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Abstract
Using a two-dimensional version of the delta method,
we establish an asymptotic formula for the number of
rational points of bounded height on non-singular com-
plete intersections of cubic and quadric hypersurfaces
of dimension at least 23 over 𝔽𝑞(𝑡), provided char(𝔽𝑞) >
3. Under the same hypotheses, we also verify weak
approximation.

MSC 2020
11D45 (primary), 11P55, 11T55, 14G05 (secondary)

Contents
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. FAREY DISSECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4. ACTIVATION OF THE CIRCLE METHOD . . . . . . . . . . . . . . . . . . . . . . . . 13
5. EXPONENTIAL INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6. EXPONENTIAL SUMS: POINTWISE ESTIMATES . . . . . . . . . . . . . . . . . . . . 20
7. EXPONENTIAL SUMS: AVERAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8. RETURN TO THE CIRCLE METHOD. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

© 2024 The Author(s). Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

J. London Math. Soc. (2) 2024;110:e12991. wileyonlinelibrary.com/journal/jlms 1 of 54
https://doi.org/10.1112/jlms.12991

https://orcid.org/0000-0002-8799-206X
mailto:jakob.glas@ist.ac.at
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jlms
https://doi.org/10.1112/jlms.12991
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12991&domain=pdf&date_stamp=2024-09-24


2 of 54 GLAS

1 INTRODUCTION

Understanding the arithmetic of varieties over global fields constitutes one of themost fundamen-
tal and difficult ambitions of number theory. If 𝑋 ⊂ ℙ𝑛−1 is a variety over a global field 𝐾, then
one key aspect entails understanding the counting function

N𝑋(𝑃) ∶= #{𝒙 ∈ 𝑋(𝐾)∶ 𝐻(𝒙) < 𝑃}

for a suitable height function 𝐻∶ 𝑋(𝐾) → ℝ⩾0. The Hardy–Littlewood circle method is a versa-
tile tool to study N𝑋(𝑃) and has been successful in producing an asymptotic formula in many
situations. The circle method works particularly well when 𝑛 is large compared to the degree of
𝑋, and so, the main challenge lies in reducing the number of admissible variables. In this work,
we shall focus on the case when 𝑋 = 𝑉(𝐹1, 𝐹2) ⊂ ℙ𝑛−1 is a non-singular complete intersection of
a cubic and a quadric hypersurface over 𝐾 = 𝔽𝑞(𝑡). To state our main result, we take a smooth
weight function 𝑤∶ 𝔽𝑞((𝑡

−1))𝑛 → ℝ⩾0 that is supported around a suitable point 𝒙0 ∈ 𝔽𝑞((𝑡
−1))𝑛

with 𝐹1(𝒙0) = 𝐹2(𝒙0) = 0 and consider the counting function

N(𝑃) ∶=
∑

𝒙∈𝔽𝑞[𝑡]
𝑛

𝐹1(𝒙)=𝐹2(𝒙)=0

𝑤
(
𝒙

𝑡𝑃

)
as 𝑃 → ∞.

In addition, we set |𝒙| = max 𝑞deg 𝑥𝑖 for 𝒙 ∈ 𝔽𝑞[𝑡]
𝑛 and for 𝑃 ∈ ℝ, we write 𝑃 = 𝑞𝑃.

Theorem 1.1. Let 𝑋 ⊂ ℙ𝑛−1 be a non-singular complete intersection of a cubic and a quadric
hypersurface over 𝔽𝑞(𝑡). If 𝑛 ⩾ 26 and char(𝔽𝑞) > 3, then there exists 𝛿 > 0 such that

N(𝑃) = 𝑐𝑃𝑛−5 + 𝑂
(
𝑃𝑛−5−𝛿

)
,

for some 𝑐 > 0.

To put our result into context, Browning–Dietmann–Heath-Brown [3] proved the analogue of
Theorem 1.1 over𝐾 = ℚ for 𝑛 ⩾ 29. Another result in this direction when both 𝐹1 and 𝐹2 are diag-
onal is due to Wooley [34, 35]. Again, working over ℚ, he restricted the range of possible integer
solutions to those having only small prime factors. Appealing to the theory of smooth Weyl sums
this allowed him to provide an asymptotic formula for the number of such restricted solutions for
𝑛 ⩾ 13 whenever 𝐹1 and 𝐹2 have at least seven and five non-zero coefficients, respectively.
Let us now review some results in the general situation of non-singular complete intersec-

tions 𝑋 = 𝑉(𝐹1, … , 𝐹𝑅) ⊂ ℙ𝑛−1 over a global field 𝐾, where 𝑑𝑖 = deg𝐹𝑖 for 𝑖 = 1, … , 𝑅. Provided
𝑛 > 𝑑1 +⋯ + 𝑑𝑅, the variety 𝑋 is Fano — a class of varieties for which Manin and his collabo-
rators [10] made a precise conjecture about the asymptotic behaviour of the counting function
N𝑋(𝑃). Originally, the conjecture was only stated over number fields, but it was later generalised
to global function fields by Peyre [26]. In our case, the order of growth established in Theorem 1.1
agrees with this prediction. The constant 𝑐 appearing in Theorem 1.1 plays an important role in
the qualitative understanding of the set of rational points 𝑋(𝐾) and has obtained a conjectural
interpretation by Peyre [25]. Recall that 𝑋 is said to satisfy the Hasse principle if the existence
of 𝐾𝜈-rational points for every place 𝜈 of 𝐾 is sufficient to guarantee that 𝑋(𝐾) is non-empty. In
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addition, we say that𝑋 satisfies weak approximation if the image under the diagonal embedding

𝑋(𝐾) ↪
∏
𝜈

𝑋(𝐾𝜈)

is dense, where we endow the right-hand side with the product topology coming from the analytic
topology on 𝑋(𝐾𝜈). Whenever the circle method yields the Hasse principle, we can often adapt
the argument to give weak approximation.
The application of the circlemethod to the study of rational points goes back to pioneeringwork

of Birch [1]. For𝐾 = ℚ, he gave an asymptotic formula forN𝑋(𝑃) provided 𝑑 ∶= 𝑑1 = ⋯ = 𝑑𝑅 and
𝑛 − 𝜎∗ > (𝑑 − 1)2𝑑−1𝑅(𝑅 + 1), where 𝜎∗ is the dimension of the Birch singular locus, and thereby
verified that 𝑋 satisfies the Hasse principle. Schmidt [30] showed how to handle to complete
intersections defined by forms of differing degrees. This was subsequently improved by Brown-
ing and Heath-Brown [4] and by Myerson [27] for generic complete intersections. Myerson was
able to drop the genericity assumption for quadratic 𝐹𝑖 [28] and cubic 𝐹𝑖 [29]. However, his work
only improves Birch’s result for large values of 𝑅. In a different direction, Northey and Vishe [23]
developed a procedure that opens up the possibility for a Kloostermann refinement for systems
of two forms with 𝑑1 + 𝑑2 > 5 and used it to give an asymptotic for N𝑋(𝑃) and verify the Hasse
principle for non-singular intersections of two cubic forms if 𝑛 ⩾ 39.
In the function field setting, the Hasse principle is a straightforward consequence of Lang–Tsen

theory if 𝑛 > 𝑑2
1
+⋯ + 𝑑2

𝑅
. Indeed, with this condition, [14, Theorem 3.6] shows the existence

of a rational point of 𝑋, so that the Hasse principle is vacuously true. However, establishing
weak approximation or an asymptotic formula for the number of rational points of bounded
height remains a substantial challenge. Building on work of Kubota [20], Lee [21] showed
that Birch’s work can be translated to the function field setting and further demonstrated that
weak approximation holds under the same constraints on the number of variables provided
char(𝐾) > 𝑑. Specialising again to the case when 𝑋 is the non-singular intersection of a cubic
and a quadric hypersurface, Tsen’s theorem shows that 𝑋 possesses a 𝐾-rational point as soon as
𝑛 > 13. Although there should be no problem in translating the work of Browning–Dietmann–
Heath-Brown [3] and of Wooley [34, 35], currently there are no results available regarding weak
approximation for complete intersections of cubic and quadric hypersurfaces. Our second main
result remedies this deficiency.

Theorem 1.2. Let 𝑋 ⊂ ℙ𝑛−1 be a non-singular complete intersection of a cubic and a quadric
hypersurface over 𝔽𝑞(𝑡). If 𝑛 ⩾ 26 and char(𝔽𝑞) > 3, then 𝑋 satisfies weak approximation.

The restriction on the characteristic in both Theorems 1.1 and 1.2 arises naturally in applications
of the circle method. Typically, it comes from applications of Weyl differencing, which renders
any estimates trivial when the characteristic is smaller than the degrees of the equations. In our
situation, we have to study both quadratic and cubic exponential sums that we can only bound
satisfactorily when char(𝐾) > 3.
Browning and Vishe [6] have found a way to use the circle method over 𝔽𝑞(𝑡) to obtain crude

geometric information about the space of rational curves of fixed degree inside a hypersurface
in sufficiently many variables compared to its degree. If one is willing to make all the estimates
uniform in 𝑞, then our work is likely to give access to the analogous properties when 𝑋 is the
intersection of a cubic and a quadric hypersurface.
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Using a geometric approach, Tian [32] has verified the Hasse principle for non-singular
cubic hypersurfaces 𝑋 ⊂ ℙ𝑛−1 when char(𝐾) > 5 and 𝑛 ⩾ 6 and weak approximation for non-
singular intersections of quadratic forms when char(𝐾) > 2 and 𝑛 ⩾ 6. It would be interesting
to see whether his methods carry over to say something useful about intersections of cubic and
quadric hypersurfaces.
When the degree of a form 𝐹 is small, the delta method developed by Duke, Friedlander and

Iwaniec [9] and further refined by Heath-Brown [17] is capable of dealing with significantly
fewer variables than the classical circle method. In particular, it has been successfully applied to
quadratic forms [17] and cubic forms [18]. Over 𝔽𝑞(𝑡), an identity analogous to the delta method
turns out to be much simpler thanks to the non-archimedean nature and was successfully incor-
porated by Browning and Vishe [5]. However, until recently it was unclear how to construct an
analogue of the delta method for systems of equations. Vishe [33] made substantial progress by
developing a two-dimensional analogue of the delta method over 𝐾 = 𝔽𝑞(𝑡) that enabled him
to produce an asymptotic formula for the number of rational points of bounded height on non-
singular intersections of two quadratic forms in 𝑛 ⩾ 9 variables when char(𝐾) > 2. His innovation
serves as the main input for our work and we shall now proceed to outline the main steps of
our proof.

Outline of proof

In [33], the main new input is the development of a two-dimensional version of a Farey dissection
over 𝔽𝑞(𝑡). While Vishe’s version only allows one to put squares around the approximating ratio-
nals, our application requires lopsided boxes in order to take into account the different degrees of
the forms 𝐹1 and 𝐹2. In Section 2, we shall modify his development to accommodate our needs.
We expect that the argument would carry over inductively to higher dimensions. In the case of
hypersurfaces, the delta method is particularly useful when the degree is at most 3. Unless one
appeals to a similar strategy as devised by Marmon and Vishe [22] to deal with quartic hypersur-
faces, it seems that when one considers intersections of two hypersurfaces, our situation is just at
the barrier. That is, when the sum of the degrees of the individual hypersurfaces exceeds 5, it does
not seem to give any improvements compared to the classical circle method.
Once we have achieved the Farey dissection, a standard application of the Poisson summation

formula leads us to study certain oscillatory integrals and exponential sums. We provide upper
bounds for the oscillatory integrals in Section 5 and for the exponential sums and averages
thereof in Sections 6 and 7. When the modulus is square-free, we estimate the exponential sums
by appealing to work of Katz [19], which ultimately relies on Deligne’s resolution of the Riemann
hypothesis over finite fields [8] and obtain cancellations when summing over the numerators.
This is usually referred to as a ‘Kloosterman refinement’. As in [33] and [5], it would have been
desirable to obtain a double Kloosterman refinement, in which we extract cancellations when
summing over both the numerators and denominators. In [33] and [5], the corresponding expo-
nential sums are multiplicative and their averages over the denominator can be studied via the
associated 𝐿-functions that satisfy a suitable version of the Riemann hypothesis. In our setting,
we consider exponential sums associated to linear combinations of the cubic and quadratic form.
That these are not homogeneous only allows for a ‘twisted’ form of multiplicativity and it is
not clear how to associate an 𝐿-function to study their averages. There remains the substantial
task of providing estimates for exponential sums when the modulus is not square-free. We are
unable to give upper bounds directly, but rather study averages of them over the dual variable in
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Section 7. The underlying arguments go back to work of Heath-Brown [15], but are significantly
more complicated in our situation.

Notation

We use the standard Vinogradov notation ≪,≫ and the big-𝑂 notation interchangeably. All
our implied constants are allowed to depend 𝑞. Any further dependence will be indicated by a
subscript, unless mentioned otherwise. Moreover, 𝜀 always denotes an arbitrarily small number
whose value might change from one occurrence to the next. Its presence in an inequality implies
that the constant may also depend on 𝜀.

2 FAREY DISSECTION

Vishe’s strategy is to find a suitable family of lines in the unit square so that when we consider
rational points on these lines, they cover the whole square and at the same time stay sufficiently
far away from each other to ensure an exact partition. Before reviewing his results in more detail,
we need some notation. Let 𝐾 = 𝔽𝑞(𝑡) and  = 𝔽𝑞[𝑡] be its ring of integers. We denote by 𝐾∞ ∶=

𝔽𝑞((𝑡
−1)) the completion of𝐾 with respect to the absolute value induced by 𝑡−1. It naturally comes

with a norm extending the absolute value |𝑓| = 𝑞deg𝑓 on. More explicitly, any non-zero 𝛼 ∈ 𝐾∞
can be written uniquely as 𝛼 =

∑
𝑖⩽𝑁 𝛼𝑖𝑡

𝑖 with 𝛼𝑁 ≠ 0 and 𝛼𝑖 ∈ 𝔽𝑞, in which case |𝛼| = 𝑞𝑁 . We
also define {𝛼} ∶=

∑
𝑖⩽−1 𝛼𝑖𝑡

𝑖 to be the fractional part of 𝛼 and [𝛼] ∶= 𝛼 − {𝛼} to be the integer part
of 𝛼.
Furthermore, 𝐾∞ is a locally compact Hausdorff group with respect to addition and so comes

with a Haar measure d𝛼 that we normalise in such a way that the unit interval 𝕋 ∶= {𝛼 ∈

𝐾∞∶ |𝛼| < 1} has measure 1. We extend the norm and the Haar measure to 𝐾𝑛
∞ via

|𝛼| ∶= max
𝑖=1,…,𝑛

|𝛼𝑖| and d𝛼 ∶= d𝛼1 … d𝛼𝑛

for 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ 𝐾𝑛
∞. If 𝑐 = (𝑐1, 𝑐2) ∈ 2, then we say that 𝑐 is primitive if (𝑐1, 𝑐2) = 1 and

either 𝑐1 is monic or 𝑐1 = 0 and 𝑐2 is monic. For 𝑑, 𝑘 ∈ with (𝑑, 𝑘) = 1 and 𝑐 ∈ 2 primitive, we
define the affine line

𝐿1(𝑑𝑐, 𝑘) ∶= {𝑥 ∈ 𝐾2
∞∶ 𝑑𝑐 ⋅ 𝑥 = 𝑘} (2.1)

and the generalised line

𝐿(𝑑𝑐) ∶= {𝑎∕𝑟 ∈ 𝕋2 ∩ 𝐾2 ∶ (𝑎, 𝑟) = 1, 𝑎∕𝑟 ∈ 𝐿1(𝑑𝑐, 𝑘) for some 𝑘 ∈  with (𝑘, 𝑑) = 1}. (2.2)

Note that since (𝑘, 𝑑) = 1, we must have 𝑑 ∣ 𝑟 if 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) with (𝑎, 𝑟) = 1. We refer to |𝑑𝑐| as
the height of 𝐿(𝑑𝑐). For 𝑥 ∈ 𝕋2 and 𝑅 ∈ ℤ, we let 𝐵(𝑥, 𝑅) ∶= {𝜃 ∈ 𝕋2 ∶ |𝜃 − 𝑥| < 𝑅} be the ball of
radius 𝑅 centred around 𝑥. Similarly, for 𝑅 = (𝑅1, 𝑅2) ∈ ℤ, we set

𝑅(𝑥, 𝑅) ∶= {𝜃 ∈ 𝕋2 ∶ |𝜃𝑖 − 𝑥𝑖| < 𝑅𝑖 for 𝑖 = 1, 2}
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to be a rectangle of sidelengths 𝑅1 and 𝑅2 centred around 𝑥. In addition, 𝑅
−1 denotes the vector

(𝑅−1
1
, 𝑅−1

2
). We are now in a position to state Vishe’s partition of the unit square.

Theorem 2.1. Let 𝑄 ⩾ 1. Then,

𝕋2 =
⨆

𝑟 monic|𝑟|⩽𝑄
⨆

𝑑∣𝑟 monic
𝑐∈2 primitive|𝑟|𝑄−1∕2⩽|𝑑𝑐|⩽|𝑟|1∕2|𝑑𝑐2|<|𝑟|1∕2

⨆
′

|𝑎|<|𝑟|
𝑎∕𝑟∈𝐿(𝑑𝑐)

𝐵(𝑎∕𝑟, |𝑟|−1𝑄−1∕2),

where
⨆′ indicates that we only consider vectors 𝑎 such that (𝑎, 𝑟) = 1.

A few remarks are in order to explain the conditions on the lines in the theorem. First, from a
standard application of Dirichlet’s approximation theorem [21, Lemma 4.5.1], one obtains

𝕋𝑘 =
⋃
|𝑟|⩽𝑄
𝑟 monic

⋃
′

|𝑎|<|𝑟|𝐵(𝑎∕𝑟, |𝑟|−1𝑄−1∕𝑘) (2.3)

for any𝑄 > 0 and 𝑘 ⩾ 1. Furthermore, using the pigeon-hole principle, one can show that that any
𝑎∕𝑟 ∈ 𝐾2 with |𝑎| < |𝑟| and (𝑎, 𝑟) = 1 lies on a line 𝐿(𝑑𝑐) with |𝑑𝑐| ⩽ |𝑟|1∕2 and |𝑑𝑐2| < |𝑟|1∕2. It
also clear from the definition (2.2) that we must have 𝑑 ∣ 𝑟. So, the key condition in Theorem 2.1
is |𝑟|𝑄−1∕2 ⩽ |𝑑𝑐|. This guarantees that
(i) rational points on an individual line stay sufficiently far away from each other,
(ii) rational points on distinct lines stay sufficiently far away from each other,
(iii) distinct lines do not intersect at rationals with small denominator.

With (i)–(iii) at hand, it only remains to show that we can still cover 𝕋2 with balls centred on
rationals 𝑎∕𝑟 on lines 𝐿(𝑑𝑐) such that |𝑟|𝑄−1∕2 ⩽ |𝑑𝑐|. This is a consequence of one-dimensional
Diophantine approximation, where, in fact, (2.3) already provides an exact partition of the
unit interval.
We will follow this blueprint closely to obtain an analogue of Theorem 2.1 that allows for lop-

sided boxes. This requires us to go through most of Vishe’s steps again, since we have to modify
some of the proofs to get control over the distance between the individual coordinates of ratio-
nal vectors. We begin with a two-dimensional version of Dirichlet’s approximation theorem with
rectangles.

Lemma 2.2. Let 𝑅1 ⩾ 𝑅2 ⩾ 1 be integers. Then,

𝕋2 =
⋃

|𝑟|⩽𝑅1𝑅2
𝑟 monic

⋃
′

|𝑎|<|𝑟|𝑅
(
𝑎∕𝑟, |𝑟|−1𝑅−1).

Proof. For any 𝑥 ∈ 𝕋2, the rectangle 𝑅(𝑥, 𝑅−1) has volume (𝑅1𝑅2)−1. We can therefore write

𝕋2 =

𝑅1𝑅2⨆
𝑖=1

𝑅
(
𝑥
𝑖
, 𝑅

−1
)

(2.4)
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for some 𝑥
𝑖
∈ 𝕋2. Observe that there are 𝑅1𝑅2𝑞 polynomials 𝑟 ∈  with |𝑟| ⩽ 𝑅1𝑅2. In particular,

if 𝑥 ∈ 𝕋2 and 𝑟 runs through all 𝑟 ∈ with |𝑟| ⩽ 𝑅1𝑅2, then two of them, say 𝑟1 ≠ 𝑟2, must satisfy

{𝑟𝑖𝑥} ∈ 𝑅
(
𝑥
𝑗
, 𝑅

−1
)
,

for 𝑖 = 1, 2 and some 1 ⩽ 𝑗 ⩽ 𝑅1𝑅2, where {⋅} denotes the fractional part. If we let 𝑟 = 𝑟1 − 𝑟2, then
this implies

𝑟𝑥 − 𝑎 ∈ 𝑅
(
0,
(
𝑅−11 , 𝑅−22

))
,

where 𝑎 is the integer part of (𝑟1 − 𝑟2)𝑥. We can divide through by (𝑎, 𝑟) to ensure that (𝑎, 𝑟) = 1

and also multiply by a unit if necessary to guarantee that 𝑟 is monic. □

Next, we show that every rational lies on a generalised line of suitable height. This is the
analogue of [33, Lemma 3.1], where the difference is that we allow the extra parameter 𝑇.

Lemma 2.3. Let𝑇 ⩾ 1. Then, for any 𝑎∕𝑟 ∈ 𝕋2 with |𝑎| < |𝑟| and (𝑎, 𝑟) = 1, there exists 𝑑 ∣ 𝑟monic
and 𝑐 ∈ 2 primitive such that |𝑑𝑐1| ⩽ 𝑇|𝑟|1∕2, |𝑑𝑐2| < 𝑇−1|𝑟|1∕2 and 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐).

Proof. The set {
𝑐 ∈ 2 ∶ |𝑐1| ⩽ 𝑇|𝑟|1∕2, |𝑐2| < 𝑇−1|𝑟|1∕2}

has cardinality strictly bigger than |𝑟|. In particular, there exists two distinct vectors 𝑐
1
, 𝑐
2
in

this set such that 𝑐
1
⋅ 𝑎 ≡ 𝑐

2
⋅ 𝑎 mod 𝑟. Let 𝑐′ = 𝑐

1
− 𝑐

2
. It then follows that 𝑐′ ⋅ 𝑎 = 𝑘′𝑟 for some

𝑘′ ∈ . Now let 𝑑′ = gcd(𝑐1, 𝑐2), 𝑑 = 𝑑′∕ gcd(𝑑′, 𝑘′), 𝑐 = 𝑐′∕𝑑′ and 𝑘 = 𝑘′∕ gcd(𝑑′, 𝑘′). We then
have 𝑑𝑐 ⋅ 𝑎 = 𝑘𝑟. Moreover, by construction (𝑑, 𝑘) = 1, which also implies 𝑑 ∣ 𝑟. We can fur-
ther guarantee that 𝑐 is primitive and 𝑑 monic by multiplying with a unit and changing 𝑘 if
necessary. □

For any 𝑐 = (𝑐1, 𝑐2) ∈ 2, we let 𝑐⊥ = (−𝑐1, 𝑐1). We also need the following result, which is [33,
Lemma 3.5], about the distribution of rational points on an individual line.

Lemma 2.4. Let 𝑑 ∈  be monic and 𝑐 ∈ 2 be primitive. Then, for every 𝑎∕𝑟 ∈ 𝐿(𝑐), there exists a
unique 𝑎 ∈  with |𝑎| < |𝑟|, (𝑎, 𝑟) = 1 and a unique 𝑑 ∈ 2 with |𝑑| < |𝑐| such that 𝑎∕𝑟 = 𝑎

𝑟
𝑐⊥ +

𝑑. Moreover, for every 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐), there exists a unique 𝑎′∕(𝑟∕𝑑) ∈ 𝐿(𝑐) with |𝑎′| < |𝑟∕𝑑| and a
unique 𝑑′ ∈ 2 with |𝑑|′ < |𝑑| such that 𝑎∕𝑟 = 𝑎′∕𝑟 + 𝑑′∕𝑑.

Next, we turn to studying the distance between rational points on lines of the form 𝐿(𝑐). The
following result is the analogue of [33, Lemma 3.6].

Lemma 2.5. Let 𝑐 ∈ 2 be primitive and 𝑎∕𝑟 ≠ 𝑎′∕𝑟′ ∈ 𝐿(𝑐). Then,

|||||𝑎𝑖𝑟 −
𝑎′
𝑖

𝑟′

||||| ⩾
|𝑐⊥
𝑖
||𝑟𝑟′| for both 𝑖 = 1, 2 or max

𝑖=1,2

{|𝑐𝑖||||||𝑎𝑖𝑟 −
𝑎′
𝑖

𝑟′

|||||
}

⩾ 1.
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8 of 54 GLAS

The first case happens if𝑎∕𝑟, 𝑎′∕𝑟′ ∈ 𝐿1(𝑐, 𝑘) for some𝑘 ∈ .Moreover, if𝑎∕𝑟 is an element of𝐿(𝑐) ∩
𝐿1(𝑐, 𝑘)with |𝑐| ⩽ |𝑟|2, there exists 𝑏∕𝑟1 ∈ 𝐿(𝑐) ∩ 𝐿1(𝑐, 𝑘) such that |𝑟1| = 𝑞|𝑟| and |𝑎𝑖∕𝑟 − 𝑏𝑖∕𝑟1| =|𝑐⊥
𝑖
|∕|𝑟𝑟1|.

Proof. We begin with the first part of the lemma. Since 𝑎∕𝑟, 𝑎′∕𝑟′ ∈ 𝐿(𝑐), it follows from the def-
inition of 𝐿(𝑐) that there exist 𝑘, 𝑘′ ∈  such that (𝑎∕𝑟 − 𝑎′∕𝑟′) ⋅ 𝑐 = 𝑘 − 𝑘′. If 𝑘 ≠ 𝑘′, then by
the ultrametric property, we have max𝑖=1,2 |𝑎𝑖∕𝑟 − 𝑎′

𝑖
∕𝑟′||𝑐𝑖| ⩾ 1, which is sufficient. Thanks to

Lemma 2.4, we can alsowrite 𝑎∕𝑟 = 𝑎

𝑟
𝑐⊥ + 𝑑 and 𝑎′∕𝑟′ = 𝑎′

𝑟′
𝑐⊥ + 𝑑′. If 𝑘 = 𝑘′, then the conditions|𝑑|, |𝑑′| < |𝑐| and the fact that 𝑐 is primitive imply that 𝑑 = 𝑑′. Therefore, we have |𝑎𝑖∕𝑟 − 𝑎′

𝑖
∕𝑟′| =|𝑎∕𝑟 − 𝑎′∕𝑟||𝑐⊥

𝑖
| ⩾ |𝑐⊥

𝑖
|∕|𝑟𝑟′|. Furthermore, we have 𝑘 = 𝑘′ if and only if 𝑎∕𝑟, 𝑎′∕𝑟′ ∈ 𝐿1(𝑐, 𝑘).

For the second part of the lemma, one can check that Vishe’s proof of [33, Lemma 3.6], in fact,
gives control over the distance of both coordinates of 𝑎∕𝑟 − 𝑏∕𝑟1. Moreover, he requires |𝑐|2 ⩽ |𝑟|,
but his proof shows that |𝑐| ⩽ |𝑟|2 is, in fact, sufficient. □

We can also extend this result to arbitrary lines.

Lemma 2.6. Let 𝑑 ∈  be monic and 𝑐 ∈ 2 be primitive. Then, for 𝑎∕𝑟 ≠ 𝑎′∕𝑟′ ∈ 𝐿(𝑑𝑐), at least
one of the following must hold:

(i) |𝑎𝑖
𝑟
−

𝑎′
𝑖

𝑟′
| ⩾ |𝑑𝑐⊥

𝑖
||𝑟𝑟′| for both 𝑖 = 1, 2,

(ii) |𝑎
𝑟
−

𝑎′

𝑟′
| ⩾ max{|𝑟|−1, |𝑟′|−1},

(iii) max𝑖=1,2{|𝑑𝑐𝑖||𝑎𝑖𝑟 − 𝑎′
𝑖

𝑟′
|} ⩾ 1.

Moreover, if 𝑎∕𝑟 ∈ 𝐿1(𝑑𝑐, 𝑘), then there exists 𝑎∕𝑟 ≠ 𝑏∕𝑟2 ∈ 𝐿1(𝑑𝑐, 𝑘) such that

|𝑎𝑖∕𝑟 − 𝑏𝑖∕𝑟2| ⩽ |𝑑𝑐⊥𝑖 |∕|𝑟𝑟2|
for both 𝑖 = 1, 2.

Proof. We begin with the first part of the statement. Recall from Lemma 2.4 that we can write
𝑎∕𝑟 = 𝑎

1
∕𝑟 + 𝑑∕𝑑 and 𝑎′∕𝑟′ = 𝑎

2
∕𝑟′ + 𝑑′∕𝑑 where 𝑎

1
∕(𝑟∕𝑑), 𝑎

2
∕(𝑟′∕𝑑) ∈ 𝐿(𝑐) and 𝑑, 𝑑′ ∈ 2.

We thus have

|||||𝑎𝑖𝑟 −
𝑎′
𝑖

𝑟′

||||| =
|||||𝑎1,𝑖𝑟 −

𝑎2,𝑖

𝑟′
+
𝑑𝑖 − 𝑑′

𝑖

𝑑

|||||
for 𝑖 = 1, 2. If 𝑑 ≠ 𝑑′, then this is clearly at least 1∕|𝑑| ⩾ max{|𝑟|−1, |𝑟′|−1} for one of 𝑖 = 1, 2,
since 𝑑 ∣ 𝑟, 𝑟′. One the other hand, if 𝑑 = 𝑑′, we can use Lemma 2.5: In its first case, we obtain|𝑎1,𝑖∕(𝑟∕𝑑) − 𝑎2,𝑖∕(𝑟

′∕𝑑)| ⩾ |𝑑2||𝑐⊥
𝑖
|∕|𝑟𝑟′| for both 𝑖 = 1, 2, which implies

|𝑎𝑖∕𝑟 − 𝑎′𝑖 ∕𝑟
′| ⩾ |𝑑𝑐⊥𝑖 |∕|𝑟𝑟′| for 𝑖 = 1, 2,

whereas in the second case,max𝑖=1,2{|𝑐𝑖||𝑎1,𝑖∕(𝑟∕𝑑) − 𝑎2,𝑖∕(𝑟∕𝑑)|} ⩾ 1, which implies

max
𝑖=1,2

|𝑑𝑐𝑖||𝑎𝑖∕𝑟 − 𝑎′𝑖 ∕𝑟
′| ⩾ 1.
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 9 of 54

For the second part of the lemma, we use Lemma 2.4 to write 𝑎∕𝑟 = 𝑏′∕𝑟 + 𝑑′∕𝑑, where
𝑏′∕(𝑟∕𝑑) ∈ 𝐿1(𝑐, 𝑘) for some 𝑘 ∈ . It follows from the second part of Lemma 2.5 that
there exists 𝑏′′∕𝑟1 ∈ 𝐿1(𝑐, 𝑘) with |𝑟1| = 𝑞|𝑟∕𝑑| and |𝑏′

𝑖
∕(𝑟∕𝑑) − 𝑏′′

𝑖
∕𝑟1| = |𝑑𝑐⊥

𝑖
|∕|𝑟𝑟1| for 𝑖 =

1, 2. Now set 𝑏∕𝑟2 = 𝑏′′∕(𝑟1𝑑) + 𝑑′∕𝑑. We then have 𝑑𝑐 ⋅ 𝑏∕𝑟2 = 𝑘 + 𝑐 ⋅ 𝑑′ = 𝑑𝑐 ⋅ 𝑎∕𝑟, so that
𝑏∕𝑟2 ∈ 𝐿1(𝑑𝑐, 𝑘). Moreover, we also have |𝑏𝑖∕𝑟2 − 𝑎𝑖∕𝑟| = |𝑏′′

𝑖
∕𝑟1 − 𝑏′

𝑖
∕(𝑟∕𝑑)|∕|𝑑| = |𝑐⊥

𝑖
|∕|𝑟𝑟1| ⩽|𝑑𝑐⊥

𝑖
|∕|𝑟𝑟2|, where we used that |𝑟2| ⩽ |𝑟1𝑑|. □

We also need the following lemma, which is the second part of [33, Lemma 3.9].

Lemma 2.7. Let 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) ∩ 𝐿(𝑑′𝑐′), where 𝑑, 𝑑′ ∈  are monic and 𝑐, 𝑐′ ∈ 2 are primitive. If|𝑐1𝑐′2|, |𝑐2𝑐′1| < |𝑟∕(𝑑𝑑′)|, then 𝑑𝑐 = 𝑑′𝑐′.

Note that in [33, Lemma 3.9], the extra condition |𝑑𝑐|2, |𝑑′𝑐′|2 ⩽ |𝑟| is required, but this is, in
fact, not used in the proof. The next lemma is concernedwith the distance between rational points
that lie on distinct lines.

Lemma 2.8. Let 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) and 𝑎′∕𝑟′ ∈ 𝐿(𝑑′𝑐′) with 𝑑𝑐 ≠ 𝑑′𝑐′, |𝑑𝑑′𝑐1𝑐′2| < |𝑟𝑟′|1∕2 and|𝑑𝑑′𝑐2𝑐′1| < |𝑟𝑟′|1∕2. Then, we have |𝑎𝑖∕𝑟 − 𝑎′
𝑖
∕𝑟′| ⩾ |𝑑𝑐𝑖𝑟′|−1 for one of 𝑖 = 1, 2 and |𝑎𝑖∕𝑟 −

𝑎′
𝑖
∕𝑟′| ⩾ |𝑑′𝑐′

𝑖
𝑟|−1 for one of 𝑖 = 1, 2.

Proof. First note that 𝑎∕𝑟 and 𝑎′∕𝑟′ must be distinct by Lemma 2.7. By the second part of
Lemma 2.6, there exists 𝑏∕𝑟1 ∈ 𝐿(𝑑𝑐) such that |𝑎𝑖∕𝑟 − 𝑏𝑖∕𝑟1| ⩽ |𝑑𝑐⊥𝑖 |∕|𝑟𝑟1|. Let

𝐶 =

(
𝑎∕𝑟 − 𝑏∕𝑟1
𝑎∕𝑟 − 𝑎′∕𝑟′

)
.

Since 𝑎′∕𝑟′ ∉ 𝐿(𝑑𝑐), it follows that det(𝐶) ≠ 0. It is therefore clear that | det(𝐶)| ⩾ |𝑟𝑟′𝑟1|. This
implies that |𝑎𝑖∕𝑟 − 𝑎′

𝑖
∕𝑟′| ⩾ 1∕|𝑑𝑐𝑖𝑟′| for one of 𝑖 = 1, 2. Finally, we can replace the role of 𝑟 and

𝑟′ to obtain the second inequality of the statement. □

We now have all ingredients at hand to prove the main result of this section.

Theorem 2.9. Let 𝑅1 ⩾ 𝑅2 ⩾ 1 be integers. If we set 𝑇 = (𝑅1 − 𝑅2)∕2, then

𝕋2 =
⨆

|𝑟|⩽𝑅1𝑅2
𝑟 monic

⨆
𝑑∣𝑟 monic

𝑐∈2 primitive|𝑑𝑐1|⩽𝑇|𝑟|1∕2,|𝑑𝑐2|<𝑇−1|𝑟|1∕2
max{𝑅𝑖|𝑑𝑐⊥𝑖 |}⩾|𝑟|

⨆
′

|𝑎|<|𝑟|
𝑎∕𝑟∈𝐿(𝑑𝑐)

𝑅(𝑎∕𝑟, |𝑟|−1𝑅−1). (2.5)

Proof. We first show the union on the right-hand side of (2.5) is disjoint. Let 𝑎∕𝑟 ≠ 𝑎′∕𝑟′ appear on
the right-hand side of (2.5) and suppose |𝑟′| ⩾ |𝑟|. We now have to distinguish a few cases. First,
if 𝑎∕𝑟, 𝑎′∕𝑟′ ∈ 𝐿(𝑑𝑐) for some 𝐿(𝑑𝑐) appearing on the right-hand side of (2.5), then in case (i) of
Lemma 2.6, we have

|||||𝑎𝑖𝑟 −
𝑎′
𝑖

𝑟′

||||| ⩾
|𝑑𝑐⊥

𝑖
||𝑟𝑟′| ⩾

1

𝑅𝑖|𝑟|

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12991 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 54 GLAS

for one of 𝑖 = 1, 2, where we used that |𝑑𝑐⊥
𝑖
| ⩾ 𝑅−1

𝑖
|𝑟′| for one of 𝑖 = 1, 2. This is clearly suffi-

cient to show 𝑅(𝑎∕𝑟, |𝑟|−1𝑅−1) is disjoint from 𝑅(𝑎′∕𝑟′, |𝑟′|−1𝑅−1). On the other hand, case (ii)
of Lemma 2.6 yields ||𝑎∕𝑟 − 𝑎′∕𝑟′|| ⩾ max{|𝑟|−1, |𝑟′|−1}. However, then the rectangles around 𝑎∕𝑟
and 𝑎′∕𝑟′must be disjoint since𝑅1 ⩾ 𝑅2 ⩾ 1. If case (iii) in Lemma 2.6 holds for 𝑖 = 1, then 𝑑𝑐1 ≠ 0

and

|||||𝑎1𝑟 −
𝑎′
1

𝑟′

||||| ⩾ 1|𝑑𝑐1| ⩾ 𝑅2|𝑑𝑐1|
𝑅1|𝑟| ⩾

1

𝑅1|𝑟| .
A similar calculation shows that if the inequality holds for 𝑖 = 2, then we obtain |𝑎2∕𝑟 − 𝑎′

2
∕𝑟′| ⩾

𝑅−1
2
|𝑟|−1. This finishes the case 𝑎∕𝑟, 𝑎′∕𝑟′ ∈ 𝐿(𝑑𝑐). Next, we are concerned about the case 𝑎∕𝑟 ∈

𝐿(𝑑𝑐), 𝑎′∕𝑟′ ∈ 𝐿(𝑑′𝑐′) with 𝑑𝑐 ≠ 𝑑′𝑐′. Our constraints on 𝑑𝑐, 𝑑′𝑐′ guarantee that the require-
ments in Lemma 2.8 are met, and so, we get |𝑎𝑖∕𝑟 − 𝑎𝑖∕𝑟

′| ⩾ |𝑑𝑐𝑖𝑟|−1 for one of 𝑖 = 1, 2. Note
that |𝑑𝑐1| ⩽ (𝑅1∕𝑅2)

1∕2|𝑟|1∕2 ⩽ 𝑅1, since |𝑟| ⩽ 𝑅1𝑅2. Similarly, we get |𝑑𝑐2| ⩽ 𝑅2, so that |𝑎𝑖∕𝑟 −
𝑎𝑖∕𝑟

′| ⩾ |𝑑𝑐𝑖𝑟|−1 ⩾ 𝑅−1
𝑖
|𝑟|−1, which is sufficient. Finally, it remains to show that every rational

𝑎∕𝑟 in the right-hand side of (2.5) appears precisely once. This is a consequence of Lemma 2.7.
Therefore, we have established that the right-hand side of (2.5) is a disjoint union.
Now we show that if 𝑎∕𝑟 ∈ 𝕋2 is a rational with |𝑎| < |𝑟| ⩽ 𝑅1𝑅2 and (𝑎, 𝑟) = 1, then there

exists a rational 𝑎′∕𝑟′ appearing on the right-hand side of (2.5) such that 𝑅(𝑎∕𝑟, |𝑟|−1𝑅−1) ⊂
𝑅(𝑎′∕𝑟′, |𝑟′|−1𝑅−1). By Lemma 2.3, this is enough to show the equality of sets in (2.5). It fol-
lows from Lemma 2.3 that there exist 𝑑 ∈  monic and 𝑐 ∈ 2 primitive such that 𝑑 ∣ 𝑟, 𝑎∕𝑟 ∈
𝐿(𝑑𝑐) and |𝑑𝑐1| ⩽ 𝑇|𝑟|1∕2, |𝑑𝑐2| < 𝑇−1|𝑟|1∕2. If max{𝑅𝑖|𝑑𝑐⊥𝑖 |} ⩾ |𝑟| we are done. Otherwise, let
𝑀 = max{𝑅𝑖|𝑐⊥𝑖 |} so that 𝑀 < |𝑟|. Lemma 2.4 allows to write 𝑎∕𝑟 = 𝑎

𝑟
𝑐⊥ + 𝑑∕𝑑 for some 𝑎 ∈

 and 𝑑 ∈ 2, where 𝑎∕(𝑟∕𝑑) ∈ 𝐿(𝑐). The one-dimensional Dirichlet approximation theorem
implies the existence of a rational𝑎′∕𝑟1 such that |𝑎′| < |𝑟1| ⩽ 𝑀|𝑑|−1, (𝑎′, 𝑟1) = 1 and |𝑎∕(𝑟∕𝑑) −
𝑎′∕𝑟1| < |𝑟1|−1|𝑑|𝑀−1. Now set 𝑎′∕𝑟′ = 𝑎′

𝑟1𝑑
𝑐⊥ + 𝑑∕𝑑. We then have 𝑑𝑐 ⋅ 𝑎′∕𝑟′ = 𝑐 ⋅ 𝑑 = 𝑑𝑐 ⋅ 𝑎∕𝑟,

which implies 𝑎′∕𝑟′ ∈ 𝐿(𝑑𝑐) and 𝑑 ∣ 𝑟′. Moreover, by construction, we have |𝑟′| ⩽ |𝑑𝑟1| ⩽ 𝑀. We
also have |𝑎𝑖∕𝑟 − 𝑎′

𝑖
∕𝑟′| = |𝑑|−1|𝑎𝑖∕(𝑟∕𝑑) − 𝑎′∕𝑟1| < |𝑟1|−1𝑀−1 ⩽ |𝑟′|−1𝑅−1

𝑖
for both 𝑖 = 1, 2. This

completes the proof of Theorem 2.9. □

Remark. Note that in the particular case 𝑅1 = 𝑅2, we recover Theorem 2.1 with 𝑄 = 2𝑅1 from
Theorem 2.9.

The following corollary will be useful when evaluating themain contribution to our asymptotic
formula.

Corollary 2.10. Let 𝑅1 ⩾ 𝑅2 ⩾ 1 be integers. Then,⨆
|𝑟|⩽𝑅2
𝑟 monic

⨆
𝑑∣𝑟 monic

𝑐∈2 primitive|𝑑𝑐1|⩽𝑇|𝑟|1∕2|𝑑𝑐2|<𝑇−1|𝑟|1∕2

⨆
′

|𝑎|<|𝑟|
𝑎∕𝑟∈𝐿(𝑑𝑐)

𝑅
(
𝑎∕𝑟, |𝑟|−1𝑅−1) = ⨆

|𝑟|⩽𝑅2
𝑟 monic

⨆
′

|𝑎|<|𝑟|𝑅
(
𝑎∕𝑟, |𝑟|−1𝑅−1).

Proof. Clearly, the left-hand side of the claimed equality is contained in the right-hand side.More-
over, by Lemma2.3, the right-hand side is contained in the left-hand side. Theorem2.9 implies that
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 11 of 54

the left-hand side is disjoint, since the conditionmax{𝑅𝑖|𝑑𝑐⊥𝑖 |} ⩾ |𝑟| is vacuously true for |𝑟| ⩽ 𝑅2.
It remains to prove that the right-hand side is disjoint. Suppose that 𝛼 ∈ 𝑅(𝑎

1
∕𝑟1, |𝑟1|−1𝑅−1) ∩

𝑅(𝑎
2
∕𝑟2, |𝑟2|−1𝑅−1) with 𝑎1∕𝑟1 ≠ 𝑎

2
∕𝑟2. We then have

1|𝑟1𝑟2| ⩽ ||||𝑎1𝑟1 − 𝑎
2

𝑟2

|||| = |||||
(
𝑎
1

𝑟1
− 𝛼

)
+

(
𝛼 −

𝑎
2

𝑟2

)||||| < max

{
1|𝑟1|𝑅2 , 1|𝑟2|𝑅2

}
,

which is impossible since |𝑟1|, |𝑟2| ⩽ 𝑅2. □

3 GEOMETRY

If the complete intersection𝑋 ⊂ ℙ𝑛−1 is defined by a cubic form 𝐹1 and a quadratic form 𝐹2, then
it is also defined by 𝐹1 + 𝐿𝐹2 and 𝐹2 for any linear form 𝐿 ∈ [𝑥1, … , 𝑥𝑛]. In particular, given
the degree of freedom we have, it is reasonable to expect that we can define 𝑋 as the intersection
of a non-singular cubic hypersurface and a quadratic hypersurface. This is indeed the case as
demonstrated in [3, Lemmas 3.2–3.3], whose proof we adjust to cope with positive characteristic.

Lemma3.1. Let𝑋 ⊂ ℙ𝑛−1 be a non-singular complete intersection of a cubic and a quadratic hyper-
surface over 𝐾. Then, 𝑋 = 𝑉(𝐹1, 𝐹2), where 𝐹1 ∈ [𝑥1, … , 𝑥𝑛] is a non-singular cubic form and 𝐹2
is a quadratic form of rank at least 𝑛 − 1.

Proof. Suppose 𝑋 = 𝑉(𝐺1, 𝐺2), where 𝐺1 is a cubic and 𝐺2 a quadratic form, respectively. For
𝑈 = ℙ𝑛−1 ⧵ 𝑉(𝐺2), define the morphism

𝜑∶ 𝑈 → ℙ𝑛, (𝑥1 ∶ ⋯ ∶ 𝑥𝑛) ↦ (𝐺1(𝒙)∶ 𝑥1𝐺2(𝒙)⋯ ∶ 𝑥𝑛𝐺2(𝒙)).

Assume for a moment that there exists a hyperplane 𝐻 ⊂ ℙ𝑛 defined over 𝐾 such that 𝜑−1(𝐻) is
smooth. This means that there exist 𝜆0, … , 𝜆𝑛 ∈ 𝐾 such that

𝐹1 = 𝜆0𝐺1 + 𝜆1𝑥1𝐺2 +⋯ + 𝜆𝑛𝑥𝑛𝐺2

satisfies 𝑈 ∩ {𝐹1 = 0} is smooth. However, 𝑈 ∩ {𝐹1 = 0} = {𝐹1 = 0} ⧵ {𝐺2 = 0}, from which it
follows that 𝐹1 is non-singular since 𝑋 is non-singular.
To prove the existence of the claimed 𝜆𝑖 ’s, Browning–Dietmann–Heath-Brown appeal to

Bertini’s theorem, which does not hold in general in positive characteristic. However, it follows
from work of Spreafico [31, Corollary 4.3] that the fibre above a general hyperplane 𝐻 ⊂ ℙ𝑛 is
smooth, provided the induced extension of residues fields 𝜅(𝑥)∕𝜅(𝜑(𝑥)) is separable for any𝑥 ∈ 𝑈.
Let 𝑌 = 𝑉(𝐺1 − 𝑥0𝐺2) ⊂ ℙ𝑛. Then, 𝜑 factors into

𝑈 → 𝑌 ⧵ 𝑉(𝐺2) → 𝑌 → ℙ𝑛,

where the first arrow is an isomorphism, the second an open embedding and the third a
closed immersion. Indeed, if 𝐺2(𝒙) ≠ 0 with 𝒙 = (𝑥1, … , 𝑥𝑛) and (𝑥0 ∶ ⋯ ∶ 𝑥𝑛) lies on 𝑌, then
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12 of 54 GLAS

𝑥0 = 𝐺1(𝒙)∕𝐺2(𝒙) and hence

(𝑥0 ∶ ⋯ ∶ 𝑥𝑛) = (𝐺1(𝒙)∶ 𝑥1𝐺2(𝒙)∶ ⋯ ∶ 𝑥𝑛𝐺2(𝒙)) = 𝜑(𝒙).

Moreover, 𝑌 ⧵ 𝑉(𝐺2) is an open subset of 𝑌 and 𝑌 a closed subset of ℙ𝑛. Both open embeddings
and closed immersions are unramified, as is the composition of unramifiedmorphisms. It follows
that 𝜑 is unramified and hence all the residue field extensions are separable.
It remains to show that 𝐺2 has rank at least 𝑛 − 1. Aiming at a contradiction, suppose that

the opposite holds. This implies that 𝐺2 is singular along a line. However, this line will intersect
{𝐹1 = 0} in a point that will then be a singular point of 𝑋, which is impossible. □

To deal with the exponential integrals appearing in our work, we will have to concentrate our
weight function near a point such that linear combinations of its Hessian associated with 𝐹1 and
the matrix underlying the quadratic form 𝐹2 always have large rank. This is only possible when
char(𝐾) > 3, and so, we assume that this holds for the rest of our work. Let us now fix a symmetric
matrix 𝑀 ∈ 𝑛×𝑛 such that 𝐹2(𝒙) = 𝒙𝑡𝑀𝒙. Moreover, for 𝒙 ∈ 𝐾𝑛

∞, we shall denote by 𝐻(𝒙) =
(

𝜕𝐹1
𝜕𝑥𝑖𝜕𝑥𝑗

)1⩽𝑖,𝑗⩽𝑛 the Hessian of 𝐹1 evaluated at 𝒙.

Lemma 3.2. For 1 ⩽ 𝑘 ⩽ 𝑛 − 1, let 𝑉𝑘 be the Zariski closure of

𝑉′
𝑘
∶= {𝒙 ∈ 𝔸𝑛 ∶ 𝐹1(𝒙) = 0 and rk(𝑡1𝐻(𝒙) + 𝑡2𝑀) ⩽ 𝑘 for some (𝑡1, 𝑡2) ∈ 𝔸2 ⧵ {𝟎}}

inside 𝔸𝑛. Then, dim𝑉𝑘 ⩽ 𝑘.

Proof. For 1 ⩽ 𝑘 ⩽ 𝑛 − 1, consider the incidence correspondence

𝐼 ∶= {(𝒙, 𝒚) ∈ 𝔸𝑛 × 𝔸𝑛 ∶ 𝐹1(𝒙) = 0 and rk(𝐻(𝒙)𝒚,𝑀𝒚) ⩽ 1}.

Let𝑉 be an irreducible component of𝑉𝑘. Since𝑉 × {𝟎} ⊂ 𝐼 and𝑉 × {𝟎} is irreducible, there exists
an irreducible component 𝑊 of 𝐼 containing 𝑉 × {𝟎}. Then, the projection of 𝐼 onto the first
factor restricts to a surjective morphism 𝜓∶ 𝑊 → 𝑉 of irreducible varieties. We can therefore
apply Chevalley’s theorem [13, Proposition 14.109] to deduce the existence of an open dense sub-
set𝑈 ⊂ 𝑉 such that dim𝜓−1(𝒙) = dim𝑊 − dim𝑉 for all 𝒙 ∈ 𝑉. Note that since𝑉′

𝑘
is dense in𝑉𝑘

and𝑉 is an irreducible component of𝑉𝑘, wemust have𝑈 ∩ 𝑉′
𝑘
≠ ∅. In addition, by the definition

of 𝑉′
𝑘
, we have dim𝜓−1(𝒙) ⩾ 𝑛 − 𝑘 for all 𝒙 ∈ 𝑉′

𝑘
, so that we must also have dim𝜓−1(𝒙) ⩾ 𝑛 − 𝑘

for all 𝒙 ∈ 𝑈.
Our next task is to bound the dimension of 𝐼. For this, let Δ∶ 𝔸𝑛 → 𝔸𝑛 × 𝔸𝑛 the diagonal

embedding, that is, 𝒙 ↦ (𝒙, 𝒙), and let 𝑆 = Δ(𝔸𝑛) ∩ 𝐼. If 𝒙 ∈ 𝑆, then there exists (𝑡1, 𝑡2) ∈ 𝔸2 ⧵ {𝟎}

such that 𝑡1∇𝐹1(𝒙) + 𝑡2∇𝐹2(𝒙) = 𝟎. One the one hand, if 𝑡2 = 0, then we get ∇𝐹1(𝒙) = 𝟎, which
implies 𝒙 = 𝟎 since 𝐹1 is non-singular. On the other hand, if 𝑡2 ≠ 0, then after taking the inner
productwith𝒙, we get𝐹2(𝒙) = 0, so that𝒙 is a singular point on the affine cone of the non-singular
complete intersection of 𝐹1 and 𝐹2, which implies 𝒙 = 𝟎. Altogether we obtain dim𝑆 = 0.
Having established an upper bound for dim𝑆, we are now in a position to get control over dim 𝐼.

From what we have just shown, it follows that

0 = dim 𝐼 ∩ Δ(𝔸𝑛) ⩾ dim 𝐼 + dim𝔸𝑛 − 2𝑛 = dim 𝐼 − 𝑛,
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 13 of 54

and thus, dim 𝐼 ⩽ 𝑛, from which we immediately deduce dim𝑊 ⩽ 𝑛. Combining this with the
information about the dimension of the fibres of𝜓, we obtain for any𝒙 ∈ 𝑈 the inequality 𝑛 − 𝑘 ⩽

dim𝜓−1(𝒙) = dim𝑊 − dim𝑉𝑘 and therefore dim𝑉𝑘 ⩽ 𝑘 as claimed. □

Corollary 3.3. Let 𝑛 ⩾ 14. There exists 𝒙0 ∈ 𝐾𝑛
∞ such that𝐹1(𝒙0) = 𝐹2(𝒙0) = 0, rk(𝐻(𝒙0)) ⩾ 𝑛 − 2

and rk(𝑡1𝐻(𝒙) + 𝑡2𝑀) ⩾ 𝑛 − 2 for all (𝑡1, 𝑡2) ∈ 𝐾2
∞ ⧵ {𝟎}.

Proof. Let 𝑋′ ⊂ 𝔸𝑛 be the affine cone of the non-singular complete intersection 𝑋 = 𝑉(𝐹1, 𝐹2) ⊂

ℙ𝑛−1. It follows from Lemma 3.2 that 𝑉𝑛−3 is a Zariski closed subset in 𝔸𝑛 of dimension at most
𝑛 − 3. As 𝑛 ⩾ 13, Lang–Tsen theory [14, Theorem 3.6] implies that𝑋(𝐾∞) ≠ ∅ and since𝑋 is non-
singular, it follows that 𝑋′(𝐾∞) is Zariski dense in 𝑋′. In particular, the fact that dim𝑋′ = 𝑛 − 2

implies that𝑋′(𝐾∞) ⧵ 𝑉𝑛−3 is non-empty and any point contained therein satisfies the conditions
required in the statement of the corollary. □

We also need strong upper bounds for the number of integral points on an affine hypersurface,
which are a special case of [24, Theorem 1.10] in the 𝔽𝑞[𝑡] setting.

Theorem 3.4. Let 𝐺 ∈ [𝑥1, … , 𝑥𝑛] be a polynomial of degree 𝑑 ⩾ 5 whose degree 𝑑 part is abso-
lutely irreducible and let 𝐵 ⩾ 1. Then, there exists a constant 𝐶 > 0 depending only on 𝑑, 𝑛 and 𝑞
such that

#{𝒙 ∈ 𝑛 ∶ |𝒙| < 𝐵,𝐺(𝒙) = 0} ⩽ 𝐶𝐵𝑛−2.

4 ACTIVATION OF THE CIRCLEMETHOD

In this section, we collect the remaining facts needed to get the circle method started. Recall from
Lemma 3.1 that we can assume 𝑋 = 𝑉(𝐹1, 𝐹2) with 𝐹1 ∈ [𝑥1, … , 𝑥𝑛] a non-singular cubic form
and 𝐹2 ∈ [𝑥1, … , 𝑥𝑛] a quadratic form of rank at least 𝑛 − 1. We shall fix such a choice of 𝐹1 and
𝐹2 once and for all and write 𝐹 = (𝐹1, 𝐹2). Moreover, we assume𝑀 ∈ Mat𝑛×𝑛() is a symmetric
matrix such that𝐹2(𝒙) = 𝒙𝑡𝑀𝒙. Inwhat follows, for𝐹 ∈ 𝐾∞[𝑥1, … , 𝑥𝑛], we refer to themaximum
of the absolute values of the coefficients of 𝐹 as the height of 𝐹 and denote it by 𝐻𝐹 . We extend
this definition to pairs of polynomials by𝐻𝐺 ∶= max{𝐻𝐺1

,𝐻𝐺2
}.

Corollary 3.3 implies that there exists 𝒙0 ∈ 𝐾𝑛
∞ such that

𝐹1(𝒙0) = 𝐹2(𝒙0) = 0,

rk(𝐻(𝒙0)) ⩾ 𝑛 − 2 and

rk(𝛾1𝐻(𝒙0) + 𝛾2𝑀) ⩾ 𝑛 − 2 for all (𝛾1, 𝛾2) ∈ 𝐾2
∞ ⧵ {𝟎},

(4.1)

where𝐻(𝒙0) denotes theHessian of the cubic form𝐹1 evaluated at𝒙0. These properties are clearly
invariant under scaling, and so, we may additionally assume |𝒙0| < 𝐻−1

𝐹
. We will then work with

the weight function 𝑤∶ 𝐾𝑛
∞ → ℝ⩾0 defined by

𝑤(𝒙) ∶=

{
1 if |𝒙 − 𝒙0| < 𝐿̂−1,

0 else,
(4.2)
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14 of 54 GLAS

where 𝐿 is a large but fixed integer, whose exact value will be determined throughout our work.
The non-archimedean nature of 𝐾∞ ensures that rk(𝐻(𝒙)) ⩾ 𝑛 − 2 and |𝒙| < 1∕𝐻𝐹 whenever
𝑤(𝒙) ≠ 0 and 𝐿 is sufficiently large. Moreover, we have seen in the proof of Corollary 3.3 that the
set of points 𝒙 ∈ 𝐾𝑛

∞ satisfying rank(𝛾1𝐻(𝒙) + 𝛾2𝑀) ⩾ 𝑛 − 2 for all (𝛾1, 𝛾2) ∈ 𝐾2
∞ ⧵ {𝟎} is Zariski

dense in 𝐾𝑛
∞. In particular, if 𝐿 is large enough, we can guarantee that any 𝒙 ∈ supp(𝑤) satis-

fies the third property in (4.1). Let us now fix 𝒃 ∈ 𝑛 and 𝑁 ∈  such that 𝑁 ∣ 𝐹1(𝒃), 𝐹2(𝒃). The
counting function we consider is now given by

N(𝑃) ∶=
∑
𝒙∈𝑛

𝐹1(𝒙)=𝐹2(𝒙)=0
𝒙≡𝒃 (𝑁)

𝑤
(
𝒙

𝑡𝑃

)
.

Any 𝛼 ∈ 𝐾∞ can be written as a Laurent series 𝛼 =
∑
𝛼𝑖𝑡

𝑖 , where 𝛼𝑖 ≠ 0 for only finitely many
𝑖 > 0. We can now define a character

𝜓∶ 𝐾∞ → ℂ×, 𝛼 ↦ 𝑒𝑝

(
Tr𝔽𝑞∕𝔽𝑝 (𝛼−1)

)
,

where as usual 𝑒𝑝(⋅) = exp(2𝜋𝑖 ⋅ ∕𝑝). The starting point for the circle method is the orthogonality
relation

∫𝕋 𝜓(𝛼𝑥)d𝛼 =
{
1 if 𝑥 = 0,

0 else,
(4.3)

for any 𝑥 ∈  as proved in [2, Corollary 5.6]. Combined with Theorem 2.9, this immediately
implies

N(𝑃) =
∑

|𝑟|⩽𝑅1𝑅2
𝑟 monic

∑
𝑑∣𝑟 monic

𝑐∈2 primitive|𝑑𝑐1|⩽𝑇|𝑟|1∕2,|𝑑𝑐2|<𝑇−1|𝑟|1∕2
max{𝑅𝑖|𝑑𝑐⊥𝑖 |}⩾|𝑟|

∑
′

|𝑎|<|𝑟|
𝑎∕𝑟∈𝐿(𝑑𝑐)

∫|𝜃1|<|𝑟|−1𝑅−11 ∫|𝜃2|<|𝑟|−1𝑅−12 𝑆

(
𝑎

𝑟
+ 𝜃

)
d𝜃2d𝜃1,

(4.4)
where

𝑆(𝛼) ∶=
∑
𝒙∈𝑛

𝒙≡𝒃 (𝑁)
𝜓(𝛼1𝐹1(𝒙) + 𝛼2𝐹2(𝒙))𝑤(𝒙∕𝑡

𝑃), (4.5)

for 𝛼 ∈ 𝕋2 and
∑′ indicates the condition (𝑎, 𝑟) = 1. After splitting 𝒙 into residue classes modulo

𝑟𝑁 , where 𝑟𝑁 = 𝑟𝑁∕(𝑟,𝑁), it is a standard argument, see [3, Lemma 4.4], for example, to use
Poisson summation to evaluate 𝑆(𝜃 + 𝑎∕𝑟) and transform (4.4) into

N(𝑃) = 𝑃𝑛
∑

|𝑟|⩽𝑅1𝑅2
𝑟 monic

|𝑟𝑁|−𝑛 ∑
𝑑∣𝑟 monic

𝑐∈2 primitive|𝑑𝑐1|⩽𝑇|𝑟|1∕2,|𝑑𝑐2|<𝑇−1|𝑟|1∕2
max{𝑅𝑖|𝑑𝑐⊥𝑖 |}⩾|𝑟|

∫𝐷(|𝑟|𝑅)
∑
𝒗∈𝑛

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)𝐼𝑟𝑁 (𝜃, 𝒗)d𝜃, (4.6)
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where 𝐷(|𝑟|𝑅) = {𝜃 ∈ 𝕋2 ∶ |𝑟𝜃𝑖| < 𝑅−1
𝑖

for 𝑖 = 1, 2},

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) ∶=
∑

′

𝑎∕𝑟∈𝐿(𝑑𝑐)

∑
|𝒙|<|𝑟𝑀 |
𝒙≡𝒃 (𝑁)

𝜓

(
𝑎1𝐹1(𝒙) + 𝑎2𝐹2(𝒙)

𝑟

)
𝜓

(
−𝒗 ⋅ 𝒙
𝑟𝑁

)
, (4.7)

and

𝐼𝑠(𝜃, 𝒗) ∶= ∫𝐾𝑛∞
𝑤(𝒙)𝜓

(
𝑡3𝑃𝜃1𝐹1(𝒙) + 𝑡2𝑃𝜃2𝐹2(𝒙) +

𝑡𝑃𝒗 ⋅ 𝒙
𝑠

)
d𝒙 (4.8)

for 𝑠 ∈  ⧵ {0}.
In our work, we will assume throughout that 𝑅1 and 𝑅2 are chosen in such a way that

𝑅1 ≍ 𝑃4∕3 and 𝑅2 ≍ 𝑃1∕3, (4.9)

so that 𝑇 ≍ 𝑃1∕2. This ensures that meas(𝐷(|𝑟|𝑅̂)) ≍ 𝑃−5 and |𝐼𝑟(𝜃, 𝒗)| ≍ 1 when |𝑟| = 𝑅1𝑅2. Let
us now separate the terms from (4.6) that will go into the error term. For this, we write

N(𝑃) = 𝑀(𝑃) + 𝐸1(𝑃) + 𝐸2(𝑃), (4.10)

where 𝐸2(𝑃) consists of the contribution in (4.4) for which

(1) 𝒗 ≠ 𝟎 with |𝜃1| < 𝑃−9𝑅2 or |𝜃2| < 𝑃−9𝑅1 or
(2) 𝑐2 = 0 with |𝜃1| > |𝑟|−1𝑃−𝛿, where 𝛿 = 8(𝑛 − 16)∕(3𝑛 − 24), and |𝑟| ⩽ 𝑃1−𝜂 with 𝜂 = 2∕𝑛,

holds. Observe that the set of 𝜃′ for which (2) holds is non-empty when 𝑛 > 24, because then 𝛿 >
4∕3. The terms𝑀(𝑃) and𝐸1(𝑃) comprise the contribution from all 𝑟’s and 𝜃’s for which neither (1)
nor (4) holds with the additional constraint that 𝒗 = 𝟎 for𝑀(𝑃) and 𝒗 ≠ 𝟎 for 𝐸1(𝑃), respectively.
We begin with estimating the contribution to 𝐸2(𝑃) defined by (1). Note that for any 𝑟 ∈ , the

measure of 𝜃 ∈ 𝕋2 for which (1) holds is 𝑂(𝑃−9|𝑟|−1). Estimating trivially 𝑆(𝑎∕𝑟 + 𝜃) ⩽ 𝑃𝑛 and
using Lemma 6.3 to deduce that the number of 𝑎 with |𝑎| < |𝑟| such that 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) is at most|𝑑𝑟|, we see that the contribution from (1) in (4.4) is

≪ 𝑃𝑛−9
∑

|𝑟|⩽𝑅1𝑅2
∑

|𝑑𝑐1|⩽𝑇|𝑟|1∕2|𝑑𝑐2|<𝑇−1|𝑟|1∕2
𝑑∣𝑟

|𝑑|≪ 𝑃𝑛−9
∑

|𝑟|⩽𝑅1𝑅2
|𝑟|1+𝜀 ≪ 𝑃𝑛−17∕3+𝜀,

upon recalling (4.9) for our choice of 𝑅1 and 𝑅2.
The reason for separating the contribution coming from (4) is that the integral estimates we

provide in Section 5 are insufficient when |𝑟| is small and |𝜃| is large. We eliminate this shortfall
by dealing with this contribution in amanner akin to the treatment of theminor arcs in a classical
application of the circle method. To begin with, let us fix the absolute values of 𝑟 and 𝜃1 in the
definition of 𝐸2(𝑃) to be |𝑟| = 𝑌 and |𝜃1| = Θ̂1 with −𝑌 − 𝛿𝑃 ⩽ Θ1 ⩽ −𝑌 − 4𝑃∕3. The main tool
to deal with this contribution is Weyl’s inequality, whose function field analogue is provided by
Lemma 4.3.6 in Lee’s PhD thesis [21].
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16 of 54 GLAS

Lemma 4.1. Let 𝛼 ∈ 𝕋2 and 𝑎1∕𝑟 ∈ 𝐾 ∩ 𝕋 be such that (𝑎1, 𝑟) = 1 and 𝛼1 = 𝑎1∕𝑟 + 𝜃1. Then, for
𝑆(𝛼) given by (4.5), we have

𝑆(𝛼) ≪𝒃,𝑁,𝐹1
𝑃𝑛+𝜀

(
𝑃 + |𝑟| + 𝑃3|𝑟1𝜃1|

𝑃3
+

1|𝑟1| + 𝑃3|𝑟1𝜃1|
)𝑛∕8

.

Remark. Lee states Lemma 4.3.6 without the appearance of the quadratic form that features in the
definition of 𝑆(𝛼). However, the proof of the lemma proceeds via estimating the quantity |𝑆(𝛼)|4,
which only requires considering the bilinear forms associated to the leading cubic form. It is easy
to see that the quadratic form disappears during this process, so that Lee’s Lemma 4.3.6 continues
to hold in our situation.

We now wish to apply Lemma 4.1. The problem is that if 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐), we do not necessarily
have (𝑎1, 𝑟) = 1. However, recall from (2.2) that 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) if and only if 𝑑𝑎 ⋅ 𝑐 = 𝑘𝑟 for some
𝑘 ∈  with (𝑘, 𝑑) = 1. In particular, if 𝑐2 = 0, then 𝑐1 = 1 and so 𝑎∕𝑟 ∈ 𝐿(𝑑(1, 0)) if and only if
𝑎1∕𝑟 = 𝑘∕𝑑with (𝑘, 𝑑) = 1. It is now easily checked that the constraints coming from (4) together
with Lemma 4.1 yield

𝑆(𝑎∕𝑟 + 𝜃) ≪ 𝑃𝑛+𝜀(𝑃−2 + |𝑑𝜃1| + 𝑃−3|𝑑𝜃1|−1)𝑛∕8.
Since 𝑐1 ≠ 0, the condition max{𝑅𝑖|𝑑𝑐⊥𝑖 |} ⩾ |𝑟| implies |𝑑|≫ |𝑟|𝑃−1∕3. We deduce that the
contribution from |𝑟| = 𝑌 with 𝑌 ⩽ 𝑃1−𝜂 and |𝜃1| = Θ̂1 to 𝐸2(𝑃) via (4.4) is

≪
∑
|𝑟|=𝑌

∑
|𝑑|⩽𝑌|𝑑|≫𝑌𝑃−1∕3

𝑑∣𝑟

∑
′

|𝑎|<|𝑟|
𝑎∕𝑟∈𝐿(𝑑(1,0))

∫|𝜃1|=Θ̂1 ∫|𝜃2|≪𝑃−1∕3𝑌−1
𝑆(𝑎∕𝑟 + 𝜃)d𝜃

≪ 𝑃𝑛−1∕3+𝜀Θ̂1

∑
|𝑟|=𝑌

∑
|𝑑|⩽𝑌|𝑑|≫𝑌𝑃−1∕3

𝑑∣𝑟

|𝑑|(𝑃−2 + |𝑑|Θ̂1 + 𝑃−3|𝑑|−1Θ̂−1
1

)𝑛∕8

≪ 𝑃3𝑛∕4−5∕3+𝜀𝑌 + 𝑃𝑛−1∕3+𝜀𝑌2+𝑛∕8Θ̂
1+𝑛∕8

1
+ 𝑃2𝑛∕3−2∕3+𝜀𝑌(Θ̂1𝑌)

1−𝑛∕8

≪ 𝑃3𝑛∕4−2∕3−𝜂+𝜀 + 𝑃5𝑛∕6−2∕3−𝜂+𝜀 + 𝑃2𝑛∕3−2∕3−𝛿(1−𝑛∕8)+𝜀𝑌,

where we used again Lemma 6.3 to bound the number of 𝑎’s, that Θ̂1 ≪ 𝑌−1𝑃−4∕3 and (4) to
estimate 𝑌 and Θ̂1. We have 3𝑛∕4 − 2∕3 < 𝑛 − 5 for 𝑛 ⩾ 18, so that he first term is sufficiently
small. Moreover, 5𝑛∕6 − 2∕3 − 𝜂 < 𝑛 − 5 as soon as 𝑛 ⩾ 26, which is also satisfactory. Lastly, the
third term above is

𝑃2𝑛∕3−2∕3−𝛿(1−𝑛∕8)+𝜀𝑌 ≪ 𝑃2𝑛∕3+1∕3−𝜂−𝛿(1−𝑛∕8)+𝜀 = 𝑃𝑛−5−𝜂+𝜀,

where of course 𝛿 was chosen in such a way as to simplify the exponent above. Therefore, this
contribution is also satisfactory. Since there are 𝑂(𝑃𝜀) choices for 𝑌 and Θ1, we have thus shown
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 17 of 54

that

𝐸2(𝑃) ≪ 𝑃𝑛−5−𝜅 (4.11)

for some 𝜅 > 0 if 𝑛 ⩾ 26.
The goal for the remainder of this work is to establish the following result.

Proposition 4.2. If 𝑛 ⩾ 26 and char(𝐾) > 3, then

N(𝑃) = 𝑐𝑃𝑛−5 + 𝑂
(
𝑃𝑛−5−𝛿

′
)

for some 𝛿′ > 0, where 𝑐 > 0 if for every prime 𝜛, there exists 𝒙𝜛 ∈ 𝑛
𝜛 such that 𝐹1(𝒙𝜛) =

𝐹2(𝒙𝜛) = 0 and |𝒃 − 𝒙𝜛|𝜛 < |𝑁|𝜛 and where the implied constant depends on 𝐹1, 𝐹2, 𝒃
and𝑁.

Once we have established Proposition 4.2, there is no difficulty in deducing the weak approx-
imation property for 𝑋. The exact details do not merit repetition here and can, for example, be
found in [5, Section 7.1] in the case of cubic hypersurfaces. Theorem 1.1 is the special case 𝑁 = 1,
in which case a non-zero solution 𝒙𝜛 ∈ 𝑛

𝜛 to 𝐹1(𝒙𝜛) = 𝐹2(𝒙𝜛) = 0 for every prime 𝜛 is guar-
anteed by the Lang–Tsen theory [14, Theorem 3.6] and the homogeneity of 𝐹1 and 𝐹2 under the
weaker assumption 𝑛 ⩾ 14. Therefore, Theorems 1.1 and 1.2 are a consequence of Proposition 4.2.
In the light of (4.10) and (4.11), it will be enough to show that

𝑀(𝑃) = 𝑐𝑃𝑛−5 + 𝑂
(
𝑃𝑛−5−𝜅

′
)

and 𝐸1(𝑃) ≪ 𝑃𝑛−5−𝜅
′′
,

for some 𝜅′, 𝜅′′ > 0, where 𝑐 satisfies the properties claimed in Proposition 4.2. This goal will
ultimately be achieved in Section 8 and requires a thorough analysis of the exponential sums
and oscillatory integrals that appear in (4.6). We carry out this investigation in the subsequent
three sections.

5 EXPONENTIAL INTEGRALS

To get control over 𝐼𝑠(𝜃, 𝒗), we consider for 𝒘 ∈ 𝐾𝑛
∞, 𝛾 ∈ 𝐾2

∞ and 𝐺1, 𝐺2 ∈ 𝐾∞[𝑥1, … , 𝑥𝑛] the
following oscillatory integral:

𝐽𝐺(𝛾,𝒘) ∶= ∫𝕋𝑛 𝜓
(
𝛾 ⋅ 𝐺(𝒙) + 𝒘 ⋅ 𝒙

)
d𝒙,

where we henceforth adopt the notation 𝛾 ⋅ 𝐺(𝒙) = 𝛾1𝐺1(𝒙) + 𝛾2𝐺2(𝒙). The main ingredients to
dealwith the exponential integrals appearing in ourwork are [33, Lemma 2.1–2.2], whichwe recall
here for our convenience.

Lemma 5.1. We have 𝐽𝐺(𝛾,𝒘) = 0 if |𝒘| > max{1, |𝛾1|𝐻𝐺1
, |𝛾2|𝐻𝐺2

}.
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18 of 54 GLAS

Lemma 5.2. LetΩ = {𝒙 ∈ 𝕋𝑛 ∶ |𝛾1∇𝐺1(𝒙) + 𝛾2∇𝐺2(𝒙) + 𝒘| ⩽ 𝐻𝐺 max{1, |𝛾|1∕2}}. Then,
𝐽𝐺(𝛾,𝒘) = ∫Ω 𝜓

(
𝛾 ⋅ 𝐺(𝒙) + 𝒘 ⋅ 𝒙

)
d𝒙.

Moreover, our analysis of the singular integral appearing in the main term of the asymptotic
formula for N(𝑃)makes use of [2, Lemma 5.5].

Lemma 5.3. Let 𝑥 ∈ 𝕋 and 𝑍 ⩾ 1. Then,

∫|𝜃|<𝑍−1 𝜓(𝑥𝜃)d𝜃 =
{
𝑍−1 if |𝑥| < 𝑍

0 else.

To begin our treatment of 𝐼𝑠(𝜃, 𝒗), note that by the definition of 𝑤 in (4.2), we have

𝐼𝑠(𝜃, 𝒗) = 𝐿̂−𝑛𝜓

(
𝑡𝑝𝒗 ⋅ 𝒙0

𝑠

)
∫𝕋𝑛 𝜓

(
𝑡3𝑃𝜃1𝐺1(𝒚) + 𝑡2𝑃𝜃2𝐺2(𝒚) +

𝑡𝑝𝒗 ⋅ 𝒚
𝑡𝐿𝑠

)
d𝜃

= 𝐿̂−𝑛𝜓

(
𝑡𝑝𝒗 ⋅ 𝒙0

𝑠

)
𝐽𝐺(𝑡

3𝑃𝜃1, 𝑡
2𝑃𝜃2, (𝑡

𝑃𝒗𝑡−𝐿∕𝑠)),

(5.1)

where 𝐺𝑖(𝒚) = 𝐹𝑖(𝒙0 + 𝑡−𝐿𝒚) for 𝑖 = 1, 2 and we applied the change of variables 𝒚 = 𝑡𝐿(𝒙 − 𝒙0).
It is clear that 𝐺𝑖 is a polynomial with coefficients in 𝐾∞ and𝐻𝐺 ⩽ 𝐻𝐹 . Therefore, it follows from
Lemma 5.1 that

𝐼𝑠(𝜃, 𝒗) = 0 if |𝒗| > 𝐿̂𝐻𝐹|𝑠|max{1, 𝑃3|𝜃1|, 𝑃2|𝜃2|}
𝑃

. (5.2)

Before we can derive upper bounds for 𝐼𝑠(𝜃, 𝑣) from Lemma 5.2, we need a preliminary step.

Lemma 5.4. Let 𝐶 ⊂ 𝐾2
∞ be compact and bounded away from 𝟎. If we define 𝐴(𝛾, 𝒙) to be the

maximum of the absolute values of the (𝑛 − 2) × (𝑛 − 2)-minors of 𝛾1𝐻(𝒙) + 𝛾2𝑀, then

𝐴(𝛾, 𝒙) ≫𝐶,𝑤,𝐹 1

for 𝛾 ∈ 𝐶 and 𝒙 ∈ supp(𝑤).

Proof. Suppose by contradiction that the statement of the lemma is false. Then, there exists a
sequence (𝛾

𝑘
, 𝒙𝑘) ∈ 𝐶 × supp(𝑤) such that 𝐴(𝛾

𝑘
, 𝒙𝑘) ⩽ 1∕𝑘 for all 𝑘 ⩾ 1. Since 𝐶 × supp(𝑤) is

compact, we can pass to a convergent subsequence with limit (𝛾′, 𝒙′) ∈ 𝐶 × supp(𝑤). However,
since the map (𝛾, 𝒙) ↦ 𝐴(𝛾, 𝒙) is continuous, this implies that every (𝑛 − 2) × (𝑛 − 2) minor of
𝛾′
1
𝐻(𝒙′) + 𝛾′

2
𝑀 vanishes. Therefore, rk(𝛾′

1
𝐻(𝒙′) + 𝛾′

2
𝑀) ⩽ 𝑛 − 3, which is a contradiction since

any 𝒙 ∈ supp(𝑤) satisfies the third condition in (4.1). □

When Θ = (Θ1,Θ2) ∈ ℤ2, then we shall henceforth adopt the convention that |𝛾| = Θ̂ means|𝜃1| = Θ̂1 and |𝜃2| = Θ̂2. We finally have all the ingredients at hand to provide an upper bound
for an average of 𝐼𝑠(𝜃, 𝒗) over 𝜃.
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Proposition 5.5. Let Θ ∈ ℤ2, 𝒗 ∈ 𝑛, 𝑠 ∈  be monic and put 𝑍 = max{1, 𝑃3Θ̂1, 𝑃
2Θ̂2}. Then, if|𝜃2|≫𝐹1,𝐹2,𝑤

𝑃|𝜃1|, we have
∫|𝜃|=Θ̂ 𝐼𝑠(𝜃, 𝒗)d𝛾 ≪𝐹1,𝐹2,𝑤

Θ̂1Θ̂2𝑍
−(𝑛−1)∕2,

while if |𝜃2|≪𝐹1,𝐹2,𝑤
𝑃|𝜃1|, then

∫|𝜃|=Θ̂ 𝐼𝑠(𝜃, 𝒗)d𝛾 ≪𝐹1,𝐹2,𝑤
Θ̂1Θ̂2𝑍

−(𝑛−2)∕2.

Proof. For the ease of notation, let us write𝒘 = 𝑡𝑃𝒗(𝑠𝑡𝐿)−1 and 𝛾𝑖 = 𝑡(4−𝑖)𝑃𝜃𝑖 for 𝑖 = 1, 2. If 𝑍 = 1,
then we use the trivial estimate 𝐼𝑠(𝜃, 𝒗) ⩽ 𝐿̂−𝑛 that is an immediate consequence of (5.1). We shall
therefore assume 𝑍 > 1 from now on. It then follows from (5.1) and Lemma 5.2 after an obvious
change of variables that

|𝐼𝑠(𝜃, 𝒗)| ⩽ 𝐿̂−𝑛meas{𝒙 ∈ 𝕋𝑛 ∶ |𝑡3𝑃𝜃1∇𝐺1(𝒙) + 𝜃2𝑡
2𝑃∇𝐺2(𝒙) + 𝒘| < 𝐻𝐺𝑍

1∕2}

⩽ meas{𝒙 ∈ 𝕋𝑛 ∶ |𝒙 − 𝒙0| < 𝐿̂−1, |𝜃1𝑡3𝑃∇𝐹1(𝒙) + 𝜃2𝑡
2𝑃∇𝐹2(𝒙) + 𝒘| < 𝐻𝐹𝑍

1∕2}.

Now let us denote the last set whosemeasurewewant to estimate byΩ and suppose𝒙, 𝒙 + 𝒙′ ∈ Ω.
By definition of Ω, we must then have

|𝛾1(∇𝐹1(𝒙 + 𝒙′) − ∇𝐹1(𝒙)) + 𝛾2∇𝐹2(𝒙
′)| < 𝐻𝐹𝑍

1∕2. (5.3)

Wenowdistinguish between the relative sizes of 𝛾1 and 𝛾2. Firstly, suppose |𝛾2|≫ |𝛾1|, so that𝑍 =|𝛾2|. Since rank(𝑀) ⩾ 𝑛 − 1, there exists indices 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛 such that the submatrix𝑀′ obtained
from𝑀 by deleting the 𝑖th row and 𝑗th column has rank 𝑛 − 1. Let us now fix 𝑎 ∈ 𝕋𝑛 and consider
the setΩ𝑎 of 𝒙 ∈ Ωwhose 𝑗th entry is 𝑎. Assume thatΩ𝑎 is non-empty and 𝒙′, 𝒙′ + 𝒙 are both in
Ω𝑎. We shall now write 𝒙′

𝑗̂
for the vector obtained from 𝒙′ by deleting the 𝑗th entry and similarly

for 𝒙 and 𝒙 + 𝒙′. Note that the 𝑗th entry of 𝒙must be 0. In addition,𝐻′ denotes the submatrix of
𝐻 after deleting the 𝑖th row and 𝑗th column. It then follows from (5.3) that

|(𝛾1𝐻′(𝒙 + 𝒙′) + 𝛾2𝑀
′)𝒙𝑗̂| ⩽ |(𝛾1𝐻(𝒙 + 𝒙′) + 𝛾2𝑀)𝒙|≪ 𝑍1∕2. (5.4)

Since rank𝑀′ = 𝑛 − 1, we have 𝑀′𝒙𝑗̂ ≫ |𝒙𝑗̂|. In particular, the trivial estimate 𝐻′(𝒙 + 𝒙′)𝒙𝑗̂ ≪|𝒙𝑗̂| together with the assumption |𝛾1|≪ |𝛾2| implies that (5.4) can only hold if
|𝛾2𝑀′𝒙𝑗̂|≪ 𝑍1∕2.

Wecannowmultiply the left-hand side by𝑀′−1, whose entries have absolute value𝑂(1), to deduce
that |𝒙𝑗̂|≪ 𝑍−1∕2, and thus,

∫|𝛾|=Θ̂ 𝐼𝑠(𝜃, 𝒗)d𝛾 ≪ ∫|𝛾|=Θ̂ ∫𝕋𝑛 meas(Ω𝑎)d𝑎d𝛾 ≪ Θ̂1Θ̂2𝑍
−(𝑛−1)∕2,

which is satisfactory.
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We now treat the more complicated case when |𝛾1|≫ |𝛾2|, so that 𝑍 = |𝛾1|. For 𝑖 = {𝑖1, 𝑖2},
𝑗̄ = {𝑗1, 𝑗2} ⊂ {1, … , 𝑛} and a matrix 𝐵 ∈ Mat𝑛×𝑛(𝐾∞), we write 𝐵𝑖,𝑗̄ for the matrix obtained from
𝐵 by deleting the 𝑖1th and 𝑖2th rows aswell as the 𝑗1th and 𝑗2th columns. It follows fromLemma 5.4
that

𝐴 ∶= max
𝑖,𝑗̄⊂{1,…,𝑛}|𝑖|=|𝑗̄|=2

|det((𝛾1𝐻(𝒙) + 𝛾2𝑀)𝑖,𝑗̄|≫ |𝛾1|
for 𝒙 ∈ supp(𝑤). Next, we divideΩ into at most (𝑛(𝑛 − 1)∕2)2 subsets according to the indices at
which the maximum above occurs, that is, for 𝑖, 𝑗̄ ⊂ {1, … , 𝑛}, we set

Ω𝑖,𝑗̄ ∶= {𝒙 ∈ Ω∶ 𝐴 = |det((𝛾1𝐻(𝒙) + 𝛾2𝑀)𝑖,𝑗̄|}.
Moreover, to estimate the measure of Ω𝑖,𝑗̄ , we shall again fix the 𝑗1th and 𝑗2th entries of 𝒙 and
denote by 𝒙𝑗̄ the vector obtained from 𝒙 by deleting the 𝑗1th and 𝑗2th entries, so that

meas(Ω𝑖,𝑗̄) ⩽ ∫𝕋2 meas{𝒙 ∈ Ω𝑖,𝑗̄ ∶ 𝑥𝑗𝑘 = 𝑎𝑘 for 𝑘 = 1, 2}d𝑎.

If 𝒙′, 𝒙 + 𝒙′ are both in Ω𝑖,𝑗̄ and 𝑥′𝑗𝑘 , 𝑥𝑗𝑘 + 𝑥′
𝑗𝑘
= 𝑎𝑘 for 𝑘 = 1, 2, then (5.3) implies that

|(𝐻(𝒙 + 𝒙′) + 𝛾2𝛾
−1
1 𝑀)𝑖,𝑗̄𝒙𝑗̄| ⩽ |(𝐻(𝒙 + 𝒙′) + 𝛾2𝛾

−1
1 𝑀)𝒙|≪ 𝑍−1∕2.

Since𝒙 + 𝒙′ ∈ Ω𝑖,𝑗̄ , the entries of the inverse of (𝐻(𝒙 + 𝒙′) + 𝛾2𝛾
−1
1
𝑀)𝑖,𝑗̄ have absolute value𝑂(1).

In particular, after multiplying the last equation above with it from the left, we get that |𝒙𝑖,𝑗̄|≪
𝑍−1∕2. From what we have shown so far, it thus follows that

∫|𝛾|=Θ̂ 𝐼𝑠(𝜃, 𝒗)d𝛾 ≪
∑

𝑖,𝑗̄⊂{1,…,𝑛}|𝑖|=|𝑗̄|=2
∫|𝛾|=Θ̂meas(Ω𝑖,𝑗̄)d𝛾

≪ 𝑍−(𝑛−2)∕2Θ̂1Θ̂2,

which completes the proof. □

6 EXPONENTIAL SUMS: POINTWISE ESTIMATES

The aim of this section is to collect estimates for the complete exponential sums 𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)
defined in (4.7). These sums enjoy a twisted multiplicativity property, which essentially reduces
the task of estimating them to the case of primepowermoduli. For 𝑟, 𝑅 ∈ , we adopt the notation

𝑟 ∣ 𝑅∞

to mean that every prime divisor of 𝑟 also divides 𝑅.
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Lemma 6.1. Suppose 𝑑 ∣ 𝑟 and 𝑟 = 𝑟1𝑟2 with (𝑟1, 𝑟2) = 1. If we write𝑁 = 𝑁1𝑁2𝑁3, where 𝑁𝑖 ∣ 𝑟
∞
𝑖

for 𝑖 = 1, 2 and (𝑟, 𝑁3) = 1, and let 𝑠𝑖 = 𝑟𝑖𝑁𝑖∕(𝑟𝑖, 𝑁𝑖) for 𝑖 = 1, 2, then there exist 𝒃′ ∈ (∕𝑁3)𝑛
and 𝑡𝑖 ∈ (∕𝑠𝑖)× for 𝑖 = 1, 2 such that

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) = 𝑆𝑑1𝑐,𝑟1,𝒃,𝑁1
(𝑡1𝒗)𝑆𝑑2𝑐,𝑟2,𝒃,𝑁2

(𝑡2𝒗)𝜓

(
−𝒗 ⋅ 𝒃′

𝑁3

)
,

where 𝑑 = 𝑑1𝑑2 with 𝑑𝑖 ∣ 𝑟𝑖 for 𝑖 = 1, 2.

Proof. By construction, 𝑠1, 𝑠2 and𝑁3 are pairwise coprime so that 𝑟𝑁 = 𝑠1𝑠2𝑁3. In particular, if 𝒚𝑖
runs through a complete sets of residues modulo 𝑠𝑖 for 𝑖 = 1, 2 and 𝒚3 modulo 𝑁3, then

𝒙 = 𝑠2𝑁3𝒚1 + 𝑠1𝑁3𝒚2 + 𝑠1𝑠2𝒚3

constitutes a complete set of residues modulo 𝑟. Next, for 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐), we write 𝑎 = 𝑟2𝑎1 + 𝑟1𝑎2,
where |𝑎

𝑖
| < |𝑟𝑖| and (𝑎𝑖, 𝑟𝑖) = 1. It is then clear that

𝜓

(
𝑎 ⋅ 𝐹(𝒙)

𝑟

)
= 𝜓

(
𝑎
1
⋅ 𝐹(𝑠2𝑁3𝒚𝟏)

𝑟1

)
𝜓

(
𝑎
2
⋅ 𝐹(𝑠1𝑁3𝒚2)

𝑟2

)
and

𝜓

(
−𝒗 ⋅ 𝒙
𝑟𝑁

)
= 𝜓

(
−𝒗 ⋅ 𝒚1
𝑠1

)
𝜓

(
−𝒗 ⋅ 𝒚2
𝑠2

)
𝜓

(
−𝒗 ⋅ 𝒚3
𝑁3

)
.

Moreover, it is demonstrated in the proof of Lemma 5.2 in [33] that 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) if and only if
𝑎
𝑖
∕𝑟𝑖 ∈ 𝐿(𝑑𝑖𝑐) for both 𝑖 = 1, 2. The result now follows after the change of variables 𝒙1 = 𝑠2𝑁3𝒚1

and 𝒙2 = 𝑠1𝑁3𝒚2 and taking 𝑡1 ≡ (𝑠2𝑁3)
−1 (𝑠1), 𝑡2 ≡ (𝑠1𝑁3)

−1 (𝑠2) and 𝒃′ ≡ (𝑠1𝑠2)
−1𝒃 (𝑠3). □

In some cases, we will obtain estimates for the sums 𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) by considering their relatives

𝑇(𝑎, 𝑟, 𝒗) ∶=
∑

|𝒙|<|𝑟|𝜓
(
𝑎1𝐺1(𝒙) + 𝑎2𝐺2(𝒙) − 𝒗 ⋅ 𝒙

𝑟

)
(6.1)

for appropriate polynomials 𝐺1, 𝐺2 ∈ [𝑥1, … , 𝑥𝑛]. These sums satisfy the following twisted
multiplicativity property.

Lemma 6.2. Let 𝑟 = 𝑟1𝑟2 with (𝑟1, 𝑟2) = 1. Then,

𝑇(𝑎, 𝑟, 𝒗) = 𝑇(𝑎
𝑟2
, 𝑟1, 𝒗)𝑇(𝑎𝑟1

, 𝑟2, 𝒗),

where 𝑎
𝑠 ∶= (𝑠2𝑎1, 𝑠𝑎2) for 𝑠 ∈ .

Proof. As 𝒙𝑖 runs over a full set of residues mod 𝑟𝑖 , 𝒙 = 𝑟2𝒙1 + 𝑟1𝒙2 runs over a full set of residues
mod 𝑟. Moreover, using Taylor’s formula, it is easy to see that

𝜓

(
𝑎𝑖𝐹𝑖(𝒙)

𝑟

)
= 𝜓

(
𝑎𝑖𝑟

4−𝑖
2
𝐹𝑖(𝒙1)

𝑟1

)
𝜓

(
𝑎𝑖𝑟

4−𝑖
1
𝐹𝑖(𝒙2)

𝑟2

)
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for 𝑖 = 1, 2 and

𝜓
(
−𝒗 ⋅ 𝒙
𝑟

)
= 𝜓

(
−𝒗 ⋅ 𝒙1
𝑟1

)
𝜓

(
−𝒗 ⋅ 𝒙2
𝑟2

)
,

from which the statement of the lemma follows. □

For our investigation, we shall also need a good understanding of the distribution of rational
points𝑎∕𝑟 on an individual line𝐿(𝑑𝑐)when 𝑟 is fixed. By Lemma6.1, it suffices to consider the case
𝑟 = 𝜛𝑘 and𝑑 = 𝜛𝑚with𝑚 ⩽ 𝑘. The following lemma summarises the content of equations (6.9)–
(6.11) of [33].

Lemma 6.3. If 1 ⩽ 𝑚 < 𝑘, then modulo𝜛𝑘 we have the following equality of sets

{𝑎∶ 𝑎∕𝜛𝑘 ∈ 𝐿(𝜛𝑚𝑐)} = {𝑎𝑐⊥ + 𝜛𝑘−𝑚𝑑∶ |𝑎| < |𝜛|𝑘−𝑚, (𝑎,𝜛) = 1, |𝑑| < |𝜛|𝑚}⧵
{𝑎𝑐⊥ + 𝜛𝑘−𝑚+1𝑑∶ |𝑎| < |𝜛|𝑘−𝑚+1, |𝑑| < |𝜛|𝑚−1, (𝑎,𝜛) = 1},

and for 𝑘 = 𝑚, we have

{𝑎∶ 𝑎∕𝜛𝑘 ∈ 𝐿(𝜛𝑘𝑐)} ={𝑑∶ (𝑑,𝜛) = 1, |𝑑| < |𝜛|𝑘}⧵
{𝑎𝑐⊥ + 𝜛𝑑∶ (𝑎,𝜛) = 1, |𝑎| < |𝜛|, |𝑑| < |𝜛|𝑘−1}.

Moreover, when𝑚 = 0, then

{𝑎∶ 𝑎∕𝜛𝑘 ∈ 𝐿(𝑐)} = {𝑎𝑐⊥ ∶ (𝑎,𝜛) = 1, |𝑎| < |𝜛|𝑘}.
In particular, we have #{𝑎∶ 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐)} ⩽ |𝑑||𝑟|.
6.1 Square-free moduli

We will now deal with 𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) when 𝑟 is square-free. A key player in our estimates is the dual
form 𝐹∗

1
∈ [𝑥1, … , 𝑥𝑛], whose zero locus parameterises hyperplanes that have singular inter-

section with the projective hypersurface defined by 𝐹. It is well known [11, Example 4.4.3] that
𝐹∗
1
is absolutely irreducible and of degree 3 × 2𝑛−2, providing char(𝐾) > 3. We begin our treat-

ment by assuming that 𝑑 = 1. In this case, Lemma 6.3 tells us that 𝑆𝑐,𝜛,𝟎,1(𝒗) equals the familiar
exponential sum

𝑆𝜛(𝒗) ∶=
∑

′

𝑎 (𝜛)

∑
𝒙 (𝜛)

𝜓

(
𝑎𝐹𝑐(𝒙) − 𝒗 ⋅ 𝒙

𝜛

)
,

where 𝐹𝑐(𝒙) = −𝑐2𝐹1(𝒙) + 𝑐1𝐹2(𝒙). Let 𝔽𝜛 = ∕𝜛 be the residue field of 𝜛. Our main
ingredient is the following special case of a result due to Katz [19, Theorem 4].
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Theorem 6.4. Let 𝑋 ⊂ ℙ𝑛
𝔽𝜛

be a complete intersection of dimension 𝑟 defined by forms of degrees
𝑑1, … , 𝑑𝑛−𝑟 and let 𝐿,𝐻 ∈ 𝐻0(ℙ𝑛, 𝑂ℙ𝑛(1)). If the following conditions are met:

(i) 𝑋 ∩ 𝐿 ∩ 𝐻 has dimension 𝑟 − 2,
(ii) the singular locus of 𝑋 ∩ 𝐿 has dimension 𝜀,
(iii) the singular locus of 𝑋 ∩ 𝐿 ∩ 𝐻 has dimension 𝛿 ⩾ 𝜀,

then there exists a constant 𝐶 > 0 depending only on 𝑛, 𝑑1, … , 𝑑𝑛−𝑟 such that for 𝑓 = 𝐻∕𝐿, it holds
that ∑

𝒙∈𝑋[1∕𝐿]

𝜓

(
𝑓(𝒙)

𝜛

)
⩽ 𝐶|𝜛|(𝑟+1+𝛿)∕2,

where 𝑋[1∕𝐿] is the affine variety defined as the complement of the hyperplane cut out by 𝐿 in 𝑋.

Remark. Katz states Theorem 4 for arbitrary closed subvarieties of projective space that are geo-
metrically integral or equidimensional and Cohen–Macauly. However, our assumption that 𝑋 is
a complete intersection implies that𝑋 is Cohen–Macauly and equidimensional, thereby allowing
us to state the simplified version above.

Suppose that𝜛 ∤ 𝒗𝑐2. Using orthogonality of characters, we see that

𝑆𝜛(𝒗) = |𝜛| ∑
𝒙∈𝔽𝑛𝜛
𝐹𝑐(𝒙)=0

𝜓
(
−𝒗 ⋅ 𝒙
𝜛

)
.

Let 𝐹(𝑥0, 𝒙) ∈ [𝑥0, 𝑥1, … , 𝑥𝑛] be the homogenisation of 𝐹𝑐, that is,
𝐹(𝑥0, 𝒙) = −𝑐2𝐹1(𝒙) + 𝑥0𝑐1𝐹2(𝒙),

and define 𝑋 = 𝑉(𝐹) ⊂ ℙ𝑛
𝔽𝜛

to be the projective variety cut out by the reduction of 𝐹 modulo𝜛.
Note that the point (1, 0, … , 0)will always be a singularity of𝑋. Moreover, we also set 𝐿(𝑥0, 𝒙) = 𝑥0
and 𝐻(𝒙) = −𝒗 ⋅ 𝒙. In our situation, we thus have 𝑋 ∩ 𝐿 = 𝑉(𝐹1) and 𝑋 ∩ 𝐿 ∩ 𝐻 = 𝑉(𝐹1, 𝒗 ⋅ 𝒙).
In particular, 𝛿 = 𝜀 = −1 provided𝜛 ∤ Δ𝐹1𝐹

∗
1
(𝒗), whereΔ𝐹1 is the discriminant of 𝐹1. Indeed, the

condition𝜛 ∤ Δ𝐹1 guarantees that the reduction of 𝐹1 modulo𝜛 is non-singular and𝜛 ∤ 𝐹∗
1
(𝒗)

implies that𝑉(𝐹1, 𝒗 ⋅ 𝒙) ⊂ ℙ𝑛−1
𝔽𝜛

is non-singular. We can thus apply Theorem 6.4 with 𝛿 = −1 and
𝑟 = 𝑛 − 1 to deduce that

|𝜛|−1|𝑆𝜛(𝒗)| ⩽ 𝐶|𝜛|(𝑛−1)∕2,
where 𝐶 is a constant that only depends on the degrees of 𝐹1 and 𝐹2 and 𝑛. Absorbing the primes
𝜛 ∣ Δ𝐹1 into the constant and invoking Lemma 6.1, we have thus established the following result.

Lemma 6.5. Suppose that 𝑟 ∈  is square-free with (𝑟, 𝐹∗
1
(𝒗)𝑐2) = 1. There exists a constant 𝐶 > 0

depending only on Δ𝐹1, deg 𝐹1, deg 𝐹2 and 𝑛 such that

𝑆𝑐,𝑟,𝟎,1(𝒗) ⩽ 𝐶𝜔(𝑟)|𝑟|(𝑛+1)∕2,
where 𝜔(𝑟) denotes the number of prime divisors of 𝑟
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24 of 54 GLAS

Let us now turn to the case 𝑑 ≠ 1. We shall use the following estimate of Deligne [7, Théorème
8.4], which states that for a polynomial 𝐹 ∈ 𝔽𝜛[𝑥1, … , 𝑥𝑛] of degree 𝑑with char(𝔽𝜛) ∤ 𝑑 such that
the highest degree part cuts out a smooth projective hypersurface in ℙ𝑛−1

𝔽𝜛
, one has

||||||
∑
𝒙∈𝔽𝑛𝜛

𝜓

(
𝐹(𝒙)

𝜛

)|||||| ⩽ (𝑑 − 1)𝑛|𝜛|𝑛∕2. (6.2)

Recalling the definition of the sum 𝑇 in (6.1) with 𝐺𝑖 = 𝐹𝑖 for 𝑖 = 1, 2, the estimate (6.2) implies

𝑇(𝑎,𝜛, 𝒗) ⩽ 2𝑛|𝜛|𝑛∕2
whenever𝜛 ∤ 𝑎1Δ𝐹1 . On the other hand, if𝜛 ∣ 𝑎1, then𝜛 ∤ 𝑎2 and then

𝑇(𝑎,𝜛, 𝒗) ⩽ |𝜛|(𝑛+1)∕2, (6.3)

provided that 𝐹2 is a quadratic form of rank at least 𝑛 − 1modulo𝜛, as, for example, follows from
[33, Lemma 3.5]. Now let us assume 𝑟 ∈  is square-free and write 𝑟 = 𝑟1𝑟2, with (𝑟1, 𝑟2) = 1 and
𝑟2 ∣ 𝑁

∞. If 𝑑 = 𝑑1𝑑2 with 𝑑1 ∣ 𝑟1 and 𝑑2 ∣ 𝑟2, then by Lemma 6.1, we have

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) = 𝑆𝑑1𝑐,𝑟1,𝟎,1(𝑡1𝒗)𝑆𝑑2𝑐,𝑟2,𝒃,𝑁(𝑡2𝒗)

for some 𝑡𝑖 ∈ (∕𝑟𝑖)×. After absorbing the primes𝜛 ∣ Δ𝐹1 or for which the reduction of 𝐹2 has
rank strictly less than 𝑛 − 1 into the constant, it now follows from the estimates we just recorded
and Lemma 6.3 that

𝑆𝑑1𝑐,𝑟1,𝟎,1(𝑡1𝒗) =
∑

𝑎∕𝑟∈𝐿(𝑑1𝑐)

𝑇(𝑎, 𝑟1, 𝑡1𝒗) ⩽ 𝐶𝜔(𝑟1)|𝑑1||𝑟1|(𝑛+3)∕2,
for some constant 𝐶 > 0.
We can now estimate 𝑆𝑑2𝑐,𝑟2,𝒃,𝑀(𝑡2𝒗) trivially to arrive at the following result.

Lemma 6.6. Suppose that 𝑟 is square-free and 𝑑 ∣ 𝑟. Then, there exists a constant 𝐶 > 0 depending
only on deg𝐹1, 𝐹2, Δ𝐹1 and𝑁 such that

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) ⩽ 𝐶𝜔(𝑟)|𝑑||𝑟|(𝑛+3)∕2.
Moreover, if (𝑐2, 𝑟) = 1, then

𝑆𝑐,𝑟,𝟎,1(𝒗) ⩽ 𝐶𝜔(𝑟)|𝑟|𝑛∕2+1.
6.2 Square-full moduli

To satisfactorily deal with square-full moduli, we begin with the case 𝑟 = 𝜛2. Our main ingredi-
ent is the following result due to Heath-Brown [16, p. 395]. It should be noted that Heath-Brown’s
proves his result solely over the integers. However, it is a routine exercise and the required

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12991 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 25 of 54

adaptions are minor to check that his argument holds over 𝔽𝑞[𝑡] as well. Let 𝐹 ∈ [𝑥1, … , 𝑥𝑛] be
a polynomial of degree 𝑑 with char(𝔽𝑞) > 𝑑 and suppose that the reduction of the top degree part
of 𝐹 defines a smooth projective hypersurface modulo𝜛. Then, it holds that

∑
𝒙 (𝜛2)

𝜓

(
𝐹(𝒙)

𝜛2

)
⩽ (𝑑 − 1)𝑛|𝜛|𝑛. (6.4)

After absorbing the contribution from the primes dividing Δ𝐹1 into the constant and employing
Lemma 6.3, we arrive at the following estimate.

Lemma 6.7. If𝜛 ∤ 𝑎1, then

𝑇(𝑎,𝜛2, 𝒗) ≪Δ𝐹1
|𝜛|𝑛.

In particular, we also have

𝑆𝑐,𝜛2,𝟎,1(𝒗) ≪Δ𝐹1
|𝜛|2+𝑛

provided𝜛 ∤ 𝑐2.

Since 𝐹2 is a quadratic form, there exists a matrix 𝐺 ∈ GL𝑛(𝐾)with entries in such that after
the change of variables 𝒚 = 𝐺𝒙, one has

𝐹2(𝒚) =

𝑛∑
𝑖=1

𝑏𝑖𝑦
2
𝑖 with 𝑏2 … 𝑏𝑛 ≠ 0.

If𝜛 ∣ det(𝐺), wemay still locally diagonalise𝐹2with amatrix𝐺𝜛 ∈ GL𝑛(𝐾𝜛) that has coefficients
in 𝜛 , so that after the change of variables 𝒚 = 𝐺𝜛𝒙, we have

𝐹2(𝒚) =

𝑛∑
𝑖=1

𝑏𝜛,𝑖𝑦
2
𝑖 with 𝑏𝜛,2⋯ 𝑏𝜛,𝑛 ≠ 0.

Let us define

Δ𝐹2 =

{
𝑏1⋯ 𝑏𝑛

∏
𝜛∣det(𝐺) 𝜛

𝜈𝜛(𝑏𝜛,1⋯𝑏𝜛,𝑛) if rank(𝑀) = 𝑛,

𝑏2⋯ 𝑏𝑛
∏

𝜛∣det(𝐺) 𝜛
𝜈𝜛(𝑏𝜛,2⋯𝑏𝜛,𝑛) if rank(𝑀) = 𝑛 − 1,

and

𝑣𝜛 = 𝜈𝜛(Δ𝐹2). (6.5)

We then have the following result [3, Lemma 6.2].

Lemma 6.8. Let 𝑘 ⩾ 2 and suppose𝜛1+𝑣𝜛 ∣ 𝑎1. Then, for any 𝒗 ∈ 𝑛, we have

𝑇(𝑎,𝜛𝑘, 𝒗) ≪𝐹2
|𝜛|(𝑛+1)∕2.
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26 of 54 GLAS

[3, Lemma 6.2] is again only proved for the analogous sum over the integers. Moreover, they
assume that 𝐹2 is diagonal from the beginning, a difference we take care of by the diagonalisation
process above. The proof goes through verbatim in our setting, and so, we shall not repeat it here.

Corollary 6.9. Let 𝑟 ∈  be such that 𝜛 ∣ 𝑟 implies 𝜛2 ∥ 𝑟. Then, there exists a constant 𝐶 > 0

depending on 𝐹1, 𝐹2 and𝑁 such that

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) ⩽ 𝐶𝜔(𝑟)|𝑑||𝑟|(𝑛+3)∕2.
Proof. Write 𝑟 = 𝑟1𝑟2 with coprime 𝑟1, 𝑟2 ∈  such that (𝑟1, 𝑁) = 1 and 𝑟2 ∣ 𝑁∞. As in the proof of
Lemma 6.6, it suffices to obtain and upper bound for the sum 𝑆𝑑1𝑐,𝑟1,𝟎,1(𝑡1𝒗), where 𝑡1 ∈ (∕𝑟1)×,
and estimate the sum corresponding to 𝑟2 trivially. By definition, we then have

𝑆𝑑1𝑐,𝑟1,𝟎,1(𝑡1𝒗) =
∑

𝑎∕𝑟∈𝐿(𝑑1𝑐)

𝑇(𝑎, 𝑟1, 𝑡1𝒗).

Using themulitplicativity property recorded in Lemma 6.2, we can now invoke Lemma 6.7 in con-
junction with Lemma 6.8 to obtain 𝑇(𝑎, 𝑟1, 𝑡1𝒗) ⩽ 𝐶𝜔(𝑟1)|𝑟1|(𝑛+1)∕2. Lemma 6.3 provides us with
an upper bound for the number of 𝑎’s such that 𝑎∕𝑟1 ∈ 𝐿(𝑑1𝑐) that completes the proof. □

6.3 The case 𝒄𝟐 = 𝟎

We now consider separately the case 𝑐2 = 0. This can only occur if 𝑐1 = 1 and so to ease nota-
tion, we write 𝑐

0 ∶= (1, 0). By Lemma 6.1, we can reduce to the case when 𝑟 = 𝜛𝑘 and 𝑑 = 𝜛𝑚

with 𝑚 ⩽ 𝑘 and we again begin our treatment assuming that 𝑟 = 𝜛. When 𝑑 = 1, Lemma 6.6
already provides sufficiently good upper bounds. However, when 𝑑 = 𝜛, we have to do better and
establishing an estimate that is superior to Lemma 6.6 is our first goal. For 𝑘 ⩾ 1, let us define

𝜌1(𝜛
𝑘) = #{𝒙 (𝜛)∶ 𝐹1(𝒙) ≡ 𝐹2(𝒙) ≡ 0 (𝜛𝑘)} and 𝜌2(𝜛

𝑘) = #{𝒙 (𝜛)∶ 𝐹2(𝒙) ≡ 0 (𝜛𝑘)}.

By Lemma 6.3, we have

𝑆𝜛𝑐0,𝜛,𝟎,1
(𝒗) =

∑
′

𝑎1 (𝜛)

∑
𝑎2 (𝜛)

∑
𝒙 (𝜛)

𝜓

(
𝑎1𝐹1(𝒙) + 𝑎2𝐹2(𝒙) − 𝒗 ⋅ 𝒙

𝜛

)

= |𝜛| ⎛⎜⎜⎜⎝|𝜛|
∑
𝒙 (𝜛)

𝐹1(𝒙)≡𝐹2(𝒙)≡0 (𝜛)
𝜓
(
−𝒗 ⋅ 𝒙
𝜛

)
−

∑
𝒙 (𝜛)

𝐹2(𝒙)≡0 (𝜛)
𝜓
(
−𝒗 ⋅ 𝒙
𝜛

)⎞⎟⎟⎟⎠ .
If𝜛 ∣ 𝒗, then the expression above simplifies to

𝑆𝜛𝑐0,𝜛,𝟎,1
(𝒗) = |𝜛|(|𝜛|𝜌1(𝜛) − 𝜌2(𝜛)).

Since the reduction of 𝑋 modulo𝜛 is non-singular for |𝜛| sufficiently large, we have
𝜌1(𝜛) = |𝜛|𝑛−2 + 𝑂

(|𝜛|(𝑛−1)∕2),
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 27 of 54

as follows, for example, from Equation (3.12) in [5]. Moreover, because 𝐹2 has rank at least 𝑛 − 1,
it holds that

𝜌2(𝜛) = |𝜛|𝑛−1 + 𝑂
(|𝜛|(𝑛+1)∕2).

So that in total, we have

𝑆𝜛𝑐0,𝜛,𝟎,1
(𝒗) ≪ |𝜛|(𝑛+3)∕2 (6.6)

whenever 𝜛 ∣ 𝒗, where the implied constant only depends on 𝐹1 and 𝐹2. Let us now deal with
the opposite case𝜛 ∤ 𝒗. We want to apply Theorem 6.4 to our situation. For this, we define 𝑋′

𝜛 =

𝑉(𝐹1, 𝐹2) ⊂ ℙ𝑛 = Proj(𝔽𝜛[𝑥0, 𝑥1, … , 𝑥𝑛]). In addition,we set 𝐿(𝑥0, 𝒙) = 𝑥0 and𝐻(𝑥0, 𝒙) = −𝒗 ⋅ 𝒙.
Provided |𝜛| is sufficiently large, 𝑋′

𝜛 is a complete intersection of dimension 𝑛 − 2with the only
singularity at (1 ∶ 0 ∶⋯ ∶ 0) ∈ ℙ𝑛. Moreover, we have𝑋′

𝜛 ∩ 𝐿 = 𝑉(𝐹1, 𝐹2) ⊂ ℙ𝑛−1, which is non-
singular. It follows from a result of Zak and Fulton–Lazarsfeld [12, Remark 7.5] that𝑋′

𝜛 ∩ 𝐻 ∩ 𝐿 =

𝑉(𝐹1, 𝐹1) ∩ 𝐻 ⊂ ℙ𝑛−1 has at worst isolated singularities, so that in the notation of Theorem 6.4,
we have 𝜀 = −1 and 𝛿 ⩽ 0. In particular,∑

𝒙 (𝜛)
𝐹1(𝒙)≡𝐹2(𝒙)≡0 (𝜛)

𝜓
(
−𝒗 ⋅ 𝒙
𝜛

)
≪ |𝜛|(𝑛−1)∕2.

Combining this with (6.3), we infer

𝑆𝜛𝑐0,𝜛,𝟎,1
(𝜛) = |𝜛|2 ∑

𝒙 (𝜛)
𝐹1(𝒙)≡𝐹2(𝒙)≡0 (𝜛)

𝜓
(
−𝒗 ⋅ 𝑥
𝜛

)
−

∑
𝑎2 (𝜛)

∑
𝒙 (𝜛)

𝜓

(
𝑎2𝐹2(𝒙) − 𝒗 ⋅ 𝒙

𝜛

)

≪ |𝜛|(𝑛+3)∕2 + |𝜛|(𝑛+3)∕2.
Estimating the contribution from the primes𝜛 ∣ 𝑁 trivially, and using Lemma 6.1, it thus follows
from (6.6) that

|𝑆𝑑𝑐0,𝑑,𝒃,𝑁(𝒗)| ⩽ 𝐶𝜔(𝑑)|𝑑|(𝑛+3)∕2 (6.7)

for some constant 𝐶 > 0 that only depends on 𝐹1, 𝐹2 and 𝑁.
We also require strong upper bounds for the sums

𝑆1 = 𝑆𝜛𝑐0,𝜛2,𝟎,1(𝒗) and 𝑆2 = 𝑆𝜛2𝑐0,𝜛
2,𝟎,1(𝒗).

Let us begin with the former. In this case, Lemma 6.3 implies

𝑆1 =
∑

′

|𝑎|<|𝜛|
∑

|𝑑|<|𝜛|
∑

|𝒙|<|𝜛|2 𝜓
(
(𝑎 + 𝜛𝑑2)𝐹2(𝒙) + 𝜛𝑑1𝐹1(𝒙) − 𝒗 ⋅ 𝒙

𝜛2

)

= |𝜛| ∑
′

|𝑎|<|𝜛|2
∑

|𝒙|<|𝜛|2
𝐹1(𝒙)≡0 (𝜛)

𝜓

(
𝑎𝐹2(𝒙) − 𝒗 ⋅ 𝒙

𝜛2

)
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28 of 54 GLAS

= |𝜛|3
⎛⎜⎜⎜⎜⎜⎜⎝

∑
|𝒙|<|𝜛|2

𝐹1(𝒙)≡0 (𝜛)
𝐹2(𝒙)≡0 (𝜛2)

𝜓
(
−𝒗 ⋅ 𝒙
𝜛2

)
− |𝜛|−1 ∑

|𝒙|<|𝜛|2
𝐹1(𝒙)≡0 (𝜛)
𝐹2(𝒙)≡0 (𝜛)

𝜓
(
−𝒗 ⋅ 𝒙
𝜛2

)⎞⎟⎟⎟⎟⎟⎟⎠
= |𝜛|3(Σ1 − |𝜛|−1Σ2)

say. The conditions 𝐹1(𝒙) ≡ 0 (𝜛) and 𝐹2(𝒙) ≡ 0 (𝜛2) are invariant under scaling 𝒙 by any 𝑏 with
(𝑏,𝜛) = 1, and so, we deduce that that

Σ1 =
1|𝜛|2(1 − |𝜛|−1) ∑

|𝒙|<|𝜛|2
𝐹1(𝒙)≡0 (𝜛)
𝐹2(𝒙)≡0 (𝜛2)

∑
′

|𝑏|<|𝜛|2 𝜓
(
𝑏𝒗 ⋅ 𝒙
𝜛2

)

=
1

1 − |𝜛|−1 ∑
𝒙 (𝜛)

𝐹1(𝒙)≡𝐹2(𝒙≡0 (𝜛)
𝒗⋅𝒙≡0 (𝜛)

(𝜌1(𝒙) − |𝜛|−1𝜌2(𝒙)),

where

𝜌1(𝒙) ∶= #{𝒚 (𝜛2)∶ 𝒚 ≡ 𝒙 (𝜛), 𝐹2(𝒙) ≡ 𝒗 ⋅ 𝒙 ≡ 0 (𝜛2)}

and

𝜌2(𝒙) ∶= #{𝒚 (𝜛2)∶ 𝒚 ≡ 𝒙 (𝜛), 𝐹2(𝒙) ≡ 0 (𝜛2)}.

Running the exact argument again yields

Σ2 =
1

1 − |𝜛|−1 ∑
𝒙 (𝜛)

𝐹1(𝒙)≡𝐹2(𝒙)≡0 (𝜛)
𝒗⋅𝒙≡0 (𝜛)

(𝜌′1(𝒙) − |𝜛|𝑛−1),

where

𝜌′1(𝒙) ∶= #{𝒚 (𝜛2)∶ 𝒚 ≡ 𝒙 (𝜛), 𝒗 ⋅ 𝒙 ≡ 0 (𝜛2)}.

Suppose that 𝒚 = 𝒙 +𝜛𝒛. Then, 𝒚 is counted by 𝜌1(𝒙) if and only if𝜛 ∣ (𝒙𝑡𝑀𝒚 +𝜛−1𝐹2(𝒙)) and
𝜛 ∣ (𝒗 ⋅ 𝒛 + 𝜛−1𝒗 ⋅ 𝒙), whereas 𝒚 is counted by 𝜌2(𝒙) if and only if 𝜛 ∣ (𝒙𝑡𝑀𝒚 +𝜛−1𝐹2(𝒙)). In
particular, we see that 𝜌1(𝒙) − |𝜛|−1𝜌2(𝒙) = 0 unless

rank

(
𝒗

𝑀𝒙

)
= rank(𝑀𝒙) mod 𝜛. (6.8)

Note that for 𝒙 ≢ 0 (𝜛) and |𝜛| sufficiently large, this can only happen if 𝒗 and𝑀𝒙 are propor-
tional, since then the non-singularity of 𝑋 implies that 𝑀𝒙 ≢ 0 (𝜛). In particular, if (6.8) holds
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and 𝒙 ≢ 0 (𝜛), then 𝜌1(𝒙) − |𝜛|−1𝜌2(𝒙) = |𝜛|𝑛−1 − |𝜛|𝑛−2, while if 𝒗 ≡ 0 (𝜛), then 𝜌1(𝟎) −|𝜛|−1𝜌2(𝟎) = |𝜛|𝑛 − |𝜛|𝑛−1. Moreover, we have 𝜌′
1
(𝒙) = |𝜛|𝑛−1 unless 𝜛 ∣ 𝒗, in which case

𝜌1(𝒙) = |𝜛|𝑛. In total, we thus have
𝑆1 = |𝜛|3( |𝜛|𝑛−1

(1 − |𝜛|−1) 21 −
|𝜛|𝑛−1

(1 − |𝜛|−1) 22

)
+ 𝑂

(|𝜛|𝑛+3).
The error term takes care of the contribution from 𝒙 ≡ 𝟎 (𝜛) in Σ1 and Σ2, and where we have
defined

1 ∶= #{∈ 𝔽𝑛𝜛 ⧵ {𝟎}∶ 𝒗 ⋅ 𝒙 = 𝐹1(𝒙) = 𝐹2(𝒙) = 0, (6.8) holds}

and

2 ∶= #{𝒙 ∈ 𝔽𝑛𝜛 ⧵ {𝟎}∶ 𝐹1(𝒙) = 𝐹2(𝒙) = 0, 𝒗 ≡ 𝟎 (𝜛)}.

Let us first deal with the case𝜛 ∣ 𝒗. It follows that1 = 2, and thus,

𝑆1 = 𝑂(|𝜛|𝑛+3).
Suppose next that 𝜛 ∤ 𝒗. In this case, 2 = 0 and (6.8) holds if and only if 𝑀𝒙 and 𝒗 are pro-
portional. Since 𝑀 has rank at least 𝑛 − 1, this can happen for at most 𝑂(|𝜛|2) choices of 𝒙, so
that

𝑆1 ≪ |𝜛|𝑛+21 + |𝜛|𝑛+3 ≪ |𝜛|𝑛+4.
In total, we have therefore established that

𝑆1 ≪ |𝜛|𝑛+4. (6.9)

Let us now turn to the sum 𝑆2. It follows from Lemma 6.3 that

𝑆2 ⩽
∑

′

𝑎1 (𝜛
2)

∑
𝑎2 (𝜛

2)

||||||
∑
𝒙 (𝜛2)

𝜓

(
𝑎1𝐹1(𝒙) + 𝑎2𝐹2(𝒙) − 𝒗 ⋅ 𝒙

𝜛2

)||||||.
Since (𝑎1,𝜛) = 1, we can apply Lemma 6.7 to deduce that the sum over 𝒙 is𝑂(|𝜛|𝑛), and hence,

𝑆2 ≪ |𝜛|𝑛+4, (6.10)

which completes our treatment of 𝑆1 and 𝑆2.
Finally, when𝜛 ∤ Δ𝐹2 and 0 ⩽ 𝑚 < 𝑘, we can invoke Lemma 6.8 to deduce that

𝑆𝜛𝑚𝑐0,𝜛
𝑘,𝟎,1(𝒗) ≪ |𝜛|𝑚+𝑘(𝑛+3)∕2. (6.11)

Using Lemma 6.1 and estimating the contribution from𝑁 trivially, we see that the following result
summarises the content of (6.7) and (6.9)–(6.11).
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Proposition 6.10. Let 𝑑1, 𝑑2, 𝑑3 ∈  be square-free. Then, there exists a constant 𝐶 > 0 depending
on 𝐹1, 𝐹2 and𝑁 such that

𝑆𝑑1𝑑2𝑑23𝑐0,𝑑1𝑑
2
2
𝑑2
3
,𝒃,𝑁(𝒗) ⩽ 𝐶𝜔(𝑑1𝑑2𝑑3)|𝑑1|(𝑛+3)∕2|𝑑2𝑑3|𝑛+4.

In addition, let𝑑, 𝑟 ∈  be bothmonic such that𝑑 ∣ 𝑟 and (𝑟, Δ𝐹2) = 1. If 𝜈𝜛(𝑑) < 𝜈𝜛(𝑟) for all𝜛 ∣ 𝑑,
then

𝑆𝑑𝑐0,𝑟,𝟎,1
(𝒗) ⩽ 𝐶𝜔(𝑟)|𝑑||𝑟|(𝑛+3)∕2.

7 EXPONENTIAL SUMS: AVERAGES

We also need to deal with certain averages over exponential sums. Our first ingredient is the
following result, which we apply to our situation in the corollary directly afterwards.

Lemma 7.1. Let 𝒗0 ∈ 𝐾𝑛
∞ and 𝑉 ⩾ 1. If 𝑟 is cube-full and 𝑎 ∈ 2 is such that |(𝑎1, 𝑟)|≪ 1, then

∑
𝒗∈𝑛|𝒗−𝒗0|<𝑉

|𝑇(𝑎, 𝑟, 𝒗)|≪𝐹1
|𝑟|𝑛∕2+𝜀(𝑉𝑛 + |𝑟|𝑛∕3).

The lemma we just stated follows from equation (6.9) in [5]. There only the case when
(𝑎1, 𝑟) = 1 is considered. However, as explained in the paragraph after [3, Lemma 6.4], the argu-
ment leading to the estimate continues to hold when |(𝑎1, 𝑟)|≪ 1 after employing some minor
modifications.

Corollary 7.2. Let 𝒗0 ∈ 𝐾𝑛
∞ and 𝑉 ⩾ 1. Suppose 𝑟 is cube-full such that 𝑑 ∣ 𝑟 and define

𝑃1(𝑟) ∶= {𝜛𝑘 ∥ 𝑟∶ (𝜛,Δ𝐹2𝑐2) = 1,𝜛𝑘 ∤ 𝑑} and 𝑃2(𝑟) = {𝜛𝑘 ∥ 𝑟∶ (𝜛,Δ𝐹2) = 1,𝜛𝑘 ∣ 𝑑}.

If we write 𝑟 = 𝑟1𝑟2, where

𝑟1 =

⎧⎪⎨⎪⎩
∏

𝜛𝑘∈𝑃1(𝑟)

𝜛𝑘 if 𝑐2 ≠ 0∏
𝜛𝑘∈𝑃2(𝑟)

𝜛𝑘 else,
(7.1)

and 𝑟2 = 𝑟∕𝑟1, then∑
𝒗∈𝑛|𝒗−𝒗0|<𝑉

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)|≪𝐹1,𝐹2,𝑁
|𝑑||𝑟|𝑛∕2+1+𝜀|𝑟2|1∕2(𝑉𝑛 + |𝑟|𝑛∕3).

Note that since 𝑑 ∣ 𝑟, the condition 𝜛𝑘 ∤ 𝑑 in the definition of 𝑃1(𝑟) means that every prime
factor of 𝑑 that divides 𝑟1 in fact properly divides 𝑟1 when 𝑐2 ≠ 0.
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COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 31 of 54

Proof. Denote the sum to be estimated by 𝑆. After making the change of variables 𝒙 = 𝒚𝑁 + 𝒃,
we obtain the identity

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) = 𝜓

(
−𝒃 ⋅ 𝒗
𝑟𝑁

) ∑
𝑎∕𝑟∈𝐿(𝑑𝑐)

𝑇(𝑎, 𝑟∕(𝑟, 𝑁), 𝒗)

with underlying polynomials 𝐺𝑖(𝒚) = (𝑟,𝑁)−1𝐹𝑖(𝑁𝒚 + 𝒃) for 𝑖 = 1, 2 in the definition (6.1). Since
𝑁 ∣ 𝐹𝑖(𝒃), it follows that𝐺𝑖 has coefficients in.Moreover, the cubic part of𝐺1 is given by the non-
singular polynomial g0(𝒚) = (𝑟,𝑁)−1𝑁3𝐹1(𝒚). We now factor 𝑟∕(𝑟, 𝑁) into its cube-free part 𝑡 and
its cube-full part 𝑠. Since 𝑟 is cube-full, we must have |𝑡| ⩽ |𝑁|. Using Lemma 6.2 and estimating
the contribution from the sum corresponding to 𝑡 trivially, we see that

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)| ⩽ |𝑁|𝑛 ∑
𝑎∕𝑟∈𝐿(𝑑𝑐)

|𝑇(𝑎
𝑡
, 𝑠, 𝒗)|. (7.2)

Next we write 𝑠 = 𝑠1𝑠2, where

𝑠1 =
∏
𝜛𝑘∥𝑠

𝜛1+𝑣𝜛 ∤𝑎1

𝜛𝑘 and 𝑠2 =
∏
𝜛𝑘∥𝑠

𝜛1+𝑣𝜛 ∣𝑎1

𝜛𝑘,

with 𝑣𝜛 defined in (6.5). It then follows from Lemma 6.8 that 𝑇(𝑎
𝑡𝑠1
, 𝑠2, 𝒗) ≪ |𝑠2|(𝑛+1)∕2+𝜀.

Therefore, after applying Lemma 6.2 and Lemma 7.1 together with the identity (7.2), we obtain

𝑆 ≪ |𝑟|𝜀 ∑
𝑎∕𝑟∈𝐿(𝑑𝑐)

|𝑠1|𝑛∕2|𝑠2|(𝑛+1)∕2(𝑉𝑛 + |𝑠1|𝑛∕3)
≪ |𝑟|𝑛∕2+𝜀 ∑

𝑎∕𝑟∈𝐿(𝑑𝑐)

|𝑠2|1∕2(𝑉𝑛 + |𝑟|𝑛∕3).
Let us write 𝑟 = 𝑟1𝑟2 as in the statement of the lemma and 𝑑 = 𝑑1𝑑2 with 𝑑𝑖 ∣ 𝑟∞𝑖 for 𝑖 = 1, 2. The
explicit description of 𝐿(𝑑𝑐) in Lemma 6.3 implies that if 𝑏∕𝑟1 ∈ 𝐿(𝑑1𝑐), then (𝑏1, 𝑟1) = 1. It is
shown in the proof of [33, Lemma 5.2] that if |𝑎| < |𝑟| and 𝑎 = 𝑟2𝑏 + 𝑟1𝑏

′ with |𝑏| < |𝑟1|, |𝑏′| <|𝑟2|, then 𝑎∕𝑟 ∈ 𝐿(𝑑𝑐) if and only if 𝑏∕𝑟1 ∈ 𝐿(𝑑1𝑐) and 𝑏
′∕𝑟2 ∈ 𝐿(𝑑2𝑐). In particular, wemust have|𝑠2| ⩽ |𝑟2|. Thus, it follows from Lemma 6.3 that

𝑆 ≪ |𝑑||𝑟|𝑛∕2+1+𝜀|𝑟2|1∕2(𝑉𝑛 + |𝑟|𝑛∕3)
as desired. □

Our next result is concerned about averages of 𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗) over a sparse set of 𝒗 ∈ 𝑛. Let 𝑉 ⩾

1, 𝐶1 ⩾ 𝐶2 ⩾ 1 and 𝒗0 ∈ 𝐾𝑛
∞. For 𝑑, 𝑠 ∈  with 𝑑 ∣ 𝑠 and 𝑠 cube-full, we proceed to consider the

average

𝑆(𝑉, 𝐶1, 𝐶2) ∶=
∑

𝑐∈2
prim|𝑐𝑖|⩽𝐶𝑖

∑
|𝒗−𝒗0|<𝑉
𝐹∗
1
(𝒗)=0

|𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗)|, (7.3)

where 𝐹∗
1
is the dual form of 𝐹1 that we already met in Section 6. Note that upon replacing 𝒗0

with the nearest integer vector, we can assume without loss of generality that 𝒗0 ∈ 𝑛. Our basic
strategy is to relate 𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗) to a point-counting problem and gain savings when summing this
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problem over 𝒗 and 𝑐 first. For this, let us write 𝑠 = 𝑟′𝑠 into coprime 𝑟′, 𝑠 ∈  with

𝑟′ ∶=
∏

𝜈𝜛(𝑠)⩾𝜈𝜛(𝑁)+3

𝜛𝜈𝜛(𝑠).

Note that 𝑟′ is cube-full and 𝜛 ∣ 𝑠 implies 𝜈𝜛(𝑁) ⩾ 1 since 𝑠 is cube-full. In particular, we have|𝑠| ⩽ |𝑁|3 and thus by Lemma 6.1 that
|𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗)| ⩽ |𝑁|3(𝑛+2)|𝑆𝑑′𝑐,𝑟′,𝒃,𝑁′ (𝑡𝒗)| (7.4)

for some𝑁′ ∣ 𝑟′, 𝑑′ ∣ 𝑟′ and 𝑡 ∈ (∕(𝑟′𝑁′∕(𝑟′, 𝑁′)))×. Next, we write 𝑟′ = 𝑟(𝑟′, 𝑁′) andmake the
change of variables 𝒙 = 𝒚𝑁′ + 𝒃, so that

𝑆𝑑′𝑐,𝑟′,𝒃,𝑁′ (𝑡𝒗) = 𝜓

(
−𝒃 ⋅ 𝒗
𝑟𝑁′

) ∑
𝑎∕𝑟′∈𝐿(𝑑′𝑐)

𝑇(𝑎, 𝑟, 𝑡𝒗). (7.5)

Let us now further write 𝑟 = 𝑒2𝑓, where 𝑓 ∣ 𝑒 and

𝑓 ∶=
∏

2∤𝜈𝜛(𝑟)

𝜛. (7.6)

Our first step is to deduce to a congruence condition for 𝒗 from the sum 𝑇(𝑎, 𝑟, 𝑡𝒗). This will be
achieved in the next lemma.

Lemma 7.3. Let 𝑟 ∈  be cube-full, 𝑎 ∈ , 𝒗 ∈ 𝑛 and 𝑟 = 𝑒2𝑓 with 𝑓 ∣ 𝑒 and 𝑓 given by (7.6).
Then,

𝑇(𝑎, 𝑟, 𝒗) = |𝑒|𝑛 ∑
|𝒚|<|𝑒𝑓|

∇(𝑎⋅𝐹)(𝒚)≡𝒗 (𝑒)
𝜓

(
𝑎 ⋅ 𝐹(𝒚) − 𝒗 ⋅ 𝒚

𝑟

)
.

Proof. Let us write 𝒙 = 𝒚 + 𝑒𝑓𝒛 with |𝒚| < |𝑒𝑓| and |𝒛| < |𝑒|. Then, Taylor’s formula implies
𝑇(𝑎, 𝑟, 𝒗) =

∑
|𝑦|<|𝑒𝑓|

∑
|𝒛|<|𝑒|𝜓

(
𝑎 ⋅ 𝐹(𝒚 + 𝑒𝑓𝒛) − 𝒗(𝒚 + 𝑒𝑓𝒛)

𝑟

)

=
∑

|𝒚|<|𝑒𝑓|𝜓
(
𝑎 ⋅ 𝐹(𝒚) − 𝒗 ⋅ 𝒚

𝑟

) ∑
|𝒛|<|𝑒|𝜓

(
𝒛 ⋅ (∇(𝑎 ⋅ 𝐹)(𝒚) − 𝒗)

𝑒

)

= |𝑒|𝑛 ∑
|𝒚|<|𝑒𝑓|

∇(𝑎⋅𝐹)(𝒚)≡𝒗 (𝑒)
𝜓

(
𝑎 ⋅ 𝐹(𝒚) − 𝒗 ⋅ 𝒚

𝑟

)
.

□

Next, we want to establish extra congruence conditions for 𝐹1(𝒚) and 𝐹2(𝒚) by considering the
sumover𝑎∕𝑟 ∈ 𝐿(𝑑𝑐). This step underpins the first substantial deviation from the treatment of the
averages of exponential sums in [5] and results in a significant complication of the argument. The
reason for this extra difficulty is that in the setting of one polynomial, the underlying exponential

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12991 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COMPLETE INTERSECTIONS OF CUBIC AND QUADRIC HYPERSURFACES OVER 𝔽𝑞(𝑡) 33 of 54

sum is a Ramanujan sum, whose behaviour is well understood, while in our case, the orthogonal-
ity relations we obtain stem from themore involved structure of rational points on the lines 𝐿(𝑑𝑐).
Before we begin our treatment, we make the following convention to ease notation. Whenever

we have a sum of the form
∑′|𝑎𝑖|<|g𝑖|, we understand ′ to mean that (𝑎

𝑖
, 𝑟′
𝑖
) = 1. It then follows

from (7.4) and (7.5) combined with Lemma 7.3 that

𝑆(𝑉, 𝐶1, 𝐶2) ⩽ |𝑁|3(𝑛+2)|𝑒|𝑛 ∑
𝑐∈2

prim|𝑐𝑖|⩽𝐶𝑖
∑

|𝒗−𝒗0|<𝑉
𝐹∗
1
(𝒗)=0

∑
|𝒚|<|𝑒𝑓|𝜓

(−𝑡𝒗 ⋅ 𝒚
𝑟

) ∑
𝑎∕𝑟′∈𝐿(𝑑′𝑐)

∇(𝑎⋅𝐹)(𝒚)≡𝑡𝒗 (𝑒)

𝜓

(
𝑎 ⋅ 𝐹(𝒚)

𝑟

)
.

(7.7)
Our goal is now to investigate the sum

Γ(𝒗, 𝒚) ∶=
∑

𝑎∕𝑟′∈𝐿(𝑑𝑐)

∇(𝑎⋅𝐹)(𝒚)≡𝒗 (𝑒)

𝜓

(
𝑎 ⋅ 𝐹(𝒚)

𝑟

)
,

for 𝑟, 𝑟′ ∈  with 𝑟 ∣ 𝑟′. To do so, let us write (𝑟′, 𝑁) = 𝑘𝑘′, where (𝑘, 𝑘′) = (𝑟, 𝑘′) = 1. Then, we
factor 𝑟′ = 𝑟′

1
𝑟′
2
𝑟′
3
with pairwise coprime 𝑟𝑖 ’s, (𝑟′1, 𝑑) = 1 and

𝑟′2 ∶=
∏

𝜈𝜛(𝑒𝑘
′)⩾𝜈𝜛(𝑟

′)−𝜈𝜛(𝑑)+1
𝜈𝜛(𝑑)>0

𝜛𝜈𝜛(𝑟
′). (7.8)

Accordingly, we shall also write 𝑑 = 𝑑2𝑑3, 𝑒 = 𝑒1𝑒2𝑒3, 𝑓 = 𝑓1𝑓2𝑓3, 𝑘 = 𝑘1𝑘2𝑘3, 𝑘′ = 𝑘′
1
𝑘′
2
𝑘′
3
and

𝑟 = 𝑟1𝑟2𝑟3 with 𝑑𝑖, 𝑒𝑖, 𝑓𝑖, 𝑘𝑖, 𝑘′𝑖 , 𝑟𝑖 ∣ 𝑟
′
𝑖
, so that 𝑟𝑖 = 𝑒2

𝑖
𝑓𝑖 for 𝑖 = 1, 2, 3. Moreover, we let 𝑑′

3
be the

maximal divisor of 𝑑3 that divides 𝑟3. In particular, we have |𝑑′3| ≍ |𝑑3|. The definition of 𝐿(𝑑𝑐)
implies that 𝑎∕𝑟′ ∈ 𝐿(𝑑𝑐) if and only if 𝜛𝜈𝜛(𝑟

′)−𝜈𝜛(𝑑) ∥ 𝑎 ⋅ 𝑐 when 𝜈𝜛(𝑑) ⩾ 1 and 𝜛𝜈𝜛(𝑟
′) ∣ 𝑎 ⋅ 𝑐

when 𝜈𝜛(𝑑) = 0 for all𝜛 ∣ 𝑟′.
Since 𝑟𝑖 ∣ 𝑟

′
𝑖
, it is therefore clear that the sum we are investigating is multiplicative, and

accordingly, we shall denote the sum corresponding to 𝑟′
𝑖
by 𝑆𝑖 for 𝑖 = 1, 2, 3, so that Γ(𝒗, 𝒚) =

𝑆1𝑆2𝑆3.
We now treat each sum individually and start with 𝑆1. When |𝑎| < |𝑟′

1
|, then by Lemma 2.4,

we have 𝑎∕𝑟′
1
∈ 𝐿(𝑐) if and only if 𝑎 ≡ 𝑎𝑐⊥ (𝑟′

1
) with 𝑎 ∈ (∕𝑟′

1
)×. Since 𝑟′

1
= 𝑟1(𝑟

′
1
, 𝑁), we can

write 𝑎 = 𝑎1 + 𝑒1𝑘
′
1
𝑎2 with |𝑎1| < |𝑒1𝑘′1| and |𝑎2| < |𝑟′

1
||𝑒1𝑘′1|−1 = |𝑒1𝑓1𝑘1|. From the definition

of 𝑒1 and 𝑘′1, it is clear that (𝑎, 𝑟
′
1
) = 1 if and only if (𝑎1, 𝑟′1) = 1. Therefore, after splitting 𝑎2 into

residue classes modulo 𝑒1𝑓1 and using the fact that (𝑘′1, 𝑒1𝑓1) = 1, we have

𝑆1 = |𝑘1| ∑
′

|𝑎1|<|𝑒1𝑘′1|
𝑎1∇𝐹𝑐(𝒚)≡𝒗 (𝑒1)

𝜓

(
𝑎1𝐹𝑐(𝒚)

𝑟1

) ∑
𝑎2 (𝑒1𝑓1)

𝜓

(
𝑎2𝑘

′
1
𝐹𝑐(𝒚)

𝑒1𝑓1

)

= |𝑘1𝑒1𝑓1| ∑
′

|𝑎1|<|𝑒1𝑘′1|
𝑎1∇𝐹𝑐(𝒚)≡𝒗 (𝑒1)
𝐹𝑐(𝒚)≡0 (𝑒1𝑓1)

𝜓

(
𝑎1𝐹𝑐(𝒚)

𝑟1

)
.

(7.9)
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Next, we deal with the sum 𝑆2. As before we make the change of variables 𝑎 = 𝑎
1
+ 𝑘′

2
𝑒2𝑎2 with|𝑎

1
| < |𝑒2𝑘′2| and |𝑎2| < |𝑒2𝑓2𝑘2|, so that (𝑎, 𝑟′2) = 1 if and only if (𝑎

1
, 𝑟′
2
) = 1. Moreover, it follows

from the definition of 𝑟2 that 𝜈𝜛(𝑟′2) − 𝜈𝜛(𝑑2) = 𝜈𝜛(𝑎 ⋅ 𝑐) if and only if 𝜈𝜛(𝑟′2) − 𝜈𝜛(𝑑2) = 𝜈𝜛(𝑎1 ⋅
𝑐), so that 𝑎∕𝑟′

2
∈ 𝐿(𝑑2𝑐) if and only if 𝑎1∕𝑟

′
2
∈ 𝐿(𝑑2𝑐). We can again divide 𝑎2 into residue classes

modulo 𝑒2𝑓2 to obtain

𝑆2 = |𝑘′2|2 ∑
|𝑎1|<|𝑒2𝑘′2|
𝑎1∕𝑟

′
2
∈𝐿(𝑑2𝑐)

∇(𝑎1⋅𝐹)(𝒚)≡𝒗 (𝑒2)

𝜓

(
𝑎
1
⋅ 𝐹(𝒚)

𝑟2

) ∑
𝑎2 (𝑒2𝑓2)

𝜓

(
𝑘′
2
𝑎
2
⋅ 𝐹(𝒚)

𝑒2𝑓2

)

= |𝑒2𝑓2𝑘′2|2 ∑
|𝑎1|<|𝑒2𝑘′2|
𝑎1∕𝑟

′
2
∈𝐿(𝑑2𝑐)

∇(𝑎1⋅𝐹)(𝒚)≡𝒗 (𝑒2)
𝐹1(𝒚)≡𝐹2(𝒚)≡0 (𝑒2𝑓2)

𝜓

(
𝑎
1
⋅ 𝐹(𝒚)

𝑟2

)
,

(7.10)

where we used that (𝑘′
2
, 𝑒2𝑓2) = 1.

Finally, we begin our treatment of the sum 𝑆3, which is slightly more involved. Firstly, we
introduce character sums to detect the condition 𝜈𝜛(𝑟′3) − 𝜈𝜛(𝑑3) = 𝜈𝜛(𝑎 ⋅ 𝑐):

𝑆3 = |𝑟′−13 𝑑3| ∑
′

𝑎 (𝑟′
3
)

∇(𝑎⋅𝐹)(𝒚)≡𝒗 (𝑒3)

𝜓

(
𝑎 ⋅ 𝐹(𝒚)

𝑟3

)

×
∏
𝜛𝑘∥𝑟′

3
𝜛𝑚∥𝑑3

⎛⎜⎜⎝
∑

𝑏0 (𝜛
𝑘−𝑚)

𝜓

(
𝑏0𝑎 ⋅ 𝑐

𝜛𝑘−𝑚

)
− |𝜛|−1 ∑

𝑏1 (𝜛
𝑘−𝑚+1)

𝜓

(
𝑏1𝑎 ⋅ 𝑐

𝜛𝑘−𝑚+1

)⎞⎟⎟⎠.
Then, wemake the change of variables 𝑎 = 𝑎

1
+ 𝑒3𝑘

′
3
𝑎
2
, with |𝑎

1
| < |𝑒3𝑘′3| and |𝑎2| < |𝑘3𝑒3𝑓3|.

It follows from the definition of 𝑒3 and 𝑘3 that (𝑎, 𝑟′3) = 1 if and only if (𝑎
1
, 𝑟′
3
) = 1. Moreover, 𝑟′

3
was defined in such a way that 𝜈𝜛 (𝑒3𝑘

′
3
) ⩽ 𝑘 − 𝑚 for all 𝜛 ∣ 𝑟′

3
. Slightly abusing notation, note

that we have

∑
|𝑎2|<|𝑒3𝑓3𝑘3|𝜓

(
𝑘′
3
𝑎
2
⋅ 𝐹(𝒚)

𝑒3𝑓3

) ∏
𝜛𝑘∥𝑟′

3
𝜛𝑚∥𝑑3

⎛⎜⎜⎝
∑

𝑏0 (𝜛
𝑘−𝑚)

𝜓

(
𝑏0𝑎 ⋅ 𝑐

𝜛𝑘−𝑚

)
− |𝜛|−1 ∑

𝑏1 (𝜛
𝑘−𝑚+1)

𝜓

(
𝑏1𝑎 ⋅ 𝑐

𝜛𝑘−𝑚+1

)⎞⎟⎟⎠
=

∏
𝜛𝑘∥𝑟′

3
𝜛𝑚∥𝑑3

⎛⎜⎜⎝
∑

𝑏0 (𝜛
𝑘−𝑚)

𝜓

(
𝑏0𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚

)
𝑆0(𝜛) − |𝜛|−1 ∑

𝑏1 (𝜛
𝑘−𝑚+1)

𝜓

(
𝑏1𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚+1

)
𝑆1(𝜛)

⎞⎟⎟⎠,
where

𝑆𝑖(𝜛) ∶=
∑

𝑎2 (𝜛
𝑘−𝑙)

𝜓

(
𝑘′
3
𝑎
2
⋅ (𝐹(𝒚) + 𝜛𝑚−𝑖𝑏𝑖𝑐)

𝜛𝑘′−𝑙

)

= |𝜛|2(𝑘−𝑙)𝛿−𝑘′
3
𝐹𝑗(𝒚)≡𝜛𝑚−𝑖𝑏𝑖𝑐𝑗 (𝜛

𝑘′−𝑙)
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for 𝑖 = 0, 1 and where we temporarily wrote 𝑙 = 𝜈𝜛 (𝑒3𝑘
′
3
) and 𝑘′ = 𝜈𝜛(𝑟3). Observe that for

𝜛 ∣ 𝑘′
3
, the sums 𝑆𝑖(𝜛) are independent of 𝑏𝑖 . For 𝜛 ∣ 𝑟3, it follows upon making the change of

variables 𝑏𝑖 = 𝑏′
𝑖
+ 𝜛𝑘′−𝑚−𝑙+𝑖𝑏′′

𝑖
with |𝑏′

𝑖
| < |𝜛|𝑘′−𝑚−𝑙+𝑖 and |𝑏′′

𝑖
| < |𝜛|𝑘−𝑘′+𝑙 that∑

𝑏𝑖 (𝜛
𝑘−𝑚+𝑖)

𝜓

(
𝑏𝑖𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚+𝑖

)
𝑆𝑖(𝜛) = |𝜛|2(𝑘−𝑙) ∑

𝑏𝑖 (𝜛
𝑘−𝑚+𝑖)

−𝑘′
3
𝐹𝑗(𝒚)≡𝜛𝑚−𝑖𝑏𝑖𝑐𝑗 (𝜛

𝑘′−𝑙)

𝜓

(
𝑏𝑖𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚+𝑖

)

= |𝜛|2(𝑘−𝑙) ∑
|𝑏′
𝑖
|<|𝜛|𝑘′−𝑙−(𝑚−𝑖)

−𝑘′
3
𝐹𝑗(𝒚)≡𝜛𝑚−𝑖𝑏𝑖𝑐𝑗 (𝜛

𝑘′−𝑙)

𝜓

(
𝑏′
𝑖
𝑎
1
⋅ 𝑐

𝜛𝑘−𝑚+𝑖

)

×
∑

𝑏′′
𝑖
(𝜛𝑘−𝑘′+𝑙)

𝜓

(
𝑏′′
𝑖
𝑎
1
⋅ 𝑐

𝜛𝑘−𝑘′+𝑙

)

=
|𝜛|3𝑘|𝜛|𝑙+𝑘′ 𝛿𝜛𝑘−𝑘′+𝑙∣𝑎1⋅𝑐

∑
|𝑏′
𝑖
|<|𝜛|𝑘′−𝑙−(𝑚−𝑖)

−𝑘′
3
𝐹𝑗(𝒚)≡𝜛𝑚−𝑖𝑏′

𝑖
𝑐𝑗 (𝜛

𝑘′−𝑙)

𝜓

(
𝑏′
𝑖
𝑎
1
⋅ 𝑐

𝜛𝑘−𝑚+𝑖

)

for 𝑖 = 0, 1. Note that since (𝑐1, 𝑐2) = 1, we have (𝑐𝑖,𝜛) = 1 for 𝑖 = 1 or 𝑖 = 2. In particular, there
is a unique 𝑏′

𝑖
with |𝑏′

𝑖
| < |𝜛|𝑘−𝑙−𝑚+𝑖 and 𝐹𝑗(𝒚) ≡ 𝜛𝑚−𝑖𝑏′

𝑖
𝑘′
3
𝑐𝑗 (𝜛

𝑘−𝑙) for 𝑗 = 1, 2. In addition,
the latter equation implies 𝐹𝑐(𝒚) ≡ 0 (𝜛𝑘′−𝑙) and 𝐹𝑗(𝒚) ≡ 0 (𝜛𝑚) for 𝑗 = 1, 2. Using that 𝑘′ − 𝑙 =

𝜈𝜛(𝑒3𝑓3) for𝜛 ∣ 𝑟3 and 𝑘 − 𝑘′ = 𝜈𝜛(𝑘3), we arrive at the identity

𝑆3 = |𝑑3𝑒3𝑓3𝑘23||𝑘′3|−1𝛿𝐹1(𝒚)≡𝐹2(𝒚)≡0 (𝑑′3)𝛿𝐹𝑐(𝒚)≡0 (𝑒3𝑓3) ∑
′

|𝑎1|<|𝑒3𝑘′3|
∇(𝑎1⋅𝐹)(𝒚)≡𝒗 (𝑒3)
𝜛𝜈𝜛(𝑘3𝑒3)∥𝑎1⋅𝑐

𝜓

(
𝑎
1
⋅ 𝑐

𝑟3

)
Π(𝑎

1
), (7.11)

where 𝑑′
3
is the maximal divisor of 𝑑3 dividing 𝑟3 and

Π(𝑎
1
) ∶=

∏
𝜛𝑘∥𝑟′

3
𝜛𝑚∥𝑑3
𝜛∣𝑟3

⎛⎜⎜⎜⎜⎜⎝
∑

|𝑏′
0
|<|𝜛|𝑘′−𝑙−𝑚)

𝐹𝑖(𝒚)≡𝜛𝑚𝑏′
1
𝑐𝑖 (𝜛

𝑘′−𝑙)

𝜓

(
𝑏′
0
𝑎
1
⋅ 𝑐

𝜛𝑘−𝑚

)
− |𝜛|−1 ∑

|𝑏′
1
|<|𝜛|𝑘′−𝑙−(𝑚−1))

𝐹𝑖(𝒚)≡𝜛𝑚−1𝑏′
2
𝑐𝑖 (𝜛

𝑘′−𝑙)

𝜓

(
𝑏′
1
𝑎
1
⋅ 𝑐

𝜛𝑘−𝑚

)⎞⎟⎟⎟⎟⎟⎠
×

∏
𝜛𝑘∥𝑟′

3
𝜛𝑚∥𝑑3
𝜛∤𝑟3

⎛⎜⎜⎝
∑

𝑏0 (𝜛
𝑘−𝑚)

𝜓

(
𝑏0𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚

)
𝑆0(𝜛) − |𝜛|−1 ∑

𝑏1 (𝜛
𝑘−𝑚+1)

𝜓

(
𝑏1𝑎1 ⋅ 𝑐

𝜛𝑘−𝑚+1

)
𝑆1(𝜛)

⎞⎟⎟⎠ .

Moreover, since there is a unique 𝑏′
𝑖
with |𝑏′

𝑖
| < |𝜛|𝑘−𝑙−𝑚−𝑖 and 𝐹𝑖(𝒚) ≡ 𝜛𝑚−𝑖𝑏′

𝑖
𝑘′
3
𝑐𝑖 (𝜛

𝑘−𝑙), it is
easy to see that Π(𝑎

1
) ⩽ |𝑘′

3
|. After relabelling the variables, (7.9), (7.10), and (7.11) show that we

have established the following result.
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Lemma 7.4. Let 𝑟′ ∈  be cube-full, 𝑑 ∈  with 𝑑 ∣ 𝑟, 𝒗 ∈ 𝑛. Define 𝑟 = 𝑟′∕(𝑟′,𝑀) and 𝑟 = 𝑒2𝑓

with 𝑓 ∣ 𝑒 and 𝑓 given by (7.6). Then with the notation introduced in (7.8) for 𝒚, 𝒗 ∈ 𝑛, we have∑
𝑎∕𝑟′∈𝐿(𝑑𝑐)

∇(𝑎⋅𝐹)(𝒚)≡𝒗 (𝑒)

𝜓

(
𝑎 ⋅ 𝐹(𝒚)

𝑟

)
= |𝑘1𝑒1𝑓1||𝑒2𝑓2𝑘′2|2|𝑑3𝑒3𝑓3𝑘23||𝑘′3|−1𝛿𝐹1(𝒚)≡𝐹2(𝒚)≡0 (𝑒2𝑓2𝑑′3)

× 𝛿𝐹𝑐(𝒚)≡0 (𝑒1𝑓1𝑒3𝑓3)
∑

(1) 𝜓

(
𝑎1𝐹𝑐(𝒚)

𝑟1

)∑
(2) 𝜓

(
𝑎
2
⋅ 𝐹(𝒚)

𝑟2

)∑
(3) 𝜓

(
𝑎
3
⋅ 𝑐

𝑟3

)
Π(𝑎

3
),

where (1) indicates thatwe are summing over |𝑎1| < |𝑒1𝑘′1| subject to (𝑎1, 𝑟′1) = 1,𝑎1∇𝐹𝑐(𝒚) ≡ 𝒗 (𝑒1);
(2) that |𝑎

2
| < |𝑒2𝑘′2| with (𝑎

2
, 𝑟′
2
) = 1, 𝑎

2
∕𝑟′

2
∈ 𝐿(𝑑2𝑐) and ∇(𝑎

2
⋅ 𝐹)(𝒚) ≡ 𝒗 (𝑒2); and (3) that|𝑎

3
| < |𝑒3𝑘′3| with (𝑎3, 𝑟′3) = 1, ∇(𝑎

3
⋅ 𝐹)(𝒚) ≡ 𝒗 (𝑒3) and𝜛𝜈𝜛(𝑘3𝑒3) ∥ 𝑎

3
⋅ 𝑐. In addition, |Π(𝑎

3
)| ⩽|𝑘′

3
|.
Recall that 𝑁, 𝑘𝑖, 𝑘′𝑖 are all 𝑂(1). In particular, once we combine Lemmas 7.3 and 7.4 with the

Chinese remainder theorem, we obtain from (7.7) that

|𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗)|≪ |𝑒|𝑛+1|𝑓𝑒2𝑓2𝑑3| ∑
′

|𝑎1|<|𝑒1𝑘′1|
∑

′

|𝑎2|<|𝑒2𝑘′2|
𝑎2∕𝑟

′
2
∈𝐿(𝑑2𝑐)

∑
′

|𝑎3|<|𝑒3𝑘′3|
𝜛𝜈𝜛(𝑘3𝑒3)∥𝑎3⋅𝑐

||||||
∑

(4)

|𝒚|<|𝑒𝑓|𝜓
(
𝑎 ⋅ 𝐹(𝒚) − 𝑡𝒗 ⋅ 𝒚

𝑟

)||||||,
(7.12)

where 𝑎 = 𝑎1𝑐
⊥𝑟2𝑟3 + 𝑎

2
𝑟1𝑟3 + 𝑎

3
𝑟1𝑟2 and (4) denotes the conditions ∇(𝑎 ⋅ 𝐹)(𝒚) ≡ 𝑡𝒗 (𝑒),

𝐹1(𝒚) ≡ 𝐹2(𝒚) ≡ 0 (𝑒2𝑓2𝑑
′
3
) and 𝐹𝑐(𝒚) ≡ 0 (𝑒1𝑓1𝑒3𝑓3).

Recall that 𝑟 = 𝑒2𝑓. Next, we write 𝒚 = 𝒚1 + 𝑒𝒚2 with |𝒚1| < |𝑒| and |𝒚2| < |𝑓|. Note that the
definition of 𝑟3 implies that 𝜈𝜛(𝑑′3) ⩽ 𝜈𝜛(𝑒3𝑓3). We shall therefore write

𝑑′3 = 𝑒′3𝑓
′
3, where 𝑓′3 =

∏
𝜈𝜛(𝑑

′
3
)=𝜈𝜛(𝑒3)+1

𝜛, (7.13)

so that 𝑒′
3
∣ 𝑒3 and 𝑓′3 ∣ 𝑓3. Hence, 𝐹𝑖(𝒚) ≡ 0 (𝑒2𝑓2𝑑

′
3
) if and only if 𝐹𝑖(𝒚1) = 𝑒2𝑒

′
3
𝑚𝑖 say and 𝑓2𝑓′3 ∣

(𝑚𝑖 + 𝑒∕(𝑒2𝑒
′
3
)𝒚2 ⋅∇𝐹𝑖(𝒚1)) for 𝑖 = 1, 2. Similarly, if 𝐹𝑐(𝒚1) = 𝑒1𝑒3𝑛, then it must hold that 𝑓1𝑓3 ∣

(𝑛 + 𝑒2𝒚2 ⋅∇𝐹𝑐(𝒚1)). In addition, if ∇(𝑎 ⋅ 𝐹)(𝒚1) = 𝑡𝒗 + 𝑒𝒌, then upon writing 𝑎 = (𝑎1, 𝑎2) we
have

𝑎 ⋅ 𝐹(𝒚) − 𝑡𝒗 ⋅ 𝒚 ≡ 𝑎 ⋅ 𝐹(𝒚1) − 𝑡𝒗 ⋅ 𝒚1 + 𝑒2(𝑎1𝒚1 ⋅∇𝐹1(𝒚2) + 𝑎2𝐹2(𝒚2) + 𝒚2 ⋅ 𝒌) (𝑟).

It thus follows that|||||
∑

(4)

|𝒚|<|𝑒𝑓|𝜓
(
𝑎 ⋅ 𝐹(𝒚) − 𝑡𝒗 ⋅ 𝒚

𝑟

)|||||
⩽

∑
|𝒚1|<|𝑒|

𝑒2𝑒
′
3
∣𝐹𝑖(𝒚1), 𝑖=1,2

𝑒1𝑒3∣𝐹𝑐(𝒚1)

∇(𝑎⋅𝐹)(𝒚1)≡𝑡𝒗 (𝑒)

max
𝒌

||||||
∑

(5)

𝒚2 (𝑓)

𝜓

(
𝑎1𝒚1 ⋅∇𝐹1(𝒚2) + 𝑎2𝐹2(𝒚2) + 𝒚2 ⋅ 𝒌

𝑓

)||||||, (7.14)
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where (5) denotes the conditions

𝑓2𝑓
′
3 ∣ (𝑚𝑖 + 𝑒∕(𝑒2𝑒

′
3)𝒚2 ⋅∇𝐹𝑖(𝒚1)) and 𝑓1𝑓3 ∣ (𝑛 + 𝑒2𝒚2 ⋅∇𝐹𝑐(𝒚1)).

By abuse of notation, we denote the sum over 𝒚2 by Σ(5). We can then use orthogonality of charac-
ters to detect the congruence conditions in (5). After employing the triangle inequality, a standard
squaring and differencing argument delivers

∑
(5) ⩽ |(𝑓2𝑓′3)2𝑓1𝑓3|−1 ∑

𝑏0 (𝑓1𝑓3)

∑
𝑏2 (𝑓2𝑓

′
3
)

||||||
∑
𝒚2 (𝑓)

𝜓

(
𝑎1𝒚1 ⋅∇𝐹1(𝒚2) + 𝑎2𝐹2(𝒚2) + 𝒚2 ⋅ 𝒌

′

𝑓

)||||||
⩽ |𝑓|𝑛∕2𝑁𝑓(𝑎, 𝒚1)

1∕2,

(7.15)

where 𝒌′ is a term that depends at most on𝑚1,𝑚2, 𝒚1 and the 𝑒𝑖 ’s, and

𝑁𝑓(𝑎, 𝒚) ∶= #{𝒛 (𝑒)∶ (𝑎1𝐻(𝒚) + 𝑎2𝑀)𝒛 ≡ 0 (𝑓)}.

We now pause for a moment and collect what we have achieved so far. Inserting (7.14) and (7.15)
into (7.12), we get

|𝑆𝑑𝑐,𝑠,𝒃,𝑁(𝒗)|≪ |𝑒|𝑛+1|𝑓|𝑛∕2+1|𝑒2𝑓2𝑑3| ∑
′

|𝑎1|<|𝑒1𝑘′1|
×

∑
′

|𝑎2|<|𝑒2𝑘′2|
𝑎2∕𝑟

′
2
∈𝐿(𝑑2𝑐)

∑
′

|𝑎3|<|𝑒3𝑘′3|
𝜛𝜈𝜛(𝑘3𝑒3)∥𝑎3⋅𝑐

∑
|𝒚1|<|𝑒|

𝑒2𝑒
′
3
∣𝐹𝑖(𝒚1),𝑖=1,2

𝑒1𝑒3∣𝐹𝑐(𝒚)

∇(𝑎⋅𝐹)(𝒚1)≡𝑡𝒗 (𝑒)

𝑁𝑓(𝑎, 𝒚)
1∕2. (7.16)

The innermost sum is clearly multiplicative, and so, our next step is to focus on the sums

𝑆1(𝑒1, 𝑓1) ∶=
∑
𝒚 (𝑒1)

𝐹𝑐(𝒚)≡0 (𝑒1)
𝐹1(𝒚)𝐹2(𝒚)≡0 (𝑓1)

𝑁𝑓1
(𝑐⊥, 𝒚)1∕2,

𝑆′1(𝑒1, 𝑓1) ∶=
∑
𝒚 (𝑒1)

𝐹𝑐(𝒚)≡0 (𝑒1)
𝐹1(𝒚)𝐹2(𝒚)≢0 (𝑓1)

𝑁𝑓1
(𝑐⊥, 𝒚)1∕2,

𝑆2(𝑒2, 𝑓2) ∶=
∑
𝒚 (𝑒2)

𝐹1(𝒚)≡𝐹2(𝒚)≡0 (𝑒2)
𝑁𝑓2

(𝑎, 𝒚)1∕2,

𝑆3(𝑒3, 𝑓3) ∶=
∑
𝒚 (𝑒3)

𝐹1(𝒚)≡𝐹2(𝒚)≡0 (𝑒′3)
𝐹𝑐(𝒚)≡0 (𝑒3)

𝑁𝑓3
(𝑎, 𝒚)1∕2.
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We will establish sufficiently strong estimates for 𝑆𝑖(𝑒𝑖, 𝑓𝑖) when 𝑖 = 1, 2, 3, while we will obtain
an additional saving by averaging 𝑆′

1
(𝑒1, 𝑓1) over 𝑐. Before we can provide upper bounds for them,

we prove the following intermediate step.

Lemma 7.5. Let 𝑟′, 𝑟 ∈  with 𝑟′ ∣ 𝑟 and 𝑛 ⩾ 13. Then we have

𝑁1(𝑟) ∶= #{𝒙 (𝑟)∶ 𝐹𝑐(𝒙) ≡ 0 (𝑟)} ≪ |𝑟|𝑛−1+𝜀,
𝑁2(𝑟) ∶= #{𝒙 (𝑟)∶ 𝐹1(𝒙) ≡ 𝐹2(𝒙) ≡ 0 (𝑟)} ≪ |𝑟|𝑛−2+𝜀 and
𝑁3(𝑟) ∶= #{𝒙 (𝑟)∶ 𝐹1(𝒙) ≡ 𝐹2(𝒙) ≡ 0 (𝑟′), 𝐹𝑐(𝒙) ≡ 0 (𝑟)} ≪ |𝑟|𝑛−1+𝜀|𝑟′|−1.

Proof. All the quantities are mutliplicative by the Chinese remainder theorem, and so, we may
assume that 𝑟 = 𝜛𝑘 and 𝑟′ = 𝜛𝑚 with 𝑚 ⩽ 𝑘 during the proof. Let us begin with the treatment
of 𝑁3(𝜛

𝑘) by detecting the congruence condition with character sums:

|𝜛|2𝑚+𝑘𝑁3(𝜛
𝑘) =

∑
𝑎 (𝜛𝑚)

∑
𝑏 (𝜛𝑘)

∑
𝒙 (𝜛𝑘)

𝜓

(
(𝜛𝑘−𝑚𝑎 + 𝑏𝑐⊥) ⋅ 𝐹(𝒙)

𝜛𝑘

)
.

Suppose now that 0 ⩽ 𝑙 ⩽ 𝑘 − 1 is such that𝜛𝑙 ∥ 𝜛𝑘−𝑚𝑎 + 𝑏𝑐⊥. Then we claim that the sum over
𝒙 above is

|𝜛|𝑙𝑛 ∑
𝒙 (𝜛𝑘−𝑙)

𝜓

(
𝜛−𝑙(𝜛𝑘−𝑚𝑎 + 𝑏𝑐⊥) ⋅ 𝐹(𝒙)

𝜛𝑘−𝑙

)
≪ |𝜛|𝑙𝑛+5(𝑘−𝑙)𝑛∕6.

Indeed, if𝜛1+𝑣𝜛 ∣ 𝜛−𝑙(𝜛𝑘−𝑚𝑎1 − 𝑏𝑐2), then the sum is𝑂(|𝜛|𝑙𝑛+(𝑘−𝑙)(𝑛+1)∕2) by Lemma 6.8, while
if 𝜛1+𝑣𝜛 ∤ 𝜛−𝑙(𝜛𝑘−𝑚𝑎1 − 𝑏𝑐2), then we can apply Lemma 7.1 with 𝒗𝟎 = 𝟎 and 𝑉 = 1 to obtain
the claimed estimate.
For 0 ⩽ 𝑙 ⩽ 𝑘 fixed, let us now determine the number of triples (𝑎1, 𝑎2, 𝑏) such that 𝜛𝑘−𝑚𝑎 +

𝑏𝑐⊥ ≡ 0 (𝜛𝑙). If 𝑙 ⩽ 𝑘 − 𝑚, then this holds if and only if𝜛𝑙 ∥ 𝑏 since 𝑐 is primitive, so that the num-
ber of available (𝑎1, 𝑎2, 𝑏) is 𝑂(|𝜛|2𝑚+𝑘−𝑙). On the other hand, if 𝑙 > 𝑘 − 𝑚, then again because 𝑐
is primitive, we can without loss of generality assume that (𝑐1,𝜛) = 1. This implies

𝑏 ≡ 𝜛𝑘−𝑚𝑎2𝑐
−1
1 (𝜛𝑙),

which determines 𝑏 uniquely modulo𝜛𝑙. We thus also have

𝜛𝑘−𝑚𝑎1 ≡ −𝑐2𝑏 ≡ 𝜛𝑘−𝑚𝑎2𝑐2𝑐
−1
1 (𝜛𝑙),

which determines 𝑎1 uniquely modulo 𝜛𝑙−𝑘+𝑚 provided 𝑎2 is given. In total, we get that the
number of such (𝑎1, 𝑎2, 𝑏) is at most |𝜛|𝑚+𝑘−𝑙+𝑚−(𝑙−𝑘+𝑚) = |𝜛|2(𝑘−𝑙)+𝑚. We conclude that

|𝜛|2𝑚+𝑘𝑁3(𝜛
𝑘) ≪ |𝜛|𝑚+𝑛𝑘 + |𝜛|𝑚+𝑛𝑘 𝑘−1∑

𝑙=0

|𝜛|(𝑛∕6−2)(𝑙−𝑘) ≪ |𝜛|𝑚+𝑛𝑘 + |𝜛|𝑚+𝑛𝑘
for 𝑛∕6 − 2 > 0.
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The proof of the statement for the quantities𝑁1(𝑟) and𝑁2(𝑟) runs along the same lines and is,
in fact, less involved. The argument again relies on the estimates provided by Lemmas 6.8 and 7.1
and we do not provide details here. □

Before we continue with our study of the sums 𝑆𝑖(𝑒𝑖, 𝑓𝑖), we make some preliminary
observations. First of all, if (𝑎1, 𝑓) ≪ 1, then it follows from Equation (6.12) in [5] that∑

𝒚 (𝑓)

𝑁𝑓(𝑎, 𝒚) ≪ |𝑓|𝑛+𝜀. (7.17)

Moreover, if 𝑓 ∣ 𝑎1, then rank(𝑀) ⩾ 𝑛 − 1 readily implies 𝑁𝑓(𝑎, 𝒚) ≪ |𝑓|.
Lemma 7.6. Let 𝑒𝑖, 𝑓𝑖 ∈  with 𝑓𝑖 ∣ 𝑒𝑖 and 𝑓𝑖 square-free for 𝑖 = 1, 2, 3. Then, for 𝑛 ⩾ 13, we have

𝑆1(𝑒1, 𝑓1) ≪ |𝑒1|𝑛−1+𝜀|𝑓1|1∕2,
𝑆2(𝑒2, 𝑓2) ≪ |𝑒2|𝑛−2+𝜀|𝑓2| and
𝑆3(𝑒3, 𝑓3) ≪ |𝑒3|𝑛−1+𝜀|𝑒′3|−1|𝑓3|.

Proof. All of the sums under consideration are multiplicative, and so, we only have to prove the
corresponding estimates when 𝑒𝑖 = 𝜛𝑘 and 𝑓𝑖 = 1,𝜛. Moreover, we shall write 𝑚 = 𝜈𝜛(𝑒

′
3
), so

that 𝑘 ⩾ 𝑚 ⩾ 1.
Let 𝑋𝜛 be the reduction of 𝑉(𝐹1, 𝐹2) modulo 𝜛. When 𝑖 = 2, 3, we begin with the

case when 𝑓𝑖 = 1 or 𝑎1 ≡ 0 (𝜛), while when 𝑖 = 1, we assume 𝑓𝑖 = 1 or 𝑐2 ≡ 0 (𝜛). Since
𝑁𝜛((0, 𝑎2), 𝒚) ≪ |𝜛|, in our situation, we thus see that

𝑆𝑖(𝜛
𝑘, 𝑓𝑖) ≪ |𝑓𝑖|1∕2𝑁𝑖(𝜛

𝑘).

Lemma 7.5 provides estimates for 𝑁𝑖(𝜛
𝑘) that are satisfactory for the statement of the lemma.

Moreover, when 𝑐1 ≡ 0 (𝜛), then it follows from the second display after Equation (6.15) in [5]
that 𝑆1(𝜛𝑘, 𝑓1) ≪ 𝜛𝑘(𝑛−1)|𝑓1|1∕2, which is also sufficient.
We may therefore assume that 𝑓𝑖 = 𝜛 from now on. When 𝑖 = 1, we are left with the case

(𝑐2,𝜛) = (𝑐1,𝜛) = 1, while for 𝑖 = 2, 3, we have to deal with the case when (𝑎1,𝜛) = 1. Let us
first assume that𝑋𝜛 , the reduction of𝑉(𝐹1, 𝐹2)modulo𝜛, is singular. Since this can only happen
for at most finitely𝜛’s, it must hold that 𝑁𝜛(𝑎, 𝒚) ≪ 1. In particular, we obtain

𝑆𝑖(𝜛
𝑘, 𝑓𝑖) ≪ 𝑁𝑖(𝜛)

in this case, which is again satisfactory by Lemma 7.5.
So, let us now assume that 𝑋𝜛 is non-singular. We first provide an upper bound for the con-

tribution from 𝒚 ≢ 𝟎 (𝜛𝑘) to 𝑆𝑖(𝜛𝑘,𝜛). If 𝐹𝑐(𝒚) ≡ 0 (𝜛𝑙) and 𝐹1(𝒚)𝐹2(𝒚) ≡ 0 (𝜛), then 𝐹𝑐(𝒚 +
𝜛𝑙𝒛) ≡ 0 (𝜛𝑙+1) if and only if 𝜛−𝑙𝐹𝑐(𝒚) ≡ −𝒛 ⋅∇𝐹𝑐(𝒚) (𝜛). Since 𝑐1𝑐2 ≢ 0 (𝜛), the condition
𝐹1(𝒚)𝐹2(𝒚) ≡ 0 (𝜛) forces that ∇𝐹𝑐(𝒚) ≢ 𝟎 (𝜛) as otherwise 𝒚 would be a singular point of 𝑋𝜛 .
In particular, for 𝒚 ≢ 𝟎 (𝜛), inductively, we obtain

𝑀1(𝒚) ∶= #{𝒛 (𝜛𝑘)∶ 𝒛 ≡ 𝒚 (𝜛), 𝐹𝑐(𝒛) ≡ 0 (𝜛𝑘)} ≪ |𝜛|(𝑘−1)(𝑛−1).
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Similarly, if 𝐹1(𝒚) ≡ 𝐹2(𝒚) ≡ 0 (𝜛𝑙), then 𝐹1(𝒚 +𝜛𝑙𝒛) ≡ 𝐹1(𝒚 +𝜛𝑙𝒛) ≡ 0 (𝜛𝑙+1) holds if and
only if 𝜛−𝑙𝐹𝑖(𝒚) ≡ −𝒛 ⋅∇𝐹𝑖(𝒚) (𝜛). As 𝑋𝜛 is non-singular and 𝒚 ≢ 𝟎 (𝜛), we must have
rank(∇𝐹1(𝒚), ∇𝐹2(𝒚)) = 2. Therefore, it follows by induction that

𝑀2(𝒚) ∶= #{𝒛 (𝜛𝑘)∶ 𝒛 ≡ 𝒚 (𝜛), 𝐹1(𝒛) ≡ 𝐹2(𝒛) ≡ 0 (𝜛𝑘)} ≪ |𝜛|(𝑘−1)(𝑛−2).
Finally, if𝐹1(𝒚) ≡ 𝐹2(𝒚) ≡ 0 (𝜛𝑚), then𝐹𝑐(𝒚 +𝜛𝑚𝒛) ≡ 0 (𝜛𝑚+1) if and only if𝜛−𝑚𝐹𝑐(𝒚) ≡ −𝒛 ⋅
∇𝐹𝑐(𝒚) (𝜛). As 𝐹1(𝒚) ≡ 𝐹2(𝒚) ≡ 0 (𝜛), we must have ∇𝐹𝒄(𝒚) ≢ 𝟎 (𝜛), as otherwise 𝒚 would be
a singular point of 𝑋𝜛 . Combing this with the arguments that were used to estimate𝑀1(𝒚) and
𝑀2(𝒚), we obtain

𝑀3(𝒚) ∶= {𝒛 (𝜛𝑘)∶ 𝒛 ≡ 𝒚, 𝐹1(𝒛) ≡ 𝐹2(𝒛) ≡ 0 (𝜛𝑚), 𝐹𝒄(𝒛) ≡ 0 (𝜛𝑘)}

≪ |𝜛|(𝑚−1)(𝑛−2)+(𝑘−𝑚)(𝑛−1).
It now follows from an application of the Cauchy–Schwarz inequality that the contribution from
𝒚 ≢ 0 (𝜛) to 𝑆𝑖(𝜛𝑘,𝜛) is at most

max
𝒚≢0 (𝜛)𝑀𝑖(𝒚)𝑁𝑖(𝜛)

1∕2

(∑
𝒚 (𝜛)

𝑁𝜛(𝑎, 𝒚)

)1∕2

≪ |𝜛|𝑛∕2 max
𝒚≢0 (𝜛)𝑀𝑖(𝒚)𝑁𝑖(𝜛)

1∕2

by (7.17). Combining the estimates, we just provided for𝑀𝑖(𝒚) with Lemma 7.5 to bound 𝑁𝑖(𝜛),
we see that this contribution is sufficient for the conclusion of the lemma to hold.
We are thus left with estimating the contribution from 𝒚 ≡ 𝟎 (𝜛) to 𝑆𝑖(𝜛𝑘,𝜛). In this case, we

have 𝑁𝜛(𝑎, 𝒚) ≪ |𝜛|, so that
𝑆𝑖(𝜛

𝑘,𝜛) ≪ |𝜛|1∕2𝑁𝑖(𝜛
𝑘),

which is again satisfactory by Lemma 7.5. □

We now return to the main task of this section: estimating the quantity 𝑆(𝑉, 𝐶1, 𝐶2) that was
defined in (7.3). Equation (7.16) gives

𝑆(𝑉, 𝐶1, 𝐶2) ≪ |𝑒|𝑛+1|𝑓|𝑛∕2+1|𝑒2𝑓2𝑑3| ∑
𝑐∈2

prim|𝑐𝑖|⩽𝐶𝑖
∑

′

|𝑎1|<|𝑒1𝑘′1|
∑

′

|𝑎1|<|𝑒2𝑘′|
𝑎1∕𝑟

′
2
∈𝐿(𝑑2𝑐)

∑
′

|𝑎′
1
|<|𝑒3𝑘′3|

𝜛𝜈𝜛(𝑘3𝑒3)∥𝑎1⋅𝑐

×
∑
𝒚 (𝑒)

𝑁𝑓(𝑎, 𝒚)
1∕2

∑
|𝒗−𝒗0|⩽𝑉
𝐹∗
1
(𝒗)=0

∇(𝑎⋅𝐹)(𝒚)≡𝑡𝒗 (𝑒)

1.
(7.18)

Let us now write 𝒗 = 𝒗0 + 𝒗1 + 𝒗2𝑒, where |𝒗1| < |𝑒|, 𝑡𝒗1 ≡ ∇(𝑎 ⋅ 𝐹)(𝒚) (𝑒) and |𝒗2| < 𝑉|𝑒|−1.
Observe that (𝑒, 𝑡) = 1 implies that 𝒗1 is unique. Note that 𝐺(𝒗2) = 𝐹∗

1
(𝒗0 + 𝒗1 + 𝒗2𝑒) is of degree

3 × 2𝑛−2 and its leading degree part is absolutely irreducible, so that we may invoke Lemma 3.4
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to deduce that

∑
|𝒗−𝒗0|⩽𝑉
𝐹∗
1
(𝒗)=0

∇(𝑎⋅𝐹)(𝒚)≡𝑡𝒗 (𝑒)

1 ≪ 1 +

(
𝑉|𝑒|
)𝑛−2

. (7.19)

Using the Chinese remainder theorem together with Lemma 7.6, we obtain∑
𝒚 (𝑒)

𝑁𝑓(𝑎, 𝒚)
1∕2 = 𝑆2(𝑒2, 𝑓2)𝑆3(𝑒3, 𝑓3)

(
𝑆1(𝑒1, 𝑓1) + 𝑆′1(𝑒1, 𝑓1)

)
≪ |𝑒2|𝑛−2+𝜀|𝑓2||𝑒3|𝑛−1+𝜀|𝑒′3|−1|𝑓3|(|𝑒1|𝑛−1+𝜀|𝑓1|1∕2 + 𝑆′1(𝑒1, 𝑓1)

)
.

(7.20)

Moreover, the conjunction of the conditions𝐹1(𝒚)𝐹2(𝒚) ≢ 0 (𝑓1) and𝐹𝑐(𝒚) ≡ 0 (𝑓1) can only hold
if (𝑐1, 𝑓1) = (𝑐2, 𝑓1) = 1. Therefore, for 𝐶1 ⩾ 𝐶2 ⩾ 1, we have∑

𝑐∈2
prim|𝑐𝑖|⩽𝐶𝑖

𝑆′1(𝑒1, 𝑓1) ⩽ max
𝑎 (𝑓1)

(𝑎1,𝑓1)=(𝑎2,𝑓1)=1

∑
𝒚 (𝑒1)

𝐹1(𝒚)𝐹2(𝒚)≢0(𝑓1)
𝑁𝑓1

(𝑎, 𝒚)1∕2
∑

𝑐∈2
prim|𝑐𝑖|⩽𝐶𝑖

𝐹𝑐(𝒚)≡0 (𝑒1)

1

⩽ 𝐶2

(
1 +

𝐶1|𝑒1|
)

max
𝑎 (𝑓1)

(𝑎1,𝑓1)=(𝑎2,𝑓1)=1

( |𝑒1||𝑓1|
)𝑛 ∑

𝒚 (𝑓1)

𝑁𝑓1
(𝑎, 𝒚)1∕2

≪ |𝑒1|𝑛𝐶2(1 + 𝐶1|𝑒1|
)
,

(7.21)

where we used (7.17) together with the Cauchy–Schwarz inequality to arrive at the last estimate.
Next, observe that 𝑎

2
∕𝑟′

2
∈ 𝐿(𝑑2𝑐) implies that𝜛

𝜈𝜛(𝑟
′
2
𝑑−1
2
) ∣ 𝑎

2
⋅ 𝑐, so that

#{|𝑎
2
| < |𝑒2𝑘′|∶ 𝑎2∕𝑟′2 ∈ 𝐿(𝑑2𝑐)} ⩽

( |𝑒2𝑘′||𝑟′
2
𝑑−1
2
|
)2|𝑟′2𝑑−12 | = |𝑒2𝑘′|2|𝑟′2|−1|𝑑2|. (7.22)

A similar argument delivers

#{|𝑎
3
| < |𝑒3𝑘′3|∶ 𝜛𝜈𝜛(𝑒3) ∣ 𝑎

3
⋅ 𝑐} ⩽ |𝑘′3|2|𝑒3|. (7.23)

Recall that 𝑒 = 𝑒1𝑒2𝑒3, 𝑓 = 𝑓1𝑓2𝑓3 and 𝑑 = 𝑑2𝑑3. Then, since 𝑘, 𝑘′ are 𝑂(1) and |𝑠| ≍ |𝑟|, we can
combine (7.19) – (7.23) with (7.18) to obtain

𝑆(𝑉, 𝐶1, 𝐶2) ≪ |𝑒|𝑛+1|𝑓|𝑛∕2+1|𝑒1𝑒3|2|𝑒2||𝑓1|1∕2|𝑓2|2|𝑓3||𝑑2𝑑3||𝑟′2|−1|𝑒′3|−1(|𝑒| + 𝑉
)𝑛−2

× 𝐶2

(
𝐶1 + |𝑒1||𝑓1|−1∕2 + 𝐶1|𝑓1|−1∕2)
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≪ |𝑑||𝑠|(𝑛+3)∕2 |𝑓32𝑓3|1∕2|𝑟′
2
𝑒′
3
| 𝐶2

(|𝑒| + 𝑉
)𝑛−2(

𝐶1 + |𝑒1||𝑓1|−1∕2),
where we used that |𝑒2𝑓| ≍ |𝑠| and 𝑑2𝑑3 = 𝑑. Since 𝑟2 is cube-full and |𝑟′2| ≍ |𝑟2|, we have 𝑓32 ∣ 𝑟2
and thus |𝑓2|3∕2|𝑟′2|−1 ≪ 1. Moreover, since 𝜈𝜛(𝑑′3) ⩾ 1 for all𝜛 ∣ 𝑒3, the definition of 𝑒′3 in (7.13)
implies that 𝑓3 ∣ 𝑒′3 and hence |𝑓3|1∕2|𝑒′3|≪ 1. We have thus established the following result.

Lemma 7.7. Let 𝑠 ∈  be cube-full and 𝑑 ∣ 𝑠. Then, with the notation of (7.8), it holds that

𝑆(𝑉, 𝐶1, 𝐶2) ≪𝐹1,𝐹2,𝑁
|𝑑||𝑠|(𝑛+3)∕2𝐶2(|𝑠|𝑛∕2−1 + 𝑉𝑛−2

)(
𝐶1 + |𝑒1|𝑓1|−1∕2).

8 RETURN TO THE CIRCLEMETHOD

In this section, we combine the estimates for the various exponential sums and integrals that we
have produced so far to finish our treatment of 𝑁(𝑃). To ease of notation, for 𝑑 ∈  and 𝑐 ∈ 2,
we abbreviate the properties 𝑑monic, 𝑐 primitive, |𝑑𝑐1| ⩽ min{𝑇|𝑟|1∕2, |𝑟|}, |𝑑𝑐2| < 𝑇−1|𝑟|1∕2 and
max{𝑅𝑖|𝑑𝑐⊥𝑖 |} ⩾ |𝑟| by 𝑃(𝑑, 𝑐). In addition, throughout this section, we shall assume 𝑛 ⩾ 26. We
will notmake the dependence of the implied constants explicit anymore, but allow them to depend
at most on 𝐹1, 𝐹2, 𝑤 and𝑁 as well as on 𝜀 if it appears in the inequality. Recall the decomposition
of N(𝑃) in (4.10).

8.1 The main term

We begin to carry out the analysis of 𝑀(𝑃). Since we chose 𝑅2 ≍ 𝑃1∕3 in (4.9), it follows from
Corollary 2.10 that

𝑀(𝑃) = 𝑃𝑛
∑

|𝑟|≪𝑃1∕3

𝑟 monic

|𝑟𝑁|−𝑛𝑆𝑟𝐾𝑟 + 𝑃𝑛
∑

𝑃1∕3≪|𝑟|⩽𝑅1𝑅2
𝑟 monic

|𝑟𝑁|−1 ∑
𝑑𝑐∶ 𝑃(𝑑,𝑐)

𝑑∣𝑟

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝟎)𝐾𝑟, (8.1)

where

𝑆𝑟 =
∑

′

𝑎 (𝑟)

∑
|𝒙|<|𝑟𝑁 |
𝒙≡𝒃 (𝑁)

𝜓

(
𝑎 ⋅ 𝐹(𝒙)

𝑟

)

and

𝐾𝑟 = ∫|𝜃1|<𝑅−11 |𝑟|−1 ∫|𝜃2|<𝑅−12 |𝑟|−1 𝐼𝑟𝑁 (𝜃, 𝟎)d𝜃.
It is a consequence of Proposition 5.5 that

𝐾𝑟 ≪ 𝑃−5+𝜀 (8.2)
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and from Corollary 7.2 with 𝒗0 = 𝟎 and 𝑉 = 1, we deduce

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) ≪ |𝑑||𝑟|5𝑛∕6+3∕2+𝜀. (8.3)

Note that if 𝑐2 ≠ 0, then since 𝑇 ≍ 𝑃1∕2, the condition |𝑑𝑐2| < 𝑇−1|𝑟|1∕2 can only hold if |𝑟|≫ 𝑃.
In particular, it is now easy to see that ∑

𝑑𝑐∶ 𝑃(𝑑,𝑐)

𝑑∣𝑟

|𝑑|≪ |𝑟|1+𝜀. (8.4)

It follows from (8.2)–(8.4) that the rightmost term in (8.1) is of order

𝑃𝑛−5+𝜀
∑

𝑃1∕3≪|𝑟|⩽𝑅1𝑅2
𝑟 monic

|𝑟|5𝑛∕6+3∕2|𝑟𝑁|𝑛 ∑
𝑑𝑐 𝑃(𝑑,𝑐)

𝑑∣𝑟

|𝑑|≪ 𝑃𝑛−5+𝜀
∑

𝑃1∕3≪|𝑟|⩽𝑅1𝑅2
𝑟 monic

|𝑟|5∕2−𝑛∕6
≪ 𝑃𝑛−5−(7∕2−𝑛∕6)∕3+𝜀,

where we used that 7∕2 − 𝑛∕6 < 0 for 𝑛 > 21. Consequently, the contribution from this term is
negligible and it remains to investigate the first term on the right-hand side of (8.1).
The first step we take is to analyse the integral 𝐾𝑟. Let 𝐶 > 0 be a fixed positive integer, whose

exact value will be determined in due course. We then split up the integral 𝐾𝑟 into

𝐾𝑟 = ∫|𝜃1|<𝐶−1𝑃−3 ∫|𝜃2|<𝐶−1𝑃−2 𝐼𝑟𝑁 (𝜃, 𝟎)d𝜃 + ∫Ξ 𝐼𝑟𝑁 (𝜃, 𝟎)d𝜃, (8.5)

where Ξ is defined by

Ξ ∶=
{
𝜃 ∈ 𝕋2 ∶ |𝜃𝑖| < 𝑅−1𝑖 |𝑟|−1 for 𝑖 = 1, 2 and 𝐶−1𝑃−3 ⩽ |𝜃1| or 𝐶−1𝑃−2 ⩽ |𝜃2|}.

Note that Ξ is non-empty only if |𝑟| < max𝑖=1,2{𝐶𝑅
−1
𝑖
𝑃4−𝑖}. Since 𝑅−1

𝑖
𝑃4−𝑖 ≍ 𝑃5∕3 by (4.9), this

will certainly hold for |𝑟|≪ 𝑃1∕3 and 𝑃 sufficiently large. We will show that the second integral
vanishes and produce a lower bound for the first one. Beginning with the former task, we have by
(5.1) that the second integral is equal to

𝐿̂−𝑛 ∫Ξ ∫𝕋𝑛 𝜓
(
𝑡3𝑃𝜃1𝐺1(𝒙) + 𝑡2𝑃𝜃2𝐺2(𝒙)

)
d𝒙d𝜃,

where 𝐺𝑖(𝒙) = 𝐹𝑖(𝒙0 + 𝑡−𝐿𝒙) for 𝑖 = 1, 2. Let Γ = ({1} × 𝕋) ∪ (𝕋 × {1}) and define

𝜆 = min
𝛾∈Γ

|𝛾1∇𝐹1(𝒙0) + 𝛾2∇𝐹2(𝒙0)|.
Observe that 0 < 𝜆 < 1 since Γ is compact and 𝒙0 a non-singular point of the variety defined by 𝐹1
and 𝐹2 with |𝒙0| < 𝐻−1

𝐹
. To simplify notation, we write 𝛾1 = 𝑡3𝑃𝜃1 and 𝛾2 = 𝑡2𝑃𝜃2. Let now 𝛾 ∈ 𝕋
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be such that |𝛾| = |𝛾|. Then, by the ultrametric property, we have
|𝛾1∇𝐺1(𝒙) + 𝛾2∇𝐺2(𝒙)| = 𝐿̂−1|𝛾||𝛾1∇𝐹1(𝒙0)∕𝛾 + 𝛾2∇𝐹2(𝒙0)∕𝛾| ⩾ 𝐿̂−1|𝛾|𝜆,

provided that 𝐿 is sufficiently large. Moreover, all higher partial derivatives of 𝛾1𝐺1(𝒙) + 𝛾2𝐺2(𝒙)

are of order 𝑂(𝐿̂−2|𝛾|). By the second derivative test [5, Lemma 2.5], we thus have 𝐾𝑟 = 0 if
𝐿̂−1|𝛾|𝜆 ⩾ 1. Since |𝛾| ⩾ 𝐶−1, this can be ensured if we make the choice 𝐶 = 𝜆𝐿̂−1, which we
henceforth assume.
We proceed to investigate the first integral in (8.5). After making the change of variables 𝛾𝑖 =

𝑡(4−𝑖)𝑃𝜃𝑖 , by (5.1), we have

𝐾𝑟 = 𝐿̂−𝑛𝑃−5 ∫|𝛾|<𝐶−1 ∫𝕋𝑛 𝜓(𝛾1𝐺1(𝒙) + 𝛾2𝐺2(𝒙))d𝒙d𝛾.

It is now clear that 𝐾𝑟 is, in fact, independent of 𝑟 and to emphasise this, we define

𝜎∞ ∶= 𝐿̂−𝑛 ∫|𝛾|<𝐶−1 ∫𝕋𝑛 𝜓(𝛾1𝐺1(𝒙) + 𝛾2𝐺2(𝒙))d𝒙d𝛾.

The integral 𝜎∞ is the singular integral associated to our counting problem and our next step is to
show that 𝜎∞ > 0. To do so, we exchange the order of integration and apply Lemma 5.3 to deduce
that

𝜎∞ = 𝐿̂−𝑛𝐶−2meas
(
{𝒙 ∈ 𝕋𝑛 ∶ |𝐺𝑖(𝒙)| < 𝐶 for 𝑖 = 1, 2}

)
.

Using Taylor expansion and the fact that 𝐹𝑖(𝒙0) = 0 for 𝑖 = 1, 2, it follows that

𝐺1(𝒙) = 𝑡−𝐿𝒙 ⋅∇𝐹1(𝒙0) +
1

2
𝑡−2𝐿𝒙𝑡𝐻(𝒙0)𝒙 + 𝑡−3𝐿𝐹1(𝒙)

and

𝐺2(𝒙) = 𝑡−𝐿𝒙 ⋅∇𝐹2(𝒙0) + 𝑡−2𝐿𝐹2(𝒙).

Provided 𝐿 is sufficiently large, we must then have

|𝐺1(𝒙)| = 𝐿̂−1|𝒙 ⋅∇𝐹1(𝒙0)| and |𝐺2(𝒙)| = 𝐿̂−1|𝒙 ⋅∇𝐹2(𝒙0)|.
However, if we recall that 𝐶 = 𝐿̂−1𝜆, then for |𝒙| < 𝜆, it is clear that

𝐿̂−1|𝒙 ⋅∇𝐹𝑖(𝒙0)| < 𝐿̂−1𝜆 = 𝐶,

so that 𝜎∞ > 𝐿̂−𝑛𝐶−2𝜆𝑛. We summarise our investigation of the integral𝐾𝑟 in the following result.

Lemma 8.1. Let |𝑟|≪ 𝑃1∕3. Then,

𝐾𝑟 = 𝜎∞𝑃
−5,

where 𝜎∞ > 0 depends only on the weight function 𝑤.
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It follows from Lemma 8.1 and the upper bound provided after (8.1) that

𝑀(𝑃) = 𝜎∞𝔖𝒃,𝑁(1∕3)𝑃
𝑛−5 + 𝑂

(
𝑃𝑛−5−𝛿

′
)
,

for some 𝛿′ > 0, where for Δ > 0, we have defined

𝔖𝒃,𝑁(Δ) ∶=
∑

|𝑟|≪𝑃Δ

𝑟 monic

|𝑟𝑁|−𝑁𝑆𝑟
to be the truncated singular series associated to our counting problem. Let

𝔖𝒃,𝑁 ∶=
∑

𝑟 monic
|𝑟𝑁|−𝑛𝑆𝑟

be the completed singular series. It follows from Lemma 7.1 and Lemma 6.8 that

𝑆𝑟 =
∑

′

𝑎 (𝑟)

𝑇(𝑎, 𝑟, 𝟎) ≪ |𝑟|2+5𝑛∕6+𝜀
so that𝔖𝒃,𝑁 converges absolutes for 𝑛 > 18 and

||𝔖𝒃,𝑁(Δ) − 𝔖𝒃,𝑁
||≪ ∑

|𝑟|>𝑃Δ |𝑟|2−𝑛∕6+𝜀 ≪ 𝑃Δ(3−𝑛∕6+𝜀).

It is a routine exercise to show that 𝔖𝒃,𝑁 > 0, provided that there exists 𝒙𝜛 ∈ 𝑛
𝜛 such that

𝐹1(𝒙𝜛) = 𝐹2(𝒙𝜛) = 0 and |𝒃 − 𝒙𝜛|𝜛 < |𝑁|𝜛 for all𝜛, see, for example, [21, Corollary 4.4.7] for
arbitrary complete intersections. In particular, we have established the following result.

Proposition 8.2. For 𝑛 > 18, we have

𝑀(𝑃) = 𝜎∞𝔖𝒃,𝑁𝑃
𝑛−5 + 𝑂

(
𝑃𝑛−5−𝛿

′′
)

for some 𝛿′′ > 0 with 𝜎∞ > 0. Moreover, 𝔖𝒃,𝑁 > 0 if for every 𝜛, there exists 𝒙𝜛 ∈ 𝑛
𝜛 such that

𝐹1(𝒙𝜛) = 𝐹2(𝒙𝜛) = 0 and |𝒃 − 𝒙𝜛|𝜛 < |𝑁|𝜛 .
To prove Proposition 4.2 and hence also Theorems 1.1 and 1.2, it remains to give a satisfactory

upper bound for the error term 𝐸1(𝑃) defined in (4.10). This will occupy the remainder of our
work and makes use of the various estimates we have provided for the oscillatory integrals and
exponentials sums under consideration.

8.2 Preparation for the error terms

We continue our investigation of the error term 𝐸1(𝑃). Before doing so, we take some preliminary
steps. Firstly, we shall fix the absolute value of 𝑟 to be 𝑌 and of 𝜃𝑖 to be Θ̂𝑖 for 𝑖 = 1, 2, respectively,
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where

1 ⩽ 𝑌 ⩽ 𝑅1 + 𝑅2, −9𝑃 + 𝑅2 ⩽ Θ1 < −𝑌 − 𝑅1 and − 9𝑃 + 𝑅1 ⩽ Θ2 < −𝑌 − 𝑅2, (8.6)

and neither of the conditions (1) nor (4) recorded after (4.10) hold. Observe that by our choice
of 𝑅1 and 𝑅2 in (4.9), the number of admissible triples (𝑌,Θ1, Θ2) is 𝑂(𝑃𝜀). Secondly, we treat
separately the contribution from 𝑐2 ≠ 0 and 𝑐2 = 0 and denote the contribution of such 𝑟’s, 𝜃’s
and 𝑐’s to 𝐸1(𝑃) by 𝐸1,𝑎(𝑌,Θ1, Θ2) and 𝐸1,𝑏(𝑌,Θ1, Θ2), respectively, so that

𝐸1,𝑎(𝑌,Θ1, Θ2) = 𝑃𝑛
∑
|𝑟|=𝑌
𝑟 monic

|𝑟𝑁|−𝑛 ∑
𝑑𝑐∶𝑃(𝑑𝑐)
𝑐2≠0
𝑑∣𝑟

∫|𝜃𝑖|=Θ̂𝑖
∑

𝒗∈𝑛⧵{𝟎}

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)𝐼𝑟𝑁 (𝜃, 𝒗)d𝜃 (8.7)

and

𝐸1,𝑏(𝑌,Θ1, Θ2) = 𝑃𝑛
∑
|𝑟|=𝑌
𝑟 monic

|𝑟𝑁|−𝑛 ∑
|𝑑|⩽𝑌1∕2𝑃1∕2

𝑑∣𝑟

∫|𝜃𝑖|=Θ̂𝑖
∑

𝒗∈𝑛⧵{𝟎}

𝑆𝑑𝑐0,𝑟,𝒃,𝑁
(𝒗)𝐼𝑟𝑁 (𝜃, 𝒗)d𝜃, (8.8)

where 𝑐
0
= (1, 0) since by our convention 𝑐 with 𝑐2 = 0 can only be primitive when 𝑐1 = 1. If we

can show that 𝐸1,𝑖(𝑌,Θ1, Θ2) ≪ 𝑃𝑛−5−𝜅 for 𝑖 = 𝑎, 𝑏 and some 𝜅 > 0, then since the number of
admissible triples (𝑌,Θ1, Θ2) is 𝑂(𝑃𝜀), the same estimate will hold with a new choice of 𝜅 for
𝐸1(𝑃). Moreover, if we let 𝑍 = max{1, 𝑃3Θ̂1, 𝑃

2Θ̂2}, then (5.2) implies that the summation range
of 𝒗 in the definition of 𝐸1,𝑖(𝑌,Θ1, Θ2) is empty unless

|𝒗|≪ 𝑉, where 𝑉 =
𝑌𝑍

𝑃
. (8.9)

In particular, since 𝒗 ≠ 𝟎, it must also hold that

𝑌𝑍 ≫ 𝑃. (8.10)

Finally, we use the convention that 𝜀 > 0 is an arbitrarily small real number whose exact value
may change from one appearance to the next.

8.2.1 Treatment of 𝐸1,𝑎(𝑌,Θ1, Θ2)

Note that we must have

𝑌 ≫ 𝑃, (8.11)

because as 𝑐2 ≠ 0 and 𝑇 ≍ 𝑃1∕2, the inequality |𝑑𝑐2| < 𝑇−1𝑌1∕2 can only hold if 𝑌 ≫ 𝑃. Since we
assume that 𝑐2 ≠ 0, Lemma 6.5 gives strong upper bounds for 𝑆𝑐,𝑟,𝒃,𝑁(𝒗), provided that 𝑟 is square-
free and (𝑟, 𝐹∗

1
(𝒗)) = 1. Accordingly, we shall further split up 𝐸1,𝑎(𝑌,Θ1, Θ2) into the contribution

from those 𝒗 with 𝐹∗
1
(𝒗) ≠ 0 and 𝐹∗

1
(𝒗) = 0 and denote it by 𝐸′

1
and 𝐸′

2
, respectively. In the

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12991 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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treatment of 𝐸′
2
, we compensate the worse exponential sum estimates compared to 𝐸′

1
by

exploiting the sparsity of vectors 𝒗 such that 𝐹∗
1
(𝒗) = 0.

Let us begin by dealing with the term 𝐸′
1
. Applying (5.1) and Lemma 5.1 to the integral 𝐼𝑟𝑁 (𝜃, 𝒗)

in (8.7), it follows that

𝐸′1 ⩽ |𝑁|𝑛𝐿̂−𝑛 𝑃𝑛
𝑌𝑛

∑
𝑑𝑐∶ 𝑃(𝑑𝑐)
𝑐2≠0

∫|𝜃|=Θ̂ ∫𝕋𝑛
∑

|𝒗−𝒗0|<𝑉𝑍−1∕2
𝐹∗
1
(𝒗)≠0

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐,𝑟,𝒃,𝑀(𝒗)|d𝒙d𝜃, (8.12)

where 𝒗0 = −𝑟𝑁𝑡
𝐿(𝑡3𝑃∇𝐹1(𝒙0 + 𝑡−𝐿𝒙) + 𝑡2𝑃∇𝐹2(𝒙0 + 𝑡−𝐿𝒙)). Our next goal is to estimate the

sum

𝑆 ∶=
∑

|𝒗−𝒗0|<𝑉𝑍−1∕2
𝐹∗
1
(𝒗)≠0

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)|.
For this, we write 𝑟 = 𝑏1𝑏

′
1
𝑏2𝑏

′
2
𝑟3 into pairwise coprime 𝑏1, 𝑏′1, 𝑏2, 𝑏

′
2
, 𝑟3 ∈ , where 𝑏1𝑏′1 is the

square-free part of 𝑟 satisfying (𝑏1, 𝑑𝑁𝐹∗1 (𝒗)𝑐2) = 1; 𝑏2𝑏′2 is such that 𝜈𝜛(𝑏2𝑏
′
2
) = 2 for all𝜛 ∣ 𝑏2𝑏

′
2

and (𝑏2, 𝑑𝑁𝑐2) = 1 and 𝑟3 is the cube-full part of 𝑟. Accordingly, we shall also write 𝑑 = 𝑑1𝑑2𝑑3
with 𝑑1 ∣ 𝑏′1, 𝑑2 ∣ 𝑏

′
2
and 𝑑3 ∣ 𝑟3. We can then use the multiplicativity of 𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) recorded in

Lemma 6.1 to deduce for appropriate 𝑡1, 𝑡′1, 𝑡2, 𝑡
′
2
, 𝑡3, 𝑁1,𝑁2,𝑁3 ∈  that

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)| = |𝑆𝑏1(𝑡1𝒗)𝑆𝑑1𝑐,𝑏′1,𝒃,𝑁1
(𝑡′1𝒗)𝑆𝑏2(𝑡2𝒗)𝑆𝑑2𝑐,𝑏′2,𝒃,𝑁2

(𝑡′2𝒗)𝑆𝑑3𝑐,𝑟3,𝒃,𝑁3
(𝑡3𝒗)|

≪ |𝑟|𝜀|𝑏1|(𝑛+1)∕2|𝑏2|𝑛∕2+1|𝑑1𝑑2||𝑏′1𝑏′2|(𝑛+3)∕2|𝑆𝑑3𝑐,𝑟3,𝒃,𝑁3
(𝑡3𝒗)|, (8.13)

where we used Lemmas 6.5, 6.6 and 6.7 to estimate the sums corresponding to 𝑏1, 𝑏′1 and 𝑏2,
respectively, and Corollary 6.9 for the sum corresponding to 𝑏′

2
. Moreover, by Corollary 7.2, we

have ∑
|𝒗−𝒗0|<𝑉𝑍−1∕2

𝐹∗
1
(𝒗)≠0

|𝑆𝑑3𝑐,𝑟3,𝒃,𝑁3
(𝑡3𝒗)|≪ |𝑑3||𝑟3|𝑛∕2+1+𝜀|𝑟′′3 |1∕2(𝑉𝑛𝑍−𝑛∕2 + |𝑟3|𝑛∕3), (8.14)

where 𝑟3 = 𝑟′
3
𝑟′′
3
with (𝑟′

3
, 𝑑) = 1 are defined in (7.1). Consequently, plugging (8.13) and (8.14) into

the definition of 𝑆 yields

𝑆 ≪ 𝑌(𝑛+1)∕2+𝜀|𝑑|(𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3
) ∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑏2𝑟′3|1∕2|𝑏′1𝑏′2𝑟′′3 |
= 𝑌(𝑛+3)∕2+𝜀|𝑑|(𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3

) ∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑏1|−1|𝑏2𝑟′3|−1∕2,
since |𝑏1𝑏′1𝑏2𝑏′2𝑟′3𝑟′′3 | = 𝑌. By definition, we must have 𝑏′

1
𝑏′
2
𝑟′′
3
∣ (𝑑𝑁𝑐2𝐹

∗
1
(𝒗))∞. The number of

available 𝑏′
1
, 𝑏′

2
, 𝑟′′
3
with |𝑏′

1
𝑏′
2
𝑟′′
3
| ⩽ 𝑌 is hence 𝑂(𝑌𝜀). Moreover, since 𝑏2𝑟′3 is square-full, the
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number of 𝑏2 and 𝑟′3’s of fixed absolute value 𝐵 is 𝑂(𝐵
1∕2). After summing over 𝑞-adic intervals, it

thus follows that

𝑆 ≪ 𝑌(𝑛+3)∕2+𝜀|𝑑|(𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3
)
,

and hence,

𝐸′1 ≪ 𝑃𝑛𝑌3∕2−𝑛∕2+𝜀Θ̂1Θ̂2

∑
𝑑𝑐∶ 𝑃(𝑑𝑐)

|𝑑|(𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3
)

≪ 𝑃𝑛−5𝑌5∕2−𝑛∕2+𝜀𝑍2
(
𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3

)
,

where we used that Θ̂1Θ̂2 ≪ 𝑃−5𝑍2 and
∑
𝑑𝑐∶ 𝑃(𝑑𝑐) |𝑑|≪ 𝑌1+𝜀. If the first term in the brackets

dominates, we get

𝐸′1 ≪ 𝑃−5𝑌5∕2+𝑛∕2+𝜀𝑍2+𝑛∕2 ≪ 𝑃5𝑛∕6−5+10∕3𝑌1∕2+𝜀 ≪ 𝑃5𝑛∕6−5∕3+5∕6+𝜀,

because 𝑍 ≪ 𝑃5∕3𝑌−1 and 𝑌 ≪ 𝑃5∕3. Thus, the contribution from 𝐸′
1
in this case is 𝑂(𝑃𝑛−5−𝜅) for

some 𝜅 > 0 as soon as 𝑛 > 25. If the second term dominates, then

𝐸′1 ≪ 𝑃𝑛−5𝑌5∕2−𝑛∕6+𝜀𝑍2 ≪ 𝑃𝑛−5+10∕3𝑌1∕2−𝑛∕6+𝜀 ≪ 𝑃𝑛−5+10∕3+1∕2−𝑛∕6+𝜀,

where we used that 𝑌 ≫ 𝑃 by (8.11). This is satisfactory as soon as 𝑛 > 23, which completes our
treatment of 𝐸′

1
.

Next, we consider the contribution from 𝐸′
2
. This time we apply Lemma 5.2 to the integral

𝐼𝑟𝑁 (𝜃, 𝒗) and obtain

𝐸′2 ≪
𝑃𝑛

𝑌𝑛
𝑍1−𝑛∕2Θ̂1Θ̂2

∑
|𝑑|⩽𝑇−1∕2|𝑌|1∕2

∑
|𝑐𝑖|<𝐶𝑖
𝑐2≠0

∑
0<|𝒗|⩽𝑉
𝐹∗
1
(𝒗)=0

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)|,
where 𝐶1 = 𝑇𝑌1∕2|𝑑|−1 and 𝐶2 = 𝑇−1𝑌1∕2|𝑑|−1. We proceed to consider the sum

𝑆′ ∶=
∑

|𝑐𝑖|<𝐶𝑖
𝑐2≠0

∑
0<|𝒗|⩽𝑉
𝐹∗
1
(𝒗)=0

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗)|.
For this, we first factor 𝑟 = 𝑏1𝑏2𝑟3 into pairwise coprime 𝑏1, 𝑏2, 𝑟3 ∈  and 𝑑 = 𝑑2𝑑3 with 𝑑2 ∣ 𝑏2
and 𝑑3 ∣ 𝑟3, where 𝑏1 is square-free, 𝑏2 is cube-free, (𝑏1, 𝑑𝑁𝑐2) = 1 and 𝑟3 is the cube-full part of
𝑟. Parallel to our argument for 𝐸′

1
, we use Lemma 6.1 to factor 𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) and invoke Lemmas 6.6

and 6.7 to bound the sum corresponding to 𝑏1 as well as Lemma 6.6 and Corollary 6.9 to bound
the sum corresponding to 𝑏2 to obtain

𝑆𝑑𝑐,𝑟,𝒃,𝑁(𝒗) ≪ |𝑟|𝜀|𝑑2||𝑏1|𝑛∕2+1|𝑏2|(𝑛+3)∕2|𝑆𝑑3𝑐,𝑟3,𝒃,𝑁′ (𝑡𝒗)|
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for appropriate 𝑡, 𝑁′ ∈ . We wish to apply Lemma 7.7 to estimate the average
𝐴 ∶=

∑
|𝑐𝑖|<𝐶𝑖

∑
0<|𝒗|⩽𝑉
𝐹∗
1
(𝒗)=0

|𝑆𝑑3𝑐,𝑟3,𝒃,𝑁′(𝑡𝒗)|.
For this note that with the notation of Lemma 7.7 for 𝑃 sufficiently large, we have|𝑒1| ⩽ 𝑌1∕2 ≪ 𝑌1∕2𝑇|𝑑|−1 = 𝐶1, since 𝑇 ≍ 𝑃1∕2 and |𝑑| ⩽ 𝑌1∕2𝑇−1 ≪ 𝑃1∕3. In particular,
Lemma 7.7 hands us

𝐴 ≪ |𝑑3||𝑟3|𝑛∕2+3∕2+𝜀𝐶1𝐶2(|𝑟3|𝑛∕2−1 + 𝑉𝑛−2
)
. (8.15)

We may also forget about the condition 𝐹∗
1
(𝒗) = 0 and use Corollary 7.2 to obtain the alternative

estimate

𝐴 ≪ 𝐶1𝐶2|𝑑3||𝑟3|𝑛∕2+1+𝜀|𝑟′′3 |1∕2(𝑉𝑛 + |𝑟3|𝑛∕3), (8.16)

where 𝑟3 = 𝑟′
3
𝑟′′
3
with 𝑟′

3
given by (7.1). In particular, we have shown so far that

𝐴 ≪ 𝐶1𝐶2|𝑑3||𝑟3|𝑛∕2+1+𝜀 min{|𝑟3|1∕2(𝑉𝑛−2 + |𝑟3|𝑛∕2−1), |𝑟′′3 |1∕2(𝑉𝑛 + |𝑟3|𝑛∕3)}. (8.17)

We begin with the contribution from𝑉 ⩾ |𝑟3|1∕2 or𝑉 ⩽ |𝑟3|1∕3. Since 𝑏2𝑟′′3 ∣ (𝑁𝑑𝑐2)∞, there are at
most 𝑂(𝑃𝜀) pairs (𝑏2, 𝑟′′3 ). Moreover, since 𝑟3 is cube-full, there are 𝑂(|𝑟3|1∕3) available 𝑟3 of fixed
absolute. One now easily derives ∑

|𝑟|=𝑌
𝑑∣𝑟

|𝑏2𝑟3|1∕2 ≪ 𝑌1+𝜀.

In addition, we also have ∑
|𝑑|⩽𝑇−1𝑌1∕2 𝐶1𝐶2|𝑑| = 𝑌

∑
|𝑑|⩽𝑇−1𝑌1∕2 |𝑑|−1 ≪ 𝑌1+𝜀. (8.18)

After employing the estimates Θ̂1Θ̂2 ≪ 𝑃−5𝑍2 and |𝑟3| ⩽ 𝑌, we have in the cases under
consideration

𝐸′2 ≪ 𝑃𝑛−5𝑌3−𝑛∕2𝑍3−𝑛∕2
(
𝑉𝑛−2 + 𝑌𝑛∕3

)
. (8.19)

If the first term dominates, we obtain

𝐸′2 ≪ 𝑃−3𝑌1+𝑛∕2+𝜀𝑍1+𝑛∕2 ≪ 𝑃5𝑛∕6−3+5∕3+𝜀,

which is satisfactory if 𝑛 > 22. On the other hand, if 𝑌𝑛∕3 ⩾ 𝑉𝑛−2, then

𝐸′2 ≪ 𝑃𝑛−5𝑌3−𝑛∕6+𝜀𝑍3−𝑛∕2 ≪ 𝑃𝑛−5+(3−𝑛∕6)+𝜀,

by (8.11) and because 𝑍 ⩾ 1. Thus, this contribution is sufficiently small as soon as 𝑛 > 18.
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Finally, we have to deal with the contribution from |𝑟3|1∕3 < 𝑉 < |𝑟3|1∕2. For this, we use
that for any real numbers 𝐴, 𝐵 > 0 and 0 ⩽ 𝜅 ⩽ 1 that min{𝐴, 𝐵} ⩽ 𝐴1−𝜅𝐵𝜅 with 𝜅 = 1∕(𝑛 − 2)

to deduce that

𝑆′ ≪ 𝐶1𝐶2|𝑑|𝑉𝑛(1−𝜅)𝑌𝑛∕2+1+𝜀
∑
|𝑟|=𝑌 |𝑏2|1∕2|𝑟′′3 |(1−𝜅)∕2|𝑟3|𝜅(𝑛−1)∕2

≪ 𝐶1𝐶2|𝑑|𝑉𝑛(1−𝜅)𝑌𝑛∕2+2+𝜀
∑

|𝑏2𝑟′3𝑟′′3 |⩽𝑌
|𝑏2|−1∕2|𝑟′3|(𝑛−1)∕(2𝑛−4)−1.

The number of available 𝑏2 of fixed absolute value is𝑂(|𝑏2|1∕2). Moreover, there are at most𝑂(𝑌𝜀)

possibilities for 𝑟′′
3
. Since (𝑛 − 1)∕(2𝑛 − 4) − 1 < −1∕3 for 𝑛 ⩾ 6 and the number of |𝑟′

3
| of fixed

absolute value is 𝑂(|𝑟′
3
|1∕3), it follows that the sum above is 𝑂(𝑌𝜀). Therefore, we have

𝑆′ ≪ 𝐶1𝐶2|𝑑|𝑉𝑛(1−𝜅)𝑌𝑛∕2+2+𝜀. (8.20)

Therefore, the contribution to 𝐸′
2
is at most

𝑃𝑛

𝑌𝑛
𝑍1−𝑛∕2Θ̂1Θ̂2

∑
𝑑

𝑆′ ≪ 𝑃𝑛−5∕3+𝜀𝑌1−𝑛∕2𝑍1−𝑛∕2𝑉𝑛(1−𝜅)

= 𝑃−5∕3+𝑛𝜅+𝜀𝑌1+𝑛∕2−𝜅𝑛𝑍1+𝑛∕2−𝜅𝑛

≪ 𝑃5𝑛∕6−2𝜅𝑛∕3+𝜀,

where we used Θ̂1Θ̂2 ≪ 𝑃−5∕3𝑌−2 and (8.18) to estimate the sum over 𝑑. One can check that
5𝑛∕6 − 2𝑛∕(3𝑛 − 6) < 𝑛 − 5 provided 𝑛 ⩾ 26, which completes our treatment of 𝐸′

2
and thus also

of 𝐸1,𝑎(𝑌,Θ1, Θ2).

8.2.2 Treatment of 𝐸1,𝑏(𝑌,Θ1, Θ2)

Wediffer our treatment according to the size of𝑌. When𝑌 ⩾ 𝑃1−𝜂, where 𝜂 is as in (4) after (4.10),
it is more efficient to estimate the sum over 𝒗 via the same trick that we used to arrive at (8.12),
whereas when 𝑌 ⩽ 𝑃1−𝜂, we estimate the integral directly. Before doing so, for𝑊 ⩾ 1, we focus
on the sum

Σ(𝑊) ∶=
∑

|𝒗−𝒗0|<𝑊
∑
|𝑑|⩽𝐾

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐0,𝑟,𝒃,𝑁(𝒗)|,
where 𝐾 = min{𝑌, 𝑌1∕2𝑇}.
To begin with, let us write 𝑟 = 𝑠𝑟3, where 𝑠 is the cube-free part of 𝑟 and 𝑟3 is cube-full. More-

over, we write 𝑑 = 𝑒𝑓1𝑓
2
2
𝑑3 into pairwise coprime 𝑒, 𝑓1, 𝑓2, 𝑑3 ∈ , where 𝑒𝑓1𝑓2 is square-free,

𝑒 is the greatest common divisor of 𝑠 and the square-free part of 𝑑, 𝑒𝑓2
1
𝑓2
2
∣ 𝑠 and 𝑑3 ∣ 𝑟3. The
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multiplicativity of 𝑆𝑑𝑐0,𝑟,𝒃,𝑁(𝒗) together with Proposition 6.10 then imply

𝑆𝑑𝑐0,𝑟,𝒃,𝑁
(𝒗) ≪ 𝑌𝜀|𝑓1𝑓2|1∕2|𝑠|(𝑛+3)∕2|𝑆𝑑3𝑐0,𝑟3,𝒃,𝑁′ (𝑡𝒗)|,

for some 𝑁′ ∣ 𝑁 and 𝑡 ∈  with (𝑡, 𝑟3) = 1. Moreover, the number of available 𝑠 is
𝑂(𝑌|𝑒1𝑓21𝑓22𝑟3|−1), so that

𝑆 ≪ 𝑌(𝑛+5)∕2+𝜀
∑
𝑑

∑
𝒗

∑
𝑑=𝑒𝑓1𝑓

2
2
𝑑2

|𝑒1𝑓1|−1|𝑓2|−1∕2 ∑
|𝑟3|⩽𝑌
𝑑3∣𝑟3

|𝑆𝑑3𝑐0,𝑟3,𝒃,𝑁′ (𝑡𝒗)||𝑟3|(𝑛+5)∕2 .

Next, we factor 𝑟3 into 𝑑′3𝑠1𝑠2 into pairwise coprime 𝑑
′
3
, 𝑠1, 𝑠2, where 𝑑′3 ∣ 𝑑3, (𝑠2, 𝑁

′Δ𝐹2) = 1 and
𝜈𝜛(𝑠2) > 𝜈𝜛(𝑑3), so that 𝑠1 ∣ (𝑁′Δ𝐹2)

∞. Accordingly, we shall also write 𝑑3 = 𝑑′
3
g1g2, so that g𝑖 ∣ 𝑠𝑖

for 𝑖 = 1, 2. Let 𝑢 ∈  and suppose that

𝑢 =
∏

𝑏𝑖
𝑖
, (𝑏𝑖, 𝑏𝑗) = 1 if 𝑖 ≠ 𝑗, 𝑏𝑖 square-free.

We then define the function

𝑚(𝑢) ∶= 𝑏31𝑏
3
2

∏
𝑖⩾3

𝑏𝑖+1
𝑖
.

Note that since 𝑠3 is cube-full and 𝜈𝜛(𝑠2) > 𝜈𝜛(g2), we must then have𝑚(g2) ∣ 𝑠2. By Lemma 6.1,
we then have for some 𝑡1, 𝑡2 ∈  with (𝑡1, 𝑑′3𝑠1) = (𝑡2, 𝑠2) = 1 and 𝑁′′ ∣ 𝑁′ that

𝑆𝑑3𝑐0,𝑟3,𝒃,𝑁′ (𝑡𝒗) = 𝑆𝑑′
3
g1𝑐0,𝑑

′
3
𝑠1,𝒃,𝑁

′′ (𝑡1𝒗)𝑆g2𝑐0,𝑠2,𝟎,1
(𝑡2𝒗).

Therefore, it follows from Proposition 6.10 that

∑
|𝑟3|⩽𝑌
𝑑3∣𝑟3

|𝑆𝑑3𝑐0,𝑟3,𝒃,𝑁′ (𝑡𝒗)||𝑟3|(𝑛+5)∕2 ≪ 𝑌𝜀
∑

𝑑3=𝑑
′
3
g1g2

∑
|𝑠1|⩽ 𝑌|𝑑′

3
|

g1∣𝑠1

|𝑆𝑑′
3
g1𝑐0,𝑑

′
3
𝑠1,𝒃,𝑁

′′ (𝑡1𝒗)||𝑑′
3
𝑠1|(𝑛+5)∕2

∑
|𝑠2|⩽𝑌
𝑚(g2)∣𝑠2

|g2||𝑠2|−1

≪ 𝑌𝜀
∑

𝑑3=𝑑
′
3
g1g2

|g2||𝑚(g2)|−1 ∑
|𝑠1|⩽ 𝑌|𝑑′

3
|

g1∣𝑠1

|𝑆𝑑′
3
g1𝑐0,𝑑

′
3
𝑠1,𝒃,𝑁

′′ (𝑡1𝒗)||𝑑′
3
𝑠1|(𝑛+5)∕2 ,

where we used that there are at most 𝑂(|𝑠2|1∕3) available 𝑠2 of fixed absolute value, because 𝑠2 is
cube-full. Next, we change the order of summation and make the sum over 𝒗 the innermost one.
We then use Corollary 7.2 to deduce

∑
|𝑠1|⩽ 𝑌|𝑑′

3
|

g∣𝑠1

∑
|𝒗−𝒗0|<𝑊

|𝑆𝑑′
3
g1𝑐0,𝑑

′
3
𝑠1,𝒃,𝑁

′′ (𝑡1𝒗)||𝑑′
3
𝑠1|(𝑛+5)∕2 ≪ |𝑑′3|−1∕2|g1| ∑

|𝑠1|⩽ 𝑌|𝑑′
3
|

g1∣𝑠1

|𝑠1|−1(𝑊𝑛 + |𝑑′3𝑠1|𝑛∕3)

≪ |𝑑′3|−1∕2𝑊𝑛 + |𝑑′3|−1∕2𝑌𝑛∕3+𝜀.
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52 of 54 GLAS

From what we have shown so far, it follows that

Σ(𝑊) ≪ 𝑌(𝑛+5)∕2+𝜀
∑
|𝑑|⩽𝐾

∑
𝑑=𝑒1𝑓1𝑓

2
2
𝑑3

∑
𝑑3=𝑑

′
3
g1g2

|𝑒1𝑓1|−1|𝑓2|−1∕2|g2||𝑚(g2)|−1|𝑑′3|−1∕2(𝑊 +𝑌𝑛∕3
)
.

Let now 𝑘 ∈ ℤ>0 be such that 1∕𝑘 < 𝜀 and write

𝑑 = ℎ′ℎ1ℎ
2
2⋯ℎ𝑘

𝑘
ℎ𝑘+1, (ℎ′, ℎ𝑖) = (ℎ𝑖, ℎ𝑗) = 1, ℎ′ ∣ (𝑁Δ𝐹2)

∞ for 𝑖 ≠ 𝑗,

where ℎ𝑖 is square-free for 𝑖 = 1, … , 𝑘 and ℎ𝑘+1 is (𝑘 + 1)th-powerful. Recalling the definition of
𝑚(g2) and that 𝑑′3 is cube-full, it is then not hard to see that∑
|𝑑|⩽𝐾

∑
𝑑=𝑒1𝑓1𝑓

2
2
𝑑3

∑
𝑑3=𝑑

′
3
g1g2

|𝑒1𝑓1|−1|𝑓2|−1∕2|g2||𝑚(g2)|−1|𝑑′3|−1∕2 ⩽ ∑
|𝑑|⩽𝐾 |ℎ1⋯ℎ𝑘|−1 ∑

𝑑=𝑒𝑓1𝑓
2
2
𝑑2

∑
𝑑3=𝑑

′
3
g1g2

1

≪
∑
|𝑑|⩽𝐾 |𝑑|𝜀|ℎ1⋯ℎ𝑘|−1

≪ 𝐾1∕𝑘+𝜀.

Therefore, the definition of 𝑆 and our choice of 𝑘 implies after redefining 𝜀 that

Σ(𝑊) ≪ 𝑌(𝑛+5)∕2+𝜀
(
𝑊 +𝑌𝑛∕3

)
. (8.21)

We now apply (8.21) to estimate 𝐸1,𝑏(𝑌,Θ1, Θ2) in two different ways according to the size of 𝑌.
Let us begin by assuming that 𝑌 ⩾ 𝑃1−𝜂. In this case, we deduce from (5.1) and Lemma 5.1 that

𝐸1,𝑏(𝑌,Θ1, Θ2) ⩽ |𝑁|𝑛𝐿̂−𝑛 𝑃𝑛
𝑌𝑛 ∫|𝜃|=Θ̂ ∫𝕋𝑛

∑
|𝒗−𝒗0|<𝑉𝑍−1∕2

∑
|𝑑|⩽𝐾

∑
|𝑟|=𝑌
𝑑∣𝑟

|𝑆𝑑𝑐0,𝑟,𝒃,𝑁(𝒗)|d𝒙d𝜃,
where 𝒗0 = −𝑟𝑀𝑡

𝐿(𝑡3𝑃∇𝐹1(𝒙0 + 𝑡−𝐿𝒙) + 𝑡2𝑃∇𝐹2(𝒙0 + 𝑡−𝐿𝒙)). We can now use (8.21) with 𝑊 =

𝑉𝑍−1∕2 to deduce that

𝐸1,𝑏(𝑌,Θ1, Θ2) ≪ 𝑃𝑛𝑌5∕2−𝑛∕2+𝜀Θ̂1Θ̂2

(
𝑉𝑛𝑍−𝑛∕2 + 𝑌𝑛∕3

)
= 𝑌5∕2+𝑛∕2+𝜀Θ̂1Θ̂2𝑍

𝑛∕2 + 𝑃𝑛𝑌5∕2−𝑛∕6+𝜀Θ̂1Θ̂2

≪ 𝑃5𝑛∕6−5∕3𝑌1∕2+𝜀 + 𝑃𝑛−5∕3+(1−𝜂)(1∕2−𝑛∕6+𝜀).

The first term is 𝑂(𝑃5𝑛∕6−5∕6+𝜀), which is satisfactory as soon as 𝑛 ⩾ 26. Moreover, 𝑛 − 5∕3 +

(1∕2 − 𝑛∕6) < 𝑛 − 5 if 𝑛 ⩾ 24. In particular, the second term is sufficiently small, provided that 𝜀
is small.
If 𝑌 ⩽ 𝑃1−𝜂 we instead estimate the integral 𝐼𝑟𝑁 (𝜃, 𝒗) directly via Lemma 5.2 to obtain

𝐸1,𝑏(𝑌,Θ1, Θ2) ≪
𝑃𝑛

𝑌𝑛
Θ̂1Θ̂2𝑍

1−𝑛∕2−𝜇Σ(𝑉),
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where

𝜇 =

{
1∕2 if 𝑃Θ̂1 ≪ Θ̂2

0 else.

We can now apply (8.21) with𝑊 = 𝑉 to deduce that

𝐸1,𝑏(𝑌,Θ1, Θ2) ≪ 𝑃𝑛𝑌5∕2−𝑛∕2+𝜀Θ̂1Θ̂2𝑍
1−𝑛∕2−𝜇

(
𝑉𝑛 + 𝑌𝑛∕3

)
= 𝑌5∕2+𝑛∕2+𝜀Θ̂1Θ̂2𝑍

1+𝑛∕2−𝜇 + 𝑃𝑛−5𝑌5∕2−𝑛∕6+𝜀𝑍3−𝑛∕2−𝜇.

The second term is satisfactory by (8.10) if 𝑛 > 15, so wemay assume that the first one dominates.
Recall that we already dealt with the case when𝑌Θ̂1 ⩾ 𝑃−𝛿, where 𝛿 = 8(𝑛 − 16)∕(3𝑛 − 24), since
we assume that (4) after (4.10) does not hold. So, we may suppose that the contrary is true. There
are now two cases: Firstly, we assume that Θ̂2 ≪ 𝑃Θ̂1. In this situation, we have 𝑍 ≪ 𝑃3−𝛿𝑌−1

and 𝜇 = 0, so that

𝐸1,𝑏(𝑌,Θ1, Θ2) ≪ 𝑃(3−𝛿)(1+𝑛∕2)+1−2𝛿𝑌−1∕2+𝜀.

A rather involved computation or a check with a computer algebra program verifies that (3 −
𝛿)(1 + 𝑛∕2) + 1 − 2𝛿 < 𝑛 − 5 if 𝑛 ⩾ 25, which is satisfactory.
The only case that remains is when 𝑃Θ̂1 ≪ Θ̂2, in which case 𝜇 = 1∕2 and hence

𝐸1,𝑏(𝑌,Θ1, Θ2) ≪ 𝑃5𝑛∕6+5∕6−5∕3𝑌𝜀,

which is satisfactory for 𝑛 > 25.
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