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1 | INTRODUCTION

Understanding the arithmetic of varieties over global fields constitutes one of the most fundamen-
tal and difficult ambitions of number theory. If X C P"~! is a variety over a global field K, then
one key aspect entails understanding the counting function

Ny(P) := #{x € X(K) : H(x) < P}

for a suitable height function H : X(K) — R,,. The Hardy-Littlewood circle method is a versa-
tile tool to study Ny (P) and has been successful in producing an asymptotic formula in many
situations. The circle method works particularly well when n is large compared to the degree of
X, and so, the main challenge lies in reducing the number of admissible variables. In this work,
we shall focus on the case when X = V(F,, F,) C P""! is a non-singular complete intersection of
a cubic and a quadric hypersurface over K = [, (¢). To state our main result, we take a smooth
weight function w: Fy((t™"))" — Ry, that is supported around a suitable point x, € F,((t™1))"
with F,(x,) = F,(x,) = 0 and consider the counting function

NP) =Y w(tﬁp) as P — co.
xeFglt]"
F;(x)=F,(x)=0

In addition, we set |x| = max q¢&%i for x € F4[t]" and for P € R, we write P=q".

Theorem 1.1. Let X C P"~! be a non-singular complete intersection of a cubic and a quadric
hypersurface over F(t). If n > 26 and char(F,) > 3, then there exists § > 0 such that

N(P) = cP"™> + O(P">7?),
for some c > 0.

To put our result into context, Browning-Dietmann-Heath-Brown [3] proved the analogue of
Theorem 1.1 over K = Q for n > 29. Another result in this direction when both F; and F, are diag-
onal is due to Wooley [34, 35]. Again, working over Q, he restricted the range of possible integer
solutions to those having only small prime factors. Appealing to the theory of smooth Weyl sums
this allowed him to provide an asymptotic formula for the number of such restricted solutions for
n > 13 whenever F, and F, have at least seven and five non-zero coefficients, respectively.

Let us now review some results in the general situation of non-singular complete intersec-
tions X = V(Fy,...,Fp) C P"1 over a global field K, where d; = degF; fori = 1,...,R. Provided
n>d; + -+ + dp, the variety X is Fano — a class of varieties for which Manin and his collabo-
rators [10] made a precise conjecture about the asymptotic behaviour of the counting function
Ny (P). Originally, the conjecture was only stated over number fields, but it was later generalised
to global function fields by Peyre [26]. In our case, the order of growth established in Theorem 1.1
agrees with this prediction. The constant ¢ appearing in Theorem 1.1 plays an important role in
the qualitative understanding of the set of rational points X(K) and has obtained a conjectural
interpretation by Peyre [25]. Recall that X is said to satisfy the Hasse principle if the existence
of K, -rational points for every place v of K is sufficient to guarantee that X(K) is non-empty. In
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addition, we say that X satisfies weak approximation if the image under the diagonal embedding

X&) < [[x,)

is dense, where we endow the right-hand side with the product topology coming from the analytic
topology on X(K,). Whenever the circle method yields the Hasse principle, we can often adapt
the argument to give weak approximation.

The application of the circle method to the study of rational points goes back to pioneering work
of Birch [1]. For K = @, he gave an asymptotic formula for Ny (P) providedd :=d; = --- = dg and
n—o* > (d —1)2¢"1R(R + 1), where o* is the dimension of the Birch singular locus, and thereby
verified that X satisfies the Hasse principle. Schmidt [30] showed how to handle to complete
intersections defined by forms of differing degrees. This was subsequently improved by Brown-
ing and Heath-Brown [4] and by Myerson [27] for generic complete intersections. Myerson was
able to drop the genericity assumption for quadratic F; [28] and cubic F; [29]. However, his work
only improves Birch’s result for large values of R. In a different direction, Northey and Vishe [23]
developed a procedure that opens up the possibility for a Kloostermann refinement for systems
of two forms with d; + d, > 5 and used it to give an asymptotic for Ny (P) and verify the Hasse
principle for non-singular intersections of two cubic forms if n > 39.

In the function field setting, the Hasse principle is a straightforward consequence of Lang-Tsen
theory if n > df + -+ d123' Indeed, with this condition, [14, Theorem 3.6] shows the existence
of a rational point of X, so that the Hasse principle is vacuously true. However, establishing
weak approximation or an asymptotic formula for the number of rational points of bounded
height remains a substantial challenge. Building on work of Kubota [20], Lee [21] showed
that Birch’s work can be translated to the function field setting and further demonstrated that
weak approximation holds under the same constraints on the number of variables provided
char(K) > d. Specialising again to the case when X is the non-singular intersection of a cubic
and a quadric hypersurface, Tsen’s theorem shows that X possesses a K-rational point as soon as
n > 13. Although there should be no problem in translating the work of Browning-Dietmann-
Heath-Brown [3] and of Wooley [34, 35], currently there are no results available regarding weak
approximation for complete intersections of cubic and quadric hypersurfaces. Our second main
result remedies this deficiency.

Theorem 1.2. Let X C P"! be a non-singular complete intersection of a cubic and a quadric
hypersurface over Fo(t). If n > 26 and char(F,) > 3, then X satisfies weak approximation.

The restriction on the characteristic in both Theorems 1.1 and 1.2 arises naturally in applications
of the circle method. Typically, it comes from applications of Weyl differencing, which renders
any estimates trivial when the characteristic is smaller than the degrees of the equations. In our
situation, we have to study both quadratic and cubic exponential sums that we can only bound
satisfactorily when char(K) > 3.

Browning and Vishe [6] have found a way to use the circle method over F,(t) to obtain crude
geometric information about the space of rational curves of fixed degree inside a hypersurface
in sufficiently many variables compared to its degree. If one is willing to make all the estimates
uniform in g, then our work is likely to give access to the analogous properties when X is the
intersection of a cubic and a quadric hypersurface.
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Using a geometric approach, Tian [32] has verified the Hasse principle for non-singular
cubic hypersurfaces X c P"~! when char(K) > 5 and n > 6 and weak approximation for non-
singular intersections of quadratic forms when char(K) > 2 and n > 6. It would be interesting
to see whether his methods carry over to say something useful about intersections of cubic and
quadric hypersurfaces.

When the degree of a form F is small, the delta method developed by Duke, Friedlander and
Iwaniec [9] and further refined by Heath-Brown [17] is capable of dealing with significantly
fewer variables than the classical circle method. In particular, it has been successfully applied to
quadratic forms [17] and cubic forms [18]. Over F,(t), an identity analogous to the delta method
turns out to be much simpler thanks to the non-archimedean nature and was successfully incor-
porated by Browning and Vishe [5]. However, until recently it was unclear how to construct an
analogue of the delta method for systems of equations. Vishe [33] made substantial progress by
developing a two-dimensional analogue of the delta method over K = [ (¢) that enabled him
to produce an asymptotic formula for the number of rational points of bounded height on non-
singular intersections of two quadratic forms in n > 9 variables when char(K) > 2. His innovation
serves as the main input for our work and we shall now proceed to outline the main steps of
our proof.

Outline of proof

In [33], the main new input is the development of a two-dimensional version of a Farey dissection
over F(t). While Vishe’s version only allows one to put squares around the approximating ratio-
nals, our application requires lopsided boxes in order to take into account the different degrees of
the forms F, and F,. In Section 2, we shall modify his development to accommodate our needs.
We expect that the argument would carry over inductively to higher dimensions. In the case of
hypersurfaces, the delta method is particularly useful when the degree is at most 3. Unless one
appeals to a similar strategy as devised by Marmon and Vishe [22] to deal with quartic hypersur-
faces, it seems that when one considers intersections of two hypersurfaces, our situation is just at
the barrier. That is, when the sum of the degrees of the individual hypersurfaces exceeds 5, it does
not seem to give any improvements compared to the classical circle method.

Once we have achieved the Farey dissection, a standard application of the Poisson summation
formula leads us to study certain oscillatory integrals and exponential sums. We provide upper
bounds for the oscillatory integrals in Section 5 and for the exponential sums and averages
thereof in Sections 6 and 7. When the modulus is square-free, we estimate the exponential sums
by appealing to work of Katz [19], which ultimately relies on Deligne’s resolution of the Riemann
hypothesis over finite fields [8] and obtain cancellations when summing over the numerators.
This is usually referred to as a ‘Kloosterman refinement’. As in [33] and [5], it would have been
desirable to obtain a double Kloosterman refinement, in which we extract cancellations when
summing over both the numerators and denominators. In [33] and [5], the corresponding expo-
nential sums are multiplicative and their averages over the denominator can be studied via the
associated L-functions that satisfy a suitable version of the Riemann hypothesis. In our setting,
we consider exponential sums associated to linear combinations of the cubic and quadratic form.
That these are not homogeneous only allows for a ‘twisted’ form of multiplicativity and it is
not clear how to associate an L-function to study their averages. There remains the substantial
task of providing estimates for exponential sums when the modulus is not square-free. We are
unable to give upper bounds directly, but rather study averages of them over the dual variable in
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Section 7. The underlying arguments go back to work of Heath-Brown [15], but are significantly
more complicated in our situation.

Notation

We use the standard Vinogradov notation <,>> and the big-O notation interchangeably. All
our implied constants are allowed to depend g. Any further dependence will be indicated by a
subscript, unless mentioned otherwise. Moreover, € always denotes an arbitrarily small number
whose value might change from one occurrence to the next. Its presence in an inequality implies
that the constant may also depend on «.

2 | FAREY DISSECTION

Vishe’s strategy is to find a suitable family of lines in the unit square so that when we consider
rational points on these lines, they cover the whole square and at the same time stay sufficiently
far away from each other to ensure an exact partition. Before reviewing his results in more detail,
we need some notation. Let K = [Fq(t) and O = [Fq[t] be its ring of integers. We denote by K, :=
Fq ((t71)) the completion of K with respect to the absolute value induced by t~. It naturally comes
with a norm extending the absolute value | f| = q9°8/ on (9. More explicitly, any non-zero « € K,
can be written uniquely as o = Y, a;t! with ay # 0 and a; € Fg, in which case |a| = q. We
also define {a} := Zi<_1 a;t! to be the fractional part of a and [a] := a — {&} to be the integer part
of a.

Furthermore, K, is a locally compact Hausdorff group with respect to addition and so comes
with a Haar measure da that we normalise in such a way that the unit interval T :={a €
K : |a| <1} has measure 1. We extend the norm and the Haar measure to K7 via

|a| := max |;| and da :=day..da,

i=1,...,

for a = (ay,...,a,) €KL If ¢ = (¢}, c,) € O, then we say that c is primitive if (c;,c,) = 1 and
either ¢; is monic or ¢; = 0 and ¢, is monic. Ford,k € Owith(d,k) = landc € ©? primitive, we
define the affine line

Li(dc,k) :={x € Kio tdc-x =k} 2.1)

and the generalised line
L(dc) :={a/r € T’°NK?: (a,r) =1,a/r € L,(dc, k) for some k € O with (k,d) =1}. (2.2)
Note that since (k,d) = 1, we must have d | r if a/r € L(dc) with (a,r) = 1. We refer to |dc| as
the height of L(dc). For x € T? and R € Z, we let B(x,R) := {6 € T?: |8 — x| < R} be the ball of

radius R centred around x. Similarly, for E = (1/3\1,1/3\2) € Z, we set

R(x,R) :={6 €T?: |6; — x;| <R, fori =1,2}
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. = = P
to be a rectangle of sidelengths R, and R, centred around x. In addition, R =~ denotes the vector
(ﬁ;l,ﬁz_ 1). We are now in a position to state Vishe’s partition of the unit square.

Theorem 2.1. Let Q > 1. Then,

7= || | | || Bla/r.ir 7@,

r monic d|r monic lal<]|r|
[rI<Q  ce®? primitive  a/reL(dc)
IrIQ/2<Idel<|r|*/?
|de,|<|r|*/2

where |_|’ indicates that we only consider vectors a such that (a,r) = 1.

A few remarks are in order to explain the conditions on the lines in the theorem. First, from a
standard application of Dirichlet’s approximation theorem [21, Lemma 4.5.1], one obtains

™= J U’ Ba@/rirm@" (2.3)
Iri<Q lal<Irl
r monic

forany Q > Oand k > 1. Furthermore, using the pigeon-hole principle, one can show that that any
a/r € K? with |a| < |r| and (a,r) = 1 lies on a line L(dc) with |dc| < |r|'/? and |de,| < |r|'/2. 1t
also clear from the definition (2.2) that we must have d | r. So, the key condition in Theorem 2.1
is [r|Q1/2 < |dc|. This guarantees that

(i) rational points on an individual line stay sufficiently far away from each other,
(ii) rational points on distinct lines stay sufficiently far away from each other,
(iii) distinct lines do not intersect at rationals with small denominator.

With (i)-(iii) at hand, it only remains to show that we can still cover T?> with balls centred on
rationals a/r on lines L(dc) such that Ir|Q0~1/2 < |dc]. This is a consequence of one-dimensional
Diophantine approximation, where, in fact, (2.3) already provides an exact partition of the
unit interval.

We will follow this blueprint closely to obtain an analogue of Theorem 2.1 that allows for lop-
sided boxes. This requires us to go through most of Vishe’s steps again, since we have to modify
some of the proofs to get control over the distance between the individual coordinates of ratio-
nal vectors. We begin with a two-dimensional version of Dirichlet’s approximation theorem with
rectangles.

Lemma 2.2. Let R, > R, > 1 be integers. Then,

v= U U rarirg?).

IrI<R,R, lal<Ir]
r monic

~—1 P .
Proof. For any x € T?, the rectangle R(x,R ) has volume (R;R,)!. We can therefore write

y

RiR;

= | R@i,g‘l) (2.4)
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for some x; € T2. Observe that there are R, R,q polynomials r € @ with |r| < R, R,. In particular,
ifx € T2 and r runs through all r € O with |r| < R Rz, then two of them, say r; # r,, must satisfy

sy eR(x R,

fori = 1,2and some 1 < j < R, R,, where {-} denotes the fractional part. If we letr = r, — r,, then
this implies

rx —a € R(0, (R, R?)),
where a is the integer part of (r; — r,)x. We can divide through by (a, r) to ensure that (a,r) = 1
and also multiply by a unit if necessary to guarantee that r is monic. O

Next, we show that every rational lies on a generalised line of suitable height. This is the
analogue of [33, Lemma 3.1], where the difference is that we allow the extra parameter T.

Lemma2.3. LetT > 1. Then, forany a/r € T> with |a| < |r| and (a,r) = 1, thereexists d | r monic
and ¢ € O primitive such that |dc,| < T|r|*/2, |dc,| < T~1|r|'/? and a/r € L(dc).

Proof. The set
{ce @ lel < T2 leol <7111V}

has cardinality strictly bigger than |r|. In partlcular there exists two distinct vectors ¢, ¢, in
this set such thatc, -a=c,-a mod r.Letc’ = ¢, —c,. It then follows that ¢’ - a = k'r for some
k' € O. Now let d’ = ged(ey,¢,), d =d’ /gcd(d’ k'),c=c'/d and k = k’/gcd(d’ k"). We then
have dc - a = kr. Moreover, by construction (d, k) = 1, which also implies d | ». We can fur-
ther guarantee that c is primitive and d monic by multiplying with a unit and changing k if

necessary. O

For any ¢ = (¢y,¢,) € O%, we let ¢+ = (—¢;, ¢;). We also need the following result, which is [33,
Lemma 3.5], about the distribution of rational points on an individual line.

Lemma2.4. Letd € O be monic and ¢ € O? be primitive. Then, for every a/r € L(c), there exists a
unique a € O with |a| < |r|, (a,r) = 1 and a unique d € O* with |d| < |c| such that a/r = ~c* +
d. Moreover, for every a/r € L(dc), there exists a unique a’ /(r/d) € L(c) with |a'| < |r/d| and a
unique d’ € ©* with |d|" < |d| such thata/r = d’'/r +d’/d.

Next, we turn to studying the distance between rational points on lines of the form L(c). The
following result is the analogue of [33, Lemma 3.6].

Lemma 2.5. Let ¢ € O? be primitive and a/r # a' /r' € L(c). Then,

/
i

|Cl~l| . a;
> = =1, max § ;|| — —
[rr’| i=1,2 r
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The first case happensifa/r,a’ /r' € L,(c, k) for somek € O. Moreover, ifa/r is an element of L(c) N
Ly(c, k) with |c| < |r|? there exists b/r, € L(c) N L,(c, k) such that |r,| = q|r| and |a;/r — b;/r;| =
|Cl-l|/|""1|-

Proof. We begin with the first part of the lemma. Since a/r,a’ /r’ € L(c), it follows from the def-
inition of L(c) that there exist k,k’ € © such that (a/r —a’/r')-c =k —k'. If k # k/, then by
the ultrametric property, we have max;_, , |a;/r — a;/r'||¢;| > 1, which is sufficient. Thanks to
Lemma 2.4, we canalsowritea/r = 2c* +danda'/r' = j—,,gl +d.Ifk = K/, then the conditions
ldl, |g’| < |c| and the fact that c is primitive imply thatd = g’. Therefore, we have |a; /r — alf/r’| =
la/r —a’/r| |cl.L| > |cl.l|/|rr’|. Furthermore, we have k = k" ifand only if a/r,a’ /v’ € L,(c, k).
For the second part of the lemma, one can check that Vishe’s proof of [33, Lemma 3.6], in fact,
gives control over the distance of both coordinates of a/r — b/r,. Moreover, he requires |c|? < |r|,
but his proof shows that |c| < |r|? is, in fact, sufficient. O

We can also extend this result to arbitrary lines.

Lemma 2.6. Let d € O be monic and ¢ € O? be primitive. Then, for a/r # a' /r' € L(dc), at least
one of the following must hold:

! L
o1& %Gy 4G
(1) | r r | > |VV/|

yoqad -1 -1
(D) 1= = Z| > max{|r|= |r'| 7},

| forbothi =1,2,

(i) max,_y p{lde |2 — %13 > 1.
Moreover, if a/r € L (dc, k), then there exists a/r # b/r, € L,(dc, k) such that
la;/r = b;/1,| < |dcil|/|””2|
forbothi=1,2.
Proof. We begin with the first part of the statement. Recall from Lemma 2.4 that we can write

a/r=a,/r+d/d and a'/r' = a,/r' +d'/d where a,/(r/d),a,/(r'/d) € L(c) and d,d" € O°.
We thus have

for i =1,2. If d # d’, then this is clearly at least 1/|d| > max{|r|~%,|r| 7'} for one of i = 1,2,
since d | r,r’. One the other hand, if d= g’ , we can use Lemma 2.5: In its first case, we obtain
lay;/(r/d)—a,;/(r' /d)| > |d2||cil|/|rr’| for both i = 1,2, which implies

la;/r —al/r'| > |dc;|/Irr| for i=1,2,

whereas in the second case, max;_ »{|¢;||a; ;/(r/d) — a,;/(r/d)|} > 1, which implies

max de;lla;/r —al/r'| > 1.
i=1,
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For the second part of the lemma, we use Lemma 2.4 to write a/r = b’ /r + d'/d, where
b'/(r/d) € L,(c,k) for some k € O. 1t follows from the second part of Lemma 2.5 that
there exists b /r; € L,(c,k) with |r,| = q|r/d| and |b//(r/d) = b]'/r\| = |dc;'|/|rr,| for i=
1,2. Now set b/r, =b" /(r;d) + d’/d. We then have dc-b/r, =k +c-d =dc-a/r, so that
b/r, € Ly(dc, k). Moreover, we also have |b;/r, —a;/r| = |b]" /ry = b]/(r/d)|/|d| = |cil|/|rr1| <
|dc;"|/Irr,], where we used that |r,| < |r,d|. O

We also need the following lemma, which is the second part of [33, Lemma 3.9].

Lemma 2.7. Let a/r € L(dc) N L(d'c"), where d,d’ € O are monic and ¢,c’ € O* are primitive. If
ey chl, lexer| < |r/(dd")), then de = d'c.

Note that in [33, Lemma 3.9], the extra condition |dc|?, |d’c’|? < |r| is required, but this is, in
fact, not used in the proof. The next lemma is concerned with the distance between rational points
that lie on distinct lines.

Lemma 2.8. Let a/r € L(dc) and o' /r' € L(d'c) with dc#d'c/, |dd'c/c)| < |rr' |2 and
|dd’c,c)| < |7’ |X/2. Then, we have la;/r —a]/r'| > |de;r'| 7t for one of i=1,2 and |a;/r -
a/r'| > |d'c[r|™! foroneofi=1,2.

Proof. First note that a/r and a’/r’ must be distinct by Lemma 2.7. By the second part of
Lemma 2.6, there exists b/r; € L(dc) such that |a;/r — b;/r,| < |dcl.L|/|rr1 |. Let

C = g/r - b/rl
“\a/r=d'/r')’
Since a’/r’" ¢ L(dc), it follows that det(C) # 0. It is therefore clear that | det(C)| > |rr'r;|. This

implies that |a;/r — a!/r'| > 1/|dc;r'| for one of i = 1,2. Finally, we can replace the role of r and
r’ to obtain the second inequality of the statement. O

We now have all ingredients at hand to prove the main result of this section.

Theorem 2.9. Let R, > R, > 1 be integers. Ifweset T = (R, — R,)/2, then

= || | | || R/ 'R, (2.5)

|F|<RiR, d|r monic lal<]|r|
r monic ge@z primitive a/reL(dc)
Idey I<TIr|M/2, ey |[<T 1|/
max{R;|dc [} ]r|

Proof. We first show the union on the right-hand side of (2.5) is disjoint. Let a/r # a’ /r’ appear on
the right-hand side of (2.5) and suppose |r/| > |r|. We now have to distinguish a few cases. First,
ifa/r,a’ /r' € L(dc) for some L(dc) appearing on the right-hand side of (2.5), then in case (i) of
Lemma 2.6, we have

q; !

i i

r r’

— > —

>
'] Rir]
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for one of i = 1,2, where we used that |dcl.L| > Iﬁlfllr’l for one of i = 1,2. This is clearly suffi-

. Al A1 y
cient to show R(a/r, |r|'R ) is disjoint from R(a’/r’,|r'|"'R ). On the other hand, case (ii)
of Lemma 2.6 yields |a/r — a’/r'| > max{|r|~!, |r'|~'}. However, then the rectangles around a/r
and a’ /' must be disjoint since R, > R, > 1.1f case (iii) in Lemma 2.6 holds fori = 1, then dc; # 0
and

!
a 9

R,|dc
1>2| 1|>1

= =z ~ “Z A~ .
lde ] ™ Ry|r| ~ Ry|r|

r r’

A similar calculation shows that if the inequality holds for i = 2, then we obtain |a,/r — a; /r' =
1?2‘ Yr|~L. This finishes the case a/r,a’ /r' € L(dc). Next, we are concerned about the case a/r €
L(dc), a’/r" € L(d'c") with dc # d’c’. Our constraints on dc,d’c’ guarantee that the require-
ments in Lemma 2.8 are met, and so, we get |a;/r — a;/r'| > |dc;r|™! for one of i = 1,2. Note
that |dc,| < (R, /R,)'/?|r|'/? < R,, since |r| < R,R,. Similarly, we get |dc,| < R,, so that |a;/r —
a;/r'| = |der| ™t > I/Q\l._l|r|_1, which is sufficient. Finally, it remains to show that every rational
a/r in the right-hand side of (2.5) appears precisely once. This is a consequence of Lemma 2.7.
Therefore, we have established that the right-hand side of (2.5) is a disjoint union.

Now we show that if a/r € T? is a rational with |a| < |r| < ﬁlﬁz and (a,r) =1, then there
exists a rational a’/r’ appearing on the right-hand side of (2.5) such that R(a/r, |r|‘1§_1) C
R(d' /7', |¥ |‘11§_1). By Lemma 2.3, this is enough to show the equality of sets in (2.5). It fol-
lows from Lemma 2.3 that there exist d € @ monic and ¢ € O primitive such thatd | r, a/r €
L(dc) and |dc;| < T|r|Y/?, |dey| < T r| V2. 1f max{ﬁﬂdc}l} > |r| we are done. Otherwise, let
M= max{ﬁ”ciil} so that M < |r|. Lemma 2.4 allows to write a/r = %gl +d/d for some a €
O and d € O%, where a/(r/d) € L(c). The one-dimensional Dirichlet approximation theorem
implies the existence of a rational a’ /r; such that |a| < |r;| < M|d|™},(a/,r;) = 1and |a/(r/d) —
a'/ry| <|ry|7Hd|M~. Now set @’ /¥’ = r‘]l—;gl +d/d. We then havedc-a'/r' =c-d =dc-a/r,
which implies @’ /r’ € L(dc) and d | ¥’. Moreover, by construction, we have || < |dr;| < M. We
alsohave |a;/r —a]/r'| = |d| ™ a;/(r/d) —a' /ri| < |r| "M~ < |r’|_11€l._1 forbothi = 1, 2. This
completes the proof of Theorem 2.9. O

Remark. Note that in the particular case R; = R,, we recover Theorem 2.1 with Q = 2R; from
Theorem 2.9.

The following corollary will be useful when evaluating the main contribution to our asymptotic
formula.

Corollary 2.10. Let R, > R, > 1 be integers. Then,

L U U R = | L R(amin k).

|r|<R, d|r monic lal<|r| Ir|<R, lal<Ir]
r monic c€O? primitive a/reL(dc) r monic
Idey |<Tr|'/2

ldey| <T—1|r|H/2

Proof. Clearly, the left-hand side of the claimed equality is contained in the right-hand side. More-
over, by Lemma 2.3, the right-hand side is contained in the left-hand side. Theorem 2.9 implies that
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the left-hand side is disjoint, since the condition max{ﬁi |dcl.L [} > |r| is vacuously true for |r| < ﬁ2.
. . S 51
It remains to prove that the right-hand side is disjoint. Suppose that « € R(a, /1y, 1 IR )n
P
R(a,/ry,|r,|7'R ) witha, /r, # a,/r,. We then have

1 a, g q, 9 1 1
— <= = ——a)+|{a—=)| <max{ —,— »,
Lot o n "1 "2 IRy |r2IR,
which is impossible since |r, |, |r,| < R,. O

3 | GEOMETRY

If the complete intersection X C P! is defined by a cubic form F, and a quadratic form F,, then
it is also defined by F, + LF, and F, for any linear form L € O[x,, ..., x,,]. In particular, given
the degree of freedom we have, it is reasonable to expect that we can define X as the intersection
of a non-singular cubic hypersurface and a quadratic hypersurface. This is indeed the case as
demonstrated in [3, Lemmas 3.2-3.3], whose proof we adjust to cope with positive characteristic.

Lemma3.1. LetX C P"~! bea non-singular complete intersection of a cubic and a quadratic hyper-
surface over K. Then, X = V(F,,F,), where F| € O[xy, ..., x,] is a non-singular cubic form and F,
is a quadratic form of rank at least n — 1.

Proof. Suppose X = V(G,,G,), where G; is a cubic and G, a quadratic form, respectively. For
U = P!\ V(G,), define the morphism

p: U->P" (x;: 1 x) P (Gi(x): x,G,5(x) -+ 1 x,G,(x)).

Assume for a moment that there exists a hyperplane H C P" defined over K such that ¢~!(H) is
smooth. This means that there exist 4, ..., 4, € K such that

Fl = AOGI + Allez + .- +/1nan2

satisfies U N {F, = 0} is smooth. However, U N{F, = 0} = {F; = 0} \ {G, = 0}, from which it
follows that F; is non-singular since X is non-singular.

To prove the existence of the claimed 4;’s, Browning-Dietmann-Heath-Brown appeal to
Bertini’s theorem, which does not hold in general in positive characteristic. However, it follows
from work of Spreafico [31, Corollary 4.3] that the fibre above a general hyperplane H C P" is
smooth, provided the induced extension of residues fields x(x) /x(¢(x)) is separable for any x € U.
LetY = V(G, — x,G,) C P". Then, ¢ factors into

U->Y\V(G,)—->Y —>P"

where the first arrow is an isomorphism, the second an open embedding and the third a
closed immersion. Indeed, if G,(x) # 0 with x = (x4, ...,x,) and (x,: -+ : x,,) lies on Y, then
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Xy = G1(x)/G,(x) and hence
(g 1 %,) =(G1(X) 1 X;G,(x) 1 -+ 1 x,G(%)) = p(x).

Moreover, Y \ V(G,) is an open subset of Y and Y a closed subset of P". Both open embeddings
and closed immersions are unramified, as is the composition of unramified morphisms. It follows
that ¢ is unramified and hence all the residue field extensions are separable.

It remains to show that G, has rank at least n — 1. Aiming at a contradiction, suppose that
the opposite holds. This implies that G, is singular along a line. However, this line will intersect
{F, = 0} in a point that will then be a singular point of X, which is impossible. O

To deal with the exponential integrals appearing in our work, we will have to concentrate our
weight function near a point such that linear combinations of its Hessian associated with F; and
the matrix underlying the quadratic form F, always have large rank. This is only possible when
char(K) > 3, and so, we assume that this holds for the rest of our work. Let us now fix a symmetric
matrix M € O"" such that F,(x) = x' Mx. Moreover, for x € K", we shall denote by H(x) =

F :
(%alxj)l@% j<n the Hessian of F; evaluated at x.

Lemma 3.2. For1 < k <n—1,letV, be the Zariski closure of
V) i={x € A": Fy(x) = 0 and rk(t, H(X) + t,M) < k for some (t,,t,) € A* \ {0}
inside A". Then, dimV; < k.
Proof. For 1 < k < n— 1, consider the incidence correspondence
I:={(x,y) € A" x A" : F;(x) = 0 and rk(H(x)y, My) < 1}.

Let V be an irreducible component of V.. Since V' X {0} C I and V' X {0} is irreducible, there exists
an irreducible component W of I containing V X {0}. Then, the projection of I onto the first
factor restricts to a surjective morphism ¢ : W — V of irreducible varieties. We can therefore
apply Chevalley’s theorem [13, Proposition 14.109] to deduce the existence of an open dense sub-
set U C V such thatdim®~!(x) = dim W — dim V for all x € V. Note that since V;{ isdensein V
and V is an irreducible component of V; , we must have U N Vl’c # §. In addition, by the definition
of VI’C, we have dimyp~'(x) > n—kforallx € V]’{, so that we must also have dimy~1(x) > n — k
forallx e U.

Our next task is to bound the dimension of I. For this, let A: A" — A" X A" the diagonal
embedding, that is, x — (x,x), and let S = A(A") N I.If x € S, then there exists (t;,t,) € A% \ {0}
such that t; VF;(x) + t, VF,(x) = 0. One the one hand, if t, = 0, then we get VF,(x) = 0, which
implies x = 0 since F; is non-singular. On the other hand, if t, # 0, then after taking the inner
product with x, we get F,(x) = 0, so that x is a singular point on the affine cone of the non-singular
complete intersection of F; and F,, which implies x = 0. Altogether we obtain dim S = 0.

Having established an upper bound for dim S, we are now in a position to get control over dim I.
From what we have just shown, it follows that

0=dimInA(A") > dimI + dim A" — 2n = dimI —n,
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and thus, dimI < n, from which we immediately deduce dim W < n. Combining this with the
information about the dimension of the fibres of 1), we obtain for any x € U the inequalityn — k <
dimy~!(x) = dim W — dim V' and therefore dim V. < k as claimed. O

Corollary 3.3. Letn > 14. There exists x, € K[ such that F1(x,) = F,(x,) = 0, rk(H(x,)) > n —2
and rk(t,H(x) + t,M) > n — 2 for all (t,,t,) € K2 \ {0}.

Proof. Let X’ C A" be the affine cone of the non-singular complete intersection X = V(F;, F,) C
P"~1. 1t follows from Lemma 3.2 that V,,_5 is a Zariski closed subset in A" of dimension at most
n — 3. Asn > 13, Lang-Tsen theory [14, Theorem 3.6] implies that X (K ) # @ and since X is non-
singular, it follows that X'(K ) is Zariski dense in X’. In particular, the fact that dimX’ = n — 2
implies that X'(K ) \ V,,_5 is non-empty and any point contained therein satisfies the conditions
required in the statement of the corollary. O

We also need strong upper bounds for the number of integral points on an affine hypersurface,
which are a special case of [24, Theorem 1.10] in the [Fq[t] setting.

Theorem 3.4. Let G € O[xy,...,x,] be a polynomial of degree d > 5 whose degree d part is abso-
lutely irreducible and let B > 1. Then, there exists a constant C > 0 depending only on d, n and q
such that

#{x € 0" |x| < B,G(x) =0} < CB" 2.

4 | ACTIVATION OF THE CIRCLE METHOD

In this section, we collect the remaining facts needed to get the circle method started. Recall from
Lemma 3.1 that we can assume X = V(F,, F,) with F; € O[x,, ..., X,,] a non-singular cubic form
and F, € O[x,, ..., X, ] a quadratic form of rank at least n — 1. We shall fix such a choice of F; and
F, once and for all and write F = (Fy, F,). Moreover, we assume M € Mat,,,(O) is a symmetric
matrix such that F,(x) = x' Mx. In what follows, for F € K [x, ..., X,,], we refer to the maximum
of the absolute values of the coefficients of F as the height of F and denote it by Hr. We extend
this definition to pairs of polynomials by Hg := max{Hg ,Hg,}.
Corollary 3.3 implies that there exists x, € K[ such that

Fl(xo) = F,(xq) =0,
rk(H(x,)) > n — 2 and 4.1

rk(y,H(xy) + y,M) > n—2for all (y1,7,) € Kzo \ {0},

where H(x,)) denotes the Hessian of the cubic form F; evaluated at x,,. These properties are clearly
invariant under scaling, and so, we may additionally assume |x;| < H;l. We will then work with

the weight function w : K7 — R, defined by

1 if|lx—x,| <L,
w(x) := | ol 4.2)
0 else,
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where L is a large but fixed integer, whose exact value will be determined throughout our work.
The non-archimedean nature of K, ensures that rk(H(x)) > n —2 and |x| < 1/H whenever
w(x) # 0 and L is sufficiently large. Moreover, we have seen in the proof of Corollary 3.3 that the
set of points x € K, satisfying rank(y, H(x) + y,M) > n — 2 for all (y,,7,) € Kﬁo \ {0} is Zariski
dense in K. In particular, if L is large enough, we can guarantee that any x € supp(w) satis-
fies the third property in (4.1). Let us now fix b € O" and N € O such that N | F,(b), F,(b). The
counting function we consider is now given by

NE) =Y w(tﬁp)

xeO"
Fy(x)=F,(x)=0
x=b (N)

Any a € K, can be written as a Laurent series & = Y. a;t!, where «; # 0 for only finitely many
i > 0. We can now define a character

p: K, —->C%, am ep<Tr[Fq/[Fp(a—1)>’

where as usual e,(-) = exp(27i - /p). The starting point for the circle method is the orthogonality

relation
1 ifx=0,
/ w(ax)da = 0 (4.3)
T 0 else,

for any x € O as proved in [2, Corollary 5.6]. Combined with Theorem 2.9, this immediately
implies

, a
NPY= ) > > R _ S(=+0)do,dé,,
6y I<Ir =R J16,]<Ir 7Ry N\ T

[rI<R R, d|r monic lal<]|r|
¥ monic c€? primitive a/reL(de)
ldey |<TIr(*/2,|dey| <T (/2
max{R;dc} 121

(4.4)
where
S(a) := Z (a Fr (%) + a,Fr(x)w(x/tD), (4.5)
xeo"
x=b (N)

for « € T? and Y indicates the condition (a, r) = 1. After splitting x into residue classes modulo
ry, Where ry = rN/(r,N), it is a standard argument, see [3, Lemma 4.4], for example, to use
Poisson summation to evaluate S(8 + a/r) and transform (4.4) into

NP) =P 3 ry|™ > / Y Sicrpn@I, (6,0)d6,  (4.6)
|r|<§1ﬁ2 d|r monic D(|”|© veon
r monic c€O? primitive

Idey [<TIr(Y/2,1de, | <T 1 (12
max{R;|dc; [}>Ir|
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where D(Jr|R) = {6 € T?: |r6;] < 1’3\1._1 fori=1,2},

Sdg,r,b,N(v) = Z ' 2 IP < a1F1(x) + Clez(x)>¢ ( —v- x>’ (4.7)
a/reL(de) x(<Iry| 4 N
x=b (N)
and
. 3p 2P v x
1,8, v) = / w(x)Y <t 81, (x) + 1270, () + £ )dx 4.8)
K&

fors € O\ {0}.
In our work, we will assume throughout that R; and R, are chosen in such a way that

R, < P*? and R, <P'/3, (4.9)

so that T = P'/2. This ensures that meas(D(|r|R)) < P~ and |I,(6,v)| < 1 when |r| = RR,. Let
us now separate the terms from (4.6) that will go into the error term. For this, we write

N(P) = M(P) + E, (P) + E,(P), (4.10)

where E,(P) consists of the contribution in (4.4) for which

(1) v # 0with |6,] < PR, or |6,] < P—°R, or
(2) ¢, = 0with |6,] > |r|~1P~%, where § = 8(n — 16)/(3n — 24), and |r| < P17 withn = 2/n,

holds. Observe that the set of ' for which (2) holds is non-empty when n > 24, because then § >
4/3.The terms M(P) and E; (P) comprise the contribution from all #’s and 8’s for which neither (1)
nor (4) holds with the additional constraint that v = 0 for M(P) and v # 0 for E; (P), respectively.

We begin with estimating the contribution to E,(P) defined by (1). Note that for any r € O, the
measure of § € T2 for which (1) holds is O(P~°|r|~!). Estimating trivially S(a/r + 6) < P" and
using Lemma 6.3 to deduce that the number of a with |a| < |r| such that a/r € L(dc) is at most
|dr|, we see that the contribution from (1) in (4.4) is

< P9 2 Z |d| < P2 2 |r|1te <« Pr17/34e
SRR, |dey |<Tr| /2 IrI<R, R,
dey|<T—1|r|1/2
dlr

upon recalling (4.9) for our choice of R, and R,.

The reason for separating the contribution coming from (4) is that the integral estimates we
provide in Section 5 are insufficient when |r| is small and |0| is large. We eliminate this shortfall
by dealing with this contribution in a manner akin to the treatment of the minor arcs in a classical
application of the circle method. To begin with, let us fix the absolute values of r and 8, in the
definition of E,(P) to be |r| = ¥ and |, | = &, with —Y — §P < ®, < =Y — 4P /3. The main tool
to deal with this contribution is Weyl’s inequality, whose function field analogue is provided by
Lemma 4.3.6 in Lee’s PhD thesis [21].
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Lemma4.1. Leta € T? and a,/r € K N T be such that (a;,r) = 1 and a; = a, /r + 6,. Then, for
S(a) given by (4.5), we have

~ 53 n/8
S(a) <y . P P rl+Pin 6| + L )
N T p3 |r1|+ﬁ3|r161|

Remark. Lee states Lemma 4.3.6 without the appearance of the quadratic form that features in the
definition of S(a). However, the proof of the lemma proceeds via estimating the quantity |S(a)|*,
which only requires considering the bilinear forms associated to the leading cubic form. It is easy
to see that the quadratic form disappears during this process, so that Lee’s Lemma 4.3.6 continues
to hold in our situation.

We now wish to apply Lemma 4.1. The problem is that if a/r € L(dc), we do not necessarily
have (a,,r) = 1. However, recall from (2.2) that a/r € L(dc) if and only if da - ¢ = kr for some
k € O with (k,d) = 1. In particular, if ¢, = 0, then ¢; = 1 and so a/r € L(d(1,0)) if and only if
a,/r = k/d with (k,d) = 1. Itis now easily checked that the constraints coming from (4) together
with Lemma 4.1 yield

S(a/r +6) < P"*(P2 + |do,| + P~3|d6,|~)"/5.

Since ¢, # 0, the condition max{R;|dc}|} > |r| implies |d| > |r|P~1/3. We deduce that the
contribution from |r| = ¥ with ¥ < P'~7 and 16,1 = @1 to E,(P) via (4.4) is

< ! / / S(a/r + 6)d6
Z Z |g|2<|r| 16,1=0; J[6;]<P~1/37 1 afr+ 8

Irl=Y  |dI<¥
|d|>YP~1/3 a/reL(d(1,0))
d|r
- A ~_ PN ~_ _1Aa_1\n/8
<P N N AP+ 1d16, + Pdl 67
Ir=Y  |dI<¥
|d|>YP~1/3
dlr

< 1/53n/4—5/3+€}’} +1’3‘n—1/3+£?2+n/8@1+n/3 + 1’52n/3—2/3+£?(@1?)1—n/8
1
< 1’53n/4—2/3—7)+5 + P\Sn/6—2/3—7)+€ + 1’52n/3—2/3—6(1—n/8)+51’/‘
where we used again Lemma 6.3 to bound the number of a@’s, that ©, < Y~1P~%/3 and (4) to
estimate ¥ and @1. We have 3n/4 —2/3 < n—5 for n > 18, so that he first term is sufficiently

small. Moreover, 5n/6 —2/3 —7n < n — 5 as soon as n > 26, which is also satisfactory. Lastly, the
third term above is

1’52n/3—2/3—5(1—n/8)+5? < 132n/3+1/3—n—5(1—n/8)+5 — 1’511—5—7)+£

where of course § was chosen in such a way as to simplify the exponent above. Therefore, this
contribution is also satisfactory. Since there are O(P?) choices for Y and ©,, we have thus shown
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that
E,(P) < P"57% (4.11)

for some x > 0if n > 26.
The goal for the remainder of this work is to establish the following result.

Proposition 4.2. Ifn > 26 and char(K) > 3, then
N(P) = cP"5 + o(fm—s—ﬁ’)

for some &' > 0, where ¢ > 0 if for every prime w, there exists x,, € O such that Fi(x,) =
Fy(x5)=0 and |b—x,|, <|N|, and where the implied constant depends on F;, F,, b
and N.

Once we have established Proposition 4.2, there is no difficulty in deducing the weak approx-
imation property for X. The exact details do not merit repetition here and can, for example, be
found in [5, Section 7.1] in the case of cubic hypersurfaces. Theorem 1.1 is the special case N = 1,
in which case a non-zero solution x,, € O% to Fy(x,) = F,(x,,) = 0 for every prime @ is guar-
anteed by the Lang-Tsen theory [14, Theorem 3.6] and the homogeneity of F; and F, under the
weaker assumption n > 14. Therefore, Theorems 1.1 and 1.2 are a consequence of Proposition 4.2.
In the light of (4.10) and (4.11), it will be enough to show that

M(P) = cP"5 + o(ﬁ”—s—"’> and E,(P) < P,
for some «’,x”" > 0, where c satisfies the properties claimed in Proposition 4.2. This goal will
ultimately be achieved in Section 8 and requires a thorough analysis of the exponential sums

and oscillatory integrals that appear in (4.6). We carry out this investigation in the subsequent
three sections.

5 | EXPONENTIAL INTEGRALS

To get control over I (6, v), we consider for w € K", y € K% and G,,G, € K[xy, ..., x,] the
following oscillatory integral: -

Telr,w) = /Tn¢<Z'Q(x)+w-x)dx,

where we henceforth adopt the notation y - G(x) = y;G;(x) + 7,G,(x). The main ingredients to
deal with the exponential integrals appearing in our work are [33, Lemma 2.1-2.2], which we recall
here for our convenience.

Lemma 5.1. We have J;(y, w) = 0if [w| > max{l1, |y,|Hg,, |¥,|Hg,}
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Lemma 5.2. Let Q = {x € T": |y, VG,(x) +y,VG,(%) + w| < Hg max{L, |y|'/?}}. Then,

Tor,w) = /Q%b(z'g(xﬂw-x)dx.

Moreover, our analysis of the singular integral appearing in the main term of the asymptotic
formula for N(P) makes use of [2, Lemma 5.5].

Lemma5.3. Letx € Tand Z > 1. Then,

2 i <2
/ D(x0)d6 = { Ilxf <
|6|<Z-1 0 else.

To begin our treatment of I (6, v), note that by the definition of w in (4.2), we have

tPv - x,

HE= ﬁw( ) |y (ﬁpele +1276,G,(y) + tp;igy>dﬁ

S

(5.1)

~ tPov .
=2 g e, P )

where G;(y) = F;(x, + t~y) for i = 1,2 and we applied the change of variables y = t'(x — x;).
It is clear that G; is a polynomial with coefficients in K, and H; < Hp. Therefore, it follows from
Lemma 5.1 that

max{1, P?|6,|, P2|6,|}

~

I8, v) =0 if [|v]>LHgls| (5.2)

Before we can derive upper bounds for I (6, v) from Lemma 5.2, we need a preliminary step.

Lemma 5.4. Let C C Kgo be compact and bounded away from 0. If we define A(y,x) to be the
maximum of the absolute values of the (n — 2) X (n — 2)-minors of y,H(x) + y,M, then

A(Z’ x) >cuwr 1
fory € C and x € supp(w).

Proof. Suppose by contradiction that the statement of the lemma is false. Then, there exists a
sequence (Zk’xk) € C x supp(w) such that A(Zk’xk) < 1/k for all k > 1. Since C X supp(w) is
compact, we can pass to a convergent subsequence with limit (y/,x") € C x supp(w). However,
since the map (y,x) — A(y, x) is continuous, this implies that every (n — 2) x (n — 2) minor of
Y HX) +y,M vanishes. Therefore, rk(y]H(x") + y,M) < n — 3, which is a contradiction since
any x € supp(w) satisfies the third condition in (4.1). I

When © = (0,,0,) € Z?, then we shall henceforth adopt the convention that |y| = @ means

16,] = ©, and |6,| = ©,. We finally have all the ingredients at hand to provide an upper bound
for an average of I,(6, v) over 6.
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~

Proposition 5.5. Let © € 7% v e O s € O be monic and put? = max{l,l’ﬁ@l,ﬁz@z}. Then, if
16,1 > . P61, we have

/ (6, v)dy <5 g, ©,0,270V2,
l6|=6 -

while if 16,| <, r, ,» P16, 1, then

/9 L8, v)dy <p, F,w0 9,0,2-(2/2,
161=0 -

Proof. For the ease of notation, let us write w = tPv(st’) " and y; = 4P, fori =1,2.If Z = 1,
then we use the trivial estimate I (6, v) < L~" that is an immediate consequence of (5.1). We shall
therefore assume Z > 1 from now on. It then follows from (5.1) and Lemma 5.2 after an obvious
change of variables that

|I,(8,v)| < L "meas{x € T": 130, VG, (x) + 6,tP VG, (x) + w| < Hgfl/z}
<meas{x € T": |x —xp| < L4, 16,t37 VF,(x) + 6,1 VF,(x) + w| < HpZ'/?}.

Now let us denote the last set whose measure we want to estimate by Q and suppose x, x + x’ € Q.
By definition of Q, we must then have

[¥1(VF (x + x') = VF (%)) + 7, VF,(x')| < HEZ\UZ. (5.3)

We now distinguish between the relative sizes of y; and y,. Firstly, suppose |y,| > |y, [, so that Z=
ly,|. Since rank(M) > n — 1, there exists indices 1 < i, j < n such that the submatrix M’ obtained
from M by deleting the ith row and jth column hasrank n — 1. Let us now fixa € T" and consider
the set Q, of x € Q whose jth entry is a. Assume that Q, is non-empty and x’, x’ + x are both in
Q. We shall now write x’, for the vector obtained from x’ by deleting the jth entry and similarly

J
for x and x + x’. Note that the jth entry of x must be 0. In addition, H’ denotes the submatrix of
H after deleting the ith row and jth column. It then follows from (5.3) that

| H' (% + X') + 7,M)%;] < | Hx + X)) + y,M)x| < 212, (5.4)

Since rank M’ = n — 1, we have M’ x; > |x;|. In particular, the trivial estimate H "(x +x' x5 <
|x}. together with the assumption |y;| < |y,| implies that (5.4) can only hold if

< 7V/2,

|y2M’x}-

We can now multiply the left-hand side by M’~!, whose entries have absolute value O(1), to deduce
that |x;| < Z7-1/2_and thus,

/ (6, v)dy <</ A/ meas(Q,)dady < @1@22_(”_1)/2,
lyI=6 - lyl=e J1" -

which is satisfactory.
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We now treat the more complicated case when |y,| > |y,], so that Z= ly,l. For i = {i,i,},
Jj =1{j1,J2} €{1,...,n} and a matrix B € Mat,,,(K,), we write B; ; for the matrix obtained from
Bbydeleting the i; th and i,th rows as well as the j; th and j,th columns. It follows from Lemma 5.4
that

A= max |det((y;H(x)+y,M)j| > |yl
i,jc{1,...,n}
lil=1jl=2

for x € supp(w). Next, we divide Q into at most (n(n — 1)/2)? subsets according to the indices at
which the maximum above occurs, that is, for i, j C {1, ..., n}, we set

Q5 :={x€Q: A=|det((y;H(x) + y,M); 51}

Moreover, to estimate the measure of €; ;, we shall again fix the j;th and j,th entries of x and

denote by x; the vector obtained from x by deleting the j;th and j,th entries, so that
meas(€; ;) < / meas{x € Q1 x5, =a; for k = 1,2}da.
T2
If X', x + x’ are both in Q;; and x}k, xj, + x;.k = gy for k = 1,2, then (5.3) implies that

[(H(x +x") + yzyl_lM);ijl < JHx + X))+ y,07 ' M)x| < z-1z,

Sincex +x' € Q; ;, the entries of the inverse of Hx+x")+ yzyl‘lM );’j- have absolute value O(1).
In particular, after multiplying the last equation above with it from the left, we get that |x; ;| <
Z-1/2. From what we have shown so far, it thus follows that

/ (6, v)dy < Z / Ameas(Q-ij)dy
| 4 4

=8 ijcil,.np”’ I71=8

< 272129, 8,,

which completes the proof. O

6 | EXPONENTIAL SUMS: POINTWISE ESTIMATES

The aim of this section is to collect estimates for the complete exponential sums Sy, , , y(V)
defined in (4.7). These sums enjoy a twisted multiplicativity property, which essentially reduces
the task of estimating them to the case of prime power moduli. Forr, R € O, we adopt the notation

r| R®

to mean that every prime divisor of r also divides R.
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Lemma 6.1. Supposed | r andr = ryry with (ry,r,) = 1. Ifwe write N = NN, N5, where N; | r®
fori=1,2and (r,N;) =1, and let s; = r;N;/(r;,N;) for i = 1,2, then there exist b’ € (O/N;0O)"
and t; € (O/s;0)* fori = 1,2 such that

—v-b
Sdg,r,b,N (v) = Sdlg,rl,b,Nl (t U)Sdzg,rz,b,Nz (o) < N > >
3

whered = d,d, with d; | r; fori =1,2.
Proof. By construction, s;, s, and N5 are pairwise coprime so that ry = s;5,N5. In particular, if y;
runs through a complete sets of residues modulo s; for i = 1, 2 and y; modulo N3, then

X =$N3y; + 51 N3y, + 55,3

constitutes a complete set of residues modulo r. Next, for a/r € L(dc), we write a = r,a, +r;a,,
where |g,| < |r;| and (g;, ;) = 1. It is then clear that

w(ﬂ'ﬂ(X)) =¢<21 'E(SstJ’l))l’b(Qz ‘E(S1N3yz)>

r rq ry

and

—v-x\_ [~V y —V-y V-3
zp< 'n > B Zp( 51 >¢< S >¢< N3 )
Moreover, it is demonstrated in the proof of Lemma 5.2 in [33] that a/r € L(dc) if and only if
a,/r; € L(d;c) for both i = 1, 2. The result now follows after the change of variables x; = 5,N3y,

and x, = s; N3y, and taking ¢; = (s,N3)7! (s7), t, = (5;N3)7! (s,) and b’ = (s15,)'b (s5). O

In some cases, we will obtain estimates for the sums S, ,, y(v) by considering their relatives

(6.1)

T(a,r,v) := Z Y

%<

(alGl(x) + a,G,(x) —v- x>
r

for appropriate polynomials G;,G, € O[x,...,x,]. These sums satisfy the following twisted
multiplicativity property.

Lemma 6.2. Letr = r r, with (r{,7r,) = 1. Then,
T(g’ r, v) = T(grza r17 v)T(grl ’ r2’ U)’
where a_ := (s*ay, sa,) fors € O.

Proof. As x; runs over a full set of residues mod r;, x = r,x; + r; X, runs over a full set of residues
mod r. Moreover, using Taylor’s formula, it is easy to see that

aF(x)\ [ ary Fi(x) a;r{ T IFi(x,)
e
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fori =1,2and

—v-x\ _ -v-x; —V-X,
) s ()
from which the statement of the lemma follows. O

For our investigation, we shall also need a good understanding of the distribution of rational
points a/r on an individual line L(dc) when r is fixed. By Lemma 6.1, it suffices to consider the case
r = wkandd = w™ withm < k. The following lemma summarises the content of equations (6.9)-
(6.11) of [33].

Lemma 6.3. If1 < m < k, then modulo w* we have the following equality of sets
{a: a/w" € L(@™o)} = {act + w*"d: |a| < |w|*™, (¢, @) = 1,|d| < |@|™}\
fact + @ "d : o] <@ |d] < @ | (0, @) = 1,
and for k = m, we have
{a: a/w" e L@} ={d: (d, @) =1,1d| < |=|}\
fact + wd: (a,w) =1, a| < |w|,|d| < |w|* '}
Moreover, when m = 0, then
{a: g/wk eL(c)} = {agL :(a, @) =1,]a| < |=|*.

In particular, we have #{a : a/r € L(dc)} < |d||r|.

6.1 | Square-free moduli

We will now deal with S, , y(v) when r is square-free. A key player in our estimates is the dual
form F; € Olxq, .., X,]s whose zero locus parameterises hyperplanes that have singular inter-
section with the projective hypersurface defined by F. It is well known [11, Example 4.4.3] that
F7 is absolutely irreducible and of degree 3 x 2"=2, providing char(K) > 3. We begin our treat-
ment by assuming that d = 1. In this case, Lemma 6.3 tells us that S, ; 4 ,(v) equals the familiar

exponential sum
aF,(x)—v-x
s =3 3o )

a(w) x (w)

where F.(x) = —c,F(x) + c;F,5(x). Let F, = O/wO be the residue field of w. Our main
ingredient is the following special case of a result due to Katz [19, Theorem 4].
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Theorem 6.4. Let X C P! be a complete intersection of dimension r defined by forms of degrees
dy,...,d,_, andlet L,H € H(P", Opn(1)). If the following conditions are met:
(i) XNnLNH has dimensionr — 2,

(ii) the singular locus of X N L has dimension ¢,
(iii) the singular locus of X N L N H has dimension § > ¢,

then there exists a constant C > 0 depending only on n,d,, ..., d,_, such that for f = H/L, it holds
that

2 .(lb(@) <C|W|(r+l+5)/2,
w

x€X[1/L]
where X[1/L] is the affine variety defined as the complement of the hyperplane cut out by L in X.
Remark. Katz states Theorem 4 for arbitrary closed subvarieties of projective space that are geo-
metrically integral or equidimensional and Cohen-Macauly. However, our assumption that X is

a complete intersection implies that X is Cohen—Macauly and equidimensional, thereby allowing
us to state the simplified version above.

Suppose that @ { vc,. Using orthogonality of characters, we see that

So@) =@l Y, (=),

x€FL
F.(x)=0

Let F(xy,x) € O[xy, X, ... , X,,] be the homogenisation of F, that is,
F(xg,X) = —C;F1 (%) + x0¢, F5(x),

and define X = V(F) C P{ to be the projective variety cut out by the reduction of F modulo w@.
Note that the point (1,0, ... ,WO) will always be a singularity of X. Moreover, we also set L(X,, X) = X,
and H(x) = —v - x. In our situation, we thus have XN L = V(F;)and X NnLNH = V(F,,v - x).
In particular, § = ¢ = —1 provided w t A, F;(v), where Ap, is the discriminant of ;. Indeed, the
condition @ 4 Ap, guarantees that the reduction of F; modulo @ is non-singular and @ { F;(v)
implies that V(F;,v - x) C P?;l is non-singular. We can thus apply Theorem 6.4 with § = —1 and
r = n — 1 to deduce that

|z |S, ()] < Cla| D72,

where C is a constant that only depends on the degrees of F, and F, and n. Absorbing the primes
w | Ap, into the constant and invoking Lemma 6.1, we have thus established the following result.

Lemma 6.5. Suppose thatr € O is square-free with (r, F;(v)c,) = 1. There exists a constant C > 0
depending only on A ,degFy, deg F, and n such that

SC,r,O,l(v) < Ccu(r) |” | (n+1)/2,

where w(r) denotes the number of prime divisors of
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Let us now turn to the case d # 1. We shall use the following estimate of Deligne [7, Théoréme
8.4], which states that for a polynomial F € F[x,, ..., x,,] of degree d with char(F ) } d such that
the highest degree part cuts out a smooth projective hypersurface in [P’g_l, one has

D zp(@) <d-1)|a|", 6.2)
/ @
x€Fy
Recalling the definition of the sum T in (6.1) with G; = F; for i = 1, 2, the estimate (6.2) implies
T(a,@,v) < 2" w|?
whenever @ { a;Ap, . On the other hand, if w | a,, then w ¢ a, and then
T(a,w,v) < |w|"TV/2, (6.3)
provided that F, is a quadratic form of rank at least n — 1 modulo @, as, for example, follows from

[33, Lemma 3.5]. Now let us assume r € O is square-free and write r = r,r,, with (r;,r,) = 1 and
ry | N®.Ifd = d,d, with d; | r, and d, | r,, then by Lemma 6.1, we have

Sdg,r,b,N(v) = Sdlg,rl,o,l(tl D)Sdzg,rz,b,N(tz U)

for some t; € (O/r;0)*. After absorbing the primes @ | A, or for which the reduction of F, has
rank strictly less than n — 1 into the constant, it now follows from the estimates we just recorded
and Lemma 6.3 that

Saero1tV) = Y T(ar,5v) <CVid,||r |2,
a/reL(dc)

for some constant C > 0.
We can now estimate Sy . ., p »(£,0) trivially to arrive at the following result.

Lemma 6.6. Suppose thatr is square-free and d | r. Then, there exists a constant C > 0 depending
only on degFy,F,, A and N such that

Sdc,r,b,N(U) < C“’(’)|d| |r|("+3)/2'
Moreover, if (c,,r) = 1, then

Sc,r,O,l (U) < Ca)(r) | r I n/2+1 .

6.2 | Square-full moduli

To satisfactorily deal with square-full moduli, we begin with the case r = w?. Our main ingredi-
ent is the following result due to Heath-Brown [16, p. 395]. It should be noted that Heath-Brown’s
proves his result solely over the integers. However, it is a routine exercise and the required
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adaptions are minor to check that his argument holds over [Fq[t] aswell. Let F € O[x,, ..., x,] be
a polynomial of degree d with char([Fq) > d and suppose that the reduction of the top degree part
of F defines a smooth projective hypersurface modulo w. Then, it holds that

¥ AD(F;?) <d—-1)lw|". (6.4)

x (w?)

After absorbing the contribution from the primes dividing Ap, into the constant and employing
Lemma 6.3, we arrive at the following estimate.

Lemma 6.7. If w { a,, then
T(a,@?,v) <Ly, @™
1
In particular, we also have

2
Sg,wz,O,l(v) <<AF1 |w| "

provided w £ c,.

Since F, is a quadratic form, there exists a matrix G € GL,,(K) with entries in © such that after
the change of variables y = Gx, one has

n
Fy(y)= ) by} withb,..b, #0.
i=1

If w | det(G), we may still locally diagonalise F, with amatrix G, € GL,(K,) thathas coefficients
in O, so that after the change of variables y = G_x, we have

n
Fy(y)= ) by y? withby, by, #0.

i=1

Let us define

A, =4 brbn Mo jgeie) @ == P=n) if rank(M) = n,
2 b2 A bl’l ledet(G) wvw(bw'z-"bw'n) if I‘ank(M) =n-— 1,

and

Uy = vw(AFz). (6.5)
We then have the following result [3, Lemma 6.2].
Lemma 6.8. Let k > 2 and suppose @t | a;. Then, for any v € O", we have

T(a, w*,v) <, || (D)2,
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[3, Lemma 6.2] is again only proved for the analogous sum over the integers. Moreover, they
assume that F, is diagonal from the beginning, a difference we take care of by the diagonalisation
process above. The proof goes through verbatim in our setting, and so, we shall not repeat it here.

Corollary 6.9. Let r € O be such that w | r implies w? || r. Then, there exists a constant C > 0
depending on F,, F, and N such that

Saerbn(0) < CceOd||r|(n+/2,

Proof. Writer = r;r, with coprimer,,r, € @such that (r;,N) = 1andr, | N®. Asin the proof of
Lemma 6.6, it suffices to obtain and upper bound for thesum S; ., o1(t;v), wheret; € (O/r,0)*,
and estimate the sum corresponding to r, trivially. By definition, we then have

SdlE’VpO,l([lv) = Z T(a,ry, t;0).
a/reL(d¢)

Using the mulitplicativity property recorded in Lemma 6.2, we can now invoke Lemma 6.7 in con-
junction with Lemma 6.8 to obtain T(a,r;,t;v) < C¥0D|r; |**1/2, Lemma 6.3 provides us with
an upper bound for the number of a’s such that a/r; € L(d;c) that completes the proof. 1

6.3 | Thecasec,=0

We now consider separately the case ¢, = 0. This can only occur if ¢; = 1 and so to ease nota-
tion, we write Cy = (1,0). By Lemma 6.1, we can reduce to the case when r = wkand d = o™
with m < k and we again begin our treatment assuming that » = w. When d = 1, Lemma 6.6
already provides sufficiently good upper bounds. However, when d = w, we have to do better and
establishing an estimate that is superior to Lemma 6.6 is our first goal. For k > 1, let us define

p1(@h) = #x (@) : F,(0) =F,(0) =0(@")} and p,(w) = #{x (@) : F,(x) = 0 (@b},

By Lemma 6.3, we have

N I RIE ey

a (w) ay (@) x (@)

el T - 3 )|

x (w) x (w)
F1(x)=F,(x)=0 (w) F,(x)=0 (w)

If w | v, then the expression above simplifies to
Swgo,w,o,l(v) = |w|(|w|pi (@) — pr(@)).

Since the reduction of X modulo @ is non-singular for |w| sufficiently large, we have

pr(@) = @' + 0w/,
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as follows, for example, from Equation (3.12) in [5]. Moreover, because F, has rank at leastn — 1,
it holds that

po@) = [w|" + 0 (|| /).

So that in total, we have
Swgo,w,o,l(v) < |w.|(n+3)/2 (6.6)

whenever w | v, where the implied constant only depends on F; and F,. Let us now deal with
the opposite case @ { v. We want to apply Theorem 6.4 to our situation. For this, we define X/ =
V(F,,F,) C P" = Proj(F[xy, X;, ..., X,,]). In addition, we set L(x,, x) = X, and H(xy,x) = —v - x.
Provided |w| is sufficiently large, X! is a complete intersection of dimension n — 2 with the only
singularityat(1 : 0 : - : 0) € P". Moreover, wehave X! nL = V(F,,F,) C P""!, which is non-
singular. It follows from a result of Zak and Fulton-Lazarsfeld [12, Remark 7.5] that X, NHNL =
V(F;,F;) nH c P"! has at worst isolated singularities, so that in the notation of Theorem 6.4,
we have ¢ = —1 and § < 0. In particular,

S W) s

x (@)
F1(x)=F,(x)=0 (=)

Combining this with (6.3), we infer

@ =t 5 () 3 (M)

x (@) a, (@) x (w)
F1(x)=F,(x)=0 (w)

< |w|(n+3)/2 + |W|(n+3)/2.

Estimating the contribution from the primes @ | N trivially, and using Lemma 6.1, it thus follows
from (6.6) that

|Sa, d.pn®)] < C¥P|d| /2 (6.7)

for some constant C > 0 that only depends on F;, F, and N.
We also require strong upper bounds for the sums

Sl = Swgo’m-z,(),l(v) and Sz = SE-ZEO’WZ,O,I(U).

Let us begin with the former. In this case, Lemma 6.3 implies

S, = , z,b<(a + wd,)F,(x) + wd,F;(x)—v- x>

w?
lal<|=| |d|<|@]| |x|<|=|?

R

lal<|®w]?  |x|<|w|?
F;(x)=0 (=)
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==l ¥ (=) - Y w(=F)

x| <|@|? x| <|=|?
F1(x)=0 (@) F;(x)=0 (@)
Fy(x)=0 (w?) Fy(x)=0 (=)

=@ ()~ @|7'L,)

say. The conditions F;(x) = 0 (w) and F,(x) = 0 (w?) are invariant under scaling x by any b with
(b, @) = 1, and so, we deduce that that

1 , bv-x
I = 2 ) 2 2 1‘{)( 2 )
@PA-1=1™) | Sop piaer T

F1(x)=0 (=)
Fy(x)=0 (w?)

_ 1 1
= m Z (p1(x) = @ |~ p,y(x)),
x (@)
F,(x)=F,(x=0 (@)
v-x=0 (@)
where
p1(x) ;= #y(@?): y=x(w),F,(x) =v-x=0(w?)}

and

pa(%) 1= #{y (@*): y = x (@), F,(x) = 0 (w?)}.

Running the exact argument again yields

1 ’ -1
Xy=—— (P (x) = |=|"77),
2T 1 | xg;) !
F(x)=F,(x)=0 (w)
v-x=0 ()

where
Pi(x) = #{y (@?): y=x(w),v-x=0(z)}
Suppose that y = x + wz. Then, y is counted by p, (x) ifand only if @ | (x*’ My + w~'F,(x)) and

w | (v-z+ @ 'v-x), whereas y is counted by p,(x) if and only if @ | (X! My + @~ 'F,(x)). In
particular, we see that p, (x) — |@ |~ p,(x) = 0 unless

v
rank ( Mx) = rank(Mx) mod . (6.3)

Note that for x # 0 (w) and |w| sufficiently large, this can only happen if v and Mx are propor-
tional, since then the non-singularity of X implies that Mx # 0 (w). In particular, if (6.8) holds
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and x # 0 (@), then p;(x) — |@w|1p,(x) = |w|"! — |w|*2, while if v = 0(w), then p,(0) —
|@| ' p,(0) = |@|" — |@|""!. Moreover, we have p/(x) = |@|""! unless @ | v, in which case
p1(x) = |@|". In total, we thus have

Y BV |- L nta
el <(1—|w|-1> M= T M2 ol

The error term takes care of the contribution from x = 0 (w) in Z; and %,, and where we have
defined

Ny i=#{e FL \{0}: v-x = F (x) = Fy(x) = 0,(6.8) holds}
and
N, i=#{x e FL \ {0}: F)(x) = F5(x) = 0,0 =0 (w)}.
Let us first deal with the case w | v. It follows that N; = N, and thus,
S1 = 0(l@|™*).
Suppose next that @ } v. In this case, M, = 0 and (6.8) holds if and only if Mx and v are pro-

portional. Since M has rank at least n — 1, this can happen for at most O(|w@|?) choices of x, so
that

S, < |@|"PPN + |w | < ||

In total, we have therefore established that
S, < |w |, (6.9)

Let us now turn to the sum S,. It follows from Lemma 6.3 that

S, < Z/ Z Z z)b<a1F1(x)+61;1:‘2(_x-)_v,x>.

a; (@?) a, (@?) |x (w?)

Since (a;, @) = 1, we can apply Lemma 6.7 to deduce that the sum over x is O(|w|"), and hence,
S, < |w|"4, (6.10)

which completes our treatment of S; and S,.
Finally, when @ 4 AF2 and 0 < m < k, we can invoke Lemma 6.8 to deduce that

Som. i o1(V) < |w|HO+3/2, (6.11)
e, @ ,0,1

Using Lemma 6.1 and estimating the contribution from N trivially, we see that the following result
summarises the content of (6.7) and (6.9)-(6.11).
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Proposition 6.10. Letd;, d,, d; € O be square-free. Then, there exists a constant C > 0 depending
on F,,F, and N such that

22 b,N(v) < Cw(d1d2d3) |d1 |(n+3)/2|d2d3|n+4.

Sdldzdzc 2dZ,

3-o’d1d

Inaddition, letd,r € O be both monicsuch thatd | r and (r, AFz) = LIfv(d) < vy(r)forallw | d,
then

Sdgo,r,o,1(v) < C®Od||r|+3/2,

7 | EXPONENTIAL SUMS: AVERAGES

We also need to deal with certain averages over exponential sums. Our first ingredient is the
following result, which we apply to our situation in the corollary directly afterwards.

Lemma7.1. Letvy € K andV > 1. If ris cube-fulland a € O? is such that |(a,,r)| < 1, then

Y TG rv)l <, |r|"/2+€<1?"+ Ir1).
veO”
lv—v,|<V

The lemma we just stated follows from equation (6.9) in [5]. There only the case when
(a,,r) = 1is considered. However, as explained in the paragraph after [3, Lemma 6.4], the argu-
ment leading to the estimate continues to hold when |(a;,r)| < 1 after employing some minor
modifications.

Corollary 7.2. Letv, € K[ andV > 1. Suppose r is cube-full such that d | r and define
Pi(r) :={@" || r: (@, Apc)) =1, @ td} and Py(r)={z" || r: (w,Ar)=1,@"|d}.

Ifwe write r = rr,, where

[ @ ife,#0
wkeP(r)
r= (7.1)
! II wk  else,
wkeP,(r)

andr, =r/r,, then

2+1 1/2( 3
Y Saeron O <y 12y 1207 4 /).
veO"
[v—vy|<V

Note that since d | r, the condition w* } d in the definition of P, (r) means that every prime
factor of d that divides ry in fact properly divides r; when c, # 0.
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Proof. Denote the sum to be estimated by S. After making the change of variables x = yN + b,
we obtain the identity

Sigran® =9( L) T 1@ r/.M0)

'N / ayretio

with underlying polynomials G;(y) = (r, N)"'F;(Ny + b) for i = 1,2 in the definition (6.1). Since
N | F;(b), it follows that G; has coefficients in ©. Moreover, the cubic part of G, is given by the non-
singular polynomial g,(y) = (r, N)"'N3F,(y). We now factor r /(r, N) into its cube-free part t and
its cube-full part s. Since r is cube-full, we must have |t| < |[N|. Using Lemma 6.2 and estimating
the contribution from the sum corresponding to ¢ trivially, we see that

Sucr pn @I INI® Y |T(a,,s,0)]. (7.2)
a/reL(do)

Next we write s = s,5,, where

5 = H @’ and 5, = H @,
wk|ls wk||s
wltvm ta; wltiw la;
with v, defined in (6.5). It then follows from Lemma 6.8 that T(gtsl,sz,v) < |5, | (/24
Therefore, after applying Lemma 6.2 and Lemma 7.1 together with the identity (7.2), we obtain

Sl Y, Isi syl (07 415y
a/reL(de)

< |r|n/2+£ Z |S2|1/2<"/\n + |r|n/3>‘
a/reL(dc)

Let us write r = ryr, as in the statement of the lemma and d = d,d, with d; | r® fori = 1,2. The
explicit description of L(dc) in Lemma 6.3 implies that if b/r; € L(d,c), then (b;,r;) = 1. It is
shown in the proof of [33, Lemma 5.2] that if |a| < |r| and a = r,b + rb’ with |b| < |r,],|b| <
|r,|, then a/r € L(dc) ifand only if b/r, € L(d,c) and b’ /r, € L(d,c). In particular, we must have
|s,] < |r,]. Thus, it follows from Lemma 6.3 that

S <« |d||r|n/2+1+€|r2|1/2<ﬁn + |r|n/3>
as desired. ([

Our next result is concerned about averages of S, ¢ , y(v) over a sparse set of v € O". Let V >
1,C; > C, >1and vy € K. For d,s € O with d | s and s cube-full, we proceed to consider the
average

S(V,C,C) = Y D ISaespn(@l, (7.3)

ce®?

prim [v—vy|<V

|Ci|<6i Fi@=0

where F7 is the dual form of F; that we already met in Section 6. Note that upon replacing v,
with the nearest integer vector, we can assume without loss of generality that v, € ©". Our basic
strategy is to relate S, ; (V) to a point-counting problem and gain savings when summing this
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problem over v and c first. For this, let us write s = r'§ into coprime v/, § € O with

r' o= H w’= ),

Ve (8)2V5(N)+3

Note that #/ is cube-full and w | § implies v (N) > 1 since s is cube-full. In particular, we have
|3| < |N|? and thus by Lemma 6.1 that

150 @) < INPU2IS g i (t0))] (7.4)

forsome N’ | r/,d’' | ' and t € (O/(r'N'/(r', N"))O)*. Next, we write r’ = r(r’, N') and make the
change of variables x = yN’ + b, so that

—b-v
Sd,gr/,b’N/(tv) = 1,b< r ) T(a,r,tv). (7.5)
N’ a/r'eL(d’'c)
Let us now further write r = e%f, where f | e and
f=1] = (7.6)

24 (r)

Our first step is to deduce to a congruence condition for v from the sum T(a, r, tv). This will be
achieved in the next lemma.

Lemma 7.3. Let r € O be cube-full, a € O, v € O" and r = e*f with f | e and f given by (7.6).
Then,

raro=ler ¥ p(EE22Y)

lyl<lef] r
V(@ F)(»)=v (e)

Proof. Letuswritex =y + efz with |y| < |ef| and |z| < |e|. Then, Taylor’s formula implies

T(a,r,v) =

a-F(y+efz)—v(y+ efz)>

< r
IyI<lef] |zI<lel

a-F(y)-v-y z-(V(a-E)y)—v)
- 3 (EE) D ()

lyl<lef] |z|<le|

= le|" Z ¢<Q'E(y)_v'y>
|yi<lef| r
V(@-F)(y)=v (e) (|

Next, we want to establish extra congruence conditions for F,(y) and F,(y) by considering the
sumover a/r € L(dc). This step underpins the first substantial deviation from the treatment of the
averages of exponential sums in [5] and results in a significant complication of the argument. The
reason for this extra difficulty is that in the setting of one polynomial, the underlying exponential
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sum is a Ramanujan sum, whose behaviour is well understood, while in our case, the orthogonal-
ity relations we obtain stem from the more involved structure of rational points on the lines L(dc).

Before we begin our treatment, we make the following convention to ease notation. Whenever
we have a sum of the form 21 al<lgl’ W€ understand ' to mean that (@,,r]) = 1. It then follows

from (7.4) and (7.5) combined with Lemma 7.3 that

—tv- a-F(y)
..y NP TS S () (=77)
EEOIZJrim |U—U0|<f/\ |y|<|€f| r g/r’eL(d/E) r
<6, F1(@=0 V(a@-F)(y)=tv (¢)
(7.7)

Our goal is now to investigate the sum

F
o= ¥ y(2E2),

a/r'eL(dc)
V(a-F)(y)=v(e)

forr,” € O with r | r'. To do so, let us write (+,N) = kk’, where (k, k") = (r,k’) = 1. Then, we
factor v’ = r}r/r} with pairwise coprime r;s, (], d) = 1 and

1'2°3
v, = I1 =), (7.8)
Vo ek )2 () —vy (d)+1
o (d)>0

Accordingly, we shall also write d = d,d;, e = ejeye;, f = f1f2f3, k = kikyks, k' = kjk K}, and
r = rryrs with dj, e, fi, ki, k1, | v}, so that r; = e? f; for i = 1,2, 3. Moreover, we let d} be the
maximal divisor of d; that divides r;. In particular, we have |d}| < |d;|. The definition of L(dc)
implies that a/r’ € L(dc) if and only if @”=(")~"=(@ || a . ¢ when v_(d) > 1 and @*=(") | a - ¢
whenv(d) =0forallw | r'.

Since r; | rl( , it is therefore clear that the sum we are investigating is multiplicative, and
accordingly, we shall denote the sum corresponding to rlf by S; for i =1,2,3, so that T'(v,y) =
S15,S5.

We now treat each sum individually and start with S;. When |a| < |r{ |, then by Lemma 2.4,
we have a/r} € L(c) if and only if a = act (r}) with a € (O/r ©)*. Since r| = r,(r},N), we can
write a = a; + e;k]a, with |a,| < |e,k]| and |a,| < |r]||e;k]|™" = |e; f1k;|. From the definition
of e; and k7, it is clear that (a,r!) = 1if and only if (a;, ") = 1. Therefore, after splitting a, into
residue classes modulo e; f; and using the fact that (k/, e; f;) = 1, we have

a,F.(y) ak F.(y)
3 ) 3 ()

lay |<leyky| a; (eyf1)
a; VF (y)=v (e1)
, @, F(y) (7.9)
= |kyey fil Z NW—— )
lay [<le; K] | !

a; VF (y)=v (e1)
F.(»)=0 (e, f1)
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Next, we deal with the sum S,. As before we make the change of variables a = a, + kle,a, with
la,| < le;k)l and |a,| < |e,f,k,l,so that(a,r)) = 1ifand onlyif (a,,r}) = 1. Moreover, it follows
from the definition of r, that v, () — v,(d,) = v (a - ¢)ifand only if v, () — v, (d,) = v, (a, -
¢),sothata/r) € L(d,¢) ifand only if a, /7, € L(d,¢). We can again divide a, into residue classes
modulo e, f, to obtain

T QI‘E(J’) k;ﬂz'E(y)
S, =1k ) z/»(—rZ )Z w(—% )

la, [<lexkh | a, (e2f2)
a /r;eL(dzg)
V(a,-F)(y)=v (e;)

a,-E(y)
= |e2f2k;|2 Z Eb(lr—),
la, 1<le;k)| 2
a /réeL(dzg)
V(a,-B)(¥)=v (e3)
F1(0)=F,(»)=0(eyf>)

(7.10)

where we used that (k, e, f,) = 1.
Finally, we begin our treatment of the sum S;, which is slightly more involved. Firstly, we
introduce character sums to detect the condition v, (r}) — v,(d3) = v (a - ¢):

-F(y)
S3=|"g_1d3| Z’ ¢<2 r_3y>

a(rl)
V(a-E)¥)=v (e3)

bpa - ¢ bia-c
== -1 1= =
T 2 ()= 3 u(o55))
wk||r; bo(wk—m) bl(wk—m"'l)
@™ ||d3

Then, we make the change of variables a = a, + e3kgg2,with la,| < |e3kg| and|a,| < |kses f5].
It follows from the definition of e; and k; that (@,r}) = 1 if and only if (a, }) = 1. Moreover, 7,
was defined in such a way that v, (e;k}) < k — m for all @ | r}. Slightly abusing notation, note

that we have

kia,-F(y) boa - ¢ ~ ba-c
R DRIE R E)

la,1<lesf3ksl @k ||l \ b (@hm) by (wk-m+1)
@™ ||d;
boa, - ¢ bia, -c
-1 = — 1% "=
=111 X ¢< g >So(w)—|w| Loy ¢<m>sl(w) ,
@i \bo (@) by (wk-m+1)
@™ ||ds
where

Si@) = Y

a, (wk—l)

w( K, (EQ) + wm-"bi@)

T

_ 2(k—1)
= |o| 5—k;Fj(y)Ewm—ibicj (w1
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for i = 0,1 and where we temporarily wrote I = v, (e;k}) and k’ = v, (r;). Observe that for
w | k., the sums S;(w) are independent of b;. For @ | r, it follows upon making the change of

variables b; = b/ + @' ~~*ib" with |b]| < |@|' """+ and |b]’| < |@|*~*'+! that

bia1 -C b.a, -c
S\ — 1y 2(k=D) i "L
Z _ ¥ ( wk—m+i >Sl(w) =] z; ) ¥ < wk—m+i >
bi (wk m+L) bi (wk m+1)

—m—i K -1
—kLFj(y)=w"bic; (@ )

!/

= | [2kD Z zp( bia, E)

k—m+i
Ib! <[ |k ~1=(m=D) “

L

. m—i K -1
—k;Fj(y)zwm 'bicj (@* )

b’a, -c
i—=1 =
X Z ¢<wk—k’+l>

" k—k"+1
by (k=K' +1)

3k bla -c

w a -c

= |—|,5 k= +1)q . 2 P %

||+ @ la,-c ok—-m+i

1b] < ' —1=m=D
—K,F;(y)=w™ble; (@K' )
for i = 0, 1. Note that since (c¢;,c,) = 1, we have (¢;, w) = 1fori = 1 or i = 2. In particular, there
is a unique b/ with [b/| < |w[*"""* and F;(y) = w™'b/k}c; (w*™!) for j = 1,2. In addition,
the latter equation implies F.(y) = 0 (wX'~!) and F i@ =0(@™) for j =1,2. Using that k' — | =
v (esf3) for w | ry and k — k' = v (k;), we arrive at the identity

2013 -1 / a,-¢
S5 = ldses f3k3 k3™ F, (y)=Fy(3)=0 (@) OF,(3)=0 (es ) 2 P " (a,), (7.11)

la, |<lesk}|
V(a,-E)(y)=v (e3)
@=(5¢9)]la, ¢

where d?, is the maximal divisor of d; dividing r; and

o . bla. -
(a) = [] D ¢< f,:_f) —lw|™ > ¢< jj_f)

wkllrg |b(’)|<|w|k’—l—M) |b;|<|w|k,‘l_("”—1>)
m\d ’_ _ ’_
wwlﬂ; Fi(y)=2™bl¢; (@' 1) Fi(y)=w™1b}c; (wk'~1)

boa, - ¢ _ bia, -¢c
x I1 > z,l’<wk—1_,n)S()(W)—lwl Loy ¢<wk_—1m+1>51(w) :
w.k”rg bo(wk—m) bl (.wk—m+1)
w"||d;
wiry

Moreover, since there is a unique b/ with |b/| < |@|*~""~ and F;(y) = w™'b/k/c; (w*7), it is
easy to see that IT(a,) < |kg|. After relabelling the variables, (7.9), (7.10), and (7.11) show that we
have established the following result.
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Lemma 7.4. Letr’' € O be cube-full, d € Owithd | r, v € O". Definer =v'/(r',M) and r = e*f
with f | e and f given by (7.6). Then with the notation introduced in (7.8) for y,v € O", we have

a-F(y) _
Z ¢( ; ) = |kyeq f1l |ezf2k£|2|d3e3f3k§| |k;| 15171(3;)51W2(y)50 (e2f>d})
a/r'eL(dc)
V(a-F)(y)=v (e)

o F(y) a,-F(y) a,-c
x 5F9(,V)50 (e1f1e3f3) 2 W Z'b< 1 ) Z (2) < = > Z (3)1/)( 3 )H(a ),

where (1) indicates that we are summing over |a, | < |e1k1|subject to(ay, ri) =1,0,VF.(y) = v (ey);
(2) that |a,| < |e;k| with (a,,r)) =1, a,/r) € L(d,c) and V(a, - F)(y¥) = v (ey); and (3) that
la,| < lesk}| with (a,,7}) = 1, V(a, - F)(¥) = v (e;) and w w(k333) | a, - c. In addition, |TI(a,)| <
1K),

3’3

Recall that N, k;, klf are all O(1). In particular, once we combine Lemmas 7.3 and 7.4 with the
Chinese remainder theorem, we obtain from (7.7) that

>

P ¢<M>

¥
lyI<lef]

1 ’ / ’
|Saesbn @) < lel™ I fes fods] Y > >
lagl<lerki| la,l<lekl  lasl<lesks|
a, /rh€L(dyc) wrm (k3es) llay-c

(7.12)

where a = algerr3 +a,rr; +a,rir, and (4) denotes the conditions V(a- F)(y) = tv (e),
Fiy)=F()=0 (ezfzd;) and Fg(y) =0 (e fre3f3)

Recall that r = e?f. Next, we write y = y; + ey, with |y;| < |e| and |y,| < | f|. Note that the
definition of r; implies that v.;(d}) < v (e; f3). We shall therefore write

di =e,f;, where f}= H w, (7.13)
vw(dg):vw(e3)+1

sothate! | e; and f’ | f5. Hence, F;(y) = 0 (e, f,d}) if and only if F;(y;) = e,eim; say and f,f, |
(m; +e/(eye)y, - VF(y,)) for i = 1,2. Similarly, if F.(y;) = eye;n, then it must hold that f, f5 |
(n+ey,- VFg(yl)). In addition, if V(a - F)(y,) = tv + ek, then upon writing a = (a;, a,) we
have

a-Fy)—tv-y=a -F(y)—tv-y, +e*(a,y, - VE, () + a,F,(3,) + ¥, - k) ().

It thus follows that
Y@ zp<2-E(y)—tv-y>‘
yI<lef] g
< ax Z ) ;b(alyl VFI(32) + a,F5(32) + ¥, - k) (7.14)
|y11<lel Y2 (f) f

€4 Fi(y), i=1,2
eres3|Fe(y1)
V(a-F)(y1)=tv (e)
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where (5) denotes the conditions
Fofs [ (mi+e/(ee)y, - VE(y1)) and  f1f3|(n+ ey, VF (y,)).

By abuse of notation, we denote the sum over y, by £(5). We can then use orthogonality of charac-
ters to detect the congruence conditions in (5). After employing the triangle inequality, a standard
squaring and differencing argument delivers

a1y; - VF1(¥,) + a,F,(y,) + 3, - k’)
y§)¢( f

Y OIEDSfT DY D

by (f1.f3) b, (f2f%)

(7.15)
<IfI"*Ny(a, y)'?,
where k' is a term that depends at most on m,, m,, y; and the ¢;’s, and
Ny(a,y) :=#{z(e): (a;H(y) + a,M)z =0 ()}

We now pause for a moment and collect what we have achieved so far. Inserting (7.14) and (7.15)
into (7.12), we get

1 2+1
|Sucs pn @) < lel™HFI"* ey frdsl D)

|a1|<|€1k{|
/ ! 1/2
x > Y Niay'” (7.16)
la,1<lexkyl  lasl<lesk)] . y1I<le|
a,/r€L(d,0) w'wk3¢3) g, ¢ e2¢3lFi(y1).i=1.2
ele3|Fg(.V)

V(a-E)(y1)=tv (e)

The innermost sum is clearly multiplicative, and so, our next step is to focus on the sums

Si(ey, f1) 1= Z Nfl(gl,y)l/z,
y(ep)
Fe(3)=0(ey)
F1(0)F,(y)=0(f1)

Sier, f) == D Np(ehy'
y(ep)
F (=0 (e;)
F1(F,(3)20 (f1)

Syes, f2) = Z Ny (a, 2,
.V(ez)
F1(»)=F,(»)=0 (¢e3)

Si(es, f3) 1= D Ny (a, ">
y(es)
F(9)=F,(3)=0 (¢})
Fo(1)=0 (e5)
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We will establish sufficiently strong estimates for S;(e;, f;) when i = 1,2, 3, while we will obtain
an additional saving by averaging Si (e, f1) over c. Before we can provide upper bounds for them,
we prove the following intermediate step.

Lemma 7.5. Letr',r € Owithr' | r and n > 13. Then we have
N,(r) :=#{x(): Fg(x) =0}« |r|n—1+£’
Nz(r) = #{x (V) . Fl(x) = FZ(x) =0 (r)} < |r|n*2+&' al’ld
N;(r) 1= #{x (r): F;(x) = Fy(x) =0 (), F(x) = 0 (M} < [r["7 |7

Proof. All the quantities are mutliplicative by the Chinese remainder theorem, and so, we may
assume that r = w* and ' = @™ with m < k during the proof. Let us begin with the treatment
of N5(w*) by detecting the congruence condition with character sums:

((wk""g +bet) - E(x)>

wk

e Ao T S Y Y

a(@™) b (wk) x (wk)

Suppose now that 0 < I < k — 1issuch that w! [I wk_mg + bgL. Then we claim that the sum over
x above is

w i@k ™a + bet) - F(x)

In In+5(k—Dn/6
@™ Y ¢< e )<<|w| :

Indeed, if @' *Y= | @~ {(wk~™a, — bc,), then the sum is O(|w |+ (k=D(+1)/2) by Lemma 6.8, while
if @'t } w~l(wk~™a, — bc,), then we can apply Lemma 7.1 with vy = 0 and ¥ = 1 to obtain
the claimed estimate.

For 0 < I < k fixed, let us now determine the number of triples (a;, a,, b) such that wk_mg +
bet =0 (w!). IfI < k — m, then this holds ifand only if w! || b since ¢ is primitive, so that the num-
ber of available (a,, a,, b) is O(|w|*"*+k=1). On the other hand, if | > k — m, then again because ¢
is primitive, we can without loss of generality assume that (c;, @) = 1. This implies

b= wk_mazcl_1 (wh),

which determines b uniquely modulo w!. We thus also have

whMa, = —c,b = wk_mazczcl_1 (@),

which determines a, uniquely modulo w!~%*" provided a, is given. In total, we get that the
number of such (a;, a,, b) is at most || +Hhk-lm=(=k+m) — | 5| 2(k=D+m 3y conclude that

k-1
|w|2m+kN3(wk) < |w|m+nk + |w|m+nk Z |w|(n/6—2)(l—k) < |w|m+nk + |w|m+nk

=0

forn/6 —2> 0.
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The proof of the statement for the quantities N, (r) and N,(r) runs along the same lines and is,
in fact, less involved. The argument again relies on the estimates provided by Lemmas 6.8 and 7.1
and we do not provide details here. O

Before we continue with our study of the sums S;(e;, f;), we make some preliminary
observations. First of all, if (a;, f) < 1, then it follows from Equation (6.12) in [5] that

Y Ny(a,y) < |fI™. (7.17)
(N

Moreover, if f | a;, then rank(M) > n — 1 readily implies N¢(a, y) < | f].
Lemma 7.6. Lete;, f; € Owith f; | e; and f; square-free fori = 1,2, 3. Then, for n > 13, we have

Si(ey, f1) < ley "7 £1112,
Sy(ey, f2) < ley|"**| f,] and

Ss(es, f3) < les|" |l M £

Proof. All of the sums under consideration are multiplicative, and so, we only have to prove the
corresponding estimates when e; = wk and fi =1, w. Moreover, we shall write m = vw(eg), SO
thatk >m > 1.

Let X, be the reduction of V(F{,F,) modulo w. When i=2,3, we begin with the
case when f; =1 or a; =0 (w), while when i =1, we assume f; =1 or ¢, =0 (w). Since
N,((0,a,),y) < |w|, in our situation, we thus see that

S;(@®, £) < | f;iIY2N,(@h).

Lemma 7.5 provides estimates for N;(w") that are satisfactory for the statement of the lemma.

Moreover, when ¢; = 0 (@), then it follows from the second display after Equation (6.15) in [5]
that S (@, f1) < w"=D|f,]/2, which is also sufficient.

We may therefore assume that f; = @ from now on. When i = 1, we are left with the case
(cy, @) = (c;,w) = 1, while for i = 2,3, we have to deal with the case when (a;, @) = 1. Let us
first assume that X, the reduction of V(F;, F,) modulo @, is singular. Since this can only happen
for at most finitely w’s, it must hold that N_(a, y) < 1. In particular, we obtain

Si(w@", ;) < Ny(w)

in this case, which is again satisfactory by Lemma 7.5.

So, let us now assume that X is non-singular. We first provide an upper bound for the con-
tribution from y % 0 (w") to S;(w*, w). If F.(y) = 0 (w!) and F,(y)F,(y) = 0 (w), then F.(y +
w!z) = 0 (w!™) if and only if w 'F.(y) = —z - VF.(y) (w). Since c;c, Z 0 (w), the condition
F,(y)F,(y) = 0 (w) forces that VF, C();) % 0 (w) as otherwise y would be a singular point of X .
In particular, for y # 0 (@), inductfvely, we obtain

My(p) 1= #z (@) : 2=y (@),F.(2) = 0 (w")} < |w| D7D,

85URD| SUOLILIOD BAIER1D) 3|qeoljdde 8y} Aq peusenob ake ssjo1e O ‘@SN JOSa|ni 104 ARiq1T8UIUO A8]IA UO (SUORIPUOD-PUR-SLLBI LD AB| 1M AXe1q1jBul|u0//Sty) SUORIPUOD pue SWie | 38U} 88S *[202/0T/L0] U0 Aeiqi8uluO A8|IM e HISNeURIH00D AQ TE6ZT SWI/ZTTT 0T/I0pAL0 A8 |IM Aleiq 1 [BUI|UO-00SYTeIpUO /Sty Wo1) papeojumod ‘y ‘202 ‘0SLL69YT



40 of 54 | GLAS

Similarly, if F;(y) = F,(y)=0 (w!), then Fi(y + wlz) = F,(y + wlz) = 0 (w!*™!) holds if and
only if w‘lFi(y) = -z VF(y) (w). As X is non-singular and y # 0 (w), we must have
rank(VF,(y), VF,(y)) = 2. Therefore, it follows by induction that

My(y) := #z(@"): 2=y (w),F,(2) = F,(2) = 0 (w")} < || D=2,

Finally, if F,(y) = F,(y) = 0 (@w™), then F (y + w"z) = 0 (w"*!)ifand only if o ""F,(y) = —z -
VF.(y) (w). As F1(y) = F,(y) = 0 (@), we must have VF,(y) # 0 (w), as otherwise y would be
a singular point of X . Combing this with the arguments that were used to estimate M, (y) and
M,(y), we obtain

M3(y) = {2 (@"): 2= y,Fi(2) = F,(2) =0 (@), F(2) = 0 (")}

< Iw.|(m—1)(n—2)+(k—m)(n—1)‘

It now follows from an application of the Cauchy-Schwarz inequality that the contribution from
¥ # 0 (w) to S;(wk, @) is at most

1/2
max M,(y)N,(w)'/? N_(a, < |@|"? max M,(y)N,(w)/?
max M(y)N,(w) (y(Zw) o(a y)) [@"? max Mi(y)N;()

by (7.17). Combining the estimates, we just provided for M;(y) with Lemma 7.5 to bound N;(@),
we see that this contribution is sufficient for the conclusion of the lemma to hold.

We are thus left with estimating the contribution from y = 0 (@) to S;(w, w@). In this case, we
have N (a,y) < |@|, so that

Si(@*, @) < |w|'/*Ny(w"),
which is again satisfactory by Lemma 7.5. I

We now return to the main task of this section: estimating the quantity S(V, C,, C,) that was
defined in (7.3). Equation (7.16) gives

SV,CLC) < lel™ 1 e frdyl Y T S

gE@fmm |a1|<|elk{| la, [<lexk’| |2€|<|33k;|

le1<C; a,/ry€L(d0) wvw(k3e3)”21 <€

x Y Ni@y? ¥y L

y( lv—v,|<V
F¥(v)=0
V(a-E)(y)=tv (e)

(7.18)

Let us now write v = v, + v; + v,e, where |v;| < |e|, tv; = V(a - F)(y) (e) and |v,| < Vel
Observe that (e, £) = 1 implies that v; is unique. Note that G(v,) = F{ (v, + v; + v,e) is of degree
3 x 2"2 and its leading degree part is absolutely irreducible, so that we may invoke Lemma 3.4
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to deduce that

A~ \ h—2
Z 1«1+ <1> . (7.19)
le]

lo—vy <V
Fi(v)=0
V(a-F)(y)=tv (e)

Using the Chinese remainder theorem together with Lemma 7.6, we obtain

Y Np(a, )2 = Sy(e5, £)S5(e5, f3)(S1(er, 1) + Si(er, 1))

y (@ (7.20)

-2 -1 -1 -1 1/2
< leal" 2 | olles "l 7 51 (len "L + i £1)).

Moreover, the conjunction of the conditions F; (¥)F,(y) # 0 (f,) and F.(y) = 0 (f,) can only hold
if (c1, f1) = (¢y, f1) = 1. Therefore, for C; > C, > 1, we have

S'(ey, f1) < max N; (a,y)'/? 1
Eeg:fmm o (o it =1 y%) " ge;gﬂm
e FIRR) e

Fo(9)=0 (ey)

C. 61 <_|e1| )n 1/2 (7.21)
< C 1+ max N (a,y) /
2< |el|> ) A y(Zf;) na
(al,f1)=(a2,f1)=1 1

A C
< e "Gy 1+ =),
ley]

where we used (7.17) together with the Cauchy-Schwarz inequality to arrive at the last estimate.
-1
Next, observe that a, /', € L(d,c) implies that w'=(d") | a, - ¢, so that

2
le,k'] - -
#la,| <lexk'| : a,/rh € L(dy0} < <|r'2d—1| Kds | = ek Pl Ndy). (7.22)
22
A similar argument delivers
#{la,| < leskil s @' =) | a, - ¢} < |K)les]. (7.23)

Recall that e = eje,es, f = f1f,f5 and d = d,d;. Then, since k, k" are O(1) and |s| =< |r|, we can
combine (7.19) — (7.23) with (7.18) to obtain
— — ~\h—2
S(V,C1, Co) << le" IS 1" feyes Pleal1f1 211715l I dads 751 el | ™ (lel + V)

XCAz(é\l + eyl 11712 +61|f1|_1/2>
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31512

< |d||S|(n+3)/2 —
|r2e3

A~ =2 A _
Collel+9)" 7 (Cy +leallf21772),

where we used that |e?f| < |s| and d,d; = d. Since r, is cube-full and |r/,| < |r,|, we have f3 | r,
and thus |f,|3/2 [r’,|~! < 1. Moreover, since v,(d}) > 1 for all @ | e;, the definition of e} in (7.13)
implies that f5 | eg and hence | f;]'/2 |eg| < 1. We have thus established the following result.

Lemma 7.7. Lets € O be cube-full and d | s. Then, with the notation of (7.8), it holds that

S(V,C1,Cy) <p, F, N |d||S|(n+3)/zé\2<|S|n/2_1 + ‘7n—2><@1 + |€1|f1|_1/2>-

8 | RETURN TO THE CIRCLE METHOD

In this section, we combine the estimates for the various exponential sums and integrals that we
have produced so far to finish our treatment of N(P). To ease of notation, for d € © and ¢ € O?,
we abbreviate the properties d monic, ¢ primitive, |dc; | < min{T|r|/2,|r|}, |dc,| < T~!|r|'/? and
max{§i|dcil|} > |r| by P(d, ¢). In addition, throughout this section, we shall assume n > 26. We
will not make the dependence of the implied constants explicit anymore, but allow them to depend
at most on F, F,,w and N as well as on ¢ if it appears in the inequality. Recall the decomposition
of N(P) in (4.10).

8.1 | The main term

We begin to carry out the analysis of M(P). Since we chose R, < P'/3 in (4.9), it follows from
Corollary 2.10 that

MP)=P" Y Iyl SKA+PT Y g™ Y Sgepn (0K, (81)
|r|<P1/3 P3«|r|<R R, de: P(dc)
r monic r monic dlr

where
a-F(x)
-3, 3 )
a(r) |xI<|ry|
x=b (N)
and

K, = / / I, (6,0)de.
l811<RM ||~ J 16, <R7r|

It is a consequence of Proposition 5.5 that

K, < P3¢ (8.2)
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and from Corollary 7.2 with v, = 0 and V = 1, we deduce
Sacrpn©) < |d||r|>1/6+3/2%, (8.3)

Note that if ¢, # 0, then since T < P'/2, the condition |dc,| < T~!|r|'/2 can only hold if |r| > P.
In particular, it is now easy to see that

> ldl < e (8.4)
de: P(dc)
dlr

It follows from (8.2)-(8.4) that the rightmost term in (8.1) is of order

pn—>s |"|5n/6+3/2 pn—>5 5/2—n/6
—5+4¢ —5+¢€ —n
D i T
PA«rI<R R, N de P(d.¢) PA«IrI<R|R,
r monic d|r r monic

< 1’3‘}1—5—(7/2—n/6)/3+£

where we used that 7/2 — n/6 < 0 for n > 21. Consequently, the contribution from this term is
negligible and it remains to investigate the first term on the right-hand side of (8.1).

The first step we take is to analyse the integral K,.. Let C > 0 be a fixed positive integer, whose
exact value will be determined in due course. We then split up the integral K, into

&z/ / mew+/u@®m (85)
lerl<C-1P-2 Jjgy <C-1p2 N T T S N T T

where E is defined by

~

g = {Q €T2: |6, < R |r|™ fori=1,2and E~'P3 < |6,] or 1P < |ez|}.
Note that = is non-empty only if |r| < maxizl’z{@ﬁi‘lﬁ‘*‘i}. Since R1P*1 < P5/3 by (4.9), this
will certainly hold for |r| < P'/? and P sufficiently large. We will show that the second integral

vanishes and produce a lower bound for the first one. Beginning with the former task, we have by
(5.1) that the second integral is equal to

" / / P (1376,G,(x) + 1*76,G,(x))dxd,
2JTn

where G;(x) = F;(xo + ttx) fori =1,2. Let T = ({1} x T) U (T X {1}) and define

1= I;lelP 171 VF1(x) + ¥, VF,(xo)l.

Observe that 0 < A < 1since I' is compact and x, a non-singular point of the variety defined by F;
and F, with |x,| < H,'. To simplify notation, we write y; = t3*6, and y, = t*’6,. Letnowy € T
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be such that |y| = |y|. Then, by the ultrametric property, we have

ly1 VG (%) + 7, VG,(X)| = L7 yl|y, VF (%) /7 + 72 VFy(x0)/¥| 2 L7 |y|A,

provided that L is sufficiently large. Moreover, all higher partial derivatives of y, G, (x) + y,G,(x)
are of order O(L~2|y|). By the second derivative test [5, Lemma 2.5], we thus have K, = 0 if
L 1|y|A > 1. Since |y| > C1, this can be ensured if we make the choice C = AL~!, which we
henceforth assume.

We proceed to investigate the first integral in (8.5). After making the change of variables y; =
t4=0Pg, by (5.1), we have

K, = f‘”ﬁ_5/| o P(71G1(x) + 7,G,(x))dxdy.
y|l<C=1 JTn -

It is now clear that K, is, in fact, independent of r and to emphasise this, we define

~

O = L_n/ R / P(r1G1(x) + ¥,G,(x))dxdy.
lyl<c-1 Jn =

The integral o, is the singular integral associated to our counting problem and our next step is to
show that o, > 0. To do so, we exchange the order of integration and apply Lemma 5.3 to deduce
that

O = f‘”@_zmeas<{x eT": |G,(x)| < Cfori= 1,2}).
Using Taylor expansion and the fact that F;(x,) = 0 for i = 1, 2, it follows that

G, (x) = tLx - VFy (%) + %t_ZLx[H(xo)x + 73R, (x)
and

G,(x) =t Lx - VF,(x,) + t 2LF,(x).
Provided L is sufficiently large, we must then have
IGi(xX)| =L |x - VF;(xy)| and [G,(x)| =L |x - VF,(x))l.
However, if we recall that C= f‘l/l, then for |x| < 4, it is clear that
Llx-VF(x))| <L 'A=C,
so that o, > L~"C~21". We summarise our investigation of the integral K, in the following result.
Lemma 8.1. Let |r| < P1/3. Then,
K, =0, P>,

where o, > 0 depends only on the weight function w.
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It follows from Lemma 8.1 and the upper bound provided after (8.1) that
M(P) = 0, @ (1/3)P"5 + o(ﬁ”—S—W )
for some &’ > 0, where for A > 0, we have defined

Spn(d) i= Y Iy,
|r|<P?

r monic

to be the truncated singular series associated to our counting problem. Let

Sy = D Iy,

r monic

be the completed singular series. It follows from Lemma 7.1 and Lemma 6.8 that

Sr — Z / T(g, r, 0) < |r|2+5n/6+a
a(r)

so that &, \ converges absolutes for n > 18 and

|Spn(8) = @py| < Y [r[PT/OFE « PAGT/O),

|r|>PA

It is a routine exercise to show that &, > 0, provided that there exists x, € O such that
Fi(x4) =F,(x5)=0and |b— x|, < |N|, for all w, see, for example, [21, Corollary 4.4.7] for
arbitrary complete intersections. In particular, we have established the following result.

Proposition 8.2. Forn > 18, we have
M(P) = 0,,&p v P + O(P‘"—S—y’)

for some 6" > 0 with o, > 0. Moreover, @, 5 > 0 if for every w, there exists x,, € O such that
Fl(xw) = Fz(xw) =0and |b—x;|, <|N|g.

To prove Proposition 4.2 and hence also Theorems 1.1 and 1.2, it remains to give a satisfactory
upper bound for the error term E;(P) defined in (4.10). This will occupy the remainder of our
work and makes use of the various estimates we have provided for the oscillatory integrals and
exponentials sums under consideration.

8.2 | Preparation for the error terms

We continue our investigation of the error term E; (P). Before doing so, we take some preliminary
steps. Firstly, we shall fix the absolute value of r to be ¥ and of 9, tobe @i fori = 1,2, respectively,

85URD| SUOLILIOD BAIER1D) 3|qeoljdde 8y} Aq peusenob ake ssjo1e O ‘@SN JOSa|ni 104 ARiq1T8UIUO A8]IA UO (SUORIPUOD-PUR-SLLBI LD AB| 1M AXe1q1jBul|u0//Sty) SUORIPUOD pue SWie | 38U} 88S *[202/0T/L0] U0 Aeiqi8uluO A8|IM e HISNeURIH00D AQ TE6ZT SWI/ZTTT 0T/I0pAL0 A8 |IM Aleiq 1 [BUI|UO-00SYTeIpUO /Sty Wo1) papeojumod ‘y ‘202 ‘0SLL69YT



46 of 54 | GLAS
where
1<Y <R, +R,, —9P+R, <O, <-Y—-R, and —-9P+R; <0O,<-Y—-R,, (8.6)

and neither of the conditions (1) nor (4) recorded after (4.10) hold. Observe that by our choice
of R, and R, in (4.9), the number of admissible triples (Y, ®,,®,) is O(P?). Secondly, we treat
separately the contribution from c, # 0 and ¢, = 0 and denote the contribution of such r’s, 8’s
and ¢’s to E;(P) by E; ,(Y,0,,0,) and E; ;,(Y, ©;, ©,), respectively, so that

B 1,0.0)=F" 3 indd™ Y [ Y Suan@ @030 (87)
Ir|=¥ de:P(de)  1:1=01 veor \10}
r monic ¢ #0
d|r

and

E ,(Y,0,,0,) =P" 2 [ry]™" z/: / /|e . Z‘i{ }Sd%,r,b,N(v)IrN(Q,v)dQ, (8.8)
| |:? |d|<?l 2pl/2 iI=% ve@"\{0
rr}inonic dlr

where ¢, = (1,0) since by our convention ¢ with ¢, = 0 can only be primitive when ¢, = 1. If we
can show that E ;(Y,0,,0,) < Pn=5-* for i = a,b and some x > 0, then since the number of
admissible triples (Y,©,,0,) is O(P®), the same estimate will hold with a new choice of x for
E,(P). Moreover, if we let Z = max{1, P30, P20,}, then (5.2) implies that the summation range
of v in the definition of E; ;(Y, ®,, ©,) is empty unless

lv| <V, where V= Y—,\Z (8.9)
P
In particular, since v # 0, it must also hold that
YZ > P. (8.10)

Finally, we use the convention that ¢ > 0 is an arbitrarily small real number whose exact value
may change from one appearance to the next.

82.1 | TreatmentofE, ,(Y,0,,0,)

Note that we must have
Y> P, (8.11)

because as ¢, # 0 and T < P/2, the inequality |dc,| < T~'¥"/2 can only hold if ¥ > P. Since we
assume that ¢, # 0, Lemma 6.5 gives strong upper bounds for S, , j, 5 (v), provided that r is square-
free and (r, F}(v)) = 1. Accordingly, we shall further split up E, 4(Y,©,,0,)into the contribution
from those v with F;(v) # 0 and F;(v) = 0 and denote it by E; and E’, respectively. In the
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treatment of E;, we compensate the worse exponential sum estimates compared to E{ by
exploiting the sparsity of vectors v such that F;(v) = 0.

Let us begin by dealing with the term E]. Applying (5.1) and Lemma 5.1 to the integral I,,6,v)
in (8.7), it follows that

|

E{<IN'T"% 3 / 6 / 2 2 Serpn@ldxdg,  812)
dc: P(dc) 16|=e J1" |v—v0|<‘72_1/2 Irl=¢
€70 Fi#o  dlr

’"<>"U

where vy = —rytL (3P VF (xy + t75x) + 2P VF,(x, + t7Lx)). Our next goal is to estimate the
sum

Si= D D 1Sucrsn@)l.

lv—vo|<VZ~Y2 |r|=Y
F3(0)#0 d|r

For this, we write r = b; b b,b’r; into pairwise coprime by, b}, b,,b},r; € O, where b, b is the
square-free part of r satisfying (b, ANF;(v)c,) = 1; b,b), is such that v (b,b}) = 2 forall @ | b,b),
and (b,,dNc,) = 1 and r; is the cube-full part of r. Accordingly, we shall also write d = d;d,d;
with d; | b!, d, | b} and d; | r;. We can then use the multiplicativity of S , , y(v) recorded in
Lemma 6.1 to deduce for appropriate t;, ], 5, t5,t3, N1, N, N3 € O that

1SacrbN @) = 1Sb, (110)S 4, b7 .8, (10)Sp, (G0 b1 b N, (VS b, (E30)]
(8.13)
< |r[E1by |2 by |2 | dy dy | by b | V(S v, (850D,

where we used Lemmas 6.5, 6.6 and 6.7 to estimate the sums corresponding to b, b} and b,,
respectively, and Corollary 6.9 for the sum corresponding to bé. Moreover, by Corollary 7.2, we
have

Y ISuserb, (GO < sl (91272 4 gy ), (814)
|v—v,|<VZ~1/2
F}(©)#0

where ry = r}r’ with (r},d) = 1 are defined in (7.1). Consequently, plugging (8.13) and (8.14) into

the definition of S y1elds

S < POV Q) (P22 4 ) N by V2B b)Y

Ir|=Y
dlr

=?(n+3)/2+5|d|<f/\n’z\—n/2+?n/3> Z |b1|_1|b2r;|_1/2,

Irl=¥
d|r

since |byb|b,blriry| = Y. By definition, we must have b’ b’r/ | (dN¢,F;(v))®. The number of

PLELE! 19273
available b}, b, ry with |bibir}| < Y is hence O(Y*). Moreover, since b,r’, is square-full, the
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number of b, and r}’s of fixed absolute value Bis O(B'/?). After summing over g-adic intervals, it
thus follows that

S « ?(n+3)/2+£|d|<f/‘n2‘—n/2 4 ?n/3)’
and hence,

E{ < ﬁnY‘B/Z—n/2+£@1@2 Z |d|(‘7n2—n/z 4 ?n/3>
dc: P(dc)

< p‘n—S?S/Z—n/2+£Z‘2<V‘nZ\—n/2 " ?n/3)’

where we used that ©,0, <« P22 and Y. p(y, [d| < Y1+, If the first term in the brackets
dominates, we get o7

E{ <« P3YS/24n/24e 2240 /2 PSN/6-5+10/391/24¢E o P5N/6-5/3+5/6+¢

because Z <« P5/3Y~1 and ¥ <« P5/3. Thus, the contribution from E; in this case is O(P"=5-%) for
some x > 0 as soon as n > 25. If the second term dominates, then

Ei < I’J\n—S?S/Z—n/6+£Z‘2 < I’J\n—5+10/31’/‘1/2—n/6+s < ﬁn—5+10/3+1/2—n/6+5’

where we used that ¥ > P by (8.11). This is satisfactory as soon as n > 23, which completes our
treatment of E7.

Next, we consider the contribution from E; This time we apply Lemma 5.2 to the integral
I, (6, v) and obtain

pn
- D YD YD Y M )

[dI<T-1/2|7 (/2 |¢;|<C; 0<|v|<V |r|=Y
c#0 Fl*(v):O d|r

where €, = TY'/2|d|~! and C, = T-'¥"/2|d|~!. We proceed to consider the sum

= 3 Y D 1Sucrpn@)l.

le;1<C; 0<|v|<V |r|=Y
c#0 Fi(v)=0 d|r

For this, we first factor r = b, b,r; into pairwise coprime b;, b,,r; € @ and d = d,d; with d, | b,
and d; | r3, where b, is square-free, b, is cube-free, (b;,dNc,) = 1 and r5 is the cube-full part of
r. Parallel to our argument for E/, we use Lemma 6.1 to factor S, ,, y(v) and invoke Lemmas 6.6
and 6.7 to bound the sum corresponding to b, as well as Lemma 6.6 and Corollary 6.9 to bound
the sum corresponding to b, to obtain

Saerpn(®) K [FE1d,[1by /24 by | /218y gy i (20)]
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for appropriate t, N’ € @. We wish to apply Lemma 7.7 to estimate the average

A= Y Y Sy par (0.

le;|<C; 0<|v|<V
F;‘(v):O

For this note that with the notation of Lemma 7.7 for P sufficiently large, we have
ley| < ¥1/2 « Y1/27\d|"1 = C,, since T =<P/2 and |d| < YV/2T~! «<PY/3. In particular,
Lemma 7.7 hands us

A< |ds] |r3|“/2+3/2+f€1@(|r3|"/2—1 + 17"—2>. (8.15)

We may also forget about the condition F}(v) = 0 and use Corollary 7.2 to obtain the alternative
estimate

A< C\G,\d;] |r3|"/2+1+€|r;’|1/2(17n + |r3|”/3>, (8.16)

/

wherer; =r;

ry with r} given by (7.1). In particular, we have shown so far that
A < G,6,ds|Irs)/* 1+ min { |r3|1/2(17”—2 + |r3|"/2—1>, |r;'|1/2(17" + |r3|"/3> } (8.17)
We begin with the contribution from V> 73] V20rV < |5 1/3_Since bzrg’ | (Ndc,)®, there are at

most O(P¢) pairs (by, rg’ ). Moreover, since r5 is cube-full, there are O(|r3|1/ %) available r; of fixed
absolute. One now easily derives

Ir|=Y
dlr
In addition, we also have
CGld =Y ) |d7t <7 (8.18)
|dI<T-171/2 |dI<F-171/2

After employing the estimates @1@2 <« P57% and [r3| < Y, we have in the cases under
consideration

B}« Pr3yson/2z3onl2 (g2 4 gn3), (819)

If the first term dominates, we obtain

E; < 13‘—3?1+n/2+52\1+n/2 < }’)\Sn/6—3+5/3+5,

which is satisfactory if n > 22. On the other hand, if ¥/3 > V"2, then

E; < 1”;%—5?3—n/6+523—n/2 < l’g\n—5+(3—n/6)+£,

by (8.11) and because Z > 1. Thus, this contribution is sufficiently small as soon as n > 18.
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Finally, we have to deal with the contribution from |r;|'/3 < ¥V < |r;]'/2. For this, we use
that for any real numbers A,B > 0 and 0 < x < 1 that min{A, B} < A'™*B* with x = 1/(n — 2)
to deduce that

S/ < 6162|d|v\n(1—x)?n/2+1+2 Z |b2|1/2|rg/|(1_'<)/2|r3|“(”_1)/2
=¥

« G, |d|Pra-0pn/22+e Z |b,|~V/2 || =/ Gr1,

|b2r’r”|<Y

The number of available b, of fixed absolute value is O(|b, | 1/2) Moreover, there are at most O(Y*)
possibilities for rY. Since (n —1)/(2n —4) — 1 < —1/3 for n > 6 and the number of || of fixed
absolute value is O(|r3 |1/3), it follows that the sum above is O(Y?). Therefore, we have

S' « C,C,|d|Vra-nyn/z+2+e (8.20)

Therefore, the contribution to Eg is at most

1,)\ AlAz Z S’ « P 5/3+51’}1—n/221—n/2vn(1_;<)
Y

n

— }’)\—5/3+m<+51’/‘1+n/2—xn2\1+n/2—xn

£5n/6—2
<<P5n/6 K}’l/3+5’

where we used 8,0, < P75/3Y~2 and (8.18) to estimate the sum over d. One can check that
5n/6 —2n/(3n — 6) < n — 5 provided n > 26, which completes our treatment of E/ and thus also
of E; ,(Y,0,,0,).

8.2.2 | TreatmentofE, ,(Y,0,,0,)

We differ our treatment according to the size of Y. When Y > P17, where 7 isasin (4) after (4.10),
it is more efficient to estimate the sum over v via the same trick that we used to arrive at (8.12),
whereas when ¥ < 13\1_’7, we estimate the integral directly. Before doing so, for W > 1, we focus
on the sum

W)= Y Y Y ISug ren@,

|[v—v,|<W |d|<K |r|=Y
dlr

where K = min{Y¥, Y1/2T}.

To begin with, let us write r = sr;, where s is the cube-free part of r and r; is cube-full. More-
over, we write d = ef f §d3 into pairwise coprime e, f, f,,d; € O, where ef, f, is square-free,
e is the greatest common divisor of s and the square-free part of d, e ff f% | s and dj | r5. The
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multiplicativity of Sdc, r.b, ~(v) together with Proposition 6.10 then imply

SacyrbN(©) K YEIf1 2l /21s| 2 1S o (O],

for some N’'|N and t€ O with (t,r;)=1. Moreover, the number of available s is
O(Yley f2f2r;|™1), so that

S « Yts)/2+e Z Z Z |elf1|_1|f2|_1/2 Z

U d=efyf3d Irsl<¥ |
dslrs

|Sd3go,r3,b,N’(tv)|
rs |(n+5)/2

Next, we factor r; into d}s, s, into pairwise coprime d, s,, s,, where d; | d, (s, N'Ap)) = 1 and
V5 (8,) > V5 (d3), so that sy | (N'Ap,)*. Accordingly, we shall also write dy = d} g, g,, so that g; | s;
fori =1,2. Let u € O and suppose that

u= Hb; bj,bj)=1ifi # j, b;square-free.
We then define the function
m(u) :=bib3 [ i+
i>3
Note that since s; is cube-full and v (s,) > v(g,), we must then have m(g,) | s,. By Lemma 6.1,

we then have for some t;,t, € O with (¢1,d}s;) = (t,,5,) = 1and N” | N’ that

Cy552,0,1 (tZ U).

Sd3go,r3,b,N’(tv) = Sdéglﬂ)vdgsl’b,N”(tlv)sgz_oy

Therefore, it follows from Proposition 6.10 that

1Sa gy, 0 b7 (110)]

Z Z S |(n+5)/2

|Sd3go,r3,b,N’ (tU)l

Y gllsl™

R r,|(+5)/2 R
Ir31<Y I7s] d3 dLgy 9, Isyl<— , Is,|<Y
dslrs 131 m(gy)ls,
!71|51
|Sdl c d’S bNN(tlv)I
A 1 3915(>4351,0;
<? Y glimg)™ Y :
| 's |(n+5)/2
_q! e 1
d3=d3 919, Is1 1<~ 3
1]
g1ls1

where we used that there are at most O(|s,|!/?) available s, of fixed absolute value, because s, is
cube-full. Next, we change the order of summation and make the sum over v the innermost one.
We then use Corollary 7.2 to deduce

1Sd1 g,¢0.dts, b (E10)]

Z Z |ds, |(n+5)/2 < Id;|_1/2|91| Z |s1|_l(ﬁ/\" + |d;81|n/3)
351

|s1|<I T [o—vy|<W |s1|<|d,I

glsy g1ls1

< |d|7VAWT 4 |d) TR Y
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From what we have shown so far, it follows that

EW) < VRN S e il Plglmg)l T (W 7).
|dI<R d=e; f1 f2d; d3=d} g1 9,

Letnow k € Z,, be such that 1/k < ¢ and write
d=Whh b, (W h)=,h) =11 | (NAp) fori # j,

where h; is square-free for i = 1,..., k and h;.; is (k + 1)th-powerful. Recalling the definition of
m(g,) and that dg is cube-full, it is then not hard to see that

)RS I Y S iV A e VAT O (A e Y VS M S )

|d|<f d=91f1f§d3 d3=d;9192 IdKE d:ef1f§d2 d3=d;9192

< Y 1dlFlhy -y

|dI<K

< I’{‘l/k+5.
Therefore, the definition of S and our choice of k implies after redefining ¢ that
B(W) < PO (7 4 97/, (8.21)

We now apply (8.21) to estimate E; ,(Y, ®;,0,) in two different ways according to the size of Y.
Let us begin by assuming that ¥ > P1~7_ In this case, we deduce from (5.1) and Lemma 5.1 that

B1(Y,0,,0,) < NPT 2 /e - . Y X ISu,on(@ldxde,

lv— u0|<vz 1/21d|<K |r|=Y
djr

where v, = —r tE(t3FP VF, (x, + t7Lx) + 2P VF,(x, + tLx)). We can now use (8.21) with W =
VZ~1/2 to deduce that

E, (Y, 0,,0,) < Prys/2-n/2+g @2(17"2—"/2 + ?n/z)
Y5/2+Vl/2+£'® @ Z}’l/2 YS/Z n/6+£® @
< 1’55n/6—5/3?1/2+£ + ﬁn—5/3+(1—7))(1/2—n/6+z)‘
The first term is O(P>"/6-5/6+¢) which is satisfactory as soon as n > 26. Moreover, n — 5/3 +
(1/2—-n/6) < n —5ifn > 24. In particular, the second term is sufficiently small, provided that ¢

is small.
If ¥ < P17 we instead estimate the integral IrN(Q, v) directly via Lemma 5.2 to obtain

|2

—6,0,2'" kW),

n

Ep(Y,0,0,) <

*<>~u
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where

_J1/2 ifP6, <6,
0 else.

We can now apply (8.21) with W = ¥V to deduce that

By (Y, 0,,0,) < PY3/2/248, 8,217/ 27k (77 4 97/7)

— ?S/2+n/2+£@1@221+n/2—,u + P\n—S?S/Z—n/6+£Z\3—n/2—M.

The second term is satisfactory by (8.10) if n > 15, so we may assume that the first one dominates.
Recall that we already dealt with the case when Y\@l > P9 where § = 8(n — 16) /(3n — 24), since
we assume that (4) after (4.10) does not hold. So, we may suppose that the contrary is true. There
are now two cases: Firstly, we assume that @2 < ﬁ@l. In this situation, we have Z <« P>-9y~1
and u = 0, so that

El b(Ys @1, @2) < 13‘(3—5)(1+n/2)+1—26?—1/2+5‘

A rather involved computation or a check with a computer algebra program verifies that (3 —
8)(1+n/2)+1—26 <n—5ifn > 25, which is satisfactory.
The only case that remains is when ﬁ@l < @2, in which case u = 1/2 and hence

El,b(Ya @1’ @2) < 1/_)\5}’1/6+5/6—5/3?E,
which is satisfactory for n > 25.
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