Moreover, for the expansion of ρ(2)

Jas in (1.2.4) only
the leading term contributes to the order we consider in Chapters 3, 5 and 6. The third term
in (1.2.3) and the higher order terms in (1.2.4) are error terms. Ignoring these, we thus find
the approximate formula (in the spin-polarized setting)

⟨ψJas|HN |ψJas⟩ ≈ E0 +
¨

ρ(2)(x1, x2)
[︃
|∇fp|2 + 1

2V |fp|2
]︃

(x1 − x2) dx1 dx2.
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1.3. Modified second order perturbation theory

It is a simple exercise to Taylor expand ρ(2)(x1, x2) ≈ 1
5k

2
Fρ

2|x1−x2|2 for x1, x2 close. Recalling
the definition of the p-wave scattering length in Definition 1.1.1, we arrive at the formula in
Theorem 1.1.3.

To control the errors in the above approximations we need to understand the expansions
(1.2.4) in more detail. For the first few terms in the expansions we need somewhat precise
calculations in order to control the errors from the remaining terms accurately enough. To
aid in the calculation of these first few terms (the sets of diagrams L̃q

p are quite big, even
for small p’s and q’s) we wrote a short python-script [GGRscript]. Finally, bounding the tails
of the expansions is again a complicated combinatorics problem. To bound these tails we
need to replace fp in the trial state in (1.2.1) by a slightly modified function and the Slater
determinant ψ0 by a slightly different Slater determinant, see the details in Chapters 3, 5
and 6.

1.3 Modified second order perturbation theory
In Chapter 4 we prove the lower bound in Theorem 1.1.3 and in Chapter 7 we prove the
upper bound in Theorem 1.1.6. A central ingredient is a modified version of second order
perturbation theory, where one considers part of the interaction to be part of the unperturbed
operator. We explain here the main ideas, focussing on the approach in Chapter 4.

We introduce the particle hole transformation R factoring out the ground state of the free
system, being the filled Fermi ball/sea. This satisfies RΩ = ψ0, with Ω the vacuum state and
ψ0 the ground state of the free system. Then

R∗HNR ≈ ⟨ψ0|HN |ψ0⟩ + H0 + Q2 + Q4,

with H0 ≥ 0 an effective kinetic energy and Q2 and Q4 ≥ 0 being effectively the ‘off-diagonal’
and ‘diagonal’ parts of the interaction, see Chapter 4 for the details. Then, second order
perturbation theory is the claim that if B satisfies [H0 + Q4, B] + Q2 ≈ 0 (this equation is
essentially the scattering equation (1.1.1) for fp in disguise), then e−BR∗HNRe

B approximately
has Ω as its ground state. Using a Baker–Campbell–Hausdorff expansion to second order in
Q2 and B (this is the “second order” in “second order perturbation theory”) we have

e−B(H0 + Q2 + Q4)eB ≈ H0 + Q4 + [H0 + Q4, B] + Q2 + 1
2[[H0 + Q4, B], B] + [Q2, B]

≈ H0 + Q4 + 1
2[Q2, B].

Evaluating in the state Ω we find the following formula for the ground state energy:

EN ≈ ⟨ψ0|HN |ψ0⟩ + ⟨Ω|H0 + Q4|Ω⟩ + 1
2 ⟨Ω|[Q2, B]|Ω⟩ = ⟨ψ0|HN |ψ0⟩ + 1

2 ⟨Ω|[Q2, B]|Ω⟩ .

These terms may then be evaluated to be the first two terms in the formula in (1.1.2).

The main argument in Chapter 4 consists of doing the computation above precisely, taking
into account all the error terms. More precisely, we find the formula for the energy of any
N -particle state ψN

⟨ψN |HN |ψN⟩ = ⟨ψ0|HN |ψ0⟩ + 1
2 ⟨Ω|[Q2, B]|Ω⟩ + ⟨ξ1|H0 + Q4|ξ1⟩ + E(ψN), (1.3.1)
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1. Introduction to the theory of dilute quantum gases

where ξ1 = R∗e−BψN and E(ψN ) is an explicit error term, see Chapter 4 for the details. The
first two terms evaluate to the claimed formula in Theorem 1.1.3 as above and the term
⟨ξ1|H0 + Q4|ξ1⟩ can be dropped for a lower bound since H0 + Q4 ≥ 0. The main work in
Chapter 4 then concerns bounding the error term E(ψN).

In the positive temperature setting considered in Chapter 7 there is no natural particle hole
transformation, since there is no filled Fermi ball. We can still conjugate the Hamiltonian by
a unitary operator eB with appropriately chosen B, however. (The relevant B is related to
the operator B above by B = RBR∗.) We then conclude a formula similar to (1.3.1). In
the positive temperature setting, the evaluation of (the positive temperature analogue of)
the term ⟨Ω|[Q2, B]|Ω⟩ is further complicated. An essential part of the evaluation is showing
the validity of first order perturbation theory at positive temperature in a certain appropriate
regime.

We conclude this chapter with a discussion of the necessity of the two different methods; the
GGR expansion and perturbation theory.

Remark 1.3.1 (Choice of method for upper versus lower bounds). We use the GGR expansion
to obtain upper bounds on the energy and modified second order perturbation theory to obtain
lower bounds on the energy (and vice versa for the pressure). The reasons for not just using
one method for both upper and lower bounds are as follows:

The GGR expansion is a trial state based approach computing the energy (or pressure functional)
of a particular type of trial state. A priori it is not clear whether this class of states contain
the ground state, however. Thus, the GGR expansion can inherently only prove upper bounds
on the energy. It has the benefit of requiring no regularity of the interaction, however, and
can in particular treat also hard core interactions. Further, it gives better bounds on the error
term and works also in lower dimension, see Remarks 1.1.4 and 1.1.7.

The perturbation theory method, on the other hand, can be used to prove lower bounds on
the energy. It works by conjugating the Hamiltonian by a particular unitary operator and in
particular no class of states are excluded. The perturbation theory method can also be used to
prove upper bounds, see Chapter 4. However, this doesn’t work for too irregular interactions.
Indeed, from the formula (1.3.1) we see that, in particular, we need that

´
V |x|2 dx < ∞ for

the expectation ⟨ψ0|HN |ψ0⟩ to be finite. In fact, we need V ∈ L1 to control also the error
term, see Chapter 4. This is not an issue for proving lower bounds, since any interaction can
be bounded from below by an integrable one, see Remark 4.1.4.
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Chapter2
Pair of particles in an infinite square well

Any introductory physics textbook on quantum mechanics considers the toy problem of a
particle in an infinite square well, meaning that the particle is constrained to some box (being
the bottom of the infinite well). This example serves to illustrate many important aspects of
quantum mechanics. Following along these lines we consider here the problem of two particles
in an infinite square well (equivalently localized to some box). We study this toy problem here
for two main reasons:

1. It motivates clearly the definition of the scattering lengths in Definition 1.1.1, and

2. It illustrates and motivates the method of proof used in the following Chapters 3–7 to
prove Theorems 1.1.3, 1.1.5 and 1.1.6.

More precisely, we consider the toy problem of two interacting indistinguishable fermions
constrained to a large box Λ. For this system we shall determine the ground state energy to
leading order in the volume of the box. We first describe the system more precisely.

We take the box to be Λ = [−L/2, L/2]3 with L some large length. That is, we shall consider
the limit L → ∞. The particles interact through a radial interaction V , which we assume to
be repulsive and short-ranged. Concretely this means that V (x) ≥ 0 and that V has compact
support. That is, there is some R0 > 0 such that V (x) = 0 for |x| > R0.

Working in units where the particle mass is m = 1/2 and ℏ = 1, the energy is then given by
the Hamiltonian

H = −∆x − ∆y + V (x− y).

Concretely this means that if the particles are in the state ψ ∈ L2(Λ2;C) (with ∥ψ∥2
L2(Λ2;C) =˜

Λ×Λ |ψ(x, y)|2 dx dy = 1) then the energy is given by

⟨ψ|H|ψ⟩ =
¨

Λ×Λ

(︂
|∇xψ(x, y)|2 + |∇yψ(x, y)|2 + V (x− y)|ψ(x, y)|2

)︂
dx dy.

The ground state energy is then defined as the lowest possible energy:

E = inf
ψ:∥ψ∥L2 =1

⟨ψ|H|ψ⟩ ,

where the infimum is taken over appropriate states ψ. Exactly which states are appropriate
depends on the spins of the particles. We consider two settings:

13



2. Pair of particles in an infinite square well

1. Fermions of different spins: In this case the appropriate space for ψ is the product space
L2(Λ;C) ⊗ L2(Λ;C) = L2(Λ2;C).

2. Fermions of the same spin: In this case the Pauli exclusion principle dictates that
ψ(x, y) = −ψ(y, x) and so the appropriate space for ψ is

L2(Λ;C) ∧ L2(Λ;C) = L2
a(Λ2;C) =

{︂
ψ(x, y) ∈ L2(Λ2;C) : ψ(x, y) = −ψ(y, x)

}︂
.

Further, we need to specify the boundary conditions. The particles being in an “infinite square
well” the relevant boundary conditions would be Dirichlet boundary conditions, requiring that
ψ(x, y) vanishes whenever x or y are on the boundary. We shall instead consider the system
with periodic boundary conditions. (Strictly speaking it would thus be more appropriate to
call the system a “pair of particles in a periodic box”.) These are the boundary conditions
used in the finite systems in the following chapters and are slightly more convenient to work
with. One can compute the ground state energy also for other choices of boundary conditions,
but we do not do this here.

We calculate the ground state energy E in the limit of a large box in two ways:

1. Variationally, by considering trial states of a particular form, and

2. Perturbatively, using second order perturbation theory.

In both settings we shall solve the problem in a way familiar to many mathematicians by simply
defining ‘something’ to be the solution and declaring victory. (This is a bit disingenuous. We
still need to do some work.) This ‘something’ is the all-important scattering length(s) of
the interaction defined in Definition 1.1.1. (One should really read Definition 1.1.1 then as
defining the scattering length(s) to be the solution(s) of the present toy problem(s).)

Remark 2.0.1. The two different methods of calculating the ground state energy reflects
the two different methods used in calculating the ground state energy of the many-body
interacting system in the following chapters. In Chapters 3, 5 and 6 we use a trial state based
on the variational methods here to find upper bounds on the ground state energies and a lower
bound on the pressure of the many-body systems. In Chapters 4 and 7 we use a perturbation
theory argument (modified compared to ‘standard’ perturbation theory as the argument given
here) to give a lower bound on the ground state energy and an upper bound on the pressure
of the many-body systems.

2.1 Non-interacting problem
To understand the interacting setting we first consider the simpler non-interacting setting,
where V = 0. In the non-interacting setting the Hamiltonian is given by H0 = −∆x − ∆y,
and we shall determine the ground state energy E0 = infψ ⟨ψ|H0|ψ⟩ and the ground state(s)
ψ0. Such ψ0 satisfy E0 = ⟨ψ|H0|ψ⟩ and H0ψ0 = E0ψ0.

To find E0 and ψ0 we first note that the Hamiltonian H0 is a sum of 1-body operators, −∆x

and −∆y. The eigenstates of −∆x are the planes waves uk(x) = L−3/2eikx for momentum

14



2.2. Variational calculation

k ∈ 2π
L
Z3. These have energy ⟨uk|−∆|uk⟩ = |k|2. Thus, the space of ground states is spanned

by states of the form (see [Sol14, Theorem 8.6] for more details)

ψ0 =

⎧⎨⎩u0 ⊗ u0 for different spins,
u0 ∧ uk for same spins,

k = ±2π
L
ej, ej ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} .

For the case of different spins there is just one ground state u0 ⊗ u0, whereas for the case of
same spins the space of ground states is 6-dimensional. It will be convenient to choose a basis
of real-valued ground states ψ0. For instance the ground state space is spanned by the ground
states

ψ0(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
L3 for different spins,

2
L3

{︄
cos
sin

}︄(︄
2π
L

xj + yj

2

)︄
sin

(︃
π

L
(xj − yj)

)︃
, j = 1, 2, 3 for same spins,

(2.1.1)

where
{︄

cos
sin

}︄
means either cos or sin and xj is the j’th coordinate of x = (x1, x2, x3). The

ground state energy is

E0 =

⎧⎪⎨⎪⎩
0 for different spins,
4π2

L2 for same spins.

2.2 Variational calculation
Next, we solve the interacting problem with a variational method. This serves as

1. Motivation for the definition of the scattering length(s) in Definition 1.1.1, and

2. Illustration and motivation for the method of proof used in Chapters 3, 5 and 6.

As a first step we claim that any ground state ψ of the interacting system can be written as
ψ(x, y) = f(x− y)ψ0(x, y) with ψ0 a ground state of the non-interacting system and f some
function. Clearly, any state ψ can be written as ψ(x, y) = f(x, y)ψ0(x, y). The statement is
that for the ground state it suffices to consider functions f only depending on the difference
x− y. (Rather f should depend on the difference x− y (mod Λ), since f should be Λ-periodic
by the periodic boundary conditions. Here mod Λ means that in each component one possibly
adds or subtracts L such that the result is in the interval [−L/2, L/2].)

To see this we change variables to the variables (X, Y ) ∈ Λ2. They represent the ‘relative
coordinate’ x− y and the ‘centre-of-mass coordinate’ x+y

2 . The relative coordinate is more
precisely given by X = x− y (mod Λ). For the centre-of-mass coordinate Y we possibly add
or subtract a term L to one or more of the components of x or y, such that the resulting
tuple (X, Y ) satisfies (X, Y ) ∈ [−L/2, L/2]6, see Figure 2.2.1.1 By the change of variables
formula it follows that dx dy = dX dY .

1Note that this change of variables is only really useful for functions that are Λ/2-periodic in the centre-of-
mass variable, since the centre-of-mass is changed from x+y

2 by some integer vector multiple of L/2. Otherwise,
(X,Y )-integrals would not factorize into products of the X- and Y -integrals. For ψ0 a non-interacting ground
state |ψ0|2 satisfies this, since sin(t+ π) = − sin t and cos(t+ π) = − cos t. (Recall that a non-interacting
ground state ψ0 is spanned by states of the form in (2.1.1).)
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2. Pair of particles in an infinite square well

x

y Y = x+y
2 “(mod Λ)”

X = x− y (mod Λ)

Λ2

L
2

L
2

L
2

L
2

1
2

3
4

1

2

3

4

Figure 2.2.1: Change of coordinates to the ‘centre-of-mass’ coordinate Y and
the ‘relative’ coordinate X. The picture is in one dimension and is applied to the
three-dimensional setting component wise. Using the Λ-periodicity each of the
regions labelled 1, 2, 3, 4 are identified with the corresponding region for which
(X, Y ) ∈ Λ2.

In these coordinates the Hamiltonian takes the form

H = −2∆X − 1
2∆Y + V (X).

To evaluate the expectation of this in any state ψ = fψ0 we recall (1.2.2): For any real-valued
functions F,G we have

ˆ
|∇(FG)|2 =

ˆ
|∇F |2|G|2 +

ˆ
|F |2G(−∆)G.

We use this for F = f and G = ψ0. Then (−2∆X − 1
2∆Y )ψ0 = E0ψ0 since ψ0 is a ground

state of the non-interacting system. Thus,

⟨ψ|H|ψ⟩ = E0 +
¨

Λ×Λ

(︃
2|∇Xf |2 + V |f |2 + 1

2 |∇Y f |2
)︃

|ψ0|2 dX dY. (2.2.1)

To minimize this clearly ∇Y f = 0 and thus for the ground state ψ we may take f to depend
only on X, i.e. on x− y. (Recall the Λ-periodicity.)

The ground state energy E is then given by (2.2.1) only with f depending only on X. Further,
we expect that the effect of the interaction is somewhat localized to particles close enough,
say |x− y| ≲ R0, since the interaction has range R0 ≪ L. If the particles are further apart
the effect of the interaction should be small. We should thus expect that any ground state
satisfies ψ(x, y) ≈ ψ0(x, y) for |x − y| ≫ R0. That is, we expect that f(X) ≈ 1 for large
|X|.

2.2.1 Different spins
For the setting of different-spin fermions we have only one ground state for the non-interacting
system ψ0(x, y) = 1/L3. Hence, the Y -integration in Equation (2.2.1) simply evaluates to´

Λ dY = L3. Further, f is constrained by the normalization that ∥ψ∥L2 = 1. Thus, the
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2.2. Variational calculation

energy and optimal f (meaning the f for which the state ψ(x, y) = f(x − y)ψ0(x, y) has
lowest energy) are given by the minimization problem

E = 1
L3 inf

{︄ˆ
(2|∇f |2 + V |f |2) dX :

ˆ
|f |2 dX = L3

}︄
.

Next, we replace the constraint that
´

|f |2 dX = L3 by the constraint that f(X) → 1 for
|X| → ∞. In the limit of large L this is a good approximation. Indeed, by the discussion above
we expect f ≈ 1 for |X| ≫ R0 anyway, and this clearly satisfies the constraint

´
|f |2 dx = L3,

at least to leading order in L.2 This leads us to the definition of the s-wave scattering length
as stated in Definition 1.1.1, and we thus find the formula

E ≈ 8πas
L3

for the ground state energy of two different-spin fermions in a large periodic box.

2.2.2 Same spin
For the setting of same-spin fermions we again compute the Y -integral first. Noting that
sin(t+ π) = − sin t and similarly for cos we see that for any non-interacting ground state ψ0
the Y -integral evaluates to

´
Λ sin2 =

´
Λ cos2 = 1

2L
3. (Recall that a non-interacting ground

state ψ0 is spanned by states of the form in (2.1.1).) Thus, combining Equations (2.1.1)
and (2.2.1) we find that the ground state energy and optimal f are given by

E = 4π2

L2 + 2
L3 inf

{︄ˆ
(2|∇f |2 + V |f |2) sin2

(︄
πXj

L

)︄
dX : 2

ˆ
|f |2 sin2

(︄
πXj

L

)︄
dX = L3

}︄
.

As above, we replace the constraint by f(X) → 1 for |X| → ∞. As sin2 is 1/2 “on average”,
this is a good approximation for large L exactly as above. Next, we expect the integrand in
the first integral (2|∇f |2 + V |f |2) sin2(πXj/L) to be supported essentially only for |X| ≪ L.
(Clearly the term with V is by the compact support.) Thus, we Taylor expand the sine and
find for large L that

E ≈ 4π2

L2 + 2π2

L5 inf
{︄ˆ

R3
(2|∇f |2 + V |f |2)|Xj|2 dX : f(X) → 1 for |X| → ∞

}︄
.

Further, this minimization problem is symmetric in relabelling the coordinates Xj , and thus we
may replace |Xj|2 by |X|2/3. This leads us to the definition of the p-wave scattering length
as stated in Definition 1.1.1. We conclude the formula

E ≈ 4π2

L2 +
16π3a3

p

L5

for the ground state energy of two same-spin fermions in a large periodic box.

2This can be done more rigorously as follows: By the Euler–Lagrange equations for the first minimization
problem, f converges to some constant for large |X|. To leading order in L this constant has to be 1 in order
to satisfy the constraint

´
|f |2 dX = L3.
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2. Pair of particles in an infinite square well

2.3 Perturbation theory
Next, we illustrate how to solve the present toy problem using an appropriately modified
version of second order perturbation theory. We do this for two main reasons:

1. It motivates an alternative definition of the scattering function using the scattering
equation, (being the Euler–Lagrange of the variational definition given in Definition 1.1.1)
and

2. It illustrates the method of proof used in Chapters 4 and 7.

Perturbation theory can be formulated in many equivalent ways. We use here a slightly
modified form, where we treat only part of the interaction as the perturbation and formulate
it using a unitary operator eB.

To formulate this modified version of perturbation theory we split the interaction operator
V into two parts; VD the ‘diagonal’ part of V and VOD the ‘off-diagonal’ part. To define
them more precisely we introduce the projection operator P on L2(Λ) being a projection
onto low-lying eigenvalues of −∆ such that P ⊗ Pψ0 = ψ0. We can achieve this while
simultaneously having the approximations P ≈ 0 and Q = 1− P ≈ 1.3 For instance, one can
consider P = χ(−∆≤(2π/L)2) the projection onto the 0th and 1st excited modes of −∆.

To simplify notation we write PP = P ⊗ P and QQ = Q⊗Q. We define then

VD = PPV PP +QQV QQ, VOD = PPV QQ+QQV PP,

and approximate V ≈ VD + VOD. We then treat H0 + VD = −∆x − ∆y + VD(x, y) as
the unperturbed operator and VOD as the perturbation. Using a Baker–Campbell–Hausdorff
expansion to second order (in B and VOD) we find

e−BHeB ≈ H0 + VD + ([H0 + VD, B] + VOD) +
(︃1

2[[H0 + VD, B], B] + [VOD, B]
)︃
.

The statement of second order perturbation theory is then the following: If B is chosen so
that [H0 + VD, B] + VOD ≈ 0, then ψ0 is approximately the ground state of e−BHeB.

We choose B to be (with s/p in the case of different/same spins)

B = PP (1 − fs/p)QQ−QQ(1 − fs/p)PP.

We claim then that this satisfies [H0 + VD, B] + VOD ≈ 0. (This boils down to fs/p satisfying
the scattering equation as we show below.) Admitting this, the ground state energy is

E ≈
⟨︃
ψ0

⃓⃓⃓⃓
−∆x − ∆y + PPV PP +QQV QQ+ 1

2[VOD, B]
⃓⃓⃓⃓
ψ0

⟩︃
= E0 +

⟨︃
ψ0

⃓⃓⃓⃓
V + 1

2[VOD, B]
⃓⃓⃓⃓
ψ0

⟩︃
.

3Here we are a bit vague regarding what exactly is meant. The analogous approximations in the many-
body setting are made precise in Chapters 4 and 7. The same comment applies to subsequent operator
approximations in this section.
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2.3. Perturbation theory

For the commutator we have (approximating Q ≈ 1 and P ≈ 0 whenever they appear not as
the first or last term of an operator)

[VOD, B] =
[︂
PPV QQ+QQV PP, PP (1 − fs/p)QQ

]︂
+ h.c.

= QQV PP (1 − fs/p)QQ− PPV QQ(1 − fs/p)PP + h.c.
≈ −2PPV (1 − fs/p)PP.

Thus, we find that the energy is given by

E ≈ E0 +
⟨︂
ψ0

⃓⃓⃓
V fs/p

⃓⃓⃓
ψ0
⟩︂
. (2.3.1)

To evaluate this and show that [H0 + VD, B] + VOD ≈ 0 we distinguish between the two
settings of different or same spins.

2.3.1 Different spins
In the setting of the two particles having different spins, the ground state of the free system is
ψ0(x, y) = 1/L3. Thus, by (2.3.1), we find the ground state energy of the interacting system
as

E ≈ 0 + 1
L6

¨
Λ2
V (x− y)fs(x− y) dx dy = 1

L3

ˆ
V fs dx.

Using the scattering equation (1.1.1) and integrating by parts once we find
´
V fs = 8πas,

and so we again find

E ≈ 8πas
L3

for the ground state energy of two different-spin fermions in a large periodic box.

Next, to show that [H0 +VD, B] +VOD ≈ 0 we compute similarly to the commutator [VOD, B]
above

[H0 + VD, B] + VOD = PP [2∆fs + 2∇fs · (∇x − ∇y) + V ]QQ
+ [PPV PP +QQV QQ,PP (1 − fs)QQ] + h.c.

≈ PP [2∆fs + 2∇fs · (∇x − ∇y) + V fs]QQ+ h.c..

Noting that (∇fs · ∇)∗ = −∆fs − ∇fs · ∇ we can write this as

[H0 + VD, B] + VOD ≈ QQ [−2∆fs − 2∇fs · (∇x − ∇y) + V fs]PP + h.c.
= −2QQ∇fs · (∇PP − P∇P ) + h.c.

by the scattering equation (1.1.1), where ∇P is the multiplication operator in momentum
space multiplying by kP̂ (k). Since P projects onto low-energy eigenstates of the Laplacian, k
in the support of P is small. Thus, we see that [H0 + VD, B] + VOD ≈ 0.

We remark that for the scattering function fs we used only the scattering equation (1.1.1),
but not the variational formulation in Definition 1.1.1. Thus, the analysis above serves as
motivation for taking the scattering equation (1.1.1) as the definition of the scattering function
and length instead of the variational formulation in Definition 1.1.1. This is the definition used
in Chapters 4 and 7, recall Remark 1.1.2.
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2. Pair of particles in an infinite square well

2.3.2 Same spin
Similarly, as above we find by (2.3.1) the ground state energy to be

E ≈ 4π2

L2 + 4
L6

¨
V (x− y)fp(x− y)

{︄
cos
sin

}︄2 (︄2π
L

xj + yj

2

)︄
sin2

(︃
π

L
(xj − yj)

)︃
dx dy

= 4π2

L2 + 2
L3

ˆ
V (x)fp(x) sin2

(︃
π

L
xj
)︃

dx

We Taylor expand the sine and replace (xj)2 by |x|2/3 by the radial symmetry. Noting further
that

´
V fp|x|2 = 24πa3

p, which follows from the scattering equation (1.1.1) and integrating
by parts once, we find as above

E ≈ 4π2

L2 +
16π3a3

p

L5

for the ground state energy of two same-spin fermions in a large periodic box.

Next, to show that [H0 + VD, B] + VOD approximately vanishes we have as above

[H0 + VD, B] + VOD ≈ QQ [−2∆fp − 2∇fp · (∇x − ∇y) + V fp]PP + h.c..

Further, by exchanging the two particles, meaning interchanging x and y, we see that

[H0 + VD, B] + VOD ≈ QQ [−2∆fp − 4∇fp · ∇x + V fp]PP + h.c..

For any state ψ we have that (PPψ)(x, y) vanishes for x = y by the Pauli exclusion principle.
Thus, we can Taylor expand it in x around x = y. That is

(PPψ)(x, y) ≈ (x− y) · [∇x(PPψ)(x, y)]x=y ≈ (x− y) · (∇PPψ)(x, y).

Performing such a Taylor expansion for the two terms −2∆fp and V fp in the commutator
above we find for any state ψ

⟨ψ|[H0 + VD, B] + VOD|ψ⟩ ≈ 2 Re ⟨ψ|QQ [−2(·)∆fp − 4∇fp + (·)V fp] · ∇PP |ψ⟩ .

By the scattering equation (1.1.1), this vanishes, and we conclude that [H0 +VD, B]+VOD ≈ 0
as desired.

As in the different-spin setting considered above, we only used the scattering equation (1.1.1)
for the scattering function fp and not the variational formulation in Definition 1.1.1. Thus,
the computation above serves as motivation for why one might take the scattering equation
(1.1.1) as the definition of the scattering length instead.

2.4 Concluding remarks
From the variational calculation we saw that, for both the different- and same-spin settings,
the ground state is approximately given by fs/p(x − y)ψ0(x, y) with ψ0 a non-interacting
ground state. This serves as the motivation behind the Jastrow-type trial state considered in
the many-body problem in Chapters 3, 5 and 6, see the discussion in Chapter 1.

From the perturbative calculation we saw that, for both the different- and same-spin settings,
the ground state is approximately given by eBψ0, with B = PP (1 − fs/p)QQ − h.c.. This
motivates in part the analysis in Chapters 4 and 7.
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2.4. Concluding remarks

The prefactor fs/p and the unitary operator eB are two different methods of how to implement
the correlations arising from the interaction. Their many-body generalizations are the basis
for the implementation of the correlations in the following Chapters 3–7: The Jastrow type
trial state used in Chapters 3, 5 and 6 is built using the scattering function fs/p and the
unitary operator used in Chapters 4 and 7 is eB with B the second quantization of B. (Up to
technicalities.)

Finally, we saw quite clearly that the effect of the same-spin interaction is much weaker than
that of the different-spin interaction. Indeed, as/L3 ≫ a3

p/L
5 for large L. This point was

already discussed in Chapter 1, but this toy problem serves as a simple concrete problem,
where this effect is clearly illustrated.
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Chapter3
Ground state energy of the dilute

spin-polarized Fermi gas: Upper bound
via cluster expansion

This chapter contains the paper

[GSEUpp] A. B. Lauritsen and R. Seiringer. “Ground state energy of the dilute spin-
polarized Fermi gas: Upper bound via cluster expansion”, J. Funct. Anal. 286.7
(2024), p. 110320. DOI: 10.1016/j.jfa.2024.110320.

Abstract. We prove an upper bound on the ground state energy of the dilute spin-polarized
Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive
interactions. One of the main ingredients in the proof is a rigorous implementation of the
fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp.
237–260).
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3.1 Introduction and main results
We consider a Fermi gas of N particles in a box Λ = ΛL = [−L/2, L/2]d in d dimensions,
d = 1, 2, 3. We will mostly focus on the case d = 3. The particles interact via a two-body
interaction v, which we assume to be positive, radial and of compact support. In particular we
allow for v to have a hard core, i.e. v(x) = ∞ for |x| ≤ r for some r > 0. In natural units
where ℏ = 1 and the mass of the particles is m = 1/2 the Hamiltonian of the system takes
the form

HN =
N∑︂
i=1

−∆xi
+
∑︂
j<k

v(xj − xk).

We are interested in spin-polarized fermions, meaning that all the spins are aligned. We may
thus equivalently forget about the spin. This means that the Hamiltonian should be realized
on the fermionic N -particle space of antisymmetric wavefunctions L2

a(ΛN) = ⋀︁N L2(Λ). We
consider the ground state energy density in the thermodynamic limit

ed(ρ) = lim
L→∞

N/Ld→ρ

inf
ΨN ∈L2

a(ΛN )
∥ΨN ∥2

L2 =1

⟨ΨN |HN |ΨN⟩
Ld

.

It is a result of Robinson [Rob71] that the thermodynamic limit exists, and that it is independent
of boundary conditions (say, Dirichlet, Neumann or periodic).

We study the dilute limit, where the inter-particle spacing is large compared to the length
scale set by the interaction. For spin-polarized fermions, the relevant lengthscale is the p-wave
scattering length a which we define below. Our main theorem is the upper bound

ed=3(ρ) ≤ 3
5(6π2)2/3ρ5/3 + 12π

5 (6π)2/3a3ρ8/3
[︄
1 − 9

35(6π2)2/3a2
0ρ

2/3 + o
(︂
(a3ρ)2/3

)︂]︄

in the dilute limit a3ρ ≪ 1, where a0 is another length related to the scattering length and
effective range, also defined below. The leading term 3

5(6π2)2/3ρ5/3 is the kinetic energy
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density of the free Fermi gas. The next term 12π
5 (6π)2/3a3ρ8/3 naturally results from the

two-body interactions using that the two-body density vanishes quadratically at incident points,
leading to the cubic behavior in the scattering length. Finally, the correction term of order
a3a2

0ρ
10/3 is a consequence of the fourth-order behaviour of the two-particle density.

This formula is expected to be sharp [DZ19]. (How the length a0 is related to the effective
range appearing in [DZ19] is perhaps not immediate. We discuss this below.) To order
a3ρ8/3 the formula follows by truncating expansion formulas of Jastrow [Jas55], Iwamoto and
Yamada [IY57], Clark and Westhaus [CW68; WC68] or Gaudin, Gillespie and Ripka [GGR71].
Additionally the formula (to order a3ρ8/3) is claimed by Efimov and Amus’ya [Efi66; EA65],
see also [WDS20] and references therein. Our result thus verifies this formula from the physics
literature, at least as an upper bound. An important ingredient in our proof is a rigorous
implementation of the cluster expansion introduced by Gaudin, Gillespie and Ripka [GGR71].

For the dilute Fermi gas one can also study the setting where different spins are present. This
is studied in [FGHP21; Gia23a; LSS05], see also [Gia23b]. This system is realized by having
the Hamiltonian HN act on a definite spin-sector L2

a(ΛN↑) ⊗ L2
a(ΛN↓), where one fixes the

number of spin-up and -down particles to be N↑ and N↓ = N −N↑ respectively. The energy
density satisfies (in 3 dimensions)

ed=3(ρ↑, ρ↓) = 3
5(6π2)2/3

(︂
ρ

5/3
↑ + ρ

5/3
↓

)︂
+ 8πasρ↓ρ↑ + o(asρ2),

where ρσ denotes the density of particles of spin σ ∈ {↑, ↓} and ρ = ρ↓ + ρ↑. Here as
is the s-wave scattering length of the interaction. The leading term is again the kinetic
energy density of a free Fermi gas. The next to leading order correction was first shown
in [LSS05] and later in [FGHP21; Gia23a] using different methods. The next correction is
conjectured to be the Huang–Yang term [HY57] of order a2

sρ
7/3, see [Gia23a; Gia23b]. Note

that even the Huang–Yang term of order a2
sρ

7/3 is much larger than the leading correction in
the spin-polarized case of order a3ρ8/3.

For the dilute Fermi gas with spin, effectively only fermions of different spins interact (to
leading order). For fermions of different spins, the Pauli exclusion principle does not give
any restriction, and the energy correction of the interaction is the same as for a dilute Bose
gas (to leading order). For fermions of the same spin, the Pauli exclusion principle gives an
inherent repulsion between the fermions. This gives the effect that the energy correction of
the interaction is much smaller for fermions all of the same spin.

In addition to the dilute Fermi gas, much work has been done on dilute Bose gases. Here one
realizes the Hamiltonian on the bosonic N -particle space of symmetric functions L2

s(ΛN) =
L2(Λ)⊗symN instead. One has the asymptotic formula (in 3 dimensions)

ed=3(ρ) = 4πasρ2
(︄

1 + 128
15

√
π

(a3
sρ)1/2 + o

(︂
(a3
sρ)1/2

)︂)︄
.

The leading term was shown by Dyson [Dys57] for an upper bound and Lieb and Yngvason
[LY98] for the lower bound. The next correction, known as the Lee–Huang–Yang correction
[LHY57], was shown as an upper bound in [BCS21; YY09] and as a lower bound in [FS20;
FS23]. In some sense, the term 12π

5 (6π)2/3a3ρ8/3 for the same-spin fermions is the fermionic
analogue of the 4πasρ2 for the bosons. It is the leading correction to the energy of the free
Fermi/Bose gas.

Finally also some lower-dimensional problems have been studied. The 2-dimensional dilute
Fermi gas with different spins present is studied in [LSS05], where the leading correction to the
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kinetic energy is shown. Recently also the bosonic problem has been studied in [FGJMO24].
We show that for the spin-polarized setting in 2 dimensions we have the upper bound

ed=2(ρ) ≤ 2πρ2 + 4π2a2ρ3[1 + o(1)] as a2ρ → 0.

Additionally, the 1-dimensional spin-polarized Fermi gas is studied in [ARS22]. Agerskov,
Reuvers and Solovej [ARS22] show that

ed=1(ρ) = π2

3 ρ
3 + 2π2

3 aρ4 [1 + o(1)] as aρ → 0.

We give a new proof of this as an upper bound with an improved error term.

3.1.1 Precise statement of results
We now give the precise statement of our main theorems. We start with the 3-dimensional
setting. First, we define the p-wave scattering length. (See also [LY01, Appendix A; SY20].)

Definition 3.1.1. The p-wave scattering length a of the interaction v is defined by the
minimization problem

12πa3 = inf
{︄ˆ

R3
|x|2

(︃
|∇f0(x)|2 + 1

2v(x)|f0(x)|2
)︃

dx : f0(x) → 1 as |x| → ∞
}︄
.

The minimizer f0 is the (p-wave) scattering function. (In case v has a hard core, i.e. v(x) = ∞
for |x| ≤ r one has to interpret v(x) dx as a measure. Necessarily then the minimizer has
f0(x) = 0 for |x| ≤ r.)

We collect properties of the scattering function f0 in Section 3.2.1. We define the length a0
as follows.

Definition 3.1.2. The length a0 is given by

3a2
0 = 1

12πa3

ˆ
R3

|x|4
(︃

|∇f0(x)|2 + 1
2v(x)|f0(x)|2

)︃
dx,

where f0 is the scattering function of Definition 3.1.1. The normalization is chosen so that a
hard core interaction of radius R0 has a0 = a = R0, see Remark 3.2.3. (If v has a hard core
we interpret v(x) dx as a measure as in Definition 3.1.1.)

We can now state our main theorem.
Theorem 3.1.3. Suppose that v ≥ 0 is radial and compactly supported. Then, for sufficiently
small a3ρ, the ground-state energy density satisfies

ed=3(ρ) ≤ 3
5(6π2)2/3ρ5/3

+ 12π
5 (6π)2/3a3ρ8/3

[︄
1 − 9

35(6π2)2/3a2
0ρ

2/3 +O
(︂
(a3ρ)2/3+1/21| log(a3ρ)|6

)︂]︄
.

The essential steps in the proof are as follows.
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(1) Show the absolute convergence of the formal cluster expansion formulas of [GGR71] for
the reduced densities of a Jastrow-type trial state. The criterion for absolute convergence
will not hold uniformly in the system size, and in order to allow for a larger particle
number we need to introduce the “Fermi polyhedron”, described in Section 3.2.2,
as an approximation to the Fermi ball. The formulas of [GGR71] are computed in
Sections 3.3.0.1, 3.3.0.2, 3.3.0.3 and 3.3.0.4 and stated in Theorem 3.3.4. The absolute
convergence is proven in Section 3.3.1.

(2) Bound the energy of the Jastrow-type trial state. For this we shall in particular
need bounds on “derivative Lebesgue constants” given in Lemma 3.4.9 and proven in
Section 3.B. The computation of the energy of such a Jastrow-type trial state is given
in Section 3.4.

(3) Use a box method to glue together trial states in smaller boxes to obtain a bound in the
thermodynamic limit. This is done in Section 3.4.1.

Remark 3.1.4. The term of order a3a2
0ρ

10/3 is in fact the same as is claimed in [DZ19].
To see this we relate the effective range Reff to the length a0. In the physics literature the
effective range is defined via the formula

k3 cot δ(k) = − 3
a3 − 1

2Reff
k2 + higher order in k k → 0 (3.1.1)

for the phase shift δ(k) of low energy p-wave scattering. A formula for the effective range is
found in [HL10, Equation (56)]. With this we find
Proposition 3.1.5. The effective range is given by

R−1
eff = 18

5 a
2
0a

−3.

Using this formula we recover the formula [DZ19, Equation (15)] to order ρ10/3. The formula
of [DZ19] reads

ed=3(ρ)
ρ

= k2
F

[︄
3
5 + 2

5πa
3k3
F − 1

35πa
6R−1

eff k
5
F + 2066 − 312 log 2

10395π2 a6k6
F + higher order

]︄
,

with kF = (6π2ρ)1/3 the Fermi momentum. We give the proof of Proposition 3.1.5 in
Section 3.2.1 below.

Remark 3.1.6 (Numerical investigation). The validity of the formula in Theorem 3.1.3 is
investigated numerically in [BTP23] using Quantum Monte Carlo simulations. We plot their
findings in Figure 3.1.1 and compare them to the formula in Theorem 3.1.3 and the claimed
formula to order ρ11/3 of [DZ19, Equation (15)].

Remark 3.1.7. One may weaken the assumptions on the interaction v a bit at the cost of
a longer proof. The compact support and that v ≥ 0 are not strictly necessary. Essentially,
we just need sufficiently good bounds on integrals of the scattering function f0 as used in
Sections 3.3.1 and 3.4 and that the “stability condition” of the tree-graph bound [PU09,
Proposition 6.1; Uel18] used in Section 3.3.1 is satisfied.

Remark 3.1.8. With the same method one should be able to improve the error bound slightly.
At best one could get the error to be Oε(ρ5/3(a3ρ)2−ε) for any ε > 0 (i.e., the error-term in
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Figure 3.1.1: Energies of dilute Fermi gasses. The curves and points labelled
HC are for a Hard Core interaction of radius a. The curves and points labelled
SC are for a Soft Core interaction of radius 2a and strength V0 chosen so that
it’s scattering length is a. (Meaning v(x) = V0χ|x|≤2a, χ being the characteristic
function.) The points (labelled QMC) are Quantum Monte Carlo simulations from
[BTP23]. The curves include the (conjectured) corrections up to the labelled order
in kF = (6π2ρ)1/3.

Theorem 3.1.3, O((a3ρ)2/3+1/21| log(a3ρ)|6) could be replaced by Oε((a3ρ)1−ε)). The bound
of the error-term in Theorem 3.1.3 arises from bounding the tail of the Gaudin-Gillespie-Ripka-
expansion. Exact calculation for small diagrams (meaning small number of involved particles)
reveal that this bound is very crude. Using such exact calculations for more diagrams would
improve the error-bound as stated. This is somewhat similar to the recent work on the Bose
gas [BCGOPS23]. We shall discuss this further in Remark 3.4.10.

We consider the lower-dimensional problems next. We start with 2 dimensions, where the
scattering length is defined as follows.

Definition 3.1.9. The (2-dimensional) p-wave scattering length a of the interaction v is
defined by the minimization problem

4πa2 = inf
{︄ˆ

R2
|x|2

(︃
|∇f0(x)|2 + 1

2v(x)|f0(x)|2
)︃

dx : f0(x) → 1 as |x| → ∞
}︄

The minimizer f0 is the (2-dimensional) (p-wave) scattering function.
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With this, we may state the 2-dimensional analogue of Theorem 3.1.3.
Theorem 3.1.10 (Two dimensions). Suppose that v ≥ 0 is radial and compactly supported.
Then, for sufficiently small a2ρ, the ground-state energy density satisfies

ed=2(ρ) ≤ 2πρ2 + 4π2a2ρ3
[︄
1 +O

(︂
a2ρ| log(a2ρ)|2

)︂]︄
.

We sketch in Section 3.5.1 how to adapt the proof in the 3-dimensional setting to 2 dimensions.

Finally, we consider the 1-dimensional problem. The scattering length is defined as follows.

Definition 3.1.11. The (1-dimensional) p-wave scattering length a of the interaction v is
defined by the minimization problem

2a = inf
{︄ˆ

R
|x|2

(︃
|∂f0(x)|2 + 1

2v(x)|f0(x)|2
)︃

dx : f0(x) → 1 as |x| → ∞
}︄

The minimizer f0 is the (1-dimensional) (p-wave) scattering function.

We show in Proposition 3.5.12 that Definition 3.1.11 agrees with the (seemingly different)
definition of the scattering length in [ARS22]. With this, we may state the 1-dimensional
analogue of Theorem 3.1.3.
Theorem 3.1.12 (One dimension). Suppose that v ≥ 0 is even and compactly supported.
Suppose moreover that

´ (︂1
2vf

2
0 + |∂f0|2

)︂
dx < ∞, where f0 denotes the (p-wave) scattering

function. Then, for sufficiently small aρ, the ground-state energy density satisfies

ed=1(ρ) ≤ π2

3 ρ
3 + 2π2

3 aρ4
[︄
1 +O

(︂
(aρ)9/13

)︂]︄
.

We remark that Agerskov, Reuvers and Solovej [ARS22] recently showed (almost) the same
result with a matching lower bound ed=1(ρ) ≥ π2

3 ρ
3 + 2π2

3 aρ4(1 + o(1)). Compared to their
result we treat a slightly different class of potentials and obtain an improved error bound. The
conjectured next contribution is of order a2ρ5, see [ARS22].

Remark 3.1.13 (On the assumptions on v). Any smooth interaction or an interaction
with a hard core (meaning that v(x) = +∞ for |x| ≤ a0 for some a0 > 0) satisfies´ (︂1

2vf
2
0 + |∂f0|2

)︂
dx < ∞, see Propositions 3.5.13 and 3.5.14.

We sketch in Section 3.5.2 how to adapt the proof in the 3-dimensional setting to 1 dimension.
This turns out to be more involved than adapting the argument to 2 dimensions.

The paper is structured as follows. In Section 3.2 we give some preliminary computations and
in particular we introduce the “Fermi polyhedron”, a polyhedral approximation to the Fermi
ball. In Section 3.3 we introduce the fermionic cluster expansion of Gaudin, Gillespie and
Ripka [GGR71] and we find conditions on absolute convergence of the resulting formulas. In
the subsequent Section 3.4 we compute the energy of a Jastrow-type trial state and glue many
of them together using a box method to form trial states of arbitrary many particles. Finally,
in Section 3.5 we sketch how to adapt the argument to the lower-dimensional settings. In
Section 3.A we give computations of “small diagrams” needed for some bounds in Sections 3.4
and 3.5.2 and in Section 3.B we give the proof of Lemma 3.4.9, an important lemma used in
Section 3.4.
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3.2 Preliminary computations
We will construct a trial state using a box method, and bound the energy of such trial state.
To use such a box method we need to use Dirichlet boundary conditions in each smaller box.
In Lemma 3.4.3 we show that we may construct trial states with Dirichlet boundary condition
out of trial states with periodic boundary conditions. We will thus use periodic boundary
conditions in the box Λ = [−L/2, L/2]3. For periodic boundary conditions, the Hamiltonian
is given by

HN = Hper
N,L =

N∑︂
j=1

−∆j +
∑︂
i<j

vper(xi − xj),

where ∆j denotes the Laplacian on the j’th coordinate and vper(x) = ∑︁
n∈Z3 v(x+ nL), the

periodized interaction. By a slight abuse of notation we write v = vper, since we will choose L
bigger than the range of v.

The trial state in each smaller box is given by the Jastrow-type [Jas55] trial state (also known
as a Bijl-Dingle-Jastrow-type trial state)

ψN = 1√
CN

∏︂
i<j

f(xi − xj)DN(x1, . . . , xN), (3.2.1)

where f is a scaled and cut-off version of the scatting function f0, DN is an appropriately
chosen Slater determinant, and CN is a normalization constant. More precisely,

f(x) =

⎧⎨⎩
1

1−a3/b3f0(|x|) |x| ≤ b,

1 |x| ≥ b,

DN(x1, . . . , xN) = det [uk(xi)]1≤i≤N
k∈PF

, uk(x) = 1
L3/2 e

ikx,

where f0 is the p-wave scattering function, |·| := minn∈Z3 |· − nL|R3 (with |·|R3 denoting the
norm on R3), b > R0, the range of v, is some cut-off to be chosen later, PF is a polyhedral
approximation to the Fermi ball BF of radius kF described in Section 3.2.2, and the number of
particles is N = #PF , the number of points in PF . We choose b to be larger than the range of
v; in particular, then f is continuous. (Note that the metric on the torus is d(x, y) = |x− y|.
We will abuse notation slightly and denote by |·| also the absolute value of some number or
the norm on R3.)

Before going further with the proof we first fix some notation.

Notation 3.2.1. We introduce the following.

• For any function h and edge (of some graph) e = (i, j) we will write he = hij =
h(xi − xj).

• We denote by C a generic positive constant whose value may change line by line.

• For expressions A,B we write A ≲ B if there exists some constant C > 0 such that
A ≤ CB. If both A ≲ B and B ≲ A we write A ∼ B.

• For a vector x = (x1, . . . , xd) ∈ Rd we write x1, . . . , xd for its components.
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We will fix the Fermi momentum kF and then choose L,N large but finite depending on kF .
The density of particles in the trial state ψN is ρ := N/L3. The limit of small density a3ρ → 0
will be realized as kFa → 0.

To compute the energy of the trial state ψN note that for (real-valued) functions F,G we have
ˆ

|∇(FG)|2 =
ˆ

|∇F |2|G|2 −
ˆ

|F |2G∆G.

Using this on F = ∏︁
i<j fij and G = DN we have

⟨ψN |HN |ψN⟩ = E0 + 2
∑︂
j<k

⟨︄
ψN

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓∇f(xj − xk)
f(xj − xk)

⃓⃓⃓⃓
⃓
2

+ 1
2v(xj − xk)

⃓⃓⃓⃓
⃓⃓ψN

⟩︄

+ 6
∑︂
i<j<k

⟨︄
ψN

⃓⃓⃓⃓
⃓∇fij∇fjkfijfjk

⃓⃓⃓⃓
⃓ψN

⟩︄

= E0 +
¨

ρ
(2)
Jas(x1, x2)

⎛⎝⃓⃓⃓⃓⃓∇f(x1 − x2)
f(x1 − x2)

⃓⃓⃓⃓
⃓
2

+ 1
2v(x1 − x2)

⎞⎠ dx1 dx2

+
˚

ρ
(3)
Jas(x1, x2, x3)

∇f12∇f23

f12f23
dx1 dx2 dx3,

(3.2.2)

where E0 = ∑︁
k∈PF

|k|2 is the kinetic energy of 1√
N !DN and ρ(n)

Jas denotes the n-particle reduced
density of the trial state ψN , given by

ρ
(n)
Jas(x1, . . . , xn) = N(N − 1) · · · (N − n+ 1)

̇
|ψN(x1, . . . , xN)|2 dxn+1 . . . dxN ,

n = 1, . . . , N. (3.2.3)

The division by f is non-problematic even where f = 0, since it cancels with the corresponding
factors of f in ψN . We need to compute ρ

(2)
Jas and bound ρ

(3)
Jas. Before we start on this

endeavour we first recall some properties of the scattering function.

3.2.1 The scattering function
The scattering function f0 is defined by the minimization problem in Definition 3.1.1, see
also [LY01, Appendix A; SY20]. In particular f0 satisfies the corresponding Euler-Lagrange
equation

−4x · ∇f0 − 2|x|2∆f0 + |x|2vf0 = 0.

The minimizer f0 is radial and with a slight abuse of notation we sometimes write f0(|x|) =
f0(x). In radial coordinates the Euler-Lagrange equations reads

−∂2
rf0 − 4

r
∂rf0 + 1

2vf0 = 0, (3.2.4)

where ∂r denotes the derivative in the radial direction. This is the same equation as for s-wave
scattering in 5 dimensions, see [LY01, Appendix A]. Thus, properties of this carry over. In
particular f0(x) = 1 − a3

|x|3 for x outside the support of v. Moreover
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Lemma 3.2.2 ([LY01, Lemma A.1]). The scattering function f0 satisfies[︄
1 − a3

|x|3

]︄
+

≤ f0(x) ≤ 1

for all x and |∇f0(x)| ≤ 3a3

|x|4 for |x| > a.

We give a short proof here for completeness.

Proof. From the radial Euler-Lagrange equation (3.2.4) we have ∂r(r4∂rf0) = vr4f0/2 ≥ 0.
Denote by fhc =

[︂
1 − a3

|x|3
]︂

+
the solution for a hard core potential of range a. Then

r4∂rfhc =

⎧⎨⎩3a3 r > a

0 r < a

In particular ∂r(r4∂rfhc) = 0 for r > a. We thus see that ∂rf0 ≤ ∂rfhc = 3a3r−4 and f0 ≥ fhc
for r > a by integrating. Trivially f0 ≥ 0 = fhc for r ≤ a.

Remark 3.2.3. A hard core interaction of range R0 > 0,

vhc(x) =

⎧⎨⎩+∞ |x| ≤ R0,

0 |x| > R0,

has f0(x) = fhc(x) =
[︂
1 − a3

|x|3
]︂

+
and thus a0 = a = R0.

Finally, we give the

Proof of Proposition 3.1.5. Let R0 denote the range of the interaction. Then the effective
range is given by [HL10, Equation (56)]

−R−1
eff = − 2

R
− 2R2

a3 + 2R5

5a6 − 2
ˆ R

0
u(r)2 dr, for R ≥ R0 (3.2.5)

where u solves [HL10, Equation (22)]

−∂2
ru+ 2

r2u+ 1
2vu = 0

with ∂r denoting the radial derivative. In particular then f0 = −a3

r2u satisfies the scat-
tering equation, Equation (3.2.4). For r ≥ R0 we find using [HL10, Equation (27)] and
Equation (3.1.1)

u(r) = lim
k→0

sin(kr + δ(k)) − kr cos(kr + δ(k))
r sin δ(k) = −r2

a3

[︄
1 − a3

r3

]︄
.

We conclude that f0 = −a3

r2u is indeed the scattering function. Thus (3.2.5) reads

−R−1
eff = − 2

R
− 2R2

a3 + 2R5

5a6 − 2
a6

ˆ R

0
r4f 2

0 dr, for R ≥ R0

The remainder of the proof is a simple calculation using integration by parts and the scattering
equation. We omit the details. This concludes the proof of Proposition 3.1.5.
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3.2. Preliminary computations

3.2.2 The “Fermi polyhedron”
We introduce a polyhedral approximation PF of the Fermi ball BF = {k ∈ 2π

L
Z3 : |k| ≤ kF}.

The main properties we will need of the polyhedral approximation are given in Lemmas 3.2.12,
3.2.13 and 3.4.9. We discuss why we need such a polyhedral approximation in Remark 3.3.5.
The problem is that

ˆ
[0,L]3

1
L3

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
k∈B(kF )∩ 2π

L
Z3

eikx

⃓⃓⃓⃓
⃓⃓⃓ dx = 1

(2π)3

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
q∈B(cN1/3)∩Z3

eiqu

⃓⃓⃓⃓
⃓⃓ du ∼ N1/3

for large N (see [GL19; Lif06] and references therein) is too big for our purposes. Note
that this behaviour is a consequence of taking the absolute value. In fact we have that
1
L3

´ ∑︁
k∈B(kF )∩ 2π

L
Z3 eikx dx = 1.

This type of quantity is referred to as the Lebesgue constant [GL19; Lif06] of some domain Ω,

L(Ω) := 1
(2π)3

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
q∈Ω∩Z3

eiqu

⃓⃓⃓⃓
⃓⃓ du

These kinds of integrals appear in estimates in Sections 3.3.1 and 3.4. For an overview of
such Lebesgue constants, see [GL19; Lif06]. Of particular relevance for us is the fact that
the Lebesgue constants are much smaller for polyhedral domains than for balls. Hence we
introduce the polyhedron P = P (N) as an approximation of the unit ball. Then the scaled
version PF = kFP ∩ 2π

L
Z3 approximates the Fermi ball. We will refer to PF as the Fermi

polyhedron. In [KL18, Theorem 4.1] it is shown that for any fixed convex polyhedron P ′ of s
vertices

L(RP ′) = 1
(2π)3

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
q∈RP ′∩Z3

eiqu

⃓⃓⃓⃓
⃓⃓ du ≤ Cs(logR)3 + C(s)(logR)2 (3.2.6)

for any R > 2, in particular for R ∼ N1/3, where C(s) is some unknown function of s. We will
improve on this bound for the specific polyhedron P = P (N) to control the s-dependence of
the subleading (in R) terms, i.e. of C(s). For the specific polyhedron P we have C(s) ≤ Cs.
This is the content of Lemma 3.2.12 below. We first give an almost correct definition of the
polyhedron P .

“Definition” 3.2.4 (Simple definition). The polyhedron P is chosen to be the convex hull
of s = s(N) points κ1, . . . , κs on a sphere of radius 1 + δ, where δ is chosen such that
Vol(P ) = 4π/3. We moreover choose the set of points to have the following properties.

• The points are evenly distributed, meaning that the distance d between any pair of
points satisfies d ≳ s−1/2, and that for any k on the sphere of radius 1 + δ the distance
from k to the closest point is ≲ s−1/2. That is, for some constants c, C > 0 we have
d ≥ cs−1/2 and infj |k − κj| ≤ Cs−1/2.

• P is invariant under any map (k1, k2, k3) ↦→ (±ka,±kb,±kc) for {a, b, c} = {1, 2, 3},
i.e. reflection in or permutation of any of the axes.

The Fermi polyhedron is the rescaled version defined as PF := kFP ∩ 2π
L
Z3, where L is chosen

large (depending on kF ) such that kFL is large.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Remark 3.2.5. Note that the symmetry constraint adds a restriction on s. For instance, a
generic point away from any plane of symmetry (i.e. k1, k2, k3 all different and non-zero) has
48 images (including itself) when reflected by the maps (k1, k2, k3) ↦→ (±ka,±kb,±kc) for
{a, b, c} = {1, 2, 3}.

For s points on a sphere of radius 1 + δ, the natural lengthscale is (1 + δ)s−1/2 ∼ s−1/2. The
requirement that the points are evenly distributed then ensures that all pairs of close points
(for any reasonable definition of “close points”) have a pairwise distance of this order.

Remark 3.2.6. For all purposes apart from the technical argument in Section 3.B one may
take this as the definition. In particular, the convergence criterion of the cluster expansion
formulas of Gaudin, Gillespie and Ripka [GGR71], given in Theorem 3.3.4, holds also for this
simpler definition of P . We provide this simpler definition to better give an intuition of the
construction.

We now give the actual definition of P . We first give the construction. Then in Remark 3.2.9
we give a few comments and in Remark 3.2.10 we give a short motivation.

Definition 3.2.7 (Actual definition). The polyhedron P with s corners and the “centre” z is
constructed as follows.

• First, choose a big number Q, the “size of the primes” satisfying

Q−1/4 ≤ Cs−1, N4/3 ≪ Q ≤ CNC

in the limit N → ∞.

• Pick three large distinct primes Q1, Q2, Q3 with Qj ∼ Q.

• Place s evenly distributed points κR1 , . . . , κRs on the sphere of radius Q−3/4 and such
that the set of points {κR1 , . . . , κRs } is invariant under the symmetries (k1, k2, k3) ↦→
(±ka,±kb,±kc) for {a, b, c} = {1, 2, 3}.
Here, evenly distributed means that the distance between any pair of points is d ≳
s−1/2Q−3/4 and that for any k on the sphere of radius Q−3/4 the distance from k to
the nearest point is ≲ s−1/2Q−3/4. That is, d ≥ cs−1/2Q−3/4 and infj

⃓⃓⃓
k − κRj

⃓⃓⃓
≤

Cs−1/2Q−3/4 for some constants c, C > 0.

• Find points κ1, . . . , κs of the form

κj =
(︄
p1
j

Q1
,
p2
j

Q2
,
p3
j

Q3

)︄
, pµj ∈ Z, µ = 1, 2, 3, j = 1, . . . , s, (3.2.7)

such that
⃓⃓⃓
κj − κRj

⃓⃓⃓
≲ Q−1 for all j = 1, . . . , s and such that the set of points

{κ1, . . . , κs} is invariant under the symmetries (k1, k2, k3) ↦→ (±k1,±k2,±k3).

• Define P̃ as the convex hull of all the points κ1, . . . , κs. That is, P̃ = conv{κ1, . . . , κs}.

• Define P as σP̃ , where σ is chosen such that Vol(P ) = 4π/3. We will refer to the
scaled points σκj = σ(p1

j/Q1, p
2
j/Q2, p

3
j/Q3) for j = 1, . . . , s as corners of P .

• Define PR = σ conv{κR1 , . . . , κRs } as the scaled convex hull of all the initial points
κR1 , . . . , κ

R
s .
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3.2. Preliminary computations

• Define the centre as z = σ(1/Q1, 1/Q2, 1/Q3).

The Fermi polyhedron is the rescaled version defined as PF := kFP ∩ 2π
L
Z3, where L is chosen

large (depending on kF ) such that kFL
2π is rational and large.

We additionally define PR
F := kFP

R ∩ 2π
L
Z3.

Remark 3.2.8. We choose N := #PF , so that the Fermi polyhedron is filled. The dependence
in N of, for instance, Q should therefore more precisely be given in terms of a dependence on
kFL. Note that N = ρL3 ∼ (kFL)3 and kF = (6π2ρ)1/3(1 +O(N−1/3)).

We will choose also s depending on N (i.e. on kFL) satisfying s → ∞ as N → ∞.

Remark 3.2.9 (Comments on and properties of the construction). We collect here some
properties of the Fermi polyhedron, some of which will only be needed in Section 3.B.

• The points κ1, . . . , κs are evenly distributed on a thickened sphere of radius Q−3/4 –
their radial coordinates are |κj| = Q−3/4 +O(Q−1). Indeed, the points κR1 , . . . , κRs are
evenly distributed and Q−1 ≪ s−1/2Q−3/4. For s points on a thickened sphere of radius
Q−3/4, the natural lengthscale between points is s−1/2Q−3/4.

• There is some constraint on the number of points s. A generic point κ (with κ1, κ2, κ3

all different and non-zero) has 48 images, including itself. The constraint on s is more
or less the same as for the simpler ‘‘Definition” 3.2.4.

• By choosing the points κ1, . . . , κs as in Equation (3.2.7) we break the symmetries of
permuting the coordinates, i.e. (k1, k2, k3) ↦→ (ka, kb, kc) if (a, b, c) ̸= (1, 2, 3). These
symmetries are however still almost satisfied, see Lemma 3.2.11.

• We choose s,Q such that Q−1/4 ≪ s−1/2 in the limit of largeN . Hence, for N sufficiently
large, all the chosen points {κ1, . . . , κs} are extreme points of P̃ , i.e. all corners are
extreme points of the polyhedron P . That is, the name “corner” is well-chosen, and we
do not have any superfluous points in the construction.

• For any three points (xi, yi, zi) ∈ R3, i = 1, 2, 3 the plane through them is given by the
equation ⎛⎜⎝ (y2 − y1)(z3 − z1) − (y3 − y1)(z2 − z1)

(z2 − z1)(x3 − x1) − (z3 − z1)(x2 − x1)
(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)

⎞⎟⎠ ·

⎛⎜⎝xy
z

⎞⎟⎠ = const.

Hence, for three points K1, K2, K3 of the form Ki = (p1
i /Q1, p

2
i /Q2, p

3
i /Q3), pµi ∈ Z,

i, µ = 1, 2, 3 the plane through them is given by
α1

Q2Q3
k1 + α2

Q1Q3
k2 + α3

Q1Q2
k3 = γ ∈ Q, (3.2.8)

where
α1 = (p2

2 − p2
1)(p3

3 − p3
1) − (p2

3 − p2
1)(p3

2 − p3
1) ∈ Z

and similarly for α2, α3. From these formulas it is immediate that for Ki’s corners of
P or the centre z we have |αj| ≤ C

√
Q for j = 1, 2, 3. For some planes we may have

αj = 0 for some j.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

• We claim that σ = Q3/4(1 +O(s−1)). In particular, that any point on the boundary ∂P
has radial coordinate 1 +O(s−1). To see this, note that Q3/4P̃ is a polyhedron whose
corners are evenly spaced and have radial coordinates r with r = 1 +O(Q−1/4). Thus,
by scaling Q3/4P̃ by 1 −CQ−1/4 we get that (1 −CQ−1/4)Q3/4P̃ ⊂ B1(0) so that this
has volume ≤ 4π

3 . It follows that σ ≥ Q3/4(1 − CQ−1/4). On the other hand, scaling
Q3/4P̃ by 1 +Cs−1 we have that (1 +Cs−1)Q3/4P̃ ⊃ B1(0). Indeed, since the distance
from any point k on the sphere of radius 1 to any corner of Q3/4P̃ is ≲ s−1/2, and the
sphere is locally quadratic, the smallest radial coordinate r of a point on the boundary
∂(Q3/4P̃ ) is r ≥ 1 − Cs−1. It follows that σ ≤ (1 + Cs−1)Q3/4. Since Q−1/4 ≤ Cs−1

this shows the desired.

• Note moreover that σ is irrational. Indeed, the volume of a polyhedron with rational
corners is rational. (This is easily seen for tetrahedra, of which any polyhedron is an
essentially disjoint union.) Thus σ3 = πr for a rational r. Hence the equations of the
planes defined by corners of P (i.e. scaled points) are of the form Equation (3.2.8) with
an irrational constant σγ on the right-hand side. Indeed, the corners of P (and the central
point z) are all scaled by σ compared to points of the form (p1/Q1, p

2/Q2, p
3/Q3). The

equation of the plane through three scaled points only differ by scaling the constant
term. Since σ is irrational, and the constant term was rational for the unscaled points,
this shows the desired.

• We now construct a triangulation of ∂P . For all (2-dimensional) triangular faces of P
simply consider these as part of the triangulation. That is, we construct edges between
any pair of the three corners of such a triangle. Some of the (2-dimensional) faces of P
may be polygons of more than 3 sides (1-dimensional faces). Construct edges between
all pairs of corners sharing a side (i.e. a 1-dimensional face) and choose one corner and
construct edges from this corner to all other corners of the polygon.

Doing this constructs a triangulation of ∂P and we will refer to all pairs of corners with
an edge between them as close or neighbours. Since the points {κ1, . . . , κs} are evenly
distributed, that the distance between any pair of close corners is d ∼ s−1/2.

• Additionally, one may note that the corners of P have ≤ C many neighbours since the
points are evenly distributed.

• The reason we need LkF

2π rational will only become apparent in Section 3.B and will be
explained there.

Remark 3.2.10 (Motivation of construction). The purpose of the construction is twofold.
Firstly we avoid a casework argument as in the proof of [KL18, Lemma 3.5] of whether the
coefficients of the planes are rational or not. The argument in Lemmas 3.B.6 and 3.B.7 is
heavily inspired by [KL18, Lemmas 3.6, 3.9], where such casework is required. Secondly we
have good control over how many (and which) lattice points (i.e. points in 2π

L
Z3) can lie on

each plane (or, rather, a closely related plane, see Section 3.B for the details).

These are technical details only needed in Section 3.B. We reiterate, that apart from the
arguments in Section 3.B, the reader may have the simpler ‘‘Definition” 3.2.4 in mind instead.

As mentioned in Remark 3.2.9 the Fermi polyhedron is almost symmetric under permutation
of the axes. This is formalized as follows.
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3.2. Preliminary computations

Lemma 3.2.11. For µ ̸= ν let Fµν be the map that permutes kµ and kν (i.e. F12(k1, k2, k3) =
(k2, k1, k3), etc.). Then for any function t ≥ 0 we have

∑︂
k∈ 2π

L
Z3

⃓⃓⃓
χ(k∈PF ) − χ(k∈Fµν(PF ))

⃓⃓⃓
t(k) ≲ Q−1/4N sup

|k|∼kF

t(k) ≲ N2/3 sup
|k|∼kF

t(k),

where Q is as in Definition 3.2.7 and χ denotes the indicator function.

Proof. Note that

∑︂
k∈ 2π

L
Z3

⃓⃓⃓
χ(k∈PF ) − χ(k∈Fµν(PF ))

⃓⃓⃓
t(k)

≤
∑︂

k∈ 2π
L
Z3

⃓⃓⃓
χ(k∈PF ) − χ(k∈PR

F )

⃓⃓⃓
t(k) +

∑︂
k∈ 2π

L
Z3

⃓⃓⃓
χ(k∈Fµν(PF )) − χ(k∈Fµν(PR

F ))

⃓⃓⃓
t(k) (3.2.9)

since PR
F is invariant under permutation of the axes, i.e. Fµν(PR

F ) = PR
F . The points

{κj}j=1,...,s only differ from {κRj }j=1,...,s by at most ∼ Q−1 thus the points {σκj}j=1,...,s (the
corners of P ) only differ from the points {σκRj }j=1,...,s by ∼ Q−1/4. Hence, the support of
χ(k∈PF ) − χ(k∈PR

F ) is contained in a shell of width ∼ kFQ
−1/4 around the surface ∂(kFP ).

That is,

supp
(︂
χ(k∈PF ) − χ(k∈PR

F )

)︂
⊂
{︃
k ∈ 2π

L
Z3 : dist(k, ∂(kFP )) ≲ kFQ

−1/4
}︃
.

The surface ∂(kFP ) has area ∼ k2
F so

Vol
(︂{︂
k ∈ R3 : dist(k, ∂(kFP )) ≲ kFQ

−1/4
}︂)︂

≲ k3
FQ

−1/4.

The spacing between the k’s in 2π
L
Z3 is ∼ L−1 and any k with dist(k, ∂(kFP )) ≲ kFQ

−1/4

has |k| ∼ kF . Thus
∑︂
k∈PF

⃓⃓⃓
χ(k∈PF ) − χ(k∈PR

F )

⃓⃓⃓
t(k) ≲ L3k3

FQ
−1/4 sup

|k|∼kF

t(k) ∼ Q−1/4N sup
|k|∼kF

t(k).

The same argument applies to the second summand in Equation (3.2.9). We conclude the
desired.

We now improve on Equation (3.2.6) for our polyhedron.
Lemma 3.2.12. The Lebesgue constant of the Fermi polyhedron satisfies

ˆ
Λ

1
L3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈PF

eikx

⃓⃓⃓⃓
⃓⃓ dx = 1

(2π)3

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z3

eiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ Cs(logN)3.

The proof is (almost) the same as given in [KL18, Theorem 4.1]. We need to be a bit more
careful in the decomposition into tetrahedra.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Proof. Define R = LkF

2π . We decompose RP into tetrahedra using the “central” point z
from the construction of P . We triangulate the surface of RP as in Remark 3.2.9. For each
triangle in the triangulation add the point Rz to form a tetrahedron. Note that Rz /∈ Z3 since
|Rz| ≤ CRQ−1/4 ≪ 1 and z ̸= 0. This gives m = O(s) many (closed) tetrahedra {Tj} such
that RP = ⋃︁

Tj and that Tj ∩ Tj′ is a tetrahedron of lower dimension (i.e. the central point
Rz, a line segment or a triangle). Then, as in [KL18, Theorem 4.1] by the inclusion–exclusion
principle we have

L(RP ) = 1
(2π)3

ˆ ⃓⃓⃓⃓
⃓⃓⃓∑︂
j

∑︂
q∈Tj∩Z3

eiqu −
∑︂
j<j′

∑︂
q∈Tj∩Tj′ ∩Z3

eiqu + · · ·

⃓⃓⃓⃓
⃓⃓⃓ du

≤
m∑︂
ℓ=1

∑︂
j1<...<jℓ

L(Tj1 ∩ . . . ∩ Tjℓ).

In [KL18, Theorem 4.1] it is shown that for a d-dimensional tetrahedron T with T ⊂
[0, n1] × . . . × [0, nd] we have L(T ) ≤ C(d)∏︁d

i=1 log(ni + 1). All the tetrahedra in our
construction are d-dimensional for d ≤ 3 and contained in boxes [0, CR]d (after translations
by lattice vectors κ ∈ Z3). Hence for all tuples Tj1 , . . . , Tjℓ we have

L(Tj1 ∩ . . . ∩ Tjℓ) ≤ C(logR)d ≤ C(logN)3.

We need to count how many summands we have. The 3-dimensional tetrahedra each appear
just once, and there are m = O(s) many of them. The 2-dimensional tetrahedra (triangles)
appear just once, namely in the term L(Tj ∩Tj′) where the triangle is the intersection Tj ∩Tj′ .
Hence there are O(s) many such terms. The 1-dimensional tetrahedra (line segments) may
appear more times, with 3, 4, . . . , C many Tj’s. Indeed an edge may be shared by more
tetrahedra, but only a bounded number of them. (This follows from the points being well-
distributed, so each corner of P has a bounded number of neighbours.) Since there is also only
O(s) many 1-dimensional line segments this gives also just a contribution O(s). The central
point appears many times, but all appearances contribute 0, since Rz /∈ Z3. We conclude
that L(RP ) ≤ Cs(logN)3 as desired.

By replacing BF with PF we make an error in the kinetic energy. (The Fermi ball BF is the
set of momenta of the Slater determinant with lowest kinetic energy.) We now bound the
error made with this approximation. That is, we consider∑︂

k∈PF

|k|2 −
∑︂
k∈BF

|k|2.

Note that there might not be the same number of summands in both sums. To compute this
difference we interpret the sums as Riemann-sums and replace them with the corresponding
integrals. It is a simple exercise to show that the error made in this replacement is Ck2

FN
2/3.

That is,

∑︂
k∈PF

|k|2 −
∑︂
k∈BF

|k|2 = L3

(2π)3

(︄ˆ
kFP

|k|2 dk −
ˆ
B(kF )

|k|2 dk
)︄

+O
(︂
k2
FN

2/3
)︂
.

The integrals can be computed in spherical coordinates,
ˆ
kFP

|k|2 dk −
ˆ
B(kF )

|k|2 dk =
ˆ
S2

(︄ˆ kFR(ω)

0
r4 dr −

ˆ kF

0
r4 dr

)︄
dω
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3.2. Preliminary computations

For kFP the radial limit is kFR(ω) = kF (1 + ε(ω)), where ε(ω) = O(s−1) uniformly in ω by
the argument in Remark 3.2.9. Expanding the powers of R we thus getˆ

kFP

|k|2 dk −
ˆ
B(kF )

|k|2 dk = k5
F

ˆ
S2

(︂
ε(ω) +O(s−2)

)︂
dω.

By construction, P has volume 4π/3. That is, kFP and B(kF ) have the same volume. This
means that

0 =
ˆ
S2

(︄ˆ kFR(ω)

0
r2 dr −

ˆ kF

0
r2 dr

)︄
dω = k3

F

ˆ
S2

(︂
ε(ω) +O(s−2)

)︂
dω.

We thus get that ∑︂
k∈PF

|k|2 −
∑︂
k∈BF

|k|2 = O(k2
FNs

−2) +O
(︂
k2
FN

2/3
)︂
.

We conclude the following.
Lemma 3.2.13. The kinetic energy of the (Slater determinant with momenta in the) Fermi
polyhedron satisfies∑︂

k∈PF

|k|2 =
∑︂
k∈BF

|k|2
(︂
1 +O(N−1/3) +O(s−2)

)︂
= 3

5(6π)2/3ρ2/3N
(︂
1 +O(N−1/3) +O(s−2)

)︂
.

Proof. The computation above gives the first equality. The second follows by noting that∑︁
k∈BF

|k|2 is a Riemann sum for

L3

(2π)3

ˆ
|k|≤kF

|k|2 dk = 4π
5(2π)3k

5
FL

3 = 3
5(6π2)2/3ρ2/3N(1 +O(N−1/3)).

Completely analogously one can show that
∑︂
k∈PF

|k|4 = 18π2

7 (6π)1/3ρ4/3N
(︂
1 +O(N−1/3) +O(s−2)

)︂
. (3.2.10)

We need this formula for Lemma 3.2.14 below. Additionally we need a formula for ∑︁k∈PF
|k1|4,

where k1 refers to the first coordinate of k = (k1, k2, k3). Here we have
∑︂
k∈PF

|k1|4 = 18π2

35 (6π)1/3ρ4/3N
(︂
1 +O(N−1/3) +O(s−1)

)︂
. (3.2.11)

To see this we compare it to ∑︁k∈BF
|k1|4. The only difference from above is when doing the

spherical integral. We have∑︂
k∈PF

|k1|4 −
∑︂
k∈BF

|k1|4

= L3

(2π)3

ˆ 2π

0
dθ
ˆ π

0
dϕ cos(ϕ)4

(︄ˆ kF (1+ε(ϕ,θ))

0
r6 dr −

ˆ kF

0
r6 dr

)︄
+O(k4

FN
2/3)

= O(k4
FNs

−1) +O(k4
FN

2/3),

since we can’t use the volume constraint that
´
S2 ε(ω) dω = O(s−2) but only that ε(ω) =

O(s−1). Thus we only get an error of (relative) size s−1. The sum over BF may be readily
computed by computing the corresponding integral.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

3.2.3 Reduced densities of the Slater determinant
We now consider the 2-particle reduced density of the (normalized) Slater determinant. We
have the following.
Lemma 3.2.14. The 2-particle reduced density of the (normalized) Slater determinant 1√

N !DN

satisfies

ρ(2)(x1, x2) = (6π2)2/3

5 ρ8/3|x1 − x2|2
(︄

1 − 3(6π2)2/3

35 ρ2/3|x1 − x2|2

+O(N−1/3) +O(s−2) +O(N−1/3ρ2/3|x1 − x2|2) +O(ρ4/3|x1 − x2|4)
)︄
.

This follows from a Taylor expansion akin to the argument in [ARS22, Lemma 11].

Proof. The Slater determinant is in particular a quasi-free state, hence we get by Wick’s rule
that

ρ(2)(x1, x2) = ρ(1)(x1)ρ(1)(x2) − γ
(1)
N (x1;x2)γ(1)

N (x2, x1), (3.2.12)

where γ(1)
N denotes the (kernel of the) reduced 1-particle density matrix of the Slater determinant.

We have

γ
(1)
N (x1;x2) =

∑︂
k∈PF

uk(x1)uk(x2) = 1
L3

∑︂
k∈PF

eik(x1−x2), ρ(1)(x1) = ρ.

By translation invariance, γ(1)
N (x1;x2) is a function of x1 −x2 only, and we shall Taylor expand

γ
(1)
N in x1 − x2. By construction PF is reflection symmetric in the axes, see Definition 3.2.7.

This means that all odd orders vanish and that all off-diagonal second order terms vanish.
Thus, by defining x12 = (x1

12, x
2
12, x

3
12) = x1 − x2 and expanding all the exponentials we get

γ
(1)
N (x1;x2)

= 1
L3

∑︂
k∈PF

(︃
1 − 1

2(k · (x1 − x2))2 + 1
24(k · (x1 − x2))4 +O(|k|6|x1 − x2|6)

)︃

= ρ− 1
2L3

∑︂
k∈PF

[︂
|k1|2|x1

12|2 + |k2|2|x2
12|2 + |k3|2|x3

12|2
]︂

+ 1
24L3

⎛⎝ ∑︂
k∈PF

[︂
|k1|4|x1

12|4 + |k2|4|x2
12|4 + |k3|4|x3

12|4
]︂

+6
∑︂
k∈PF

[︂
|k1|2|k2|2|x1

12|2|x2
12|2 + |k1|2|k3|2|x1

12|2|x3
12|2 + |k2|2|k3|2|x2

12|2|x3
12|2

]︂⎞⎠
+O(ρ3|x1 − x2|6).

By Lemma 3.2.11 we may write
∑︂
k∈PF

|kµ|2 = 1
3
∑︂
k∈PF

|k|2 +O
(︂
N2/3k2

F

)︂
and similar for the ∑︁ |kµ|4 and ∑︁ |kµ|2|kν |2-sums. Using this the second order term is given
by

− 1
6L3

∑︂
k∈PF

|k|2|x12|2 +O(ρ5/3|x12|2N−1/3).
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3.3. Gaudin–Gillespie–Ripka expansion

Similarly by also rewriting everything in terms of |x12|4 and [|x1
12|4 + |x2

12|4 + |x3
12|4] the fourth

order term is given by

1
48L3

⎡⎣⎛⎝ ∑︂
k∈PF

|k|4 − 3
∑︂
k∈PF

|k1|4
⎞⎠ |x12|4

+
⎛⎝5

∑︂
k∈PF

|k1|4 −
∑︂
k∈PF

|k|4
⎞⎠[︂|x1

12|4 + |x2
12|4 + |x3

12|4
]︂⎤⎦+O(ρ7/3|x12|4N−1/3).

Using Lemma 3.2.13 and Equations (3.2.10) and (3.2.11) we get that

γ
(1)
N (x1;x2) = ρ− (6π2)2/3

10 ρ5/3|x1 − x2|2 + 3π2(6π2)1/3

140 ρ7/3|x1 − x2|4

+O(ρ5/3N−1/3|x1 − x2|2) +O(ρ5/3s−2|x1 − x2|2)
+O(ρ7/3N−1/3|x1 − x2|4) +O(ρ7/3s−1|x1 − x2|4) +O(ρ3|x1 − x2|6).

Plugging this into Equation (3.2.12) we conclude the desired.

Finally, we have the following bound on the 3-particle reduced density
Lemma 3.2.15. The 3-particle reduced density of the (normalized) Slater determinant 1√

N !DN

satisfies
ρ(3)(x1, x2, x3) ≤ Cρ3+4/3|x1 − x2|2|x1 − x3|2.

Proof. Note that ρ(3) vanishes whenever any 2 of the 3 particles are incident and moreover
that ρ(3) is symmetric under exchange of the particles. We may bound derivatives of ρ(3) as
we did for ρ(2). By Taylor’s theorem we conclude the desired.

3.3 Gaudin–Gillespie–Ripka expansion
We now present the cluster expansion of Gaudin, Gillespie and Ripka [GGR71]. The argument
given here is essentially the same as in [GGR71], only we give sufficient conditions for the
formulas [GGR71, Equations (3.19), (4.9) and (8.4)], given in Theorem 3.3.4, to hold, i.e., for
absolute convergence of the expansion.

Recall the definition of the trial state ψN in Equation (3.2.1). We calculate the the normalization
constant CN and the reduced densities ρ(1)

Jas, ρ
(2)
Jas and ρ(3)

Jas defined in Equation (3.2.3)

We remark that the computation given in the following is not just valid for the function f
and (square of a) Slater determinant |DN |2 we choose, but these can be replaced by a more
general function and determinant of a more general matrix. We comment on this further in
Remark 3.3.3.

3.3.0.1 Calculation of the normalization constant

First we give the calculation of CN . Rewriting the f ’s in terms of g = f 2 − 1 we have

CN =
̇ ∏︂

i<j

f 2
ij|DN |2 dx1 . . . dxN =

̇ ∏︂
i<j

(1 + gij)|DN |2 dx1 . . . dxN
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

We factor out the gij and group terms with the same number of values xi. (For instance
g12g23 and g45g46g56 both have 3 values xi appearing, the values x1, x2, x3 and x4, x5, x6,
respectively). To state the result we define Gp as the set of all graphs on {1, . . . , p} such that
each vertex has degree at least 1 (i.e. is incident to at least one edge) and define

Wp(x1, . . . , xp) :=
∑︂
G∈Gp

∏︂
e∈G

ge.

(Note that for p = 0, 1 we have Gp = ∅ and so Wp = 0.) By the symmetry of permuting the
coordinates we have

CN =
̇ [︄

1 + N(N − 1)
2 W2(x1, x2) + N(N − 1)(N − 2)

3! W3(x1, x2, x3) + . . .

]︄
× |DN |2 dx1 . . . dxN

= N !
⎡⎣1 +

N∑︂
p=2

1
p!

̇
Wp(x1, . . . , xp)ρ(p)(x1, . . . , xp) dx1 . . . dxp

⎤⎦ ,
where again the reduced densities are normalised as

ρ(p)(x1, . . . , xp) = N(N − 1) · · · (N − p+ 1)
̇ 1

N ! |DN(x1, . . . , xN)|2 dxp+1 . . . dxN .

A simple calculation using the Wick rule shows that

ρ(p) = det
[︂
γ

(1)
N (xi;xj)

]︂
1≤i,j≤p

= det
⎡⎣ ∑︂
k∈PF

uk(xi)uk(xj)
⎤⎦

1≤i,j≤p

= det[S∗
pSp],

where Sp is the PF × p “Slater”-matrix with entries uk(xi). This has rank min{N, p} = p
and so by taking this determinant as the definition of ρ(p) for p > N we have ρ(p) = 0 for
p > N . Thus we may extend the summation to ∞. We now expand out the determinant and
the Wp. That is

CN
N ! = 1 +

∞∑︂
p=2

1
p!

∑︂
G∈Gp

π∈Sp

(−1)π
̇ ∏︂

e∈G
ge

p∏︂
j=1

γ
(1)
N (xj, xπ(j)) dx1 . . . dxp,

where Sp denotes the symmetric group on p elements. We will consider π and G together as
a diagram (π,G). We give a slightly more general definition for what a diagram is, as we will
need such for the calculation of the reduced densities.

Definition 3.3.1. Define the set Gq
p as the set of all graphs on q “external” vertices {1, . . . , q}

and p “internal” vertices {q + 1, . . . , q + p} such that all internal vertices have degree at least
1, i.e. each internal vertex has at least one incident edge, and such that there are no edges
between external vertices. The external edges are allowed to have degree zero, i.e. have no
incident edges. For q = 0 we recover G0

p = Gp.
A diagram (π,G) on q “external” and p “internal” vertices is a pair of a permutation π ∈ Sq+p
(viewed as a directed graph on {1, . . . , q + p}) and a graph G ∈ Gq

p . We denote the set of all
diagrams on q “external” vertices and p “internal” vertices by Dq

p.

We will sometimes refer to edges in G as g-edges, directed edges in π as γ(1)
N -edges and the

graph G as a g-graph. The value of a diagram (π,G) ∈ Dq
p is the function

Γqπ,G(x1, . . . , xq) := (−1)π
̇ ∏︂

e∈G
ge

q+p∏︂
j=1

γ
(1)
N (xj, xπ(j)) dxq+1 . . . dxq+p.
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3.3. Gaudin–Gillespie–Ripka expansion

For q = 0 we write Γπ,G = Γ0
π,G and Dp = D0

p.

A diagram (π,G) is said to be linked if the graph G̃ with edges the union of edges in G
and directed edges in π is connected. The set of all linked diagrams on q “external” and p
“internal” vertices is denoted Lq

p. For q = 0 we write Lp = L0
p.

By the translation invariance we have that Γ1
π,G is a constant for any diagram (π,G).

•

•

•

•

• •
•

•

•

•

•∗

∗

∗

(π1, G1)

(π2, G2)

(π3, G3)

Figure 3.3.1: A diagram (π,G) ∈ D3
8 decomposed into linked components. The

dashed lines denote g-edges and the arrows (i, j) denote that π(i) = j. Vertices
labelled with ∗ denote external vertices.

In terms of diagrams we thus have

CN
N ! = 1 +

∞∑︂
p=2

1
p!

∑︂
(π,G)∈Dp

Γπ,G.

If (π,G) is not linked we may decompose it into its linked components. Here the integration
factorizes. We split the sum according to the number of linked components. Each linked
component has at least 2 vertices, since each vertex must be connected to another vertex with
an edge in the corresponding graph. We get

CN
N ! = 1 +

∞∑︂
p=2

∞∑︂
k=1⏞⏟⏟⏞

# lnk. cps.

1
k!

∑︂
p1≥2

· · ·
∑︂
pk≥2⏞ ⏟⏟ ⏞

sizes linked cps.

χ(
∑︁

pℓ=p)
∑︂

(π1,G1)∈Lp1

· · ·
∑︂

(πk,Gk)∈Lpk⏞ ⏟⏟ ⏞
linked components

Γπ1,G1

p1!
· · · Γπk,Gk

pk!

(3.3.1)
Here χ is the indicator function. The factor 1/(k!) comes from counting the possible labellings
of the k linked components. The factors 1/(p1!), . . . , 1/(pk!) come from counting how to
distribute the p vertices {1, . . . , p} between the linked components of prescribed sizes p1, . . . , pk.
This gives the factor

(︂
p

p1,...,pk

)︂
= p!

p1!...pk! , which together with the factor 1/p! already present
gives the claimed formula.

We want to pull the p-summation inside the p1, . . . , pk-summation. This is allowed once
we check that ∑︁p

1
p!
∑︁

(π,G)∈Lp
Γπ,G is absolutely convergent. More precisely we need that

the p-sum is absolutely convergent, i.e. ∑︁p
1
p!

⃓⃓⃓∑︁
(π,G)∈Lp

Γπ,G
⃓⃓⃓
< ∞. This is the content of

Lemma 3.3.2 below. We conclude that if the assumptions of Lemma 3.3.2 are satisfied then

CN
N ! = 1 +

∞∑︂
k=1

1
k!
∑︂
p1≥2

· · ·
∑︂
pk≥2

∑︂
(π1,G1)∈Lp1

· · ·
∑︂

(πk,Gk)∈Lpk

Γπ1,G1

p1!
· · · Γπk,Gk

pk!

= 1 +
∞∑︂
k=1

1
k!

⎛⎝ ∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G

⎞⎠k = exp
⎛⎝ ∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G

⎞⎠ .
(3.3.2)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

3.3.0.2 Calculation of the 1-particle reduced density

We consider now the 1-particle reduced density of the Jastrow trial state. We have by the
translation invariance that ρ(1)

Jas = ρ(1) = ρ. We nonetheless compute it here, as we need the
formula in terms of (linked) diagrams. We have similarly as before

ρ
(1)
Jas(x1) = N

CN

̇ ∏︂
2≤i≤N

f 2
1i

∏︂
2≤i<j≤N

f 2
ij|DN |2 dx2 . . . dxN

= N !
CN

⎡⎣ρ(1)(x1) +
∞∑︂
p=1

1
p!

̇
X1
pρ

(p+1) dx2 . . . dxp+1

⎤⎦ ,
where

X1
p =

∑︂
G∈G1

p

∏︂
e∈G

ge,

with G1
p as in Definition 3.3.1. Again this is what one gets by just expanding all the products in

the first line and grouping them in terms of how many xi’s appear. The sum is again extended
to ∞, since ρ(p) = 0 for p > N .

We again expand out the determinant and the X1
p ’s. For each summand π ∈ Sp+1 and G ∈ G1

p

we again think of them together as a diagram (π,G) ∈ D1
p. The formula for ρ(1)

Jas in terms of
diagrams is

ρ
(1)
Jas = N !

CN

∞∑︂
p=0

1
p!

∑︂
(π,G)∈D1

p

Γ1
π,G = N !

CN

⎡⎣ρ(1) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈D1

p

Γ1
π,G

⎤⎦ .
As for the normalization we write out the diagrams in terms of their linked components. There
is a distinguished linked component, namely the one containing the vertex {1}. We will write
its size as p∗. It is convenient to take “size” to mean number of internal vertices, i.e. p∗ = 0
if {1} is not connected to any other vertex by either an edge in G or an edge in π. Similarly
“number of linked components” means disregarding the distinguished one.

Analogously to the computation in Equation (3.3.1) we thus get for any p ≥ 0

1
p!

∑︂
(π,G)∈D1

p

Γ1
π,G =

∑︂
(π∗,G∗)∈L1

p

Γ1
π∗,G∗

p!

+
⎡⎣ ∞∑︂
k=1

1
k!
∑︂
p∗≥0

∑︂
p1≥2

· · ·
∑︂
pk≥2

χ(
∑︁

ℓ∈{∗,1,...,k} pℓ=p)
∑︂

(π∗,G∗)∈L1
p∗

Γ1
π∗,G∗

p∗!

×
∑︂

(π1,G1)∈Lp1

· · ·
∑︂

(πk,Gk)∈Lpk

Γπ1,G1

p1!
· · · Γπk,Gk

pk!

⎤⎦ ,
where the superscript 1 refers to the slightly modified structure as described in Definition 3.3.1,
where there may be no g-edges connecting to {1}, and there is no integration over x1. Note
that (π1, G1) ∈ Lp1 , . . . , (πk, Gk) ∈ Lpk

only deal with internal vertices.

Again here we take the sum over p’s. We are allowed to permute the p-sum inside of the p∗-
and p1, . . . , pk-sums if the sums over linked diagrams are absolutely summable. That is, if

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓ < ∞,

∑︂
p≥2

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓ < ∞,
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3.3. Gaudin–Gillespie–Ripka expansion

then we have, as for the normalization in Equation (3.3.2), that

ρ
(1)
Jas = N !

CN

∞∑︂
p=0

1
p!

∑︂
(π,G)∈D1

p

Γ1
π,G

= N !
CN

⎡⎣∑︂
p∗≥0

∑︂
(π∗,G∗)∈Lp∗

Γ1
π∗,G∗

p∗!

⎤⎦×

⎡⎢⎣ ∞∑︂
k=0

1
k!

⎛⎝∑︂
p≥2

∑︂
(π,G)∈Lp

Γπ,G
p!

⎞⎠k
⎤⎥⎦

=
∑︂
p≥0

∑︂
(π,G)∈L1

p

Γ1
π,G

p! = ρ(1) +
∑︂
p≥1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G,

where we used Equation (3.3.2) and that the p = 0 term just gives the 1-particle density of
the Slater determinant. Thus, by translation invariance, we have

ρ = ρ(1) = ρ
(1)
Jas =

∑︂
p≥0

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G.

3.3.0.3 Calculation of the 2-particle reduced density

Let us now compute the 2-particle reduced density. As before by expanding all the f 2 = 1 + g
factors apart from the factor f12 we get

ρ
(2)
Jas = N !

CN
f 2

12

∞∑︂
p=0

ˆ
X2
pρ

(p+2) dx3 . . . dxp+2, X2
p =

∑︂
G∈G2

p

∏︂
e∈G

ge,

where G2
p is as in Definition 3.3.1.

We again decompose the diagrams into linked components. However, we need to distinguish
between the cases where {1} and {2} are both in the same component or in two different
components. The computation is analogous to the computation above. We get

ρ
(2)
Jas(x1, x2) = f 2

12

⎛⎜⎜⎜⎝ ∑︂
p1,p2≥0

∑︂
(π1,G1)∈L1

p1
(π2,G2)∈L1

p2

Γ1
π1,G1(x1)Γ1

π2,G2(x2)
p1!p2!

⏞ ⏟⏟ ⏞
{1} and {2} in different linked components

+
∑︂
p12≥0

∑︂
(π12,G12)∈L2

p12

Γ2
π12,G12(x1, x2)

p12!

⏞ ⏟⏟ ⏞
{1} and {2} in same linked component

⎞⎟⎟⎟⎠

= f 2
12

⎛⎜⎝ρ(1)
Jas(x1)ρ(1)

Jas(x2) +
∑︂
p12≥0

1
p12!

∑︂
(π12,G12)∈L2

p12

Γ2
π12,G12(x1, x2)

⎞⎟⎠
after pulling in the sum over p ≥ 0. The p12 = 0 term together with the term ρ

(1)
Jas(x1)ρ(1)

Jas(x2) =
ρ(1)(x1)ρ(1)(x2) = ρ2 gives ρ(2) by Wick’s rule. The condition of absolute convergence is

∑︂
p≥2

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓ < ∞,

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓ < ∞,

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓ < ∞.
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3.3.0.4 Calculation of the 3-particle reduced density

The calculation of the 3-particle reduced density follows along the same arguments as for the
2-particle reduced density. We introduce the relevant diagrams and decompose these according
to their linked components. As for the 2-particle reduced density we distinguish between the
cases according to whether the external vertices {1, 2, 3} are in the same or different linked
components. They are either in 1, 2 or 3 different components. Thus, schematically

ρ
(3)
Jas = f 2

12f
2
13f

2
23

⎡⎣ ∑︂
all in different

Γ1Γ1Γ1 +
(︄ ∑︂

2 in one
Γ1(x1)Γ2(x2, x3) + permutations

)︄

+
∑︂

all in same
Γ3

⎤⎦.
Any case where one external vertex is in its own linked component, the contribution for such a
linked component is ρ(1)

Jas = ρ(1) = ρ (assuming absolute convergence). Thus,

ρ
(3)
Jas(x1, x2, x3)

= f 2
12f

2
13f

2
23

⎡⎣ρ3 + ρ
∑︂
p≥0

1
p!

∑︂
(π,G)∈L2

p

(︂
Γ2
π,G(x1, x2) + Γ2

π,G(x1, x3) + Γ2
π,G(x2, x3)

)︂

+
∑︂
p≥0

1
p!

∑︂
(π,G)∈L3

p

Γ3
π,G(x1, x2, x3)

⎤⎦.
All the p = 0-terms together give ρ(3) by Wick’s rule. The condition for absolute convergence
is that for any q ≤ 3 we have ∑︁p≥0

1
p!

⃓⃓⃓∑︁
(π,G)∈Lq

p
Γqπ,G

⃓⃓⃓
< ∞.

3.3.0.5 Summarising the results

For the absolute convergence we have
Lemma 3.3.2. There exists a constant c > 0 such that if sa3ρ log(b/a)(logN)3 < c, then

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lq

p

Γqπ,G

⃓⃓⃓⃓
⃓⃓ < ∞

for any 0 ≤ q ≤ 3.

Remark 3.3.3. As mentioned in the beginning of the section, the calculation just given is
still valid if we replace f by some general function h ≥ 0 and replace |DN |2 by some more
general determinant det[γ(xi − xj)]1≤i,j≤N , where γ(x − y) is the kernel of some rank N
projection (for instance the one-particle density matrix of a Slater determinant of N particles).
The criterion for absolute convergence reads

sup
x1,...,xn

∏︂
1≤i<j≤n

h(xi − xj) ≤ Cn for all n ∈ N,

1
L3

∑︂
k∈ 2π

L
Z3

|γ̂(k)|
ˆ

Λ

⃓⃓⃓
h2 − 1

⃓⃓⃓
dx
ˆ

Λ
|γ| dy < c

for some constants c, C > 0, where the first condition is the “stability condition” of the
tree-graph bound [PU09, Proposition 6.1; Uel18] and γ̂(k) :=

´
Λ γ(x)e−ikx dx.
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3.3. Gaudin–Gillespie–Ripka expansion

We give the proof of Lemma 3.3.2 in Section 3.3.1. Thus, we have the following.
Theorem 3.3.4. There exists a constant c > 0 such that if sa3ρ log(b/a)(logN)3 < c, then

CN
N ! = exp

⎛⎝ ∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G

⎞⎠ ,
ρ

(1)
Jas = ρ(1) +

∞∑︂
p=1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G,

ρ
(2)
Jas = f 2

12

⎡⎣ρ(2) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⎤⎦ .
ρ

(3)
Jas = f 2

12f
2
13f

2
23

⎡⎣ρ(3) + ρ
∑︂
p≥1

1
p!

∑︂
(π,G)∈L2

p

(︂
Γ2
π,G(x1, x2) + Γ2

π,G(x1, x3) + Γ2
π,G(x2, x3)

)︂

+
∑︂
p≥1

1
p!

∑︂
(π,G)∈L3

p

Γ3
π,G

⎤⎦.
(3.3.3)

The first three formulas are the same as those of [GGR71, Equations (3.19), (4.9) and (8.4)].
Our main contribution is to give a criterion for convergence, and hence for validity of the
formulas.

Remark 3.3.5. The factor s(logN)3 results from the bound in Lemma 3.2.12. If we had not
introduced the Fermi polyhedron, and instead used the Fermi ball, we would instead have a
factor N1/3 as mentioned in Section 3.2.2. That is, the condition for absolute convergence
would be N1/3a3ρ log(b/a) < c for some constant c > 0.

In either case, the N -dependence prevents us from taking a thermodynamic limit directly, and
we instead use a box method of gluing together multiple smaller boxes, where we may put
some finite number of particles in each box, see Section 3.4.1. For the case of using a Slater
determinant with momenta in the Fermi ball, there is no way to choose the number of particles
in each smaller box so that both the absolute convergence holds (N1/3a3ρ log(b/a) < c), and
the finite-size error made in the kinetic energy (∼ N2/3ρ2/3, see Lemma 3.2.13) is smaller
than the claimed energy contribution from the interaction (∼ Na3ρ5/3, see Theorem 3.1.3).
For this reason we need the polyhedron of Section 3.2.2.

Remark 3.3.6. The formulas for ρ(2)
Jas and ρ

(3)
Jas only hold for periodic boundary conditions,

since in this case ρ(1)
Jas = ρ(1) = ρ. For different boundary conditions, one has to take into

account that this equality is not valid. In general one has for ρ(2)
Jas that

ρ
(2)
Jas = f 2

12

⎡⎣ρ(2) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G +

(︂
ρ

(1)
Jas(x1)ρ(1)

Jas(x2) − ρ(1)(x1)ρ(1)(x2)
)︂⎤⎦

= f 2
12

⎡⎢⎢⎢⎢⎢⎣ρ(2) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G +

∑︂
p1,p2≥0
p1+p2≥1

1
p1!p2!

∑︂
(π1,G1)∈L1

p1
(π2,G2)∈L1

p2

Γ1
π1,G1(x1)Γ1

π2,G2(x2)

⎤⎥⎥⎥⎥⎥⎦ .

One of the reasons we work with periodic boundary conditions is that by doing so, we don’t
have the complication of dealing with the additional term.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Remark 3.3.7. By following the same procedure as in the previous sections, one can equally
well get formulas for the higher order reduced particle densities. Similarly one can extend the
absolute convergence, Lemma 3.3.2, to any q, only one may have to change the constant
c > 0 to depend on q.

3.3.1 Absolute convergence
We now prove Lemma 3.3.2, i.e. that the appropriate sums are absolutely convergent.

Proof of Lemma 3.3.2. We consider the four sums ∑︁p≥0
1
p!

⃓⃓⃓∑︁
(π,G)∈Lq

p
Γqπ,G

⃓⃓⃓
, q = 0, 1, 2, 3 one

by one.

3.3.1.1 Absolute convergence of the Γ-sum

Consider first 1
p!
∑︁

(π,G)∈Lp
Γπ,G. Split the sum according to the number of connected compo-

nents of G, labelled as (G1, . . . , Gk) of sizes n1, . . . , nk. We call these clusters. (Note that
“connected” only refers to the graph G, and is independent of the permutation π.) Name the
vertices in G1 as {1, . . . , n1}, in G2 as {n1 + 1, . . . , n1 + n2} and so on. Then we have (for
p ≥ 2)

1
p!

∑︂
(π,G)∈Lp

Γπ,G =
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

χ(∑︁nℓ=p)
∑︂

G1,...,Gk
Gℓ∈Cnℓ

∑︂
π∈Sp

(−1)πχ((π,∪Gℓ)∈Lp)

×
̇ k∏︂

ℓ=1

∏︂
e∈Gℓ

ge

p∏︂
j=1

γ
(1)
N (xj;xπ(j)) dx1 . . . dxp,

where Cn denotes the set of connected graphs on n (labelled) vertices. The factorial factors
are similar to those of Equation (3.3.1). Indeed, the factor 1/(k!) comes from counting the
possible labelling of the clusters, and the factors 1/(n1!), . . . , 1/(nk!) come from counting
the number of ways to distribute the p = ∑︁

nℓ vertices into the clusters and using the factor
1/(p!) already present.

•

•

•

•

• •

•

•

•

•

•

G1

G2
G3

Figure 3.3.2: A linked diagram (π,G) ∈ L11 decomposed into clusters G1, G2, G3.
Dashed lines denote g-edges, and arrows (i, j) denote that π(i) = j.

For the analysis we will need the following.
Definition 3.3.8. Let A1, . . . , Ak denote disjoint non-empty sets. The truncated correlation
function is

ρ
(A1,...,Ak)
t :=

∑︂
π∈S∪ℓAℓ

(−1)πχ((π,∪Gℓ) linked)
∏︂

j∈∪ℓAℓ

γ
(1)
N (xj;xπ(j)). (3.3.4)
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3.3. Gaudin–Gillespie–Ripka expansion

for some choice of connected graphs Gℓ ∈ CAℓ
. The definition does not depend on the choice

of graphs Gℓ.

If the underlying sets A1, . . . , Ak are clear we will simply denote the truncated correlation by
their sizes,

ρ
(|A1|,...,|Ak|)
t = ρ

(A1,...,Ak)
t .

The truncated correlation functions are also sometimes referred to as connected correlation
functions [GMR21, Appendix D].

Remark 3.3.9. We write the characteristic function in Equation (3.3.4) as χ((π,∪Gℓ) linked) for
ease of generalizability to the cases in Sections 3.3.1.2 and 3.3.1.3 where we will need the
notion of truncated correlations also for some of the vertices being external. For the truncated
correlations it doesn’t matter which (if any) vertices are external, only which vertices are in
which clusters.

Since 0 ≤ f ≤ 1 we have −1 ≤ g ≤ 0. Thus, by the tree-graph bound [PU09, Proposition
6.1; Uel18] we have ⃓⃓⃓⃓

⃓⃓ ∑︂
G∈Cn

∏︂
e∈G

ge

⃓⃓⃓⃓
⃓⃓ ≤

∑︂
T∈Tn

∏︂
e∈T

|ge|,

where Tn is the set of all trees on n (labelled) vertices. Thus we get

∞∑︂
p=2

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓

≤
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

̇ ∑︂
T1,...,Tk
Tℓ∈Tnℓ

k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
⃓⃓⃓
ρ

(n1,...,nk)
t

⃓⃓⃓
dx1 . . . dx∑︁nℓ

.
(3.3.5)

Here the vertices in Tℓ are the same as in Gℓ, i.e. T1 has vertices {1, . . . , n1}, T2 has vertices
{n1 + 1, . . . , n1 + n2} and so on.

In [GMR21, Equation (D.53)] the following formula, known as the Brydges-Battle-Federbush
(BBF) formula, is shown for the truncated correlation functions

ρ
(A1,...,Ak)
t =

∑︂
τ∈A(A1,...,Ak)

∏︂
(i,j)∈τ

γ
(1)
N (xi;xj)

ˆ
dµτ (r) det N (r), (3.3.6)

where A(A1,...,Ak) is the set of all anchored trees on k clusters with vertices A1, . . . , Ak. (If
the sets A1, . . . , Ak are clear we will write A(|A1|,...,|Ak|) = A(A1,...,Ak) as for the truncated
correlations.) An anchored tree is a directed graph on all the ∪ℓAℓ vertices, such that each
vertex has at most one incoming and at most one outgoing edge (note that these are all
γ

(1)
N -edges, and that the g-edges don’t matter for this construction) and such that upon

identifying all vertices in each cluster, the resulting graph is a (directed) tree. The measure µτ
is a probability measure on {(rℓℓ′)1≤ℓ≤ℓ′≤k : 0 ≤ rℓℓ′ ≤ 1} = [0, 1]k(k−1)/2 and depends only
on τ but not on the factors γ(1)

N (xi;xj). Finally, N is an I × J (square) matrix with entries
Nij = rc(i)c(j)γ

(1)
N (xi;xj), where c(i) is the (label of the) cluster containing the vertex {i} and

rℓℓ′ := rℓ′ℓ if ℓ > ℓ′. Here

I =
{︂
i ∈ ⋃︁k

ℓ=1 Aℓ : ∄j : (i, j) ∈ τ
}︂
, J =

{︂
j ∈ ⋃︁k

ℓ=1 Aℓ : ∄i : (i, j) ∈ τ
}︂
,
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

T1

T2

T3

T4

T5

T6

Figure 3.3.3: An anchored tree τ (arrows) and trees T1, . . . , T6 (dashed lines).

are the set of i’s (respectively j’s) not appearing as i’s (respectively j’s) in the anchored tree
τ .

From [GMR21, Equation (D.57)] it follows that |det N | ≤ ρ
∑︁

nℓ−(k−1). To see this, one has
to adapt the argument in [GMR21, Lemma D.2] slightly. We sketch the argument here.
Lemma 3.3.10 ([GMR21, Lemmas D.2 and D.6]). The matrix N (r) satisfies |det N (r)| ≤
ρ
∑︁

nℓ−(k−1) for all r ∈ [0, 1]k(k−1)/2.

Proof. First we bound ρ(p) = det[γ(1)
N (xi;xj)]1≤i,j≤p following the strategy of [GMR21, Lemma

D.2]. This is done by writing (as in [GMR21, Equations (D.8), (D.9)])

γ
(1)
N (xi;xj) = ⟨αi|βj⟩ℓ2((2π/L)Z3) ,

where for k ∈ 2π
L
Z3

αi(k) = L−3/2e−ikxiχ(k∈PF ) βj(k) = L−3/2e−ikxjχ(k∈PF ) = αj(k).

By the the Gram-Hadamard inequality [GMR21, Lemma D.1] we have
⃓⃓⃓
ρ(p)

⃓⃓⃓
=
⃓⃓⃓
det[γ(1)

N (xi;xj)]1≤i,j≤p

⃓⃓⃓
≤

p∏︂
i=1

∥αi∥ℓ2((2π/L)Z3) ∥βi∥ℓ2((2π/L)Z3) = ρp.

By modifying this argument exactly as described in the proof of [GMR21, Lemma D.6] and
noting that rℓℓ′ ≤ 1 one concludes the desired.

Remark 3.3.11. We denote the functions as αj and βj (even though they denote the same
function) for ease of modifying the argument later in order to prove Equation (3.4.16).

In particular one concludes the bound⃓⃓⃓
ρ

(n1,...,nk)
t

⃓⃓⃓
≤ ρ

∑︁
nℓ−(k−1) ∑︂

τ∈A(n1,...,nk)

∏︂
(i,j)∈τ

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
. (3.3.7)

Plugging this into Equation (3.3.5) above we get

∞∑︂
p=2

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓ ≤

∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

ρ
∑︁

nℓ−(k−1) ∑︂
T1,...,Tk
Tℓ∈Tnℓ

∑︂
τ∈A(n1,...,nk)

×
̇

dx1 . . . dx∑︁nℓ

k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
∏︂

(i,j)∈τ

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
.
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3.3. Gaudin–Gillespie–Ripka expansion

To compute these integrals we note that by Lemma 3.2.2

ˆ
|g(x)| dx =

ˆ (︂
1 − f(x)2

)︂
dx

≤ 4π
(1 − a3/b3)2

ˆ b

a

⎛⎝(︄1 − a3

b3

)︄2

−
(︄

1 − a3

r3

)︄2
⎞⎠ r2 dr ≤ Ca3 log b

a
.

That is, each factor of ge gives a contribution Ca3 log(b/a) after integration. The γ(1)
N -factors

we can bound by Lemma 3.2.12 as
ˆ ⃓⃓⃓

γ
(1)
N (x; y)

⃓⃓⃓
dy ≤ Cs(logN)3.

This takes care of all but one integration, which gives the volume factor L3. We shall compute
the integrations in the following order:

(1.) Pick any leaf {j0} of the anchored tree τ lying in some cluster ℓ, meaning that there is
exactly one edge of τ incident in ℓ.

(2.) Consider {j0} as the root of Tℓ and pick any leaf {j} of Tℓ and integrate over xj . Since
{j} is a leaf of Tℓ and {j0} is a leaf of τ we have that the only place xj appears in the
integrand is in some factor gij for {i} the unique vertex connected to {j} by a g-edge.
Hence the xj-integral contributes

´
|g| by the translation invariance.

Remove {j} and its incident edge from Tℓ.

Repeat for all vertices in the cluster until only {j0} remain. (At this point the entirety
of Tℓ has been removed.)

(3.) Integrate over xj0 . Since {j0} is a leaf of τ the only place xj0 appears (in the remaining
integrand) is in the γ(1)

N -factor from τ . Thus, the xj0-integral gives a contribution´
|γ(1)
N | by the translation invariance.

Remove {j0} and its incident edge from τ .

(4.) Repeat steps (1.)-(3.) until all integrals have been computed. The final integral gives
the volume factor L3.

Steps (1.)-(3.) compute all integrations in one cluster. Repeating this process we integrate
over the clusters one by one and thus compute all the integrals. Note that each integration is
always over a coordinate associated to a leaf of the relevant graphs. This is a key point, since
then by translation invariance each integration contributes exactly

´
|g| or

´
|γ(1)
N | whichever

is appropriate. In total we thus have the bound

̇
dx1 . . . dx∑︁nℓ

k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
∏︂

(i,j)∈τ

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓

≤
(︂
Ca3 log(b/a)

)︂∑︁nℓ−k (︂
Cs(logN)3

)︂k−1
L3.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

This bound is for each summand τ, T1, . . . , Tk. By Cayley’s formula #Tn = nn−2 ≤ Cnn!,
and by [GMR21, Appendix D.5] #A(n1,...,nk) ≤ k!4

∑︁
nℓ . Thus, we get

∞∑︂
p=2

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓ ≤ CN

∞∑︂
k=1

[︂
Cs(logN)3

]︂k−1
[︄ ∞∑︂
n=2

(Ca3ρ log(b/a))n−1
]︄k

≤ CNa3ρ log(b/a)
∞∑︂
k=1

[︂
Csa3ρ log(b/a)(logN)3

]︂k−1

≤ CNa3ρ log(b/a) < ∞,

for sa3ρ log(b/a)(logN)3 sufficiently small. This shows that ∑︁p
1
p!
∑︁

(π,G)∈Lp
Γπ,G is absolutely

convergent under this condition.

3.3.1.2 Absolute convergence of the Γ1-sum

Consider now 1
p!
∑︁

(π,G)∈L1
p

Γ1
π,G. The argument is almost identical to the argument above. We

again split the sum according to the connected components of G. Call these G∗, G1, . . . , Gk,
where G∗ is the distinguished connected component (cluster) containing the distinguished
vertex {1}. Exactly as for 1

p!
∑︁

(π,G)∈Lp
Γπ,G we have that (for p = 0 one has to interpret the

empty product of integrals as 1, so ∑︁(π,G)∈L1
0
Γ1
π,G = ρ)

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G(x1)

=
∞∑︂
k=0

1
k!

∑︂
n∗≥0

∑︂
n1,...,nk≥2

1
n∗!n1! · · ·nk!

χ(︂∑︁
ℓ{∗,1,...,k} nℓ=p

)︂ ∑︂
G1∈Cn1 ,...,Gk∈Cnk

G∗∈Cn∗+1

∑︂
π∈Sp+1

(−1)π

× χ((π,∪ℓ∈{∗,1,...,k}Gℓ)∈L1
p)

̇ ∏︂
ℓ∈{∗,1,...,k}

∏︂
e∈Gℓ

ge

p+1∏︂
j=1

γ
(1)
N (xj;xπ(j)) dx2 . . . dxp+1.

Here for the k = 0 term one should think of the n1, . . . , nk-sums as being an empty product
before it is an empty sum, i.e. it should give a factor 1. That is, the k = 0 term reads

∑︂
G∗∈Cp+1

∑︂
π∈Sp+1

(−1)π
̇ ∏︂

e∈G∗

ge

p+1∏︂
j=1

γ
(1)
N (xj;xπ(j)) dx2 . . . dxp+1,

since (π,G∗) is trivially linked, since G∗ is connected. From here on, we won’t write out the
k = 0 term separately to make the formulas more concise. As before we use the tree-graph
inequality and the truncated correlation function (see Remark 3.3.9) to get

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓

≤
∞∑︂
k=0

1
k!

∑︂
n∗≥0

∑︂
n1,...,nk≥2

1
n∗!n1! · · ·nk!

∑︂
T1∈Tn1 ,...,Tk∈Tnk

T∗∈Tn∗+1

×
̇ ∏︂

ℓ∈{∗,1,...,k}

∏︂
e∈Tℓ

|ge|
⃓⃓⃓
ρ

(n∗+1,n1,...,nk)
t

⃓⃓⃓
dx2 . . . dx∑︁

ℓ∈{∗,1,...,k} nℓ+1.
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3.3. Gaudin–Gillespie–Ripka expansion

To bound this we use the same bound, Equation (3.3.7), on the truncated correlations as
before. It reads⃓⃓⃓

ρ
(n∗+1,n1,...,nk)
t

⃓⃓⃓
≤ ρ

∑︁
ℓ∈{∗,1,...,k} nℓ+1−(k+1−1) ∑︂

τ∈A(n∗+1,n1,...,nk)

∏︂
(i,j)∈τ

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
.

Computing the integrals is as before, with a few differences. During each repeat (apart from
the last one) of step (1.) we pick not just any leaf j0 but a leaf j0 not in the cluster containing
{1}. (Since any tree has at least 2 leaves, this is always possible.) For each of these repeats,
the argument is the same as before. For the last repeat of step (1.) where only the cluster
containing {1} remains we follow step (2.) with the slight change, that the root is chosen
to be {1}. (There are no γ(1)

N -factors left, so we are free to choose any vertex as the root.)
There is then no step (3.) since we do not integrate over x1.

This has the following effect. First, the last variable x1 is not integrated over, so there is no
volume factor L3. And second, there are k integrals

´
|γ(1)
N | instead of k − 1 (since there are

k + 1 many clusters including the distinguished one). For the bounds of the sum of all terms
we use that #A(n∗+1,n1,...,nk) ≤ (k + 1)!4

∑︁
ℓ∈{∗,1,...,k} nℓ+1. Thus, uniformly in x1

∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓

≤ Cρ

⎛⎝ ∞∑︂
n∗=0

[︂
Ca3ρ log(b/a)

]︂n∗

⎞⎠⎛⎝ ∞∑︂
k=0

(k + 1)
[︂
Cs(logN)3

]︂k [︄ ∞∑︂
n=2

(Ca3ρ log(b/a))n−1
]︄k⎞⎠

≤ Cρ < ∞,

for sa3ρ log(b/a)(logN)3 sufficiently small. This shows that ∑︁p
1
p!
∑︁

(π,G)∈L1
p

Γ1
π,G is absolutely

convergent under this condition.

3.3.1.3 Absolute convergence of the Γ2-sum

For the third sum the argument is mostly analogous. There are a few changes needed for
the argument. First, one has to distinguish between the two cases of whether or not the two
distinguished vertices {1, 2} are in the same connected component (cluster) of the graph or
not. One computes

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G = Σdifferent + Σsame, (3.3.8)

where
Σdifferent =

∞∑︂
k=0

1
k!

∑︂
n∗,n∗∗≥0

∑︂
n1,...,nk≥2

1∏︁
ℓ nℓ!

χ(∑︁nℓ=p)
∑︂

G1∈Cn1 ,...,Gk∈Cnk
G∗∈Cn∗+{1}
G∗∗∈Cn∗∗+{2}

×
̇ ∏︂

ℓ

∏︂
e∈Gℓ

geρ
(n∗+{1},n∗∗+{2},n1,...,nk)
t dx3 . . . dxp+2,

Σsame =
∞∑︂
k=0

1
k!

∑︂
n∗≥1

∑︂
n1,...,nk≥2

1∏︁
ℓ nℓ!

χ(∑︁nℓ=p)
∑︂

G1∈Cn1 ,...,Gk∈Cnk
G∗∈Cn∗+{1,2}

(1,2)/∈G∗

×
̇ ∏︂

ℓ

∏︂
e∈Gℓ

geρ
(n∗+{1,2},n1,...,nk)
t dx3 . . . dxp+2.

(3.3.9)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Here ∑︁ℓ and ∏︁ℓ are over ℓ ∈ {∗, ∗∗, 1, . . . , k} or ℓ ∈ {∗, 1, . . . , k}, whichever is appropriate.
With a slight abuse of notation we write n∗ +{1} for the set of vertices in the cluster containing
the external vertex {1} (similarly for n∗∗ + {2}, n∗ + {1, 2}). This set has exactly n∗ internal
vertices. For p = 0 one has to interpret the empty product of integrals as a factor 1.

The first part is the contribution where {1} and {2} are in distinct clusters (labelled ∗ and
∗∗), the second part is the contribution from where they are in the same (labelled ∗). Note
that in the second contribution we have n∗ ≥ 1. Indeed, {1} and {2} are connected, but not
by an edge. Hence they must be connected by a path of length ≥ 2, which necessarily goes
through at least one vertex {j}, j ̸= 1, 2.

We treat the two cases separately. In the case where the two distinguished vertices are in
different clusters we may readily apply both the tree-graph bound and the bound on the
truncated correlation Equation (3.3.7). The latter reads⃓⃓⃓

ρ
(n∗+{1},n∗∗+{2},n1,...,nk)
t

⃓⃓⃓
≤ ρ

(
∑︁

ℓ∈{∗,∗∗,1,...,k} nℓ+2)−(k+2−1) ∑︂
τ∈A(n∗+{1},n∗∗+{2},n1,...,nk)

∏︂
(i,j)∈τ

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
.

The integration procedure is slightly modified compared to that of Section 3.3.1.2. In the
anchored tree there is a path between (the cluster containing) {1} and (the cluster containing)
{2}. For the edge incident to (the cluster containing) {1} on this path, we bound |γ(1)

N | ≤ ρ.
This cuts the anchored tree into two anchored trees τ1, τ2 such that (with a slight abuse of
notation) 1 ∈ τ1 and 2 ∈ τ2. We may follow the integration procedure exactly as for the
Γ1-sum for each of the anchored trees τ1 and τ2. Recall the bound

#A(n∗+{1},n∗∗+{2},n1,...,nk) ≤ (k + 2)!4
∑︁

ℓ∈{∗,∗∗,1,...,k} nℓ+2 ≤ C(k2 + 1)k!4
∑︁

ℓ∈{∗,∗∗,1,...,k} nℓ .

We thus get for the contribution of all terms where the two distinguished vertices are in
different clusters (assuming that sa3ρ log(b/a)(logN)3 is sufficiently small)

|Σdifferent| ≤ Cρ2

⎛⎝ ∞∑︂
n∗=0

[︂
Ca3ρ log(b/a)

]︂n∗

⎞⎠2

×

⎛⎝ ∞∑︂
k=0

(k2 + 1)
[︂
Cs(logN)3

]︂k [︄ ∞∑︂
n=2

(Ca3ρ log(b/a))n−1
]︄k⎞⎠

≤ Cρ2 < ∞.

(3.3.10)

Now we consider the case where {1} and {2} are in the same distinguished cluster. Here we
may readily apply the bound in Equation (3.3.7) on the truncated correlation but we need to
be a bit careful in applying the tree-graph bound. Indeed, then the sum over graphs in the
cluster containing the two vertices is not ∑︁G∗∈Cn∗+2 , but instead ∑︁G∗∈Cn∗+2,(1,2)/∈G∗ , since in
the construction, no g-edges are allowed between {1} and {2}. To still apply the tree-graph
bound, we define

g̃e :=

⎧⎨⎩ge e ̸= (1, 2)
0 e = (1, 2).

Then −1 ≤ g̃e ≤ 0 so we can apply the tree-graph bound with these edge-weights to get⃓⃓⃓⃓
⃓⃓ ∑︂
G∗∈Cn∗+2,(1,2)/∈G∗

∏︂
e∈G∗

ge

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓ ∑︂
G∗∈Cn∗+2

∏︂
e∈G∗

g̃e

⃓⃓⃓⃓
⃓⃓ ≤

∑︂
T∗∈Tn∗+2

∏︂
e∈T∗

|g̃e| =
∑︂

T∗∈Tn∗+2,(1,2)/∈T∗

∏︂
e∈T∗

|ge|.
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3.4. Energy of the trial state

We again have to modify the integrations slightly. The integrations over all clusters apart
from the distinguished one may be computed as for the Γ- and Γ1-sums. For the distinguished
cluster with {1} and {2} there is some path of g-edges connecting them. Pick the unique
edge on this path incident with {1} and bound |g| ≤ 1 for this factor. This splits the tree T∗
into two trees T 1

∗ and T 2
∗ with 1 ∈ T 1

∗ and 2 ∈ T 2
∗ . We may compute the integrations over all

the variables with index in the distinguished cluster exactly as for the Γ1-sum for each tree
T 1

∗ and T 2
∗ separately. One gets for the contribution (assuming that sa3ρ log(b/a)(logN)3 is

sufficiently small)

|Σsame| ≤ Cρ2

⎛⎝ ∞∑︂
n∗=1

[︂
Ca3ρ log(b/a)

]︂n∗

⎞⎠
×

⎛⎝ ∞∑︂
k=0

(k + 1)
[︂
Cs(logN)3

]︂k [︄ ∞∑︂
n=2

(Ca3ρ log(b/a))n−1
]︄k⎞⎠

≤ Ca3ρ3 log(b/a) < ∞.

(3.3.11)

We conclude that
∑︂
p≥0

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓ ≤ Cρ2 < ∞,

uniformly in x1, x2 for sufficiently small sa3ρ log(b/a)(logN)3.

3.3.1.4 Absolute convergence of the Γ3-sum

The argument for the last sum is completely analogous to the argument for the Γ2-sum. We
have to distinguish between different cases of the clusters containing the external vertices
{1, 2, 3}. Either there is one cluster containing all of them, one cluster containing two of them
and one cluster containing the last vertex, or they are all in distinct clusters. One then deals
with the different cases exactly as we did for the Γ2-sum. We skip the details. This concludes
the proof of Lemma 3.3.2.

3.4 Energy of the trial state
In this section we bound the energy of the trial state ψN defined in Equation (3.2.1). Recall
Equation (3.2.2). By Theorem 3.3.4 we have (for sa3ρ log(b/a)(logN)3 sufficiently small)

ρ
(2)
Jas(x1, x2) = f(x1 − x2)2

⎛⎝ρ(2)(x1, x2) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⎞⎠ .

We can expand ρ(2) in x1 − x2 using Lemma 3.2.14. The second term is an error term we
have to control. Additionally, also the three-body term is an error we have to control. We
claim that
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Lemma 3.4.1. There exist constants c, C > 0 such that if sa3ρ log(b/a)(logN)3 < c and
N = #PF > C, then⃓⃓⃓⃓

⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓

≤ Ca6ρ4(log(b/a))2
[︃
s3a6ρ2(log b/a)2(logN)9 + 1

]︃
+ Ca3ρ3+2/3|x1 − x2|2

[︃
s5a12ρ4(log(b/a))5(logN)16 + b2ρ2/3 + log(b/a)

]︃
.

Lemma 3.4.2. There exists a constant c > 0 such that if sa3ρ log(b/a)(logN)3 < c, then

ρ
(3)
Jas = f 2

12f
2
13f

2
23

[︂
ρ(3) +O

(︂
a3ρ4 log(b/a)

[︂
s3a6ρ2(log(b/a))2(logN)9 + 1

]︂)︂]︂
where the error is uniform in x1, x2, x3.

We give the proof of these lemmas in Sections 3.4.2 and 3.4.3 below. For the three-body
term, we additionally have the bound ρ(3) ≤ Cρ3+4/3|x1 − x2|2|x2 − x3|2 by Lemma 3.2.15.
Combining now Lemmas 3.2.13, 3.2.14, 3.4.1 and 3.4.2, Theorem 3.3.4 and Equation (3.2.2)
we thus get (for sa3ρ log(b/a)(logN)3 sufficiently small and N sufficiently large)

⟨ψN |HN |ψN⟩

= 3
5(6π)2/3ρ2/3N

(︂
1 +O(N−1/3) +O(s−2)

)︂
+ L3

ˆ
dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃

×

⎡⎣(6π2)2/3

5 ρ8/3|x|2
(︄

1 − 3(6π2)2/3

35 ρ2/3|x|2

+O(N−1/3) +O(s−2) +O(N−1/3ρ2/3|x|2) +O(ρ4/3|x|4)
)︄

+O
(︃
a6ρ4(log(b/a))2

[︃
s3a6ρ2(log b/a)2(logN)9 + 1

]︃)︃

+O
(︃
a3ρ3+2/3|x|2

[︃
s5a12ρ4(log(b/a))5(logN)16 + b2ρ2/3 + log(b/a)

]︃)︃ ⎤⎦
+
˚

dx1 dx2 dx3f12∇f12f23∇f23f
2
13

[︃
O(ρ3+4/3|x1 − x2|2|x2 − x3|2)

+O
(︂
a3ρ4 log(b/a)

[︂
s3a6ρ2(log(b/a))2(logN)9 + 1

]︂)︂]︃
.

(3.4.1)
We will choose N (really L, see Remark 3.2.8) some large negative power of a3ρ, so errors
with N−1/3 are subleading. We may compute

ˆ
dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
|x|2

= 1
(1 − a3/b3)2

ˆ
|x|≤b

dx
(︃

|∇f0(x)|2 + 1
2v(x)f0(x)2

)︃
|x|2

≤ 12πa3
(︂
1 +O(a3/b3)

)︂
,

(3.4.2)

by Definition 3.1.1 since f = 1
1−a3/b3f0 for |x| ≤ b and b > R0, the range of v. For the higher

moments we recall that |∇f0| ≤ |∇fhc| = 3a3

|x|4 for |x| ≥ a by Lemma 3.2.2. Then we have
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3.4. Energy of the trial state

(for n = 4, 6)
ˆ

dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
|x|n

= 1
(1 − a3/b3)2

ˆ
|x|≤b

dx
(︃

|∇f0(x)|2 + 1
2v(x)f0(x)2

)︃
|x|n

≤ 1
2R

n−2
0

ˆ
v|f0|2|x|2 dx+

ˆ
|x|≥a

(︄
3a3

|x|4

)︄2

|x|n dx+ an−2
ˆ

|x|≤a
|∇f0|2|x|2 dx

≲ CRn−2
0 a3.

(3.4.3)

For n = 4 we have more precisely
ˆ

dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
|x|4

≤
ˆ

dx
(︃

|∇f0(x)|2 + 1
2v(x)f0(x)2

)︃
|x|4

(︂
1 +O(a3b−3)

)︂
= 36πa3a2

0 +O(a6a2
0b

−3).

For the lower moment, we have by Equation (3.2.4)
ˆ

dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
= 4π

ˆ b

0

(︂
|∂rf |2r2 + r2f∂2

rf + 4rf∂rf
)︂

dr

= 12πa3/b2

1 − a3/b3 + 8π
ˆ b

0
rf∂rf dr

(3.4.4)

where ∂r denotes the radial derivative, and we integrated by parts using that f(r) = 1−a3/r3

1−a3/b3

outside the support of v. By Lemma 3.2.2 we have

2
ˆ b

0
rf∂rf dr = b−

ˆ b

0
f 2 dr ≤ b− 1

(1 − a3/b3)2

ˆ b

a

(︄
1 − a3

r3

)︄2

dr ≤ Ca. (3.4.5)

Hence ˆ
dx
(︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
≤ Ca.

This concludes the bounds on all the terms in Equation (3.4.1) arising from the 2-body term.
To bound those arising from the 3-body term we bound f13 ≤ 1. By the translation invariance
one integration gives a volume factor L3. The remaining two integrals then both give the
same contribution. That is,

˚
dx1 dx2 dx3f12∇f12f23∇f23f

2
13

[︃
O(ρ3+4/3|x1 − x2|2|x2 − x3|2)

+O
(︂
a3ρ4 log(b/a)

[︂
s3a6ρ2(log(b/a))2(logN)9 + 1

]︂)︂]︃

≤ CNρ2+4/3
(︄ˆ

|x|2f∂rf dx
)︄2

+ CNa3ρ3 log(b/a)
[︂
s3a6ρ2(log(b/a))2(logN)9 + 1

]︂ (︄ˆ
f∂rf dx

)︄2

.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Using integration by parts and Lemma 3.2.2, we have that

1
4π

ˆ
|x|nf∂rf dx =

ˆ b

0
rn+2f∂rf dr = bn+2

2 − n+ 2
2

ˆ b

0
rn+1f 2 dr

≤ bn+2

2 − n+ 2
2

ˆ b

a

rn+1
(︄

1 − a3/r3

1 − a3/b3

)︄2

dr ≤

⎧⎨⎩Ca2 n = 0,
Ca3b n = 2.

(3.4.6)

Plugging all this into Equation (3.4.1) we thus get for the energy density

⟨ψN |HN |ψN⟩
L3 = 3

5(6π)2/3ρ5/3 + 12π
5 (6π2)2/3a3ρ8/3 − 108π(6π2)4/3

175 a3a2
0ρ

10/3

+O
(︂
s−2ρ5/3

)︂
+O

(︂
N−1/3ρ5/3

)︂
+O

(︂
a6b−3ρ8/3

)︂
+O

(︂
a6a2

0b
−3ρ10/3

)︂
+O

(︂
R4

0a
3ρ4
)︂

+O
(︃
a7ρ4(log(b/a))2

[︃
s3a6ρ2(log b/a)2(logN)9 + 1

]︃)︃
+O

(︃
a6ρ3+2/3

[︃
s5a12ρ4(log(b/a))5(logN)16 + b2ρ2/3 + log(b/a)

]︃)︃
+O

(︂
a6b2ρ3+4/3

)︂
+O

(︂
a7ρ4 log(b/a)

[︂
s3a6ρ2(log(b/a))3(logN)9 + 1

]︂)︂
.

(3.4.7)
We choose L ∼ a(a3ρ)−10 still ensuring that LkF

2π is rational. (More precisely one chooses
L ∼ a(kFa)−30, since ρ is defined in terms of L.) Then N ∼ (a3ρ)−29. Choose moreover

b = a(a3ρ)−β, s ∼ (a3ρ)−α| log(a3ρ)|−δ.

Note that we need
2
9 < β <

1
2 ,

5
6 < α <

13
15

for the error terms to be smaller than the desired accuracy of order a3a2
0ρ

10/3. We get

⟨ψN |HN |ψN⟩
L3 = 3

5(6π)2/3ρ5/3 + 12π
5 (6π2)2/3a3ρ8/3 − 108π(6π2)4/3

175 a3a2
0ρ

10/3

+O(ρ5/3(a3ρ)γ1| log(a3ρ)|γ2).

where
γ1 = min

{︃
2α, 1 + 3β, 13

3 − 3α, 6 − 5α, 8
3 − 2β

}︃
,

and γ2 is given by the power of the logarithmic factors of the largest error term. Optimising
in α, β, δ we see that for the choice

β = 1
3 , α = 6

7 , δ = 3

we have γ1 = 12
7 and γ2 = 6, i.e.

⟨ψN |HN |ψN⟩
L3

= 3
5(6π)2/3ρ5/3

+ 12π
5 (6π2)2/3a3ρ8/3

[︄
1 − 9

35(6π2)2/3a2
0ρ

2/3 +O((a3ρ)2/3+1/21| log(a3ρ)|6)
]︄ (3.4.8)

for a3ρ small enough. Note that for this choice of s,N we have s ∼ N6/203(logN)3. Thus
any Q with N4/3 ≪ Q ≤ CNC satisfies the condition Q−1/4 ≤ Cs−1 of Definition 3.2.7.
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3.4. Energy of the trial state

3.4.1 Thermodynamic limit via a box method
In this section we construct a trial state in the thermodynamic limit using a box method of
gluing trial states for finite n together. Such a method has been used for many studies of
dilute Bose and Fermi gases, see for instance [BCS21; FGJMO24; LSS05; YY09]. First we
show that we may choose periodic boundary conditions in the small boxes instead of using
Dirichlet boundary conditions. The setting and argument is due to Robinson [Rob71, Lemmas
2.1.12 and 2.1.13]. We present a slightly modified version in [MS20, Section C].
Lemma 3.4.3 ([MS20; Rob71]). Let 0 < d < L/2 be a cut-off, let

HD
N,L+2d =

N∑︂
j=1

−∆D
j,L+2d +

∑︂
i<j

v(xi − xj)

denote the N -particle Hamiltonian with Dirichlet boundary conditions on a box of sides L+2d,
and let

Hper
N,L =

N∑︂
j=1

−∆per
j,L +

∑︂
i<j

vper(xi − xj)

denote the N -particle Hamiltonian with periodic boundary conditions on a box of sides L,
with the interaction vper(x) = ∑︁

n∈Z3 v(x+ nL), the periodized interaction.
Then, there exists an isometry V : L2

a(ΛN
L ) → L2

a(ΛN
L+2d) such that for all ψ in the form-domain

of Hper
N,L we have V ψ in the form-domain of HD

N,L+2d and⟨︂
V ψ

⃓⃓⃓
HD
N,L+2d

⃓⃓⃓
V ψ

⟩︂
≤
⟨︂
ψ
⃓⃓⃓
Hper
N,L

⃓⃓⃓
ψ
⟩︂

+ 6N
d2 ∥ψ∥2

Proof. This is a trivial modification of [MS20, Lemma 4], noting that the explicitly constructed
V respects the anti-symmetry.

We now glue together trial states. For any (sufficiently small) density ρ we have above found
that we may construct a (normalized) trial state ψn on the torus Λℓ = [−ℓ/2, ℓ/2]3 satisfying
Equation (3.4.8) with ℓ ∼ a(a3ρ)−10, i.e. n ∼ (a3ρ)−29. We now use the isometry V from
Lemma 3.4.3 to find a trial state V ψn with Dirichlet boundary conditions on Λℓ+2d. Our trial
state ΨN for N = M3n is then obtained by gluing together M3 copies of V ψn arranged in
boxes, with a distance b between them, so that there is no interaction between the boxes. We
choose the same b as before. More precisely, for configurations where the first n particles are
in box 1 and so on,

ΨN(x1, . . . , xN) =
M3∏︂
j=1

V ψn(xn(j−1)+1 − τj, . . . , xnj − τj),

where τj ∈ R3 denotes the centre of box number j. The state ΨN is then the antisymmetriza-
tion of this. Its energy is⟨︂

ΨN

⃓⃓⃓
HD
N,M(ℓ+2d+b)

⃓⃓⃓
ΨN

⟩︂
= M3

⟨︂
V ψn

⃓⃓⃓
HD
n,ℓ+2d

⃓⃓⃓
V ψN

⟩︂
≤ M3

(︃⟨︂
ψn
⃓⃓⃓
Hper
n,ℓ

⃓⃓⃓
ψn
⟩︂

+ 6n
d2

)︃
.

The particle density of the state ΨN is ρ̃ = n
(ℓ+2d+b)3 = ρ(1 +O(d/ℓ) +O(b/ℓ)). The energy

density is

e(ρ̃) ≤ lim inf
M→∞

⟨︂
ΨN

⃓⃓⃓
HD
N,M(ℓ+2d+b)

⃓⃓⃓
ΨN

⟩︂
M3(ℓ+ 2d+ b)3 =

⟨︂
V ψn

⃓⃓⃓
HD
n,ℓ+2d

⃓⃓⃓
V ψN

⟩︂
(ℓ+ 2d+ b)3

≤

⟨︂
ψn
⃓⃓⃓
Hper
n,ℓ

⃓⃓⃓
ψn
⟩︂

ℓ3 [1 +O(d/ℓ) +O(b/ℓ)] +O(ρd−2).

(3.4.9)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Choosing d = a(a3ρ)−5 and using Equation (3.4.8) we conclude that for a3ρ sufficiently small

e(ρ̃) ≤ 3
5(6π)2/3ρ5/3

+ 12π
5 (6π2)2/3a3ρ8/3

[︄
1 − 9

35(6π2)2/3a2
0ρ

2/3 +O
(︂
(a3ρ)2/3+1/21| log(a3ρ)|6

)︂]︄

= 3
5(6π)2/3ρ̃5/3

+ 12π
5 (6π2)2/3a3ρ̃8/3

[︄
1 − 9

35(6π2)2/3a2
0ρ̃

2/3 +O
(︂
(a3ρ̃)2/3+1/21| log(a3ρ̃)|6

)︂]︄

since ρ̃ = ρ(1 + O((a3ρ)5)), so ρ = ρ̃(1 + O((a3ρ̃)5)). This concludes the proof of Theo-
rem 3.1.3.

It remains to give the proofs of Lemmas 3.4.1 and 3.4.2.

3.4.2 Subleading 2-particle diagrams (proof of Lemma 3.4.1)
In this section we give the proof of Lemma 3.4.1. Before doing this, we first discuss why we
don’t just use the bounds of these terms from the proof of Lemma 3.3.2.

Remark 3.4.4 (Why not use bounds of Lemma 3.3.2?). Inspecting the proof of Lemma
3.3.2 (more precisely Equations (3.3.10) and (3.3.11) of Section 3.3.1.3) we can extract the
following bound ⃓⃓⃓⃓

⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓ ≤ Csa3ρ3 log(b/a)(logN)3.

This is immediate by considering the bounds Equations (3.3.10) and (3.3.11) and noting that
since we have p ≥ 1 in the sum ∑︁∞

p=1
1
p!
∑︁

(π,G)∈L2
p

Γ2
π,G, the summands either have k ≥ 1 or

n∗ ≥ 1 or n∗∗ ≥ 1. Using this bound we would thus get for the error in the ground state energy
density the bound ∼ sa4ρ3 (ignoring the log-factors). However, as we saw in Section 3.4, using
Lemma 3.2.13, the s-dependent error of the kinetic energy density is ∼ s−2ρ5/3. There is no
way to choose s, such that both of these errors are smaller that a3ρ8/3, which is the precision
we need in order to prove the leading correction to the kinetic energy in Theorem 3.1.3.

Similarly, by following the proof of Lemma 3.3.2 one could get the bound

ρ
(3)
Jas ≤ Cρ3f 2

12f
2
13f

2
23.

This bound is not problematic in terms of getting all the error terms in the energy density
smaller than a3ρ8/3. However, we improve on this bound in Lemma 3.4.2 in order to get a
better error bound in Theorem 3.1.3.

Proof of Lemma 3.4.1. Note first that by translation invariance
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

is a function of x1 − x2 only. Recall Equations (3.3.8) and (3.3.9). We split the diagrams in
L2
p into three groups. To define these three groups we first define for any diagram (π,G) ∈ L2

p
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3.4. Energy of the trial state

the number k = k(π,G) as the number of clusters entirely containing internal vertices. (This
k is exactly the same k as in the proof of Lemma 3.3.2.) Then we define

ν = ν(π,G) = ∑︁k
ℓ=1 nℓ − 2k, ν∗ = ν∗(π,G) = n∗ + n∗∗,

with the understanding that n∗∗ = 0 if {1} and {2} are in the same cluster. We think of
ν + ν∗ as the “number of added vertices”. Indeed, given a k the smallest number of vertices
in a diagram (π,G) ∈ L2

p with k clusters is 2k + 2 and in this case we have p = 2k. For such
a diagram, there are p = 2k internal vertices and 2 external vertices. The graph G of such a
diagram looks like

k1 2
∗ ∗

G =
.

Then ν + ν∗ is the number of (internal) vertices a diagram has more than this lowest number.

By following the bound in Equations (3.3.10) and (3.3.11) we see that for p = ν0 + 2k0⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
1
p!

∑︂
(π,G)∈L2

p

ν(π,G)+ν∗(π,G)=ν0
k(π,G)=k0

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
≤ Cρ2(Cs(logN)3)k0(Ca3ρ log(b/a))k0+ν0 . (3.4.10)

We split diagrams into different groups depending on whether or not they are “large” and
whether or not we will do a Taylor expansion of their values. We first give some motivation
for what “large” means.
Remark 3.4.5. Here “large” and “small” should be interpreted in the sense of how many
vertices appear in the diagram. Equation (3.4.10) describe how diagrams with more vertices
(larger values of k, ν, ν∗) have a smaller value. More precisely, “large” should be thought of in
terms of the bound in Equation (3.4.10) in the following sense.

Recall that the (s-dependent) error in the kinetic energy density is s−2ρ5/3. For this error to
be smaller than the desired accuracy of order a3a2

0ρ
10/3 we need s ≫ (a3ρ)−5/6. If we think

of, say s ∼ (a3ρ)−6/7, then (ignoring log-factors) Equation (3.4.10) reads ≲ ρ2(a3ρ)k0/7+ν0 .
The large diagrams (with ν∗ ≥ 1) are those for which this bound gives a contribution to
the energy density ≪ a5ρ10/3, i.e. with ν + ν∗ + k/7 ≥ 4/3 by counting powers of ρ. For
diagrams with ν∗ = 0 we obtain a differentiated version of the bound in Equation (3.4.10),
where one effectively gains a power a2ρ2/3, see the details of the proof. The large diagrams
(with ν∗ = 0) are those for which the differentiated version gives a contribution to the energy
density ≪ a5ρ10/3, i.e. with ν + k/7 ≥ 2/3.

We split the diagrams into three (exhaustive) groups:

1. Small diagrams with

(A) {1} and {2} in different clusters and 1 ≤ k ≤ 4, ν = 0, ν∗ = 0,
(B) {1} and {2} in different clusters and 0 ≤ k ≤ 2, ν = 0, ν∗ = 1,
(C) {1} and {2} in the same cluster and 0 ≤ k ≤ 2, ν = 0, ν∗ = 1.

2. Large diagrams with ν∗ = 0 (in particular {1} and {2} are in different clusters) and
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

(A) k ≥ 5, ν = 0 or
(B) k ≥ 1, ν ≥ 1.

3. Large diagrams with ν∗ ≥ 1 and

(A) k ≥ 3, ν = 0 or
(B) ν + ν∗ ≥ 2.

Note that we have p ≥ 1, so the diagrams with k = 0, ν = 0, ν∗ = 0 are not present. Moreover,
if k = 0 then clearly also ν = 0. For drawings of the small diagrams see Figure 3.A.1 in
Section 3.A.1. We then write

∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G = ξsmall,0 + ξsmall,≥1 + ξ0 + ξ≥1, (3.4.11)

where ξsmall,0 is the contribution of all small diagrams of types (A) and (B), ξsmall,≥1 is the
contribution of all small diagrams of type (C), ξ0 is the contribution of all large diagrams with
ν∗ = 0, and ξ≥1 is the contribution of all large diagrams with ν∗ ≥ 1.

The notation is motivated by that of the large diagrams, which were split into two groups
depending on whether ν∗ = 0 or ν∗ ≥ 1. We will treat the small diagrams of types (A) and
(B) somewhat similar to the large diagrams in ξ0 (hence the notation ξsmall,0) and the small
diagrams of type (C) somewhat similar to the large diagrams in ξ≥1 (hence the notation
ξsmall,≥1). Indeed, we will do a Taylor expansion of ξsmall,0 and ξ0 but not of ξsmall,≥1 or ξ≥1.

Using the bound in Equation (3.4.10) and the absolute convergence (Lemma 3.3.2) we get

|ξ≥1(x1, x2)| ≤ Cρ2(s(logN)3)3(a3ρ log(b/a))4⏞ ⏟⏟ ⏞
type (A) diagrams

+Cρ2(a3ρ log(b/a))2⏞ ⏟⏟ ⏞
type (B) diagrams

≤ Ca6ρ4(log(b/a))2
[︂
s3(logN)9a6ρ2(log(b/a))2 + 1

]︂ (3.4.12)

uniformly in x1, x2. For ξsmall,≥1 we have
Lemma 3.4.6. For the small diagrams of type (C) we have the bound

|ξsmall,≥1| ≤ Ca3b2ρ3+4/3|x1 − x2|2 + Ca6ρ4(log(b/a))2.

The proof of this lemma is a (not very insightful) computation. We give it in Section 3.A.1.
Slightly more insightful however, is why we split off the small diagrams from the large diagrams.

Remark 3.4.7 (Why one gets better bounds by computing small diagrams). We could treat
all the small diagrams exactly as we treat ξ0 and ξ≥1. We do however gain better error bounds
by treating them more directly, i.e. computing more precisely what the values of these small
diagrams are. In exact calculations we can make use the fact that

´
γ

(1)
N = 1, instead of

bounding the absolute value as
´

|γ(1)
N | ≤ Cs(logN)3.

We Taylor expand ξsmall,0 and ξ0 to second order around the diagonal. We first claim that

ξsmall,0(x2, x2) + ξ0(x2, x2) + ξsmall,≥1(x2, x2) + ξ≥1(x2, x2) = 0 (3.4.13)
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3.4. Energy of the trial state

Indeed by Theorem 3.3.4 we have

ξsmall,0 + ξ0 + ξsmall,≥1 + ξ≥1 = ρ
(2)
Jas
f 2

12
− ρ(2)

= N(N − 1)
CN

̇ ∏︂
i<j

(i,j) ̸=(1,2)

f 2
ijDN dx3 . . . dxN − ρ(2).

(Formally to do the division by f in the first equality in case f = 0 somewhere one uses
Theorem 3.3.4 with all instances of f replaced by f̃ (n) for some sequence f̃ (n)

> 0 with
f̃

(n) ↘ f . Then one readily applies the Lebesgue dominated convergence theorem to exchange
the limit f̃ (n) → f with the relevant sums and integrals.) Taking x1 = x2 in this we have
DN = 0 and ρ(2) = 0. This shows Equation (3.4.13). We may thus bound the zeroth order
term of ξsmall,0 and ξ0 by

|ξsmall,0(x2, x2) + ξ0(x2, x2)|
≤ |ξsmall,≥1(x2, x2)| + |ξ≥1(x2, x2)|
≤ Ca6ρ4(log(b/a))2

[︂
s3(logN)9a6ρ2(log(b/a))2 + 1

]︂
.

(3.4.14)

Since both ξsmall,0 and ξ0 are symmetric in x1 and x2 all first order terms vanish. We are left
with bounding the second derivatives. For ξsmall,0 we have
Lemma 3.4.8. For any µ, ν = 1, 2, 3 we have

⃓⃓⃓
∂µx1∂

ν
x1ξsmall,0

⃓⃓⃓
≤ Ca3ρ3+2/3 log(b/a)

uniformly in x1, x2. Here ∂µx1 denotes the derivative in the xµ1 -direction.

The proof of this lemma is a (not very insightful) computation. We give it in Section 3.A.1.

Next we consider ∂µx1∂
ν
x1ξ0. We write ξ0 in terms of truncated densities as in Equation (3.3.9),

i.e.

ξ0 =
∞∑︂
k=0

1
k!

∑︂
n1,...,nk≥2

χ(k≥5,nℓ=2 or k≥1,
∑︁

nℓ=2k+1)
1∏︁
ℓ nℓ!

∑︂
G1,...,Gk
Gℓ∈Cnℓ

×
̇ ∏︂

ℓ

∏︂
e∈Gℓ

geρ
({1},{2},n1,...,nk)
t dx3 . . . dxp+2.

Since we consider terms with n∗ = n∗∗ = 0, there are no g-factors that depend on x1 and
thus all derivatives are of ρ({1},{2},n1,...,nk)

t . We thus need to calculate ∂µx1∂
ν
x1ρ

({1},{2},n1,...,nk)
t .

For this we use the definition in Equation (3.3.4) rather than the formula in Equation (3.3.6).
In Equation (3.3.4) the variable x1 appears exactly twice: Once in an outgoing γ

(1)
N -edge

from {1} and once in an incoming γ(1)
N -edge to {1}. Taking the derivatives then amounts

to replacing either one of these edges by its second derivative or both of them by their first
derivatives. Thus, using that γ(1)

N (xi;xj) = γ
(1)
N (xj ;xi) since γ(1)

N is real, and that for (π,∪Gℓ)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

to be linked necessarily π(1) ̸= 1, we have (for p = 2 +∑︁
ℓ nℓ)

∂µx1∂
ν
x1ρ

({1},{2},n1,...,nk)
t

= ∂µx1∂
ν
x1

∑︂
π∈Sp

(−1)πχ((π,∪Gℓ)∈Lp)

p∏︂
j=1

γ
(1)
N (xj;xπ(j))

=
∑︂
π∈Sp

(−1)πχ((π,∪Gℓ)∈Lp)
∏︂

j ̸=1,j ̸=π−1(1)
γ

(1)
N (xj;xπ(j))

[︂
2∂µx1∂

ν
x1γ

(1)
N (x1;xπ(1))γ(1)

N (xπ−1(1);x1)

+2∂µx1γ
(1)
N (x1;xπ(1))∂νx1γ

(1)
N (xπ−1(1);x1)

]︂
.

(3.4.15)
With this formula we may then redo the computation of [GMR21, Equation (D.53)] only now
some of the γ(1)

N -factors (precisely 1 or 2 of them) carry derivatives. The γ(1)
N -factors with

derivatives may end up in the anchored tree, or they may end up in the matrix N (r). If they
end up in N (r) it is explained around [GMR21, Equation (D.9)] how to modify Lemma 3.3.10.
One simply includes factors ikµ in the definition of (some of) the functions αi (and not of βj)
in the proof of Lemma 3.3.10. Since we may bound |k| ≤ Cρ1/3 for k ∈ PF we get

⃓⃓⃓
det Ñ (r)

⃓⃓⃓
≤

⎧⎪⎪⎨⎪⎪⎩
ρ
∑︁

nℓ+2−(k+2−1) if no derivatives end up in N ,

Cρ
∑︁

nℓ+2−(k+2−1)+1/3 if one derivative ends up in N ,

Cρ
∑︁

nℓ+2−(k+2−1)+2/3 if two derivatives end up in N ,

(3.4.16)

where Ñ (r) is the appropriate modification of N (r). To get the formula for ρt we need also
to consider two cases for how the anchored tree looks. There could be both an incoming and
an outgoing edge to/from the vertex {1}. And if there is just one edge to/from {1} it could
be either an incoming or an outgoing edge. Since γ(1)

N is real, incoming and outgoing edges
gives the same factor γ(1)

N (x1;xj). A simple calculation (essentially just undoing the product
rule) then shows that

∂µx1∂
ν
x1ρ

({1},{2},n1,...,nk)
t

=
∑︂

∂∈{1,∂µ
x1 ,∂

ν
x1 ,∂

µ
x1∂

ν
x1 }

⎡⎢⎢⎢⎣ ∑︂
τ∈A({1},{2},n1,...,nk)

two edges to/from {1}

∂
[︂
γ

(1)
N (xj2 , x1)γ(1)

N (x1;xj1)
]︂

+
∑︂

τ∈A({1},{2},n1,...,nk)

one edge to/from {1}

∂γ
(1)
N (x1;xj1)

⎤⎥⎥⎥⎦ ∏︂
(i,j)∈τ
i,j ̸=1

γ
(1)
N (xi;xj)

ˆ
dµτ (r) det Ñ ∂(r),

(3.4.17)

where j1 and j2 denote the vertices connected to {1} by the relevant edges in τ and Ñ ∂

is the appropriately modified version of N , where the derivatives not in ∂ end up in N , i.e.
Equation (3.4.16) reads ⃓⃓⃓

det Ñ ∂(r)
⃓⃓⃓
≤ Cρ

∑︁
nℓ+2−(k+2−1)+(2−#∂)/3,

where #∂ denotes the number of derivatives in ∂, i.e. #1 = 0,#∂µx1 = 1 and #∂µx1∂
ν
x1 = 2.

We denote the contribution of the two terms in Equation (3.4.17) to ∂µx1∂
ν
x1ξ0 by (∂µx1∂

ν
x1ξ0)→•→

and (∂µx1∂
ν
x1ξ0)•→ respectively.
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We first deal with the second term of Equation (3.4.17) where there is just one edge to/from
{1} in the anchored tree. We may bound the contribution of this term almost exactly as in
the proof of Lemma 3.3.2. We give a sketch here. Using Equation (3.4.16) we get the bound

≤ C
∑︂

∂∈{1,∂µ
x1 ,∂

ν
x1 ,∂

µ
x1∂

ν
x1 }
ρ(2−#∂)/3 ∑︂

τ∈A({1},{2},n1,...,nk)

⃓⃓⃓
∂γ

(1)
N (x1;xj1)

⃓⃓⃓
×

∏︂
(i,j)∈τ
i,j ̸=1

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
ρ(
∑︁

ℓ
nℓ+2)−(k+2−1),

(3.4.18)

where again #∂ denotes the number of derivatives in ∂.

To bound the integrations we again follow the strategy of the proof of the Γ2-sum of
Lemma 3.3.2, Section 3.3.1.3. The only difference is that the γ(1)

N -edge on the path in the
anchored tree between {1} and {2} incident to {1} is the edge with derivatives, ∂γ(1)

N (x1;xj1).
This we bound by |∂γ(1)

N | ≤ Cρ1+#∂/3. The integrations can then be performed exactly as in
Section 3.3.1.3. We conclude the bounḋ k∏︂

ℓ=1

∏︂
e∈Tℓ

|ge|
⃓⃓⃓
∂γ

(1)
N (x1;xj1)

⃓⃓⃓ ∏︂
(i,j)∈τ
i,j ̸=1

⃓⃓⃓
γ

(1)
N (xi;xj)

⃓⃓⃓
dx3 . . . dx∑︁nℓ+2

≤ ρ1+#∂/3
(︂
Ca3 log(b/a)

)︂∑︁nℓ−k (︂
Cs(logN)3

)︂k
.

Again, as in the proof of Lemma 3.3.2 we have by Cayley’s formula that #Tn = nn−2 ≤ Cnn!
and by [GMR21, Appendix D.5] that #A({1},{2},n1,...,nk) ≤ (k+2)!4

∑︁
nℓ+2 ≤ C(k2 +1)k!4

∑︁
nℓ .

Following the same arguments as for Equation (3.4.10) and recalling that the diagrams in ξ0
have either k ≥ 5 or ν ≥ 1 we get the contribution to ∂µx1∂

ν
x1ξ0 of⃓⃓⃓

(∂µx1∂
ν
x1ξ0)•→

⃓⃓⃓
≤ Cρ2+2/3

[︃
(s(logN)3)5(a3ρ log(b/a))5⏞ ⏟⏟ ⏞

type (A) diagrams

+ s(logN)3(a3ρ log(b/a))2⏞ ⏟⏟ ⏞
type (B) diagrams

]︃

≤ Ca6ρ4+2/3(log(b/a))2s(logN)3
[︂
s4(logN)12a9ρ3(log(b/a))3 + 1

]︂
(3.4.19)

uniformly in x1, x2.

Next consider the first term of Equation (3.4.17). The argument is almost the same, only
we have to distinguish between which γ

(1)
N -factor(s) the derivatives in ∂ hits. We consider

the case ∂ = ∂µx1∂
ν
x1 . The other cases are similar. Suppose that the γ(1)

N -edge on the path
(in the anchored tree) from {1} to {2} is γ(1)

N (x1;xj1) and the γ(1)
N -factor not on the path is

γ
(1)
N (xj2 ;x1). We distinguish between three cases:

1. If both derivatives are on γ(1)
N (x1;xj1) we may bound this exactly as above.

2. If one derivative is on γ(1)
N (x1;xj1) (say ∂νx1) and one derivative (say ∂µx1) is on γ(1)

N (xj2 ;x1)
we bound |∂νx1γ

(1)
N (x1;xj1)| ≤ Cρ4/3. Then the argument is similar, only now one of

the γ
(1)
N -integrations is with ∂µγ

(1)
N instead. Thus, in the computation leading to

Equation (3.4.19) we should replace one factor Csρ1/3(logN)3 with
´

|∂µγ(1)
N | dx.

3. If both derivatives are on γ(1)
N (xj2 ;x1) then analogously we bound |γ(1)

N (x1;xj1)| ≤ Cρ
and in the computation leading to Equation (3.4.19) we should replace one factor
Csρ2/3(logN)3 with

´
|∂µ∂νγ(1)

N | dx.
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In total we have the contribution to ∂µx1∂
ν
x1ξ0 of

≤ Cρ2
(︄
ρ2/3s(logN)3 + ρ1/3

ˆ
Λ

⃓⃓⃓
∂µγ

(1)
N

⃓⃓⃓
dx+ ρ1/3

ˆ
Λ

⃓⃓⃓
∂νγ

(1)
N

⃓⃓⃓
dx+

ˆ
Λ

⃓⃓⃓
∂µ∂νγ

(1)
N

⃓⃓⃓
dx
)︄

×
[︂
(s(logN)3)4(a3ρ log(b/a))5 + (a3ρ log(b/a))2

]︂
uniformly in x1, x2. One may do a similar computation for the other cases of ∂ and conclude
that⃓⃓⃓

(∂µx1∂
ν
x1ξ0)→•→

⃓⃓⃓
≤ Cρ2

(︄
ρ2/3s(logN)3 + ρ1/3

ˆ
Λ

⃓⃓⃓
∂µγ

(1)
N

⃓⃓⃓
dx+ ρ1/3

ˆ
Λ

⃓⃓⃓
∂νγ

(1)
N

⃓⃓⃓
dx+

ˆ
Λ

⃓⃓⃓
∂µ∂νγ

(1)
N

⃓⃓⃓
dx
)︄

×
[︂
(s(logN)3)4(a3ρ log(b/a))5 + (a3ρ log(b/a))2

]︂
(3.4.20)

uniformly in x1, x2. Thus, we need to bound the integrals

ˆ
Λ

⃓⃓⃓
∂µγ

(1)
N

⃓⃓⃓
dx =

ˆ
Λ

1
L3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈PF

kµeikx

⃓⃓⃓⃓
⃓⃓ dx = 1

(2π)2L

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z3

qµeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du,

and

ˆ
Λ

⃓⃓⃓
∂µ∂νγ

(1)
N

⃓⃓⃓
dx =

ˆ
Λ

1
L3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈PF

kµkνeikx

⃓⃓⃓⃓
⃓⃓ dx = 1

2πL2

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z3

qµqνeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du.

Here we have
Lemma 3.4.9. The polyhedron P from Definition 3.2.7 satisfies for any µ, ν = 1, 2, 3 that

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z3

qµeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ CsN1/3(logN)3,

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z3

qµqνeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ CsN2/3(logN)4

for sufficiently large N .

The proof of Lemma 3.4.9 is a long and technical computation, which we give in Section 3.B.
Applying the lemma we conclude thatˆ

Λ

⃓⃓⃓
∂µγ

(1)
N

⃓⃓⃓
dx ≤ Csρ1/3(logN)3,

ˆ
Λ

⃓⃓⃓
∂µ∂νγ

(1)
N

⃓⃓⃓
dx ≤ Csρ2/3(logN)4.

By combining this with Equations (3.4.19) and (3.4.20) we get⃓⃓⃓
∂µx1∂

ν
x1ξ0

⃓⃓⃓
≤ Ca6ρ4+2/3(log(b/a))2s(logN)4

[︂
s4(logN)12a9ρ3(log(b/a))3 + 1

]︂
(3.4.21)

uniformly in x1, x2. Combining Lemmas 3.4.6 and 3.4.8 and Equations (3.4.12), (3.4.14)
and (3.4.21) and using that for any real number t > 0 and integer n ≥ 1 we may bound
t ≲ tn + 1 this shows the desired.
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3.4. Energy of the trial state

Remark 3.4.10 (Treating more diagrams as small). One can improve the error bound in
Theorem 3.1.3 slightly by treating more diagrams as small, i.e. calculating their values
more precisely. This is similar to what is done in [BCGOPS23] for the dilute Bose gas. (In
[BCGOPS23] the Bose gas is treated with a method very similar to a cluster expansion. Their
expansion is performed to some arbitrarily high order [denoted by M in [BCGOPS23]], which
if chosen sufficiently large yields the bounds of [BCGOPS23].) We sketch the overall idea.

If we choose s ∼ (a3ρ)−1+ε/2 then the error from the s-dependent term in the kinetic energy to
the energy density is ρ5/3(a3ρ)2−ε. Then choose as “large” the diagrams for which the bound
in Equation (3.4.10) gives contributions to the energy density much smaller than ρ5/3(a3ρ)2−ε.
This happens for k0 > K for some large K ∼ ε−1. We can then evaluate all small diagrams
as in Section 3.A and conclude that their contributions are as given in Section 3.A only with
some K-dependent constants, since there is some K-dependent number of small diagrams. In
total we would then get an error of size Oε(ρ5/3(a3ρ)2−ε) in Theorem 3.1.3.

3.4.3 Subleading 3-particle diagrams (proof of Lemma 3.4.2)
Proof of Lemma 3.4.2. Recall the formula for ρ(3)

Jas of Theorem 3.3.4. In this formula there
are terms like ρ∑︁p≥1

1
p!
∑︁

(π,G)∈L2
p

Γ2
π,G(x2, x3). We have

ρ = ρ
(1)
Jas(x1) =

∑︂
p′≥1

1
p′!

∑︂
(π′,G′)∈L1

p′

Γ1
π′,G′(x1)

by translation invariance. Joining the two diagrams (π,G) ∈ L2
p and (π′, G′) ∈ L1

p′ we get a
new (no longer linked) diagram (π′′, G′′) ∈ D3

p+p′ with two linked components, one of which
contains the vertices {2} and {3} and one of which contains the vertex {1}. Doing this for
all three terms of this type, we are led to define the set

L̃3
p := L3

p ∪
⋃︂

q+q′=p
(L2

q ⊕ L1
q′),

where ⊕ refers to the operation of joining two diagrams as above. The set L̃3
p is then the

set of diagrams on 3 external and p internal vertices such that there is at most two linked
components, and that each linked component contains at least one external vertex. With
this, the formula for ρ(3)

Jas of Theorem 3.3.4 reads (assuming that sa3ρ log(b/a)(logN)3 is
sufficiently small)

ρ
(3)
Jas = f 2

12f
2
13f

2
23

⎡⎣ρ(3) +
∑︂
p≥1

1
p!

∑︂
(π,G)∈L̃3

p

Γ3
π,G

⎤⎦.
We split the diagrams in L̃3

p into two groups, large and small similarly to the proof of
Lemma 3.4.1. To do this, we similarly define for a diagram (π,G) ∈ L̃3

p the number
k = k(π,G) as the number of clusters entirely containing internal vertices. (This k is exactly
the same k as in the proof of Lemma 3.3.2.) Then we define

ν = ν(π,G) = ∑︁k
ℓ=1 nℓ − 2k, ν∗ = ν∗(π,G) = n∗ + n∗∗ + n∗∗∗,

where we understand n∗∗ = 0 and/or n∗∗∗ = 0 if {1, 2, 3} are not all in different clusters. (One
defines n∗∗∗ as the number of internal vertices in the cluster containing {3} if all {1, 2, 3} are
in different clusters, exactly as for the n∗∗ and n∗ of Sections 3.3.1.2 and 3.3.1.3.) We may
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

still think of ν + ν∗ as the “number of added vertices”. As for Equation (3.4.10) we have (for
p = 2k0 + ν0)⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
1
p!

∑︂
(π,G)∈L̃3

p

ν(π,G)+ν∗(π,G)=ν0
k(π,G)=k0

Γ3
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
≤ Cρ3(Cs(logN)3)k0(Ca3ρ log(b/a))k0+ν0 . (3.4.22)

The main difference compared to Equation (3.4.10) is that we here allow diagrams that are
not linked. This doesn’t matter, since when we compute the integrals (as in Section 3.3.1.3)
we anyway have to cut the diagram up into 3 parts (either by bounding g-edges or γ(1)

N -edges)
as described in Section 3.3.1.3. We split the diagrams into two (exhaustive) groups:

1. Small diagrams with 1 ≤ k ≤ 2, ν = 0, ν∗ = 0, and

2. Large diagrams as the rest, i.e. with

(A) k ≥ 3, or
(B) ν + ν∗ ≥ 1.

As in Section 3.4.2, the splitting is motivated by counting powers in Equation (3.4.22). Note
that for p ≥ 1 the diagrams with k = 0, ν = 0, ν∗ = 0 are not present. We write

∑︂
p≥1

1
p!

∑︂
(π,G)∈L̃3

p

Γ3
π,G = ξ3

small + ξ3
large,

where ξ3
small and ξ3

large are the contributions of small and large diagrams respectively. Exactly
as in Equation (3.4.12) we may bound, using Equation (3.4.22)

|ξ3
large| ≤ Cρ3(s(logN)3)3(a3ρ log(b/a))3⏞ ⏟⏟ ⏞

type (A) diagrams

+Cρ3a3ρ log(b/a)⏞ ⏟⏟ ⏞
type (B) diagrams

≤ Ca3ρ4 log(b/a)
[︂
s3a6ρ2(log(b/a))2(logN)9 + 1

]︂
.

For the small diagrams we have
Lemma 3.4.11. We have

|ξ3
small| ≤ Ca3ρ4 log(b/a)

uniformly in x1, x2, x3.

As with Lemma 3.4.8, the proof is simply a computation, which we give in Section 3.A.2. We
conclude the desired.

3.5 One and two dimensions
In this section we sketch the necessary changes one needs to make for the argument to apply
in dimensions d = 1 and d = 2. We will abuse notation slightly and denote by the same
symbols as in Sections 3.2, 3.3 and 3.4 the relevant 1- and 2-dimensional analogues.
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3.5. One and two dimensions

3.5.1 Two dimensions
Similarly to the 3-dimensional setting, the p-wave scattering function f0 in 2 dimensions is
radial and solves the equation

−∂2
rf0 − 3

r
∂rf0 + 1

2vf0 = 0, (3.5.1)

see Section 3.2.1 and recall Definition 3.1.9. Thus, it is the same as the s-wave scattering
function in 4 dimensions. In particular it satisfies the bound
Lemma 3.5.1 ([LY01, Lemma A.1], Lemma 3.2.2). The scattering function satisfies[︄

1 − a2

|x|2

]︄
+

≤ f0(x) ≤ 1

for all x and |∇f0(x)| ≤ 2a2

|x|3 for |x| > a.

As for the 3-dimensional setting we consider the trial state

ψN(x1, . . . , xN) = 1√
CN

∏︂
i<j

f(xi − xj)DN(x1, . . . , xN),

where f is a rescaled scattering function

f(x) =

⎧⎨⎩
1

1−a2/b2f0(|x|) |x| ≤ b,

1 |x| ≥ b

and
DN(x1, . . . , xN) = det[uk(xi)]1≤i≤N

k∈PF

, uk(x) = 1
L
eikx, N = #PF .

Here PF denotes the “Fermi polygon”, the 2-dimensional analogue of the “Fermi polyhedron”
PF . It is defined as follows. (Compare to Definition 3.2.7.)

Definition 3.5.2. The polygon P is defined as follows.

• First pick Q, satisfying

Q−1/2 ≤ Cs−2, N3/2 ≪ Q ≤ CNC

in the limit N → ∞. (The exponents arise as −1
2 = −1

2(d−1) , −2 = −2
d−1 and 3

2 = d+1
d

for
d = 2.)

• Pick two distinct primes Q1, Q2 ∼ Q.

• Place s evenly distributed points κR1 , . . . , κRs on the circle of radius Q−1/2 such that the
points are invariant under the symmetries (k1, k2) ↦→ (±ka,±kb) for {a, b} = {1, 2}.
(Here the exponent arises as −1

2 = 1
2(d−1) − 1 for d = 2.)

Evenly distributed means that the distance between any pair of points is d ≳ s−1Q−1/2

and that for any k on the sphere of radius Q−1/2 the distance from k to the nearest point
is ≲ s−1Q−1/2. (On the circle we can naturally order the points. Then the condition
for being evenly distributed reads that consecutive points are separated by a distance
∼ s−1Q−1/2.)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

• Find now points κ1, . . . , κs of the form

κj =
(︄
p1
j

Q1
,
p2
j

Q2

)︄
, pµj ∈ Z, µ = 1, 2, j = 1, . . . , s

such that the points are invariant under the symmetries (k1, k2) ↦→ (±k1,±k2) and
such that for any j = 1, . . . , s we have

⃓⃓⃓
κj − κRj

⃓⃓⃓
≲ Q−1.

• Define P̃ as the convex hull of the points κ1, . . . , κs and P = σP̃ where σ is such that
Vol(P ) = π.

• Define the centre z = σ(1/Q1, 1/Q2).

The “Fermi polygon” is the rescaled version defined as PF = kFP ∩ 2π
L
Z2, where L is chosen

large (depending on kF ) such that kFL
2π is rational and large.

Similarly as in Remark 3.2.9 we have that σ is irrational and σ = Q1/2(1 + O(s−2)). In
particular, any point on the boundary ∂P has radial coordinate 1 +O(s−2). (The power of
s here comes from the circle being locally quadratic and the distance between close points
being ∼ s−1. Compare to Remark 3.2.9.) Moreover, PF is almost symmetric under the map
(k1, k2) ↦→ (k2, k1) similarly to Lemma 3.2.11.
Lemma 3.5.3. Let F12 be the map (k1, k2) ↦→ (k2, k1). For any function t ≥ 0 we have∑︂

k∈ 2π
L
Z2

⃓⃓⃓
χ(k∈PF ) − χ(k∈F12(PF ))

⃓⃓⃓
t(k) ≲ Q−1/2N sup

|k|∼kF

t(k) ≲ N1/4 sup
|k|∼kF

t(k),

where Q is as in Definition 3.5.2.

The analogue of Lemma 3.2.12 is then
Lemma 3.5.4. The Lebesgue constant of the Fermi polygon satisfies

ˆ
Λ

1
L2

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈PF

eikx

⃓⃓⃓⃓
⃓⃓ dx = 1

(2π)2

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z2

eiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ Cs(logN)2.

We can again compute the kinetic energy of the Slater determinant analogously to Lemma 3.2.13
and its 2-particle reduced density analogously to Lemma 3.2.14.
Lemma 3.5.5. The kinetic energy of the (Slater determinant with momenta in the) Fermi
polygon satisfies∑︂

k∈PF

|k|2 =
∑︂
k∈BF

|k|2
(︂
1 +O(N−1/2) +O(s−4)

)︂
= 2πρN

(︂
1 +O(N−1/2) +O(s−4)

)︂
.

Lemma 3.5.6. The 2-particle reduced density of the (normalized) Slater determinant satisfies

ρ(2)(x1, x2) = πρ3|x1 − x2|2
(︂
1 +O(N−1/2) +O(s−4) +O(ρ|x1 − x2|2)

)︂
.

The computations in Section 3.3 make no reference to the dimension and are thus also valid in
dimension d = 2. For the absolute convergence in Section 3.3.1 and Lemma 3.3.2 one should
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3.5. One and two dimensions

simply replace occurrences of g and γ(1)
N with their 2-dimensional analogues. Here we have

the bounds (using Lemmas 3.5.1 and 3.5.4)
ˆ

Λ
|g| ≲ a2 + 1

(1 − a2/b2)2

ˆ b

a

⎡⎣(︄1 − a2

b2

)︄2

−
(︄

1 − a2

x2

)︄2
⎤⎦x dx ≲ a2 log(b/a),

ˆ
Λ

|γ(1)
N | ≲ s(logN)2.

(3.5.2)

Thus the absolute convergence holds as long as sa2ρ log(b/a)(logN)2 is sufficiently small.
That is, the analogue of Theorem 3.3.4 reads
Theorem 3.5.7. There exists a constant c > 0 such that if sa2ρ log(b/a)(logN)2 < c, then
the formulas in Equation (3.3.3) hold (with ρ(n)

Jas and Γnπ,G interpreted as appropriate in the
two-dimensional setting).

The analogues of Lemmas 3.4.1 and 3.4.2 read
Lemma 3.5.8. There exist constants c, C > 0 such that if sa2ρ log(b/a)(logN)2 < c and
N = #PF > C, then⃓⃓⃓⃓
⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓ ≤ Ca4ρ4(log(b/a))2

[︃
s3a4ρ2(log b/a)2(logN)6 + 1

]︃

+ Ca2ρ4|x1 − x2|2
[︃
s5a8ρ4(log(b/a))5(logN)11 + b2ρ+ log(b/a)

]︃
,

and

ρ
(3)
Jas ≤ Cf 2

12f
2
13f

2
23

[︃
ρ5|x1 − x2|2|x2 − x3|2

+ a2ρ4 log(b/a)
[︂
s3a4ρ2(log(b/a))2(logN)6 + 1

]︂]︃
.

The proof is again similar to the 3-dimensional case replacing the bounds on
´

|g| and
´

|γ(1)
N |

as in Equation (3.5.2) above. Apart from this, there are two main changes. The first is
in the proof of the analogue of Lemma 3.4.6, namely Equation (3.A.1), where one bounds´

|x|2|1 − f 2|. In two dimensions this bound is, using Lemma 3.5.1,
ˆ
R2

(︂
1 − f(x)2

)︂
|x|2 dx ≤ Ca4 + C

(1 − a2/b2)2

ˆ b

a

⎡⎣(︄1 − a2

b2

)︄2

−
(︄

1 − a2

r2

)︄2
⎤⎦ r3 dr

≤ Ca2b2.

The other main difference is for the analogue of Lemma 3.4.9. Here the 2-dimensional analogue
reads
Lemma 3.5.9. The polygon P from Definition 3.5.2 satisfies for any µ, ν = 1, 2 that

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z2

qµeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ CsN1/2(logN)2,

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂

LkF
2π

P

)︂
∩Z2

qµqνeiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ CsN(logN)3

for sufficiently large N .
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

The proof is similar to that of Lemma 3.4.9 given in Section 3.B only one skips Section 3.B.2
and notes that R = LkF

2π ∼ N1/2.

Putting together the formulas in Theorem 3.5.7 with the bounds in Lemmas 3.5.5, 3.5.6
and 3.5.8 we easily find the analogue of Equation (3.4.1). We then need to bound a few terms.
Following the type of arguments of Section 3.4, namely Equations (3.4.2), (3.4.3), (3.4.4),
(3.4.5) and (3.4.6) and using Lemma 3.5.1 we get the bounds

ˆ (︃
|∇f(x)|2 + 1

2v(x)f(x)2
)︃

|x|n dx ≤

⎧⎪⎪⎨⎪⎪⎩
C, n = 0,
4πa2 +O(a4b−2), n = 2,
Ca4 log(b/a) + CR2

0a
2, n = 4,

ˆ
|x|nf∂rf dx ≤

⎧⎨⎩Ca, n = 0,
Ca2b, n = 2.

Plugging this into the analogue of Equation (3.4.1) we get the analogue of Equation (3.4.7),
⟨ψN |HN |ψN⟩

L2 = 2πρ2 + 4π2a2ρ3

+O
(︂
s−4ρ2

)︂
+O

(︂
N−1/2ρ2

)︂
+O

(︂
a4b−2ρ3

)︂
+O

(︂
a4ρ4 log(b/a)

)︂
+O

(︂
R2

0a
2ρ4
)︂

+O
(︃
a4ρ4(log(b/a))2

[︃
s3a4ρ2(log b/a)2(logN)6 + 1

]︃)︃
+O

(︃
a4ρ4

[︃
s5a8ρ4(log(b/a))5(logN)11 + b2ρ+ log(b/a)

]︃)︃
+O

(︂
a4b2ρ5

)︂
+O

(︂
a4ρ4 log(b/a)

[︂
s3a4ρ2(log(b/a))3(logN)6 + 1

]︂)︂
.

(3.5.3)
As above, we can choose L ∼ a(a2ρ)−10 still ensuring that LkF

2π is rational. (More precisely
one chooses L ∼ a(kFa)−20, since ρ is defined in terms of L.) Then N ∼ (a2ρ)−19. Choose
moreover

b = a(a2ρ)−β, s ∼ (a2ρ)−α| log(a2ρ)|−γ.
Optimising in α, β, γ we see that for the choice

β = 1
2 , α = 4

7 , γ = 10
7

we have
⟨ψN |HN |ψN⟩

L3 = 2πρ2 + 4π2a2ρ3
[︄
1 +O

(︂
a2ρ| log(a2ρ)|2

)︂]︄
(3.5.4)

for a2ρ small enough. Note that for this choice of s,N we have s ∼ N4/133(logN)10/7. Thus
any Q with N3/2 ≪ Q ≤ CNC satisfies the condition Q−1/2 ≤ Cs−2 of Definition 3.5.2.

The extension to the thermodynamic limit of Section 3.4.1 is readily generalized. We thus
conclude the proof of Theorem 3.1.10.

3.5.2 One dimension
Similarly to the 2- and 3-dimensional settings, the p-wave scattering function f0 in 1 dimension
is even and solves the equation (here ∂2 denotes the second derivative)

−∂2f0 − 2
r
∂f0 + 1

2vf0 = 0, (3.5.5)
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see Section 3.2.1 and recall Definition 3.1.11. Thus, it is the same as the s-wave scattering
function in 3 dimensions. In particular it satisfies the bound
Lemma 3.5.10 ([LY01, Lemma A.1], Lemma 3.2.2). The scattering function satisfies[︄

1 − a

|x|

]︄
+

≤ f0(x) ≤ 1

for all x and |∂f0(x)| ≤ a
|x|2 for |x| > a.

Before giving the proof of Theorem 3.1.12 we first compare our definition of the scattering
length to that of [ARS22]. In [ARS22] the following definition is given.

Definition 3.5.11 ([ARS22, Section 1.3]). The odd-wave scattering length aodd is given by

4
R − aodd

= inf
{︄ˆ R

−R

(︂
2|∂h|2 + v|h|2

)︂
dx : h(R) = −h(−R) = 1

}︄

for any R > R0, the range of v.

The value of aodd is independent of R > R0 so aodd is well-defined. We claim that
Proposition 3.5.12. The p-wave scattering length a defined in Definition 3.1.11 and the
odd-wave scattering length aodd defined in Definition 3.5.11 agree, i.e. a = aodd.

Proof. Note first that h ↦→ E(h) =
´ R

−R (2|∂h|2 + v|h|2) dx is convex, so by replacing h by
(h(x) − h(−x))/2 we can only lower its value. Thus, we have

4
R − aodd

= inf
{︄ˆ R

−R

(︂
2|∂h|2 + v|h|2

)︂
dx : h(x) = −h(−x), h(R) = 1

}︄
.

Any h we write as h(x) = xf(x)
R

. Using this and integration by parts we get

4
R − aodd

= 1
R2 inf

{︄ˆ R

−R

(︂
2|f |2 + 4xf∂f + 2|x|2|∂f |2 + v|f |2|x|2

)︂
dx : f(x) = f(−x), f(R) = 1

}︄

= 4
R

+ 2
R2 inf

{︄ˆ R

−R

(︃
|∂f |2 + 1

2v|f |2
)︃

|x|2 dx : f(x) = f(−x), f(R) = 1
}︄
.

That is,

2R
(︄

1
1 − aodd/R

− 1
)︄

= inf
{︄ˆ R

−R

(︃
|∂f |2 + 1

2v|f |2
)︃

|x|2 dx : f(x) = f(−x), f(R) = 1
}︄
.

Taking R → ∞ in this we recover the definition of a. We conclude that a = aodd.

Concerning the assumption on v that
´ (︂1

2vf
2
0 + |∂f0|2

)︂
dx < ∞ we have the following two

propositions.
Proposition 3.5.13. Suppose that v ≥ 0 is even and compactly supported and that
for some interval [x1, x2], 0 ≤ x1 < x2 we have v(x) = ∞ for x1 ≤ x ≤ x2. Then´ (︂1

2vf
2
0 + |∂f0|2

)︂
dx < ∞, where f0 denotes the p-wave scattering function.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Proof. Let [x1, x2] be an interval where v(x) = ∞ for x1 ≤ x ≤ x2 and note that f0(x) = 0
for all |x| ≤ x2. Then we have

ˆ (︃1
2vf

2
0 + |∂f0|2

)︃
dx ≤ 1

x2
2

ˆ
|x|≥x2

(︃1
2vf

2
0 + |∂f0|2

)︃
|x|2 dx = 2ax−2

2 < ∞.

Proposition 3.5.14. Suppose that v ≥ 0 is even, compactly supported and smooth. Then´ (︂1
2vf

2
0 + |∂f0|2

)︂
dx < ∞, where f0 denotes the p-wave scattering function.

Proof. For smooth v also the scattering function f0 is smooth. Recall the scattering equation
(3.5.5). Then a simple calculation using integration by parts shows that

ˆ (︃1
2vf

2
0 + |∂f0|2

)︃
dx = 2

ˆ ∞

0

(︄
f0∂

2f0 + 2f0∂f0

x
+ (∂f0)2

)︄
dx

= 2
ˆ ∞

0

f0(x)2 − f0(0)2

x2 dx.

The function f0 is smooth and even. Thus for small x we have f(x) = f(0) +O(|x|2), hence
the integral converges around 0. By the decay of 1

x2 the integral converges at ∞. We conclude
the desired.

We now give the proof of Theorem 3.1.12. We consider the trial state given in Equation (3.2.1)
where f is a rescaled scattering function

f(x) =

⎧⎨⎩
1

1−a/bf0(|x|) |x| ≤ b,

1 |x| ≥ b

and

DN(x1, . . . , xN) = det[uk(xi)]1≤i≤N
k∈BF

, uk(x) = 1
L1/2 e

ikx, N = #BF .

In 1 dimension, there is no difference between a ball and a polyhedron, so we may use the
Fermi ball BF = {k ∈ 2π

L
Z : |k| ≤ kF} for the momenta in the Slater determinant. In this

case we have (see [KL18, Lemma 3.2] or Lemma 3.B.11)
Lemma 3.5.15. The Lebesgue constant of the Fermi ball satisfies

ˆ L/2

−L/2

1
L

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈BF

eikx

⃓⃓⃓⃓
⃓⃓ dx = 1

2π

ˆ 2π

0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
q∈
(︂
B

(︂
LkF

2π

)︂)︂
∩Z2

eiqu

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ du ≤ C logN.

As for the 2-dimensional setting one easily generalizes the computation of the kinetic energy
in Lemma 3.2.13 and the calculation of the 2-particle reduced density for a Slater determinant
in Lemma 3.2.14. That is,
Lemma 3.5.16. The kinetic energy of the (Slater determinant with momenta in the) Fermi
ball satisfies ∑︂

k∈BF

|k|2 = π2

3 ρ
2N

(︂
1 +O(N−1)

)︂
.
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3.5. One and two dimensions

Lemma 3.5.17. The 2-particle reduced density of the (normalized) Slater determinant satisfies

ρ(2)(x1, x2) = π2

3 ρ
4|x1 − x2|2

(︂
1 +O(N−1) +O(ρ2|x1 − x2|2)

)︂
.

For the Gaudin-Gillespie-Ripka-expansion we replace occurrences of g and γ
(1)
N with their

1-dimensional analogues as for the 2-dimensional setting. Here we have the bounds (using
Lemmas 3.5.10 and 3.5.15)

ˆ
Λ

|g| ≲ a log(b/a),
ˆ

Λ
|γ(1)
N | ≲ logN. (3.5.6)

Then, the 1-dimensional analogue of Theorem 3.3.4 reads
Theorem 3.5.18. There exists a constant c > 0 such that if aρ log(b/a) logN < c, then
the formulas in Equation (3.3.3) hold (with ρ(n)

Jas and Γnπ,G interpreted as appropriate for the
1-dimensional setting.)

For the analogues of Lemmas 3.4.1 and 3.4.2 we have to a bit more careful. In order to get
errors smaller than the desired accuracy of the leading interaction term (of order aρ4 for the
energy density) we need to also do a Taylor expansion of (some of) the 3-particle diagrams.
(Pointwise we only have the bound

⃓⃓⃓
Γ3
π,G

⃓⃓⃓
≤ Caρ4 log(b/a) logN (see Sections 3.A.2 and 3.4.3)

for any subleading diagram (π,G), i.e. for (π,G) ∈ L̃3
p with p ≥ 1.)

Remark 3.5.19 (Why this was not a problem for dimensions d = 2, 3). In dimensions
d = 1, 2, 3 the analoguous bound reads

⃓⃓⃓
Γ3
π,G

⃓⃓⃓
≤ Csadρ4 log(b/a)(logN)d (if d = 1 then there

is no s) for any subleading diagram, see Equation (3.4.22). This bound should be compared
to the energy density of the leading interaction term of order adρ2+2/d. Considering just the
power of ρ, we see that such terms are subleading compared to the interaction term for d ̸= 1.

Similarly the argument for Γ2 is also slightly different compared to that of Lemma 3.4.1. We
have the bounds
Lemma 3.5.20. There exists a constant c > 0 such that if aρ log(b/a) logN < c, then

⃓⃓⃓⃓
⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓ ≤ Ca2ρ4

[︂
aρ(log(b/a))3(logN)3 + b4ρ4

]︂
+ Caρ5|x1 − x2|2

[︂
b2ρ2 +Nab4ρ5 + log(b/a)

]︂
and

ρ
(3)
Jas ≤ Cf 2

12f
2
13f

2
23

[︃
ρ7|x1 − x2|2|x2 − x3|2 + a2ρ5(log(b/a))2(logN)2

+ aρ6
(︂
(b2ρ2 + log(b/a))

)︂ [︂
|x1 − x2|2 + |x1 − x3|2 + |x2 − x3|2

]︂]︃
.

The proof is similar to that of Lemmas 3.4.1 and 3.4.2. We postpone it to the end of this
section. Note here that the N -dependence is not just via logarithmic factors. Thus, we need
to be more careful in choosing the size of the smaller boxes when applying the box method
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

arguments of Section 3.4.1. With this we get the analogue of Equation (3.4.1) in 1 dimension,
⟨ψN |HN |ψN⟩

= π2

3 ρ
2N

(︂
1 +O(N−1)

)︂
+ L

ˆ
dx
(︃

|∂f(x)|2 + 1
2v(x)f(x)2

)︃

×

⎡⎣π2

3 ρ
4|x|2

(︂
1 +O(N−1) +O(ρ2|x|2)

)︂
+O

(︃
aρ5|x|2

[︃
b2ρ2 +Nab4ρ5 + log(b/a)

]︃)︃

+O
(︃
a2ρ4

[︃
aρ(log b/a)3(logN)3 + b4ρ4

]︃)︃ ⎤⎦
+
˚

dx1 dx2 dx3 f12∂f12f23∂f23f
2
13

×

⎡⎣O(ρ7|x1 − x2|2|x2 − x3|2) +O
(︂
a2ρ5(log(b/a))2(logN)2

)︂

+O
(︂
aρ6

[︂
b2ρ2 + log(b/a)

]︂ [︂
|x1 − x2|2 + |x1 − x3|2 + |x2 − x3|2

]︂)︂⎤⎦.
(3.5.7)

For the 2-body error terms we may follow the type of arguments of Section 3.4, namely
Equations (3.4.2), (3.4.3), (3.4.4), (3.4.5) and (3.4.6) exactly as for the 2-dimensional case.
By using Lemma 3.5.10 we get the boundsˆ (︃

|∂f(x)|2 + 1
2v(x)f(x)2

)︃
|x|n dx ≤

⎧⎨⎩2a, n = 2,
Ca2b, n = 4,

ˆ
|x|nf∂f dx ≤

⎧⎪⎪⎨⎪⎪⎩
C, n = 0,
Ca log(b/a), n = 1,
Cab, n = 2.

Define a0 by
1

2a0
=
ˆ (︃

|∂f(x)|2 + 1
2v(x)f(x)2

)︃
dx

and recall by assumption on v that a0 > 0, i.e. that 1/a0 < ∞. For the 3-body terms we
may do as for the 3-dimensional case, Section 3.4. For the first term we bound f13 ≤ 1. By
the translation invariance one integration gives a volume (i.e. length) factor L. That is,˚

dx1 dx2 dx3

⃓⃓⃓
f12∂f12f23∂f23f

2
13

⃓⃓⃓

×

⎡⎣O(ρ7|x1 − x2|2|x2 − x3|2) +O
(︂
a2ρ5(log(b/a))2(logN)2

)︂

+O
(︂
aρ6

[︂
b2ρ2 + log(b/a)

]︂ [︂
|x1 − x2|2 + |x1 − x3|2 + |x2 − x3|2

]︂)︂⎤⎦
≤ CNρ6

(︄ˆ b

0
|x|2f∂f dx

)︄2

+ CNa2ρ4(log(b/a))2(logN)2
(︄ˆ b

0
f∂f

)︄2

+ CNaρ5
[︂
b2ρ2 + log(b/a)

]︂ ⎡⎣(︄ˆ b

0
|x|2f∂f dx

)︄(︄ˆ b

0
f∂f dx

)︄
+
(︄ˆ b

0
|x|f∂f dx

)︄2⎤⎦ .
≤ CNa2ρ4

[︂
b2ρ2 + (log(b/a))2(logN)2 + bρ

[︂
b2ρ2 + log(b/a)

]︂]︂
.
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3.5. One and two dimensions

We conclude the analogue of Equation (3.4.7) in dimension 1

⟨ψN |HN |ψN⟩
L

= π2

3 ρ
3 + 2π2

3 aρ4 +O
(︂
N−1ρ3

)︂
+O

(︂
a2b−1ρ4

)︂
+O

(︂
a2bρ6

)︂
+O

(︂
a2ρ4a−1

0

[︂
aρ(log(b/a))3(logN)3 + b4ρ4

]︂)︂
+O

(︂
a2ρ5

[︂
b2ρ2 +Nab4ρ5 + log(b/a)

]︂)︂
+O

(︂
a2ρ5

[︂
b2ρ2 + (log(b/a))2(logN)2 + bρ

[︂
b2ρ2 + log(b/a)

]︂]︂)︂
.

(3.5.8)

We need to be careful how we choose N (i.e. how we choose L), since the error depends on
N not just via logarithmic terms. We choose

N = (aρ)−α, α > 1 b = a(aρ)−β, 0 < β < 1

where the bounds on α, β are immediate for all the error-terms to be smaller than the desired
accuracy (there is similarly also an upper limit for α, which we do not write). Keeping then
only the leading error terms we get

⟨ψN |HN |ψN⟩
L

= π2

3 ρ
3 + 2π2

3 aρ4

+O
(︂
N−1ρ3

)︂
+O

(︂
a2b−1ρ4

)︂
+O

(︂
a2a−1

0 b2ρ6
)︂

+O
(︂
Na3b4ρ10

)︂
.

(3.5.9)

Using the box method similarly as in Section 3.4.1 we also have to be careful with how we
choose the parameter d. As in Equation (3.4.9) we get

e(ρ̃) ≤ ⟨ψn|Hn|ψn⟩
ℓ

[1 +O(d/ℓ) +O(b/ℓ)] +O
(︂
ρd−2

)︂
≤ π2

3 ρ
3 + 2π2

3 aρ4 +O
(︂
n−1ρ3

)︂
+O

(︂
a2b−1ρ4

)︂
+O

(︂
a2a−1

0 b2ρ6
)︂

+O
(︂
na3b4ρ10

)︂
+O

(︂
dℓ−1ρ3

)︂
+O

(︂
bℓ−1ρ3

)︂
+O

(︂
ρd−2

)︂
.

Here we change notation from N to n and choose d = a(aρ)−δ. To get the error smaller than
desired, we see that we need to choose δ > 3/2. In particular then the error is O(ρ3(aρ)γ),
where

γ = min{1 + β, 5 − 4β, 7 − α− 4β, α + 1 − δ, 2δ − 2}.

Then, also ρ̃ = ρ (1 +O((aρ)γ)) so ρ = ρ̃(1 +O((aρ̃)γ)). Optimising in α, β, δ we see that
for

α = 33
13 , β = 9

13 , δ = 24
13 (3.5.10)

we get γ = 22/13, i.e.

e(ρ̃) ≤ π2

3 ρ̃
3 + 2π2

3 aρ̃4
(︂
1 +O

(︂
(aρ̃)9/13

)︂)︂
.

This concludes the proof of Theorem 3.1.12.

It remains to give the
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Proof of Lemma 3.5.20. Note first that, completely analogously to (3.4.10) and (3.4.22), we
have

1
p!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
(π,G)∈L2

p

ν(π,G)+ν∗(π,G)=ν0
k(π,G)=k0

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
≤ Cρ2(C logN)k0(Caρ log(b/a))k0+ν0 , p = 2k0 + ν0

1
p!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
(π,G)∈L̃3

p

ν(π,G)+ν∗(π,G)=ν0
k(π,G)=k0

Γ3
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
≤ Cρ3(C logN)k0(Caρ log(b/a))k0+ν0 , p = 2k0 + ν0.

(3.5.11)

We will use this to split the diagrams of L2
p and L̃3

p into groups. We split diagrams in L2
p into

three (exhaustive) groups:

1. Small diagrams with 1 ≤ k + ν + ν∗ ≤ 2, {1} and {2} in different clusters

(A) and k ≥ 1,

(B) and k = 0, ν∗ = 1.

2. Small diagrams with 1 ≤ k + ν + ν∗ ≤ 2 and

(A) {1} and {2} in different clusters and k = 0, ν∗ = 2,

(B) {1} and {2} in the same cluster,

3. Large diagrams with k + ν + ν∗ ≥ 3.

We then split
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

Γ2
π,G = ξsmall,0 + ξsmall,≥1 + ξ≥1,

where ξsmall,0 is the contribution of all small diagram in the first group, ξsmall,≥1 is the
contribution of all small diagrams in the second group and ξ≥1 is the contribution of all large
diagrams. We will then do a Taylor expansion of ξsmall,0 but not of the other terms.

We split diagrams in L̃3
p into three (exhaustive) groups:

1. Small diagrams with k+ ν + ν∗ = 1 and {1}, {2} and {3} in 3 different clusters. (Then
ν = 0.)

2. Small diagrams with k + ν + ν∗ = 1 and {1}, {2} and {3} in < 3 different clusters.
(Then k = ν = 0.)

3. Large diagrams with k + ν + ν∗ ≥ 2.
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3.1. Small diagrams

We then split
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃3

p

Γ3
π,G = ξ3

small,0 + ξ3
small,≥1 + ξ3

≥1,

where ξ3
small,0 is the contribution of all small diagram in the first group, ξ3

small,≥1 is the
contribution of all small diagrams in the second group and ξ3

≥1 is the contribution of all large
diagrams. Again, we do a Taylor expansion of ξ3

small,0 but not of the other terms. For simplicity
we will only compute the derivatives ∂2

x1 . With this bound the error term for the energy density
is O(a2bρ6 log(b/a)) and so it is even smaller than the accuracy a2ρ5 with b chosen as in
Equation (3.5.10). (By the symmetry, we could bound ξsmall,0 by bounding its 6th derivative
∂2
x1∂

2
x2∂

2
x3 instead.) To keep the result symmetric in x1, x2, x3 we will symmetrize the result

afterwards.

We have immediately by Equation (3.5.11) that

|ξ≥1| ≤ Ca3ρ5(log(b/a))3(logN)3,
⃓⃓⃓
ξ3

≥1

⃓⃓⃓
≤ Ca2ρ5(log(b/a))2(logN)2. (3.5.12)

Similarly as in the proof of Lemma 3.4.1 we have for x1 = x2

ξsmall,0(x2, x2) + ξsmall,≥1(x2, x2) + ξ≥1(x2, x2) = 0,
ξ3

small,0(x2, x2, x3) + ξ3
small,≥1(x2, x2, x3) + ξ3

≥1(x2, x2, x3) = 0.

Hence we may bound the zeroth order by

|ξsmall,0(x2, x2)| ≤ |ξsmall,≥1(x2, x2)| + |ξ≥1(x2, x2)| ,⃓⃓⃓
ξ3

small,0(x2, x2, x3)
⃓⃓⃓
≤
⃓⃓⃓
ξ3

small,≥1(x2, x2, x3)
⃓⃓⃓
+
⃓⃓⃓
ξ3

≥1(x2, x2, x3)
⃓⃓⃓
.

For the diagrams in ξsmall,0 and ξ3
small,0 we have similarly to Lemma 3.4.8 that

⃓⃓⃓
∂2
x1ξsmall,0

⃓⃓⃓
≤ Caρ5 log(b/a),

⃓⃓⃓
∂2
x1ξ

3
small,0

⃓⃓⃓
≤ Caρ6 log(b/a) (3.5.13)

uniformly in x1, x2, x3. For the diagrams in ξsmall,≥1 and ξ3
small,≥1 the analysis is somewhat

similar to the proof of Lemma 3.4.6. We have
Lemma 3.5.21. For the small diagrams in ξsmall,≥1 and ξ3

small,≥1 we have the bounds

|ξsmall,≥1| ≤ Ca2b4ρ8 + Cab2ρ7|x1 − x2|2
[︂
1 +Nab2ρ3

]︂
, (3.5.14)⃓⃓⃓

ξ3
small,≥1

⃓⃓⃓
≤ Cab2ρ8

(︂
|x1 − x2|2 + |x1 − x3|2 + |x2 − x3|2

)︂
(3.5.15)

uniformly in x1, x2, x3.

We give the proof of Lemma 3.5.21 in Section 3.A.3. Combining Lemma 3.5.21 and Equa-
tions (3.5.12) and (3.5.13) concludes the proof of Lemma 3.5.20.

3.A Small diagrams
In this appendix we compute the contributions of all the small diagrams of Lemmas 3.4.6,
3.4.8, 3.4.11 and 3.5.21. We first consider those of Lemmas 3.4.6 and 3.4.8.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

3.A.1 Small 2-particle diagrams (proof of Lemmas 3.4.6 and 3.4.8)
Recall from the proof of Lemma 3.4.1, Section 3.4.2 that

ξsmall,0 + ξsmall,≥1 =
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L2

p

(π,G) small

Γ2
π,G.

The criterion for being small is defined in the proof of Lemma 3.4.1 around Equation (3.4.11),
and will be recalled below. The diagrams are split into types (A), (B) and (C) according
their underlying graphs G as in the proof of Lemma 3.4.1. We further split the type (B) into
two types (B1) and (B2). The diagrams of type (B1) are those diagrams for which the extra
vertex {3} in the distinguished clusters is in the cluster containing {1}, i.e. connected to {1}.
The diagrams of type (B2) are those diagrams for which the extra vertex {3} is in the cluster
containing {2}, i.e. connected to {2}. That is, the different types are as follows. See also
Figure 3.A.1.

(A) {1} and {2} in different clusters and 1 ≤ k ≤ 4, ν = 0, ν∗ = 0,

(B) {1} and {2} in different clusters and 0 ≤ k ≤ 2, ν = 0, ν∗ = 1,

(B1) and n∗ = 1, n∗∗ = 0,
(B2) and n∗ = 0, n∗∗ = 1,

(C) {1} and {2} in the same cluster and 0 ≤ k ≤ 2, ν = 0, ν∗ = 1.

k

21∗ ∗

(a) Type (A), 1 ≤ k ≤ 4

k

21∗ ∗

3

(b) Type (B1), 0 ≤ k ≤ 2

k

21∗ ∗

3

(c) Type (B2), 0 ≤ k ≤ 2

k

21 3∗ ∗

(d) Type (C), 0 ≤ k ≤ 2

Figure 3.A.1: g-graphs of small diagrams of different types. For each diagram only
the graph G is drawn. The relevant diagrams come with permutations π such that
the diagrams are linked.

We first give the

Proof of Lemma 3.4.6. Consider first all diagrams of type (C) of smallest size, i.e. with
g-graph

G0 = 21∗ ∗

Since this graph is connected, all π ∈ S3 give rise to a linked diagram (π,G0). By Wick’s
rule, the π-sum then gives the factor ρ(3). That is,

∑︂
π∈S3:(π,G0)∈L2

1

Γ2
π,G0 =

ˆ
g13g23

∑︂
π∈S3

(−1)π
3∏︂
j=1

γ
(1)
N (xj, xπ(j)) dx3 =

ˆ
g13g23ρ

(3) dx3.
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3.1. Small diagrams

Recall the bound ρ(3) ≤ Cρ3+4/3|x1 − x2|2|x1 − x3|2 from Lemma 3.2.15. Now we bound
|g23| ≤ 1. Thus⃓⃓⃓⃓

⃓⃓⃓ ∑︂
π∈S3:(π,G0)∈L2

1

Γ2
π,G0

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cρ3+4/3|x1 − x2|2

ˆ (︂
1 − f(x)2

)︂
|x|2 dx.

Recalling Lemma 3.2.2 we may bound
ˆ (︂

1 − f(x)2
)︂

|x|2 dx ≤ Ca5 + C

(1 − a3/b3)2

ˆ b

a

⎡⎣(︄1 − a3

b3

)︄2

−
(︄

1 − a3

r3

)︄2
⎤⎦ r4 dr ≤ Ca3b2.

(3.A.1)
We conclude that all diagrams of smallest size contribute ≤ Ca3b2ρ3+4/3|x1 − x2|2.

For the larger diagrams, we consider an example diagram

(π,G) =
21 3∗ ∗

For this diagram we have

Γ2
π,G = (−1)π

˚
γ

(1)
N (x1;x4)γ(1)

N (x4;x3)γ(1)
N (x3;x1)γ(1)

N (x2;x5)γ(1)
N (x5;x2)

× g13g23g45 dx3 dx4 dx5

= −1
L15

∑︂
k1,...,k5∈PF

˚
eik1(x1−x4)eik2(x4−x3)eik3(x3−x1)eik4(x2−x5)eik5(x5−x2)

× g13g23g45 dx3 dx4 dx5

= −1
L15

∑︂
k1,...,k5∈PF

ei(k1−k3)x1ei(k4−k5)x2

ˆ
dx3 e

i(k3−k2)x3g(x1 − x3)g(x2 − x3)

×
ˆ

dx4

[︄
ei(k2−k1+k5−k4)x4

ˆ
dx5 e

−i(k5−k4)(x4−x5)g(x4 − x5)
]︄

= −1
L12

∑︂
k1,...,k5∈PF

ei(k1−k3)x1ei(k4−k5)x2

ˆ
dx3 e

i(k3−k2)x3g(x1 − x3)g(x2 − x3)

× χ(k2−k1=k4−k5)ĝ(k5 − k4),

where ĝ(k) :=
´

Λ g(x)e−ikx dx. Bounding |g23| ≤ 1 and |ĝ(k)| ≤
´

|g| ≤ a3 log(b/a) we get
that ⃓⃓⃓

Γ2
π,G

⃓⃓⃓
≤ Ca6ρ4(log(b/a))2.

One may do a similar computation for all the remaining diagrams. By computing the
integrations of the vertices in the internal clusters first, these give some factor ĝ(ki − kj) and
a factor L3χ(ki−kj=ki′ −kj′ ). By bounding as above we conclude that the contribution of small
diagrams of type (C) is bounded as desired.

Proof of Lemma 3.4.8. As with the larger diagrams of type (C) we only give calculations for
a few example diagrams and explain how the calculation for the remaining diagrams are similar.
We consider the examples in Figure 3.A.2.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

21∗ ∗

(a) Example of a type (A) di-
agram of smallest size

21∗ ∗

3
(b) Example of a type (B1)
diagram of smallest size

21∗ ∗

3

(c) Example of a type (B2) di-
agram of smallest size

Figure 3.A.2: Exemplary diagrams of types (A), (B1) and (B2). The dashed lines
denote g-edges, and the arrows denote (directed) edges of the permutation.

The contribution of the diagram in Figure 3.A.2a to ∂µx1∂
ν
x1ξsmall is

1
2∂

µ
x1∂

ν
x1Γ2

π,G

= −1
2L12

∑︂
k1,...,k4∈PF

(kµ1 − kµ2 )(kν1 − kν2)

×
¨

eik1(x1−x3)eik2(x3−x1)eik3(x2−x4)eik4(x4−x2)g34 dx3 dx4

= −1
2L12

∑︂
k1,...,k4∈PF

(kµ1 − kµ2 )(kν1 − kν2)ei(k1−k2)x1ei(k3−k4)x2

×
¨

e−i(k4−k3)(x3−x4)ei(k2−k1+k4−k3)x3g(x3 − x4) dx3 dx4

= −1
2L9

∑︂
k1,...,k4∈PF

(kµ1 − kµ2 )(kν1 − kν2)ei(k1−k2)x1ei(k3−k4)x2χ(k2−k1=k3−k4)ĝ(k4 − k3)

= O(ρ3+2/3a3 log(b/a))

using that ĝ(k) =
´

Λ g(x)e−ikx dx satisfies |ĝ(k)| ≤
´

|g| ≤ Ca3 log(b/a). The same type of
computation is valid for all other diagrams of type (A).

Consider now the diagram in Figure 3.A.2c of type (B2). This contributes

∂µx1∂
ν
x1

−1
L9

∑︂
k1,k2,k3∈PF

ˆ
eik1(x1−x2)eik2(x2−x1)g(x2 − x3) dx3

= 1
L9

∑︂
k1,k2,k3∈PF

(kµ1 − kµ2 )(kν1 − kν2)ei(k1−k2)x1ei(k2−k1)x2

ˆ
g(x2 − x3) dx3

= O(ρ3+2/3a3 log(b/a))

exactly as for type (A). Similarly, all other diagrams of type (B2) may be bounded using the
same method as for types (A).

Finally, we consider the diagram in Figure 3.A.2b of type (B1). Here we have

∂µx1∂
ν
x1Γ2

π,G = ∂µx1∂
ν
x1

1
L9

∑︂
k1,k2,k3∈PF

ˆ
eik1(x1−x3)eik2(x3−x2)eik3(x2−x1)g(x1 − x3) dx3

= ∂µx1∂
ν
x1

1
L9

∑︂
k1,k2,k3∈PF

ei(k2−k3)x1ei(k3−k2)x2

ˆ
e−i(k2−k1)(x1−x3)g(x1 − x3) dx3

= −1
L9

∑︂
k1,k2,k3∈PF

(kµ2 − kµ3 )(kν2 − kν3)ei(k2−k3)x1ei(k3−k2)x2 ĝ(k2 − k1)

= O(ρ3+2/3a3 log(b/a)).
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3.1. Small diagrams

All larger diagrams of type (B1) may be bounded similarly. We conclude the desired.

3.A.2 Small 3-particle diagrams (proof of Lemma 3.4.11)
We now give the

Proof of Lemma 3.4.11. Recall that

ξ3
small =

∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃3

p

(π,G) small

Γ3
π,G,

where “small” refers to diagrams with G-graph

G = k = 1, 2
k

1 2 3
∗ ∗ ∗

and permutation π such that (π,G) has at most two linked components, both of which contain
at least one external vertex. As in the proof of Lemmas 3.4.6 and 3.4.8 in Section 3.A.1 we
compute the value of a few examples and explain how to compute the value of the remaining
diagrams. We consider the examples of Figure 3.A.3

1 2 3∗ ∗ ∗

(a) Example of a diagram of smallest size
with one linked component

1 2 3∗ ∗ ∗

(b) Example of a diagram of smallest
size with two linked components

Figure 3.A.3: Exemplary small diagrams in L̃3
2.

The contribution of the diagram in Figure 3.A.3a is

Γ3
π,G = −1

L15

∑︂
k1,...,k5∈PF

¨
eik1(x1−x4)eik2(x4−x2)eik3(x2−x1)eik4(x3−x5)eik5(x5−x3)g45 dx4 dx5

= −1
L12

∑︂
k1,...,k5∈PF

ei(k1−k3)x1ei(k3−k2)x2ei(k4−k5)x3χ(k2−k1=k4−k5)ĝ(k5 − k4)

= O(a3ρ4 log(b/a)).

Similarly, the contribution of the diagram in Figure 3.A.3b is

Γ3
π,G = −1

L15

∑︂
k1,...,k5∈PF

¨
eik1(x1−x4)eik2(x4−x5)eik3(x5−x1)eik4(x2−x3)eik5(x3−x2)g45 dx4 dx5

= −1
L12

∑︂
k1,...,k5∈PF

ei(k1−k3)x1ei(k4−k5)x2ei(k5−k4)x3χ(k2−k1=k2−k3)ĝ(k3 − k2)

= O(a3ρ4 log(b/a)).

83



3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

One may follow this kind of computation for any diagram. The central property we used is
that the internal vertices are all in the same linked component as some external vertex. This
means that the integrals over internal vertices either gives a factor of ĝ(ki − kj) or a factor of
L3χ(ki−kj=ki′ −kj′ ). We conclude the desired.

3.A.3 Small diagrams in 1 dimension (proof of Lemma 3.5.21)
We now give the

Proof of Lemma 3.5.21. We first give the proof of Equation (3.5.14). We split the two cases
(A) and (B) of small diagrams further. They are given as follows.

(A) {1} and {2} in different clusters and k = 0, ν∗ = 2,

(A1) n∗ = 2, n∗∗ = 0 (or n∗ = 0, n∗∗ = 2),
(A2) n∗ = 1, n∗∗ = 1.

(B) {1} and {2} in the same cluster and 1 ≤ k + ν + ν∗ ≤ 2,

(B1) k = 0,
(B2) k = 1.

See also Figure 3.A.4.

1 2∗ ∗

(a) Type (A1)

1 2∗ ∗

(b) Type (A2)

1 2∗ ∗

(c) Type (B1)

1 2∗ ∗

(d) Type (B2)

Figure 3.A.4: g-graphs of small diagrams of different types. For each diagram only
the graph G is drawn. The relevant diagrams come with permutations π such the
the diagrams are linked. The diagrams of type (A1) and (B1) may have some of
the drawn g-edges not present, but the same connected components. Moreover,
the diagrams of type (B1) may have one of the internal vertices drawn not present
(indicated by a ◦). With the modification of the drawings described here these are
all small diagrams.

We will consider some examples of diagrams. Namely those drawn in Figure 3.A.4 (but not
modified as described in the caption), except for the diagram of type (B1), where we will
consider diagrams of smallest size, with g-graph

1 2∗ ∗
G0 = (3.A.2)

All other diagrams can be treated in a similar fashion. For the argument we will need a different
formula for ρt. Recall the definition in Equation (3.3.4). We may write the characteristic
function as

χ((π,∪Gℓ) linked) = 1 − χ((π,∪Gℓ) not linked).
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3.1. Small diagrams

That is,

ρ
(A1,...,Ak)
t

=
∑︂

π∈S∪Aℓ

(−1)π
∏︂

j∈∪Aℓ

γ
(1)
N (xj;xπ(j)) −

∑︂
π∈S∪Aℓ

(−1)πχ((π,∪Gℓ) not linked)
∏︂

j∈∪Aℓ

γ
(1)
N (xj;xπ(j)).

For our case we only need to consider cases where there are at most two clusters. If there is
just one cluster then ρ(A)

t = ρ(|A|)((xj)j∈A). So suppose we have two clusters A1, A2. Here,
all the π’s for which (π,∪Gℓ) is not linked are exactly those arising as products π = π1π2,
where π1 ∈ SA1 and π2 ∈ SA1 are permutations of the vertices in the 2 clusters. Thus,

ρ
(A1,A2)
t ((xj)j∈A1∪A2) =

∑︂
π∈SA1∪A2

(−1)π
∏︂

j∈A1∪A2

γ
(1)
N (xj;xπ(j))

−
∑︂

π1∈SA1

(−1)π1
∏︂
j∈A1

γ
(1)
N (xj;xπ1(j))

∑︂
π2∈SA2

(−1)π2
∏︂
j∈A2

γ
(1)
N (xj;xπ2(j))

= ρ(|A1|+|A2|)((xj)j∈A1∪A2) − ρ(|A1|)((xj)j∈A1)ρ(|A2|)((xj)j∈A2).
(3.A.3)

We now consider the diagrams in Figures 3.A.4a, 3.A.4b and 3.A.4d and (3.A.2). We get

Type (A1) :
∑︂

π∈S4:(π,G0)∈L2
2

Γ2
π,G0 =

¨
g13g14g34ρ

({1,3,4},{2})
t dx3 dx4,

Type (A2) :
∑︂

π∈S4:(π,G0)∈L2
2

Γ2
π,G0 =

¨
g13g24ρ

({1,3},{2,4})
t dx3 dx4,

Type (B1) :
∑︂

π∈S3:(π,G0)∈L2
1

Γ2
π,G0 =

ˆ
g13g23ρ

(3) dx3,

Type (B2) :
∑︂

π∈S5:(π,G0)∈L2
3

Γ2
π,G0 =

˚
g13g23g45ρ

({1,2,3},{4,5})
t dx3 dx4 dx5.

(3.A.4)

Using Equation (3.A.3) and (the 1-dimensional versions of) Lemmas 3.2.14 and 3.2.15 and
similar bounds for the 4- and 5-particle reduced densities we get the bounds on the truncated
correlations

(A1)
⃓⃓⃓
ρ

({1,3,4},{2})
t

⃓⃓⃓
≤ ρ(4)(x1, . . . , x4) + ρ(3)(x1, x3, x4)ρ(1)(x2)
≤ Cρ8|x1 − x3|2|x1 − x4|2,

(A2)
⃓⃓⃓
ρ

({1,3},{2,4})
t

⃓⃓⃓
≤ ρ(4)(x1, . . . , x4) + ρ(2)(x1, x3)ρ(2)(x2, x4)
≤ Cρ8|x1 − x3|2|x2 − x4|2,

(B1) ρ(3) ≤ Cρ7|x1 − x2|2|x1 − x3|2,
(B2)

⃓⃓⃓
ρ

({1,2,3},{4,5})
t

⃓⃓⃓
≤ ρ(5)(x1, . . . , x5) + ρ(3)(x1, x2, x3)ρ(2)(x4, x5)
≤ Cρ11|x1 − x2|2|x1 − x3|2|x4 − x5|2.

Bounding moreover, g34 ≤ 1 for the diagram of type (A1) we thus get by the translation
invariance ⃓⃓⃓⃓

⃓⃓⃓⃓
⃓

∑︂
π∈S4:(π,G0)∈L2

2
type (A1)

Γ2
π,G0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ Cρ8

(︄ˆ
|g(x)||x|2 dx

)︄2

.

85



3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

For the diagram of type (A2) we get
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
π∈S4:(π,G0)∈L2

2
type (A2)

Γ2
π,G0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ Cρ8

(︄ˆ
|g(x)||x|2 dx

)︄2

.

For the diagram of type (B1) we get by bounding g23 ≤ 1 (as in the proof of Lemma 3.4.6)
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
π∈S3:(π,G0)∈L2

1
type (B1)

Γ2
π,G0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ Cρ7|x1 − x2|2

ˆ
|g(x)||x|2 dx.

Finally, for the diagram of type (B2) we get in the same way
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
π∈S5:(π,G0)∈L2

3
type (B2)

Γ2
π,G0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ CNρ10|x1 − x2|2

(︄ˆ
|g(x)||x|2 dx

)︄2

.

We may bound
´

|x|2|g| dx similarly as in 3 and 2 dimensions,

ˆ
R

(︂
1 − f(x)2

)︂
|x|2 dx ≤ Ca3 + C

(1 − a/b)2

ˆ b

a

[︄(︃
1 − a

b

)︃2
−
(︃

1 − a

r

)︃2
]︄
r2 dr ≤ Cab2.

The other diagrams of types (A1) and (B1) (there are no other diagrams of type (A2) or
(B2)) we may treat similarly by bounding some of the g-edges by |g| ≤ 1. Combining these
bounds we conclude the proof of Equation (3.5.14).

To prove Equation (3.5.15) we recall that we consider all diagrams with g-graph

G0 =
1 2 3
∗ ∗ ∗ or G1 =

1

2
3∗

∗
∗

(and graphs that look like G0 where {1, 2, 3} are permuted). One may treat this similarly as
the diagrams above, with the result that⃓⃓⃓⃓

⃓⃓⃓ ∑︂
π∈S4:(π,G0)∈L3

1

Γ3
π,G0

⃓⃓⃓⃓
⃓⃓⃓ ≤
ˆ

|g14||g24|
⃓⃓⃓
ρ

({1,2,4},{3})
t

⃓⃓⃓
dx4 ≤ Cab2ρ8|x1 − x2|2

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
π∈S4:(π,G1)∈L3

1

Γ3
π,G1

⃓⃓⃓⃓
⃓⃓⃓ ≤
ˆ

|g14||g24||g34|ρ(4) dx4 ≤ Cab2ρ8|x1 − x2|2.

Summing this over all the permutations of {1, 2, 3} we conclude the proof of Equation (3.5.15).
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

3.B Derivative Lebesgue constants (proof of
Lemma 3.4.9)

In this appendix we give the proof of Lemma 3.4.9. We recall the statement in slightly different
notation for convenience.

Lemma 3.4.9. The polyhedron P from Definition 3.2.7 satisfies for any µ, ν = 1, 2, 3 that
ˆ

[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈RP∩Z3

kµeikx

⃓⃓⃓⃓
⃓⃓ dx ≤ CsR(logR)3,

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈RP∩Z3

kµkνeikx

⃓⃓⃓⃓
⃓⃓ dx ≤ CsR2(logR)4

for sufficiently large R = LkF

2π .

Recall that by construction R ∼ N1/3 is rational.

The proof follows quite closely the argument in [KL18]. In particular the structure is that
of induction. The 3-dimensional integral is bounded one dimension at a time. We start by
introducing some notation from [KL18].

Notation 3.B.1. For any real number x we will write [x] for either ⌊x⌋ or ⌈x⌉. Similarly we
will write ⟨x⟩ = x− [x], i.e. ⟨x⟩ is either the fractional part {x} = x− ⌊x⌋ or x− ⌈x⌉. For
any computation we do below, the definition of [x] is fixed, but the computations hold with
either choice.

Additionally for a d-dimensional vector x = (x1, . . . , xd) we write x(d̃) = (x1, . . . , xd̃) for the
first d̃ ≤ d components.

We emphasize that expressions like k2, x3, . . . do not denote squares or cubes of numbers k, x,
but instead refer to coordinates of vectors k, x. The instances where we do want to denote a
square, cube or higher power should be clear.

By potentially relabelling the coordinates it suffices to consider the cases µ = 1, µ = ν = 1
and µ = 1, ν = 2. (Alternatively, by appealing to Lemma 3.2.11 and choosing Q ≳ N4 in
Definition 3.2.7 we have a symmetry of coordinates up to error-terms which are subleading
compared to Lemma 3.4.9.) Hence define

t1(k) = k1, t2(k) = k1k1 = (k1)2, t3(k) = k1k2.

We want to show that
ˆ

[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈RP∩Z3

tj(k)eikx
⃓⃓⃓⃓
⃓⃓ dx ≤

⎧⎨⎩CsR(logR)3 j = 1,
CsR2(logR)4 j = 2, 3.

As in the proof of Lemma 3.2.12 we write RP as a union of O(s) closed tetrahedra. We
also recall that Rz /∈ Z3. As in the proof of Lemma 3.2.12 we get by the inclusion exclusion
principle O(s) terms with tetrahedra of lower dimension (triangles or line segments). All the
3-dimensional (closed) tetrahedra are convex and hence of the form

T =
{︂
k ∈ Z3 : λ1 ≤ k1 ≤ Λ1, λ2(k1) ≤ k2 ≤ Λ2(k1), λ3(k1, k2) ≤ k3 ≤ Λ3(k1, k2)

}︂
,

for some piecewise affine functions λi,Λi, i = 1, 2, 3. They are the equations of the planes
bounding the tetrahedron T . Since any k ∈ T has integer coordinates we can replace Λj by
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

⌊Λj⌋ and λj by ⌈λj⌉. It will be convenient to not distinguish between ⌊·⌋ and ⌈·⌉ and use
instead the notation [·] introduced in Notation 3.B.1. Then the tetrahedra are of the form

T =
{︂
k ∈ Z3 : [λ1] ≤ k1 ≤ [Λ1], [λ2(k1)] ≤ k2 ≤ [Λ2(k1)],

[λ3(k1, k2)] ≤ k3 ≤ [Λ3(k1, k2)]
}︂
,

(3.B.1)

where we allow [·] to be different in any of the 6 instances it appears.

Sums over lower-dimensional tetrahedra can be written as differences of sums over 3-dimensional
tetrahedra (with potentially different meanings of [·]). We will thus only consider 3-dimensional
tetrahedra. That is, for a tetrahedron T of the form Equation (3.B.1), we need to bound

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ ∑︂
k∈T∩Z3

tj(k)eikx
⃓⃓⃓⃓
⃓⃓ dx ≤

⎧⎨⎩CR(logR)3 j = 1,
CR2(logR)4 j = 2, 3.

(3.B.2)

Gluing together tetrahedra as in Lemma 3.2.12 we conclude the desired bound, Lemma 3.4.9.
The remainder of this section gives the proof of Equation (3.B.2).

3.B.1 Reduction to simpler tetrahedron
We first reduce to the case of a simpler tetrahedron T . Consider what happens by shifting all
k’s by some fixed lattice vector κ ∈ Z3 with |κ| ≤ CR. For t2 we have∑︂

k∈T∩Z3

(k1)2eikx =
∑︂

k∈(T−κ)∩Z3

(k1 + κ1)2eikx

=
∑︂

k∈(T−κ)∩Z3

(k1)2eikx + 2κ1 ∑︂
k∈(T−κ)∩Z3

k1eikx + (κ1)2 ∑︂
k∈(T−κ)∩Z3

eikx.

A similar computation holds for t1, t3. We may bound |κ| ≤ CR and thus we may assume
that T ⊂ [0, CR]3. (Recall that

´
[0,2π]3

⃓⃓⃓∑︁
k∈T∩Z3 eikx

⃓⃓⃓
dx ≤ C(logR)3 by [KL18, Theorem

4.1], see the proof of Lemma 3.2.12.)

For any tetrahedron of the form (3.B.1) we may write the k-sum as three 1-dimensional sums

∑︂
k∈T∩Z3

=
[Λ1]∑︂

k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

[Λ3(k1,k2)]∑︂
k3=[λ3(k1,k2)]

=
[Λ1]∑︂

k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

⎛⎝[Λ3(k1,k2)]∑︂
k3=0

−
[λ3(k1,k2)−1]∑︂

k3=0

⎞⎠ ,
where the λj’s and Λj’s are the equations of the planes bounding the tetrahedron T , i.e.
piecewise affine functions. As in Equation (3.B.1) each instance of [·] may be either of the
definitions of Notation 3.B.1. By splitting the k1, k2 sums into at most 4 parts, we may ensure
that both Λ3 and λ3 − 1 are only from one bounding plane, i.e. they are affine functions.
When we do this splitting, we have to choose (in each new tetrahedron) which definition of
[·] to use for the new bounding plane. This may give rise to some “boundary term”, if we
choose definitions of [·] in the new tetrahedra such that the k’s on the splitting face are either
in both or in neither of the two tetrahedra sharing this face. These boundary terms are sums
over lower-dimensional tetrahedra, and may thus be bounded by sums over 3-dimensional ones
as above.

Remark 3.B.2. One may similarly let the k1- and k2-sums go from 0 by writing e.g.
[Λ2(k1)]∑︂

k2=[λ2(k1)]
=

[Λ2(k1)]∑︂
k2=0

−
[λ2(k1)−1]∑︂
k2=0

.
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However, the upper limits Λ3(k1, k2) and λ3(k1, k2) − 1 for the k3-sum may become much
larger than R for k2 ≤ λ2(k1). This is why we don’t do this.

The terms with Λ3 and λ3 − 1 may be treated the same way, so we just look at the one with
Λ3. We thus want to bound

ˆ
[0,2π]3

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)
[Λ3(k1,k2)]∑︂
k3=0

eikx

⃓⃓⃓⃓
⃓⃓ dx ≲

⎧⎨⎩R(logR)3 j = 1,
R2(logR)4 j = 2, 3.

3.B.2 Reduction from d = 3 to d = 2
We show that we may bound the three-dimensional integrals by analogous two-dimensional
integrals up to a factor of (logR + logQ) ∼ logN .

First, before shifting by a constant κ ∈ Z3, Λ3 is given by either the plane through 3 close
corners of RP (points Rσ(p1/Q1, p

2/Q2, p
3/Q3)) or of two close corners and the centre Rz.

This follows from the construction of P in Definition 3.2.7, since forming the edges between
pairs of close points constructs a triangulation of P .

The equation for a plane through the three points Rσ(p1
j/Q1, p

2
j/Q2, p

3
j/Q3), j = 1, 2, 3 is

given by
α1

Q2Q3
k1 + α2

Q1Q3
k2 + α3

Q1Q2
k3 = Rσγ

where by construction of P , see Definition 3.2.7, we have

σ /∈ Q, γ ∈ Q, αj ∈ Z, |αj| ≤ C
√︂
Q, j = 1, 2, 3.

We might have that αj = 0. If α3 = 0 then this plane is parallel to the k3-axis and so does
not give rise to a bound on the k3-sum. Hence α3 ̸= 0. By choice of L, we have that R
is rational, and so Rσγ /∈ Q. (The choice of L such that R is rational, is exactly so that
Rσγ /∈ Q.) The equation for Λ3 is an integer shift of this plane, hence it is of the form

Λ3(k1, k2) = n3 −m1k1 −m2k2 = n3 − Q1α1

Q3α3
k1 − Q2α2

Q3α3
k2,

n3 /∈ Q, |αj| ≤ C
√︂
Q, j = 1, 2, 3.

(3.B.3)

Define for j = 1, 2, 3 the quantities

Dj
3(x) :=

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)
[Λ3(k1,k2)]∑︂
k3=0

eik
(3)x(3)

,

D̃
j

2(x) :=
[Λ1]∑︂

k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2)
,

Gj
3(x) := 1

eix3 − 1
(︂
ei(n3+1)x3

D̃
j

2(x(2) −m(2)x3) − D̃
j

2(x(2))
)︂
,

F j
3 (x) := ei(n3+1)x3

eix3 − 1

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)(x(2)−m(2)x3)
(︃
e−i⟨Λ3(k(2))⟩x3 − 1

)︃
,

(3.B.4)
where m(2) = (m1,m2) is defined in Equation (3.B.3). We shall prove the following bound.
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Lemma 3.B.3. We have for some k(2)
0 ∈ Z2, some (non-zero) κ = κ(2) ∈ Z2 and a h ∈ Z,

h ≥ 0 with |k(2)
0 | ≤ CR and h|κ(2)| ≤ CR that for any j = 1, 2, 3

ˆ
[0,2π]3

⃓⃓⃓
Dj

3(x(3))
⃓⃓⃓

dx(3)

≲ (logR + logQ)
ˆ

[0,2π]2

⃓⃓⃓
D̃
j

2(x(2))
⃓⃓⃓

dx(2) + 1 +
ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτ |κ(2)|x1

⃓⃓⃓⃓
⃓ dx1.

As a first step, consider the case where both α1 = α2 = 0 in Equation (3.B.3). Then the
k3-sum and x3-integral in Lemma 3.B.3 factors out. Using [KL18, Lemma 3.2] to evaluate
the k3-sum and x3-integral we conclude the desired. Hence we can assume that at most one
of α1, α2 is 0. (This will be relevant for Lemma 3.B.8, but only then.)

A simple calculation shows that [KL18, Lemma 3.1]

Dj
3(x) = Gj

3(x) + F j
3 (x), j = 1, 2, 3. (3.B.5)

By a straightforward modification of the argument in [KL18, Lemma 3.3] (including the factor
tj) we have
Lemma 3.B.4 ([KL18, Lemma 3.3]). For any j = 1, 2, 3 we have

ˆ
[0,2π]3

⃓⃓⃓
Gj

3(x)
⃓⃓⃓

dx ≲ logR
ˆ

[0,2π]2

⃓⃓⃓
D̃
j

2(x(2))
⃓⃓⃓

dx(2).

We thus want to bound the integral of F j
3 . Again, by a straightforward modification of the

argument in [KL18, Lemma 3.7] (including the factor tj) we have
Lemma 3.B.5 ([KL18, Lemma 3.7]). For any j = 1, 2, 3 we have
ˆ

[0,2π]3

⃓⃓⃓
F j

3 (x)
⃓⃓⃓

dx ≲
∞∑︂
r=1

(2π)r

r!

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2) ⟨︂Λ3(k(2))
⟩︂r ⃓⃓⃓⃓⃓⃓ dx(2).

To bound the right hand side of Lemma 3.B.5 we bound either definition of ⟨·⟩ by the fractional
part {·}. This follows the strategy in [KL18]. In analogy with [KL18, Lemma 3.6] we have
Lemma 3.B.6 ([KL18, Lemma 3.6]). For either definition of ⟨·⟩ we have the bound

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2) ⟨︂Λ3(k(2))
⟩︂r ⃓⃓⃓⃓⃓⃓ dx(2)

≤
ˆ

[0,2π]2

⃓⃓⃓
D̃
j

2(x(2))
⃓⃓⃓

dx(2)

+
r∑︂

ν=1

(︄
r

ν

)︄ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}ν
⃓⃓⃓⃓
⃓⃓ dx(2)

uniformly in (integer) r ≥ 1.

Proof. If ⟨·⟩ = {·} this is clear. Hence suppose that ⟨x⟩ = x− ⌈x⌉. Then

⟨x⟩ = {x} − 1 +

⎧⎨⎩1 if x ∈ Z
0 otherwise.
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

By construction Λ3(k1, k2) /∈ Z for k1, k2 ∈ Z. Thus, ⟨Λ3(k1, k2)⟩ = {Λ3(k1, k2)} − 1. Then

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2) ⟨︂Λ3(k(2))
⟩︂r

=
r∑︂

ν=0
(−1)r−ν

(︄
r

ν

)︄ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}ν

= (−1)rD̃j

2(x(2)) +
r∑︂

ν=1
(−1)r−ν

(︄
r

ν

)︄ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}ν .

We now bound the second summand of Lemma 3.B.6 similarly to [KL18, Lemmas 3.8 and
3.9]. We first define Λ̃3, a rational approximation of Λ3. Recall the definition of Λ3 in
Equation (3.B.3). By Dirichlet’s approximation theorem we may for any Q∞ find integers p, q
with 1 ≤ q ≤ Q∞ such that

γ3 := n3 − p

q
satisfies |γ3| <

1
qQ∞

.

We will choose Q∞ = Q3α3. Define then

Λ̃3(k(2)) = Λ3(k(2)) − γ3 = p

q
− Q1α1

Q3α3
k1 − Q2α2

Q3α3
k2. (3.B.6)

Note that this takes values in 1
qQ∞

Z for integers k1, k2. In particular (for integers k1, k2)
{Λ̃3(k(2))} ∈ {0, 1

qQ∞
, . . . , qQ∞−1

qQ∞
}. Thus, since |γ3| < 1

qQ∞
we have

{Λ3(k(2))} = γ3 + {Λ̃3(k(2))} +

⎧⎨⎩1 if γ3 < 0 and Λ̃3(k(2)) ∈ Z,
0 otherwise.

(3.B.7)

We claim that
Lemma 3.B.7. For N sufficiently large, we have uniformly in (integer) r ≥ 1 that

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}r
⃓⃓⃓⃓
⃓⃓ dx(2)

≲ log(rQ)
ˆ

[0,2π]2

⃓⃓⃓
D̃
j

2(x(2))
⃓⃓⃓

dx(2)

+
ˆ

[0,2π]2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]
Λ̃3(k1,k2)∈Z

tj(k1, k2)eik(2)x(2)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ dx(2) + 2r

The proof differs from that of [KL18, Lemmas 3.8 and 3.9] in a few key location, so we give it
here.
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Proof. Using Equation (3.B.7) we have

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}r

=
[Λ1]∑︂

k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2) (︂
γ3 + {Λ̃3(k(2))}

)︂r

+ χ(γ3<0)

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]
Λ̃3(k1,k2)∈Z

tj(k1, k2)eik(2)x(2) + mixed terms.

All the mixed terms have at least one power of γ3 + {Λ̃3(k(2))} = γ3. (Indeed, in the mixed
terms we have Λ̃3(k(2)) ∈ Z so {Λ̃3(k(2))} = 0.) Since |γ3| < 1/(qQ∞) ≤ 1/Q the sum of all
mixed terms may be bounded by 2rR4Q−1 ≲ 2r for N sufficiently large (independent of r) by
our choice of Q, see Definition 3.2.7. Similarly expanding the first summand, all the terms
with at least one power of γ3 may be bounded the same way. We thus have

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ3(k(2))}r

=
[Λ1]∑︂

k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ̃3(k(2))}r

+ χ(γ3<0)

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]
Λ̃3(k1,k2)∈Z

tj(k1, k2)eik(2)x(2) +O(2r),

(3.B.8)

where the error is O(2r) uniform in x(2). For the first summand we have by a simple modification
of [KL18, Lemma 3.8] (including the factor tj) that

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓ [Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]

tj(k1, k2)eik(2)x(2){Λ̃3(k(2))}r
⃓⃓⃓⃓
⃓⃓ dx(2)

≲ log(rqQ∞)
ˆ

[0,2π]2

⃓⃓⃓
Dj

2(x(2))
⃓⃓⃓

dx(2).

This importantly uses that {Λ̃3(k(2))} ∈ {0, 1
qQ∞

, . . . , qQ∞−1
qQ∞

} for integers k1, k2, so that on
can find some smartly chosen function h(u) ≈ ur on [0, 1] but with a smooth cut-off at 1 and
h({Λ̃3(k(2))}) = {Λ̃3(k(2))}r for which one can bound Fourier coefficients, see [KL18, Lemma
3.8].

We have q ≤ Q∞ = Q3α3 ≤ CQ3/2. We conclude the desired.

Next we bound the second term in Lemma 3.B.7, where Λ̃3 is integer. If there are no valid
choices of k1, k2 for which Λ̃3(k1, k2) is an integer, then this term is clearly zero. Otherwise
we have the following.
Lemma 3.B.8. Let N be sufficiently large and suppose that the set

I0 =
{︂
(k1, k2) ∈ Z2 : [λ1] ≤ k1 ≤ [Λ1], [λ2(k1)] ≤ k2 ≤ [Λ2(k1)], Λ̃3(k1, k2) ∈ Z

}︂
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

is non-empty. Then we may find a point k(2)
0 ∈ I0, a (non-zero) lattice vector κ = κ(2) ∈ Z2

and an integer h ≥ 0 with k(2)
0 +hκ ∈ I0 (in particular h|κ| ≲ R) such that I0 = {k(2)

0 +τκ(2) :
τ ∈ {0, . . . , h}}. In particular

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

[Λ1]∑︂
k1=[λ1]

[Λ2(k1)]∑︂
k2=[λ2(k1)]
Λ̃3(k1,k2)∈Z

tj(k1, k2)eik(2)x(2)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ dx(2) ≲

ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτ |κ(2)|x

⃓⃓⃓⃓
⃓ dx.

(3.B.9)

The proof is an exercise in elementary number theory analysing the set I0.

Proof. Define k(2)
0 to be any point in the (non-empty) set I0. Recall Equation (3.B.6), and

that
⃓⃓⃓
Λ̃3(k1, k2)

⃓⃓⃓
≤ CR for any k(2) ∈ I0. (This follows since the relevant tetrahedron is

contained in [0, CR]3.) By redefining αj as αj/ gcd(α1, α2, α3) we may assume that α1, α2, α3
have no shared prime factors. (This only decreases their values, so that still |αj| ≤ C

√
Q.)

In case one of the αj’s is zero we will use the convention that gcd(α, β, 0) = gcd(α, β) and
gcd(α, 0) = α for α, β > 0.

Solving the general problem. We first consider the general problem of finding all k1, k2 ∈ Z
for which Λ̃3(k1, k2) is an integer. This set has the form k

(2)
0 + Γ for some two-dimensional

lattice Γ. We now find spanning lattice vectors of Γ.

Define αij = gcd(αi, αj) for i ̸= j. (Note that the αj’s are not necessarily pairwise coprime,
only all 3 αj’s have no shared factor by the reduction above. Also, since α1 and α2 are not
both 0, we have α12 ̸= 0 is well-defined.) Shifting k(2)

0 by κ0 := (Q2
α2
α12
,−Q1

α1
α12

) we have

Λ̃3(k(2)
0 + bκ0) = Λ̃3(k(2)

0 ) ∈ Z, b ∈ Z

and κ0 is the shortest lattice vector with this property. One should note here that κ0 is not
“short”. Indeed |κ0| ≳ Q since both Q1, Q2 ≳ Q, see Definition 3.2.7, and α1, α2 are not both
0. We now look for the lattice vector in Γ giving the smallest possible (integer) increase of Λ̃3.
This lattice vector together with κ0 spans Γ. Note that

δΛ̃3(κ) := Λ̃3(k(2)
0 + κ) − Λ̃3(k(2)

0 ) = −Q1α1κ
1 −Q2α2κ

2

Q3α3
. (3.B.10)

Suppose first that either α1 = 0 or α2 = 0, say α2 = 0. Now, Q1 ̸= Q3 and |αj| ≤ C
√
Q so

Qj is not a factor of αi for any i = 1, 3, j = 1, 2, 3. Thus, gcd(Q3α3, Q1α1) = gcd(α1, α3) = 1
since α2 = 0. For the ratio δΛ̃3(κ) to be an integer we need that the numerator is some
multiple of Q3α3, and thus that |κ| ≳ Q3 ≫ R. Thus there is at most one k(2)

0 ∈ I0 and the
lemma is clear.

Suppose then that α1 ≠ 0, α2 ≠ 0. Varying κ ∈ Z2 we have by Bézout’s lemma that the
numerator in Equation (3.B.10) assumes as values all multiples of gcd(Q1α1, Q2α2). We have
gcd(Q1α1, Q2α2) = gcd(α1, α2) = α12. For the ratio δΛ̃3(κ) to be an integer we need that
the numerator is some multiple of Q3α3. Since by assumption there are no prime factors
shared by all αj’s and Q3 is not a factor of α12 we have gcd(α12, Q3α3) = 1. Thus, the
smallest integer increase of Λ̃3 is α12 ≥ 1 and this happens along some lattice vector κ1.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

Immediately then Γ ⊃ {aκ1 + bκ0 : a, b ∈ Z}. To see that Γ ⊂ {aκ1 + bκ0 : a, b ∈ Z} note
that by Bézout’s lemma the (integer) solutions to the equation

−Q1α1κ
1 −Q2α2κ

2 = Q3α3A,

for some integer A ∈ Z, is exactly (κ1, κ2) ∈
{︂

A
α12
κ1 + bκ0 : b ∈ Z

}︂
if α12 divides A and there

are no solutions otherwise. In summary then

Γ = {aκ1+bκ0 : a, b ∈ Z}, Λ̃3(k(2)
0 +aκ1+bκ0) = Λ̃3(k(2)

0 )+aα12, a, b ∈ Z. (3.B.11)

Moreover

I0 =
(︂
k

(2)
0 + Γ

)︂
∩
{︂
(k1, k2) ∈ Z2 : [λ1] ≤ k1 ≤ [Λ1], [λ2(k1)] ≤ k2 ≤ [Λ2(k1)]

}︂
.

Finding the candidate for κ. We now find the candidate for the κ in the lemma. Either
I0 = {k(2)

0 }, in which case the lemma is clear (take h = 0), or there exists some (non-zero)
κ = aκ1 + bκ0 ∈ Γ such that k(2)

0 + κ ∈ I0. For such κ we have (for sufficiently large N)
that a ̸= 0 as |κ0| ≳ Q ≫ R and any such κ has |κ| ≤ CR. Let κ2 = a2κ1 + b2κ0 be
the κ such that k(2)

0 + κ ∈ I0 with minimal value of |a2|. (κ2 is unique up to potentially
a sign if both k

(2)
0 − κ2 ∈ I0 and k

(2)
0 + κ2 ∈ I0.) It follows from Equation (3.B.11) that

|a2| ≤ CR/α12 ≤ CR since |δΛ̃3(κ2)| ≤ CR as the tetrahedron is contained in [0, CR]3.

If b2 = 0 then a2 = ±1, else if b2 ̸= 0 then gcd(a2, b2) = 1. Indeed, if a2 and b2 shared some
common factor, we could factor this out to find a κ with smaller value |a| contradicting the
minimality of |a2|.

Characterizing all allowed κ’s. We claim that by potentially redefining k(2)
0 to k(2)

0 − aκ2

with a ∈ Z largest such that still k(2)
0 − aκ2 ∈ I0 we have that

I0 = {k(2)
0 + τκ2 : τ ∈ {0, . . . , h}}, for some h ∈ Z, h ≥ 0. (3.B.12)

(The intuition for the remainder of the argument is as follows. Essentially, if some κ had
k

(2)
0 + κ ∈ I0 but was not a multiple of κ2, it would have to differ from some multiple of κ2

by at least κ0 or κ1. Since |κ0| ≫ R and either κ1 = κ2 or |κ1| ≫ R, this is impossible.)

To prove Equation (3.B.12) we first introduce the following notation. We view a lattice vector
κ ∈ Z2 as a vector κ ∈ R2 and write κ∥ for its component parallel to κ0. Note that κ∥ need
not have integer coordinates. Define the constant A such that κ∥

1 = Aκ0. (Note that A need
not be an integer.) Let 0 ̸= κ = aκ1 + bκ0 ∈ Γ with k(2)

0 + κ ∈ I0. We have

κ∥ = aκ
∥
1 + bκ0 = (aA+ b)κ0.

Thus, since |κ0| ≳ Q, |κ| ≲ CR and |a| ≥ 1 (since κ ̸= 0) we have
⃓⃓⃓
b
a

+ A
⃓⃓⃓
≤ CR

Q
.

Using this also for κ2 = a2κ1 + b2κ0 we get

|ba2 − b2a| =
⃓⃓⃓⃓
⃓ ba − b2

a2

⃓⃓⃓⃓
⃓ |aa2| ≤ |aa2|

(︄⃓⃓⃓⃓
⃓ ba + A

⃓⃓⃓⃓
⃓+

⃓⃓⃓⃓
⃓− b2

a2
− A

⃓⃓⃓⃓
⃓
)︄

≤ CR2R

Q
≪ 1.

But ba2 − b2a is an integer. Hence (for N sufficiently large) we have ba2 = b2a. Now, if b2 = 0
then b = 0 and so a2 = ±1 is a divisor of a so κ = ±aκ2. If b2 ≠ 0 then gcd(a2, b2) = 1 and
thus a2 is again a divisor of a and a/a2 = b/b2. Then κ = a

a2
κ2 is a multiple of κ2. This

shows the desired.
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Integral form. To prove Equation (3.B.9) we do the following. Define e2 = κ2/|κ2| as
the unit vector parallel to κ2 and e⊥

2 as the unit vector perpendicular to κ2. Then define the
domain

S0 :=
{︂
x(2) ∈ R2 :

⃓⃓⃓
x(2) · e2

⃓⃓⃓
≤ 4π,

⃓⃓⃓
x(2) · e⊥

2

⃓⃓⃓
≤ 4π

}︂
and note that [0, 2π]2 ⊂ S0. Thus, using Equation (3.B.12)

ˆ
[0,2π]2

⃓⃓⃓⃓
⃓⃓∑︂
k∈I0

tj(k1, k2)eik(2)x(2)

⃓⃓⃓⃓
⃓⃓ dx(2) ≤

ˆ
S0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτκ

(2)x(2)
⃓⃓⃓⃓
⃓ dx(2).

The integrand is constant in the e⊥
2 -direction, and 2π-periodic in the e2-direction. Thus,

computing the integral in these coordinates we have
ˆ
S0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτκ

(2)x(2)
⃓⃓⃓⃓
⃓ dx(2) = 32π

ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτ |κ(2)|x

⃓⃓⃓⃓
⃓ dx.

This concludes the proof.

Combining Lemmas 3.B.5, 3.B.6, 3.B.7 and 3.B.8 the r- and ν-sums in Lemmas 3.B.5
and 3.B.6 are readily bounded because of the factor 1/r! from Lemma 3.B.5. We conclude
that
ˆ

[0,2π]3

⃓⃓⃓
F j

3 (x)
⃓⃓⃓

dx ≲ logQ
ˆ

[0,2π]2

⃓⃓⃓
D̃
j

2(x)
⃓⃓⃓

dx+ 1 +
ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

tj
(︂
k

(2)
0 + τκ(2)

)︂
eiτ |κ(2)|x1

⃓⃓⃓⃓
⃓ dx1,

where k(2)
0 and κ(2) are as in Lemma 3.B.8. If the set I0 from Lemma 3.B.8 is empty, then

the bound is valid without the last term. In particular it is valid with any k(2)
0 ∈ [0, CR]2,

(non-zero) κ = κ(2) ∈ Z2 and h = 0. Thus, by Lemma 3.B.4 and Equation (3.B.5) we prove
the desired bound, Lemma 3.B.3.

3.B.3 Reduction from d = 2 to d = 1
For j = 1, 2 we will do one more step reducing the dimension. The argument is basically
the same as for going from dimension d = 3 to d = 2 in Section 3.B.2. We sketch the main
differences.

As we did in Section 3.B.1 for d = 3 by adding and subtracting the lower tail of the sum, we
may assume that the k2-sum is ∑︁[Λ2(k1)]

k2=0 .

Remark 3.B.9. It is valid here to make the k2-sum go from 0, since now the k2-sum is
the innermost sum and we do not risk values of k3 much larger that R by doing so (as in
Remark 3.B.2). Indeed, we already computed the sum over the relevant k3. We could at this
point also do the same splitting of the k1-sum, but we would have the same problems that
Λ2(k1) or λ2(k1) might be much larger than R for k1 ≤ λ1 as in Remark 3.B.2.

Additionally, by splitting the k1-sum into at most 2 parts, we may assume that Λ2 is just the
equation for a line. Here again one needs to be careful with what to do with the boundary
terms. This gives some sums over 1-dimensional tetrahedra (i.e. line segments), which we can
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

write as differences of sums over 2-dimensional tetrahedra exactly as for the 3-dimensional
case. We are led to define the quantities

Dj
2(x) :=

[Λ1]∑︂
k1=[λ1]

tj(k1)
[Λ2(k1)]∑︂
k2=0

eik
(2)x(2)

,

D̃
j

1(x) :=
[Λ1]∑︂

k1=[λ1]
tj(k1)eik1x1

,

Gj
2(x) := 1

eix2 − 1
(︂
ei(n2+1)x2

D̃
j

1(x1 −m1x
2) − D̃

j

1(x1)
)︂
,

F j
2 (x) := ei(n2+1)x2

eix2 − 1

[Λ1]∑︂
k1=[λ1]

tj(k1)eik1(x1−m1x2)
(︃
e−i⟨Λ2(k1)⟩x2 − 1

)︃
.

We claim the following inductive bound.
Lemma 3.B.10. For j = 1, 2 we have for N sufficiently large that

ˆ
[0,2π]2

⃓⃓⃓
Dj

2(x(2))
⃓⃓⃓

dx(2) ≲ (logR + logQ)
ˆ

[0,2π]

⃓⃓⃓
D̃
j

1(x1)
⃓⃓⃓

dx1 +

⎧⎨⎩R j = 1,
R2 j = 2.

Proof. As for Λ3, we have that the equation of a line between any two points (p1
i /Q1, p

2
i /Q2),

i = 1, 2 is given by
p1

1 − p1
2

Q2
k1 + p2

2 − p2
1

Q1
k2 = const .

If we choose the points to be either corners of RP or the central point Rz we get the equation

α1

Q2
k1 + α2

Q1
k2 = Rσγ /∈ Q.

Here we might have that α1 = 0 or α2 = 0.

If α2 = 0 this line is parallel to the k2-axis and so does not give rise to a bound for the k2-sum.
Thus α2 ̸= 0. If α1 = 0 the sum in Dj

2(x) and integral thereof factorizes, and hence by [KL18,
Lemma 3.2] we have that

ˆ
[0,2π]2

⃓⃓⃓
Dj

2(x(2))
⃓⃓⃓

dx(2) ≤ C logR
ˆ 2π

0

⃓⃓⃓
D̃
j

1(x1)
⃓⃓⃓

dx1.

Hence, this case yields the desired inductive bound, Lemma 3.B.10. Suppose then α1, α2 ≠ 0.

Then

Λ2(k1) = n2 −m1k
1 = n2 − Q1α1

Q2α2
k1, n2 /∈ Q, |αj| ≤ CQ1/4, j = 1, 2.

Lemmas 3.B.4, 3.B.5 and 3.B.6 are readily adapted and proven as before. The adaptation
of Lemma 3.B.7 is then mostly analogous. One chooses Q∞ = Q2α2 and finds the rational
approximation of Λ2 as

Λ̃2(k1) = Λ2(k1) − γ2 = p

q
− Q1α1

Q2α2
k1, |γ2| <

1
qQ∞

≤ Q−1.
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

The rest of the argument follows exactly as for d = 3 only that the extra term of the sum
where Λ̃2(k1) ∈ Z may be bounded as follows.⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓

[Λ1]∑︂
k1=[λ1]

Λ̃2(k1)∈Z

tj(k1)eik1x1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤

⎧⎨⎩R j = 1
R2 j = 2

since there is at most one k1 such that Λ̃2(k1) is an integer. To see this note that gcd(α1, Q2) =
1 since |α1| ≤ CQ1/4 ≪ Q2, hence the change in k1 to change Λ̃2(k1) by an integer is at
least Q3 ≫ R. We thus conclude the desired bound.

3.B.4 Bounding the one-dimensional integrals
Now we bound

´
|D̃j

1| and
´ ⃓⃓⃓∑︁h

τ=0 tj
(︂
k

(2)
0 + τκ

)︂
eiτ |κ|x

⃓⃓⃓
dx from the right-hand-sides of

Lemmas 3.B.3 and 3.B.10. For D̃j

1 we may assume that the lower bound of the summations
are at 0 by the same procedure as in Section 3.B.1. Expanding tj

(︂
k

(2)
0 + τκ

)︂
we see that

j = 1 gives an affine expression in τ and j = 2, 3 give quadratic expressions in τ . For instance,
t2
(︂
k

(2)
0 + τκ

)︂
= (k1

0)2 + 2k1
0κ

1τ + (κ1)2τ 2.

Thus, bounding both the integrals amounts to bounding the following:
Lemma 3.B.11. Let M ≥ 2 be an integer. Then

(1)
ˆ 2π

0

⃓⃓⃓⃓
⃓
M∑︂
k=0

eikx
⃓⃓⃓⃓
⃓ dx ≤ C logM ,

(2)
ˆ 2π

0

⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
⃓⃓⃓⃓
⃓ dx ≤ CM logM ,

(3)
ˆ 2π

0

⃓⃓⃓⃓
⃓
M∑︂
k=0

k2eikx
⃓⃓⃓⃓
⃓ dx ≤ CM2 logM .

Proof. The bound (1) is elementary, see also [KL18, Lemma 3.2]. For any M ∈ N and
q ∈ C \ {1} we have

M∑︂
k=0

qk = qM+1 − 1
q − 1

M∑︂
k=0

kqk = q

(q − 1)2

[︂
qM(Mq −M − 1) + 1

]︂
M∑︂
k=0

k2qk = q

(q − 1)3

[︂
qM

(︂
M2(q − 1)2 − 2M(q − 1) + q + 1

)︂
− q − 1

]︂
.

(3.B.13)

Consider now the integrals (2) and (3). By symmetry of complex conjugation
´ 2π

0 = 2
´ π

0 .
We split the integrals according according to whether x ≤ 1/M or x ≥ 1/M . For x ≤ 1/M
we have ˆ 1/M

0

⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
⃓⃓⃓⃓
⃓ dx ≲

ˆ 1/M

0
M2 dx ≲M,

ˆ 1/M

0

⃓⃓⃓⃓
⃓
M∑︂
k=0

k2eikx
⃓⃓⃓⃓
⃓ dx ≲

ˆ 1/M

0
M3 dx ≲M2.
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

For x ≥ 1/M we use Equation (3.B.13) and note that |eix − 1| ≥ cx for x ≤ π. Expanding
the exponentials eix = 1 +O(x) we thus have

ˆ π

1/N

⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
⃓⃓⃓⃓
⃓ dx ≲

ˆ π

1/M

1
x2

[︂
MeiMx(eix − 1) + 1 − eiMx

]︂
dx

≲
ˆ π

1/M

(︃
M

x
+ 1
x2

)︃
dx ≲M logM

and
ˆ π

1/N

⃓⃓⃓⃓
⃓
M∑︂
k=0

k2eikx
⃓⃓⃓⃓
⃓ dx

≲
ˆ π

1/M

1
x3

[︂
eiMx

(︂
M2(eix − 1)2 − 2M(eix − 1) + eix + 1

)︂
− eix − 1

]︂
dx

≲
ˆ π

1/M

(︄
M2

x
+ M

x2 + 1
x3

)︄
dx ≲M2 logM.

This concludes the proof.

With this we may thus bound for (j = 2, say)
ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

t2
(︂
k

(2)
0 + τκ

)︂
eiτ |κ|x

⃓⃓⃓⃓
⃓ dx

=
ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

(︂
(k1

0)2 + 2k1
0κ

1τ + (κ1)2τ 2
)︂
eiτ |κ|x

⃓⃓⃓⃓
⃓ dx

≤ CR2
ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

eiτ |κ|x
⃓⃓⃓⃓
⃓ dx+ CR|κ|

ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

τeiτ |κ|x
⃓⃓⃓⃓
⃓ dx+ C|κ|2

ˆ 2π

0

⃓⃓⃓⃓
⃓
h∑︂
τ=0

τ 2eiτ |κ|x
⃓⃓⃓⃓
⃓ dx .

Substituting y = |κ|x, using Lemma 3.B.11 and recalling that h|κ| ≲ R and |κ| ≥ 1 by
Lemma 3.B.8 we may bound this by R2 logR. An analoguous bound holds for j = 1. This
takes care of all the one-dimensional integrals. In combination with Lemmas 3.B.3 and 3.B.10
we get the bounds for j = 1, 2 of Equation (3.B.2). It remains to consider the two-dimensional
integral for j = 3.

3.B.5 Bounding the j = 3 two-dimensional integral
We are left with bounding the integral

´
|D̃3

2| on the right-hand-side of Lemma 3.B.3. We
first reduce to the case of a simpler tetrahedron (triangle). By shifting the sums by a fixed
κ = (κ1, 0) ∈ Z2 and using the bounds in Lemma 3.B.11 to evaluate the extra contributions
of the shift, we may assume that the k1-sum starts at 0. By splitting the k2-sum as in
Section 3.B.1 we may assume that that k2-sum also starts at 0. That is, we need to evaluate
the integral ¨

[0,2π]2

⃓⃓⃓⃓
⃓⃓[Λ1]∑︂
k=0

[Λ2(k)]∑︂
ℓ=0

kℓeikxeiℓy

⃓⃓⃓⃓
⃓⃓ dx dy,

where Λ2(k) = n2−Q1α1
Q2α2

k for an irrational n2. Recall that |Λ1| ≤ CR and for any 0 ≤ k ≤ [Λ1]
we have |Λ2(k)| ≤ CR.
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The analysis given here is in spirit the same as given in Sections 3.B.2, 3.B.3 and 3.B.4. It is
sufficiently different that we find it easier to do the arguments separately. We shall show the
following.
Lemma 3.B.12. We have the following bound

¨
[0,2π]2

⃓⃓⃓⃓
⃓⃓[Λ1]∑︂
k=0

[Λ2(k)]∑︂
ℓ=0

kℓeikxeiℓy

⃓⃓⃓⃓
⃓⃓ dx dy ≤ CR2(logR)2 logQ.

Combining then Lemmas 3.B.3, 3.B.10, 3.B.11 and 3.B.12 and choosing Q some sufficiently
large power of N as required in Definition 3.2.7 we conclude the proof of Equation (3.B.2)
and thus of Lemma 3.4.9. It remains to give the proof of Lemma 3.B.12.

Proof. Denote M = [Λ1] and recall Λ2(k) = n2 − m1k = n2 − Q1α1
Q2α2

k. First note that by
mapping ℓ ↦→ [Λ2(k)] − ℓ we may assume that m1 ≥ 0 . If m1 = 0 the sum factors, and
so does the integral into two one-dimensional sums/integrals. These may be bounded using
Lemma 3.B.11. In this case we get the bound ≤ CR2(logR)2 as desired. Hence assume that
m1 > 0. Moreover, if n2 > m1M we may split the (k, ℓ)-sum into two parts,

M∑︂
k=0

[Λ2(k)]∑︂
ℓ=0

=
M∑︂
k=0

[n2−m1M ]∑︂
ℓ=0

+
M∑︂
k=0

[Λ2(k)]∑︂
ℓ=[n2−m1M ]+1

.

The first sum factors into one-dimensional integrals which we may bound using Lemma 3.B.11
again. The second we may shift by a constant ℓ (again then using Lemma 3.B.11 to evaluate
the contribution of the shift) and assume that the lower limit of the ℓ-sum is 0. The upper
limit then becomes [Λ(k)], where

Λ(k) = n2 − ([n2 −m1M ] + 1) −m1k := n−mk .

Geometrically, this means that the domain of the (k, ℓ)-sum is a triangle with two sides along
the axes. We thus need to bound

¨
[0,2π]2

⃓⃓⃓⃓
⃓⃓ M∑︂
k=0

[Λ(k)]∑︂
ℓ=0

kℓeikxeiℓy

⃓⃓⃓⃓
⃓⃓ dx dy,

where
Λ(k) = n−mk, M ≤ R, mM = n+O(1), n ≤ R.

By the symmetries of translation invariance and complex conjugation we may integrate over
the domain [−π, π] × [0, π] instead. We evaluate the ℓ-sum using Equation (3.B.13). Recall
that [Λ(k)] = Λ(k) − ⟨Λ(k)⟩. We thus have

[Λ(k)]∑︂
ℓ=0

ℓeiℓy = eiy

(eiy − 1)2

[︂
ei[Λ(k)]y([Λ(k)]eiy − [Λ(k)] − 1) + 1

]︂
= eiy

(eiy − 1)2

[︂(︂
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

)︂
+
(︂
e−i⟨Λ(k)⟩y − 1

)︂ (︂
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

)︂
−
(︂
⟨Λ(k)⟩ ei(Λ(k)−⟨Λ(k)⟩)y(eiy − 1) + (e−i⟨Λ(k)⟩y − 1)

)︂]︂
=: (I) + (II) + (III).
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The third summand (III) may be calculated as

−eiy

(eiy − 1)2

[︂
⟨Λ(k)⟩

(︂
ei[Λ(k)]y − 1

)︂
iy +O(y2)

]︂
.

The factor −eiy

(eiy−1)2 may be bounded by 1/y2. For this term we split the y-integral according
to whether y ≤ 1/n or y ≥ 1/n. For y ≤ 1/n we expand additionally ei[Λ(k)]y − 1 = O(ny).
We get the contribution
ˆ π

−π
dx
ˆ 1/n

0
dy 1
y2

⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
[︂
⟨Λ(k)⟩

(︂
ei[Λ(k)]y − 1

)︂
y +O(y2)

]︂⃓⃓⃓⃓⃓ ≲ 1
n
M2n+ 1

n
M2 ≲ R2.

For y ≥ 1/n we bound ei[Λ(k)]y − 1 = O(1). We get
ˆ π

−π
dx
ˆ π

1/n
dy 1
y2

⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
[︂
⟨Λ(k)⟩

(︂
ei[Λ(k)]y − 1

)︂
y +O(y2)

]︂⃓⃓⃓⃓⃓ ≲ (log n)M2 +M2

≲ R2 logR.

For the second summand (II) we again split the integral according to whether y ≤ 1/n or
y ≥ 1/n. If y ≤ 1/n we have

eiy

(eiy − 1)2

(︂
e−i⟨Λ(k)⟩y − 1

)︂ (︂
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

)︂
= O(Λ(k)2y) = O(n).

Hence this contributes the term
ˆ π

−π
dx
ˆ 1/n

0
dy
⃓⃓⃓⃓
⃓
M∑︂
k=0

keikxO(Λ(k)2y)
⃓⃓⃓⃓
⃓ ≲ 1

n
M2n ≲ R2.

For y ≥ 1/n we write

eiy

(eiy − 1)2

(︂
e−i⟨Λ(k)⟩y − 1

)︂ (︂
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

)︂
= eiy

(eiy − 1)2

∞∑︂
ν=1

(−iy)ν

ν! ⟨Λ(k)⟩ν
(︂
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

)︂
.

Again we bound the factor eiy

(eiy−1)2 as 1/y2. We treat each summand similarly as in Lem-
mas 3.B.6 and 3.B.7 (or rather, the 2-dimensional version of these as used in Section 3.B.3.)
Completely analogously to Lemma 3.B.6 we see that for any integer r ≥ 1 we have

¨ ⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2 ⟨Λ(k)⟩r
⃓⃓⃓⃓
⃓ dx dy

≤
¨ ⃓⃓⃓⃓

⃓
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2

⃓⃓⃓⃓
⃓ dx dy

+
r∑︂

ν=1

(︄
r

ν

)︄¨ ⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2 {Λ(k)}ν
⃓⃓⃓⃓
⃓ dx dy,

for either definition of ⟨·⟩ (i.e. either ⟨·⟩ = {·} or ⟨·⟩ = · − ⌈·⌉). Also the application of
Lemma 3.B.7 is analogous to its use in Section 3.B.3. There is at most one k such that
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

Λ̃(k) ∈ Z for the appropriate rational approximation Λ̃ of Λ. Using that eiy = 1 +O(y) we
obtain the bound⃓⃓⃓⃓

⃓keikx eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1
y2

⃓⃓⃓⃓
⃓ ≲M

ny + 1
y2 ≲

R2

y
+ R

y2 ,

valid for any k. Hence this error term contributes at mostˆ π

−π
dx
ˆ π

1/n
dy
(︄
R2

y
+ R

y2

)︄
≲ R2 log n+Rn ≲ R2 logR.

The rest of the argument in Lemma 3.B.7 is the same. We conclude that we may bound the
contribution of the term (II) by that of (I) up to a factor of logQ and an error R2 logR, i.e.¨ ⃓⃓⃓⃓

⃓∑︂
k

keikx(II)
⃓⃓⃓⃓
⃓ dx dy ≲ logQ

¨ ⃓⃓⃓⃓
⃓∑︂
k

keikx(I)
⃓⃓⃓⃓
⃓ dx dy +R2 logR.

In particular
¨

[0,2π]2

⃓⃓⃓⃓
⃓⃓ M∑︂
k=0

[Λ(k)]∑︂
ℓ=0

kℓeikxeiℓy

⃓⃓⃓⃓
⃓⃓ dx dy

≲ logQ
ˆ π

−π
dx
ˆ π

0
dy
⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2

⃓⃓⃓⃓
⃓+R2 logR.

(3.B.14)

In order to evaluate the integral on the right-hand side, we split the integration domain into 5
regions, see Figure 3.B.1.
I1 = {|x| ≤ 2/M, y ≤ 2/n}, I2 = {|x| ≤ 1/M, y ≥ 2/n},
I3 = {y ≤ 1/n, |x| ≥ 2/M}, I4 = {y ≥ 1/n, |x| ≥ 1/M, |x−my| ≥ 1/M}
I5 = {|x−my| ≤ 1/M, (x, y) /∈ I1}.

We will be a bit sloppy with notation and refer to both the domain of integration and the
value of the integration over that domain by Ij.
(I1). We expand

(∗) :=
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2

(or rather the numerator) to second order in y. Using that Λ(k) = O(n) we get that
(∗) ≲M2n2. Thus the integral gives

I1 ≲
ˆ 2/M

−2/M
dx
ˆ 2/n

0
dyM2n2 ≲Mn ≲ R2.

(I2). We expand eiy = 1 + O(y) in (∗). Then (∗) ≲ M2n
y

+ M2

y2 . The integral is then
I2 ≲ R2 logR.
(I3, I4, I5). For the remaining integrals we use the explicit formula for Λ(k) = n−mk. Then

(∗) = 1
y2

M∑︂
k=0

keikx(eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1)

= 1
y2

M∑︂
k=0

(︂
keikx + keik(x−my)einy(neiy − n− 1) + k2eik(x−my)einy(m−meiy)

)︂
= 1
y2

(︂
−i∂D(x) − ieiny(neiy − n− 1)∂D(x−my) +meiny(eiy − 1)∂2D(x−my)

)︂
,

(3.B.15)
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3. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound

x

y

2/M−2/M

2/n

x = my

I1

I2

I3I3

I4

I4

I4
I5

Figure 3.B.1: Decomposition of the domain [−π, π] × [0, π] into different regions.

where we introduced D(z) = ∑︁M
k=0 e

ikz = ei(M+1)z−1
eiz−1 . From Equation (3.B.13) we conclude

that we may bound derivatives of D as

|∂D(z)| ≲ M

z
+ 1
z2 , |∂2D(z)| ≲ M2

z
+ M

z2 + 1
z3 , |∂3D(z)| ≲ M3

z
+ . . .+ 1

z4 . (3.B.16)

(I3). We have y ≤ 1/n and |x| ≥ 2/M . We expand Equation (3.B.15) to second order in y.
Expanding first the exponentials and then derivatives of D where needed we get

(3.B.15) = 1
y2

(︃
− i∂D(x) + i∂D(x−my) + imy∂2D(x−my)

+O(n2y2∂D(x−my)) +O(nmy2∂2D(x−my))
)︃

≲ n2 sup
y

|∂D(x−my)| + nm sup
y

|∂2D(x−my)| +m2 sup
y

|∂3D(x−my)|.

Now we use the bounds Equation (3.B.16) and use that z := x−my has |z| ≥ |x| −m/n =
|x| − 1/M +O(1/(Mn)) (recall that mM = n+O(1)) and |x| ≥ 2/M . Thus

I3 ≲
1
n

ˆ π

1/M
dz
(︂
n2|∂D(z)| + nm|∂2D(z)| +m2|∂3D(z)|

)︂
≲ R2 logR.

(I4). We expand the exponentials eiy = 1 +O(y). Then

|(3.B.15)| ≤ |∂D(x)|
y2 + n|∂D(x−my)|

y
+ |∂D(x−my)|

y2 + m|∂2D(x−my)|
y

.

Using the bounds Equation (3.B.16) as before and noting that |x| ≥ 2/M and z = x−my
has |z| ≥ 1/M one easily sees that I4 ≲ R2(logR)2.

(I5). Again, expanding the exponentials eiy = 1 +O(y) we have as for I4 that

|(3.B.15)| ≤ |∂D(x)|
y2 + n|∂D(x−my)|

y
+ |∂D(x−my)|

y2 + m|∂2D(x−my)|
y

.
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3.2. Derivative Lebesgue constants (proof of Lemma 3.4.9)

We use the bounds

|∂D(z)| =
⃓⃓⃓⃓
⃓
M∑︂
k=0

keikz
⃓⃓⃓⃓
⃓ ≤ M2, |∂2D(z)| =

⃓⃓⃓⃓
⃓
M∑︂
k=0

k2eikz
⃓⃓⃓⃓
⃓ ≤ M3.

Thus
I5 ≲

1
M

ˆ π

1/n

M2

y2 + nM2 +mM3

y
dy ≲ R2 logR.

We conclude that
ˆ π

−π
dx
ˆ π

0
dy
⃓⃓⃓⃓
⃓
M∑︂
k=0

keikx
eiΛ(k)y(Λ(k)eiy − Λ(k) − 1) + 1

y2

⃓⃓⃓⃓
⃓ ≲ R2(logR)2.

Together with Equation (3.B.14) this concludes the proof.
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Chapter4
Ground state energy of the dilute

spin-polarized Fermi gas: Lower bound

This chapter contains the paper

[GSELow] A. B. Lauritsen and R. Seiringer. “Ground state energy of the dilute spin-
polarized Fermi gas: Lower bound”. arXiv: 2402.17558 [math-ph]. 2024. DOI:
10.48550/arXiv.2402.17558.

Abstract. We prove a lower bound on the ground state energy of the dilute spin-polarized
Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive
interactions. This correction depends on the p-wave scattering length of the interaction and
matches the corresponding upper bound in Chapter 3
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4.1 Introduction and Main Results
In recent years much effort in mathematical physics has been devoted towards establishing the
validity of asymptotic formulas for the ground state energy (and the free energy at non-zero
temperature) of dilute quantum gases, motivated in part by the advances in the physics of
cold atoms. The validity of leading order terms was proved for bosons at zero [Dys57; LY98;
LY01] and positive [DMS20; MS20; Sei08; Yin10] temperature, as well as for fermions with
q ≥ 2 spin components [FGHP21; LSS05; Sei06b], in dimensions d ≥ 2. For bosons, even the
next-order term (the Lee–Huang–Yang correction) has been established [BCS21; FGJMO24;
FS20; FS23; HHNST23; YY09]. In all these cases, the strength of the interparticle interaction
is quantified by the s-wave scattering length. In the special case of one dimension, both
bosonic and fermionic gases were recently studied in [ARS22].

Notably absent from this list is the spinless Fermi gas in dimensions d ≥ 2. At low density, the
effect of the interactions (quantified by the p-wave scattering length in this case) is significantly
smaller than for bosons or for fermions with spin, due to the vanishing of the wave functions
at spatial coincidences of the particles as a consequence of the Pauli principle. This makes
the mathematical analysis much more subtle. In Chapter 3, an asymptotically correct upper
bound on the ground state energy of a dilute spinless Fermi gas was obtained, by developing a
cluster expansion technique (see also Chapter 6 for a version of this technique applicable at
non-zero temperature). In this paper, we prove a corresponding lower bound. Our method is
inspired by [FGHP21], and utilizes a suitable unitary transformation implementing the relevant
correlations when two particles are at close distances.

To formulate our result more precisely, consider a gas of N indistinguishable fermions in a
d-dimensional box Λ = [−L/2, L/2]d of side length L > 0 interacting through a repulsive pair
potential V , meaning that V ≥ 0. Our main focus will be on the physically most relevant
case d = 3. The Hamiltonian of such a system is given by (in units where ℏ = 1 and the
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4.1. Introduction and Main Results

particle mass is m = 1/2)

HN =
N∑︂
j=1

−∆xj
+
∑︂
j<k

V (xj − xk) (4.1.1)

and is defined on (an appropriate domain in) L2
a(ΛN ;Cq) := ⋀︁N L2(Λ;Cq) with q ∈ N the

number of spin states. We consider such a system in the regime where the particle density
ρ = N/Ld is small compared to the length scale set by the interaction potential V . The
particles being fermions, an important role is played by the spin: The interactions between
fermions in different spin states gives a much larger contribution to the energy than the
interactions between fermions in the same spin state. This is due to the Pauli exclusion
principle suppressing the probability of two fermions of equal spin being close. For fermions of
different spin there is no such suppression.
In this paper we study the setting of spinless (or, equivalently, fully spin-polarized) fermions,
meaning that q = 1. In the physics literature, one finds the following conjecture for the
ground state energy EN = inf specHN [AE68; DZ19; Efi66; EA65] (see also the numerics in
[BTP23]): for small akF

Ed=3
N = Nk2

F

[︄
3
5 + 2

5πa
3k3
F − 1

35πa
6R−1

eff k
5
F + 2066 − 312 log 2

10395π2 a6k6
F + o(a6k6

F )
]︄

(4.1.2)

with kF = (6π2ρ)1/3 the Fermi momentum, a the p-wave scattering length and Reff the p-wave
effective range. The first term 3

5Nk
2
F is the (kinetic) energy of the free (i.e., non-interacting)

Fermi gas. In Chapter 3 the validity of the first three terms was proved as an upper bound. In
this paper we shall prove the validity of the first two terms as a lower bound. In particular, in
combination with the result in Chapter 3 we establish the validity of Equation (4.1.2) to order
Na3k5

F .
For comparison, let us consider the case of fermions with spin ≥ 1/2, where there are q ≥ 2
spin states. To leading order, one only sees the interaction between fermions of different spins.
In this case it is known [FGHP21; Gia23a; LSS05], [Chapter 5] that, for a gas with Nσ = ρσL

3

fermions of spin σ,

Ed=3
{Nσ} =

∑︂
σ

3
5Nσ(6π2ρσ)2/3 +

∑︂
σ ̸=σ′

4πasNσNσ′L−3 + o(Nasρ) (4.1.3)

with as the s-wave scattering length of the interaction V . The first term ∑︁
σ

3
5Nσ(6π2ρσ)2/3

is again the energy of a free Fermi gas. We note that the second term, of order Nasρ, is much
larger than the corresponding second term for the spin-polarized fermions in Equation (4.1.2).
The next term in the expansion Equation (4.1.3) is conjectured to be of order Na2

sρ
4/3 [Gia23a;

Gia23b; HY57]. Also this term arises from interactions of fermions with different spin and is still
much larger than the largest term coming from the same-spin interaction in Equation (4.1.2)
above.
Finally, we consider also the lower-dimensional cases d ≤ 2. Here the expected formulas for
the spin-polarized gas read [ARS22] (and Chapter 3)

Ed=2
N = Nk2

F

[︃1
2 + 1

4a
2k2
F + o(a2k2

F )
]︃
, Ed=1

N = Nk2
F

[︃1
3 + 2

3πakF + o(akF )
]︃

with kF = (4πρ)1/2 for d = 2 and kF = πρ for d = 1, and a the p-wave scattering length in
the respective dimension. In Chapter 3 we proved the validity of both of these formulas as
upper bounds, and in [ARS22] the one-dimensional formula is proved both as an upper and a
lower bound. In this paper, we shall also prove the formula for d = 2 as a lower bound.
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.1.1 Precise statement of results
We shall now give a precise statement of our main results, given in Theorem 4.1.2 below. To
do this, we first define the Hamiltonian HN and its ground state energy EN properly.

We shall work with periodic boundary conditions on Λ = [−L/2, L/2]3. In particular we
replace the interaction V by its periodization ∑︁n∈Z3 V (x+ nL), which we will with a slight
abuse of notation continue to denote by V . We assume that V has compact support, so for L
large enough at most one of the summands in ∑︁n∈Z3 V (x+ nL) is non-zero and no confusion
should arise. The Hamiltonian HN is then defined as in Equation (4.1.1) with ∆ denoting
the Laplacian with periodic boundary conditions on the box Λ and realized as a self-adjoint
operator on (an appropriate domain in) the fermionic space L2

a(ΛN ) = ⋀︁N L2(Λ). The ground
state energy EN is then given by

EN = inf
ψ∈L2

a(ΛN )

⟨ψ|HN |ψ⟩
⟨ψ|ψ⟩

.

The p-wave scattering length of the interaction potential V is defined as follows (a different-
looking but equivalent definition is given in [SY20] and Chapters 3 and 6).

Definition 4.1.1. Let φ0 be the solution of the p-wave scattering equation

x∆φ0 + 2∇φ0 + 1
2xV (1 − φ0) = 0 (4.1.4)

on R3, with φ0(x) → 0 for |x| → ∞. Then φ0(x) = a3/|x|3 for x /∈ suppV for some
constant a called the p-wave scattering length.

With these definitions we can formulate our main theorem:
Theorem 4.1.2. Let V ∈ L1 be non-negative, radial and compactly supported. Then for akF
small enough and N large enough we have

EN
N

≥ k2
F

[︃3
5 + 2

5πa
3k3
F +O((akF )3+3/10 |log akF |) +O(N−1/3)

]︃
.

Remark 4.1.3. The appearance of the scattering length a in the error term is for dimensional
consistency. The error term O((akF )3+3/10 |log akF |) really depends on the range R0 of V
and on ∥V ∥L1 (both of dimension length). We think of a as a constant of dimension length
and thus use the bounds

R0 ≤ Ca, ∥V ∥L1 ≤ Ca

with the constants C then being dimensionless.

Remark 4.1.4 (Extension to less regular V ). A posteriori we can extend Theorem 4.1.2 to
less regular V (and, in particular, to the case of hard spheres where, formally, Vhs(x) = ∞
for |x| ≤ R0 and Vhs(x) = 0 otherwise). Indeed, any positive radial and compactly supported
measurable function V can be approximated from below by some (positive radial compactly
supported) ˜︁V ∈ L1. Then we can apply the theorem for ˜︁V and note that EN ≥ ˜︁EN with˜︁EN the ground state energy with interaction ˜︁V . The error bounds in the theorem, being
dependent on ∥ ˜︁V ∥L1 , necessarily blow up when ˜︁V converges to V . However, choosing ˜︁V to
converge to V slowly enough we may achieve a( ˜︁V ) = a(V )(1 + o(1)) with the error-terms of
Theorem 4.1.2 still being small. Then

EN
N

≥ k2
F

[︃3
5 + 2

5πa
3k3
F + o(a3k3

F ) +O(N−1/3)
]︃
.
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In the same way, also the restriction to V having compact support can be lifted. For finiteness
of the p-wave scattering length it is only needed that x ↦→ |x|2V (x) is integrable outside some
ball.

While the main focus of this paper is a lower bound on the ground state energy, our method can
also be applied to obtain a corresponding upper bound. In fact, we shall show the following.
Proposition 4.1.5 (Upper bound). Let V ∈ L1 be positive, radial and compactly supported.
Then for akF small enough and N large enough we have

EN
N

≤ k2
F

[︃3
5 + 2

5πa
3k3
F +O(a4k4

F |log akF |) +O(N−1/3)
]︃
.

We remark, however, that in Theorem 3.1.3, using a very different method, a significantly
stronger upper bound was shown (capturing also the next term of order (akF )5) under weaker
assumptions on the interaction V (in particular, allowing also for hard spheres).

In the proof of Theorem 4.1.2 and Proposition 4.1.5 we will consider particle numbers N arising
from a “filled Fermi ball”. This is done for convenience. We shall discuss in Remark 4.1.7
below why this is in fact not a restriction on N to the precision given in Theorem 4.1.2.
Concretely this means the following.

Definition 4.1.6. For kF > 0 the Fermi ball is defined as BF = {k ∈ 2π
L
Z3 : |k| ≤ kF}. We

then take N = #BF .

In this case there are two variables, which we are free to choose: The side-length of the
box L and the Fermi momentum kF . The particle number N and density ρ = N/L3 then
depend on the values of L, kF . Any constraint on N (that it is sufficiently large, say) should
thus more precisely be written as a constraint on kFL ∼ N1/3. Counting the number of
lattice points inside a ball of a given radius we see that ρ = N/L3 and kF are related by
kF = (6π2ρ)1/3(1 +O(N−1/3)).

Remark 4.1.7. The choice of N = #BF puts a restriction on which values N may assume
— not all integers arise as #BF for some L and kF . To the precision given in Theorem 4.1.2
and Proposition 4.1.5, however, it suffices to consider N arising as N = #BF . To see this,
assume that Theorem 4.1.2 and Proposition 4.1.5 hold for integers N arising as N = #BF .

For a general integer N and length L define k<F and k>F as the largest, respectively smallest,
kF such that N< = #B<

F ≤ N ≤ #B>
F = N> with B<

F , B
>
F defined using the Fermi

momenta k<F and k>F . Then N<, N> = N + O(N2/3) since k<F + 2π
L

≥ k>F . Moreover,
k<F , k

>
F = (6π2ρ)1/3(1 +O(N−1/3)). We may apply Theorem 4.1.2 and Proposition 4.1.5 for

particle numbers N> and N<. By positivity of the interaction we have EN< ≤ EN ≤ EN> .
Thus,

EN
N

≥ EN<

N<
(1 +O(N−1/3))

≥ (k<F )2
[︃3
5 + 2

5πa
3(k<F )3 +O((ak<F )3+3/10 |log ak<F |) +O(N−1/3)

]︃
= k2

F

[︃3
5 + 2

5πa
3k3
F +O((akF )3+3/10 |log akF |) +O(N−1/3)

]︃
and similarly for the upper bound.
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4.1.1.1 Two dimensions

We consider next the analogous problem in two dimensions. The scattering length is defined
as in Definition 4.1.1, with the only difference that now one has φ0(x) = a2/|x|2 outside the
support of V . The two-dimensional analogue of Theorem 4.1.2 is as follows.
Theorem 4.1.8 (Two dimensions). Let V ∈ L1 be positive, radial and compactly supported.
Then for akF small enough and N large enough we have

EN
N

≥ k2
F

[︃1
2 + 1

4a
2k2
F +O((akF )2+1/4 |log akF |) +O(N−1/2)

]︃
.

Remark 4.1.9. Theorem 4.1.8 matches the upper bound of Theorem 3.1.10 to order Na2k4
F .

Indeed, kF and ρ are related by kF = (4πρ)1/2(1 +O(N−1/2)).

We sketch in Section 4.A how to adapt the proof of Theorem 4.1.2 to the two-dimensional
setting.

4.1.2 Second quantization
An important step in the proof is to write the Hamiltonian in second quantization and analyse
it using an appropriate unitary transformation. The choice of the unitary can be motivated by a
suitable version of second order perturbation theory, as we shall discuss in the next subsection.

We will here only briefly describe the central concepts of second quantization. A detailed
introduction to second quantization in general can be found in [Sol14]. Moreover, the specific
case of a Fermi gas in a periodic box Λ = [−L/2, L/2]3 is discussed in detail in [FGHP21;
Gia23a], see also [Gia23b].

Since we consider the box Λ with periodic boundary conditions, a natural basis for the one-body
space L2(Λ) is given by the plane waves fk(x) = L−3/2eikx with momenta k ∈ 2π

L
Z3. We will

denote the creation and annihilation operators in the state fk by a∗
k = a∗(fk) and ak = a(fk),

respectively. They satisfy the canonical anti-commutation relations {a∗
k, ak′} = δk,k′ and

{ak, ak′} = {a∗
k, a

∗
k′} = 0. In second quantization the Hamiltonian is then given by

H = dΓ(−∆) + dΓ(V ) =
∑︂
k

|k|2a∗
kak + 1

2L3

∑︂
p,k,k′

V̂ (p)a∗
k+pa

∗
k′−pak′ak (4.1.5)

and defined on the Fock space F = ⨁︁∞
n=0 L

2
a(Λn) = ⨁︁∞

n=0
⋀︁n L2(Λ). Here we have adopted

the notation

Notation 4.1.10. The Fourier transform of a function g (on Λ) is given by ĝ(k) =´
g(x)e−ikx dx.

Notation 4.1.11. For any sum the variables are summed over 2π
L
Z3 unless otherwise noted.

That is, ∑︁k = ∑︁
k∈ 2π

L
Z3 .

We will consider N -particle states ψ, meaning that Nψ = Nψ with N = ∑︁
k a

∗
kak the number

operator. To extract the leading contribution to the ground state energy it is convenient to
introduce the particle-hole transformation R, satisfying

R∗akR =

⎧⎨⎩a∗
k k ∈ BF ,

ak k /∈ BF ,
RΩ =

⎡⎣ ∏︂
k∈BF

a∗
k

⎤⎦Ω = ψF . (4.1.6)
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Here Ω denotes the vacuum and the free Fermi state ψF is given by

ψF (x1, . . . , xN) = 1√
N !

det [fk(xj)] k∈BF
1≤j≤N

,

with N = #BF . The state ψF is the ground state of the corresponding non-interacting system.
For later use we introduce the following convenient notation.

Notation 4.1.12. The expectation of an operator A in the free Fermi state ψF is denoted by
⟨A⟩F .

It will prove helpful to distinguish between creation and annihilation operators for momenta
inside and outside the Fermi ball. Moreover, it will sometimes be convenient to consider
operators written in configuration space, i.e., using the operator-valued distributions ax, a∗

x

given by ax = L−3/2∑︁
k e

ikxak. For instance we have

dΓ(V ) = 1
2

¨
V (x− y)a∗

xa
∗
yayax dx dy.

Also for the operator-valued distributions ax, a∗
x we wish to be able to distinguish whether they

arise from particles inside or outside the Fermi ball. This leads to the following definition.

Definition 4.1.13. Define

ck = akχ(k∈BF ), bk = akχ(k/∈BF ),

with χ denoting the characteristic function. Define further the operator-valued distributions

bx = 1
L3/2

∑︂
k

eikxbk = 1
L3/2

∑︂
k/∈BF

eikxak, cx = 1
L3/2

∑︂
k

e−ikxck = 1
L3/2

∑︂
k∈BF

e−ikxak.

(4.1.7)

Note the different choice of signs in the exponents. This is done for convenience, so that the
particle-hole transformation satisfies

R∗axR = bx + c∗
x. (4.1.8)

Note that cx and c∗
x are in fact bounded operators with ∥cx∥ = ∥c∗

x∥ ≤ Ck
3/2
F . Moreover,

since their supports (in momentum-space) are disjoint we have that bx and c∗
y anti-commute.

For later use we define the operators u, v as follows.

Definition 4.1.14. Define the operators u, v as the projection outside and inside the Fermi
ball, respectively. That is, their kernels are given by (with a slight abuse of notation)

v(x; y) = v(x− y) = 1
L3

∑︂
k

v̂(k)eikx = 1
L3

∑︂
k∈BF

eikx,

u(x; y) = u(x− y) = 1
L3

∑︂
k

û(k)eikx = 1
L3

∑︂
k/∈BF

eikx = δ(x− y) − v(x− y).

Remark 4.1.15. The operator-valued distributions bx and cx are denoted a(ux) = a(u(·;x))
and a(vx) = a(v(·;x)), respectively, in [FGHP21; Gia23a]. The different signs in the exponents
in Equation (4.1.7) above reflect the in a(vx).
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.1.3 Heuristics
Conceptually, the strategy of the proof of Theorem 4.1.2 can be motivated via (a suitable
version of) second order perturbation theory, where one treats only the “off-diagonal” parts
of the interaction as the perturbation and includes the “diagonal” part in the unperturbed
operator. This is similar to the method of [FGHP21; Gia23a], which itself is inspired by
Bogoliubov transformations in the case of bosons; the latter effectively appear as pairs of
fermions with opposite spin. This (bosonic) picture does not apply in the spinless case, but
the method can be applied nonetheless, as we shall show below.

Before we explain this is more details we first recall second order perturbation theory in general.

4.1.3.1 General second order perturbation theory

Consider a generic perturbed Hamiltonian H = H0 + λV and write V = VD + VOD with VD
the part of V diagonal in a basis where H0 is diagonal. We use a formulation of second
order perturbation theory using a unitary operator eλB with B chosen appropriately such
that e−λBHeλB is (approximately) diagonal. Using the Baker–Campbell–Hausdorff formula
e−XY eX ≈ Y + [Y,X] + 1

2 [[Y,X], X] + . . . we have

e−λBHeλB

= H0 + λ ([H0, B] + V ) + λ2
(︃1

2[[H0, B], B] + [V,B]
)︃

+O(λ3)

= H0 + λ ([H0 + λVD, B] + V ) + λ2
(︃1

2[[H0 + λVD, B], B] + [VOD, B]
)︃

+O(λ3).

Since H0 and VD are both diagonal operators, [H0 + λVD, B] is off-diagonal for any B. We
choose B to (approximately) cancel the off-diagonal part of V , i.e., such that [H0 +λVD, B] ≈
−VOD. Then

e−λBHeλB ≈ H0 + λVD + 1
2λ

2[VOD, B] (4.1.9)

is diagonal to order λ. With e(0)
n = ⟨n|H0 + λVD|n⟩ the eigenvalues of H0 +λVD the equation

for B reads ⟨n|B|m⟩ (e(0)
n − e(0)

m ) = ⟨n|V |m⟩. Thus, we find the well-known formula for the
eigenvalues en of H as the diagonal matrix-elements of e−λBHeλB

en ≈ e(0)
n + λ2 ∑︂

m:m̸=n

|⟨n|V |m⟩|2

e
(0)
n − e

(0)
m

≈ ⟨n|H0|n⟩ + λ ⟨n|V |n⟩ + λ2 ∑︂
m:m ̸=n

|⟨n|V |m⟩|2

⟨n|H0|n⟩ − ⟨m|H0|m⟩

valid to order λ2.

If one is only interested in the ground state energy, one can simplify the computation above.
Decompose the Hilbert space as span{|0⟩} ⊕ span{|0⟩}⊥ with |0⟩ being the ground state
of H0. We then instead take VD as the part of V block diagonal in this decomposition and
choose B to only cancel the block off-diagonal part of V . (This is in general a considerably
simpler choice of B.) The formula in Equation (4.1.9) then still applies, being however only
(approximately) block diagonal, and we find the ground state energy as

e0 ≈ e
(0)
0 + λ2 ∑︂

m ̸=0

|⟨0|V |m⟩|2

e
(0)
0 − e

(0)
m

. (4.1.10)

In our case of interest, there is no small coupling parameter λ. Nevertheless, the relevance of
(4.1.10) is suggested by the following observation. If one integrates Equation (4.1.4) against
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x, one finds via an integration by parts that

12πa3 = 1
2

ˆ
V (x)|x|2(1 − φ0(x)) dx. (4.1.11)

Equation (4.1.4) can be rewritten as (−x∆ − 2∇ + 1
2xV )φ0 = 1

2xV , hence (4.1.11) is
reminiscent of (4.1.10), only that it is actually exact!

4.1.3.2 Application to the many-body setting

Our goal is to apply the formula in Equation (4.1.9) to the Hamiltonian HN , with λ = 1. This
is not a small parameter — the potential V is not assumed to be small. For Equation (4.1.9)
to still be a good approximation, it is essential that the “diagonal” part of V is taken as part
of the unperturbed Hamiltonian. Indeed, the formula in Theorem 4.1.2 is non-perturbative
and does not arise from any finite order “standard” perturbation theory, where all of V is
taken as the perturbation.

First, we need to define what we mean by “diagonal” and “off-diagonal”. Recall from
Definition 4.1.14 that v and u = 1 − v are the projections inside, respectively outside, the
Fermi ball. For the two-body operator V we then have

V ≈ VD + VOD, VD = vvV vv + uuV uu, VOD = vvV uu+ uuV vv.

(By an expression like vv we mean the two-body operator v ⊗ v.) Here we have neglected
terms with a factor uv or vu. These will turn out to be small. The ground state of the free
Hamiltonian ∑︁N

j=1 −∆xj
is the free Fermi state ψF . Hence the calculation above suggests that

the ground state of HN is roughly e˜︁BψF with ˜︁B the analogue of the operator B from above.

To compute
⟨︂
e˜︁BψF ⃓⃓⃓HN

⃓⃓⃓
e˜︁BψF⟩︂ it is convenient to first conjugate the Hamiltonian HN by the

particle-hole transformation R, defined in Equation (4.1.6) above. Define also B = R∗ ˜︁BR.
Then the ground state of HN is expected to be roughly e˜︁BψF = RTΩ with T = eB. Our
choice of B will be of the form

B = 1
2L3

∑︂
p,k,k′

φ̂(p)bk+pbk′−pck′ck − h.c. = 1
2

¨
φ(z − z′)bzbz′cz′cz dz dz′ − h.c.

for φ ≈ φ0. This particular choice of B will be justified by the validity of Equation (4.1.16)
below.

Remark 4.1.16. The form of the operator B is (up to the spin dependence) the same as for
the operator B −B∗ considered in [FGHP21; Gia23a]. Furthermore, we note that ˜︁B is closely
related to the transfer operator M2 considered in [AE68]. In [AE68] it is claimed that the
ground state is (up to normalization) approximately given by (1 +M2)ψF . Pretending that˜︁B ∼ M2 is small we find that the ground state is roughly e˜︁BψF = RTΩ as claimed.

To compute the expectation of HN in the state ψ ≈ RTΩ we first compute the conjugation
of the Hamiltonian H by the particle-hole transformation R. (Recall that H, defined in
Equation (4.1.5), is the second quantized analogue of HN .) To calculate R∗HR we use
Equation (4.1.8) and normal order. This is a straightforward calculation which we omit. The
details of the calculation can for instance be found in [HPR20, Proposition 4.1]. We have for
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

the kinetic energy (on the space of states of the form R∗ψ with ψ an N -particle state, see
[HPR20, Proposition 4.1])

R∗ dΓ(−∆)R = EF + H0, EF =
∑︂
k∈BF

|k|2, H0 =
∑︂
k

⃓⃓⃓
|k|2 − k2

F

⃓⃓⃓
a∗
kak (4.1.12)

and for the interaction (in the second ≈ by neglecting the quadratic terms)

R∗dΓ(V )R ≈ R∗dΓ(VD + VOD)R ≈ ⟨dΓ(V )⟩F + Q2 + Q4

with Q2 and Q4 given by

Q2 = 1
2L3

∑︂
p,k,k′

V̂ (p)b∗
k+pb

∗
k′−pc

∗
k′c∗

k + h.c.= 1
2

¨
V (x− y)b∗

xb
∗
yc

∗
yc

∗
x dx dy + h.c., (4.1.13)

Q4 = 1
2L3

∑︂
p,k,k′

V̂ (p)b∗
k+pb

∗
k′−pbk′bk = 1

2

¨
V (x− y)b∗

xb
∗
ybybx dx dy. (4.1.14)

Here ⟨dΓ(V )⟩F + Q4 is the operator corresponding to the “diagonal” part vvV vv + uuV uu
and Q2 is the operator corresponding to the “off-diagonal” part vvV uu+ uuV vv.

Remark 4.1.17 (Comparison to [FGHP21; Gia23a]). The analogues of the operators Q2 and
Q4 above are denoted by Q4 and Q1, respectively, in [FGHP21; Gia23a].

The calculation of general second order perturbation theory above then translates to the
calculation

T ∗(H0 + Q2 + Q4)T ≈ H0 + Q4 + [H0 + Q4, B] + Q2 + 1
2[[H0 + Q4, B], B] + [Q2, B].

(4.1.15)
The operator B is chosen such that

[H0 + Q4, B] + Q2 ≈ 0, (4.1.16)

which constrains the function φ in the definition of B to (roughly) satisfy the p-wave scattering
equation (4.1.4). Then,

T ∗(H0 + Q2 + Q4)T ≈ H0 + Q4 + 1
2[Q2, B].

Next, one computes that ⟨[Q2, B]⟩Ω ≈ −2 ⟨dΓ(V φ)⟩F . We then find

EN ≈ EF + ⟨H0 + Q4⟩Ω + ⟨dΓ(V )⟩F + 1
2 ⟨[Q2, B]⟩Ω ≈ EF + ⟨dΓ(V (1 − φ))⟩F .

Finally, we compute that EF ≈ 3
5Nk

2
F and ⟨dΓ(V (1 − φ))⟩F ≈ 2

5πNa
3k5
F (see Equa-

tion (4.2.13) below). This recovers the formula of Theorem 4.1.2.

4.2 Rigorous Analysis
In this section we shall describe how to rigorously implement the heuristic computation above
in order to prove Theorem 4.1.2. A first step is the precise definition of the operators B and
T .
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4.2.1 Regularizing the operators
For technical reasons, we need to regularize the operator(-valued distribution)s bk and bx. We
introduce regularized bk-operators using a smooth radial function ûr : R3 → [0, 1] with

ûr(k) =

⎧⎨⎩0 |k| ≤ 2kF ,
1 |k| ≥ 3kF .

Let
brk = ûr(k)ak, brx = 1

L3/2

∑︂
k

eikxbrk. (4.2.1)

The function ûr defines an operator ur on L2(Λ) with kernel (with slight abuse of notation)
ur(x; y) = ur(x− y). As an operator 0 ≤ ur ≤ 1. Moreover, by proceeding as in [FGHP21,
Proposition 4.2] one easily checks that ur − δ ∈ L1. More precisely:
Lemma 4.2.1. Write ur = δ − vr. Then ∥vr∥L1 ≤ C for large kFL.

4.2.2 The scattering function
We shall now define the function φ appearing in the operator B. Since φ0 is not integrable at
infinity (it decays like a3/|x|3) it will be necessary to introduce a cut-off for technical reasons.
Moreover, we need to periodize to define φ on the torus.
Let χφ : [0,∞) → [0, 1] be a smooth function with

χφ(t) =

⎧⎨⎩1 t ≤ 1,
0 t ≥ 2.

Then we choose the function φ as
φ(x) = φ0(x)χφ(kF |x|) (4.2.2)

with φ0 the p-wave scattering function defined in Definition 4.1.1. To be more precise, we
choose φ to be the periodization of φ0χφ(kF | · |). We shall always assume that L > 4k−1

F so
that suppφ0χφ(kF | · |) ⊂ Λ, in which case no confusion should arise.
To measure the error in φ not exactly satisfying the scattering equation (4.1.4) we define

Eφ(x) = x∆φ(x) + 2∇φ(x) + 1
2xV (x)(1 − φ(x))

= 2kFx∇µφ0(x)∇µχφ(kFx) + k2
Fxφ0(x)∆χφ(kFx) + 2kFφ0(x)∇χφ(kFx).

(4.2.3)

Again, Eφ is more precisely the periodization of the expression in the second line. Here we
have used the notation:

Notation 4.2.2. We adopt the Einstein summation convention of summing over repeated
indices denoting components of a vector, i.e., xµyµ = ∑︁3

µ=1 x
µyµ = x · y for vectors x, y ∈ R3.

Remark 4.2.3. We will in general abuse notation slightly and refer to any (compactly
supported) function and its periodization by the same name. For sufficiently large L at most
one summand in the periodization is non-zero and so no issue will arise.

Remark 4.2.4. Any derivative of χφ(t) is supported in 1 ≤ t ≤ 2. In particular Eφ is supported
in the annulus k−1

F ≤ |x| ≤ 2k−1
F . For akF small enough such x are outside the support of V

and hence φ0(x) = a3/|x|3 there. In particular

|Eφ(x)| ≤ CkF
a3

|x|3
χk−1

F ≤|x|≤2k−1
F

≤ CkFφ(x/2). (4.2.4)
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4.2.3 The transformation T

The operators B and T are defined as

T = eB, B = 1
2L3

∑︂
p,k,k′

φ̂(p)brk+pb
r
k′−pck′ck−h.c. = 1

2

¨
φ(z−z′)brzbrz′cz′cz dz dz′ −h.c..

(4.2.5)
with φ given in Equation (4.2.2) and brk the regularized operators in (4.2.1).

Remark 4.2.5 (Comparison to [FGHP21; Gia23a]). Compared to the analogous construction
of an operator T in [FGHP21; Gia23a] we avoid regularizing the operators cx and we do not
have an ultraviolet regularization of the operators bx. This simplifies much of the analysis
below, since we do not have to treat the errors arising from such a regularization.

4.2.4 Implementation
We shall describe now how to rigorously implement the heuristic calculation in the previous
section. The main step is the calculation in Equation (4.1.15), which uses the Baker–Campbell–
Hausdorff expansion. We give a rigorous implementation of this calculation using a Duhamel
expansion as follows.

As discussed in the heuristic analysis above, we expect the ground state to be roughly RTΩ.
Thus define (for some ψ)

ξλ = T−λR∗ψ , where T−λ := e−λB, λ ∈ [0, 1]. (4.2.6)

Then ψ = Rξ0 = RTξ1. We will consider the following ψ’s:

Definition 4.2.6. Let ψ be an N -particle state. Then ψ is called an approximate ground
state if ⃓⃓⃓⃓

⃓⃓⟨HN⟩ψ −
∑︂
k∈BF

|k|2
⃓⃓⃓⃓
⃓⃓ ≤ CNa3k5

F .

for some C > 0 (independent of N and akF ).

Remark 4.2.7 (Existence of approximate ground states). Note that the free Fermi state ψF
is an approximate ground state. Indeed, we show in the proof of Lemma 4.3.3 below that
⟨dΓ(V )⟩F ≤ CNa3k5

F . In particular, the ground state is an approximate ground state.

Motivated by the discussion above we write

⟨HN⟩ψ = EF + ⟨dΓ(V )⟩F + ⟨H0 + Q2 + Q4⟩ξ0
+ EV (ψ) (4.2.7)

with EV (ψ) defined so that this holds, i.e., EV (ψ) = ⟨dΓ(V )⟩ψ − ⟨dΓ(V )⟩F − ⟨Q2 + Q4⟩ξ0
.

We shall show in Proposition 4.2.8 below that EV (ψ) is small for an approximate ground state
ψ, i.e., it is negligible compared to Na3k5

F . To compute ⟨H0 + Q2 + Q4⟩ξ0
we note that for

any operator A we have

⟨ξλ|A|ξλ⟩ = ⟨ξ1|A|ξ1⟩ −
ˆ 1

λ

dλ′ d
dλ′ ⟨ξλ′ |A|ξλ′⟩ = ⟨ξ1|A|ξ1⟩ +

ˆ 1

λ

dλ′ ⟨ξλ′|[A,B]|ξλ′⟩ .
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Using this for H0 and Q4 we find

⟨H0 + Q4⟩ξ0

= ⟨ξ1|H0 + Q4|ξ1⟩ +
ˆ 1

0
dλ ⟨ξλ|[H0 + Q4, B] + Q2|ξλ⟩ −

ˆ 1

0
dλ ⟨ξλ|Q2|ξλ⟩ .

Similarly, for Q2 we find

⟨Q2⟩ξ0
= ⟨ξ1|Q2|ξ1⟩ +

ˆ 1

0
dλ ⟨ξλ|[Q2, B]|ξλ⟩ ,

ˆ 1

0
dλ ⟨ξλ|Q2|ξλ⟩ = ⟨ξ1|Q2|ξ1⟩ +

ˆ 1

0
dλ
ˆ 1

λ

dλ′ ⟨ξλ′ |[Q2, B]|ξλ′⟩ .

In conclusion then

⟨ξ0|H0 + Q2 + Q4|ξ0⟩ =
ˆ 1

0
dλ ⟨ξλ|[Q2, B]|ξλ⟩ −

ˆ 1

0
dλ
ˆ 1

λ

dλ′ ⟨ξλ′|[Q2, B]|ξλ′⟩

+ ⟨ξ1|H0 + Q4|ξ1⟩ +
ˆ 1

0
dλ ⟨ξλ|[H0 + Q4, B] + Q2|ξλ⟩ .

The two terms with [Q2, B] are the leading terms. To leading order they are given by the
constant (i.e. fully contracted) contribution from [Q2, B] obtained after normal ordering. This
constant term is (approximately) given by −2 ⟨dΓ(V φ)⟩F . This motivates to write

[Q2, B] = −2 ⟨dΓ(V φ)⟩F + QE
2;B. (4.2.8)

The last term, with [H0 + Q4, B] + Q2, is an error term. It is small by virtue of φ (almost)
satisfying the p-wave scattering equation. The third term ⟨ξ1|H0 + Q4|ξ1⟩ is positive. We
thus find

⟨ξ0|H0 + Q2 + Q4|ξ0⟩ = − ⟨dΓ(V φ)⟩F + ⟨ξ1|H0 + Q4|ξ1⟩ + EQ2(ψ) + Escat(ψ),

where

EQ2(ψ) =
ˆ 1

0
dλ

⟨︂
ξλ
⃓⃓⃓
QE

2;B

⃓⃓⃓
ξλ
⟩︂

−
ˆ 1

0
dλ
ˆ 1

λ

dλ′
⟨︂
ξλ′

⃓⃓⃓
QE

2;B

⃓⃓⃓
ξλ′

⟩︂
, (4.2.9)

Escat(ψ) =
ˆ 1

0
dλ ⟨ξλ|[H0 + Q4, B] + Q2|ξλ⟩ . (4.2.10)

We will derive bounds on these terms in Propositions 4.2.9 and 4.2.10 below. In conclusion
then (for any N -particle state ψ)

⟨HN⟩ψ = EF + ⟨dΓ(V (1 − φ))⟩F + ⟨ξ1|H0 + Q4|ξ1⟩ + EV (ψ) + EQ2(ψ) + Escat(ψ). (4.2.11)

With this formula we give the

Proof of Theorem 4.1.2. First, we calculate that EF = 3
5Nk

2
F (1 +O(N−1/3)) by viewing the

sum EF = ∑︁
k∈BF

|k|2 as a Riemann-sum for the corresponding integral L3

(2π)3

´
|k|≤kF

|k|2 dk.
Next, we calculate ⟨dΓ(V (1 − φ))⟩F . With the aid of Equation (4.1.11) we find (since V has
compact support) that

ˆ
V (1 − φ)|x|2 dx =

ˆ
|x|≤k−1

F

V (1 − φ0)|x|2 dx = 24πa3
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

for small kF . Moreover, the two-particle reduced density of the free Fermi state satisfies
Lemma 3.2.14

ρ(2)(x, y) = 1
5(6π2)2k

8
F |x− y|2

(︂
1 +O(k2

F |x− y|2) +O(N−1/3)
)︂

(4.2.12)

(with |x− y| denoting the metric on the torus.) Thus,

⟨dΓ(V (1 − φ))⟩F = 1
2

¨
V (x− y)(1 − φ(x− y))ρ(2)(x, y) dx dy

= 2
5πNa

3k5
F (1 +O((akF )2) +O(N−1/3)).

(4.2.13)

For the third term in Equation (4.2.11), we can simply use H0 + Q4 ≥ 0. Bounding the error
terms EV (ψ), EQ2(ψ) and Escat(ψ) occupies the main part of this paper. We shall show that
they are bounded as follows.
Proposition 4.2.8. Let ψ be an approximate ground state. Then

|EV (ψ)| ≤ CNa3k5
F (akF )3/4.

Proposition 4.2.9. Let ψ be an approximate ground state. Then

|EQ2(ψ)| ≤ CNa3k5
F (akF )3/2.

Proposition 4.2.10. Let ψ be an approximate ground state. Then

|Escat(ψ)| ≤ CNa3k5
F (akF )3/10 |log akF | .

Noting that the ground state is in particular an approximate ground state, we conclude the
proof of Theorem 4.1.2.

The remainder of the paper deals with the proofs of Propositions 4.2.8, 4.2.9 and 4.2.10.

Structure of the paper

First, in Section 4.3, we prove some useful a priori bounds and give the proof of Proposition 4.2.8.
Next, in Section 4.4, we calculate the commutators [H0, B], [Q4, B] and [Q2, B] and extract
the claimed leading terms. Then, in Section 4.5, we bound the error terms arising from the
commutators in a general state ξ. Finally, in Section 4.6, we use the bounds of Section 4.5 for
the particular states ξλ to prove Propositions 4.2.9 and 4.2.10. Additionally we shall give the
proof of Proposition 4.1.5.

In Section 4.A we sketch how to adapt the proof to the two-dimensional setting.

4.3 A Priori Bounds
We begin our analysis with some a priori bounds on the operators N ,H0,Q2 and Q4 (defined
in Equations (4.1.12), (4.1.13) and (4.1.14) above) and on the scattering function φ in
Equation (4.2.2).
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4.3. A Priori Bounds

4.3.1 A priori analysis of the kinetic energy
We may bound ⟨N ⟩R∗ψ and ⟨H0⟩R∗ψ for an approximate ground state ψ exactly as in [FGHP21,
Lemma 3.5 and Corollary 3.7] using the positivity of the interaction. We give the arguments
here for completeness.
Lemma 4.3.1 (A priori bound on H0). Let ψ be an approximate ground state. Then

⟨H0⟩R∗ψ ≤ CNa3k5
F .

Proof. By the positivity of the interaction we have (recalling Equation (4.1.12))

⟨HN⟩ψ = ⟨H⟩ψ ≥ ⟨dΓ(−∆)⟩ψ = ⟨R∗dΓ(−∆)R⟩R∗ψ = EF + ⟨H0⟩R∗ψ .

Then,
⟨H0⟩R∗ψ ≤ ⟨HN⟩ψ − EF ≤ CNa3k5

F

by assumption of ψ being an approximate ground state.

Lemma 4.3.2 (A priori bound on N ). Let ψ be an approximate ground state. Then

⟨N ⟩R∗ψ ≤ CN(akF )3/2.

Proof. For any λ > 0 we can bound

N =
∑︂
k

a∗
kak ≤

∑︂
k:||k|2−k2

F |≤λ
1 + λ−1 ∑︂

k:||k|2−k2
F |>λ

||k|2 − k2
F |a∗

kak

≤ CNλk−2
F + λ−1H0.

Using the bound on H0 from Lemma 4.3.1 and choosing the optimal λ = k2
F (akF )3/2 we

conclude the desired bound.

4.3.2 A priori analysis of the interaction
Next, we study the interaction V and prove a priori bounds on the operators Q2 and Q4 (defined
in Equations (4.1.13) and (4.1.14)) and bound the error-term EV (ψ) from Equation (4.2.7).
Lemma 4.3.3. Let ψ ∈ F be any state. Then

⟨dΓ(V )⟩ψ = ⟨dΓ(V )⟩F + ⟨Q2 + Q4⟩R∗ψ + EV (ψ),

with
|EV (ψ)| ≲ εNa3k5

F + ε ⟨Q4⟩R∗ψ + ε−1a3k5
F ⟨N ⟩R∗ψ + ε−1a3k3

F ⟨H0⟩R∗ψ

for any 0 < ε < 1.

Proof. Recall Definition 4.1.14 and the short-hand notation uu for u ⊗ u. Viewing V as a
two-particle operator, we can write

V = [vv + vu+ uv + uu]V [vv + vu+ uv + uu]

and expand the product. Since V ≥ 0 we may bound the cross-terms as

±(uuV (vu+ uv) + h.c.) ≤ εuuV uu+ 1
ε

(vu+ uv)V (vu+ uv)

±(vvV (vu+ uv) + h.c.) ≤ εvvV vv + 1
ε

(vu+ uv)V (vu+ uv)

119



4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

for any ε > 0. Then we have the bound

V ≥ (1−ε)vvV vv+vvV uu+uuV vv+(1−ε)uuV uu+
(︃

1 − 2
ε

)︃
(vu+uv)V (vu+uv). (4.3.1)

(An analogous upper bound on V holds if the signs in front of all ε-dependent terms are
reversed.) Next, we shall write (4.3.1) in second quantization, conjugate by the particle-hole
transformation R in (4.1.6), use Equation (4.1.8) and normal order the terms. We leave out
the details of the computations; they can be found for instance in [HPR20, Proposition 4.1].
The result is

R∗dΓ(V )R ≥ (1 − ε) ⟨dΓ(V )⟩F + Q2 + (1 − ε)Q4 + Xε + Qε. (4.3.2)

(Again, an analogous upper bound holds reversing the sign of ε.) Here Q2,Q4 are as in
Equations (4.1.13) and (4.1.14) and

Xε = 1 − ε

L3

∑︂
p,q

p,q∈BF

[V̂ (p− q) − V̂ (0)]c∗
qcq − 1 − 2/ε

L3

∑︂
p,q

p∈BF
q /∈BF

[V̂ (p− q) − V̂ (0)]b∗
qbq,

Qε = 1 − ε

2

¨
V (x− y)c∗

xc
∗
ycycx dx dy

+
(︃1

2 − 1
ε

)︃¨
V (x− y)[b∗

xc
∗
xcyby + b∗

yc
∗
ycxbx − b∗

xc
∗
ycybx − b∗

yc
∗
xcxby] dx dy. (4.3.3)

In particular, for any ε > 0

|EV (ψ)| ≤ ε ⟨dΓ(V )⟩F + ε ⟨Q4⟩R∗ψ +
⃓⃓⃓
⟨X±ε⟩R∗ψ

⃓⃓⃓
+
⃓⃓⃓
⟨Q±ε⟩R∗ψ

⃓⃓⃓
(where the ±ε has to be interpreted as taking the maximum over the two terms, either with ε
or −ε). To bound this we first note that ⟨dΓ(V )⟩F ≤ CNa3k5

F . Indeed, by a simple Taylor-
expansion, the two-particle density of the free Fermi gas is bounded by ρ(2)(x, y) ≤ Ck8

F |x−y|2,
see Lemma 3.2.14 or Equation (4.2.12) above. Hence

⟨dΓ(V )⟩F = 1
2

¨
V (x− y)ρ(2)(x, y) dx dy ≤ Ck8

F

¨
V (x− y)|x− y|2 dx dy ≤ CNa3k5

F .

(Here
´

|x|2V dx is a finite constant of dimension (length)3 and hence we write it as Ca3, as
discussed in Remark 4.1.3.) We are left with bounding the operators X±ε and Q±ε.

To bound X±ε view V̂ (k) =
´

Λ V (x)e−ikx dx =
´
R3 V (x)e−ikx (for L sufficiently large, by the

compact support of V ) as defined on all of R3 (i.e., not just on 2π
L
Z3) and Taylor expand.

We find V̂ (k) = V̂ (0) +O(|k|2
´
R3 |x|2V (x) dx) = V̂ (0) +O(a3|k|2) since V is a real-valued

radial function. Thus, for any state ξ ∈ F ,
⃓⃓⃓
⟨X±ε⟩ξ

⃓⃓⃓
≲
a3

L3

∑︂
k∈BF

∑︂
ℓ∈BF

|k − ℓ|2 ⟨c∗
ℓcℓ⟩ξ

+ ε−1 a
3

L3

⎡⎣ ∑︂
k∈BF

|k|2
∑︂
ℓ

⟨b∗
ℓbℓ⟩ξ +

∑︂
k∈BF

∑︂
ℓ

|ℓ|2 ⟨b∗
ℓbℓ⟩ξ

⎤⎦
≲ ε−1a3k5

F ⟨N ⟩ξ + ε−1a3k3
F ⟨H0⟩ξ

(for any 0 < ε < 1) by noting that ∑︁k |k|2a∗
kak ≤ H0 + k2

FN .
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4.3. A Priori Bounds

Finally, we shall show that Q±ε is suitably small. Note that the first term in Equation (4.3.3)
is actually non-negative for 0 ≤ ε ≤ 1 and could be dropped for a lower bound; since we will
also derive an upper bound with our method, however, we shall not do this and estimate it
instead. The main idea is to “Taylor expand in x− y”. More precisely, for the first term in
Equation (4.3.3) we write

cy = cx + (y − x) ·
ˆ 1

0
∇cx+t(y−x) dt. (4.3.4)

The integration has to be understood as connecting the two points x and y by the shortest
line on the torus. We apply this to the factors c∗

y and cy. Noting that c2
x = 0 (recall that cx is

in fact a bounded operator) and changing variables to z = y − x we then find (recalling that
V is even)
¨

V (x− y)c∗
xc

∗
ycycx dx dy =

¨
V (z)zµzν

ˆ 1

0
dt
ˆ 1

0
ds c∗

x∇µc∗
x+tz∇νcx+szcx dx dz.

In norm we have ∥∇cx∥ ≤ Ck
3/2+1
F . Thus, the expectations value of the first term in

Equation (4.3.3) in any state ξ is bounded by⃓⃓⃓⃓
⃓1 ∓ ε

2

¨
V (x− y)

⟨︂
c∗
xc

∗
ycycx

⟩︂
ξ

dx dy
⃓⃓⃓⃓
⃓ ≤ Ck5

F

ˆ
|z|2V (z) dz

ˆ
∥cxξ∥2 dx.

Furthermore, ˆ
∥cxξ∥2 dx =

∑︂
k∈BF

⟨ξ|a∗
kak|ξ⟩ ≤ ⟨N ⟩ξ .

Denote the second term of Equation (4.3.3) by Qε,2 and define for any state ξ the function
ϕ(x, y) =

⟨︂
b∗
xc

∗
xcyby + b∗

yc
∗
ycxbx − b∗

xc
∗
ycybx − b∗

yc
∗
xcxby

⟩︂
ξ
. We note that ϕ(y, x) = ϕ(x, y) and

ϕ(x, x) = 0. Thus, by Taylor-expansion in y around y = x the zeroth and first orders vanish,
and hence

ϕ(x, y) = (y − x)µ(y − x)ν
ˆ 1

0
dt (1 − t)[∇µ

2∇ν
2ϕ](x, x+ t(y − x)).

(Here ∇µ
2 denotes a derivative in the second variable.) Thus (changing variables to z = x− y

and using that V is even) we have

⟨Q±ε,2⟩ξ =
(︃1

2 ∓ 1
ε

)︃ˆ 1

0
dt (1 − t)

ˆ
dz zµzνV (z)

ˆ
dx [∇µ

2∇ν
2ϕ](x, x+ tz).

The x-integral is given by (with the derivatives now being with respect to x)ˆ
dx
⟨︃
b∗
xc

∗
x[∇µ∇νcx+tzbx+tz] + [∇µ∇νb∗

x+tzc
∗
x+tz]cxbx − b∗

x[∇µ∇νc∗
x+tzcx+tz]bx

− [∇µ∇νb∗
x+tz]c∗

xcxbx+tz − b∗
x+tzc

∗
xcx[∇µ∇νbx+tz]

− ([∇µb∗
x+tz]c∗

xcx[∇νbx+tz] + (µ ↔ ν))
⟩︃
ξ

=
ˆ

dx
⟨︃

−[∇µb∗
xc

∗
x][∇νcx+tzbx+tz] − [∇µb∗

x+tzc
∗
x+tz][∇νcxbx] − b∗

x[∇µ∇νc∗
x+tzcx+tz]bx

+ [∇µb∗
x+tz][∇νc∗

xcxbx+tz] + [∇µb∗
x+tzc

∗
xcx][∇νbx+tz]

− ([∇µb∗
x+tz]c∗

xcx[∇νbx+tz] + (µ ↔ ν))
⟩︃
ξ
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

by integration by parts. Using the norm estimate ∥∇ncx∥ ≤ Ck
3/2+n
F with ∇n denoting any

n’th derivative we thus bound the x-integral with the aid of Cauchy–Schwarz as

≲ k3
F

ˆ
dx ∥∇bxξ∥2 + k5

F

ˆ
dx ∥bxξ∥2 .

Noting that ˆ
∥bxξ∥2 dx =

∑︂
k/∈BF

⟨ξ|a∗
kak|ξ⟩ ≤ ⟨N ⟩ξ ,

ˆ
∥∇bxξ∥2 dx =

∑︂
k/∈BF

|k|2 ⟨ξ|a∗
kak|ξ⟩ ≤ ⟨H0⟩ξ + k2

F ⟨N ⟩ξ

we thus obtain ⃓⃓⃓
⟨Q±ε,2⟩ξ

⃓⃓⃓
≲ ε−1a3k5

F ⟨N ⟩ξ + ε−1a3k3
F ⟨H0⟩ξ .

Together with the bounds above, this concludes the proof of the lemma.

Additionally, we need a priori bounds on Q2 and Q4 (defined in Equations (4.1.13) and (4.1.14)).
These follow from arguments similar to the analogous bounds in [FGHP21, Proposition 3.3(e)
and Lemma 3.9].
Lemma 4.3.4 (A priori bound for Q2). For suitable C > 0 we have⃓⃓⃓

⟨Q2⟩ξ
⃓⃓⃓
≤ δ ⟨Q4⟩ξ + Cδ−1Na3k5

F .

for any δ > 0 and any state ξ ∈ F .

Proof. By Cauchy–Schwarz we have for any δ > 0

2
⃓⃓⃓
⟨Q2⟩ξ

⃓⃓⃓
≤
¨

V (x− y)
⃓⃓⃓⃓⟨︂
b∗
xb

∗
yc

∗
yc

∗
x + h.c.

⟩︂
ξ

⃓⃓⃓⃓
dx dy

≤
¨

V (x− y)
(︃
δ ∥bybxξ∥2 + δ−1

⃦⃦⃦
c∗
yc

∗
xξ
⃦⃦⃦2
)︃

dx dy

≤ 2δ ⟨Q4⟩ξ + δ−1
¨

V (x− y)
⃦⃦⃦
c∗
yc

∗
x

⃦⃦⃦2
dx dy.

We Taylor expand c∗
y as in Equation (4.3.4) above. Being fermionic operators (c∗

x)2 = 0. In
particular we have

⃦⃦⃦
c∗
yc

∗
x

⃦⃦⃦
≤ Ck4

F |x − y| since ∥c∗
x∥ ≤ Ck

3/2
F and ∥∇c∗

x∥ ≤ Ck
3/2+1
F . With´

|x|2V dx ≤ Ca3 we conclude the proof of the lemma.

Lemma 4.3.5 (A priori bound for Q4). Let ψ be an approximate ground state. Then

⟨Q4⟩R∗ψ ≤ CNa3k5
F .

Proof. Recalling Equation (4.1.12), applying Lemma 4.3.3 and Lemma 4.3.4 with δ = 1/2,
and using ⟨dΓ(V )⟩F ≥ 0 we find

⟨HN⟩ψ ≥ EF + ⟨H0⟩R∗ψ +
(︃1

2 − ε
)︃

⟨Q4⟩R∗ψ − CNa3k5
F

− Cε−1a3k5
F ⟨N ⟩R∗ψ − Cε−1a3k3

F ⟨H0⟩R∗ψ .

Using the a priori bounds of Lemmas 4.3.1 and 4.3.2 and noting that H0 ≥ 0 we obtain the
desired result (by taking ε = 1/4, say).
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With the results of this section we can give the

Proof of Proposition 4.2.8. Combining Lemmas 4.3.1, 4.3.2, 4.3.3 and 4.3.5 and choosing
the optimal ε = (akF )3/4 we conclude the proof of Proposition 4.2.8.

4.3.3 The scattering function
We now prove some a priori bounds on the scattering function φ defined in Equation (4.2.2)
above.
Lemma 4.3.6 (Properties of φ). The scattering function φ satisfies

∥| · |nφ∥L1 ≤ Ca3k−n
F , n = 1, 2, ∥| · |n∇nφ∥L1 ≤ Ca3 |log akF | , n = 0, 1, 2

∥| · |φ∥L2 ≤ Ca3/2+1, ∥| · |n∇nφ∥L2 ≤ Ca3/2, n = 0, 1.

Here ∇n represents any combination of n derivatives and |·| denotes the metric on the torus
in the sense that |x| is the distance between x and the point 0.

Remark 4.3.7. Recalling the bound in Equation (4.2.4) for Eφ we see that Eφ satisfies the
same bounds as φ only with an additional power kF .

Proof. Recall that the scattering function is given by (the periodization of) φ = φ0χφ(kF | · |).
Since φ0 is a radial function, so is φ (rather, φ0χφ(kF | · |) is). In particular, for the bounds
we may replace ∇n by ∂nr , with ∂r the derivative in the radial direction.

We first establish the bound

|∂rφ0(x)| ≤ Ca3

|x|(a3 + |x|3) , for all x ∈ R3. (4.3.5)

To prove this, we note that, in radial coordinates, the scattering equation (4.1.4) reads

r∂2
rφ0 + 4∂rφ0 + 1

2rV (1 − φ0) = 0.

Further, we recall that 0 ≤ φ0(x) ≤ min{1, a3/|x|3} for all x and that φ0 is a radially
decreasing function, which follows from [LY01, Lemma A.1] applied to 5 dimensions. Using
the scattering equation we then compute

∂r

[︃
∂rφ0 + 4

r
φ0

]︃
= ∂2

rφ0 + 4
r
∂rφ0 − 4

r2φ0 = − 4
r2φ0 − 1

2V (1 − φ0) ≤ 0.

Integrating and recalling that φ0(x) = a3/|x|3 outside the support of V we find

∂rφ0 + 4
r
φ0 ≥ 0.

Since ∂rφ0 ≤ 0 this proves Equation (4.3.5). From Equation (4.3.5) and the scattering
equation (4.1.4) we immediately find⃓⃓⃓

∂2
rφ0

⃓⃓⃓
≲

a3

|x|2(a3 + |x|3) + V.

To extract the bounds on φ we note that ∥∂nχφ∥L∞ ≤ C for any n, since χφ is smooth
by assumption. Furthermore, also by assumption, V ∈ L1. Finally, φ is supported only for
|x| ≤ 2k−1

F since χφ(t) = 0 for t > 2. The bounds immediately follow.
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.4 Calculation of Commutators
In this section we shall calculate the commutators [H0, B], [Q4, B] and [Q2, B] and find
formulas for the error-terms EQ2(ψ) and Escat(ψ) in Equations (4.2.9) and (4.2.10). The
computations of the commutators are analogous to those in [FGHP21; Gia23a], where similar
commutators are computed.

4.4.1 [H0, B]:
We have (recalling the formula for H0 in Equation (4.1.12) and using the representation of B
in momentum-space in Equation (4.2.5))

[H0, B] = 1
2L3

∑︂
p,q,k,k′

||q|2 − k2
F |φ̂(p)[a∗

qaq, b
r
k+pb

r
k′−pck′ck] + h.c..

To compute the commutator we note that [a∗
qaq, ak] = −δq,kak, hence

[a∗
qaq, b

r
k+pb

r
k′−pck′ck] = −(δq,k+p + δq,k′−p + δq,k′ + δq,k)brk+pb

r
k′−pck′ck.

Next, for k + p, k′ − p /∈ BF and k, k′ ∈ BF we have

||k + p|2 − k2
F | + ||k′ − p|2 − k2

F | + ||k|2 − k2
F | + ||k′|2 − k2

F |
= |k + p|2 + |k′ − p|2 − |k|2 − |k′|2

= 2|p|2 + 2p · (k − k′).

We conclude that

[H0, B] = − 1
L3

∑︂
p,k,k′

(︂
|p|2 + p · (k − k′)

)︂
φ̂(p)brk+pb

r
k′−pck′ck + h.c..

By the symmetry k ↔ k′ and p → −p we may write the second summand as

− 2
L3

∑︂
p,k,k′

p · kφ̂(p)brk+pb
r
k′−pck′ck + h.c..

Writing then in configuration space we get (recall the Einstein summation convention, intro-
duced in Notation 4.2.2.)

[H0, B] =
¨ (︂

∆φ(x− y)brxbrycycx + 2∇µφ(x− y)brxbrycy∇µcx
)︂

dx dy + h.c..

We first replace the b’s by their non-regularized counterparts. That is, we write

[H0, B] =
¨

(∆φ(x− y)bxbycycx + 2∇µφ(x− y)bxbycy∇µcx) dx dy+ h.c. +H÷r
0;B (4.4.1)

with H÷r
0;B defined so that this holds. Write now (similarly as in Equation (4.3.4))

cx = cy + (x− y)µ
ˆ 1

0
dt∇µcy+t(x−y)

= cy + (x− y)µ∇µcx − (x− y)µ(x− y)ν
ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x). (4.4.2)
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Note that the first order term ∇µcx is evaluated at x and not at y. We apply Equation (4.4.2)
to the factor cx in the first term in Equation (4.4.1) above. Being a fermionic operator c2

y = 0.
Thus, we have

[H0, B] =
¨

[(x− y)µ∆φ(x− y) + 2∇µφ(x− y)] bxbycy∇µcx dx dy + h.c.

+ HTaylor
0;B + H÷r

0;B,

(4.4.3)

with HTaylor
0;B as in the first term of Equation (4.4.1) only with the factor cx replaced by the

last term of Equation (4.4.2). It is an error term.

4.4.2 [Q4, B]:
Recall the definition of Q4 from Equation (4.1.14) and of B from Equation (4.2.5). We
compute

[Q4, B] = 1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)[b∗

xb
∗
ybybx, b

r
zb
r
z′cz′cz] + h.c.

The commutator is (using that b’s and c’s have disjoint support in momentum-space so they
anti-commute: {b∗

x, cy} = 0)

[b∗
xb

∗
ybybx, b

r
zb
r
z′cz′cz] = [b∗

xb
∗
y, b

r
zb
r
z′ ]bybxcz′cz.

Using that
{b∗
x, b

r
y} = 1

L3

∑︂
k

ûr(k)eik(y−x) = ur(y − x) = ur(x− y)

one computes

[b∗
xb

∗
y, b

r
zb
r
z′ ] = ur(x− z)ur(y − z′) − ur(y − z)ur(x− z′)

+ ur(y − z)b∗
xb
r
z′ + ur(x− z′)b∗

yb
r
z − ur(x− z)b∗

yb
r
z′ − ur(y − z′)b∗

xb
r
z

(4.4.4)

The two first terms, respectively the four last terms, give the same contributions to [Q4, B]
when the integration is performed by the symmetries x ↔ y and z ↔ z′. We write the ur’s as
ur = δ − vr. The quartic term with two δ’s is the main term. In conclusion then

[Q4, B] = −1
2

¨
V (x− y)φ(x− y)bxbycycx dx dy + h.c. + QE

4;B (4.4.5)

with

QE
4;B = 1

2

˘
V (x− y)φ(z − z′)

[︃(︂
2δ(y − z)vr(x− z′) − vr(x− z′)vr(y − z)

)︂
bybxcz′cz

− 2(δ(x− z) − vr(x− z))b∗
yb
r
z′bybxcz′cz

]︃
dx dy dz dz′ + h.c..

(4.4.6)
In the first term we rewrite cx using Equation (4.4.2) as for the case of H0. Then we find

[Q4, B] = −1
2

¨
(x− y)µV (x− y)φ(x− y)bxbycy∇µcx dx dy + h.c. + QTaylor

4;B + QE
4;B

(4.4.7)
and QTaylor

4;B as in the first term of (4.4.5) only with cx replaced by the last term of Equa-
tion (4.4.2).
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.4.3 [Q2, B]:
Recall the definition of Q2 from Equation (4.1.13) and of B from Equation (4.2.5). We have

[Q2, B] = 1
4

˘
V (x− y)φ(z − z′)[b∗

xb
∗
yc

∗
yc

∗
x, b

r
zb
r
z′cz′cz] dx dy dz dz′ + h.c..

The commutator is given by (recall again that b’s and c’s anti-commute)

[b∗
xb

∗
yc

∗
yc

∗
x, b

r
zb
r
z′cz′cz] = −[b∗

xb
∗
y, b

r
zb
r
z′ ][c∗

yc
∗
x, cz′cz] + b∗

xb
∗
yb
r
zb
r
z′ [c∗

yc
∗
x, cz′cz]

+ c∗
yc

∗
xcz′cz[b∗

xb
∗
y, b

r
zb
r
z′ ].

(4.4.8)

The b-commutator is as in Equation (4.4.4). Similarly

[c∗
yc

∗
x, cz′cz] = v(x− z)v(y − z′) − v(y − z)v(x− z′)

+ v(y − z)c∗
xcz′ + v(x− z′)c∗

ycz − v(x− z)c∗
ycz′ − v(y − z′)c∗

xcz
(4.4.9)

The leading term is the constant (i.e. fully contracted) one. All other terms contribute to the
error. Furthermore, in the constant term we write ur = δ − vr. Then the term with all δ’s is
the main one and the remainder are errors. We conclude

[Q2, B] = −1
2

˘
V (x− y)φ(z − z′) [δ(x− z)δ(y − z′) − δ(x− z′)δ(y − z)]

× [v(x− z)v(y − z′) − v(x− z′)v(y − z)] dx dy dz dz′ + QE
2;B

= −
¨

V (x− y)φ(x− y)ρ(2)(x, y) dx dy + QE
2;B = −2 ⟨dΓ(V φ)⟩F + QE

2;B

(4.4.10)
using that the two-particle density of the free Fermi state is given by ρ(2)(x, y) = |v(0)|2 −
|v(x− y)|2.

4.5 Bounding Error Terms
To prove the bounds in Propositions 4.2.9 and 4.2.10 we first bound [H0+Q4, B]+Q2 and QE

2;B.
Then in Section 4.6 we use these bounds for the particular states ξλ from Equation (4.2.6)
with ψ an approximate ground state to conclude the proofs of Propositions 4.2.9 and 4.2.10.

To bound [H0 + Q4, B] + Q2 we first recall the definition of Q2 in Equation (4.1.13)

Q2 = 1
2

¨
V (x− y)bxbycycx dx dy + h.c..

Rewriting the factor cx as in Equation (4.4.2) we thus have

Q2 = 1
2

¨
(x− y)µV (x− y)bxbycy∇µcx dx dy + h.c. + QTaylor

2

with QTaylor
2 appropriately defined. Then, recalling Equations (4.4.3) and (4.4.7), we have

[H0 + Q4, B] + Q2 = Qscat + HTaylor
0;B + H÷r

0;B + QTaylor
4;B + QE

4;B + QTaylor
2 (4.5.1)

with (recalling Equation (4.2.3))

Qscat =
¨

Eµφ(x− y)bxbycy∇µcx dx dy + h.c.. (4.5.2)
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Below we bound separately each of the operators

T := HTaylor
0;B + QTaylor

4;B + QTaylor
2 , Qscat, H÷r

0;B, QE
4;B and QE

2;B

with QE
2;B from Equation (4.4.10). We shall show that

Lemma 4.5.1. For any state ξ ∈ F , and any α > 0, we have⃓⃓⃓
⟨T⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨Qscat⟩ξ

⃓⃓⃓
≲ N1/2a3k5

F (akF )−3α/2 |log akF | ⟨N ⟩1/2
ξ +N1/2ak2

F (akF )1/2+α ⟨H0⟩1/2
ξ ,⃓⃓⃓⃓⟨︂

H÷r
0;B

⟩︂
ξ

⃓⃓⃓⃓
≲ N1/2a3k4

F |log akF | ⟨H0⟩1/2
ξ +N1/2a3k5

F |log akF | ⟨N ⟩1/2
ξ ,⃓⃓⃓⃓⟨︂

QE
4;B

⟩︂
ξ

⃓⃓⃓⃓
≲ N1/2a3k4

F (akF )1/2 ⟨Q4⟩1/2
ξ + a3k4

F ⟨N ⟩1/2
ξ ⟨Q4⟩1/2

ξ ,⃓⃓⃓⃓⟨︂
QE

2;B

⟩︂
ξ

⃓⃓⃓⃓
≲ a2k2

F ⟨H0⟩1/2
ξ ⟨Q4⟩1/2

ξ + a3k5
F ⟨N ⟩ξ +Na5k7

F |log akF | .

The rest of this section deals with the proof of Lemma 4.5.1. We first give some preliminary
bounds.

4.5.1 Technical lemmas
In the proof of Lemma 4.5.1 below we shall need a bound on integrals of the form

´
F (y)bycy dy

and similar. The following lemma will turn out to be very helpful.
Lemma 4.5.2. Let F be a compactly supported function with F (x) = 0 for |x| ≥ Ck−1

F .
Then, uniformly in x ∈ Λ and t ∈ [0, 1], (with ∇n denoting any n’th derivative)⃦⃦⃦⃦

⃦
ˆ
F (x− y)aycy dy

⃦⃦⃦⃦
⃦ ≲ k

3/2
F ∥F∥L2 , (4.5.3)⃦⃦⃦⃦

⃦
ˆ
F (x− y)aycy∇ncty+(1−t)x dy

⃦⃦⃦⃦
⃦ ≲ k3+n

F ∥F∥L2 . (4.5.4)

Remark 4.5.3. Recall that
´
F (y)ay dy = a(F ) has norm

⃦⃦⃦
a(F )

⃦⃦⃦
= ∥F∥L2 . The

lemma shows that for certain bounded operators Ay (being either cy or cy∇ncty+(1−t)x)⃦⃦⃦´
F (y)ayAy dy

⃦⃦⃦
can be bounded by (a constant times) ∥F∥L2 supy ∥Ay∥.

Remark 4.5.4. A similar bound is given in [Gia23a, Lemma 4.8]. There, however, the right-
hand side depends on ∥F∥L1 , ∥∇F∥L1 and ∥∆F∥L1 . In Lemma 4.5.2 we do not require any
smoothness on F . This translates to having no smoothness assumptions on V in Theorem 4.1.2.

Remark 4.5.5. Applying Equation (4.5.3) for F = φ we find (by writing brz′ = az′ − (az′ − brz′)
and noting that ∥az′ − brz′∥ ≤ Ck

3/2
F since both operators agree for momenta |k| ≥ 3kF )⃦⃦⃦⃦

⃦
ˆ
φ(z − z′)brz′cz′ dz′

⃦⃦⃦⃦
⃦ ≲ k3

F ∥φ∥L1 + k
3/2
F ∥φ∥L2 ≤ C(akF )3/2 (4.5.5)

where we have used Lemma 4.3.6 to bound the norms of φ. Moreover, by Taylor-expanding
as in Equation (4.3.4) we haveˆ

φ(z − z′)brz′cz′cz dz′ =
ˆ

(z − z′)µφ(z − z′)brz′cz′

ˆ 1

0
dt∇µcz′+t(z−z′) dz′.

Thus, by Equation (4.5.4), we conclude in a similar way the bound⃦⃦⃦⃦
⃦
ˆ
φ(z − z′)brz′cz′cz dz′

⃦⃦⃦⃦
⃦ ≲ k

4+3/2
F ∥| · |φ∥L1 + k4

F ∥| · |φ∥L2 ≤ Ck
3/2
F (akF )5/2. (4.5.6)
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

Proof of Lemma 4.5.2. The main ingredient in the proof is a result of Birman and Solomjak
[BS69; BS80], stated in [Sim05, Theorem 4.5]. We start with Equation (4.5.3) and write the
integral as

ˆ
F (x− y)aycy dy =

¨
F x(y)v(y − z)ayaz dy dz, F x(y) = F (x− y).

We write the operator Kx with integral kernel Kx(y, z) = F x(y)v(y − z) in terms of its
singular value decomposition. That is, for some orthonormal systems {ϕxi } and {ψxi } we have

F x(y)v(y − z) =
∑︂
i

µiϕ
x
i (y)ψxi (z) (4.5.7)

with µi ≥ 0 the singular values. (Note that the singular values do not depend on x since Kx

is unitarily equivalent to the translated operator with x = 0; moreover, ϕxi (y) = ϕ0
i (y − x)

and likewise for ψxi .) Thus
ˆ
F (x− y)aycy dy =

∑︂
i

µi

¨
ϕxi (y)ψxi (z)ayaz dy dz =

∑︂
i

µia(ϕxi )a(ψxi ).

In norm this is thus bounded by ∑︁µi = ∥Kx∥S1
, the trace-norm of Kx. Furthermore, Kx is

unitarily equivalent to the dilated operator with kernel k−3
F F x(k−1

F y)v(k−1
F (y − z)). Since the

functions F x(k−1
F ·) and k−3

F
ˆ︂v(k−1

F ·) = ˆ︁v(kF ·) are compactly supported (in configuration and
momentum-space, respectively) with diameter of support of order 1, we can apply [Sim05,
Theorem 4.5]1 and conclude that⃦⃦⃦⃦
⃦
ˆ
F (x− y)aycy

⃦⃦⃦⃦
⃦ ≤

∑︂
i

µi = ∥Kx∥S1
≤ C

⃦⃦⃦
F x(k−1

F ·)
⃦⃦⃦
L2

∥ˆ︁v(kF ·)∥ℓ2 ≤ Ck
3/2
F ∥F∥L2 ,

where we introduced the notation ∥f∥ℓ2 = L−3/2(∑︁k |f(k)|2)1/2.

In order to prove Equation (4.5.4) we similarly write
ˆ
F (x− y)aycy∇ncty+(1−t)x dy =

˚
F x(y)v(y − z)∇nv(1−t)x(ty − w)ayazaw dy dz dw

with vx(y) = v(y + x). Using again (4.5.7),
ˆ
F (x− y)aycy∇ncty+(1−t)x dy = −

∑︂
i

µia(ψxi )
¨

ϕxi (y)∇nv(1−t)x(ty − w)ayaw dy dw.

We do one more singular value decomposition, this time for the operators ˜︂Kx,t
i with kernels˜︂Kx,t

i (y, w) = ϕxi (y)∇nv(1−t)x(ty−w) = ∑︁
j ˜︁µx,tij ˜︁ϕx,tij (y) ˜︁ψx,tij (w). In combination we thus obtain

the bound ⃦⃦⃦⃦
⃦
ˆ
F (x− y)aycy∇ncty+(1−t)x dy

⃦⃦⃦⃦
⃦ ≤

∑︂
i

µi
∑︂
j

˜︁µx,tij .
Similarly as above, observe that ˜︂Kx,t

i has the same trace norm as the dilated operator with
integral kernel ϕxi (k−1

F y)k−3
F t3/2∇nv(1−t)x(tk−1

F (y − w)). Each ϕxi has compact support of
diameter ≲ k−1

F (since F x has). Furthermore, the Fourier transform of k−3
F t3/2∇nv(1−t)x(tk−1

F ·)
1[Sim05, Theorem 4.5] is stated only for Euclidean space but can be extended to the torus Λ without

much difficulty.
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has compact support of diameter t ≤ 1. Thus we can again apply [Sim05, Theorem 4.5] to
conclude∑︂

j

˜︁µx,tij =
⃦⃦⃦˜︂Kx,t

i

⃦⃦⃦
S1

≤ C
⃦⃦⃦
ϕxi (k−1

F ·)
⃦⃦⃦
L2

⃦⃦⃦
t−3/2(| · |nˆ︁v)(t−1kF ·)

⃦⃦⃦
ℓ2

≤ Ck
3/2+n
F

uniformly in i, x and t. In combination with the bound ∑︁i µi ≤ Ck
3/2
F ∥F∥L2 from above,

this concludes the proof of Equation (4.5.4).

In order to state some of the intermediary bounds in the proof of Lemma 4.5.1, we introduce
the following operators.

Definition 4.5.6 (Highly excited particles). For α > 0 we define

N>α =
∑︂

|k|>kF (akF )−α

a∗
kak, N> =

∑︂
|k|>2kF

a∗
kak.

Remark 4.5.7 (see also [Gia23a, Proposition 4.15]). For any |k| > 2kF we have ||k|2 −k2
F | ≥

k2
F , and for any |k| > kF (akF )−α with α > 0 we have ||k|2 − k2

F | ≥ Ck2
F (akF )−2α for small

akF . Hence
N> ≤ Ck−2

F H0, N>α ≤ Ck−2
F (akF )2αH0. (4.5.8)

Before giving the proof of Lemma 4.5.1 we first explain some intuition behind the proof.

Remark 4.5.8 (Intuition behind the bounds). Conceptually, the main difficulty is “how to
deal with the bx’s”. The operator-valued distribution bx is not a bounded operator, so we
cannot bound it in norm. Essentially we have 3 different methods of treating a factor bx.

• We can bound one factor bx in terms of N via a computation similar toˆ
∥bxξ∥ dx ≤ L3/2

(︄ˆ
∥bxξ∥2 dx

)︄
≤ L3/2 ⟨N ⟩1/2

ξ ≤ CN1/2k
−3/2
F ⟨N ⟩1/2

ξ .

Analogously, the regularized operator brx can be bounded in terms of N> and the operator
b>x (introduced in Equation (4.5.10) below) can be bounded in terms of N>α.

• We can bound two factors of bx in terms of Q4 using a factor V (x−y) via a computation
similar to ¨

V (x− y) ∥bxbyξ∥ dx dy

≤
(︄¨

V (x− y) dx dy
)︄1/2 (︄¨

V (x− y) ∥bxbyξ∥2 dx dy
)︄1/2

= L3/2 ∥V ∥1/2
L1 ⟨2Q4⟩1/2

ξ ≤ CN1/2a1/2k
−3/2
F ⟨Q4⟩1/2

ξ .

• Finally, we can bound one factor bx “in norm” using any appropriate (compactly
supported) function F and a factor cx (or two) via an application of Lemma 4.5.2.

Factors of cx are not problematic. These we either bound in norm as ∥cx∥ ≤ Ck
3/2
F or Taylor

expand and bound the resulting ∇cx in norm as ∥∇cx∥ ≤ Ck
3/2+1
F . Similarly, factors of

v(x − y) can either be bounded by ∥v∥L2 ≤ Ck
3/2
F or ∥v∥L∞ ≤ Ck3

F . Finally, for factors
ur(x−y) we either use 0 ≤ ur ≤ 1 as operators or write ur(x−y) = δ(x−y)−vr(x−y) and
compute separately the terms with δ and vr. Here we note that ∥vr∥L1 ≤ C by Lemma 4.2.1.
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

The remainder of this section gives the proof of Lemma 4.5.1. We prove each of the bounds
separately.

4.5.2 Taylor-expansion errors
We bound all error-terms with a superscript “Taylor” in Equation (4.5.1), resulting from the
remainder term in the expansion (4.4.2). Together they are of the form

T =
¨

F µν(x− y)bxbycy
ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x) dx dy + h.c. (4.5.9)

for the function(s) (using Equation (4.2.3))

F µν(x) = −
[︃
xµxν∆φ(x) + 1

2x
µxνV (x)(1 − φ(x))

]︃
= 2xµ∇νφ(x) − xµEνφ(x).

We note that by Lemma 4.3.6 and Remark 4.3.7 we have (with ∥F∥L1 = ∑︁
µ,ν ∥F µν∥L1 and

similarly for the L2 norm)

∥F∥L1 ≤ Ca3 |log akF | , ∥F∥L2 ≤ Ca3/2.

To bound ⟨T⟩ξ we write

bx = b<x + b>x , b>x = 1
L3/2

∑︂
|k|>kF (akF )−α

eikxak (4.5.10)

for some α > 0. Note that N>α =
´

(b>x )∗b>x dx with N>α from Definition 4.5.6. For the
term with b<x we bound ∥b<x ∥ ≤ Ck

3/2
F (akF )−3α/2 and

⃦⃦⃦
∇µ∇νcx+t(y−x)

⃦⃦⃦
≤ Ck

3/2+2
F . Then by

Cauchy–Schwarz⃓⃓⃓⃓
⃓⃓
⟨︄¨

F µν(x− y)b<x bycy
ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x) dx dy

⟩︄
ξ

⃓⃓⃓⃓
⃓⃓

≤ C ∥F∥L1 k
5+3/2
F (akF )−3α/2

ˆ
∥byξ∥ dy ≤ CN1/2a3k5

F |log akF | (akF )−3α/2 ⟨N ⟩1/2
ξ .

Here we used that bx and cy anti-commute to reorder the annihilation operators such that
by is the last operator and we can bound all others in norm, while by yields the bound ∥byξ∥.
For the terms with b>x we use Equation (4.5.4) to bound the y-integral. To do this we write
by = ay − c−y. The term with c−y can be bounded in the same way as the term with b<x
above. For the term with ay we obtain⃓⃓⃓⃓

⃓⃓
⟨︄¨

F µν(x− y)b>x aycy
ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x) dx dy

⟩︄
ξ

⃓⃓⃓⃓
⃓⃓

≤ Ck5
F ∥F∥L2

ˆ
∥b>x ξ∥ dx ≤ CN1/2ak3

F (akF )1/2 ⟨N>α⟩1/2
ξ .

We conclude the bound⃓⃓⃓
⟨T⟩ξ

⃓⃓⃓
≲ N1/2a3k5

F |log akF | (akF )−3α/2 ⟨N ⟩1/2
ξ +N1/2ak3

F (akF )1/2 ⟨N>α⟩1/2
ξ

for any α > 0. Using the bound on N>α in Equation (4.5.8) we conclude the desired.
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4.5.3 Scattering equation cancellation
We proceed with bounding Qscat in Equation (4.5.2). This bound is analogous to that of T
above, only F µν is replaced by Eµφ and ∇µ∇νc is replaced by ∇µc. That is, the bound for
Qscat is as for T, only we have one fewer power of kF (from ∥∇c∥ instead of ∥∇2c∥) and
norms of F are replaced by norms of Eφ. We conclude the bound⃓⃓⃓

⟨Qscat⟩ξ
⃓⃓⃓
≤ CN1/2k4

F (akF )−3α/2 ∥Eφ∥L1 ⟨N ⟩1/2
ξ + CN1/2k

3/2+1
F ∥Eφ∥L2 ⟨N>α⟩1/2

ξ

≤ CN1/2a3k5
F (akF )−3α/2 |log akF | ⟨N ⟩1/2

ξ + CN1/2ak3
F (akF )1/2 ⟨N>α⟩1/2

ξ

for any α > 0, where we have used Lemma 4.3.6 and Remark 4.3.7 for the bound on the
norms of Eφ. Again, using the bound on N>α in Equation (4.5.8) we conclude the desired.

4.5.4 (Non-)regularization of [H0, B]
Next we bound H÷r

0;B defined in Equation (4.4.1), given by

H÷r
0;B =

¨
(∆φ(x− y)cycx + 2∇µφ(x− y)cy∇µcx)

(︂
brxb

r
y − bxby

)︂
dx dy + h.c.. (4.5.11)

To bound this, write bx = brx + crx with the latter operator satisfying ∥crx∥ ≤ Ck
3/2
F since bk

and brk agree for all momenta |k| > 3kF . Further, we Taylor expand the factor cy in the first
term as in Equation (4.3.4). Then we have (changing variables to z = y − x)⟨︂

H÷r
0;B

⟩︂
ξ

= −2 Re
¨

zµ∆φ(z)
ˆ 1

0
dt
⟨︂
∇µcx+tzcx(crxbrx+z + brxc

r
x+z + crxc

r
x+z)

⟩︂
ξ

dx dz

+ 2 Re
¨

∇µφ(z)
⟨︂
cx+z∇µcx(crxbrx+z + brxc

r
x+z + crxc

r
x+z)

⟩︂
ξ

dx dz.
(4.5.12)

The two terms are treated similarly. We start with the first. Define for any state ξ the function
ϕ(x, z) =

⟨︂
∇µcx+tzcx(crxbrx+z + brxc

r
x+z + crxc

r
x+z)

⟩︂
ξ

and note that it vanishes at z = 0. Thus
we Taylor expand: (with ∇µ

2 denoting a derivative in the second argument)

ϕ(x, z) = zν
ˆ 1

0
ds [∇ν

2ϕ](x, sz).

The derivative hits either a factor c or cr or a factor br. In the terms where the derivative
hits a factor c or cr we bound the c’s and cr’s in norm. (Apart from the term with only c’s
and cr’s, where we keep one factor cr without a derivative.) Recall that ∥∇nc∥ ≤ Ck

3/2+n
F

for any n. Similarly ∥∇ncrx∥ ≤ Ck
3/2+n
F . Thus, the terms where the derivative hits a factor c

or cr are bounded by

k
3/2+5
F

⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

ˆ
(∥brxξ∥ + ∥crxξ∥) dx ≤ CN1/2a3k5

F |log akF | ⟨N ⟩1/2
ξ

using the bounds of Lemma 4.3.6. For the term where the derivative hits a factor br we again
bound the c’s and cr’s in norm. These terms are then bounded by

k
3/2+4
F

⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

ˆ
∥∇brxξ∥ dx

≤ CN1/2a3k4
F |log akF | ⟨H0⟩1/2

ξ + CN1/2a3k5
F |log akF | ⟨N ⟩1/2

ξ

since
´

∥∇brxξ∥
2 dx ≤ ⟨H0⟩ξ + k2

F ⟨N ⟩ξ. The second term in Equation (4.5.12) is treated
analogously, only the bound has a factor ∥| · |∇φ∥L1 instead of ∥| · |2∆φ∥L1 . Collecting all
the terms, we conclude the desired bound on H÷r

0;B.
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.5.5 Error terms from [Q4, B]
We now bound QE

4;B, given in Equation (4.4.6). We split the operator into 4 terms and bound
each separately:

1. The quartic term with one δ and one vr,

2. The quartic term with two vr’s,

3. The order 6 term with δ, and

4. The order 6 term with vr.

4.5.5.1 Quartic term with one δ and one vr:

This term is of the form

A1 =
˚

dx dy dz′ V (x− y)φ(y − z′)vr(z′ − x)bybxcz′cy + h.c..

We bound ∥cz′cy∥ ≤ C|y − z′|k4
F and ∥vr∥L∞ ≤ Ck3

F . Then by Cauchy–Schwarz we get
(using Lemma 4.3.6 to bound the norm of φ)
⃓⃓⃓
⟨A1⟩ξ

⃓⃓⃓
≤ Ck7

F ∥| · |φ∥L1

¨
V (x− y) ∥bxbyξ∥ dx dy ≤ Ck7

F ∥| · |φ∥L1 ∥V ∥1/2
L1 L

3/2 ⟨Q4⟩1/2
ξ

≤ CN1/2a3+1/2k
4+1/2
F ⟨Q4⟩1/2

ξ .

(Here we reordered the annihilation operators such that bxby is last so we can bound cz′cy in
norm and get the factor ∥bxbyξ∥.)

4.5.5.2 Quartic term with two vr’s:

This term is of the form

A2 = −1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)vr(z′ − x)vr(z − y)bybxcz′cz + h.c..

As above, we bound ∥cz′cz∥ ≤ C|z − z′|k4
F . By Cauchy–Schwarz the z, z′ integrals are then

bounded as
¨

dz dz′ |φ(z − z′)||z − z′||vr(z′ − x)||vr(z − y)| ≤ ∥| · |φ∥L1 ∥vr∥2
L2 ≤ Ca3k2

F .

Then by Cauchy–Schwarz as above we obtain
⃓⃓⃓
⟨A2⟩ξ

⃓⃓⃓
≤ Ca3k6

F

¨
V (x− y) ∥bxbyξ∥ dx dy ≤ CN1/2a3+1/2k

4+1/2
F ⟨Q4⟩1/2

ξ .

4.5.5.3 Order 6 term with δ:

This term is of the form

A3 = −
˚

dx dy dz′ V (x− y)φ(x− z′)b∗
yb
r
z′bybxcz′cx + h.c..
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4.5. Bounding Error Terms

Computing the expectation in some state ξ we bound the z′-integral as⃓⃓⃓⃓
⃓
ˆ

dz′ φ(x− z′)
⟨︂
b∗
yb
r
z′bybxcz′cx

⟩︂
ξ

⃓⃓⃓⃓
⃓ ≤

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(x− z′)brz′cz′cx

⃦⃦⃦⃦
⃦ ∥byξ∥ ∥bxbyξ∥ .

Using Equation (4.5.6) to bound the first factor we get by Cauchy–Schwarz⃓⃓⃓
⟨A3⟩ξ

⃓⃓⃓
≤ C(akF )5/2k

3/2
F

¨
V (x− y) ∥byξ∥ ∥bxbyξ∥ dx dy

≤ C(akF )5/2k
3/2
F ∥V ∥1/2

L1 ⟨N ⟩1/2
ξ ⟨Q4⟩1/2

ξ

≤ Ca3k4
F ⟨N ⟩1/2

ξ ⟨Q4⟩1/2
ξ .

4.5.5.4 Order 6 term with vr:

This term is of the form

A4 = −
˘

dx dy dz dz′ V (x− y)φ(z − z′)vr(z − x)b∗
yb
r
z′bybxcz′cz + h.c..

Computing the expectation in some state ξ we bound the z, z′-integrals, again using Equa-
tion (4.5.6), as ⃓⃓⃓⃓

⃓
¨

dz dz′ φ(z − z′)vr(z − x)
⟨︂
b∗
yb
r
z′bybxcz′cz

⟩︂
ξ

⃓⃓⃓⃓
⃓

≤
ˆ

dz |vr(z − x)|
⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)brz′cz′cz

⃦⃦⃦⃦
⃦ ∥byξ∥ ∥bxbyξ∥

≤ C(akF )5/2k
3/2
F ∥vr∥L1 ∥byξ∥ ∥bxbyξ∥ .

Recall that ∥vr∥L1 ≤ C by Lemma 4.2.1. Using then Cauchy–Schwarz as above we find⃓⃓⃓
⟨A4⟩ξ

⃓⃓⃓
≤ Ca3k4

F ⟨N ⟩1/2
ξ ⟨Q4⟩1/2

ξ .

This gives the desired bound on QE
4;B.

4.5.6 Error terms from [Q2, B]
Finally we bound QE

2;B. Recalling Equations (4.4.8) and (4.4.10), it is given by

QE
2;B = 1

4

˘
dx dy dz dz′ V (x− y)φ(z − z′)

{︃
b∗
xb

∗
yb
r
zb
r
z′ [c∗

yc
∗
x, cz′cz] + c∗

yc
∗
xcz′cz[b∗

xb
∗
y, b

r
zb
r
z′ ]

+
(︃

(δ(x− z)δ(y − z′) − δ(x− z′)δ(y − z))

× (v(x− z)v(y − z′) − v(x− z′)v(y − z))

− [b∗
xb

∗
y, b

r
zb
r
z′ ][c∗

yc
∗
x, cz′cz]

)︃}︃
+ h.c..

We split the terms into three groups:

1. The terms with only the c-commutator (i.e. of the form b∗b∗bb[c∗c∗, cc]),

2. The terms with only the b-commutator, and

3. The rest, involving terms with both commutators, with the leading term [of the form
δδvv] subtracted.
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

4.5.6.1 Terms with only the c-commutator:

Recalling the formula for the commutator in Equation (4.4.9) all terms with c∗c give the same
contribution, so do all the constant terms. That is, we need to bound terms of the form

A1a = −
˘

V (x− y)φ(z − z′)v(x− z)b∗
xb

∗
yb
r
zb
r
z′c∗

ycz′ dx dy dz dz′ + h.c.,

A1b = 1
2

˘
V (x− y)φ(z − z′)v(x− z)v(y − z′)b∗

xb
∗
yb
r
zb
r
z′ dx dy dz dz′ + h.c..

For A1a we note that as an operator 0 ≤ v ≤ 1. Then by Cauchy–Schwarz we have for any
ε > 0 (recall that {bx, c∗

y} = 0)

±A1a = ∓
¨

dx dz v(x− z)
[︄ˆ

dy V (x− y)b∗
xb

∗
yc

∗
y

]︄ [︄ˆ
dz′ φ(z − z′)brzbrz′cz′

]︄
+ h.c.

≤ εk−2
F

˚
dx dy dz V (x− y)V (x− z)b∗

xb
∗
zc

∗
zcybybx

+ ε−1k2
F

˚
dx dy dz φ(x− y)φ(x− z)c∗

z(brz)∗(brx)∗brxb
r
ycy

=: εAV
1a + ε−1Aφ

1a.

For AV
1a we bound c∗

z, cy in norm. Then by Cauchy–Schwarz we have⃓⃓⃓⃓⟨︂
AV

1a

⟩︂
ξ

⃓⃓⃓⃓
≤ CkF

˚
V (x− y)V (x− z) ∥bzbxξ∥ ∥bybxξ∥ dx dy dz

≤ CkF

˚
V (x− y)V (x− z) ∥bybxξ∥2 dx dy dz ≤ CakF ⟨Q4⟩ξ .

For Aφ
1a we use Equation (4.5.5) to bound the y- and z-integrations. We find⃓⃓⃓

⟨Aφ
1a⟩ξ

⃓⃓⃓
≤ k2

F

ˆ
dx
⃦⃦⃦⃦
⃦
ˆ

dy φ(x− y)brycy
⃦⃦⃦⃦
⃦

2

∥brxξ∥
2 ≤ Ck2

F (akF )3 ⟨N>⟩ξ .

Optimising in ε we thus obtain the bound⃓⃓⃓
⟨A1a⟩ξ

⃓⃓⃓
≤ Ca2k3

F ⟨N>⟩1/2
ξ ⟨Q4⟩1/2

ξ . (4.5.13)

Next, we bound A1b as⃓⃓⃓
⟨A1b⟩ξ

⃓⃓⃓
≤
˚

dx dy dz V (x− y)|v(x− z)|
⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)v(y − z′)brz′

⃦⃦⃦⃦
⃦ ∥brzξ∥ ∥bybxξ∥ .

Since 0 ≤ ûr ≤ 1, we have⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)v(y − z′)brz′

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)v(y − z′)az′

⃦⃦⃦⃦
⃦ =

(︂
φ2 ∗ v2(y − z)

)︂1/2

(with ∗ denoting convolution) and hence, by Cauchy–Schwarz,
⃓⃓⃓
⟨A1b⟩ξ

⃓⃓⃓
≤
[︄˚

dx dy dz V (x− y)|v(x− z)|2 ∥bybxξ∥2
]︄1/2

×
[︄˚

dx dy dz V (x− y)φ2 ∗ v2(y − z) ∥brzξ∥
2
]︄1/2

≤ ∥v∥2
L2 ⟨Q4⟩1/2

ξ ∥V ∥1/2
L1 ∥φ∥L2 ⟨N>⟩1/2

ξ ≤ Ca2k3
F ⟨Q4⟩1/2

ξ ⟨N>⟩1/2
ξ , (4.5.14)

where we have used Lemma 4.3.6 to bound the L2-norm of φ in the final step.
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4.5. Bounding Error Terms

4.5.6.2 Terms with only the b-commutator:

Recalling the formula for the commutator in Equation (4.4.4) all terms with b∗b give the same
contribution, so do all the constant terms. That is, we need to bound terms of the forms

A2a = −
˘

V (x− y)φ(z − z′)ur(x− z)b∗
yb
r
z′c∗

yc
∗
xcz′cz dx dy dz dz′ + h.c.,

A2b = 1
2

˘
V (x− y)φ(z − z′)ur(x− z)ur(y − z′)c∗

yc
∗
xcz′cz dx dy dz dz′ + h.c..

For A2a we use that 0 ≤ ur ≤ 1 as an operator. Thus, for any ε > 0,

±A2a = ∓
¨

dx dz ur(x− z)
[︄ˆ

dy V (x− y)b∗
yc

∗
yc

∗
x

]︄ [︄ˆ
dz′ φ(z − z′)brz′cz′cz

]︄
+ h.c.

≤ εk−2
F

˚
dx dy dz V (x− y)V (x− z)b∗

zc
∗
zc

∗
xcxcyby

+ ε−1k2
F

˚
dx dy dz φ(x− y)φ(x− z)c∗

xc
∗
z(brz)∗brycycx

=: εAV
2a + ε−1Aφ

2a.

For AV
2a we bound ∥cxcy∥ ≤ C|x− y|k4

F . Then by Cauchy–Schwarz we have⃓⃓⃓⃓⟨︂
AV

2a

⟩︂
ξ

⃓⃓⃓⃓
≤ Ck6

F

˚
dx dy dz V (x− y)V (x− z)|x− y||x− z| ∥bzξ∥ ∥byξ∥

≤ Ck6
F ∥|x|V ∥2

L1 ⟨N ⟩ξ ≤ Ca4k6
F ⟨N ⟩ξ .

Analogously ⃓⃓⃓
⟨Aφ

2a⟩ξ
⃓⃓⃓
≤ Ck10

F ∥|x|φ∥2
L1 ⟨N>⟩ξ ≤ Ca6k8

F ⟨N>⟩ξ .
Optimising in ε we find⃓⃓⃓

⟨A2a⟩ξ
⃓⃓⃓
≤ Ca5k7

F ⟨N ⟩1/2
ξ ⟨N>⟩1/2

ξ ≤ Ca5k7
F ⟨N ⟩ξ . (4.5.15)

For A2b we write ur = δ − vr. The term with both factors δ is

Aδδ
2b = −

¨
V (x− y)φ(x− y)c∗

xc
∗
ycycx dx dy.

By Taylor expanding cy and c∗
y as in Equation (4.3.4) and bounding φ ≤ 1 we have⃓⃓⃓⃓⟨︂

Aδδ
2b

⟩︂
ξ

⃓⃓⃓⃓
≤ Ck5

F

⃦⃦⃦
| · |2V

⃦⃦⃦
L1

⟨N ⟩ξ ≤ Ca3k5
F ⟨N ⟩ξ .

Both terms with one factor δ and one factor vr can be treated the same way. They are of the
form

Avδ
2b = 1

2

˚
V (x− y)φ(z − y)vr(x− z)c∗

yc
∗
xcycz dx dy dz + h.c..

Thus, by Cauchy–Schwarz and Taylor-expanding cy as in Equation (4.3.4)⃓⃓⃓⃓⟨︂
Avδ

2b

⟩︂
ξ

⃓⃓⃓⃓
≤
[︄˚

V (x− y)vr(x− z)2 ∥cxcyξ∥2 dx dy dz
]︄1/2

×
[︄˚

V (x− y)φ(z − y)2 ∥cyczξ∥2 dx dy dz
]︄1/2

≤ Ck5
F

⃦⃦⃦
| · |2V

⃦⃦⃦1/2

L1
∥vr∥L2 ∥V ∥1/2

L1 ∥| · |φ∥L2 ⟨N ⟩ξ ≤ Ca4k6
F (akF )1/2 ⟨N ⟩ξ .
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4. Ground state energy of the dilute spin-polarized Fermi gas: Lower bound

Finally, we bound the term Avv
2b with two factors vr by Cauchy–Schwarz as

⃓⃓⃓
⟨Avv

2b ⟩ξ
⃓⃓⃓
≤
[︄˘

V (x− y)φ(z − z′)vr(x− z)2 ∥cxcyξ∥2 dx dy dz dz′
]︄1/2

×
[︄˘

V (x− y)φ(z − z′)vr(y − z′)2 ∥cz′czξ∥2 dx dy dz dz′
]︄1/2

≤ Ck5
F

⃦⃦⃦
| · |2V

⃦⃦⃦1/2

L1
∥φ∥1/2

L1 ∥V ∥1/2
L1

⃦⃦⃦
| · |2φ

⃦⃦⃦1/2

L1
∥vr∥2

L2 ⟨N ⟩ξ
≤ Ca5k7

F |log akF |1/2 ⟨N ⟩ξ .

We conclude that ⃓⃓⃓
⟨A2b⟩ξ

⃓⃓⃓
≤ Ca3k5

F ⟨N ⟩ξ . (4.5.16)

4.5.6.3 Terms with both commutators:

Recalling the formulas for the commutators in Equations (4.4.4) and (4.4.9) we split the terms
into four groups

a. Terms of the form b∗bc∗c,

b. Terms of the form b∗b,

c. Terms of the form c∗c, and

d. The constant (i.e. fully contracted) terms.

—Terms of the form b∗bc∗c: These terms have one factor ur and one factor v. The
factors ur and v can either have both different arguments, share one variable or have the same
argument. That is, we have the different types of terms

A3a,1 = −1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)ur(x− z)v(y − z′)b∗

yc
∗
xczb

r
z′ + h.c.,

A3a,2 = 1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)ur(x− z)v(y − z)b∗

yc
∗
xcz′brz′ + h.c.,

A3a,3 = −1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)ur(x− z)v(x− z)b∗

yc
∗
ycz′brz′ + h.c..

We consider the term A3a,1 and write ur(x− z) = δ(x− z) − vr(x− z). For the term with δ
we bound ∥v∥L∞ ≤ Ck3

F and ∥cx∥ ≤ Ck
3/2
F . Then by Cauchy–Schwarz the expectation value

of this term in a state ξ is bounded by

Ck6
F

˚
V (x− y)φ(x− z′) ∥byξ∥ ∥brz′ξ∥ dx dy dz′ ≤ Ck6

F ∥V ∥L1 ∥φ∥L1 ⟨N ⟩1/2
ξ ⟨N>⟩1/2

ξ

≤ Ca4k6
F |log akF | ⟨N ⟩1/2

ξ ⟨N>⟩1/2
ξ .
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4.5. Bounding Error Terms

Similarly we bound the term with vr by

Ck3
F

˘
V (x− y)φ(z − z′)|vr(x− z)||v(y − z′)| ∥byξ∥ ∥brz′ξ∥ dx dy dz dz′

≤ Ck3
F

[︄˘
V (x− y)φ(z − z′)v(y − z′)2 ∥byξ∥2 dx dy dz dz′

]︄1/2

×
[︄˘

V (x− y)φ(z − z′)vr(x− z)2 ∥brz′ξ∥2 dx dy dz dz′
]︄1/2

≤ Ca4k6
F |log akF | ⟨N ⟩1/2

ξ ⟨N>⟩1/2
ξ

using that ∥v∥L2 , ∥vr∥L2 ≤ Ck
3/2
F . The terms A3a,2 and A3a,3 can be bounded in the same

way. We conclude that⃓⃓⃓
⟨A3a,1⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨A3a,2⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨A3a,3⟩ξ

⃓⃓⃓
≤ Ca4k6

F |log akF | ⟨N ⟩1/2
ξ ⟨N>⟩1/2

ξ

≤ Ca4k6
F |log akF | ⟨N ⟩ξ .

(4.5.17)

—Terms of the form b∗b: These may be dealt with as the terms A3a,1, A3a,2 and A3a,3
only we bound ∥v∥L∞ ≤ Ck3

F instead of ∥c∥2 ≤ Ck3
F .

—Terms of the form c∗c: For these terms it is important to take into account the cancella-
tions between different terms. Recalling the formulas for the commutators in Equations (4.4.4)
and (4.4.9) and noting the symmetries x ↔ y and z ↔ z′ we find that together all terms of
this form are given by

A3c = 2
˘

V (x− y)φ(z − z′)[ur(x− z′)ur(y − z) − ur(x− z)ur(y − z′)]v(y − z)

× c∗
xcz′ dx dy dz dz′.

Writing the term in momentum-space we find

A3c = 2
L6

∑︂
k,ℓ,ℓ′

ℓ,ℓ′∈BF

V̂ (k) [φ̂(k) − φ̂(k + ℓ− ℓ′)] ûr(k − ℓ)ûr(k + ℓ′)c∗
ℓcℓ.

We view φ̂ as being defined on all of R3 (as opposed to just on 2π
L
Z3) and Taylor expand.

Noting that φ is a real radial function the first order vanishes. That is,

φ̂(k + ℓ− ℓ′) = φ̂(k) + (ℓ− ℓ′)µ(ℓ− ℓ′)ν
ˆ 1

0
dt (1 − t)∇µ∇νφ̂(k + t(ℓ− ℓ′)).

We write ûr(k) = 1 − v̂r(k) and observe that v̂r is supported for |k| ≤ 3kF . Since further
ℓ, ℓ′ ∈ BF we have v̂r(k + ℓ′), v̂r(k − ℓ) ≤ χ|k|≤4kF

. The terms with at least one factor v̂r we
then bound by

2
ˆ 1

0
dt (1 − t) 1

L6

∑︂
ℓ,ℓ′∈BF

|ℓ− ℓ′|2 ⟨c∗
ℓcℓ⟩ξ

∑︂
|k|≤4kF

|V̂ (k)||∇2φ̂(k + t(ℓ− ℓ′))|

≤ Ck8
F ∥V ∥L1

⃦⃦⃦
| · |2φ

⃦⃦⃦
L1

∑︂
ℓ

⟨c∗
ℓcℓ⟩ξ ≤ Ca4k6

F ⟨N ⟩ξ .
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We compute the term with both factors 1 using Parseval’s theorem. It is given by

−2
ˆ 1

0
dt (1 − t) 1

L3

∑︂
ℓ,ℓ′∈BF

(ℓ− ℓ′)µ(ℓ− ℓ′)ν ⟨c∗
ℓcℓ⟩ξ

ˆ
V (x)xµxνe−it(ℓ−ℓ′)xφ(x) dx.

Using φ ≤ 1 we bound this by Ck5
F ∥| · |2V ∥L1 ⟨N ⟩ξ ≤ Ca3k5

F ⟨N ⟩ξ. We conclude that⃓⃓⃓
⟨A3c⟩ξ

⃓⃓⃓
≤ Ca3k5

F ⟨N ⟩ξ . (4.5.18)

—Constant terms: The constant term is given by

A3d = 1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)

[︃
δ(x− z)δ(y − z′) − δ(x− z′)δ(y − z)

− ur(x− z)ur(y − z′) + ur(x− z′)ur(y − z)
]︃

× (v(x− z)v(y − z′) − v(x− z′)v(y − z)) .

We write ur = δ − vr and expand everything. The terms with one factor vr and one factor δ
together give

A3d,1 = 2
˚

V (x− y)φ(x− z)vr(y − z) (v(0)v(y − z) − v(x− z)v(y − x)) dx dy dz.

Noting that the last factor vanishes for x = y we Taylor expand and bound it as

|v(0)v(y − z) − v(x− z)v(y − x)| ≤ Ck7
F |x− y|

using that ∥∇v∥L∞ ≤ Ck4
F . Then

|A3d,1| ≤ Ck7
F

˚
|x− y|V (x− y)φ(x− z)|vr(y − z)| dx dy dz

≤ CL3k7
F ∥| · |V ∥L1 ∥φ∥L1 ∥vr∥L∞ ≤ CNa5k7

F |log akF | .

Similarly all terms with two factors vr are together bounded by

CL3k7
F ∥| · |V ∥L1 ∥φ∥L1 ∥vr∥2

L2 ≤ CNa5k7
F |log akF | .

In particular, we conclude that

|A3d| ≲ Na5k7
F |log akF | . (4.5.19)

Combining then Equations (4.5.13)–(4.5.19) we find⃓⃓⃓⃓⟨︂
QE

2;B

⟩︂
ξ

⃓⃓⃓⃓
≲ a2k3

F ⟨N>⟩1/2
ξ ⟨Q4⟩1/2

ξ + a3k5
F ⟨N ⟩ξ +Na5k7

F |log akF | .

Finally, using (4.5.8) to bound N> we conclude the desired.

4.6 Finalizing the Proof
In this section, we use the bounds of Lemma 4.5.1 to prove Propositions 4.2.9 and 4.2.10.
We shall also give the proof of Proposition 4.1.5.
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4.6. Finalizing the Proof

4.6.1 Propagation of a priori estimates
To use the bounds of Lemma 4.5.1 we need bounds for the expectation value of N , H0 and
Q4 in the states ξλ. These states do not necessarily arise from approximate ground states,
so we cannot just use the a priori bounds of Lemmas 4.3.1, 4.3.2 and 4.3.5. We show (as in
[Gia23a, Proposition 4.11])
Lemma 4.6.1 (Propagation of N ). Let ψ ∈ F be any state and let ξλ be as in Equation (4.2.6).
Then, for any 0 ≤ λ, λ′ ≤ 1,

⟨N ⟩ξλ
≤ C ⟨N ⟩ξλ′ + CN(akF )5.

Proof. This is an application of Grönwall’s lemma. We compute

d
dλ ⟨N ⟩ξλ

= − ⟨ξλ|[N , B]|ξλ⟩ = −4 Re
¨

φ(z − z′) ⟨ξλ|brzbrz′cz′cz|ξλ⟩ dz dz′.

Using Equation (4.5.6) to bound the integral in z′ we find⃓⃓⃓⃓
⃓ d
dλ ⟨N ⟩ξλ

⃓⃓⃓⃓
⃓ ≤ Ck

3/2
F (akF )5/2

ˆ
∥brzξλ∥ dz ≤ CN1/2(akF )5/2 ⟨N ⟩1/2

ξλ
.

By Grönwall’s lemma we conclude the desired.

Remark 4.6.2. Using Lemma 4.6.1 for an approximate ground state ψ for λ′ = 0 we find
(for any 0 ≤ λ ≤ 1)

⟨N ⟩ξλ
≤ C ⟨N ⟩ξ0

+ CN(akF )5 ≤ CN(akF )3/2 (4.6.1)

by Lemma 4.3.2.

Lemma 4.6.3 (Propagation of H0,Q4). Let ψ ∈ F be any state and let ξλ be as in
Equation (4.2.6). Then, for any α > 0 and any 0 ≤ λ, λ′ ≤ 1,

⟨H0 + Q4⟩ξλ
≲ ⟨H0 + Q4⟩ξλ′ +Na3k5

F

[︂
1 + (akF )5/2−3α/2 |log akF |

]︂
+ k2

F (akF )6 ⟨N ⟩ξλ′ +N1/2k2
F (akF )3−3α/2 |log akF | ⟨N ⟩1/2

ξλ′ ,

the implicit constants depending only on α.

Remark 4.6.4. We apply Lemma 4.6.3 for an approximate ground state ψ and choose α < 1/2
and λ′ = 0. Noting that both H0 and Q4 are positive operators we find (for any 0 ≤ λ ≤ 1)

⟨H0⟩ξλ
≤ CNa3k5

F , ⟨Q4⟩ξλ
≤ CNa3k5

F (4.6.2)

by Lemmas 4.3.1, 4.3.2 and 4.3.5.

Proof. Again, this is an application of Grönwall’s lemma. We have

d
dλ ⟨ξλ|H0 + Q4|ξλ⟩ = − ⟨ξλ|[H0 + Q4, B]|ξλ⟩ = − ⟨ξλ|[H0 + Q4, B] + Q2|ξλ⟩ + ⟨ξλ|Q2|ξλ⟩ .
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We may bound the first term using Equation (4.5.1) and the bounds of Lemma 4.5.1. This
way we obtain

|⟨ξλ|[H0 + Q4, B] + Q2|ξλ⟩|
≲ N1/2k2

F (akF )3−3α/2 |log akF | ⟨N ⟩1/2
ξλ

+N1/2kF [(akF )3/2+α + (akF )3 |log akF |] ⟨H0⟩1/2
ξλ

+N1/2kF (akF )3+1/2 ⟨Q4⟩1/2
ξλ

+ a3k4
F ⟨N ⟩1/2

ξλ
⟨Q4⟩1/2

ξλ

≲ ⟨Q4⟩ξλ
+ ⟨H0⟩ξλ

+Nk2
F

[︂
(akF )3+2α + (akF )3+5/2−3α/2 |log akF |

]︂
+ k2

F (akF )6 ⟨N ⟩ξλ′ +N1/2k2
F (akF )3−3α/2 |log akF | ⟨N ⟩1/2

ξλ′

for any α > 0 and 0 ≤ λ, λ′ ≤ 1, where we have used Lemma 4.6.1 in the last step. Bounding⃓⃓⃓
⟨Q2⟩ξλ

⃓⃓⃓
≤ ⟨Q4⟩ξλ

+ CNa3k5
F by Lemma 4.3.4 we obtain

|⟨ξλ|[H0 + Q4, B]|ξλ⟩| ≲ ⟨H0 + Q4⟩ξλ
+Na3k5

F

[︂
1 + (akF )5/2−3α/2 |log akF |

]︂
+ k2

F (akF )6 ⟨N ⟩ξλ′ +N1/2k2
F (akF )3−3α/2 |log akF | ⟨N ⟩1/2

ξλ′ .

By Grönwall’s lemma we conclude the desired.

4.6.2 Lower bound
We now give the proof of Propositions 4.2.9 and 4.2.10, therefore concluding the proof of
Theorem 4.1.2.

Proof of Proposition 4.2.9. Combining Lemma 4.5.1 with the bounds on N ,H0 and Q4 from
Equations (4.6.1) and (4.6.2) we find for any approximate ground state ψ that⃓⃓⃓⃓⟨︂

QE
2;B

⟩︂
ξλ

⃓⃓⃓⃓
≲ Na4k6

F (akF )1/2

with ξλ as in Equation (4.2.6). Recalling Equation (4.2.9), this concludes the proof of
Proposition 4.2.9.

Proof of Proposition 4.2.10. As in the proof of Proposition 4.2.9 above we find for any
approximate ground state ψ and any α > 0⃓⃓⃓

⟨T⟩ξλ

⃓⃓⃓
+
⃓⃓⃓
⟨Qscat⟩ξλ

⃓⃓⃓
≲ Na3k5

F

[︂
(akF )3/4−3α/2 |log akF | + (akF )α

]︂
,⃓⃓⃓⃓⟨︂

H÷r
0;B

⟩︂
ξλ

⃓⃓⃓⃓
≲ Na3k5

F (akF )3/4 |log akF | ,⃓⃓⃓⃓⟨︂
QE

4;B

⟩︂
ξλ

⃓⃓⃓⃓
≲ Na3k5

F (akF )2.

In particular, recalling Equations (4.2.10) and (4.5.1), we have the bound

|Escat(ψ)| ≤ CNa3k5
F

[︂
(akF )3/4−3α/2 |log akF | + (akF )α

]︂
for any α > 0. Choosing the optimal α = 3/10 we conclude the proof of Proposition 4.2.10.
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4.1. The Two-Dimensional Case

4.6.3 Upper bound
Finally, we prove the upper bound stated in Proposition 4.1.5. The starting point is again
Equation (4.2.11). To obtain an upper bound, we need to choose some trial state ψ and
compute the energy. For the lower bound we used that H0 + Q4 ≥ 0, whereas in general
we can only bound ⟨H0 + Q4⟩ξ1

≤ CNa3k5
F for an approximate ground state ψ (recall the

definition of ξλ in Equation (4.2.6)). This bound is not good enough for our purposes. We
can, however, choose the specific trial state ψ = RTΩ, satisfying ξ1 = T−1R∗ψ = Ω and
thus ⟨H0 + Q4⟩ξ1

= 0. However, it is not a priori clear whether or not this trial state is
an approximate ground state. Thus, we cannot just apply the bounds on the error terms
EV (ψ), EQ2(ψ) and Escat(ψ) from Propositions 4.2.8, 4.2.9 and 4.2.10. Instead, we bound
these error terms as follows.

We first note the bounds (for any 0 ≤ λ ≤ 1)

⟨N ⟩ξλ
≤ CNa5k5

F , ⟨H0⟩ξλ
≤ CNa3k5

F , ⟨Q4⟩ξλ
≤ CNa3k5

F (4.6.3)

by applying Lemmas 4.6.1 and 4.6.3 for λ′ = 1 and using that ξ1 = Ω. Using these bounds,
Lemma 4.3.3 reads

|EV (ψ)| ≲ εNa3k5
F + ε−1Na6k8

F ≤ CNa4k6
F (akF )1/2

by choosing the optimal ε = (akF )3/2. Next, using Lemma 4.5.1 and the bounds in Equa-
tion (4.6.3) we find the bounds (recall Equations (4.2.9) and (4.2.10))

|EQ2(ψ)| ≤ CNa5k7
F |log akF | ,

|Escat(ψ)| ≤ CNa5k7
F (akF )1/2−3α/2 |log akF | + CNa3k5

F (akF )α

+ CNa4k6
F (akF )1/2 |log akF |

for any α > 0. Choosing the optimal α = 1 we find |Escat(ψ)| ≤ CNa4k6
F |log akF |. Together

with the computation of ⟨dΓ(V (1 − φ))⟩F in Equation (4.2.13), this concludes the proof of
Proposition 4.1.5.

4.A The Two-Dimensional Case
We sketch here how to adapt the proof of Theorem 4.1.2 to the two-dimensional setting. The
structure is the same as in the case d = 3. The main step in the proof of Theorem 4.1.8 is
proving the two-dimensional analogue of Lemma 4.5.1. This reads
Lemma 4.A.1. For any state ξ ∈ F , and any α > 0, we have⃓⃓⃓

⟨T⟩ξ
⃓⃓⃓
+
⃓⃓⃓
⟨Qscat⟩ξ

⃓⃓⃓
≲ N1/2a2k4

F (akF )−α |log akF | ⟨N ⟩1/2
ξ

+N1/2ak2
F (akF )α |log akF |1/2 ⟨H0⟩1/2

ξ ,⃓⃓⃓⃓⟨︂
H÷r

0;B

⟩︂
ξ

⃓⃓⃓⃓
≲ N1/2a2k4

F |log akF | ⟨N ⟩1/2
ξ +N1/2a2k3

F |log akF | ⟨H0⟩1/2
ξ ,⃓⃓⃓⃓⟨︂

QE
4;B

⟩︂
ξ

⃓⃓⃓⃓
≲ N1/2a2k3

F |log akF | ⟨Q4⟩1/2
ξ + a2k3

F |log akF |1/2 ⟨N ⟩1/2
ξ ⟨Q4⟩1/2

ξ ,⃓⃓⃓⃓⟨︂
QE

2;B

⟩︂
ξ

⃓⃓⃓⃓
≲ akF ⟨H0⟩1/2

ξ ⟨Q4⟩1/2
ξ + a2k4

F |log akF | ⟨N ⟩ξ +Na3k5
F |log akF | .
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Further, as in 3 dimensions, we have the a priori bounds

⟨N ⟩ξ0
≤ CNakF , ⟨H0⟩ξ0

≤ CNa2k4
F , ⟨Q4⟩ξ0

≤ CNa2k4
F

for an approximate ground state ψ (recall the definition of ξλ in Equation (4.2.6)). Using
Lemma 4.A.1 and these a priori bounds we give the

Proof of Theorem 4.1.8. Propagating the a priori bounds as in Section 4.6, using Lemma 4.A.1
and choosing the optimal α = 1/4 we conclude the proof of Theorem 4.1.8.

To prove Lemma 4.A.1 we note the bounds on norms of φ: (being the analogue of Lemma 4.3.6)
Lemma 4.A.2. The scattering function φ satisfies

∥| · |nφ∥L1 ≤ Ca2k−n
F , n = 1, 2, ∥| · |n∇nφ∥L1 ≤ Ca2 |log akF | , n = 0, 1, 2

∥| · |φ∥L2 ≤ Ca2 |log akF |1/2 , ∥| · |n∇nφ∥L2 ≤ Ca, n = 0, 1.

Further, we have the analogue of Lemma 4.5.2: (which we state in general dimension d)
Lemma 4.A.3. Let F be a compactly supported function with F (x) = 0 for |x| ≥ Ck−1

F .
Then, uniformly in x ∈ Λ and t ∈ [0, 1], (with ∇n denoting any n’th derivative)

⃦⃦⃦⃦
⃦
ˆ
F (x− y)aycy dy

⃦⃦⃦⃦
⃦ ≲ k

d/2
F ∥F∥L2 ,

⃦⃦⃦⃦
⃦
ˆ
F (x− y)aycy∇ncty+(1−t)x dy

⃦⃦⃦⃦
⃦ ≲ kd+n

F ∥F∥L2 .

We then sketch the

Proof of Lemma 4.A.1. The proof is the same as that of Lemma 4.5.1 only with trivial changes.
We here just state all the intermediate bounds. We state these in general dimension d, to
make clear the changes needed to extend the proof also to the one-dimensional setting.

We may bound T,Qscat and H÷r
0;B by

⃓⃓⃓
⟨T⟩ξ

⃓⃓⃓
≤ CN1/2kd+2

F (akF )−dα/2 ∥F∥L1 ⟨N ⟩1/2
ξ + CN1/2k

d/2+2
F ∥F∥L2 ⟨N>α⟩1/2

ξ .⃓⃓⃓
⟨Qscat⟩ξ

⃓⃓⃓
≤ CN1/2kd+1

F (akF )−dα/2 ∥Eφ∥L1 ⟨N ⟩1/2
ξ + CN1/2k

d/2+1
F ∥Eφ∥L2 ⟨N>α⟩1/2

ξ .⃓⃓⃓⃓⟨︂
H÷r

0;B

⟩︂
ξ

⃓⃓⃓⃓
≤ CN1/2

[︂⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

+ ∥| · |∇φ∥L1

]︂ [︂
kd+2
F ⟨N ⟩1/2

ξ + kd+1
F ⟨H0⟩1/2

ξ

]︂
.

For the error terms from [Q4, B] we have the bounds

⃓⃓⃓
⟨A1⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨A2⟩ξ

⃓⃓⃓
≤ CN1/2k

d+d/2+1
F ∥| · |φ∥L1 ∥V ∥1/2

L1 ⟨Q4⟩1/2
ξ⃓⃓⃓

⟨A3⟩ξ
⃓⃓⃓
+
⃓⃓⃓
⟨A4⟩ξ

⃓⃓⃓
≤ Ckd+1

F ∥| · |φ∥L2 ∥V ∥L1 ⟨N ⟩1/2
ξ ⟨Q4⟩1/2

ξ .
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4.1. The Two-Dimensional Case

Finally, the error terms from [Q2, B] are bounded as follows.⃓⃓⃓
⟨A1a⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨A1b⟩ξ

⃓⃓⃓
≤ CkdF ∥φ∥L2 ∥V ∥1/2

L1 ⟨N>⟩1/2
ξ ⟨Q4⟩1/2

ξ⃓⃓⃓
⟨A2a⟩ξ

⃓⃓⃓
≤ Ck2d+2

F ∥| · |φ∥L1 ∥| · |V ∥L1 ⟨N ⟩ξ⃓⃓⃓
⟨A2b⟩ξ

⃓⃓⃓
≤ Ckd+2

F

⃦⃦⃦
| · |2V

⃦⃦⃦
L1

⟨N ⟩ξ + Ck
d+d/2+2
F

⃦⃦⃦
| · |2V

⃦⃦⃦1/2

L1
∥V ∥1/2

L1 ∥| · |φ∥L2 ⟨N ⟩ξ

+ Ck2d+2
F

⃦⃦⃦
| · |2V

⃦⃦⃦1/2

L1
∥V ∥1/2

L1

⃦⃦⃦
| · |2φ

⃦⃦⃦1/2

L1
∥φ∥1/2

L1 ⟨N ⟩ξ⃓⃓⃓
⟨A3a⟩ξ

⃓⃓⃓
+
⃓⃓⃓
⟨A3b⟩ξ

⃓⃓⃓
≤ Ck2d

F ∥φ∥L1 ∥V ∥L1 ⟨N ⟩ξ⃓⃓⃓
⟨A3c⟩ξ

⃓⃓⃓
≤ Ck2d+2

F ∥V ∥L1

⃦⃦⃦
| · |2φ

⃦⃦⃦
L1

⟨N ⟩ξ + Ckd+2
F

⃦⃦⃦
| · |2V

⃦⃦⃦
L1

⟨N ⟩ξ⃓⃓⃓
⟨A3d⟩ξ

⃓⃓⃓
≤ CNk2d+1

F ∥| · |V ∥L1 ∥φ∥L1 .

Bounding N> and N>α as in Equation (4.5.8) and using the bounds on norms of φ above we
conclude the proof of Lemma 4.A.1.

Remark 4.A.4 (Possible extension to the one-dimensional case). In dimension d = 1 the
analogous bounds on norms of φ read

∥| · |nφ∥L1 ≤ Cak−n
F , n = 1, 2, ∥| · |n∇nφ∥L1 ≤ Ca |log akF | , n = 0, 1, 2

∥| · |φ∥L2 ≤ Cak
−1/2
F , ∥| · |n∇nφ∥L2 ≤ Ca1/2, n = 0, 1.

Further ∥| · |nV ∥L1 ≤ Can−1. Using these bounds and bounding ⟨N ⟩ξ ≤ CN(akF )1/2,
⟨H0⟩ξ ≤ CNak3

F and ⟨Q4⟩ξ ≤ CNak3
F (as is appropriate for relevant ξ by the propagation

of the a priori bounds) we see that only the estimates of the error terms T,Qscat,H÷r
0;B,A2a

and A2b in the proof or Lemma 4.A.1 are smaller than Nak3
F . The estimates of the (many)

remaining error-terms are too big. One would have to improve these remaining estimates in
order to extend our proof of Theorems 4.1.2 and 4.1.8 also to the one-dimensional setting. We
do not pursue this. As already mentioned, the one-dimensional analogue of Theorems 4.1.2
and 4.1.8 is proved in [ARS22].
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Chapter5
Almost optimal upper bound for the

ground state energy of a dilute Fermi
gas via cluster expansion

This chapter contains the paper

[Spin-1/2] A. B. Lauritsen. “Almost Optimal Upper Bound for the Ground State Energy
of a Dilute Fermi Gas via Cluster Expansion”, Ann. Henri Poincaré (2024).
DOI: 10.1007/s00023-024-01450-1.

Abstract. We prove an upper bound on the energy density of the dilute spin-1
2 Fermi gas

capturing the leading correction to the kinetic energy 8πaρ↑ρ↓ with an error of size smaller
than aρ2(a3ρ)1/3−ε for any ε > 0, where a denotes the scattering length of the interaction.
The result is valid for a large class of interactions including interactions with a hard core. A
central ingredient in the proof is a rigorous version of a fermionic cluster expansion adapted
from the formal expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp.
237–260).
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5.1 Introduction and main results
We consider an interacting Fermi gas of N particles interacting via a two-body interaction v
which we assume to be non-negative, radial and of compact support. In units where ℏ = 1
and the particle mass is m = 1/2 the Hamiltonian is given by

HN =
N∑︂
j=1

−∆j +
∑︂
i<j

v(xi − xj),

where ∆j denotes the Laplacian on the j’th coordinate. For spin-1
2 fermions in some domain Λ =

ΛL = [−L/2, L/2]3 one realises the Hamiltonian on the space L2
a(ΛN ,C2) = ⋀︁N L2(Λ,C2).

Since the Hamiltonian is spin-independent we can specify definite values for the number of
particles with each spin, i.e. Nσ particles of spin σ ∈ {↑, ↓} and N↑ +N↓ = N . In this setting
the Hamiltonian is realized on the space HN↑,N↓ = L2

a(ΛN↑) ⊗ L2
a(ΛN↓). The ground state

energy on the space L2
a(ΛN ,C2) is then given by minimizing in Nσ (satisfying N↑ +N↓ = N)

the ground state energies on the spaces HN↑,N↓ .

This system was previously studied in [FGHP21; Gia23a; LSS05] where it is shown that for a
dilute system in the thermodynamic limit

e(ρ↑, ρ↓) = lim
L→∞

Nσ/L3→ρσ

inf
ψ∈HN↑,N↓
∥ψ∥L2 =1

⟨ψ|HN |ψ⟩
L3 = 3

5(6π2)2/3(ρ5/3
↑ + ρ

5/3
↓ ) + 8πaρ↑ρ↓ + aρ2ε(a3ρ),

where ρ = ρ↑ +ρ↓, a is the (s-wave) scattering length of the interaction v and ε(a3ρ) = o(1) in
the limit a3ρ ≪ 1. The existence of the thermodynamic limit follows from [Rob71]. Moreover
the limit doesn’t depend on the boundary conditions.

The leading term 3
5(6π2)2/3(ρ5/3

↑ +ρ5/3
↓ ) is the kinetic energy of a free Fermi gas. The next term

8πaρ↑ρ↓ is the leading correction coming from the interaction. This term may be understood
as coming from the energy of a pair of opposite-spin fermions times the number of such pairs.
The energy correction arising from interactions between fermions of the same spin is of order
a3
pρ

8/3, where ap denotes the p-wave scattering length (see Chapter 3) and so much smaller.

The first proof of this result was given by Lieb, Seiringer and Solovej [LSS05]. Their proof
gives the explicit error bounds −C(a3ρ)1/39 ≤ ε(a3ρ) ≤ C(a3ρ)2/27 for some constant C > 0.
These error bounds were later improved in [FGHP21] and very recently in [Gia23a], where in
particular the “optimal” upper bound ε(a3ρ) ≤ C(a3ρ)1/3 is shown. The works [FGHP21;
Gia23a] however deal with more regular potentials than the quite general setting studied
in [LSS05], where it is assumed that the interaction is non-negative, radial and compactly
supported. In [FGHP21; Gia23a] the interaction is additionally assumed to be smooth. In
particular interactions with a hard core are not treated in [FGHP21; Gia23a].
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5.1. Introduction and main results

The upper bound of order aρ1/3 is optimal in the sense that this is the order of the conjectured
next term in the expansion. Namely the Huang–Yang term [HY57], see [Gia23a; Gia23b].

Our main theorem is the “almost optimal” upper bound ε(a3ρ) ≤ Cδ(a3ρ)1/3−δ for any δ > 0
for some δ-dependent constant Cδ > 0 under the same assumptions as in [LSS05], i.e. weaker
than that of [FGHP21; Gia23a]. In particular we allow for v to have a hard core. A central
ingredient in the proof is to prove a rigorous version of a fermionic cluster expansion adapted
from [GGR71]. This is analogous to what is done in Chapter 3 for spin-polarized fermions.
(See also Chapter 6 for the application to spin-polarized fermions at positive-temperature.)

5.1.1 Precise statements of results
To give the statement of our main theorem, we first define the scattering length(s) of the
interaction v.

Definition 5.1.1 ([LY01, Appendix A; SY20, Section 4]). The s- and p-wave scattering
lengths a and ap are defined by

4πa = inf
{︄ˆ (︃

|∇f |2 + 1
2v|f |2

)︃
dx : f(x) → 1 for |x| → ∞

}︄
,

12πa3
p = inf

{︄ˆ (︃
|∇f |2 + 1

2v|f |2
)︃

|x|2 dx : f(x) → 1 for |x| → ∞
}︄
.

The minimizing f ’s are the s- and p-wave scattering functions. They are denoted fs0 and fp0
respectively.

The minimizing functions fs0 and fp0 are real-valued. We collect properties of them in
Lemma 5.2.5.

With this we may then state our main theorem.
Theorem 5.1.2. Let 0 ≤ v ≤ +∞ be radial and of compact support. Then for any δ > 0
and for sufficiently small a3ρ we have

e(ρ↑, ρ↓) ≤ 3
5(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) + 8πaρ↑ρ↓ +Oδ

(︂
aρ2(a3ρ)1/3−δ

)︂
.

The subscript δ in Oδ denotes that the implicit constant depends on δ. Further, the v-
dependence of the error-term Oδ

(︂
aρ2(a3ρ)1/3−δ

)︂
is only via the scattering lengths a and ap

(meaning that the implicit constant depends on the ratio ap/a but otherwise not on v). In
particular we note that v is allowed to have a hard core, meaning v(x) = +∞ for |x| ≤ r0 for
some r0 > 0.

The essential steps of the proof are

(1) Show the absolute convergence of a fermionic cluster expansion adapted from the
formal calculations of [GGR71]. For this we need the “Fermi polyhedron”, a polyhedral
approximation to the Fermi ball, described in Section 3.2.2. The calculation of the
fermionic cluster expansion is given in Section 5.3 and the absolute convergence in
shown in Section 5.4.
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(2) Bound the energy of a Jastrow-type trial state. For this step, the central part is computing
the values of all diagrams of a certain type exactly and using these exact values up to
some arbitrary high order. This is somewhat similar to the approach in [BCGOPS23] for
the dilute Bose gas. This calculation is part of the proof of Lemma 5.5.1.

Remark 5.1.3 (Higher spin). With not much difficulty one can extend the result to higher
spin and with a spin-dependent interaction vσσ′ = vσ′σ. The result for S ≥ 2 spin values
{1, . . . , S} is

e (ρ1, . . . , ρS) ≤ 3
5(6π2)2/3

S∑︂
σ=1

ρ5/3
σ + 8π

∑︂
1≤σ<σ′≤S

aσσ′ρσρσ′ +Oδ

(︂
aρ2(a3ρ)1/3−δ

)︂
,

where aσσ′ is the s-wave scattering length of the spin σ – spin σ′ interaction vσσ′ and
a = supσ<σ′ aσσ′ . For conciseness of the proof we will only give it for S = 2, i.e. for spin-1

2
fermions. We will however give comments on how to adapt the individual (non-trivial) steps
of the proof to the higher spin setting. These comments are given in Remarks 5.3.3, 5.4.2,
5.5.4 and 5.5.6.

Remark 5.1.4 (Comparison with [FGHP21; Gia23a; LSS05]). The trial state we consider,
ψN↑,N↓ (defined in Equation (5.2.5) below), is in spirit the same as that considered in [LSS05].
They differ only in technical aspects (discussed in Remark 5.2.1 below). The reason we are
able to improve on the bound in [LSS05] is that we treat the cancellations between ⟨ψ|HN |ψ⟩
and ⟨ψ|ψ⟩ more precisely (for the [non-normalized] trial state ψ being defined as ψN↑,N↓ in
Equation (5.2.5) only without the normalization constant CN↑,N↓).
In [FGHP21; Gia23a] a completely different method is employed. There the system is studied
using a method inspired by Bogoliubov theory for dilute Bose gases. (The “bosons” appearing
here as pairs of opposite-spin fermions.)

The paper is structured as follows. In Section 5.2 we give some preliminary computations
and recall some properties of the scattering functions and Fermi polyhedron from [LY01]
and Chapter 3. Next, in Section 5.3 we give the calculation of a fermionic cluster expansion
adapted from [GGR71]. Subsequently, in Section 5.4 we find conditions for the absolute
convergence of the cluster expansion formulas of Section 5.3. Finally, in Section 5.5 we use
the formulas of Section 5.3 to bound the energy of a Jastrow-type trial state.

5.2 Preliminary computations
We first give a few preliminary computations. We will construct a trial state using a box
method of glueing trial states in smaller boxes together in Section 5.5.4. In the smaller boxes
we will need to use Dirichlet boundary conditions, however in Section 5.5.4 we will construct
trial states with Dirichlet boundary conditions out of trial states with periodic boundary
conditions. (See also Chapter 3.) Thus, we will use periodic boundary conditions in the box
Λ = ΛL = [−L/2, L/2]3.
First we establish some notation.

5.2.1 Notation

• We write xi and yj for the spatial coordinates of particle i of spin ↑ respectively particle
j of spin ↓.
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5.2. Preliminary computations

We write zi to mean either xi or yi if the spin is not important.
We write additionally z(i,↑) = xi and z(i,↓) = yi.

• We write [n,m] = {n, n+ 1, . . . ,m} for integers n ≤ m. If n > m then [n,m] = ∅.

• For a set A we write ZA = (za)a∈A for the coordinates of the vertices with labels in A.
(Similarly for XA and YA.)
In particular we write Z[n,m] = (zn, . . . , zm) for the coordinates of particles n, n +
1, . . . ,m.
If n = 1 we simply write Zm = Z[1,m] = (z1, . . . , zm).

• We write C for a generic (positive) constant, whose value may change line by line. If
we want to emphasize the dependence on some parameter A we will denote this by CA.

We consider the indices of the coordinates as vertices µ = (i, σ) ∈ V∞,∞ := N × {↑, ↓}. Here
σ ∈ {↑, ↓} labels the spin of the particle. Then we define

Vn,m := V ↑
n ∪ V ↓

m, V σ
p := {(1, σ), . . . , (p, σ)} ⊂ V∞,∞, σ ∈ {↑, ↓}, p ∈ N ∪ {∞}.

(We mean V σ
∞ = N × {σ} for p = ∞.) On the vertices V∞,∞ we define the ordering < as

follows.

µ = (i, σ) < (j, σ′) = ν
def⇐⇒ (σ =↑ and σ′ =↓) or (σ = σ′ and i < j) .

Define the rescaled and cut-off scattering functions fs and fp as

fs(x) =

⎧⎨⎩
1

1−a/bfs0(|x|) |x| ≤ b,

1 |x| ≥ b,
fp(x) =

⎧⎨⎩
1

1−a3
p/b

3fp0(|x|) |x| ≤ b,

1 |x| ≥ b,
(5.2.1)

where | · | := infn∈Z3 | · −nL|R3 (with | · |R3 denoting the norm on R3), b = ρ−1/3 and the
scattering function fs0 and fp0 are defined in Definition 5.1.1. (They are radial functions,
see Lemma 5.2.5, so fs and fp are well-defined.) We prefer to write b instead of its value
ρ−1/3 to keep apparent dependences on b. For b = ρ−1/3 we have b > R0, the range of v, for
sufficiently small a3ρ. Hence, fs and fp are continuous for sufficiently small a3ρ. (Note that
the metric on the torus Λ is given by d(x, y) = |x− y|. We will abuse notation slightly and
denote by | · | also the absolute value of some number or the norm on R3.)

To simplify notation we write for µ, ν ∈ V∞,∞

fµν :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
fp(xi − xj) µ = (i, ↑), ν = (j, ↑),
fs(xi − yj) µ = (i, ↑), ν = (j, ↓),
fs(yi − xj) µ = (i, ↓), ν = (j, ↑),
fp(yi − yj) µ = (i, ↓), ν = (j, ↓),

(5.2.2)

and similar for all quantities derived from fs and fp. In particular ∇fµν = ∇fs/p(zµ − zν)
with s/p meaning s if the spins of µ and ν are different and p if they are the same.

Next, we introduce the (non-normalized) Slater determinants DN↑ and DN↓ as

DNσ(ZNσ) = det [uk(zi)] k∈Pσ
F

i=1,...,Nσ

, Nσ = #P σ
F , uk(z) = L−3/2eikz,
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where P σ
F is the “Fermi polyhedron”, a polyhedral approximation to the Fermi ball described

in Section 5.2.3, see also Section 3.2.2, and #P σ
F denotes the number of points in P σ

F .

Further, we denote for µ, ν ∈ V∞,∞

γµν :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ
(1)
N↑

(xi;xj) µ = (i, ↑), ν = (j, ↑),
0 µ = (i, ↑), ν = (j, ↓),
0 µ = (i, ↓), ν = (j, ↑),
γ

(1)
N↓

(yi; yj) µ = (i, ↓), ν = (j, ↓),

(5.2.3)

where γ(1)
Nσ

are the one-particle density matrices of 1√
N↑!
DN↑ and 1√

N↓!
DN↓ .

Finally, for any (normalized) state ψ ∈ L2
a(ΛN↑) ⊗L2

a(ΛN↓) we will normalize reduced densities
as follows (for n+m ≥ 1).

ρ
(n,m)
ψ = N↑(N↑ − 1) · · · (N↑ − n+ 1)N↓(N↓ − 1) · · · (N↓ −m+ 1)

×
̇

|ψ|2 dX[n+1,N↑] dY[m+1,N↓].
(5.2.4)

For a (normalized) Slater determinant ψ = ψ(XN↑ , YN↓) = 1√
N↑!N↓!

DN↑(XN↑)DN↓(YN↓) we

write ρ(n,m) = ρ
(n,m)
ψ and for the trial state ψN↑,N↓ we write ρ(n,m)

Jas = ρ
(n,m)
ψN↑,N↓

.

We will fix the Fermi momenta kσF such that the ratio k↑
F/k

↓
F is rational, see Remark 5.2.3. This

is a restriction on which densities ρσ can arise from the trial state ψN↑,N↓ , see Remark 5.2.4.
We extend to all densities in Section 5.5.4. The dilute limit will be realized as (k↑

F +k↓
F )a → 0.

5.2.2 Computation of the energy
We consider the trial state

ψN↑,N↓(XN↑ , YN↓) = 1√︂
CN↑,N↓

⎡⎢⎢⎢⎣ ∏︂
µ,ν∈VN↑,N↓

µ<ν

fµν

⎤⎥⎥⎥⎦DN↑(XN↑)DN↓(YN↓)

= 1√︂
CN↑,N↓

⎡⎢⎢⎢⎣ ∏︂
1≤i≤N↑
1≤j≤N↓

fs(xi − yj)
∏︂

1≤i<j≤N↑

fp(xi − xj)
∏︂

1≤i<j≤N↓

fp(yi − yj)

⎤⎥⎥⎥⎦
×DN↑(XN↑)DN↓(YN↓), (5.2.5)

where CN↑,N↓ is a normalization constant such that
´ ⃓⃓⃓
ψN↑,N↓

⃓⃓⃓2
dXN↑ dYN↓ = 1.

Remark 5.2.1 (Comparison to [LSS05]). As mentioned in Remark 5.1.4 the trial state ψN↑,N↓

is mostly the same as that of [LSS05]. They differ in two technical aspects:

1. The choice of function implementing the correlations between particles of the same spin.
The exact function used is not particularly important since the same-spin interactions
give rise to a much smaller energy correction (than that of different-spin interactions).
The function fp is a natural choice.
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5.2. Preliminary computations

2. The choice of Slater determinant.

Our choice of Slater determinants with momenta in the Fermi polyhedron (as opposed
to the Fermi ball, which is what is used in [LSS05]) is a technical necessity as we discuss
in Section 5.2.3 below.

We compute the energy of the trial state ψN↑,N↓

⟨︂
ψN↑,N↓

⃓⃓⃓
HN

⃓⃓⃓
ψN↑,N↓

⟩︂
=
̇ ⎡⎢⎢⎢⎣ ∑︂

µ∈VN↑,N↓

⃓⃓⃓
∇zµψN↑,N↓

⃓⃓⃓2

+
∑︂

µ,ν∈VN↑,N↓
µ<ν

v(zµ − zν)
⃓⃓⃓
ψN↑,N↓

⃓⃓⃓2
⎤⎥⎥⎥⎦dXN↑ dYN↓ .

Note that for (real-valued) functions F,G we have

ˆ
|∇(FG)|2 = −

ˆ
G∆G|F |2 +

ˆ
|G|2 |∇F |2 . (5.2.6)

By symmetries of the Fermi polyhedron, see Definition 5.2.2, we have that DN↑ and DN↓ are
real-valued. Thus, using Equation (5.2.6) for F = ∏︁

µ<ν fµν and G = DN↑DN↓ for each of
the derivatives ∇xi

, ∇yj
we get (recall that ∇fµν = ∇fs/p(zµ − zν))

∑︂
µ∈VN↑,N↓

̇ ⃓⃓⃓
∇zµψN↑,N↓

⃓⃓⃓2
dXN↑ dYN↓

= E↑
0 + E↓

0 +
̇

dXN↑ dYN↓

⃓⃓⃓
ψN↑,N↓

⃓⃓⃓2 ⎡⎢⎣2
∑︂

µ∈V ↑
N↑

∑︂
ν∈V ↓

N↓

⃓⃓⃓⃓
⃓∇fµνfµν

⃓⃓⃓⃓
⃓
2

+ 2
∑︂

σ∈{↑,↓}

∑︂
µ,ν∈V σ

Nσ
µ<ν

⃓⃓⃓⃓
⃓∇fµνfµν

⃓⃓⃓⃓
⃓
2

+
∑︂

σ∈{↑,↓}

∑︂
µ∈V σ

Nσ

∑︂
ν,λ∈V −σ

N−σ

ν ̸=λ

∇fµν∇fµλ
fµνfµλ

+
∑︂

σ∈{↑,↓}

∑︂
µ,ν∈V σ

Nσ
µ̸=ν

∑︂
λ∈V −σ

N−σ

∇fµν∇fµλ
fµνfµλ

−
∑︂

σ∈{↑,↓}

∑︂
µ,ν,λ∈V σ

Nσ
µ,ν,λ distinct

∇fµν∇fνλ
fµνfνλ

⎤⎥⎦,

where Eσ
0 = ∑︁

k∈Pσ
F

|k|2 is the kinetic energy of the Slater determinants 1√
Nσ !DNσ and −σ is

the “other spin”, i.e. − ↑=↓ and − ↓=↑. (The factor 2 in the term 2∑︁µ∈V ↑
N↑

∑︁
ν∈V ↓

N↓

⃓⃓⃓
∇fµν

fµν

⃓⃓⃓2
arises as 2 = ∑︁

σ∈{↑,↓} 1.) The terms are grouped according to how many s-wave f ’s appear.
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In terms of the reduced densities we thus get⟨︂
ψN↑,N↓

⃓⃓⃓
HN

⃓⃓⃓
ψN↑,N↓

⟩︂
= E↑

0 + E↓
0 + 2

¨
ρ

(1,1)
Jas

⎡⎣⃓⃓⃓⃓⃓∇fs(x1 − y1)
fs(x1 − y1)

⃓⃓⃓⃓
⃓
2

+ 1
2v(x1 − y1)

⎤⎦ dx1 dy1

+
¨

ρ
(2,0)
Jas

⎡⎣⃓⃓⃓⃓⃓∇fp(x1 − x2)
fp(x1 − x2)

⃓⃓⃓⃓
⃓
2

+ 1
2v(x1 − x2)

⎤⎦ dx1 dx2

+
˚

ρ
(2,1)
Jas

[︄
∇fs(x1 − y1)∇fs(x2 − y1)
fs(x1 − y1)fs(x2 − y1)

+ ∇fs(x1 − y1)∇fp(x1 − x2)
fs(x1 − y1)fp(x1 − x2)

]︄
dx1 dx2 dy1

−
˚

ρ
(3,0)
Jas

∇fp(x1 − x2)∇fp(x2 − x3)
fp(x1 − x2)fp(x2 − x3)

dx1 dx2 dx3 + terms with ρ(0,2)
Jas , ρ

(1,2)
Jas , ρ

(0,3)
Jas .

(5.2.7)
We find formulas for the reduced densities in Section 5.3. Before doing so, we first recall some
properties on the “Fermi polyhedron” P σ

F and the scattering functions fs, fp.

5.2.3 Properties of the “Fermi polyhedron” and the scattering
functions

In this section we recall a few properties of the “Fermi polyhedron” from Section 3.2.2 and
Lemma 3.4.9 and scattering functions from [LY01, Appendix A].

The reason for introducing the “Fermi polyhedron” is that for the analysis of the absolute
convergence of the Gaudin–Gillespie–Ripka expansion we need good control over

ˆ
Λ

⃓⃓⃓
γ

(1)
Nσ

(x; 0)
⃓⃓⃓

dx =
ˆ

Λ

⃓⃓⃓⃓
⃓⃓ 1
L3

∑︂
k∈Pσ

F

eikx

⃓⃓⃓⃓
⃓⃓ dx.

By Equation (5.2.9a) below (coming from Lemma 3.2.12 and [KL18]) this is bounded by
s(logN)3. If we had instead chosen the Slater determinants in the trial state ψN↑,N↓ to have
momenta in the Fermi ball Bσ

F = {k ∈ 2π
L
Z3 : |k| ≤ kσF} we would have [GL19; Lif06]

ˆ
Λ

⃓⃓⃓
γ

(1)
Nσ

(x; 0)
⃓⃓⃓

dx =
ˆ

Λ

⃓⃓⃓⃓
⃓⃓ 1
L3

∑︂
k∈Bσ

F

eikx

⃓⃓⃓⃓
⃓⃓ dx ∼ N1/3.

This N -dependence would prevent us from achieving that both the Gaudin–Gillespie–Ripka
expansion converges absolutely and that the finite-size error from the kinetic energy is negligible.
See also Remark 5.3.4 and Remark 3.3.5.

The “Fermi polyhedron” is defined in Definition 3.2.7. We give here only a sketch of the
definition and state a few properties needed for our purposes. For a full discussion with proofs
we refer to Sections 3.B and 3.2.2.

Definition 5.2.2 (Sketch, see Definition 3.2.7). For each spin σ ∈ {↑, ↓} define the (convex)
polyhedron P σ with sσ “corners” (extremal points) as follows. All “corners” κσ1 , . . . , κσsσ

are
chosen of the form κσj = ζσ( p

1
j

Qσ
1
,
p2

j

Qσ
2
,
p3

j

Qσ
3
), where ζσ ∈ R, pij ∈ Z for i = 1, 2, 3, j = 1, . . . , sσ

and Qσ
1 , Q

σ
2 , Q

σ
3 are large distinct primes. Then P σ is the convex hull of these “corners” and

ζσ is chosen such that VolP σ = 4π
3 .
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5.2. Preliminary computations

The polyhedron P σ approximates the unit ball in the sense that any point on the surface
∂P σ has radial coordinate 1 +O(s−1

σ ). The polyhedron P σ is moreover symmetric under the
maps (k1, k2, k3) ↦→ (±k1,±k2,±k3) and “almost symmetric” under the maps (k1, k2, k3) ↦→
(ka, kb, kc) for (a, b, c) ̸= (1, 2, 3), see Lemma 3.2.11.

The Fermi polyhedron P σ
F is then defined as P σ

F := kσFP
σ ∩ 2π

L
Z3.

Moreover, L is chosen large such that kσ
FL

2π is rational and large for σ ∈ {↑, ↓}.

Remark 5.2.3. We choose kσF such that k↑
F/k

↓
F is rational since we need L with kσ

FL

2π rational
for both values of σ ∈ {↑, ↓}.

Remark 5.2.4. The free parameters are the Fermi momenta kσF , the length of the box L
and the number of corners of the polyhedra sσ. The particle numbers are then Nσ = #P σ

F

and the particle densities are ρσ = Nσ/L
3 = 1

6π2 (kσF )3
(︂
1 +O(N−1/3

σ )
)︂
. Not all densities ρσ0

arise this way. We need some argument to consider general densities ρσ0. This is discussed in
Section 5.5.4. Essentially by continuity and density of the rationals in the reals we can extend
results for the densities arising as ρσ = Nσ/L

3 to general densities ρσ0.

We will later choose L, sσ depending on a3ρ, meaning more precisely on (k↑
F +k↓

F )a, such that
L, sσ → ∞ as a3ρ → 0. Concretely we will choose sσ ∼ (a3ρ)−1/3+ε for some small ε > 0.

Next, we recall some properties of the Fermi polyhedron from Chapter 3. For the kinetic
energy (density) of the Slater determinants we have by Lemma 3.2.13

1
L3

∑︂
k∈Pσ

F

|k|2 = 3
5(6π2)2/3ρ5/3

σ (1 +O(s−2
σ ) +O(N−1/3

σ )). (5.2.8)

Here the sσ-dependent error is only negligible if we take sσ large enough — we need that
the Fermi polyhedron approximates the Fermi ball well in order for the kinetic energies (of
the associated Slater determinants) to be close. (Recall that the Slater determinant with
momenta in the Fermi ball is the ground state of the non-interacting system.)

Moreover, for Nσ = #P σ
F sufficiently large, the Fermi polyhedron satisfies the following bounds

by Lemmas 3.2.12 and 3.4.9 (see also [KL18]).

ˆ
Λ

⃓⃓⃓⃓
⃓⃓ 1
L3

∑︂
k∈Pσ

F

eikx

⃓⃓⃓⃓
⃓⃓ dx ≤ Csσ(logNσ)3 ≤ Cs(logN)3, (5.2.9a)

ˆ
Λ

⃓⃓⃓⃓
⃓⃓ 1
L3

∑︂
k∈Pσ

F

kjeikx

⃓⃓⃓⃓
⃓⃓ dx ≤ Csσρ

1/3
σ (logNσ)3 ≤ Csρ1/3(logN)3, (5.2.9b)

ˆ
Λ

⃓⃓⃓⃓
⃓⃓ 1
L3

∑︂
k∈Pσ

F

kjkj
′
eikx

⃓⃓⃓⃓
⃓⃓ dx ≤ Csσρ

2/3
σ (logNσ)4 ≤ Csρ2/3(logN)4, (5.2.9c)

for any j, j′ = 1, 2, 3 where s = max{s↑, s↓}, ρ = ρ↑ + ρ↓, N = N↑ +N↓ and kj denotes the
j’th component of the vector k = (k1, k2, k3).

The first bound, Equation (5.2.9a), is needed to prove the absolute convergence of the
Gaudin–Gillespie–Ripka expansion discussed in Sections 5.3 and 5.4. The second two bounds,
Equations (5.2.9b) and (5.2.9c), are needed to bound the terms with ρ

(2,0)
Jas and ρ

(0,2)
Jas in
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5. Almost optimal upper bound for the ground state energy . . .

Equation (5.2.7). More precisely they are used in the proof of Lemma 5.5.5 below, but only
then.

Finally, we recall that the scattering functions satisfy the scattering equations (Euler-Lagrange
equations of the defining minimization problems in Definition 5.1.1)

−2∆fs0 + vfs0 = 0, −4x · ∇fp0 − 2|x|2∆fp0 + |x|2vfp0 = 0. (5.2.10)

Moreover
Lemma 5.2.5 ([LY01, Appendix A], see also Lemma 3.2.2). The functions fs0 and fp0 are
real-valued and radial. Moreover

[︄
1 − a

|x|

]︄
+

≤ fs0(x) ≤ 1,
[︄
1 −

a3
p

|x|3

]︄
+

≤ fp0(x) ≤ 1.

For |x| ≥ R0, the range of v, the left-hand-sides are equalities.

5.3 Gaudin–Gillespie–Ripka expansion

In this section we calculate reduced densities of the trial state ψN↑,N↓ . The ideas behind this
calculation are mostly contained in (the formal calculations of) [GGR71]. The calculation we
give here is a slight generalization thereof including the spin. Additionally, we give conditions
for the final formulas (given in Theorem 5.3.2) to hold, i.e. we give conditions for their
absolute convergence. The argument here is in spirit the same as that of Section 3.3. Here it
is slightly more involved as we have to take into account the different spins. In Section 3.3
there is only one value of the spin.

In the calculations below one may replace the functions fs, fp and the one-particle density
matrices γ(1)

Nσ
by more general functions. We discuss this in Remark 5.3.5 below.

5.3.1 Calculation of the normalization constant

We first compute the normalization constant CN↑,N↓ . Recall the definition of the trial state
ψN↑,N↓ in Equation (5.2.5). Write f 2

µν = 1 + gµν for all the f -factors and factor out the
product ∏︁µ<ν f

2
µν = ∏︁

µ<ν(1 + gµν). We are then led to define the set Gp,q as the set of all
graphs on p black and q white vertices such that each vertex has degree at least 1, i.e. has an
incident edge. We label the black vertices as V ↑

p = {(1, ↑), . . . , (p, ↑)} and the white vertices
as V ↓

q = {(1, ↓), . . . , (q, ↓)}. For an edge e = (µ, ν) we write ge = gµν and define

Wp,q = Wp,q(Xp, Yq) =
∑︂

G∈Gp,q

∏︂
e∈G

ge.
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5.3. Gaudin–Gillespie–Ripka expansion

Then

CN↑,N↓ =
̇ ∏︂

µ<ν

(1 + gµν)|DN↑ |2|DN↓ |2 dXN↑ dYN↓

=
̇

⎡⎢⎢⎢⎢⎢⎢⎣1 +
∑︂

0≤p≤N↑
0≤q≤N↓
p+q≥2

N↑(N↑ − 1) · · · (N↑ − p+ 1)N↓(N↓ − 1) · · · (N↓ − q + 1)
p!q! Wp,q

⎤⎥⎥⎥⎥⎥⎥⎦
× |DN↑|2|DN↓|2 dXN↑ dYN↓

= N↑!N↓!

⎡⎢⎢⎢⎢⎢⎢⎣1 +
∑︂

0≤p≤N↑
0≤q≤N↓
p+q≥2

1
p!q!

̇
Wp,qρ

(p,q) dXp dYq

⎤⎥⎥⎥⎥⎥⎥⎦ .

(Recall the definition of ρ(p,q) in Equation (5.2.4).) A simple calculation using the Wick rule
then shows (recall the definition of γµν in Equation (5.2.3))

ρ(p,q)(Xp, Yq) = det [γµν ]µ,ν∈Vp,q
= det[γ(1)

N↑
(xi; yj)]1≤i,j≤p det[γ(1)

N↓
(yi; yj)]1≤i,j≤q

Taking this determinantal expression as the definition we have ρ(p,q) = 0 for p > N↑ or q > N↓
since the matrices [γ(i,↑),(j,↑)]i,j∈N and [γ(i,↓),(j,↓)]i,j∈N have ranks N↑ and N↓ respectively. Thus
we may extend the p- and q-sums to ∞. Now, expanding the determinant ρ(p,q) and the Wp,q

we group the permutations and the graph together in a diagram. We will for the calculation
of the reduced densities need a slightly more general definition, which we now give.

Definition 5.3.1. The set Gn,m
p,q is the set of all graphs with p internal black vertices, n

external black vertices, q internal white vertices and m external white vertices, such that there
are no edges between external vertices, and such that all internal vertices has degree at least 1.
That is, all internal vertices are incident to at least one edge and external vertices may have
degree 0. As above we label the black vertices as V ↑

p+n = {(1, ↑), . . . , (p+n, ↑)} where the first
n are the external vertices. The white vertices are labelled V ↓

q+m = {(1, ↓), . . . , (q +m, ↓)},
where the first m are the external vertices. In case n = m = 0 we recover G0,0

p,q = Gp,q.

If we need the vertices to have certain labels we will write GB∗,W ∗

B,W (or similar with only
some of p, q, n,m replaced by sets) for the set of all graphs with internal black vertices B,
external black vertices B∗, internal white vertices W and external white vertices W ∗, where
B,B∗ ⊂ V ↑

∞ and W,W ∗ ⊂ V ↓
∞ are all pairwise disjoint.

The set Dn,m
p,q is the set of all diagrams on p internal black vertices, n external black vertices, q

internal white vertices and m external white vertices. Such a diagram is a tuple D = (π, τ,G)
where π ∈ Sp+n, τ ∈ Sq+m (viewed as directed graphs on the black and white vertices
respectively) and G ∈ Gn,m

p,q .
We will refer to the edges in G as g-edges and the graph G as a g-graph. Moreover, we refer
to the edges in both π and τ as γ-edges.
The value of the diagram D = (π, τ,G) ∈ Dn,m

p,q is the function

Γn,mD (Xn, Ym)

= (−1)π(−1)τ
̇ ∏︂

e∈G
ge

p+n∏︂
i=1

γ
(1)
N↑

(xi;xπ(i))
q+m∏︂
j=1

γ
(1)
N↓

(yj; yτ(j)) dX[n+1,n+p] dY[m+1,m+q].
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5. Almost optimal upper bound for the ground state energy . . .

If p = 0 and/or q = 0 there are no integrations in the xi and/or yj variables.

A diagram D = (π, τ,G) is said to be linked if the graph G̃ with union all edges of π, τ and
G is connected. The set of linked diagrams is denoted Ln,m

p,q .

In case m = n = 0 we write D0,0
p,q = Dp,q,L0,0

p,q = Lp,q and Γ0,0
D = ΓD (i.e. without a

superscript).

∗
∗

∗

Figure 5.3.1: Example of a diagram (π, τ,G) with 3 linked components. Vertices
denoted by • are the black vertices, i.e. of spin ↑, and vertices denoted by ◦ are
the white vertices, i.e. of spin ↓. Moreover, vertices with label ∗ are external,
dashed lines denote g-edges and arrows (µ, ν) = ((i, σ), (j, σ′)) denote γ-edges,
i.e. that π(i) = j if σ = σ′ =↑ or τ(i) = j if σ = σ′ =↓. Note that there are no
γ-edges between vertices of different colours (i.e. with different spin).

In terms of diagrams we have

CN↑,N↓ = N↑!N↓!

⎡⎢⎢⎣1 +
∑︂
p,q≥0
p+q≥2

1
p!q!

∑︂
D∈Dp,q

ΓD

⎤⎥⎥⎦ . (5.3.1)

We may decompose any diagram D = (π, τ,G) into its linked components. For this, note
that its value ΓD factors over its linked components. Moreover, each linked component has at
least 2 vertices, since they have degree at least one. Thus,

1
p!q!

∑︂
D∈Dp,q

ΓD

=
∞∑︂
k=1⏞⏟⏟⏞

# lnk. cps.

1
k!

∑︂
p1,q1≥0
p1+q1≥2

· · ·
∑︂

pk,qk≥0
pk+qk≥2⏞ ⏟⏟ ⏞

sizes linked components

χ(
∑︁

pℓ=p)χ(
∑︁

qℓ=q)
∑︂

D1∈Lp1,q1

· · ·
∑︂

Dk∈Lpk,qk⏞ ⏟⏟ ⏞
linked components

ΓD1

p1!q1!
· · · ΓDk

pk!qk!
.

Here the factor 1
k! comes from counting the possible ways to label the k linked components

and the factors 1
pℓ!qℓ! come from counting the possible ways of labelling the vertices in the

different linked components (and using the factor 1
p!q! already present). If we assume that

the sum ∑︁
p,q:p+q≥2

1
p!q!

∑︁
D∈Lp,q

ΓD is absolutely convergent, (more precisely we assume that∑︁
p,q:p+q≥2

1
p!q!

⃓⃓⃓∑︁
D∈Lp,q

ΓD
⃓⃓⃓
< ∞,) then we may interchange the p, q-sum with the pℓ, qℓ-sums.

The absolute convergence is proven in Theorem 5.3.2 below. Thus, under the conditions of
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5.3. Gaudin–Gillespie–Ripka expansion

Theorem 5.3.2, we have

CN↑,N↓ = N↑!N↓!

⎡⎢⎢⎣1 +
∞∑︂
k=1

1
k!

∑︂
p1,q1≥0
p1+q1≥2

· · ·
∑︂

pk,qk≥0
pk+qk≥2

∑︂
D1∈Lp1,q1

· · ·
∑︂

Dk∈Lpk,qk

ΓD1

p1!q1!
· · · ΓDk

pk!qk!

⎤⎥⎥⎦

= N↑!N↓!

⎡⎢⎢⎣1 +
∞∑︂
k=1

1
k!

⎛⎜⎜⎝ ∑︂
p,q≥0
p+q≥2

1
p!q!

∑︂
D∈Lp,q

ΓD

⎞⎟⎟⎠
k⎤⎥⎥⎦

= N↑!N↓! exp

⎡⎢⎢⎣ ∑︂
p,q≥0
p+q≥2

1
p!q!

∑︂
D∈Lp,q

ΓD

⎤⎥⎥⎦ .
(5.3.2)

5.3.2 Calculation of the reduced densities
For the calculation of the reduced densities we need to keep track of also the external vertices.
First, we have the formula (for n+m ≥ 1)

ρ
(n,m)
Jas = N↑(N↑ − 1) · · · (N↑ − n+ 1)N↓(N↓ − 1) · · · (N↓ −m+ 1)

×
̇

|ψN↑,N↓(XN↑ , YN↓)|2 dX[n+1,N↑] dY[m+1,N↓]

= N↑(N↑ − 1) · · · (N↑ − n+ 1)N↓(N↓ − 1) · · · (N↓ −m+ 1)
CN↑,N↓

∏︂
µ<ν

µ,ν∈Vn,m

f 2
µν

×
̇ ∏︂

µ∈Vn,m,ν /∈Vn,m

(1 + gµν)
∏︂
µ<ν

µ,ν /∈Vn,m

(1 + gµν)

×DN↑(XN↑)DN↓(YN↓) dX[n+1,N↑] dY[m+1,N↓]

= N↑!N↓!
CN↑,N↓

∏︂
µ<ν

µ,ν∈Vn,m

f 2
µν

⎡⎣ ∑︂
p,q≥0

1
p!q!

̇
ρ(n+p,m+q) ∑︂

G∈Gn,m
p,q

∏︂
e∈G

ge dX[n+1,n+p] dY[m+1,m+q]

⎤⎦

= N↑!N↓!
CN↑,N↓

∏︂
µ<ν

µ,ν∈Vn,m

f 2
µν

⎡⎢⎢⎣ρ(n,m) +
∑︂
p,q≥0
p+q≥1

1
p!q!

∑︂
D∈Dn,m

p,q

Γn,mD

⎤⎥⎥⎦ (5.3.3)

where we extended the p, q-sums to ∞ as in Section 5.3.1 above and used that the p = q = 0
term gives ∑︂

D∈Dn,m
0,0

Γn,mD = ρ(n,m).

Note here that the p, q-sum does not require p+ q ≥ 2, since the internal vertices may connect
to external ones. As for the normalization constant in Section 5.3.1 we decompose each
diagram D into its linked components. Here we have to keep track of which linked components
contain which external vertices. To do this we introduce the set

Πn,m
κ :=

⎧⎪⎨⎪⎩(B∗,W∗) :
B∗ = (B∗

1 , . . . , B
∗
κ) partition of {1, . . . , n},

W∗ = (W ∗
1 , . . . ,W

∗
κ ) partition of {1, . . . ,m},

For all λ : B∗
λ ̸= ∅ and/or W ∗

λ ̸= ∅.

⎫⎪⎬⎪⎭ . (5.3.4)
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5. Almost optimal upper bound for the ground state energy . . .

The set Πn,m
κ parametrizes all possible ways for the diagram D ∈ Dn,m

p,q to have exactly κ
many linked components containing at least 1 external vertex each. Note that for κ > n+m
we have Πn,m

κ = ∅, since we require that for all λ we have B∗
λ ≠ ∅ or W ∗

λ ̸= ∅. Denoting
then k the number of linked components with only internal vertices we get the following.

1
p!q!

∑︂
D∈Dn,m

p,q

Γn,mD

=
∞∑︂
k=0

1
k!

n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

∑︂
p∗

1,q
∗
1≥0

· · ·
∑︂

p∗
κ,q

∗
κ≥0

∑︂
p1,q1≥0
p1+q1≥2

· · ·
∑︂

pk,qk≥0
pk+qk≥2

× χ(
∑︁

λ
p∗

λ
+
∑︁

ℓ
pℓ=p)χ(

∑︁
λ
q∗

λ
+
∑︁

ℓ
qℓ=q)

×
∑︂

D∗
1∈L

#B∗
1 ,#W ∗

1
p∗

1,q∗
1

· · ·
∑︂

D∗
κ∈L#B∗

κ,#W ∗
κ

p∗
κ,q∗

κ

Γ#B∗
1 ,#W ∗

1
D∗

1
(XB∗

1
, YW ∗

1
)

p∗
1!q∗

1! · · ·
Γ#B∗

κ,#W ∗
κ

D∗
κ

(XB∗
κ
, YW ∗

κ
)

p∗
κ!q∗

κ!

×
∑︂

D1∈Lp1,q1

· · ·
∑︂

Dk∈Lpk,qk

ΓD1

p1!q1!
· · · ΓDk

pk!qk!
.

(5.3.5)

(Note that the linked components with external vertices may have 0 or 1 internal vertices,
i.e. the p∗

λ, q
∗
λ-sums do not require p∗

λ + q∗
λ ≥ 2.) The factorial factors come from counting

the different labellings: The factors 1
k! and 1

κ! from the labellings of the clusters and the
factors 1

p∗
λ

! ,
1
q∗

λ
! ,

1
pℓ! ,

1
qℓ! from labelling the internal vertices of the different clusters exactly as in

Section 5.3.1 above.

If we assume absolute convergence of all the Γn′,m′-sums with n′ ≤ n and m′ ≤ m (i.e. that∑︁
p,q≥0

1
p!q!

⃓⃓⃓⃓∑︁
D∈Ln′,m′

p,q
Γn

′,m′

D

⃓⃓⃓⃓
< ∞) then we may interchange the p, q-sum with the p∗

λ, q
∗
λ- and

pℓ, qℓ-sums. We then get

∑︂
p,q≥0

1
p!q!

∑︂
D∈Dn,m

p,q

Γn,mD

=
∞∑︂
k=0

1
k!

⎛⎜⎜⎝ ∑︂
p,q≥0
p+q≥2

1
p!q!

∑︂
D∈Lp,q

ΓD

⎞⎟⎟⎠
k

×
n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

κ∏︂
λ=1

⎡⎢⎢⎣ ∑︂
pλ,qλ≥0

1
pλ!qλ!

∑︂
Dλ∈L

#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W

∗
λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤⎥⎥⎦ .
(5.3.6)

Thus by Equations (5.3.2) and (5.3.3) we conclude the formula

ρ
(n,m)
Jas (Xn, Ym)

=

⎡⎢⎢⎣ ∏︂
µ,ν∈Vn,m
µ<ν

f 2
µν

⎤⎥⎥⎦ n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

κ∏︂
λ=1

⎡⎢⎢⎣ ∑︂
pλ,qλ≥0

1
pλ!qλ!

∑︂
Dλ∈L

#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W

∗
λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤⎥⎥⎦
under the assumption of absolute convergence.

158



5.3. Gaudin–Gillespie–Ripka expansion

5.3.3 Summary of results
With the calculation above we may then state the following theorem.
Theorem 5.3.2. For integers n0,m0 ≥ 0 there exist constants cn0,m0 , Cn0,m0 > 0 (small and
large respectively) such that if sab2ρ(logN)3 < cn0,m0 then

∑︂
p,q≥0
p+q≥2

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp,q

ΓD

⃓⃓⃓⃓
⃓⃓ < ∞,

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓ ≤ Cn0,m0ρ

n+m < ∞ (5.3.7)

for any n ≤ n0 and m ≤ m0 with n+m ≥ 1. In particular, then

ρ
(n,m)
Jas (Xn, Ym)

=

⎡⎢⎢⎣ ∏︂
µ,ν∈Vn,m
µ<ν

f 2
µν

⎤⎥⎥⎦ n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

κ∏︂
λ=1

⎡⎢⎢⎣ ∑︂
pλ,qλ≥0

1
pλ!qλ!

∑︂
Dλ∈L

#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W

∗
λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤⎥⎥⎦ ,
(5.3.8)

where Πn,m
κ is defined in Equation (5.3.4).

As particular cases we note that for n+m = 1 we have by translation invariance that

ρ↑ = ρ
(1,0)
Jas =

∑︂
p,q≥0

1
p!q!

∑︂
D∈L1,0

p,q

Γ1,0
D , ρ↓ = ρ

(0,1)
Jas =

∑︂
p,q≥0

1
p!q!

∑︂
D∈L0,1

p,q

Γ0,1
D . (5.3.9)

We give the proof of Theorem 5.3.2 below.

Remark 5.3.3 (Higher spin). One may readily generalize the computation above to a general
number of spins S. For this one introduces vertices of more colours and diagrams with such,
i.e. the sets of graphs and diagrams Gn1,...,nS

p1,...,pS
,Dn1,...,nS

p1,...,pS
,Ln1,...,nS

p1,...,pS
and the values Γn1,...,nS

D . The
condition of absolute convergence is completely analogous.

Remark 5.3.4. The condition for the absolute convergence is not uniform in the volume, hence
the need for a box method as given in Section 5.5.4. The condition of absolute convergence is
additionally the reason for introducing the Fermi polyhedron. This is discussed in Remark 3.3.5.
If one did not introduce the Fermi polyhedron and instead used the Fermi ball the factor
s(logN)3 in the assumption of Theorem 5.3.2 should be replaced by N1/3.

Remark 5.3.5 (General f and γ). In the computation above we may replace the specific
functions fs, fp by more general functions fσσ′ = fσ′σ ≥ 0. (One then introduces ge =
f 2
σσ′(zi − zj) − 1 for e = ((i, σ), (j, σ′)).)

Moreover, for the absolute convergence we may additionally replace the one-particle densities
γ

(1)
Nσ

by general functions γσ(zi − zj). (One then defines γµν as in Equation (5.2.3) above.) In
the computation above we crucially used that [det γµν ]µ,ν∈Vp,q = 0 for appropriately large p, q
in order to extend the p, q-sums to ∞. If for the general γσ this is not valid, this step of the
computation above is not valid. The rest of the calculation starting from what one gets out of
this step is however still valid. That is, the calculation in Section 5.3.1 is valid starting from
Equation (5.3.1) and the calculations in Equations (5.3.5) and (5.3.6) in Section 5.3.2 are
valid.

The statement of the absolute convergence in this more general setting reads
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Lemma 5.3.6. Suppose there exists a constant CTG ≥ 1 such that

sup
σ,σ′

sup
z1,...,zq

∏︂
1≤i<j≤q

fσσ′(zi − zj)2 ≤ (CTG)q for any q ∈ N. (5.3.10)

Then for integers n1,0, . . . , nS,0 there exists constants cn1,0,...,nS,0 , Cn1,0,...,nS,0 > 0 such that if

sup
σ

∑︂
k∈ 2π

L
Z3

|γ̂σ(k)| × sup
σ,σ′

ˆ
Λ

⃓⃓⃓
f 2
σσ′ − 1

⃓⃓⃓
×
[︄
1 + sup

σ

ˆ
Λ

|γσ|
]︄
< cn1,0,...,nS,0 , (5.3.11)

where γ̂σ(k) = 1
L3

´
Λ γσ(x)e−ikx dx denotes the Fourier transform, then

∑︂
p1,...,pS≥0∑︁

σ
pσ≥2

1
p1! · · · pS!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp1,...,pS

ΓD

⃓⃓⃓⃓
⃓⃓ < ∞,

∑︂
p1,...,pS≥0

1
p1! · · · pS!

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
D∈Ln1,...,nS

p1,...,pS

Γn1,...,nS
D

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cn1,0,...,nS,0

⎡⎢⎣sup
σ

∑︂
k∈ 2π

L
Z3

|γ̂σ(k)|

⎤⎥⎦
∑︁

σ
nσ

< ∞

(5.3.12)
for all nσ ≤ nσ,0 with ∑︁σ nσ ≥ 1. In particular then

Z := 1 +
∑︂

p1,...,pS≥0∑︁
σ
pσ≥2

1
p1! · · · pS!

∑︂
D∈Dp1,...,pS

ΓD = exp

⎡⎢⎢⎢⎣ ∑︂
p1,...,pS≥0∑︁

σ
pσ≥2

1
p1! · · · pS!

∑︂
D∈Lp1,...,pS

ΓD

⎤⎥⎥⎥⎦
and

1
Z

∑︂
p1,...,pS≥0

1∏︁
σ pσ!

∑︂
D∈Dn1,...,nS

p1,...,pS

Γn1,...,nS
D ((Xσ

nσ
)σ=1,...,S)

=

∑︁
σ
nσ∑︂

κ=1

1
κ!

∑︂
(V∗1,...,V∗S)∈Πn1,...,nS

κ

×
κ∏︂
λ=1

⎡⎢⎢⎢⎢⎣
∑︂

p1
λ
,...,pS

λ
≥0

1∏︁
σ p

σ
λ!

∑︂
Dλ∈L

#V ∗1
λ

,...,#V ∗S
λ

p1
λ

,...,pS
λ

Γ#V ∗1
λ ,...,#V ∗S

λ
Dλ

((Xσ
V ∗σ

λ
)σ=1,...,S)

⎤⎥⎥⎥⎥⎦ ,

where

Πn1,...,nS
κ :=

{︄
(V∗1, . . . ,V∗S) : V∗σ = (V ∗σ

1 , . . . , V ∗σ
κ ) partition of {1, . . . , nσ}

For all λ : V ∗σ
λ ̸= ∅ for some σ

}︄

parametrizes the ways for the external vertices to lie in κ different linked components, the
coordinates of each spin σ are labelled xσj , j ∈ N, and we denote by Xσ

A = (xσj )j∈A the
coordinates with labels in the set A.

The condition in Equation (5.3.10) is the “stability condition” of the tree-graph bound [PU09,
Proposition 6.1; Uel18].
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We give the proof of Lemma 5.3.6 in Section 5.4 below for the case S = 2. The proof for
general S is a straightforward modification, but notationally more cumbersome. The case
S = 1 is treated in Section 3.3.1. Theorem 5.3.2 is an immediate corollary.

Proof of Theorem 5.3.2. Note that fs, fp ≤ 1 and γ̂Nσ
(k) := L−3 ´

Λ γ
(1)
Nσ

(x; 0)e−ikx dx =
L−3χ(k∈Pσ

F ) so ∑︁k∈ 2π
L
Z3

⃓⃓⃓
γ̂Nσ

(k)
⃓⃓⃓
= ρσ ≤ ρ. Moreover, we have the boundsˆ

|gs| ≤ Cab2,

ˆ
|gp| ≤ Ca3

p log(b/ap) ≤ Cab2, (5.3.13)

which follow by a simple computation using Lemma 5.2.5. Recalling also Equation (5.2.9)
then Lemma 5.3.6 proves the desired.

5.4 Absolute convergence of the Gaudin–Gillespie–Ripka
expansion

In this section we give the proof of Lemma 5.3.6 for the case S = 2. The proof is similar to that
of Theorem 3.3.4. We need to prove (for all n,m and uniformly in Xn, Ym) Equation (5.3.12)
if Equations (5.3.10) and (5.3.11) are satisfied. To simplify notation we define

γ∞ := sup
σ

∑︂
k∈ 2π

L
Z3

|γ̂σ(k)| , Ig := sup
σ,σ′

ˆ
Λ

⃓⃓⃓
f 2
σσ′ − 1

⃓⃓⃓
= sup

e

ˆ
Λ

|ge|, Iγ := sup
σ

ˆ
Λ

|γσ| ,

where as above γ̂σ(k) = L−3 ´
Λ γσ(x)e−ikx dx. Equation (5.3.11) then reads that γ∞Ig(1+Iγ)

is sufficiently small.
We give the proof in two steps. First we consider the case n = m = 0.

5.4.1 Absolute convergence of the Γ-sum
In this section we show that ∑︂

p,q≥0
p+q≥2

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp,q

ΓD

⃓⃓⃓⃓
⃓⃓ < ∞

under the relevant conditions. Defining clusters as connected components of G we split
the sum into clusters as in Section 3.3.1. Denoting the sizes of the clusters by (nℓ,mℓ),
ℓ = 1, . . . , k (meaning that the cluster ℓ has nℓ black vertices and mℓ white vertices) we get

1
p!q!

∑︂
D∈Lp,q

ΓD

=
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

χ(
∑︁

ℓ
nℓ=p)χ(

∑︁
ℓ
mℓ=q)

1∏︁k
ℓ=1 nℓ!mℓ!

×
∑︂

Gℓ∈Cnℓ,mℓ

̇
dXp dYq

⎡⎣ k∏︂
ℓ=1

∏︂
e∈Gℓ

ge

⎤⎦

×

⎡⎢⎢⎢⎣∑︂
π∈Sp

τ∈Sq

(−1)π(−1)τχ((π,τ,∪ℓGℓ) linked)

p∏︂
i=1

γ↑(xi − xπ(i))
q∏︂
j=1

γ↓(yj − yτ(j))

⎤⎥⎥⎥⎦ ,

(5.4.1)
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5. Almost optimal upper bound for the ground state energy . . .

where Cp,q ⊂ Gp,q denotes the subset of connected graphs. The factorial factors arise from
counting the possible labellings exactly as in Section 5.3.

The last line of Equation (5.4.1) is what we will call the truncated correlation. We give a
slightly more general definition for later use.

Definition 5.4.1. Let B1, . . . , Bk and W1, . . . ,Wk be sets of distinct black and white vertices
respectively, such that for each ℓ = 1, . . . , k we have Bℓ ̸= ∅ and/or Wℓ ̸= ∅. Then the
truncated correlation1 is defined as follows.

ρ
((B1,W1),...,(Bk,Wk))
t

=
∑︂

π∈S∪ℓBℓ
τ∈S∪ℓWℓ

(−1)π(−1)τχ((π,τ,∪ℓGℓ) linked)
∏︂

i∈∪ℓBℓ

γ↑(xi − xπ(i))
∏︂

j∈∪ℓWℓ

γ↓(yj − yτ(j)) (5.4.2)

for any connected graphs Gℓ ∈ CBℓ,Wℓ
. The definition does not depend on the choice of the

graphs Gℓ.

If the underlying sets B1, . . . , Bk,W1, . . . ,Wk are clear we will also use the notation

ρ
((#B1,#W1),...,(#Bk,#Wk))
t = ρ

((B1,W1),...,(Bk,Wk))
t .

The truncated correlations are studied in [GMR21, Appendix D]. To better compare to the
definition in [GMR21] we note the following.

In Equation (5.4.2) we may view (π, τ) together as a permutation of all the vertices (both
black and white). Moreover, if we instead sum over all permutations π′ ∈ S∪ℓBℓ∪∪ℓWℓ

we have
that any π′ not coming from two permutations π, τ on the black (respectively white) vertices
contributes 0, since any γ-factor between vertices of different spins is 0. That is,

ρ
((B1,W1),...,(Bk,Wk))
t =

∑︂
π′∈S∪ℓBℓ∪∪ℓWℓ

(−1)πχ(π′,∪Gℓ) linked)
∏︂

µ∈∪Bℓ∪∪Wℓ

γµ,π′(µ).

In [GMR21, Equation (D.53)] is shown the formula for the truncated correlation

ρ
((B1,W1),...,(Bk,Wk))
t =

∑︂
A∈A((B1,W1),...,(Bk,Wk))

∏︂
(µ,ν)∈A

γµν

ˆ
dµA(r) det R(r), (5.4.3)

where A denotes the set of anchored trees, µA is a probability measure and R(r) is an explicit
matrix. The set A((B1,W1),...,(Bk,Wk)) of anchored trees is the set of all directed graphs on
the vertices ∪ℓBℓ ∪ ∪ℓWℓ such that each vertex has at most one incoming and at most one
outgoing edge, and such that upon identifying all vertices inside each cluster the resulting
graph is a (directed) tree. The matrix R(r) satisfies the bound

|det R(r)| ≤ γ
∑︁

ℓ
(#Bℓ+#Wℓ)−(k−1)

∞ . (5.4.4)

This follows from [GMR21, Equation (D.57)]. We give a sketch of the argument here, see
also [GMR21, Lemma D.2] and Lemma 3.3.10.

1The truncated correlation is also sometimes referred to as the connected correlation. In particular, this is
the terminology used in [GMR21].
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Proof (sketch) of Equation (5.4.4). Write γσ(zµ − zν) = ⟨αµ|βν⟩ℓ2( 2π
L
Z3), where for k ∈ 2π

L
Z3

αµ(k) = e−ikzµ |γ̂σ(k)|1/2 γ̂σ(k)
|γ̂σ(k)| , βν(k) = e−ikzν |γ̂σ(k)|1/2 ,

with γ̂σ(k) = L−3 ´
Λ γσ(x)e−ikx dx the Fourier coefficients. Then by the Gram-Hadamard

inequality [GMR21, Lemma D.1]

⃓⃓⃓
det[γσ(zµ − zν)]µ,ν∈V σ

p

⃓⃓⃓
≤

∏︂
µ∈V σ

p

∥αµ∥ℓ2( 2π
L
Z3) ∥βµ∥ℓ2( 2π

L
Z3) ≤

⎡⎢⎣ ∑︂
k∈ 2π

L
Z3

|γ̂(k)|

⎤⎥⎦
p

.

It is then explained in the proof of [GMR21, Lemma D.6] how to adapt this argument to
bound det R(r).

Combining Equations (5.4.3) and (5.4.4) we conclude the bound⃓⃓⃓
ρ

((B1,W1),...,(Bk,Wk))
t

⃓⃓⃓
≤ γ

∑︁
ℓ
(#Bℓ+#Wℓ)−(k−1)

∞
∑︂

A∈A((B1,W1),...,(Bk,Wk))

∏︂
(µ,ν)∈A

|γµν | . (5.4.5)

With the truncated correlation we may write the last line of Equation (5.4.1) as ρ(N ,M)
t , where

N = (n1, . . . , nk), M = (m1, . . . ,mk), (N ,M) = ((n1,m1), . . . , (nk,mk)).

That is,
1
p!q!

∑︂
D∈Lp,q

ΓD =
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

χ(
∑︁

ℓ
nℓ=p)χ(

∑︁
ℓ
mℓ=q)

1∏︁k
ℓ=1 nℓ!mℓ!

×
̇

dXp dYq

⎡⎣ k∏︂
ℓ=1

∑︂
Gℓ∈Cnℓ,mℓ

∏︂
e∈Gℓ

ge

⎤⎦ ρ(N ,M)
t .

To bound this we use the tree-graph bound [Uel18], see also [PU09, Proposition 6.1]. By
assumption Equation (5.3.10) is satisfied and thus [Uel18]⃓⃓⃓⃓

⃓⃓ ∑︂
G∈Cp,q

∏︂
e∈G

ge

⃓⃓⃓⃓
⃓⃓ ≤ Cp+q

TG
∑︂

T∈Tp,q

∏︂
e∈T

|ge|, (5.4.6)

where Tp,q ⊂ Gp,q denotes the subset of trees. (To see this note that Cp,q (respectively Tp,q)
is the set of connected graphs (respectively trees) on p+ q vertices with the colours of the
vertices just serving as a handy reminder of the edge-weights ge.) By moreover using the
bound on the truncated correlation in Equation (5.4.5) we conclude that

∑︂
p,q≥0
p+q≥2

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp,q

ΓD

⃓⃓⃓⃓
⃓⃓

≤
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

1∏︁k
ℓ=1 nℓ!mℓ!

(CTGγ∞)
∑︁

ℓ
(nℓ+mℓ)−(k−1)Ck−1

TG

×
∑︂

T1,...,Tk
Tℓ∈Tnℓ,mℓ

∑︂
A∈A((n1,m1),...,(nk,mk))

̇
dXp dYq

⎡⎣ k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|

⎤⎦ ∏︂
(µ,ν)∈A

|γµν | .

(5.4.7)
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To do the integrations we note that the graph T with edges the union of (g-)edges in
T1, . . . , Tk and (γ-)edges in A is a tree on all the ∑︁ℓ nℓ +∑︁

ℓmℓ many vertices. One then
integrates the coordinates one leaf at a time (meaning that the index of the corresponding
coordinate is a leaf of the graph T ) and removes a vertex from the graph after integrating
over its corresponding coordinate.

To be more precise suppose that ν0 is a leaf of T . Then the variable zν0 appears exactly once
in the integrand. Either in a factor gµν0 (in which case the zν0-integral gives

´
|g| ≤ Ig by the

translation invariance) or in a factor γµν0 (in which case the zν0-integral gives
´

|γ| ≤ Iγ by
the translation invariance). The final integral gives L3 by the translation invariance. There
are k − 1 factors of γ and ∑︁ℓ(nℓ +mℓ − 1) = p+ q − k factors of g. Thus we get

∑︂
p,q≥0
p+q≥2

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp,q

ΓD

⃓⃓⃓⃓
⃓⃓ ≤

∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

1∏︁k
ℓ=1 nℓ!mℓ!

[︄
k∏︂
ℓ=1

#Tnℓ,mℓ

]︄

× #A((n1,m1),...,(nk,mk))(CTGIgγ∞)
∑︁

ℓ
(nℓ+mℓ)−k(CTGIγ)k−1CTGγ∞L

3.

In [GMR21, Appendix D.5] it is shown that

#A((n1,m1),...,(nk,mk)) ≤ k!C
∑︁

ℓ
(nℓ+mℓ).

Moreover, Tn,m = (n + m)n+m−2 ≤ Cn+m(n + m)! by Cayley’s formula. Finally, we may
bound the binomial coefficients (n+m)!

n!m! ≤ 2n+m. Thus

∑︂
p,q≥0
p+q≥2

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Lp,q

ΓD

⃓⃓⃓⃓
⃓⃓ ≤ CL3γ∞

∞∑︂
k=1

⎡⎢⎢⎣ ∑︂
n,m≥0
n+m≥2

(n+m)!
n!m! (CIgγ∞)n+m−1

⎤⎥⎥⎦
k

(CIγ)k−1

≤ CL3γ∞

∞∑︂
k=1

[︄ ∞∑︂
ℓ=2

ℓ(CIgγ∞)ℓ−1
]︄k

(CIγ)k−1

≤ CL3γ2
∞Ig < ∞

for γ∞Ig and γ∞IgIγ small enough. This shows that ∑︁p,q:p+q≥2
1
p!q!

∑︁
D∈Lp,q

ΓD is absolutely
convergent under this assumption. Next, we bound the Γn,m-sum for n+m ≥ 1.

5.4.2 Absolute convergence of the Γn,m-sum
In this section we prove that (for n+m ≥ 1 and uniformly in Xn, Ym)

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓ ≤ Cn,mγ

n+m
∞ < ∞

if Equation (5.3.10) is satisfied and γ∞Ig(1 + Iγ) is sufficiently small.

We do the same splitting into clusters (connected components of G) as in Section 5.4.1 above.
There is however a slight complication: One needs to keep track of in which clusters the
external vertices lie. This is exactly parametrized by the set Πn,m

κ (defined in Equation (5.3.4)).
Denoting the sizes (number of internal vertices) of the clusters containing external vertices by
(n∗

λ,m
∗
λ) and the sizes of clusters only containing internal vertices by (nℓ,mℓ) and introducing
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Cn,mp,q ⊂ Gn,m
p,q as the subset of connected graphs (and similarly CB

∗,W ∗

B,W ⊂ GB∗,W ∗

B,W , recall
Definition 5.3.1) we get

1
p!q!

∑︂
D∈Ln,m

p,q

Γn,mD

=
∞∑︂
k=0

1
k!

n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

∑︂
n∗

1,...,n
∗
κ≥0

m∗
1,...,m

∗
κ≥0

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

× χ(
∑︁

ℓ
nℓ+
∑︁

λ
n∗

λ
=p)χ(

∑︁
ℓ
mℓ+

∑︁
λ
m∗

λ
=q)

1∏︁κ
λ=1 n

∗
λ!m∗

λ!
1∏︁k

ℓ=1 nℓ!mℓ!

×
∑︂

G∗
λ

∈C
B∗

λ
,W ∗

λ
n∗

λ
,m∗

λ

∑︂
Gℓ∈Cnℓ,mℓ

̇
dX[n+1,n+p] dY[m+1,m+q]

⎡⎣ κ∏︂
λ=1

∏︂
e∈G∗

λ

ge

⎤⎦×

⎡⎣ k∏︂
ℓ=1

∏︂
e∈Gℓ

ge

⎤⎦

×

⎡⎢⎢⎢⎣ ∑︂
π∈Sn+p

τ∈Sm+q

(−1)π(−1)τχ((π,τ,∪λG
∗
λ

∪∪ℓGℓ) linked)

n+p∏︂
i=1

γ↑(xi − xπ(i))
m+q∏︂
j=1

γ↓(yj − yτ(j))

⎤⎥⎥⎥⎦ .
(5.4.8)

For k = 0 the n1,m1, . . . , nk,mk-sum should be interpreted as an empty product, i.e. as a
factor 1. Similarly for p = 0 and/or q = 0 the empty product of integrals should be interpreted
as a factor 1.

The last line in Equation (5.4.8) is the truncated correlation

ρ
(B∗+N ∗,W∗+M∗)⊕(N ,M)
t ,

where

N ∗ = (n∗
1, . . . , n

∗
κ), N = (n1, . . . , nk), M∗ = (m∗

1, . . . ,m
∗
κ), M = (m1, . . . ,mk)

and ⊕ means concatenation of vectors, i.e.

(B∗ + N ∗,W∗ + M∗) ⊕ (N ,M)
= ((B∗

1 + n∗
1,W

∗
1 +m∗

1), . . . , (B∗
κ + n∗

κ,W
∗
κ +m∗

κ), (n1,m1), . . . , (nk,mk)),

where we abused notation slightly and wrote B∗
1 + n∗

1 for the union of the vertices B∗
1 and the

n∗
1 internal black vertices of the graph G∗

1. (Similarly for the other terms.)

We use as in Section 5.4.1 the tree-graph bound and the bound on the truncated correlation
in Equation (5.4.5). For the clusters with external vertices we add 0-weights to the disallowed
edges as in Section 3.3.1.3, i.e. for G ∈ Cn,mp,q define

g̃e =

⎧⎨⎩0 e = (i, j) with i, j external vertices
ge otherwise.

Then we may readily apply the tree-graph bound [Uel18] with edge-weights g̃e:⃓⃓⃓⃓
⃓⃓ ∑︂
G∈Cn,m

p,q

∏︂
e∈G

ge

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓ ∑︂
G∈Cp+n,q+m

∏︂
e∈G

g̃e

⃓⃓⃓⃓
⃓⃓ ≤ Cp+q+n+m

TG
∑︂

T∈Tp+n,q+m

∏︂
e∈T

|g̃e|

= Cp+q+n+m
TG

∑︂
T∈T n,m

p,q

∏︂
e∈T

|ge| ,
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where Tp,q ⊂ Gp,q and T n,m
p,q ⊂ Cn,mp,q denotes the subsets of trees. Thus

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓

≤
∞∑︂
k=0

1
k!

n+m∑︂
κ=1

1
κ!

∑︂
(B∗,W∗)∈Πn,m

κ

∑︂
n∗

1,...,n
∗
κ≥0

m∗
1,...,m

∗
κ≥0

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

1∏︁ℓ
i=1 n

∗
i !m∗

i !
1∏︁k

ℓ=1 nℓ!mℓ!

×
∑︂

A∈A(B∗+N ∗,W∗+M∗)⊕(N ,M)

∑︂
T ∗

1 ,...,T
∗
κ

T ∗
λ ∈T

B∗
λ

,W ∗
λ

n∗
λ

,m∗
λ

∑︂
T1,...,Tk
Tℓ∈Tnℓ,mℓ

×
̇

dX[n+1,n+
∑︁

λ
n∗

λ
+
∑︁

ℓ
nℓ] dY[m+1,m+

∑︁
λ
m∗

λ
+
∑︁

ℓ
mℓ]

×

⎡⎣ κ∏︂
λ=1

∏︂
e∈T ∗

λ

|ge|
k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
∏︂

(µ,ν)∈A
|γµν |

⎤⎦
× (CTGγ∞)

∑︁
λ

(n∗
λ+m∗

λ)+
∑︁

ℓ
(nℓ+mℓ)+n+m−(k+κ−1)Ck+κ−1

TG .
(5.4.9)

To do the integrations we bound some g- and γ-factors pointwise. Recall first, that there are
κ clusters with external vertices. We split the anchored tree into pieces according to these
clusters as follows.

We may view the anchored tree A as a tree on the set of clusters. If κ = 1 set A1 = A.
Otherwise iteratively pick a γ-edge on the path in A between any two clusters with external
vertices and bound it by

|γσ(z)| =

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
k∈ 2π

L
Z3

γ̂σ(k)eikz
⃓⃓⃓⃓
⃓⃓⃓ ≤ γ∞

and remove it from A. This cuts the anchored tree A into pieces. Doing this κ − 1 many
times we get κ anchored trees A1, . . . , Aκ with each exactly one cluster with external vertices.
That is, ∏︂

(µ,ν)∈A
|γµν | ≤ γκ−1

∞

κ∏︂
λ=1

∏︂
(µ,ν)∈Aλ

|γµν |.

Next, in each cluster with external vertices, say with label λ0, we do a similar procedure of
splitting the cluster into pieces according to the external vertices.

In the cluster λ0 there are #B∗
λ0 + #W ∗

λ0 ≥ 1 external vertices. If #B∗
λ0 + #W ∗

λ0 = 1 set
T ∗
λ0,1 = T ∗

λ0 . Otherwise iteratively pick a g-edge on the path in T ∗
λ0 between any two external

vertices and bound it by

|ge| =
⃓⃓⃓
f 2
e − 1

⃓⃓⃓
≤ max{f 2

e , 1} ≤ C2
TG

using Equation (5.3.10) for q = 2. Remove the edge e from T ∗
λ0 . This cuts the tree

T ∗
λ0 into pieces. Doing this #B∗

λ0 + #W ∗
λ0 − 1 many times we get #B∗

λ0 + #W ∗
λ0 trees

T ∗
λ0,1, . . . , T

∗
λ0,#B∗

λ0
+#W ∗

λ0
with each exactly one external vertex. That is,

∏︂
e∈T ∗

λ0

|ge| ≤ C
2(#B∗

λ0
+#W ∗

λ0
−1)

TG

#B∗
λ0

+#W ∗
λ0∏︂

ν=1

∏︂
e∈T ∗

λ0,ν

|ge|.

166



5.4. Absolute convergence of the Gaudin–Gillespie–Ripka expansion

We do this procedure for all the κ many clusters with external vertices. Then the graph T
with edges the union of all (g- or γ-)edges in T ∗

λ,ν , Tℓ, Aλ (for λ ∈ {1, . . . , κ}, ℓ ∈ {1, . . . , k}
and ν ∈ {1, . . . ,#B∗

λ + #W ∗
λ − 1}) is a forest (disjoint union of trees) on the set of vertices

Vn+
∑︁

λ
n∗

λ
+
∑︁

ℓ
nℓ,m+

∑︁
λ
m∗

λ
+
∑︁

ℓ
mℓ

with each connected component (tree) having exactly one
external vertex. Moreover, we have the bound
̇

dX[n+1,n+
∑︁

λ
n∗

λ
+
∑︁

ℓ
nℓ] dY[m+1,m+

∑︁
λ
m∗

λ
+
∑︁

ℓ
mℓ]

⎡⎣ κ∏︂
λ=1

∏︂
e∈T ∗

λ

|ge|
k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
∏︂

(µ,ν)∈A
|γµν |

⎤⎦

≤ C
2(n+m−κ)
TG γκ−1

∞

⎡⎢⎣ κ∏︂
λ=1

#B∗
λ+#W ∗

λ∏︂
ν=1

̇ ∏︂
e∈T ∗

λ,ν

|ge|
∏︂

(µ,ν)∈Aλ

|γµν |
∏︂

ℓ:Tℓ∼Aλ

∏︂
e∈Tℓ

|ge|

⎤⎥⎦ ,
(5.4.10)

where Tℓ ∼ Aλ means that Tℓ and Aλ share a vertex. (Equivalently they are part of the same
connected component of T .)

Since each connected component of T is a tree we may do the integrations one leaf at a time
exactly as for the Γ-sum in Section 5.4.1 above. To bound the value we count the number of
γ- and g-factors that are left.

The number of γ-integrations is exactly the number of γ-factors. There are k + κ many
clusters, so A has k+κ− 1 many edges. In constructing A1, . . . , Aκ we cut κ− 1 many edges,
thus there is k many γ-factors left and so there are k many γ-integrations in Equation (5.4.10).
The remaining ∑︁λ(n∗

λ +m∗
λ) +∑︁

ℓ(nℓ +mℓ) − k integrations are of g-factors. The integrals
may be bounded by

´
|γ| ≤ Iγ and

´
|g| ≤ Ig as in Section 5.4.1. Moreover, since each

connected component of T has one external vertex, which is not integrated over, there are no
volume factors from the last integrations in any of the connected components of T . That is,
̇

dX[n+1,n+
∑︁

λ
n∗

λ
+
∑︁

ℓ
nℓ] dY[m+1,m+

∑︁
λ
m∗

λ
+
∑︁

ℓ
mℓ]

⎡⎣ κ∏︂
λ=1

∏︂
e∈T ∗

λ

|ge|
k∏︂
ℓ=1

∏︂
e∈Tℓ

|ge|
∏︂

(µ,ν)∈A
|γµν |

⎤⎦
≤ C

2(n+m−κ)
TG γκ−1

∞ I
∑︁

λ
(n∗

λ+m∗
λ)+
∑︁

ℓ
(nℓ+mℓ)−k

g Ikγ .

We use this to bound the integrations in Equation (5.4.9). Additionally we need to bound the
number of (anchored) tree. In [GMR21, Appendix D.5] it is shown that

#A(B∗+N ∗,W∗+M∗)⊕(N ,M) ≤ (k + κ)!Cn+m+
∑︁

λ
(n∗

λ+m∗
λ)+
∑︁

ℓ
(nℓ+mℓ),

since we have k+κ many clusters and n+m+∑︁λ(n∗
λ+m∗

λ)+
∑︁
ℓ(nℓ+mℓ) many vertices in total.

Moreover, #T n,m
p,q ≤ #Tp+n,q+m = (p+ q + n+m)p+q+n+m−2 ≤ (p+ q + n+m)!Cp+q+n+m

by Cayley’s formula as in Section 5.4.1. These bounds together with Equation (5.4.9) then
gives

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓

≤ (Cγ∞)n+m
∞∑︂
k=0

n+m∑︂
κ=1

(k + κ)!
k!κ!

∑︂
(B∗,W∗)∈Πn,m

κ

∑︂
n∗

1,...,n
∗
κ≥0

m∗
1,...,m

∗
κ≥0

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ: nℓ+mℓ≥2

×
[︄

κ∏︂
λ=1

(n∗
λ + #B∗

λ +m∗
λ + #W ∗

λ )!
n∗
λ!m∗

λ!

]︄ [︄
k∏︂
ℓ=1

(nℓ +mℓ)!
nℓ!mℓ!

]︄

× (CIgγ∞)
∑︁

λ
(n∗

λ+m∗
λ)+
∑︁

ℓ
(nℓ+mℓ−1)(CIγ)k.

(5.4.11)
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Multinomial coefficients may be bounded as (p1+...+pk)!
p1!···pk! ≤ kp1+...+pk . Moreover, #B∗

λ ≤ n and
#W ∗

λ ≤ m. Thus we may bound

(n∗
λ + #Bλ +m∗

λ + #Wλ)! ≤ (n∗
λ +m∗

λ + n+m)! ≤ 4n∗
λ+m∗

λ+n+mn!m!n∗
λ!m∗

λ!.

We conclude the bound

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓

≤ (Cγ∞)n+m
∞∑︂
k=0

n+m∑︂
κ=1

2k+κ

⎡⎣ ∑︂
n∗

0,m
∗
0≥0

Cn,m(CIgγ∞)n∗
0+m∗

0

⎤⎦κ
⎡⎢⎢⎣CIγ ∑︂

n0,m0≥0
n0+m0≥2

(CIgγ∞)n0+m0−1

⎤⎥⎥⎦
k

.

(5.4.12)

For some cn,m > 0 we have that if γ∞Ig(1 + Iγ) < cn,m the sums are convergent and we get

∑︂
p,q≥0

1
p!q!

⃓⃓⃓⃓
⃓⃓ ∑︂
D∈Ln,m

p,q

Γn,mD

⃓⃓⃓⃓
⃓⃓ ≤ Cn,mγ

n+m
∞ < ∞.

This shows the desired. We conclude the proof of Lemma 5.3.6 for the case S = 2.

Remark 5.4.2 (Higher spin). For the case of higher spin S ≥ 3, the computations are
essentially the same.

For later use we define for all diagrams some values characterising their sizes.

Definition 5.4.3. Let D ∈ Ln,m
p,q . Define the number k = k(D) as the number of clusters

entirely within internal vertices (i.e. the same k as in the computations above) and κ = κ(D)
as the number of clusters containing at least one external vertex (i.e. the same κ as in the
computations above). Define then ν∗ = ν∗(D) and ν = ν(D) as

ν∗ =
κ∑︂
λ=1

(n∗
λ +m∗

λ), ν =
k∑︂
ℓ=1

(nℓ +mℓ) − 2k,

where n∗
λ,m

∗
λ, nℓ,mℓ are the sizes of the different clusters exactly as in the computations

above. (Then ν + ν∗ + 2k = p+ q.)

For a diagram D the number ν + ν∗ is the “number of added vertices” in the following sense.
A diagram with n+m external vertices and k clusters entirely within internal vertices has at
least n+m+ 2k many vertices, since each cluster (with only internal vertices) has at least 2
vertices. Then ν + ν∗ is the number of vertices a diagram has more than this minimal number.

Note that in the special case of consideration with the scattering functions fs, fp and the
one-particle density matrices γ(1)

Nσ
we have

γ∞ ≤ ρ, Ig ≤ Cab2, Iγ ≤ Cs(logN)3

by Equations (5.2.9) and (5.3.13), see also the proof of Theorem 5.3.2. Then, by following
the arguments above (see in particular Equations (5.4.11) and (5.4.12)), we have (for p+ q =
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2k0 + ν0)

1
p!q!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

∑︂
D∈Ln,m

p,q

k(D)=k0
ν(D)+ν∗(D)=ν0

Γn,mD

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓ ≤ Cn,mρ

n+m(Cab2ρ)ν0+k0(Cs(logN)3)k0 (5.4.13)

for any n,m with n+m ≥ 1. We think of s as s ∼ (a3ρ)−1/3+ε for some small ε > 0. Thus
increasing ν0 by 1 we decrease the size of the diagram by (a3ρ)1/3, and increasing k0 by 1 we
decrease the size of the diagram by (a3ρ)ε. (Recall that b = ρ−1/3.)

5.5 Energy of the trial state
In this section we use the formulas in Equation (5.3.8) to calculate the energy in Equation (5.2.7).
We will refer to a term in Equation (5.2.7) where ρ(n,m)

Jas appears as a (n,m)-type term.

5.5.1 2-body terms
In this section we consider the terms in Equation (5.2.7) where a two-particle density (ρ(n,m)

Jas
with n+m = 2) appears. We consider first the term with m = n = 1.

5.5.1.1 (1, 1)-type terms

We consider the term

2
¨

ρ
(1,1)
Jas

[︄
|∇fs(x1 − y1)|2

fs(x1 − y1)2 + 1
2v(x1 − y1)

]︄
dx1 dy1. (5.5.1)

The formula in Equation (5.3.8) reads for ρ(1,1)
Jas as follows.

ρ
(1,1)
Jas (x1, y1) = fs(x1 − y1)2

⎡⎢⎣ρ(1,0)
Jas ρ

(0,1)
Jas +

∑︂
p,q≥0

1
p!q!

∑︂
D∈L1,1

p,q

Γ1,1
D

⎤⎥⎦

= fs(x1 − y1)2

⎡⎢⎢⎣ρ↑ρ↓ +
∑︂
p,q≥0
p+q≥1

1
p!q!

∑︂
D∈L1,1

p,q

Γ1,1
D

⎤⎥⎥⎦
(5.5.2)

since L1,1
p,q = ∅ for p = q = 0. The second summand is an error term. We bound it as follows.

Lemma 5.5.1. There exists a constant c > 0 such that if sab2ρ(logN)3 < c, then for any
integer K there exists a constant CK > 0 such that

∑︂
p,q≥0
p+q≥1

1
p!q!

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
D∈L1,1

p,q

Γ1,1
D

⃓⃓⃓⃓
⃓⃓⃓ ≤ CKab

2ρ3 + Cρ2(Csab2ρ(logN)3)K+1 + Csa3ρ3 log(b/a)(logN)3.

We give the proof at the end of this section.
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Using Equation (5.5.2) and Lemma 5.5.1 we get for any integer K

(5.5.1) = 2L3
ˆ (︃

|∇fs|2 + 1
2vf

2
s

)︃
dx
[︂
ρ↑ρ↓ +OK

(︂
ab2ρ3

)︂
+OK

(︂
ρ2(sab2ρ(logN)3)K+1

)︂
+O

(︂
sa3 log(b/a)(logN)3

)︂]︂
.

By Definition 5.1.1 we haveˆ (︃
|∇fs|2 + 1

2vf
2
s

)︃
dx ≤ 1

(1 − a/b)2

ˆ (︃
|∇fs0|2 + 1

2vf
2
s0

)︃
dx = 4πa

(1 − a/b)2

= 4πa+O(a2/b).
We conclude that
(5.5.1) ≤ L38πaρ↑ρ↓ +O(L3a2b−1ρ2) +OK(L3a2b2ρ3) +OK

(︂
L3aρ2(sab2ρ(logN)3)K+1

)︂
+O(L3sa3ρ3 log(b/a)(logN)3).

(5.5.3)
Finally, we give the

Proof of Lemma 5.5.1. We split the diagrams into three groups using the numbers ν∗, ν and
k from Definition 5.4.3:

(A) Diagrams with ν + ν∗ ≥ 1,

(B) Diagrams with ν + ν∗ = 0,

(B1) at least one p-wave g-factor.
(B2) only s-wave g-factors.

Remark 5.5.2. The diagrams of types (A) and (B1) are those for which the bound in
Equation (5.4.13) is good enough to show that these diagrams give contributions to the
energy density ≤ Ca2ρ7/3. Naively using the bound in Equation (5.4.13) for the diagrams of
type (B2) we only get that these are bounded by ρ2(a3ρ)ε with b = ρ−1/3 and s chosen as
described immediately after Equation (5.4.13). We will calculate the value of all the (infinitely
many) diagrams of type (B2) below and use this exact calculation for all diagrams up to some
arbitrary high order. This is an essential step in proving the “almost optimal” error bound in
Theorem 5.1.2. It is similar to the approach in [BCGOPS23] for the dilute Bose gas.

The contribution of all diagrams of type (A) (with ν+ν∗ ≥ 1) is ≤ Cab2ρ3 by Equation (5.4.13)
if sab2(logN)3 is sufficiently small (recall Theorem 5.3.2). For diagrams of type (B) note
that we have k ≥ 1, since any summand p, q has p+ q ≥ 1. Moreover, for diagrams of type
(B1), at least one factor

´
|gs| ≤ Cab2 should be replaced by

´
|gp| ≤ Ca3 log b/a (recall the

bounds in Equation (5.3.13)). Thus, again by Equation (5.4.13), we may bound the size of all
diagrams of type (B1) by Csa3ρ3 log(b/a)(logN)3. More precisely we have

∑︂
p,q≥0
p+q≥1

1
p!q!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∑︂
D∈L1,1

p,q

D of type (A)

Γ1,1
D

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ Cab2ρ3,

∑︂
p,q≥0
p+q≥1

1
p!q!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∑︂
D∈L1,1

p,q

D of type (B1)

Γ1,1
D

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ Csa3ρ3 log(b/a)(logN)3
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if sab2ρ(logN)3 is sufficiently small. It remains to consider the diagrams of type (B2), where
ν+ν∗ = 0 and only s-wave g-factors appear. These diagrams have g-graph as in Figure 5.5.1b.
Note that in particular p = q = k(D) for any such diagram.

(1, ↑)

(1, ↓)

(a) Diagram Dsmall of smallest size

(1, ↑)

(1, ↓)
k

(b) Graph G of general diagram, k ≥ 1.

Figure 5.5.1: Diagrams of type (B2). In (b) only the g-graph G is drawn. The
relevant diagrams (π, τ,G) have π, τ such that the diagrams are linked.

We now evaluate all these diagrams. We give an example calculation of the (unique) diagram
of smallest size, and then do the computation in full generality. The diagram of smallest size
is the diagram in Figure 5.5.1a. Its value is

Γ1,1
Dsmall

=
¨

γ
(1)
N↑

(x1;x2)γ(1)
N↑

(x2;x1)γ(1)
N↓

(y1; y2)γ(1)
N↓

(y1; y2)gs(x2 − y2) dx2 dy2

= 1
L12

∑︂
k↑

1 ,k
↑
2∈P ↑

F

∑︂
k↓

1 ,k
↓
2∈P ↓

F

¨
eik

↑
1(x1−x2)eik

↑
2(x2−x1)eik

↓
1(y1−y2)eik

↓
2(y2−y1)gs(x2 − y2) dx2 dy2

= 1
L12

∑︂
k↑

1 ,k
↑
2∈P ↑

F

∑︂
k↓

1 ,k
↓
2∈P ↓

F

ei(k
↑
1−k↑

2)x1ei(k
↓
1−k↓

2)y1

×
ˆ

dx2

[︄
ei(k

↑
2−k↑

1+k↓
2−k↓

1)x2

ˆ
dy2

(︃
gs(x2 − y2)e−i(k↓

2−k↓
1)(x2−y2)

)︃]︄

= 1
L12

∑︂
k↑

1 ,k
↑
2∈P ↑

F

∑︂
k↓

1 ,k
↓
2∈P ↓

F

ei(k
↑
1−k↑

2)x1ei(k
↓
1−k↓

2)y1L3χ(k↑
2−k↑

1=k↓
1−k↓

2)L
3ĝs(k

↓
2 − k↓

1)

where ĝs(k) = L−3 ´ gs(x)e−ikx dx denotes the Fourier transform and we used the translation
invariance to evaluate the gs-integral. We have the bound (recall Equation (5.3.13))

L3 |ĝs(k)| ≤
ˆ

|g(x)| dx ≤ Cab2.

The characteristic function χ(k↑
2−k↑

1=k↓
1−k↓

2) effectively kills one of the four kσj -sums. The
remaining kσj -sums have at most Nσ ≤ N many summands. We conclude the bound
(uniformly in x1, y1)

⃓⃓⃓
Γ1,1
Dsmall

⃓⃓⃓
≤ Cab2ρ3.
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For the general diagram in Figure 5.5.1b we may use the same method. We then have

Γ1,1
D = 1

L6+6k

∑︂
k↑

1 ,...,k
↑
k+1∈P ↑

F

∑︂
k↓

1 ,...,k
↓
k+1∈P ↓

F

̇
dX[2,k+1] dY[2,k+1]

×

⎡⎣k+1∏︂
j=1

eik
↑
j (xj−xπ(j))eik

↓
j (yj−yτ(j))

⎤⎦⎡⎣k+1∏︂
j=2

gs(xj − yj)
⎤⎦

= 1
L6+6k

∑︂
k↑

1 ,...,k
↑
k+1∈P ↑

F

∑︂
k↓

1 ,...,k
↓
k+1∈P ↓

F

e
i

(︂
k↑

1−k↑
π−1(1)

)︂
x1
e
i

(︂
k↓

1−k↓
τ−1(1)

)︂
y1

×
k+1∏︂
j=2

ˆ
dxj

[︄
e
i

(︂
k↑

j −k↑
π−1(j)

+k↓
j −k↓

τ−1(j)

)︂
xj

ˆ
dyj

(︄
gs(xj − yj)e

−i
(︂
k↓

j −k↓
τ−1(j)

)︂
(xj−yj)

)︄]︄

= 1
L6+6k

∑︂
k↑

1 ,...,k
↑
k+1∈P ↑

F

∑︂
k↓

1 ,...,k
↓
k+1∈P ↓

F

e
i

(︂
k↑

1−k↑
π−1(1)

)︂
x1
e
i

(︂
k↓

1−k↓
τ−1(1)

)︂
y1

×

⎡⎣k+1∏︂
j=2

L3χ(︂
k↑

j −k↑
π−1(j)

=k↓
τ−1(j)

−k↓
j

)︂L3ĝs
(︂
k↓
j − k↓

τ−1(j)

)︂⎤⎦ .
Again, each factor L3ĝs we may bound by Cab2. Moreover, since the diagram is linked we
have for each j that π−1(j) ̸= j and/or τ−1(j) ̸= j. (Otherwise the vertices {(j, ↑), (j, ↓)}
would be disconnected from the rest.) Thus, each characteristic function is non-trivial, and
hence effectively kills one of the kσj -sums. Each surviving kσj -sum has at most Nσ ≤ N many
summands. Thus (uniformly in x1, y1)⃓⃓⃓

Γ1,1
D

⃓⃓⃓
≤ ρ2(Cab2ρ)k

for any diagram D of type (B2) with k clusters of internal vertices, i.e. with g-graph as in
Figure 5.5.1b. For any integer K we have some finite K-dependent number of diagrams with
k ≤ K. Concretely let Mk0 < ∞ be the number of type (B2) diagrams with k = k0. Thus,
using Equation (5.4.13) for diagrams with k > K, we get

∑︂
p,q≥0
p+q≥1

1
p!q!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∑︂
D∈L1,1

p,q

D of type (B2)

Γ1,1
D

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤

K∑︂
k=1

1
k!2

∑︂
D∈L1,1

k,k

D of type (B2)

⃓⃓⃓
Γ1,1
D

⃓⃓⃓
+

∞∑︂
k=K+1

1
k!2

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∑︂
D∈L1,1

k,k

D of type (B2)

Γ1,1
D

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

≤
K∑︂
k=1

Mk

k!2 ρ
2(Cab2ρ)k + Cρ2(Csab2ρ(logN)3)K+1

≤ CKab
2ρ3 + Cρ2(Csab2ρ(logN)3)K+1

(5.5.4)
for some constant CK > 0 if sab2ρ(logN)3 is sufficiently small.

Remark 5.5.3 (Upper bound on number of diagrams — why we can’t pick K = ∞). For
an upper bound on the number of diagrams we first find an upper bound on the number of
graphs. All the underlying graphs look like Figure 5.5.1b, but the labelling of the internal
vertices may be different. We are free to choose which white (internal) vertex connects to
(2, ↑) and so on. In total there are thus q! = k! many possible graphs.

Next, to bound the number of diagrams with any given g-graph we may forget the constraint
that the diagram has to be linked and consider all choices of π ∈ Sk+1 and τ ∈ Sk+1 instead

172



5.5. Energy of the trial state

of just those, for which the diagram is linked. For both π and τ there are then (k + 1)! many
choices. Thus for each graph G there is at most (k + 1)!2 many linked diagrams of type (B2)
with g-graph G. Thus there are at most k!(k + 1)!2 diagrams of type (B2) with k clusters of
internal vertices. With this bound the sum∑︂

k

1
k!2

∑︂
D∈L1,1

k,k
of type (B2)

⃓⃓⃓
Γ1,1
D

⃓⃓⃓
≤
∑︂
k

k!(k + 1)2(Cab2ρ)k

is not convergent. This prevents us from taking K = ∞ in Equation (5.5.4) and using the
exact calculations for all (infinitely many) diagrams of type (B2).

Remark 5.5.4 (Higher spin). For S ≥ 3 values of the spin the evaluation of the diagrams
is the same, but the combinatorics of counting how many diagrams there are for each given
size is more complicated. Still, there is only some finite K-dependent number of diagrams
with k(D) ≤ K and thus (the appropriately modified version of) Equation (5.5.4) is valid if
sab2ρ(logN)3 < cS for some constant cS > 0.

5.5.1.2 (2, 0)- and (0, 2)-type terms

We bound the term¨
ρ

(2,0)
Jas

⎡⎣⃓⃓⃓⃓⃓∇fp(x1 − x2)
fp(x1 − x2)

⃓⃓⃓⃓
⃓
2

+ 1
2v(x1 − x2)

⎤⎦ dx1 dx2. (5.5.5)

The term with ρ(0,2)
Jas is completely analogous. We may bound the 2-particle density as follows.

Lemma 5.5.5. There exist constants c, C > 0 such that if N↑ = #P ↑
F > C and

sab2ρ(logN)3 < c, then⃓⃓⃓
ρ

(2,0)
Jas

⃓⃓⃓
≤ Cfp(x1 − x2)2ρ2

[︂
ab2ρ+ ρ2/3|x1 − x2|2

[︂
1 + sab2ρ(logN)4

]︂]︂
.

This is essentially (a slightly modified version of) Lemma 3.4.1. We give the proof at the end
of this section.
Using now Lemma 5.5.5 we get

(5.5.5) ≤ CNρ

ˆ [︃
|∇fp|2 + 1

2f
2
p v
]︃ [︂
ab2ρ+ ρ2/3|x|2

[︂
1 + sab2ρ(logN)4

]︂]︂
dx

≤ CNa2b2ρ+ CNρ5/3a3
[︂
1 + sab2ρ(logN)4

]︂ (5.5.6)

where we used thatˆ [︃
|∇fp|2 + 1

2f
2
p v
]︃

|x|2 dx ≤ Ca3
p ≤ Ca3,

ˆ [︃
|∇fp|2 + 1

2f
2
p v
]︃

dx ≤ Cap ≤ Ca.

The first inequality follows directly from the definition of the scattering length, Definition 5.1.1.
The second inequality is a simple computation following from Lemma 5.2.5 and Equa-
tion (5.2.10): Using integration by parts and fp0(x) ≥ 1 − a3

p/|x|3 with equality outside
the support of v we have, denoting the derivative in the radial direction by ∂r,ˆ (︃

|∇fp|2 + 1
2vf

2
p

)︃
dx = 4π

ˆ b

0

(︂
|∂rfp|2 r2 + fp∂

2
rfpr

2 + 4fp∂rfpr
)︂

dr

=
12πa3

p/b
2

1 − a3
p/b

3 + 4π
[︄
b− 2

ˆ b

0
f 2
p dr

]︄
≤ Cap.

Finally, we give the
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Proof of Lemma 5.5.5. Equation (5.3.8) reads for n = 2,m = 0 (recall Equation (5.3.9))

ρ
(2,0)
Jas = fp(x1 − x2)2

⎡⎢⎣ρ2
↑ +

∑︂
p,q≥0

1
p!q!

∑︂
D∈L2,0

p,q

Γ2,0
D

⎤⎥⎦ .
We split the diagrams into two types, according to whether ν∗ = 0 or ν∗ ≥ 1 (ν and ν∗ are
defined in Definition 5.4.3). We write

ρ2
↑ +

∑︂
p,q≥0

1
p!q!

∑︂
D∈L2,0

p,q

Γ2,0
D = ξ0 + ξ≥1,

where
ξ0 = ρ2

↑ +
∑︂
p,q≥0

1
p!q!

∑︂
D∈L2,0

p,q

ν∗(D)=0

Γ2,0
D , ξ≥1 =

∑︂
p,q≥0

1
p!q!

∑︂
D∈L2,0

p,q

ν∗(D)≥1

Γ2,0
D .

We will do a Taylor expansion of ξ0 but not of ξ≥1. This is completely analogous to what is
done in the proof of Lemma 3.4.1. Consider first ξ≥1. By Theorem 5.3.2 and Equation (5.4.13)
we have ξ≥1 ≤ Cab2ρ3 uniformly in x1, x2 if sab2ρ(logN)3 < c.

Consider next ξ0. We do a Taylor expansion to second order around the diagonal. For the
zero’th order we have ξ0(x1 = x2) + ξ≥1(x1 = x2) = 0 since ρ

(2,0)
Jas (x1, x2) vanishes for

x1 = x2. The first order vanishes by the symmetry in x1 and x2. Finally, we may bound the
second derivatives ∂ix1∂

j
x1ξ0 by following the same procedure as in the proof of Lemma 3.4.1,

Equation (3.4.15)–(3.4.20). This crucially uses the bounds in Equation (5.2.9). We give this
argument for completeness.

Write (recalling Equation (5.4.8) and using that the k = 0 term together with ρ2
↑ give the

two-particle density ρ(2,0) by Wick’s rule)

ξ0 = ρ(2,0) +
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥0
m1,...,mk≥0

For each ℓ:nℓ+mℓ≥2

1∏︁
ℓ nℓ!mℓ!

∑︂
Gℓ∈Cnℓ,mℓ

̇
dX[3,2+

∑︁
ℓ
nℓ] dY∑︁

ℓ
mℓ

⎡⎣ k∏︂
ℓ=1

∏︂
e∈Gℓ

ge

⎤⎦

×

⎡⎢⎢⎢⎢⎢⎢⎣
∑︂

π∈S2+
∑︁

ℓ
nℓ

τ∈S∑︁
ℓ

mℓ

(−1)π(−1)τχ((π,τ,{(1,↑)}∪{(2,↑)}∪∪ℓGℓ) linked)

2+
∑︁

ℓ
nℓ∏︂

i=1
γ

(1)
N↑

(xi;xπ(i))

∑︁
ℓ
mℓ∏︂

j=1
γ

(1)
N↓

(yj; yτ(j))

⎤⎥⎥⎥⎥⎥⎥⎦ .

The only dependence on x1 is in the γ-factors in [· · · ]. Computing the second derivatives
∂ix1∂

j
x1ξ0 we see that they are sums of terms where one or two of the γ-factors gain the

derivatives ∂ix1 and ∂jx1 . The term [· · · ] above is the truncated correlation. So is its derivative
∂ix1∂

j
x1 [· · · ] now only some of the γ-factors carry derivatives. To bound this term we do as in

Section 5.4 and use the (appropriately modfied) formula in Equation (5.4.3). The γ-factors
with derivative can either end up in the anchored tree, or in the matrix R(r). Following the
argument in Section 5.4.2 to bound ∂ix1∂

j
x1ξ0 we see that we need bounds on the determinants

of the matrix R(r), modified with the γ-factors with derivatives, and/or of the integrals of
γ-factors with derivatives.

If the γ-factors with derivatives end up in the matrix R(r) we gain a factor Cρ1/3 in the bound
of its determinant, Equation (5.4.4). This follows from a slight modification of Equation (5.4.4)
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and is explained around [GMR21, Equation (D.9)]: One changes the definition of some of
the functions αµ in the proof of Equation (5.4.4) by including factors iki and/or ikj. If the
γ-factors with derivatives end up in the anchored tree we either have to bound them pointwise,
in which case we gain a factor Cρ1/3, or we have to bound their integrals, in which case we
use Equation (5.2.9).

Following the argument in Section 5.4.2 we thus get a bound similar to Equation (5.4.12) with
the following modifications: One or two factors

´
Λ

⃓⃓⃓
γ

(1)
N↑

⃓⃓⃓
is replaced with factors with derivatives´

Λ

⃓⃓⃓
∂1γ

(1)
N↑

⃓⃓⃓
,
´

Λ

⃓⃓⃓
∂2γ

(1)
N↑

⃓⃓⃓
, where ∂1, ∂2 ∈ {1, ∂ix1 , ∂

j
x1 , ∂

i
x1∂

j
x1} are the derivatives hitting γ-factors

in the anchored tree that we do not bound pointwise. For diagrams with only one internal cluster
(i.e. with k = 1) there is only one such γ-factor. Moreover we gain a factor Cρ(2−#∂1−#∂2)/3

where #∂j denotes the number of derivatives in ∂j, i.e. #1 = 0,#∂ix1 = 1 and #∂ix1∂
j
x1 = 2.

This factor arises from the matrix R(r), modified to include the derivatives, and the γ-factors
with derivatives we bound pointwise. The derivatives in either (the modification of) R(r) or
on γ-factors we bound pointwise are exactly those not in ∂1 or ∂2. That is,

⃓⃓⃓
∂ix1∂

j
x1ξ0

⃓⃓⃓
≤
⃓⃓⃓
∂ix1∂

j
x1ρ

(2,0)
⃓⃓⃓

+ Cρ2

⎡⎢⎢⎢⎣ ∑︂
∂∈{1,∂i

x1 ,∂
j
x1 ,∂

i
x1∂

j
x1 }

ρ(2−#∂)/3
ˆ

Λ

⃓⃓⃓
∂γ

(1)
N↑

⃓⃓⃓ ∑︂
n0,m0≥0
n0+m0≥2

(Cab2ρ)n0+m0−1

+
∑︂

∂1,∂2∈{1,∂i
x1 ,∂

j
x1 ,∂

i
x1∂

j
x1 }

∂1∂2∈{1,∂i
x1 ,∂

j
x1 ,∂

i
x1∂

j
x1 }

ρ(2−#∂1−#∂2)/3
ˆ

Λ

⃓⃓⃓
∂1γ

(1)
N↑

⃓⃓⃓ˆ
Λ

⃓⃓⃓
∂2γ

(1)
N↑

⃓⃓⃓

×
∞∑︂
k=2

[︂
Cs(logN)3

]︂k−1

⎡⎢⎢⎣ ∑︂
n0,m0≥0
n0+m0≥2

(Cab2ρ)n0+m0−1

⎤⎥⎥⎦
k
⎤⎥⎥⎥⎦.

Noting that
⃓⃓⃓
∂ix1∂

j
x1ρ

(2,0)
⃓⃓⃓

≤ Cρ8/3 by a simple computation using the Wick rule and using
Equation (5.2.9) to bound the integrals we conclude that⃓⃓⃓

∂ix1∂
j
x1ξ0

⃓⃓⃓
≤ Cρ8/3

[︂
1 + sab2ρ(logN)4

]︂
if N↑ is sufficiently large and sab2ρ(logN)3 is sufficiently small. By Taylor’s theorem we
conclude the desired.

5.5.2 3-body terms
In this section we bound the 3-body terms of Equation (5.2.7).

5.5.2.1 (2, 1)- and (1, 2)-type terms

We bound the term˚
ρ

(2,1)
Jas

[︄⃓⃓⃓⃓
⃓∇fs(x1 − y1)∇fp(x1 − x2)
fs(x1 − y1)fp(x1 − x2)

⃓⃓⃓⃓
⃓+

⃓⃓⃓⃓
⃓∇fs(x1 − y1)∇fs(x2 − y1)

fs(x1 − y1)fs(x2 − y1

⃓⃓⃓⃓
⃓
]︄

dx1 dx2 dy1.

(5.5.7)
The (1, 2)-type term is bounded analogously.
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By Theorem 5.3.2 we have the bound

ρ
(2,1)
Jas ≤ Cρ3fs(x1 − y1)2fs(x2 − y1)2fp(x1 − x2)2

if sab2ρ(logN)3 is sufficiently small. In the first summand in Equation (5.5.7) we moreover
bound fs(x2 − y1) ≤ 1 and in the second summand we bound fp(x1 − x2) ≤ 1. Then by the
translation invariance we have

(5.5.7) ≤ CNρ2

⎡⎣(︄ˆ fs|∇fs|
)︄(︄ˆ

fp|∇fp|
)︄

+
(︄ˆ

fs|∇fs|
)︄2
⎤⎦ .

By radiality and Lemma 5.2.5 we have

1
4π

ˆ
fs|∇fs| =

ˆ b

0
r2fs∂rfs dr = 1

2[r2f 2
s ]b0 − 1

2

ˆ b

0
2rf 2

s dr

≤ 1
2b

2 − 1
(1 − a/b)2

ˆ b

a

r
(︃

1 − a

r

)︃2
dr ≤ Cab,

where ∂r denotes the radial derivative. Similarly by Lemma 5.2.5

1
4π

ˆ
fp|∇fp| =

ˆ b

0
r2fp∂rfp dr = 1

2[r2f 2
p ]b0 − 1

2

ˆ b

0
2rf 2

p dr

≤ 1
2b

2 − 1
(1 − a3

p/b
3)2

ˆ b

a

r

(︄
1 −

a3
p

r3

)︄2

dr ≤ Ca2
p.

We conclude that (for sufficiently small sab2ρ(logN)3)

(5.5.7) ≤ CNρ2a2b2. (5.5.8)

5.5.2.2 (3, 0)- and (0, 3)-type terms

We may bound˚
ρ

(3,0)
Jas

⃓⃓⃓⃓
⃓∇fp(x1 − x2)∇fp(x1 − x3)
fp(x1 − x2)fp(x1 − x3)

⃓⃓⃓⃓
⃓ dx1 dx2 dx3 ≤ CNρ2a4 (5.5.9)

using the same method as for the (2, 1)-type terms. The (0, 3)-type terms may be bounded
analogously.

Remark 5.5.6 (Higher spin). For higher spin we also have terms of type (1, 1, 1). These may
be bounded exactly as the (2, 1)-type terms with two s-wave factors.

5.5.3 Putting the bounds together
Combining Equations (5.2.7), (5.2.8), (5.5.3), (5.5.6), (5.5.8) and (5.5.9) we immediately get
for any integer K⟨︂
ψN↑,N↓

⃓⃓⃓
HN

⃓⃓⃓
ψN↑,N↓

⟩︂
L3

= 3
5(6π2)2/3

(︂
ρ

5/3
↑ + ρ

5/3
↓

)︂
+ 8πaρ↑ρ↓ +O((s−2

↑ + s−2
↓ )ρ5/3) +O(N−1/3ρ5/3)

+O(a2b−1ρ2) +OK(a2b2ρ3) +OK(aρ2(sab2ρ(logN)3)K+1)
+O(sa3ρ3 log(b/a)(logN)3) +O(a2b2ρ3) +O

(︂
ρ8/3a3

[︂
1 + sab2ρ(logN)4

]︂)︂
(5.5.10)
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for sab2ρ(logN)3 sufficiently small and Nσ = #P σ
F sufficiently large. As in Section 3.4

we will choose Nσ some large negative power of a3ρ. By choosing, say, L ∼ a(a3ρ)−10

(still requiring that kσ
FL

2π is rational) we have N ∼ (a3ρ)−29. (More precisely one chooses
L ∼ a((k↑

F + k↓
F )a)−30, see Remark 5.2.4.) Additionally we choose

sσ ∼ (a3ρ)−1/3+ε,

where ε > 0 is chosen as ε = 1
K

for K > 6. Recall moreover that b = ρ−1/3. Thus for any
fixed integer K > 6 we have⟨︂

ψN↑,N↓

⃓⃓⃓
HN

⃓⃓⃓
ψN↑,N↓

⟩︂
L3 = 3

5(6π2)2/3
(︂
ρ

5/3
↑ + ρ

5/3
↓

)︂
+ 8πaρ↑ρ↓ +OK

(︂
aρ2(a3ρ)1/3−2/K

)︂
.

(5.5.11)

5.5.4 Box method
We extend to the thermodynamic limit using a box method exactly as in Section 3.4.1. We
sketch the details here. Using a bound of Robinson [Rob71, Lemmas 2.1.12, 2.1.13] (more
specifically the form in [MS20, Section C], see also Lemma 3.4.3) we have an isometry U such
that UψN↑,N↓ has Dirichlet boundary conditions in the box ΛL+2d = [−L/2 − d, L/2 + d]3 and

⟨︂
UψN↑,N↓

⃓⃓⃓
HD
N,L+2d

⃓⃓⃓
UψN↑,N↓

⟩︂
≤
⟨︂
ψN↑,N↓

⃓⃓⃓
Hper
N,L

⃓⃓⃓
ψN↑,N↓

⟩︂
+ 6N

d2 ,

where HD
N,L+2d denotes the Hamiltonian on a box of sides L + 2d with Dirichlet boundary

conditions, and Hper
N,L denotes the Hamiltonian on a box of sides L with periodic boundary

conditions. We are free to choose the the parameter d. We will choose it some large negative
power of a3ρ.

We use this to form trial states UψN↑,N↓ with Dirichlet boundary conditions in a box of sides
L+ 2d. Using then a box method of glueing copies of the trial state UψN↑,N↓ together (as
in Section 3.4.1) with a distance b between them (same b as before) we get a trial state
ΨM3N↑,M3N↓ of particle densities ρ̃σ = M3Nσ

M3(L+2d+b)3 = ρσ(1 +O(b/L) +O(d/L)). The state
ΨM3N↑,M3N↓ has the energy density⟨︂

ΨM3N↑,M3N↓

⃓⃓⃓
HD
M3N,M3(L+2d+b)

⃓⃓⃓
ΨM3N↑,M3N↓

⟩︂
M3(L+ 2d+ b)3

=

⟨︂
UψN↑,N↓

⃓⃓⃓
HD
N,L+2d

⃓⃓⃓
UψN↑,N↓

⟩︂
L3 (1 +O(d/L) +O(b/L))

≤

⟨︂
ψN↑,N↓

⃓⃓⃓
Hper
N,L

⃓⃓⃓
ψN↑,N↓

⟩︂
L3 (1 +O(d/L) +O(b/L)) +O(ρd−2).

Choosing say d = a(a3ρ)−5 and using Equation (5.5.11) we thus get

e(ρ̃↑, ρ̃↓) ≤ lim sup
M→∞

⟨︂
ΨM3N↑,M3N↓

⃓⃓⃓
HD
M3N,M3(L+2d+b)

⃓⃓⃓
ΨM3N↑,M3N↓

⟩︂
M3(L+ 2d+ b)3

≤ 3
5(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) + 8πaρ↑ρ↓ +OK

(︂
aρ2(a3ρ)1/3−2/K

)︂
= 3

5(6π2)2/3(ρ̃5/3
↑ + ρ̃

5/3
↓ ) + 8πaρ̃↑ρ̃↓ +OK

(︂
aρ̃2(a3ρ̃)1/3−2/K

)︂
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5. Almost optimal upper bound for the ground state energy . . .

since ρ̃σ = ρσ(1 +O((a3ρ)−5)). For any δ > 0 we may take K > (2δ)−1. This concludes the
proof of Theorem 5.1.2 for pairs of densities (ρ̃↑, ρ̃↓) arising from the construction above. As
noted in Remark 5.2.4 this is not all possible values of the densities ρσ. Finally, we extend
Theorem 5.1.2 to all pairs of (sufficiently small) densities.

Consider any pair of densities (ρ↑0, ρ↓0) and define ρ0 = ρ↑0 + ρ↓0 and the Fermi momenta
kσF0 := (6π2)1/3ρ

1/3
σ0 . Let ε > 0 be some small parameter to be chosen later and find (by

density of the rationals in the reals) kσF with (1 + ε)kσF0 ≤ kσF ≤ (1 + 2ε)kσF0 and k↑
F/k

↓
F

rational (recall Remark 5.2.3). Following the construction above we find a trial state ψN↑,N↓

with particle densities ρσ satisfying

(1 + 3ε+O(ε2) +O(N−1/3
σ ))ρσ0 ≤ ρσ ≤ (1 + 6ε+O(ε2) +O(N−1/3

σ ))ρσ0.

Thus by constructing the trial states ΨM3N↑,M3N↓ of particle densities ρ̃σ as above we find(︂
1 + 3ε+O(ε2) +O((a3ρ0)−5)

)︂
ρσ0 ≤ ρ̃σ ≤

(︂
1 + 6ε+O(ε2) +O((a3ρ0)−5)

)︂
ρσ0.

Choosing then ε = (a3ρ0)−4 we have ρσ0 ≤ ρ̃σ and ρ̃σ = ρσ0(1 +O((a3ρ0)−4)) for sufficiently
small a3ρ0. Since v ≥ 0 the energy is monotone increasing in the particle number, thus so is
the energy density. Hence for any δ > 0

e(ρ↑0, ρ↓0) ≤ e(ρ̃↑, ρ̃↓)

≤ 3
5(6π2)2/3(ρ̃5/3

↑ + ρ̃
5/3
↓ ) + 8πaρ̃↑ρ̃↓ +Oδ(aρ2(a3ρ̃)1/3−δ)

= 3
5(6π2)2/3(ρ5/3

↑0 + ρ
5/3
↓0 ) + 8πaρ↑0ρ↓0 +Oδ(aρ2

0(a3ρ0)1/3−δ).

This concludes the proof of Theorem 5.1.2.
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Chapter6
Pressure of a dilute spin-polarized Fermi

gas: Lower bound

This chapter contains the paper

[PressLow] A. B. Lauritsen and R. Seiringer. “Pressure of a dilute spin-polarized Fermi
gas: Lower bound”, Forum of Mathematics, Sigma 12 (2024), e78. DOI:
10.1017/fms.2024.56.

Abstract. We consider a dilute fully spin-polarized Fermi gas at positive temperature in
dimensions d ∈ {1, 2, 3}. We show that the pressure of the interacting gas is bounded from
below by that of the free gas plus, to leading order, an explicit term of order adρ2+2/d, where
a is the p-wave scattering length of the repulsive interaction and ρ is the particle density. The
results are valid for a wide range of repulsive interactions, including that of a hard core, and
uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in
the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie
and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).
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6.1 Introduction
The study of dilute quantum gases [GPS08] has received much interest from the mathematical
physics community in the recent decades. In particular much work has been done pertaining
to the ground state energies of both Fermi and Bose gases in the thermodynamic limit.

For Bose gases in 3 dimensions the leading term of the ground state energy was first shown
by Dyson [Dys57] as an upper bound and by Lieb–Yngvason [LY98] as a lower bound. The
leading term depends only on the density and the s-wave scattering length of the interaction.
More recently the second order correction, known as the Lee–Huang–Yang correction, was
shown [FS20; FS23; YY09]. Also the 2-dimensional [FGJMO24; LY01] and 1-dimensional
[Age23; ARS22] settings have been studied.

The fermionic setting has been similarly studied in the 3-dimensional [FGHP21; Gia23a; LSS05],
[Chapters 3, 4 and 5], 2-dimensional [LSS05], [Chapters 3 and 4], and 1-dimensional [Age23;
ARS22], [Chapter 3] case. For fermions the spin is important. For non-zero spin, the leading
correction to the energy of the free gas is similar to the leading term for bosons and depends
only on the density and the s-wave scattering length of the interaction. For fully spin-polarized
(i.e., effectively spin-0) fermions the behaviour is different. By the Pauli exclusion principle
the probability of two fermions of the same spin being close enough to interact is suppressed.
As such, the leading correction to the energy of the free gas depends on the p-wave scattering
length of the interaction instead and is much smaller for dilute gases, which makes its analysis
significantly harder.

A natural question to consider is the extension of these results on the ground state energy
to positive temperature. This has been done both for bosons [DMS20; HHNST23; MS20;
Sei08; Yin10] and non-zero spin fermions [Sei06b]. In this paper we consider the extension
for fully spin-polarized fermions. More precisely, we consider the problem of finding the
pressure ψ(β, µ) at positive temperature T = 1/β and chemical potential µ in the setting of a
spin-polarized Fermi gas. We are interested in the dilute limit adρ ≪ 1, where a denotes the
p-wave scattering length of the interaction and ρ denotes the particle density. In this dilute
limit we show the lower bound in dimensions d ∈ {1, 2, 3}

ψ(β, µ) ≥ ψ0(β, µ) − cd(βµ)adρ2+2/d(1 + o(1)) as adρ → 0,

for an explicit (temperature dependent) coefficient cd(βµ). Here ψ respectively ψ0 denote the
pressure of the interacting respectively non-interacting system at inverse temperature β and
chemical potential µ.

As discussed in more details in Remark 6.1.6 below, the term cd(βµ)adρ2+2/d arises naturally
from the two-body interaction and the fact that the two-body density vanishes quadratically for
incident particles. In the low-temperature limit βµ → ∞ the coefficients cd(βµ) converge to
the corresponding zero-temperature constants [ARS22], [Chapters 3 and 4]. The temperature
dependence of this term can then be understood via the temperature dependence of the
two-particle density of the free state.
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The result is valid for temperatures T at most of the order of the Fermi temperature TF ∼ ρ2/d

of the free gas. For larger temperatures one should expect that thermal effects become larger
than quantum effects, and thus the gas should behave more like a (high temperature) classical
gas. The natural parameter capturing the temperature is the fugacity z = eβµ. In terms of
the fugacity the constraint that the temperature satisfies T ≲ TF reads z ≳ 1.

In contrast, for non-zero spin fermions the pressure in the dilute limit is in 3 dimensions
[Sei06b]

ψ(β, µ) = ψ0(β, µ) − 4π
(︂
1 − q−1

)︂
asρ

2(1 + o(1)) as a3
sρ → 0,

with ψ and ψ0 the pressures of the interacting respectively non-interacting system, q ≥ 2 the
number of spin sectors and as the s-wave scattering length of the interaction. Notably here
the coefficient 4π(1 − q−1) does not depend on the temperature.

Our method of proof is split in two cases depending on the temperature. For sufficiently
small temperatures, the result follows by a simple comparison to the zero-temperature setting
and using the result of Chapter 3. In the more interesting case of higher temperatures our
method of proof consists of computing the pressure of a Jastrow-type trial state using the
rigorous implementation from Chapters 3 and 5 (given in Lemma 6.4.4) of the fermionic
cluster expansion of Gaudin–Gillespie–Ripka [GGR71]. (More precisely in Chapters 3 and 5 we
found conditions under which the formulas of [GGR71] are convergent.) A similar method was
employed in the zero-temperature setting in Chapter 3, with the important difference that,
because of the smoothness of the momentum distribution, the condition for convergence we
obtain at positive (not too small) temperature is uniform in the volume (see Theorem 6.4.3).
Thus we can compute the thermodynamic limit directly, without appealing to a box method
of localizing a trial state into large but finite boxes as done in Chapter 3.

6.1.1 Precise statement
To state our main theorem precisely, define the (spin-polarized) fermionic Fock space F =⨁︁∞

n=0 L
2
a

(︂
[0, L]dn;C

)︂
= ⨁︁∞

n=0
⋀︁n L2

(︂
[0, L]d;C

)︂
. On this space we define the free Hamilto-

nian H, the number operator N and interaction operator V as follows (in natural units where
ℏ

2m = 1)

H = (0, H1, . . . , Hn, . . .), Hn =
n∑︂
j=1

−∆xj
,

N = (0, 1, . . . , n, . . .),
V = (0, 0, V2, . . . , Vn, . . .), Vn =

∑︂
1≤i<j≤n

v(xi − xj).

The interacting Hamiltonian is then H + V. In the calculations below we will use periodic
boundary conditions for convenience. The pressure doesn’t depend on the choice of boundary
conditions [Rob71] and hence we are free to choose the most convenient ones. We are
interested in determining the pressure of the system described by this Hamiltonian at inverse
temperature β and chemical potential µ. We denote this by

ψ(β, µ) = lim
L→∞

sup
Γ
P [Γ ], −LdP [Γ ] = TrF [(H − µN + V)Γ ] − 1

β
S(Γ ),

where S(Γ ) = − TrΓ logΓ is the entropy of the state Γ and P [Γ ] is the pressure functional.
By state we mean a density matrix, i.e., a positive trace-class operator on F of unit trace.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

(We suppress from the notation the dependence on the dimension d and the length L.) We
denote moreover by

ψ0(β, µ) = lim
L→∞

sup
Γ
P0[Γ ], −LdP0[Γ ] = TrF [(H − µN )Γ ] − 1

β
S(Γ ),

the pressure and pressure functional of the free gas. The supremum is a maximum and is
achieved for the Gibbs state

Γ = Z−1 exp (−β(H − µN )) = Z−1(Γ0, Γ1, . . . , Γn, . . .), Γn = eβµne−βHn . (6.1.1)

Then [Hua87, Equation (8.63)]

ψ0(β, µ) = lim
L→∞

1
Ld

[︄
− TrF [(H − µN )Γ ] + 1

β
S(Γ )

]︄
= lim

L→∞

1
Ldβ

logZ

= 1
β(2π)d

ˆ
Rd

log
(︂
1 + eβµ−β|k|2

)︂
dk.

(6.1.2)

To state our main theorem we moreover define the p-wave scattering length a. (See also
[LY01, Appendix A] and [SY20, Equations (2.9), (4.3)].)

Definition 6.1.1 (Definitions 3.1.1, 3.1.9 and 3.1.11). The p-wave scattering length a of the
interaction v in dimension d is defined by

cda
d = inf

{︄ˆ
Rd

(︃
|∇f0(x)|2 + 1

2v(x)f0(x)2
)︃

|x|2 dx : f0(x) → 1 for |x| → ∞
}︄
,

where

cd =

⎧⎪⎪⎨⎪⎪⎩
12π d = 3,
4π d = 2,
2 d = 1.

(6.1.3)

The minimizer f0 is the p-wave scattering function. (If v(x) = +∞ for some x [for instance if
v has a hard core, v(x) = +∞ for |x| < R0] we interpret v(x) dx as a measure. We suppress
from the notation the dependence of a and f0 on the dimension d.)

The dimensionless parameter measuring the diluteness is then adρ, with ρ the particle density1

(in infinite volume) given by ρ = ∂µψ(β, µ). We are interested in a dilute limit, meaning that
adρ ≪ 1. Moreover, we are considering temperatures T ≲ TF ∼ ρ2/d meaning that z ≳ 1. As
mentioned in the introduction, small z corresponds to a (high-temperature) classical gas.

We shall prove the following theorem.
Theorem 6.1.2. Let v ≥ 0 be radial and of compact support. If d = 1 assume moreover that´ (︂

|∂f0|2 + 1
2vf

2
0

)︂
dx < ∞. For any z0 > 0 there exists c > 0 such that if adρ0 < c then,

uniformly in z = eβµ ≥ z0, we have the lower bound

ψ(β, µ) ≥ ψ0(β, µ) − 2πcd
− Lid/2+1(−z)

(− Lid/2(−z))1+2/da
dρ

2+2/d
0 [1 + δd] ,

1For the sake of simplicity of notation we assume that the derivative ∂µψ(β, µ) exists. The function
ψ(β, µ) being convex in µ always has left and right derivatives. Should these not coincide, we can just replace
instances of ∂µψ(β, µ) with either the left or right derivative.
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where ρ0 = ∂µψ0(β, µ) is the particle density of the free gas (in infinite volume), the constants
cd are defined in Equation (6.1.3) and

|δd| ≤

⎧⎪⎪⎨⎪⎪⎩
C(a3ρ0)1/39 |log a3ρ0|

12/13
d = 3,

C(a2ρ0)1/5 |log a2ρ0|
6/5

d = 2,
C(aρ0)1/7 |log aρ0|

12/7 d = 1.
(6.1.4)

Here Lis denotes the polylogarithm. It satisfies [NIS, Equation 25.12.16]

− Lis(−ex) = 1
Γ(s)

ˆ ∞

0

ts−1

et−x + 1 dt (6.1.5)

with Γ the Gamma function.

We expect that the lower bound of Theorem 6.1.2 is in fact an equality (with a potentially
different bound on the error term). It remains an open problem to prove this.

Remark 6.1.3. For better comparison with the zero-temperature result in Chapter 3, we find
it convenient to write the correction to the pressure of the free gas in terms of the particle
density (of the free gas) ρ0. The latter is given explicitly as

ρ0 = − 1
(4πβ)d/2 Lid/2(−z) (6.1.6)

This follows from an elementary computation, which we give in Lemma 6.3.6 below.

To leading order ρ ≃ ρ0. More precisely
Corollary 6.1.4. Under the same assumptions as in Theorem 6.1.2 we have for the particle
density2 ρ = ∂µψ(β, µ)

ρ = ρ0

[︂
1 +O((adρ0)1/2)

]︂
.

We shall give the proof at the end of this section. In particular the conditions of small adρ
and of small adρ0 are equivalent. Moreover, the error terms of Theorem 6.1.2 can equally well
be written with ρ0 replaced by ρ.

Remark 6.1.5. The additional assumption on v in dimension d = 1 is discussed in Re-
mark 3.1.13. If v is either smooth or has a hard core (meaning that v(x) = +∞ for |x| ≤ a0
for some a0 > 0) this assumption is satisfied.

Remark 6.1.6. The term of order adρ2+2/d
0 depends on the temperature. This is different

to the setting of spin-1
2 fermions, where the analogous term (in 3 dimensions) is 2πaρ2

0

[Sei06b] uniformly in the temperature. That the term of order adρ2+2/d
0 should depend on

the temperature may be heuristically understood as follows: This term arises from the fact
that the two-body density vanishes quadratically for incident particles. The rate at which it
vanishes depends on the exact state, and thus the temperature. Concretely, the two-particle
density of the free gas (in infinite volume) satisfies

ρ(2)(x1, x2) = 2π − Lid/2+1(−z)
(− Lid/2(−z))1+2/dρ

2+2/d
0 |x1 − x2|2

[︂
1 +O

(︂
ρ

2/d
0 |x1 − x2|2

)︂]︂
, (6.1.7)

2Should the left and right derivatives of ψ(β, µ) not coincide, the statement holds for either derivative.
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where O
(︂
ρ

2/d
0 |x1 − x2|2

)︂
is understood as being bounded by Cρ2/d

0 |x1 − x2|2 uniformly. This
follows from an elementary computation, which we give in Lemma 6.3.6 below.

In the low-temperature limit z → ∞ we recover the zero-temperature constants in the terms
of order adρ2+2/d

0 . The zero-temperature results read (Theorems 3.1.3, 3.1.10 and 3.1.12)

e(ρ0) ≤ e0(ρ0) + c0,da
dρ

2+2/d
0 [1 + δd],

with e(ρ0), e0(ρ0) denoting the ground state energy density of the interacting respectively the
free gas and

c0,d =

⎧⎪⎪⎨⎪⎪⎩
12π

5 (6π2)2/3 d = 3,
4π2 d = 2,
2π2

3 d = 1,
|δd| ≲

⎧⎪⎪⎨⎪⎪⎩
a2ρ2/3 d = 3,
a2ρ0 |log a2ρ0|

2
d = 2,

(aρ0)13/17 d = 1.
(6.1.8)

Indeed, we claim that

2πcd
− Lid/2+1(−z)

(− Lid/2(−z))1+2/d = c0,d +O((log z)−2) as z → ∞. (6.1.9)

To see this write (following [Woo92])

− Lis(−ex) = 1
Γ(s)

ˆ ∞

0

ts−1

et−x + 1 dt

= 1
Γ(s)

[︄ˆ x

0
ts−1 dt−

ˆ x

0

ts−1

ex−t + 1 dt+
ˆ ∞

x

ts−1

et−x + 1 dt
]︄

= xs

Γ(s+ 1) − 1
Γ(s)

ˆ x

0

(x− u)s−1 − (x+ u)s−1

eu + 1 du− 1
Γ(s)

ˆ ∞

x

(x+ u)s−1

eu + 1 du

where we changed variables t = x± u. The middle and last integrals can easily be bounded
as O(xs−2) and O(xse−x) respectively. Thus

− Lis(−ex) = xs

Γ(s+ 1) +O(xs−2), (6.1.10)

and Equation (6.1.9) follows.

Remark 6.1.7. The error bounds in Theorem 6.1.2 are uniform in z. They arise as the worst
cases of two types of bounds, one good for z ∼ 1 and one good for z ≫ 1. In particular, for
concrete values of z, the error bounds can be improved. See Propositions 6.1.8 and 6.1.9
below.

Finally we give the

Proof of Corollary 6.1.4. Note that ψ(β, µ) is a convex function of µ. Thus we may bound
its derivative by any difference quotient. More precisely for any ε > 0 we have

ρ = ∂µψ(β, µ) ≤ ψ(β, µ+ ε) − ψ(β, µ)
ε

.
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6.1. Introduction

Using the trivial upper bound ψ(β, µ + ε) ≤ ψ0(β, µ + ε) (which is a consequence of the
assumed non-negativity of the interaction potential v) and the lower bound of Theorem 6.1.2
we conclude that

ρ ≤ ψ0(β, µ+ ε) − ψ0(β, µ)
ε

+ Cadρ
2+2/d
0 ε−1 = ρ0 +O

(︂⃓⃓⃓
∂2
µψ0

⃓⃓⃓
ε
)︂

+O
(︂
adρ

2+2/d
0 ε−1

)︂
.

Using the explicit formula for ρ0 = ∂µψ0 and optimising in ε we get that ρ ≤ ρ0(1 +
O((adρ0)1/2)). For ε < 0 the argument is analogous only the direction of the inequalities is
reversed.

6.1.2 Strategy of the proof
To prove Theorem 6.1.2 we distinguish two cases. That of a “low-temperature” setting and that
of a “high-temperature” setting. For sufficiently small temperatures we compare to the ground
state energy studied in Chapter 3. For larger temperatures we consider a specific trial state
ΓJ of Jastrow-type (defined in Equation (6.3.1) below) and compute the pressure functional
evaluated on this trial state. For these computations we use the rigorous implementation from
Chapters 3 and 5 of the formal cluster expansion of Gaudin–Gillespie–Ripka [GGR71].

Temperature-dependent errors naturally arise as powers of ζ := 1 + |log z| . We shall prove
the following propositions.
Proposition 6.1.8. Let v ≥ 0 be radial and of compact support. If d = 1 assume moreover
that
´ (︂

|∂f0|2 + 1
2vf

2
0

)︂
dx < ∞. Then for sufficiently small adρ0 and large z = eβµ we have

ψ(β, µ) ≥ ψ0(β, µ) − 2πcd
− Lid/2+1(−z)

(− Lid/2(−z))1+2/da
dρ

2+2/d
0 [1 + δd] (6.1.11)

where ρ0 is the particle density of the free gas, cd is defined in Equation (6.1.3) and

|δd| ≲

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a2ρ

2/3
0 + (a3ρ0)−1ζ−2 d = 3,

a2ρ0

⃓⃓⃓
log a2ρ0

⃓⃓⃓2
+ (a2ρ0)−1ζ−2 d = 2,

(aρ0)9/13 + (aρ0)−1ζ−2 d = 1.

(6.1.12)

Proposition 6.1.9. Let v ≥ 0 be radial and of compact support. If d = 1 assume moreover
that

´ (︂
|∂f0|2 + 1

2vf
2
0

)︂
dx < ∞. Then for z = eβµ satisfying z ≳ 1 there exists a constant

c > 0 such that if adρ0 < c and adρ0ζ
d/2
⃓⃓⃓
log adρ0

⃓⃓⃓
< c then

ψ(β, µ) ≥ ψ0(β, µ) − 2πcd
− Lid/2+1(−z)

(− Lid/2(−z))1+2/da
dρ

2+2/d
0 [1 + δd] ,

where ρ0 is the particle density of the free gas, cd is defined in Equation (6.1.3) and

|δd| ≲

⎧⎪⎪⎨⎪⎪⎩
(a3ρ0)6/15ζ−3/5 + (a3ρ0)ζ1/2 |log a3ρ0|

2 + (a3ρ0)7/3ζ9/2 |log a3ρ0|
3

d = 3,
(a2ρ0)1/2ζ−1/2 + (a2ρ0)ζ |log a2ρ0| + (a2ρ0)2ζ3 |log a2ρ0|

3
, d = 2,

(aρ0)1/2 |log aρ0|
1/2 + aρ0ζ

3/2 |log aρ0|
3 d = 1.

(6.1.13)

Proposition 6.1.8 is a simple corollary of Theorems 3.1.3, 3.1.10 and 3.1.12, extending the
result to small positive temperatures. Proposition 6.1.9 is the main new result of this paper.
Most of the rest of the paper is concerned with the proof of Proposition 6.1.9. Theorem 6.1.2
is an immediate consequence:
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

Proof of Theorem 6.1.2. We use the lower bound in Proposition 6.1.8 for

ζ ≥ ζ0 :=

⎧⎪⎪⎨⎪⎪⎩
(a3ρ0)−20/39 |log a3ρ0|

−6/13
d = 3,

(a2ρ0)−3/5 |log a2ρ0|
−3/5

d = 2,
(aρ0)−4/7 |log aρ0|

−6/7 d = 1

and the lower bound in Proposition 6.1.9 otherwise. Theorem 6.1.2 follows.

We note that for ζ ∼ ζ0 the last of the summands in Equation (6.1.13) (in all dimensions)
dominate the error term in Proposition 6.1.9.

Remark 6.1.10. The proof of Proposition 6.1.9 uses the Gaudin–Gillespie–Ripka expansion.
This expansion consists of formulas for the normalization constant ZJ (defined in Equa-
tion (6.3.1) below) and the reduced densities of the state ΓJ , see Theorem 6.4.3. Both ZJ
and the reduced densities are given as infinite series of diagrams (defined in Definition 6.4.1).
Using these formulas the “smallest” diagrams give the corrections of Proposition 6.1.9 and
the remaining diagrams are error terms. To bound the error terms we calculate the values
of (finitely many) “small” diagrams and give crude bounds for all (infinitely many) “larger”
diagrams.

Remark 6.1.11. We expect that with the method presented here one could improve the
error bounds in Proposition 6.1.9 (and consequently Theorem 6.1.2) slightly by treating more
diagrams in the Gaudin–Gillespie–Ripka expansion as small, i.e. calculating their values more
precisely. See also Remark 3.1.8. This is similar to what is done in [BCGOPS23] and Chapter 5.
(In [BCGOPS23] the hard core Bose gas is treated with a method similar to a cluster expansion.
Using such an expansion to sufficiently high order proves the bounds of [BCGOPS23].)

More precisely we expect that by treating more diagrams as small one could improve the
bounds in Proposition 6.1.9 to

|δd| ≲ O

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

(a3ρ0)6/15ζ−3/5 d = 3
(a2ρ0)1/2ζ−1/2 d = 2
(aρ0)1/2 |log aρ0|

1/2 d = 1

⎞⎟⎟⎠+O
(︂
(adρ0)−2/d

(︂
adρ0ζ

d/2
⃓⃓⃓
log adρ0

⃓⃓⃓)︂n)︂
(6.1.14)

for any n. This would then propagate to better error terms in Theorem 6.1.2. More precisely,
by using the bound in Proposition 6.1.8 for ζ ≥ ζ0 and the bound in Proposition 6.1.9 with
error improved as in Equation (6.1.14) otherwise and optimising in ζ0 one would improve the
error bound in Theorem 6.1.2 to

|δd| ≲

⎧⎪⎪⎨⎪⎪⎩
Cε(a3ρ0)1/3−ε d = 3,
(a2ρ0)1/2 d = 2,
(aρ0)1/2 |log aρ0|

1/2 d = 1

for any ε > 0, where Cε depends on ε, by taking n sufficiently large in Equation (6.1.14).

The first terms in Equation (6.1.14) come from the precise evaluation of certain small diagrams.
In dimension d = 2, 3 one should not expect to get better bounds than this using the method
presented here. In dimension d = 1 one might be able to do a more precise analysis, see
Remark 6.5.6, and thus improve the bound.

The proof of Proposition 6.1.8 will be given in in Section 6.2. It is mostly independent of the
rest of the paper (Sections 6.3, 6.4 and 6.5) which is devoted to the proof of Proposition 6.1.9.
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Structure of the paper: First, in Section 6.2 we give the proof of Proposition 6.1.8.
Then, in Section 6.3 we define the trial state ΓJ and give some preliminary computations.
Next, in Section 6.4 we compute reduced densities of the trial state ΓJ using the (rigorous
implementation of the) Gaudin–Gillespie–Ripka expansion. Finally, in Section 6.5 we calculate
the individual terms in the pressure functional and prove Proposition 6.1.9. In Section 6.A we
show that ΓJ has particle density ≈ ρ0.

6.2 Low temperature
In this section we prove Proposition 6.1.8 by comparing to the zero-temperature problem.

Proof of Proposition 6.1.8. The pressures ψ, ψ0 (of the interacting and non-interacting gas,
respectively) are the Legendre transforms of the corresponding free energy densities ϕ, ϕ0.
That is,

ψ(β, µ) = sup
ρ̃

[ρ̃µ− ϕ(β, ρ̃)] ≥ ρ0µ− ϕ(β, ρ0)

ψ0(β, µ) = sup
ρ̃

[ρ̃µ− ϕ0(β, ρ̃)] = ρ0µ− ϕ0(β, ρ0)
(6.2.1)

with ρ0 the density of the free gas at chemical potential µ and inverse temperature β, given in
Equation (6.1.6). We may trivially bound the free energy density by the ground state energy
density e. The latter is bounded from above in Theorems 3.1.3, 3.1.10 and 3.1.12. That is,

ϕ(β, ρ0) ≤ e(ρ0) ≤ e0(ρ0) + c0,da
dρ

2+2/d
0 [1 + δd], (6.2.2)

with e0(ρ0) denoting the ground state energy density of the free gas and c0,d and δd as in
Equation (6.1.8). By a straightforward calculation, the ground state energy density of the free
gas is

e0(ρ0) = 4π d2/d

d+ 2

(︄
d

2

)︄2/d

Γ(d/2)2/dρ
1+2/d
0 .

By Equations (6.1.2), (6.1.6) and (6.1.10) we have for large z = eβµ (see also [Hua87,
Equation (11.31)])

ψ0(β, µ) = β−1−d/2

⃓⃓⃓
Sd−1

⃓⃓⃓
Γ(d/2)

2(2π)d (− Lid/2+1(−eβµ))

= 4πρ1+2/d
0

− Lid/2+1(−eβµ)
(− Lid/2(−eβµ))1+2/d = 2

d
e0(ρ0) +O

(︂
ρ

1+2/d
0 (βµ)−2

)︂

where
⃓⃓⃓
Sd−1

⃓⃓⃓
= 2πd/2

Γ(d/2) is the area of the (d− 1)-sphere. Thus

ϕ0(β, ρ0) = ρ0µ− ψ0(β, µ) = e0 +O
(︂
ρ

1+2/d
0 (βµ)−2

)︂
.

Combining this with Equations (6.2.1) and (6.2.2) we conclude the proof of Proposition 6.1.8.

The rest of the paper concerns the proof of Proposition 6.1.9. We start with some preliminary
computations.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

6.3 Preliminaries
To prove Proposition 6.1.9 we will consider a finite system on a cubic box of side length L
with periodic boundary conditions and bound ψ(β, µ) from below by the pressure functional
evaluated on the trial state

ΓJ = Z

ZJ
FΓF, F =

∞⨁︂
n=0

Fn, Fn =
∏︂

1≤i<j≤n
f(xi − xj), (6.3.1)

where f is some cut-off and rescaled scattering function defined in Equation (6.3.2) below,
where Γ is defined in Equation (6.1.1), and where ZJ is such that this is normalised with
TrΓJ = 1. Concretely, on the n-particle space ΓJ acts via the kernel

Z−1
J Fn(Xn)Γn(Xn, Yn)Fn(Yn).

(Recall that Γ acts via the kernel Z−1Γn(Xn, Yn).) The function f is more precisely

f(x) =

⎧⎨⎩
1

1−ad/bdf0(x) |x| ≤ b

1 |x| ≥ b
(6.3.2)

where f0(x) is the p-wave scattering function defined in Definition 6.1.1 and b is a length to
be chosen later. We will choose a ≪ b ≤ Cρ

−1/d
0 . Here and in the following ρ0 denotes the

particle density of the free gas in finite volume. In particular for adρ0 small enough b is larger
than the range of v and so f is continuous (since f0(x) = 1 − a3

|x|3 for x outside the support
of v).

Notation 6.3.1.

• We will denote expectation values of operators in the free state Γ by ⟨·⟩0 and in the trial
state ΓJ by ⟨·⟩J . That is, ⟨A⟩0 = TrF [AΓ ] and ⟨A⟩J = TrF [AΓJ ] for any operator A
on F .

• We denote g(x) = f(x)2 − 1.

• For any function h we write he = hij = h(xi − xj) for an edge e = (i, j).

• Moreover we write γ(1)
e = γ

(1)
ij = γ(1)(xi;xj) for an edge e = (i, j), where γ(1) is the

1-particle density matrix of Γ defined in Equation (6.3.4) below (see also Notation 6.3.3).

• We write Xn = (x1, . . . , xn) and X[n,m] = (xn, . . . , xm) if n ≤ m. For n > m then
X[n,m] = ∅.

Remark 6.3.2. The trial state ΓJ does not have (average) particle density ρ0. However we
have that

1
Ld

⟨N ⟩J = ρ0
(︂
1 +O(adb2ρ

1+2/d
0 ) +O

(︂
(adρ0)2ζd(log b/a)2

)︂)︂
. (6.3.3)

This is not needed for the proof of Proposition 6.1.9, however. We give the proof of (6.3.3)
in Section 6.A.

We normalize q-particle density matrices of a general state Γ̃ = (Γ̃ 0, Γ̃ 1, . . .) as

γ
(q)
Γ̃

(Xq;Yq) =
∞∑︂
n=q

n!
(n− q)!

̇
Γ̃ n(Xq, X[q+1,n];Yq, X[q+1,n]) dX[q+1,n]. (6.3.4)
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Notation 6.3.3. For the Gibbs state Γ = (Z−1Γ0, Z
−1Γ1, . . .) and the trial state ΓJ we denote

their q-particle density matrices by γ(q)(Xq;Yq) = γ
(q)
Γ (Xq;Yq) and γ(q)

J (Xq;Yq) = γ
(q)
ΓJ

(Xq;Yq)
respectively. The same applies to the q-particle densities, being then denoted ρ(q) and ρ(q)

J .

The Gibbs state Γ is quasi-free and particle preserving. Thus by Wick’s rule (see [BR97,
Section 5.2.4], [Sol14, Theorem 10.2]) we have for the q-particle density

ρ(q)(Xq) = γ(q)(Xq;Xq) = det
[︂
γ

(1)
ij

]︂
1≤i,j≤q

.

Moreover, by translation invariance, we have that γ(1)(x; y) is a function of x− y only. With
a slight abuse of notation we then write

γ(1)(x; y) = γ(1)(x− y) = 1
Ld

∑︂
k∈ 2π

L
Zd

γ̂(1)(k)e−ik(x−y).

A simple calculation shows that (see [Hua87, Equation (8.65)])

γ̂(1)(k) = ze−β|k|2

1 + ze−β|k|2 = eβµ−β|k|2

1 + eβµ−β|k|2 .

For the proof of Proposition 6.1.9 we compute the pressure of the trial state ΓJ . We have

ψ(β, µ) ≥ lim sup
L→∞

1
Ld

[︄
− ⟨H − µN + V⟩J + 1

β
S(ΓJ)

]︄

= lim sup
L→∞

1
Ld

[︄
− ⟨H⟩J − µ ⟨N ⟩J − 1

2

¨
v12ρ

(2)
J dx1 dx2 + 1

β
S(ΓJ)

]︄
,

(6.3.5)

where ρ
(2)
J is the two-body reduced density of the trial state ΓJ . We calculate ρ

(2)
J in

Section 6.4 using the Gaudin–Gillespie–Ripka expansion and we compute the individual terms
of Equation (6.3.5) in Section 6.5 below. First, however, we need some preliminary bounds.

6.3.1 Useful bounds
We recall some useful bounds on the scattering function (defined in Equation (6.3.2)) from
Chapter 3.
Lemma 6.3.4. The scattering function f satisfies

ˆ ⃓⃓⃓
1 − f(x)2

⃓⃓⃓
|x|n dx ≤

⎧⎨⎩Cad log b/a n = 0
Cadbn n > 0

(6.3.6)
ˆ (︃

|∇f(x)|2 + 1
2v(x)f(x)2

)︃
|x|2 dx = cda

d
(︂
1 +O(ad/bd))

)︂
(6.3.7)

ˆ (︃
|∇f(x)|2 + 1

2v(x)f(x)2
)︃

|x|n dx ≤

⎧⎪⎪⎨⎪⎪⎩
Can+d−2 n+ d ≤ 2d+ 1
Can+d−2 log b/a n+ d = 2d+ 2
Ca2dbn−d−2 n+ d ≥ 2d+ 3

(6.3.8)

⃓⃓⃓⃓
⃓
ˆ
f(x) |∇f(x)| |x|n dx

⃓⃓⃓⃓
⃓ ≤

⎧⎪⎪⎨⎪⎪⎩
Cad−1 n = 0
Cad log b/a n = 1
Cadbn−1 n ≥ 2

(6.3.9)

where cd is defined in Equation (6.1.3).
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

Proof. Equations (6.3.6), (6.3.7), (6.3.8) and (6.3.9) all follow from the definition of the
scattering length, Definition 6.1.1, and the bounds [LY01, Lemma A.1], Lemma 3.2.2[︄

1 − ad

|x|d

]︄
+

≤ f0(x) ≤ 1, |∇f0(x)| ≤ dad

|x|d+1 for |x| > a

where the left inequality in the first inequality is an equality for x outside the support of v.
We refer to (3.4.1)–(3.4.6) for a detailed proof.

We will need the following technical lemma.
Lemma 6.3.5. Let γ̂(k) = ze−β|k|2 . Let p, n,m be non-negative integers with 1 ≤ n ≤ m.
Then

1
Ld

∑︂
k∈ 2π

L
Zd

|k|pγ̂(k)n

(1 + γ̂(k))m = 1
(2π)d

ˆ
Rd

|k|pγ̂(k)n

(1 + γ̂(k))m dk +O

(︄
L−1βmax

{︂
β−1, µ

}︂ p+d+1
2

)︄

≤ C max
{︂
β−1, µ

}︂ p+d
2

for z = eβµ ≳ 1 and L sufficiently large.

Note that γ̂(k) ̸= γ̂(1)(k). In fact, γ̂(1)(k) = γ̂(k)
1+γ̂(k) .

Proof. We interpret the sum as a Riemann sum and compare it with its corresponding integral

Ip,n,m := 1
(2π)d

ˆ
Rd

|k|pγ̂(k)n

(1 + γ̂(k))m dk

Writing Fp,n,m(k) = |k|pγ̂(k)n

(1+γ̂(k))m then

1
Ld

∑︂
k∈ 2π

L
Zd

|k|pγ̂(k)n

(1 + γ̂(k))m

= 1
(2π)d

∑︂
k∈ 2π

L
Zd

ˆ
[− π

L
, π

L ]d

(︄
Fp,n,m(k + ξ) −

ˆ 1

0
∂tFp,n,m(k + tξ) dt

)︄
dξ

The first term is the integral Ip,n,m. For the second term we may bound by direct computation
(defining Fp,n,m = 0 for p < 0)

|∂tFp,n,m(k + tξ)| ≤ C|ξ| [Fp−1,n,m(k + tξ) + βFp+1,n,m(k + tξ)]
≤ C|ξ|eCβ|ξ||k+ξ|+Cβ|ξ|2 [Fp−1,n,m(k + ξ) + βFp+1,n,m(k + ξ)] .

That is, the second term is bounded by the integral

CL−1eCL
−2β

ˆ
Rd

eCL
−1β|k|(Fp−1,n,m(k) + βFp+1,n,m(k)) dk.

Next, to bound the integral, we note that Fp,n,m ≤ Fp,1,1. First, consider z ≥ e, i.e. βµ ≥ 1.
Then we boundˆ

Rd

eCL
−1β|k|Fp,1,1(k) dk

≤ C

ˆ √
2µ

0
eCL

−1βkkp+d−1 dk + C

ˆ ∞

√
2µ
eCL

−1βkkp+d−1e−β(k2−µ) dk

≤ Cµ
p+d

2 eCL
−1βµ1/2 + Cβ− p+d

2

ˆ ∞

√
βµ

tp+d−1e−t2+CL−1β1/2t dt ≤ Cµ
p+d

2
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for L sufficiently large.

Next, for z < e we bound
ˆ
Rd

eCL
−1β|k|Fp,1,1(k) dk ≤ C

ˆ ∞

0
eCL

−1βkkp+d−1ze−βk2 dk

≤ Cβ− p+d
2

ˆ ∞

0
tp+d−1e−t2+CL−1β1/2t dt ≤ Cβ− p+d

2

for L sufficiently large. The equality in the lemma follows. We may bound Ip,n,m in a similar
manner and conclude the proof of the lemma.

Finally, we have the following lemma for the reduced densities of the free state.
Lemma 6.3.6. The reduced densities of the free Fermi gas satisfy

ρ(1)(x1) = ρ0 = 1
(4π)d/2β

−d/2(− Lid/2(−z))
[︂
1 +O(L−1ζρ

−1/d
0 )

]︂
, (6.3.10)

ρ(2)(x1, x2) = 2π − Lid/2+1(−z)
(− Lid/2(−z))1+2/dρ

2+2/d
0 |x1 − x2|2

×
[︂
1 +O(ρ2/d

0 |x1 − x2|2) +O(L−1ζρ
−1/d
0 )

]︂
. (6.3.11)

Equations (6.3.10) and (6.3.11) are the finite volume analogues of Equations (6.1.6) and (6.1.7).

Remark 6.3.7. Note that β ∼ ζρ
−2/d
0 . (Recall that ζ = 1 + |log z|.) Indeed, for z ≤ C

this is clear from Equation (6.3.10). For z ≫ 1 this follows from the asymptotics of the
polylogarithm, Equation (6.1.10). Moreover, for βµ ≥ 1 then µ ∼ ρ

2/d
0 . In particular then

Lemma 6.3.5 may be reformulated as

1
Ld

∑︂
k∈ 2π

L
Zd

|k|pγ̂(k)n

(1 + γ̂(k))m = 1
Ld

∑︂
k∈ 2π

L
Zd

|k|pzne−nβ|k|2

(1 + ze−β|k|2)m
≤ Cρ

1+p/d
0 (6.3.12)

for z ≳ 1 and L sufficiently large. This is the form we will later use.

Proof. By translation invariance

ρ0 = ⟨N ⟩0
Ld

= 1
Ld

ˆ
ρ(1)(x) dx = ρ(1)(0).

Moreover, by Lemma 6.3.5

ρ(1)(0) = 1
Ld

∑︂
k∈ 2π

L
Zd

eβµ−β|k|2

1 + eβµ−β|k|2

= 1
(2π)d

ˆ
Rd

ze−β|k|2

1 + ze−β|k|2 dk +O

(︄
L−1βmax

{︂
β−1, µ

}︂ d+1
2

)︄

=
Γ(d/2)

⃓⃓⃓
Sd−1

⃓⃓⃓
2(2π)d β−d/2(− Lid/2(−z))

(︃
1 +O

(︃
L−1βmax

{︂
β−1, µ

}︂1/2
)︃)︃
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where
⃓⃓⃓
Sd−1

⃓⃓⃓
= 2πd/2

Γ(d/2) is the surface area of the (d−1)-sphere. Using that max {β−1, µ} ∼ ρ
2/d
0

(which follow from this equation for L sufficiently large, see Remark 6.3.7) we conclude the
proof of Equation (6.3.10).

Next, we consider the 2-particle density. By Wick’s rule we have

ρ(2)(x1, x2) = ρ(1)(x1)ρ(1)(x2) − γ(1)(x1;x2)γ(1)(x2;x1).

By translation invariance γ(1)(x1;x2) is a function of x1 − x2 only. We expand it as a Taylor
series in x1 −x2. By symmetry of reflection in any of the axes all odd orders and all off-diagonal
second order terms vanish. Additionally, all second order terms are equal by the symmetry of
permutation of the axes. That is,

γ(1)(x1;x2) = 1
Ld

∑︂
k

γ̂(1)(k)eik(x1−x2)

= 1
Ld

∑︂
k

γ̂(1)(k)
[︃
1 − 1

2d |k|2|x1 − x2|2 +O(|k|4|x1 − x2|4)
]︃

= ρ0 − 1
2d

[︄
1
Ld

∑︂
k

|k|2γ̂(1)(k)
]︄

|x1 − x2|2

+O

(︄[︄
1
Ld

∑︂
k

|k|4γ̂(1)(k)
]︄

|x1 − x2|4
)︄
.

(HereO(|k|4|x1−x2|4) means a term that is bounded by |k|4|x1−x2|4 uniformly in |k|4|x1−x2|4,
even if it is large.) For the first sum we have by Lemma 6.3.5 and Equation (6.3.10) (and
writing the error term in terms of ρ0 as above)

1
Ld

∑︂
k∈ 2π

L
Zd

|k|2γ̂(1)(k) = 1
(2π)d

ˆ
ze−β|k|2

1 + ze−β|k|2 |k|2 dk +O
(︂
L−1ζρ

4/d
0

)︂

=
Γ(d/2 + 1)

⃓⃓⃓
Sd−1

⃓⃓⃓
2(2π)d β−d/2−1(− Lid/2+1(−z))

(︂
1 +O(L−1ζρ

−1/d
0 )

)︂
= 2dπ − Lid/2+1(−z)

(− Lid/2(−z))1+2/dρ
1+2/d
0

(︂
1 +O(L−1ζρ

−1/d
0 )

)︂
.

Using again Lemma 6.3.5 to bound the second sum we conclude that

γ(1)(x1;x2) = ρ0 − π
− Lid/2+1(−z)

(− Lid/2(−z))1+2/dρ
1+2/d
0 |x1 − x2|2

+O
(︂
L−1ζρ

1+1/d
0 |x1 − x2|2

)︂
+O

(︂
ρ

1+4/d
0 |x1 − x2|4

)︂
.

We conclude the proof of Equation (6.3.11).

6.4 Gaudin–Gillespie–Ripka expansion
We use the Gaudin–Gillespie–Ripka (GGR) expansion [GGR71] to compute ZJ and ρ(q)

J , the
q-particle reduced densities of the trial state ΓJ . For this we recall some notation from
Chapter 3.
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6.4. Gaudin–Gillespie–Ripka expansion

Definition 6.4.1 (Definition 3.3.1). We define Gq
p as the set of graphs on q external vertices

{1, ..., q} and p internal vertices {q+1, ..., q+p} such that there are no edges between external
vertices and such that all internal vertices have degree at least 1, i.e. there is at least one
edge incident to each internal vertex. We replace q and/or p with sets V ∗ and V respectively
and write GV ∗

V if we need the external and/or internal vertices to have definite indices V ∗

respectively V . Concretely this means that for a set of edges E ⊂ {{i, j} : 1 ≤ i < j ≤ q+p}
the corresponding graph is in Gq

p if and only if

∀(q + 1 ≤ i ≤ q + p) ∃(1 ≤ j ≤ q + p) : {i, j} ∈ E, ∀(1 ≤ i < j ≤ q) : {i, j} /∈ E.

Define T q
p ⊂ Cqp ⊂ Gq

p as the subset of trees and connected graphs respectively. (Define
similarly T V ∗

V ⊂ CV ∗
V ⊂ GV ∗

V .) Define the functions

W q
p = W q

p (x1, . . . , xp+q) =
∑︂
G∈Gq

p

∏︂
e∈G

ge.

A diagram (π,G) (on q external and p internal vertices) is a pair of a permutation π ∈ Sp+q
and a graph G ∈ Gq

p . We view the permutation π as a directed graph on the p+ q vertices.
The set of all diagrams on q external and p internal vertices is denoted Dq

p.

For a diagram (π,G) we will refer to G as the g-graph and π as the γ-graph. The value of a
diagram (π,G) ∈ Dq

p is the function

Γqπ,G(x1, . . . , xq) = (−1)π
̇ p+q∏︂

j=1
γ(1)(xj;xπ(j))

∏︂
e∈G

ge dX[q+1,q+p].

A diagram (π,G) ∈ Dq
p is linked if the union of π and G is a connected graph. The subset of

all linked diagrams is denoted Lq
p ⊂ Dq

p.

For q ≥ 1 define the set L̃q

p ⊂ Dq
p as the set of all diagrams such that each linked component

contains at least one external vertex. For q = 0 we set L̃0
p = L0

p.

A cluster is a connected component of the graph G.

∗ ∗ ∗

Figure 6.4.1: Example of a diagram (π,G) ∈ D3
6 with 3 linked components with

each linked component containing 2 (left linked component), 1 (centre top linked
component) and 2 (right linked component) clusters respectively. Vertices labelled
with ∗ denote external vertices, dashed lines denote g-edges and arrows denote
γ-edges, i.e. an arrow from i to j denotes that π(i) = j. Note that all internal
vertices have at least one incident g-edge, that external vertices may have none,
and that there are no g-edges between external vertices.

Notation 6.4.2. By a picture of a diagram, such as Figure 6.4.1, we will also denote the
value of the pictured diagram.

We shall in the remainder of this section prove the following theorem.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

Theorem 6.4.3. For any q0 there exists a constant cq0 > 0 independently of L such that if
adρ0ζ

d/2 log b/a < cq0 then

ZJ = Z exp
⎡⎣ ∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G

⎤⎦ , (6.4.1)

ρ
(q)
J =

∏︂
1≤i<j≤q

f 2
ij

∞∑︂
p=0

1
p!

∑︂
(π,G)∈L̃q

p

Γqπ,G. (6.4.2)

for any q ≤ q0.

Note that the p-sum in Equation (6.4.2) starts at p = 0 as opposed to that in Equation (6.4.1).
This arises from the fact that diagrams with at least one external vertex may have zero internal
vertices, while diagrams with no external vertices have at least 2 internal vertices.

In the proof we will use the GGR expansion as formulated in Lemma 5.3.6 and Theorem 3.3.4.
For convenience we recall it here. Note that 1

Ld

∑︁
k∈ 2π

L
Zd

⃓⃓⃓
γ̂(1)(k)

⃓⃓⃓
= ρ0. We continue to abuse

notation slightly and treat γ(1) as a function and write
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

=
´

[0,L]d

⃓⃓⃓
γ(1)(x)

⃓⃓⃓
dx.

Lemma 6.4.4 (Lemma 5.3.6, Theorem 3.3.4). For any integer q0 there exists a constant
cq0 > 0 such that if ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1
ρ0 < cq0 then3

Z := 1 +
∞∑︂
p=2

1
p!

∑︂
(π,G)∈Dp

Γπ,G = exp
⎡⎣ ∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G

⎤⎦ ,
1
Z

∞∑︂
p=0

1
p!

∑︂
(π,G)∈Dq

p

Γqπ,G =
∞∑︂
p=0

1
p!

∑︂
(π,G)∈L̃q

p

Γqπ,G

for any q ≤ q0, the p-sums being absolutely convergent.

We shall bound
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

and ∥g∥L1 in Lemma 6.4.6 below.

6.4.1 Calculation of ZJ
We calculate ZJ . This is analogous to the computation in Sections 3.3.0.1 and 5.3.1 For
simplicity denote the diagonal of Γn by Γn = Γn(Xn) = Γn(Xn;Xn). Then

ZJ =
∞∑︂
n=0

̇ ∏︂
i<j

f 2
ijΓn(Xn) dXn =

∞∑︂
n=0

̇ ∏︂
i<j

(1 + gij)Γn(Xn) dXn

Expanding the product and grouping all terms where p variables xi appear in the factors gij
we find the function Wp (evaluated on the respective p coordinates xi). Noting further the
permutation symmetry of the coordinates we have

=
∞∑︂
n=0

̇ ⎡⎣1 +
n∑︂
p=2

n!
(n− p)!p!Wp(Xp)

⎤⎦Γn(Xn) dXn

3In Lemma 5.3.6 and Theorem 3.3.4 the sum
∑︁

(π,G)∈L̃q
p

Γq
π,G is written by decomposing all diagrams

(π,G) ∈ L̃q

p into their linked components and noting that Γq
π,G factorizes over linked components.

194



6.4. Gaudin–Gillespie–Ripka expansion

since there are n!
(n−p)!p! many ways to choose p coordinates out of n coordinates. Now, if

∞∑︂
n=0

n∑︂
p=2

n!
(n− p)!p!

̇
|Wp|Γn dXn < ∞

then we may interchange the two sums. A criterion for this is given in Lemma 6.4.5 below.
Thus, if the condition of Lemma 6.4.5 is satisfied, namely that ρ0 ∥g∥L1 is sufficiently small,
we have

ZJ = Z

⎡⎣1 +
∞∑︂
p=2

1
p!

̇
dXpWp

[︄
1
Z

∞∑︂
n=p

n!
(n− p)!

̇
dX[p+1,n]Γn

]︄⎤⎦
= Z

⎡⎣1 +
∞∑︂
p=2

1
p!

̇
dXpWpρ

(p)

⎤⎦ .
The free Fermi gas is a quasi-free state, and thus by Wick’s rule we have

ZJ = Z

⎡⎣1 +
∞∑︂
p=2

1
p!

̇
dXpWp det

[︂
γ

(1)
ij

]︂
1≤i,j≤p

⎤⎦
Expanding Wp and the determinant we get

ZJ = Z

⎡⎣1 +
∞∑︂
p=2

1
p!

∑︂
(π,G)∈Dp

Γπ,G

⎤⎦ .
Applying then Lemma 6.4.4 we conclude that, if ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

and ρ0 ∥g∥L1 are sufficiently
small, Equation (6.4.1) holds.

6.4.2 Calculation of ρ(q)
J

Next, we calculate the reduced densities ρ(q)
J of the trial state ΓJ . This is analogous to the

computations in Sections 3.3.0.2, 3.3.0.3, 3.3.0.4 and 5.3.2. We have

ρ
(q)
J (Xq) = 1

ZJ

∞∑︂
n=q

n!
(n− q)!

̇ ∏︂
1≤i<j≤n

f 2
ijΓn(Xn) dX[q+1,n]

We write f 2
ij = 1 + gij if at least one of i, j is an internal vertex and expand the product of

the (1 + gij)’s. Grouping together those terms where p internal vertices are present we find
the function W q

p . Using additionally the symmetry of permutation of the coordinates we find

= 1
ZJ

∏︂
1≤i<j≤q

f 2
ij

∞∑︂
n=q

n!
(n− q)!

n−q∑︂
p=0

(n− q)!
p!(n− q − p)!

̇
W q
p (Xp+q)Γn(Xn) dX[q+1,n].

By Lemma 6.4.5 below we may interchange the sums if ρ0 ∥g∥L1 is sufficiently small. Then

ρ
(q)
J = Z

ZJ

∏︂
1≤i<j≤q

f 2
ij

∞∑︂
p=0

1
p!

̇
W q
p

×

⎡⎣ 1
Z

∞∑︂
n=p+q

n!
(n− p− q)!

̇
Γn dX[q+p+1,n]

⎤⎦ dX[q+1,q+p]

= Z

ZJ

∏︂
1≤i<j≤q

f 2
ij

∞∑︂
p=0

1
p!

̇
W q
p ρ

(p+q) dX[q+1,q+p]
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

Expanding the W q
p and using the Wick rule for the reduced densities of the free gas as above

we get
ρ

(q)
J = Z

ZJ

∏︂
1≤i<j≤q

f 2
ij

∞∑︂
p=0

1
p!

∑︂
(π,G)∈Dq

p

Γqπ,G.

As above, by Lemma 6.4.4, we get that Equation (6.4.2) holds for ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

and
ρ0 ∥g∥L1 small enough (dependent on q).

6.4.3 A convergence criterion
In this section we show
Lemma 6.4.5. There exists a constant c > 0 such that if ρ0 ∥g∥L1 < c then

1
Z

∞∑︂
n=0

n∑︂
p=2

n!
(n− p)!p!

̇
|Wp||Γn| dXn ≤ exp(CLdρ0 ∥g∥L1) < ∞, (6.4.3)

and for any q ≥ 1

1
Z

∞∑︂
n=q

n−q∑︂
p=0

n!
(n− q − p)!p!

̇
|W q

p ||Γn| dX[q+1,n] ≤ Cqρ
q
0 exp(CLdρ0 ∥g∥L1) < ∞ (6.4.4)

uniformly in x1, . . . , xq.

Proof. Write

1
Z

∞∑︂
n=0

n∑︂
p=2

n!
(n− p)!p!

̇
|Wp||Γn| dXn = 1

Z

∞∑︂
p=2

∞∑︂
n=p

n!
(n− p)!p!

̇
dXn|Wp|Γn

=
∞∑︂
p=2

1
p!

̇
dXp|Wp|ρ(p).

By splitting all graphs into their connected components we have
̇

dXp |Wp|ρ(p)

=
̇

dXp

⃓⃓⃓⃓
⃓⃓ ∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

(︄
p

n1, . . . , nk

)︄
χ(
∑︁

nℓ=p)

k∏︂
ℓ=1

⎡⎣ ∑︂
Gℓ∈Cnℓ

∏︂
e∈Gℓ

ge

⎤⎦⃓⃓⃓⃓⃓⃓ ρ(p).

We abused notation slightly and denote by Cnℓ
the set of connected graphs on nℓ specified

vertices, say {∑︁ℓ′<ℓ nℓ′ + 1, . . . ,∑︁ℓ′≤ℓ nℓ′}, such that no two Gℓ’s share any vertices. Here k
is the number of connected components having sizes n1, . . . , nk. Note that nℓ ≥ 2 since each
connected component needs at least 2 vertices since any vertex in a graph G ∈ Gp is internal
and hence connected to at least one other vertex. The factor 1

k! comes from counting the
possible labelings of the connected component and the factor

(︂
p

n1···nk

)︂
comes from counting

the possible labelings of the vertices in the different connected components.

Next, we employ the tree-graph inequality [Uel18]. This reads (since 0 ≤ g ≤ 1)⃓⃓⃓⃓
⃓⃓ ∑︂
G∈Cn

∏︂
e∈G

ge

⃓⃓⃓⃓
⃓⃓ ≤

∑︂
T∈Tn

∏︂
e∈T

|ge| .
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Thus, ̇
dXp

1
p! |Wp| ρ(p)

≤
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

χ(
∑︁

nℓ=p)

̇
dXp

k∏︂
ℓ=1

⎡⎣ ∑︂
Tℓ∈Tnℓ

∏︂
e∈Tℓ

|ge|

⎤⎦ ρ(p).

Next, we bound ρ(p) analogously to Lemma 3.3.10. First, ρ(p) = det[γ(1)
ij ]1≤i,j≤p by the Wick

rule. Next, define αi(k) = L−d/2eikxi γ̂(1)(k) ∈ ℓ2(2π
L
Zd). Then γ(1)

ij = ⟨αi|αj⟩ℓ2( 2π
L
Zd) and so

by the Gram–Hadamard inequality [GMR21, Lemma D.1]

ρ(p) = det
[︂
γ

(1)
ij

]︂
1≤i,j≤p

≤
p∏︂
i=1

∥αi∥2
ℓ2( 2π

L
Zd) = ρp0.

Thus
∞∑︂
p=2

1
p!

̇
dXp|Wp|ρ(p)

≤
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

ρ
∑︁

nℓ

0

k∏︂
ℓ=1

⎡⎣ ∑︂
Tℓ∈Tnℓ

̇ ∏︂
e∈Tℓ

|ge|

⎤⎦
For each tree the integration is over all variables, thus by the translation invariance the
integration over the variables in the tree Tℓ gives Ld(

´
|g|)nℓ−1. Using moreover Cayley’s

formula #Tn = nn−2 ≤ Cnn! we get

≤
∞∑︂
k=1

1
k!

∑︂
n1,...,nk≥2

1
n1! · · ·nk!

ρ
∑︁

nℓ

0 C
∑︁

nℓn1! · · ·nk!
(︄ˆ

|g|
)︄∑︁nℓ−k

Ldk

=
∞∑︂
k=1

1
k!

[︄
Cρ0L

d
∞∑︂
n=2

(Cρ0 ∥g∥L1)n−1
]︄k

≤ exp
(︂
CLdρ0 ∥g∥L1

)︂
< ∞

if ρ0 ∥g∥L1 is sufficiently small.

The proof of Equation (6.4.4) is in spirit the same. Write

1
Z

∞∑︂
n=q

n−q∑︂
p=0

n!
(n− q − p)!p!

̇
|W q

p ||Γn| dX[q+1,n] =
∞∑︂
p=0

1
p!

̇
dX[q+1,q+p]|W q

p |ρ(q+p).

By decomposing the graphs into their connected components we havė
dX[q+1,q+p] |W q

p |ρ(q+p)

=
̇

dX[q+1,q+p]

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

q∑︂
κ=1

1
κ!

∑︂
(V ∗

1 ,...,V
∗

κ )
partition of {1,...,q}

V ∗
λ ̸=∅

∑︂
n∗

1,...,n
∗
κ≥0

∞∑︂
k=0

1
k!

∑︂
n1,...,nk≥2

χ(
∑︁

λ
n∗

λ
+
∑︁

ℓ
nℓ=p)

×
(︄

p

n∗
1, . . . , n

∗
κ, n1, . . . , nk

)︄
κ∏︂
λ=1

⎡⎢⎢⎢⎣ ∑︂
G∗

λ
∈C

V ∗
λ

n∗
λ

∏︂
e∈G∗

λ

ge

⎤⎥⎥⎥⎦
k∏︂
ℓ=1

⎡⎣ ∑︂
Gℓ∈Cnℓ

∏︂
e∈Gℓ

ge

⎤⎦
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ρ

(q+p).
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Here κ is the number of connected components having external vertices and k is the number
of connected components only with internal vertices. The partition (V ∗

1 , . . . , V
∗
κ ) partitions

the external vertices into the κ different connected components with external vertices and the
numbers n∗

1, . . . , n
∗
κ are the number of internal vertices in the connected components with

external vertices. The numbers n1, . . . , nk and the combinatorial factors are as above.

Using the tree-graph inequality as above we will obtain a sum of trees. (Technically we need
to use a trivial modification of the tree-graph bound adapted to the setting with external
vertices as in Sections 3.3.1.3 and 5.4.2. One simply defines ge = 0 for a disallowed edge e
between external vertices.) Namely we will have factors like

∑︂
T ∗

λ
∈T

V ∗
λ

n∗
λ

∏︂
e∈T ∗

λ

|ge|.

We bound these as follows. If #V ∗
λ = 1 we do nothing and define T ∗

λ,1 = T ∗
λ . Otherwise

iteratively pick any edge on the path between any two external vertices and bound the factor
|ge| ≤ 1. Remove this edge from T ∗

λ . Repeating this procedure #V ∗
λ − 1 many times results

in #V ∗
λ many trees all with exactly 1 external vertex. Label these as T ∗

λ,1, . . . , T
∗
λ,#V ∗

λ
. We

then have the bound ∏︂
e∈T ∗

λ

|ge| ≤
#V ∗

λ∏︂
ν=1

∏︂
e∈T ∗

λ,ν

|ge|.

Using this bound together with the Gram–Hadamard inequality as above we get

∞∑︂
p=0

1
p!

̇
dX[q+1,q+p]|W q

p |ρ(q+p)

≤
q∑︂

κ=1

1
κ!

∑︂
(V ∗

1 ,...,V
∗

κ )
part. of {1,...,q}

V ∗
λ ̸=∅

∑︂
n∗

1,...,n
∗
κ≥0

∞∑︂
k=0

1
k!

∑︂
n1,...,nk≥2

1∏︁κ
λ=1 n

∗
λ!
∏︁k
ℓ=1 nℓ!

ρ
q+
∑︁

λ
n∗

λ+
∑︁

ℓ
nℓ

0

×
∑︂

T ∗
λ

∈T
V ∗

λ
n∗

λ

∑︂
Tℓ∈Tnℓ

⎡⎢⎣ κ∏︂
λ=1

#V ∗
λ∏︂

ν=1

̇ ∏︂
e∈T ∗

λ,ν

|ge|

⎤⎥⎦
⎡⎣ k∏︂
ℓ=1

̇ ∏︂
e∈Tℓ

|ge|

⎤⎦ .

In the integrations each tree T ∗
λ,ν is integrated over all but the one external vertex and so

gives a value (
´

|g|)#T ∗
λ,ν−1 and each tree Tℓ is integrated over all coordinates giving the value

(
´

|g|)nℓ−1Ld. Moreover ∑︁ν(#T ∗
λ,ν − 1) = n∗

λ. Thus, using additionally Cayley’s formula
(trivially extended to the setting with external vertices: #T V ∗

λ
n∗

λ
≤ Cn∗

λ+#V ∗
λ (n∗

λ + #V ∗
λ )!),

≤
q∑︂

κ=1

1
κ!

∑︂
(V ∗

1 ,...,V
∗

κ )
part. of {1,...,q}

V ∗
λ ̸=∅

∑︂
n∗

1,...,n
∗
κ≥0

∞∑︂
k=0

1
k!

∑︂
n1,...,nk≥2

1∏︁κ
λ=1 n

∗
λ!
∏︁k
ℓ=1 nℓ!

ρ
q+
∑︁

λ
n∗

λ+
∑︁

ℓ
nℓ

0

× Cq+
∑︁

λ
n∗

λ+
∑︁

ℓ
nℓ

κ∏︂
λ=1

(n∗
λ + #V ∗

λ )!
k∏︂
ℓ=1

nℓ!
(︄ˆ

|g|
)︄∑︁

λ
n∗

λ+
∑︁

ℓ
nℓ−k

Ldk.
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6.4. Gaudin–Gillespie–Ripka expansion

Next, we may bound the binomial coefficients as (n+m)! ≤ 2n+mn!m! so ∏︁κ
λ=1(n∗

λ+#V ∗
λ )! ≤

2
∑︁

λ
n∗

λ+q∏︁
λ n

∗
λ!(#V ∗

λ )!. Thus

≤ Cq
q∑︂

κ=1

1
κ!

∑︂
(V ∗

1 ,...,V
∗

κ )
part. of {1,...,q}

V ∗
λ ̸=∅

κ∏︂
λ=1

(#V ∗
λ )!

[︄ ∞∑︂
n∗=0

(Cρ0 ∥g∥L1)n∗

]︄κ

× ρq0

∞∑︂
k=0

1
k!

[︄
CLdρ0

∞∑︂
n=2

(Cρ0 ∥g∥L1)n−1
]︄k

≤ Cqρ
q
0 exp

(︂
CLdρ0 ∥g∥L1

)︂
< ∞

if ρ ∥g∥L1 is small enough.

6.4.4 Calculation of ∥g∥L1 ,
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

In this section we bound the quantities ∥g∥L1 and
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

=
´ ⃓⃓⃓
γ(1)(x)

⃓⃓⃓
dx. We show (recall

ζ = 1 + |log z|)
Lemma 6.4.6. The quantities ∥g∥L1 and

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

satisfy

∥g∥L1 ≤ Cad log b/a,
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

≤ Cζd/2.

Note that these bounds are uniform in the volume Ld.

Proof. The bound ∥g∥L1 ≤ Cad log b/a follows from Equation (6.3.6). For
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

we have
for any (length) λ > 0⃦⃦⃦

γ(1)
⃦⃦⃦
L1

=
ˆ

[0,L]d

⃓⃓⃓
γ(1)(x)

⃓⃓⃓

≤
(︄ˆ

Rd

⃓⃓⃓
γ(1)(x)

⃓⃓⃓2
(λ2 + |x|2)2 dx

)︄1/2 (︄ˆ
Rd

1
(λ2 + |x|2)2 dx

)︄1/2

= Cλd/2−2

⎡⎢⎣ 1
Ld

∑︂
k∈ 2π

L
Zd

⃓⃓⃓⃓
ˆ︂(λ2 + |x|2)γ(1)(k)

⃓⃓⃓⃓2⎤⎥⎦
1/2

Moreover (with γ̂(k) = ze−β|k|2 is as in Equation (6.3.12))
ˆ︂(λ2 + |x|2)γ(1)(k) =

[︂
λ2 − ∆k

]︂
γ̂(1)(k)

= λ2γ̂(k)3 + (2λ2 − 4β2|k|2 − 2dβ)γ̂(k)2 + (λ2 + 4β2|k|2 − 2dβ)γ̂(k)
(1 + γ̂(k))3 .

Using Equation (6.3.12) we conclude that
1
Ld

∑︂
k∈ 2π

L
Zd

⃓⃓⃓⃓
ˆ︂(λ2 + |x|2)γ(1)(k)

⃓⃓⃓⃓2
≤ Cρ0

(︂
λ4 + β4ρ

4/d
0 + β2

)︂
≤ Cρ0

(︂
λ4 + ζ2β2

)︂
.

Thus for λ = β1/2ζ1/2 we have
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

≤ Cζd/2. (Recall that β ∼ ζρ
−2/d
0 by Remark 6.3.7.)

We conclude that ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

≤ Cadρ0ζ
d/2 log b/a. This concludes the proof of Theo-

rem 6.4.3.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

6.5 Calculation of terms in Equation (6.3.5)
In this section we compute and bound the different terms in Equation (6.3.5) and thereby
prove Proposition 6.1.9.

6.5.1 Energy
The kinetic energy of the trial state ΓJ is

⟨H⟩J = 1
ZJ

∞∑︂
n=1

̇
[(−∆Xn) [Fn(Xn)Γ (Xn, Yn)Fn(Yn)]]Yn=Xn

dXn

= 1
ZJ

∞∑︂
n=1

̇ (︂
|∇XnF |2Γn(Xn;Xn) − F 2

n(∆XnΓn)(Xn;Xn)
)︂

dXn.

The second term may be calculated as (recall that ⟨·⟩J means expectation in the state ΓJ)

1
ZJ

∞∑︂
n=1

̇
F 2
n(−∆XnΓn)(Xn;Xn) dXn = Z

ZJ
Tr[F 2HΓ ]

= 1
ZJ

Tr[F 2(−∂β(ZΓ ) + µNZΓ )]

= −∂β logZJ + µ ⟨N ⟩J
Here we used that Γ is differentiable in β in the topology of trace-class operators. This may
be easily verified. For the first term we have that

|∇XnFn|2 =

⎡⎢⎢⎣2
∑︂
j<k

⃓⃓⃓⃓
⃓∇fjkfjk

⃓⃓⃓⃓
⃓
2

+
∑︂
i,j,k

all distinct

∇fij∇fjk
fijfjk

⎤⎥⎥⎦F 2
n .

Thus the full energy is

⟨H − µN + V⟩J = −∂β logZJ +
¨ ⎡⎣⃓⃓⃓⃓⃓∇f12

f12

⃓⃓⃓⃓
⃓
2

+ 1
2v12

⎤⎦ ρ(2)
J dx1 dx2

+
˚

∇f12∇f13

f12f13
ρ

(3)
J dx1 dx2 dx3.

(6.5.1)

6.5.2 Entropy
We note that ΓJ = Z

ZJ
FΓF is isospectral to Z

ZJ
Γ 1/2F 2Γ 1/2. Moreover, since F ≤ 1 we have

Γ 1/2F 2Γ 1/2 ≤ Γ as operators. Thus by operator monotonicity of the logarithm

Tr [ΓJ logΓJ ] = Z

ZJ
Tr
[︃
Γ 1/2F 2Γ 1/2

(︃
log Z

ZJ
+ logΓ 1/2F 2Γ 1/2

)︃]︃
≤ log Z

ZJ
+ Z

ZJ
Tr
[︂
Γ 1/2F 2Γ 1/2 logΓ

]︂
= − logZJ − β

Z

ZJ
Tr
[︂
F 2Γ (H − µN )

]︂
= − logZJ + 1

ZJ
β∂β Tr

[︂
F 2ZΓ

]︂
= − logZJ + β∂β logZJ
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6.5. Calculation of terms in Equation (6.3.5)

We conclude the bound on the entropy

− 1
β
S(ΓJ) = 1

β
Tr[ΓJ logΓJ ] ≤ − 1

β
logZJ + ∂β logZJ . (6.5.2)

6.5.3 Pressure
Combining Equations (6.5.1) and (6.5.2) the terms ±∂β logZj cancel and we conclude the
bound for the pressure

LdP [ΓJ ] = − ⟨H − µN + V⟩J + 1
β
S(ΓJ)

≥ 1
β

logZJ −
¨ ⎡⎣⃓⃓⃓⃓⃓∇f12

f12

⃓⃓⃓⃓
⃓
2

+ 1
2v12

⎤⎦ ρ(2)
J dx1 dx2 −

˚
∇f12∇f13

f12f13
ρ

(3)
J dx1 dx2 dx3.

Remark 6.5.1. The cancellation of the terms ±∂β logZj is not essential. Namely the energy
of the trial state ΓJ is the energy of the free gas plus the relevant interaction term up to small
errors. And the entropy of the trial state ΓJ is bounded from above by the entropy of the free
gas up to small errors. To see this write

−∂β logZJ = −∂β logZ − ∂β log ZJ
Z

= ⟨H − µN ⟩0 − ∂β log ZJ
Z
.

One can show that ∂β log ZJ

Z
is small compared to the interaction of order Ldadρ2+2/d

0 . Thus,
the energy of the trial state ΓJ is

⟨H − µN + V⟩J = ⟨H − µN ⟩0 +
¨ ⎡⎣⃓⃓⃓⃓⃓∇f12

f12

⃓⃓⃓⃓
⃓
2

+ 1
2v12

⎤⎦ ρ(2)
J dx1 dx2 + small error.

Similarly for the entropy

− 1
β

logZJ + ∂β logZJ = − 1
β

logZ + ∂β logZ − 1
β

log ZJ
Z

+ ∂β log ZJ
Z

= − 1
β
S(Γ ) − 1

β
log ZJ

Z
+ ∂β log ZJ

Z
.

We show below that 1
β

log ZJ

Z
is small compared to the interaction term of size Ldadρ2+2/d

0 .
Thus the entropy of the trial state ΓJ may be bounded as

− 1
β
S(ΓJ) ≤ − 1

β
S(Γ ) + small error.

The proof that ∂β log ZJ

Z
is small is somewhat analogous to the proof of Lemma 6.5.2 in

Section 6.5.4. As we will not need it, we omit the details.

By Equation (6.4.2), we have for adρ0ζ
d/2 log b/a sufficiently small that

ρ
(2)
J = f 2

12

⎡⎢⎣ρ(2) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃2

p

Γ2
π,G

⎤⎥⎦
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

We may then write

LdP [ΓJ ] ≥ 1
β

logZ −
¨ [︃

|∇f12|2 + 1
2v12f

2
12

]︃
ρ(2) dx1 dx2 + 1

β
log ZJ

Z⏞ ⏟⏟ ⏞
εZ

−
¨ [︃

|∇f12|2 + 1
2v12f

2
12

]︃ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃2

p

Γ2
π,G dx1 dx2

⏞ ⏟⏟ ⏞
ε2

−
˚

∇f12∇f13

f12f13
ρ

(3)
J dx1 dx2 dx3

⏞ ⏟⏟ ⏞
ε3

.

(6.5.3)

The first term is the pressure of the free gas (times the volume), the second term leads to
the leading order correction, and the remaining terms are error terms. We shall show in
Section 6.5.4 below the following bounds. (Recall that ζ = 1 + |log z|.)
Lemma 6.5.2. For z ≳ 1 there exists a constant c > 0 such that if adρ0ζ

d/2
⃓⃓⃓
log adρ0

⃓⃓⃓
< c

then, for sufficently large L, the error terms are bounded as
|εZ |
Ld

≤ Cadb2ρ
2+4/d
0 ζ−1 + Ca2dρ

3+2/d
0 ζd/2−1(log b/a)2

|ε2|
Ld

≤

⎧⎨⎩Ca2dρ
3+2/d
0 log b/a+ Ca4d−2ρ5

0ζ
3d/2(log b/a)3 d ≥ 2,

Cabρ5
0 log b/a+ Ca2ρ5

0ζ
3/2(log b/a)3 d = 1,

|ε3|
Ld

≤

⎧⎨⎩Ca2db2ρ
3+4/d
0 + Ca3d−2ρ4

0ζ
d/2 log b/a d ≥ 2,

Ca2ρ5
0ζ(log b/a)2 d = 1.

In particular we have the bounds (recalling that a ≪ b ≲ ρ
−1/d
0 )

|εZ | + |ε2| + |ε3|
Ld

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ca3b2ρ
10/3
0 ζ−1 + Ca6ρ

11/3
0 ζ1/2(log b/a)2

+ Ca10ρ5
0ζ

9/2(log b/a)3 d = 3,

Ca2b2ρ4
0ζ

−1 + Ca4ρ4
0ζ log b/a

+ Ca6ρ5
0ζ

3(log b/a)3 d = 2,

Cabρ5
0 log b/a+ Ca2ρ5

0ζ
3/2(log b/a)3 d = 1.

(6.5.4)

Note that this is increasing in b. For the second term in Equation (6.5.3) above we use
Equations (6.3.7), (6.3.8) and (6.3.11), thus¨ [︃

|∇f12|2 + 1
2v12f

2
12

]︃
ρ(2) dx1 dx2

= 2π − Lid/2+1(−eβµ)
(− Lid/2(−eβµ))1+2/dρ

2+2/d
0 Ld

ˆ (︃
|∇f |2 + 1

2vf
2
)︃

|x|2 dx
(︂
1 +O(L−1ζρ

−1/d
0 )

)︂
+O

(︄
Ldρ

2+4/d
0

ˆ (︃
|∇f |2 + 1

2vf
2
)︃

|x|4 dx
)︄

= 2πcd
− Lid/2+1(−eβµ)

(− Lid/2(−eβµ))1+2/dL
dadρ

2+2/d
0

(︂
1 +O(ad/bd) +O

(︂
L−1ζρ

−1/d
0

)︂)︂

+

⎧⎨⎩O
(︂
Ldad+2ρ

2+4/d
0 log b/a

)︂
d ≥ 2

O (La2bρ6
0) d = 1

(6.5.5)
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6.5. Calculation of terms in Equation (6.3.5)

where cd is defined in Equation (6.1.3). Note that the first error term is decreasing in b.
This competes with the other error terms and leads to the choice of b below. Combining
Equations (6.5.3), (6.5.4) and (6.5.5) we thus conclude the bound

ψ(β, µ) ≥ lim sup
L→∞

P [ΓJ ]

≥ lim
L→∞

[︄
1
Ldβ

logZ
]︄

− 2πcd
− Lid/2+1(−eβµ)

(− Lid/2(−eβµ))1+2/da
dρ

2+2/d
0

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(︄
a6b−3ρ

8/3
0 + a3b2ρ

10/3
0 ζ−1

+ a6ρ
11/3
0 ζ1/2(log b/a)2 + a10ρ5

0ζ
9/2(log b/a)3

)︄
d = 3,

O

(︄
a4b−2ρ3

0 + a2b2ρ4
0ζ

−1

+ a4ρ4
0ζ log b/a+ a6ρ5

0ζ
3(log b/a)3

)︄
d = 2,

O
(︂
a2b−1ρ4

0 + abρ5
0 log b/a+ a2ρ5

0ζ
3/2(log b/a)3

)︂
d = 1.

Using that limL→∞
[︂

1
Ldβ

logZ
]︂

= ψ0(β, µ) and optimising in b we find for the choices (recall
that we require b ≲ ρ

−1/d
0 )

b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{︂
a(a3ρ0)−2/15ζ1/5, ρ

−1/3
0

}︂
d = 3,

min
{︂
a(a2ρ0)−1/4ζ1/4, ρ

−1/2
0

}︂
d = 2,

a(aρ0)−1/2 |log aρ0|−1/2 d = 1,

that
ψ(β, µ) ≥ ψ0(β, µ) − 2πcd

− Lid/2+1(−eβµ)
(− Lid/2(−eβµ))1+2/da

dρ
2+2/d
0 [1 + δd] ,

where δd is as in Equation (6.1.13). The calculations above are valid as long as the conditions of
Theorem 6.4.3 are satisfied. That is, if adρ0ζ

d/2
⃓⃓⃓
log adρ0

⃓⃓⃓
is sufficiently small. This concludes

the proof of Proposition 6.1.9. It remains to give the proof of Lemma 6.5.2.

6.5.4 Error terms (proof of Lemma 6.5.2)
In this section we give the

Proof of Lemma 6.5.2. To better illustrate where the different error terms come from we
will write them in terms of the quantities ∥g∥L1 ,

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

and ∥| · |ng∥L1 =
´
Rd |x|n|g(x)| dx,

n ≥ 1. By Lemma 6.4.6 and Equation (6.3.6) we have the bounds

∥g∥L1 ≤ Cad log b/a,
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

≤ Cζd/2 = C(1 + |log z|)d/2, ∥| · |ng∥L1 ≤ Cadbn.

For the analysis of the error terms we use the bounds in Equations (3.4.10), (3.4.22)
and (5.4.13). To state these, we define for any diagram (π,G) ∈ L̃m

p the numbers
k = k(G) = k(π,G) as the number of clusters (connected components of G, recall Defini-
tion 6.4.1) entirely with internal vertices (of sizes n1, . . . , nk) and κ = κ(G) = κ(π,G) as
the number of clusters with each at least one external vertex (of sizes [meaning number of
internal vertices] n∗

1, . . . , n
∗
κ). Define

ν∗ :=
κ∑︂
λ=1

n∗
λ, ν :=

k∑︂
ℓ=1

nℓ − 2k.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

As discussed around Equations (3.4.10), (3.4.22) and (5.4.13) the numbers ν∗ and ν count the
“number of added vertices”. Concretely, a diagram with k clusters of only internal vertices has
at least 2k internal vertices. Then ν∗ is the number of additional internal vertices in clusters
with external vertices and ν is the number of additional internal vertices in clusters with only
internal vertices.

The bounds in Equations (3.4.10), (3.4.22) and (5.4.13) (note that there bounds on ∥g∥L1 ,⃦⃦⃦
γ(1)

⃦⃦⃦
L1

analogous to those of Lemma 6.4.6 are already used) then read for any k0, ν0

1
p!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

∑︂
(π,G)∈L̃m

p

k(π,G)=k0
ν(π,G)+ν∗(π,G)=ν0

Γmπ,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
≤

⎧⎪⎨⎪⎩CL
dρ0 (Cρ0 ∥g∥L1)ν0+k0

⃦⃦⃦
γ(1)

⃦⃦⃦k0−1

L1
m = 0,

Cmρ
m
0 (Cρ0 ∥g∥L1)ν0+k0

⃦⃦⃦
γ(1)

⃦⃦⃦k0

L1
m > 0,

p = 2k0+ν0,

(6.5.6)
where the constants C,Cm depend only on m but not on ν0 or k0 (in particular not on p).

Remark 6.5.3. The case m = 0 is not included in the statement in Equations (3.4.10),
(3.4.22) and (5.4.13). It follows from the analysis in Section 3.3.1 (see also Section 5.4.1),
however.

More precisely the analysis in Section 3.3.1 consists of the following steps: 1. Decompose
the linked diagrams in Lp according to the connected components of the graphs. 2. Use
the tree-graph inequality [Uel18] to bound each sum over graphs by a sum over trees in
each connected component of the graph. 3. Use the Brydges–Battle–Federbush formula (see
[GMR21, Appendix D]) to bound the truncated correlations. 4. Compute the integrals, each
being now an integral of either |g| or |γ(1)|.

In any of the equations in Section 3.3.1 the only effect of the p-summation is to eliminate the
factor χ(

∑︁
ℓ
nℓ=p) present in the very first equation (where there is no p-summation). That

is, not performing the p-summation, all equations in Section 3.3.1 remain valid, only with
no p-summation on their left-hand-sides and with an additional factor χ(

∑︁
ℓ
nℓ=p) on their

right-hand sides. Thus, from the analysis in Section 3.3.1, modified by not performing the
p-summation, we find the following modification of the final formula in Section 3.3.1:

1
p!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

∑︂
(π,G)∈Lp

k(π,G)=k0
ν(π,G)=ν0

Γπ,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓ ≤ CN

⃦⃦⃦
γ(1)

⃦⃦⃦k0−1

L1

∑︂
n1,...,nk0 ≥2∑︁

ℓ
nℓ=2k0+ν0

(ρ0 ∥g∥L1)
∑︁

ℓ
(nℓ−1) , p = 2k0 + ν0,

from which Equation (6.5.6) in the case m = 0 follows.

From this bound the natural “size” of a diagram (π,G) ∈ L̃m

p is not p but rather ν + ν∗ + k,
since its value is (neglecting log’s and dependence on z) ≲ ρm0 (adρ0)ν+ν∗+k. For the bounds of
the terms ε2, ε3, εZ we will bound sufficiently large diagrams by the bound in Equation (6.5.6)
and do a more precise computation for small diagrams.

Additionally we have
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6.5. Calculation of terms in Equation (6.3.5)

Lemma 6.5.4. The reduced densities ρ(3) and ρ(4) satisfy

ρ(3)(x1, x2, x3) ≤ Cρ
3+4/d
0 |x1 − x2|2|x1 − x3|2,

ρ(4)(x1, x2, x3, x4) ≤ Cρ
4+6/d
0 |x1 − x2|2|x1 − x3|2|x1 − x4|2.

Proof. Note that both ρ(3) and ρ(4) vanish whenever two particles are incident and are invariant
under permutation of the particle positions. Thus, for fixed x1 as functions of xj, j ̸= 1
they vanish quadratically around xj = x1. Writing ρ(q) = det[γ(1)

ij ]1≤i,j≤q using the Wick rule,
Taylor expanding in xj, j ̸= 1 around xj = x1 and using Equation (6.3.12) to bound the
derivatives we conclude the proof of the lemma.

We first bound εZ .

6.5.4.1 Bound of εZ

We have by Theorem 6.4.3

εZ = − 1
β

log ZJ
Z

= − 1
β

∞∑︂
p=2

1
p!

∑︂
(π,G)∈Lp

Γπ,G.

We use the bound in Equation (6.5.6) above for m = 0 and for diagrams with ν + k ≥ 2.
These are precisely the diagrams with p ≥ 3 (note that k ≥ 1 for any diagram (π,G) ∈ Lp).
Thus

∞∑︂
p=3

1
p!

⃓⃓⃓⃓
⃓⃓ ∑︂
(π,G)∈Lp

Γπ,G

⃓⃓⃓⃓
⃓⃓

≤ CLdρ0
∑︂
k0≥1

ν0+k0≥2

(Cρ0 ∥g∥L1)ν0+k0
⃦⃦⃦
γ(1)

⃦⃦⃦k0−1

L1

= CLdρ0

⎡⎣ ∞∑︂
ν0=1

(Cρ0 ∥g∥L1)ν0+1 +
∞∑︂
k0=2

∞∑︂
ν0=0

(Cρ0 ∥g∥L1)ν0+k0
⃦⃦⃦
γ(1)

⃦⃦⃦k0−1

L1

⎤⎦
≤ CLdρ3

0 ∥g∥2
L1 (1 +

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

)

for sufficiently small ρ0 ∥g∥L1 and ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

. For the diagrams with ν + k = 1 we do
a more precise calculation. These are precisely the diagrams with p = 2. In particular these
diagrams have ν = 0 and k = 1. We have then (recall that pictures of diagrams refer to their
values)

∑︂
(π,G)∈L2

Γπ,G = +

=
¨

det
[︄

γ(1)(0) γ(1)(x− y)
γ(1)(y − x) γ(1)(0)

]︄
g(x− y) dx dy

=
¨

ρ(2)(x, y)g(x− y) dx dy

= O
(︂
Ld
⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

2+2/d
0

)︂
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

using Equation (6.3.11). Thus, using Lemma 6.4.6 and recalling that β ∼ ζρ
−2/d
0 from

Remark 6.3.7, we conclude that

1
Ld

|εZ | = 1
βLd

⃓⃓⃓⃓
log ZJ

Z

⃓⃓⃓⃓
≤ C

⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

2+4/d
0 ζ−1 + C ∥g∥2

L1

(︂⃦⃦⃦
γ(1)

⃦⃦⃦
L1

+ 1
)︂
ρ

3+2/d
0 ζ−1

≤ Cadb2ρ
2+4/d
0 ζ−1 + Ca2dρ

3+2/d
0 ζd/2−1(log b/a)2.

6.5.4.2 Bound of ε3

We have by Theorem 6.4.3

ρ
(3)
J = f 2

12f
2
13f

2
23

⎡⎢⎣ρ(3) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃3

p

Γ3
π,G

⎤⎥⎦ .
We use the bound in Lemma 6.5.4 to bound ρ(3) and the bound in Equation (6.5.6) on the
remaining terms. (That is, a precise calculation for diagrams with ν + ν∗ + k = 0 and the
bound in Equation (6.5.6) for diagrams with ν + ν∗ + k ≥ 1.) Thus, by a similar computation
as for εZ⃓⃓⃓⃓

⃓⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃3

p

Γ3
π,G

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cρ3

0

⎡⎣ ∞∑︂
ν0=1

(Cρ0 ∥g∥L1)ν0 +
∞∑︂
k0=1

∞∑︂
ν0=0

(Cρ0 ∥g∥L1)ν0+k0
⃦⃦⃦
γ(1)

⃦⃦⃦k0

L1

⎤⎦
≤ Cρ4

0 ∥g∥L1

(︂
1 +

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

)︂
for sufficiently small ρ0 ∥g∥L1 and ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

. Moreover, f ≤ 1 and the support of ∇f
is contained a ball of radius ∼ b. Thus by Equation (6.3.9) and Lemma 6.4.6

|ε3| ≤ CLdρ
3+4/d
0

(︄ˆ
f |∇f ||x|2

)︄2

+ CLd ∥g∥L1 (
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

+ 1)ρ4
0

(︄ˆ
f |∇f |

)︄2

≤ CLda2db2ρ
3+4/d
0 + CLda3d−2ρ4

0ζ
d/2 log b/a.

Refined analysis in dimension d = 1. In dimension d = 1 we need also to analyse diagrams
with k + ν + ν∗ = 1 in more detail. Intuitively this follow by “counting powers of ρ0”: The
claimed leading term in Theorem 6.1.2 is of order aρ4

0. Thus, we need to compute precisely
all diagrams for which the naive bound Equation (6.5.6) only gives a power ≤ 4 of ρ0.

The diagrams with k+ ν + ν∗ = 1 have either p = 1, in which case ν∗ = 1, or p = 2, in which
case k = 1. For the diagrams with p = 1 for any graph any permutation makes each linked
component have at least one external vertex and thus we get

∑︂
(π,G)∈L̃3

1

Γ3
π,G =

∑︂
G∈G3

1

ˆ
ρ(4)(x1, x2, x3, x4)

∏︂
e∈G

ge dx4.

Bound all but one g-factor, by symmetry say g14, by |gij| ≤ 1 and bound ρ(4) using Lemma 6.5.4.
We conclude

| · | ≤ Cρ10
0 |x1 − x2|2|x1 − x3|2

ˆ
|g(z)||z|2 dz

≤ Cab2ρ10
0 |x1 − x2|2|x1 − x3|2.
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6.5. Calculation of terms in Equation (6.3.5)

By Equation (6.3.9) this gives the contribution La3b4ρ10
0 to ε3. For p = 2 we have the graph

(recall that ∗’s label external vertices)

G =
∗ ∗ ∗1 2 3

4 5

The only π’s for which (π,G) /∈ L̃3
2 are those not connecting {4, 5} to {1, 2, 3}. Thus

∑︂
(π,G)∈L̃3

2

Γ3
π,G =

ˆ [︂
ρ(5)(x1, . . . , x5) − ρ(3)(x1, x2, x3)ρ(2)(x4, x5)

]︂
g45 dx4 dx5.

This vanishes (quadratically) whenever any xi and xj , i, j = 1, 2, 3 are incident. Thus, as with
ρ(3) and ρ(4), we bound the derivatives and use Taylor’s theorem. Denote the derivative w.r.t.
xj by ∂xj

. We are thus interested in bounding ∂2
x2∂

2
x3Γ3

π,G. By explicit computation (with the
permutation denoted π−1 for convenience of notation) we have

∂2
x2∂

2
x3Γ3

π−1,G

= ∂2
x2∂

2
x3

⎡⎣(−1)π 1
L5

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)
¨

ei(k1−kπ(1))x1 · · · ei(k5−kπ(5))x5g45 dx4 dx5

⎤⎦
= −(−1)π 1

L4

∑︂
k1,...,k5

(k2 − kπ(2))2(k3 − kπ(3))2γ̂(1)(k1) · · · γ̂(1)(k5)

× ei(k1−kπ(1))x1 · · · ei(k3−kπ(3))x3 ĝ(k4 − kπ(4))χ(k5−kπ(5)+k4−kπ(4)=0),

where χ denotes a characteristic function. Any permutation such that (π,G) ∈ L̃2
3 has

π({4, 5}) ̸= {4, 5}. In particular for the relevant permutations the characteristic function is
not identically one, and thus effectively it reduces the number of k-sums by 1. More precisely
we get for the permutations with π(5), π(4) ̸= 5 (the others are similar)

= −(−1)π 1
L4

∑︂
k1,...,k4

(k2 − kπ(2))2(k3 − kπ(3))2γ̂(1)(k1) · · · γ̂(1)(k4)γ̂(1)(−k4 + kπ(4) + kπ(5))

× ei(k1−kπ(1))x1 · · · ei(k3−kπ(3))x3 ĝ(k4 − kπ(4)).

Bounding
⃓⃓⃓
γ̂(1)(−k4 + kπ(4) + kπ(5))

⃓⃓⃓
≤ 1 and |ĝ| ≤ ∥g∥L1 ≤ Ca log b/a the k-sums are

readily bounded by Equation (6.3.12). Thus for any valid permutation π we have⃓⃓⃓
∂2
x2∂

2
x3Γ3

π,G

⃓⃓⃓
≤ Caρ4+4

0 log b/a.

By Taylor’s theorem we conclude that⃓⃓⃓
Γ3
π,G

⃓⃓⃓
≤ Caρ4+4

0 log b/a|x1 − x2|2|x1 − x3|2.

We thus get the contribution to ε3 of La3b2ρ8
0 log b/a by Equation (6.3.9). Finally, using the

bound in Equation (6.5.6) for diagrams with k + ν + ν∗ ≥ 2 we get (again for suffiently small
ρ0 ∥g∥L1 and ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

)

∞∑︂
p=2

1
p!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∑︂
(π,G)∈L̃2

p

(k+ν+ν∗)(π,G)≥2

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ Ca3ρ5

0ζ(log b/a)2.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

By Equation (6.3.9) this gives a contribution to ε3 of La2ρ5
0(log b/a)2. We conclude the

bound
|ε3| ≤ CL

(︂
a2b4ρ9

0 + a3b4ρ10
0 + a3b2ρ8

0 log b/a+ a2ρ5
0ζ(log b/a)2

)︂
≤ CLa2ρ5

0ζ(log b/a)2

in dimension d = 1.

6.5.4.3 Bound of ε2

We use the bound in Equation (6.5.6) for diagrams with ν + ν∗ + k ≥ 3 and a more precise
analysis for the small diagrams. Write

∞∑︂
p=2

1
p!

∑︂
(π,G)∈L̃2

p

Γ2
π,G = ξ=1 + ξ=2 + ξ≥3, (6.5.7)

where ξ=j is the sum of the values of all diagrams with ν + ν∗ + k = j and ξ≥3 is the sum of
the values of all diagrams with ν + ν∗ + k ≥ 3.

For the large diagrams with ν + ν∗ + k ≥ 3 we have similarly as above for ρ0 ∥g∥L1 and
ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

sufficiently small

|ξ≥3| =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

∞∑︂
p=2

1
p!

∑︂
(π,G)∈L̃2

p

(k+ν+ν∗)(π,G)≥2

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ Cρ5

0 ∥g∥3
L1 (1 +

⃦⃦⃦
γ(1)

⃦⃦⃦3

L1
). (6.5.8)

Diagrams with k + ν + ν∗ = 1. For the diagrams with p = 1 and p = 2 with k = 1 we do
a more precise calculation. For p = 1 there are three possible g-graphs: (Recall that ∗’s label
the external vertices)

G =
1 2∗ ∗

, G =
1 2∗ ∗

, G =
1 2∗ ∗

Any permutation makes any of these diagrams have at least one external vertex in each linked
component and thus∑︂

(π,G)∈L̃2
1

Γ2
π,G =

ˆ
ρ(3)(x1, x2, x3) [g13 + g23 + g13g23] dx3

Bounding |g13g23| ≤ |g13| and recalling the bound ρ(3)(x1, x2, x3) ≤ Cρ
3+4/d
0 |x1−x2|2|x1−x3|2

from Lemma 6.5.4 we get by symmetry⃓⃓⃓⃓
⃓⃓⃓ ∑︂
(π,G)∈L̃2

1

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cρ

3+4/d
0 |x1 − x2|2

ˆ
|g(z)||z|2 dz = C

⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

3+4/d
0 |x1 − x2|2 (6.5.9)

The diagrams with p = 2 and k = 1 have g-graph

G =
1 2∗ ∗

(6.5.10)
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6.5. Calculation of terms in Equation (6.3.5)

The only permutations π such that (π,G) /∈ L̃2
2 are those connecting only external to external

and internal to internal, i.e. those with either π(3) = 3, π(4) = 4 or π(3) = 4, π(4) = 3. Thus

∑︂
(π,G)∈L̃2

2
k(π,G)=1

Γ2
π,G =

¨ [︂
ρ(4)(x1, . . . , x4) − ρ(2)(x1, x2)ρ(2)(x3, x4)

]︂
g34 dx3 dx4. (6.5.11)

Clearly this vanishes quadratically in x1 − x2 since both determinants do, thus we bound it
using Taylor’s theorem, expanding in x1 around x1 = x2 analogously to what we did for (some
of the diagrams for) ε3 above. We treat each diagram separately. (For convenience we denote
the permutation π−1.) Denoting the derivative with respect to xµ1 by ∂µx1 we have

∂µx1∂
ν
x1Γ2

π−1,G = − 1
L4d

∑︂
k1,...,k4

(︂
kµ1 − kµπ(1)

)︂ (︂
kν1 − kνπ(1)

)︂
γ̂(1)(k1)γ̂(1)(k2)γ̂(1)(k3)γ̂(1)(k4)

× ei(k1−kπ(1))x1ei(k2−kπ(2))x2

¨
ei(k3−kπ(3))x3ei(k4−kπ(4))x4g(x3 − x4) dx3 dx4

= − 1
L3d

∑︂
k1,...,k4

(︂
kµ1 − kµπ(1)

)︂ (︂
kν1 − kνπ(1)

)︂
γ̂(1)(k1)γ̂(1)(k2)γ̂(1)(k3)γ̂(1)(k4)

× ĝ(kπ(3) − k3)χ(k4−kπ(4)=kπ(3)−k3)

The only permutations for which the characteristic function is identically 1 are those with
either π(3) = 3, π(4) = 4 or π(3) = 4, π(4) = 3. These are exactly the permutations that do
not appear in Equation (6.5.11) above. Thus, similarly as for (some of the diagrams for) ε3
above the charactersitic function effectively reduces the number of k-sums by 1. Bounding
|ĝ| ≤ ∥g∥L1 , γ̂(1) ≤ 1 for one of the γ(1)-factors, and using Equation (6.3.12) to bound the
k-sums we have for any diagram (π,G) ∈ L̃2

2 with G as in Equation (6.5.10)⃓⃓⃓
∂µx1∂

ν
x1Γ2

π,G

⃓⃓⃓
≤ C ∥g∥L1 ρ

3+2/d
0 .

We conclude the bound ⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
∑︂

(π,G)∈L̃2
2

k(π,G)=1

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ C ∥g∥L1 ρ

3+2/d
0 |x1 − x2|2. (6.5.12)

In particular, by combining Equations (6.5.9) and (6.5.12), we have

|ξ=1| ≤ C ∥g∥L1 ρ
3+2/d
0 |x1 − x2|2. (6.5.13)

Diagrams with k + ν + ν∗ = 2. Finally consider all diagrams with k + ν + ν∗ = 2 more
precisely. We split these into three groups.

(i) ν∗ = 2

(ii) ν∗ = 1 and vertices {1} and {2} are connected

(iii) Remaining diagrams
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

We will use a Taylor expansion to bound the values of the diagrams in group (iii). Write
ξ=2 = ξ(i) + ξ(ii) + ξ(iii)

Then as ρ(2)
J (x2;x2) = 0 we get from Equation (6.5.7)⃓⃓⃓
ξ(iii)(x2, x2)

⃓⃓⃓
≤
⃓⃓⃓
ξ(i)(x2, x2)

⃓⃓⃓
+
⃓⃓⃓
ξ(ii)(x2, x2)

⃓⃓⃓
+ |ξ=1(x2, x2)| + |ξ≥3(x2, x2)| .

Moreover, ξ(iii) is symmetric in exchange of x1 and x2 so the first order vanishes. We conclude
by Taylor’s theorem that⃓⃓⃓

ξ(iii)(x1, x2)
⃓⃓⃓
≤
⃓⃓⃓
ξ(i)(x2, x2)

⃓⃓⃓
+
⃓⃓⃓
ξ(ii)(x2, x2)

⃓⃓⃓
+ |ξ=1(x2, x2)| + |ξ≥3(x2, x2)|

+ C sup
µ,ν

sup
z1,z2

⃓⃓⃓
∂µx1∂

ν
x1ξ(iii)(z1, z2)

⃓⃓⃓
|x1 − x2|2,

(6.5.14)

where again ∂µx1 denotes the derivative w.r.t. xµ1 . Bounding ∂µx1∂
ν
x1ξ(iii) is analogous to the

argument in the proof of Lemmas 3.4.1 and 3.4.8: For diagrams with an internal vertex
connected to {1} with a g-edge we do a precise calculation as in the proof of Lemma 3.4.8.
For the remaining diagrams where {1} has no incident g-edges we modify the proof of the
absolute convergence of the GGR expansion as in the proof of Lemma 3.4.1.
First, the diagrams in group (iii) with an internal vertex connected to {1} with a g-edge all
have g-graph

G =
∗ ∗1 23

4 5
(6.5.15)

since ν∗ = 1 and k + ν + ν∗ = 2. Then

Γ2
π−1,G = (−1)π 1

L5d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)

×
˚

ei(k1−kπ(1))x1 · · · ei(k5−kπ(5))x5g13g45 dx3 dx4 dx5

= (−1)π 1
L4d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)ei(k1−kπ(1)+k3−kπ(3))x1ei(k2−kπ(2))x2

× ĝ(k3 − kπ(3))ĝ(k5 − kπ(5))χ(k4−kπ(4)+k5−kπ(5)=0).

The characteristic function χ is identically 1 only if π({4, 5}) = {4, 5}, but then (π,G) /∈ L̃2
3

so these permutations do not appear in ξ(iii). Taking the derivative, bounding |ĝ| ≤ ∥g∥L1 and
using Equation (6.3.12) to bound the k-sums we conclude as above that⃓⃓⃓

∂µx1∂
ν
x1Γ2

π−1,G

⃓⃓⃓
≤ Cρ

4+2/d
0 ∥g∥2

L1

for all diagrams (π,G) ∈ L̃2
3 with G as in Equation (6.5.15).

Next, for the diagrams with no g-edges connected to {1} the argument is as for the bound of
∂µx1∂

ν
x1ξ0 in the proof of Lemma 3.4.1. Analogously to Equations (3.4.19) and (3.4.20) we

conclude the bound (the term 1 in the factor
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

+ 1 arises similarly as in the bounds
above from the value of diagrams with k = 1)⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓∂

2
x1

∑︂
(π,G)∈L̃2

3
no g-edges incident to {1}

Γ2
π−1,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

≤ Cρ4
0 ∥g∥2

L1

(︂⃦⃦⃦
γ(1)

⃦⃦⃦
L1

+ 1
)︂ [︂
ρ

2/d
0

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

+ ρ
1/d
0

⃦⃦⃦
∂γ(1)

⃦⃦⃦
L1

+
⃦⃦⃦
∂2γ(1)

⃦⃦⃦
L1

]︂
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6.5. Calculation of terms in Equation (6.3.5)

where with a similar abuse of notation⃦⃦⃦
∂γ(1)

⃦⃦⃦
L1

= max
µ

ˆ
[0,L]d

⃓⃓⃓
∂µγ(1)

⃓⃓⃓
dx,

⃦⃦⃦
∂2γ(1)

⃦⃦⃦
L1

= max
µ,ν

ˆ
[0,L]d

⃓⃓⃓
∂µ∂νγ(1)

⃓⃓⃓
dx.

Recall that
⃦⃦⃦
γ(1)

⃦⃦⃦
L1

≤ Cζd/2 by Lemma 6.4.6. By a simple modification of the proof of
Lemma 6.4.6 we may bound

⃦⃦⃦
∂γ(1)

⃦⃦⃦
L1

≤ Cζd/2ρ
1/d
0 and

⃦⃦⃦
∂2γ(1)

⃦⃦⃦
L1

≤ Cζd/2ρ
2/d
0 . Thus⃓⃓⃓

∂2
x1ξ(iii)(z1, z2)

⃓⃓⃓
≤ Cρ

4+2/d
0 ∥g∥2

L1 ζ
d. (6.5.16)

Next, we bound ξ(i). For the diagrams with ν∗ = 2, if G is any graph with ν∗(G) = 2 then for
any permutation π ∈ S4 we have (π,G) ∈ L̃2

2. Thus using Lemma 6.5.4 to bound ρ(4) and
bounding some g-factors by 1 we get similarly to Equation (6.5.9)

ξ(i) =
∑︂
G∈G2

2
ν∗(G)=2

¨
ρ(4) ∏︂

e∈G
ge dx3 dx4

⃓⃓⃓
ξ(i)
⃓⃓⃓
≤ Cρ

4+6/d
0 |x1 − x2|2

¨
|g(z1)|2|g(z2)|2(|z1|2 + |z2|2 + |x1 − x2|2)2 dz1 dz2

≤ C ∥g∥2
L1 ρ

4+6/d
0 |x1 − x2|2(b2 + |x1 − x2|2)2.

(6.5.17)

Finally, we bound ξ(ii). All diagrams with ν∗ = 1 and {1} and {2} connected have g-graph

G0 =
∗ ∗1 23

4 5
(6.5.18)

For convenience of notation we denote the permutation in the diagram π−1. Then

Γ2
π−1,G0 = (−1)π 1

L5d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)

×
˚

ei(k1−kπ(1))x1 · · · ei(k5−kπ(5))x5g(x1 − x3)g(x2 − x3)g(x4 − x5) dx3 dx4 dx5

= (−1)π 1
L5d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)e
i

(︂
k1−kπ(1)−

k3−kπ(3)
2

)︂
x1
e
i

(︂
k2−kπ(2)−

k3−kπ(3)
2

)︂
x2

×
ˆ
ei(k3−kπ(3))(x3− x1+x2

2 )g
(︃
x1 − x2

2 + x1 + x2

2 − x3

)︃
× g

(︃
−x1 − x2

2 + x1 + x2

2 − x3

)︃
dx3

×
¨

g(x4 − x5)ei(k4−kπ(4))(x4−x5)ei(k5−kπ(5)+k4−kπ(4))x5 dx4 dx5

= (−1)π 1
L4d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)e
i

(︂
k1−kπ(1)−

k3−kπ(3)
2

)︂
x1
e
i

(︂
k2−kπ(2)−

k3−kπ(3)
2

)︂
x2

× Ĝ1(k3 − kπ(3))ĝ(kπ(4) − k4)χ(k5−kπ(5)+k4−kπ(4)=0),

where
Ĝ1(k) :=

ˆ
e−ikzg

(︃
x1 − x2

2 + z
)︃
g
(︃

−x1 − x2

2 + z
)︃

dz.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

We group together pairs of diagrams π and (using cycle notation) π · (4 5) = (π(4) π(5)) · π,
meaning where π(4) and π(5) are swapped. These have opposite signs. Thus,

Γ2
π−1,G0 + Γ2

(π(4 5))−1,G0

= (−1)π 1
L4d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)e
i

(︂
k1−kπ(1)−

k3−kπ(3)
2

)︂
x1
e
i

(︂
k2−kπ(2)−

k3−kπ(3)
2

)︂
x2

× Ĝ1(k3 − kπ(3))χ(k5−kπ(5)+k4−kπ(4)=0)
[︂
ĝ(kπ(4) − k4) − ĝ(kπ(5) − k4)

]︂
.

We Taylor expand ĝ(kπ(5) − k4) in kπ(5) around kπ(5) = kπ(4). That is,

ĝ(kπ(5) − k4) = ĝ(kπ(4) − k4) +O (∇ĝ)
⃓⃓⃓
kπ(4) − kπ(5)

⃓⃓⃓
,

where O (∇ĝ) should be interpreted as being bounded by |∇ĝ(k)| ≤
´

|x||g(x)| = ∥| · |g∥L1

uniformly in kπ(4) − kπ(5). Moreover,
⃓⃓⃓
Ĝ1

⃓⃓⃓
≤ ∥g∥L1 . Thus

⃓⃓⃓
Γ2
π−1,G0 + Γ2

(π(4 5))−1,G0

⃓⃓⃓
≤ C ∥g∥L1 ∥| · |g∥L1 × 1

L4d

∑︂
k1,...,k5

γ̂(1)(k1) · · · γ̂(1)(k5)
⃓⃓⃓
kπ(4) − kπ(5)

⃓⃓⃓
χ(k5−kπ(5)+k4−kπ(4)=0).

The characteristic function is not identically 1 for linked diagrams. Indeed, if π({4, 5}) = {4, 5}
then the diagram would not be linked. Thus, the characteristic function effectively reduces the
number of k-sums by 1. Bounding similarly as above γ̂(1) ≤ 1 and using finally Equation (6.3.12)
to bound the k-sums we conclude for any permutation π such that (π,G0) ∈ L̃2

3 that⃓⃓⃓
Γ2
π−1,G0 + Γ2

(π(4 5))−1,G0

⃓⃓⃓
≤ Cρ

4+1/d
0 ∥| · |g∥L1 ∥g∥L1 .

Since, π and π(4 5) either both give rise to linked diagrams or neither do we conclude that

⃓⃓⃓
ξ(ii)

⃓⃓⃓
= 1

3!

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
(π,G0)∈L̃2

3

Γπ,G0

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cρ

4+1/d
0 ∥| · |g∥L1 ∥g∥L1 . (6.5.19)

Combining then Equations (6.5.8), (6.5.13), (6.5.14), (6.5.16), (6.5.17) and (6.5.19) and
using Lemma 6.4.6 we conclude the bound⃓⃓⃓
ξ(iii)

⃓⃓⃓
≤ Ca2dbρ

4+1/d
0 log b/a+ Ca3dρ5

0ζ
3d/2(log b/a)3 + Ca2dρ

4+2/d
0 ζd(log b/a)2|x1 − x2|2.

We conclude the bound⃓⃓⃓⃓
⃓⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L̃2

p

Γ2
π,G

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cadρ

3+2/d
0 log b/a|x1 − x2|2 + adb2ρ

3+4/d
0 |x1 − x2|2

+ Cadρ
4+6/d
0 |x1 − x2|2(b2 + |x1 − x2|2)2(log b/a)2

+ Ca2dbρ
4+1/d
0 log b/a+ Ca2dρ

4+2/d
0 ζd(log b/a)2|x1 − x2|2

+ Ca3dρ5
0ζ

3d/2(log b/a)3.
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Thus, using Lemma 6.3.4 we get

|ε2|
Ld

≤ Ca2dρ
3+2/d
0 log b/a+ Ca2db2ρ

3+4/d
0 + Ca4db4−dρ

4+6/d
0 (log b/a)2

+ Ca3d−2bρ
4+1/d
0 log b/a+ Ca3dρ

4+2/d
0 ζd(log b/a)2 + Ca4d−2ρ5

0ζ
3d/2(log b/a)3.

≤

⎧⎨⎩Ca2dρ
3+2/d
0 log b/a+ Ca4d−2ρ5

0ζ
3d/2(log b/a)3 d ≥ 2,

Cabρ5
0 log b/a+ Ca2ρ5

0ζ
3/2(log b/a)3 d = 1.

This concludes the proof of Lemma 6.5.2.

Remark 6.5.5 (Necessity of precise analysis of diagrams with k+ ν + ν∗ = 2). For the bound
of ε2 we give here a precise analysis of the diagrams with k + ν + ν∗ = 2. In general, one
should not expect this to be needed in dimensions d = 2, 3. More precisely, by just considering
powers of ρ0, one would expect that diagrams with k + ν + ν∗ ≥ 1 are all subleading as
they carry a higher power of ρ0 (using Equation (6.5.6)) than the claimed leading term, with
exponent 2 + 2/d.

The reason we need a precise analysis here is the temperature dependence of our bounds: For
some regime of temperatures the bound one would get by using Equation (6.5.6) is not good
enough.

Remark 6.5.6 (Optimality of the error bounds). One should not expect the bound given in
Equation (6.5.19) to be optimal. More precisely in Equation (6.5.19) we only took into account
the cancellations of pairs of diagrams. However, one should expect much more cancellations.
We have

ξ(ii) = 1
3!

˚ [︂
ρ(5)(x1, . . . , x5) − ρ(3)(x1, x2, x3)ρ(2)(x4, x5)

]︂
g13g23g45 dx3 dx4 dx5.

Naively, just using that ρ(5)(x1, . . . , x5) − ρ(3)(x1, x2, x3)ρ(2)(x4, x5) vanishes whenever any
two of the particles 1, 2, 3 or the particles 4, 5 are incident we get by Taylor expansion⃓⃓⃓
ρ(5)(x1, . . . , x5) − ρ(3)(x1, x2, x3)ρ(2)(x4, x5)

⃓⃓⃓
≤ Cρ

5+6/d
0 |x1 − x2|2|x1 − x3|2|x4 − x5|2.

(6.5.20)
Using this bound and bounding |g23| ≤ 1 we get

⃓⃓⃓
ξ(ii)

⃓⃓⃓
≤ ρ

5+6/d
0 a2db4Ld|x1 − x2|2. (6.5.21)

This bound is too large by a volume factor. (This arises since we “forget” that the relevant
diagrams are linked when we do the Taylor expansion.) It however illustrates how many more
cancellations between the different permutations are present than what we used in the bound
Equation (6.5.19) — it carries a higher power of ρ0. Using these cancellations but losing the
information that diagrams are linked is what we did in Chapter 3.

If one could somehow see these cancellations, while still keeping the information that the
diagrams have to be linked, one might be able to improve upon the bound Equation (6.5.19).
In 1 dimension this error term is actually (for some regime of temperatures) the dominant
error term. Thus, by improving the analysis of these diagrams, one might improve the error
term in Proposition 6.1.9 in d = 1.
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6. Pressure of a dilute spin-polarized Fermi gas: Lower bound

6.A Particle density of the trial state
In this section we give the

Proof of Equation (6.3.3). We calculate ⟨N ⟩J and compare it to ⟨N ⟩0 = ρ0L
d. We have by

Equation (6.4.2)

⟨N ⟩J =
ˆ
ρ

(1)
J (x) dx = Ld

⎡⎣ρ(1) +
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G

⎤⎦ = ⟨N ⟩0 + Ld
∞∑︂
p=1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G.

Next, we bound ∑︁∞
p=1

1
p!
∑︁

(π,G)∈L1
p

Γ1
π,G. We use the bound in Equation (6.5.6) for diagrams

with k + ν + ν∗ ≥ 2, i.e., for p = 2 with k = 0, ν∗ = 2 and for p ≥ 3. That is,

1
2!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
∑︂

(π,G)∈L1
2

k(π,G)=0

Γ1
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ C ∥g∥2

L1 ρ
3
0,

∞∑︂
p=3

1
p!

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓⃓ ≤ C ∥g∥2

L1 (1 +
⃦⃦⃦
γ(1)

⃦⃦⃦2

L1
)ρ3

0

for sufficiently small ρ0 ∥g∥L1 and ρ0 ∥g∥L1

⃦⃦⃦
γ(1)

⃦⃦⃦
L1

. Thus, we get

∞∑︂
p=1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G =

∑︂
(π,G)∈L1

1

Γ1
π,G + 1

2
∑︂

(π,G)∈L1
2

k(π,G)=1

Γ1
π,G +O

(︃
∥g∥2

L1

(︃⃦⃦⃦
γ(1)

⃦⃦⃦2

L1
+ 1

)︃
ρ3

0

)︃
.

For the p = 1-term there are two diagrams. Thus (where ∗ labels the external vertex)

∑︂
(π,G)∈L1

1

Γ1
π,G =

∗
+

∗
=
ˆ

det
[︄
γ(1)(0) γ(1)(x)
γ(1)(x) γ(1)(0)

]︄
g(x) dx = O

(︂⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

2+2/d
0

)︂
.

For the p = 2-term with k = 1 there are 4 diagrams. Thus

1
2

∑︂
(π,G)∈L1

2
k(π,G)=1

Γ1
π,G = 1

2

⎡⎢⎢⎣
∗

+
∗

+
∗

+
∗

⎤⎥⎥⎦
= 1
L3d

∑︂
k1,k2,k3

¨
dx2 dx3 γ̂

(1)(k1)γ̂(1)(k2)γ̂(1)(k3)g(x2 − x3)

×
[︂
ei(k1−k2)(x1−x2) − eik1(x1−x2)eik2(x2−x3)eik3(x3−x1)

]︂
= 1
L2d

∑︂
k1,k2,k3

γ̂(1)(k1)γ̂(1)(k2)γ̂(1)(k3)ĝ(k1 − k2)
[︂
χ(k1=k2) − χ(k1=k3)

]︂
= 1
L2d

∑︂
k,ℓ

γ̂(1)(k)2γ̂(1)(ℓ) [ĝ(0) − ĝ(k − ℓ)] .

Taylor expanding ĝ and using that
´
xg(x) = 0 so ∇ĝ(0) = 0 we get⃓⃓⃓⃓

⃓⃓⃓⃓
⃓
1
2

∑︂
(π,G)∈L1

2
k(π,G)=1

Γ1
π,G

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ C

⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

2+2/d
0 .
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6.1. Particle density of the trial state

Thus, by Lemma 6.4.6⃓⃓⃓⃓
⃓⃓⃓ ∞∑︂
p=1

1
p!

∑︂
(π,G)∈L1

p

Γ1
π,G

⃓⃓⃓⃓
⃓⃓⃓ ≤ C

⃦⃦⃦
| · |2g

⃦⃦⃦
L1
ρ

2+2/d
0 + C ∥g∥2

L1

⃦⃦⃦
γ(1)

⃦⃦⃦2

L1
ρ3

0 + C ∥g∥2
L1 ρ

3
0

≤ Cadb2ρ
2+2/d
0 + Ca2dρ3

0ζ
d(log b/a)2.

That is, Equation (6.3.3) is satisfied.
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Chapter7
Pressure of a dilute spin-polarized Fermi

gas: Upper bound

This chapter contains the paper

[PressUpp] A. B. Lauritsen and R. Seiringer. “Pressure of a dilute spin-polarized Fermi
gas: Upper bound”. arXiv: 2407.05990 [math-ph]. 2024. DOI: 10.48550/
arXiv.2407.05990.

Abstract. We prove an upper bound on the pressure of a dilute fully spin-polarized Fermi gas
capturing the leading correction to the pressure of a free gas resulting from repulsive interactions.
This correction is of order a3ρ8/3, with a the p-wave scattering length of the interaction and ρ
the particle density, depends on the temperature and matches the corresponding lower bound
of Chapter 6.
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7.1 Introduction
Dilute quantum gases have been the focus of much recent study in the mathematical physics
literature. A natural question is the determination of asymptotic formulas for the ground
state energy (at zero temperature) or the free energy or pressure (at positive temperature)
valid for small particle densities. Naturally these quantities are to leading order given by the
corresponding quantities for a free (i.e. non-interacting) gas, and the task is to determine
the correction to the quantities for a free gas arising from repulsive interactions in such a
dilute regime. The first works on such problems are the works of Dyson [Dys57] and Lieb and
Yngvason [LY98], giving upper respectively lower bounds for the ground state energy of a dilute
Bose gas in 3 dimensions. Here, to leading order, the ground state energy density differs from
the free gas by a term of order asρ2 with as the s-wave scattering length of the interaction
and ρ the particle density. Similarly the spin-1

2 Fermi gas has been studied [FGHP21; Gia23a;
LSS05], [Chapter 5], and also here the ground state energy density differs from that of the
free gas by a term of order asρ2.

We consider here a spinless Fermi gas (equivalently completely spin-polarized) with a repulsive
interaction. At zero temperature, we found in Chapters 3 and 4 that the ground state energy
density of the interacting gas differs from that of a free gas by a term of order a3ρ8/3, with a
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the p-wave scattering length of the interaction. We consider here the extension of this result
to positive temperature and show that (at fixed βµ)

ψ(β, µ) ≤ ψ0(β, µ) − c(βµ)a3ρ8/3[1 + o(1)] as a3ρ → 0, (7.1.1)

where ψ(β, µ) and ψ0(β, µ) are the pressures of the interacting respectively free gas at inverse
temperature β and chemical potential µ, and c(βµ) is an explicit temperature-dependent
coefficient. This upper bound matches the corresponding lower bound in Chapter 6 and we
thus conclude that the asymptotic formula in (7.1.1) holds with equality.
Notably for dilute gases, where ρ is small, the correction for the spinless Fermi gas is much
smaller than that for a Bose gas or spin-1

2 Fermi gas. This can be understood from the Pauli
exclusion principle. For fermions of the same spin, the Pauli exclusion principle suppresses the
probability of particles being close enough to interact. This has the effect that the interaction
now enters through the p-wave scattering length and its effect is much smaller.
Both the dilute Bose gas and spin-1

2 Fermi gas have also been studied at positive temperature
[Sei06b; Sei08; Yin10] and for the Bose gas, even the next order correction has been found
at both zero [BCS21; FS20; FS23; YY09] and (suitably low) positive [HHNST23; HHST24]
temperature. Also the analogous lower-dimensional problems have been studied, again both
at zero [Age23; ARS22; FGJMO24; LSS05; LY01] and positive temperature [DMS20; MS20;
Sei06b].
We consider here also the two-dimensional setting and prove that, for fixed βµ,

ψ(β, µ) ≤ ψ0(β, µ) − c(βµ)a2ρ3[1 + o(1)] as a2ρ → 0, (7.1.2)

with the quantities being here the two-dimensional analogues of those in (7.1.1). Again, this
matches the lower bound in Chapter 6 and the asymptotic formula thus holds with equality.
Our method does not directly extend to the one-dimensional case, however, and it remains an
open problem to establish the validity of the analogue of (7.1.1) and (7.1.2) in one spatial
dimension.

7.1.1 Precise statement of results
Consider a system of fermions confined to some large box Λ = [−L/2, L/2]3. We impose
periodic boundary conditions on the box Λ. The pressure of the gas in the thermodynamic limit
L → ∞ is independent of the boundary conditions [Rob71] and periodic boundary conditions
is a convenient choice. Define the one-particle space h = L2(Λ;C) and the (fermionic) Fock
space F(h) = ⨁︁∞

n=0
⋀︁n h. On the Fock space we consider the grand canonical interacting

Hamiltonian
H = H0 + V ,

with the free (non-interacting) Hamiltonian H0 and interaction V given by

H0 = dΓ(−∆ − µ) =
∑︂
k

(|k|2 − µ)a∗
kak,

V = dΓ(V ) = 1
2

¨
Λ×Λ

dx dy V (x− y)a∗
xa

∗
yayax.

(7.1.3)

Here a∗
k = a∗(fk) and ak = a(fk) are the creation and annihilation operators in the one-particle

state fk(x) = L−3/2eikx and a∗
x and ax are the operator-valued distributions formally given by

ax = L−3/2∑︁
k e

ikxak. Further, µ ∈ R is the chemical potential and V ≥ 0 is the (repulsive)
two-body interaction. We assume in addition that V is radial and compactly supported. We
used the notation
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Notation 7.1.1. In any sum the variables are summed over 2π
L
Z3 unless otherwise noted.

That is, we denote ∑︁k = ∑︁
k∈ 2π

L
Z3 .

We consider the pressure ψ(β, µ) of the interacting system. It is defined as

ψ(β, µ) = lim
L→∞

1
βL3 TrF(h) e

−βH.

The limit exists and is independent of the boundary conditions [Rob71]. Similarly, the pressure
of the free system is given by [Hua87, (8.63)]

ψ0(β, µ) = lim
L→∞

1
βL3 TrF(h) e

−βH0 = 1
β(2π)3

ˆ
R3

log
(︂
1 + ze−β|k|2

)︂
dk,

with z = eβµ the fugacity.

To state our main theorem we first define the (p-wave) scattering length of the interaction
V . We define it as in Chapter 4. Different-looking but equivalent definitions are given in
Chapters 3 and 6 and [SY20].

Definition 7.1.2 (Definition 4.1.1). Let φ0 be the solution of the p-wave scattering equation

x∆φ0 + 2∇φ0 + 1
2xV (1 − φ0) = 0 (7.1.4)

on R3, with φ0(x) → 0 for |x| → ∞. Then φ0(x) = a3/|x|3 for x /∈ suppV for some
constant a > 0 called the p-wave scattering length.

The function φ0 satisfies 0 ≤ φ0(x) ≤ min{1, a3|x|−3} for all x ∈ R3. The dimensionless
quantity measuring the diluteness of the gas is given by a3ρ with ρ = ∂µψ(β, µ) the (infinite
volume) particle density.1 The density ρ is to leading order the same as that of the free gas
ρ0. More precisely, ρ = ρ0(1 + O((a3ρ0)1/2)) assuming that z = eβµ is bounded away from
zero by Corollary 6.1.4. We thus formulate the diluteness assumption as the assumption that
a3ρ0 is small. The density of the free gas is given by (see for instance Lemma 6.3.6)

ρ0 = ∂µψ0(β, µ) = − 1
(4πβ)3/2 Li3/2(−z),

with Lis the polylogarithm satisfying [NIS, (25.12.16)]

− Lis(−ex) = 1
Γ(s)

ˆ ∞

0

ts−1

et−x + 1 dt, s > 0,

with Γ the Gamma function.

The temperature is naturally measured using the dimensionless fugacity z = eβµ. A temperature
on the order of the Fermi temperature (of the free gas) T ∼ TF ∼ ρ

2/3
0 corresponds to a

fugacity z ∼ 1. The relevant temperatures to consider are T ≲ TF . This corresponds to
z ≳ 1. At larger temperatures thermal fluctuation dominate the quantum effects, and the gas
should behave more like a (high-temperature) classical gas.

With these definitions at hand we may then formulate our main theorem:
1We abuse notation slightly by assuming that the derivative ∂µψ(β, µ) exists. The function ψ(β, µ), being

convex in µ, has both left and right derivatives. Should these not coincide we may replace instances of ρ with
either.

220



7.1. Introduction

Theorem 7.1.3. Let V ∈ L1(R3) be non-negative, radial and compactly supported. Then,
for any ε > 0 there exist a function C(z) > 0 bounded uniformly on any compact subset of
(0,∞) such that if a3ρ0 is sufficiently small, then

ψ(β, µ) ≤ ψ0(β, µ) − 24π2 − Li5/2(−z)
(− Li3/2(−z))5/3a

3ρ
8/3
0

[︂
1 + C(z)(a3ρ0)1/16−ε

]︂
. (7.1.5)

Remark 7.1.4. The appearance of the scattering length in the error term is for dimensional
consistency. This error term depends on the interaction V also through its range and L1-norm,
both of dimension length. We think of the scattering length as a constant of dimension
length, and so write range(V ) ≤ Ca and ∥V ∥L1 ≤ Ca with the constants C > 0 being then
dimensionless. The function C(z) in (7.1.5) depends only on these constants C.

Remark 7.1.5. The upper bound in Theorem 7.1.3 matches the corresponding lower bound in
Chapter 6. Contrary to the lower bound in Chapter 6, however, Theorem 7.1.3 is not uniform
in temperatures T ≲ TF . We discuss the reason for this in detail in Remark 7.7.3 below. One
should rather expect the formula in Theorem 7.1.3 to hold uniformly in temperatures T ≲ TF ,
meaning that we expect that C(z) is bounded uniformly in z ≥ z0 > 0 for any fixed z0 > 0.
It remains an open problem to prove this.

Remark 7.1.6 (Extension to less regular V ). We can a posteriori extend Theorem 7.1.3 to less
regular V as in Chapter 4. (In particular to the case of hard spheres, where formally V (x) = ∞
for |x| ≤ a and V (x) = 0 otherwise.) Indeed, any non-negative radial measurable function
V can be approximated from below by a (non-negative, radial and compactly supported)
L1-function ˜︁V . Then clearly ψ(β, µ) ≤ ˜︁ψ(β, µ) with ˜︁ψ(β, µ) the pressure with interaction˜︁V . Assume in addition that x ↦→ |x|2V (x) is integrable outside some ball. Then the p-wave
scattering length of V is well-defined. If V is not of finite range or L1-norm, the error term in
Theorem 7.1.3 necessarily blows up when ˜︁V → V . Choosing ˜︁V converging to V slowly enough
(as a3ρ0 → 0) however, we may achieve that a( ˜︁V ) = a(V )(1 + o(1)), while still keeping the
error term in Theorem 7.1.3 small. That is, we conclude for any such V that

ψ(β, µ) ≤ ψ0(β, µ) − 24π2 − Li5/2(−z)
(− Li3/2(−z))5/3a

3ρ
8/3
0 [1 + oz(1)] ,

where oz(1) vanishes as a3ρ0 → 0 uniformly for z in compact subsets of (0,∞).

7.1.1.1 Two dimensions

Consider now the two-dimensional setting. The scattering length is defined as in Definition 7.1.2,
only in this case φ0(x) = a2/|x|2 outside the support of V , with a > 0 then the two-dimensional
p-wave scattering length. The two-dimensional analogue of Theorem 7.1.3 reads
Theorem 7.1.7 (Two dimensions). Let V ∈ L1(R2) be non-negative, radial and compactly
supported. Then, for any ε > 0 there exist a function C(z) > 0 bounded uniformly on any
compact subset of (0,∞) such that if a2ρ0 is sufficiently small, then

ψ(β, µ) ≤ ψ0(β, µ) − 8π2 − Li2(−z)
(− Li1(−z))2a

2ρ3
0

[︂
1 + C(z)(a2ρ0)1/8−ε

]︂
.

Theorem 7.1.7 matches the lower bound of Chapter 6. Again, the upper bound in Theorem 7.1.7
is not uniform in temperatures T ≲ TF , though one should expect a uniform bound to hold.
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

7.2 Overview of the proof
To prove Theorem 7.1.3 we introduce a unitary operator eB implementing the correlations
between the particles arising from the interaction. This is analogous to the strategy in Chapter 4
and [FGHP21; Gia23a], see also [Gia23b]. We first introduce the variational formulation of
the pressure, however.

7.2.1 Variational formulation
The pressure ψ(β, µ) may be characterized variationally. We define the pressure functional P
of a state Γ by

−L3P(Γ) = ⟨H⟩Γ − 1
β
S(Γ) = TrF(h) HΓ + 1

β
TrF(h) Γ log Γ.

By a state we mean a positive trace-class operator on F(h) of unit trace. Here we introduced
the entropy S(Γ) = − TrF(h) Γ log Γ and used the notation

Notation 7.2.1. We denote by ⟨A⟩Γ = TrF(h) AΓ the expectation of an operator A in a
state Γ.

The pressure ψ(β, µ) at inverse temperature β > 0 and chemical potential µ ∈ R then satisfies

ψ(β, µ) = lim
L→∞

sup
Γ

P(Γ).

Similarly, the pressure of the free system satisfies

ψ0(β, µ) = lim
L→∞

sup
Γ

P0(Γ) = lim
L→∞

P0(Γ0) = lim
L→∞

1
βL3 logZ0 (7.2.1)

with P0 the pressure functional of the free system (defined as P above only with H replaced
by H0), Γ0 = 1

Z0
e−βH0 the free Gibbs state and Z0 = TrF(h) e

−βH0 the free partition function.

7.2.2 Momentum cut-offs
As in the zero-temperature setting with or without spin [FGHP21; Gia23a], [Chapter 4] we
wish to distinguish between small and large momenta. At zero temperature a natural cut-off
is the Fermi momentum. At positive temperature there is no clearly defined Fermi momentum
since the temperature “smears out” the Fermi ball. Instead we define the following:

Definition 7.2.2. Define the projections P and Q = 1 − P onto low and high momenta by

P̂ (k) = χ(|k|<kκ
F ), Q̂(k) = 1 − P̂ (k), kκF :=

[︂
µ+ β−1κ

]︂1/2

+
, (7.2.2)

where [x]+ = max{0, x} denotes the positive part. The parameter κ > 0 will be chosen large
so that kκF > 0. In fact, we shall choose

κ = ζ(a3ρ0)−α, ζ := 1 + |log z| , (7.2.3)

for some (small) α > 0; for small a3ρ0 then kκF ≫ ρ
1/3
0 , see Eq. (7.3.3) below. (Recall that

z = eβµ denotes the fugacity.) The temperature dependence of the error terms are naturally
given in terms of ζ. Here and in the following, we use the notation
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7.2. Overview of the proof

Notation 7.2.3. We denote by ρ0 the particle density of the free gas in finite volume.

The integral kernels of P and Q are, with a slight abuse of notation,

P (x− y) = 1
L3

∑︂
k

P̂ (k)eik(x−y),

Q(x− y) = 1
L3

∑︂
k

Q̂(k)eik(x−y) = δ(x− y) − P (x− y).

The momentum kκF serves as an enlarged Fermi momentum. The operators P and Q are
chosen so that the approximations

Pγ0 ≈ γ0, Q ≈ 1

are both good in appropriate senses. Here γ0 is the one-particle density matrix of the free
Gibbs state Γ0.

As in the zero-temperature setting studied in Chapter 4 and [FGHP21; Gia23a] we introduce
creation and annihilation operators for small and large momentum. They are defined as follows.

Definition 7.2.4. Define the operators

ck = P̂ (k)ak, bk = Q̂(k)ak,

Define further the operator-valued distributions

cx = 1
L3/2

∑︂
k

eikxck = 1
L3/2

∑︂
k

eikxP̂ (k)ak, bx = 1
L3/2

∑︂
k

eikxbk = 1
L3/2

∑︂
k

eikxQ̂(k)ak.

We will further need a regularized version of b. We define

brk = Q̂
r(k)ak, brx = 1

L3/2

∑︂
k

eikxbrk,

with Q̂r : R3 → [0, 1] a smooth function with

Q̂
r(k) =

⎧⎨⎩0 |k| ≤ kκF ,

1 |k| ≥ 2kκF ,
|∇Qr(k)| ≤ C(kκF )−1χ(kκ

F ≤|k|≤2kκ
F ).

Remark 7.2.5. Contrary to Chapter 4 we do not define cx with the opposite sign in the
exponent. Since we do not conjugate by the particle hole transform (which is not readily
available at positive temperature), it is more convenient to define cx as done here.

The function Q̂r naturally defines an operator Qr on h = L2(Λ;C) with integral kernel (with
a slight abuse of notation)

Qr(x− y) = 1
L3

∑︂
k

Q̂
r(k)eik(x−y).

As in [FGHP21, Proposition 4.2] we have
Lemma 7.2.6. Let P r = δ −Qr. Then ∥P r∥L1(Λ) ≤ C for sufficiently large L.
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7.2.3 The scattering function
We define the scattering function φ as in Chapter 4 (see also [Gia23a]) only with kF replaced
by kκF . For completeness we recall the details here.

Let χφ : [0,∞) → [0, 1] be a smooth function with

χφ(t) =

⎧⎨⎩1 t ≤ 1,
0 t ≥ 2.

Define then
φ(x) = φ0(x)χφ(kκF |x|) (7.2.4)

with φ0 the p-wave scattering function defined in Definition 7.1.2. More precisely φ is the
periodization of the right-hand-side.

Remark 7.2.7. We will in general abuse notation slightly and refer to any (compactly
supported) function and its periodization by the same name. For L larger than the range of
the function, at most one summand in the periodization is non-zero and so no issue will arise.

The function φ does not satisfy the p-wave scattering equation (7.1.4) exactly. We define the
discrepancy

Eφ(x) = x∆φ(x) + 2∇φ(x) + 1
2xV (x)(1 − φ(x))

= 2kκFx∇µφ0(x)∇µχφ(kκF |x|) + (kκF )2xφ0(x)∆χφ(kκF |x|) + 2kκFφ0(x)∇χφ(kκF |x|).
(7.2.5)

Again, more precisely, Eφ is the periodization of the right-hand-side. Here we have used the
notation:

Notation 7.2.8. We adopt the Einstein summation convention of summing over repeated
indices denoting components of a vector, i.e., xµyµ = ∑︁3

µ=1 x
µyµ = x · y for vectors x, y ∈ R3.

7.2.4 The operator B
With the definitions above we can define the operator B implementing the correlations. It is
defined as

B = −1
2

¨
φ(z − z′)(brz)∗(brz′)∗cz′cz dz dz′ − h.c.

= − 1
2L3

∑︂
p,k,k′

φ̂(p)(brk+p)∗(brk′−p)∗ck′ck − h.c..
(7.2.6)

We expect that the Gibbs state of the interacting gas is then approximately given by eBΓ0e
−B.

This is analogous to the zero-temperature setting in Chapter 4, where one expects that the
interacting ground state is approximately given by eBΨ0, with Ψ0 the ground state of the free
gas.

Remark 7.2.9 (Comparison to Chapter 4 and [FGHP21; Gia23a]). In Chapter 4 and [FGHP21;
Gia23a] an analogous operator B is constructed. There, however, also a particle-hole trans-
formation is used and so the operator B is not particle number preserving. Conjugating the
operator B by the particle-hole transformation, however, we recover the operator B (up to
the precise momentum cut-offs in the operators ck, bk, and the inclusion of spin considered in
[FGHP21; Gia23a], in which case a different function φ needs to be used).
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With the operator B above we define for any state Γ

Γλ := e−λBΓeλB, 0 ≤ λ ≤ 1. (7.2.7)

Any state Γ thus satisfies Γ = eBΓ1e−B.

7.2.5 Implementation
To prove Theorem 7.1.3 we shall consider the pressure functional evaluated on appropriate
states. Let N = dΓ(1) denote the particle number operator. We shall consider the following
states:

Definition 7.2.10. A state Γ is said to be an approximate Gibbs state if it is translation
invariant and satisfies

⟨N ⟩Γ ≤ CL3ρ0 , ⟨H⟩Γ − 1
β
S(Γ) ≤ − 1

β
logZ0 + CL3a3ρ

8/3
0 (7.2.8)

for some C > 0 (independent of L, a3ρ0 and z).

Remark 7.2.11. We note that the Gibbs state of the interacting gas is indeed an approximate
Gibbs state (for L large enough, a3ρ0 small enough and 1/z bounded). Indeed, this follows
from Theorem 6.1.2 and Corollary 6.1.4.

An immediate consequence of Definition 7.2.10 is that in an approximate Gibbs state Γ we
have

⟨V⟩Γ ≤ CL3a3ρ
8/3
0 . (7.2.9)

We shall now sketch the proof of Theorem 7.1.3. Using (7.2.7) above, any state Γ can be
written as Γ = eBΓ1e−B. As discussed above, we expect that if Γ is the (interacting) Gibbs
state, then Γ1 is approximately given by the free Gibbs state Γ0. Hence, it is natural to write
⟨H⟩Γ =

⟨︂
e−BHeB

⟩︂
Γ1

. Heuristically to compute e−BHeB we would expand to second order
in a Baker–Campbell–Hausdorff expansion. To do this rigorously, we instead do a Duhamel
expansion as follows.

Note that for any operator A we have (for any 0 ≤ λ, λ′ ≤ 1, recall (7.2.7))

⟨A⟩Γλ = ⟨A⟩Γλ′ −
ˆ λ′

λ

dλ′′ ∂λ′′ ⟨A⟩Γλ′′ = ⟨A⟩Γλ′ +
ˆ λ′

λ

dλ′′ ⟨[A,B]⟩Γλ′′ . (7.2.10)

We decompose the interaction V as

V = dΓ(V ) = VP + VQ + VOD + QV , (7.2.11)

with (denoting the two-body projection P ⊗ P by PP and similar)

VP = dΓ(PPV PP ), VQ = dΓ(QQV QQ), VOD = dΓ(PPV QQ+QQV PP ).
(7.2.12)

The operator QV containing all the remaining terms will not contribute to the pressure to the
desired accuracy, i.e., it is an error term.
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Decomposing as in (7.2.11) and employing (7.2.10) we find for any state Γ the formula

⟨H⟩Γ = ⟨VP ⟩Γ + ⟨H0 + VQ + VOD⟩Γ + ⟨QV ⟩Γ

= ⟨VP ⟩Γ + ⟨H0 + VQ⟩Γ1 + ⟨QV ⟩Γ +
ˆ 1

0
dλ ⟨[H0 + VQ,B] + VOD⟩Γλ

+
ˆ 1

0
dλ ⟨[VOD,B]⟩Γλ −

ˆ 1

0
dλ
ˆ 1

λ

dλ′ ⟨[VOD,B]⟩Γλ′

= ⟨VP ⟩Γ + ⟨H0 + VQ⟩Γ1 + ⟨QV ⟩Γ +
ˆ 1

0
dλ ⟨[H0 + VQ,B] + VOD⟩Γλ

+
ˆ 1

0
dλ (1 − λ) ⟨[VOD,B]⟩Γλ .

We shall write [VOD,B] = 2(WP −VP )+QOD, with W = V (1−φ) and WP = dΓ(PPWPP ).
The term QOD is then an error term. Again using (7.2.10),

⟨[VOD,B]⟩Γλ = 2 ⟨WP − VP ⟩Γ − 2
ˆ λ

0
dλ′ ⟨[WP − VP ,B]⟩Γλ′ + ⟨QOD⟩Γλ .

Defining QV φ = [VP − WP ,B] and the error terms

EV (Γ) = ⟨QV ⟩Γ , (7.2.13)

Escat(Γ) =
ˆ 1

0
dλ ⟨[H0 + VQ,B] + VOD⟩Γλ , (7.2.14)

EOD(Γ) =
ˆ 1

0
dλ (1 − λ) ⟨QOD⟩Γλ , (7.2.15)

EV φ(Γ) =
ˆ 1

0
dλ (1 − λ)2 ⟨QV φ⟩Γλ , (7.2.16)

we find for any state Γ

⟨H⟩Γ = ⟨H0⟩Γ1 + ⟨WP ⟩Γ + ⟨VQ⟩Γ1 + EV (Γ) + Escat(Γ) + EOD(Γ) + EV φ(Γ).

This is analogous to the similar formula (4.2.11) in the zero-temperature setting.

The desired leading contribution from the interaction is the term ⟨WP ⟩Γ. In fact, we expect
that to leading order we can replace Γ by Γ0 in this expression, and drop the projection P
(i.e., replace it by 1). With W = dΓ(W ), let us consequently define the difference between
⟨WP ⟩Γ and ⟨W⟩Γ0

by Ept; i.e.,

⟨WP ⟩Γ = ⟨W⟩Γ0
+ Ept(Γ) . (7.2.17)

The term Ept(Γ) is another error term. It quantifies, to some extent, the validity of first order
perturbation theory, as we shall explain in more detail Section 7.7. Furthermore, by the Gibbs
variational principle (applied to the free system) we have

⟨H0⟩Γ1 − 1
β
S(Γ1) ≥ ⟨H0⟩Γ0

− 1
β
S(Γ0) = − 1

β
logZ0.

Finally, VQ ≥ 0 and S(Γ1) = S(Γ) since eB is unitary. Thus we find for any state Γ the lower
bound

⟨H⟩Γ − 1
β
S(Γ) ≥ − 1

β
logZ0 + ⟨W⟩Γ0

+ Ept(Γ) + EV (Γ) + Escat(Γ) + EOD(Γ) + EV φ(Γ).

(7.2.18)
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To evaluate ⟨W⟩Γ0
we use Lemma 7.3.1 below. Note that

´
|x|2W = 24πa3. Indeed, by the

compact support of V we have for small enough a3ρ0ˆ
R3

|x|2W (x) dx =
ˆ

|x|<(kκ
F )−1

|x|2V (x)(1 − φ0(x)) dx = 24πa3.

The first ‘=’ follows from the fact that φ(x) = φ0(x) for |x| ≤ (kκF )−1, noting the asymptotics
for kκF in (7.3.3). The last ‘=’ follows from a simple integration by parts using the scattering
equation (7.1.4). Bounding also

´
|x|4W ≤ Ca5 (the integral

´
|x|4W is some constant of

dimension (length)5 and hence we write it as Ca5, cf. Remark 7.1.4) we have

⟨W⟩Γ0
= 24π2 − Li5/2(−z)

(− Li3/2(−z))5/3L
3a3ρ

8/3
0

[︂
1 +O(a2ρ

2/3
0 ) + eL

]︂
. (7.2.19)

Here we have used the notation

Notation 7.2.12. We denote by eL any term vanishing as L−1 in the limit L → ∞.

The main part of this paper concerns bounding the error terms Ept(Γ), EV (Γ), Escat(Γ), EOD(Γ)
and EV φ(Γ). They are bounded as follows. Recall our choice κ = ζ(a3ρ0)−α for some (small)
α > 0 in (7.2.3).
Proposition 7.2.13. Let Γ be an approximate Gibbs state. Then, for any α > 0 sufficiently
small,

Ept(Γ) ≥ −C(z)L3a3ρ
8/3
0 (a3ρ0)1/16−21α/32 − L3eL,

with the function C(z) uniformly bounded on compact subsets of (0,∞).
Proposition 7.2.14. Let Γ be an approximate Gibbs state. Then, for any α > 0,

EV (Γ) ≥ −CL3a3ρ
8/3
0 (a3ρ0)1/2−5α/2 − L3eL.

Proposition 7.2.15. Let Γ be an approximate Gibbs state. Then, for any α > 0 sufficiently
small,

|Escat(Γ)| ≤ CL3a3ρ
8/3
0 (a3ρ0)1/5−2α

⃓⃓⃓
log a3ρ0

⃓⃓⃓2/5
+ L3eL.

Proposition 7.2.16. Let Γ be an approximate Gibbs state. Then, for any α > 0 sufficiently
small,

|EOD(Γ)| ≤ CL3a3ρ
8/3
0 (a3ρ0)1/2−13α/4 + L3eL.

Proposition 7.2.17. Let Γ be an approximate Gibbs state. Then, for any α > 0,

|EV φ(Γ)| ≤ CL3a3ρ
8/3
0 (a3ρ0)2/3−4α + L3eL.

With these we may give the

Proof of Theorem 7.1.3. We evaluate the first two terms in (7.2.18) using (7.2.1) and (7.2.19)
and bound the error terms by Propositions 7.2.13–7.2.17. Taking an infinite volume limit, we
obtain the desired bound (7.1.5).

Remark 7.2.18. We note that the error bounds in Propositions 7.2.14–7.2.17 are uniform in
the temperature, while the bound in Proposition 7.2.13 is not.

Remark 7.2.19. Propositions 7.2.14–7.2.17 are analogous to Propositions 4.2.8, 4.2.9
and 4.2.10. The main novelty of the present paper is Proposition 7.2.13.

The remainder of the paper deals with the proofs of Propositions 7.2.13–7.2.17.
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Structure of the paper:

First, in Section 7.3, we recall some useful results from Chapters 4 and 6, give some a priori
bounds for approximate Gibbs states and conclude with the proof of Proposition 7.2.14. Next,
in Section 7.4, we calculate the commutators [H0,B], [VQ,B], [VP − WP ,B], and [VOD,B]
and extract the claimed leading terms. The error terms arising from the commutators are
estimated in Section 7.5. In Section 7.6, we propagate the a priori bounds to the states Γλ
and conclude the proof of Propositions 7.2.15, 7.2.16 and 7.2.17. Finally, in Section 7.7, we
employ the method of [Sei06a] in order to estimate the validity of first order perturbation
theory at positive temperature, and conclude the proof of Proposition 7.2.13 and thereby of
Theorem 7.1.3.
In Section 7.A we estimate certain Riemann sums needed in the proof, and in Section 7.B
we sketch how to adapt the proof to the two-dimensional setting, and hence to prove
Theorem 7.1.7.

7.3 Preliminaries
7.3.1 Reduced densities
We recall from Chapter 6 the following properties for the reduced k-particle densities ρ(k)

0 of
the free gas.
Lemma 7.3.1 (Lemma 6.3.6). The reduced densities of the free Fermi gas satisfy

ρ
(1)
0 (x1) = ρ0 = 1

(4π)3/2β
−3/2(− Li3/2(−z))

[︂
1 +O(L−1ζρ

−1/3
0 )

]︂
, (7.3.1)

ρ
(2)
0 (x1, x2) = 2π − Li5/2(−z)

(− Li3/2(−z))5/3ρ
8/3
0 |x1 − x2|2

[︂
1 +O(ρ2/3

0 |x1 − x2|2) +O(L−1ζρ
−1/3
0 )

]︂
.

(7.3.2)

For bounded 1/z = e−βµ, we have the asymptotic behavior

β ∼ ζρ
−2/3
0 , |µ| ≤ Cρ

2/3
0 , kκF ∼ κ1/2ζ−1/2ρ

1/3
0 ∼ ρ

1/3
0 (a3ρ0)−α/2. (7.3.3)

Indeed, the asymptotics for β and for positive µ follows from Remark 6.3.7. For 1/z bounded
we have µ ≥ −Cβ−1 ≥ −Cζ−1ρ

2/3
0 and the bound for µ follows for negative µ. The

asymptotics for kκF follows from the first two by recalling (7.2.3) noting that for a3ρ0 small
we have β−1κ ≫ −µ.

7.3.2 The scattering function
We recall from Chapter 6 that the scattering function φ and the function Eφ, defined in (7.2.4)
and (7.2.5), satisfy
Lemma 7.3.2 (Lemma 4.3.6 and Remark 4.3.7). The scattering function φ satisfies

∥| · |nφ∥L1 ≤ Ca3(kκF )−n, n = 1, 2, ∥| · |n∇nφ∥L1 ≤ Ca3 |log akκF | , n = 0, 1, 2
∥| · |φ∥L2 ≤ Ca3/2+1, ∥| · |n∇nφ∥L2 ≤ Ca3/2, n = 0, 1.

Here ∇n represents any combination of n derivatives and |·| denotes the metric on the torus
in the sense that |x| is the distance between x and the point 0.
Moreover, Eφ satisfies the same bounds as φ only with an additional power kκF .
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7.3.3 Relative entropy
The relative entropy of a state Γ with respect to the free Gibbs state Γ0 is given by

1
β
S(Γ,Γ0) = ⟨H0⟩Γ − 1

β
S(Γ) + 1

β
logZ0.

For a translation invariant state Γ with one-particle density matrix γ, we have S(Γ) ≤ S(γ),
where the ‘one-particle-density’ entropy is given in terms of the Fourier coefficients γ̂(k) of γ
as S(γ) = −∑︁

k [γ̂(k) log γ̂(k) + (1 − γ̂(k)) log(1 − γ̂(k))]. Moreover, S(Γ0) = S(γ0) with
γ0 the one-particle-density matrix of Γ0, since Γ0 is a quasi-free state. In particular, using that
γ̂0(k) = (1 + eβ(|k|2−µ))−1,

1
β

S(γ, γ0) := 1
β

∑︂
k

[︄
γ̂(k) log γ̂(k)

γ̂0(k) + (1 − γ̂(k)) log 1 − γ̂(k)
1 − γ̂0(k)

]︄

= ⟨H0⟩Γ − ⟨H0⟩Γ0
− 1
β

S(γ) + 1
β

S(γ0) ≤ 1
β
S(Γ,Γ0).

Recalling (7.2.8), we thus have for an approximate Gibbs state Γ

S(γ, γ0) ≤ S(Γ,Γ0) ≤ CL3a3ρ
8/3
0 β ≤ CL3ζa3ρ2

0, (7.3.4)

where we used the asymptotics of β from (7.3.3) in the last bound.

7.3.4 Highly excited particles
To state many of the intermediary bounds in the proof of Propositions 7.2.14–7.2.17 it is
convenient to define

NQ =
∑︂
k

b∗
kbk =

ˆ
b∗
xbx dx, KQ =

∑︂
k

|k|2b∗
kbk =

ˆ
∇b∗

x∇bx dx, (7.3.5)

being the number and kinetic energy of highly excited particles. We shall prove the following
lemma.
Lemma 7.3.3. For any translation invariant state Γ with one-particle density matrix γ, we
have

⟨NQ⟩Γ ≲ κ−1
(︂
S(γ, γ0) + L3β−1kκF e

−κ/3 + L3eL
)︂

⟨KQ⟩Γ ≲
(︂
β−1 + ρ

2/3
0 κ−1

)︂ (︂
S(γ, γ0) + L3β−1kκF e

−κ/3 + L3eL
)︂

Applying this Lemma for the choice κ = ζ(a3ρ0)−α in (7.2.3) and recalling (7.3.3) and (7.3.4)
we find for any approximate Gibbs state Γ

⟨NQ⟩Γ ≤ CL3ζκ−1a3ρ2
0 + L3eL, ⟨KQ⟩Γ ≤ CL3a3ρ

8/3
0 + L3eL (7.3.6)

with the constants C > 0 depending only on α > 0.

Proof. Define the functions

s(t) = −t log t− (1 − t) log(1 − t), s(t, t′) = t log t

t′
+ (1 − t) log 1 − t

1 − t′
.

Then for any translation-invariant density matrices γ, γ′ we have S(γ) = ∑︁
k s(γ̂(k)) and

S(γ, γ′) = ∑︁
k s(γ̂(k), γ̂′(k)).
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Let h > 0. We claim that for all t ∈ [0, 1]

ht ≤ 2s(t, t0) + h

1 + eh/2 , t0 = 1
1 + eh

(7.3.7)

To prove this we define F (h) := − log(1 + e−h) = ht0 − s(t0) the ‘free energy’ of the
‘Hamiltonian’ h and note that s(t, t0) = ht − s(t) − F (h). Then, by the Gibbs variational
principle applied to the ‘Hamiltonian’ h/2 we have

2s(t, t0) − ht = 2
[︃1
2ht− s(t) − F (h)

]︃
≥ 2 [F (h/2) − F (h)] = −2h

ˆ 1

1/2
F ′(uh) du.

Clearly |F ′(uh)| ≤ (1 + eh/2)−1 for any u ∈ [1/2, 1], yielding (7.3.7).

In order to prove the lemma we apply (7.3.7) for h = β(|k|2 − µ)Q̂(k) and t = γ̂(k) and sum
in k. Noting that t0 = (1 + eh)−1 = γ̂0(k)Q̂(k) on the support of Q̂, and s(γ̂(k), γ̂0(k)) ≥ 0,
we have ∑︂

|k|>kκ
F

β(|k|2 − µ)γ̂(k) ≤ 2S(γ, γ0) +
∑︂

|k|>kκ
F

β(|k|2 − µ)
1 + e

β
2 (|k|2−µ)

.

The sum on the right hand side can be bounded as
∑︂

|k|>kκ
F

β(|k|2 − µ)
1 + e

β
2 (|k|2−µ)

≤ CL3β−3/2(1 + kκFβ
1/2)e−κ/3 + L3eL ≤ CL3β−1kκF e

−κ/3 + L3eL.

(7.3.8)
This follows by viewing the sum as a Riemann sum and computing the corresponding integral;
we shall give the details in Section 7.A. The bounds in the lemma then follow by noting that
β((kκF )2 − µ) = κ according to (7.2.2) and

⟨NQ⟩Γ =
∑︂
k

Q̂(k)γ̂(k) ≤ [β((kκF )2 − µ)]−1 ∑︂
|k|>kκ

F

β(|k|2 − µ)γ(k),

⟨KQ⟩Γ =
∑︂
k

Q̂(k)|k|2γ̂(k) = β−1 ∑︂
|k|>kκ

F

β(|k|2 − µ)γ(k) + µ ⟨NQ⟩Γ .

Using (7.3.3) to bound µ yields the statement of the Lemma.

7.3.5 The interaction V

We shall now give a priori bounds for the interaction V and prove Proposition 7.2.14. This is
analogous to what is done in Section 4.3.2.

Recall the definition of EV in (7.2.13)) and (7.2.11).
Lemma 7.3.4. For any state Γ and any ε > 0 we have the lower bound

EV (Γ) ≥ −ε ⟨VP ⟩Γ − ε ⟨VQ⟩Γ − Cε−1a3(kκF )3
[︂
⟨KQ⟩Γ + (kκF )2 ⟨NQ⟩Γ

]︂
Proof. Again denoting by PP the two-body operator P ⊗ P , we can write

V = [PP + PQ+QP +QQ]V [PP + PQ+QP +QQ].

Expanding out the product we may bound the cross-terms as

(QQV (PQ+QP ) + h.c.) ≥ −εQQV QQ− 1
ε

(PQ+QP )V (PQ+QP )

(PPV (PQ+QP ) + h.c.) ≥ −εPPV PP − 1
ε

(PQ+QP )V (PQ+QP ).
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With the definitions in (7.2.12) we thus obtain the bound

V ≥ (1 − ε)VP + (1 − ε)VQ + VOD +
(︃

1 − 2
ε

)︃
VX

with

VX = dΓ((PQ+QP )V (PQ+QP )) = 1
2

¨
V (x− y)(b∗

xc
∗
y + c∗

xb
∗
y)(bycx + cybx) dx dy.

For any state Γ define the function ϕ(x, y) =
⟨︂
(b∗
xc

∗
y + c∗

xb
∗
y)(bycx + cybx)

⟩︂
Γ
. We note that

ϕ(x, x) = 0 and ϕ(x, y) = ϕ(y, x). Hence, Taylor expanding in y around y = x, the zeroth and
first orders vanish. (The path from x to y used in the Taylor expansion should be interpreted
as the shortest path on the torus Λ.) Then

ϕ(x, y) = (y − x)µ(y − x)ν
ˆ 1

0
dt (1 − t)[∇µ

2∇ν
2ϕ](x, x+ t(y − x))

where ∇µ
2 denotes the derivative in the second variable. Changing variables to z = y − x, we

have
⟨VX⟩Γ = 1

2

ˆ 1

0
dt (1 − t)

ˆ
dz zµzνV (z)

ˆ
dx [∇µ

2∇ν
2ϕ](x, x+ tz).

The x-integral is given by (with derivatives now being with respect to x and the brackets
indicating that the derivatives are of the product of operators in the brackets)

ˆ
dx
⟨︃
b∗
x∇µ∇ν [c∗

x+tzbx+tz]cx + c∗
x∇µ∇ν [b∗

x+tzbx+tz]cx

+ b∗
x∇µ∇ν [c∗

x+tzcx+tz]bx + c∗
x∇µ∇ν [b∗

x+tzcx+tz]bx
⟩︃
.

Integrating by parts once, so that no factor b or b∗ carry two derivatives we may bound this
using Cauchy–Schwarz by⃓⃓⃓⃓

⃓
ˆ

dx [∇µ
2∇ν

2ϕ](x, x+ tz)
⃓⃓⃓⃓
⃓ ≤ C(kκF )3

ˆ
dx ⟨∇b∗

x∇bx⟩Γ + C(kκF )5
ˆ

dx ⟨b∗
xbx⟩Γ

= C(kκF )3 ⟨KQ⟩Γ + C(kκF )5 ⟨NQ⟩Γ

using that ∥∇nc∥ ≤ C(kκF )3/2+n. We conclude that

|⟨VX⟩Γ| ≤ C
⃦⃦⃦
| · |2V

⃦⃦⃦
L1

(kκF )3
[︂
⟨KQ⟩Γ + (kκF )2 ⟨NQ⟩Γ

]︂
.

Noting finally that
´

|x|2V ≤ Ca3 (it is some constant of dimension (length)3, cf. Re-
mark 7.1.4) we conclude the proof of the lemma.

Lemma 7.3.5 (A priori bound for VP ). For any state Γ we have

⟨VP ⟩Γ ≤ Ca3(kκF )5 ⟨N ⟩Γ .

Proof. We have
⟨VP ⟩Γ = 1

2

¨
dx dyV (x− y)

⟨︂
c∗
xc

∗
ycycx

⟩︂
Γ
.
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We Taylor expand the factors cy and c∗
y as

cy = cx + (y − x)µ
ˆ 1

0
dt∇µcx+t(y−x), (7.3.9)

where again the path from x to y should be understood as the shortest on the torus Λ. Since
cx is a bounded fermionic operator c2

x = 0. Doing this Taylor expansion for both cy and c∗
y

and changing variables to z = y − x we have

⟨VP ⟩Γ = 1
2

¨
dx dz V (z)zµzν

ˆ 1

0
dt
ˆ 1

0
ds
⟨︂
c∗
x∇µc∗

x+tz∇νcx+szcx
⟩︂

Γ

To bound this we can use that ∥∇c∥ ≤ C(kκF )3/2+1. Thus, with ∥ · ∥S2 denoting the
Hilbert–Schmidt norm, the Cauchy–Schwarz inequality implies that

⟨VP ⟩Γ ≤ C

¨
dx dz V (z)|z|2(kκF )5

⃦⃦⃦
Γ1/2c∗

x

⃦⃦⃦
S2

⃦⃦⃦
cxΓ1/2

⃦⃦⃦
S2
.

Noting that
⃦⃦⃦
Γ1/2c∗

x

⃦⃦⃦
S2

= (Tr[Γ1/2c∗
xcxΓ1/2])1/2 = ⟨c∗

xcx⟩
1/2
Γ , that

´
⟨c∗
xcx⟩Γ dx ≤ ⟨N ⟩Γ and

that
´

|x|2V ≤ Ca3 we obtain the desired bound.

Lemma 7.3.6 (A priori bound for VOD). For any state Γ and any δ > 0 we have

|⟨VOD⟩Γ| ≤ δ ⟨VQ⟩Γ + δ−1 ⟨VP ⟩Γ ≤ δ ⟨VQ⟩Γ + Cδ−1a3(kκF )5 ⟨N ⟩Γ .

Proof. By Cauchy–Schwarz we have for any δ > 0

|⟨VOD⟩Γ| ≤ 1
2

¨
V (x− y)

⃓⃓⃓⟨︂
b∗
xb

∗
ycycx + h.c.

⟩︂
Γ

⃓⃓⃓
dx dy ≤ δ ⟨VQ⟩Γ + δ−1 ⟨VP ⟩Γ .

Using the bound of ⟨VP ⟩Γ in Lemma 7.3.5 we conclude the desired bound.

Lemma 7.3.7 (A priori bound for VQ). For any approximate Gibbs state Γ we have

⟨VQ⟩Γ ≤ CL3a3ρ0(kκF )5 + L3eL

Proof. Recalling (7.2.11) and applying Lemma 7.3.4 and Lemma 7.3.6 with δ = 1/2 we have
the lower bound

⟨V⟩Γ ≥ −(1 + ε) ⟨VP ⟩Γ +
(︃1

2 − ε
)︃

⟨VQ⟩Γ − ε−1Ca3(kκF )3
[︂
⟨KQ⟩Γ + (kκF )2 ⟨NQ⟩Γ

]︂
.

Moreover, ⟨V⟩Γ is bounded above as in (7.2.9). Bounding ⟨VP ⟩Γ using Lemma 7.3.5, choosing
ε = 1/4, and using the bounds of NQ and KQ in (7.3.6) we conclude the proof of the
lemma.

Finally we can the give the

Proof of Proposition 7.2.14. We start with Lemma 7.3.4 and apply the bounds of Lem-
mas 7.3.5 and 7.3.7 as well as (7.3.6). We conclude for any ε > 0 the bound

EV (Γ) ≥ −CεL3a3ρ0(kκF )5 − Cε−1L3a6ρ2
0(kκF )5 − L3eL

Choosing the optimal ε = a3/2ρ
1/2
0 and recalling the asymptotic behavior of kκF in (7.3.3) we

arrive at the claimed bound.
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7.4 Calculation of commutators
As detailed in Section 7.2.5, our method of proof requires the calculation of the commutator
of the operator B defined in (7.2.6) with various other operators. These commutators are
analogous to the corresponding ones in the zero-temperature setting in Chapter 4 and [FGHP21;
Gia23a]. The calculations are essentially the same as those of Section 4.4, only the particle-hole
transformation used there is now absent. For completeness we give the details here.

7.4.1 [H0,B]:
Recall the formulas for H0 and B from (7.1.3) and (7.2.6). We have

[H0,B] = − 1
2L3

∑︂
k,k′,p,q

(|q|2 − µ)φ̂(p)[a∗
qaq, (brk+p)∗(brk′−p)∗ck′ck] + h.c..

To calculate the commutator we note that [a∗
qaq, ak] = −δq,kak. Thus,

[a∗
qaq, (brk+p)∗(brk′−p)∗ck′ck] = (δq,k+p + δq,k′−p − δq,k′ − δq,k)(brk+p)∗(brk′−p)∗ck′ck

Noting further that

(|k + p|2 − µ) + (|k −′ p|2 − µ) − (|k′|2 − µ) − (|k|2 − µ) = 2|p|2 + 2p · (k − k′)

we have

[H0,B] = − 1
L3

∑︂
k,k′,p

(|p|2 + p · (k − k′))φ̂(p)(brk+p)∗(brk′−p)∗ck′ck + h.c..

Using the symmetry of interchanging k ↔ k′ and p → −p and writing in configuration space
we have

[H0,B] =
¨

dx dy
(︃

∆φ(x− y)(brx)∗(bry)∗cycx + 2∇µφ(x− y)(brx)∗(bry)∗cy∇µcx

)︃
+ h.c.

As a first step we replace the br’s by b’s and write

[H0,B] =
¨

dx dy
(︃

∆φ(x−y)b∗
xb

∗
ycycx+2∇µφ(x−y)b∗

xb
∗
ycy∇µcx

)︃
+h.c.+H÷r

0;B, (7.4.1)

with H÷r
0;B defined so that this holds. In the first term in this expression we Taylor expand cx

around x = y. More precisely we have (as in Equation (4.4.2))

cx = cy + (x− y)µ∇µcx − (x− y)µ(x− y)ν
ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x). (7.4.2)

Note here that the first order term is evaluated at x and not at y. With this we have

[H0,B] =
¨

dx dy
(︃

[(·)µ∆φ+ 2∇µφ](x− y)b∗
xb

∗
ycy∇µcx

)︃
+ h.c. + HTaylor

0;B + H÷r
0;B, (7.4.3)

with HTaylor
0;B defined such that this holds, i.e. as the first term in (7.4.1) only with cx replaced

by the last term in (7.4.2).
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7.4.2 [VQ,B]:
The operator VQ defined in (7.2.12) is given by

VQ = 1
2

¨
dx dy V (x− y)b∗

xb
∗
ybybx.

Thus, recalling again the formula for B in (7.2.6),

[VQ,B] = −1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)[b∗

xb
∗
ybybx, (brz)∗(brz′)∗cz′cz] + h.c..

(7.4.4)
Since b’s and c’s anti-commute, the commutator is given by

[b∗
xb

∗
ybybx, (brz)∗(brz′)∗cz′cz] = b∗

xb
∗
y[bybx, (brz)∗(brz′)∗]cz′cz.

Using that
{bx, (brz)∗} = 1

L3

∑︂
k

Q̂
r(k)eik(x−z) = Qr(x− z),

one computes

[bybx, (brz)∗(brz′)∗] = Qr(x− z)Qr(y − z′) −Qr(y − z)Qr(x− z′)
−Qr(x− z)(brz′)∗by +Qr(y − z)(brz′)∗bx

+Qr(x− z′)(brz)∗by −Qr(y − z′)(brz)∗bx.

(7.4.5)

The first two and the last four terms give the same contribution to [VQ,B] when the integrations
in (7.4.4) are computed, by the symmetries of interchanging x ↔ y or z ↔ z′. By writing
Qr = δ − P r we thus obtain

[VQ,B] = −1
2

¨
dx dy V (x− y)φ(x− y)b∗

xb
∗
ycycx + h.c. + Q[VQ,B] (7.4.6)

with

Q[VQ,B] = 1
2

˘
V (x− y)φ(z − z′)

[︃
(δ(x− z) − P r(x− z))b∗

xb
∗
y(brz′)∗bycz′cz

+ (2δ(x− z)P r(y − z′) − P r(x− z)P r(y − z′)) b∗
xb

∗
ycz′cz

]︃
dx dy dz dz′ + h.c..

(7.4.7)
In the first term in (7.4.6) we again Taylor expand the factor cx using (7.4.2). Then,

[VQ,B] = −1
2

¨
dx dy (x− y)µV (x− y)φ(x− y)b∗

xb
∗
ycy∇µcx + h.c. + VTaylor

Q;B + Q[VQ,B]

(7.4.8)
with VTaylor

Q;B as in the first term of (7.4.6) only with cx replaced by the last term in (7.4.2).

7.4.3 [VP − WP ,B]:
We start by noting that

VP − WP = 1
2

¨
dx dy V (x− y)φ(x− y)c∗

xc
∗
ycycx.
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Thus, recalling again the formula for B in (7.2.6),

QV φ = [VP − WP ,B]

= −1
4

˘
dx dy dz dz′ V (x− y)φ(x− y)φ(z − z′)[c∗

xc
∗
ycycx, (brz)∗(brz′)∗cz′cz] + h.c..

The commutator is given by

[c∗
xc

∗
ycycx, (brz)∗(brz′)∗cz′cz] = (brz)∗(brz′)∗[c∗

xc
∗
y, cz′cz]cycx

To bound this term it is convenient to order the c’s and b’s not in normal order, but instead
according to their indices x, y and z, z′ such that factors c and b with indices z, z′ are first.
This corresponds to anti-normal ordering the c-commutator. Using that

{c∗
x, cz} = 1

L3

∑︂
k

P̂ (k)eik(z−x) = P (z − x) = P (x− z)

we calculate
[c∗
xc

∗
y, cz′cz] = P (x− z)P (y − z′) − P (x− z′)P (y − z)

− P (x− z)cz′c∗
y + P (y − z)cz′c∗

x + P (x− z′)czc∗
y − P (y − z′)czc∗

x.
(7.4.9)

From the symmetries of interchanging x ↔ y or z ↔ z′ the first two as well as the last four
terms give the same contribution to [VP − WP ,B] when the integrations are performed. Thus
we find

QV φ = −1
2

˘
dx dy dz dz′ V (x− y)φ(x− y)φ(z − z′)

×
[︃
P (x− z)P (y − z′)(brz)∗(brz′)∗cycx − 2P (x− z)(brz)∗(brz′)∗cz′c∗

ycycx

]︃
+ h.c..

(7.4.10)

7.4.4 [VOD,B]:
The operator VOD defined in (7.2.12) takes the form

VOD = 1
2

¨
dx dy V (x− y)c∗

xc
∗
ybybx + h.c..

Recalling again the formula for B in (7.2.6), we have

[VOD,B] = −1
4

˘
dx dy dz dz′ V (x− y)φ(z − z′)[c∗

xc
∗
ybybx, (brz)∗(brz′)∗cz′cz] + h.c..

The commutator is given by

[c∗
xc

∗
ybybx, (brz)∗(brz′)∗cz′cz] = c∗

xc
∗
y[bybx, (brz)∗(brz′)∗]cz′cz − (brz)∗(brz′)∗[cz′cz, c

∗
xc

∗
y]bybx.

The first term is the leading one. Using the formula in (7.4.5) and writing Qr = δ − P r the
main term is the term with two δ’s. The rest are error terms. Thus we have

[VOD,B] = 2(WP − VP ) + QOD

with

QOD = −1
4

˘
V (x− y)φ(z − z′)

[︃
−4(δ(x− z) − P r(x− z))c∗

xc
∗
y(brz′)∗bycz′cz

+ (−4δ(x− z)P r(y − z′) + 2P r(x− z)P r(y − z′)) c∗
xc

∗
ycz′cz

+ (brz)∗(brz′)∗[c∗
xc

∗
y, cz′cz]bybx

]︃
dx dy dz dz′ + h.c..

(7.4.11)
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7.5 Bounding commutators
To bound the error terms Escat, EOD and EV φ defined in (7.2.14)–(7.2.16), in this section we
first derive useful bounds on the expectation values of the operators [H0 + VQ,B] + VOD,
QOD, and QV φ in general states. In the subsequent Section 7.6 we shall use these bound
for the particular states Γλ with Γ an approximate Gibbs state to conclude the proof of
Propositions 7.2.15, 7.2.16 and 7.2.17.
To show that [H0 + VQ,B] + VOD is appropriately small, we write

VOD = 1
2

¨
dx dy V (x− y)b∗

xb
∗
ycycx + h.c.

= 1
2

¨
dx dy (x− y)µV (x− y)b∗

xb
∗
ycy∇µcx + h.c. + VTaylor

OD

(7.5.1)

by Taylor expanding cx as in (7.4.2) and with VTaylor
OD appropriately defined. Recalling (7.4.3)

and (7.4.8) as well as (7.2.5), we obtain

[H0 + VQ,B] + VOD = Qscat + H÷r
0;B + HTaylor

0;B + Q[VQ,B] + VTaylor
Q;B + VTaylor

OD , (7.5.2)

with
Qscat =

¨
dx dy Eµφ(x− y)b∗

xb
∗
ycy∇µcx + h.c..

The main result of this section are bounds on the operators

H÷r
0;B, QTaylor := HTaylor

0;B + VTaylor
Q;B + VTaylor

OD , Qscat, Q[VQ,B], QV φ, QOD.

To state the bounds it will be convenient to define for any (small) δ > 0

kδ
−1κ
F = [β−1 + µδ−1κ]1/2

+ , NQ> =
∑︂

|k|>kδ−1κ
F

a∗
kak. (7.5.3)

That is, kδ−1κ
F is defined as kκF in (7.2.2) only with κ replaced by δ−1κ. Recall that κ is chosen

in (7.2.3) as κ = ζ(a3ρ0)−α for some (small) α > 0. Recall also the definition of the operators
NQ and KQ in (7.3.5).

Remark 7.5.1 (Bound on NQ>). Noting that NQ> is defined as NQ only with κ replaced by
δ−1κ we can apply Lemma 7.3.3 and conclude that NQ> satisfies the same bound as NQ only
with κ replaced by δ−1κ. In particular, recalling (7.3.3) and (7.3.4) we conclude as in (7.3.6)
that for an approximate Gibbs state Γ we have

⟨NQ>⟩Γ ≤ CL3ζδκ−1a3ρ2
0 + L3eL.

We shall prove (analogously to Lemma 4.5.1)
Lemma 7.5.2. Let Γ be any state. Then, for α > 0 sufficiently small and any 0 < δ < 1,⃓⃓⃓⟨︂

H÷r
0;B

⟩︂
Γ

⃓⃓⃓
≤ Ca3(kκF )4 |log akκF |

[︂
kκF ⟨NQ⟩1/2

Γ + ⟨KQ⟩1/2
Γ

]︂
⟨N ⟩1/2

Γ , (7.5.4)⃓⃓⃓
⟨QTaylor⟩Γ

⃓⃓⃓
+ |⟨Qscat⟩Γ| ≤ Ca3 |log akκF | (kδ−1κ

F )3/2(kκF )3/2+2 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ

+ CL3/2a3/2(kκF )5 ⟨NQ>⟩1/2
Γ , (7.5.5)⃓⃓⃓⟨︂

Q[VQ,B]
⟩︂

Γ

⃓⃓⃓
≤ Ca3(kκF )4

[︂
⟨NQ⟩1/2

Γ + (akκF )1/2 ⟨N ⟩1/2
Γ

]︂
⟨VQ⟩1/2

Γ , (7.5.6)⃓⃓⃓
⟨QV φ⟩Γ

⃓⃓⃓
≤ Ca2+3/2(kκF )4+3/2 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ , (7.5.7)

|⟨QOD⟩Γ| ≤ Ca4+1/2(kκF )6+1/2 ⟨N ⟩Γ + Ca2(kκF )3 ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ . (7.5.8)
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For the proof the following lemma from Chapter 4 will be very useful.
Lemma 7.5.3 (Lemma 4.5.2). Let F be a compactly supported function with F (x) = 0
for |x| ≥ C(kκF )−1. Then, uniformly in x ∈ Λ and t ∈ [0, 1], (with ∇n denoting any n’th
derivative) ⃦⃦⃦⃦

⃦
ˆ
F (x− y)a∗

ycy dy
⃦⃦⃦⃦
⃦ ≤ C(kκF )3/2 ∥F∥L2 ,⃦⃦⃦⃦

⃦
ˆ
F (x− y)a∗

ycy∇ncty+(1−t)x dy
⃦⃦⃦⃦
⃦ ≤ C(kκF )3+n ∥F∥L2 .

As straightforward consequences we obtain as in (4.5.5), (4.5.6)⃦⃦⃦⃦
⃦
ˆ
φ(z − z′)(brz′)∗cz′ dz′

⃦⃦⃦⃦
⃦ ≤ C(kκF )3 ∥φ∥L1 + C(kκF )3/2 ∥φ∥L2 ≤ C(akκF )3/2 (7.5.9)⃦⃦⃦⃦

⃦
ˆ
φ(z − z′)(brz′)∗cz′cz dz′

⃦⃦⃦⃦
⃦ ≤ C(kκF )4+3/2 ∥| · |φ∥L1 + C(kκF )4 ∥| · |φ∥L2 ≤ C(kκF )3/2(akκF )5/2

(7.5.10)

where we used Lemma 7.3.2 in the last step.

The remainder of this section is devoted to the proof of Lemma 7.5.2.

Remark 7.5.4. Many of the bounds and computations in the following are similar to the
analogous bounds and computations in Chapter 4. There, however, the operators are conjugated
by a particle-hole transformation. At positive temperature there is no such natural ‘particle-hole
transformation’ — there is no filled Fermi ball in the free system. Hence the bounds given
here appear somewhat different than in the zero-temperature case studied in Chapter 4.

7.5.1 (Non-)regularization of [H0,B]
According to (7.4.1), H÷r

0;B is given by

H÷r
0;B =

¨
dx dy

(︂
(brx)∗(bry)∗ − b∗

xb
∗
y

)︂(︃
∆φ(x− y)cycx + 2∇µφ(x− y)cy∇µcx

)︃
+ h.c..
(7.5.11)

To bound this write brx = bx + b÷r
x with b÷r

x = L−3/2∑︁
k e

ikxb÷r
k and b÷r

k = (Q̂r(k) − Q̂(k))ak.
We note that Q̂r

− Q̂ is supported on the set kκF ≤ |k| ≤ 2kκF . In particular ∥b÷r
x ∥ ≤ C(kκF )3/2.

We further Taylor expand the factor cx in the first term in the integrand in (7.5.11) around
x = y as in (7.3.9) (with x and y interchanged) and change variables to z = x− y. Then for
any state Γ we obtain the identity⟨︂

H÷r
0;B

⟩︂
Γ

= 2 Re
¨

dz dy zµ∆φ(z)
ˆ 1

0
dt
⟨︂(︂
b∗
y+z(b÷r

y )∗ + (b÷r
y+z)∗b∗

y + (b÷r
y+z)∗(b÷r

y )∗
)︂
cy∇µcy+tz

⟩︂
Γ

+ 2 Re
¨

dz dy∇µφ(z)
⟨︂(︂
b∗
y+z(b÷r

y )∗ + (b÷r
y+z)∗b∗

y + (b÷r
y+z)∗(b÷r

y )∗
)︂
cy∇µcy+z

⟩︂
Γ
.

(7.5.12)
The two terms are treated similarly. We start with the first. Define the function ϕy(z) =⟨︂(︂
b∗
y+z(b÷r

y )∗ + (b÷r
y+z)∗b∗

y + (b÷r
y+z)∗(b÷r

y )∗
)︂
cy∇µcy+tz

⟩︂
Γ
. Note that it vanishes at z = 0, and
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hence
ϕy(z) = zν

ˆ 1

0
ds∇νϕy(sz).

The derivative hits either a factor ∇c, (b÷r)∗ or b∗. In the case where the derivative hits either
∇c or a factor (b÷r)∗ we bound the factor ∇c and a factor (b÷r)∗ in norm (in the term with
two (b÷r)∗’s we keep one factor (b÷r)∗ without a derivative). These terms are then bounded
by

(kκF )5
¨

dz dy |z|2|∆φ(z)|
(︃⃦⃦⃦

Γ1/2b∗
y

⃦⃦⃦
S2

+
⃦⃦⃦
Γ1/2(b÷r

y )∗
⃦⃦⃦
S2

)︃ ⃦⃦⃦
cyΓ1/2

⃦⃦⃦
S2

≤ C
⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

(kκF )5 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ .

For the terms where the derivative hits a factor b∗ we again bound the factors ∇c and (b÷r)∗

in norm. These terms are then bounded by

(kκF )4
¨

dz dy |z|2|∆φ(z)|
⃦⃦⃦
Γ1/2∇b∗

y

⃦⃦⃦
S2

⃦⃦⃦
cyΓ1/2

⃦⃦⃦
S2

≤ C
⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

(kκF )4 ⟨KQ⟩1/2
Γ ⟨N ⟩1/2

Γ .

The second term in (7.5.12) is treated analogously, only the bound has a factor ∥| · |∇φ∥L1

instead of ∥| · |2∆φ∥L1 . Together with the bounds of Lemma 7.3.2 this completes the proof
of (7.5.4).

7.5.2 Taylor expansion errors
According to (7.4.3), (7.4.8) and (7.5.1) the term QTaylor is given by

QTaylor =
¨

dx dy F µν(x− y)b∗
xb

∗
ycy

ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x) + h.c., (7.5.13)

where

F µν(x) = −
[︃
xµxν∆φ(x) + 1

2x
µxνV (x)(1 − φ(x))

]︃
= 2xµ∇νφ(x) − xµEνφ(x) ,

using (7.2.5). To bound this we write

b∗
x = (b<x )∗ + (b>x )∗, b>x = L−3/2∑︂

k

Q̂
>(k)eikxak, Q̂

>(k) = χ(|k|>kδ−1κ
F )

for some 0 < δ < 1, with kδ−1κ
F defined in (7.5.3), i.e. as kκF only with κ replaced by δ−1κ. In

the term with (b>x )∗ we shall use Lemma 7.5.3. To do this we first write b∗
y = a∗

y − c∗
y, and

rewrite QTaylor as

QTaylor

=
¨

dx dy F µν(x− y)
[︂
(b<x )∗b∗

y + (b>x )∗a∗
y − (b>x )∗c∗

y

]︂
cy

ˆ 1

0
dt (1 − t)∇µ∇νcx+t(y−x) + h.c.

=: Q<
Taylor + Q>

Taylor + Qc
Taylor.

First, for the term Q<
Taylor containing (b<x )∗, we note that ∥(b<x )∗∥ ≤ C(kδ−1κ

F )3/2. Thus,
bounding also ∇2c in norm we have⃓⃓⃓⟨︂

Q<
Taylor

⟩︂
Γ

⃓⃓⃓
≤ C

¨
dx dy |F (x− y)|

⃦⃦⃦
Γ1/2b∗

y

⃦⃦⃦
S2

(kδ−1κ
F )3/2(kκF )3/2+2

⃦⃦⃦
cyΓ1/2

⃦⃦⃦
S2

≤ C ∥F∥L1 (kδ−1κ
F )3/2(kκF )3/2+2 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ .
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Next, for the term Qc
Taylor containing c∗

y, we bound c∗
y and ∇2c in norm. Then this term is

bounded by⃓⃓⃓⟨︂
Qc

Taylor

⟩︂
Γ

⃓⃓⃓
≤ C

¨
dx dy |F (x− y)|

⃦⃦⃦
Γ1/2(b>x )∗

⃦⃦⃦
S2

(kκF )5
⃦⃦⃦
cyΓ1/2

⃦⃦⃦
S2

≤ C ∥F∥L1 (kκF )5 ⟨NQ>⟩1/2
Γ ⟨N ⟩1/2

Γ .

Finally, for the term Q>
Taylor we use Lemma 7.5.3 to bound the y-integral. This term is then

bounded by
⃓⃓⃓⟨︂

Q>
Taylor

⟩︂
Γ

⃓⃓⃓
≤ 2
ˆ

dx
ˆ 1

0
dt
⃦⃦⃦
Γ1/2(b>x )∗

⃦⃦⃦
S2

⃦⃦⃦⃦
⃦
ˆ

dy F µν(x− y)a∗
ycy∇µ∇νcx+t(y−x)

⃦⃦⃦⃦
⃦

≤ CL3/2 ∥F∥L2 (kκF )5 ⟨NQ>⟩1/2
Γ .

Combining the bounds for Q<
Taylor, Q>

Taylor and Qc
Taylor, using Lemma 7.3.2 and noting that

NQ> ≤ NQ and kκF ≤ kδ
−1κ
F we thus obtain the bound (7.5.5) for the expectation value of

QTaylor.

7.5.3 Scattering equation cancellation
We can bound Qscat analogously to QTaylor. The only difference is that ∇2c is replaced by
∇c, hence the bounds have one fewer power of kκF , and F is replaced by Eφ, leading to an
additional factor kκF . Hence we arrive at the same bound.

7.5.4 Error terms from [VQ,B]
Recall the definition of Q[VQ,B] in (7.4.7). We split the operator into 4 terms and bound each
separately:

1. The quartic term with one δ and one P r,

2. The quartic term with two P r’s,

3. The sextic term with δ, and

4. The sextic term with P r.

7.5.4.1 Quartic term with one δ and one P r

This term is of the form

A4,δ =
˚

dx dy dz′ V (x− y)φ(x− z′)P r(y − z′)b∗
xb

∗
ycz′cx + h.c..

Taylor expanding cz′ around z′ = x as in (7.3.9) and bounding in norm ∥∇c∥ ≤ C(kκF )3/2+1

and ∥P r∥L∞ ≤ C(kκF )3 we obtain the bound⃓⃓⃓
⟨A4,δ⟩Γ

⃓⃓⃓
≤ C(kκF )3/2+4 ∥| · |φ∥L1

¨
V (x− y)

⃦⃦⃦
Γ1/2b∗

xb
∗
y

⃦⃦⃦
S2

⃦⃦⃦
cxΓ1/2

⃦⃦⃦
S2

dx dy

≤ C(kκF )3/2+4 ∥| · |φ∥L1 ∥V ∥1/2
L1 ⟨VQ⟩1/2

Γ ⟨N ⟩1/2
Γ ≤ Ca3+1/2(kκF )3/2+3 ⟨VQ⟩1/2

Γ ⟨N ⟩1/2
Γ

(7.5.14)

using Lemma 7.3.2 in the last step.
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7.5.4.2 Quartic term with two P r’s

This term is of the form

A4,P = −1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)P r(x− z)P r(y − z′)b∗

xb
∗
ycz′cz + h.c..

As above we Taylor expand cz′ and bound ∇c in norm. By Cauchy–Schwarz⃓⃓⃓
⟨A4,P ⟩Γ

⃓⃓⃓
≤ C(kκF )3/2+1

˘
dx dy dz dz′ V (x− y)|z − z′|φ(z − z′)|P r(x− z)||P r(y − z′)|

×
⃦⃦⃦
Γ1/2b∗

xb
∗
y

⃦⃦⃦
S2

⃦⃦⃦
czΓ1/2

⃦⃦⃦
S2

≤ C(kκF )3/2+1
[︄˘

dx dy dz dz′ V (x− y)
⃦⃦⃦
Γ1/2b∗

xb
∗
y

⃦⃦⃦2

S2
|z − z′|φ(z − z′)|P r(x− z)|2

]︄1/2

×
[︄˘

dx dy dz dz′ V (x− y)|z − z′|φ(z − z′)|P r(y − z′)|2
⃦⃦⃦
czΓ1/2

⃦⃦⃦2

S2

]︄1/2

≤ C(kκF )3/2+1 ∥| · |φ∥L1 ∥V ∥1/2
L1 ∥P r∥2

L2 ⟨VQ⟩1/2
Γ ⟨N ⟩1/2

Γ

≤ Ca3+1/2(kκF )3/2+3 ⟨VQ⟩1/2
Γ ⟨N ⟩1/2

Γ (7.5.15)

using again Lemma 7.3.2.

7.5.4.3 Sextic term with δ

This term is of the form

A6,δ = 1
2

˚
dx dy dz′ V (x− y)φ(x− z′)b∗

xb
∗
y(brz′)∗bycz′cx + h.c..

We use (7.5.10) to bound the z′-integral. Thus, by Cauchy–Schwarz,

⃓⃓⃓
⟨A6,δ⟩Γ

⃓⃓⃓
≤
¨

dx dy V (x− y)
⃦⃦⃦
Γ1/2b∗

xb
∗
y

⃦⃦⃦
S2

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(x− z′)(brz′)∗cz′cx

⃦⃦⃦⃦
⃦ ⃦⃦⃦byΓ1/2

⃦⃦⃦
S2

≤ C(kκF )3/2(akκF )5/2 ∥V ∥1/2
L1 ⟨VQ⟩1/2

Γ ⟨NQ⟩1/2
Γ ≤ Ca3(kκF )4 ⟨VQ⟩1/2

Γ ⟨NQ⟩1/2
Γ .
(7.5.16)

7.5.4.4 Sextic term with P r

This term is of the form

A6,P = −1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)P r(x− z)b∗

xb
∗
y(brz′)∗bycz′cz + h.c..

As above we use (7.5.10) to bound the z′-integral. The z-integral afterwards is then bounded
by ∥P r∥L1 ≤ C. As above then⃓⃓⃓

⟨A6,P ⟩Γ

⃓⃓⃓
≤ Ca3(kκF )4 ⟨VQ⟩1/2

Γ ⟨NQ⟩1/2
Γ . (7.5.17)

Combining (7.5.14)–(7.5.17) we conclude the proof of (7.5.6).
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7.5.5 Error terms from [VP − WP ,B]
Recall the definition of QV φ in (7.4.10). We consider the two terms separately:

1. The quartic term,

2. The sextic term.

7.5.5.1 Quartic term

This term is of the form

A4 = −1
2

˘
dx dy dz dz′ V (x−y)φ(x−y)φ(z−z′)P (x−z)P (y−z′)(brz)∗(brz′)∗cycx+h.c..

We bound its expectation value in an arbitrary state Γ as

|⟨A4⟩Γ| ≤
˚

dx dy dz V (x− y)φ(x− y)|P (x− z)|
⃦⃦⃦
Γ1/2(brz)∗

⃦⃦⃦
S2

×
⃦⃦⃦⃦
⃦
ˆ

dz′ P (y − z′)φ(z − z′)(brz′)∗
⃦⃦⃦⃦
⃦ ⃦⃦⃦cycxΓ1/2

⃦⃦⃦
S2
.

To bound this we note that since Q̂r
≤ 1 we have⃦⃦⃦⃦

⃦
ˆ

dz′ P (y − z′)φ(z − z′)(brz′)∗
⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦
ˆ

dz′ P (y − z′)φ(z − z′)a∗
z′

⃦⃦⃦⃦
⃦ = (P 2 ∗ φ2(y − z))1/2

with ∗ denoting convolution. Then, noting that φ ≤ 1, we have by Cauchy–Schwarz

|⟨A4⟩Γ| ≤
[︄˚

dx dy dz V (x− y) |P (x− z)|2
⃦⃦⃦
cycxΓ1/2

⃦⃦⃦2

S2

]︄1/2

×
[︄˚

dx dy dz V (x− y)P 2 ∗ φ2(y − z)
⃦⃦⃦
Γ1/2(brz)∗

⃦⃦⃦2

S2

]︄1/2

≤ C(kκF )3 ∥V ∥1/2
L1 ∥φ∥L2 ⟨VP ⟩1/2

Γ ⟨NQ⟩1/2
Γ

≤ Ca2+3/2(kκF )4+3/2 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ , (7.5.18)
where we used Lemmas 7.3.2 and 7.3.5.

7.5.5.2 Sextic term

This term is of the form

A6 =
˘

dx dy dz dz′ V (x− y)φ(x− y)φ(z − z′)P (x− z)(brz)∗(brz′)∗cz′c∗
ycycx + h.c.

=
¨

dy dz P (y − z)
[︄ˆ

dz′ φ(z − z′)(brz)∗(brz′)∗cz′

]︄ [︄ˆ
dxV (x− y)φ(x− y)c∗

ycycx

]︄
+ h.c..

Noting that as operators P ≤ 1 we thus have by Cauchy–Schwarz for any λ > 0

±A6 ≤ λ

ˆ
dz
[︄ˆ

dz′ φ(z − z′)(brz)∗(brz′)∗cz′

]︄ [︄ˆ
dxφ(z − x)c∗

xb
r
xb
r
z

]︄

+ λ−1
ˆ

dy
[︄ˆ

dz V (z − y)φ(z − y)c∗
zc

∗
ycy

]︄ [︄ˆ
dxV (x− y)φ(x− y)c∗

ycycx

]︄
=: λAφ

6 + λ−1AV
6 .
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We bound Aφ
6 using the bound in (7.5.9). This yields

⟨Aφ
6 ⟩Γ ≤

ˆ
dz
⃦⃦⃦
Γ1/2(brz)∗

⃦⃦⃦
S2

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)(brz′)∗cz′

⃦⃦⃦⃦
⃦
⃦⃦⃦⃦
⃦
ˆ

dxφ(z − x)c∗
xb
r
x

⃦⃦⃦⃦
⃦ ⃦⃦⃦brzΓ1/2

⃦⃦⃦
S2

≤ C(akκF )3 ⟨NQ⟩Γ .
(7.5.19)

To bound AV
6 we again note that φ ≤ 1. Then, by Lemma 7.3.5,⟨︂

AV
6

⟩︂
Γ

≤
˚

dx dy dzV (z − y)V (x− y)
⃦⃦⃦
Γ1/2c∗

zc
∗
y

⃦⃦⃦
S2

⃦⃦⃦
cyc

∗
y

⃦⃦⃦ ⃦⃦⃦
cyczΓ1/2

⃦⃦⃦
S2

≤ C(kκF )3 ∥V ∥L1 ⟨VP ⟩Γ ≤ Ca4(kκF )8 ⟨N ⟩Γ .

Choosing the optimal λ we thus find

|⟨A6⟩Γ| ≤ Ca2+3/2(kκF )4+3/2 ⟨N ⟩1/2
Γ ⟨NQ⟩1/2

Γ . (7.5.20)

Combining (7.5.18) and (7.5.20) we conclude the proof of (7.5.7).

7.5.6 Error terms from [VOD,B]
Recall the definition of QOD in (7.4.11). Writing the c-commutator using (7.4.9) we have
four types of terms, which we treat separately.

1. The quartic term with only c’s,

2. The sextic term with four c’s and two b’s,

3. The quartic term with only b’s, and

4. The sextic term with four b’s and two c’s.

7.5.6.1 Quartic term with only c’s

We have two terms,

a. The term with one factor δ and one factor P r, and

b. The term with two factors P r.

They are of the form

A4,c,δ =
˚

dx dy dz′ V (x− y)φ(x− z′)P r(y − z′)c∗
xc

∗
ycz′cx + h.c.,

A4,c,P = −1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)P r(x− z)P r(y − z′)c∗

xc
∗
ycz′cz + h.c..

To bound the first term we Taylor expand cz′ around z′ = x. Then by Cauchy–Schwarz⃓⃓⃓
⟨A4,c,δ⟩Γ

⃓⃓⃓
≤ C(kκF )3/2+1

˚
dx dy dz′ V (x− y)|x− z′|φ(x− z′)|P r(y − z′)|

×
⃦⃦⃦
Γ1/2c∗

xc
∗
y

⃦⃦⃦
S2

⃦⃦⃦
cxΓ1/2

⃦⃦⃦
S2

≤ C(kκF )3/2+1 ∥V ∥1/2
L1 ∥| · |φ∥L2 ∥P r∥L2 ⟨VP ⟩1/2

Γ ⟨N ⟩1/2
Γ ≤ Ca4+1/2(kκF )6+1/2 ⟨N ⟩Γ

(7.5.21)
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by Lemmas 7.3.2 and 7.3.5. Similarly we have for the second term, again using Lemmas 7.3.2
and 7.3.5,

|⟨A4,c,P ⟩|

≤ C(kκF )3/2+1
[︄˘

dx dy dz dz′ V (x− y)|z − z′|φ(z − z′)|P r(x− z)|2
⃦⃦⃦
Γ1/2c∗

xc
∗
y

⃦⃦⃦2

S2

]︄1/2

×
[︄˘

dx dy dz dz′ V (x− y)|z − z′|φ(z − z′)|P r(y − z′)|2
⃦⃦⃦
czΓ1/2

⃦⃦⃦2

S2

]︄1/2

≤ C(kκF )3/2+1 ∥| · |φ∥L1 ∥P r∥2
L2 ∥V ∥1/2

L1 ⟨VP ⟩1/2
Γ ⟨N ⟩1/2

Γ ≤ Ca5(kκF )7 ⟨N ⟩Γ . (7.5.22)

7.5.6.2 Sextic term with four c’s and two b’s

We have two terms,

a. The term with a factor δ, and

b. The term with a factor P r.

They are of the form

A6,c,δ =
˚

dx dy dz′ V (x− y)φ(x− z′)c∗
xc

∗
y(brz′)∗bycz′cx + h.c.,

A6,c,P = −
˘

dx dy dz dz′ V (x− y)φ(z − z′)P r(x− z)c∗
xc

∗
y(brz′)∗bycz′cz + h.c..

To bound the first term we use (7.5.10) to bound the z′-integral. We have

⃓⃓⃓
⟨A6,c,δ⟩Γ

⃓⃓⃓
≤ 2
¨

dx dy V (x− y)
⃦⃦⃦
Γ1/2c∗

xc
∗
y

⃦⃦⃦
S2

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(x− z′)(brz′)∗cz′cx

⃦⃦⃦⃦
⃦ ⃦⃦⃦byΓ1/2

⃦⃦⃦
S2

≤ C(kκF )3/2(akκF )5/2 ∥V ∥1/2
L1 ⟨VP ⟩1/2

Γ ⟨NQ⟩1/2
Γ ≤ Ca4+1/2(kκF )6+1/2 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ ,

(7.5.23)

where we used Lemma 7.3.5. The second term is bounded similarly, only the z-integral is
bounded by ∥P r∥L1 ≤ C. We conclude that⃓⃓⃓

⟨A6,c,P ⟩Γ

⃓⃓⃓
≤ Ca4+1/2(kκF )6+1/2 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ . (7.5.24)

7.5.6.3 Quartic term with only b’s

This term is of the form

A4,b = −1
2

˘
dx dy dz dz′ V (x− y)φ(z − z′)P (x− z)P (y − z′)(brz)∗(brz′)∗bybx + h.c..

We bound its expectation value as
⃓⃓⃓
⟨A4,b⟩Γ

⃓⃓⃓
≤
˚

dx dy dz V (x− y)|P (x− z)|

×
⃦⃦⃦
Γ1/2(brz)∗

⃦⃦⃦
S2

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)P (y − z′)(brz′)∗
⃦⃦⃦⃦
⃦ ⃦⃦⃦bybxΓ1/2

⃦⃦⃦
S2
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

Then, since 0 ≤ Q̂
r(k) ≤ 1 we have⃦⃦⃦⃦

⃦
ˆ

dz′ φ(z − z′)P (y − z′)(brz′)∗
⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦
ˆ

dz′ φ(z − z′)P (y − z′)a∗
z′

⃦⃦⃦⃦
⃦ = (φ2 ∗ P 2(y − z))1/2

with ∗ denoting convolution. Hence, by Cauchy–Schwarz, using Lemma 7.3.2,

⃓⃓⃓
⟨A4,b⟩Γ

⃓⃓⃓
≤
[︄˚

dx dy dz V (x− y)|P (x− z)|2
⃦⃦⃦
bybxΓ1/2

⃦⃦⃦2

S2

]︄1/2

×
[︄˚

dx dy dz V (x− y)φ2 ∗ P 2(y − z)
⃦⃦⃦
Γ1/2(brz)∗

⃦⃦⃦2

S2

]︄1/2

≤ C ∥V ∥1/2
L1 ∥P∥2

L2 ∥φ∥L2 ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ ≤ Ca2(kκF )3 ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ . (7.5.25)

7.5.6.4 Sextic term with four b’s and two c’s

This term is of the form

A6,b =
˘

dx dy dz dz′ V (x− y)φ(z − z′)P (x− z)(brz)∗(brz′)∗cz′c∗
ybybx + h.c.

=
¨

dx dz P (x− z)
[︄ˆ

dz′ φ(z − z′)(brz)∗(brz′)∗cz′

]︄ [︄ˆ
dy V (x− y)c∗

ybybx

]︄
+ h.c..

To bound it we note that as operators 0 ≤ P ≤ 1. Thus by Cauchy–Schwarz we have for any
λ > 0 the bound

±A6,b ≤ λ

ˆ
dz
[︄ˆ

dz′ φ(z − z′)(brz)∗(brz′)∗cz′

]︄ [︄ˆ
dxφ(z − x)c∗

xb
r
xb
r
z

]︄

+ λ−1
ˆ

dy
[︄ˆ

dz V (z − y)b∗
zb

∗
ycy

]︄ [︄ˆ
dxV (x− y)c∗

ybybx

]︄
=: λAφ

6,b + λ−1AV
6,b.

Note that Aφ
6,b = Aφ

6 from the bound of QV φ, see (7.5.19). In particular,

⟨Aφ
6 ⟩Γ ≤ C(akκF )3 ⟨NQ⟩Γ .

With Cauchy–Schwarz we bound AV
6,b as

⟨︂
AV

6,b

⟩︂
Γ

≤ C(kκF )3
˚

dx dy dz V (z − y)V (x− y)
⃦⃦⃦
Γ1/2b∗

zb
∗
y

⃦⃦⃦
S2

⃦⃦⃦
bybxΓ1/2

⃦⃦⃦
S2

≤ C ∥V ∥L1 (kκF )3 ⟨VQ⟩Γ ≤ Ca(kκF )3 ⟨VQ⟩Γ .

Choosing the optimal λ we find⃓⃓⃓
⟨A6,b⟩Γ

⃓⃓⃓
≤ Ca2(kκF )3 ⟨VQ⟩1/2

Γ ⟨NQ⟩1/2
Γ . (7.5.26)

Combining (7.5.21)–(7.5.26) we conclude the proof of (7.5.8). Hence the proof of Lemma 7.5.2
is complete.

244



7.6. Propagating a priori bounds — Bounding Escat, EOD, EV φ

7.6 Propagating a priori bounds — Bounding
Escat, EOD, EV φ

To bound the error terms Escat, EOD and EV φ in (7.2.14)–(7.2.16), we use Lemma 7.5.2. Thus,
we need bounds on

⟨N ⟩Γλ , ⟨NQ⟩Γλ , ⟨KQ⟩Γλ , ⟨VQ⟩Γλ

for 0 ≤ λ ≤ 1 (recall the definition of Γλ in (7.2.7)). For an approximate Gibbs state Γ
the states Γλ are not necessarily approximate Gibbs states, so we cannot directly apply the
bounds of (7.3.6) and Lemma 7.3.7. Instead, we obtain the desired bounds by propagating
the corresponding bounds for the state Γ. This is similar to what is done in Chapter 4 and
[FGHP21; Gia23a].

7.6.1 General propagation estimates
To start, we consider propagation estimates for a general state Γ. First, since B is particle
number preserving we have

⟨N ⟩Γλ = ⟨N ⟩Γ

for any state Γ. Next, we have
Lemma 7.6.1 (Propagation of NQ). Let Γ be any state and let Γλ be defined as in (7.2.7).
Then,

⟨NQ⟩Γλ ≤ C ⟨NQ⟩Γλ′ + CL3(kκF )3(akκF )5

for any 0 ≤ λ, λ′ ≤ 1.

Proof. This is an application of Grönwall’s lemma. We calculate

d
dλ ⟨NQ⟩Γλ = − ⟨[NQ,B]⟩Γλ = 2 Re

¨
dz dz′ φ(z − z′) ⟨(brz)∗(brz′)∗cz′cz⟩Γλ .

Using (7.5.10) to bound the z′-integral we find⃓⃓⃓⃓
⃓ d
dλ ⟨NQ⟩Γλ

⃓⃓⃓⃓
⃓ ≤ CL3/2(kκF )3/2(akκF )5/2 ⟨NQ⟩1/2

Γλ .

By Grönwall’s lemma we easily obtain the desired bound.

Lemma 7.6.2 (Propagation of KQ). Let Γ be any state and let Γλ be defined as in (7.2.7).
Then,

⟨KQ⟩Γλ ≤ C ⟨KQ⟩Γλ′ + Ca3(kκF )8
[︂
L3 + a3 |log akκF |2 ⟨N ⟩Γ

]︂
for any 0 ≤ λ, λ′ ≤ 1.

Proof. This is again an application of Grönwall’s lemma. We calculate

d
dλ ⟨KQ⟩Γλ = − ⟨[KQ,B]⟩Γλ = Re 1

L3

∑︂
k,k′,p

(|k+p|2 + |k′ −p|2)φ̂(p)
⟨︂
(brk+p)∗(brk′−p)∗ck′ck

⟩︂
Γλ
.

Noting the symmetry of interchanging k with k′ and p with −p we write this in configuration
space as

d
dλ ⟨KQ⟩Γλ = −2 Re

¨
φ(x− y)

⟨︂
(∆brx)∗(bry)∗cycx

⟩︂
Γλ

dx dy.
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Taylor expanding cx around x = y and integrating by parts once in the x-integral we have
(with the derivatives being with respect to x)

d
dλ ⟨KQ⟩Γλ = 2 Re

¨ ⟨︄
(∇νbrx)∗(bry)∗cy

ˆ 1

0
dt∇ν

[︂
(x− y)µφ(x− y)∇µcy+t(x−y)

]︂⟩︄
Γλ

dx dy

We bound the y-integral using Lemma 7.5.3. Write first (bry)∗ = a∗
y − (cry)∗. We bound the

term with (cry)∗ by, using Lemma 7.3.2,

C(kκF )4
¨

dx dy
⃦⃦⃦
(Γλ)1/2(∇νbrx)∗

⃦⃦⃦
S2

[(φ+ | · ||∇φ|)(x− y)]
⃦⃦⃦
cy(Γλ)1/2

⃦⃦⃦
S2

≤ C(kκF )4 [∥φ∥L1 + ∥| · |∇φ∥L1 ] ⟨KQ⟩1/2
Γλ ⟨N ⟩1/2

Γλ ≤ a3(kκF )4 |log akκF | ⟨KQ⟩1/2
Γλ ⟨N ⟩1/2

Γλ .

Using Lemmas 7.3.2 and 7.5.3 the term with a∗
y is bounded by

ˆ 1

0
dt
ˆ

dx
⃦⃦⃦
(Γλ)1/2(∇νbrx)∗

⃦⃦⃦
S2

×

⃦⃦⃦⃦
⃦⃦
ˆ

dy
[︃
(δµνφ(x− y) + (x− y)µ∇νφ(x− y)) a∗

ycy∇µcy+t(x−y)

+ t(x− y)µφ(x− y)a∗
ycy∇µ∇νcy+t(x−y)

]︃⃦⃦⃦⃦⃦⃦
≤ CL3/2(kκF )4 (∥φ∥L2 + ∥| · |∇φ∥L2 + kκF ∥| · |φ∥L2) ⟨KQ⟩1/2

Γλ

≤ CL3/2a3/2(kκF )4 ⟨KQ⟩1/2
Γλ .

Using that ⟨N ⟩Γλ = ⟨N ⟩Γ we obtain the bound⃓⃓⃓⃓
⃓ d
dλ ⟨KQ⟩Γλ

⃓⃓⃓⃓
⃓ ≤ Ca3/2(kκF )4

[︂
L3/2 + a3/2 |log akκF | ⟨N ⟩1/2

Γ

]︂
⟨KQ⟩1/2

Γλ .

By Grönwall’s lemma this proves the lemma.

Lemma 7.6.3 (Propagation of VQ). Let Γ be any state and let Γλ be defined as in (7.2.7).
Then,

⟨VQ⟩Γλ ≤ C ⟨VQ⟩Γλ′ + Ca3(kκF )5 ⟨N ⟩Γ

for any 0 ≤ λ, λ′ ≤ 1.

Proof. We again employ Grönwall’s lemma. Recalling (7.4.6) we have

d
dλ ⟨VQ⟩Γλ = − ⟨[VQ,B]⟩Γλ = Re

¨
dx dy V (x− y)φ(x− y)

⟨︂
b∗
xb

∗
ycycx

⟩︂
Γλ

−
⟨︂
Q[VQ,B]

⟩︂
Γλ
.

The second term is bounded in Lemma 7.5.2. Using that φ ≤ 1 we bound the first term with
the aid of Cauchy–Schwarz by

[︄¨
V (x− y)φ(x− y)

⟨︂
b∗
xb

∗
ybybx

⟩︂
Γλ

]︄1/2 [︄¨
V (x− y)φ(x− y)

⟨︂
c∗
xc

∗
ycycx

⟩︂
Γλ

]︄1/2

≤ ⟨VQ⟩1/2
Γλ ⟨VP ⟩1/2

Γλ .
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Using Lemmas 7.3.5 and 7.5.2 and recalling that ⟨N ⟩Γλ = ⟨N ⟩Γ we obtain the bound⃓⃓⃓⃓
⃓ d
dλ ⟨VQ⟩Γλ

⃓⃓⃓⃓
⃓ ≤ Ca3(kκF )4

[︂
⟨NQ⟩1/2

Γλ + (akκF )1/2 ⟨N ⟩1/2
Γ

]︂
⟨VQ⟩1/2

Γλ

+ Ca3/2(kκF )5/2 ⟨N ⟩1/2
Γ ⟨VQ⟩1/2

Γλ

≤ Ca3/2(kκF )5/2 ⟨N ⟩1/2
Γ ⟨VQ⟩1/2

Γλ .

By Grönwall’s lemma this yields the desired bound.

7.6.2 Bounding Escat, EOD, EV φ
We now apply the propagation estimates above to approximate Gibbs states Γ.
Lemma 7.6.4. Let Γ be an approximate Gibbs state. Then, (for any 0 ≤ λ ≤ 1)

⟨NQ⟩Γλ ≤ CL3ζκ−1a3ρ2
0 + L3eL, (7.6.1)

⟨KQ⟩Γλ ≤ CL3ζ−4κ4a3ρ
8/3
0 + L3eL, (7.6.2)

⟨VQ⟩Γλ ≤ CL3ζ−5/2κ5/2a3ρ
8/3
0 + L3eL. (7.6.3)

Proof. Apply Lemmas 7.6.1, 7.6.2 and 7.6.3 for λ′ = 0, use the bounds in (7.3.6) and
Lemma 7.3.7 and recall the bound in (7.3.3) for kκF . The statement of the lemma follows.

The bounds of Lemma 7.6.4 can be used to prove Propositions 7.2.15, 7.2.16 and 7.2.17.

Proof of Proposition 7.2.15. Recall the definition of Escat in (7.2.14) and the formula (7.5.2).
Combining Lemma 7.5.2 and the bounds in (7.3.3), (7.6.1), (7.6.2) and (7.6.3) we have for
any 0 < δ ≪ 1 (using that NQ> satisfies the same bounds as NQ only with κ replaced by
δ−1κ, recall Remark 7.5.1)⃓⃓⃓⟨︂

H÷r
0;B

⟩︂
Γλ

⃓⃓⃓
≤ CL3a3ρ

8/3
0 ζ−4κ4(a3ρ0)1/2

⃓⃓⃓
log a3ρ0

⃓⃓⃓
+ L3eL,⃓⃓⃓

⟨QTaylor⟩Γλ

⃓⃓⃓
+ |⟨Qscat⟩Γλ| ≤ CL3a3ρ

8/3
0

[︂
ζ−2κ2δ−3/4(a3ρ0)1/2

⃓⃓⃓
log a3ρ0

⃓⃓⃓
+ ζ−2κ2δ1/2

]︂
+ L3eL,⃓⃓⃓⟨︂

Q[VQ,B]
⟩︂

Γλ

⃓⃓⃓
≤ CL3a3ρ

8/3
0

[︂
ζ−11/4κ11/4a3ρ0 + ζ−4κ4(a3ρ0)2/3

]︂
+ L3eL.

Choosing the optimal δ = (a3ρ0)2/5 |log a3ρ0|4/5 we conclude the desired statement for α > 0
small enough. (Recall that κ = ζ(a3ρ0)−α as per (7.2.3).)

Proof of Proposition 7.2.16. Recall the definition of EOD in (7.2.15). Combining Lemma 7.5.2
and the bounds in (7.3.3), (7.6.1) and (7.6.3) we have

|⟨QOD⟩Γλ | ≤ CL3a3ρ
8/3
0

[︂
ζ−13/4κ13/4(a3ρ0)1/2 + ζ−4κ4(a3ρ0)2/3

]︂
+ L3eL.

We conclude the desired bound by taking α > 0 small enough.

Proof of Proposition 7.2.17. Recall the definition of EV φ in (7.2.16). Combining Lemma 7.5.2
and the bounds in (7.3.3) and (7.6.1) we have⃓⃓⃓

⟨QV φ⟩Γ

⃓⃓⃓
≤ CL3a3ρ

8/3
0 ζ−4κ4(a3ρ0)2/3 + L3eL ,

from which the statement follows.
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7.7 Validity of perturbation theory — Bounding Ept

In this section we give the proof of Proposition 7.2.13. In broad strokes this amounts to
showing the validity of first order perturbation theory in an appropriate regime. The main idea
is to use the a priori bound (7.3.4) on the relative entropy to show that the expectation value
of WP = dΓ(PPWPP ) in an approximate Gibbs state Γ is to leading order the same as in
the non-interacting state Γ0, which in turn can be replaced by the ⟨W⟩Γ0

(i.e., the projection
P can be dropped).

The main result of this section is the following proposition. A key ingredient in its proof is
the method of [Sei06a] for obtaining correlation estimates at positive temperature (see also
[Sei08], and [GS94] for earlier work at zero temperature.)

Recall the definition of Ept(Γ) in (7.2.17).
Proposition 7.7.1. For any state Γ, any a ≤ R < L, any ρ−1/3

0 ≲ d ≤ L, any 0 < qF < kκF
with β(kκF − qF )2 ≳ 1 any n ∈ N and any z ≳ 1

Ept(Γ) ≳ −L3a3R2ρ
2+4/3
0 − (kκF )7a3R2 ⟨N ⟩Γ − L3a3ρ

8/3
0 Rd−1

− L9/4
[︂
a6R−5ρ

2+2/3
0 d−3 + a6ρ

3+4/3
0 (d−3 + ρ0)

]︂1/2
[︃
d3S(Γ,Γ0) + L3β4(kκF )7d−1

+ L3d3β−1(kκF − qF )e−κ+β(2kκ
F qF −q2

F ) + Cnd
3(dqF )−2n logZ0

]︃1/4
− L3eL.

(7.7.1)
The constant Cn > 0 depends only on n.

Remark 7.7.2 (Interpretation of parameters). In Proposition 7.7.1 appear many free parame-
ters. They may be understood heuristically as follows: The length R is the range of a new
interaction. To prove Proposition 7.7.1 we use in particular an argument that can be viewed as
an analogue of the “Dyson lemma” (see Section 7.7.1) where the interaction W gets replaced
by a weaker and longer ranged interaction U of range R. The length d is a localization length.
To prove Proposition 7.7.1 we split the box Λ into many smaller regions of size of order d
and separated by a distance of order d, see Section 7.7.2. The momentum cut-off qF and the
integer n are technical parameters introduced to estimate non-leading error terms.

Remark 7.7.3 (Non-uniformity in the temperature). We do now know how to prove the
result of Theorem 7.1.3 uniformly in temperatures T ≲ TF . This is due to the temperature
dependence of the error bounds in Proposition 7.7.1. We illustrate this here.

As in Chapter 6 we can, for sufficiently small temperatures, i.e. large ζ, simply compare to
the zero-temperature result in Chapter 4. For ζ ≫ (a3ρ0)−1/2 the contribution of the main
term ψ0(β, µ) resulting from the temperature is negligible compared to the leading interaction
term of order a3ρ

8/3
0 ; see Section 6.1.2 for the details. Thus, to get a bound uniformly in

temperatures T ≲ TF it suffices to consider ζ ≲ (a3ρ0)−1/2.

Further, one might consider changing the choice of κ in (7.2.3) to κ = ζ1−ε(a3ρ)−α for some
ε ≥ 0. As in (7.3.3) we then have kκF ∼ (1 + ζ−1/2κ1/2)ρ1/3

0 .

Using the bounds from (7.3.3) and (7.3.4) and this new choice of κ, two of the error terms in
Proposition 7.7.1 are bounded as

L9/4a3ρ
8/3
0

[︂
d3S(Γ,Γ0) + L3β4(kκF )7d−1

]︂1/4

≤ CL3a3ρ
8/3
0

[︂
ζ1/4(a3ρ0)1/4(d3ρ0)1/4 + ζ

[︂
1 + ζ−7/8κ7/8

]︂
(d3ρ0)−1/12

]︂
.
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For ζ ∼ (a3ρ0)−1/2 these terms are of order

L3a3ρ
8/3
0

[︂
(a3ρ0)1/8(d3ρ0)1/4 + (a3ρ0)−1/2

[︂
1 + (a3ρ0)7ε/16−7α/8

]︂
(d3ρ0)−1/12

]︂
.

It is impossible to choose d such that both of these terms are negligible compared to the
leading term of order L3a3ρ

8/3
0 .

With Proposition 7.7.1 at hand we can give the

Proof of Proposition 7.2.13. We shall apply Proposition 7.7.1 with qF = ζ−1/2ρ
1/3
0 . Recalling

(7.3.3) then

βkκF qF ∼ κ1/2 ≪ κ, βq2
F ∼ 1 ≪ κ, β(kκF − qF )2 ∼ κ ≫ 1.

We shall choose d ≫ ζ1/2ρ
−1/3
0 . Then, by taking n large enough, we can ensure that the last

two summands in [. . .]1/4 in (7.7.1) are negligible.

We can use (7.2.8) to bound ⟨N ⟩Γ, and (7.3.4) to bound S(Γ,Γ0). Thus, using (7.3.3), the
leading terms in the lower bound on Ept(Γ) are

− L3a3ρ
8/3
0

[︂
κ7/2ζ−7/2R2ρ

2/3
0 +Rd−1

]︂
− L3

[︂
a3R−5/2ρ

4/3
0 d−3/2 + a3ρ

8/3
0

]︂ [︃
ζd3a3ρ2

0 + ζ1/2κ7/2ρ
−1/3
0 d−1

]︃1/4

We shall restrict our attention to a compact set of z’s, i.e., we can assume that ζ ∼ 1 and
hence κ ∼ (a3ρ0)−α. We shall choose

d = ρ
−1/3
0 (a3ρ0)−s, R = ρ

−1/3
0 (a3ρ0)t

for some s, t > 0 to be determined. Then, Ept(Γ) ≥ −C(z)L3a3ρ
8/3
0 [(a3ρ0)σ + eL] with C(z)

bounded uniformly on compact sets of z’s and

σ = 1
8 min

{︃
16t− 28α, 2 + 6s− 20t, 2 − 6s, 14s− 20t− 7α, 2s− 7α

}︃
.

The choice
s = 1

4 + 7
8α, t = 1

32 + 91
64α

yields σ = 1/16 − 21α/32, and hence the desired bound.

The rest of this section is devoted to the proof of Proposition 7.7.1. It is divided into three
parts. We first introduce some convenient notation.

Notation 7.7.4. We write
Tr = TrF(h), tr = Trh .

That is, tr for the trace of the one-particle space h = L2(Λ;C) and Tr for the trace over the
Fock space F(h).

Definition 7.7.5 (See also [LNR21, Definition 5.5] and [HLS09, Appendix A]). For any
projection X on h and state Γ we define the operator ΓX as the state Γ restricted to the space
F(Xh) as follows: Any operator A on F(Xh) may naturally be extended as A ⊗ 1F(X⊥h)
on F(Xh) ⊗ F(X⊥h) ≃ F(h). With this extension and unitary equivalence hidden in the
notation, the state ΓX is defined by duality satisfying Tr AΓX = Tr AΓ for all A on F(Xh).
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

7.7.1 Regularizing the interaction
As a first step we shall replace the effective interaction W = V (1 − φ) by a much weaker
interaction U of longer range. This step is, at least in spirit, analogous to the “Dyson lemma”
[Dys57, Lemma 1] (see also [LY98, Lemma 1]) applied first for dilute Bose gases. In our case,
the presence of the projection P effectively smears out the particle coordinates on a length
scale (kκF )−1 ≫ a, allowing us to replace W = V (1 − φ) by U as long as the range of U is
≪ (kκF )−1 and

´
|x|2U =

´
|x|2W = 24πa3. For any interaction U we define

U = dΓ(U), UP = dΓ(PPUPP ).

More concretely we show
Lemma 7.7.6. Let U be a radial function with

´
|x|2U =

´
|x|2W . Then for any state Γ,

⟨WP ⟩Γ = ⟨UP ⟩Γ +O
(︂
(kκF )7

⃦⃦⃦
| · |4(U −W )

⃦⃦⃦
L1

⟨N ⟩Γ

)︂
.

Proof. We start by writing

WP − UP = dΓ(PP (W − U)PP ) = 1
2

¨
(W − U)(x− y)c∗

xc
∗
ycycx dx dy.

We Taylor expand cy and c∗
y around y = x as in (7.3.9). Changing variables to z = y − x we

have

WP − UP = 1
2

¨
(W − U)(z)zµzν

ˆ 1

0
dt
ˆ 1

0
ds c∗

x∇µc∗
x+tz∇νcx+szcx dx dz

Evaluating in the state Γ we define the function(s) ϕµνx (z) =
⟨︂
c∗
x∇µc∗

x+tz∇νcx+szcx
⟩︂

Γ
. We

shall Taylor expand ϕµνx around z = 0. Noting that ∥∇nc∥ ≤ C(kκF )3/2+n we can bound

|∇2ϕµνx (z)| ≤ C
⃦⃦⃦
Γ1/2c∗

x

⃦⃦⃦
S2

(kκF )7
⃦⃦⃦
cxΓ1/2

⃦⃦⃦
S2

= C(kκF )7 ⟨c∗
xcx⟩Γ .

Consequently ⃓⃓⃓
ϕµνx (z) − ϕµνx (0) − zλ∇λϕµνx (0)

⃓⃓⃓
≲ |z|2(kκF )7 ⟨c∗

xcx⟩Γ .

Noting further that
´
zµzνU =

´
zµzνW and

´
zµzνzλU = 0 =

´
zµzνzλW we find

|⟨WP − UP ⟩Γ| ≤ C(kκF )7
ˆ

|z|4 |U −W | dz
ˆ

⟨c∗
xcx⟩Γ dx.

Since
´
c∗
xcx dx ≤ N this proves the lemma.

7.7.2 Localizing the relative entropy
Because of Lemma 7.7.6, our task is now to evaluate ⟨UP ⟩Γ for an appropriate choice of U in
an approximate Gibbs state Γ. Our goal is to show that we can replace Γ by Γ0 to leading
order, which amounts to showing the validity of first order perturbation theory. To be able to
utilize the a priori bound (7.3.4) on the relative entropy S(Γ,Γ0), we shall localize the latter in
a suitable way, following the method in [Sei06a, Proof of Theorem 3.1]. Due to the presence
of the projection P , the case considered here is slightly different from the one considered in
[Sei06a], hence we cannot just quote the result but give the complete argument here.
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7.7. Validity of perturbation theory — Bounding Ept

A first step is localizing the relative entropy S(ΓP ,Γd) for a state Γd closely related to the
free Gibbs state Γ0, but with a cut-off the removes all correlations between well separated
regions. The state Γd is defined as follows.
Let η : R3 → R be a smooth function with

• η(0) = 1 and η(x) = 0 for |x| ≥ 1,

• η̂(p) =
´

dx η(x)e−ipx ≥ 0 for all p ∈ R3.

(To construct such a function η simply take any smooth compactly supported function and
convolve it with itself.) Define then for 0 < d ≤ L/2 the function ηd(x) = η(x/d) (more
precisely its periodization ηd(x) = ∑︁

n∈Z3 η
(︂
x+nL
d

)︂
). Let Γd be the quasi-free state on F(h)

with one-particle density matrix

γd(x; y) = γ0(x; y)ηd(x− y),

with γ0 the one-particle density matrix of the free Gibbs state. Define then d ≥ d by
L/2d = ⌊L/2d⌋ (here ⌊·⌋ denotes the integer part) and define for r ≤ d/2

Xr(x) =
∑︂

ξ∈2dZ3∩[0,L)3

χr,ξ(x).

Noting that ηd vanishes outside a ball of radius d ≤ 2d− 2r we have

XrγdXr =
∑︂

ξ∈2dZ3∩[0,L)3

χr,ξγdχr,ξ.

Thus,
(Γd)Xr ≃

⨂︂
ξ∈2dZ3∩[0,L)3

(Γd)χr,ξ

Next, we note that the relative entropy is monotone decreasing under restriction [OP04,
Theorem 1.5] and further that it is superadditive for its right argument being a product state
(which follows easily from the subadditivity of the von Neumann entropy). Concretely this
means that

S(ΓP ,Γd) ≥ S ((ΓP )Xr , (Γd)Xr) ≥
∑︂

ξ∈2dZ3∩[0,L)3

S
(︂
(ΓP )χr,ξ

, (Γd)χr,ξ

)︂
.

Replacing Xr by Xr(· + a) for a ∈ [0, 2d]3 and averaging over a we find for any r ≤ d/2 (this
is [Sei06a, (5.10)])

S(ΓP ,Γd) ≥ 1
(2d)3

ˆ
Λ

dξ S
(︂
(ΓP )χr,ξ

, (Γd)χr,ξ

)︂
. (7.7.2)

The next step is relating the relative entropy S(ΓP ,Γd) to the relative entropy S(Γ,Γ0) for
which we have a priori bounds. In the absence of the projection P , this is done in [Sei06a,
Section 5.2]. We claim that (compare to [Sei06a, Eq. (5.31)])
Lemma 7.7.7. Let Γ be any state and let 0 < qF < kκF with β(kκF − qF )2 ≳ 1. Then, for
any n ∈ N

S(ΓP ,Γd) ≲ S(Γ,Γ0) + L3β4(kκF )7d−4

+ L3β−1(kκF − qF )e−κ+β(2kκ
F qF −q2

F ) + Cn(dqF )−2n logZ0 + L3eL.

The constant Cn depends only on n.
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Combining Lemma 7.7.7 and Equation (7.7.2) we thus find that
ˆ

Λ
dξ S

(︂
(ΓP )χr,ξ

, (Γd)χr,ξ

)︂
≲ d3S(Γ,Γ0) + L3β4(kκF )7d−1 + Cnd

3(dqF )−2n logZ0

+ L3d3β−1(kκF − qF )e−κ+β(2kκ
F qF −q2

F ) + L3eL.

(7.7.3)

for any 0 < r ≤ d/2 ≤ L/4.

Proof of Lemma 7.7.7. Following [Sei06a, Section 5.2], we first make the following observation.
Denote by Γω the quasi-free state with one-particle-density matrix ω. Then for any state Γ
(whose one-particle-density matrix we denote by γ) we have that

S(Γ,Γω) = Tr Γ log Γ − tr γ logω − tr(1 − γ) log(1 − ω) (7.7.4)

is convex in ω. We may write γd as a convex combination

γd = 1
|Λ|

∑︂
q∈ 2π

L
Z3

η̂d(q)γq, γ̂q(p) = 1
2 (γ̂0(p+ q) + γ̂0(p− q)) .

(Note that for q = 0 we indeed have γq = γ0.) Recalling that η̂d ≥ 0 and 1
|Λ|
∑︁
η̂d = η(0) = 1

by construction, we thus have

S(ΓP ,Γd) ≤ 1
|Λ|

∑︂
q∈ 2π

L
Z3

η̂d(q)S(ΓP ,Γγq) . (7.7.5)

We claim that for any t > 0 (compare to [Sei06a, (5.14)])

S(ΓP ,Γγq) ≤ (1 + t−1)S(ΓP , (Γ0)P ) − trQ log(1 − γq)

+ trP (hq − h0)
(︃ 1

1 + e(1+t)h0−thq
− 1

1 + ehq

)︃ (7.7.6)

where hq = log 1−γq

γq
, i.e., γq = (1 + ehq)−1. We will later choose t = 1 but for now it is

convenient to leave it as a variable.

To prove Equation (7.7.6) we first note that (Γ0)P is a quasi-free state with one-particle
density matrix Pγ0. Using the formula in Equation (7.7.4) we have

(1 + t−1)S(ΓP , (Γ0)P ) − S(ΓP ,Γγq)
= t−1 Tr ΓP log ΓP + trQ log(1 − γq)

+ trP
[︂
γ log γq + (1 − γ) log(1 − γq) − (1 + t−1)γ log γ0 − (1 + t−1)(1 − γ) log(1 − γ0)

]︂
= t−1 [Tr ΓP log ΓP + trPγ((1 + t)h0 − thq)] + trQ log(1 − γq)

− trP log(1 + e−hq) + (1 + t−1) trP log(1 + e−h0) .

By the Gibbs variational principle applied to the one-body Hamiltonian P ((1 + t)h0 − thq)
and Taylor expanding we have

Tr ΓP log ΓP + trPγ((1 + t)h0 − thq)
≥ − trP log

(︂
1 + e−(1+t)h0+thq

)︂
= − trP log

(︂
1 + e−h0

)︂
+ t

ˆ 1

0
ds trP (h0 − hq)

1
1 + e(1+st)h0−sthq

252



7.7. Validity of perturbation theory — Bounding Ept

Similarly we have

− trP log(1 + e−hq) = − trP log(1 + e−h0) +
ˆ 1

0
ds trP (hq − h0)

1
1 + e(1−s)h0+shq

Combining these equations and noting the the integrands in the s-integrals are monotone in s
we conclude the proof of Equation (7.7.6).

To bound the first term on the right-hand-side of (7.7.6) we note that S(ΓP , (Γ0)P ) ≤ S(Γ,Γ0),
since the relative entropy is decreasing in restrictions [OP04, Theorem 1.5]. Next, we bound
the last term on the right-hand-side of (7.7.6) similarly to [Sei06a, (5.27)]. Taylor expanding
to first order in t we find that⃓⃓⃓⃓

trP (hq − h0)
(︃ 1

1 + e(1+t)h0−thq
− 1

1 + ehq

)︃⃓⃓⃓⃓
≤ (1 + t) trP (hq − h0)2.

To estimate the latter trace we recall the bound [Sei06a, Lemma 5.1]

|hq(p) − h0(p)| ≤ Cβq2(ζ + βp2).

Then clearly (recalling ζ ∼ βρ
2/3
0 from (7.3.3))

trP (hq − h0)2 ≤ C
∑︂

|p|≤kκ
F

β2q4(ζ + βp2)2 ≤ CL3β4(kκF )7q4.

To bound the second term on the right-hand-side of (7.7.6) we can use convexity of γ ↦→
− log(1 − γ) and the symmetry p → −p to conclude that

− trQ log(1 − γq) ≤
∑︂

|p|>kκ
F

log
(︂
1 + e−β((p+q)2−µ)

)︂
.

We treat this sum separately for large and small q’s. Let 0 < qF < kκF and assume that
|q| < qF . In this case

− trQ log(1 − γq) ≤
∑︂

|p|>kκ
F −qF

log
(︂
1 + e−β(p2−µ)

)︂
≤ CL3β−3/2[β1/2(kκF − qF ) + 1]e−β((kκ

F −qF )2−µ) + L3eL,

(7.7.7)

To prove this we view the sum as a Riemann sum for the corresponding integral and compute
the integral explicitly. We give the details in Section 7.A. For |q| ≥ qF we shall simply bound

− trQ log(1 − γq) ≤
∑︂

p∈ 2π
L
Z3

log
(︂
1 + e−β(p2−µ)

)︂
= logZ0,

where Z0 is the partition function of the free gas. Combining these bounds and choosing t = 1
we conclude that (for β(kκF − qF )2 ≳ 1)

S(ΓP ,Γγq) ≲ S(Γ,Γ0) + L3β4(kκF )7q4

+ L3β−1(kκF − qF )e−β((kκ
F −qF )2−µ)χ(|q|<qF ) + logZ0χ(|q|≥qF ) + L3eL.

We insert this bound in (7.7.5). To evaluate the q-summation we note that

1
|Λ|

∑︂
q∈ 2π

L
Z3

η̂d(q)q2n = (−∆)nη(0)d−2n = Cnd
−2n
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for any integer n ≥ 0. (Recall also that η(0) = 1.) In particular for any n ∈ N

1
L3

∑︂
q

η̂d(q) logZ0χ(|q|>qF ) ≤ q−2n
F logZ0

1
L3

∑︂
|q|>qF

η̂d(q)q2n ≤ Cn(qFd)−2n logZ0.

Noting that −β((kκF − qF )2 − µ) = −κ + β(2kκF qF − q2
F ) we conclude the proof of the

lemma.

7.7.3 Localizing the interaction
The bound (7.7.3) allows us to conclude that the states ΓP and Γd are suitably close when
viewed on a ball of some radius r. As long as r is large compared to R (the range of U) this
will thus allow us to obtain the desired estimate on the expectation value ⟨UP ⟩Γ, and to bound
the difference ⟨UP ⟩Γ − ⟨U⟩Γ0

by the localized relative entropy.

To do this precisely, we need to also localize the interaction into balls. The subsequent analysis
follows closely the corresponding analysis in [Sei06a, Section 5.3]. We recall that, for a state
Γ, the state ΓX denotes its localization using the projection X, see Definition 7.7.5. The
state Γ0 is the free Gibbs state and the state Γd is defined in Section 7.7.2. We shall prove
Lemma 7.7.8. Let Γ be any state and let U ≥ 0 be compactly supported with range R.
Then, for any 0 < r ≤ d/2 ≤ L/4 with d ≳ ρ

−1/3
0 and 1/z bounded, we have

⟨UP ⟩Γ ≥ ⟨U⟩Γ0
− CL3

⃦⃦⃦
| · |2U

⃦⃦⃦
L1
ρ

8/3
0
R

r

− CL9/4
[︃
∥| · |U∥2

L2 ρ
2+2/3
0 + C

⃦⃦⃦
| · |2U

⃦⃦⃦2

L1
ρ

3+4/3
0 (1 + r3ρ0)

]︃1/2

× r−3/2
[︄ˆ

Λ
dξ S((ΓP )χr,ξ

, (Γd)χr,ξ
)
]︄1/4

− L3eL.

Proof. Write for any r > 0

U(x− y) = 3
4πr3

ˆ
Λ

dξ U(x− y)χr,ξ(y)

= 3
4πr3

ˆ
Λ

dξ χr,ξ(x)U(x− y)χr,ξ(y) + 3
4πr3

ˆ
Λ

dξ (1 − χr,ξ(x))U(x− y)χr,ξ(y)

with χr,ξ the characteristic function of a ball of radius r centered at ξ. As a lower bound we
may keep only the first term since U ≥ 0. Define Ur,ξ(x, y) = χr,ξ(x)U(x − y)χr,ξ(y) and
Ur,ξ = dΓ(Ur,ξ). Then

⟨UP ⟩Γ = ⟨U⟩ΓP
≥ 3

4πr3

ˆ
Λ

dξ Tr [Ur,ξΓP ] = 3
4πr3

ˆ
Λ

dξ Tr
[︂
Ur,ξ(ΓP )χr,ξ

]︂

since we may replace ΓP by (ΓP )χr,ξ
since Ur,ξ is localized to this domain.

For any K we introduce

fK(t) = min{t,K} = t− [t−K]+, [·]+ = min{·, 0}.
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Then t ≥ fK(t) for any t. Using this on t = Ur,ξ we thus have (with Γd as above)

⟨UP ⟩Γ ≥ 3
4πr3

ˆ
Λ

dξ Tr
[︂
fK (Ur,ξ) (ΓP )χr,ξ

]︂
= 3

4πr3

ˆ
Λ

dξ Tr
[︂
fK (Ur,ξ) (Γd)χr,ξ

]︂
+ 3

4πr3

ˆ
Λ

dξ Tr
[︂
fK (Ur,ξ)

(︂
(ΓP )χr,ξ

− (Γd)χr,ξ

)︂]︂
=: I + Estate (7.7.8)

The first term I is the main term. To evaluate it, we use fK(t) = t− [t−K]+ and bound
[t−K]+ ≤ t2/4K. Thus

Tr
[︂
fK (Ur,ξ) (Γd)χr,ξ

]︂
≥ Tr

[︂
Ur,ξ(Γd)χr,ξ

]︂
− 1

4K Tr
[︂
(Ur,ξ)2 (Γd)χr,ξ

]︂
.

For the first term we note that (Γd)χr,ξ
is quasi-free and has two-particle density

ρ
(2)
d (x, y)χr,ξ(x)χr,ξ(y) = (ρ2

0 − |γd(x− y)|2)χr,ξ(x)χr,ξ(y)
≥ ρ

(2)
0 (x, y)χr,ξ(x)χr,ξ(y)

since |γd| ≤ |γ0| by construction. In particular,

Tr
[︂
Ur,ξ(Γd)χr,ξ

]︂
≥ 1

2

¨
(Br,ξ)2

U(x− y)ρ(2)
0 (x, y) dx dy

= 1
2

¨
Λ×Br,ξ

U(x− y)ρ(2)
0 (x, y) dx dy − 1

2

¨
(Λ\Br,ξ)×Br,ξ

U(x− y)ρ(2)
0 (x, y) dx dy.

Integrating this over ξ we get
3

4πr3

ˆ
Λ

dξ Tr
[︂
Ur,ξ(Γd)χr,ξ

]︂
≥ Tr [UΓ0]

− 3
8πr3

ˆ
Λ

dξ
¨

(Λ\Br,ξ)×Br,ξ

dx dy U(x− y)ρ(2)
0 (x, y).

We conclude that

I ≥ ⟨U⟩Γ0
− 3

16πKr3

ˆ
Λ

dξ Tr
[︂
U2
r,ξ(Γd)χr,ξ

]︂
⏞ ⏟⏟ ⏞

Ed:=

− 3
8πr3

ˆ
Λ

dξ
¨

(Λ\Br,ξ)×Br,ξ

dx dy U(x− y)ρ(2)
0 (x, y)⏞ ⏟⏟ ⏞

Elocal:=

.
(7.7.9)

We are left with bounding the three error terms Elocal, Ed and Estate.

First, we bound the error term Elocal from (7.7.9). Using that U has compact support of range
R and recalling the formula in (7.3.2) for ρ(2)

0 we have for 1/z bounded

|Elocal| ≤ C

r3

ˆ
Λ

dξ
ˆ
Br+R,ξ\Br,ξ

dx
ˆ

Λ
dz |z|2U(z)ρ8/3

0

[︂
1 + L−1ζρ

−1/3
0

]︂
≤ CL3ρ

8/3
0

⃦⃦⃦
| · |2U

⃦⃦⃦
L1

R

r
+ L3eL.
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

The error term Ed in (7.7.9) can be evaluated explicitly since Γd is a quasi-free state. We have

Tr
[︂
(Ur,ξ)2 (Γd)χr,ξ

]︂
=
˘

(Br,ξ)4
U(x− y)U(z − z′) Tr

[︂
a∗
xa

∗
yayaxa

∗
za

∗
z′az′azΓd

]︂
dx dy dz dz′.

(7.7.10)
Normal ordering and using Tr

[︂
a∗
x1 · · · a∗

xn
axn · · · ax1Γd

]︂
= ρ

(n)
d (x1, . . . , xn) we find

(7.7.10) = 2
¨

(Br,ξ)2
U(x− y)2ρ

(2)
d (x, y) dx dy

+ 4
˚

(Br,ξ)3
U(x− y)U(x− z′)ρ(3)

d (x, y, z′) dx dy dz′

+
˘

(Br,ξ)4
U(x− y)U(z − z′)ρ(4)

d (x, y, z, z′) dx dy dz dz′.

We may Taylor expand the reduced densities as in Lemma 6.3.6, to conclude that as long as
d ≳ ρ

−1/3
0 and 1/z is bounded

ρ
(2)
d (x, y) ≤ Cρ

2+2/3
0 |x− y|2

[︂
1 + L−1ζρ

−1/3
0

]︂
,

ρ
(3)
d (x, y, z′) ≤ Cρ

3+4/3
0 |x− y|2|x− z′|2

[︂
1 + L−1ζρ

−1/3
0

]︂
,

ρ
(4)
d (x, y, z, z′) ≤ Cρ

4+4/3
0 |x− y|2|z − z′|2

[︂
1 + L−1ζρ

−1/3
0

]︂
.

This gives the bound

(7.7.10) ≤ Cr3ρ
2+2/3
0

⎡⎣ˆ |x|2U2 dx+ ρ
1+2/3
0

(︄ˆ
|x|2U dx

)︄2

+ r3ρ
2+2/3
0

(︄ˆ
|x|2U dx

)︄2
⎤⎦

×
[︂
1 + L−1ζρ

−1/3
0

]︂
.

Thus

|Ed| ≤ CK−1L3
[︃
∥| · |U∥2

L2 ρ
2+2/3
0 +

⃦⃦⃦
| · |2U

⃦⃦⃦2

L1
ρ

3+4/3
0 (1 + r3ρ0) + eL

]︃
. (7.7.11)

Finally we bound the error term Estate from (7.7.8). Since fK(t) ≤ K for any t we have

|Estate| ≤ 3K
4πr3

ˆ
Λ

dξ
⃦⃦⃦
(ΓP )χr,ξ

− (Γd)χr,ξ

⃦⃦⃦
S1

≤ 3
√

2K
4πr3 L3/2

(︄ˆ
Λ

dξ S((ΓP )χr,ξ
, (Γd)χr,ξ

)
)︄1/2

using the Cauchy–Schwarz inequality and that
⃦⃦⃦
(ΓP )χr,ξ

− (Γd)χr,ξ

⃦⃦⃦2

S1
≤ 2S((ΓP )χr,ξ

, (Γd)χr,ξ
)

[OP04, Theorem 1.15]. Combining this with the bound for Ed and choosing the optimal K we
have

|Ed| + |Estate| ≤ CL9/4
[︃
∥| · |U∥2

L2 ρ
2+2/3
0 +

⃦⃦⃦
| · |2U

⃦⃦⃦2

L1
ρ

3+4/3
0 (1 + r3ρ0) + eL

]︃1/2

× r−3/2
(︄ˆ

Λ
dξ S((ΓP )χr,ξ

, (Γd)χr,ξ
)
)︄1/4

.

Together with the bound of Elocal above we conclude the proof of the lemma.
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7.1. Bounding Riemann sums

7.7.4 Combining the parts
Finally, we combine the three parts above and give the

Proof of Proposition 7.7.1. Consider the function U given by

U(x) = 30a3R−5χ|x|≤R.

This has ⃦⃦⃦
| · |2U

⃦⃦⃦
L1

= 24πa3,
⃦⃦⃦
| · |4U

⃦⃦⃦
L1

= Ca3R2, ∥| · |U∥2
L2 = Ca6R−5.

Note also that ∥| · |4W∥L1 ≤ Ca5 and a ≲ R. Combining Lemmas 7.7.6 and 7.7.8 and Equa-
tion (7.7.3) we have

⟨WP ⟩Γ ≥ ⟨U⟩Γ0
− C(kκF )7a3R2 ⟨N ⟩Γ − CL3a3ρ

8/3
0 Rr−1

− CL9/4
[︂
a6R−5r−3ρ

2+2/3
0 + a6ρ

3+4/3
0 (r−3 + ρ0)

]︂1/2
[︃
d3S(Γ,Γ0) + L3β4(kκF )7d−1

+ L3d3β−1(kκF − qF )e−κ+β(2kκ
F qF −q2

F ) + Cnd
3(dqF )−2n logZ0 + L3eL

]︃1/4
− L3eL.

Recalling the formula from ρ
(2)
0 from (7.3.2), we have

⟨U⟩Γ0
= 1

2

¨
U(x− y)ρ(2)

0 (x, y) dx dy

= 2π − Li5/2(−z)
(− Li3/2(−z))5/3L

3ρ
2+2/3
0

ˆ
|x|2U(x)

[︂
1 +O(|x|2ρ2/3

0 ) +O(L−1ζρ
−1/3
0 )

]︂
dx

= ⟨W⟩Γ0
+O(L3a3R2ρ

10/3
0 ) + L3eL ,

where we have used that
´

|x|2U(x) dx =
´

|x|2W (x) dx and that a ≲ R in the last
step. Choosing finally r = d/2 (as this is clearly the optimal choice) and recalling that
Ept(Γ) = ⟨WP ⟩Γ − ⟨W⟩Γ0

this concludes the proof of Proposition 7.7.1.

7.A Bounding Riemann sums
In this section we prove (7.3.8) and (7.7.7). We do this by viewing the sums as Riemann sums
for the corresponding integrals. To estimate their difference, note that for any function F and
any k ∈ 2π

L
Z3 we have

1
L3F (k) = 1

(2π)3

ˆ
[− π

L
, π

L
]3

dξ
[︄
F (k + ξ) −

ˆ 1

0
dt ∂tF (k + tξ)

]︄
. (7.A.1)

When summed over k, the first term gives the integral
´
F and the second term will in general

be of order L−1 for large L.

Proof of (7.3.8). We shall apply the bound h(1 + eh/2)−1 ≤ Ce−h/3 to h = β(|k|2 − µ),
obtaining ∑︂

|k|>kκ
F

β(|k|2 − µ)
1 + e

β
2 (|k|2−µ)

≤ C
∑︂

|k|>kκ
F

z1/3e−β|k|2/3
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

Let F (k) = z1/3e−β|k|2/3 and note that

∂tF (k + tξ) = −2
3z

1/3β(k + tξ)ξe−β(k+tξ)2/3.

Using that |ξ| ≤ CL−1 for ξ ∈ [− π
L
, π
L

]3, we may bound this by

|∂tF (k + tξ)| ≤ Cz1/3β
[︂
L−1|k + ξ| + L−2

]︂
e−β(k+ξ)2/3eCβ(|k+ξ|L−1+L−2).

This is clearly integrable in k + ξ and subleading in L. (More precisely it is of the order L−1.)
Thus, using (7.A.1),

∑︂
|k|>kκ

F

z1/3e−βk2/3 = L3

(2π)3

ˆ
|k|≥kκ

F

z1/3e−βk2/3 dk + L3eL.

The integral is explicitly given byˆ
|k|≥kκ

F

z1/3e−β|k|2/3 dk = πz1/3(β/3)−3/2
(︂√

π erfc((β/3)1/2kκF ) + 2(β/3)1/2kκF e
−β(kκ

F )2/3
)︂
,

with erfc the complementary error function [NIS, (7.2.2)]. Bounding erfc(z) ≤ 1
z+1e

−z2 [NIS,
(7.8.3)] we thus have
ˆ

|k|≥kκ
F −qF

z1/3e−βk2 dk ≤ Cβ−3/2
(︂
β1/2kκF + 1

)︂
e−β((kκ

F )2−µ)/3 = Cβ−3/2
(︂
β1/2kκF + 1

)︂
e−κ/3

proving (7.3.8).

Proof of (7.7.7). For any t > −1 we have log(1 + t) ≤ t. Thus, in order to prove (7.7.7) we
need to bound ∑︁|k|>kκ

F −qF
ze−β|k|2 . Define F (k) = ze−β|k|2 and note that

∂tF (k + tξ) = −2zβ(k + tξ)ξe−β(k+tξ)2
.

Using that |ξ| ≤ CL−1 for ξ ∈ [− π
L
, π
L

]3, we may bound this by,

|∂tF (k + tξ)| ≤ Czβ
[︂
L−1|k + ξ| + L−2

]︂
e−β(k+ξ)2

eCβ(|k+ξ|L−1+L−2).

As in the proof of (7.3.8) above, this is clearly integrable in k+ ξ and of the order L−1. Thus,
using (7.A.1), ∑︂

|k|>kκ
F −qF

ze−βk2 = L3

(2π)3

ˆ
|k|≥kκ

F −qF

ze−βk2 dk + L3eL.

The integral is explicitly given byˆ
|k|≥kκ

F −qF

ze−β|k|2 dk = πβ−3/2z
(︂√

π erfc(β1/2(kκF − qF )) + 2β1/2(kκF − qF )e−β(kκ
F −qF )2)︂

,

with erfc the complementary error function [NIS, (7.2.2)]. Bounding erfc(z) ≤ 1
z+1e

−z2 [NIS,
(7.8.3)] as in the proof of (7.3.8) above we thus have

ˆ
|k|≥kκ

F −qF

ze−βk2 dk ≤ Cβ−3/2z
(︂
β1/2(kκF − qF ) + 1

)︂
e−β(kκ

F −qF )2
.

This concludes the proof of (7.7.7).
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7.B Two dimensions
In this appendix we shall sketch the (straightforward) changes to the argument to get the
bounds also in dimension D = 2, i.e., to prove Theorem 7.1.7. To illustrate the dimensional
dependence and make clear which parts of the argument fails in dimension D = 1 we
consider here general dimension D = 1, 2. The main steps in the proof are Lemma 7.5.2 and
Proposition 7.7.1 together with the a priori bounds of Lemma 7.6.4. In general dimension D
they read
Lemma 7.B.1 (Lemma 7.5.2 in D dimensions). Let D = 1, 2 and let Γ be any state. Then,
for α > 0 sufficiently small and any 0 < δ < 1,⃓⃓⃓⟨︂

H÷r
0;B

⟩︂
Γ

⃓⃓⃓
≤ CaD(kκF )D+1 |log akκF |

[︂
kκF ⟨NQ⟩1/2

Γ + ⟨KQ⟩1/2
Γ

]︂
⟨N ⟩1/2

Γ ,⃓⃓⃓
⟨QTaylor⟩Γ

⃓⃓⃓
+ |⟨Qscat⟩Γ| ≤ CaD |log akκF | (kδ−1κ

F )D/2(kκF )D/2+2 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ

+ CLD/2aD/2(kκF )D+2 ⟨NQ>⟩1/2
Γ⃓⃓⃓⟨︂

Q[VQ,B]
⟩︂

Γ

⃓⃓⃓
≤

⎧⎨⎩Ca1/2(kκF )3/2 ⟨VQ⟩1/2
Γ ⟨N ⟩1/2

Γ D = 1,
Ca2(kκF )3 |log akκF |1/2 ⟨VQ⟩1/2

Γ ⟨N ⟩1/2
Γ D = 2,⃓⃓⃓

⟨QV φ⟩Γ

⃓⃓⃓
≤ Ca3D/2−1(kκF )3D/2+1 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ ,

|⟨QOD⟩Γ| ≤

⎧⎨⎩Ca(kκF )3 ⟨N ⟩Γ + CkκF ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ D = 1,
Ca3(kκF )5 |log akκF |1/2 ⟨N ⟩Γ + Ca(kκF )2 ⟨VQ⟩1/2

Γ ⟨NQ⟩1/2
Γ D = 2.

Lemma 7.B.2 (Proposition 7.7.1 in D dimensions). Let D = 1, 2 and let Γ be any state.
Then, for any 0 < d,R < L, any 0 < qF < kκF with β(kκF − qF )2 ≳ 1 any n ∈ N and any
z ≳ 1

Ept(Γ) ≳ −LDaDR2ρ
2+4/D
0 − (kκF )D+4aDR4 ⟨N ⟩Γ − LDaDρ

2+2/D
0 Rd−1

− L3D/4
[︂
a2DR−D−2ρ

2+2/D
0 d−D + a2Dρ

3+4/D
0 (d−D + ρ0)

]︂1/2
[︃
dDS(Γ,Γ0)

+ LDβ4(kκF )D+4dD−4 + LDβ−D/2e−κ+β(2kκ
F qF −q2

F ) + Cn(dqF )−2n logZ0

]︃1/4

− LDeL.

Lemma 7.B.3 (Lemma 7.6.4 in D dimensions). Let D = 1, 2 and let Γ be an approximate
Gibbs state. Then, for any 0 ≤ λ ≤ 1,

⟨NQ⟩Γλ ≤ CLDζκ−1aDρ2
0 + LDeL,

⟨KQ⟩Γλ ≤ CLDζ−D−1κD+1aDρ
2+2/D
0 + LDeL,

⟨VQ⟩Γλ ≤ CLDζ−D/2−1κD/2+1aDρ
2+2/D
0 + LDeL.

With Lemma 7.B.2 at hand we may prove the analogue of Proposition 7.2.13:
Lemma 7.B.4 (Proposition 7.2.13 in D dimensions). Let Γ be an approximate Gibbs state.
Then, for α > 0 sufficiently small,

Ept(Γ) ≥ −C(z)LDaDρ2+2/D
0 (aDρ0)σ − LDeL, σ =

⎧⎨⎩
2
11 − 30

44α D = 1,
1
8 − 3

8α D = 2,

with the function C(z) uniformly bounded on compact subsets of (0,∞).
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7. Pressure of a dilute spin-polarized Fermi gas: Upper bound

With these we may then give the

Proof of Theorem 7.1.7. Recall (7.2.18). Similarly as in (7.2.19) we evaluate (see also
Lemma 6.3.6)

⟨W⟩Γ0
= 8π2 − Li2(−z)

(− Li1(−z))2a
2ρ3

0

[︂
1 +O(a2ρ0) + eL

]︂
.

We bound EV (Γ) similarly as in Proposition 7.2.14, EV φ(Γ), Escat(Γ) and EOD(Γ) using
Lemmas 7.B.1 and 7.B.3 and choosing the optimal δ = (a2ρ0)1/2 |log a2ρ0|, and Ept(Γ) using
Lemma 7.B.4.

Remark 7.B.5 (The case of D = 1 dimensions). The method presented here does not allow
proving the one-dimensional analogue of Theorems 7.1.3 and 7.1.7. Indeed, combining the
propagated a priori bounds of Lemma 7.B.3 with the bounds in Lemma 7.B.1, the bounds
on the error terms Q[VQ,B], QV φ and QOD are too large. A similar issue occurs in the
zero-temperature setting, see Remark 4.A.4.

The proofs of Lemmas 7.B.1–7.B.4 are as those of Lemmas 7.5.2 and 7.6.4 and Proposi-
tions 7.2.13 and 7.7.1 only with straightforward changes, which we shall sketch here. Recall
first the bounds on the scattering function:
Lemma 7.B.6 (Lemma 4.A.2 and Remark 4.A.4). The scattering function φ satisfies

∥| · |nφ∥L1 ≤ CaD(kκF )−n, n = 1, 2, ∥| · |n∇nφ∥L1 ≤ CaD |log akκF | , n = 0, 1, 2

∥| · |φ∥L2 ≤

⎧⎨⎩Ca(kκF )−1/2 D = 1,
Ca2 |log akF |1/2 D = 2,

∥| · |n∇nφ∥L2 ≤ CaD/2, n = 0, 1.

Furthermore, we have the analogues of (7.5.9) and (7.5.10):⃦⃦⃦⃦
⃦
ˆ
φ(z − z′)(brz′)∗cz′ dz′

⃦⃦⃦⃦
⃦ ≤ C

[︂
(kκF )D ∥φ∥L1 + (kκF )D/2 ∥φ∥L2

]︂
⃦⃦⃦⃦
⃦
ˆ
φ(z − z′)(brz′)∗cz′cz dz′

⃦⃦⃦⃦
⃦ ≤ C

[︂
(kκF )3D/2+1 ∥| · |φ∥L1 + (kκF )D+1 ∥| · |φ∥L2

]︂
.

Proof of Lemma 7.B.1. The proof of Lemma 7.B.1 is exactly as that of Lemma 7.5.2 given
in Section 7.5. We simply state here all the intermediary bounds.

We may bound H÷r
0;B, QTaylor and Qscat as⃓⃓⃓⟨︂
H÷r

0;B

⟩︂
Γ

⃓⃓⃓
≤ C(kκF )D

[︂
∥| · |∇φ∥L1 +

⃦⃦⃦
| · |2∆φ

⃦⃦⃦
L1

]︂
×
[︂
kκF ⟨NQ⟩1/2

Γ + ⟨KQ⟩1/2
Γ

]︂
⟨N ⟩1/2

Γ ,⃓⃓⃓
⟨QTaylor⟩Γ

⃓⃓⃓
+ |⟨Qscat⟩Γ| ≤ C(kδ−1κ

F )D/2(kκF )D/2+
[︂
kκF ∥F∥L1 + ∥Eφ∥L1

]︂
⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ

+ CLD/2(kκF )D+1
[︂
kκF ∥F∥L2 + ∥Eφ∥L2

]︂
⟨NQ>⟩1/2

Γ .

To bound Q[VQ,B] we have the bounds⃓⃓⃓
⟨A4,δ⟩Γ

⃓⃓⃓
+
⃓⃓⃓
⟨A4,P ⟩Γ

⃓⃓⃓
≤ C(κκF )3D/2+1 ∥| · |φ∥L1 ∥V ∥1/2

L1 ⟨VQ⟩1/2
Γ ⟨N ⟩1/2

Γ ,⃓⃓⃓
⟨A6,δ⟩Γ

⃓⃓⃓
+
⃓⃓⃓
⟨A6,P ⟩Γ

⃓⃓⃓
≤ C

[︂
(kκF )3D/2+1 ∥| · |φ∥L1 + (kκF )D+1 ∥| · |φ∥L2

]︂
× ∥V ∥1/2

L1 ⟨VQ⟩1/2
Γ ⟨N ⟩1/2

Γ .
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To bound QV φ we have the bounds

|⟨A4⟩Γ| ≤ CaD/2(kκF )3D/2+1 ∥V ∥1/2
L1 ∥φ∥L2 ⟨NQ⟩1/2

Γ ⟨N ⟩1/2
Γ ,

|⟨A6⟩Γ| ≤ CaD/2(kκF )D+1
[︂
(kκF )D ∥φ∥L1 + (kκF )D/2 ∥φ∥L2

]︂
∥V ∥1/2

L1 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ .

To bound QOD we have the bounds⃓⃓⃓
⟨A4,c,δ⟩Γ

⃓⃓⃓
≤ CaD/2(kκF )3D/2+2 ∥V ∥1/2

L1 ∥| · |φ∥L2 ⟨N ⟩Γ ,⃓⃓⃓
⟨A4,c,P ⟩Γ

⃓⃓⃓
≤ CaD/2(kκF )2D+2 ∥| · |φ∥L1 ∥V ∥1/2

L1 ⟨N ⟩Γ ,⃓⃓⃓
⟨A6,c,δ⟩Γ

⃓⃓⃓
+
⃓⃓⃓
⟨A6,c,P ⟩Γ

⃓⃓⃓
≤ CaD/2(kκF )D/2+1

[︂
(kκF )3D/2+1 ∥| · |φ∥L1 + (kκF )D+1 ∥| · |φ∥L2

]︂
× ∥V ∥1/2

L1 ⟨NQ⟩1/2
Γ ⟨N ⟩1/2

Γ ,⃓⃓⃓
⟨A4,b⟩Γ

⃓⃓⃓
≤ C(kκF )D ∥V ∥1/2

L1 ∥φ∥L2 ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ ,⃓⃓⃓
⟨A6,b⟩Γ

⃓⃓⃓
≤ C(kκF )D/2

[︂
(kκF )D ∥φ∥L1 + (kκF )D/2 ∥φ∥L2

]︂
× ∥V ∥1/2

L1 ⟨VQ⟩1/2
Γ ⟨NQ⟩1/2

Γ .

Combining with the bounds in Lemma 7.B.6 we conclude of the lemma.

Proof of Lemma 7.B.2. The proof is (almost) the same as that for Proposition 7.7.1 given in
Section 7.7. The only non-immediate change is the bound for the sum ∑︁

|k|>kκ
F −qF

ze−β|k|2 .
Similarly as in Section 7.A we have

∑︂
|k|>kκ

F −qF

ze−β|k|2 ≤

⎧⎨⎩CLβ
−1/2z 1

1+β1/2(kκ
F −qF )e

−β(kκ
F −qF )2 + LeL D = 1,

CL2β−1ze−β(kκ
F −qF )2 + L2eL D = 2,

This way we obtain the proof of the lemma.

Proof of Lemma 7.B.3. Same as that for Lemma 7.6.4.

Proof of Lemma 7.B.4. We use Lemma 7.B.2 with qF = ζ−1/2ρ
1/D
0 . Choosing in addition

d ≫ ζ1/2ρ
−1/D
0 then, as in the proof of Proposition 7.2.13 above, by taking n large enough,

we can ensure that the last two summands in [. . .]1/4 are negligible. Then,

Ept(Γ) ≳ −LDaDρ2+2/D
0

[︂
κD/2+2ζ−D/2+2R2ρ

2/D
0 +Rd−1

]︂
− LD

[︂
aDR−D/2−1ρ

4/D
0 d−D/2 + aDρ

2+2/D
0

]︂
×
[︃
ζdDaDρ2

0 + ζ−D/2+2κD/2+2ρ
1−4/D
0 dD−4

]︃1/4
− LDeL.

Restricting to a compact set of z’s we take

d = ρ
−1/D
0 (aDρ0)−s, R = ρ

−1/D
0 (aDρ0)t

for some s, t > 0 to be determined. Then, Ept(Γ) ≥ −C(z)LDaDρ2+2/D
0

[︂
(aDρ0)σ − eL

]︂
with

C(z) bounded uniformly on compact sets of z’s and

σ = 1
8 min

{︃
16t− (4D + 16)α , 2 − (4D + 8)t+ 2Ds ,

− (4D + 8)t+ (2D + 8)s− (D + 4)α , 2 − 2Ds , (8 − 2D)s− (D + 4)α
}︃
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Choosing

s =

⎧⎨⎩
3
11 + 30

11α D = 1,
1
4 + 3

4α D = 2,
t =

⎧⎨⎩
1
11 + 10

11α D = 1,
1
16 + 21

16α D = 2,

we find

σ =

⎧⎨⎩
2
11 − 30

44α D = 1,
1
8 − 3

8α D = 2.

This concludes the proof of Lemma 7.B.4
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Part II

Universalities in BCS Theory





Chapter8
Brief introduction to the BCS theory of

superconductivity

Superconductivity is an important physical phenomenon with many applications ranging from
quantum computers to high-speed levitating trains. It was first observed experimentally by
Kamerlingh Onnes in 1911, see [DK10] for the history, with the first microscopic theory thereof
being BCS theory, developed by Bardeen, Cooper and Schrieffer in 1957 [BCS57]. We give
here only a brief introduction to BCS theory. For a more detailed introduction we refer the
reader to the PhD theses of Deuchert [Deu16], Maier [Mai22] and Roos [Roo23], the review
[HS16], or my master’s thesis [Lau20].

An important aspect of BCS theory is that the effective interaction between the electrons
in some superconductor is sufficiently attractive. Physically this arises from the (attractive)
interactions between electrons and the ions in the crystal lattice. “Integrating out” the degrees
of freedom from the vibrations of the lattice ions, this then yields an effective attractive
interaction between the electrons.

An important feature of a superconductor is its critical temperature Tc. The superconductor
is only superconducting for temperatures smaller than this critical temperature. For larger
temperatures it is a normal metal. A second important feature of BCS theory is its asso-
ciated energy gap Ξ. This is the energy required to excite the superconductor out of the
superconducting state.

Both the energy gap and critical temperature measure the ‘stability’ of the superconducting
phase. While they both depend heavily on the microscopic details of any specific superconductor,
what is perhaps surprising is that they exhibit a certain universal behaviour, however. Namely,
in multiple limiting regimes, their ratio Ξ/Tc is universal meaning that it is independent of
the microscopic details of the material. In general this is expected to appear as soon as
“superconductivity is weak”, meaning that both Ξ and Tc are small. The ratio Ξ/Tc is then
given by a universal function depending only on the reduced temperature T/Tc [LT23; Leg06].

Mathematically, BCS theory is described by the non-linear BCS gap equation, an equation in
the gap function ∆ depending on the temperature of the superconductor. For temperatures
larger than the critical, no non-zero solution ∆ exists, while for temperatures below the critical
there exists some non-zero function ∆ solving the gap equation. The BCS gap equation arises
as the Euler–Lagrange equations of the BCS functional [HHSS08; HS16; Leg80]. Using this
functional formulation, many aspects of BCS theory have been put on rigorous grounds. In
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8. Brief introduction to the BCS theory of superconductivity

particular, asymptotic formulas for the critical temperature [FHNS07; HS08a; HS08b; Hen22]
and energy gap [HS08b; Lau21] have been proven.
Further, BCS theory has been studied for temperatures close to the critical. For these
temperatures superconductivity is also well-described by the phenomenological Ginzburg–
Landau (GL) theory [GL50]. For temperatures close to the critical, BCS theory in fact recovers
GL theory [Gor59]. This was recently proved, even including external electric and magnetic
fields, [DHM23a; DHM23b; FHSS12a; FHSS16; FL16]. For further discussion on the link
between BCS and GL theory and the effect of external fields we refer the reader to the PhD
thesis of Maier [Mai22].
We consider here BCS theory in the translation invariant setting and in infinite volume. In
particular, there are no boundary effects included and this describes the bulk properties of
a superconductor. For a discussion of the non-translation invariant setting and including
boundary effects we refer the reader to the PhD thesis of Roos [Roo23], see also [DGHL18;
HRS23; Roo24; RS23; RS24].

8.1 Universalities in BCS theory
We give next a precise definition of the critical temperature and energy gap in the translation
invariant setting. Further, we discuss their universal behaviour studied in Part II of the thesis.
Again, we refer the reader to [Deu16; HS16; Lau20; Mai22; Roo23] for a more detailed
introduction and extensions to more general settings.
The BCS theory of superconductivity is described by the non-linear gap equation (being an
equation in the function ∆)

∆(p) = − 1
(2π)3/2

ˆ
R3
V̂ (p− q) ∆(q)

K∆
T (q) dq, (8.1.1)

where
K∆
T (p) = E∆(p)

tanh E∆(p)
2T

, E∆(p) =
√︂

|p2 − µ|2 + |∆(p)|2.

The central statement of BCS theory is that, if the effective interaction V is sufficiently attrac-
tive, then there exists some critical temperature Tc > 0 such that for T ≥ Tc Equation (8.1.1)
has only the trivial solution, being the solution ∆(p) ≡ 0, whereas for T < Tc there exists
some non-trivial solution ∆. A sufficient assumption on V is that it is of negative type V̂ ≤ 0
(and non-zero V̂ ̸= 0), in which case also the gap function ∆ is unique up to a constant global
complex phase.
The function E∆(p) has the interpretation as the dispersion relation of associated quasi-
particles, see [HHSS08, Appendix A]. In particular the value Ξ = infpE∆(p) is naturally
interpreted as an energy gap. For negative type interactions, where ∆ is unique up to a
constant global phase, the energy gap is even uniquely defined.
The universal features of BCS theory studied in the thesis relate to the ratio Ξ/Tc. As discussed
above, this ratio is universal in appropriate limiting regimes, where “superconductivity is weak”,
meaning that Tc is small. Proving various notions of this is the contents of Part II of the
thesis.
We consider two such universal properties, the first being the formula

Ξ(T = 0)
Tc

≈ πe−γ ≈ 1.76, (8.1.2)
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with γ ≈ 0.577 the Euler–Mascheroni constant, for the ratio of the zero-temperature energy
gap and the critical temperature. This formula is well-known in the physics literature [BCS57;
NS85]. In the mathematical physics literature this was first proven in the weak coupling limit
[FHNS07; HS08b], where one replaces the interaction V by λV and considers the limit λ → 0.
This was later extended to also cover the low-density limit µ → 0 [HS08a; Lau21]. In Chapter 9
we prove this formula in the weak coupling limit in d = 1, 2 dimensions and in Chapter 10 we
prove this formula in the high-density limit µ → ∞ by establishing an asymptotic formula for
the zero-temperature energy gap and using a similar formula for the critical temperature of
Henheik [Hen22]. Further, we give in Chapter 9 an exemplary proof and compare it to the
other proofs of this universality in the literature and Chapter 10 in various limits.

The second universality we consider is the positive temperature extension of (8.1.2). More
precisely one has the formula [LT23; Leg06]

Ξ(T )
Tc

≈ fBCS

(︃√︂
1 − T/Tc

)︃
, (8.1.3)

for some universal function fBCS described in detail in Chapter 11. In particular, for temperatures
close to the critical, we have the formula

Ξ(T )
Tc

≈

⌜⃓⃓⎷ 8π2

7ζ(3)

√︂
1 − T/Tc ≈ 3.06

√︂
1 − T/Tc,

with ζ(s) = ∑︁∞
n=1 n

−s the Riemann zeta function. Both universalities (8.1.2) and (8.1.3) are
illustrated in Figure 8.1.1.

0 1
0

πe−γ

T/Tc

Ξ/Tc

Figure 8.1.1: (Copied from Chapter 11.) The ratio of the BCS energy gap and
the critical temperature, Ξ/Tc, is well approximated by a universal function of
the relative temperature T/Tc. At T = 0, it approaches the well-known constant
πe−γ ≈ 1.76.
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8. Brief introduction to the BCS theory of superconductivity

We prove in Chapter 11 the validity of the formula in (8.1.3) in the weak coupling limit. This
partially builds on and extends recent work of Langmann and Triola [LT23] showing the validity
of (8.1.3) for temperatures T ∈ [0, (1 − ε)Tc].

For the precise statement of the universalities discussed here and proved in Chapters 9, 10
and 11, we refer the reader to the corresponding chapters.

8.2 Birman–Schwinger principle
The proofs of the universal formulas in Chapters 9, 10 and 11 follow mostly the same structure.
A central ingredient is the Birman–Schwinger principle. We sketch the main ideas here.

First, we note that the BCS gap equation (8.1.1) is equivalent to the operator K∆
T + V

having 0 as its lowest eigenvalue and the associated eigenvector is given by the minimizer α
of the BCS functional. We use this in particular for the temperatures T = 0 (in which case
K∆
T = E∆) and T = Tc (in which case ∆ = 0). The Birman–Schwinger principle then says

that the Birman–Schwinger operator

BT,∆ = sgnV |V |1/2(K∆
T )−1|V |1/2

has −1 as its lowest eigenvalue with associated eigenvector sgn V |V |1/2α. To study the
Birman–Schwinger operator we define the integral

m(T,∆) = 1
|Sd−1|

ˆ
|p|≤

√
2µ

1
K∆
T (p) dp.

In the limit of weak superconductivity, where Tc and ∆ are both small, this integral can be
computed directly. At T = 0 and T = Tc one finds

m(T = 0,∆) ≈ µd/2−1
[︄
log µ

Ξ(T = 0) + log(2cd)
]︄
,

m(Tc,∆ = 0) ≈ µd/2−1
[︃
log µ

Tc
+ log e

γ

π
+ log(2cd)

]︃
,

(8.2.1)

for an explicit dimension-dependent constant cd.

Using the integral m(T,∆) we decompose the Birman–Schwinger operator into a dominant
term and an error term as

BT,∆ = m(T,∆) sgnV |V |1/2F†
µFµ|V |1/2 + sgn V |V |1/2MT,∆|V |1/2,

with Fµ : L1(Rd) → L2(Sd−1) a rescaled Fourier transform and MT,∆ defined such that
this holds. It is an error term. Using that BT,∆ has −1 as its lowest eigenvalue and the
decomposition above we find

m(T,∆) = −
[︄
inf spec

(︄
Fµ|V |1/2 1

1 + sgn V |V |1/2MT,∆|V |1/2 sgn V |V |1/2F†
µ

)︄]︄−1

. (8.2.2)

Neglecting the error term and considering the temperatures T = 0 and T = Tc we thus find
that

m(T = 0,∆) ≈ m(Tc,∆ = 0) ≈ −1
eµ
, eµ = inf spec

(︂
FµV F†

µ

)︂
< 0.
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8.2. Birman–Schwinger principle

Combining with the direct evaluation of the integral m(T,∆) in (8.2.1) we find the asymptotic
formulas

Tc ≈ 2cd
eγ

π
exp

(︄
1

µd/2−1eµ

)︄
, Ξ(T = 0) ≈ 2cd exp

(︄
1

µd/2−1eµ

)︄
,

from which the universal ratio Ξ(T = 0)/Tc ≈ πe−γ follows.

For the proof that Ξ/Tc ≈ fBCS(
√︂

1 − T/Tc) in Chapter 11 a more refined analysis is required.
In particular one needs to treat the ‘log-divergence’ of the BCS gap equation (8.1.1). This
‘log-divergence’ can be understood as the logarithmic divergence of the integral m(T,∆) in
the limit T,∆ → 0, recall (8.2.1).

For temperatures not too close to the critical the analysis is comparable to the analysis
sketched above with one key difference: In Chapter 11 we use the fact that BT,∆ has lowest
eigenvalue −1 simultaneously for two different temperatures. More precisely, using (8.2.2)
for any temperature T together with the temperature Tc we find a formula for the difference
m(T,∆) −m(Tc,∆ = 0). We bound this as being exponentially small in the coupling, see
the details in Chapter 11. Further, the formula m(T,∆) − m(Tc,∆ = 0) ≈ 0 is essentially
the defining equation for the function fBCS, and so we find that Ξ/Tc ≈ fBCS(

√︂
1 − T/Tc) as

desired.

For temperatures close to the critical we instead use the relation of BCS theory to GL theory:
Defining the (rather simple in our case) GL ‘functional’ EGL : C → R, the BCS gap function
is given by ∆ ≈

√︂
1 − T/Tc|ψGL|∆0, with ψGL the minimizer of the GL functional and ∆0 a

specific function used to define the GL functional, see Chapter 11. A precise analysis of the
GL minimizer ψGL yields |ψGL| ≈

√︂
8π2

7ζ(3)
Tc

∆0(√µ) and thus

Ξ
Tc

≈
∆(√µ)
Tc

≈

⌜⃓⃓⎷ 8π2

7ζ(3)

√︂
1 − T/Tc.

This is exactly the value of the function fBCS for temperatures close to the critical, and so
we find the universal ratio Ξ/Tc ≈ fBCS(

√︂
1 − T/Tc) for temperatures close to the critical as

claimed.

271





Chapter9
Universality in low-dimensional BCS

theory

This chapter contains the paper

[LowDim] J. Henheik, A. B. Lauritsen, and B. Roos. “Universality in low-dimensional
BCS theory”, Rev. Math. Phys. (2023), p. 2360005. DOI: 10.1142/S0129
055X2360005X.

Abstract. It is a remarkable property of BCS theory that the ratio of the energy gap at zero
temperature Ξ and the critical temperature Tc is (approximately) given by a universal constant,
independent of the microscopic details of the fermionic interaction. This universality has
rigorously been proven quite recently in three spatial dimensions and three different limiting
regimes: weak coupling, low density, and high density. The goal of this short note is to extend
the universal behavior to lower dimensions d = 1, 2 and give an exemplary proof in the weak
coupling limit.

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9.1.1 Mathematical formulation of BCS theory . . . . . . . . . . . . . . 275
9.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

9.3.1 Proof of Proposition 9.3.1 . . . . . . . . . . . . . . . . . . . . . . 281
9.3.2 Proof of Proposition 9.3.2 . . . . . . . . . . . . . . . . . . . . . . 284
9.3.3 Proof of Proposition 9.2.4 . . . . . . . . . . . . . . . . . . . . . . 289

9.1 Introduction
The Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [BCS57] is governed by
the BCS gap equation. For translation invariant systems without external fields the BCS gap
equation is

∆(p) = − 1
(2π)d/2

ˆ
Rd

V̂ (p− q) ∆(q)
E∆(p) tanh

(︄
E∆(p)

2T

)︄
dq (9.1.1)
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9. Universality in low-dimensional BCS theory

with dispersion relation E∆(p) =
√︂

(p2 − µ)2 + |∆(p)|2. Here, T ≥ 0 denotes the temperature
and µ > 0 the chemical potential. We consider dimensions d ∈ {1, 2, 3}. The Fourier transform
of the potential V ∈ L1(Rd) ∩ LpV (Rd) (with a d-dependent pV ≥ 1 to be specified below),
modeling their effective interaction, is denoted by V̂ (p) = (2π)−d/2 ´

Rd V (x)e−ip·x dx.

According to BCS theory, a system is in a superconducting state, if there exists a non-zero
solution ∆ to the gap equation (9.1.1). The question of existence of such a non-trivial solution
∆ hinges, in particular, on the temperature T . It turns out, there exists a critical temperature
Tc ≥ 0 such that for T < Tc there exists a non-trivial solution, and for T ≥ Tc it does
not [HHSS08, Theorem 9.1.3 and Definition 9.1.4]. This critical temperature is one of the
key (physically measurable) quantities of the theory and its asymptotic behavior, in three
spatial dimensions, has been studied in three physically rather different limiting regimes: In
a weak-coupling limit (i.e. replacing V → λV and taking λ → 0) [FHNS07; HS08b], in a
low-density limit (i.e. µ → 0) [HS08a], and in a high-density limit (i.e. µ → ∞) [Hen22].

As already indicated above, at zero temperature, the function E∆ may be interpreted as the
dispersion relation of a certain ‘approximate’ Hamiltonian of the quantum many-body system,
see [HHSS08, Appendix A]. In particular

Ξ := inf
p∈Rd

E∆(p) (9.1.2)

has the interpretation of an energy gap associated with the approximate BCS Hamiltonian and
as such represents a second key quantity of the theory. Analogously to the critical temperature,
the asymptotic behavior of this energy gap, again in three spatial dimensions, has been studied
in the same three different limiting regimes: In a weak coupling limit [HS08b], in a low density
limit [Lau21], and in a high density limit [Chapter 10].

In this paper, we focus on a remarkable feature of BCS theory, which is well known in the physics
literature [BCS57; LTB19; NS85]: The ratio of the energy gap Ξ and critical temperature
Tc tends to a universal constant, independent of the microscopic details of the interaction
between the fermions, i.e. the potential V . More precisely, in three spatial dimension, it holds
that

Ξ
Tc

≈ π

eγ
≈ 1.76 , (9.1.3)

where γ ≈ 0.577 is the Euler-Mascheroni constant, in each of the three physically very different
limits mentioned above. This result follows as a limiting equality by combining asymptotic
formulas for the critical temperature Tc (see [FHNS07; HS08a; HS08b; Hen22]) and the energy
gap Ξ (see [HS08b; Lau21] and Chapter 10) in the three different regimes. Although these
scenarios (weak coupling, low density, and high density) are physically rather different, they
all have in common that ‘superconductivity is weak’ and one can hence derive an asymptotic
formula for Tc and Ξ as they depart from being zero (in the extreme cases λ = 0, µ = 0,
µ = ∞, respectively). However, all the asymptotic expressions are not perturbative, as they
depend exponentially on the natural dimensionless small parameter in the respective limit. We
refer to the above mentioned original works for details.

The goal of this note is to prove the same universal behavior (9.1.3), which has already been
established in three spatial dimension, also in dimensions d = 1, 2 in the weak coupling limit
(i.e. replacing V → λV and taking λ → 0). This situation serves as a showcase for the
methods involved in the proofs of the various limits in three dimensions (see Remark 9.3.6
and Remark 9.3.9 below). Apart from the mathematical curiosity in d = 1, 2, there have been
recent studies in lower-dimensional superconductors in the physics literature, out of which we
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mention one-dimensional superconducting nanowires [NTH12] and two-dimensional ‘magic
angle’ graphene [Cao+18].

In the remainder of this introduction, we briefly recall the mathematical formulation of
BCS theory, which has been developed mostly by Hainzl and Seiringer, but also other co-
authors [FHNS07; HHSS08; HS16]. Apart from the universality discussed here, also many
other properties of BCS theory have been shown using this formulation: Most prominently,
Ginzburg-Landau theory, as an effective theory describing superconductors close to the critical
temperature, has been derived from BCS theory [DHM23a; DHM23b; FHSS12b; FL16]. More
recently, it has been shown that the effect of boundary superconductivity occurs in the BCS
model [HRS23]. We refer to [HS16] for a more comprehensive review of developments in the
mathematical formulation of BCS theory. The universal behavior in the weak coupling limit
for lower dimensions d = 1, 2 is presented in Section 9.2. Finally, in Section 9.3, we provide
the proofs of the statements from Section 9.2.

9.1.1 Mathematical formulation of BCS theory
We will now briefly recall the mathematical formulation [HHSS08; HS16] of BCS theory
[BCS57], which is an effective theory developed for describing superconductivity of a fermionic
gas. In the following, we consider these fermions in Rd, d = 1, 2, at temperature T ≥ 0 and
chemical potential µ ∈ R, interacting via a two-body potential V , for which we assume the
following.

Assumption 9.1.1. We have that V is real-valued, reflection symmetric, i.e. V (x) = V (−x)
for all x ∈ Rd, and it satisfies V ∈ LpV (Rd), where pV = 1 if d = 1, pV ∈ (1,∞) if d = 2.

Moreover, we neglect external fields, in which case the system is translation invariant.

The central object in the mathematical formulation of the theory is the BCS functional, which
can naturally be viewed as a function of BCS states Γ. These states are given by a pair of
functions (γ, α) and can be conveniently represented as a 2×2 matrix valued Fourier multiplier
on L2(Rd) ⊕ L2(Rd) of the form

Γ̂(p) =
(︄
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(p)

)︄
(9.1.4)

for all p ∈ Rd. In (9.1.4), γ̂(p) denotes the Fourier transform of the one particle density matrix
and α̂(p) is the Fourier transform of the Cooper pair wave function. We require reflection
symmetry of α̂, i.e. α̂(−p) = α̂(p), as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix.

The BCS free energy functional takes the form

FT [Γ] :=
ˆ
Rd

(p2 − µ)γ̂(p) dp− TS[Γ] +
ˆ
Rd

V (x)|α(x)|2 dx , Γ ∈ D, (9.1.5)

D :=
{︄

Γ̂(p) =
(︄
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(p)

)︄
: 0 ≤ Γ̂ ≤ 1 , γ̂ ∈ L1(Rd, (1 + p2) dp) , α ∈ H1

sym(Rd)
}︄
,

where the entropy density is defined as

S[Γ] = −
ˆ
Rd

TrC2

[︂
Γ̂(p) log Γ̂(p)

]︂
dp .
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The minimization problem associated with (9.1.5) is well defined. In fact, the following
result has only been proven for d = 3 and V ∈ L3/2(R3), but its extension to d = 1, 2 is
straightforward.
Proposition 9.1.2 ([HHSS08], see also [HS16]). Under Assumption 9.1.1 on V , the BCS
free energy is bounded below on D and attains its minimum.

The BCS gap equation (9.1.1) arises as the Euler–Lagrange equations of this functional
[HHSS08]. Namely by defining ∆ = −2ˆ︃V α, the Euler–Lagrange equation for α takes the form
of the BCS gap equation (9.1.1). Additionally, one has the following linear criterion for the
BCS gap equation to have non-trivial solutions. Again, so far, a proof has only been given in
spatial dimension d = 3 and for V ∈ L3/2(R3), but its extension to d = 1, 2 is straightforward.

Theorem 9.1.3 ([HHSS08, Thm. 1]). Let V satisfy Assumption 9.1.1 and let µ ∈ R as well
as T ≥ 0. Then, writing FT [Γ] ≡ FT (γ, α), the following are equivalent.

1. The minimizer of FT is not attained with α = 0, i.e.

inf
(γ,α)∈D

FT (γ, α) < inf
(γ,0)∈D

FT (γ, 0),

2. There exists a pair (γ, α) ∈ D with α ̸= 0 such that ∆ = −2ˆ︃V α satisfies the BCS gap
equation (9.1.1),

3. The linear operator KT + V , where KT (p) = p2−µ
tanh((p2−µ)/(2T )) has at least one negative

eigenvalue.

The third item immediately leads to the following definition of the critical temperature Tc for
the existence of non-trivial solutions of the BCS gap equation (9.1.1).

Definition 9.1.4 (Critical temperature, see [FHNS07, Def. 1]). For V satisfying Assumption
9.1.1, we define the critical temperature Tc ≥ 0 as

Tc := inf{T > 0 : KT + V ≥ 0} . (9.1.6)

By KT (p) ≥ 2T and the asymptotic behavior KT (p) ∼ p2 for |p| → ∞, Sobolev’s inequality
[LL01, Thm. 8.3] implies that the critical temperature is well defined.

The other object we study is the energy gap Ξ defined in (9.1.2). The energy gap depends on
the solution ∆ of the gap equation (9.1.1) at T = 0. A priori, ∆ may not be unique. However,
for potentials with non-positive Fourier transform, this possibility can be ruled out.
Proposition 9.1.5 (see [HS08b, (21)-(22) and Lemma 2]). Let V satisfy Assumption 9.1.1
(and additionally V ∈ L1(R2) in case that d = 2). Moreover, we assume that V̂ ≤ 0 and
V̂ (0) < 0. Then, there exists a unique minimizer Γ of F0 (up to a constant phase in α). One
can choose the phase such that α has strictly positive Fourier transform α̂ > 0.

In particular, we conclude that ∆ is strictly positive. Moreover, by means of the gap equation
(9.1.1), ∆ is continuous and thus Ξ > 0.
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9.2 Main Results
As explained in the introduction, our main result in this short note is the extension of the
universality (9.1.3) from d = 3 to lower spatial dimensions d = 1, 2 in the limit of weak
coupling (i.e., replacing V → λV and taking λ → 0). We assume the following properties for
the interaction potential V .

Assumption 9.2.1. Let d ∈ {1, 2} and assume that V satisfies Assumption 9.1.1 as well as
V̂ ≤ 0, V̂ (0) < 0. Moreover, for d = 1 we assume that (1 + | · |ε)V ∈ L1(R1) for some ε > 0.
Finally, in case that d = 2, we suppose that V ∈ L1(R2) is radial.

By Proposition 9.1.5, this means that, in particular, the minimizer of F0 is unique (up to a
phase) and the associated energy gap at zero temperature (9.1.2) is strictly positive, Ξ > 0.
We are now ready to state our main result.
Theorem 9.2.2 (BCS Universality in one and two dimensions). Let V be as in Assumption
9.2.1. Then the critical temperature Tc(λ) (defined in (9.1.6)) and the energy gap Ξ(λ)
(defined in (9.1.2)) are strictly positive for all λ > 0 and it holds that

lim
λ→0

Ξ(λ)
Tc(λ) = π

eγ
,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

To prove the universality, we separately establish asymptotic formulas for Tc (see Theorem 9.2.5)
and Ξ (see Theorem 9.2.7), valid to second order, and compare them by taking their ratio.
The asymptotic formula for Tc is valid under weaker conditions on V than Assumption 9.2.1,
because we do not need uniqueness of ∆. To obtain the asymptotic formulas, we first
introduce two self-adjoint operators V(d)

µ and W(d)
µ mapping L2(Sd−1) → L2(Sd−1) and as

such measuring the strength of the interaction V̂ on the (rescaled) Fermi surface (see [HS08b;
Hen22] and Chapter 10). To assure that V(d)

µ and W(d)
µ will be well-defined and compact, we

assume the following.

Assumption 9.2.3. Let V satisfy Assumption 9.1.1. Additionally, assume that for d = 1,(︂
1 + (ln(1 + | · |))2

)︂
V ∈ L1(R1) and for d = 2, V ∈ L1(R2).

First, in order to capture the strength to leading order, we define V(d)
µ via

(V(d)
µ u)(p) = 1

(2π)d/2

ˆ
Sd−1

V̂ (√µ(p− q))u(q) dω(q) ,

where dω is the Lebesgue measure on Sd−1. Since V ∈ L1(Rd), we have that V̂ is a bounded
continuous function and hence V(d)

µ is a Hilbert-Schmidt operator (in fact, trace class with trace
being equal to (2π)−d|Sd−1|

´
Rd V (x) dx). Therefore, its lowest eigenvalue e(d)

µ := inf spec V(d)
µ

satisfies e(d)
µ ≤ 0 and it is strictly negative if e.g.

´
V < 0 as in Assumption 9.2.1.
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Second, in order to capture the strength of V̂ to next to leading order, we define the operator
W(d)

µ via its quadratic form⟨︂
u
⃓⃓⃓
W(d)

µ

⃓⃓⃓
u
⟩︂

= µd/2−1
[︄ˆ

|p|<
√

2

1
|p2 − 1|

(︂
|ψ(√µp)|2 − |ψ(√µp/|p|)|2

)︂
dp

+
ˆ

|p|>
√

2

1
|p2 − 1|

|ψ(√µp)|2 dp
]︄
,

where ψ(p) = 1
(2π)d/2

´
Sd−1 V̂ (p − √

µq)u(q) dω(q) and u ∈ L2(Sd−1). The proof of the
following proposition shall be given in Section 9.3.3.
Proposition 9.2.4. Let d ∈ {1, 2} and let V satisfy Assumption 9.2.3. The operator W(d)

µ is
well-defined and Hilbert-Schmidt.

Next, we define the self-adjoint Hilbert-Schmidt operator

B(d)
µ (λ) := π

2
(︂
λV(d)

µ − λ2W(d)
µ

)︂
on L2(Sd−1) and its ground state energy

b(d)
µ (λ) := inf spec

(︂
B(d)
µ (λ)

)︂
. (9.2.1)

Note that if e(d)
µ < 0, then also b(d)

µ (λ) < 0 for small enough λ. After these preparatory
definitions, we are ready to state the separate asymptotic formulas for the critical temperature
and the energy gap in one and two dimensions, which immediately imply Theorem 9.2.2.
Theorem 9.2.5 (Critical Temperature for d = 1, 2). Let µ > 0. Let V satisfy Assumption 9.2.3
and additionally e(d)

µ < 0. Then the critical temperature Tc, given in Definition 9.1.4, is strictly
positive and satisfies

lim
λ→0

(︄
ln
(︄

µ

Tc(λ)

)︄
+ π

2µd/2−1 b
(d)
µ (λ)

)︄
= −γ − ln

(︃2cd
π

)︃
,

where γ denotes the Euler-Mascheroni constant and c1 = 4
1+

√
2 and c2 = 1.

Here, the Assumptions on V are weaker than Assumption 9.2.1, since V̂ (0) < 0 implies that
e(d)
µ < 0. We thus have the asymptotic behavior

Tc(λ) = 2cd
eγ

π

(︂
1 + o(1)

)︂
µ eπ/(2µd/2−1b

(d)
µ (λ))

in the limit of small λ.

Remark 9.2.6. Theorem 9.2.5 is essentially a special case of [HS10, Theorem 2]. We give
the proof here for two main reasons.

(i) There is still some work required to translate the statement of [HS10, Theorem 2]
into a form in which it is comparable to that of Theorem 9.2.7 (in order to prove
Theorem 9.2.2). The main difficulty is that the operator W(d)

µ in [HS10] is only defined
via a limit, [HS10, Equation (2.10)].
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(ii) The goal of this paper is to give an exemplary proof of Theorem 9.2.5 in order to compare
it to the proofs of the similar statements in the literature concerning the asymptotic
behavior of the critical temperature in various limits [HS08a; HS08b; Hen22].

Theorem 9.2.5 is complemented by the following asymptotics for the energy gap.
Theorem 9.2.7 (Energy Gap for d = 1, 2). Let V satisfy Assumption 9.2.1 and let µ > 0.
Then there exists a unique radially symmetric minimizer (up to a constant phase) of the BCS
functional (9.1.5) at temperature T = 0. The associated energy gap Ξ, given in (9.1.2), is
strictly positive and satisfies

lim
λ→0

(︄
ln
(︃
µ

Ξ

)︃
+ π

2µd/2−1 b
(d)
µ (λ)

)︄
= − ln(2cd) ,

where b(d)
µ is defined in (9.2.1) and c1 = 4

1+
√

2 and c2 = 1.

In other words, we have the asymptotic behavior

Ξ(λ) = 2cd
(︂
1 + o(1)

)︂
µ eπ/(2µd/2−1b

(d)
µ (λ))

in the limit of small λ. Now, Theorem 9.2.2 follows immediately from Theorems 9.2.5
and 9.2.7.

Remark 9.2.8 (Other limits in dimensions d = 1, 2). Similarly to the presented results, one
could also consider the limits of low and high density. We expect that also here the universality
Ξ
Tc

≈ π
eγ holds. As mentioned in the introduction, this has already been shown in three spatial

dimensions [HS08a; Hen22; Lau21], [Chapter 10]. We expect that one could generalize the
arguments of [HS08a; Hen22; Lau21], [Chapter 10] to lower dimensions, but that there will be
some non-trivial technical difficulties in doing so. Also for the weak coupling limit presented
here, the overall structure and ideas of the proof are the same in lower dimensions as in three
dimensions [HS08b], but with non-trivial technical differences, see Remark 9.3.3.

The following is an example of such a non-trivial difference in the low-density limit. In three
spatial dimensions [HS08a; Lau21] the asymptotic formulas for Tc and Ξ were obtained for
attractive potentials V not creating bound states of −∇2 + V . This latter condition ensures
that the low-density limit is given by µ → 0. However, in spatial dimensions one and two,
attractive potentials, no matter how weak, always give rise to bound states of −∇2 + V , see
[Sim76]. This means that one should not take the limit µ → 0, but rather the limit µ → −Eb,
with −Eb < 0 the energy of the (lowest energy) bound state, see [HS12]. We will not deal
with the low- and high-density limits here.

The rest of the paper is devoted to proving Theorem 9.2.5 and Theorem 9.2.7.

9.3 Proofs
The overall structure of our proofs is as follows: First, we argue that the Schrödinger type
operators KTc + λV and E∆ + λV have lowest eigenvalue zero. The second step is to study
the corresponding Birman-Schwinger operators

B
(d)
T := λV 1/2K−1

T |V |1/2 and B
(d)
∆ := λV 1/2E−1

∆ |V |1/2 ,
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9. Universality in low-dimensional BCS theory

where V (x)1/2 = sgn(V (x))|V (x)|1/2. According to the Birman-Schwinger principle, the
lowest eigenvalue of B(d)

Tc
and B

(d)
∆ is −1. It turns out, that for X ∈ {T,∆} one can

decompose
B

(d)
X = λm(d)

µ (X)V 1/2(F(d)
µ )†F(d)

µ |V |1/2 + λV 1/2M
(d)
X |V |1/2, (9.3.1)

where V 1/2M
(d)
X |V |1/2 are bounded operators,

m(d)
µ (T ) = 1

|Sd−1|

ˆ
|p|<

√
2µ

1
KT (p) dp, (9.3.2)

m(d)
µ (∆) = 1

|Sd−1|

ˆ
|p|<

√
2µ

1
E∆(p) dp, (9.3.3)

and F(d)
µ : L1(Rd) → L2(Sd−1) is the (scaled) Fourier transform restricted to the (rescaled)

Fermi sphere, (︂
F(d)
µ ψ

)︂
(p) = 1

(2π)d/2

ˆ
Rd

ψ(x)e−i√µp·x dx .

Note that for an L1-function, pointwise values of its Fourier transform are well-defined by the
Riemann–Lebesgue lemma. (In particular the restriction to a co–dimension 1 manifold of a
sphere is well-defined.)

To satisfy the constraint that the lowest eigenvalue of the Birman-Schwinger operators is −1,
the functions m(d)

µ must diverge as λ → 0. It turns out that this is only possible if T and ∆
go to zero. For each m(d)

µ one then derives the asymptotics up to second order in two ways,
once from the constraint that B(d)

X has lowest eigenvalue −1 and once by directly computing
the asymptotics of m(d)

µ for T and ∆ going to zero.

Indeed, for the critical temperature we obtain the following asymptotics, which, by combining
them, immediately prove Theorem 9.2.5.
Proposition 9.3.1. Let µ > 0. Let V satisfy Assumption 9.2.3 and additionally e(d)

µ < 0.
Then, the critical temperature Tc is positive and, as λ → 0, we have that

m(d)
µ (Tc) = − π

2b(d)
µ (λ)

+ o(1) ,

m(d)
µ (Tc) = µd/2−1

(︃
ln
(︃
µ

Tc

)︃
+ γ + ln

(︃2cd
π

)︃
+ o(1)

)︃
.

For the energy gap we obtain the following asymptotics, which, again by combining them,
immediately prove Theorem 9.2.7.
Proposition 9.3.2. Let V satisfy Assumption 9.2.1 and let µ > 0. Then (by Proposition
9.1.5) we have a strictly positive radially symmetric gap function ∆ and associated energy
gap Ξ, which, as λ → 0, satisfy the asymptotics

Ξ = ∆(√µ)
(︂
1 + o(1)

)︂
m(d)
µ (∆) = − π

2b(d)
µ (λ)

+ o(1)

m(d)
µ (∆) = µd/2−1

(︄
ln
(︄

µ

∆(√µ)

)︄
+ ln(2cd) + o(1)

)︄

With a slight abuse of notation, using radiality of ∆, we wrote ∆(√µ) instead of ∆(√µp̂) for
some p̂ ∈ Sd−1.
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Remark 9.3.3. The main technical differences between d ∈ {1, 2} considered here and the
proof for d = 3 in [HS08b] arise when bounding V 1/2M

(d)
X |V |1/2. The underlying reason is that

the Fourier transform of the constant function on the sphere jd(x) = (2π)−d/2 ´
Sd−1 e

ip·x dω(p)
decays like 1/|x| for large |x| in three dimensions, but only like |x|−1/2 in two dimensions and
does not decay for d = 1.

Remark 9.3.4. In [CM21], Cuenin and Merz use the Tomas-Stein theorem to define F(d)
µ on a

larger space than L1(Rd). With this they are able to prove a general version of Theorem 9.2.5
under slightly weaker conditions on V . However, we do not pursue this here, see Remark 9.2.6.

9.3.1 Proof of Proposition 9.3.1

Proof of Proposition 9.3.1. The argument is divided into several steps.
1. A priori spectral information on KTc + λV . First note that, due to Theorem 9.1.3
and Definition 9.1.4, the critical temperature Tc is determined by the lowest eigenvalue of
KT + λV being 0 exactly for T = Tc.
2. Birman-Schwinger principle. Next, we employ the Birman-Schwinger principle, which
says that the compact Birman-Schwinger operator B(d)

T = λV 1/2K−1
T |V |1/2 has −1 as its

lowest eigenvalue exactly for T = Tc, see [FHNS07; HS08b].

Using the notation for the Fourier transform restricted to the rescaled Fermi sphere introduced
above, we now decompose the Birman-Schwinger operator as in (9.3.1), where M (d)

T is defined
through the integral kernel

M
(d)
T (x, y) = 1

(2π)d

[︄ˆ
|p|<

√
2µ

1
KT (p)

(︂
eip·(x−y) − ei

√
µp/|p|·(x−y)

)︂
dp

+
ˆ

|p|>
√

2µ

1
KT

eip·(x−y) dp
]︄
.

(9.3.4)

We claim that V 1/2M
(d)
T |V |1/2 is uniformly bounded.

Lemma 9.3.5. Let µ > 0. Let V satisfy Assumption 9.2.3. Then we have for all T ≥ 0⃦⃦⃦
V 1/2M

(d)
T |V |1/2

⃦⃦⃦
HS

≤ C ,

where C > 0 denotes some positive constant and ∥ · ∥HS is the Hilbert-Schmidt norm.

Armed with this bound, we have that for sufficiently small λ that 1 + λV 1/2M
(d)
T |V |1/2 is

invertible, and hence

1 +B
(d)
T = (1 + λV 1/2M

(d)
T |V |1/2)

(︄
1 +

λm(d)
µ (T )

1 + λV 1/2M
(d)
T |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2
)︄
.

Thus, the fact that B(d)
T has lowest eigenvalue −1 at T = Tc is equivalent to

λm(d)
µ (T )F(d)

µ |V |1/2 1
1 + λV 1/2M

(d)
T |V |1/2

V 1/2(F(d)
µ )† (9.3.5)

having lowest eigenvalue −1, again at T = Tc, as it is isospectral to the rightmost operator
on the right-hand-side above. (Recall that for bounded operators A,B, the operators AB and
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9. Universality in low-dimensional BCS theory

BA have the same spectrum apart from possibly at 0. However, in our case, both operators
are compact on an infinite dimensional space and hence 0 is in both spectra.)

We now prove Lemma 9.3.5.

Proof of Lemma 9.3.5. We want to bound the integral kernel (9.3.4) of M (d)
T uniformly in

T . Hence, we will bound KT ≥ |p2 − µ|. The computation is slightly different in d = 1 and
d = 2, so we do them separately.
d = 1. The second integral in (9.3.4) is bounded by

2
ˆ

|p|>
√

2µ

1
|p2 − µ|

dp = 2 arcoth
√

2
√
µ

.

For the first integral, we use that |eix − eiy| ≤ min{|x− y|, 2}, |p2 −µ| ≥ √
µ||p| − √

µ|, and
increase the domain of integration to obtain the bound

2
√
µ

ˆ 2√
µ

0

min
{︂
||p− √

µ||x− y|, 2
}︂

|p− √
µ|

dp = 8
√
µ

[︄
1 + ln

(︄
max

{︄
|x− y|√µ

2 , 1
}︄)︄]︄

≤ 8
√
µ

(1 + ln(1 + √
µmax{|x|, |y|}).

We conclude that |M (1)
T (x, y)| ≲ 1√

µ
(1 + ln(1 + √

µmax{|x|, |y|})). Hence,

⃦⃦⃦
V 1/2M

(1)
T |V |1/2

⃦⃦⃦2

HS
≲

1
µ

(︄
∥V ∥2

L1(R) + ∥V ∥L1(R)

ˆ
R

|V (x)|(1 + ln(1 + √
µ|x|))2 dx

)︄
.

d = 2. We first compute the angular integral. Note that
´
S1 e

ipx dω(p) = 2πJ0(|x|), where
J0 is the zeroth order Bessel function. For the second integral in (9.3.4) we may bound
|p2 − µ| ≥ cp2. Up to some finite factor, the second integral is hence bounded by

ˆ ∞

√
2µ

1
p

|J0(p|x− y|)| dp ≤ C

ˆ ∞

√
2µ

1
p1+λ |x− y|−λ dp ≤ Cλ|x− y|−λ,

for any 0 < λ ≤ 1/2 since |J0(x)| ≤ C and
√
xJ0(x) ≤ C, see e.g. [BSMM12, (9.55f),

(9.57a)]. For the first integral we get the bound

ˆ √
2µ

0

p

|p2 − µ|
|J0(p|x− y|) − J0(

√
µ|x− y|)| dp.

Here we use that J0 is Lipschitz, since its derivative J−1 is bounded (see e.g. [BSMM12,
(9.55a), (9.55f)]), so that

|J0(x) − J0(y)| ≤ C|x− y|1/3(|J0(x)| + |J0(y)|)2/3 ≤ C|x− y|1/3
(︂
x−1/3 + y−1/3

)︂
.

That is

|J0(p|x− y|) − J0(
√
µ|x− y|)| ≤ C

|p− √
µ|1/3

p1/3 + √
µ1/3 .
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This shows that the first integral is bounded. We conclude that |M (2)
T (x, y)| ≲ 1 + 1

|x−y|λ for
any 0 < λ ≤ 1/2. Then, by the Hardy–Littlewood–Sobolev inequality [LL01, Theorem 4.3] we
have that⃦⃦⃦

V 1/2M
(2)
T |V |1/2

⃦⃦⃦2

HS
=
¨

|V (x)||M (2)
T (x, y)||V (y)| dx dy ≲ ∥V ∥2

L1(R2) + ∥V ∥2
Lp(R2)

for any 1 < p ≤ 4/3.

3. First order. Evaluating (9.3.5) at T = Tc and expanding the geometric series to first
order we get

−1 = λm(d)
µ (Tc) inf spec

⎛⎝F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
Tc

|V |1/2
V 1/2(F(d)

µ )†

⎞⎠
= λm(d)

µ (Tc) inf spec V(d)
µ (1 +O(λ)) = λm(d)

µ (Tc) e(d)
µ (1 +O(λ))

where we used V(d)
µ = F(d)

µ V (F(d)
µ )†. Since by assumption e(d)

µ < 0, this shows that m(d)
µ (Tc) →

∞ as λ → 0.
4. A priori bounds on Tc. By (9.3.2), the divergence of m(d)

µ as λ → 0 in particular shows
that Tc/µ → 0 in the limit λ → 0.
5. Calculation of the integral m(d)

µ (Tc). This step is very similar to [HS08b, Lemma 1]
and [HRS23, Lemma 3.5], where the asymptotics have been computed for slightly different
definitions of m(d)

µ in three and one spatial dimension, respectively. Integrating over the angular
variable and substituting s =

⃓⃓⃓
|p|2
µ

− 1
⃓⃓⃓
, we get

m(d)
µ (Tc) = µd/2−1

ˆ 1

0
tanh

(︄
s

2(Tc/µ)

)︄
(1 + s)d/2−1 + (1 − s)d/2−1

2s ds.

According to [HS08b, Lemma 1],

lim
Tc↓0

⎛⎝ˆ 1

0

tanh
(︂

s
2(Tc/µ)

)︂
s

ds− ln µ

Tc

⎞⎠ = γ − ln π2 .

By monotone convergence, it follows that

m(d)
µ (Tc) = µd/2−1

[︄
ln µ

Tc
+ γ − ln π2 +

ˆ 1

0

(1 − s)d/2−1 + (1 + s)d/2−1 − 2
2s ds+ o(1)

]︄
.

The remaining integral equals ln cd and we have thus proven the second item in Proposi-
tion 9.3.1.

Combining this with the third step, one immediately sees that the critical temperature vanishes
exponentially fast, Tc ∼ e1/λeµ , as λ → 0, recalling that e(d)

µ < 0 by assumption.
6. Second order. Now, to show the universality, we need to compute the next order correction.
To do so, we expand the geometric series in (9.3.5) and employ first order perturbation theory,
yielding that

m(d)
µ (Tc) = −1

λ
⟨︂
u
⃓⃓⃓
F

(d)
µ V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

− λ2
⟨︂
u
⃓⃓⃓
F

(d)
µ VM

(d)
Tc
V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

+O(λ3)
, (9.3.6)
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where u is the (normalized) ground state (eigenstate of lowest eigenvalue) of F(d)
µ V (F(d)

µ )†. (In
case of a degenerate ground state, u is the ground state minimizing the second order term.)

This second order term in the denominator of (9.3.6) is close to W(d)
µ . More precisely, it holds

that
lim
λ→0

⟨︂
u
⃓⃓⃓
F(d)
µ VM

(d)
Tc
V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

=
⟨︂
u
⃓⃓⃓
W(d)

µ

⃓⃓⃓
u
⟩︂
, (9.3.7)

which easily follows from dominated convergence, noting that 1
KT

increases to 1
|p2−µ| as T → 0.

We then conclude that
lim
λ→0

(︄
m(d)
µ (Tc) + π

2b(d)
µ (λ)

)︄
= 0 ,

since
⟨︂
u
⃓⃓⃓
λV(d)

µ − λ2W(d)
µ

⃓⃓⃓
u
⟩︂

= inf spec(λV(d)
µ − λ2W(d)

µ ) +O(λ3) = π
2 b

(d)
µ (λ) +O(λ3), again

by first-order perturbation theory. This concludes the proof of Proposition 9.3.1.

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.

Remark 9.3.6 (Structure here vs. in earlier papers on Tc). We compare the structure of our
proof to that of the different limits in three dimensions [HS08a; HS08b; Hen22]:

• Weak coupling: The structure of the proof we gave here is quite similar to that of
[HS08b], only they do Steps 5 and 6 in the opposite order. Also the leading term for Tc
was shown already in [FHNS07], where a computation somewhat similar to Steps 1–4 is
given.

• High density: For µ → ∞, the structure of the proof in [Hen22] is slightly different
compared to the one given here. This is basically due to the facts that (i) the necessary
a priori bound Tc = o(µ) already requires the Birman-Schwinger decomposition and
(ii) the second order requires strengthened assumptions compared to the first order.
To conclude, the order of steps in [Hen22] can be thought of as: 1, 5, 4 (establishing
Tc = O(µ)), 2, 3, 4 (establishing Tc = o(µ)), 2 (again), 6. Here the final step is much
more involved than in the other limits considered.

• Low density: As above, for the proof of the low density limit in [HS08a] the structure is
slightly different. One first needs the a priori bound Tc = o(µ) on the critical temperature
before one uses the Birman-Schwinger principle and decomposes the Birman-Schwinger
operator.1 Also, the decomposition of the Birman-Schwinger operator is again different.
For the full decomposition and analysis of the Birman-Schwinger operator one needs
also the first-order analysis, that is Step 2, which is done in two parts. The order of the
steps in [HS08a] can then mostly be though of as: 1, 4, 5, 2, 3, 2 (again), 6.

9.3.2 Proof of Proposition 9.3.2

Proof of Proposition 9.3.2. The structure of the proof is parallel to that of Proposition 9.3.1
for the critical temperature.
1. A priori spectral information on E∆ +λV . First, it is proven in [HS08b, Lemma 2] that

1Strictly speaking, in [HS08a], it is only proven that Tc = O(µ) (which is sufficient for applying the
Birman-Schwinger principle), while the full Tc = o(µ) itself requires the Birman-Schwinger decomposition (see
[Lau20, Remark 4.12] for details).
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F0 has a unique minimizer α which has strictly positive Fourier transform. Using radiality of V ,
it immediately follows that this minimizer is rotationally symmetric (since otherwise rotating
α would give a different minimizer) and hence also ∆ = −2λV̂ ⋆ α̂ is rotation invariant. It
directly follows from [HS08b, (43) and Lemma 3] that that E∆ + λV has lowest eigenvalue 0,
and that the minimizer α is the corresponding eigenfunction.
2. Birman-Schwinger principle. This implies, by means of the Birman-Schwinger principle,
that the Birman-Schwinger operator B(d)

∆ = λV 1/2E−1
∆ |V |1/2 has −1 as its lowest eigenvalue.

As in the proof of Proposition 9.3.1, we decompose it as described in (9.3.1) and prove the
second summand to be uniformly bounded.
Lemma 9.3.7. Let µ > 0. Let V satisfy Assumption 9.2.3. Then, uniformly in small λ, we
have ⃦⃦⃦

V 1/2M
(d)
∆ |V |1/2

⃦⃦⃦
HS

≤ C .

With this one may similarly factor

1+B(d)
∆ = (1+λV 1/2M

(d)
∆ |V |1/2)

⎛⎝1 +
λm(d)

µ (∆)
1 + λV 1/2M

(d)
∆ |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2

⎞⎠ (9.3.8)

and conclude that

T
(d)
∆ := λm(d)

µ (∆)F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )† (9.3.9)

has lowest eigenvalue −1.

Proof of Lemma 9.3.7. Note that M∆ has kernel

M∆(x, y) = 1
(2π)d

[︄ˆ
|p|<

√
2µ

1
E∆(p)

(︂
eip·(x−y) − ei

√
µp/|p|·(x−y)

)︂
dp

+
ˆ

|p|>
√

2µ

1
E∆(p)e

ip·(x−y) dp
]︄
.

We may bound this exactly as in the proof of Lemma 9.3.5 using that E∆(p) ≥ |p2 − µ|.

3. First order. Expanding the geometric series in (9.3.9) to first order, we see that

−1 = λm(d)
µ (∆) inf spec

⎛⎝F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )†

⎞⎠
= λm(d)

µ (∆) inf spec V(d)
µ (1 +O(λ)) = λe(d)

µ m(d)
µ (∆)(1 +O(λ)).

Hence, in particular, m(d)
µ (∆) ∼ − 1

λe
(d)
µ

→ ∞ as λ → 0.

4. A priori bounds on ∆. We now prepare for the computation of the integral m(d)
µ (∆)

in terms of ∆(√µ). This requires two types of bounds on ∆: One bound estimating the
gap function ∆(p) at general momentum p ∈ Rd in terms of ∆(√µ) (see (9.3.10)), and one
bound controlling the difference |∆(p) − ∆(q)| in some kind of Hölder-continuity estimate
(see (9.3.11)).
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Lemma 9.3.8. Suppose that V is as in Assumption 9.2.1. Then for λ small enough

∆(p) = f(λ)
(︄ˆ

Sd−1
V̂ (p− √

µq) dω(q) + ληλ(p)
)︄
,

where f is some function of λ and ∥ηλ∥L∞(Rd) is bounded uniformly in λ.

Proof. Recall that α is the eigenfunction of E∆ + λV with lowest eigenvalue 0. Then, by the
Birman-Schwinger principle, ϕ = V 1/2α satisfies

B∆ϕ = λV 1/2 1
E∆

|V |1/2V 1/2α = −ϕ.

With the decomposition Equation (9.3.8) then ϕ is an eigenfunction of

λm(d)
µ (∆)

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2

of eigenvalue −1. Thus, F(d)
µ |V |1/2ϕ is an eigenfunction of T (d)

∆ of (lowest) eigenvalue −1.
Now u = |Sd−1|−1/2 is the unique eigenfunction corresponding to the lowest eigenvalue of V(d)

µ

by radiality of V and the assumption V̂ ≤ 0 (see e.g. [FHNS07]). Hence, for λ small enough,
u is the unique eigenfunction of T (d)

∆ of smallest eigenvalue. Thus,

ϕ = f(λ) 1
1 + λV 1/2M

(d)
∆ |V |1/2

V 1/2(F(d)
µ )†u = f(λ)

(︂
V 1/2(F(d)

µ )†u+ λξλ
)︂

for some number f(λ). The function ξλ satisfies ∥ξλ∥L2(Rd) ≤ C by Lemma 9.3.7. Noting

that ∆ = −2 ˆ︂|V |1/2ϕ and bounding
⃦⃦⃦⃦
ˆ︂|V |1/2ξλ

⃦⃦⃦⃦
L∞

≤ ∥V ∥1/2
L1 ∥ξλ∥L2 we get the desired.

Evaluating the formula in Lemma 9.3.8 at p = √
µ we get |f(λ)| ≤ C∆(√µ) for λ small

enough. This in turn implies that

∆(p) ≤ C∆(√µ) . (9.3.10)

For the Hölder-continuity, we have by rotation invariance⃓⃓⃓⃓
⃓
ˆ
V̂ (p− √

µr) − V̂ (q − √
µr) dω(r)

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
ˆ
V̂ (|p|e1 − √

µr) − V̂ (|q|e1 − √
µr) dω(r)

⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓ 1
(2π)d/2

ˆ
Rd

dx
(︄
V (x)

(︂
ei|p|x1 − ei|q|x1

)︂ˆ
Sd−1

e−i√µx·r dω(r)
)︄⃓⃓⃓⃓
⃓

≤ Cεµ
−ε/2||p| − |q||ε

ˆ
dx
(︄

|V (x)|(√µ|x|)ε
⃓⃓⃓⃓
⃓
ˆ
Sd−1

e−i√µx·r dω(r)
⃓⃓⃓⃓
⃓
)︄
,

for any 0 < ε ≤ 1. For d = 2 we have V ∈ L1(R2) and⃓⃓⃓⃓
⃓
ˆ
Sd−1

e−i√µxr dω(r)
⃓⃓⃓⃓
⃓ = |J0(

√
µ|x|)| ≤ (√µ|x|)−1/2.

For d = 1 we have |x|εV ∈ L1(R) for some ε > 0 and⃓⃓⃓⃓
⃓
ˆ
Sd−1

e−i√µx·r dω(r)
⃓⃓⃓⃓
⃓ = 2| cos(√µ|x|)| ≤ 2.
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We conclude that with ε = 1/2 for d = 2 and small enough ε > 0 for d = 1

|∆(p) − ∆(q)| ≤ C|f(λ)|
(︂
µ−ε/2||p| − |q||ε + λ

)︂
≤ C|∆(√µ)|

(︂
µ−ε/2||p| − |q||ε + λ

)︂
.

(9.3.11)
Additionally, since m(d)

µ (∆) → ∞ we have that ∆(p) → 0 at least for some p ∈ Rd by (9.3.3).
Then it follows from Lemma 9.3.8 that f(λ) → 0, i.e. that ∆(p) → 0 for all p.
5. Calculation of the integral m(d)

µ (∆). Armed with the a priori bounds (9.3.10) and
(9.3.11), we can now compute the integral m(d)

µ (∆). Carrying out the angular integration and
substituting s =

⃓⃓⃓
|p|2−µ
µ

⃓⃓⃓
we have

m(d)
µ (∆) = µd/2−1

2

⎡⎣ˆ 1

0

⎛⎝(1 − s)d/2−1 − 1√︂
s2 + x−(s)2

+ (1 + s)d/2−1 − 1√︂
s2 + x+(s)2

⎞⎠ ds

+
ˆ 1

0

⎛⎝ 1√︂
s2 + x−(s)2

+ 1√︂
s2 + x+(s)2

⎞⎠ ds
⎤⎦ ,

where x±(s) = ∆(√µ
√

1±s)
µ

. By dominated convergence, using that x±(s) → 0, the first
integral is easily seen to converge to

ˆ 1

0

(︄
(1 − s)d/2−1 − 1

s
+ (1 + s)d/2−1 − 1

s

)︄
ds = 2 ln cd

for λ → 0. For the second integral, we will now show that
ˆ 1

0

⎛⎝ 1√︂
s2 + x±(s)2

− 1√︂
s2 + x±(0)2

⎞⎠ ds → 0 .

In fact, the integrand is bounded by⃓⃓⃓⃓
⃓⃓ 1√︂
s2 + x±(s)2

− 1√︂
s2 + x±(0)2

⃓⃓⃓⃓
⃓⃓

= |x±(0)2 − x±(s)2|√︂
s2 + x±(s)2

√︂
s2 + x±(0)2(

√︂
s2 + x±(s)2 +

√︂
s2 + x±(0)2)

≤ Cx±(0)(sε + λ)√︂
s2 + x±(s)2

√︂
s2 + x±(0)2

,

using the Hölder continuity from (9.3.11). By continuity of V̂ there exists some s0 (independent
of λ) such that for s < s0 we have x±(s) ≥ cx±(0). We now split the integration into

´ s0
0

and
´ 1
s0

. For the first we have
ˆ s0

0

⃓⃓⃓⃓
⃓⃓ 1√︂
s2 + x±(s)2

− 1√︂
s2 + x±(0)2

⃓⃓⃓⃓
⃓⃓ ds ≤ C

ˆ s0

0

x±(0)
s2 + x±(0)2 (sε + λ) ds

= O(x±(0)ε + λ) .

For the second we have
ˆ 1

s0

⃓⃓⃓⃓
⃓⃓ 1√︂
s2 + x±(s)2

− 1√︂
s2 + x±(0)2

⃓⃓⃓⃓
⃓⃓ ds ≤ C

ˆ 1

s0

x±(0)s
ε + λ

s2 ds = O(x±(0)) .
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Collecting all the estimates, we have thus shown that m(d)
µ (∆) equals

µd/2−1

⎛⎝ln cd +
ˆ 1

0

1√︂
s2 + ∆(√µ)2/µ2

ds+ o(1)
⎞⎠

=µd/2−1

⎛⎝ln cd + ln
⎛⎝µ+

√︂
µ2 + ∆(√µ)2

|∆(√µ)|

⎞⎠+ o(1)
⎞⎠ = µd/2−1 ln

(︄
2µcd

|∆(√µ)| + o(1)
)︄
.

This proves the third inequality in Proposition 9.3.2.

Combining this with the third step, one immediately sees that the gap function evaluated
on the Fermi sphere vanishes exponentially fast, ∆(√µ) ∼ e1/λeµ , as λ → 0, recalling that
e(d)
µ < 0 by assumption.

6. Second order. To obtain the next order, we recall that T (d)
∆ has lowest eigenvalue −1

(see (9.3.9)), and hence, by first-order perturbation theory,

m(d)
µ (∆) = −1

λ
⟨︂
u
⃓⃓⃓
F

(d)
µ V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

− λ2
⟨︂
u
⃓⃓⃓
F

(d)
µ VM

(d)
∆ V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

+O(λ3)
, (9.3.12)

where u(p) = |Sd−1|−1/2 is the constant function on the sphere. Recall that u is the unique
ground state of V(d)

µ .

In the second order term we have that

lim
λ→0

⟨︂
u
⃓⃓⃓
F(d)
µ VM

(d)
∆ V (F(d)

µ )†
⃓⃓⃓
u
⟩︂

=
⟨︂
u
⃓⃓⃓
W(d)

µ

⃓⃓⃓
u
⟩︂
,

which follows from a simple dominated convergence argument as for Tc, noting that ∆(p) → 0
pointwise.

By again employing first–order perturbation theory, similarly to the last step in the proof of
Proposition 9.3.1, we conclude the second equality in Proposition 9.3.2.
7. Comparing ∆(√µ) to Ξ. To prove the first equality in Proposition 9.3.2 we separately
prove upper and lower bounds. The upper bound is immediate from

Ξ = inf
p∈Rd

E∆(p) = inf
p∈Rd

√︂
|p2 − µ| + ∆(p)2 ≤ ∆(√µ) .

Hence, for the lower bound, take p ∈ Rd with
√︂

|p2 − µ| ≤ Ξ ≤ ∆(√µ). Then by (9.3.11)

∆(p) ≥ ∆(√µ) − |∆(p) − ∆(√µ)| ≥ ∆(√µ) − C∆(√µ) (||p| − √
µ|ε + λ)
≥ ∆(√µ)(1 + o(1)).

In combination with the upper bound, we have thus shown that Ξ = ∆(√µ)(1 + o(1)) as
desired. This concludes the proof of Proposition 9.3.2.

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.

Remark 9.3.9 (Structure here vs. in earlier papers on Ξ). We now compare the proof above
to the proofs of the three different limits in 3 dimensions [HS08b; Lau21], [Chapter 10]:
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• Weak coupling: The structure of our proof here is very similar to that of [HS08b].
Essentially, only the technical details in Lemma 9.3.7 and the calculation of m(d)

µ (∆) in
Step 5 are different.

• High density: For the high-density limit in Chapter 10, we needed some additional a
priori bounds on ∆ before we could employ the Birman-Schwinger argument. Apart
from that, in Chapter 10 the comparison of ∆(√µ) and Ξ are done right after these a
priori bounds. Additionally, since one starts with finding a priori bounds on ∆, one does
not need the first-order analysis in Step 3. One may think of the structure in Chapter 10
as being ordered in the above steps as follows: 4, 7, 1, 2, 4 (again), 5, 6.

• Low density: For the low-density limit in [Lau21] the structure is quite different. Again,
one first needs some a priori bounds on ∆ before one can use the Birman-Schwinger
argument. One then improves these bounds on ∆ using the Birman-Schwinger argument,
which in turn can be used to get better bounds on the error term in the decomposition
of the Birman–Schwinger operator. In this sense, the Steps 2–4 are too interwoven to
be meaningfully separated. Also, Step 5 is done in two parts.

9.3.3 Proof of Proposition 9.2.4
Note that W(d)

µ = F(d)
µ VM

(d)
0 V (F(d)

µ )†, where M (d)
0 is defined in (9.3.4). By Lemma 9.3.5,

V 1/2M
(d)
0 V 1/2 is Hilbert-Schmidt. The integral kernel of W(d)

µ is bounded by

|W(d)
µ (p, q)| ≤ 1

(2π)d

ˆ
R2d

|V (x)||M (d)
0 (x, y)||V (y)| dx dy ≤ 1

(2π)d∥V ∥1∥V 1/2M
(d)
0 V 1/2∥HS.

(9.3.13)
It follows that ∥W(d)

µ ∥HS ≤ |Sd−1|
(2π)d ∥V ∥1∥V 1/2M

(d)
0 V 1/2∥HS.
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Chapter10
The BCS energy gap at high density

This chapter contains the paper

[HighDen] J. Henheik and A. B. Lauritsen. “The BCS Energy Gap at High Density”, J
Stat Phys 189.5 (2022). DOI: 10.1007/s10955-022-02965-9.

Abstract. We study the BCS energy gap Ξ in the high–density limit and derive an asymptotic
formula, which strongly depends on the strength of the interaction potential V on the Fermi
surface. In combination with the recent result by one of us (Math. Phys. Anal. Geom. 25,
2022) on the critical temperature Tc at high densities, we prove the universality of the ratio of
the energy gap and the critical temperature.

Contents
10.1 Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 291

10.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.2.1 Proof of Lemma 10.2.2 . . . . . . . . . . . . . . . . . . . . . . . 298
10.2.2 Proofs of Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . 306

10.1 Introduction and Main Results
The Bardeen–Cooper–Schrieffer (BCS) theory [BCS57] (see [HS16] for a review of recent
rigorous mathematical work) has been an important theory of superconductivity since its
conception. More recently, it has also gained attraction for describing the phenomenon of
superfluidity in ultra cold fermionic gases, see [BDZ08; CSTL05] for reviews. In either context,
BCS theory is often formulated in terms of the BCS gap equation (at zero temperature)

∆(p) = − 1
(2π)3/2

ˆ
R3
V̂ (p− q) ∆(q)

E∆,µ(q) dq , (10.1.1)

where E∆,µ(p) =
√︂

(p2 − µ)2 + |∆(p)|2. At finite temperature T > 0 one replaces E∆,µ
by E∆,µ/ tanh(E∆,µ/2T ). The function ∆ is interpreted as the order parameter describing
the Cooper pairs (paired fermions). The interaction is local and given by the potential V ,
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which we will assume satisfies V ∈ L1(R3), in which case it has a Fourier transform given by
(FV )(p) = V̂ (p) = (2π)−3/2 ´

R3 V (x)e−ip·x dx.

The chemical potential µ controls the density of the fermions, and we investigate the high–
density limit, i.e. µ → ∞, here. Recently this limit was studied by one of us [Hen22], where
an asymptotic formula for the critical temperature Tc was found. For temperatures T below
the critical temperature, T < Tc, the gap equation at temperature T (Equation (10.1.1)
with E∆,µ replaced as prescribed) admits a non–trivial solution, for T ≥ Tc it does not.
The critical temperature may equivalently be characterized by the existence of a negative
eigenvalue of a certain linear operator, see [HHSS08]. Physically, a system at temperature T
is superconducting/–fluid if T < Tc, if T ≥ Tc it is not.

In this paper we study the energy gap (at zero temperature)

Ξ = inf
p
E∆,µ(p) = inf

p

√︂
(p2 − µ)2 + |∆(p)|2 . (10.1.2)

The function E∆,µ has the interpretation of the dispersion relation for the corresponding BCS
Hamiltonian, and so Ξ is indeed an energy gap (see Appendix A in [HHSS08]). We show that,
in the high–density limit, µ → ∞, the ratio of the energy gap and the critical temperature
tends to a universal constant independent of the interaction potential,

Ξ
Tc

≈ π

eγ
, (10.1.3)

where γ ≈ 0.577 denotes the Euler–Mascheroni constant. This universality is well–known in
the physics literature, see, e.g., [GM61], and was rigorously verified in the weak–coupling limit
by Hainzl and Seiringer [HS08b] and in the low–density limit, µ → 0, by one of us [Lau21]
building on a work by Hainzl and Seiringer [HS08a]. The general strategy for proving the
universality in these limits has been to establish sufficiently good asymptotic formulas for both,
Tc and Ξ, and compare them afterwards.

The weak–coupling limit is studied in [FHNS07; HS08b], where one considers a potential
λV for V fixed and a small coupling constant λ → 0. In this limit, Hainzl and Seiringer
[HS08b] have shown that the critical temperature and energy gap satisfies Tc ∼ A exp(−B/λ)
and Ξ ∼ C exp(−B/λ) respectively for explicit constants A,B,C > 0 depending on the
interaction potential V and the chemical potential µ. This limit exhibits the same universality
and the ratio C/A = πe−γ is independent of the interaction potential V and the chemical
potential µ.

The low–density limit µ → 0 is studied in [HS08a; Lau21]. In this limit Hainzl and Seiringer
[HS08a] have shown that the critical temperature satisfies Tc ∼ µA exp(−B/√µ) and one
of us [Lau21] has shown that the energy gap satisfies Ξ ∼ µC exp(−B/√µ), for some
(different) explicit constants A,B,C > 0 depending on the interaction potential V . Also
in this limit we have the same universality and the ratio C/A = πe−γ is independent of
the interaction potential V . These results together with the present paper thus show that
the universality (10.1.3) holds in both, the low– and high–density limit, as well as in the
weak–coupling limit.

To show the universality, we prove in Theorem 10.1.3 an asymptotic formula for the energy gap
Ξ in the high–density limit, similar to the corresponding formula for the critical temperature
given in Theorem 7 in [Hen22]. This formula, as well as the one given in Theorem 10.1.3,
depends strongly on the strength of the interaction potential V on the Fermi sphere {p2 = µ},
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which becomes weak due to the decay of V̂ in momentum space. Together with the formula
for the critical temperature [Hen22] we prove the universality (10.1.3) in Corollary 10.1.5. All
proofs are given in Section 10.2. We now introduce some technical constructions and give the
precise statements of our results.

10.1.1 Preliminaries
We will work with the formulation of BCS theory of [FHNS07; HHSS08; HS08a; HS16; HS08b;
Hen22; Lau21]. There one considers minimizers of the BCS functional (at zero temperature)

F(α) = 1
2

ˆ
R3

|p2 − µ|
(︃

1 −
√︂

1 − 4|α̂(p)|2
)︃

dp+
ˆ
R3
V (x)|α(x)|2 dx . (10.1.4)

If α is a minimizer of this, then ∆ = −2ˆ︃V α satisfies the BCS gap equation (10.1.1). As
discussed in [HS08b] the minimizer α is in general not necessarily unique, hence also ∆ and
Ξ are not necessarily unique. However, since we will assume that the interaction V has
non–positive Fourier transform, α and thus Ξ is unique (see Lemma 2 in [HS08b]).

A crucial role for the investigation of the energy gap (10.1.2) in the high–density limit is played
by the (rescaled) operator Vµ : L2(S2) → L2(S2) measuring the strength of the interaction
potential V̂ on the Fermi surface. It is defined as

(Vµu) (p) = 1
(2π)3/2

ˆ
S2
V̂ (√µ(p− q))u(q)Dω(q) , (10.1.5)

where dω denotes the uniform (Lebesgue) measure on the unit sphere S2. The pointwise
evaluation of V̂ (and in particular on a codim−1 submanifold) is well defined since V ∈ L1(R3).
The condition that V ∈ L1(R3) could potentially be relaxed, see [CM21] and Remark 9 in
[Hen22]. The lowest eigenvalue of Vµ, which we denote by

eµ = inf spec Vµ

will be of particular importance. Note, that Vµ is a trace–class operator (see the argument
above Equation (3.2) in [FHNS07]) with

tr(Vµ) = 1
2π2

ˆ
R3
V (x) dx =

√︄
2
π
V̂ (0) .

We will assume that V̂ (0) < 0 in which case eµ < 0. This corresponds to an attractive
interaction between (some) electrons on the Fermi sphere.

In this work, we restrict ourselves to the special case of radial potentials V , where the spectrum
of Vµ can be determined more explicitly (see, e.g., Section 2.1 in [FHNS07]). Indeed, for radial
V , the eigenfunctions of Vµ are spherical harmonics and the corresponding eigenvalues are

1
2π2

ˆ
R3
V (x) (jℓ(

√
µ|x|))2 dx . (10.1.6)

The lowest eigenvalue eµ is thus given by

eµ = 1
2π2 inf

ℓ∈N0

ˆ
R3
V (x) (jℓ(

√
µ|x|))2 dx .
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10. The BCS energy gap at high density

Here, jℓ denotes the spherical Bessel function of order ℓ ∈ N0. Additionally, in case that
V̂ ≤ 0, we have, by the Perron–Frobenius theorem, that the minimal eigenvalue is attained
for the constant eigenfunction (i.e. with ℓ = 0). Thus

eµ = 1
2π2

ˆ
R3
V (x)

(︄
sin(√µ|x|)

√
µ|x|

)︄2

dx . (10.1.7)

For further discussions of the radiality assumption on V , see Remark 8 in [Hen22].

In order to obtain an asymptotic formula for the energy gap that is valid up to second order
(see [HS08b; Hen22]), we define the operator W(κ)

µ on u ∈ L2(S2) via its quadratic form

⟨︂
u
⃓⃓⃓
W(κ)

µ

⃓⃓⃓
u
⟩︂

= √
µ

ˆ ∞

0
d|p|

(︄
|p|2

||p|2 − 1|

[︄ˆ
S2

dω(p)
(︂
|φ̂(√µp)|2 − |φ̂(√µp/|p|)|2

)︂]︄

+ |p|2

|p|2 + κ2

ˆ
S2

dω(p)|φ̂(√µp/|p|)|2
)︄

(10.1.8)

for any fixed κ ≥ 0 (cf. Equation (10) in [Hen22] resp. Equation (13) in [HS08b] for an
analogous definition with κ = 0). Here φ̂(p) = (2π)−3/2 ´

S2 V̂ (p − √
µq)u(q) dω(q), and

(|p|, ω(p)) ∈ (0,∞) × S2 denote spherical coordinates for p ∈ R3. To see that this operator
is well–defined note that the map |p| ↦→

´
S2 dω(p)|φ̂(p)|2 is Lipschitz continuous for any

u ∈ L2(S2) since V ∈ L1(R3). Hence the radial integral in Equation (10.1.8) is well defined for
|p| ∼ 1. We will further assume that V ∈ L3/2(R3), in which case the integral is well–defined
for large |p| as well. We formulate our result in Theorem 10.1.3 only for κ = 0, but the case of
a positive parameter κ > 0 is crucial in the proof of this statement. For example, κ > 0 ensures
that the second term in the decomposition of the Birman–Schwinger operator associated with
E∆,µ + V is small (cf. Equation (10.2.2)). Whenever it does not lead to confusion, we will
refer to some κ–dependent quantity at κ = 0 by simply dropping the (κ)–superscript.

We now define the operator
B(κ)
µ = π

2
(︂
Vµ − W(κ)

µ

)︂
, (10.1.9)

which captures the strength of the interaction potential near the Fermi surface to second order
and denote its lowest eigenvalue by

b(κ)
µ = inf spec B(κ)

µ . (10.1.10)

The factor π/2 is introduced in Equation (10.1.9) since for this scaling, the eigenvalue b(κ)
µ has

the interpretation of an effective scattering length in the case of small µ (see Proposition 1 in
[HS08b]). Moreover, it was shown during the proof of Theorem 7 in [Hen22] that if eµ < 0
then also b(κ)

µ < 0 for µ large enough. This will also follow from Equation (10.2.17) in the
proof below.

10.1.2 Results
The following definition characterizes the class of interaction potentials for which our asymptotic
formula will hold.

Definition 10.1.1 (Admissible potentials). Let V ∈ L1(R3)∩L3/2(R3) be a radial real–valued
function with non–positive Fourier transform V̂ ≤ 0 and V̂ (0) < 0. Denote

s∗
± := sup

{︂
s ≥ 0 : | · |−sV± ∈ L1(R3)

}︂
, s∗ := min{s∗

+, s
∗
−} , (10.1.11)
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where V± = max{±V, 0} are the positive and negative parts of V . We say that V is admissible
if the following is satisfied:

(a) There exists a > 0 such that

sup
{︄
r ≥ 0 : lim

ε→0

1
εr

ˆ
Bε

V±(x) dx = 0
}︄

= sup
{︄
r ≥ 0 : lim

ε→0

1
εr

ˆ
Bε

V±|∗Ba
(x) dx = 0

}︄
,

where V±|∗Ba
denotes the symmetric decreasing rearrangement of V±|Ba , the restriction

of V± to the ball of radius a around 0,

(b) if | · |−2V /∈ L1(R3), we have s∗ = s∗
− < s∗

+, and

(c) | · |V ∈ L2(R3) and s∗ > 7/5.

As discussed around Equation (10.1.4), the definiteness of the Fourier transform is needed
for ensuring uniqueness of the energy gap Ξ. Intuitively, the other criteria may be though as
follows: Assumption (a) captures that the strongest singularity of V near the origin is in fact
at the origin, assumption (b) captures that V is predominantly attractive, and assumption (c)
captures that V is slightly less divergent at the origin, than allowed by the L3/2(R3)-assumption.
In view of assumption (a), we remark that it is natural that the system is sensitive to the short
range behavior of the interaction potential, since the interparticle distance as the physically
relevant length scale that depends on the particle density tends to zero in the high–density
limit. Furthermore, note that for V ∈ L1(R3) ∩ L3/2(R3), the condition | · |V ∈ L2(R3) is
mainly about regularity away from 0 and infinity.

The most important examples of allowed interaction potentials include the cases of attractive
Gaussian, Lorentzian and Yukawa potentials, also discussed in [LTB19]. That is

VGauss(x) = −(2π)−3/2e−x2/2 , VLorentz(x) = − 1
π2(1 + x2)2 , VYukawa(x) = − 1

4π|x|
e−|x| .

Remark 10.1.2. The proof of our main result formulated in Theorem 10.1.3 works without
change if we assume | · |V ∈ Lr(R3) for some 2 ≥ r > f(s∗) instead of | · |V ∈ L2(R3), where
f is some complicated (explicit) expression, see the proof of Proposition 10.2.9. We do not
state the theorem with this slight generalization for simplicity. We will however give the proof
under this more general assumption for the purpose of illuminating where the assumption
on r = 2 comes from. Additionally, to further illuminate where the conditions are used, all
propositions and lemmas are stated with only the conditions needed on V for that specific
statement. (Beyond the conditions that V ∈ L1(R3) ∩ L3/2(R3) is real–valued, radial and has
V̂ ≤ 0, V̂ (0) < 0, which is always assumed.)

We can now state our main result for admissible interaction potentials.
Theorem 10.1.3. Let V be an admissible potential. Then the energy gap Ξ is positive and
satisfies

lim
µ→∞

(︄
log µΞ + π

2√
µbµ

)︄
= 2 − log(8) . (10.1.12)
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In other words,

Ξ = µ
(︂
8 e−2 + o(1)

)︂
exp

(︄
π

2√
µbµ

)︄

in the limit µ → ∞. Similarly as for the critical temperature [Hen22], this asymptotic formula
is completely analogous to the weak–coupling case [HS08b] (replace V → λV and take the
limit λ → 0) but we have coupling parameter λ = 1 here. This similarity is not entirely
surprising. From a physical perspective, only those fermions with momenta close to the Fermi
surface {p2 = µ} contribute to the superconductivity/–fluidity. Thus, by the decay of the
interaction V̂ in Fourier space, the high–density limit, µ → ∞, is effectively a weak–coupling
limit.

In order to deduce universality as in Equation (10.1.3) in the high–density limit, we show that
every admissible potential in the sense of Definition 10.1.1 satisfies the imposed conditions
for the proof of an analogous formula for the critical temperature. These conditions were
formulated in Definition 5 in [Hen22].
Proposition 10.1.4. Every admissible potential satisfies the conditions of Definition 5 in
[Hen22].

Proof. By comparing the two definitions, the statement is trivial apart from the following two
points. First, the additional requirement

´
R3

V (x)
|x|2 dx < 0 from Definition 5 in [Hen22] in the

case | · |−2V ∈ L1(R3) is automatically fulfilled, since

−∆p

ˆ︃V
| · |2

(p) = V̂ (p) ≤ 0 .

That is, the radial function ˆ︂V
|·|2 is subharmonic and approaches 0 as |p| → ∞ (by the Riemann–

Lebesgue Lemma), and thus by the maximum principle assumes a strictly negative value at 0.
Second, since V̂ ≤ 0 and by application of the Perron–Frobenius Theorem, the constant
spherical harmonic is the unique normalized ground state of Vµ and thus condition (d) from
Definition 5 in [Hen22] can be dropped.

Therefore, by means of Theorem 7 in [Hen22], the critical temperature Tc satisfies

Tc = µ
(︃ 8
π
eγ−2 + o(1)

)︃
exp

(︄
π

2√
µbµ

)︄

for any admissible potential. Here γ ≈ 0.577 is the Euler–Mascheroni constant. Together with
Theorem 10.1.3, this immediately proves the following.
Corollary 10.1.5. Let V be an admissible potential. Then

lim
µ→∞

Ξ
Tc

= π

eγ
≈ 1.764 .

This universality of the ratio between the energy gap and the critical temperature is well known
in the physics literature (see, e.g., [GM61]) and has been previously established rigorously in
the weak–coupling and low–density limits (see [HS08b] resp. [Lau21]).
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10.2 Proofs
As in the analysis of the critical temperature [Hen22] we introduce the parameter κ > 0. We
have the following comparison of b(κ)

µ with the κ = 0 quantity.
Lemma 10.2.1 ([Hen22, Lemma 15]). Let V be admissible and κ > 0. In the limit of high
density, µ → ∞, we have

π

2√
µbµ

= π

2√
µb

(κ)
µ

+ κ
π

2 + o(1) .

Proof. This is immediate from Lemma 15 in [Hen22] by invoking Proposition 10.1.4.

Now, one important ingredient in our proof is the asymptotic behavior of

m(κ)
µ (∆) = 1

4π

ˆ
R3

(︄
1

E∆,µ(p) − 1
p2 + κ2µ

)︄
dp

for fixed κ > 0 (recall that E∆,µ(p) =
√︂

(p2 − µ)2 + |∆(p)|2). This is similar to the strategy
for the weak–coupling, low–density, and high–density limits of the critical temperature (see
[HS08a; HS08b; Hen22]), and for the weak–coupling and low–density limits of the energy gap
(see [HS08b; Lau21]).
Lemma 10.2.2. Let V be admissible and κ > 0. In the limit of high density, µ → ∞, we
have

Ξ = ∆(√µ)(1 + o(1)) ,

m(κ)
µ (∆) = √

µ

(︄
log µ

∆(√µ) − 2 + κ
π

2 + log(8) + o(1)
)︄
,

m(κ)
µ (∆)
√
µ

= − π

2√
µb

(κ)
µ

+ o(1) .

These three asymptotic equalities are proven in Propositions 10.2.5, 10.2.9, and 10.2.10
respectively.

Proof of Theorem 10.1.3. By Lemma 10.2.2 and Lemma 10.2.1 we get

lim
µ→∞

(︄
log µΞ + π

2√
µbµ

)︄
= lim

µ→∞

(︄
log µ

∆(√µ) + π

2√
µbµ

)︄

= lim
µ→∞

⎛⎝log µ

∆(√µ) + π

2√
µb

(κ)
µ

⎞⎠+ κ
π

2 = lim
µ→∞

(︄
log µ

∆(√µ) −
m(κ)
µ (∆)
√
µ

)︄
+ κ

π

2

= 2 − κ
π

2 + log(8) + κ
π

2 = 2 − log(8) ,

which yields (10.1.12) and we have proven Theorem 10.1.3.

The rest of this paper is devoted to the proof of Lemma 10.2.2.
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10.2.1 Proof of Lemma 10.2.2
As remarked, a key idea is to study the integral m(κ)

µ (∆). As in [HS08b; Lau21] we first need
some control of ∆ in the form of a Lipschitz–like bound (given in Lemma 10.2.4) and a bound
controlling ∆(p) in terms of ∆(√µq) for q ∈ S2 (given in Equation (10.2.10)). First, we recall
some properties (from [HS08b]) of the minimizer α of the BCS functional at zero temperature

F(α) = 1
2

ˆ
R3

|p2 − µ|
(︃

1 −
√︂

1 − 4|α̂(p)|2
)︃

dp+
ˆ
R3
V (x)|α(x)|2 dx . (10.2.1)

In [HS08b, Lemma 2] it is shown that for potentials V with non-positive Fourier transform
there exists a unique minimizer α with (strictly) positive Fourier transform. Moreover, for
radial V the BCS functional is invariant under rotations. Hence α and thus also ∆ = −2ˆ︃V α
are radial functions. Therefore, with a slight abuse of notation, we will write ∆(|p|) and mean
∆(p) for some (any) vector p. (In general for any radial function f , we will write f(|p|) for
the value of f(p).) Additionally, since V̂ ≤ 0 we have that ∆ ≥ 0. In fact, by the BCS gap
equation (10.1.1), we even have ∆ > 0, see Lemma 2 in [HS08b]. Now, we give some a priori
bounds on the minimizer α. The proofs of Lemma 10.2.3 and Lemma 10.2.4 are given in
Section 10.2.2.
Lemma 10.2.3. Let α be the minimizer of the BCS functional (10.2.1). Then for large µ

∥α∥L2 ≤ Cµ7/20 and ∥α∥H1 ≤ Cµ3/4.

These estimates on the minimizer α now translate to bounds on ∆ = −2ˆ︃V α.
Lemma 10.2.4. Suppose V ∈ Lr(R3) for some 6/5 ≤ r ≤ 2. Define δr = 3

4 − 6
5r . Then for

sufficiently large µ we have

∥∆∥L∞ ≤ Cµ
24−5r

20r = Cµ
1
2 −δr .

Similarly, if | · |V ∈ Lr(R3) then

|∆(p) − ∆(q)| ≤ Cµ
24−5r

20r ||p| − |q|| = Cµ
1
2 −δr ||p| − |q||

for all p, q. In particular, if r > 8/5 then δr > 0 and thus 1/2 − δr < 1/2.

We will use the first bound as ∥∆∥L∞ ≤ Cµ11/20 = o(µ) for r = 3/2, and the second bound
as |∆(p) − ∆(q)| ≤ Cµ7/20||p| − |q|| for r = 2.

Armed with these a priori bounds on ∆, we can now prove the asymptotic formulas in
Lemma 10.2.2 and start with the first one.
Proposition 10.2.5. Suppose | · |V ∈ Lr(R3) for r > 8/5. Then Ξ = ∆(√µ)(1 + o(1)).

Proof. Clearly Ξ = inf
√︂

|p2 − µ|2 + |∆(p)|2 ≤ ∆(√µ). Take now p with |p2 − µ| ≤ Ξ ≤
∆(√µ). Then

|∆(p) − ∆(√µ)| ≤ Cµ1/2−δr ||p| − √
µ| ≤ Cµ1/2−δr

∆(√µ)
|p| + √

µ
≤ Cµ−δr∆(√µ)

where δr > 0 by assumption. Hence, ∆(p) = ∆(√µ)(1+o(1)) for any such p and we conclude
the desired.
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The proofs of the second and third equality (Proposition 10.2.9 and Proposition 10.2.10,
respectively) heavily use Lemma 10.2.6 and Lemma 10.2.7, which we import from [Hen22].
Lemma 10.2.6 provides an upper bound for integrals of the potential against spherical Bessel
functions jℓ, uniformly in ℓ ∈ N0. These naturally arise by the spherical symmetry of V
(cf. Equation (10.1.6)).
Lemma 10.2.6 ([Hen22, Lemma 12]). Let V ∈ L1(R3) ∩ L3/2(R3) and assume that s∗ > 1,
with s∗ as in Definition 10.1.1. Set

β∗ =

⎧⎨⎩
s∗

2 for s∗ ∈ (1, 5/3]
min

(︂
4s∗−4
9s∗−7 + 1

2 ,
19
22

)︂
for s∗ > 5/3 .

Note that β∗ depends continuously on s∗ and is (strictly) monotonically increasing (between 1
and 2), and β∗ ≤ min(s∗, 2)/2 for any s∗ > 1. Then for any δ > 0 there exists an ε0 > 0
such that for all ε ∈ [0, ε0] we have

lim sup
µ→∞

µβ
∗−δ sup

ℓ∈N0

ˆ
R3

dx|V (x)||jℓ(
√
µ|x|)|2−ϵ = 0 .

Lemma 10.2.7 gives a lower bound on the quantity eµ that measures the strength of the
interaction potential on the Fermi surface (see Equation (10.1.7)).
Lemma 10.2.7 ([Hen22, Lemma 13]). Let V be an admissible potential (cf. Definition 10.1.1).
Then for any δ > 0 there exists cδ > 0 such that

lim inf
µ→∞

|µmin(s∗+δ,2)/2 eµ| ≥ cδ .

Proof. This is immediate from Lemma 13 in [Hen22] by invoking Proposition 10.1.4.

An upper bound is trivially obtained as |eµ| ≤ Cδµ
− min(s∗−δ,2)/2 for any δ > 0 by definition

of s∗ in Equation (10.1.11) (see also Equation (10.2.9)). Note that both, upper and lower
bound, remain true if we replace the exponent with min(s∗, 2)/2 ± δ, i.e. cδµ− min(s∗,2)/2−δ ≤
|eµ| ≤ Cδµ

− min(s∗,2)/2+δ. This is the formulation we will use.

Beside these two Lemmas, we will use the following observation: It can easily be checked
(see Lemma 3 in [HS08b]) that the operator E∆,µ(p) + V (x) has 0 as its lowest eigenvalue,
and that α is the (unique) eigenvector with this eigenvalue. By employing the Birman–
Schwinger principle (see [FHNS07; HHSS08; HS16]), this is equivalent to the fact that the
Birman–Schwinger operator

B∆,µ = V 1/2 1
E∆,µ

|V |1/2

has −1 as its lowest eigenvalue with V 1/2α being the corresponding (unique) eigenvector. Here
we used the notation V (x)1/2 = sgn(V (x))|V (x)|1/2. In the following we need a convenient
decomposition of B∆,µ in a dominant singular term and other error terms. For this purpose
we let Fµ : L1(R3) → L2(S2) denote the (rescaled) Fourier transform restricted to S2 with

(Fµψ) (p) = 1
(2π)3/2

ˆ
R3
e−i√µp·xψ(x) dx ,

which is well–defined by the Riemann–Lebesgue Lemma. Now, we decompose the Birman–
Schwinger operator as

B∆,µ = m(κ)
µ (∆)V 1/2Fµ

†Fµ|V |1/2 + V 1/2M
(κ)
∆,µ|V |1/2 , (10.2.2)
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where M (κ)
∆,µ is such that this holds. For the first term, note that V 1/2Fµ

†Fµ|V |1/2 is isospectral
to Vµ = FµV Fµ

†. In fact, the spectra agree at first except possibly at 0, but 0 is in both
spectra as the operators are compact on an infinite dimensional space. This first term in the
decomposition (10.2.2) will be the dominant term, which is how the third equality in Lemma
10.2.2 will arise.

Analogously to the proof of Lemma 14 in [Hen22] and the proof of Theorem 1 in [HS08b], we
further decompose

V 1/2M
(κ)
∆,µ|V |1/2 = V 1/2 1

p2 + κ2µ
|V |1/2 + A

(κ)
∆,µ =: L(κ)

µ + A
(κ)
∆,µ , (10.2.3)

where now A
(κ)
∆,µ is such that this holds. During the proof of Lemma 14 in [Hen22] (see the

Equation in the middle of page 15) it was shown that

⃦⃦⃦
L(κ)
µ

⃦⃦⃦
op

≤ C µ1/2
ˆ ∞

0
dp p2

p2 + κ2 sup
ℓ∈N0

ˆ
R3

dx|V (x)| |jℓ(
√
µp|x|)|2 ,

which may be bounded by µ−β∗+1/2+δ for any δ > 0 by means of Lemma 10.2.6. We continue
with a bound on the operator norm of A(κ)

∆,µ by estimating the matrix elements ⟨f |A(κ)
∆,µ|g⟩ for

functions f, g ∈ L2(R3). This computation is analogous to the computation in the proof of
Theorem 2 in [Hen22]. We give it here for completeness.

Note that, since V is radial, it is enough to restrict to functions of definite angular momentum.
That is, with a slight abuse of notation, functions of the form f(x) = Y m

ℓ (x̂)f(|x|), where
Y m
ℓ denotes the spherical harmonics and we write x̂ = x/|x|. The operator A(κ)

∆,µ is indeed
block–diagonal in the angular momentum as will follow from the computations below. Since
functions of definite angular momentum span L2(R3) [Hal13, Sections 17.6-17.7] it is thus
enough to bound ⟨f |A(κ)

∆,µ|g⟩ for f, g of the form f(x) = Y m
ℓ (x̂)f(|x|), g(x) = Y m′

ℓ′ (x̂)g(|x|).

Now, A(κ)
∆,µ has integral kernel

A
(κ)
∆,µ(x, y) = CV 1/2(x)|V (y)|1/2

ˆ
R3

(︄
1

E∆,µ(p) − 1
p2 + κ2µ

)︄(︂
eip·(x−y) − ei

√
µp̂·(x−y)

)︂
dp .

Thus, by the radiality of V we get
⟨︂
f
⃓⃓⃓
A

(κ)
∆,µ

⃓⃓⃓
g
⟩︂

= C

ˆ ∞

0
d|x| |x|2V 1/2(|x|)f(|x|)

ˆ ∞

0
d|y| |y|2|V (|y|)|1/2g(|y|)

×
ˆ ∞

0
d|p| |p|2

(︄
1

E∆,µ(|p|) − 1
|p|2 + κ2µ

)︄ˆ
S2

dω(p̂)

×
ˆ
S2

dω(x̂)
ˆ
S2

dω(ŷ)Y m
ℓ (x̂)Y m′

ℓ′ (ŷ)
(︂
e−ip·(x−y) − e−i√µp̂·(x−y)

)︂
.

(10.2.4)

Now, using the plane–wave expansion eip·x = 4π∑︁∞
ℓ=0

∑︁ℓ
m=−ℓ i

ℓjℓ(|p||x|)Y m
ℓ (p̂)Y m

ℓ (x̂), the
spherical integrations in x and y may be evaluated as

16π2(−i)ℓ+ℓ′ (jℓ(|p||x|)jℓ′(|p||y|) − jℓ(
√
µ|x|)jℓ′(

√
µ|y|))Y m

ℓ (p̂)Y m′

ℓ′ (p̂)

using the orthogonality of the spherical harmonics. The spherical p–integral of this gives a
factor δℓℓ′δmm′ again by orthogonality of the spherical harmonics. (This shows that A(κ)

∆,µ is
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block–diagonal in the angular momentum as claimed.) We may thus restrict to the case of
ℓ = ℓ′ and m = m′. Hereinafter, we will write x, y, and p instead of |x|, |y|, and |p|.

Recall the following bounds on spherical Bessel functions

sup
ℓ∈N0

sup
x≥0

|jℓ(x)| ≤ 1 , sup
ℓ∈N0

sup
x≥0

|j′
ℓ(x)| ≤ 1 , sup

ℓ∈N0

sup
x≥0

x5/6|jℓ(x)| ≤ C ,

where the first one is elementary, the second one follows from [AS14, Eq. 10.1.20], and
the third one may be found in [Lan00, Eq. 1] (see also Proposition 16 in [Hen22]). Adding
±jℓ(px)jℓ(

√
µy) and using these bounds we may estimate for any 0 < ε < 5/11

|jℓ(px)jℓ(py) − jℓ(
√
µx)jℓ(

√
µy)|

≤ C|p− √
µ|ε

(︂
p−ε + (√µ)−ε

)︂ (︂
|jℓ(px)|1−11ε/5 + |jℓ(

√
µx)|1−11ε/5

)︂
×
(︂
|jℓ(py)|1−11ε/5 + |jℓ(

√
µy)|1−11ε/5

)︂
.

(10.2.5)

The radial p–integral in Equation (10.2.4) is then (a constant times)
ˆ ∞

0
dp
(︄

1
E∆,µ(p) − 1

p2 + κ2µ

)︄
(jℓ(px)jℓ(py) − jℓ(

√
µx)jℓ(

√
µy)) (10.2.6)

Using Equation (10.2.5) and changing integration variable p → √
µp we get

|(10.2.6)| ≤ Cµ1/2
ˆ ∞

0
dp p2

⃓⃓⃓⃓
⃓⃓ 1√︂

(p2 − 1)2 + |∆(√µp)/µ|2
− 1
p2 + κ2

⃓⃓⃓⃓
⃓⃓ |p− 1|ε

(︄
1
pε

+ 1
)︄

×
(︂
|jℓ(

√
µpx)|1−11ε/5 + |jℓ(

√
µx)|1−11ε/5

)︂
×
(︂
|jℓ(

√
µpy)|1−11ε/5 + |jℓ(

√
µy)|1−11ε/5

)︂
.

Plugging this into Equation (10.2.4) and using Hölder for the x– and y–integrations we thus
get ⃓⃓⃓⟨︂

f
⃓⃓⃓
A

(κ)
∆,µ

⃓⃓⃓
g
⟩︂⃓⃓⃓

≤ Cµ1/2
ˆ ∞

0
dp p2

⃓⃓⃓⃓
⃓⃓ 1√︂

(p2 − 1)2 + |∆(√µp)/µ|2
− 1
p2 + κ2

⃓⃓⃓⃓
⃓⃓ |p− 1|ε

(︄
1
pε

+ 1
)︄

×
ˆ
R3

dx |V (x)|
(︂
|jℓ(

√
µp|x|)|2−22ε/5 + |jℓ(

√
µ|x|)|2−22ε/5

)︂
,

where we changed back to x denoting a vector in R3. By Lemma 10.2.6 we may bound the
x–integral by µ−β∗+δ(1 + p−β∗+δ) for any δ > 0. Also, ∥∆∥L∞ = o(µ) by Lemma 10.2.4.
Hence the p–integral will be finite uniformly in µ for µ large enough. We conclude that⃦⃦⃦

A
(κ)
∆,µ

⃦⃦⃦
op

≤ Cµ−β∗+1/2+δ

for any δ > 0 and for µ large enough. Combining this with the bound on ∥L(κ)
µ ∥op from above,

we get

lim sup
µ→∞

µβ
∗−1/2−δ

⃦⃦⃦
V 1/2M

(κ)
∆,µ|V |1/2

⃦⃦⃦
op

= 0 (10.2.7)
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10. The BCS energy gap at high density

for any δ > 0. Also, since V 1/2F†
µFµ|V |1/2 is isospectral to Vµ, so its eigenvalues are given by

Equation (10.1.6), one can easily see, using Lemma 10.2.6 again, that

lim sup
µ→∞

µβ
∗−δ

⃦⃦⃦
V 1/2F†

µFµ|V |1/2
⃦⃦⃦

op
= 0 , (10.2.8)

for any δ > 0. Finally, by definition of s∗ (see Equation (10.1.11)), we get for any δ > 0 that

lim sup
µ→∞

µmin(s∗,2)/2−δ
ˆ
R3

|V (x)|
(︄

sin(√µ|x|)
√
µ|x|

)︄2

dx = 0 . (10.2.9)

As the last ingredient we need the following Lemma, which provides a bound controlling ∆(p)
in terms of ∆(√µ). Its proof is given in Section 10.2.2.
Lemma 10.2.8. Suppose s∗ > 1 and let u(p) = (4π)−1/2 be the constant function on the
sphere S2 and let

φ̂(p) =
√

4πFV F†
µu(p) = 1

(2π)3/2

ˆ
S2
V̂ (p− √

µq) dω(q) ,

where F denotes the usual Fourier transform. Then

∆(p) = f(µ) [φ̂(p) + ηµ(p)] ,

for some function f(µ). The function ηµ satisfies

lim sup
µ→∞

µβ
∗+min(s∗,2)/4−1/2−δ ∥ηµ∥L∞ = 0 and lim sup

µ→∞
µβ

∗+min(s∗,2)/2−1/2−δ |ηµ(√µ)| = 0

for any δ > 0.

Note that φ̂(√µ) =
√

4πFµV F†
µu(1) = eµ. Now, combining this with Lemmas 10.2.6 and

10.2.7, we see that ∆(√µ) = f(µ)eµ(1 + o(1)), from which we conclude that

∆(p) = φ̂(p) + ηµ(p)
eµ + ηµ(√µ)∆(√µ) =

[︄
1 +

φ̂(p) − φ̂(√µ)
eµ

+ ηµ(p)
eµ

]︄
(1 + o(1))∆(√µ) .

Now, it is an easy computation to see |φ̂(p) − φ̂(q)| ≤ Cµ−1/2|p− q| for all p, q. Thus

|∆(p)| ≤ C
(︂
1 + µmin(s∗,2)/2−1/2+δ|p− √

µ| + µmin(s∗,2)/4−β∗+1/2+δ
)︂

∆(√µ) (10.2.10)

for any δ > 0, again by means of Lemma 10.2.6 and Lemma 10.2.7, assuming that V is
admissible. So, we get the desired control on ∆(p) in terms of ∆(√µ).

The bound on ηµ(
√
µ) is effectively a bound on

⟨︂
u
⃓⃓⃓
F†
µVM

(κ)
∆,µV Fµ

⃓⃓⃓
u
⟩︂
. (This will be clear

from the proof.) For sufficiently large µ we have⃓⃓⃓⟨︂
u
⃓⃓⃓
F†
µVM

(κ)
∆,µV Fµ

⃓⃓⃓
u
⟩︂⃓⃓⃓

≤ Cδµ
−β∗−min(s∗,2)/2+1/2+δ (10.2.11)

for any δ > 0. This will be of importance in the perturbation argument in Proposition 10.2.10.

We are now able to prove the second and third equality in Lemma 10.2.2.
Proposition 10.2.9. Let V be an admissible potential. Then we have

m(κ)
µ (∆) = √

µ

(︄
log µ

∆(√µ) − 2 + κ
π

2 + log(8) + o(1)
)︄

in the limit µ → ∞.
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Proof. Computing the angular integral, and substituting s = ±p2−µ
µ

we get

m(κ)
µ (∆) =

√
µ

2

⎡⎣ˆ 1

0

⎛⎝ √
1 − s− 1√︂
s2 + x−(s)2

+
√

1 + s− 1√︂
s2 + x+(s)2

−
√

1 − s

1 − s+ κ2 −
√

1 + s

1 + s+ κ2

⎞⎠ ds

+
ˆ 1

0

⎛⎝ 1√︂
s2 + x+(s)2

+ 1√︂
s2 + x−(s)2

⎞⎠ ds

+
ˆ ∞

1

⎛⎝ √
1 + s√︂

s2 + x+(s)2
−

√
1 + s

1 + s+ κ2

⎞⎠ ds
⎤⎦,

where x±(s) = ∆(√µ
√

1±s)
µ

. Now, using dominated convergence and ∥∆∥L∞ = o(µ), it is easy
to see that the first and last integrals converge to

ˆ 1

0

(︄√
1 − s− 1

s
+

√
1 + s− 1

s
−

√
1 − s

1 − s+ κ2 −
√

1 + s

1 + s+ κ2

)︄
ds

and ˆ ∞

1

(︄√
1 + s

s
−

√
1 + s

1 + s+ κ2

)︄
ds ,

respectively, in the limit µ → ∞. For the middle integral we claim that

ˆ 1

0

⎛⎝ 1√︂
s2 + x±(s)2

− 1√︂
s2 + x±(0)2

⎞⎠ ds → 0 as µ → ∞ . (10.2.12)

As in [HS08b; Lau21] this is where we need both the Lipschitz–like bound on ∆ (Lemma 10.2.4)
and the bound controlling ∆(p) in terms of ∆(√µ) (Equation (10.2.10)). In terms of x±,
Lemma 10.2.4 reads

|x±(s) − x±(0)| ≤ Cµ−δrs . (10.2.13)

In terms of x±, Equation (10.2.10) reads

x±(s) ≤ C(1 + µmin(s∗,2)/2+δs+ µmin(s∗,2)/4−β∗+1/2+δ)x±(0) . (10.2.14)

Now, the integrand in Equation (10.2.12) is bounded by

|x±(s)2 − x±(0)2|√︂
s2 + x±(s)2

√︂
s2 + x±(0)2

(︂√︂
s2 + x±(s)2 +

√︂
s2 + x±(0)2

)︂ .
We introduce a cutoff ρ ∈ (0, 1) and compute the integrals

´ 1
ρ

and
´ ρ

0 . For the first integral
we have

ˆ 1

ρ

|x±(s)2 − x±(0)2|√︂
s2 + x±(s)2

√︂
s2 + x±(0)2

(︂√︂
s2 + x±(s)2 +

√︂
s2 + x±(0)2

)︂ ds

≤ Cµ−δr

ˆ 1

ρ

1
s

x±(s) + x±(0)√︂
s2 + x±(s)2 +

√︂
s2 + x±(0)2

ds

≤ Cµ−δr | log ρ| .
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10. The BCS energy gap at high density

which vanishes for any ρ ≫ exp
(︂
−µδr

)︂
, in particular for ρ = µ−N for suitable N > 0, which

we choose here. For the second integral we have
ˆ ρ

0

|x±(s)2 − x±(0)2|√︂
s2 + x±(s)2

√︂
s2 + x±(0)2

(︂√︂
s2 + x±(s)2 +

√︂
s2 + x±(0)2

)︂ ds

≤ C

ˆ ρ

0
µ−δr

(︂
1 + µmin(s∗,2)/4−β∗+1/2+δ + µmin(s∗,2)/2+δs

)︂
× x±(0)√︂

x±(0)2 + s2
(︂
s+

√︂
x±(0)2 + s2

)︂ ds

≤ Cµmin(s∗,2)/4−β∗−δr+1/2+δ
ˆ ρ

0

x±(0)√︂
x±(0)2 + s2

(︂
s+

√︂
x±(0)2 + s2

)︂ ds

≤ Cµmin(s∗,2)/4−β∗−δr+1/2+δ .

Note that for r = 2, we have δr=2 = 3/20 and thus β∗ − min(s∗, 2)/4 − 1/2 + 3/20 > 0
for any s∗ > 7/5 (see Remark 10.1.2). Also, optimizing this expression in the allowed r’s
gives the assumption r > f(s∗) given in Remark 10.1.2. Therefore, also this second integral
vanishes as desired by choosing 0 < δ < β∗ − min(s∗, 2)/4 − 7/20. We conclude that

m(κ)
µ (∆) =

√
µ

2

⎡⎣ ˆ 1

0

(︄√
1 − s− 1

s
+

√
1 + s− 1

s
−

√
1 − s

1 − s+ κ2 −
√

1 + s

1 + s+ κ2

)︄
ds

+
ˆ 1

0

2√︃
s2 +

(︂∆(√µ)
µ

)︂2
ds+

ˆ ∞

1

(︄√
1 + s

s
−

√
1 + s

1 + s+ κ2

)︄
ds+ o(1)

⎤⎦.
This may be computed (perhaps most easily by adding and subtracting the corresponding
integral with κ = 0) as

m(κ)
µ = √

µ

(︄
log µ

∆(√µ) − 2 + log(8) + κ
π

2 + o(1)
)︄
.

We conclude by showing the third equality of Lemma 10.2.2.
Proposition 10.2.10. Let V be an admissible potential. Then

m(κ)
µ (∆)
√
µ

= − π

2√
µb

(κ)
µ

+ o(1) .

Proof. Recall that, by the Birman–Schwinger principle the lowest eigenvalue of B∆,µ is −1.
Using the decomposition in Equation (10.2.2) and the bound in Equation (10.2.7) we get that

−1 = lim
µ→∞

m(κ)
µ (∆) inf spec

(︂
V 1/2Fµ

†Fµ|V |1/2
)︂

= lim
µ→∞

m(κ)
µ (∆)eµ .

Now, since s∗ > 7/5 we have that |√µeµ| ≤ Cµ−2/5 by Lemma 10.2.6 (recall Equation (10.1.6)
and Equation (10.2.9)). Thus, by Proposition 10.2.9 we conclude that ∆(√µ) is exponentially
small (in some positive power of µ) as µ → ∞.

To obtain the next order in the expansion of mµ(∆), we note that 1 + V 1/2M
(κ)
∆,µ|V |1/2 is

invertible for µ large enough by means of Equation (10.2.7). We can thus factorize the
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Birman–Schwinger operator (10.2.2) as

1 +B∆,µ =
(︂
1 + V 1/2M

(κ)
∆,µ|V |1/2

)︂⎛⎝1 +
m(κ)
µ (∆)

1 + V 1/2M
(κ)
∆,µ|V |1/2

V 1/2F†
µFµ|V |1/2

⎞⎠ .

Because B∆,µ has −1 as its lowest eigenvalue by the Birman–Schwinger principle, we conclude
that, for µ large enough, the self–adjoint operator

T∆,µ := m(κ)
µ (∆)Fµ|V |1/2 1

1 + V 1/2M
(κ)
∆,µ|V |1/2

V 1/2F†
µ

acting on L2(S2) has −1 as its lowest eigenvalue since it is isospectral to the right–most
operator above. (This follows from the fact that for operators A,B the operators AB and BA
have the same spectrum apart from possibly at 0. See also the argument around Equation (33)
in [Hen22] as well as around Equation (30) and Equation (47) in [HS08b].)

To highest order T∆,µ is proportional to Vµ. Since the constant function u(p) = (4π)−1/2 on
S2 is the unique eigenvector of Vµ with lowest eigenvalue, this is true also for T∆,µ whenever
µ is large enough.

To find the lowest eigenvalue (which is −1) we expand the geometric series to first order
and employ first order perturbation theory. This is completely analogous to the arguments in
[HS08b] and Equation (34) in [Hen22]. We obtain

1
√
µ
m(κ)
µ (∆) = −1

µ1/2eµ − µ1/2
⟨︂
u
⃓⃓⃓
FµVM

(κ)
∆,µV F†

µ

⃓⃓⃓
u
⟩︂

+O(µ−3β∗+3/2+δ)
(10.2.15)

for any δ > 0 (recall Equations (10.2.7), (10.2.8) and (10.2.11)). The error term in Equa-
tion (10.2.15) is twofold. The first part comes from the expansion of the geometric series.
The second part comes from first order perturbation theory using the bounds

|√µeµ| ≥ cδµ
− min(s∗,2)/2+1/2−δ and

⃓⃓⃓
µ1/2

⟨︂
u
⃓⃓⃓
FµVM

(κ)
∆,µV F†

µ

⃓⃓⃓
u
⟩︂⃓⃓⃓

≤ Cδµ
−β∗−min(s∗,2)/2+1+δ

for any δ > 0 from Lemma 10.2.7 and Equation (10.2.11). The error from the series
expansion is of order O(µ−3β∗+3/2+δ) and the error from the perturbation argument is of order
O(µ−2β∗−min(s∗,2)/2+3/2+δ) and is hence dominated by the expansion of the geometric series,
since β∗ ≤ min(s∗, 2)/2.

Now, we need to show that FµVM
(κ)
∆,µV F†

µ is close to W(κ)
µ , when evaluated in ⟨u|· · ·|u⟩.

Therefore, considering their difference, we split the involved radial p–integral according to
|p| ≤ µN and |p| > µN for some large N > 0. The second part is clearly bounded by, e.g.,
Cµ−N/2. For the first part, we have ∆(p) ≤ CµN∆(√µ) by Equation (10.2.10). Using
this in combination with the fact that ∆(√µ) is exponentially small, we find, by dominated
convergence and Lipschitz continuity of the involved angular integrals (cf. Equation (35) in
[HS08b] and Equation (36) in [Hen22]), that this part is bounded by CDµ−D for any D > 0.
Since N > 0 was arbitrary, we conclude that⃓⃓⃓⟨︂

u
⃓⃓⃓
FµVM

(κ)
∆,µV F†

µ − W(κ)
µ

⃓⃓⃓
u
⟩︂⃓⃓⃓

≤ CDµ
−D (10.2.16)

for any D > 0. Thus, by combining Equation (10.2.11) and Equation (10.2.16) (recall
Equation (10.1.9) and Equation (10.1.10)) we get⃓⃓⃓⟨︂

u
⃓⃓⃓
W(κ)

µ

⃓⃓⃓
u
⟩︂⃓⃓⃓

≤ Cδµ
−β∗−min(s∗,2)/2+1/2+δ (10.2.17)
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10. The BCS energy gap at high density

for any δ > 0. (In particular b(κ)
µ < 0 for large µ. This was also shown in [Hen22].)

In particular, combining Equations (10.2.15), (10.2.16) and (10.2.17), we get again by a
perturbation theory argument that

1
√
µ
m(κ)
µ (∆) = − π

2√
µb

(κ)
µ

+O(µ−3β∗+min(s∗,2)+1/2+δ) ,

for any δ > 0. Since 3β∗ − min(s∗, 2) − 1/2 > 0 we conclude the desired.

10.2.2 Proofs of Auxiliary Lemmas
In this Subsection, we prove the auxiliary Lemmas 10.2.3, 10.2.4, and 10.2.8.

Proof of Lemma 10.2.3. First we show

∥α∥2
H1 ≤ C ∥α∥2

L2 + Cµ3/2. (10.2.18)

Since V ∈ L3/2(R3) we have by Sobolev’s inequality [LL01, Thm. 8.3] inf spec
(︂
p2

2 + V
)︂
>

−∞. Thus, using
√

1 − 4x2 ≤ 1 − 2x2 and α̂ ≤ 1/2 we get

F(α) = 1
2

ˆ
R3

|p2 − µ|
(︃

1 −
√︂

1 − 4α̂(p)2
)︃

dp+
ˆ
R3
V (x)|α(x)|2 dx

≥
ˆ
R3

(p2 − µ)α̂(p)2 dp+
ˆ
R3
V (x)|α(x)|2 dx

=
⟨︄
α

⃓⃓⃓⃓
⃓p2

2 + V

⃓⃓⃓⃓
⃓α
⟩︄

+
ˆ
R3

(︄
p2

2 − µ

)︄
α̂(p)2 dp

≥ 1
4 ∥α∥2

H1 − C ∥α∥2
L2 +

ˆ
R3

(︄
p2

4 − µ− 1
4

)︄
α̂(p)2 dp

≥ 1
4 ∥α∥2

H1 − C ∥α∥2
L2 − 1

4

ˆ
R3

[︄
p2

4 − µ− 1
4

]︄
−

dp

≥ 1
4 ∥α∥2

H1 − C ∥α∥2
L2 − Cµ3/2 ,

which gives the desired. Now we show that⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

≤ C
⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦
L2

+ Cµ2δ−1 ∥α∥2
H1 ,

for t = µδ and 0 < δ < 1/2.
To see this, we split the integrals in the functional F according to small or large momentum p
and compute

F(α) = 1
2

ˆ
R3

|p2 − µ|
(︃

1 −
√︂

1 − 4α̂(p)2
)︃

dp+
ˆ
R3
V (x)|α(x)|2 dx

≥
ˆ

|p|<t
|p2 − µ|α̂(p)2 dp+

ˆ
|p|>t

|p2 − µ|α̂(p)2 dp

+ 1
(2π)3/2

¨
R3×R3

α̂(p)V̂ (p− q)α̂(q) dp dq

≥ µ
⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦2

L2
−
⃦⃦⃦
p2α̂1{|p|<t}

⃦⃦⃦2

L2
+
⟨︂
α̂1{|p|>t}

⃓⃓⃓
p2 + V

⃓⃓⃓
α̂1{|p|>t}

⟩︂
− µ

⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2

+ 1
(2π)3/2

[︄¨
|p|,|q|<t

α̂(p)V̂ (p− q)α̂(q) dp dq + 2
¨

|p|<t,|q|>t
α̂(p)V̂ (p− q)α̂(q) dp dq

]︄
.
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Note that, again by Sobolev’s inequality [LL01, Thm. 8.3], we have⟨︂
α̂1{|p|>t}

⃓⃓⃓
p2 + V

⃓⃓⃓
α̂1{|p|>t}

⟩︂
≥ −C

⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2
.

Moreover, by application of Young’s inequality [LL01, Thm. 4.2] we obtain
ˆ

|p|<t

ˆ
|q|<t

α̂(p)V̂ (p− q)α̂(q) dp dq ≥ −
⃦⃦⃦
V̂
⃦⃦⃦
L3

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦2

L6/5

≥ −C
(︂
t3
)︂2·(5/6−1/2) ⃦⃦⃦

α̂1{|p|<t}

⃦⃦⃦2

L2

= −Cµ2δ
⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦2

L2

and ˆ
|p|<t

ˆ
|q|>t

α̂(p)V̂ (p− q)α̂(q) dp dq ≥ −
⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L1

⃦⃦⃦
V̂
⃦⃦⃦
L3

⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦
L3/2

≥ −Ct3/2 ∥α∥H1

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

= −Cµ3δ/2 ∥α∥H1

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2
,

where we used that ∥ĝ∥L3/2 ≤ C ∥g∥H1 . Thus we arrive at

F(α) ≥ cµ
⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦2

L2
− C1µ

3δ/2 ∥α∥H1

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

− C2µ
⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2
,

where we absorbed all non-leading terms in these. This is a second degree polynomial in⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

and thus the value of
⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

lies between the roots, i.e.

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦
L2

≤
C1µ

3δ/2 ∥α∥H1 +
√︃
C2

1µ
3δ ∥α∥2

H1 + 4cC2µ2
⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2

2cµ
≤ C

⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦
L2

+ Cµ3δ/2−1 ∥α∥H1 .

From the estimate
⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2
=
ˆ

|p|>t
α̂(p)2 dp ≤

ˆ
|p|>t

α̂(p)2 1 + p2

1 + t2
dp ≤ 1

1 + t2
∥α∥2

H1 ≤ Cµ−2δ ∥α∥2
H1 ,

we conclude that

∥α∥2
L2 =

⃦⃦⃦
α̂1{|p|<t}

⃦⃦⃦2

L2
+
⃦⃦⃦
α̂1{|p|>t}

⃦⃦⃦2

L2
≤ C

(︂
µ−2δ + µ3δ−2

)︂
∥α∥2

H1 .

Choosing the optimal δ = 2/5 we get ∥α∥L2 ≤ Cµ−2/5 ∥α∥H1 , which, in combination with
Equation (10.2.18), yields

∥α∥2
H1 ≤ Cµ−4/5 ∥α∥2

H1 + µ3/2.

Hence ∥α∥H1 ≤ Cµ3/4 and thus also ∥α∥L2 ≤ Cµ−2/5 ∥α∥H1 ≤ Cµ7/20 for sufficiently
large µ.

We now turn to the proof of Lemma 10.2.4.
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10. The BCS energy gap at high density

Proof of Lemma 10.2.4. Let t = 5
2 − 3

r
. Then we have

∥∆∥L∞ ≤ C ∥V α∥L1 ≤ C ∥V ∥Lr ∥α∥Lr′ ≤ C ∥α∥tL2 ∥α∥1−t
L6 ≤ Cµ

15−8t
20 = Cµ

24−5r
20r

by Sobolev’s inequality [LL01, Thm. 8.3]. For the difference note that ∆(p) − ∆(q) is
(proportional to) the Fourier transform of V (x)

(︂
1 − ei(p−q)·x

)︂
α(x). Then

⃦⃦⃦
V (x)

(︂
1 − ei(p−q)x

)︂⃦⃦⃦r
Lr

=
ˆ
R3

|V (x)|r
⃓⃓⃓
1 − ei(p−q)·x

⃓⃓⃓r
dx ≤ C

ˆ
R3

|V (x)|r|p− q|r|x|r dx.

Using radiality of ∆, the same argument as before gives the desired.

Finally, we give the proof of Lemma 10.2.8.

Proof of Lemma 10.2.8. Recall from the factorization of the Birman–Schwinger operator in
the proof of Proposition 10.2.10, that the self–adjoint operator

m(κ)
µ (∆)Fµ|V |1/2 1

1 + V 1/2M
(κ)
∆,µ|V |1/2

V 1/2F†
µ

acting on L2(S2) has −1 as its lowest eigenvalue and u(p) = (4π)−1/2 is the unique eigenvector
with lowest eigenvalue for µ large enough. Hence, one can easily see that

1
1 + V 1/2M

(κ)
∆,µ|V |1/2

V 1/2F†
µu

is an eigenvector of B∆,µ for the lowest eigenvalue and thus proportional to V 1/2α. By
expanding 1

1+x = 1 − x
1+x we conclude that ∆ = f(µ)[φ̂+ ηµ], where

ηµ = −
√

4πF|V |1/2 V 1/2M
(κ)
∆,µ|V |1/2

1 + V 1/2M
(κ)
∆,µ|V |1/2

V 1/2F†
µu ,

which can easily be bounded as

∥ηµ∥L∞ ≤ C ∥V ∥1/2
L1

⃦⃦⃦
V 1/2M

(κ)
∆,µ|V |1/2

⃦⃦⃦
op

⃦⃦⃦
V 1/2F†

µu
⃦⃦⃦
L2
.

For |p| = √
µ, we first note that φ̂(√µ) =

√
4πFµV F†

µu(1) = eµ. Similarly, since ηµ is radial,
we have that

ηµ(√µ) = 1
4π

ˆ
S2
ηµ(√µq) dω(q) = −

⟨︄
u

⃓⃓⃓⃓
⃓⃓Fµ|V |1/2 V 1/2M

(κ)
∆,µ|V |1/2

1 + V 1/2M
(κ)
∆,µ|V |1/2

V 1/2F†
µ

⃓⃓⃓⃓
⃓⃓u
⟩︄

and we can thus bound

|ηµ(√µ)| ≤ C
⃦⃦⃦
V 1/2M

(κ)
∆,µ|V |1/2

⃦⃦⃦
op

⃦⃦⃦
|V |1/2F†

µu
⃦⃦⃦2

L2
.

It remains to check that⃦⃦⃦
|V |1/2F†

µu
⃦⃦⃦2

L2
= C

ˆ
R3

|V (x)|
⃓⃓⃓⃓
⃓
ˆ
S2
ei

√
µp·x 1√

4π
dω(p)

⃓⃓⃓⃓
⃓
2

dx

= C

ˆ
R3

|V (x)|
(︄

sin √
µ|x|

√
µ|x|

)︄2

dx .

Now the claim follows by application of Equations (10.2.7) and (10.2.9).
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Chapter11
Universal behaviour of the BCS energy

gap

This chapter contains the paper

[AllTemp] J. Henheik and A. B. Lauritsen. “Universal behavior of the BCS energy gap”.
arXiv: 2312.11310 [cond-mat, physics:math-ph]. 2023. DOI: 10.48550/
arXiv.2312.11310.

Abstract. We consider the BCS energy gap Ξ(T ) (essentially given by Ξ(T ) ≈ ∆(T,√µ), the
BCS order parameter) at all temperatures 0 ≤ T ≤ Tc up to the critical one, Tc, and show that,
in the limit of weak coupling, the ratio Ξ(T )/Tc is given by a universal function of the relative
temperature T/Tc. On the one hand, this recovers a recent result by Langmann and Triola
(Phys. Rev. B 108.10 (2023)) on three-dimensional s-wave superconductors for temperatures
bounded uniformly away from Tc. On the other hand, our result lifts these restrictions, as
we consider arbitrary spatial dimensions d ∈ {1, 2, 3}, discuss superconductors with non-
zero angular momentum (primarily in two dimensions), and treat the perhaps physically
most interesting (due to the occurrence of the superconducting phase transition) regime of
temperatures close to Tc.
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11.1 Introduction
The Bardeen–Cooper–Schrieffer (BCS) [BCS57] theory of superconductivity exhibits many
interesting features. Notably it predicts, for s-wave superconductors (i.e. those for which the
gap function has angular momentum ℓ = 0, i.e. is radially symmetric), that the superconducting
energy gap Ξ (essentially given by Ξ ≈ ∆(√µ), the BCS order parameter) is proportional to the
critical temperature Tc with a universal proportionality constant independent of the microscopic
details of the electronic interactions, i.e. the specific superconductor. At zero temperature,
the claimed universality is the (approximate) formula Ξ/Tc ≈ πe−γ ≈ 1.76 with γ ≈ 0.57 the
Euler–Mascheroni constant, a property which is well-known in the physics literature [BCS57;
NS85]. More recently, based on the variational formulation of BCS theory first introduced by
Leggett [Leg80] and later developed on mostly by Hainzl and Seiringer with others [FHNS07;
HHSS08; HS16; HS08c], it has been put on rigorous grounds in various (physically quite
different) limiting regimes [FHNS07; HS08a; HS08b; Hen22; Lau21], [Chapters 9 and 10]
(see Section 11.1.2.1 for details). The general picture in all these works is that the universal
behavior appears in a limit where “superconductivity is weak”, meaning that Tc is small.
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11.1. Introduction

The predicted universality at positive temperature is notably less studied. It is expected that
the ratio Ξ(T )/Tc is given by some universal function of the relative temperature T/Tc [LT23;
Leg06], see Figure 11.1.1. For three-dimensional superconductors,1 this has recently been
shown in [LT23] (building on ideas of [LTB19]) for temperatures uniformly in an interval
[0, (1 − ε)Tc] for any ε > 0 in an appropriate limit where Tc is small. The perhaps most
interesting regime of temperatures, however, are those close to the critical temperature, due
to the phase transition occurring there. For such temperatures one expects2 the behavior
[Tin04, Eq. (3.54)]

Ξ(T )/Tc ≈ Cuniv

√︂
1 − T/Tc, Cuniv =

⌜⃓⃓⎷ 8π2

7ζ(3) ≈ 3.06. (11.1.1)

Notably, the critical exponent 1/2 (i.e. the order parameter ∆(√µ) ≈ Ξ vanishing as a square
root) agrees with the prediction from the phenomenological Landau theory [Lan37] for second
order phase transitions (not to be confused with Ginzburg -Landau theory of superconductivity
[De 66; GL50; Gor59]) in mean-field systems.

0 1
0

πe−γ

T/Tc

Ξ/Tc

Figure 11.1.1: The ratio of the BCS energy gap and the critical temperature,
Ξ/Tc, is well approximated by a universal function of the relative temperature
T/Tc, which is given by fBCS(

√︂
1 − T/Tc) with fBCS defined in (11.2.9) below. At

T = 0, it approaches the well-known constant πe−γ ≈ 1.76, with γ ≈ 0.57 being
the Euler-Mascheroni constant.

In this paper we extend the previously shown universality in three important directions:
Firstly, we consider all spatial dimensions d ∈ {1, 2, 3}. Secondly, we treat the full range of

1In [LT23], only the three-dimensional case is considered explicitly. However, their arguments seem to be
easily extendable to handle also the cases of one- and two-dimensional superconductors.

2Historically, the first article suggesting the square root behavior near Tc is by Buckingham [Buc56]. In
[BCS57, Eq. (3.31)], BCS verified this in their original model, however, with the numerical constant given by
3.2 instead of Cuniv ≈ 3.06.
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11. Universal behaviour of the BCS energy gap

temperatures 0 ≤ T ≤ Tc. Thirdly, we extend the result to the case of non-zero angular
momentum in two dimensions, in particular proving the formula in (11.1.1). Interestingly the
case of non-zero angular momentum in two dimensions has the exact same universal behavior
as s-wave superconductors in any dimensions: Independently of the angular momentum we find
the same universal function describing the ratio Ξ(T )/Tc. This is substantially different from
the three-dimensional case, where one still expects some sort of universal behavior to occur,
only the universal function strongly depends on the angular momentum, see, e.g., [PFCP07]
and Remark 11.2.15 below.

One of the central ideas in the analysis of temperatures close to the critical temperature
is the use of Ginzburg-Landau (GL) theory. In the physics literature it is well-known that
for temperatures close to the critical BCS theory is well-approximated by GL theory [Gor59].
This correspondence has been studied, and put on rigorous grounds, quite recently in the
mathematical physics literature [DHM23a; DHM23b; FHSS12b; FL16]. See Section 11.1.2.2
for more details.

11.1.1 Mathematical formulation of BCS theory
We consider a gas of fermions in Rd for d = 1, 2, 3 at temperature T > 0 and chemical potential
µ > 0. The interaction is described by a two-body, real-valued and reflection-symmetric
potential V ∈ L1(Rd), for which we assume the following.

Assumption 11.1.1. We have that V ∈ LpV (Rd) for pV = 1 if d = 1, pV ∈ (1,∞) if d = 2,
or pV = 3/2 if d = 3.

A BCS state Γ is given by a pair of functions (γ, α) and can be conveniently represented as a
2 × 2 matrix valued Fourier multiplier on L2(Rd) ⊕ L2(Rd) of the form

Γ̂(p) =
(︄
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(p)

)︄
(11.1.2)

for all p ∈ Rd. Here, γ̂(p) denotes the Fourier transform of the one particle density matrix
and α̂(p) is the Fourier transform of the Cooper pair wave function. We require reflection
symmetry of α̂, i.e. α̂(−p) = α̂(p), as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix. Recall the definition
of the BCS free energy functional [HHSS08; Leg80], which is given by

FT [Γ] :=
ˆ
Rd

(p2 − µ)γ̂(p) dp− TS[Γ] +
ˆ
Rd

V (x)|α(x)|2 dx , (11.1.3)

where the entropy per unit volume is defined as

S[Γ] = −
ˆ
Rd

TrC2

[︂
Γ̂(p) log Γ̂(p)

]︂
dp .

The variational problem associated with the BCS functional is studied on

D :=
{︂
Γ as in (11.1.2) : 0 ≤ Γ̂ ≤ 1 , γ̂ ∈ L1(Rd, (1 + p2) dp) , α ∈ H1

sym(Rd)
}︂
.

The following proposition provides the foundation for studying this problem.
Proposition 11.1.2 ([HHSS08], see also [HS16]). Under Assumption 11.1.1 on V , the BCS
free energy is bounded below on D and attains its minimum.
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11.1. Introduction

However, in general, the minimizer is not necessarily unique. This potential non-uniqueness
shall not bother us at this stage but will be of importance later on (see Sections 11.1.1.1
and 11.2.3). The Euler–Lagrange equation for α associated with the minimization problem is
the celebrated BCS gap equation

∆(p) = − 1
(2π)d/2

ˆ
Rd

V̂ (p− q) ∆(q)
K∆
T (q) dq , (11.1.4)

satisfied by ∆(p) = −2 (2π)−d/2(V̂ ⋆ α̂)(p), where α is the off–diagonal entry of a minimizing
Γ ∈ D of (11.1.3), see [HHSS08; HS16]. Here, V̂ (p) = (2π)−d/2 ´

Rd V (x)e−ipx dx denotes
the Fourier transform of V , and we have introduced the notation

K∆
T (p) = E∆(p)

tanh
(︂
E∆(p)

2T

)︂ with E∆(p) =
√︂

(p2 − µ)2 + |∆(p)|2 .

The gap equation can equivalently be written as

(K∆
T + V )α = 0 , (11.1.5)

where K∆
T (p) is understood as a multiplication operator in momentum space and V (x) is

understood as a multiplication operator in position space. The Euler–Lagrange equation for γ
(see [HHSS08; HS16]) is given by

γ̂(p) = 1
2 − p2 − µ

2K∆
T (p) . (11.1.6)

Remark 11.1.3 (Log-divergence). For T = ∆ = 0 we have K∆=0
T=0 (p) = |p2 − µ|. This

gives rise to a logarithmic divergence in Equation (11.1.4). Understanding how to treat this
log-divergence was one of the key insights of Langmann and Triola [LT23].

11.1.1.1 Critical temperature and energy gap

The system described by FT is superconducting if and only if any minimizer Γ of FT has
off–diagonal entry α = Γ12 ̸≡ 0 (or, equivalently, (11.1.4) has a solution ∆ ̸≡ 0). The
question, whether a system is superconducting or not can be reduced to a linear criterion
involving the pseudo–differential operator with symbol

KT (p) ≡ K0
T (p) = p2 − µ

tanh
(︂
p2−µ

2T

)︂ .
In fact, as shown in [HHSS08], the system is superconducting if and only if the operator KT +V
has at least one negative eigenvalue. Moreover, there exists a unique critical temperature
Tc ≥ 0 being defined as

Tc := inf{T > 0 : KT + V ≥ 0} , (11.1.7)

for which KTc + V ≥ 0 and inf spec(KT + V ) < 0 for all T < Tc. By Assumption 11.1.1 and
the asymptotic behavior KTc(p) ∼ p2 for |p| → ∞ the critical temperature is well-defined by
Sobolev’s inequality [LL01, Thm. 8.3]. Note that, for T ≥ Tc the BCS functional (11.1.3) is
uniquely minimized by the normal state ΓFD ≡ (γFD, 0), where

γ̂FD(p) = 1
1 + e

1
T

(p2−µ)
(11.1.8)
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is the usual Fermi-Dirac distribution. In contrast, for temperatures 0 ≤ T < Tc strictly below
the critical temperature, the normal state ΓFD is not a minimizer of (11.1.3) and it is a priori
not clear whether or not the minimizer of (11.1.3) is unique.

In this paper we deal with two different cases. In the case of s-wave superconductivity we will
assume properties of V such that the minimizer is unique and in the case of 2-dimensional
non-zero angular momentum we will assume properties of V such that there are at most 2
minimizers, see Section 11.2.3.

For the s-wave case we assume the following.

Assumption 11.1.4. Let the (real valued) interaction potential V ∈ L1(Rd) be radially
symmetric and assume that V is of negative type, i.e. V̂ ≤ 0 and V̂ (0) < 0.

As shown in [HS08b], Assumption 11.1.4 implies that, in particular, the critical temperature is
non-zero, i.e. Tc > 0.3 Moreover, as already indicated above, it ensures that the minimizer of
(11.1.3) is unique. While this fact is already known at zero temperature [HS08b, Lemma 2],
we are not aware of any place in the literature where the extension to positive temperature is
given. As we will need this extension, we formulate it in the following proposition and give a
proof in Section 11.A.1.
Proposition 11.1.5 (Uniqueness of minimizers for potentials of negative type). Let V satisfy
Assumptions 11.1.1 and 11.1.4, and consider the BCS functional (11.1.3). Then we have the
following:

(i) For 0 ≤ T < Tc, let Γ ≡ (γ, α) be a minimizer of the BCS functional (11.1.3) (which
exists by means of Proposition 11.1.2). Then the operator K∆

T + V from (11.1.5) is
non–negative and α is its unique ground state with eigenvalue zero 0.

(ii) The minimizer Γ =: Γ∗ ≡ (γ∗, α∗) of (11.1.3) is unique up to a phase of α∗ and can
be chosen to have strictly positive Fourier transform α̂∗. Moreover, both γ∗ and α∗ are
radial functions.

In particular, under Assumption 11.1.4, we have that the energy gap

Ξ(T ) := inf
p∈Rd

√︂
(p2 − µ)2 + |∆(p)|2 , (11.1.9)

for ∆ being the (up to multiplication by a constant phase) unique non-zero solution of (11.1.4)
and temperatures 0 ≤ T < Tc, is well-defined.

In case there is more than one solution ∆ of the BCS gap equation (11.1.4) (i.e. more than
one minimizer of the BCS functional) we may for each such ∆ define the energy gap Ξ as in
Equation (11.1.9). In the case of two dimensions with (definite) non-zero angular momentum
we shall prove that there exist exactly two (up to multiplication of either by a constant phase)
such functions, ∆±. They however satisfy |∆+| = |∆−| and so the energy gap Ξ is also here
uniquely defined. For the details see Section 11.2.3.

Remark 11.1.6. The energy gap is essentially the same as the order parameter
⃓⃓⃓
∆(√µ)

⃓⃓⃓
as

we show in Equations (11.3.18) and (11.3.29) below. In particular, one may replace Ξ with⃓⃓⃓
∆(√µ)

⃓⃓⃓
in our main results, Proposition 11.2.1 and Theorems 11.2.4 and 11.2.11.

3To be precise, the arguments in [HS08b] cover only the case d = 3, but, as already noted in [FHSS12b],
they are immediately transferable to the cases d = 1, 2.
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11.1.1.2 Weak coupling

We consider here the weak–coupling limit where the interaction is of the form λV for a λ > 0
and we consider the limit λ → 0. In the weak–coupling limit an important role is played by
the (rescaled) operator Vµ : L2(Sd−1) → L2(Sd−1) [CM21; HS08b; HS10], [Chapter 9]. This
operator, which is defined as

(Vµu) (p) = 1
(2π)d/2

ˆ
Sd−1

V̂ (√µ(p− q))u(q) dω(q) , (11.1.10)

where dω denotes the uniform (Lebesgue) measure on the unit sphere Sd−1, measures the
strength of the interaction potential V̂ on the Fermi surface. The pointwise evaluation
of V̂ (and in particular on a codim−1 submanifold) is well-defined since we assume that
V ∈ L1(Rd).

The lowest eigenvalue eµ = inf spec Vµ is of particular importance. Note, that Vµ is a
trace-class operator (see the argument above [FHNS07, Equation (3.2)]) with

tr(Vµ) = |Sd−1|
(2π)d

ˆ
Rd

V (x) dx = |Sd−1|
(2π)d/2 V̂ (0) .

For radial potentials one sees that the eigenfunctions of Vµ are the spherical harmonics.

For potentials of negative type we have V̂ (0) < 0 and so eµ < 0. This corresponds to an
attractive interaction between (some) electrons on the Fermi sphere. Further, one easily sees
that the constant function u(p) = (|Sd−1|)−1/2 is an eigenfunction of Vµ, which, since V̂ ≤ 0
by Assumption 11.1.4, is in fact the ground state by the Perron–Frobenius theorem, i.e.

eµ = 1
(2π)d/2

ˆ
Sd−1

V̂ (√µ− q
√
µ) dω(q) . (11.1.11)

In two dimensions the spherical harmonics take the form u±ℓ(p) = (2π)−1/2e±iℓφ with φ
denoting the angle of p ∈ R2 in polar coordinates. In this case the ground state space of Vµ
is spanned by {u±ℓ}ℓ∈L for some set of angular momenta L. If ℓ0 ̸= 0 for some ℓ0 ∈ L then
the ground state is at least twice degenerate, since then both u±ℓ0 are eigenfunctions with
this lowest eigenvalue.

11.1.2 Previous mathematical results
So far, all mathematical results on solutions of the BCS gap equation (11.1.4) focused either
on zero temperature, T = 0, or the regime close to the critical one, T ≈ Tc, where the
transition from superconducting to normal behavior is described by Ginzburg-Landau theory.

11.1.2.1 BCS theory in limiting regimes: Universality at T = 0

At zero temperature it is expected, that the ratio of the energy gap and the critical temperature
is given by a universal constant,

Ξ(T = 0)
Tc

≈ πe−γ , (11.1.12)

with γ ≈ 0.577 the Euler–Mascheroni constant in a limiting regime where “superconductivity
is weak”, meaning that Tc is small.
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11. Universal behaviour of the BCS energy gap

In the literature three such limits have been studied: Historically, the first regime, which has
been considered is the weak coupling limit in three spatial dimensions [FHNS07; HS08b],
which we recently extended to one and two dimensions in Chapter 9. The critical temperature
in the low density limit in three dimensions was studied in [HS08a] and later complemented
by a study of the energy gap by one of us in [Lau21], thus, in combination, yielding the
above-mentioned universal behavior. Finally, we considered the high density limit, again in
three dimension, in [Hen22] and Chapter 10 and proved (11.1.12) in this regime.

11.1.2.2 Superconductors close to Tc: Ginzburg-Landau theory

For temperatures close to the critical BCS theory is well-approximated by Ginzburg-Landau
(GL) theory. In contrast to the microscopic BCS model, GL theory is a phenomenological
model, which describes the superconductor on a macroscopic scale. Moreover, as suggested
by Equation (11.1.1) a natural parameter measuring “closeness to Tc” is the parameter
h =

√︂
1 − T/Tc. A rigorous analysis of various aspects of BCS theory in the limit h → 0 was

then studied in [FHSS12b; FHSS16; FL16], very recently also allowing for general external
fields [DHM23a; DHM23b]. Of particular interest to us is the fact that any minimizer of the
BCS functional (γ, α) has α ≈ hψa0 with a0 ∈ ker(KTc + λV ) fixed and ψ ∈ C a minimizer
of the corresponding GL functional, see [FL16, Theorem 2.10].

11.1.3 Outline of the paper
The rest of this paper is structured as follows. In Section 11.2 we present our main result,
starting with the prototypical universality in the original BCS model (Section 11.2.1). Af-
terwards, in Sections 11.2.2 and 11.2.3 we describe our results on universality for s-wave
superconductors in arbitrary dimension d ∈ {1, 2, 3}, and for two-dimensional superconductors
having pure angular momentum, respectively. The proofs of these results are given in Section
11.3, while several additional proofs are deferred to Appendix 11.A.

11.2 Main Result
We next describe the main results of the paper. We first consider the example of an interaction
as considered by BCS [BCS57]. The reason for doing this is twofold:

1. It highlights, how the universal function Ξ(h)/Tc ≈ fBCS(h) appears.

2. A central idea in the proof of removing the log-divergence is already present in the BCS
gap equation (11.1.4). (Recall Remark 11.1.3.)

11.2.1 Energy gap in the original BCS approximation [BCS57]
In their seminal work [BCS57], Bardeen–Cooper–Schrieffer modeled the interaction by a so
called separable potential V (x, y) (i.e. factorizing and depending not only on the relative
coordinate x− y), whose Fourier transform V̂ (p, q) is a product of two radial single variable
functions, that are compactly supported in the shell

Sµ(TD) := {p ∈ Rd : |p2 − µ| ≤ TD} (11.2.1)
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around the Fermi surface {p ∈ Rd : p2 = µ}, the only (material dependent) parameter being
the so-called Debye temperature 0 < TD < µ. Switching from momentum p to energy
ε = p2 − µ, the just mentioned single variable functions are chosen in such a way, that4

V̂ (ε, ε′)N(ε′) = −λBCS θ(1 − |ε/TD|)θ(1 − |ε′/TD|) , λBCS > 0 , (11.2.2)

where the electronic density of states (DOS) is denoted by N(ε) ∼ (ε+ µ)(d−2)/2 and θ is the
Heaviside function. (θ(t) = 1 for t > 0 and θ(t) = 0 otherwise.)

In this case, the (unique non-negative) solution to the BCS gap equation (11.1.4) is given by

∆(ε) = ∆ · θ(1 − |ε/TD|) (11.2.3)

for some temperature dependent constant ∆ ≥ 0, which is determined by the scalar gap
equation (cf. [BCS57, Eq. (3.27)])

1
λBCS

=
ˆ TD

0

tanh
(︂√

ε2+∆2

2T

)︂
√
ε2 + ∆2

dε (11.2.4)

for any temperature 0 ≤ T < Tc. In turn, the critical temperature Tc > 0 is determined by
(11.2.4) with ∆ = 0, i.e.

1
λBCS

=
ˆ TD

0

tanh
(︂

ε
2Tc

)︂
ε

dε . (11.2.5)

In case of a small BCS coupling parameter, λBCS ≪ 1,5 it holds that Tc is exponentially small
in λBCS, i.e. Tc ∼ e−1/λBCS (see [BCS57, Eq. (3.29)]). Moreover, it is easily checked that ∆
as a function of temperature is monotonically decreasing in the interval [0, Tc] and satisfies
∆(T = 0) ∼ e−1/λBCS , similarly to the critical temperature.

Next, changing variables as x := ε/Tc and setting δ := ∆/Tc as well as6

h :=
√︄

1 − T

Tc
for 0 ≤ T ≤ Tc , (11.2.6)

we can subtract (11.2.4) and (11.2.5) to find

ˆ TD/Tc

0

⎧⎨⎩tanh
(︂√

x2+δ2

2(1−h2)

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
x

⎫⎬⎭ dx = 0 . (11.2.7)

Note that this difference formula (11.2.7) removes the divergences of (11.2.4)–(11.2.5) as
λBCS → 0.

The proof of the following proposition is given in Section 11.3.1. (In the statement of
Proposition 11.2.1, one may replace Ξ by the order parameter ∆(√µ), see Remark 11.1.6
above.)

4Assuming that V̂ is constant throughout the energy shell (11.2.1) (as done in [BCS57]), the BCS coupling
parameter emerges as λBCS = −V̂ (0, 0)N(0).

5This can happen for various reasons. One example is that V itself is scaled by a coupling parameter
λ > 0, i.e. V → λV , and one considers the limit λ → 0, as done in Sections 11.2.2–11.2.3.

6As mentioned above, the parameter h is commonly used (see, e.g., [FHSS12b; FL16]) in the context of
Ginzburg-Landau theory, where it served as a ‘semiclassical’ small parameter in the derivation this theory.
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Proposition 11.2.1 (Energy gap in the original BCS model [BCS57]). Let µ > 0, fix a Debye
temperature 0 < TD < µ and let λBCS > 0 be the BCS coupling parameter as above. Let the
critical temperature Tc and the gap function ∆(p) be defined via (11.2.3)–(11.2.5).

Then the energy gap Ξ (defined in (11.1.9)) as a function of h =
√︂

1 − T/Tc for 0 ≤ T ≤ Tc
(recall (11.2.6)) is given by

Ξ(h) = Tc fBCS(h)
(︂
1 +O(e−1/λBCS)

)︂
(11.2.8)

uniformly in h ∈ [0, 1], where the function fBCS : [0, 1] → [0,∞) is implicitly defined via

ˆ
R

⎧⎪⎪⎨⎪⎪⎩
tanh

√
s2+fBCS(h)2

2(1−h2)√︂
s2 + fBCS(h)2

−
tanh s

2
s

⎫⎪⎪⎬⎪⎪⎭ ds = 0 (11.2.9)

and plotted in Figure 11.2.1.

This means that, independent of the material dependent Debye temperature TD > 0 and the
chemical potential µ > 0, the energy gap Ξ within the original BCS approximation [BCS57],
follows a universal curve, described by (11.2.8), in the limit of weak BCS coupling. A similar
formula for fBCS like (11.2.9) (but as a function of x := 1−h2) also appeared in the monograph
of Leggett [Leg06, Eq. (5.5.21)]. We now list a few basic properties of fBCS, whose proofs
we omit, as they can be obtained by means of the implicit function theorem and further
elementary tools (see also [LT23, Lemma 1] as well as Lemmas 11.3.1 and 11.3.13 below).
Almost all of these properties become apparent from Figure 11.2.1.
Lemma 11.2.2 (Properties of fBCS). There exists a unique implicitly defined solution function
fBCS : [0, 1] → [0,∞) of (11.2.9). Moreover, fBCS has the following properties:

(i) It is strictly monotonically increasing in [0, 1].

(ii) It is C1 in (0, 1) and has continuous one-sided derivatives at the boundaries 0 and 1.

(iii) It has the boundary values fBCS(0) = 0, f′BCS(0) = Cuniv and fBCS(1) = πe−γ ≈ 1.76,
f′BCS(1) = 0. Here, γ ≈ 0.57 is the Euler-Mascheroni constant and

Cuniv :=

⌜⃓⃓⎷ 8π2

7ζ(3) ≈ 3.06 , (11.2.10)

where ζ(s) denotes Riemann’s ζ-function.

Remark 11.2.3 (Contact interactions). Our proof of Proposition 11.2.1 can easily be gen-
eralized to all BCS models, in which the energy gap is constant (at least near the Fermi
surface).

(a) In case of a delta potential, V (x) = −δ(x) in one spatial dimension, d = 1, the gap
function solving (11.1.4) is given by a constant (simply because here V̂ is constant).
This setting can be analyzed similarly (in a weak coupling limit, i.e. replacing V → λV
and taking λ → 0) as done in Proposition 11.2.1 for the original BCS model [BCS57].
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0 1
0

πe−γ

h

fBCS(h)

Figure 11.2.1: Sketch of the function fBCS obtained via the implicit relation
(11.2.9).

(b) Also for contact interactions in three spatial dimensions, d = 3, the situation is similar.
This setting is studied in [BHS14a; BHS14b], where it is shown that for a suitable
sequence of potentials Vℓ converging to a point interaction with scattering length a < 0,
the gap function ∆ℓ converges (uniformly on compact sets, see [BHS14a, Eq. (14)]) to
a constant ∆ solving the gap equation

− 1
4πa = 1

(2π)3

ˆ
R3

(︄
1

K∆
T (p) − 1

p2

)︄
dp .

Replacing the limit of weak coupling by a small scattering length limit, a → 0, one can
obtain a result similar to Proposition 11.2.1.

11.2.2 Universal behavior of the s-wave BCS energy gap
After having discussed the prototypical universality in the seminal BCS paper [BCS57], we can
now formulate our main result on general s-wave superconductors with local interactions. The
proof of Theorem 11.2.4 is presented in Sections 11.3.2–11.3.4, while the main ideas are briefly
described in Remark 11.2.7 below. (We remark that, in the statement of Theorem 11.2.4, one
may replace Ξ by the order parameter ∆(√µ), see Remark 11.1.6 above.)
Theorem 11.2.4 (BCS energy gap for s-wave superconductors). Let d ∈ {1, 2, 3}, µ > 0,
λ > 0 and let V satisfy Assumptions 11.1.1 and 11.1.4. Let Tc and Ξ be as in (11.1.7)
and (11.1.9) with interaction λV and ∆ the unique non-zero solution the BCS gap equation
(11.1.4) with interaction λV .

Then, with fBCS(h), h =
√︂

1 − T/Tc being the function defined via (11.2.9), we have the
following:
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(a) Assuming additionally that | · |2V ∈ L1(Rd), it holds that

Ξ(h) = Tc fBCS(h)
(︂
1 +O(h−1e−c/λ)

)︂
(11.2.11)

for some constant c > 0 independent of λ and h.

(b) Assuming additionally that (1 + | · |)V ∈ L2(Rd), it holds that

Ξ(h) = Tc fBCS(h)
(︂
1 +O(hec′/λ) + oλ→0(1)

)︂
(11.2.12)

for some constant c′ > 0 independent of λ and h and where oλ→0(1) vanishes as λ → 0
uniformly in h.

For the special case h = 1, i.e. T = 0, (11.2.11) reproduces the results from [HS08b] (for
d = 3) and Chapter 9 (for d = 1, 2), which state the universality

lim
λ→0

Ξ(T = 0)
Tc

= π

eγ

at T = 0. Moreover, by (11.2.11) again, we find that, uniformly in temperatures bounded
away from Tc, i.e. h ∈ [ε, 1] for some fixed ε > 0,

lim
λ→0

Ξ(h)
Tc

= fBCS(h) ,

recovering the universality result in [LT23] (for d = 3), with an exponential speed O(e−c/λ)
of convergence. In the complementary case, for temperatures very close to the critical
temperature, T ≈ Tc, the question of universality is (i) physically more interesting due to
the phase transition from superconducting to normal behavior and (ii) mathematically more
delicate than in the previous scenarios. This is because now there are two small parameters λ
and h, instead of λ only, and the error term in (11.2.11) might actually be large compared to
one. However, now involving both, (11.2.11) and (11.2.12), we find that

lim
λ,h→0
e−c/λ≪h

Ξ(h)
Tc h

= Cuniv and lim
λ,h→0

h≪e−c′/λ

Ξ(h)
Tc h

= Cuniv (11.2.13)

with the aid of Lemma 11.2.2 (iii). In particular, the ratio Ξ(h)/(Tch) converges to the
same universal constant Cuniv (recall (11.2.10)) in both orders of limits, limλ→0 limh→0 and
limh→0 limλ→0.

Remark 11.2.5 (Joint limit). A careful inspection of the proof reveals that the constants
c, c′ satisfy c < c′. In particular, the proof does not allow the two regimes considered in
(11.2.13) to be overlapping and we cannot prove that limλ,h→0

Ξ(h)
Tch

= Cuniv in any joint limit.
We expect this to hold in any joint limit, however, as we saw for the particular example from
[BCS57] in Proposition 11.2.1

Remark 11.2.6 (Comparison of assumptions with [LT23]). Compared to the similar result
in [LT23] our assumptions hold for a slightly different class of potentials. The assumptions
of [LT23] are essentially on the smoothness of the interaction V (formulated via some
regularity/decay assumption on the Fourier transform V̂ ). Our assumptions on the other hand
are on the regularity/decay of V . In particular, our assumptions cover the examples of [LT23,
Table I] which are not covered by the assumptions of [LT23]. These are (in three dimensions)

VYukawa(x) = e−|x|

4π|x|
, VaY+bE(x) = (2a+ b|x|)e−|x|

8π|x|
, Vx-box(x) = 3θ(1 − |x|)

4π .
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Remark 11.2.7 (On the proof). The main ideas in the proof of Theorem 11.2.4 are the
following.

(a) For part (a), we crucially use that both, K∆
T +λV and KTc +λV , have lowest eigenvalue

zero. We then consider their corresponding Birman-Schwinger (BS) operators and use
that, for λ small enough, two naturally associated operators on the Fermi sphere both
have the same ground state. Evaluating the difference of these two associated operators
in this common ground state, we find that a difference of two logarithmically divergent
integrals, similarly to (11.2.9), vanishes up to exponentially small errors O(e−c/λ).
The removal of the log-divergence in this way (which – in a similar fashion – was the
major insight in [LT23]) is the key idea to (i) access also non-zero temperatures and (ii)
obtain extremely precise error estimates (compared to all the previous results mentioned
in Section 11.1.2.1).

(b) For part (b), we employ Ginzburg-Landau (GL). The principal realm of GL theory is to
describe superconductors and superfluids close to their critical temperature Tc. In this
regime, when superconductivity is weak, the main idea is that the prime competitor for
developing a small off-diagonal component α̂ for a BCS minimizer, is the normal state
ΓFD = (γFD, 0), with γFD given by the usual Fermi-Dirac distribution (recall (11.1.8)).
Moreover, to leading order, the off-diagonal component α̂ lies in the kernel (which agrees
with the ground state space) of the operator KTc + λV .
The main input, which we use, is that every minimizer (γ, α) of the BCS functional has
α ≈ hψa0 with a0 ∈ ker(KTc + λV ) fixed and ψ ∈ C minimizing the corresponding
GL functional [FL16, Theorem 2.10]. Taking the convolution of â0 with V̂ , we find the
universal constant (11.2.10) appearing in Ξ/(Tch) ≈ Cuniv.

Moreover, the “additional assumptions" in Theorem 11.2.4 are not quite rigid, meaning that
they can be weakened in the following sense.

(a) In case that | · |2αV ∈ L1 for a 0 < α ≤ 1 the error term in Equation (11.2.11) should
instead be O(h−1e−cα/λ) with the constant c then being independent also of α.

(b) In case that (1 + | · |)V ∈ Lp(Rd) for p < 2, the factor h in the first error term in
(11.2.12) would not appear raised to the first power but with exponent

(3p−4)/p for d = 1, (3p−4)/p−ε for d = 2, and (4p−6)/p for d = 3.

Remark 11.2.8 (Other limits). Although, in this paper, we considered only the weak coupling
limit, we expect the relation Ξ(h) ≈ TcfBCS(h) to hold also in other limiting regimes in which
“superconductivity is weak", that is, e.g., the low-7 and high-density limit, that were studied in
[HS08a; Lau21] and [Hen22] and Chapter 10, respectively. This idea is already contained in
[LT23], where the authors considered a “universal" parameter λ in [LT23, Eq. (7)], which can
be small for various physical situations.

Remark 11.2.9 (Non-universality). We recover also the formula [LT23, Equation (16)]

∆(p)
∆(√µ) = F (p) +O(e−c/λ) (11.2.14)

7For dimensions d = 1, 2, the same caveats mentioned in Remark 9.2.8 apply.
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for some function F not depending on the temperature and some constant c > 0. The function
F depends on the interaction V however. For this reason (11.2.14) is called a “non-universal”
feature in [LT23]. The proof of (11.2.14) is given in Section 11.3.3.

11.2.3 The case of pure angular momentum for d = 2
In this section, we generalize Theorem 11.2.4 from s-wave superconductors to two-dimensional
systems which have a definite (or pure) angular momentum ℓ0 ∈ N0, which can differ from 0.

Assumption 11.2.10 (Pure angular momentum). Let V ∈ L1(R2) be radially symmetric
and attractive on the Fermi sphere, i.e. the lowest eigenvalue eµ of Vµ is strictly negative
(recall (11.1.10)–(11.1.11)). Moreover, suppose that for all λ > 0 small enough the lowest
eigenvalue of KTc + λV is at most twice degenerate, i.e. dim ker(KTc + λV ) ∈ {1, 2}.

Since KTc commutes with the Laplacian, Assumption 11.2.10 ensures the ground state of
KTc + λV to have definite angular momentum. More precisely, it holds that

ker(KTc +λV ) = span{ρ} ⊗ Sℓ0 with Sℓ := span
{︂
e±iℓφ

}︂
⊂ L2(S1) for some ℓ0 ∈ N0 ,

(11.2.15)
where ρ ∈ L2((0,∞); r dr) is a (λ-dependent) radial function.8

We can now formulate our main result in the case of pure angular momentum for d = 2. (We
again remark that, in the statement of Theorem 11.2.11, one may replace Ξ by the order
parameter |∆(√µ)|, see Remark 11.1.6 above.)
Theorem 11.2.11 (BCS energy gap for 2d pure angular momentum). Let d = 2, µ > 0 and
let V satisfy Assumptions 11.1.1 and 11.2.10. Define the critical temperature Tc and energy
gap Ξ as in (11.1.7) and (11.1.9) with interaction λV for a λ > 0 and ∆ being any (arbitrary!)
non-zero solution the BCS gap equation (11.1.4) with interaction λV .

Then, with fBCS(h), h =
√︂

1 − T/Tc being the function defined via (11.2.9), we have the
following:

(a) Assume additionally that V ∈ L2(R2), V̂ ∈ Lr(R2) for some 1 ≤ r < 2 and that
| · |2V ∈ L1(Rd). Then there exists 0 ≤ T̃ < Tc with T̃ /Tc ≤ e−c/λ for some c > 0,
such that for all temperatures T ∈ (T̃ , Tc) it holds that

Ξ(h) = Tc fBCS(h)
(︂
1 +O(h−1e−c/λ)

)︂
(11.2.16)

for some constant c > 0 independent of λ and h.

(b) Assuming additionally that (1 + | · |)V ∈ L2(Rd), it holds that

Ξ(h) = Tc fBCS(h)
(︂
1 +O(hec′/λ) + oλ→0(1)

)︂
(11.2.17)

for some constant c′ > 0 independent of λ and h and where oλ→0(1) vanishes as λ → 0
uniformly in h.

The proof of Theorem 11.2.11 is given in Section 11.3.5.
8In fact, the angular momentum of the kernel of KTc + λV must be even, i.e. ℓ0 ∈ 2N0. This is because

BCS theory is formulated for reflection symmetric α, whence KTc
+ λV is naturally defined on the space of

reflection symmetric functions only.
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Remark 11.2.12 (On the assumptions). The additional assumptions in part (a) here compared
to Theorem 11.2.4 (namely V ∈ L2 and V̂ ∈ Lr) are those of [DGHL18, Theorem 2.1]. The
proof of Equation (11.2.16) centrally uses this result. As discussed in [DGHL18, Remark 2.3]
these additional assumptions are expected to be of a technical nature.

Remark 11.2.13 (The temperature T̃ ). The presence of the temperature T̃ in Theo-
rem 11.2.11 (a) arises from the first excited eigenvalue of KTc +λV , see [DGHL18, Remark 2.2].
As discussed in the proof, the temperatures Tc, T̃ are given by Tc = Tc(ℓ0) and T̃ = Tc(ℓ1),
the critical temperatures restricted to angular momenta ℓ0 and ℓ1, for some angular momenta
ℓ0 ̸= ℓ1, see also [DGHL18, Remark 2.2]. For temperatures T ∈ (T̃ , Tc) the BCS minimizer(s)
then have angular momentum ℓ0 [DGHL18, Theorem 2.1]. For temperatures T < T̃ however,
we do not in general know whether the BCS minimizer(s) have angular momentum ℓ0. The
proof crucially uses that the minimizer(s) have a definite angular momentum. If we however
know a priori, that the BCS minimizer(s) have angular momentum ℓ0 for some larger ranger
of temperatures (T1, Tc), then the formula in Equation (11.2.16) holds in this larger range of
temperatures.

Remark 11.2.14 (Nodes of the gap function). As already mentioned in Section 11.1.1.1,
we establish during the proof, that any solution ∆ of the BCS gap equation (11.1.4) has a
radially symmetric absolute value, |∆(p)|, which is, moreover, independent of the particular
solution ∆. In particular, every solution ∆ of the BCS gap equation (11.1.4) does not have
nodes on the Fermi surface. This contrasts many examples of d-wave superconductors in the
physics literature, where a (necessarily) non-radial interaction V leads to a gap function ∆
with nodes on the Fermi surface, see, e.g., [BH94; Fle+09; MW96; Zha+12].

Remark 11.2.15 (Non-extension to three dimensions). The formula Ξ(h) ≈ TcfBCS(h) is
not expected to hold in three dimensions for non-zero angular momentum, see for instance
[PFCP07, Figure 14.6]. More precisely, we have the following:

(i) For non-zero angular momentum in three dimensions, our method of proving Theo-
rem 11.2.11 (a) breaks down. In fact, we crucially use thatK∆

T +λV ≥ 0 for ∆ = −2λˆ︃V α
with α a minimizer of the BCS functional. However, as shown in [DGHL18, Proposition
2.11] this implies that |α̂| is a radial function. In particular, in three dimensions, α (and
therefore also ∆) cannot have a definite non-zero angular momentum.

(ii) Assume that we know a priori that a solution of the BCS gap equation (11.1.4) (in
spherical coordinates) satisfies ∆(p, ω) = ∆0(p)Y m

ℓ (ω) — at least to leading order.9
Here, Y m

ℓ is the usual L2-normalized (complex) spherical harmonic with ℓ ∈ N0 and
m ∈ {−ℓ, ..., ℓ}. Then, by application of [FL16, Theorem 2.10], following very similar
arguments to Sections 11.3.4 and 11.3.5.2, we find that the radial part of the gap
function is given by

|∆0(
√
µ)| ≈ cℓ,mCunivhTc (11.2.18)

on the Fermi sphere {p2 = µ}. Here Cuniv was defined in (11.2.10) and we denoted

cℓ,m :=
(︄ˆ

S2
|Y m
ℓ (ω)|4 dω

)︄−1/2

=
(︄ 2ℓ∑︂
L=0

(2ℓ+ 1)2

4π(2L+ 1) |⟨ℓ, ℓ; 0, 0|L; 0⟩|2 |⟨ℓ, ℓ;m,m|L; 2m⟩|2
)︄−1/2 (11.2.19)

9If one models the interaction V by a rank one projection V = |χ⟩ ⟨χ| (similarly to (11.2.2)), instead of a
multiplication operator, such a form of ∆ can easily be enforced by taking χ(p, ω) = χ0(p)Y m

ℓ (ω).
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with ⟨ℓ1, ℓ2;m1,m2|L;M⟩ being the well tabulated Clebsch-Gordan coefficients (see,
e.g., [CDL91, p. 1046]). The relation (11.2.19) shows that, in particular, even in the
subspace of fixed angular momentum ℓ ̸= 0, the behavior (11.2.18) is non-universal due
to a non-trivial dependence on m ∈ {−ℓ, ..., ℓ}, as, for example (see [FL16, Eq. (6.8)]),

c2,0 =
√︄

28π
15 and c2,±1 = c2,±2 =

√︄
14π
5 .

For temperatures 0 ≤ T ≤ Tc and h :=
√︂

1 − T/Tc, we expect (11.2.18) to generalize
to

|∆0(
√
µ)| ≈ Tc f(ℓ,m)

BCS (h)

with f(ℓ,m)
BCS : [0, 1] → [0,∞) being implicitly defined via

ˆ ∞

0
ds
ˆ
S2

dω

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
tanh

√︃
s2+
(︂

f(ℓ,m)
BCS (h)

)︂2
|Y m

ℓ
(ω)|2

2(1−h2)√︃
s2 +

(︂
f(ℓ,m)
BCS (h)

)︂2
|Y m
ℓ (ω)|2

−
tanh s

2
s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
|Y m
ℓ (ω)|2 = 0 , (11.2.20)

similarly to [PFCP07, Eq. (14.33)]. For ℓ = m = 0, (11.2.20) yields that f(0,0)
BCS =

(4π)1/2fBCS with fBCS from (11.2.9) due to the L2-normalization of the spherical har-
monics (recall ∆(p, ω) = ∆0(p)Y m

ℓ (ω)).

A detailed analysis of the three-dimensional case with non-zero angular momentum is deferred
to future work.

11.3 Proofs of the main results
This section contains the proofs of our main results formulated in Section 11.2.

11.3.1 Proof of Proposition 11.2.1
For ease of notation, we shall henceforth write λ instead of λBCS. From the explicit form
(11.2.3) it is clear that Ξ = ∆ and δ(h) ≡ δ = ∆/Tc is determined through (11.2.7). Hence,
the goal is to show that δ(h)/fBCS(h) = 1 +O(e−1/λ) uniformly in h ∈ [0, 1]. The proof of
this is conducted in three steps.

11.3.1.1 A priori bound on δ

We shall prove the following lemma.
Lemma 11.3.1. For δ = δ(h) defined through (11.2.7) and λ > 0 small enough, it holds that

δ(h) ≤ Ch . (11.3.1)

Proof. First, we note that δ(h) ≤ C uniformly for h ∈ [0, 1]. This easily follows from
observing that δ(h) is strictly monotonically increasing (as follows from elementary monotonicity
properties of the integrand in (11.2.7)) and δ(1) is necessarily bounded.
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11.3. Proofs of the main results

In order to show (11.3.1), we employ the implicit function theorem to derive an asymptotic
ODE for δ(h). For this purpose, we now introduce the function (recalling Tc ∼ e−1/λ)

Gλ : [0, 1] × [0,∞) → R , (h, δ) ↦→
ˆ TD/Tc

0

⎧⎨⎩tanh
(︂√

x2+δ2

2(1−h2)

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
x

⎫⎬⎭ dx

and trivially note that (11.2.7) is equivalent to Gλ(h, δ(h)) = 0. Since Gλ is C1 (away from
the boundary) in δ and h (this easily follows from dominated convergence), we can apply the
implicit function theorem to obtain the differential equation

∂δ(h)
∂h

= (1 − h2)h
δ(h)

⎛⎝ˆ TD/Tc

0

1
cosh2

(︂√
x2+δ2

2(1−h2)

)︂ dx
/︄ˆ TD/Tc

0

g1
(︂√

x2+δ2

1−h2

)︂
√
x2+δ2

1−h2

dx
⎞⎠ , (11.3.2)

where we introduced the auxiliary functions

g0(z) := tanh(z/2)
z

, g1(z) := −g′
0(z) = z−1g0(z) − 1

2z
−1 1

cosh2(z/2)
. (11.3.3)

It is elementary to check that the even function z ↦→ g1(z)/z is (strictly) positive and (strictly)
decreasing for z ∈ [0,∞). In combination with δ(h) ≤ C and Tc ∼ e−1/λ, one can thus
bound the denominator on the r.h.s. of (11.3.2) from below. Together with an upper bound
on the integral in the numerator (obtained by using elementary monotonicity properties of the
hyperbolic cosine), we find that

∂δ(h)
∂h

≤ C ′ h

δ(h)

⎛⎝ˆ ∞

0

1
cosh2(x)

dx
/︄ˆ C

0

g1
(︂√

x2 + C2
)︂

√
x2 + C2

dx
⎞⎠ ≤ C ′′ h

δ(h) (11.3.4)

for h > 0 and λ > 0 small enough (to ensure TD/Tc ≥ C).

Finally, the differential inequality (11.3.4) can be integrated using the boundary condition
δ(0) = 0 to conclude the desired.10

11.3.1.2 Uniform error estimate

Having Lemma 11.3.1 as an input, we shall now prove the following.
Lemma 11.3.2. For δ = δ(h) defined through (11.2.7), it holds that

ˆ ∞

TD/Tc

⃓⃓⃓⃓
⃓⃓tanh

(︂√
x2+δ2

2(1−h2)

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
x

⃓⃓⃓⃓
⃓⃓ dx ≤ C h2 e−2/λ . (11.3.5)

10Strictly speaking, this requires to extend the function δ(h) in (0, 1), obtained via the implicit function
theorem for Gλ, to the boundary points 0. In order to do so, note that, for h ∈ (0, 1/2), (11.3.2) yields

∂δ(h)
∂h

∼ h

δ(h) ,

from which we immediately conclude that |∂hδ(h)| ≤ C, uniformly in (0, 1/2). Hence, δ(h) continuously
extends to 0. The same is true for its derivative by means of (11.3.2) again. We remark that by a similar
argument, δ(h) can be extended to 1 as well.
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Proof. First, we add and subtract tanh(x/2)/
√
x2 + δ2 in (11.3.5). Then, we employ Tc ∼

e−1/λ and Lemma 11.3.1 to estimate
ˆ ∞

TD/Tc

⃓⃓⃓⃓
⃓⃓tanh

(︂√
x2+δ2

2(1−h2)

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
√
x2 + δ2

⃓⃓⃓⃓
⃓⃓ dx ≤ C h2

ˆ ∞

TD/Tc

1
cosh2(x/2)

dx ≤ C h2 e−2/λ

and ˆ ∞

TD/Tc

⃓⃓⃓⃓
⃓⃓ tanh

(︂
x
2

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
x

⃓⃓⃓⃓
⃓⃓ dx ≤ C h2

ˆ ∞

TD/Tc

1
x3 dx ≤ C h2 e−2/λ .

Combining these bounds yields the claim by means of the triangle inequality.

From Lemma 11.3.2 and Equation (11.2.7), we immediately conclude that

ˆ
R

⎧⎨⎩tanh
(︂√

x2+δ2

2(1−h2)

)︂
√
x2 + δ2

−
tanh

(︂
x
2

)︂
x

⎫⎬⎭ dx = O(h2 e−2/λ) . (11.3.6)

11.3.1.3 Comparison with fBCS

Given (11.3.6), the remaining task is to show that, because δ approximately solves the defining
equation of fBCS, it is actually close to fBCS. This is the content of the following lemma.
Lemma 11.3.3. Fix h ∈ [0, 1]. If ϕ ∈ [0,∞) satisfies11

ˆ
R

⎧⎪⎪⎨⎪⎪⎩
tanh

(︂√
x2+ϕ2

2(1−h2)

)︂
√
x2 + ϕ2 −

tanh
(︂
x
2

)︂
x

⎫⎪⎪⎬⎪⎪⎭ dx = R (11.3.7)

for some |R| ≤ C, then
ϕ = fBCS(h) +O(|R|1/2) (11.3.8)

with fBCS defined in (11.2.9).

Hence, combining (11.3.6) with (11.3.8) and invoking Lemma 11.2.2 (iii), we find that

δ(h) = fBCS(h) +O(he−1/λ) = fBCS(h)
(︂
1 +O(e−1/λ)

)︂
.

This concludes the proof of Proposition 11.2.1.

Proof of Lemma 11.3.3. First, we note that, given h ∈ [0, 1], (11.3.7) has a solution ϕ ∈
[0,∞) if and only if R ≤ log (1/(1 − h2)). Then, as in the proof of [LT23, Lemma 6] (see
[LT23, Equation (C50)]) we find that

ϕ = e−RfBCS

(︃√︂
h2 + (1 − h2)(1 − eR)

)︃
. (11.3.9)

Taylor expanding in R around 0, using regularity of fBCS from Lemma 11.2.2, we get

eRϕ = fBCS(h) +
ˆ 1

0
f′BCS

(︃√︂
h2 + (1 − h2)(1 − etR)

)︃ −(1 − h2)RetR

2
√︂
h2 + (1 − h2)(1 − etR)

dt .

11We follow the convention that, if h = 1, we replace tanh(...) by the constant function 1.
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To bound the integral we change variables to s = h2+(1−h2)(1−etR) and bound |f′BCS(h)| ≤ C
by Lemma 11.2.2. We split into cases depending on the sign of R.
R > 0: For R > 0 the integral is bounded by
ˆ h2

h2−(1−h2)(eR−1)

ds
2
√
s

= h−
√︂
h2 − (1 − h2)(eR − 1) = (1 − h2)(eR − 1)√︂

h2 − (1 − h2)(eR − 1) + h
.

Noting that δ√
ε−δ+

√
ε

≤
√
δ and that (1 − h2)(eR − 1) ≤ CR we find that the integral is

bounded by
√
R.

R < 0: For R < 0 the integral is similarly bounded by
ˆ h2+(1−h2)(1−eR)

h2

ds
2
√
s

=
√︂
h2 + (1 − h2)(1 − eR) − h ≤ C

√︂
|R| .

Plugging these bounds into (11.3.9), we conclude the desired.

11.3.2 Proof of Theorem 11.2.4(a)
We give here the proof of Theorem 11.2.4(a). The argument is divided into several steps.

11.3.2.1 A priori spectral information

For any temperature T we have by Proposition 11.1.5 that there exists a unique (up to a
constant global phase) minimizer (γ∗, α∗) of the BCS functional. The function α∗ is radial
and has α̂∗ > 0. Moreover, the operator K∆

T + λV has lowest eigenvalue 0 and α∗ is the
unique eigenfunction with this eigenvalue.

11.3.2.2 Weak a priori bound on ∆

From the proof of Proposition 11.1.2 in [HS16] we have the following bound on the minimising
(γ∗, α∗) of the BCS functional [HS16, Eqn. 3.12]
ˆ

(1 + p2)(|α̂∗(p)|2 + γ̂∗(p)) dp

≤ 8T
ˆ

log
(︂
1 + e−(p2−µ)/4T

)︂
dp+ 8

ˆ [︂
p2/4 − 1 + C2(λ)

]︂
−

dp ≤ Cλ

with C2(λ) = inf spec(p2/4 + λV ) ≤ 0 and thus Cλ uniformly bounded for λ small enough.
In particular ∥α∗∥H1 ≤ C uniformly for λ small enough. By Sobolev’s inequality [LL01, Thm
8.3] we then have

∥α∥2
L∞ ≤ C ∥∇α∥L2 ∥α∥L2 ≤ C (d = 1)

∥α∥2
Lq ≤ C ∥∇α∥L2 ∥α∥L2 ≤ C (d = 2)

∥α∥2
L6 ≤ C ∥∇α∥2

L2 ≤ C (d = 3)

for any 2 ≤ q < ∞. Thus,

∥∆∥L∞ ≤ 2λ ∥V α∥L1 ≤

⎧⎪⎪⎨⎪⎪⎩
2λ ∥V ∥L1 ∥α∥L∞ d = 1
2λ ∥V ∥Lp ∥α∥(2pq−2q−2p)/(pq−2p)

L2 ∥α∥(2q−pq)/(pq−2p)
Lq d = 2

2λ ∥V ∥L3/2 ∥α∥1/2
L2 ∥α∥1/2

L6 d = 3
≤ Cλ

(11.3.10)
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uniformly for λ small enough (for any 1 < p < min{2, pV } by choosing q large enough in
dimension d = 2). In particular we see that ∆(p) → 0 as λ → 0.

11.3.2.3 Birman–Schwinger principle

Next, by the Birman–Schwinger principle [FHNS07; HHSS08; HS16] the fact that K∆
T +λV has

lowest eigenvalue 0 with α∗ being the unique eigenvector is equivalent to the Birman–Schwinger
operator

BT,∆ := λV 1/2 1
K∆
T

|V |1/2

having −1 as its lowest eigenvalue and ϕ = V 1/2α∗ being the unique eigenfunction corre-
sponding to this eigenvalue. Here we use the convention V 1/2(x) = sgn(V (x))|V (x)|1/2.
We decompose the Birman–Schwinger operator into a dominant singular term and an error
term. For this purpose we define the (rescaled) Fourier transform restricted to the sphere
Fµ : L1(Rd) → L2(Sd−1) by

Fµψ(p) = 1
(2π)d/2

ˆ
Rd

ψ(x)e−i√µp·x dx,

which is well-defined by the Riemann–Lebesgue Lemma. Define then

m(T,∆) = 1
|Sd−1|

ˆ
|p|≤

√
2µ

1
K∆
T (p) dp (11.3.11)

and decompose

BT,∆ = λm(T,∆)V 1/2F†
µFµ|V |1/2 + λV 1/2MT,∆|V |1/2,

with MT,∆ defined such that this holds. Analogously to [FHNS07, Lemma 2] and Lemma 9.3.5
we have the following lemma, the proof of which (it is analogous to the one of Lemma 9.3.5)
is given in Section 11.A.2.1.
Lemma 11.3.4. We have

⃦⃦⃦
V 1/2MT,∆|V |1/2

⃦⃦⃦
HS

≤ C for small λ uniformly in T and ∆, where
∥ · ∥HS denotes the Hilbert-Schmidt norm of an operator.

We conclude that 1+λV 1/2MT,∆|V |1/2 is invertible for sufficiently small λ and thus, analogously
to [HS08b, Lemma 4] and Lemma 10.2.8 and Proposition 10.2.10 the fact that BT,∆ has
lowest eigenvalue −1 is equivalent to the fact that the operator

ST,∆ := λm(T,∆)Fµ|V |1/2 1
1 + λV 1/2MT,∆|V |1/2V

1/2F†
µ (11.3.12)

acting on L2(Sd−1) has lowest eigenvalue −1. Moreover, the function Fµ|V |1/2ϕ = FµV α∗ is
the unique eigenfunction of ST,∆ corresponding to the eigenvalue −1.

11.3.2.4 A priori bounds on ∆

For the analysis of the integral m(T,∆) we need some a priori bounds on ∆. Analogously as
in Chapter 9 and [HS08b] we need some control of ∆(p) in terms of ∆(√µ) and some type
of Lipschitz-continuity of ∆. These are collected in the following lemma.
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Lemma 11.3.5. The function ∆ satisfies the bounds

∆(p) ≤ C∆(√µ), (11.3.13)
|∆(p) − ∆(q)| ≤ C∆(√µ)|p− q| (11.3.14)

for sufficiently small λ.

Proof. As noted above, the function Fµ|V |1/2ϕ = FµV α is the eigenfunction of ST,∆ corre-
sponding to the lowest eigenvalue −1.
Further, to leading order, ST,∆ is proportional to Vµ = FµV F†

µ. Since the constant function
u =

⃓⃓⃓
Sd−1

⃓⃓⃓−1/2
∈ L2(Sd−1) is the ground state of Vµ (see the argument around (11.1.11)),

the same is also true for ST,∆ whenever λ is small enough. Hence, one can easily see that
1

1 + λV 1/2MT,∆|V |1/2V
1/2F†

µu

is an eigenvector of BT,∆ corresponding to the eigenvalue −1 and thus proportional to
ϕ = V 1/2α∗. Thus, with F denoting the usual Fourier transform, by expanding 1

1+x = 1 − x
1+x

we have

∆ = −2λF|V |1/2ϕ = f(λ)F|V |1/2 1
1 + λV 1/2MT,∆|V |1/2V

1/2F†
µu

= f(λ)
(︄ˆ

Sd−1
V̂ (p− √

µq) dω(q) + ληλ(p)
)︄

for some constant f(λ) (where we absorbed the factor |Sd−1|−1/2(2π)−d/2 into f(λ)). One
easily verifies that

ηλ = −(2π)d/2F|V |1/2 V 1/2MT,∆|V |1/2

1 + λV 1/2MT,∆|V |1/2V
1/2F†

µu

has ∥ηλ∥∞ ≤ C uniformly in λ < λ0 for some λ0 by Lemma 11.3.4. By evaluating at p = √
µ

we find |f(λ)| ≤ C∆(√µ) for small λ and thus the global bound (11.3.13). Moreover, we
have the Lipschitz-bound:

|∆(p) − ∆(q)| ≤ |f(λ)||p− q|
⃦⃦⃦⃦
⃦|x||V |1/2 1

1 + λV 1/2MT,∆|V |1/2V
1/2F†

µu

⃦⃦⃦⃦
⃦
L1

≤ C∆(√µ)|p− q|
⃦⃦⃦
|x|2V

⃦⃦⃦1/2

L1

1
1 − λ ∥V 1/2MT,∆|V |1/2∥

⃦⃦⃦
V 1/2F†

µu
⃦⃦⃦
L2

≤ C∆(√µ)|p− q|

for sufficiently small λ.

11.3.2.5 First order

Expanding the resolvent in Equation (11.3.12) to first order in a geometric series we see
that ST,∆ to leading order is proportional to the operator Vµ (defined in (11.1.10) above).
Moreover, we have

−1 = λm(T,∆) inf spec
(︄
Fµ|V |1/2 1

1 + λV 1/2MT,∆|V |1/2V
1/2F†

µ

)︄
= λm(T,∆) inf spec Vµ(1 +O(λ)) = λeµm(T,∆)(1 +O(λ)).

In particular m(T,∆) = −1
λeµ

(1 +O(λ)) → ∞ as λ → 0.
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11.3.2.6 Exponential vanishing of ∆

Pointwise we may bound K∆
T ≥ E∆. Thus, by the first–order analysis above, we have

−1
λeµ

(1 +O(λ)) = m(T,∆) = 1
|Sd−1|

ˆ
|p|<

√
2µ

1
K∆
T

dp

≤ 1
|Sd−1|

ˆ
|p|<

√
2µ

1√︂
|p2 − µ|2 + |∆(p)|2

dp

The latter integral is calculated in Chapter 9 and [HS08b]. The same calculation is valid here
by the bounds (11.3.13) and (11.3.14) and the fact that ∆(p) → 0 by (11.3.10). That is

−1
λeµ

≤ µd/2−1
(︄

log µ

∆(√µ) +O(1)
)︄

in the limit λ → 0. We conclude that ∆(√µ) ≲ e−c/λ as λ → 0 (with c = −1/eµµd/2−1).

The constant c shall henceforth be used generically and its precise value might change from
line to line.

11.3.2.7 Infinite order

Recall that, for small λ, the unique eigenfunction of ST,∆ corresponding to the eigenvalue −1
is given by the constant function u. Thus, for small λ we have

−1 = λm(T,∆)
⟨︄
u

⃓⃓⃓⃓
⃓Fµ|V |1/2 1

1 + λV 1/2MT,∆|V |1/2V
1/2F†

µ

⃓⃓⃓⃓
⃓u
⟩︄
.

Combining this for the temperatures T and Tc we find

m(T,∆) −m(Tc, 0)

= −1
λ

⎡⎢⎢⎣ 1⟨︃
u

⃓⃓⃓⃓
Fµ|V |1/2 1

1+λV 1/2MT,∆|V |1/2V 1/2F†
µ

⃓⃓⃓⃓
u
⟩︃ − 1⟨︂

u
⃓⃓⃓
Fµ|V |1/2 1

1+λV 1/2MTc,0|V |1/2V 1/2F†
µ

⃓⃓⃓
u
⟩︂
⎤⎥⎦

= −1
λe2

µ

(1 +O(λ))
⟨︄
u

⃓⃓⃓⃓
⃓Fµ|V |1/2

(︄
1

1 + λV 1/2MT,∆|V |1/2 − 1
1 + λV 1/2MTc,0|V |1/2

)︄
V 1/2F†

µ

⃓⃓⃓⃓
⃓u
⟩︄

(11.3.15)

for small enough λ by expanding to first order in the denominator and noting that inf spec Vµ =
eµ. The proof of the following lemma (which is somewhat analogous to the proof of
Lemma 11.3.4) is given in Section 11.A.2.2.
Lemma 11.3.6. There exists λ0 > 0 such that for 0 < λ < λ0⃦⃦⃦

V 1/2(MT,∆ −MTc,0)|V |1/2
⃦⃦⃦

HS
≤ Ce−c/λ

for some constants C, c > 0 uniformly in λ.
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Having Lemma 11.3.6 at hand, we write the difference as a telescoping sum

1
1 + λV 1/2MT,∆|V |1/2 − 1

1 + λV 1/2MTc,0|V |1/2

=
∞∑︂
k=1

(−λ)k
[︃(︂
V 1/2MT,∆|V |1/2

)︂k
−
(︂
V 1/2MTc,0|V |1/2

)︂k]︃

=
∞∑︂
k=1

(−λ)k
k−1∑︂
ℓ=0

(︂
V 1/2MT,∆|V |1/2

)︂k−1−ℓ
V 1/2(MT,∆ −MTc,0)|V |1/2

(︂
V 1/2MTc,0|V |1/2

)︂ℓ
.

Thus, by Lemmas 11.3.4 and 11.3.6 we have⃦⃦⃦⃦
⃦ 1

1 + λV 1/2MT,∆|V |1/2 − 1
1 + λV 1/2MTc,0|V |1/2

⃦⃦⃦⃦
⃦

HS
≤

∞∑︂
k=1

λk
k−1∑︂
ℓ=0

Ck−1−ℓ × Ce−c/λ × Cℓ

≤
∞∑︂
k=1

kλkCke−c/λ ≤ Cλe−c/λ.

We conclude that
|m(T,∆) −m(Tc, 0)| ≤ Ce−c/λ. (11.3.16)

11.3.2.8 Calculation of the integral m(T,∆) −m(Tc, 0)

To extract the asymptotics in (11.2.11) from the bound in (11.3.16) we calculate the difference
m(T,∆)−m(Tc, 0) and show that it is essentially the left-hand-side of (11.2.9). The argument
is essentially given in [LT23, Appendix C.4]. For completeness, we give the argument here.

By changing variables to s = (p2 − µ)/µ and defining x(s) = ∆(
√︂
µ(1 + s))/µ we get

m(T,∆) −m(Tc, 0) =
ˆ √

2µ

0

(︄
1
K∆
T

− 1
KTc

)︄
pd−1 dp

= µd/2−1

2

ˆ 1

−1

⎛⎜⎜⎝tanh
(︃√

s2+x(s)2

2T/µ

)︃
√︂
s2 + x(s)2

−
tanh s

2Tc/µ

s

⎞⎟⎟⎠ (1 + s)d/2−1 ds.

This is of the form where we can use [LT23, Lemma 5].
Lemma 11.3.7 ([LT23, Lemma 5]). Let g,G be functions with g(0) = G(0) = 1 and g ∈ L∞

and let τ, τc, δ > 0. Assume that g̃(s) := (g(s) − 1)/s and G̃(s) := (G(s) − 1)/s satisfy
g̃, G̃ ∈ L∞(R). Let s1 > 0 such that g(s) > 1/2 for |s| < s1 and define

Jτ,δ,τc(g,G) =
ˆ
R

⎧⎪⎨⎪⎩tanh
√
s2+g(s)2δ2

2τ√︂
s2 + g(s)2δ2

−
tanh s

2τc

s

⎫⎪⎬⎪⎭G(s) ds,

J
(0)
τ,δ,τc

= Jτ,δ,τc(1, 1) =
ˆ
R

⎧⎨⎩tanh
√
s2+δ2

2τ√
s2 + δ2

−
tanh s

2τc

s

⎫⎬⎭ ds.

Then ⃓⃓⃓
Jτ,δ,τc(g,G) − J

(0)
τ,δ,τc

⃓⃓⃓
≤
⃦⃦⃦
G̃
⃦⃦⃦
L∞

(4τ + 4τc + πδ ∥g∥L∞) + 4δ ∥g̃∥L∞ (1 + ∥g∥L∞)
(︄

1 + δ

2s1

)︄
.
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To apply this lemma we write

x(s) =
∆(
√︂
µ(1 + s))

∆(√µ)
∆(√µ)
µ

= g(s)δ.

Then g ∈ L∞ uniformly in λ by (11.3.13) and g̃ ∈ L∞ uniformly in λ by (11.3.14). Finally,
clearly G(s) = (1 + s)d/2−1χ|s|≤1 has G̃ ∈ L∞. We conclude that

m(T,∆) −m(Tc, 0) = µd/2−1

2

ˆ
R

⎧⎪⎪⎨⎪⎪⎩
tanh

√
s2+(∆(√µ)/µ)2

2T/µ√︂
s2 + (∆(√µ)/µ)2

−
tanh s

2Tc/µ

s

⎫⎪⎪⎬⎪⎪⎭ ds+O(e−c/λ).

Writing T = Tc(1 − h2), recalling the bound in (11.3.16) and changing variables we find

ˆ
R

⎧⎪⎪⎨⎪⎪⎩
tanh

√
s2+(∆(√µ)/Tc)2

2(1−h2)√︂
s2 + (∆(√µ)/Tc)2

−
tanh s

2
s

⎫⎪⎪⎬⎪⎪⎭ ds = R,

with R = O(e−c/λ). Hence, by Lemma 11.3.3, we find that

∆(√µ)
Tc

= fBCS(h) +O(|R|1/2) = fBCS(h)(1 +O(h−1e−c/λ)) (11.3.17)

since fBCS(h) ∼ h for small h by Lemma 11.2.2.

11.3.2.9 Comparing ∆(√µ) and Ξ

We finally prove that Ξ is essentially given by ∆(√µ).

Clearly Ξ = infpE∆(p) ≤ E∆(√µ) = ∆(√µ). To show a corresponding lower bound consider
p with |p2 −µ| ≤ Ξ ≤ ∆(√µ). Then by Equation (11.3.14) and the bound ∆(√µ) = O(e−c/λ)
we have

∆(p) ≥ ∆(√µ) − C∆(√µ)|p− √
µ| ≥ ∆(√µ) (1 − C∆(√µ)) ≥ ∆(√µ)(1 +O(e−c/λ)).

We conclude that
Ξ = ∆(√µ)

(︂
1 +O(e−c/λ)

)︂
. (11.3.18)

Together with (11.3.17) this concludes the proof of Theorem 11.2.4(a).

11.3.3 Non-universal property of ∆: Proof of Equation (11.2.14)
From the Birman–Schwinger argument (Section 11.3.2.3) we have that ϕ = V 1/2α∗ is the
(unique) eigenvector of

λm(T,∆)
1 + λV 1/2MT,∆|V |1/2V

1/2F†
µFµ|V |1/2

corresponding to the eigenvalue −1. Recalling that ∆ = −2λFV α∗ we thus get the equation

∆ = −F|V |1/2 λm(T,∆)
1 + λV 1/2MT,∆|V |1/2V

1/2F†
µ∆(√µ ·)
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with ∆(√µ ·) being the constant function on the unit sphere of value ∆(√µ). Recall that
−1 = λm(T,∆)

⟨︃
u

⃓⃓⃓⃓
Fµ|V |1/2 1

1+λV 1/2MT,∆|V |1/2V
1/2F†

µ

⃓⃓⃓⃓
u
⟩︃

for small enough λ. By the same
argument as in Section 11.3.2.7 we may replace MT,∆ by M0,0, its corresponding value at
T = ∆ = 0, up to errors of order e−c/λ. (Concretely one can define M0,0 via the representation
of its kernel as given in Equations (11.A.3), (11.A.4), (11.A.5), (11.A.8) and (11.A.9), setting
T = ∆ = 0.) Hence, for sufficiently small λ,

∆
∆(√µ) =

|Sd−1|1/2F|V |1/2 1
1+λV 1/2M0,0|V |1/2V

1/2F†
µu⟨︂

u
⃓⃓⃓
Fµ|V |1/2 1

1+λV 1/2M0,0|V |1/2V 1/2F†
µ

⃓⃓⃓
u
⟩︂ +O(e−c/λ) = F +O(e−c/λ).

Clearly, the function F does not depend on the temperature T .

11.3.4 Ginzburg-Landau theory: Proof of Theorem 11.2.4(b)
As mentioned above, the proof of Theorem 11.2.4(b) builds on Ginzburg–Landau (GL) theory.
For convenience of the reader, we recall the main input from GL theory for the purpose of
the present paper in Proposition 11.3.9 below. More general and detailed statements can be
found in the original papers [DHM23a; DHM23b; FHSS12b; FL16]. In particular, these works
allow for external fields or ground state degeneracy (cf. Lemma 11.3.8 below), respectively.

As a preparation for Proposition 11.3.9, we have the following lemma.
Lemma 11.3.8 (Ground state of KTc + λV ). Let V satisfy Assumptions 11.1.1 and 11.1.4.
Then KTc + λV has 0 as a non-degenerate ground state eigenvalue and its L2(Rd)-normalized
ground state a0 can be chosen to have strictly positive Fourier transform. Moreover, it holds
that â0 ∈ L∞(Rd).

Proof. Since Tc > 0 (recall the discussion below Assumption 11.1.4), we first note that
the Fourier multiplier KTc is strictly positive. Then using V̂ ≤ 0, the claim follows from a
Perron-Frobenius type argument (see also [HS08b] and [FHSS12b, Assumption 2]). The fact
that â0 ∈ L∞(Rd) follows from [FHSS12b, Proposition 2] by invoking Assumption 11.1.1.

We can now formulate the main results from GL theory, needed for the present paper.
Proposition 11.3.9 (Ginzburg-Landau theory, see [FL16, Theorem 2.10]). Let V be a function
satisfying Assumptions 11.1.1 and 11.1.4 and suppose that 0 ≤ T < Tc. Then, using the
notations from Proposition 11.1.5 and Lemma 11.3.8, we have that

FT [Γ∗] − FT [ΓFD] = h4EGL(ψGL) + O(h6) as h → 0 ,

where ψGL ̸= 0 minimizes the Ginzburg-Landau “functional” EGL : C → R,

EGL(ψ) =|ψ|4
[︄

1
T 3
c

ˆ
Rd

g1((p2 − µ)/Tc)
(p2 − µ)/Tc

|KTc(p)|4|â0(p)|4 dp
]︄

− |ψ|2
[︄

1
2Tc

ˆ
Rd

1
cosh2 ((p2 − µ)/(2Tc))

|KTc(p)|2|â0(p)|2 dp
]︄
.

(11.3.19)

Here we used the auxiliary function g1 from (11.3.3). Moreover, we can decompose the
off–diagonal element α̂∗ of Γ∗ as

α̂∗ = h|ψ0|â0 + ξ̂ (11.3.20)
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where ∥ξ∥L2 = O(h2) and ψ0 ̸= 0 approximately minimizes (11.3.19), i.e.

EGL(ψ0) ≤ EGL(ψGL) + O(h2) . (11.3.21)

Remark 11.3.10. We emphasize that all error terms in the above proposition (and also the
implicit constants hidden in â0 ∈ L∞(Rd)) are not uniform in λ. This crucially limits the
applicability of our GL theory based method for temperatures slightly away from the critical one
with e−c′/λ ≪ h ≪ 1 (cf. the error bound in (11.2.12)). Indeed, a careful examination of the
proofs in [FHSS12b; FL16] reveals that the hidden dependencies on the critical temperature
Tc are at most inverse polynomially and hence exponential in λ, i.e. ec/λ for some c > 0
(independent of λ and h).

11.3.4.1 Minimizing the Ginzburg-Landau functional

Given the inputs from GL theory, Theorem 11.2.4(b) is based on the following Proposi-
tion 11.3.11, the proof of which we postpone after finishing the proof of Theorem 11.2.4(b).
Proposition 11.3.11. The (up to a phase unique) minimizer ψGL of the GL functional
(11.3.19) satisfies

|ψGL| = Cuniv
Tc

∆0(
√
µ)
(︂
1 + oλ→0(1)

)︂
, (11.3.22)

where ∆0 := −2(2π)−d/2λV̂ ⋆ â0,12 the constant Cuniv is given in (11.2.10), and the error is
uniform in h.

The fact that |ψ0| > 0 approximately minimizes (11.3.19) (see (11.3.21)), implies that
(recalling Remark 11.3.10)

|ψ0| = |ψGL| +O
(︂
hec/λ

)︂
.

Therefore, by means of (11.3.20) in combination with Proposition 11.3.11, we infer

α̂∗ = Cuniv Tc h
â0

∆0(
√
µ)
(︂
1 + oλ→0(1) +O

(︂
hec/λ

)︂)︂
+ ξ̂ .

Thus, after taking the convolution with λV̂ ,

∆ = Cuniv Tc h
∆0

∆0(
√
µ)
(︂
1 + oλ→0(1) +O

(︂
hec/λ

)︂)︂
+ ∆ξ , (11.3.23)

where ∆ > 0 is the unique solution of the BCS gap equation (11.1.4) (see Proposition 11.1.5)
and we denoted ∆ξ := −2(2π)−d/2λV̂ ⋆ ξ̂.

11.3.4.2 A priori bounds on ∆0

For the proof of Theorem 11.2.4(b) we need some a priori bounds on ∆0 analogously to
those of Section 11.3.2.4. The bounds follow from the following lemma, the proof of which is
analogous to the argument of Sections 11.3.2.3 and 11.3.2.4 and given in Section 11.A.2.3.

12Note that ∆0 was denoted by t in [FHSS12b; FL16]. We also remark that ∆0(√µ) ̸= 0 as follows from
â0 > 0 (by Lemma 11.3.8) and V̂ ≤ 0 (by Assumption 11.1.4).
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Lemma 11.3.12 (c.f. [HS08b, Lemma 4] and Lemma 10.2.8). Let a0 ∈ H1(Rd) with â0 > 0
be the unique H1(Rd)-normalized ground state of KTc + λV from Lemma 11.3.8. Moreover,
let u(p) = (|Sd−1|)−1/2 be the constant function on the sphere Sd−1 and let

φ̂(p) = − 1
(2π)d/2

ˆ
Sd−1

V̂ (p− √
µq) dω(q) . (11.3.24)

Then ∆0 = −2(2π)−d/2λV̂ ⋆ â0 can be expanded as

∆0(p) = f(λ)[φ̂(p) + ληλ(p)] (11.3.25)

for some positive function f(λ) and ∥ηλ∥L∞(Rd) bounded uniformly in λ > 0.

After realizing φ̂(√µ) = −eµ by (11.1.11), we conclude for small enough λ > 0 that

∆0(p) − ∆0(
√
µ) =

[φ̂(p) − φ̂(√µ)] + λ[ηλ(p) − ηλ(
√
µ)]

−eµ + ληλ(
√
µ) ∆0(

√
µ) .

Now it is an easy computation to see |φ̂(p) − φ̂(q)| ≤ C min
{︂
||p| − |q||, 1

}︂
for all p, q ∈ Rd.

Thus, ⃓⃓⃓
∆0(p) − ∆0(

√
µ)
⃓⃓⃓
≤ C

(︂
min

{︂⃓⃓⃓
|p| − √

µ
⃓⃓⃓
, 1
}︂

+ λ
)︂

∆0(
√
µ) . (11.3.26)

11.3.4.3 A priori bounds on ∆ξ

For the following arguments, we need two estimates on ∆ξ = −2(2π)−d/2λV̂ ⋆ ξ̂.

• First, it is a simple consequence of Young’s inequality and ∥ξ̂∥L2 = ∥ξ∥L2 = O
(︂
h2ec/λ

)︂
,

that
∥∆ξ∥L∞ = ∥V ∥L2 O

(︂
h2ec/λ

)︂
. (11.3.27)

• Second, we note that ∆ξ(p) − ∆ξ(q) is (proportional to) the Fourier transform of
V (x)

(︂
1 − ei(p−q)·x

)︂
ξ(x), and thus

⃦⃦⃦
V (x)

(︂
1 − ei(p−q)·x

)︂⃦⃦⃦2

L2
=
ˆ
Rd

|V (x)|2
⃓⃓⃓
1 − ei(p−q)·x

⃓⃓⃓2
dx

≤ C|p− q|2
ˆ
Rd

|V (x)|2|x|2 dx .

Using radiality of ∆ and ∆0, we conclude the radiality of ∆ξ and therefore

|∆ξ(p) − ∆ξ(q)| ≤
⃓⃓⃓
|p| − |q|

⃓⃓⃓
∥| · |V ∥L2 O

(︂
h2ec/λ

)︂
. (11.3.28)

Recall that ∥(1 + | · |)V ∥L2 < ∞ by assumption.

11.3.4.4 Comparing ∆(√µ) and Ξ

We aim at proving
Ξ = ∆(√µ)

(︂
1 +O

(︂
λ+ h2ec/λ

)︂)︂
. (11.3.29)

In order to see this, we note that clearly Ξ =
√︂

(p2 − µ)2 + |∆(p)|2 ≤ ∆(√µ). For the reverse
inequality, let p ∈ Rd with |p2 − µ| ≤ Ξ ≤ ∆(√µ). Then

|∆(p) − ∆(√µ)| ≤ C Tc h
(︂
1 + oλ→0(1) +O(hec/λ)

)︂
·
(︂⃓⃓⃓

|p| − √
µ
⃓⃓⃓
+ λ

)︂
+C

⃓⃓⃓
|p| − √

µ
⃓⃓⃓
h2ec/λ
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by application of (11.3.26) and (11.3.28). Using that ∆(√µ) ∼ Tch, as a consequence of
(11.3.23) for h small enough (meaning hec/λ ≪ 1), we then conclude

|∆(p) − ∆(√µ)| ≤ C
(︂
λ+ h2ec/λ

)︂
∆(√µ)

In combination with the upper bound, this proves (11.3.29).

11.3.4.5 Conclusion: Proof of Theorem 11.2.4(b)

We evaluate (11.3.23) at p = √
µ, such that we find

Ξ =
[︂
Cuniv Tc h

(︂
1 + oλ→0(1) +O

(︂
hec/λ

)︂)︂
+O

(︂
h2ec/λ

)︂]︂
·
(︂
1 +O

(︂
λ+ h2ec/λ

)︂)︂
with the aid of (11.3.27) and (11.3.29). Collecting all the error terms leaves us with

Ξ = Cuniv Tc h
(︂
1 + oλ→0(1) +O

(︂
hec/λ

)︂)︂
. (11.3.30)

Hence, using fBCS(h) = Cunivh+O(h2), by Lemma 11.2.2, we arrive at Theorem 11.2.4(b).

11.3.4.6 Proof of Proposition 11.3.11

In the following estimates, we use the shorthand notations (recall the definition of the auxiliary
function g1 from (11.3.3))

f4(p) := g1((p2 − µ)/Tc)
(p2 − µ)/Tc

f2(p) := 1
cosh2 ((p2 − µ)/(2Tc))

, (11.3.31)

such that the absolute value of the minimizer ψGL of (11.3.19) is given by

|ψGL| = Tc

(︄ ´
Rd f2(p)|KTc(p)|2|â0(p)|2 dp

4
´
Rd f4(p)|KTc(p)|4|â0(p)|4 dp

)︄1/2

= Tc

(︄´
Rd f2(p)|∆0(p)|2 dp´
Rd f4(p)|∆0(p)|4 dp

)︄1/2

.

We denoted ∆0 = −2(2π)−d/2λV̂ ⋆ â0 (as in Proposition 11.3.11) and used that a0 ∈
ker

(︂
KTc + λV

)︂
. Note that, ∆0 = |∆0| by means of Proposition 11.1.5 and V̂ ≤ 0 from

Assumption 11.1.4.

Next, we add and subtract |∆0(
√
µ)|2 (resp. |∆0(

√
µ)|4) in the integral in the numerator

(resp. denominator). The terms involving |∆0(
√
µ)|j are evaluated as follows.

Lemma 11.3.13 (Emergence of Cuniv in GL theory). Let µ > 0. In the limit Tc/µ → 0 we
have that (recall Cuniv from (11.2.10))⎛⎝ˆ

Rd

1
cosh2

(︂
p2−µ
2Tc

)︂ dp
/︄ˆ

Rd

g1((p2 − µ)/Tc)
(p2 − µ)/Tc

dp
⎞⎠1/2

−→ Cuniv (11.3.32)

for all d = 1, 2, 3.

Proof. Since the integrands are both radial, we switch to spherical coordinates and neglect
the common |Sd−1|–factor in numerator and denominator. By splitting the remaining radial
integration according to p2 ≤ µ and p2 ≥ µ and changing the integration variables from
(p2 − µ)/2Tc to −t resp. t we find the numerator of (11.3.32) being equal to

2Tcµ(d−2)/2
[︄ˆ µ/2Tc

0

(︂
1 − 2Tc

µ
t
)︂(d−2)/2

+
ˆ ∞

0

(︂
1 + 2Tc

µ
t
)︂(d−2)/2

]︄(︄
1

cosh2(t)

)︄
dt . (11.3.33)
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Similarly, we find the denominator of (11.3.32) to equal

2Tcµ(d−2)/2

8

[︄ˆ µ/2Tc

0

(︂
1 − 2Tc

µ
t
)︂(d−2)/2

+
ˆ ∞

0

(︂
1 + 2Tc

µ
t
)︂(d−2)/2

]︄ [︄
tanh(t)
t3

− 1
t2 cosh2(t)

]︄
dt.

(11.3.34)
We now take the ratio of (11.3.33) and (11.3.34) and send Tc/µ → 0. By means of the
dominated convergence theorem (note that the integrand in (11.3.34) behaves as t−3 for large
t) we thus find the limit being given as the ratio of

ˆ ∞

0

1
cosh2(t)

dt and 1
8

ˆ ∞

0

(︄
tanh(t)
t3

− 1
t2 cosh2(t)

)︄
dt .

While the former is easily evaluated as being equal to one, the latter is given by 7ζ(3)
8π2 (see,

e.g., [GR07, p. 3.333.3]). This proves the claim.

With the aid of (11.3.26) and noting fj > 0, the resulting differences (from adding and
subtracting |∆0(

√
µ)|j) can be estimated as⃓⃓⃓⃓
⃓
ˆ
Rd

fj(p)
(︂
|∆0(p)|j − |∆0(

√
µ)|j

)︂
dp
⃓⃓⃓⃓
⃓

≤ C |∆0(
√
µ)|j
ˆ
Rd

fj(p)
(︂
min

(︂⃓⃓⃓
|p| − √

µ
⃓⃓⃓
, 1
)︂

+ λ
)︂

dp

for j = 2, 4. These integrals can be treated analogously to (11.3.33) and (11.3.34) in Lemma
11.3.13 (for the

⃓⃓⃓
|p| − √

µ
⃓⃓⃓
-term, note that fj essentially concentrates around |p| ≈ √

µ) and
we find them to be smaller than the corresponding leading term

´
Rd fj(p)|∆0(√µ)|j dp in the

limit λ → 0 (and hence Tc → 0). Therefore,

|ψGL| = Tc
∆0(

√
µ)

(︄´
Rd f2(p) dp´
Rd f4(p) dp

)︄1/2

·
(︂
1 + oλ→0(1)

)︂
= Cuniv

Tc
∆0(

√
µ) ·

(︂
1 + oλ→0(1)

)︂
,

where we used Lemma 11.3.13 in the last step. As the GL functional (11.3.19) is entirely
independent of the relative difference to the critical temperature (Tc − T )/Tc = h2, it is
clear that all the errors here hold uniform in the parameter h. This finishes the proof of
Proposition 11.3.11.

11.3.5 Pure angular momentum for d = 2: Proof of
Theorem 11.2.11

11.3.5.1 Part (a)

The proof of Theorem 11.2.11 (a) is mostly the same as that of Theorem 11.2.4 (a). We
sketch the argument here, highlighting the few differences.

The operator Vµ. Using the Birman–Schwinger principle on the operator KTc + λV (as
is done in [FHNS07; HS08b]) we find that, for sufficiently small λ, the lowest eigenvalue eµ
of Vµ (recall (11.1.10)) is an eigenvalue for angular momentum ℓ0, since this is the angular
momentum of the ground state(s) of KTc + λV by assumption. Further, since V is radial,
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the eigenfunctions of Vµ all have a definite angular momentum. In particular the first excited
state has some angular momentum ℓ1 ̸= ℓ0:

e(1)
µ = inf

u⊥u±ℓ0

⟨u|Vµ|u⟩ = ⟨u±ℓ1|Vµ|u±ℓ1⟩ ,

with u±ℓ(p) = (2π)−1/2e±iℓφ the eigenfunctions of angular momentum ℓ. Here φ denotes the
angle of p ∈ R2 in polar coordinates. Note that e(1)

µ ≤ 0 since Vµ is a compact operator on
an infinite-dimensional space.

A priori spectral information. It is proved in [DGHL18, Theorem 2.1] that there exists a
temperature T̃ such that for temperatures T̃ < T < Tc the minimizers of the BCS functional
are given by

α̂±(p) = e±iℓ0φα̂0(p)

where φ denotes the angle of p ∈ R2 in polar coordinates, α̂0 is a radial function, and ℓ0
is the angular momentum given by Equation (11.2.15). The BCS gap functions are then
∆±(p) = ∆0(p)e±iℓ0φ, with ∆0 a radial function.13 Further, we have K∆0

T + λV ≥ 0 for
temperatures T ∈ (T̃ , Tc) [DGHL18, Proposition 4.3] and ker(K∆0

T + λV ) = span{α+, α−}.

The temperature T̃ . As discussed in [DGHL18, Remark 2.6] the temperature T̃ is given by
T̃ = Tc(ℓ1), the critical temperature when restricted to angular momentum ℓ1. Following the
argument in [FHNS07] (see also [HS10, Theorem 1]) we find

T̃ ≤

⎧⎨⎩Ce1/λe(1)
µ e(1)

µ < 0,
Ce−c/λ2

e(1)
µ = 0.

Recalling that Tc ∼ e1/λeµ and that eµ < e(1)
µ ≤ 0 then clearly T̃ /Tc ≤ Ce−c/λ for some c > 0.

Weak a priori bound on ∆±. Exactly as in Equation (11.3.10) we have ∥∆±∥L∞ ≤ Cλ.

Birman–Schwinger principle. Analogously to Section 11.3.2.3 we have by the Birman–
Schwinger principle that

BT,∆0 = V 1/2 1
K∆0
T

|V |1/2

has −1 as its lowest eigenvalue, only the eigenspace is spanned by the two vectors ϕ± = V 1/2α±.
By a completely analogous argument is in Section 11.3.2.3 we find that

ST,∆0 = λm(T,∆0)Fµ|V |1/2 1
1 + λV 1/2MT,∆0 |V |1/2V

1/2F†
µ

has −1 as its lowest eigenvalue with corresponding eigenspace spanned by FµV α±.

A priori bounds on ∆±. Analogously to Lemma 11.3.5 we claim
Lemma 11.3.14. The functions ∆± satisfy the bounds (with slight abuse of notation, recall
that ∆0 is a radial function)

|∆±(p)| ≤ C|∆0(
√
µ)|, |∆±(p) − ∆±(q)| ≤ C|∆0(

√
µ)||p− q| .

13This should not be confused with the function ∆0 used in Section 11.3.4.
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Proof. The proof is analogous to that of Lemma 11.3.5. First we note that Vµ = FµV F†
µ

has eigenfunctions of lowest eigenvalue u±ℓ0(p) = (2π)−1/2e±iℓ0φ and that the operator ST,∆0

preserves the angular momentum. Analogously to the proof of Lemma 11.3.5 we find

∆±(p) = f±(λ)
(︄ˆ

S1
V̂ (p− √

µq)u±ℓ0(q) dω(q) + ληλ±(p)
)︄

with ∥ηλ±∥L∞ ≤ C uniformly in λ. Evaluating on the Fermi surface {p2 = µ} we get (recall
that inf spec Vµ = eµ)

∆±(√µp/|p|) = f±(λ) (eµu±ℓ0(p/|p|) + ληλ±(√µp/|p|)) .

In particular, we conclude that
⃓⃓⃓
∆0(

√
µ)
⃓⃓⃓
=
⃓⃓⃓
∆±(√µp/|p|)

⃓⃓⃓
> 0 for λ small enough and that

|f±(λ)| ≤ C
⃓⃓⃓
∆0(

√
µ)
⃓⃓⃓
. We conclude the rest of the proof exactly as for Lemma 11.3.5.

The remaining parts of the argument (first order analysis of m, the exponential vanishing
of ∆±, infinite order analysis of m, calculation of the integral m(T,∆0) − m(Tc, 0) and
comparing ∆± on the Fermi surface with Ξ) are exactly as in Sections 11.3.2.5, 11.3.2.6,
11.3.2.7, 11.3.2.8 and 11.3.2.9 only replacing ∆ and u by ∆± and u±ℓ0 , respectively. This
concludes the proof of Theorem 11.2.11 (a).

11.3.5.2 Part (b)

Again, we highlight only the main differences compared to the proof of Theorem 11.2.4 (b).

Ginzburg-Landau functional Since every function â0 in kernel of KTc +λV can be written
(in polar coordinates) as

â0(p, φ) = ρ̂(p)
[︂
ψ+eiℓ0φ + ψ−e−iℓ0φ

]︂
for an appropriate normalized ρ̂ ∈ L2((0,∞); p dp) and ψ± ∈ C by Assumption 11.2.10
(cf. (11.2.15)), the analog of the Ginzburg-Landau functional (11.3.19) becomes [FL16,
Theorems 2.10 and 3.5]

EGL(ψ+, ψ−)

=
[︂
|ψ+|4 + |ψ−|4 + 4|ψ+|2|ψ−|2

]︂
×
[︄

2π
T 3
c

ˆ ∞

0

g1((p2 − µ)/Tc)
(p2 − µ)/Tc

|KTc(p)|4|ρ̂(p)|4 p dp
]︄

−
[︂
|ψ+|2 + |ψ−|2

]︂
×
[︄
π

Tc

ˆ ∞

0

1
cosh2 ((p2 − µ)/(2Tc))

|KTc(p)|2|ρ̂(p)|2 p dp
]︄
.

(11.3.35)

Minimizers of the GL functional In contrast to (11.3.19), the functional (11.3.35) now
has two (up to a phase unique) minimizers. This follows from observing that EGL(ψ+, ψ−) =
EGL(ψ−, ψ+) and that one of the ψ± is necessarily zero for any minimizer of (11.3.35). In
fact, these minimizers are

(|ψGL|, 0) and (0, |ψGL|)
with |ψGL| given in (11.3.22) but with ∆0 := −2(2π)−d/2λV̂ ⋆ ρ̂, where ρ̂ is understood as
a radial function in L2(R2).14 Hence, using the notation from Proposition 11.3.9 (see also

14The fact that ∆0(√µ) ̸= 0 can be seen in a similar way as in the proof of Lemma 11.3.14.
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[FL16, Theorem 2.10], which provides a general analog of (11.3.20)–(11.3.21), valid also for
the concrete functional (11.3.35)) and (11.3.23), we find that (up to a constant phase) every
non-zero solution of the BCS gap equation (11.1.4) can be written as

∆±(p, φ) = Cuniv|Tc h
∆0(p)

∆0(
√
µ)e±iℓ0φ

(︂
1 + oλ→0(1) +O

(︂
hec/λ

)︂)︂
+ ∆ξ(p, φ) .

The rest of the argument (a priori bounds on ∆0(p)e±iℓ0φ and ∆ξ, comparison of |∆±| on the
Fermi surface with Ξ) works completely analogously to Section 11.3.4 with similar adjustments
as explained in Section 11.3.5.1. This concludes the proof of Theorem 11.2.11 (b).

11.A Additional proofs

11.A.1 Uniqueness of the minimizer: Proof of Proposition 11.1.5
Finally, we present the proof of Proposition 11.1.5.

Proof of Proposition 11.1.5. We remark that the argument has already partly been sketched
in [DGHL18; HS16]. The key observation for our proof is, that, if V̂ ≤ 0, then⟨︂

α̂|V̂ ⋆ α̂
⃓⃓⃓
≥
⟩︂ ⟨︂

|α̂| |V̂ ⋆ |α̂|
⃓⃓⃓ ⟩︂
. (11.A.1)

Let (γ̂, α̂) minimize the BCS functional (11.1.3). Then, by means of (11.A.1), we have
FT [(γ̂, α̂)] ≥ FT [(γ̂, |α̂|)], hence also (γ̂, |α̂|) is a minimizer. Consequently, the (inverse)
Fourier transform of |α̂| is an eigenvector of K∆

T + V with ∆ = −2(2π)−d/2V̂ ⋆ |α̂| with the
eigenvalue zero. Note that, using continuity of ∆ and the BCS gap equation (11.1.4), we not
only have |α̂| ≥ 0 but also |α̂| > 0 everywhere (see [HS08b, Lemma 2.1]). By the observation
(11.A.1) again, we find that for any ground state α̂GS of K∆

T + V also |α̂GS| is a ground state.
But |α̂GS| is non–orthogonal to |α̂|, which implies that zero has to be the lowest eigenvalue of
K∆
T + V , i.e.

K∆
T + V ≥ 0 . (11.A.2)

By writing out (11.A.1), we see that the inequality is actually an application of Cauchy-
Schwarz and thus becomes strict, unless α̂(p) = eiϕ |α̂(p)| for some fixed ϕ ∈ R. Therefore, by
repeating the above arguments, we find that the ground state of (11.A.2) is non–degenerate
and we have proven item (i).

In order to prove item (ii), let Γi ≡ (γi, αi), i = 1, 2, be two (non–trivial) minimizers of the
BCS functional (11.1.3) and denote the corresponding gap functions by ∆1 resp. ∆2. We now
apply the relative entropy identity (see [FHSS12b] and [FL16, Prop. 5.2]) and a simple trace
inequality (see [FHSS12b, Lemma 3] and [FL16, Lemma 5.7]) to find that

FT [Γ1] − FT [Γ2] ≥
⟨︂
(α1 − α2)

⃓⃓⃓
K∆1
T + V

⃓⃓⃓
(α1 − α2)

⟩︂
≥ 0

(and the same inequality with indices 1 and 2 interchanged) by means of (11.A.2). Since
FT [Γ1] = FT [Γ2], this implies (α1 − α2) ∈ ker(K∆1

T + V ) and thus α2 = ψ21α1 for some
ψ21 ∈ C \ {0} (recall from (i) that ker(K∆1

T + V ) is one–dimensional). From this we conclude(︂
Kψ21∆1
T + V

)︂
α1 = 0 .
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Now, the pointwise strict monotonicity of |ψ21| ↦→ Kψ21∆1
T (p) together with the fact that one

can choose |α̂1| to be strictly positive, implies that |ψ21| = 1 and we have shown uniqueness
of minimizers up to a constant phase, which can be chosen in such a way that it ensures strict
positivity of α̂. Finally, it is shown in [DGHL18, Proposition 2.9] that if α is not radial, then
(11.A.2) is violated. Radiality of the corresponding γ follows from (11.1.6). This finishes the
proof.

11.A.2 Proofs of technical lemmas within the proof of Theorem
11.2.4

This section contains the proofs of Lemmas 11.3.4, 11.3.6, and 11.3.12.

11.A.2.1 Proof of Lemma 11.3.4

The argument is slightly different in dimensions d = 1, 2, 3. The case d = 3 is similar to
[FHNS07; HS08b] and the case d = 1, 2 is similar to Chapter 9.

The case d = 3: We write

V 1/2MT,∆|V |1/2 = V 1/2 1
p2 |V |1/2 + V 1/2

(︄
MT,∆ − 1

p2χ|p|>
√

2µ

)︄
|V |1/2

− V 1/2 1
p2χ|p|≤

√
2µ|V |1/2.

(11.A.3)

The first term in Equation (11.A.3) has kernel (proportional to)

V (x)1/2 1
|x− y|

|V (y)|1/2 ∈ L2(R3 × R3) (11.A.4)

by the Hardy–Littlewood–Sobolev inequality [LL01, Theorem 4.3]. The kernel of the second
term in Equation (11.A.3) is given by

V (x)1/2|V (y)|1/2 1
(2π)3

⎡⎣ˆ
|p|<

√
2µ

1
K∆
T (p)

(︂
eip(x−y) − ei

√
µp/|p|(x−y)

)︂
dp

+
ˆ

|p|>
√

2µ

(︄
1

K∆
T (p) − 1

p2

)︄
eip(x−y) dp

⎤⎦.
(11.A.5)

We compute the angular integral first. In the first term the integral is

4π
ˆ √

2µ

0

1
K∆
T (p)

[︄
sin |p||x− y|

|p||x− y|
−

sin √
µ|x− y|

√
µ|x− y|

]︄
|p|2 d|p|. (11.A.6)

Here we bound
⃓⃓⃓

sin a
a

− sin b
b

⃓⃓⃓
≤ C |a−b|

a+b for a, b > 0. Thus we get the bound

|(11.A.6)| ≤ C

ˆ √
2µ

0

1
K∆
T (p)

⃓⃓⃓
p− √

µ
⃓⃓⃓

p+ √
µ
p2 dp ≤ C

ˆ √
2µ

0

1
|p2 − µ|

⃓⃓⃓
p− √

µ
⃓⃓⃓

p+ √
µ
p2 dp ≤ C.

In the second term the integral is (bounded by)

4π
ˆ ∞

√
2µ

⃓⃓⃓⃓
⃓ 1
K∆
T (p) − 1

p2

⃓⃓⃓⃓
⃓ | sin |p||x− y||

|p||x− y|
|p|2 d|p| ≤ 4π

|x− y|

ˆ ∞

√
2µ

⃓⃓⃓⃓
⃓ 1
K∆
T (p) − 1

p2

⃓⃓⃓⃓
⃓ p dp.
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To bound the remaining integral we bound

⃓⃓⃓⃓
⃓ 1
K∆
T (p) − 1

p2

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓
tanh

√
|p2−µ|2+∆(p)2

2T − 1
⃓⃓⃓⃓

√︂
|p2 − µ|2 + ∆(p)2

+

⃓⃓⃓⃓
⃓⃓ 1√︂

|p2 − µ|2 + ∆(p)2
− 1

|p2 − µ|

⃓⃓⃓⃓
⃓⃓

+
⃓⃓⃓⃓
⃓ 1
|p2 − µ|

− 1
p2

⃓⃓⃓⃓
⃓ .

Note first that |tanh x− 1| ≤ 2e−2x. Thus, we have

ˆ ∞

√
2µ

⃓⃓⃓⃓
tanh

√
|p2−µ|2+∆(p)2

2T − 1
⃓⃓⃓⃓

√︂
|p2 − µ|2 + ∆(p)2

p dp ≤ 2
ˆ ∞

√
2µ
e−

√
|p2−µ|2+∆(p)2/T 1√︂

|p2 − µ|2 + ∆(p)2
p dp

≤ 2
ˆ ∞

√
2µ
e−|p2−µ|/T p

|p2 − µ|
dp ≤ CT.

Next, we estimate⃓⃓⃓⃓
⃓⃓ 1√︂

|p2 − µ|2 + ∆(p)2
− 1

|p2 − µ|

⃓⃓⃓⃓
⃓⃓

= 1
|p2 − µ|

∆(p)2√︂
|p2 − µ|2 + ∆(p)2

(︂
|p2 − µ| +

√︂
|p2 − µ|2 + ∆(p)2

)︂
≤ 1

|p2 − µ|
∥∆∥2

L∞√︂
|p2 − µ|2 + ∥∆∥2

L∞

(︃
|p2 − µ| +

√︂
|p2 − µ|2 + ∥∆∥2

L∞

)︃ ≤ ∥∆∥2
L∞

2|p2 − µ|3
,

(11.A.7)

using pointwise monotonicity in ∆(p). Thus, changing variables to u = p2 − µ we have

ˆ ∞

√
2µ

⃓⃓⃓⃓
⃓⃓ 1√︂

|p2 − µ|2 + ∆(p)2
− 1

|p2 − µ|

⃓⃓⃓⃓
⃓⃓ p dp ≤ 1

4 ∥∆∥2
L∞

ˆ ∞

µ

1
u3 du ≤ C ∥∆∥2

L∞ .

Finally, ˆ ∞

√
2µ

⃓⃓⃓⃓
⃓ 1
|p2 − µ|

− 1
p2

⃓⃓⃓⃓
⃓ p dp ≤ C.

We conclude that the kernel of the second term in Equation (11.A.3) is bounded by

|V (x)|1/2
(︄

1 + T + ∥∆∥2
L∞

|x− y|
+ 1

)︄
|V (y)|1/2 ∈ L2(R3 × R3).

Finally, the last term of Equation (11.A.3) has kernel

4πV (x)1/2|V (y)|1/2
ˆ √

2µ

0

sin p|x− y|
p|x− y|

dp ∈ L2
(︂
R3 × R3

)︂
(11.A.8)

since the integral is bounded by
√

2µ.
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The cases d = 1 and d = 2: The kernel of MT,∆ is given by

MT,∆(x, y) = 1
(2π)d

[︄ˆ
|p|<

√
2µ

1
K∆
T

(︂
eip(x−y) − ei

√
µp/|p|(x−y)

)︂
+
ˆ

|p|>
√

2µ

1
K∆
T

eip(x−y)
]︄

(11.A.9)
Now, one may bound K∆

T ≥ |p2 − µ| uniformly in T,∆. Then we may bound MT,∆ exactly
as in Lemma 9.3.5. That is, we have the bounds

⃦⃦⃦
V 1/2MT,∆|V |1/2

⃦⃦⃦2

HS
≲

⎧⎨⎩∥V ∥2
L1 + ∥V ∥L1

´
R |V (x)|

[︂
1 + log(1 + √

µ|x|)
]︂2

dx d = 1,
∥V ∥2

L1 + ∥V ∥2
Lp d = 2

for any 1 < p ≤ 4/3. This concludes the proof of Lemma 11.3.4.

11.A.2.2 Proof of Lemma 11.3.6

To bound the difference, first note that by computing the angular integrals we have

[MT,∆ −MTc,0] (x, y) = |Sd−1|
(2π)d

⎡⎣ˆ √
2µ

0

[︄
1
K∆
T

− 1
KTc

]︄
[jd(p|x− y|) − jd(

√
µ|x− y|)] pd−1 dp

+
ˆ ∞

√
2µ

[︄
1
K∆
T

− 1
KTc

]︄
jd(p|x− y|)pd−1 dp

⎤⎦
(11.A.10)

where

jd(x) = 1
|Sd−1|

ˆ
Sd−1

eixω dω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cosx d = 1
J0(|x|) d = 2
sin |x|

|x| d = 3

with J0 the zero’th Bessel function.

Bounding Equation (11.A.10) is similar in spirit to the proof of Lemma 11.3.4 above. We
bound ⃓⃓⃓⃓

⃓ 1
K∆
T

− 1
KTc

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓
tanh E∆

2T − 1
⃓⃓⃓

E∆
+
⃓⃓⃓⃓
⃓ 1
E∆

− 1
|p2 − µ|

⃓⃓⃓⃓
⃓+

⃓⃓⃓
1 − tanh |p2−µ|

2Tc

⃓⃓⃓
|p2 − µ|

.

We bound the first term as follows⃓⃓⃓
tanh E∆

2T − 1
⃓⃓⃓

E∆
≤ 2e−E∆/T

1
E∆

≤ 2e−|p2−µ|/T 1
|p2 − µ|

≤ 2e−|p2−µ|/Tc
1

|p2 − µ|
.

Similarly, ⃓⃓⃓
1 − tanh |p2−µ|

2Tc

⃓⃓⃓
|p2 − µ|

≤ 2e−|p2−µ|/Tc
1

|p2 − µ|
.

Finally, we estimate, exactly as in (11.A.7) in the course of proving Lemma 11.3.4,⃓⃓⃓⃓
⃓ 1
E∆

− 1
|p2 − µ|

⃓⃓⃓⃓
⃓ ≤ 1

|p2 − µ|
∥∆∥2

L∞√︂
|p2 − µ|2 + ∥∆∥2

L∞

(︃
|p2 − µ| +

√︂
|p2 − µ|2 + ∥∆∥2

L∞

)︃

≤ ∥∆∥2
L∞

2|p2 − µ|3
.
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We will use the first bound for the first integral in Equation (11.3.13) and the second bound for
the second integral in Equation (11.3.13). Note further that 1√

x2+A2(x+
√
x2+A2) is decreasing

in x and |p2 − µ| ≥ √
µ|p− √

µ|. That is, we have the bound
⃓⃓⃓⃓
⃓ 1
K∆
T

− 1
KTc

⃓⃓⃓⃓
⃓ ≤ 4e−|p2−µ|/Tc

1
|p2 − µ|

+ χ|p|>
√

2µ
∥∆∥2

L∞

2|p2 − µ|3

+χ|p|<
√

2µ
1

√
µ|p− √

µ|
∥∆∥2

L∞√︂
µ|p− √

µ|2 + ∥∆∥2
L∞

(︃√
µ|p− √

µ| +
√︂
µ|p− √

µ|2 + ∥∆∥2
L∞

)︃ .
(11.A.11)

In the first integral in Equation (11.A.10) we bound |jd(a) − jd(b)| ≤ C|a − b|. Then the
contribution of the first term of Equation (11.A.11) to the first integral in Equation (11.A.10)
is bounded by (changing variables to s = √

µ|p− √
µ|/Tc)

ˆ √
2µ

0
e−|p2−µ|/Tc

1
|p2 − µ|

|p− √
µ||x− y|pd−1 dp ≤ C|x− y|

ˆ √
2µ

0
e−√

µ|p−√
µ|/Tc dp

≤ Tc|x− y|
ˆ µ/Tc

0
e−s ds ≤ CTc|x− y|.

Next, the contribution of the last term of Equation (11.A.11) is bounded by (changing variables
to s = √

µ|p− √
µ|/ ∥∆∥L∞)

ˆ √
2µ

0

∥∆∥2
L∞√︂

µ|p− √
µ|2 + ∥∆∥2

L∞

(︃
|p− √

µ|√µ+
√︂
µ|p− √

µ|2 + ∥∆∥2
L∞

)︃ |p− √
µ||x− y|pd−1

|p− √
µ|√µ

dp

≤ C ∥∆∥L∞ |x− y|
ˆ µ/∥∆∥L∞

0

1√
s2 + 1(s+

√
s2 − 1)

ds ≤ C ∥∆∥L∞ |x− y|.

Next we estimate the last integral of Equation (11.A.10). Here we note that |jd(a)| ≤ C. Then
the contributions of the first and second term in Equation (11.A.11) to Equation (11.A.10) is
bounded byˆ ∞

√
2µ
e−|p2−µ|/Tc

1
|p2 − µ|

pd−1 dp ≤ C

ˆ ∞

√
2µ
e−|p2−µ|/Tc |p2 − µ|d/2−2p dp ≤ CTce

−µ/Tc ≤ CTc

and
ˆ ∞

√
2µ

∥∆∥2
L∞

|p2 − µ|3
pd−1 dp ≤ C ∥∆∥2

L∞ .

We conclude that (using ∥∆∥L∞ ≤ CTc)⃦⃦⃦
V 1/2(MT,∆ −MTc,0)|V |1/2

⃦⃦⃦2

HS
≤ CT 2

c

¨
|V (x)||V (y)|(µ|x− y|2 + 1) dx dy

≤ CT 2
c

(︂
µ
⃦⃦⃦
| · |2V

⃦⃦⃦
1

∥V ∥1 + ∥V ∥2
1

)︂
≤ Ce−c/λ

by assumption on V . This finishes the proof of Lemma 11.3.6.

11.A.2.3 Proof of Lemma 11.3.12

The proof is very similar to the ones of [HS08b, Lemma 4] and Lemma 10.2.8 and follows
from a Birman–Schwinger argument analogously to Sections 11.3.2.3 and 11.3.2.4.
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11.1. Additional proofs

First of all, recall from Proposition 11.1.5 (ii), that KTc + λV has 0 as a (non-degenerate)
ground state eigenvalue, which, by the Birman–Schwinger principle, is equivalent to the fact
that the Birman-Schwinger operator BTc := λV 1/2K−1

Tc
|V |1/2 has −1 as its (non-degenerate)

ground state eigenvalue. As in Section 11.3.2.3, defining m(Tc) := m(Tc, 0) (recall (11.3.11)),
we decompose BTc as

BTc = λm(Tc)V 1/2F†
µFµ|V |1/2 + λV 1/2MTc |V |1/2 ,

where MTc is such that this holds. It has been shown in [FHNS07, Lemma 2] (for d = 3) and
Lemma 9.3.5 (for d = 1, 2), that the Hilbert-Schmidt norm ∥V 1/2MTc |V |1/2∥HS of the second
term is uniformly bounded for small Tc (i.e. small λ).

Then, by an argument completely analogous to the one in the proof of Lemma 11.3.5
in Section 11.3.2.4 we find that ∆0 = f(λ)

[︂
φ̂ + ληλ

]︂
with φ̂ defined in (11.3.24) and

ηλ has ∥ηλ∥L∞ ≤ C uniformly in small λ (cf. (11.3.25)). This concludes the proof of
Lemma 11.3.12.
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