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Abstract
Privately counting distinct elements in a stream is a fundamental data analysis problem with many
applications in machine learning. In the turnstile model, Jain et al. [NeurIPS2023] initiated the study
of this problem parameterized by the maximum flippancy of any element, i.e., the number of times
that the count of an element changes from 0 to above 0 or vice versa. They give an item-level (ϵ, δ)-
differentially private algorithm whose additive error is tight with respect to that parameterization.
In this work, we show that a very simple algorithm based on the sparse vector technique achieves
a tight additive error for item-level (ϵ, δ)-differential privacy and item-level ϵ-differential privacy
with regards to a different parameterization, namely the sum of all flippancies. Our second result
is a bound which shows that for a large class of algorithms, including all existing differentially
private algorithms for this problem, the lower bound from item-level differential privacy extends to
event-level differential privacy. This partially answers an open question by Jain et al. [NeurIPS2023].
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1 Introduction

Counting distinct elements in a stream is a fundamental data analysis problem that is
widely studied [12, 13, 17, 18, 20] and has many applications [1, 10, 19, 2, 21, 5], including
network analysis [21] and detection of denial of service attacks [1, 5]. If the data includes
sensitive information, the essential challenge is to give accurate answers while providing
privacy guarantees to the data owners. Differential privacy is the de-facto standard in private
data analysis and is widely employed both in research and in industry. In the insertions-only
model, the problem of counting distinct elements while preserving differential privacy is
well-studied [3, 9, 14].

Recent work by Jain, Kalemaj, Raskhodnikova, Sivakumar, and Smith [16] (which was
concurrent with an earlier version of the results presented in this paper, see [15, Section
5]) initiated the study of this problem in the more general turnstile model. They give
an algorithm which is item-level, (ϵ, δ)-differentially private and analyze the additive error
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parameterized in the maximum flippancy of any element, i.e., the number of times that the
count of an element changes from 0 to above 0 or vice versa. They also give lower bounds
which show that the additive error of the algorithm is tight for item-level differential privacy
(up to log factors) with respect to their parameterization. There is still a gap for event-level
differential privacy, which is posed as an open question. The algorithm is based on several
instantiations of the binary tree mechanism.

In this paper we show that a simple algorithm based on the sparse vector technique
achieves a tight additive error (up to log factors) for item-level (ϵ, δ)-differential privacy
and item-level ϵ-differential privacy, with regards to a different parameterization, namely
the total flippancy, i.e., the sum of the flippancies of all elements. The additive error
depends polynomially on the total flippancy with a smaller exponent than the exponent
of the maximum flippancy in the additive error in [16]. Thus, if there are few elements in
total, or few elements which change their count from 0 to above 0 or vice versa, then our
algorithm achieves a better additive error. Additionally, we give is a reduction which shows
that for a large class of algorithms, including all existing differentially private algorithms
for this problem, the lower bound from item-level differential privacy extends to event-level
differential privacy. This is a step towards answering the open question posed in [16].

1.1 Problem Definition
More formally, we assume there are d different items, and our goal is to maintain a multiset
of them and to determine at each time step how many of them are currently at least once in
the multiset, i.e., the number of distinct elements in the multiset. The update operations are
modeled as follows: The input at every time step is a d-dimensional vector xt ∈ {−1, 0, 1}d,
such that xt

i = 1 if element i gets inserted at time t, xt
i = −1 if element i gets deleted at

time t, and xt
i = 0 otherwise. Note that this means that we allow multiple non-zero entries

in xt, corresponding to multiple updates at every time step. However, the lower bound also
extends to the case where we assume that at most one element may be inserted or deleted at
any time step, i.e., ||xt||1 ≤ 1, which we call singleton update streams. At every time step t,
we want to output the number of distinct elements in the multiset. By our definition of the
input stream, an element i is present at time t if and only if

∑
t′≤t xt′

i > 0.

▶ Definition 1 (CountDistinct). Let x1, x2, . . . , xT be an input stream with xt ∈ {−1, 0, 1}d

for all t ∈ [1, T ]. We define CountDistinct(x)t =
∑d

i=1 1(
∑

t′≤t xt′

i > 0), where 1(E) is
the indicator function that is 1 if E is true and 0 otherwise. Then, the CountDistinct
problem is to output CountDistinct(x)t at all time steps t. The error of CountDistinct
is defined to be the maximum additive error over all time steps.

In this paper, we consider two privacy notions: event-level differential privacy, and item-level
differential privacy. They differ in their definition of neighboring input streams. Two input
streams x and y are event-level neighboring, if there exists a time step t∗ and an item i∗ ∈ [1, d]
such that we have xt

i = yt
i for all (i, t) ̸= (i∗, t∗). That is, two event-level neighboring streams

may differ in at most one item in at most one update operation. Two input streams x and y

are item-level neighboring, if there exists an item i∗ ∈ [1, d] such that xt
i = yt

i for all t and
for all i ∈ [1, d] \ {i∗}. That is, two item-level neighboring streams may differ in all update
operations related to one item.

Finally, we consider two models regarding the input stream. In the general model the
counts for any item at any time step t is given by

∑
t′≤t xt′

i , which can be any integer in [−t, t]
and we only care about whether

∑
t′≤t xt′

i is larger than zero or not. In the “likes”-model1

1 The name was chosen as it models the count of “likes” on a social media website, as motivated by [16].
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for every item i at any time step t, it must hold that
∑

t′≤t xt′

i ∈ {0, 1}, i.e., the multiset is a
set. Said differently, an item can only be inserted if it is absent in the set and it can only be
deleted when it is present.

1.2 Summary of Results
In this paper, we give new upper and lower bounds for item-level differential privacy,
parameterized in the total flippancy K, which is defined as the total number of times any
item switches from a non-zero count to a zero count, or vice versa. In detail, let f t(xi) =
1(
∑

t′≤t xt′

i > 0). The total flippancy is formally defined as K =
∑d

i=1
∑T

t=2 1(f t(xi) ̸=
f t−1(xi)). Note that in the “likes”-model, the total flippancy is equal to the total number of
updates. As CountDistinct(x)t =

∑d
i=1 f t(xi), it follows that K is an upper bound on

the number of changes in CountDistinct(x) over time.

Upper Bounds

As our first main result, we give algorithms solving CountDistinct while providing item-
level differential privacy, which work in the general model (thus also in the “likes”-model).
In the following, we state the exact bounds for given K. If K is not given to the algorithm,
the error bounds worsen by at most a ln2 K factor.

▶ Theorem 2. Let d be a non-zero integer, β > 0, K be a known upper bound on the total
flippancy, and let T be a known upper bound on the number of time steps. Then there exists
1. an item-level ϵ-differentially private algorithm for CountDistinct in the general model

with additive error O(min(d, K,
√

ϵ−1K ln(T/β), ϵ−1T log(T/β)) with probability at least
1 − β at all time steps simultaneously, for any ϵ > 0 and β ∈ (0, 1);

2. an item-level (ϵ, δ)-differentially private algorithm for CountDistinct in the general
model with additive error O(min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3
, ϵ−1

√
T ln(1/δ) log(T/β))

with probability at least 1−β at all time steps simultaneously, for any δ ∈ (0, 1), ϵ ∈ (0, 1),
and β ∈ (0, 1).

As our lower bounds (discussed below) show, our bounds for ϵ-differential privacy are tight,
if K is known and K ≤ T . If K > T , we incur at most an extra ln T factor, and if K is not
known, we incur extra ln K factors (see Section 6). For (ϵ, δ)-differential privacy, the upper
bounds are tight up to ln T , ln K and ln(1/δ) factors.

Lower bounds

We complement our upper bounds by almost tight lower bounds on the additive error which
hold for any item-level differentially private algorithm in the “likes”-model. As this is the
“more restricted” of the two models, the lower bounds also carry over to the general model.
For ϵ-differential privacy, our lower bound follows from a packing argument.

▶ Theorem 3 (Simplified version of Theorem 16). For any L ≤ T , there exists an in-
put stream x of d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-
model, with length T and flippancy K = Θ(L), such that any item-level, ϵ-differentially
private algorithm for CountDistinct must with constant probability have an error at least
Ω(min(d, K,

√
ϵ−1K max(ln(T/K), 1))).

The lower bound above also holds for singleton updates. When multiple updates are
allowed, then K could potentially be larger than T . In that case, Theorem 16 in Sec-
tion 5 shows that for any T ≤ L ≤ dT , there exists a stream with flippancy K = Ω(T ),

APPROX/RANDOM 2024
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Table 1 Comparison of our results (in blue) and the results in [16] for the different models.
K denotes the total flippancy and w denotes the maximum flippancy of an input stream x. For
simplicity of exposition, we consider singleton insertions and omit factors polynomial in ln T , ln(1/δ),
and ϵ−1. The bounds marked with ∗ hold for output dependent algorithms (see the discussion before
Theorem 5 for details). The bounds in the last line follow from a simple application of a continual
counting algorithm on the difference sequence.

Item-level ϵ-dp Item-level (ϵ, δ)-dp Event-level ϵ-dp Event-level (ϵ, δ)-dp

general model O(min(
√

w, T 1/3)) O(min(
√

w, T 1/3))
[16] Ω(min(w,

√
T )) Ω(min(

√
w, T 1/3) Ω(min(

√
w, T 1/4))

“likes”-model O(min(
√

w, T 1/3)) O(min(
√

w, T 1/3))
[16] Ω(min(w,

√
T )) Ω(min(

√
w, T 1/3))

general model O(
√

K) O(K1/3) O(
√

K) O(K1/3)
this work Ω(

√
K) Ω(K1/3) Ω(min(w,

√
K))∗ Ω(min(

√
w, K1/3))∗

“likes”-model O(
√

K) O(K1/3) O(
√

K) O(K1/3)
this work Ω(

√
K) Ω(K1/3)

“likes”-model O(1) O(1)

K = O(L), such that any item-level, ϵ-differentially private algorithm to the Count-
Distinct problem must have error at least Ω(min(d, ϵ−1T,

√
ϵ−1L max(ln(T/L), 1))) =

Ω(min(d, ϵ−1T,
√

ϵ−1K max(ln(T/K), 1))) with constant probability. For (ϵ, δ)-differential
privacy, we can use a similar strategy as in [16] to get the following bounds:

▶ Theorem 4 (Simplified version of Theorem 19). Let ϵ, δ ∈ (0, 1]. Let K, T be sufficiently large
parameters. There exists a dimension d ∈ N and an input stream x of d-dimensional vectors
from {−1, 0, 1}d of length T with flippancy at most K which is valid in the “likes”-model,
such that any item-level, (ϵ, δ)-differentially private algorithm for CountDistinct must
have error at least Ω

(
ϵ−1 · min

( √
T

log T , (Kϵ)1/3

log(Kϵ)

))
with constant probability.

Note that this lower bound holds for the case where multiple insertions are allowed in every
time step. In Theorem 19 we also give a lower bound of Ω

(
K1/3

ϵ log K

)
for singleton-updates.

Time and Space Complexity

Our main algorithm (achieving the O(
√

ϵ−1K ln T ) error bound for ϵ-differential privacy and
O
(
(K ln(1/δ) ln2 T )1/3/ϵ2/3) error bound for (ϵ, δ)-differential privacy) can be implemented

using constant time per update, assuming that drawing from a Laplace distribution takes
constant time. Specifically, the total running time is O(#updates + SKtLap), where tLap
is the time to draw one Laplace random variable, SK = O(

√
Kϵ/ ln T + 1) for ϵ-dp, and

SK = O

((
Kϵ√

ln(1/δ) ln(T/β)

)2/3
)

for (ϵ, δ)-dp. The algorithm uses O(d) words of space. The

only information our algorithm needs to store are the true counts for each item, plus a
constant number of words of extra information. This holds even for the case where K is
unknown, since we sequentially run our known K algorithm with increasing guesses for K.

Comparison to the recent work by Jain, Kalemaj, Raskhodnikova, Sivakumar, and
Smith [16]

In recent work, [16] considered the CountDistinct problem with a similar, but different
parameterization. In [16], they parameterize the additive error in the maximum flippancy, i.e.,
they parameterize on wx = maxi∈[d](

∑T
t=2 1(f t(xi) ̸= f t−1(xi)). Recall that K denotes the
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total flippancy of a stream x and note that wx ≤ K ≤ d · wx. [16] consider only streams with
singleton updates and give algorithms for item-level, (ϵ, δ)-differential privacy in the general

model, with an error bound of Õ

(
min

(
(√wx log T + log3 T ) ·

√
log(1/δ)

ϵ , (T log(1/δ))1/3

ϵ2/3 , T

))
2.

In comparison, our bounds in this setting are Õ
(

min
(

(K ln(1/δ) ln2 T )1/3

ϵ2/3

)
, K
)

. Note that
K ≤ T for singleton updates, and thus, our upper bounds recover their second and third
bound up to a ln2/3 T factor. Furthermore, ignoring polynomial factors in log T , log(1/δ)
and ϵ−1, their bound is O(√wx) while ours is O(K1/3). Thus, if (roughly) K < w

3/2
x ,

our algorithm outperforms theirs. Specifically, if d ≤ √
wx or if there are only few items

with high flippancy, we expect our algorithm to do better. In cases where the flippancy
is well-distributed, i.e., many items have a similar flippancy, and d ≥ √

wx, we expect the
algorithm in [16] to perform better.

In terms of space and time complexity, their algorithm, like ours, needs to maintain a
count for each element. Thus, the space in terms of words is Ω(d). On top of that, they run a
variant of the binary tree mechanism, which depending on the implementation, uses Ω(log T )
space. In their final solution, they actually run log T copies of the binary tree mechanism in
parallel, bringing their space consumption to O(d + log2 T ) words. Thus, the space of our
algorithm is an additive log2 T term better, which can be crucial for large streams. In terms
of time complexity, each of the binary tree mechanism needs to draw Ω(T log T ) independent
Laplace noises, thus their time complexity is at least Ω(T log2 TtLap), where tLap is the time
it takes to draw a Laplace noise. Also here, our algorithm is more efficient.

In terms of lower bounds, for item-level, ϵ-differential privacy in the “likes”-model, [16]
give a lower bound of Ω(min(ϵ−1w,

√
ϵ−1T , T )) for streams of maximum flippancy at most

w. For (ϵ, δ)-differential privacy, they give a lower bound of Ω̃(min(ϵ−1√
w, ϵ−2/3T 1/3, T ))

for item-level privacy in the “likes”-model, and Ω̃(min(ϵ−1√
w, ϵ−3/4T 1/4, T )) for event-level

privacy in the general model, for streams of maximum flippancy at most w. Their upper
bounds in the item-level setting match their lower bounds up to factors polynomial in log T

and log(1/δ). For event-level in the general model, there is a gap for
√

T ≤ w ≤ T 2/3, and
closing this gap was posed as an explicit open question in [16]. As our second main result,
we make a step towards closing this gap, which we explain below.

Reduction from item-level, “likes”-model to output-dependent event-level, general
model

All upper bounds mentioned so far hold for item-level differential privacy. As our upper
bounds hold in the general model and our lower bounds hold in the “likes”-model, we can
conclude that for item-level privacy, the “likes”-model and the general model are roughly
equally hard. [16] arrived at this conclusion as well, albeit with a different parameterization.

However, for event-level differential privacy, the picture is different: for the “likes”-model,
a very simple algorithm gives an error of O(ϵ−1polylog(T )) with constant probability. To
see this, define the difference sequence for the CountDistinct problem as difft(x) =
CountDistinct(x)t −CountDistinct(x)t−1 for t > 1. As can be easily seen, (difft(x))t>1
and (difft(y))t>1 differ by at most 1 in at most one time step t for any event-level neighboring
streams x and y in the “likes”-model. Thus, applying a standard continual counting algorithm
gives the claimed error, as shown for “well-behaved” difference sequences in general in [11].

2 For simplicity of exposition, we use Õ(X) to denote O(X · polylog(X))

APPROX/RANDOM 2024
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For event-level differential privacy and the general model however, the best known
algorithms are the algorithms for item-level differential privacy in this paper and [16]. [16]
also present lower bounds for event-level differential privacy in the general model which,
however, leave a gap for certain parameter settings. Closing that gap was explicitly posed
as an open question in [16]. We make a step towards closing that gap, by noting that all
existing differentially private algorithms for the CountDistinct problem in any model share
the following property: If CountDistinct(x) = CountDistinct(y) for any two input
streams x and y, then the output distributions of the algorithms are equal. That is, any two
streams which produce the same true output, will have the same output distributions. We
call such algorithms output-determined. We show that if we only consider output-determined
algorithms for CountDistinct, then achieving event-level differential privacy in the general
model is just as hard as item-level differential privacy for the “likes”-model. Thus our above
lower bounds also apply to such algorithms. In particular, this shows that if one were trying
to close the gap for event-level differential privacy in the general model, one needs to find an
algorithm which does not only depend on the true answers to CountDistinct.

▶ Theorem 5 (Simplified version of Theorem 15). Let ϵ > 0 and δ ≥ 0. Let A1 be an
event-level, (ϵ, δ)-differentially private, output-determined algorithm for CountDistinct
that works in the general model and has error at most α for streams of length T + 1 with
probability 1−β. Then there exists an item-level, (2ϵ, (1+eϵ)δ)-differentially private algorithm
A2 for CountDistinct that works in the “likes”-model, and has error at most α for streams
of length T with probability 1 − β.

Generalizations & Applications

While our algorithms are (nearly) tight for the CountDistinct problem, they are not
tailored specifically to the problem and work in a more general setting as well. In particular,
recall that CountDistinct(x)t =

∑d
i=1 f t(xi), where f t(xi) = 1(

∑
t′≤t xt′

i > 0). Now
consider any real-valued function Q on input streams x1, x2, . . . , with xi ∈ {−1, 0, 1}. We
use Qt(x) to denote Q(x1, . . . , xt). Our algorithm works for any such function Q such that
the following two conditions are fulfilled: (1) for any x and y which are neighboring, we
have |Qt(x) − Qt(y)| ≤ 1 for all time steps t, and (2)

∑T
t=1 |Qt(x) − Qt−1(x)| ≤ K.

▶ Theorem 6. Let Q be a function satisfying properties (1) and (2). Then there exists
1. an item-level ϵ-differentially private algorithm for computing Q with additive error

O(min(K,
√

ϵ−1K ln(T/β))), ϵ−1T log(T/β))

at all time steps with probability at least 1 − β, for any ϵ > 0;
2. an item-level (ϵ, δ)-differentially private algorithm for computing Q with additive error

O(min(K, (ϵ−2K ln(1/δ) ln2(T/β))1/3, ϵ−1
√

T ln(1/δ) log(T/β)))

at all time steps with probability at least 1 − β, for any ϵ > 0, δ ∈ (0, 1);
The extension to unknown K also holds, with extra ln K factors as earlier. Thus, for
a continuous function Q which has maximum sensitivity 1 over all time steps, we get
a bound parameterized in the sum of all differences, i.e., the L1-norm of the difference
sequence. While our results hold in the turnstile model and the additive error is parameterized
by the total flippancy, [11] gave an ϵ-differentially private mechanism with additive error
O(Γ log3/2 log(T/β)) in the insertions-only or deletions-only setting, where Γ is the continuous
global sensitivity which is the L1-norm of the difference sequence of two neighboring inputs.
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We can apply our algorithm to the problem considered in Fichtenberger et al. [11] of
continuously counting high degree nodes under differential privacy, which counts the number
of nodes with degree at least τ , where τ is given and public. For user-level, edge-differential
privacy (i.e., neighboring streams may differ in all updates of the same edge), they give a
lower bound of Ω(n). Our algorithm gives new parameterized bounds for this problem: In
particular, choosing Qt(x) = # of high degree nodes

2 , Theorem 6 gives an error bound of roughly
O(

√
K), under ϵ-differential privacy, and roughly O(K1/3) under (ϵ, δ)-differential privacy,

where we ignore an O(ϵ−1 ln T ln(1/δ) ln K) factor. Note that K can be as large as T , but
for many applications, it could be much smaller: for example, in social networks, it has been
shown that the degree distribution follows a power-law distribution, which implies that the
set of high-degree nodes only changes infrequently. K does not to be given to the algorithm.

1.3 Algorithm Overview
The main idea of our algorithm is to use the sparse vector technique first introduced by
Dwork, Naor, Reingold, Rothblum, and Vadhan [7] (the form we use it in can be found in
Dwork and Roth [8]) on carefully chosen queries and with carefully chosen thresholds. The
sparse vector technique can be described as follows: It is given a data set x, a sequence of
q queries, a threshold Thresh, and a stopping parameter S. It will process these queries
sequentially, and for each of them answer “yes” or “no” depending on whether or not q(x) is
approximately (up to an additive error α) above the threshold. It stops after it has answered
“yes” S times. Dwork and Roth [8] show that it is possible to design an ϵ-differentially private
algorithm achieving the above with α = O(ϵ−1S log(q/β)) with probability 1 − β, and an
(ϵ, δ)-differentially private algorithm with α = O(ϵ−1

√
S log(1/δ) log(q/β)) with probability

1 − β. In the following discussion, we ignore ϵ−1, log(1/δ), log q and log(1/β) factors.
Our main idea is to note that the total flippancy K can be seen as an upper bound on the

total change in the output, i.e., the sum of the absolute differences in the output in every time
step. Our strategy is as follows: We start by estimating the number of distinct elements at
the beginning of the stream. Then, we keep reporting this estimate until a significant change
occurs in the true number of distinct elements. We track whether such a change has occurred
using the sparse vector technique. Once there has been a significant change, i.e., once the
sparse vector technique answers “yes”, we update the output. The goal now is to balance the
additive error of the sparse vector technique with the error accumulated between updates.
The error between updates is roughly Thresh; the error of the sparse vector technique is α;
and the total change of the output is bounded by K. To balance the two we set Thresh
= Θ(α). Furthermore we have to choose S in a way that makes sure that the sparse vector
technique does not abort before we have seen the entire stream. We can show that every
time our sparse vector technique answers “yes”, the change in output has been roughly
Thresh. Thus it is enough to set S > K/Thresh. As mentioned above, for ϵ-differential
privacy α (and, thus, Thresh) must depend linearly on S, which implies that S must be
chosen to be Θ(

√
K), giving an additive error of O(

√
K). For (ϵ, δ)-differential privacy, we

have Thresh= Θ(α) = O(
√

S). This implies that S3/2 must be Θ(K), i.e., S = Θ(K2/3).
Thus the additive error is O(K1/3).

Note that this requires that K is known at the beginning of the algorithm. If K is
unknown, we run the above algorithm for exponentially increasing guesses of K (K = 2, 4, 8,

etc.). In particular, we run the algorithm for a guess of K, and if it terminates preemptively,
we double our guess and repeat. Since we do not know beforehand how many instances are
needed, in order to make sure the resulting algorithm is still ϵ-differentially private, we run
the jth instance with privacy parameter ϵj = O(ϵ/j2), such that

∑∞
j=1 ϵj ≤ ϵ. At the end of

the algorithm, j = Θ(ln K), therefore we incur an extra ln2 K factor in the additive error.

APPROX/RANDOM 2024
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2 Preliminaries

We denote {1, . . . , n} by [n] and the input stream length by T , the number of time steps.

Continual observation algorithm

An algorithm A in the continual observation model gets an update at every time step
t ≤ T , and produces an output at = A(x1, . . . , xt) which is a function of x1 to xt; AT (x) =
(a1, a2, . . . , aT ) denotes the sequence of outputs at all time steps.

▶ Definition 7 (Differential privacy [6]). A randomized algorithm A is (ϵ, δ)-differentially
private ((ϵ, δ)-dp) if for all S ∈ range(AT ) and all x, y neighboring

Pr[AT (x) ∈ S] ≤ eϵ Pr[AT (y) ∈ S] + δ.

If δ = 0 then A is ϵ-differentially private (ϵ-dp).

▶ Definition 8 (Laplace Distribution). The Laplace distribution centered at 0 with scale b is
the distribution with probability density function fLap(b)(x) = (2b)−1 · exp (−|x|/b) . We use
X ∼ Lap(b) or just Lap(b) to denote a random variable X distributed according to fLap(b)(x).

In our definitions below, we use χ to represent a generic universe of elements.

▶ Definition 9 (Sensitivity). Let f : χ → Rk. The Lp-sensitivity ∆p is defined as

max
x∈χ,y∈χ,x∼y

||f(x) − f(y)||p,

where x ∼ y denotes that x and y are neighbouring.

▶ Fact 1 (Theorem 3.6 in [8]: Laplace Mechanism). Let f be any function f : χ → Rk

with L1-sensitivity ∆1. Let Yi ∼ Lap(∆1/ϵ) for i ∈ [k]. The mechanism defined as A(x) =
f(x) + (Y1, . . . , Yk) satisfies ϵ-differential privacy.

▶ Fact 2 (Laplace Tailbound). If X ∼ Lap(b), then Pr[|X| ≥ t · b] ≤ e−t.

The following fact follows from Theorem A.1 in [8]:

▶ Fact 3 (Gaussian Mechanism). Let f be any function f : χ → Rk with L2-sensitivity
∆2. Let Yi ∼ N (0, σ2) for i ∈ [k], where σ ≥

√
2 ln(2/δ)∆2/ϵ. The mechanism defines as

A(x) = f(x) + (Y1, . . . , Yk) satisfies (ϵ, δ)-differentially privacy.

▶ Fact 4 (Gaussian tailbound). If X ∼ N (0, σ2), then Pr[|X| ≥ σ
√

ln(2/β)] ≤ β

The following facts are respectively given by Theorem 3.16, 3.20 and Corollary 3.21 in [8].

▶ Fact 5 (Composition Theorem). Let A1 be an (ϵ1, δ1)-differentially private algorithm
A1 : χ → range(A1) and A2 an (ϵ2, δ2)-differentially private algorithm A2 : χ × range(A1) →
range(A2). Then B : χ → range(A1) × range(A2) defined as B(x) = (A1(x), A2(x, A1(x)) is
(ϵ1 + ϵ2, δ1 + δ2)-differentially private.

▶ Fact 6 (Advanced Composition). Let ϵ, δ, δ′ ≥ 0. Let A1 be an (ϵ, δ)-differentially private
algorithm A1 : χ → range(A1) and Ai be (ϵ, δ)-differentially private algorithms Ai : χ ×
range(Ai−1) → range(Ai), for 2 ≤ i ≤ k. Then the composition B : χ → range(A1) ×
· · · × range(Ak) defined as B(x) = (A1(x), A2(x, A1(x)), . . . , Ak(x, Ak−1(x))) is (ϵ′, kδ + δ′)-
differentially private, where ϵ′ =

√
2k ln(1/δ′)ϵ + kϵ(eϵ − 1).

▶ Corollary 10. Let ϵ∗, δ, δ′ ≥ 0 and δ′, ϵ∗ < 1. Let A1, . . . , Ak be as in Fact 6 with

ϵ = ϵ∗/(2
√

2k ln(1/δ′)).

Then the composition B (defined as in Fact 6) is (ϵ∗, kδ + δ′)-differentially private.
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3 Item-Level Algorithms in General Model

In this section, we give algorithms which work for any input sequence in the general model,
and thus also for input sequences that fulfill the conditions of the “likes”-model. The upper
bounds on the additive error for ϵ-differential privacy match the lower bounds in Section 5,
except for the log(T/β) factor in the case where K > T .

3.1 Known Total Flippancy
We prove Theorem 11 in this section. We give some intuition first on Algorithm 1. The
algorithm works by iteratively checking if the true number of distinct elements currently
present (called Q) is “far” from the current output of our algorithm (called out) using a
sparse vector technique (SVT) instantiation. We start the algorithm by estimating out at the
beginning of the stream (line 8). Then, we keep outputting out, while we track the difference
between out and the true number of distinct elements Q (line 14). Once there has been a
significant change, we update the output (line 18).

There are two parameters of interest here. One is the number of times we update the
output: we abort after SK updates happen (line 21). The other is the parameter Thresh,
which determines how large the current error needs to be such that we satisfy the condition
in line 14. The parameter SK goes into the error from composition, while the parameter
Thresh directly goes into the additive error bound.

The goal is to balance the error accumulated between updates (which is roughly Thresh),
and the error from updating out privately (which is roughly SK for ϵ-differential privacy, and
roughly

√
SK for (ϵ, δ)-differential privacy due to composition). Additionally, we want to

make sure our algorithm does not abort before having processed the entire stream. We show
that every time SVT returns “yes”, the total flippancy in the stream has increased by at
least Ω(Thresh). Since we know the total flippancy is bounded by K, in order to make sure
that we do not abort preemptively, we choose SK such that SK · Thresh ≈ K. Balancing the
two error terms yields an additive error of approximately

√
K for ϵ-differential privacy, and

K1/3 for (ϵ, δ)-differential privacy.

▶ Theorem 11. Let d and T be non-zero integers, let β > 0, and let K be an upper bound
on the total flippancy which is given. Let T be a known upper bound on the number of time
steps. Then there exists
1. an item-level ϵ-differentially private algorithm for CountDistinct in the general model

with error at most O(min(d, K,
√

ϵ−1K ln(T/β), ϵ−1T log(T/β)) at all time steps with
probability at least 1 − β for ϵ > 0;

2. an item-level (ϵ, δ)-differentially private algorithm for CountDistinct in the general
model with error O

(
min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3
, ϵ−1

√
T ln(1/δ) log(T/β)

)
at

all time steps with probability at least 1 − β, for any 0 < δ < 1 and 0 < ϵ < 1.

Proof. The O(min(d, K)) bound follows from the fact that the algorithm that outputs 0 at
every time step is ϵ-differentially private and has error at most min(d, K) for any ϵ. The
third error bounds in the minimum for Theorem 11 are achieved by Algorithm 1, as shown
below. Since we assume here all parameters are known, one can compute the minimum of
the three bounds and choose the algorithm accordingly. The fourth bound in Theorem 11
follow by a direct application of the Laplace mechanism Fact 1 with ∆1 = T resp. Gaussian
mechanism Fact 3 with ∆2 =

√
T .
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Algorithm 1 CountDistinct, known K.

1: Input: Data Stream x = x1, x2, . . . , initial counts c1, . . . , cd (default 0), parameters ϵ, δ

and β, stream length bound T , stopping parameter SK ≥ 1
2: if δ = 0 then ϵ1 = ϵ/(2SK)
3: if δ > 0 then ϵ1 = ϵ/(4

√
2SK ln(1/δ))

4: count = 1
5: τ1 = Lap(2/ϵ1)
6: ν1 = Lap(1/ϵ1)
7: Q = 0
8: out = Q + ν1
9: Thresh = 16ϵ−1

1 (ln(2T/β))
10: for t = 1, . . . , do
11: ci = ci + xt

i for all i ∈ [d]
12: Q = |{i ∈ [d] | ci > 0}|
13: µt = Lap(4/ϵ1)
14: if |out − Q| + µt > Thresh + τcount then
15: count = count + 1
16: τcount = Lap(2/ϵ1)
17: νcount = Lap(1/ϵ1)
18: out = Q + νcount
19: end if
20: output out
21: if count ≥ SK then Abort
22: end for

The algorithm for our third bound, given in Algorithm 1, is based on the sparse vector
technique, where SK is a parameter dependent on K that we choose suitably below. We omit
the proof of the following lemma, since it follows from well-known techniques (Sparse Vector
Technique [7, 8], Laplace mechanism (Fact 1) and composition theorems (Facts 5 and 6)).

▶ Lemma 12. For δ = 0 and any ϵ > 0, Algorithm 1 is ϵ-differentially private. For 0 < ϵ < 1
and 0 < δ < 1, Algorithm 1 is (ϵ, δ)-differentially private.

We show the claimed accuracy bound using the following lemma.

▶ Lemma 13. For δ = 0, for any time step t before the algorithm aborts, we have that the
maximum error up to time t is at most O(ϵ−1SK ln(T/β)). Setting SK =

√
Kϵ/(18 ln(T/β))+

1, with probability at least 1 − β, Algorithm 1 does not abort before having seen the entire
stream, and has error at most O(

√
ϵ−1K ln(T/β) + ϵ−1 ln(T/β)). For δ > 0, for any

time step t before the algorithm aborts, we have that the maximum error up to time t is

O(ϵ−1
√

SK ln(1/δ) ln(T/β)). Setting SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1, with probability at

least 1 − β, Algorithm 1 does not abort before having seen the entire stream, and has error at
most O

((
ϵ−2K ln(1/δ) ln2(T/β)

)1/3 +ϵ−1
√

ln(1/δ) ln(T/β)
)

.

Proof. Note that at every time step t in Algorithm 1, we set Q =
∑d

i=1 f t(xi). Let
α = (8/ϵ1) ln(2T/β) = (1/2) · Thresh. By Laplace tailbounds (Fact 2), at every time step t:
(a) |τℓ| ≤ (2/ϵ1) ln(2T/β) = α/4 with probability at least 1 − β/(2T ), where ℓ is the value

of variable count at time step t, and
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(b) |µt| ≤ (4/ϵ1) ln(2T/β) = α/2 with probability at least 1 − β/(2T ).
Thus, with probability ≥ 1 − β, we have at all time steps t simultaneously:

(i) Whenever the condition in line 14 is true at time t, then |out −
∑

i∈[d] f t(xi)| >

Thresh − 3α/4 = 5α/4, and
(ii) Whenever the condition in line 14 is false at time t, then |out −

∑
i∈[d] f t(xi)| ≤

Thresh + 3α/4 < 3α.

Further, the random variable νℓ for ℓ ∈ [SK ] is distributed as Lap(1/ϵ1) and is added to∑
i∈[d] f t(xi) at every time step t where out is updated. By the Laplace tail bound (Fact

2), νℓ is bounded for all ℓ ∈ [SK ] by ϵ−1
1 ln(SK/β) ≤ α/8 with probability at least 1 − β.

Altogether, all of these bounds hold simultaneously with probability at least 1 − 2β. We
condition on all these bounds being true.

Assume the algorithm has not terminated yet at time t and let out be the value of variable
out at the beginning of time t. Let pℓ be the last time step at which the value of out was
updated. It holds that |out −

∑
i∈[d] fpℓ

i (x)| = |νℓ| ≤ α/8. If the condition in line 14 is true
at time t, then∣∣∣∣∣∣
∑
i∈[d]

fpℓ

i (x) −
∑
i∈[d]

f t(xi)

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
∑
i∈[d]

f t(xi) − out

∣∣∣∣∣∣−
∣∣∣∣∣∣out −

∑
i∈[d]

fpℓ

i (x)

∣∣∣∣∣∣ ≥ 5α/4−α/8 = 9α/8.

Thus, between two time steps where the value of out is updated, there is a change of at
least 9α/8 in the sum value, i.e., the value of f t(xi) has changed at least once for ≥ 9α/8
different items i. Since K =

∑d
i=1
∑T

t=2 1(f t(xi) ̸= f t−1(xi)), to guarantee (under the noise
conditions), that the algorithm does not terminate before we have seen the entire stream, it
suffices to choose SK where SK > K/(9α/8).

For δ = 0, we have α = (8/ϵ1) ln(2T/β) = (16SK/ϵ) ln(2T/β), thus we have to choose
SK > Kϵ/(18SK ln(2T/β)). Choosing SK = ⌊

√
Kϵ/(18 ln(2T/β))⌋ + 1 fulfills this condition.

Similarly, for δ > 0, choosing SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1 fulfills this condition.

Now consider any time step t and let out be the output at time t, i.e., the value
after processing time step t. If the condition in line 14 is false, we showed above that
|out−

∑
i∈[d] f t(xi)| < 3α. If the condition is true at time t, we have out =

∑
i∈[d] f t(xi) +νℓ

for some ℓ ∈ [SK ], and, thus, |out −
∑

i∈[d] f t(xi)| ≤ α/8 < α.
For δ = 0, we have α = (8/ϵ1) ln(2T/β) = O(

√
ϵ−1K ln(T/β) ln(T/β) + ϵ−1 ln(T/β)).

Plugging in SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1 yields the final bound for δ > 0. ◀

To finish the proof of Theorem 11, note that if ϵ−1 ln(T/β) >
√

ϵ−1K ln(T/β), then√
ϵ−1K ln(T/β) > K, which can be seen by multiplying both sides of the inequality with√
K/
√

ϵ−1 ln(T/β). Thus the upper bound min(d, K,
√

ϵ−1K ln(T/β)) holds for δ = 0.
Also, if ϵ−1

√
ln(1/δ) ln(T/β) >

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3, then
ϵ−1
√

ln(1/δ) ln(T/β) > K, which can be seen by first cubing the inequality and
then dividing by ϵ−2 ln(1/δ) ln2(T/β). Thus, for δ > 0, the upper bound of
min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3) holds. ◀

3.2 Generalizations
We now argue about Theorem 6. Let Q be a real-valued function on input streams from
{−1, 0, 1} and let Qt = Q(x1, . . . , xt). Further, let Q be such that 1.) for any x and y which are
neighboring, we have |Qt(x)−Qt(y)| ≤ 1 for all time steps t, and 2.)

∑T
t=1 |Qt(x)−Qt−1(x)| ≤
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K. The first bound from Theorem 6 is achieved by an algorithm that never updates the
output, and the third bounds for ϵ and (ϵ, δ)-differential privacy are obtained by the Laplace
and Gaussian mechanisms, respectively. The second bound for both ϵ and (ϵ, δ)-differential
privacy is obtained by Algorithm 1 by setting Q = Qt(x) at every time step t. The proofs
follow by exchanging

∑
i∈[d] f t(xi) by Qt(x) in the proofs of Lemma 12 and 13.

4 A Connection between the General Model under Event-Level
Privacy and the “Likes”-Model under Item-Level Privacy

Our bounds from Theorems 2, 3, and 4 as well as the bounds from [16] imply that under
item-level privacy, the “likes”-model and the general model are roughly equally hard: all
upper bounds hold for the general model and all lower bounds hold for the “likes”-model,
and the bounds are tight up to a log T factor. However, under event-level privacy, the
“likes”-model is significantly easier than the general model: It can be solved via continual
counting on the difference sequence of the true output, which gives error polylogarithmic in
log T . This is possible because for event-level privacy in the “likes”-model, the difference
sequence of the output (i.e., the difference between the true output value of the current
and the preceding time step) has ℓ∞-sensitivity 1 for event-level privacy, but for item-level
privacy, the sensitivity can be as large as T .

In the general model, there are no better upper bounds known for event-level differential
privacy than for item-level differential privacy, and the upper and lower bounds from [16] for
(ϵ, δ)-differential privacy for the event-level setting in the general model leave a polynomial (in
T ) gap, in the case where the maximum flippancy wx ∈ (T 1/2, T 2/3): In that case, ignoring
polynomial factors in ϵ−1, log(1/δ), and log T , the lower bound of [16] is Ω(T 1/4), while their
algorithm gives an additive error of O(T 1/3). Specifically, finding the best achievable error
for event-level privacy in the general model is explicitly posed as an open question in [16].

We resolve this question for a large class of algorithms, called γ-output-determined
algorithms. All known algorithms for this problem in any model are 0-output-determined.
Specifically, we show that for γ-output-determined algorithms our lower bounds and the lower
bounds from [16] for item-level privacy in the “likes”-model basically carry over to event-level
privacy in the general model. It follows that our algorithm and the algorithm from [16]
for event-level privacy in the general model are tight up to a factor that is linear in log T

within the class of output-determined algorithms. Note that our reduction works both for the
ϵ-differential privacy as well as for (ϵ, δ)-differential privacy and we give the corresponding
lower bounds in Theorems 16 and 19. In the following, we denote by CountDistinct(x)
the stream of true answers to the CountDistinct problem on stream x.

▶ Definition 14. Let γ ≥ 0. An algorithm A for the CountDistinct problem is said
to be γ-output-determined, if for all inputs x and y such that CountDistinct(x) =
CountDistinct(y) and any S ∈ range(A) we have:

Pr(A(x) ∈ S) ≤ Pr(A(y) ∈ S) + γ

▶ Theorem 15. Let ϵ > 0, δ ≥ 0 and γ ≥ 0. Let A1 be an event-level, (ϵ, δ)-differentially
private, γ-output-determined algorithm for CountDistinct that works in the general model
and has error at most α for streams of length T +1 with probability 1−β. Then there exists an
item-level, (2ϵ, (1 + eϵ)δ + eϵγ)-differentially private algorithm A2 for CountDistinct that
works in the “likes”-model, and has error at most α for streams of length T with probability
1 − β.
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Proof. We describe algorithm A2, that is item-level (2ϵ, (1 + eϵ)δ + eϵγ)-dp in the “likes”-
model, derived from a γ-output-determined algorithm A1 which is event-level, (ϵ, δ)-dp in the
general model: Let x be an input for CountDistinct in the “likes”-model of length T , i.e., x

is such that
∑

t′≤t xt′

i can only take the values 0 or 1, for any i ∈ [d] and t ∈ [T ]. Let x0 = 0dx,
i.e., we attach a d-dimensional all-zero vector before x, and define (A2(x))t = (A1(x0))t+1

for all t ∈ [T ] (note that A1 can take inputs from the “likes”-model). We now show that
A2 is item-level (2ϵ, (1 + eϵ)δ + eϵγ)-differentially private. Let x and y be two item-level
neighbouring inputs in the “likes”-model. That is, there exists an item i such that the
streams xi and yi may be completely different, while xj = yj for all j ̸= i. Additionally, since
we are in the “likes”-model, for any time step t,

∑
t′≤t xt′

i ∈ {0, 1} and
∑

t′≤t yt′

i ∈ {0, 1}.
Next, we define input streams z and w in the general model where CountDistinct(z) =

CountDistinct(w), z is event-level neighbouring to x0, and w is event-level neighbouring
to y0. Since A1 is event-level (ϵ, δ)-dp and works for the general model, we then have for any
S ∈ range(A2)

Pr[A2(x) ∈ S] = Pr[(A1(x0))T +1
t=2 ∈ S] ≤ eϵ Pr[(A1(z))T +1

t=2 ∈ S] + δ

≤ eϵ Pr[(A1(w))T +1
t=2 ∈ S] + δ + γ

≤ e2ϵ Pr[(A1(y0))T +1
t=2 ∈ S] + (1 + eϵ)δ + eϵγ

= e2ϵ Pr[A2(y) ∈ S] + (1 + eϵ)δ + eϵγ,

where the second inequality holds as A1 is γ-output-determined.
To define such z and w, let −ei be the vector such that −ei(j) = 0 for all j ̸= i

and −ei(i) = −1. Then z = −eix and w = −eiy. Note that z and w are valid input
streams for the general model, while they are not valid for the “likes”-model. Clearly,
z is event-level neighbouring to x0, and w is event level neighbouring to y. Recall that
CountDistinct(z)t =

∑d
j=1 1(

∑
t′≤t zt

j > 0). Since
∑

t′≤t xt
i ∈ {0, 1} for all t ∈ [T ] we

have
∑

t′≤t zt
i ≤ 0 for all t ∈ [T + 1]. By the same argument, we have

∑
t′≤t wt

i ≤ 0 for all
t ∈ [T + 1]. Since z and w only differ in the ith coordinate, which never contributes to the
CountDistinct value as it is never 1, we have CountDistinct(z) = CountDistinct(w).

We are left with analyzing the error of the two algorithms. For this, note that by definition
of x0, we have CountDistinct(x0)t+1 = CountDistinct(x)t. Thus, running A2 on x

gives the same error as running A1 on x0. ◀

In particular, for any output-determined algorithm, Theorem 15 implies that all lower bounds
on the error for the CountDistinct problem under item-level differential privacy which
hold for the“likes”-model (and thus, all lower bounds for CountDistinct under item-level
differential privacy shown in this paper in Theorem 19 and in [16]), carry over to event-level
differential privacy in the general model. This means that if there is an algorithm achieving
a better error than the bounds stated in Theorem 19 and in [16] for event-level differential
privacy in the general model, it cannot be γ-output-determined for γ = O(δ), i.e., it must be
such that it does not only depend on the number of distinct elements at any given time step.

5 Item-Level Lower Bounds in the “Likes”-Model

In the following we show lower bounds for solving CountDistinct under item-level differ-
ential privacy, and in the “likes”-model. The lower bounds also apply to the general model.
In Section 3, we showed a complementing upper bound which holds in the general model,
even if K is unknown to the algorithm.
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▶ Theorem 16. Let d and T > 4 be non-negative integers and let ϵ > 0.
1. Let L ≥ 8 be a non-negative integer such that L ≤ dT . There exists an input stream x of

d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-model with multiple
updates per time step, with length T and flippancy K with min(3L/8, T/4 − 1) ≤ K ≤
min(L, dT/4) such that any ϵ-differentially private algorithm to the CountDistinct
problem with item-level privacy with error at most α at all time steps with probability at
least 2/3 must satisfy

α = Ω(min(d, L, ϵ−1T,
√

ϵ−1L max(ln(T/L), 1)))

= Ω(min(d, K, ϵ−1T,
√

ϵ−1K max(ln(T/K), 1))).

2. Let L ≥ 8 be a non-negative integer such that L ≤ T . There exists an input stream x of
d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-model with multiple
updates per time step, with length T , flippancy K with L/16 ≤ K ≤ min(L, T/4), and
with ||xt||1 = 1 for all t (i.e., each update modifies at most one item) such that any
ϵ-differentially private algorithm to the CountDistinct problem with item-level privacy
with error at most α at all time steps with probability at least 2/3 must satisfy

α = Ω(min(d, K,
√

ϵ−1K ln(T/K)).

Proof. Let d, T , and L be as given in the theorem statement. Assume there is an ϵ-
differentially private algorithm A for the CountDistinct problem with error at most α

at all time steps with probability at least 2/3. If α > d/2, then the error is Ω(d). Also, if
α > L/8, then α = Ω(L). Thus, in the following, we consider the case α ≤ d/2 and α ≤ L/8.
Defining m = ⌊2α⌋, it follows that m ≤ min(d, L/8).

Singleton updates. We first find T ′ ≤ T and L′ ≤ L such that 4m divides T ′ and m divides
L′. If this is not the case for T and L, then pick parameters T ′ and L′ such that (i) 4m

divides T ′ and m divides L′, (ii) ∆ = T − T ′ ≤ 4m < L/2 ≤ T/2 (i.e. T ′ = Θ(T )) and (iii)
0 ≤ L − ∆ − L′ ≤ m. This implies that L′ ≥ 7L/8 − ∆ ≥ 3L/8. Thus, as L ≤ T , then
0 ≤ L − ∆ − L′ = L − (T − T ′) − L′ = T ′ − L′ − (T − L) ≤ T ′ − L′, i.e., L′ ≤ T ′.

We use T ′ and L′ in the proof below to construct a sequence of length T ′ fulfilling the
statements of the theorem. To complete the proof of the theorem, we append to the sequence
T −T ′ many all-zero vectors to guarantee that the stream has length T . Note that appending
to the sequence “blank” operation will not invalidate the statements of the theorem.

We now construct a set of input sequences of length T ′ with flippancy K := min(L′, T ′/4)
and use them to prove a lower bound for α of Ω(min(K ln(T ′/K),

√
ϵ−1K ln(T ′/K))).

Combined with the above case distinctions giving lower bounds on α of Ω(d), and
Ω(L), the fact that K = Θ(L) and that T ′ = Θ(T ), this implies that α =
Ω(min(d, K,

√
ϵ−1K(ln(T/K) + 1)).

Let k := min(L′, T ′/4)/m be a positive integer. Partition the timeline into T ′/m blocks
of length m, namely B1 = [1, m], B2 = [m + 1, 2m], . . . . Now, for any subset of blocks
J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m, define an input sequence x(J) such
that for any item i ∈ [m] we insert element i in the ith time step of every odd block of J

(i.e. the first, third, ... block in J), and delete it again at the ith position of every even
block of J (i.e. the second, fourth, ... block in J). More formally, for any item i ∈ [m],
set x(J)t

i = 1 for all t = Bj2p−1 [i] = (j2p−1 − 1)m + i, p = 1 . . . , ⌈k/2⌉, and set x(J)t
i = −1

for all t = Bj2p = (j2p − 1)m + i, p = 1 . . . , ⌈k/2⌉. In all other time steps t, no updates
are performed, i.e., x(J)t is an all-zero vector. Thus, for every i ∈ [m], we have f t(xi) = 1
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for all time steps t ∈ [j2p−1m, (j2p − 1)m], for all p ≤ ⌈k/2⌉, and f t(xi) = 0 for all time
steps t ∈ [j2pm, (j2p+1 − 1)m]. For any item m < i ≤ d, we have f t(xi) = 0 for all t ∈ [T ′].
Furthermore, items i with i > m (if they exist) are never inserted or deleted. In total,
there are k = min(L′, T ′/4)/m updates per item i ∈ [m], thus exactly K updates in total,
and, hence, the total flippancy is K = min(L′, T ′/4). If K = L′, then L ≥ K ≥ 3L/8. If
K = T ′/4, then L′ ≤ T ′ implies that L ≥ L′ ≥ K = T ′/4 ≥ L′/4 ≥ 3L/32 ≥ L/16. Thus in
either case K = Θ(L′). Furthermore K ≤ T ′/4 ≤ T/4.

Now let EJ , for J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m, be the set
of output sequences where A outputs (i) a value of m/2 or larger for all time steps t ∈
[j2p−1m, (j2p − 1)m] with 1 ≤ p ≤ ⌈k/2⌉, and (ii) smaller than m/2 for all time steps t such
that (a) t < j1m or (b) t ∈ [j2pm, (j2p+1 − 1)m] for some 0 ≤ p < ⌈k/2⌉ or (c) t ≥ jkm. Note
that for an input sequence x(J) every output sequence where A has additive error smaller
than α = m/2 must belong to EJ . As the algorithm is correct with probability at least 2/3,
Pr[A(x(J)) ∈ EJ ] ≥ 2/3.

Two input sequences are neighboring if they differ in the data of at most one item for
item-level differential privacy. As two input sequences x(I) and x(J) with I ̸= J differ in
the data of at most m items, it follows by group privacy that Pr[A(x(J)) ∈ EI ] ≥ e−mϵ2/3
for any J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m and I = (i1, . . . , ik) with
1 ≤ i1 < i2 < · · · < ik ≤ T ′/m. Also note that the set of output sequences EJ for distinct
J = (j1, . . . , jk) are disjoint, since for each multiple of m (i.e., the end of a block), it is clearly
defined whether the output is at least m/2 or smaller than m/2, and as such the values
j1, . . . , jk can be uniquely recovered. Thus, there are

(
T ′/m

k

)
disjoint events EJ and the sum

over all J of the probabilities that the algorithm with input x(I) outputs an event EJ is at
most 1. More formally, we have:

1 ≥
(

T ′/m

k

)
e−mϵ2/3 ≥ (T ′/m)k

(k)k
e−mϵ2/3. = T ′(K/m)

KK/m
e−mϵ2/3

where the last equality is since k = K/m. This gives

m2 + ϵ−1m ln(3/2) ≥ ϵ−1K ln(T ′/K)

which implies

m = Ω(min(K ln(T ′/K),
√

ϵ−1K ln(T ′/K)).

Note that since T ′ ≥ 4K, ln(T ′/K) ≥ ln(4) > 1. This completes the proof.

Multiple updates. We first find T ′ ≤ T and L′ ≤ L such that 4 divides T ′ and m divides L′.
If this is not the case for T and L, then pick parameters T ′ and L′ such that (i) 4 divides T ′

and m divides L′, (ii) ∆ = T − T ′ ≤ 4 (i.e. T ′ = Θ(T )) and (iii) ∆m ≤ L − L′ ≤ (∆ + 1)m.
This implies that L′ ≥ L − (∆ + 1)m ≥ L − 5m ≥ 3L/8.

We use T ′ and L′ in the proof below to construct a sequence of length T ′ fulfilling the
statements of the theorem. To complete the proof of the theorem, we append to the sequence
T −T ′ many all-zero vectors to guarantee that the stream has length T . Note that appending
to the sequence “blank” operation will not invalidate the statements of the theorem.

The idea is similar to above, only we do not define blocks, but directly choose k :=
min(L′/m, T ′/4) time steps in which all items in [m] are updated. Thus the flippancy K

will equal mk. More precisely, we construct the following set of input sequences. For any
I = (t1, . . . , tk) with 1 ≤ t1 < t2 < · · · < tk ≤ T ′, we define an input sequence x(I) as
follows: For any item i ∈ [m], set x(I)tj

i = 1 for all odd j, and x(I)tj

i = −1 for all even j.
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All other coordinates are set to 0. In total, there are k updates per item in [m], thus, exactly
K updates in total, i.e., the total flippancy equals K = min(L′, mT ′/4). This implies that
min(3L/8, T/4 − 1) ≤ K ≤ min(L, dT/4).

Now, let EI , for I = (t1, . . . , tk) with 1 ≤ t1 < t2 < · · · < tk ≤ T ′, be the set of
output sequences with a value of m/2 or larger at all time steps t ∈ [t2p−1, t2p) for some
1 ≤ p ≤ ⌈k/2⌉, and a value smaller than m/2 at all time steps t where (a) t ≤ t1 or (b)
t ∈ [t2p, t2p+1) for some 0 ≤ p < ⌈k/2⌉. Note that for input sequence x(I) every output
sequence where A has an additive error smaller than m/2 must be in EI . As the algorithm is
correct with probability at least 2/3, Pr[A(x(I)) ∈ EI ] ≥ 2/3. As two input sequences x(I)
and x(J) with I ̸= J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′ differ in the data of at
most m items, it follows by group privacy that Pr[A(x(I)) ∈ EJ ] ≥ e−mϵ2/3 for any such J .

Let J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′. Note that the events EI and EJ

for any I ̸= J are disjoint, since in the event EI it is clearly defined for every time step
whether the output is at least m/2 or smaller than m/2, and from that the set I can be
uniquely recovered. Thus, there are

(
T ′

k

)
disjoint events EJ and the probability that with

input x(I) the algorithm outputs any one of them is at most 1. Thus we have

1 ≥
(

T ′

k

)
e−mϵ2/3 ≥ T ′k

kk
e−mϵ2/3 = T ′K/m

(K/m)K/m
e−mϵ2/3 (1)

where the last equality is since k = K/m.
Next we consider two cases, the first one resulting in two different lower bounds on m

and the second one giving a third lower bound on m. The combination of these three lower
bounds then gives the claimed bound above of

α = m/2 = Ω(min(ϵ−1T ′,
√

ϵ−1K max(ln(T ′/K), 1), K max(ln(T ′/K), 1))))

Case 1. L′ < mT ′/4. In this case K = L′ and we have

m2ϵ + m ln(3/2) ≥ K ln(T ′m/K) ≥ K max(ln(T ′/K), 1)

where the last inequality holds since K ≤ mT ′/4, i.e., ln(T ′m/K) ≥ ln(4) > 1. Hence

m = Ω(min(
√

ϵ−1K max(ln(T ′/K), 1), K max(ln(T ′/K), 1))).

As K = L′ = Θ(L) it follows that

m = Ω(min(
√

ϵ−1L max(ln(T ′/L), 1), L max(ln(T ′/L), 1))).

Case 2. L′ ≥ mT ′/4. This implies that K = mT ′/4 and, thus, that there are updates in at
least T ′/4 many time steps. In this case Inequality 1 can be reformulated as follows:

1 ≥ T ′K/m

K/m
K/m

e−mϵ2/3 = 4T ′/4e−mϵ2/3 = eln(4)T ′/4−mϵ2/3,

which implies that Inequality 1 is satisfied for m = Ω(ϵ−1T ′).
These two cases show α = Ω(min(ϵ−1T ′,

√
ϵ−1L max(ln(T ′/L), 1), L max(ln(T ′/L), 1)))

for the above input sequence. Combined with the above lower bounds on α of Ω(min(d, L)) and
the fact that T ′ = Θ(T ), it follows that α = Ω(min(d, L, ϵ−1T,

√
ϵ−1L max(ln(T/L), 1))). ◀
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Algorithm 2 CountDistinct, unknown K.

1: Input: Data Set D = x1, x2, . . . , initial counts c1, . . . , cd (default 0), parameters ϵ, δ

and β, T

2: t = 1
3: K1 = 2
4: for j = 1, . . . , do
5: ϵj = 6ϵ/(π2j2)
6: δj = 6δ/(π2j2)
7: βj = 6β/(π2j2)
8: if δ = 0 then
9: SKj

=
√

Kjϵj/(18 ln(T/βj)) + 1
10: end if
11: if δ > 0 then

12: SKj
=
(

Kjϵj

36
√

ln(1/δj) ln(T/βj)

)2/3
+ 1

13: end if
14: Run Algorithm 1 on xt, xt+1, . . . , c1, . . . , cd, ϵj , δj , βj , T , SKj until it aborts
15: Let t′ be the last time step processed by Algorithm 1
16: t = t′ + 1
17: j = j + 1
18: Kj = 2j

19: end for

6 Unknown Total Flippancy

The algorithms from Section 3 can be easily extended to the case where the total flippancy
K is not known beforehand, at the cost of polylog(K) factors in the error bound, as shown
by Algorithm 2 and the lemmata below. The fact that K is not known causes no serious
problem, as the algorithm repeatedly “guesses” K and then runs the algorithm from earlier
with the current guess.

▶ Lemma 17. For any 0 < ϵ < 1 and 0 ≤ δ < 1, Algorithm 2 is (ϵ, δ)-differentially private.

Proof. By Lemma 12, the jth instance of Algorithm 1 is (ϵj , δj)-differentially private. Since∑∞
j=1 ϵj = ϵ and

∑∞
j=1 δj = δ, by Fact 5, Algorithm 2 is (ϵ, δ)-differentially private. ◀

▶ Lemma 18. For δ = 0, the error of Algorithm 2 is at most

O(ln K
√

ϵ−1K ln(T ln K/β) + ϵ−1 ln2 K ln(T ln K/β)).

For δ > 0, the error of Algorithm 2 is at most

O((ϵ−1K ln2 K ln(ln K/δ) ln2(T ln K/β))1/3 + ϵ−1 ln2 K
√

ln(ln K/δ) ln(T ln K/β)).

Proof. Let jl be the value of variable j after the last element in the stream is processed. For
any j < jl, note that by Lemma 13, with probability at least 1 − βj , by the choice of SKj

,
the algorithm does not abort before having seen the entire stream if the total flippancy is at
most Kj . Thus, when the algorithm aborts for some j < jl, we know that the flippancy is at
least Kj , and the bound from Lemma 13 holds for the jth instance of Algorithm 1 with SKj

.
Since the algorithm aborts for all j < jl, we can conclude that the total flippancy of

the stream processed by the jth run of Algorithm 1 is at least Kj . Since
∑

j βj = β, with
probability at least 1 − β, (1) the total flippancy K is at least

∑
j<jl

Kj = 2jl − 1, and
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(2) the bound from Lemma 13 holds for all instances of Algorithm 1 (with their respective
parameters). It follows (a) that K ≥ Kjl

− 1 ≥ Kj for all j < jl and (b) jl = O(ln K). The
maximum error over the stream is the maximum error of any instance of Algorithm 1. Since
Kj = O(K), ϵjl

≤ ϵj and δjl
≤ δj for all j ≤ jl, the final bound is now obtained by plugging

K, ϵjl
= Θ(ϵ/j2) for ϵ, δjl

= Θ(δ/j2) for δ, and βjl
= Θ(β/j2) for β into the bound from

Lemma 13, and upper bounding j2 by log2 K. ◀

One can also obtain the minimum of the bound from Lemma 18 and min(K, T, d) at the
cost of an additive ϵ ln2 K ln(ln K/β) factor with a slightly more involved algorithm, which
involves choosing to either not update the output or abort if there is a trivial algorithm
which performs better for the current estimate of K. If we knew the value of K beforehand,
we could choose the best algorithm upfront. Not knowing the value of K makes it slightly
more complicated. However, the algorithm and analysis are fairly straightforward, and we
defer it to the full version.

7 Lower Bounds for Approximate Differential Privacy

In this section, we adapt the lower bounds from [16] for item-level differential privacy to our
parameter scheme.

▶ Theorem 19. Let ϵ, δ ∈ (0, 1].
1. Let K, T be sufficiently large parameters. There exists a dimension d and an input stream

x of d-dimensional vectors from {−1, 0, 1}d of length T and with flippancy at most K

which is valid in the “likes”-model, such that any item-level, (ϵ, δ)-differentially private
algorithm to the CountDistinct problem with error at most α at all time steps with
probability at least 0.99 must satisfy α = Ω

(
min

( √
T

ϵ log T , (Kϵ)1/3

ϵ log(Kϵ)

))
.

2. Let K and T be sufficiently large parameters satisfying K ≤ T . There exists a dimension
d and an input stream x of d-dimensional vectors from {−1, 0, 1}d of length T and with
flippancy at most K which is valid in the “likes”-model and satisfies ||xt||1 = 1 for all t,
such that any item-level, (ϵ, δ)-differentially private algorithm to the CountDistinct
problem with error at most α at all time steps with probability at least 0.99 must satisfy
α = Ω

(
K1/3

ϵ log K

)
.

The reduction in [16] is based on a lower bound for the 1-way marginals problem. In that
problem, the data set y is an table consisting of n rows and m columns, where every entry is
in {0, 1}. Two data sets y and y′ are neighbouring if they differ in at most one row. The goal
is to estimate the average column sums, i.e., the vector (

∑n
i=1 y[i, j])j∈[m]. The following

lower bound holds for estimating 1-way marginals under (ϵ, δ)-differential privacy:

▶ Lemma 20 (Bun, Ullman, and Vadhan [4]). Let ϵ ∈ (0, 1], γ ∈ (0, 1), and m, n ∈ N, and
δ = o(1/n). Any algorithm which is (ϵ, δ)-differential private and has error at most γ with
probability at least 0.99 satisfies n = Ω

( √
m

γϵ log m

)
.

Proof Sketch of Theorem 19. We start by arguing about Item 2. For this case, our example
stream is exactly the same as in [16], given in Algorithm 5 in [16] (for a formulation using
our slightly different notation see Algorithm 3). They give a reduction from the 1-way
marginals problem: For any instance I of the 1-way marginals problem with n rows and
m columns, there is an instance C(I) of CountDistinct with T = 2mn, such that if I
and I ′ are neighbouring, then C(I) and C(I ′) are item-neighbouring. Further, if we can
solve C(I) within error α, we can solve I within error α/n. It follows by Lemma 20 that
α = Ω

(
min

( √
m

ϵ log m , n
))

. In the instance they constructed, d = n, i.e. each row in the 1-way
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marginals problem gives an item in the CountDistinct problem. Further, the total flippancy
K can be as large as 2mn for worst case inputs. Thus, in order to apply the reduction, we
need 2mn ≤ K ≤ T . Given parameters K ≤ T , we choose m = K/(2n). The lower bound

Ω
(

min
( √

m
ϵ log m , n

))
translates to Ω

(
min

( √
K/(2n)

ϵ log(K/(2n)) , n

))
. For n = K1/3

2(ϵ log K)2/3 , we have

√
K/(2n)

ϵ log(K/(2n)) ≥ K1/3ϵ1/3 log1/3 K

ϵ log(K1/2)
= Ω

(
K1/3 log1/3 K

ϵ2/3 log K

)
= Ω(n).

Thus, we get α = Ω
(

K1/3 log1/3 K
ϵ2/3 log K

)
.

For Item 1., where we allow general updates, we have to slightly modify the example
in [16]: namely, in their Algorithm 5, we collapse every one of their vectors z(j), j = 1, . . . , m,
into vectors of length 2, one time step for all insertions corresponding to column j, and one
time step for all deletions corresponding to column j. See Algorithm 4. We then again get a
reduction with the same properties as before, except that T = 2n and K can be as large as
2mn. Now, the analysis from [16] can be repeated with our T taking the role of wx in [16],
and our K taking the role of T in [16]. ◀

Algorithm 3 Algorithm 5 from [16]: Reduction from 1-way marginals to CountDistinct.

1: Input: Data Set y[1], . . . , y[n] ∈ {0, 1}n×m and blackbox access to a mechanism M for
CountDistinct

2: Output: Estimates of marginals b = (b[1], . . . , b[m])
3: for j = 1, . . . , m do
4: for i = 1, . . . , n do
5: Set z(j)[i] = ei

6: Set z(j)[i + n] = −ei

7: end for
8: end for
9: Run M on x → z(1) ◦ z(2) ◦ · · · ◦ z(m) and record answer vector r

10: for j ∈ [m] do do
11: b[j] = r[(2j − 1)n]/n

12: end for
13: output b

Algorithm 4 Reduction from 1-way marginals to CountDistinct for arbitrarily many updates
per round.

1: Input: Data Set y[1], . . . , y[n] ∈ {0, 1}n×m and blackbox access to a mechanism M for
CountDistinct

2: Output: Estimates of marginals b = (b[1], . . . , b[m])
3: for j = 1, . . . , m do
4: Set z(j)[1] = yT [j]
5: Set z(j)[2] = −yT [j]
6: end for
7: Run M on x → z(1) ◦ z(2) ◦ · · · ◦ z(m) and record answer vector r

8: for j ∈ [m] do do
9: b[j] = r[(2j − 1)]/n

10: end for
11: output b
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