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ABSTRACT
We investigate the phase ordering (pattern formation) of systems of two-dimensional core–shell particles using Monte Carlo (MC) computer
simulations and classical density functional theory (DFT). The particles interact via a pair potential having a hard core and a repulsive square
shoulder. Our simulations show that on cooling, the liquid state structure becomes increasingly characterized by long wavelength density
modulations and on further cooling forms a variety of other phases, including clustered, striped, and other patterned phases. In DFT, the
hard core part of the potential is treated using either fundamental measure theory or a simple local density approximation, whereas the soft
shoulder is treated using the random phase approximation. The different DFTs are benchmarked using large-scale grand-canonical-MC and
Gibbs-ensemble-MC simulations, demonstrating their predictive capabilities and shortcomings. We find that having the liquid state static
structure factor S(k) for wavenumber k is sufficient to identify the Fourier modes governing both the liquid and solid phases. This allows us
to identify from easier-to-obtain liquid state data the wavenumbers relevant to the periodic phases and to predict roughly where in the phase
diagram these patterned phases arise.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0226954

I. INTRODUCTION

Systems of particles interacting pairwise via purely repulsive
interaction potentials can exhibit a surprisingly rich phase behav-
ior. The particles that we consider here have hard impenetrable
cores, surrounded by a penetrable corona. The resulting pair poten-
tial between the particles exhibits a hard core of diameter σ, beyond
which is a repulsive shoulder of range λσ, with energy penalty
ϵ > 0 for overlapping coronas. The range parameter λ > 1 depends
on the extent of the coronas. Here, we treat the system as being
two-dimensional (2D); the three-dimensional analog is also very
interesting, but beyond the scope of the present study. An experi-
mental realization of the 2D model is the system studied in Ref. 1,
consisting of metallic nanoparticles with a corona of attached

polymers. These particles are then adsorbed at a water–air inter-
face, rendering the system effectively 2D. Other such systems include
microgels2–4 or various types of colloidal spheres decorated with
polymer-chains.5–7 These core–shoulder systems are of fundamen-
tal importance because understanding and predicting the phase
behavior provide a crucial benchmark challenge for computer sim-
ulations and theories for interacting classical many-body systems.
They are also of practical importance because the colloidal struc-
tures that self-assemble promise useful optical and/or material
properties.5

Core–shoulder systems do not exhibit gas–liquid phase separa-
tion due to the lack of attractive interactions. Nonetheless, complex
phase ordering can occur depending on the range of the shoulder
potential. Typically, they form cluster, stripe, and hole phases at
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intermediate densities, as long as the shoulder repulsion is strong
enough (or, equivalently, when the temperature is low enough),8
which at first sight can appear like the generic pattern formation
exhibited by systems with competing interactions.9 However, at
higher densities and lower temperatures, a plethora of different
ordered phases can arise, depending on the density, temperature,
and range of the shoulder repulsion λ, often with a sensitive depen-
dence on the precise model parameter values. Belying the simplicity
and isotropic nature of the interactions, the structures that can
form range from the clusters and stripes already mentioned to var-
ious anisotropic structures6,10–14 and even quasicrystals of various
different symmetries.15–17

The notion that softening the repulsive part of the interparticle
pair potential can lead to the appearance of additional phase tran-
sitions goes back to Hemmer and Stell,18 who investigated systems
of hard-core particles “softened” with a weakly attractive poten-
tial. Later, Jagla introduced a more general class of two length-scale
models19,20 with a rich phase behavior, popularizing the topic. Such
potentials have even been used to model liquid–liquid transitions in
water.21 Here, we report results for systems having a shoulder poten-
tial that is step-like. However, various soft-shoulder analogs have
been considered, such as exponential and tanh-shaped shoulders or
ramp-like potentials.19,20,22 Our general approach is relevant to this
whole class of models.

Our focus here is to identify features of the liquid state that are
indicators or precursors of the complex phase behavior that arises at
lower temperatures. In other words, to allow for easy navigation of
the phase diagram, we identify the features to look for in the liquid
state that are associated with the anisotropic phases. To describe the
structural properties of our system, we have on the one hand per-
formed extensive Monte Carlo (MC) based simulations, including
both grand-canonical-ensemble MC (GCMC) and Gibbs-ensemble
MC (GEMC),23,24 and on the other hand, we have used various
complementary theoretical approaches, all based on classical density
functional theory (DFT).25–27

A key part of our approach is to use DFT to determine the
major density modes (i.e., the characteristic wavelengths) of the liq-
uid state structure. We use two different DFT approximations. The
first is a simple DFT that has the advantage of providing simple
analytic expressions for many of the quantities of interest, while
the second is a more sophisticated (fundamental measure theory26

based) DFT, which still provides semi-analytic results for some
quantities. We compare results from the two DFTs and benchmark
all predictions against the results from the MC simulations. Specif-
ically, we compare results for the static structure factor S(k) and
the radial distribution function g(r)26 obtained from two differ-
ent DFT approximations and compare with simulation results in
order to identify strengths and shortcomings of the DFT theories.
We identify two types of errors arising in the DFT results for S(k),
specifically a small systematic error in the determination of peak
position and an overestimation of peak height. However, by com-
paring with the MC simulations, we can understand the scale of the
shift and so compensate for the errors in order to use the DFT results
in order to accurately predict the location of the peaks in S(k). This,
therefore, allows us to identify the characteristic wavenumbers k of
the density modes favored by the system. This analysis also allows
us to understand how these errors manifest in DFT calculations
for the density profiles in various structured phases. In looking for

hallmarks of structured phases in our MC computer simulations of
the liquid phase, in addition to calculating S(k) and g(r), we also
calculate bond orientational order parameters and identify how they
vary on approaching the structured phase from liquid state side of
the phase diagram.

This paper is structured as follows: In Sec. II, we briefly explain
the pair potential defining our model system and the parameters on
which the state of the system depends. In Sec. III, we first explain
various MC simulation approaches developed, including both the
grand-canonical and Gibbs ensemble MC schemes we use. Then,
in Sec. III B, we describe the two DFTs that we have applied and
how to obtain the correlation functions. In Sec. IV, we present
our results, structured as follows: In Sec. IV A, we consider the
liquid–cluster transition, as an example to illustrate the changes in
structural properties across a phase transition using GCMC simu-
lations. By direct simulation of the phase coexistence using GEMC,
we demonstrate that the dominant density modes in the liquid can
be associated with the wavevectors shaping the structured phases.
In Sec. IV B, we present results from a stability analysis of a HCSS
bulk liquid. We determine the relevant specific density modes and
corresponding wavevectors introduced by the shoulder part of the
pair-interaction, elucidating how the ordering arises from the inter-
play between these and those from the entropic volume-exclusion
effects of the hard cores. The influence of the shoulder-interaction
on the freezing transition of a pure hard-core fluid is also dis-
cussed. In Sec. IV C, we compare the liquid state static structure
factors S(k) obtained using GCMC with the analytic results using
DFT. This allows us to highlight shortcomings and capabilities of
two different DFTs and quantify errors made in the determina-
tion of the main structural properties of the liquid. In Sec. IV D,
the effect of the latter errors on the predicted equilibrium density
profiles ρ(r) is illustrated by comparison to GCMC results. Fur-
thermore, we demonstrate that the analytic predictions from DFT
for the bulk liquid suffice to accurately determine the significant
wavevectors shaping striped, clustered, and holed phases of the
HCSS system. Finally, in Sec. V, we finish with a few concluding
remarks.

II. SYSTEM
In our two-dimensional system, the particles interact via the

spherically symmetric hard-core, square-shoulder (HCSS) potential,
which can be split up into the hard disk interaction (with diameter σ)
and an adjacent soft, repulsive, square shoulder interaction corona
of diameter λσ and an interaction strength ϵ > 0. The pair potential
Φ(r) thus reads as follows:

βΦ(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∞, r ≤ σ,

βϵ, σ < r < λσ,

0, λσ ≤ r.

(1)

Throughout this work, we use the hard-core diameter σ as the unit
length of the system (i.e., σ ≡ 1). Furthermore, we introduce the tem-
perature T via β = 1/(kBT), with kB being the Boltzmann constant.
The properties of the system solely depend on the dimensionless
combination βϵ, so for simplicity, we henceforth set β ≡ 1 and refer
to the reciprocal shoulder height as the temperature, i.e., T = 1/ϵ.
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We introduce the average bulk density ρb with its dimensionless
counter-part ρ⋆b = ρbσ2. Furthermore, we define the packing fraction
η = πρbσ2

/4.

III. SIMULATION AND THEORY
We analyze our system with both extensive MC based

simulations23,24 and classical DFT based calculations.25,26 The essen-
tial conceptual elements of both approaches are summarized in this
section.

A. Simulation methods
1. MC simulations in the grand-canonical ensemble

We have performed large-scale MC simulations in the grand-
canonical ensemble (GCMC), imposing particular values for the
temperature T, the volume V , and the chemical potential μ of
the system.23,24 The number of particles N can vary within the
system but has been limited—for practical reasons—to 20 000 par-
ticles. The ensemble is confined within a square box for the results
presented in Secs. IV A–IV C, whereas we use rectangular boxes
with aspect ratio 1 :

√
3 for the solid state simulations presented

in Sec. IV D, in order to minimize frustration from straining the
crystal via the applied periodic boundary conditions. Three types of
MC “moves” are implemented in the course of GCMC simulations:
translational moves, particle insertions, and particle deletions, with
respective probabilities αt, αi, and αd and suitably adapted
acceptance-/rejection-criteria.23,24 In our simulations, we have
assumed that αt = αi = αd = 1/3 and have applied the three types of
moves in a random consecutive manner. Typical simulations extend
in total over 15–20 × 109 of such MC-moves. Equilibration of the
energy was typically observed after 4–5 × 109 MC-moves (see sub-
section 2 of the Appendix), and ensemble averages were performed
using 150–250 states drawn from the end of the simulation separated
by 4 × 108 MC-moves.

2. Gibbs ensemble MC simulations
The Gibbs ensemble represents a very particular ensemble

within the framework of statistical mechanics.23,24,28 The entire sys-
tem is considered in the canonical (i.e., NVT) ensemble, which is
subdivided into two subsystems (confined in sub-boxes), which are
assumed to be in phase coexistence, meaning that the two sub-
systems are at equal temperature T, equal pressure P, and equal
chemical potential μ. This is achieved by introducing three types
of MC “moves”: translational moves of particles inside each of
the boxes, particle exchange between the two boxes, and volume
exchange between the two subsystems while maintaining the total
volume of the system. Related acceptance/rejection criteria for each
type of moves can be found in the literature.23,24 Periodic boundary
conditions are applied to each sub-box.

In our simulation, we start from two square sub-boxes (indices
“1” and “2”) with N1 = N2 = 1500 particles, the total number of par-
ticles N1 +N2 = 3000 being fixed. The initial box size is chosen such
that V1 = V2 = V/2, where the total volume V = N/ρb, where ρb is
the starting total average density and N = N1 +N2. The positions of
the particles are initialized in hexagonal lattices.

The simulations are performed via consecutive blocks where
each block represents a sequence of the following consecutive steps:

(i) ntrans = 200 attempts for translational MC-moves of randomly
chosen particles, i.e., 100 moves per sub-box; (ii) a single nvolume = 1
volume change, changing the volume of one sub-box by ±ΔV
at the cost of the other, where ΔV is drawn uniformly from
the range ΔV ∈ [0, 4]; and (iii) nswap = 500 attempts to swap par-
ticles from one sub-box to the other, where in each step the
box in which a particle is deleted is selected randomly. The
position of a newly created particle is chosen uniformly from
within the hosting sub-box; the move is rejected if an over-
lap of hard cores with the existing particles occurs. The simula-
tion is essentially a sequence of repeated blocks, being continued
until a total number of MC-move attempts nmoves = nblocks × (ntrans
+ nvolume + nswap) ≥ 8 × 109 is attained. For the ensemble averages
(e.g., to calculate the structure factor—see below), each box is
treated as a μVT-ensemble of its own, analogous to the GCMC
calculations.

B. DFT for the HCSS system
1. DFT formalism and thermodynamics

The thermodynamic and structural properties of our system
can alternatively be calculated within the framework of classical
DFT. This approach is based on the grand potential functional
Ω[ρ], which in the absence of any external potentials reads as
follows:25,26

Ω[ρ] = F[ρ] − μ∫ ρ(r)dr. (2)

Ω[ρ] is a functional of the one-body density profile, ρ(r), and
is formed from a Legendre transform of the Helmholtz free
energy functional F[ρ], where μ is the chemical potential of
the system.

The key features of the functional Ω[ρ] are that (i) Ω[ρ] is min-
imized by the equilibrium one particle density profile of a system,
ρeq(r), and (ii) for ρeq(r), the functional Ω[ρ] takes the value of the
thermodynamic grand potential of the system, i.e., Ω = Ω[ρeq]. In
a homogeneous liquid, the equilibrium density profile ρ(r) (hence-
forward, we drop the subscript “eq”) is equal to the bulk density ρb.
However, in the cluster, stripe, crystal, and other such phases, the
equilibrium density profile ρ(r) is nonuniform.

The Helmholtz free energy can be split into two contributions
as follows:

F[ρ] = F id[ρ] + F ex[ρ]. (3)

The first term is the (exact) ideal gas contribution, which can be
written as25,26

F id[ρ] = kBT ∫ ρ(r)[log Λ2ρ(r) − 1]dr, (4)

where Λ is the thermal de Broglie wavelength. The second term in
Eq. (3) is the excess Helmholtz free energy functional F ex[ρ], which
incorporates all contributions beyond that of the ideal gas, due to the
particle interactions. For the overwhelming majority of systems, an
expression for F ex[ρ] can only be given in an approximate manner.
To do this, we split the particle pair interaction potential in Eq. (1)
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into a hard core (index “hc”) and a square shoulder (index “ss”) part
as follows:

Φhc(r) =
⎧⎪⎪
⎨
⎪⎪⎩

∞, r ≤ 1,

0, 1 < r,
(5)

Φss(r) =
⎧⎪⎪
⎨
⎪⎪⎩

ϵ, r ≤ λ,

0, λ < r.
(6)

Thus, the full potential is Φ(r) = Φhc(r) +Φss(r). Correspondingly,
we can split F ex[ρ] into a contribution due to the hard core and a
remainder, associated with the shoulder as follows:

F ex[ρ] = F hc
ex[ρ] + F ss

ex[ρ]. (7)

Furthermore, we assume that we can treat (in the sense of the ran-
dom phase approximation—RPA26) the contribution due to the
square shoulder potential as a perturbation to the hard core. The
resulting RPA for F ss

ex[ρ] reads26

F ss,RPA
ex [ρ] =

1
2∬

ρ(r)ρ(r′)Φss(∣r − r′∣)drdr′. (8)

Note that via Eqs. (6) and (8), we have followed a standard prac-
tice of extending the shoulder of the potential “inside” the hard
core. This mean-field approximation is justified as long as Φss(r)
is fairly long ranged and the shoulder height ϵ in Eq. (6) is rea-
sonably small. However, in practice, the RPA can often do bet-
ter than one might expect, even when these conditions are only
loosely met.26,29,30

For the contribution to the free energy F hc
ex[ρ], which origi-

nates from the hard-core interactions, we consider here two different
approximations: (i) a very simple approximation, namely, a local
density approximation (LDA),26 and (ii) a fundamental measure
theory (FMT) based functional.31,32 Both functionals are briefly be
introduced in the following.

The LDA functional assumes that the density profile varies suf-
ficiently slowly and that at every point r, where the density is ρ(r), we
can approximate the local contribution to the free energy by that of a
bulk liquid with corresponding bulk density ρ. This requires the cor-
responding bulk hard particle fluid equation-of-state (EOS); here, we
use the one obtained within scaled particle theory (SPT).26,33,34 For
the two-dimensional hard disk fluid, the LDA functional together
with the SPT EOS is

F LDA
ex [ρ] = kBT ∫ ρ(r)[(−1 − log (1 − η(r)) + (1 − η(r))−1

]dr,
(9)

where the local packing fraction η(r) = πρ(r)/4. Experience shows
that the above functional fails when the density profile ρ(r) varies on
length scales close to that of the core diameter, e.g., for fluids in the
vicinity of hard walls or for crystalline states,35 but for clusters and
aggregations of multiple particles, we can expect it to be qualitatively
reliable.10,29,36 The results presented below show well when the LDA
is sufficient and when it is not, in which case one must use the more
sophisticated FMT discussed next.

The FMT functional for hard disks32 has been shown to suc-
cessfully describe the entropic freezing of pure hard disks into a

hexagonal crystal, with densely packed arrangement of these parti-
cles, having density profiles ρ(r) with sharp Gaussian-like peaks at
the appropriate particle positions in the hexagonal lattice. In sharp
contrast, unlike the FMT, the LDA is unable to predict the freezing
of the pure hard-disk (or hard-sphere) fluid. The FMT formalism
uses so-called weight functions ωα(r) and ω(m)

(r), which by convo-
lution with the one-particle density ρ(r) lead to weighted densities,
that are either scalar

nα(r) = [ρ⊗ ωα](r), α = 0, 2, (10)

or tensorial in nature,

n(m)(r) = [ρ⊗ ω(m)](r), m = 0, 1, 2. (11)

In the above relations, the symbol “⊗” represents spatial convolu-
tions in two dimensions; the weight functions ωα(r) and ω(m)

(r) are
specified below.

One can then use these weighted densities to generate an
approximation for the hard core contribution to the free energy
F hc

ex[ρ] as an integral over a function of these weighted densities,32

FFMT
ex [ρ] = kBT ∫ Ψ(r)dr

= kBT ∫ [ − n0(r) log (1 − n2(r))

+
1

4π(1 − n2(r))
(

19
12
(n(0)(r))2

−
5

12
n(1)(r) ⋅ n(1)(r)

−
7
6

n(2)(r) ⋅ n(2)(r))]dr. (12)

The integrand of the above relation, i.e., the excess free energy
density kBTΨ(r), is obtained from an ansatz, which is motivated
by dimensional analysis, assuming that it must have dimension
length−2 and so only has combinations of weight functions con-
sistent with this. This ansatz is then combined with a set of dif-
ferential equations for the bulk pressure, arising from SPT.31,32

The free coefficients in the solutions to these differential equa-
tions are determined by requiring that the resulting Helmholtz free
energy yields the SPT EOS of for hard disks with bulk density
ρ and is well behaved in certain limiting cases of extreme con-
finement. The resulting equation [Eq. (12)] is valid over a broad
range of densities up to and beyond freezing and recovers the exact
low-density limit.

The scalar weight functions introduced above are32

ω0(r) =
δ(R − r)

2πR
and ω2(r) = Θ(R − r), (13)

where R = σ/2 = 1/2, δ(r) is the Dirac delta-function, and Θ(r)
is the Heaviside step-function. The tensorial weight functions are
given by

ω(m)(r) = δ(R − ∣r∣) r̂ . . . r̂
²
m−times

, (14)

where the tensor-rank m of the weight function arises from (m − 1)
tensor products of the unit vector r̂ with itself.

To calculate the equilibrium density profile ρ(r), we use
numerical minimization of the DFT functionals via the iterative
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Picard algorithm described, e.g., in Refs. 31 and 37. Further details
are also given in the Appendix. Since both the LDA–RPA [Eqs. (9)
and (8)] and the FMT–RPA [Eqs. (8) and (12)] are constructed so
that they reproduce the SPT equation of state in the uniform den-
sity limit, for both DFTs, the chemical potential for a uniform bulk
liquid is

μ = log (Λ2ρ) +
η(3 − 2η)
(1 − η)2 − log (1 − η) + 4ηϵλ2. (15)

2. Structure
Classical DFT not only provides thermodynamic properties but

also gives structural (pair correlation) information about the sys-
tem. One route to this is via the density profiles, typically using the
test-particle method, where a single particle is fixed, treating it as an
external potential. The DFT is then minimized to obtain the den-
sity profile of the surrounding fluid in the presence of this fixed
particle. The resulting profile then directly yields the radial distri-
bution function—see, e.g., Ref. 38—for further background on this
approach. Here, we follow another approach, going via the direct
correlation functions. To be more specific, the two-particle direct
correlation function c(2)

(r, r′) for an inhomogeneous fluid can be
readily obtained as the following functional derivative of the excess
Helmholtz free energy:26

c(2)(r, r′) = −
δ2 F ex[ρ]

δρ(r)δρ(r′)
. (16)

This function characterizes the two-point density correlations in
the system due to the interactions between the particles. In the
homogeneous bulk liquid where ρ(r) = ρb, this correlation func-
tion becomes isotropic, i.e., c(2)

(r, r′) = c(2)
(r = ∣r − r′∣) = c(r). The

static structure factor, S(k), of such a homogeneous liquid is related
to the Fourier transform (FT, indicated by a hat) of the direct pair
correlation function as follows:

S(k) =
1

1 − ρbĉ(k)
. (17)

The static structure factor S(k) is in turn related to the radial
distribution function g(r) as follows:26

g(r) = 1 + (2πρ)−1
∫

∞

0
(S(k) − 1)kJ0(kr)dk. (18)

Due to the dimensionality of the problem at hand, the trans-
formation from k- to r-space is realized via the inverse Hankel
transform, with J0(x) being the Bessel function of the first kind of
order 0.

Since the Helmholtz free energy functional has been split in
an additive manner into the hard-core and the square-shoulder
contribution—see Eq. (7)—a related splitting of the direct corre-
lation function (in both r- and k-space) can be done by virtue of
Eq. (16) as follows:

ĉ(k) = ĉhc(k) + ĉss(k) = ĉhc(k) − Φ̂ss(k). (19)

The simplicity of the last term arises due to the quadratic nature
of F RPA

ex [ρ]—see Eq. (8). The required Fourier transform of the
shoulder potential is

Φ̂ss(k) = 8πϵλ
J1(λk)

k
, (20)

where J1(x) is the Bessel function of first kind of order 1.
With the LDA- and the FMT-functionals at hand—see Eqs. (9)

and (12), respectively—one can calculate in a straightforward man-
ner (albeit somewhat lengthy in the case of the FMT) the function
ĉhc(k).

Using Eqs. (9) and (16), one finds in the case of the LDA the
constant value

ĉLDA
hc (k) =

η[4 + η(η − 3)]
ρ(η − 1)3 . (21)

In the case of the FMT functional, the situation is more involved,
where the direct correlation function is obtained in terms of deriva-
tives of the excess Helmholtz free energy density Ψ(r) with respect
to the weighted densities—see Eq. (12). The subsequent Fourier
transform of the weight functions leads to39

ĉFMT
hc (k) = −∑

α,γ

∂2Ψ
∂nα∂nγ

ω̂α(−k)ω̂γ(k), (22)

by which, together with Eq. (12), one eventually obtains

ĉFMT
hc (k) =

π
6(1 − η)3k2 [−

5
4
(1 − η)2k2J0(k/2)2

+ (4((η − 20)η + 7) +
5
4
(1 − η)2k2

)J1(k/2)2

+ 2(η − 13)(1 − η)kJ1(k/2)J0(k/2)]. (23)

Since the static structure factor S(k) can easily be calculated
from ĉ(k) via Eq. (17) and since in both approximations ĉ(k) is
given by analytic expressions, one can—in principle—write down
the expression for S(k).

In the LDA, this is straightforward, giving the following closed
expression:

SLDA(k) = (
1 + η
(1 − η)3 + 8ηϵλ

J1(λk)
k
)

−1

. (24)

A related expression is found for SFMT(k), which is considerably
more lengthy [in view of the complexity of ĉFMT

hc (k), Eq. (23)] and
so is not reproduced here.

3. Stability analysis
Identification of the regions of the phase diagram where the

uniform bulk liquid becomes unstable simultaneously enables iden-
tification of the regions where the formation of ordered phases can
be expected. In the regions where the bulk liquid is unstable, it is
because it becomes unstable against the growth of periodic modula-
tions of the density, characterized by a specific wavevector. Here, we
demonstrate that the specific wavevectors that play a significant role
in describing the onset of instability of the liquid are also sufficient
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to predict the length-scales that one can expect in (possibly highly
complex) ordered structures.

When considering the stability of a liquid, one can take either
a thermodynamic/structural or a dynamical perspective. Within
the DFT framework, these are closely related since both originate
from the free energy functional. A dynamical analysis is based on
dynamical density functional theory.26,40–42 To identify the limit
of linear stability of the bulk liquid, one approach is to identify
the locus in the (T, ρ)-plane where the first peak of the static
structure factor (located at kc > 0)—see (17)—is diverging, i.e.,
S(kc)→∞. This marginal stability limit of the liquid against the
critical wavenumber kc > 0 is referred to here as the λ-line, fol-
lowing the terminology of Ref. 43. This should not to be confused
with our use of λ as the parameter defining the range of the pair
potential (1). From the dynamical perspective, inside the λ-line,
the uniform liquid is dynamically unstable against periodic density
modulations with this unstable wavenumber, where (at least within
the linearized regime) these modes grow over time without any
(free) energetic barrier to surmount.44 Either way, one can formulate
the necessary conditions for locating the λ-line based on properties
of S(k)−1 [see Eq. (17)] via the following criteria: (i) the extremum
condition, i.e., d

dk S(k)−1
∣
k=kc
= 0, and (ii) the divergence condition,

i.e., S(kc)
−1
→ 0.

By virtue of the simplicity of the LDA expression for the static
structure factor [see Eq. (24)], the extremum condition can be
formulated in a closed expression,

kc =
j2,1

λ
, (25)

where ji,n is the nth zero of the Bessel function of the first kind
of ith order. Since kc is evaluated via an extremum condition,
it is worth mentioning that for the LDA–RPA not only is the
position of the main peak of S(k) given by the zeros of this spe-
cific Bessel function but also all the other maxima and minima.
Consequently, the number of critical wavevectors that have to be
considered in a stability analysis strongly depends on the inter-
action range λ since for larger λ, more local minima of S(k)−1

arise in the relevant interval 0 < k ≲ 2π. Here, we focus on the
instability of the bulk liquid against the single wavenumber kc, cor-
responding to the global minimum of S(k)−1. However, we should
mention that one can tune the system so that there are two (or
more) critical wavenumbers, a topic we will elaborate elsewhere.
Using the divergence conditions and inserting the critical wavenum-
ber kc into Eq. (24), we obtain the following parametric curve for
the λ-line:

1
ϵ
=

8η(η − 1)3

1 + η
J1(j2,1)

j2,1
λ2. (26)

The corresponding calculation for the FMT–RPA is not analytically
tractable, but using numerical methods, the critical wavenumber
kc and the λ-line can be obtained for the FMT–RPA, by follow-
ing the general approach outlined above. Discussion and compar-
ison of the LDA–RPA with the FMT–RPA results are made in
Sec. III B 3.

IV. RESULTS
A. Structural properties across the liquid–cluster
phase transition

To identify signatures of incipient self-assembled structures in
the liquid phase and to elucidate the changes in the structural prop-
erties as the liquid becomes unstable to periodic phases, we first
focus on the liquid–cluster phase transition. This has been well stud-
ied for the different but somewhat related “short-range-attraction,
longer-range-repulsion” (SALR) system.45 We find that at low densi-
ties, the phase ordering of the SALR and HCSS systems is similar, but
at higher densities, they can be different, depending on the value of λ.
The low-temperature clustered phase is characterized by two distinct
length-scales, which shape the self-assembled pattern: (i) The larger
one is the typical cluster spacing, ac = 2π/kc, which governs both the
area occupied by a single cluster as well as the self-assembled hexago-
nal ordering pattern of the clusters. Below, we show that ac is related
to the wavevector k1, corresponding to the first peak in S(k). (ii) The
shorter length-scale is the length-scale of freezing of particles within
clusters, af = 2π/kf (where kf is the freezing wavevector), govern-
ing the spacing and the arrangement of individual particles within
a given cluster. Below, we show that af is related to the wavevector
of one of the higher-k maxima in S(k). For example, for the case
where λ = 3.7 considered below, this corresponds to the fourth max-
imum, at k4. While ac is predominantly determined by the shoulder
width λ, af is in general associated with the volume-exclusion effects
of the hard core. In fact, as the density increases, kf converges toward
khex = 4π/

√
3 ≈ 7.26 in the limit of a closest hexagonal packing of

hard cores, occurring at η ≈ 0.906.
In order to obtain deeper insights into the implications of the

DFT-based results in Sec. III B 3 and to determine the relevance of
the wavevectors corresponding to peaks in S(k) on the structure, we
first need to verify that these are indeed the wavevectors governing
the density fluctuations in a marginally stable liquid and also are the
ones that ultimately shape the structures that emerge as the liquid
becomes unstable. We emphasize that the investigations discussed
here are entirely based on GCMC simulations. For this purpose, we
focus on one system, characterized by λ = 3.7. This choice is in some
sense arbitrary (as we expect similar results for other such interme-
diate values of λ) and is justified by the fact that for shoulder widths
around this value, the relevant wavevectors can be nicely displayed
in graphical representations. Furthermore, we fix the values of the
chemical potential μ (as specified below) and the temperature to be
located in the vicinity of the liquid–cluster phase transition—see the
Appendix.

In Fig. 1, we present results obtained from GCMC simulations.
These are all state points where the DFT predicts the uniform liq-
uid to be unstable, i.e., are inside the λ-line. In Fig. 1(a), we display
the static structure factor S(k) at different temperatures, for states
located in the vicinity of the liquid–cluster transition and for the
fixed chemical potential value μ(η = 0.2), as obtained from Eq. (15).
For this value of μ, the liquid–cluster transition occurs at Tc ≈ 0.36.
This is also identified by GEMC—see Fig. 2—but not for exactly the
same value of the chemical potential considered here. Additional
evidence for this value of the transition temperature at μ(η = 0.2)
also comes from inspecting the average packing fraction and bond-
order-parameter as a function of temperature; further details are
given in the Appendix (see especially Fig. 8). S(k) is obtained via the
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FIG. 1. (a) The radially symmetric structure factor S(k) as a function of the wavevector k for a HCSS system with λ = 3.7, evaluated for different temperatures T (as labeled)
and for constant chemical potential μ(η = 0.2); see Eq. (15). S(k) is obtained via Eq. (18) from the radial distribution function g(r) [see (b)], obtained in GCMC simulations.
(b) The radial distribution function g(r) as a function of r , obtained in GCMC simulations for the different temperatures indicated in the key in (a). At the top of (b) are
displayed three characteristic snapshots of the liquid and of the cluster phase. The dashed vertical line indicates the distance r = 1.5, relevant to identify nearest neighbors
of a tagged particle, while the solid vertical line indicates the range of the shoulder λ = 3.7. (c) The bond orientational order parameter BOO(m) for a selection of m-values
(those indicated on the axis) and for different temperatures [as labeled in (a)]. The data for an additional set of BOO(m) have been added, which were evaluated for T = 0.25
(shown in magenta). The dashed lines are BOO(m) evaluated for just nearest neighbors (with distances r ≤ 1.5), while the solid lines are for all neighbors separated by
distances up to the shoulder width, i.e., for r ≤ λ.

inverse Fourier transform of Eq. (18) together with the radial distri-
bution function g(r), which is displayed in Fig. 1(b) (and discussed
further below). g(r) is calculated in GCMC simulations, using a
simulation box of size Lx × Ly = 100 × 100.

The plot of S(k) in Fig. 1(a) shows four distinct peaks with val-
ues S(ki) = Si, located at wavevectors ki, i = 1, . . . , 4. These four are
those that are within the displayed physically relevant range of k-
values, i.e., 0 < ki ≲ khex (i.e., there are other maxima at larger-k, and
there can also be a local maximum at k = 0, which are not of inter-
est here). In this plot, we observe that the peak heights S1 and S4
increase significantly as the temperature is decreased. It is interesting
to enquire if the so-called Hansen–Verlet (HV) criterion (general-
ized to 2D systems) applies in the present case.46–49 HV observed
empirically for the 3D Lennard-Jones (LJ) system that as the main
peak of S(k) passes the threshold S1 ≈ 2.85, the LJ system is prone
to freeze. This criterion has been found to roughly apply to a wide
variety of different systems, albeit for 2D systems the HV threshold
is Si ≈ 5.48,49 For the two higher temperatures displayed in Fig. 1 (i.e.,
for T = 0.5119 and T = 0.4048), the HCSS system is still in the liquid
phase, which agrees with what the 2D HV criterion suggests.

At the lower temperature T = 0.3571, which is close to the tran-
sition temperature obtained from the MC simulations (see also the
Appendix), Tc ≈ 0.36, where the phase transition to the cluster phase
(consisting of a hexagonal lattice of clusters) occurs for the imposed
value of μ, S(k) exhibits several pronounced peaks. This is displayed
in Fig. 1(a). The first peak (at k1) has height S1 ≈ 4, which is a lit-
tle below the 2D HV threshold value. In addition, the fourth peak
S4 is also prominent, but some way short of the HV threshold. It is
possible that this state is located in the two phase coexistence region
between the liquid and the cluster phase.

At the lowest temperature T = 0.3334, the system is definitely
in the cluster phase, having pronounced peaks with large values

of both S1 and S4 (with S1 well above the HV threshold). In this
case, S3 assumes a relatively modest value. As a consequence, the
length-scale associated with k3 turns out to play only a minor role
in the cluster phase. It is also worth noting that the values of k1 and
k4 remain essentially unchanged as we vary the temperature, while
one can observe a notable temperature-dependent variation of the
k2- and k3-values. As discussed below, the large peaks S1 and S4
and the corresponding wavevectors impact the shape of the radial
distribution function.

The corresponding radial distribution functions, g(r), are dis-
played in Fig. 1(b). These display the characteristic features of
g(r) for a HCSS-system, namely, the two distinct discontinuities at
r = 1 (= σ) and r = λ. These two discontinuities are to be expected
and arise essentially as contributions of the core and of the shoul-
der to the overall pressure in the system. The magnitudes of the
discontinuities are related to the bulk pressure of the system.26,50

Furthermore, g(r) is characterized by oscillations on both long- and
short-range scales, with wavelengths that can be associated with k1
and k4, respectively. For the two higher temperature liquid states,
both types of oscillations decay relatively fast. For the temperature
near the transition (T = 0.3571), the long wavelength oscillations in
g(r) are of large amplitude, indicating strong inter-cluster correla-
tions. At the lowest temperature displayed (in the cluster phase), the
short wavelength oscillations also decay rather slowly and with large
amplitude, indicating significant correlations of particle positions
both within and between the clusters.

Thus, in the case of an intermediate or large shoulder width
and at low densities, where particles have sufficient space to move
around freely inside a cluster, we can identify the following two
stages of cluster formation: (i) below Tc, but still at sufficiently high
temperatures (where S1 is large and well above the HV threshold,
but S4 is not), clusters populate a hexagonal lattice, while inside
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FIG. 2. (a) and (b) GEMC snapshots of a HCSS system with λ = 3.7 and T = 0.3663; these states are at the transition from the liquid (a) to the cluster phase (b), having
average densities ⟨ρliq⟩ = 0.0902 and ⟨ρcl⟩ = 0.0898, respectively. (c) and (d) Heatmap plots (see color bars) of the static structure factor S(k) as a function of k = (kx , ky).
The radii of the white dotted concentric circles in both (c) and (d) are the wavevectors k1, . . . , k4 of the radially averaged structure factor S(k) in the liquid phase, thus
corresponding to the four main peaks in S(k) in the liquid phase. The radius of the white dashed circle is khex = 4π/

√
3 (see text). The small green circles in (d) highlight

the Bragg-peaks associated with the hexagonal patterns observed between and within clusters (see text).

each cluster, the particles form a disordered, liquid-like structure;
(ii) at even lower temperatures (where we observe S4 approaches
or exceeds the HV threshold, along with S1), we find that the par-
ticles freeze inside the clusters into hexagonal particle arrangements
(with close core-contact). Furthermore, the clusters themselves are
oriented in the same direction. For visualization of this trend, typical
snapshots are shown along the top of Fig. 1(b). For the liquid–cluster
phase transition at higher densities—which we investigate using
GEMC simulations below—the stages (i) and (ii) occur simultane-
ously, with a large value of S1, above the HV threshold. The particles
are constrained to the area of the clusters, which at higher densities
immediately leads to freezing due to packing of the cores. Only at
lower densities and large λ-values are clusters of liquid-like droplets
observed.

In Fig. 1(c), we display the bond orientational parameters
BOO(m) for a selected range of m-values. For 2D systems, these are
defined as follows:51,52

BOO(m) = ⟨∣
1

NN
∑

r
eimθr ∣

2

⟩, (27)

where NN is the number of neighbors for a tagged particle at posi-
tion r and θr is the angle between an arbitrary but fixed axis and
the line connecting the particle at hand with its neighbors within
a specified range. In evaluating BOO(m), we consider for a tagged
particle only those neighbors that are (i) separated by distances
r ≤ 1.5 (a distance which corresponds roughly to the position of
the first peak in g(r), so these are the nearest-neighbors) or (ii)
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all particles with distances r ≤ λ from the tagged particle (i.e., up
to shoulder contact). These two distances are marked in Fig. 1(c)
by dashed and solid vertical lines, respectively. The average ⟨⋅ ⋅ ⋅⟩ in
Eq. (27) indicates a statistical average performed over all particles
in the system. In addition to the four temperatures considered in
Figs. 1(a) and 1(b), in Fig. 1(c), we have also added the results for
an even lower temperature state (i.e., for T = 0.250) for which the
orientations of the particles within each cluster are fully aligned.
In the case of nearest neighbors, the two peaks of the BOO(m)
(for m = 6 and m = 12) become more pronounced as the temper-
ature drops below Tc. In contrast, the transition from the liq-
uid to the cluster phase can be associated with an increase in
BOO(12) at shoulder contact. Note that due to the range of the
shoulder interaction, the averaging procedure in the evaluation
of BOO(m) for shoulder contact involves in general 10 to 20
particles.

The above analysis of the (radially symmetric) structure fac-
tor S(k) shows that for the system at hand the transition from
the liquid into the cluster phase is characterized by a significant
increase of S1 and S4. In the following, we provide evidence that
the wavevectors associated with these peaks in S(k) in the liquid
state are identical to the wavevectors that are responsible for form-
ing the cluster phase. To do this, in Fig. 2, we now analyze in
detail the full angular dependent (i.e., vector k-dependent) struc-
ture factor S(k) for the system at hand (i.e., for the cluster phase
that is at coexistence with the liquid, which have average densities
⟨ρcl⟩ = 0.0898 and ⟨ρliq⟩ = 0.0902, respectively). S(k) is obtained in
GEMC simulations [see the Appendix, Eq. (A6)], directly from the
positions of the particles as input. In Figs. 2(a) and 2(b), we dis-
play typical snapshots of the two phases involved, while Figs. 2(c)
and 2(d) show heatmap plots of S(k) as functions of k = (kx, ky).
Figure 2(c) shows the typical radially symmetric result for a fluid
state, while Fig. 2(d) exhibits the typical Bragg-peaks of a crys-
talline state. On top of these, we superimpose four white dotted
concentric circles, whose radii correspond—from the center to the
periphery—to the aforementioned wavevectors k1, . . . , k4, which
correspond to the four main peaks (S1, . . . , S4) of the radially aver-
aged structure factor—see Fig. 1. An additional white dashed circle
of radius khex = 4π/

√
3 is also displayed. In the case of Fig. 2(d), we

observe the following: (i) The circles with radii k1 and k4 match
very nicely the brightest Bragg-peaks in S(k) (circled in green)
in the cluster phase. Thus, the peaks associated with hexagonal
patterns observed in S(k) are located with high accuracy on the
circles corresponding to wavevectors k1 and k4. (ii) The Bragg-
peaks near k3 are found to have a somewhat bigger k-value in the
cluster phase as compared to the liquid phase (i.e., these Bragg-
peaks do not lie on the k3 circle), an observation which is in nice
agreement with the findings from the GCMC simulations discussed
above in relation to Fig. 1. With all this in mind, we can con-
clude that the cluster phase that emerges as the liquid becomes
unstable is shaped by those wavevectors (namely, k1 and k4) that
predominantly govern the density fluctuations in the liquid. This
points to the possibility that once identified, one can tune these
wavevectors, gaining insights into the complex phase behavior of
the HCSS-system and be able to design self-assembled phases using
specific combinations of wavevectors. We flesh this idea out fur-
ther in Secs. IV B–IV D, but pursue the “design” aspect in a future
publication.

In the following subsections, we test whether the two different
DFTs introduced in Sec. III B are able to predict (in a quantitative
manner) the values of the relevant wavevectors.

B. DFT-based stability analysis of the HCSS liquid
Having shown which wavevectors characterize the structure of

the liquid and are also involved in the structure of the cluster phase
and also shown that monitoring the values of S1 and S4 allows us
to predict the emergence of ordered structures, we now move on
to discuss how DFT fares in predicting these wavevectors. In Fig. 3,
we present results for the negative reciprocal of the structure fac-
tor −1/S(k) and for the location in the phase diagram of the λ-line.
As mentioned already, DFT predicts the liquid to be linearly unsta-
ble (i.e., within the λ-line) at temperatures higher than where the
cluster formation actually occurs. This is similar to the case with the
SALR class of models, where the connection between the location
of the λ-line and the cluster formation has been investigated in some
detail.43,45,53–56 Figure 3(a) illustrates how the presence of the square-
shoulder interaction modifies the structure factor of the pure HC
system. Note that we plot −1/SFMT(k), the structure factor from the
FMT–DFT, as a function of k rather than SFMT(k) itself because the
exercise of investigating where and how peaks in S(k) become large
(and within the DFT treatment diverge S(ki)→∞) is entirely equiv-
alent to investigating where and how peaks in −1/SFMT(k) approach
zero from below.

In Fig. 3(a), we compare −1/SFMT(k) for the pure hard-core
(HC) liquid with that for the HCSS liquid with T = 1 (i.e., ϵ = 1) and
either λ = 1.3 or λ = 3.7. The pure HC system becomes marginally
unstable at the packing fraction ηf ≈ 0.744, i.e., where −1/SFMT
(kf) = 0, with a critical freezing kf ≈ 6.616. This freezing is purely
entropic in nature. At very high densities, this peak is located at
khex = 4π/

√
3, representing the wavenumber that is responsible for

a closest hexagonal packing, occurring at ηhex = π/(2
√

3) ≈ 0.907.
Note that the packing fraction at which the freezing transition occurs
as predicted by minimization of the FMT functional in a 2D domain
is at packing fractions somewhat lower than this: The FMT predicts
the liquid–solid coexistence packing fractions to be ηliq = 0.711 and
ηsol = 0.732,57 for the liquid and solid, respectively. For 0 < η < ηf,
the liquid is linearly stable, but only for η ≤ ηliq, is it the global
free energy minimum and therefore the thermodynamic equilibrium
state.

The location of the peak in S(k) for the high density liquid
predicts fairly well the wavenumber determining the length scale of
the particle ordering in the pure HC crystal. Since this freezing is
entropic in origin (in contrast to the cluster freezing that is driven by
the energetics of the shoulder part of the potential), we refer to this
wavenumber as the entropically favored wavenumber in our discus-
sions here. For the HCSS-liquid (with results shown for λ = 1.3 and
λ = 3.7 in Fig. 3), we observe a structure factor that shows a simi-
lar behavior to that of the pure HC system for k ≈ kf. However, at
smaller k, the smooth curve of SHC(k) is superposed by modula-
tions with maxima occurring at ≈2πn/λ, with integer n = 1, 2, 3, . . .
[a better approximation for the locations of these maxima comes
from the locations of the maxima in Eq. (20), i.e., Eq. (25)]. Each
of these peaks correspond to wavenumbers of density modes that
may or may not be favored by the nonlinear couplings in the free
energy functional. At intermediate to high densities, the FMT-based

J. Chem. Phys. 161, 124503 (2024); doi: 10.1063/5.0226954 161, 124503-9

© Author(s) 2024

 07 O
ctober 2024 11:24:10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. (a) Plots of the negative reciprocal of the structure factor −1/SFMT(k) as a function of k, for different values of the packing fraction η (as labeled). The solid
lines are for the ϵ = 0 pure HC system as obtained via FMT, from Eq. (23). The dotted and dashed lines are related results for the HCSS-system, with ϵ = 1 and λ = 1.3
(dotted) or λ = 3.7 (dashed), for the same range of values of η. The black vertical lines indicate the wavenumber for HC contact kcon = 2π (dotted), the wavenumber
associated with closest hexagonal packing khex = 4π/

√
3 (dashed), and the predicted critical wavenumber for freezing of the pure HC fluid kf = 6.616 (full). (b) Scaled

temperature location of the λ-line as functions of η, calculated numerically within FMT (solid lines) and within LDA (dashed line) for different values of λ (as labeled). For
clarity, the curves were multiplied by a factor λ−2 in order to scale out the shoulder dependency of the LDA results—see Eq. (26). Note that when displayed this way,
the LDA λ-line corresponds to the same curve for all values of λ. The horizontal dotted lines (and crosses) indicate the temperatures of the GCMC simulations carried
out to investigate specific liquid states (see discussion in Sec. IV C). (c) Critical wavenumbers kc as functions of η, calculated within FMT (solid lines) and within LDA
(dashed line) for different values of λ, as labeled. For clarity, the curves were re-scaled by the density-independent, critical wavevector predicted by the LDA kc = j2,1/λ—see
Eq. (25). The black solid vertical line [which extends over both (b) and (c)] indicates the packing fraction at which entropic freezing is predicted by the FMT for the pure HC
fluid ηf = 0.744.

HC contribution of the excess free energy functional dominates,
leading to a favoring of modes in the vicinity of the peak of the
structure factor of the pure HC fluid. However, at lower densities,
modes at the other peaks can be favored. For very high densities (i.e.,
for η > 0.7), the modulations in −1/SFMT(k) are no longer visible
and only one single peak, which is associated with entropic freezing,
emerges in the region kcon < k < khex, where kcon = 2π is the wavevec-
tor associated with core contact. Hence—and as already discussed
in the context of Eq. (25)—longer ranged shoulder interactions
lead to the introduction of additional peaks in the structure factor
and, consequently, other preferred wavevectors that can potentially
play a role in the formation of structured phases. We discuss fur-
ther the role of these additional wavevectors in the liquid phase
in Sec. IV C.

In Fig. 3(b), we display the location in the phase diagram of
the λ-line as a function of η, for different values of λ. By virtue of
Eq. (26), the λ-line scales within the LDA–DFT treatment as T ∝ λ2.
Therefore, we display the λ-line in a scaled form, namely, by plot-
ting in the scaled temperature (ϵλ2

)
−1 vs η plane. This helps us to

compare systems with different shoulder widths λ in a more trans-
parent manner. For small values of η, the LDA–DFT and FMT–DFT
results are in a reasonably good agreement, but rather pronounced
differences between the two can be observed at intermediate and
high densities. These discrepancies are largest for the smallest

λ-value investigated, while for the larger λ’s, the FMT-based curves
essentially converge toward the LDA–DFT results. Eventually, as the
shoulder becomes very short ranged, i.e., as λ approaches unity, the
first peak in the static structure factor is roughly located at kc ≈ j2,1
≈ 5.135—see Eq. (25)—where it is close to the (η-dependent) posi-
tion of the main peak of the HC structure factor at intermediate
densities (see Fig. 3). This leads to a strong η-dependence of both
the λ-line and kc for smaller λ-values. The predicted freezing packing
fraction ηf of a HC fluid is indicated by the solid vertical line.

The value of the critical wavevector kc related to the λ-line is
plotted as a function of η in Fig. 3(c), for various values of λ. To
highlight the differences between the FMT- and the LDA-results for
this quantity, in this plot, we have divided the FMT kc by the cor-
responding LDA result, given in Eq. (25). Again, we observe that
for larger λ-values (i.e., for λ > 2), kc only weakly depends on η
and the respective FMT-results are very close to the data originat-
ing from the LDA. For the smallest λ-value investigated, the results
from the FMT deviate strongly from the LDA-results. Further-
more, we observe a pronounced η-dependence of kc. The origin of
this η-dependency lies in the interplay between the purely entropic
HC and the energetic soft shoulder contributions to the excess
free energy.

To shed further light on how repulsive shoulder affects the
HC freezing (with corresponding associated wavenumber kf), it is
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FIG. 4. (a) A heatmap plot of the negative reciprocal of the structure factor −1/S(k) for the pure HC fluid as a function of η and k, as obtained from FMT. We employ a cutoff
in the range displayed, −1/S(k) ≥ −4, in order to emphasize those wavevectors that predominantly govern the density modes in the pure HC fluid and determine the structure
of the HC crystal. The positions of the first peak of −1/S(k) [corresponding to the first peak in S(k)] are indicated by the red solid line. The red dashed lines mark the

inflection points of the first peak of S(k), i.e., where d2S(k)
dk2 = 0. The distance between these dashed lines represents a measure for the width of the peak of S(k). The blue

star indicates the point in the (η, k)-plane where the HC liquid becomes marginally stable against kf, i.e., where −1/S(kf)→ 0 (see text). The red star marks the closest
hexagonal packing at η = 0.906 and khex = 4π/

√
3. The green lines indicate the locus of the points where −1/S(k) = 0. (b) A plot of the freezing kf as a function of λ to

show the effect of the shoulder interaction (in terms of the shoulder width λ) (black and left vertical axis) together with a plot of the freezing packing fraction ηf(λ) (blue and
right vertical axis). These are for the scaled shoulder heights ϵ∗ = ϵλ [see Eq. (24)] of ϵ∗ = 0.2 (solid), ϵ∗ = 0.4 (dashed), ϵ∗ = 0.6 (dotted), and ϵ∗ = 0.8 (dashed-dotted).
The black horizontal line indicates the pure HC case. If we assume that at the freezing transition the particles form a perfect hexagonal lattice (governed by kf), one can
derive an ideal packing fraction of such a lattice, given by ηid(kf) =

√
3k2

f /32π. The relative error between the predicted ηf and this “ideal” value ηid(kf) is plotted in (c) for
the different ϵ∗ values specified above.

instructive to take a closer look on the DFT-predictions for the struc-
ture of the HCSS system in comparison to the pure HC liquid. In
Fig. 4(a), we present a heatmap plot of −1/SFMT(k) for the pure
HC system (calculated with FMT) as a function of both η and k.
Cuts through this are also displayed as line plots in Fig. 3(a). We
have chosen a cutoff of −1/S(k) ≥ −4 to emphasize the dominant
wavevectors, which at high η determine the structure (lattice spac-
ing) of the pure HC crystal, i.e., which are “entropically favored.”
In Fig. 4(a), the red solid line denotes the position of the first maxi-
mum of S(k), while the dashed red lines mark the inflection points
of this function, thereby defining the width of the peak in S(k) as the
distance between these. The blue star marks the η-value for freez-
ing (ηf = 0.744—blue vertical line) of the system into a hexagonal
crystal, which is governed by kf = 6.616 (blue horizontal line). The
HC liquid is marginally stable for kf ≈ 6.616 at ηf. As the density is
increased, the distances in the hexagonal crystal shrink (with a cor-
responding increase of kf) until particles reach the closest hexagonal
packing, occurring at η ≈ 0.906 with kf = khex = 4π/

√
3 (see the red

star in Fig. 4). We should emphasize that for the states bounded by
the green curve in Fig. 4(a), the structure factor of the fluid attains
nonphysical negative values. Of course, this is a sign that the system
is not a fluid at these state points and is in fact in a solid state. Note
in Fig. 4(a) that even at intermediate values of the packing fraction
(i.e., for η ≈ 0.5), the range of favored wavevectors narrows down,

approaching a fairly narrow range in the vicinity of the maximum
(red solid line).

Having considered the pure HC system, we now move on to
discuss the ϵ > 0 case. Additional wavevectors are introduced by the
shoulder interactions. Those that lie in the peak region of the HC
fluid are reinforced (amplified), especially at higher densities, while
the smaller wavevectors are increasingly suppressed as the density is
increased. For example, in the case where λ = 1.3 discussed above,
kc ≈ j2,1/1.3 ≈ 3.95 so that it is in the peak region of the HC fluid
up to η ≈ 0.6. This is why this is also roughly the position of the
maximum in kc(η), displayed in Fig. 3(c).

In Fig. 4(b), we illustrate the impact of the square-shoulder
interaction on the freezing transition. This plot shows how kf and
ηf change as λ is varied. We compare the behaviors for different
values of the scaled shoulder height ϵ∗ = λϵ, showing results for
ϵ∗ ∈ {0.2, 0.4, 0.6, 0.8}. Scaling in this way leads to comparable
amplitudes in the shoulder contributions to S(k)—see the combi-
nation of coefficients in the second term of Eq. (24) and also Fig. 3.
For large η (i.e., η > 0.8), only one (freezing) peak is observable in
the HCSS S(k), as long as ϵ remains reasonably small. The freez-
ing wavevector kf displayed in Fig. 4(b) is determined by increasing
η until the global maximum in −1/S(k) at this value reaches zero,
i.e., satisfying −1/SFMT(kf) = 0. Of course, this also corresponds to
the peak of the largest maximum of S(k) diverging, indicating that
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the uniform liquid is unstable, and so in reality, freezing has already
occurred at a lower density. Nonetheless, it is instructive to note the
value of kf at which S(k) diverges and to examine the behavior with
varying λ. We observe that both the predicted freezing kf as well as
the freezing packing fraction ηf are functions that oscillate around
the HC value (shown as a black, horizontal line) as λ increases. Of
all the maxima in −1/S(k), the one that determines kf depends on λ.
The role of which ki (i.e., which maxima of S(k)) becomes the freez-
ing wavenumber kf is passed from one to the next roughly at the
λ values corresponding to the position of the maxima in the oscil-
lations of kf(λ). For example, at λ = 3.7, it is the wavevector of the
fourth maximum, i.e., kf = k4.

Our MC simulations show that, to a fairly good approximation,
kf governs the hexagonal lattice of hard cores that emerges when
the liquid temperature is decreased at high densities. However, there
is a difference between the “ideal” packing fraction of the hexago-
nal lattice with wavevector kf(λ) (i.e., assuming that every vertex
in this hexagonal lattice is occupied by a particle) and the pack-
ing fraction ηf(λ) where −1/S(kf)→ 0. Moreover, this difference
has a consequence. The ideal hexagonal lattice with this wavevec-
tor has packing fraction ηid, determined as the ratio of the area
occupied by a single particle and the area of the unit cell, giving

ηid(kf) =
√

3k2
f /(32π). We display in Fig. 4(c) the relative differ-

ence between ηid(kf) and ηf. We can interpret positive deviations
of this quantity as an indicator of the number of vacancy defects in
the crystal, which Fig. 4(c) indicates can be rather large. However,
this comparison still does not tell us where the freezing transi-
tion occurs. This analysis indicates that freezing must occur at a
density value lower than that where −1/S(kf)→ 0, but the precise
density value comes from calculating the grand potential Ω of the
liquid and crystalline phases and identifying phase coexistence in
the usual way.26

C. The structure of the liquid state
In Secs. IV A and IV B, we showed that the knowledge of the

significant wavevectors governing the structure of the HCSS liquid,
ki, i = 1, . . ., 4, provides valuable information about which structures
can potentially emerge when the liquid becomes unstable and solid
phases form. Furthermore, we showed that the shoulder interactions
lead to the introduction of additional wavevectors, beyond those of
the pure HC system. The relevance of these is determined by their
interplay with the core interactions, i.e., whether the nonlinear cou-
plings in the free energy lead to a reinforcement of these modes or

FIG. 5. Static structure factor S(k) as a function of wavenumber k, as obtained in GCMC simulations (top panels) and from the FMT–RPA–DFT (bottom row), for different
values of shoulder width, λ, and packing fractions, η [(a) λ = 2.5, (b) λ = 3.7, and (c) λ = 4.9]. Note the semi-logarithmic scales. The temperatures T were chosen to be
slightly above the maximum temperature of the corresponding λ-line, Tmax(λ): T = 1.05 × Tmax(λ)—see the points marked in Fig. 3(b). Hence, these states are all above
the λ-line, but lie very close for η = 0.2 and η = 0.3. For better visibility, the maxima Si of S(k) are marked by symbols (crosses, circles, and triangles). The two insets show
the relative errors between the simulation and DFT results for the peak positions, k i , and peak heights, Si , as functions of λ. In these insets, the same symbols have been
used for the different Si as in the plots of S(k). These differences are defined as Δkrel = (kFMT − kSIM)/kSIM and ΔSrel = (SFMT − SSIM)/SSIM, respectively. A diverging
second peak erroneously predicted by the FMT–RPA–DFT for λ = 2.5 and η = 0.4 (see dotted vertical lines) has been exempted from these considerations.
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not. Density modes that are likely to be favored can be identified
in plots of −1/S(k), such as that in Fig. 3. In this section, we now
benchmark the FMT–RPA’s ability to accurately describe the peaks
of S(k) on a quantitative level.

Thus, in Fig. 5, we compare S(k) obtained from GCMC sim-
ulations [via g(r) and the inverse of Eq. (18)] with the results
obtained analytically via the FMT–RPA–DFT [Eqs. (17) and (23)]
for three different values of λ (i.e., λ = 2.5, 3.7, and 4.9) and four
different values of η (i.e., η = 0.1, 0.2, 0.3, and 0.4). Note the semi-
logarithmic axes in Fig. 5. We have chosen liquid states that are
located just above the predicted λ-line (see Fig. 3), i.e., at a tem-
perature T = 1.05 × Tmax(λ), where Tmax(λ) is the temperature for
which the λ-line attains its maximum. The state-points at which
these are calculated are marked in Fig. 3(b).

The first thing that we can observe in Fig. 5 is that the num-
ber and positions of the individual peaks of S(k) (i.e., ki) are in
all cases predicted quite accurately by the FMT–RPA–DFT. A more
quantitative measure is displayed in the central inset, where we dis-
play the relative differences between the two sets of ki, i.e., we plot
Δkrel = (kFMT − kSIM)/kSIM, for the three different values of λ. We
find that the values of ki are in general slightly underestimated by
the DFT, with the largest error being for small λ-values and higher
η-values, notably for η = 0.4 at λ = 2.5.

We also see in Fig. 5 that the heights of the peaks Si are through-
out overestimated by the DFT, in some cases only by a little and
in other cases by a considerable amount. In the right-hand inset
of Fig. 5, we display the relative differences between the two sets
of peak heights Si, i.e., we plot ΔSrel = (SFMT − SSIM)/SSIM, for the
three different values of λ. We see that the FMT–RPA–DFT greatly
overestimates S1 for states in the vicinity of the λ-line, but is rel-
atively accurate for the remaining Si. This is particularly the case
for η = 0.2 and η = 0.3, in the vicinity of the λ-line. In contrast to
the DFT, the simulations show a tendency to suppress the first peak
with increasing η. For λ = 2.5 and η = 0.4, the DFT predicts a very
large (in fact diverging) value of S2, indicating that the liquid is
linearly unstable against k2. Note that this k2 neither corresponds
to kc nor to kf. What is also interesting about this peak is that for
intermediate densities and for λ ≳ 2.4, it points to the possibility of
the formation of structures with a characteristic wavelength that is
associated neither with the core-length scale nor with the shoulder-
length scale. This observation tallies with those in Ref. 13, where
low-density crystals were identified that are compatible with these
observations.

Despite the DFT prediction of structured phases inside the λ-
line (e.g., for λ = 2.5 and η = 0.4), all the states investigated within
our simulations at the temperatures considered in Fig. 5 are, in fact,
in the liquid phase. This can be seen from the corresponding simu-
lation snapshots displayed in Fig. 6. Nonetheless, these snapshots do
show significant structuring in the liquid. The characteristic wave-
lengths of these patterns are predicted accurately by the DFT because
the DFT predictions for the peak positions in S(k) are correct. It is
at lower temperatures where the system finally freezes into a variety
of different solid phases. In other words, the DFT predicts the tran-
sition to the structured phases at temperatures higher than they are
observed in MC simulations. However, we should emphasize that
even within the DFT description, one must expect that coexistence
between the liquid and ordered phases to occur before the structure
factor diverges. Thus, the DFT is self-consistent, with the structure

FIG. 6. Typical snapshots from GCMC simulations of all the states whose structure
factors S(k) are shown in Fig. 5. All systems are in the liquid phase. Snapshots
are shown for λ = 2.5 (top row), λ = 3.7 (central row), and λ = 4.9 (bottom row).
The packing fractions are η = 0.1, 0.2, 0.3, and 0.4 (from left to right).

factor not actually diverging at the transition—except perhaps at the
top of the λ-line itself.29,43,58

In the following section, we discuss the simplest and most
commonly observed of these structured phases, namely, the cluster,
stripe, and hole phases. A variety of other complex ordered phases
can also arise, but a detailed investigation of these will be presented
elsewhere. For higher temperature state points further away from
the λ-line, the agreement between the DFT and simulations for the
values of Si is considerably better.

D. Structured phases
So far, we have largely used the DFT to determine the liq-

uid state structure and to show that it predicts fairly well the key
wavenumbers ki. In this section, we now discuss the DFT predic-
tions for properties of structured phases arising in those parts of
the phase diagram where both the DFT and the simulations predict
structured phases. We focus in particular on comparing wavelengths
of density modulations and assessing how the DFT fares in pre-
dicting these, in comparison with the simulations. Comparing the
equilibrium density profile ρ(r) obtained from full minimization
of both the LDA–RPA and the FMT–RPA functionals with data
obtained in GCMC simulations, we find that at higher tempera-
tures, both DFTs overestimate the size of the regions in the phase
diagram where the periodic phases exist, but overall are in good
qualitative agreement with the MC results. The LDA–RPA–DFT
predicts a phase diagram that is qualitatively very similar to that
of the SALAR system displayed in Ref. 58. However, at lower tem-
peratures, the LDA is unable to predict the freezing of the particles
that occurs within the clusters and stripes of the modulated phases,
nor can it describe the variety of other crystalline phases that can
arise at lower temperatures and/or higher densities. As illustrated
in Fig. 7, the FMT–RPA–DFT does fare better for the cluster,
stripe, and hole phases. Additionally, at lower temperatures and/or
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FIG. 7. Comparison of equilibrium density profiles ρ(r) for different HCSS-systems (specified below) obtained via the LDA–RPA–DFT (first row), the FMT–RPA–DFT (second
row), and equal-sized snapshots taken from GCMC simulations of much larger sized systems (third row). The bottom panels show the corresponding structure factors S(k)
as functions of k = (kx , ky) extracted from GCMC simulations. The white circles correspond to the peak positions of S(k) observed via the FMT–RPA–DFT for a bulk liquid
at the same T and μ values. The columns show (a) a cluster phase for μ(η = 0.25) [see Eq. (15)] and T = 0.25; (b) a striped phase for μ(η = 0.35) and T = 0.25; and (c)
a holed phase for μ(η = 0.45) and T = 0.38.

higher densities, in addition to these three periodic phases, a vari-
ety of other crystalline phases also occur, depending on the value
of λ. However, as mentioned, detailed investigation of these other
phases will be presented elsewhere. Figure 7 shows some exam-
ples of density profiles obtained at lower densities, where we find
good agreement between the FMT–RPA–DFT and the GCMC sim-
ulations, although there are some errors made by the DFT that
we show are introduced by the underestimation of ki discussed
in Sec. IV C.

As discussed in the previous subsection, due to the overestima-
tion of the height of the first peak S1, the RPA-based DFT functionals
tend to predict the formation of patterned structures at temperatures
higher than they actually occur, i.e., within the λ-line, which is at
too high temperatures. For instance, the clustering transitions dis-
cussed in Sec. IV A are found using GCMC simulations at η ≈ 0.2
to occur at Tc ≈ 0.36 (see Fig. 1), whereas the λ-line for the same η-
value is found using the LDA at Tc = 0.6181, and from the FMT, it
is at Tc = 0.6979. Similarly, at a higher density, using GEMC sim-
ulations, we find that the transition from the liquid to the cluster
phase occurs at η ≈ 0.2827 and Tc ≈ 0.3663, whereas for this density,
the LDA predicts Tc = 0.5892 and the FMT at Tc = 0.6829. Thus, to
compare predictions from the DFTs with simulation results for the

structured phases, we must choose state points at relatively low tem-
peratures, where both the LDA–RPA–DFT and FMT–RPA–DFT
reliably predict the emerging phases.

As discussed in Sec. IV C, at higher densities and for higher
values of k, the FMT–RPA functional tends to be more accurate
in its predictions for Si. Hence, in such situations, we can expect
this functional to be more reliable for predicting the phase transi-
tions associated with the corresponding ki. Despite the inaccuracy
of the DFTs for the values of the peak heights S1, we find that the
DFT still accurately predicts the equilibrium structures. This can be
seen in Fig. 7, where we compare density profiles for the striped,
clustered, and holed phases (other phases can also be observed in
some cases; these will be presented elsewhere), together with cor-
responding simulation snapshots. In the top row, we display equi-
librium density profiles ρ(r) obtained from the LDA–RPA–DFT.
Note that for better visibility of the profiles in the low-density
regions, we plot the logarithm of the density profile. Unsurpris-
ingly, given that these results are from a functional that treats the
hard-disk contributions via the simplest LDA, this DFT is only able
to resolve the large-scale structuring, characterized by the length-
scale ac, induced by the shoulder interactions, which are treated
within the RPA.
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The second row of Fig. 7 displays ρ(r) obtained from the
FMT–RPA–DFT. These are obtained by using the LDA–RPA den-
sity profile as the initial guess in the numerical procedure for
minimizing the FMT–RPA functional. Note that results calculated
in this manner were found to be consistent with those obtained by
starting from a random initial guess for the density profile. How-
ever, this “educated guess,” based on the LDA–RPA profile, was
found out to be computationally more efficient since both density
profiles share similar large-scale features, as they use the same RPA
treatment of the shoulder. We see in Fig. 7 that the density-profile
ρ(r) obtained from the FMT–RPA has the same stripe/cluster/hole
interspacing as the LDA–RPA, but additionally resolves the hexag-
onal ordering formed by the particles being frozen within the sub-
structures. At first glance, the FMT–RPA results in the second row
appear somewhat “messy.” However, understanding of what these
show can be obtained by comparing the FMT–RPA results with
equal-sized snapshots extracted from GCMC simulations, which are
displayed in the third row. Recall that DFT is a statistical mechan-
ical theory, calculating the ensemble average density profile.25,26

Thus, comparing the second and third rows, one can see that the
second row FMT–RPA profiles do indeed resemble ensemble aver-
ages of configurations such as those displayed in the third row.
Additionally, from comparing the DFT profiles with the respective
GCMC snapshots, we can also see that while the local hexagonal
order, governed by k4, is very well predicted by the FMT–RPA,
both the LDA–RPA and FMT–RPA overestimate the larger length-
scale associated with k1 = kc. This can most easily be seen by
comparing the spacing between stripes in the three upper panels
of Fig. 7(b).

The average packing fractions of the structures displayed in
Fig. 7, obtained by the DFT and also from the GCMC simulations
using the same chemical potential values μ(ηb) [see Eq. (15)], are
given in Table I. We see that the LDA has the tendency to slightly
underestimate the densities of the structured phases and to pre-
dict their occurrence at even lower densities, as compared to a
bulk liquid with the same value of μ. In contrast, the FMT predicts
an increase of the density compared to the reference unstable liq-
uid with imposed packing fraction ηb. This is consistent with, but
slightly less than the values obtained from the GCMC simulations.
Note that for simulations carried out at constant μ, the increase of
the density relative to the density of a bulk liquid with equal μ can
be used as an indicator for the formation of a structured phase. This
can also be seen in the Appendix, where a plot showing a compar-
ison of the bond order parameters and of η for GCMC simulations
is displayed.

TABLE I. Average packing fractions of the three investigated solid phases displayed
in Fig. 7, obtained via DFT from GCMC simulations. For both the DFT and MC
calculations, a fixed chemical potential μ(ηb) determined via Eq. (15) was imposed.

Phase ηb LDA–RPA FMT–RPA GCMC

Clusters 0.25 0.2499 0.2517 0.2883
Stripes 0.35 0.3466 0.3636 0.3905
Holes 0.45 0.4441 0.4640 0.4875

In the bottom panels of Fig. 7, we display the structure fac-
tors S(k) obtained from the GCMC simulations. Similar to in Fig. 2,
we have added on top of these heatmap plots the relevant signifi-
cant wavevectors as predicted by the FMT–RPA–DFT, obtained for
a reference bulk liquid with the same T and μ. We find that—even
though the structured phases are found well below their freezing
temperatures—the wavenumbers extracted from the liquid theory
still agree very well with the Bragg-peaks in S(k), especially for k1
and k4 (similar to in Fig. 2), but slightly underestimating the other
wavevectors, in accordance with observations made in Sec. IV C.
Note that the full simulation box from which these S(k) are obtained
contains several distinctly oriented domains, leading to some over-
lay in the resulting Bragg-peaks. Nonetheless, we observe that the
major discrete peaks in the GCMC S(k) are located very closely to
the predicted kc = k1 and kf = k4 in SFMT(k).

Regarding both DFTs, the slight underestimation of the smaller
wavenumber k1 = kc leads to an overestimation of the interspac-
ing between stripes/clusters/holes. While the error made for k4 has
seemingly minimal effects on the predicted equilibrium density pro-
file, the error in k1 results in an overestimation of ac, hence the
discrepancy in the spacings of the different structures in Fig. 7
when comparing DFT and simulation. Although the error in k1 is
relatively small, due to the reciprocal relation between real- and
Fourier-space, any small error δk, made in the determination of a
wavevector k, leads to an error δa ≈ 2π

k+δk −
2π
k in the related length-

scale of the real-space equilibrium density profile, which can be
much more noticeable. In other words, errors made for smaller k
lead to more severe consequences than the ones for bigger wavevec-
tors. Nonetheless, we conclude that we can use the liquid state DFT
based theory to successfully predict the wavevectors shaping the
various solid states.

V. CONCLUDING REMARKS
In this contribution, we have investigated in detail the pattern

formation of a two-dimensional hard-core, square-shoulder (HCSS)
system at the point where it becomes unstable with respect to the
emerging ordered phases. The interaction potential acting between
the particles is characterized by a circular, impenetrable core with an
adjacent, repulsive square shoulder interaction; the latter is charac-
terized by the step height (which can be treated as the inverse of the
system temperature) and the range of the interaction, λ. Investiga-
tions were carried out via intensive Monte Carlo simulations (in the
grand-canonical—GCMC—and in the Gibbs ensemble—GEMC)
and via classical density functional theory; in the latter case, two dif-
ferent approximations were implemented for the hard core part of
the potential (based on the local density approximation—LDA—and
on fundamental measure theory—FMT), while the shoulder part
of the potential was included in a mean-field-type random phase
approximation (RPA).

Our simulation-based investigations have provided evidence
that the density modes that dominate fluctuations in the liquid state
(in terms of relevant wavevectors) of the HCSS system are the ones
that ultimately shape the adjacent (ordered) cluster phase, once the
liquid becomes unstable. We have elucidated how the interplay of
the characteristic length scales of the hard-core and soft-shoulder
interactions gives rise to the dominance of specific density modes.
We then have checked the capacities of the two different DFTs for
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predicting the relevant wavevectors; we find that they agree with
the MC simulations reasonably well. Focusing on the liquid phase,
we have compared the static structure factor as obtained directly
from the simulations with data obtained via DFT: we observe that
the positions of the peaks in the static structure factor agree very
nicely, while larger deviations between simulation- and DFT-results
are observed for the peak heights, in particular in the vicinity of the
λ-line.

We have also investigated the structured phases and addressed
the question: in what respect do the aforementioned differences
between simulation and DFT results affect the density profiles pre-
dicted by DFT of the ordered phases? We conclude from our inves-
tigations that errors in the small-k regime have a larger impact than
deviations occurring for larger wavevectors. However, we consider
FMT to be sufficiently accurate to predict the significant wavevec-
tors. Thus, it seems a valid approach to apply DFT to the liquid
phase in order to reliably predict those wavevectors that charac-
terize the emerging ordered phases. We conclude that the DFTs
developed here can be used in a rather simple manner to navigate
(with a relatively small computational cost) through the complex
phase diagram of the HCSS system. In return, this feature might
also enable us to design interaction potentials that give rise to spe-
cific combinations of density modes in emerging, self-assembled
ordered phases.

It should be noted that observations similar to the ones
here have been made for liquid metals.59 Using effective inter-
atomic pair potentials and reliable liquid state theories60 to cal-
culate the static structure factor of the liquid phase, good agree-
ment to the well-known crystalline structures of the metals was
observed.
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APPENDIX: FURTHER DETAILS
1. Numerical solution of the DFT—Picard algorithm

The numerical minimization of the DFT functionals used in
this contribution via the iterative Picard algorithm31,37 allows for the
numerical determination of the equilibrium density profile ρ(r). In
the following, we briefly outline the procedure.

Minimization of the grand-potential functional (2),

δΩ[ρ]
δρ(r)

= 0, (A1)

leads (in the absence of an external potential) to the Euler–Lagrange
equation,

log (ρ(r)) − c(1)(r) − μ = 0, (A2)

with c(1)(r) ≡ −δF[ρ]ex/δρ(r) being the one-body direct correla-
tion function.26 Evaluating the latter for a uniform liquid allows us
to express this reference bulk density ρb in terms of the chemical
potential μ,

ρb = e−μ+c(1)
∣ρb . (A3)

With this relation at hand, we can rearrange Eq. (A2) to obtain the
following expression for the density profile:

ρP(r) = ρbec(1)
(r)−c(1)

∣ρb . (A4)

The index “P” indicates that this expression can be used in the iter-
ative algorithm to obtain an update for the density profile at a given
step, when the density profile of the preceding step is inserted into
the right-hand side of Eq. (A4). It should be emphasized that ρb is
only equal to the average density of the system ρ̄ = ⟨ρ(r)⟩ for uni-
form (fluid) states. More generally, in the case of the non-uniform
phases, the average density ρ̄ ≠ ρb, although differences can be small.
Thus, Eq. (A4) represents the basis for the iterative Picard algorithm
as described, e.g., in Refs. 31 and 61.

To be more specific, we start from an initial guess for ρ(r), and
then, a new density profile is constructed by mixing the density pro-
file of the preceding step via a mixing parameter α with the density
profile ρP(r), given Eq. (A4). For reasons of numerical stability, one
must introduce a small value for the mixing parameter α. Thus, the
density profile at step (i + 1) of the Picard iteration is given by

ρ(i+1)
(r) = αρP(r) + (1 − α)ρ(i)(r). (A5)

This algorithm is iterated until the squared difference between the
density profiles of two consecutive steps integrated over the domain,
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i.e., if the dimensionless quantity σ2
∫ ∣ρ

(i)
(r) − ρ(i−1)

(r)∣2dr, drops
below a predefined threshold value. The actual value depends on the
system size, but typically amounts to (10−10–10−14

). Simultaneously,
the grand potential Ω[ρ] converges toward a constant value.

The mixing parameter α is chosen to be small enough to ensure
convergence of the sequence of density profiles emerging from
Eq. (A5). In practice, this value is chosen by trial; in the case of
the LDA–RPA functional, a value of α = 10−3–10−2 was sufficient
to obtain convergence depending on initial density ρb as well as on
the value of the shoulder height ϵ. For the FMT–RPA functional,
we implemented an algorithm proposed by Roth in Ref. 31 that
evaluates the optimal choice of α in each step.

2. Structure factor
To calculate the static structure factor, in addition to using the

method described in Sec. IV A, we also used the more standard
definition,26

S(k) = 1 + ⟨
1
N

N

∑
i=1

N

∑
j≠i

e−ik⋅(ri−rj)⟩. (A6)

This relation requires as input the positions of all the particles {ri},
obtained in our MC simulations. The brackets denote an ensemble
average in the related ensemble (here the grand-canonical or Gibbs
ensemble).

We also compared results for S(k) obtained via Eq. (A6) with
the numerical calculation of S(k) via the inverse Fourier transform
of Eq. (18), starting from the g(r) obtained in GCMC simulations
(comparison not displayed), since the latter can be prone to numer-
ical errors. This is because the two-dimensional Fourier transform
requires special care when discretizing k, in view of the resolution in
r-space. The results for S(k) obtained via the two routes were found
to be in good agreement, except for in the (irrelevant for present
purposes) small-k region, for k < k1.

3. Identification of the liquid–cluster transition
temperature

Here, we provide evidence of the approximate value of the
transition temperature Tc between the liquid and the ordered clus-
ter phase, for the HCSS system with λ = 3.7 and chemical potential
μ(η = 0.2), calculated via Eq. (15).

GCMC simulations have been performed, gathering data for
the ensemble averaged packing fraction η and the bond orientational
order parameter BOO(m = 12). The results are shown in Fig. 8. For
temperatures above T ≈ 0.36, we observe a rather flat BOO(m = 12)
and only moderately increasing average packing fraction ⟨η⟩ with
decreasing temperature. In contrast, both curves show a pronounced
and characteristic increase as we pass the T ≈ 0.36 threshold value
from above. Thus, we identify T = Tc ≈ 0.36 as a rather reliable
estimate for the transition temperature between the two phases
for this value of μ. Note that the calculated packing fraction is
slightly above the corresponding η-value of the bulk liquid calculated
within SPT.

In Fig. 8(b), we display the evolution of the system energy,
i.e., the number of shoulder overlaps, in the course of the GCMC
simulation. The energy is divided by the energy of the initial hexag-
onal configuration of particles (see Sec. III A for details). After the
rapid initial decrease (or increase in the case of the holed phase at
ηb = 0.45), we observe equilibration of all states toward constant
values. It is hence safe to assume that our solid state simulations
are equilibrated after about 1010 moves. For the ensemble averages,
states from the end of the simulation are used.

4. Liquid–cluster phase coexistence
in the Gibbs-ensemble

The extent of the liquid–cluster coexistence region can be
obtained by calculating the average densities in the two simulation
boxes used in the GEMC scheme. Thus, we calculate the proba-
bility distributions P(η) for each of the boxes to have the average

FIG. 8. (a) GCMC results for ensemble averaged packing fraction ⟨η⟩ (blue symbols and line; left coordinate) and the BOO(m = 12) (with particles being in shoulder contact)
as functions of temperature T ; the system is characterized by μ(η = 0.2)—see Eq. (15)—and λ = 3.7. The temperature range considered covers the transition between the
liquid and the ordered cluster phase. The black dotted line marks our estimate for the transition temperature Tc ≈ 0.36. (b) Evolution of the energy of the system (normalized
by the energy of the initial configuration) as a function of MC moves as obtained in GCMC simulation of the ordered states depicted in Fig. 7.
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FIG. 9. Probability to find the two individual simulation boxes of the GEMC simu-
lations (see Fig. 2) at a specific average packing fraction η. The solid line denotes
the (constant) packing fraction of the full Gibbs ensemble (η = 0.2827) and the
dashed line denotes the average packing fraction in the individual boxes, respec-
tively. Here, “Box 1” corresponds to the simulation box hosting the cluster phase
(⟨ηcl⟩ = 0.2834), while “Box 2” hosts the liquid phase (⟨ηliq⟩ = 0.2821).

packing fraction η. Having these P(η) form two distinct Gaussian
distributions can be seen as a sign of proficient sampling of the
Gibbs ensemble. The GEMC simulation of the state at η = 2.827 and
T = 0.3663 involving N = 3000 particles was run for 8 × 109 MC-
moves. The statistics were obtained using 3000 states from the end
of the simulation, from after phase separation in boxes occurred.
All sample states are separated by a single simulation block (see
Sec. III A for details). P(η) and the corresponding densities of
the liquid and clustered phase can be found in Fig. 9. Despite the
small extent of the coexistence region, of width Δη = ⟨ηcl⟩ − ⟨ηliq⟩

= 0.0126, the GEMC algorithm is capable of directly identifying
phase coexistence.
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