
Sound and Complete Witnesses
for Template-Based Verification of LTL
Properties on Polynomial Programs

Krishnendu Chatterjee1, Amir Goharshady2, Ehsan Goharshady1,
Mehrdad Karrabi1(B), and Ðorđe Žikelić3

1 Institute of Science and Technology Austria (ISTA),
Klosterneuburg, Austria

{krishnendu.chatterjee,ehsan.goharshady,
mehrdad.karrabi}@ist.ac.at

2 The Hong Kong University of Science and Technology (HKUST),
Clear Water Bay, Hong Kong

goharshady@cse.ust.hk
3 Singapore Management University, Singapore, Singapore

dzikelic@smu.edu.sg

Abstract. We study the classical problem of verifying programs with
respect to formal specifications given in the linear temporal logic (LTL).
We first present novel sound and complete witnesses for LTL verification
over imperative programs. Our witnesses are applicable to both verifica-
tion (proving) and refutation (finding bugs) settings. We then consider
LTL formulas in which atomic propositions can be polynomial constraints
and turn our focus to polynomial arithmetic programs, i.e. programs in
which every assignment and guard consists only of polynomial expres-
sions. For this setting, we provide an efficient algorithm to automatically
synthesize such LTL witnesses. Our synthesis procedure is both sound
and semi-complete. Finally, we present experimental results demonstrat-
ing the effectiveness of our approach and that it can handle programs
which were beyond the reach of previous state-of-the-art tools.

1 Introduction

Linear-Time Temporal Logic. The Linear-time Temporal Logic (LTL) [53]
is one of the most classical and well-studied frameworks for formal specification,
model checking and program verification. In LTL, we consider a set AP of atomic
propositions and an infinite trace which tells us which propositions in AP hold
at any given time. LTL formulas are then able to not only express propositional
logical operations, but also modalities referring to the future. For example, X p
requires that p holds in the next timeslot, whereas F q means q should hold at

Ðorđe Žikelić: Part of the work done while the author was at the Institute of Science
and Technology Austria (ISTA).
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 600–619, 2025.
https://doi.org/10.1007/978-3-031-71162-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_31

Sound and Complete Witnesses for LTL Properties 601

some time in the future. This allows LTL to express common verification tasks
such as termination, liveness, fairness and safety.
Witnesses. Given a specification ϕ and a program P, a witness is a mathe-
matical object whose existence proves that the specification ϕ is satisfied by P .
We say that a witness family is sound and complete when for every program P
and specification ϕ, we have P |= ϕ if and only if there is a witness in the fam-
ily that certifies it. Witnesses are especially useful in dealing with undecidable
problems in verification, which includes all non-trivial semantic properties [56].
This is because although the general case of the problem is undecidable, having
a sound and complete notion of a witness can lead to algorithms that check for
the existence of witnesses of a special form. For example, while termination is
undecidable [64], and hence so is the equivalent problem of deciding the existence
of a ranking function, there are nevertheless sound and complete algorithms for
synthesis of linear ranking functions [54]. Similarly, while reachability (safety
violation) is undecidable, it has sound and complete witnesses that can be auto-
matically synthesized in linear and polynomial forms [1]. Our work subsumes
both [54] and [1] and provides sound and complete witnesses for general LTL
formulas.
Polynomial Programs. In this work, we mainly focus on imperative programs
with polynomial arithmetic. More specifically, our programs have real variables
and the right-hand-side of every assignment is a polynomial expression with
respect to program variables. Similarly, the guard of every loop or branch is also
a boolean combination of polynomial inequalities over the program variables.
Our Contributions. In this work, our contributions are threefold:

– On the theoretical side, by exploiting the connections to Büchi automata, we
propose a novel family of sound and complete witnesses for general LTL for-
mulas. This extends and unifies the known concepts of ranking functions [36],
inductive reachability witnesses [1] and inductive invariants [25], which are
sound and complete witnesses for termination, reachability and safety, respec-
tively. Our theoretical result is not limited to polynomial programs.

– On the algorithmic side, we consider polynomial programs and present a
sound and semi-complete template-based algorithm to synthesize polyno-
mial LTL witnesses. This algorithm is a generalization of the template-
based approaches in [1,25,54] which considered termination, reachability and
safety. To the best of our knowledge, this is the most general model check-
ing problem over polynomial programs to be handled by template-based
approaches to date.

– Finally, on the experimental side, we provide an implementation of our app-
roach and comparisons with state-of-the-art LTL model checking tools. Our
experiments show that our approach is applicable in practice and can handle
many instances that were beyond the reach of previous methods. Thus, our
completeness result pays off in practice and enables us to solve new instances.

Motivation for Polynomial Programs. There are several reasons why we
consider polynomial programs:

602 K. Chatterjee et al.

– Many real-world families of programs, such as, programs for cyber-physical
systems and smart contracts, can be modeled in this framework [10,38,42].

– They are one of the most general families for which finding polynomial wit-
nesses for reachability and safety are known to be decidable [1,12,57]. Hence,
they provide a desirable tradeoff between decidability and generality.

– Using abstract interpretation, non-polynomial behavior in a program can be
removed or replaced by non-determinism. Moreover, one can approximate any
continuous function up to any desired level of accuracy by a polynomial. This
is due to the Stone–Weierstrass theorem [30]. Thus, analysis of polynomial
programs can potentially be applied to many non-polynomial programs via
abstract interpretation or numerical approximation of the program’s behav-
ior.

– Previous works have studied (a) linear/affine programs with termination,
safety, and reachability specifications [25,54,58], and (b) polynomial programs
with termination, safety and reachability properties [1,11,12,57]. Since LTL
subsumes all these specifications, polynomial program analysis with LTL pro-
vides a unifying and general framework for all these previous works.

Related Works on Linear Programs. There are many approaches focusing
on linear witness synthesis for important special cases of LTL formulas. For
example, [43,54] consider the problem of synthesizing linear ranking functions
(termination witnesses) over linear arithmetic programs. The works [25,58] syn-
thesize linear inductive invariants (safety witnesses), while [39] considers proba-
bilistic reachability witnesses. The work [41] handles a larger set of verification
tasks and richer settings, such as context-sensitive interprocedural program anal-
ysis. All these works rely on the well-known Farkas lemma [32] and can handle
programs with linear/affine arithmetic and synthesize linear/affine witnesses. In
comparison, our approach is (i) applicable to general LTL formulas and not lim-
ited to a specific formula such as termination or safety, and (ii) able to synthesize
polynomial witnesses for polynomial programs with soundness and completeness
guarantees. Thus, our setting is more general in terms of (a) formulas, (b) wit-
nesses, and (c) programs that can be supported.
Related Works on Polynomial Programs. Similar to the linear case, there
is a rich literature on synthesis of polynomial witnesses over polynomial pro-
grams. However, these works again focus on specific special formulas only and
are not applicable to general LTL. For example, [11,15,16,44,49,51,59,68] con-
sider termination analysis, [12] extends the invariant generation (safety witness
synthesis) algorithm of [25] to the polynomial case and [14,17,18,35,62,69] add
support for probabilistic programs. The works [22,70,71] consider alternative
types of witnesses for safety (barriers) and obtain similarly successful synthesis
algorithms. Finally, [1,63] synthesize reachability witnesses. Since we can handle
any arbitrary LTL formula, our approach can be seen as an extension and uni-
fication of all these works. Indeed, our synthesis algorithm directly builds upon
and extends [1].

Sound and Complete Witnesses for LTL Properties 603

In both cases above, some of the previous works are incomparable to ours
since they consider probabilistic programs, whereas our setting has only non-
probabilistic polynomial programs. Note that we do allow non-determinism.
Related Works on LTL Model Checking. There are thousands of works
on LTL model checking and there is no way we can do justice to all. We refer
to [24,60] for an excellent treatment of the finite-state cases. Some works that
provide LTL model checking over infinite-state systems/programs are as follows:

– A prominent technique in this area is predicate abstraction [29,40,55], which
uses a finite set of abstract states defined by an equivalence relation based on
a finite set of predicates to soundly, but not completely, reduce the problem
to the finite-state case.

– [19] uses a compositional approach to falsify LTL formulas and find an indirect
description of a path that violates the specification.

– There are several symbolic approaches, including [26] which is focused on
fairness and [4] which is applicable to LLVM. Another work in this category
is [31], whose approach is to repeatedly rule out infeasible finite prefixes in
order to find a run of the program that satisfies/violates the desired LTL
formula. The work [27] uses CTL-based approaches that might report false
counter-examples when applied to LTL. It then identifies and removes such
spurious counterexamples using symbolic determinization.

– The work [33] presents a framework for proving liveness properties in multi-
threaded programs by using well-founded proof spaces.

– The recent work [52] uses temporal prophecies, inspired by classical prophecy
variables, to provide significantly more precise reductions from general tem-
poral verification to the special case of safety.

– There are many tools for LTL-based program analysis. For example, T2 [8]
is able to verify a large family of liveness and safety properties, nuXmv [20]
is a symbolic model checker with support for LTL, F3 [19] proves fairness
in infinite-state transition systems, and Ultimate LTLAutomizer [31] is a
general-purpose tool for verification of LTL specifications over a wide fam-
ily of programs with support for various types of variables.

– Finally, we compare against the most recent related work [65]. This work pro-
vides relative-completeness guarantees for general programs with LTL speci-
fications. Since it considers integer programs with recursive functions, there
is no complexity guarantee provided. The earlier work [66] provides several
special cases where termination is guaranteed. However, no runtime bounds
are established. In contrast, our approach has both termination guarantees
and sub-exponential time complexity for fixed degree.

As shown by our experimental results in Sect. 5, our completeness results enable
our tool to handle instances that other approaches could not. On the other hand,
our method is limited to polynomial programs and witnesses. Thus, there are
also cases in which our approach fails but some of the previous tools succeed,
e.g. when the underlying program requires a non-polynomial witness. In partic-
ular, Ultimate LTLAutomizer [31] is able to handle non-polynomial programs
and witnesses, too.

604 K. Chatterjee et al.

2 Transition Systems, LTL and Büchi Automata

For a vector e ∈ R
n , we use ei to denote the i-th component of e. Given a

finite set V of real-valued variables, a variable valuation e ∈ R
|V| and a boolean

predicate ϕ over V, we write e |= ϕ when ϕ evaluates to true upon substituting
variables by the values given in e.

We consider imperative numerical programs with real-valued variables, con-
taining standard programming constructs such as assignments, branching and
loops. In addition, our programs can have finite non-determinism. We denote
non-deterministic branching in our syntax by if ∗ then. See Fig. 1 for an exam-
ple. We use transition systems to formally model programs.
Transition Systems. An infinite-state transition system is a tuple T =
(V, L, linit , θinit , �→), where:

– V = {x0, . . . , xn−1} is a finite set of real-valued program variables.
– L is a finite set of locations with linit ∈ L the initial location.
– θinit ⊆ R

n is a set of initial variable valuations.
– �→ is a finite set of transitions. Each transition τ ∈ �→ is of the form τ =

(l, l′, Gτ , Uτ), where l is the source location, l′ is the target location, Gτ is the
guard of the transition, which is a boolean predicate over V, and Uτ : Rn →
R

n is the update function of the transition.

Translating programs into transition systems is a standard process. In what
follows, we assume we are given a transition system T = (V, L, linit , θinit , �→) of
the program that we wish to analyze. An example is shown in Fig. 1.
States and Runs. A state in T is a pair (l, e) with l ∈ L and e ∈ R

n. A
state (l, e) is said to be initial if l = linit and e ∈ θinit . We use S and Sinit

to denote the sets of all states and initial states. We assume the existence of a
special terminal location lt with a single outgoing transition which is a self-loop
(lt, lt, true, Id) with Id(e) = e for each e ∈ R

n. A state (l′, e′) is a successor of
(l, e), denoted as (l, e) �→ (l′, e′), if there exists a transition τ = (l, l′, Gτ , Uτ) ∈�→
such that e |= Gτ and e′ = Uτ (e). We assume each state has at least one successor
so that all runs are infinite and LTL semantics are well defined. This is without
loss of generality, since we can introduce transitions to the terminal location. A
run in T is an infinite sequence of successor states starting in Sinit .
Linear-Time Temporal Logic (LTL). Let AP be a finite set of atomic propo-
sitions. LTL formulas are inductively defined as follows:

– If p ∈ AP, then p is an LTL formula.
– If ϕ and ψ are LTL formulas, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, X ϕ, G ϕ, F ϕ and ϕ U ψ

are all LTL formulas.

¬,∨ and ∧ are the propositional negation, disjunction and conjunction while
X, G, F and U are the next, globally, finally and until temporal operators.
Atomic Propositions. To use LTL over the transition system T , we first need
to specify a finite set of atomic propositions AP. In this work, we let the set AP

Sound and Complete Witnesses for LTL Properties 605

Fig. 1. An example program (left) and its transition system (right). Note that there is
non-determinism at l1.

consist of (i) finitely many constraints of the form exp(x) ≥ 0 where exp : V → R

is an arithmetic expression over V, and (ii) an atomic proposition at(l) for each
location l in T . Note that unlike classical LTL settings, our atomic propositions
are not necessarily independent. For example, if we have p1 := x ≥ 0 and
p2 := x + 1 ≥ 0, it is impossible to have p1 ∧ ¬p2 at any point in time.

The semantics of LTL is standard, refer to the extended version of the paper
[13] for details.
Program Analysis with LTL Specifications. We now define the LTL pro-
gram analysis problems that we consider in this work. Given a transition system
T and an LTL formula ϕ, we are interested in two problems:

1. LTL Verification of Programs (LTL-VP). Given a transition system T and
an LTL formula ϕ in T , prove that all possible runs of T satisfy ϕ.

2. LTL Refutation of Programs (LTL-RP). Given a transition system T and
an LTL formula ϕ in T , prove that there exists a run that violates ϕ, or
equivalently, satisfies ¬ϕ.

Remark. LTL Verification asks about correctness of the program while LTL
Refutation addresses the problem of finding bugs. Both problems have been
widely studied in the literature [3,31,65]. Moreover, a witness for the refutation
problem can be used in counterexample-guided techniques such as CEGAR [23].
Example. Consider the transition system in Fig. 1 and the LTL formula ϕ =
¬[G(at(l3) ⇒ Fat(l2))]. The run that starts at (linit , 1) and chooses l2 if x0 = 0
and l3 whenever x0 = 1, does not satisfy ϕ. Therefore, in this case, the answer to
the LTL-RP problem is positive. Additionally, deciding termination of a program
with terminal location lt is equivalent to the LTL-VP problem of [F at(lt)] on
the same program.
Program Analysis with Büchi Specifications. A Büchi specification is a
subset B ⊆ S of states. A run π is B−Büchi if it visits B infinitely many times,
i.e. if {i | π(i) ∈ B} is infinite. Similar to LTL, Büchi specifications give rise to
two main decision problems as follows:

1. Universal Büchi Program Analysis (UB-PA). Given a transition system T and
a Büchi specification B on T , prove that all possible runs of T are B−Büchi.

606 K. Chatterjee et al.

2. Existential Büchi Program Analysis (EB-PA). Given a transition system T
and a Büchi specification B on T , prove the existence of a run that is B−Büchi.

Büchi Automata [2,9]. A non-deterministic Büchi automaton (NBW) is a
tuple N = (Q,A, δ, q0, F), where Q is a finite set of states, A is a finite alphabet,
δ : Q × A → 2Q is a transition relation, q0 is the initial state, and F ⊆ Q is the
set of accepting states. An infinite word a0, a1, . . . of letters in the alphabet A is
accepted by N if it gives rise to at least one accepting run in N , i.e. if there exists
a run q0, q1, . . . such that qi+1 ∈ δ(qi, ai) for each i and F is visited infinitely
many times. It is a classical result that for every LTL formula ϕ defined over
atomic predicates AP there exists a non-deterministic Büchi automaton N with
alphabet 2AP which accepts exactly those traces that satisfy ϕ [24].

Let T = (V, L, linit , θinit , �→) be a transition system and N =
(Q, 2AP , δ, q0, F) be an NBW. In order to analyse T with respect to N , we utilize
the Cartesian product T × N and the Büchi specification BT

N = L × F × R
n.

The state space of T × N is exactly the Cartesian product of the state spaces of
T and N . Moreover, for l, l′ ∈ L and q, q′ ∈ Q, there is a transition from (l, q)
to (l′, q′) if there is a transition in T from l to l′ and a transition in N from q
to q′. The formal definition of the product is available in [13]. See Fig. 2 for an
example.

Lemma 1 (From LTL to Büchi Specifications, Proof in [13]). Let T be
a transition system, ϕ an LTL formula for T and N an NBW that accepts the
same language as ϕ.

– The LTL-RP problem of T and ¬ϕ is equivalent to the EB-PA problem of
T × N and BT

N [31].
– If N is deterministic, then the LTL-VP problem of T and ϕ is equivalent to

the UB-PA problem of T × N and BT
N .

Fig. 2. An NBW accepting G F at(l2) with gray accepting nodes (left) and the product
of the transition system in Fig. 1 and this NBW (right). A node labeled i, j represents
location (li, qj). Unreachable locations have been removed. (Color figure online)

Remark. Based on the lemma above, instead of designing witnesses for the
LTL-RP problem, we only need to find sound and complete witnesses for EB-
PA. Moreover, it is easy to see that LTL-VP is reducible to LTL-RP since all

Sound and Complete Witnesses for LTL Properties 607

runs of T satisfy ϕ if and only if there is no run that satisfies ¬ϕ. So, finding
sound and complete witnesses for EB-PA will theoretically solve both verifica-
tion and refutation variants of LTL program analysis. Note that the second
statement in Lemma 1 is more restrictive than the first one since it only applies
to deterministic Büchi automata. Thus, if the LTL formula ϕ does not admit a
deterministic Büchi automaton, the above sequence of reductions from LTL-VP
to LTL-RP should be made and then the EB-PA witness should be used. How-
ever, if ϕ admits a DBW, then the reduction to UB-PA is preferable in practice.
We will provide witness concepts for both EB-PA and UB-PA problems in the
next section.

3 Sound and Complete B-PA Witnesses

Let T = (V, L, linit , θinit , �→) be a transition system and B ⊆ S a set of states
in T . In this section, we introduce our sound and complete witnesses for the
EB-PA and UB-PA problems.

3.1 Sound and Complete Witnesses for Existential B-PA

Our witness concept for the EB-PA problem is a function that assigns a real
value to each state in T . The witness function is required to be non-negative in
at least one initial state of T , to preserve non-negativity in at least one successor
state and to strictly decrease in value in at least one successor state whenever
the current state is not contained in B and the value of the witness function in
the current state is non-negative. Hence, starting in an initial state in which the
witness function is non-negative, one can always select a successor state in which
the witness function is non-negative and furthermore ensure that B is eventually
reached due to the strict decrease condition, which will also be referred to as the
Büchi-ranking condition. Intuitively, an EBRF is a function that overestimates
the distance to B and guarantees that B is reached along at least one program
run, at every program state in which the value of the EBRF is non-negative.

Definition 1 (EBRF). Given two states s1, s2 ∈ S , a function f : S → R is
said to Büchi-rank (s1, s2) where s1 �→ s2, if it satisfies one of the following:

– s1 ∈ B ∧
[
f(s1) ≥ 0 ⇒ f(s2) ≥ 0

]
; or

– s1 /∈ B ∧
[
f(s1) ≥ 0 ⇒ 0 ≤ f(s2) ≤ f(s1) − 1

]
.

f is called a B-Existential Büchi Ranking Function (B-EBRF) if it satisfies the
following conditions:

– ∃sinit ∈ Sinit where f(sinit) ≥ 0.
– For every s1 ∈ S , there exists s2 ∈ S such that s1 �→ s2 and (s1, s2) is

Büchi-ranked by f .

608 K. Chatterjee et al.

Example. The following is a {(l1, q1, ∗)}-EBRF for the transition system in
Fig. 2: f(l, x0) = x0 +3 if l = (linit , q0), f(l, x0) = x0 +2 if l = (l1, q0), f(l, x0) =
x0 + 1 if l = (l2, q0), f(l, x0) = 0 if l = (l1, q1) and f(l, x0) = 0 otherwise.

For example, the state s0 = ((l1, q0), 1) has two successors in the transition
system: s1 = ((l2, q0), 1) and s2 = ((l3, q0), 1). It is easy to see that 0 ≤ f(s1) ≤
f(s0) − 1 which shows that transition from s0 to s1 is Büchi-ranked by f .

The following theorem, proved in the extended version [13], establishes the
soundness and completeness of EBRFs for the EB-PA problem, which is the
main result of this section. Hence, since we showed in Lemma 1 that one can
reduce the LTL-RP problem to EB-PA, as a corollary it also follows that EBRFs
provide sound and complete certificates for LTL-RP.

Theorem 1 (Soundness and Completeness of EBRFs for EB-PA).
There exists a B-EBRF f for T with Büchi specification B if and only if the
answer to the EB-PA problem of T and B is positive.

Corollary 1. The answer to the LTL-RP problem of T and ϕ is positive if and
only if there exists a BT

N -EBRF for T × N, where N is the NBW accepting ¬ϕ.

3.2 Sound and Complete Witnesses for Universal B-PA

Similarly to EBRFs, we can define a witness function for the UB-PA problem.
The difference compared to EBRFs is that we now impose the Büchi ranking
condition for every successor state of a state in which the witness function is
non-negative. In contrast, in EBRFs we imposed the Büchi ranking condition
only for some successor state.

Definition 2 (UBRF). A function f : S → R
n is called a B-Universal Büchi

Ranking Function (B-UBRF) if it satisfies the following conditions:

– f(s) ≥ 0 for every s ∈ Sinit

– For every s1, s2 ∈ S such that s1 �→ s2, (s1, s2) is Büchi-ranked by f .

We have the following theorem, which establishes that UBRFs provide a sound
and complete certificate for the UB-PA problem. The proof is similar to the exis-
tential case and presented in the extended version [13]. The subsequent corol-
lary then follows from Lemma 1 which shows that the LTL-VP problem can be
reduced to the UB-PA problem if ϕ admits a deterministic Büchi automaton.

Theorem 2 (Soundness and Completeness of UBRFs for UB-PA).
There exists a B-UBRF f for T with Büchi specification B if and only if the
answer to the UB-PA problem of T and B positive.

Corollary 2. If ϕ is an LTL formula that admits a DBW D, the answer to the
LTL-VP problem of T and ϕ is positive iff there exists a BT

D-UBRF for T × D.

Sound and Complete Witnesses for LTL Properties 609

Remark. Note that if the transition system T is deterministic, (i.e. it contains
no non-determinism in initial states, assignments or branches) the LTL-VP of
T and ϕ will be equivalent to the LTL-RP of T and ¬ϕ. Thus, in this case, the
Büchi automaton determinism assumption can be relaxed as follows: if N is an
NBW that accepts the same language as ϕ, the answer to the LTL-VP of T and
ϕ is positive if and only if there exists a BT

N -EBRF for T × N .

4 Template-Based Synthesis of Polynomial Witnesses

We now present our fully automated algorithms to synthesize polynomial EBRFs
and UBRFs in polynomial transition systems. A transition system T is said
to be polynomial if guards and updates of all transitions in T are polynomial
expressions over program variables V. Given a polynomial transition system
T and a Büchi specification B, which was obtained from an LTL formula as
above, our approach synthesizes polynomial EBRFs and UBRFs of any desired
degree, assuming that they exist. Our algorithms follow a template-based syn-
thesis approach, similar to the methods used for reachability and termination
analysis [1,12]. In particular, both EBRF and UBRF synthesis algorithms first
fix a symbolic polynomial template function for the witness at each location in
T . The defining conditions of EBRFs/UBRFs are then expressed as entailment
constraint of the form

∃c ∈ R
m ∀e ∈ R

n (φ ⇒ ψ), (1)

where φ and ψ are conjunctions of polynomial inequalities. We show that this
translation is sound and complete. However, such constraints are notoriously
difficult to solve due to the existence of a quantifier alternation. Thus, we use the
sound and semi-complete technique of [1] to eliminate the quantifier alternation
and translate our constraints into a system of purely existentially quantified
quadratic inequalities. Finally, this quadratic programming instance is solved
by an SMT solver. We note that a central technical difficulty here is to come
up with sound and complete witness notions whose synthesis can be reduced
to solving entailment constraints of the form (1). While [1,12] achieved this for
termination and reachability, our EBRF and UBRF notions significantly extend
these results to arbitrary LTL formulas.

As is common in static analysis tasks, we assume that the transition system
comes with an invariant θl at every location l in T . Invariant generation is an
orthogonal and well-studied problem. In polynomial programs, invariants can
be automatically generated using the tools in [12,34,45]. Alternatively, one can
encode an inductive invariant via constraints of the form (1). This has the extra
benefit of ensuring that we always find an invariant that leads to a witness for
our LTL formula, if such a witness exists, and thus do not sacrifice completeness
due to potentially loose invariants. See [12] for details of the encoding. This is
the route we took in our tool, i.e. our tool automatically generates the invariants
it requires using the sound and complete method of [12]. For brevity, we removed
the invariant generation part from the description of the algorithms below.

610 K. Chatterjee et al.

Synthesis of Polynomial EBRFs. We now present our algorithm for syn-
thesis of a polynomial EBRF, given a polynomial transition system T =
(V, L, linit , θinit , �→) and Büchi specification B obtained from an LTL formula
with polynomial inequalities in AP. We present a detailed example that illus-
trates the steps of the algorithm in the extended version of the paper [13]. The
algorithm has five steps:

1. Fixing Symbolic Templates. Let MD
V = {m1,m2, . . . ,mk} be the set of all

monomials of degree at most D over the set of variables V. In the first step,
the algorithm generates a symbolic polynomial template for the EBRF at each
location l ∈ L as follows: fl(x) = Σk

i=1cl,i · mi. Here, all the c-variables are
fresh symbolic template variables that represent the coefficients of polynomial
expressions in f . The goal of our synthesis procedure is to find a concrete
valuation of c variables for which f becomes a valid B-EBRF for T .

2. Generating Entailment Constraints. For every location l ∈ L and variable
valuation x |= θl, there must exist an outgoing transition τ such that x |= Gτ

and τ is Büchi-ranked by f in x. The algorithm symbolically writes down
this condition as an entailment constraint: ∀x ∈ R

n x |= (φl ⇒ ψl) with
φl and ψl symbolically computed as follows: φl := θl ∧ fl(x) ≥ 0 and ψl ≡∨

τ∈Outl
Gτ ∧ B–Rank(τ), where for each τ = (l, l′, Gτ , Uτ) the predicate

B–Rank is defined as

B–Rank ≡
{

fl′(Uτ (x)) ≥ 0 ∧ fl′(Uτ (x)) ≤ fl(x) − 1 l /∈ B
fl′(Uτ (x)) ≥ 0 l ∈ B

The algorithm then writes ψl in disjunctive normal form as ∨k
i=1ψl,i. Next,

the algorithm rewrites φl ⇒ ψl equivalently as:

(φl ∧
∧k−1

i=1 ¬ψl,i) ⇒ ψl,k (2)

This rewriting makes sure that we can later manipulate the constraint in (2)
to fit in the standard form of (1)1. Intuitively, (2) ensures that whenever l was
reached and each of the first k−1 outgoing transitions were either unavailable
or not Büchi-ranked by f , then the last transition has to be available and
Büchi-ranked by f . Our algorithm populates a list of all constraints and
adds the constraint (2) to this list before moving to the next location and
repeating the same procedure. Note that in all of the generated constraints
of the form (2), both the LHS and the RHS of the entailment are boolean
combinations of polynomial inequalities over program variables.

3. Reduce Constraints to Quadratic Inequalities. To solve the constraints gener-
ated in the previous step, we directly integrate the technique of [1] into our
algorithm. This is a sound and semi-complete approach based on Putinar’s
Positivstellensatz. We will provide an example below, but refer to [1] for tech-
nical details and proofs of soundness/completeness of this step.
In this step, for each constraint of the form Φ ⇒ Ψ , the algorithm first rewrites

1 We have to find values for c-variables that satisfy all these constraints conjunctively.
This is why we have an extra existential quantifier in (1).

Sound and Complete Witnesses for LTL Properties 611

Φ in disjunctive normal form as φ1∨· · ·∨φt and Ψ in conjunctive normal form
as Ψ ≡ ψ1∧· · ·∧ψr. Then for each 1 ≤ i ≤ t and 1 ≤ j ≤ r the algorithm uses
Putinar’s Positivstellensatz in the exact same way as in [1] to generate a set
of quadratic inequalities equivalent to φi ⇒ ψj . The algorithm keeps track of
a quadratic program Γ and adds these new inequalities to it conjunctively.

4. Handling Initial Conditions. Additionally, for every variable x ∈ V, the algo-
rithm introduces another symbolic template variable tx, modeling the initial
value of x in the program, and adds the constraint [θinit(t) ∧ flinit (t) ≥ 0] to
Γ to impose that there exists an initial state in T at which the value of the
EBRF f is non-negative.

5. Solving the System. Finally, the algorithm uses an external solver (usually an
SMT solver) to compute values of t and c variables for which Γ is satisfied.
If the solver succeeds in solving the system of constraints Γ , the computed
values of c and t variables give rise to a concrete instance of an B-EBRF for
T . This implies that the answer to the EB-PA problem is positive, and the
algorithm return “Yes”. Otherwise, the algorithm returns “Unknown”, as there
might exist a B-EBRF for T of higher maximum polynomial degree D or a
non-polynomial B-EBRF.

Theorem 3 (Existential Soundness and Semi-completeness). The algo-
rithm above is a sound and semi-complete reduction to quadratic programming
for synthesizing an EBRF in a polynomial transition system T given a Büchi
specification B obtained from an LTL formula with polynomial inequalities in AP.
Moreover, for any fixed D, the algorithm has sub-exponential complexity.

In the above theorem, soundness means that every solution to the QP
instance is a valid EBRF and semi-completeness means that if a polynomial
EBRF exists and the chosen maximum degree D is large enough, then the QP
instance will have a solution. In practice, we simply pass the QP instance to an
SMT solver. Since it does not include a quantifier alternation, the SMT solvers
have dedicated heuristics and are quite efficient on QP instances.
Synthesis of Polynomial UBRFs. Our algorithm for synthesis of UBRFs is
almost the same as our EBRF algorithm, except that the constraints generated
in Steps 2 and 4 are slightly different.
Changes to Step 2. Step 2 is the main difference between the two algorithms.
In this step, for each location l ∈ L and each transition τ ∈ Out l the UBRF
algorithm adds (φl,τ ⇒ ψl,τ) to the set of constraints, where we have φl,τ ≡
θl ∧Gτ ∧fl(x) ≥ 0 and ψl,τ ≡ B–Rank(τ). The intuition behind this step is that
whenever a transition is enabled, it has to be Büchi-ranked by f .
Changes to Step 4. In this step, instead of searching for a suitable initial
valuation for program variables, the algorithm adds the quadratic inequalities
equivalent to (θinit ⇒ flinit (x) ≥ 0) to Γ . The quadratic inequalities are obtained
exactly as in Step 3. This is because the value of the UBRF must be non-negative
on every initial state of the transition system.

In the universal case, we have a similar theorem of soundness and semi-
completeness whose proof is exactly the same as Theorem 3.

612 K. Chatterjee et al.

Theorem 4 (Universal Soundness and Semi-completeness). The algo-
rithm above is a sound and semi-complete reduction to quadratic programming
for synthesizing an UBRF in a polynomial transition system T given a Büchi
specification B obtained from an LTL formula with polynomial inequalities in
AP. Moreover, for any fixed maximum polynomial degree D, the algorithm has
sub-exponential complexity.

5 Experimental Results

General Setup of Experiments. We implemented a prototype2 of our UBRF
and EBRF synthesis algorithms in Java and used Z3 [50], Barcelogic [6] and
MathSAT5 [21] to solve the generated systems of quadratic inequalities. More
specifically, after obtaining the QP instance, our tool calls all three SMT solvers
in parallel. We also used ASPIC [34] for invariant generation for benchmarks
that are linear programs. Experiments were performed on a Debian 11 machine
with a 2.60GHz Intel E5-2670 CPU and 6 GB of RAM with a timeout of 1800 s.
Baselines. We compare our tool with Ultimate LTLAutomizer [31], nuXmv [20],
and MuVal [65] as well as with a modification of our method that instead of
using Putinar’s Positivstellensatz simply passes entailment constraints to the
SMT-solver Z3 [50]:

– Ultimate LTLAutomizer makes use of “Büchi programs”, which is a similar
notion to our product of a transition system and a Büchi Automaton, to
either prove that every lasso shaped path in the input program satisfies the
given LTL formula, or find a path that violates it. However, in contrast to
our tool, it neither supports non-linear programs nor provides completeness.

– nuXmv is a symbolic model checker with support for finite and infinite tran-
sition systems. It allows both existential and universal LTL program analysis
and supports non-linear programs. It does not provide any completeness guar-
antees.

– MuVal [65] is a fixed-point logic validity checker based on pfwCSP solving
[66]. It supports both linear and non-linear programs with integer variables
and recursive functions.

– When directly applying Z3, instead of the dedicated quantifier elimination
method (Step 3 of our algorithm), we directly pass the quantified formula (1)
to the solver, which will in turn apply its own generic quantifier elimination.
This is an ablation experiment to check whether Step 3 is needed in practice.

Benchmarks. We gathered benchmarks from two sources:

– 297 benchmarks from the “Termination of C-Integer Programs” category of
TermComp’22 [37]3. Among these, 287 programs only contained linear arith-

2 Available at github.com/ekgma/LTL-VerP.
3 There were originally 335 benchmarks, but we had to remove benchmarks with

unbounded non-determinism and those without any variables, since they cannot be
translated to transition systems and are not supported in our setting.

https://github.com/ekgma/LTL-VerP

Sound and Complete Witnesses for LTL Properties 613

metic which is supported by all comparator tools, whereas 10 programs con-
tained polynomial expressions not supported by Ultimate.

– 21 non-linear benchmarks from the “ReachSafety-Loops nl-digbench” cate-
gory of SV-COMP’22 [5]4. As these benchmarks are all non-linear, none of
them are supported by Ultimate.

LTL Specifications. We used the four LTL specifications shown in Table 1. In
all four considered specifications, x represents the alphabetically first variable in
the input program. The motivation behind our specifications is as follows:

– Reach-Avoid (RA) Specifications. The first specification is an example of a
reach-avoid specification, which specifies that a program run should terminate
without ever making x negative. Reach-avoid specifications are standard in
the analysis of dynamical and hybrid systems [48,61,67]. Another example is
requiring a program to termination while satisfying all program assertions.

– Overflow (OV) Specifications. Intuitively, we want to evaluate whether our
approach is capable of detecting variable overflows. The second specification
specifies that each program run either terminates or the value of the variable x
overflows. Specifically, suppose that an overflow is handled as a runtime error
and ends the program. The negation (refutation) of this specification models
the existence of a run that neither terminates nor overflows and so converges.

– Recurrence (RC) Specifications. The third specification is an instance of recur-
rence specifications which specify that a program run visits a set of states
infinitely many times [47]. Our example requires that a program run contains
infinitely many visits to states in which x has a non-negative value.

– Progress (PR) Specifications. The fourth specification is an example of
progress specifications. In our experimental evaluation, progress specification
specifies that a program run always makes progress from states in which the
value of x is less than −5 to states in which the value of x is strictly positive.

Table 1. LTL specifications used in our experiments.

Name Formula Pre-condition θinit

RA (F at(lterm)) ∧ (G x ≥ 0) ∀x ∈ V, 0 ≤ x ≤ 64

OV F (at(lterm) ∨ x < −64 ∨ x > 63) ∀x ∈ V, −64 ≤ x ≤ 63

RC G F (x ≥ 0) ∀x ∈ V, −64 ≤ x ≤ 63

PR G (x < −5 ⇒ F (x > 0)) ∀x ∈ V, −64 ≤ x ≤ 63

Results on Linear Programs. The top rows of Table 2 summarize our results
over linear benchmarks to which all tools are applicable. First, we observe that in
all cases our tool outperforms the method that uses Z3 for quantifier elimination,
showing that our Step 3 is a crucial and helpful part of the algorithm. Compared

4 The original benchmark set contains 28 programs, but 7 of them contain unsupported
operators such as integer mod and are thus not expressible in our setting.

614 K. Chatterjee et al.

Table 2. Summary of our experimental results. For each class of benchmarks
(linear/non-linear) and each formula, We report in how many cases the tool could
successfully prove the formula (Yes) or refute it (No), total number of cases proved by
the tool (Tot.), number of instances uniquely solved by each tool and no other tools
(U.), and average runtime of each tool on programs that were successfully proved as
correct with respect to each specification (Avg. T).

Formula
Ours Ultimate nuXmv MuVal Z3

Yes No Tot. U. Yes No Tot. U. Yes No Tot. U. Yes No Tot. U. Yes No Tot. U.

L
in

ea
r

RA 141 114 255 5 142 121 263 7 76 91 137 0 118 76 194 0 56 36 92 0
OV 199 47 246 4 212 55 267 5 110 50 160 0 205 47 252 3 48 27 75 0
RC 87 187 274 0 86 194 280 0 83 183 266 0 86 191 277 0 44 71 115 0
PR 43 222 265 1 45 237 282 0 44 227 271 0 42 235 277 0 29 77 106 0

Avg. T 5.4 81.5 47.2 - 5.4 4.1 4.7 - 248.9 13.5 98.7 - 48.8 8.43 26.4 - 18.5 160.6 95.7 -

N
on

-li
ne

ar

RA 24 3 27 8 - - - - 1 0 1 0 18 1 19 2 0 0 0 0
OV 26 0 26 2 - - - - 7 0 7 0 25 0 25 1 0 0 0 0
RC 20 6 26 0 - - - - 17 9 26 2 17 7 24 2 0 0 0 0
PR 11 16 27 1 - - - - 9 16 25 0 5 16 21 1 0 0 0 0

Avg. T 10.7 99.1 32.3 - - - - - 34.6 0.3 20.0 - 109.6 14.7 84.7 - - - - -

to nuXmv, our tool proves more instances in all but two LTL refutation and one
LTL verification cases, i.e. the “No” column for the OV and PR specifications
and the “Yes” column for the PR specification. On the other hand, our prototype
tool is on par with Ultimate and MuVal, while proving 10 unique instances. Note
that Ultimate is a state of the art and well-maintained competition tool that is
highly optimized with heuristics that aim at the linear case. In contrast, it cannot
handle polynomial instances. Our results shown in Table 2 demonstrate that our
prototype tool is very competitive already on linear benchmarks, even though
our main contribution is to provide practically-efficient semi-complete algorithms
for the polynomial case.
Unique Instances. An important observation is that our tool successfully han-
dles 10 unique linear instances that no other tool manages to prove or refute.
Thus, our evaluation shows that our method handles not only polynomial, but
even linear benchmarks that were beyond the reach of the existing methods.
This shows that our algorithm, besides the desired theoretical guarantee of semi-
completeness, provides an effective automated method. Future advances in invari-
ant generation and SMT solving will likely further improve the performance.
Runtimes. Our tool and Ultimate are the fastest tools for proving LTL verifi-
cation instances with an equal average runtime of 5.4 s. For LTL refutation, our
tool is slower than other tools.
Results on Non-linear Programs. The bottom rows of Table 2 show the per-
formance of our tool and the baselines on the non-linear benchmarks. Ultimate
does not support non-linear arithmetic and Z3 timed out on every benchmark in
this category. Here, compared to nuXmv, our tool succeeded in solving strictly
more instances in all but one formula, i.e. RC, where both tools solve the same
number of instances. In comparison with MuVal, our tool proves more instances
for all four formulas. Moreover, the fact that Z3 timed out for every program in
this table is further confirmation of the practical necessity of Step 3 (Quantifier

Sound and Complete Witnesses for LTL Properties 615

Elimination Procedure of [1]) in our algorithm. Note that our prototype could
prove 11 instances that none of the other tools could handle.
Summary. Our experiments demonstrate that our automated algorithms are
able to synthesize both LTL verification and refutation witnesses for a wide
variety of programs. Our technique outperforms the previous methods when
given non-linear polynomial programs (Bottom rows of Table 2). Moreover, even
in the much more widely-studied case of linear programs, we are able to handle
instances that were beyond the reach of previous methods and to solve the
number of instances that is close to the state-of-the-art tools (Top Rows of
Table 2).

6 Conclusion

We presented a novel family of sound and complete witnesses for template-based
LTL verification. Our approach is applicable to both verification and refutation
of LTL properties in programs. It unifies and significantly generalizes previous
works targeting special cases of LTL, e.g. termination, safety and reachability.
We also showed that our LTL witnesses can be synthesized in a sound and semi-
complete manner by a reduction to quadratic programming. Our reduction works
when the program and the witness are both polynomial. An interesting direction
of future work would be to consider non-numerical programs that allow heap-
manipulating operations. A common approach to handling heap-manipulating
operations is to construct numerical abstractions of programs [7,46] and perform
the analysis on numerical abstractions. Thus, coupling such approaches, e.g. [28],
with our method is a compelling future direction.

Acknowledgements. This work was supported in part by the ERC-2020-CoG 863818
(FoRM-SMArt) and the Hong Kong Research Grants Council ECS Project Number
26208122.

Data Availability Statement. The implementations of the algorithms men-
tioned in the experiments section and the benchmarks are available at
doi.org/10.5281/zenodo.12518217.

References

1. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: PLDI, pp. 772–787 (2021)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
3. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: Efficient scalable verification of LTL

specifications. In: ICSE (1), pp. 711–721. IEEE Computer Society (2015)
4. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with sym-

bolic data. In: MEMICS, pp. 47–59 (2014)
5. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS, pp. 375–

402 (2022)

https://doi.org/10.5281/zenodo.12518217

616 K. Chatterjee et al.

6. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.:
The barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 294–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70545-1_27

7. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. Formal Methods Syst. Des. 38(2), 158–192 (2011)

8. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9_22

9. Büchi, J.R.: Symposium on decision problems: on a decision method in restricted
second order arithmetic. In: Studies in Logic and the Foundations of Mathematics,
vol. 44, pp. 1–11 (1966)

10. Cai, Z., Farokhnia, S., Goharshady, A.K., Hitarth, S.: Asparagus: automated syn-
thesis of parametric gas upper-bounds for smart contracts. In: OOPSLA (2023)

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s. In: CAV, pp. 3–22 (2016)

12. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: PLDI, pp. 672–687 (2020)

13. Chatterjee, K., Goharshady, A.K., Goharshady, E.K., Karrabi, M., Zikelic, D.:
Sound and complete witnesses for template-based verification of LTL properties
on polynomial programs. arXiv preprint arXiv:2403.05386 (2024)

14. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Quantitative
bounds on resource usage of probabilistic programs. In: OOPSLA (2024)

15. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: CAV, pp. 55–78 (2022)

16. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, D.: Proving non-
termination by program reversal. In: PLDI, pp. 1033–1048 (2021)

17. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, U.: Equivalence and similar-
ity refutation for probabilistic programs (PLDI) (2024). https://doi.org/10.1145/
3656462

18. Chatterjee, K., Novotný, P., Žikelić, D.: Stochastic invariants for probabilistic ter-
mination. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, 18–20 January 2017, pp. 145–160.
ACM (2017). https://doi.org/10.1145/3009837.3009873

19. Cimatti, A., Griggio, A., Magnago, E.: LTL falsification in infinite-state systems.
Inf. Comput. 289, 104977 (2022)

20. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with timed transition systems and timed temporal properties. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 376–386. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_21

21. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver.
In: TACAS, pp. 93–107 (2013)

22. Clark, A.: Verification and synthesis of control barrier functions. In: CDC, pp.
6105–6112 (2021)

23. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV (2000)

24. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer (2018)

https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
http://arxiv.org/abs/2403.05386
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-030-25540-4_21

Sound and Complete Witnesses for LTL Properties 617

25. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: CAV, pp. 420–432 (2003)

26. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0_30

27. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: POPL, pp.
399–410 (2011)

28. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI,
pp. 219–230 (2013)

29. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4_15

30. De Branges, L.: The Stone-Weierstrass theorem. Proc. AMS 10(5), 822–824 (1959)
31. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:

a new approach to LTL software model checking. In: CAV, pp. 49–66 (2015)
32. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-

wandte Mathematik 1902(124), 1–27 (1902)
33. Farzan, A., Kincaid, Z., Podelski, A.: Proving liveness of parameterized programs.

In: LICS, pp. 185–196 (2016)
34. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with

aspic and c2fsm. Electron. Notes Theor. Comput. Sci. 3–13 (2010)
35. Feng, Y., Zhang, L., Jansen, D.N., Zhan, N., Xia, B.: Finding polynomial loop

invariants for probabilistic programs. In: ATVA, pp. 400–416 (2017)
36. Floyd, R.W.: Assigning meanings to programs. In: Program Verification: Funda-

mental Issues in Computer Science, pp. 65–81 (1993)
37. Frohn, F., Giesl, J., Moser, G., Rubio, A., Yamada, A., et al.: Termina-

tion competition 2022 (2021). https://termination-portal.org/wiki/Termination_
Competition_2022

38. Fulton, N.: Verifiably safe autonomy for cyber-physical systems. Ph.D. thesis,
Carnegie Mellon University (2018)

39. Funke, F., Jantsch, S., Baier, C.: Farkas certificates and minimal witnesses for
probabilistic reachability constraints. In: TACAS, pp. 324–345 (2020)

40. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: CAV, pp.
72–83 (1997)

41. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI, pp. 281–292 (2008)

42. Gurriet, T., Singletary, A., Reher, J., Ciarletta, L., Feron, E., Ames, A.D.: Towards
a framework for realizable safety critical control through active set invariance. In:
ICCPS, pp. 98–106 (2018)

43. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear Lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_26

44. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019)

45. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant
synthesis. In: POPL, pp. 54:1–54:33 (2018)

46. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL, pp. 211–222 (2010)

https://doi.org/10.1007/978-3-662-46681-0_30
https://doi.org/10.1007/978-3-319-41528-4_15
https://termination-portal.org/wiki/Termination_Competition_2022
https://termination-portal.org/wiki/Termination_Competition_2022
https://doi.org/10.1007/978-3-319-02444-8_26

618 K. Chatterjee et al.

47. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–410
(1990)

48. Meng, Y., Liu, J.: Lyapunov-barrier characterization of robust reach-avoid-stay
specifications for hybrid systems (2022). https://doi.org/10.48550/ARXIV.2211.
00814

49. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: The probabilistic ter-
mination tool Amber. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6_36

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

51. Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and termi-
nation for polynomial programs. In: CONCUR, pp. 15:1–15:15 (2020)

52. Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.: Tem-
poral prophecy for proving temporal properties of infinite-state systems. Formal
Methods Syst. Des. 57(2), 246–269 (2021)

53. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
54. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-

ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0_20

55. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: POPL, pp. 132–144 (2005)

56. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. AMS 74(2), 358–366 (1953)

57. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using gröbner bases. In: POPL, pp. 318–329 (2004)

58. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1_7

59. Shen, L., Wu, M., Yang, Z., Zeng, Z.: Generating exact nonlinear ranking functions
by symbolic-numeric hybrid method. J. Syst. Sci. Complex. 26(2), 291–301 (2013)

60. Strejcek, J.: Linear temporal logic: expressiveness and model checking. Ph.D. thesis,
Masaryk University (2004)

61. Summers, S., Lygeros, J.: Verification of discrete time stochastic hybrid systems:
a stochastic reach-avoid decision problem. Autom. 1951–1961 (2010)

62. Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Automated tail bound analysis
for probabilistic recurrence relations. In: CAV, pp. 16–39 (2023)

63. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. TOPLAS 43(2), 5:1–5:46 (2021)

64. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math. 58(345–363), 5 (1936)

65. Unno, H., Terauchi, T., Gu, Y., Koskinen, E.: Modular primal-dual fixpoint logic
solving for temporal verification. In: POPL, pp. 2111–2140 (2023)

66. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
CAV, pp. 742–766 (2021)

67. Žikelić, D., Lechner, M., Henzinger, T.A., Chatterjee, K.: Learning control policies
for stochastic systems with reach-avoid guarantees. In: AAAI, pp. 11926–11935
(2023)

https://doi.org/10.48550/ARXIV.2211.00814
https://doi.org/10.48550/ARXIV.2211.00814
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-27864-1_7

Sound and Complete Witnesses for LTL Properties 619

68. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: PLDI, pp. 1171–1186 (2021)

69. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: PLDI, pp. 204–220 (2019)

70. Wang, Q., Chen, M., Xue, B., Zhan, N., Katoen, J.: Synthesizing invariant barrier
certificates via difference-of-convex programming. In: CAV, pp. 443–466 (2021)

71. Zhang, Y., Yang, Z., Lin, W., Zhu, H., Chen, X., Li, X.: Safety verification of
nonlinear hybrid systems based on bilinear programming. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 37(11), 2768–2778 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Sound and Complete Witnesses for Template-Based Verification of LTL Properties on Polynomial Programs
	1 Introduction
	2 Transition Systems, LTL and Büchi Automata
	3 Sound and Complete B-PA Witnesses
	3.1 Sound and Complete Witnesses for Existential B-PA
	3.2 Sound and Complete Witnesses for Universal B-PA

	4 Template-Based Synthesis of Polynomial Witnesses
	5 Experimental Results
	6 Conclusion
	References

