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Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we exam-
ine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon
adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter cor-
responds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg
chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin
susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero
average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins.
In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of
thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated
current between two halves of the system in stationary maximum-entropy states, we demonstrate vio-
lation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium
ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a
generalized fluctuation relation.
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I. INTRODUCTION

Recent rapid advancements of quantum computing
platforms based on trapped ions, ultracold atoms, and
superconducting qubits [1–14] have drawn considerable
attention to dynamics of unitary quantum circuits and cel-
lular automata [15–17]. Besides allowing for classical sim-
ulation [18,19], which can often be efficient, such discrete
space-time dynamical systems can likewise be realized on
modern experimental quantum platforms. Moreover, they
are often amenable to exact solutions [20–28] and there-
fore prove particularly useful for benchmarking quantum
devices [29–31]. On the other hand, quantum circuits can
exhibit a diverse range of unconventional dynamical prop-
erties, which include anomalous transport [32,33], recently
observed in experiments [34,35], and robustness to integra-
bility breaking perturbations [36–40]. In this view, they are

*Contact author: lenart.zadnik@fmf.uni-lj.si

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

of fundamental theoretical interest to the statistical physics
community.

The study of anomalous transport has been at the fore-
front of theoretical interest in recent years. Among the
most emblematic examples is the discovery [41] of uni-
versal superdiffusive transport of Noether charges in inte-
grable models with non-Abelian symmetries [42]. The
precise determination of the dynamical universality class
remains an open question: despite the dynamical two-point
function of the charge density coinciding with the scaling
function of the Kardar-Parisi-Zhang equation (KPZ) at late
times [33,42–50], it has been shown that the full proba-
bility distribution of net charge transfer is not compatible
with the behavior of fluctuations predicted by the KPZ
equation [51]. This discrepancy has also been supported
by a recent experiment using superconducting quantum
processors [52].

Reliable extraction of transport coefficients and statisti-
cal properties of macroscopic fluctuating observables is in
practice hindered by the complexity of simulating strongly
interacting quantum dynamics on classical computers. This
difficulty can fortunately be overcome in integrable mod-
els, where the underlying quasiparticle structure often
permits derivation of exact results valid on hydrodynamic
scales. Central to this endeavor are the tools of generalized
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FIG. 1. A brickwork configuration of quantum unitaries U [see
Eq. (3)], representing a quantum many-body spin ratchet with
time flowing upwards. Each two-body local unitary gate involves
a permutation and thus swaps the adjacent spin spaces, yield-
ing chiral dynamics of spin species: spins s1 propagate east (i.e.,
towards the right) and spins s2 west (i.e., towards the left). The
(Floquet) propagator U given by Eq. (1) corresponds to two
layers of the circuit.

hydrodynamics (GHD) [53,54] and ballistic (macroscopic)
fluctuation theory [55,56].

The studies so far have largely investigated anoma-
lous properties of spin or charge transport in interacting
many-body systems with unbroken space-time symmetry,
i.e., with microscopic dynamics invariant under the time-
reversal (T ) and space-reflection (P) symmetries. Instead,
we aim to systematically examine the properties of intrin-
sically chiral microscopic dynamics, in which both P and
T symmetries are explicitly broken. Such a dynamics is
prototypical of quantum ratchets [57–60]. Our goal here is
to devise a many-body analogue of a ratchet, and to inves-
tigate how the absence of P and T symmetries impacts
the charge transport. To this end, we introduce a class
of unitary circuits with a brickwork design in the form
of a staggered lattice consisting of two alternating spins
s1 and s2, schematically presented in Fig. 1. Crucially, in
quantum ratchet circuits under consideration the space-
reflection symmetry is broken at the level of local unitary
gates, rather than by the initial conditions [53,54,61–67]
or by transport-inducing nonunitary boundary processes
[41,68–74] (see also reviews [32,75] and references
therein). More specifically, the circuits consist of two-site
unitary gates, which lack the space-reflection symme-
try as a direct consequence of the nearest-neighbor spin
exchange. Mostly for reasons of simplicity, we devote this
work to many-body quantum ratchets built out of rotation-
ally symmetric (i.e., SU(2)-invariant) local unitary gates,
including both generic (i.e., ergodic) dynamics and exactly
solvable (i.e., integrable) instances. As an application, we
then characterize spin transport on the ballistic (Euler)
scale at a finite magnetization density.

As a consequence of broken space-reflection and time-
reversal symmetries, quantum many-body spin ratchets

display two notable universal features. Most remarkably,
we demonstrate that

the dynamical spin susceptibility exhibits a universal
nonzero drift velocity, depending only on the size of spins
and average background magnetization density.

We support this statement by deriving a closed-form
expression for the drift velocity using GHD in the inte-
grable ratchets, and by extensive numerical simulations in
the nonintegrable ones. In addition, we demonstrate that
the drift velocity arises purely from the spin-exchange part
of the local unitary gate, enabling us to obtain a general
analytic form as a function of both spins and chemical
potential. By numerically studying the spreading of spin
fluctuations in the co-moving drift frame, we generically
find the anticipated superdiffusive scaling with dynamical
exponent z = 3/2, as observed also in several other mod-
els, which possess continuous non-Abelian symmetries,
and which exhibit dynamical criticality [33,41–51,76–78].

Our second main result concerns the breaking of time-
reversal symmetry. We find that

in quantum many-body spin ratchets, the Gallavotti-Cohen
relation associated with macroscopic current fluctuations
is violated in Gibbs states.

While we rigorously demonstrate this violation only in
the integrable unitary circuits, we conjecture it to remain a
general feature of nonintegrable many-body spin ratchets
as well. In the integrable ratchet specifically, we com-
pute the third scaled cumulant associated with the time-
integrated current density using the results of ballistic
(macroscopic) fluctuation theory [55,56]. In Gibbs states
away from half-filling, we obtain a nonzero value. Dis-
tinctly to time-reversal invariant dynamical systems, which
always obey the Gallavotti-Cohen relation [56,79], this
fluctuation symmetry is no longer satisfied in quantum spin
ratchets. To put it simply, the probability for measuring a
large value of current depends on the direction of the flow.
This consequently means that Gibbs states are in fact not
equilibrium states of quantum ratchets. We instead deduce
a generalized fluctuation relation, connecting large current
fluctuations in one direction to fluctuations in the opposite
direction in a spatially reflected system.

The remainder of the paper is structured as follows. In
Sec. II we introduce quantum many-body ratchets. This
is followed by Sec. III, where we introduce an integrable
quantum ratchet and describe the associated integrable
structure. Having discussed the setup, we focus on dynam-
ical properties of the model, which are presented in Sec.
IV. First, in Sec. IV A we define the relevant observables
and related continuity equations. Second, in Sec. IV B we
compute the first moment of the dynamical structure fac-
tor and its drift velocity. Furthermore, we obtain the same
expression from a permuting unitary circuit and verify it
against tensor-network simulations. Lastly, in Sec. IV C we
discuss large-scale fluctuations as an alternative probe of
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transport. We conclude with a discussion of our results and
open questions in Sec. V. Several appendices at the end
present details of the calculations.

II. QUANTUM SPIN RATCHET CIRCUITS

We consider an inhomogeneous quantum spin chain of
length L ∈ 2N, made out of two spins of not necessarily
equal sizes s1 and s2 (s1, s2 ∈ N/2), arranged in an alter-
nating fashion. With each spin we associate a local Hilbert
space Hsi

∼= C2si+1, i ∈ {1, 2}.
We study a discrete-time two-step unitary evolution of

quantum states

|ψ(t + 1)〉 = U |ψ(t)〉 , U = UeUo, (1)

where Ue and Uo denote the even-step and odd-step prop-
agators and t ∈ N is time. The one-step propagators are
composed from local two-site unitary maps U : Hs1 ⊗
Hs2 → Hs2 ⊗ Hs1 , each acting on two adjacent lattice
sites, namely

Ue =
L/2∏

�=1

U2�,2�+1, Uo =
L/2∏

�=1

U2�−1,2�, (2)

where the subscript indices refer to the the pair of sites
on which U acts nontrivially, and periodic boundary
conditions have been adopted by identifying 1 ≡ L + 1.
Combined together, the unitary maps are arranged in a
brickwork architecture as shown in Fig. 1.

We are particularly interested in local quantum unitary
maps of the form

U = Ps1,s2V, (3)

where Ps1,s2 = ∑s1
n1=−s1

∑s2
n2=−s2

|n2n1〉 〈n1n2| denotes the
permutation of two spins, while V ∈ End(Hs1 ⊗ Hs2) is
an arbitrary unitary gate, which preserves the ordering
of the local degrees of freedom, and which may even
differ between the pairs of sites. Such circuits can be
viewed as quantum many-body spin ratchets [57–60]: due
to permutations, different species of spin get propagated
in opposite directions, resulting in a dynamics that breaks
space-reflection symmetry. As described in Appendix A,
such a dynamics can be experimentally realized using local
quantum unitary gates acting on several copies of identi-
cal qubits or qudits. For example, in the case s1 = 1 and
s2 = 1/2, one can realize U as a quantum unitary gate
acting on three qubits (or spins 1/2).

A. Isotropic spin ratchets

In this paper we specialize to quantum ratchets com-
posed of SU(2) symmetric gates. This choice is primarily
motivated by the recent discovery of anomalous transport

properties in integrable models invariant under a continu-
ous non-Abelian symmetry [33,42,44]. All of the models
explicitly considered so far, however, exhibit both space-
reflection (P) and time-reversal (T ) symmetry. Our aim
is thus to investigate whether the absence of P and T
symmetries has any profound effect on spin-transport prop-
erties. Additionally, there exists a class of integrable SU(2)
symmetric quantum circuits [21,24] (and generalizations
thereof to other symmetries [80–83]) which, owing to their
particularly simple structure, permit analytical calculations
of correlation functions, transport coefficients, and quench
dynamics. As outlined below, we will focus on a sim-
ple one-parameter family of gates V that, depending on
the choice of parameters, encompasses both integrable and
ergodic circuits. As such, it is particularly convenient for
examining the effects of integrability breaking.

Specifically, global SU(2) symmetry is ensured by real-
izing unitary gates V in terms of an operator-valued func-
tion of the spin magnitude J ∈ End(Hs1 ⊗ Hs2), which is
defined through the Casimir invariant

J (J + 1) = (S1 + S2)
2, S = (Sx, Sy , Sz). (4)

Note that the eigenvalues j ∈ {|s1 − s2|, . . . , s1 + s2} of
operator J determine the dimensions 2j + 1 of the irre-
ducible components (spin multiplets) in the Clebsch-
Gordan decomposition of Hs1 ⊗ Hs2 . To enable analytical
calculations, we choose a one-parameter family of unitary
gates V = Rs1,s2(λ) with λ ∈ R, where

Rs1,s2(λ) = (−1)J+jmax
�(jmax + 1 + iλ)�(J + [1 − iλ]1)
�(jmax + 1 − iλ)�(J + [1 + iλ]1)

(5)

obeys the Yang-Baxter equation discussed in Sec. III.
Here, � denotes the Euler � function and jmax = s1 + s2
is the maximal eigenvalue of J . The unitary gate Eq. (5) is
symmetric

[Rs1,s2(λ)]T = Rs1,s2(λ), (6)

and it satisfies the following normalization conditions:

Rs1,s2(λ)Rs1,s2(−λ) = 1, lim
λ→∞

Rs1,s2(λ) = 1. (7)

In particular, the second property in Eq. (7) implies that,
for large λ, the unitary map U = Ps1,s2Rs1,s2(λ) reduces to
the permutation operator Ps1,s2 .

We will consider three instances of quantum ratchet
circuits constructed from the R-matrix gate Eq. (5):

(1) Setting λ = τ uniformly in all local gates V =
Rs1,s2(τ ), the dynamics is integrable. Indeed, V then
corresponds precisely to the fused quantum R matrix
associated with an alternating spin chain [84–86],
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whereas the full propagator Eq. (1) belongs to an
infinite hierarchy of commuting transfer matrices
(as detailed out in Sec. III below).

(2) For a nonuniform choice of λ staggered in time,
i.e., with λ = ±τ alternating between the adjacent
horizontal layers of the lattice shown in Fig. 1, the
propagator Eq. (1) consists of two different, non-
commuting transfer matrices. Hence, the resulting
dynamics is not integrable.

(3) Regarding parameter τ of Rs1,s2(τ ) as an indepen-
dent and identically distributed random variable,
we obtain a “disordered” (i.e., “noisy”) and thus
nonintegrable circuit.

B. PT symmetry

The full quantum many-body spin ratchet depicted in
Fig. 1 manifestly lacks symmetry under spatial reflection
P , � 
→ L − �+ 1 (with the exception of the homogeneous
lattice with equal spins s1 = s2, which is not of our inter-
est). Under the action of P the two spins get interchanged,
s1 ↔ s2, and consequently P(U) �= U in the general case
of s1 �= s2. Similarly, the spin-ratchet circuit breaks also
the time-reversal symmetry T . The latter is understood as
an adjoint mapping T (U) ≡ SKUKS−1 combining a uni-
tary operator S and an antiunitary conjugation K , such
that

T (U) = U
−1. (8)

We will show that the integrable version of the ratchet cir-
cuit with identical gates nonetheless obeys the joint PT
symmetry. More generally, this is true for any brickwork
ratchet circuit composed of identical gates Eq. (3) in which
the unitary V is symmetric, e.g., see Eq. (6). The breaking
of the space-reflection symmetry then naturally implies the
breaking of the time-reversal symmetry.

To demonstrate that the integrable ratchet circuit is
invariant under the PT symmetry, we first note that, for
large τ , the local unitary map U becomes a permutation,
U(τ → ∞) = Ps1s2 = ∑s1

n1=−s1

∑s2
n2=−s2

|n2n1〉 〈n1n2|, for
which the exchange of spins coincides with a matrix
transposition, i.e.,

P(U) = UT. (9)

As it turns out, the same property still holds for any finite
value of τ and, in general, for any symmetric unitary gate
V in Eq. (3)—see Appendix B. To find the inverse U−1 =
U−1

o U−1
e of the full propagator U = UeUo, one can thus

make use of the following sequence of transformations:

(1) spatial reflection P [acting as a transposition—see
Eq. (9)] at the level of local unitary gates;

(2) a conjugation with an antiunitary matrix K , KUK =
U∗, which, in combination with P , inverts the uni-
tary gates, namely KP(U)K = U−1;

(3) a one-site lattice shift, exchanging the order of the
two consecutive time steps: U−1

e U−1
o 
→ U−1

o U−1
e .

The composition of the last two transformations constitutes
an antiunitary map, which may be regarded as the time-
reversal transformation T . In summary, ratchet circuits
composed of identical unitary gates Eq. (3) with VT = V, a
particular example being the integrable one, represent PT -
symmetric systems that lack both P and T symmetries
(see Appendix B for a detailed proof of thePT symmetry).

III. INTEGRABLE QUANTUM RATCHET

In this section we detail out the structure of integrable
quantum ratchets. To this end, we fix all free unitary gate
parameters λ to the same value τ ∈ R. Integrability then
follows from the fact that the R matrix, Eq. (5), satisfies
the Yang-Baxter equation,

Rs1,s2
1,2 (λ− μ)Rs1,s3

1,3 (λ)Rs2,s3
2,3 (μ)

= Rs2,s3
2,3 (μ)Rs1,s3

1,3 (λ)Rs1,s2
1,2 (λ− μ), (10)

over a three-fold product space Hs1 ⊗ Hs2 ⊗ Hs3 , for an
arbitrary triple of integer or half-integer spins {sk}3

k=1, and
for any two complex parameters λ,μ ∈ C [84–86]. As
shown in Appendix C, the Yang-Baxter equation leads to a
family of commuting transfer matrices, which includes the
full time-step propagator, Eq. (1), as a particular instance.
Moreover, such transfer matrices can be simultaneously
diagonalized using the algebraic Bethe ansatz [85]. Leav-
ing the technical details of this procedure to Appendix C,
we here outline a simple way of establishing the existence
of commuting transfer matrices for an integrable ratchet
circuit depicted in Fig. 1. As our starting point, we consider
the Yang-Baxter Eq. (10) multiplied from the left-hand
side by Ps1,s2

1,2 . Then, by introducing λ± = λ± τ/2 and rec-
ognizing the quantum gate Eq. (3) acting on sites 1 and 2,
we have the identity

U1,2Rs1,s3
1,3 (λ+)R

s2,s3
2,3 (λ−) = Rs2,s3

1,3 (λ−)R
s1,s3
2,3 (λ+)U1,2,

(11)

or pictorially, in terms of diagrams,

(12)

where τ is a free parameter of the unitary map U and λ±
are the spectral parameters of the two R matrices. Using
this diagram twice, applying it from below in Fig. 1, one
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can straightforwardly verify that the entire ratchet circuit
commutes with a row transfer matrix of the form

(13)

where the horizontal red line encloses a loop, indicating
the partial trace over an (auxiliary) space Hs3 of spin s3.
We have thus established commutativity,

[U, Ts3(λ)] = 0, (14)

of the propagator Eq. (1) with a staggered transfer matrix

Ts3(λ) = Tra

→∏

1≤j ≤L/2

Rs1,s3
2j −1,a(λ+)R

s2,s3
2j ,a (λ−), (15)

graphically represented in the diagram, Eq. (13). The arrow
direction on top of the product specifies the spatial order-
ing of the matrix product. In our convention, the physi-
cal (lower) indices of the R matrices increase from the
left-hand towards the right-hand side.

A. Magnon dispersion relation

A distinguished role is played by the transfer matrices
in which the auxiliary space corresponds to either of the
two alternating spins in the chain, that is s3 ∈ {s1, s2}. In
particular, in Appendix C we show that

Ts2

(τ
2

)
= Ue�s1,s2 , Ts1

(
−τ

2

)
= U

−1
o �s1,s2 , (16)

where we have defined a one-site lattice shift in the
backward direction, �s1,s2 : (Hs1 ⊗ Hs2)

⊗L/2 → (Hs2 ⊗
Hs1)

⊗L/2, reading

�s1,s2 = Ps1,s2
1,2 Ps2,s1

1,3 Ps1,s2
1,4 Ps2,s1

1,5 · · · Ps1,s2
1,L . (17)

In analogy with the light-cone lattice discretizations of
certain integrable quantum field theories [85,87–89], Eqs.
(16) can be interpreted as elementary lattice shift opera-
tors along the light-cone directions, i.e., the north-west and
south-west direction, respectively. In this view, the propa-
gator U realizes a two-site lattice shift in the “time” (i.e.,
north) direction, and similarly we introduce T as a two-site
lattice shift in the backward (i.e., west) spatial direction:

U = Ts2

(τ
2

) [
Ts1

(
−τ

2

)]−1
,

T = Ts2

(τ
2

)
Ts1

(
−τ

2

)
.

(18)

Expressing the lattice shifts in terms of transfer matrices
allows us to infer their eigenvalues using the algebraic

Bethe ansatz. In particular, the unimodular eigenvalues of
T and U correspond to quasimomentum and quasienergy,
respectively.

Eigenstates of integrable quantum spin chains can be
described in terms of elementary spin-wave excitations
called magnons. An eigenstate involving N magnons is
parametrized by a set of rapidities, {λj }N

j =1. To ensure peri-
odicity of the wave function, the rapidities have to obey
the Bethe equations, which impose the condition that the
total phase acquired by a quasiparticle upon scattering with
other quasiparticles, while traversing the spin chain, is
trivial. They read

eiLp(λj )
N∏

k=1
k �=j

S(λj − λk) = 1, (19)

where S(λ− μ) = (λ− μ+ i)/(λ− μ− i) denotes the
scattering amplitude associated with a two-magnon scat-
tering and p(λ) is the single-magnon quasimomentum. In
terms of the single-magnon quasimomentum p (2s) of a
homogeneous Heisenberg spin-s chain,

p (2s)(λ) ≡ i log
(
λ+ is
λ− is

)
, (20)

which (for notational convenience) we label by an integer
number 2s ∈ N, the single-magnon quasimomentum p(λ)
in a ratchet circuit decomposes as

p(λ) = 1
2
[
p (2s1)(λ+)+ p (2s2)(λ−)

]
. (21)

This implies that the two-site lattice shift in the backward
spatial direction acts on the eigenstates as

T |{λj }〉 = e−2i
∑N

j =1 p(λj ) |{λj }〉 , (22)

where we have singled out a factor of 2 in the eigenvalue,
in order to associate the total quasimomentum

∑N
j =1 p(λj )

with a one-site lattice shift. For the propagator in the
temporal direction we obtain a similar expression

U |{λj }〉 = ei2
∑N

j =1 ε(λj ) |{λj }〉 , (23)

where ε(λ) denotes the single-magnon quasienergy (see
Appendix C). Analogously to the single-magnon quasimo-
mentum Eq. (21), we find ε(λ) to be the difference of the
single-magnon quasimomenta of the homogeneous chains
with different spins, namely

ε(λ) = 1
2
[
p (2s1)(λ+)− p (2s2)(λ−)

]
. (24)
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B. Homogeneous chain and integrable Trotterization

In the case of a homogeneous chain with s1 = s2 = s,
the R matrix obeys an additional property Rs,s(0) = Ps,s.
For small values of τ , we can then expand the quantum
gate U = Ps,sRs,s(τ ) around the identity. In the scaling
limit τ → 0 and t → ∞, with the product tτ fixed, the
Floquet dynamics with the propagator Eq. (1), therefore,
yields a continuous time evolution with a time parameter
proportional to tτ . Such a configuration of quantum gates
is a quantum circuit corresponding to an integrable Trotter-
ization of the continuous-time dynamics generated by the
Heisenberg spin-s model [21,80]. This highlights that our
approach can be seen as a nontrivial generalization of uni-
tary circuits used in state-of-the-art quantum computation
experiments [30,52,90].

Expanding the single-magnon quasienergy, Eq. (24), in
τ up to the leading order, we find

ε(λ) = s
λ2 + s2 τ + O(τ 2). (25)

Similarly, the single-magnon, quasimomentum Eq. (21),
becomes simply limτ→0 p(λ) = p (2s)(λ). In the Trotter
limit we thus recover the standard relation ε(2s)(λ) =
1
2∂λp

(2s)(λ), where we have defined ε(2s)(λ) ≡ limτ→0
[ε(λ)/τ ] (see, e.g., Ref. [85]).

C. Semiclassical limit

The integrable quantum many-body spin ratchet admits
a semiclassical limit. Instead of local unitary gates U, the
classical version of the many-body spin ratchet is made out
of SO(3)-symmetric symplectic two-body maps 
τ that
depend on a time-step parameter τ ∈ R+. To ensure inte-
grability, we introduce a classical Lax operator L(S, λ) as a
matrix-valued function on the local phase space Sr (a two-
sphere of radius r) of the classical spin S of length r. In
terms of Pauli matrices σ = (σ x, σ y , σ z), the Lax matrix
takes the form

L(S, λ) = 2iλ1 + S · σ

2iλ+ r
. (26)

Upon replacing the R matrices in Eq. (11) with classical
Lax operators, setting s1,2 = r1,2s, and subsequently tak-
ing the s → ∞ limit, conjugation with the gate U becomes
equivalent to the symplectic map 
τ : Sr1 × Sr2 → Sr2 ×
Sr1 . The latter acts as (S′

1, S′
2) = 
τ(S1, S2), where

S′
1 = (σ 2 − η2)S1 + (τ 2 − η2)S2 + τS1 × S2

τ 2 + σ 2 ,

S′
2 = (σ 2 − η2)S2 + (τ 2 − η2)S1 + τS2 × S1

τ 2 + σ 2 ,

(27)

with σ 2 = (S1 + S2)
2/4 and η2 = (S1 + S2)(S1 − S2)/4 =

(r2
1 − r2

2)/4. The Yang-Baxter Eq. (11) thus becomes

equivalent to the discrete zero-curvature condition

L(S1, λ+)L(S2, λ−) = L(S′
1, λ−)L(S′

2, λ+). (28)

For spins of equal length r1,2 = 1, the semiclassical limit
was derived in Ref. [91], and the resulting dynamics has
been investigated in Ref. [77] (see also Refs. [92,93]).

IV. TRANSPORT PROPERTIES AND
HYDRODYNAMICS

Chiral spin dynamics at the microscopic level pro-
foundly affects transport properties on a macroscopic scale.
To set the ground for their investigation, we first introduce
the conserved U(1) charge (i.e., total magnetization) and
the associated current. We then proceed by exploring the
consequences of broken space-reflection symmetry using
the tools of the thermodynamic Bethe ansatz. By employ-
ing generalized hydrodynamics [53,54], we examine the
properties of the dynamical two-point correlation function
of the magnetization density. Afterwards we investigate
the structure of large-scale current fluctuations [56,79] in
the stationary maximum-entropy ensembles and discuss
the impact of the time-reversal symmetry breaking on the
associated large-deviation rate function.

A. Magnetization density and current

The magnitude of the total spin J , entering the unitary
gate Eq. (3) through the R matrix, Eq. (5), commutes with
the total projection of the two-site magnetization Sz

1 + Sz
2

onto the z axis. Accounting for the additional permutation,
we thus have the relation

U−1
�−1,�

[
Sz

2;�−1 + Sz
1;�

]
U�−1,� = Sz

1;�−1 + Sz
2;�, (29)

where the extra lower indices �− 1 and � designate the lat-
tice sites on which the local spin densities act nontrivially.
For equal spins, s1 = s2, Eq. (29) implies conservation of
local magnetization along the z axis at the level of indi-
vidual quantum gates. In the general case with s1 �= s2,
however, only the total magnetization

Q =
L/2∑

�=1

(
Sz

1;2�−1 + Sz
2;2�

)
(30)

remains globally conserved, representing a global U(1)
conserved charge of the ratchet circuit. Owing to the
staggered structure of the circuit, there are in fact two inde-
pendent local continuity equations associated with it [80].
In particular, defining magnetization densities on odd and

030356-6



QUANTUM MANY-BODY SPIN RATCHETS PRX QUANTUM 5, 030356 (2024)

even bonds as

q(o)2�−1 = Sz
1;2�−1 + Sz

2;2�,

q(e)2� = Sz
2;2� + Sz

1;2�+1,
(31)

respectively, the associated magnetization current densities
j (o) and j (e) satisfy the following continuity equations:

U
−1q(e)2� U − q(e)2� = −j (e)2�+1 + j (e)2�−1,

U
−1q(o)2�−1U − q(o)2�−1 = −j (o)2� + j (o)2�−2.

(32)

Using Eq. (29), the first continuity Eq. (32) implies

j (e)2�−1 = U−1
2�−1,2�S

z
1;2�U2�−1,2� − Sz

2;2�

= Sz
1;2�−1 − U−1

2�−1,2�S
z
2;2�−1U2�−1,2�, (33)

while the second one yields j (o)2� = U−1
o j (e)2� Uo. Explicit

expressions for the spin current densities are rather cum-
bersome and we do not report them here.

B. Dynamical structure factor and drift velocity

To characterize spin transport, we investigate the hydro-
dynamic relaxation of the dynamical spin susceptibility
(structure factor) [94]

S(x, t) ≡ 〈q(x, t)q(0, 0)〉c, (34)

where 〈•〉c denotes the connected part of the correla-
tion function and q(x, t) denotes the time-evolved density
of the total conserved magnetization Q = ∫

dx q(x). For
convenience, we have passed from lattice to continuous
space-time variables (omitting the precise identification for
the time being). The local continuity equation therefore
reads

∂tq(x, t)+ ∂xj (x, t) = 0, (35)

where j (x, t) is the current density associated with q(x, t).
By assuming that the ensemble averages of q(x, t) vary
slowly on large spatiotemporal scales, the late-time relax-
ation of S(x, t) can be computed with the aid of hydrody-
namics. In what follows, we will consider Gibbs states at
a finite magnetization density set by the chemical potential
μ. Note that, since ratchet circuits are Floquet-driven sys-
tems in which temperature is not defined, such states are of
the form


μ ≡ e−μQ

Tr[e−μQ]
, (36)

the corresponding ensemble average being 〈•〉 ≡
Tr[
μ(•)]. In a generic ratchet circuit, which lacks addi-
tional conservation laws, 
μ is in fact the most general
form of a Gibbs ensemble.

Owing to the lack of P symmetry in a general quan-
tum many-body spin ratchet with s1 �= s2, the dynamical
structure factor S(x, t) is not symmetric under the spa-
tial reflection, i.e., S(x, t) �= S(−x, t). Consequently, S(x, t)
will feature a finite hydrodynamic drift with velocity

vd ≡ 1
χ

lim
t→∞

∫
dx

x
t

S(x, t), (37)

normalized by the time-independent static spin susceptibil-
ity

χ ≡
∫

dxS(x, t). (38)

To fully quantify the asymmetry, we will consider the
asymptotic time-scaled centered moments of the dynam-
ical structure factor defined as

S(n) ≡ lim
t→∞

∫
dx
(x

t
− vd

)n
S(x, t). (39)

Note that the first centered moment trivially vanishes by
definition, i.e., S(1) = 0. The second centered moment,
however, is the Drude weight, S(2) = D ≥ 0. It quanti-
fies ballistic spreading of local density disturbances in the
frame moving with the drift velocity vd. Higher centered
moments S(n) quantify deviations from Gaussianity. We do
not consider them explicitly herein.

1. Hydrodynamics in an integrable ratchet

On large space-time scales, the dynamical structure fac-
tor of an integrable ratchet can be accurately described by
means of the generalized hydrodynamics [53,54]. Specif-
ically, on the ballistic (Euler) hydrodynamic scale, char-
acterized by large x and t with their ratio x/t fixed, the
dynamical structure factor S(x, t) admits a mode resolution
in terms of quasiparticle excitations. The latter are accessi-
ble within the thermodynamic Bethe ansatz (TBA), which
describes the thermodynamic eigenstates of the model
with a finite set of state functions per each mode—see
Appendix D for information concerning the thermody-
namic limit of the Bethe ansatz, Eqs. (19). Similarly to
other integrable spin chains, the integrable spin ratchet
features quasiparticles (magnons) that undergo elastic scat-
tering. Due to attractive interaction, magnons can form
bound states with m quanta of magnetization, commonly
referred to as the bare charge qm(λ) ≡ qm = m [95]. Bare
quasimomenta of such bound states are parametrized by
the rapidity λ ∈ R. Owing to mutual interaction, bare
quantities of quasiparticles undergo nontrivial renormal-
ization called dressing. Dressing corresponds to a linear
transformation depending on both the state occupation
function and the scattering data. For instance, qdr

m denotes
the dressed magnetization of a bound state, as detailed out
in Appendix D 2.
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On ballistic hydrodynamic scale, the mode resolution of
the structure factor takes the form of a weighted sum of δ
peaks [94,96],

S(x, t) �
∞∑

m=1

∫
dλ δ

(
x − veff

m (λ)t
)
χm(λ)(qdr

m )
2, (40)

propagating with effective mode velocities [97]

veff
m (λ) = (ε′

m)
dr(λ)

(p ′
m)

dr(λ)
, (41)

where f ′(λ) ≡ ∂λf (λ) denotes the derivative on the rapid-
ity. In Eq. (40) we have introduced mode susceptibilities
χm(λ) ≡ ρ tot

m (λ)nm(λ)[1 − nm(λ)], in which ρ tot
m (λ) denote

the total densities of available states in the rapidity space,
while nm(λ) ≡ ρm(λ)/ρ

tot
m (λ) are the occupation fractions.

The drift velocity, Eq. (37), now becomes

vd = 1
χ

∞∑

m=1

∫
dλχm(λ)v

eff
m (λ)(q

dr
m )

2, (42)

where the static spin susceptibility Eq. (38) admits the
following mode decomposition:

χ =
∞∑

m=1

∫
dλχm(λ)(qdr

m )
2. (43)

In a system with an unbroken P symmetry, the occupan-
cies nm(λ) and the total state densities ρ tot

m (λ) entering
the mode susceptibilities χm(λ) are even functions of the
rapidity λ. On the other hand, veff

m (λ) is an odd function
of λ and, as a result, the drift velocity vanishes. This is
the case in homogeneous circuits with s1 = s2. Instead,
in ratchets with s1 �= s2, P symmetry is absent, and it
is thus not surprising that we find a finite vd. Strikingly,
however, we observe that vd is universal. To corroborate
this statement, we compute vd explicitly in integrable spin
ratchets, using the mode decomposition Eq. (42). In the
Gibbs state, Eq. (36), the mode occupation functions nm
become flat, i.e., they lose dependence on the rapidity
λ, in turn simplifying the calculation. The latter involves
an explicit solution of the infinite-temperature TBA equa-
tions of the spin-s Heisenberg model, which, to the best
of our knowledge, has not been obtained before (see
Appendix D 3). The solution simplifies at half-filling, i.e.,
atμ = 0, where the right-hand side of Eq. (42) can be eval-
uated explicitly analytically, yielding a remarkably simple
expression

vd(μ = 0) = s1(s1 + 1)− s2(s2 + 1)
s1(s1 + 1)+ s2(s2 + 1)

, (44)

which notably depends only on the SU(2) Casimir invari-
ants s(s + 1) of the local spin degrees of freedom. Note,

moreover, that the above form of vd reflects that of the
effective velocity Eq. (41) determined by the quasipar-
ticles’ quasienergies and quasimomenta. The latter are,
respectively, a difference and a sum of the quasimo-
menta in the homogeneous Heisenberg chains with spins
s1 and s2, similarly to the eigenvalues, Eqs. (24) and
(21), of the time-shift and space-shift operators. Specif-
ically, they read εm(λ) = [p (2s1)

m (λ+)− p (2s2)
m (λ−)]/2 and

pm(λ) = [p (2s1)
m (λ+)+ p (2s2)

m (λ−)]/2.
In the semiclassical limit s1, s2 → ∞, the drift velocity

of the symplectic ratchet Eq. (27) reduces to a function
of spin lengths vd = (r2

1 − r2
2)/(r

2
1 + r2

2), which we have
verified by direct numerical simulations.

2. Exact drift velocity in the noninteracting limit

Recall that as τ → ∞, the integrable ratchet reduces to
a simple brickwork circuit composed of permutation gates.
In this limit we can compute the drift velocity Eq. (44)
exactly by evaluating the dynamical structure factor at
coarse-grained integer coordinates � ∈ Z, associated with
pairs of lattice sites (2�, 2�+ 1), and at a discrete time
t = 1. Specifically, let us consider

S(�, 1) ≡ 〈U−1q(�)Uq(0)〉c = 〈q(�)Uq(0)U−1〉 (45)

at half-filling (μ = 0), where we have taken q(�) ≡ q(e)
2� /2,

see Eq. (31). Since the time evolution is represented by
a sequence of permutations, we observe that Uq(0)U−1 =
(Sz

1;3 + Sz
2;−2)/2, and hence the drift velocity reads simply

vd(μ = 0) =
∑

� �〈q(�)Uq(0)U−1〉∑
�〈q(�)Uq(0)U−1〉

= 〈(Sz
1)

2〉 − 〈(Sz
2)

2〉
〈(Sz

1)
2〉 + 〈(Sz

2)
2〉 . (46)

Using that, at zero magnetization density, one has
〈(Sz)2〉 = s(s + 1)/3, we find precisely the Casimir-
dependent drift velocity, Eq. (44). In fact, the simplic-
ity of the circuit composed of permutation gates allows
us to generalize this computation away from half-filling,
i.e., for a general chemical potential μ �= 0. There, linear
response relates the gradient of the coarse-grained mag-
netization profile q(�, t) = U−t(q(e)

2� /2)U
t to the dynami-

cal charge susceptibility, S(�, t) ∝ limδμ→0(δμ)
−1〈q(�+

1, t)− q(�, t)〉δμ [45]. Here, 〈•〉δμ denotes the expectation
value in a bipartite state with chemical potentials μL/R =
μ± δμ on the left- and right-hand side of the system,
respectively. Exploiting this relation, we obtain

vd(μ) = ∂μ〈Sz
1〉 − ∂μ〈Sz

2〉
∂μ〈Sz

1〉 + ∂μ〈Sz
2〉

, (47)
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where

∂μ〈Sz〉 =
{(

s + 1
2

)
csch

(
μ

[
s + 1

2

])}2

−
[

1
2

csch
(μ

2

)]2

. (48)

This result remains valid for any value of τ > 0, which
is corroborated by a numerical evaluation of the exact
hydrodynamic formula Eq. (42) away from half-filling.
For instance, setting s1 = 1, s2 = 1/2, and μ = 5/4, with
arbitrary τ , we obtain vd ≈ 0.326338 from Eq. (47) and
vd ≈ 0.32633 from the GHD expression Eq. (42). In the
numerical evaluation of the latter, we have integrated over
rapidities λ ∈ [−8 × 103, 8 × 103] and truncated the sum
over modes to mmax = 500 terms.

The fact that the drift velocity takes a simple univer-
sal form Eq. (44) [or Eq. (47) for μ �= 0] suggests that it
might result purely from the spin-exchange operator enter-
ing the local unitary map U of a quantum many-body spin
ratchet. As shown in the following, the drift velocity for-
mulae, Eqs. (44) and (47), indeed continue to hold even
in generic (i.e., chaotic) spin ratchets. We stress again that
the drift in the ratchet circuit is a direct consequence of
the broken parity symmetry. Curiously, a similar effect has
been reported in the context of entanglement spreading in
cellular automata defined on staggered lattices made out of
local Hilbert spaces of different dimensions [98]. There, a
background velocity depending only on the logarithms of
the local Hilbert-space dimensions has been observed.

3. Universality of drift velocity and spreading of
correlations

To verify the conjectured universal formula for the drift
velocity we performed large-scale tensor-network simula-
tions on integrable and disordered (nonintegrable) ratchet
circuits. The dynamical charge susceptibility S(x, t),
shown in Fig. 2(a) for the integrable ratchet with s1 = 1,
s2 = 1/2, τ = 1, and at μ = 0, features a nonzero first
moment corresponding to a drift velocity vd(μ = 0) =
5/11. The drift velocities extracted from numerical sim-
ulations, shown in Fig. 2(b) for different integrable and
nonintegrable instances, all coincide with the GHD results
from Eq. (44). Likewise, the drift velocities away from
half-filling [cf. Fig. 2(c)] are in excellent agreement with
the analytic formula derived in the noninteracting limit,
and reported in Eqs. (47) and (48).

Finally, to extract the algebraic dynamical exponent z,
defined via the asymptotic growth of the second moment
of S(x, t),

σ 2(t) ≡
∫

dx(x − vdt)2 S(x, t) � t2/z, (49)

we also investigate the dynamics in the moving (i.e.,
center-of-mass) frame. In integrable ratchets, we generi-
cally expect ballistic growth with exponent z = 1. This is
however the case only in generic states, i.e., away from
half-filling. At μ = 0, the SU(2) symmetry of the state gets
restored, affecting the type of spin transport in a profound
way. Specifically, for τ > 0 we observe the anticipated
fractional dynamical exponent z = 3/2, in line with the
general predictions for integrable models invariant under
non-Abelian symmetries—see Fig. 3.

The special point τ = 0 is however exceptional and
exhibits a qualitatively different behavior. This fact can
already be recognized at the level of bare quasiparticle
dispersion relations. Accordingly, by repeating the scal-
ing analysis of Refs. [99,100], we infer an anomalous type
of diffusion, with a singular diffusion constant D diverg-
ing logarithmically with time, D ∼ log t. Such a law has
already been observed previously in integrable spin mod-
els [100]. We note that such a mild divergence cannot be
reliably resolved with accessible numerics (see the inset in
Fig. 3), which instead hints at a normal diffusive scaling
(z = 2).

C. Large-scale current fluctuations

As an alternative dynamical probe of spin transport
we now consider the scaling of fluctuations of the time-
integrated current density [see Eq. (35)] across a site (say,
at x = 0) in the middle of an extended system,

Jt =
∫ t

0
dt′
(
j (0, t′)− 〈j 〉) . (50)

Here, we have subtracted the finite average value of the
background current inherent to our ratchet systems (〈•〉
denotes the ensemble average) [101]. We again study the
transport in maximum-entropy stationary states described
by the density matrix, Eq. (36). For concreteness we focus
on integrable ratchet circuits, where large-scale fluctua-
tions can be characterized exactly.

The time-integrated current Jt is a macroscopic fluctu-
ating variable, whose values J are distributed according to
a probability distribution P(J|t). Typical values of J are of
the order J ∼ O(t1/2z), where z is the dynamical exponent
governing the decay of the density and current two-point
functions. Generically, the distribution of typical values
tends to a Gaussian at late times, i.e., it complies with the
central-limit behavior. On the other hand, in certain sys-
tems featuring dynamical criticality [51,102], one finds it
converging to a universal non-Gaussian asymptotic distri-
bution. In the integrable ratchets, such a critical behavior
is expected in the unbiased ensemble at μ = 0.

Here, we consider μ > 0, and instead examine the struc-
ture of large fluctuations. Particularly, we are interested in
the fluctuations of the time-integrated current on the largest
ballistic scale, with J � j t at large t (for 0 < j < ∞). For
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(a) (b)

(c)

FIG. 2. (a) Dynamical charge susceptibility S(x, t) at τ = 1 and μ = 0, for a circuit with s1 = 1 and s2 = 1/2. The dashed black
line corresponds to the drift velocity vd(μ = 0) = 5/11, computed from the center of mass (xcm) of S(x, t) at each time t, as detailed
in panel (b). (c) Drift velocity vd (for s1 = 1, s2 = 1/2) estimated from tensor-network simulations of an integrable ratchet with τ = 0
(blue circles), τ = 1 (orange crosses), and of a disordered system (green pluses), compared against the analytical prediction Eq. (47).
We observe excellent agreement for all μ in both integrable and nonintegrable circuits.

asymptotically large times t, rare events are expected to
obey a large deviation principle

P(J = jt|t) � e−tI(j), (51)

where � signifies the asymptotic logarithmic equivalence
for large t and I(j) is the large-deviation rate function.
If the rate function I(j) is differentiable, the Gärtner-Ellis
theorem states that its Legendre-Fenchel transform F(ζ ) ≡
maxj[ζ j − I(j)] is the scaled cumulant generating function
(SCGF) of the time-integrated current Eq. (50) [103],

F(ζ ) = lim
t→∞

1
t

log〈eζJt〉. (52)

Provided that a certain regularity condition is satisfied,
the derivatives of the SCGF at ζ = 0 correspond to the
scaled cumulants of the time-integrated current [104], i.e.,
(dn/dζ n)F(ζ )|ζ=0 ≡ c(SC)

n , where

c(SC)
n ≡ lim

t→∞
1
t
〈Jn

t 〉c. (53)

We stress that such a regular behavior of the SCGF is not
guaranteed. A notable counterexample are models exhibit-
ing dynamical criticality [51,52,105]. The latter are char-
acterized by cumulants cn(t) = 〈Jn

t 〉c that do not all scale
with the same power of t. In such a case, the corresponding
scaled cumulants, Eq. (53), are ill defined.

The integrable spin-ratchet circuit considered here
exhibits dynamical criticality at μ = 0. In the follow-
ing, we instead specialize to the regular regime μ �= 0

FIG. 3. Main figure: dynamical exponent z for various unitary-
gate parameters τ at half-filling (μ = 0), extracted from tensor-
network simulations with bond dimension χ . Inset: convergence
of z with time t. The results indicate superdiffusive scaling com-
patible with z = 3/2 for all τ > 0, in line with expectations for
an integrable model with SU(2) symmetry. At the exceptional
point τ = 0, the diffusion constant diverges logarithmically with
time t, while numerical results indicate an approximate diffusive
scaling on accessible time scales.
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where all scaled cumulants, Eq. (53), exist and are given
by the derivatives of the SCGF at ζ = 0. In this case,
c(SC)

n are accessible within the GHD. In particular, the first
scaled cumulant is trivially zero, c(SC)

1 = 0. This is sim-
ply due to the subtracted average current 〈j 〉 in Eq. (50),
which changes only the linear slope of the SCGF, Eq. (52)
(thereby removing the effect of the broken P symmetry),
whereas all higher scaled cumulants remain unaffected.
The second scaled cumulant, also known in the literature
as the Drude self-weight [96], denoted by Dself, corre-
sponds to the growth rate of the first absolute moment of
the dynamical structure factor,

c(SC)
2 = Dself ≡ lim

t→∞
1
t

∫
dx|x|S(x, t). (54)

It admits the following mode resolution:

c(SC)
2 =

∞∑

m=1

∫
dλ|veff

m (λ)|χm(λ)(qdr
m )

2, (55)

which can be evaluated numerically. We have also com-
pared it to direct numerical calculation of the absolute
moment Eq. (54) using our tensor-network (TN) simula-
tions. For example, setting s1 = 1, s2 = 1/2, μ = 1, and
τ = 1, the GHD formula Eq. (55) yields c(SC)

2 ≈ 0.1407
(obtained with the cutoff mmax = 20 and using integra-
tion over the compact rapidity domain λ ∈ [−5 × 102, 5 ×
102]). On the other hand, the TN simulation results in
c(SC)

2 ≈ 0.14(0). Similarly, in the limit τ → 0 and with
other parameters unchanged, we have c(SC)

2 ≈ 0.1262 from
the GHD and c(SC)

2 ≈ 0.126(1) from the TN simulation.
The hydrodynamic mode expansion of higher cumulants

can be systematically derived from the ballistic fluctuation
theory [55,56], or by using diagrammatic techniques [106].
For example, the third scaled cumulant can be computed as
a sum of two terms (see, e.g., Refs. [55,56,106])

c(SC)
3 = c(SC)

3;1 + c(SC)
3;2 , (56)

with hydrodynamic mode resolutions

c(SC)
3;1 =

∞∑

m=1

∫
dλ
2π

w(3)m (ε
′
m)

dr(λ)(qdr
m )

3,

c(SC)
3;2 = 3

∞∑

m=1

∫
dλ
2π

w(2)m σm(λ)γm(λ)(ε
′
m)

dr(λ)qdr
m .

(57)

Here, σm(λ) ≡ sgn[veff
m (λ)] = sgn[(ε′

m)
dr(λ)] is the sign of

the effective velocity,

w(k)m =
∞∑

r=1

(−1)r−1rk−1
(

nm

1 − nm

)r

(58)

are statistical weights, and we have introduced

γm(λ) ≡ − [
(1 − nm)σm(qdr

m )
2]scr

(λ), (59)

where the screening operation is defined as f scr(λ) ≡
f (λ)− f dr(λ) (see Appendix D 2).

1. Breakdown of the Gallavotti-Cohen relation

In dynamical systems with time-reversal symmetry, the
scaled cumulant generating function obeys the Gallavotti-
Cohen relation (GCR) [56,79]. In the absence of thermo-
dynamic forces it reads

F(ζ ) = F(−ζ ), (60)

and it indicates a lack of directionality: the probability of
observing a large time-integrated current J ∼ O(t) does
not depend on its direction. As established in Ref. [56], the
time-reversal symmetry of the Euler-scale hydrodynamics
is sufficient for the validity of GCR. It nonetheless remains
an open question whether it is also a necessary condition.
Our aim here is to address this question in the present
context of quantum spin ratchets, which, while lacking T
symmetry, obey the PT symmetry. Specifically, we take
a look at the third scaled cumulant and compute it using
Eqs. (56) and (57). A nonzero value of c(SC)

3 implies the
violation of GCR.

By numerically evaluating the hydrodynamic mode
expansions in Eq. (57), we find that c(SC)

3 is indeed nonzero.
For example, setting s1 = 3/2, s2 = 1/2, with τ = 1 and
μ = 1, we obtain c(SC)

3;1 ≈ 0.6328 and c(SC)
3;2 ≈ −0.345(6)

(integrating over the rapidity domain λ ∈ [−5 × 102, 5 ×
102] and taking the cutoff mmax = 20). Combining both
terms yields a nonzero third scaled cumulant. Viola-
tion of the GCR in a (grand-canonical) Gibbs ensem-
ble, Eq. (36), indicates that, in ratchets, such stationary
maximum-entropy ensembles do not describe a thermody-
namic equilibrium.

2. Generalized fluctuation symmetry

It turns out that integrable ratchet circuits nevertheless
exhibit a generalized fluctuation symmetry relation. Owing
to the absence of P symmetry, we can establish a relation
between the current fluctuations in the ratchet and its spa-
tially reflected counterpart, in which the alternating spins
s1 and s2 are exchanged. Specifically, denoting the SCGF
of the ratchet circuit with alternating spins s1 and s2 by
F (s1,s2)(ζ ), we have

F (s1,s2)(ζ ) = F (s2,s1)(−ζ ). (61)

This can be inferred from the expressions for the scaled
cumulants, which have all been conjectured to admit a
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diagrammatic expansion [106]. In those expressions, the
only functions that depend on spins s1 and s2 are the
dressed derivatives of the quasiparticle dispersion relations
εm(λ) ≡ ε

(s1,s2)
m (λ), and their signs σm(λ) ≡ σ

(s1,s2)
m (λ).

Here, we have introduced the upper index to denote the
alternating spins in the ratchet circuit. The derivatives of
the bare quasienergies satisfy the symmetry

∂λε
(s1,s2)
m (λ) = −∂λε(s2,s1)

m (−λ), (62)

which can be verified already for the derivative of the
single-magnon quasienergy Eq. (24), the latter written in
terms of the single-magnon quasimomenta Eq. (20). Since
the dressing operation maps as [−f (−λ)] 
→ [−f dr(−λ)]
and does not itself depend on spins s1 and s2 (see Appendix
D 2), it preserves the relation in Eq. (62). The generalized
fluctuation symmetry Eq. (61) then readily follows from
the following observations:

(1) The hydrodynamic formulae for all scaled cumu-
lants involve one dressed derivative of the disper-
sion under the integral over the rapidity λ.

(2) The odd (even) cumulants additionally involve an
even (respectively, odd) number of signs σ (s1,s2)

m (λ)

[see, e.g., Eqs. (55), (56), and (59)].
(3) Changing the integration variable as (−λ) 
→ λ

does not affect the hydrodynamic formulae for the
scaled cumulants.

V. DISCUSSION

With the aim to characterize the dynamical effects of
broken space-time symmetries, we have introduced and
studied a family of quantum circuits made out of SU(2)-
symmetric unitary gates with an adjustable free param-
eter, acting on spins of unequal sizes. While the con-
structed models explicitly break the space-reflection and
time-reversal symmetries, they preserve the combined PT
symmetry. Depending on the choice of parameters, the
circuit can be made ergodic or integrable. The latter, in
particular, generalizes the integrable Trotterization of the
isotropic Heisenberg spin-1/2 chain [21]. The breaking of
the P symmetry induces a chiral spin dynamics, due to
which we can view our circuit as a many-body analogue
of a quantum ratchet. We outline how such ratchets can
be experimentally implemented by encoding higher spins
using multilevel trapped ions [107].

Quantum spin ratchets have two defining dynamical
properties. Firstly, they exhibit a drift in the dynamical
structure factor, which we have quantified by analytically
deriving a simple universal formula for the drift velocity.
The latter depends only on the size of spins and on the mag-
netization density in the initial Gibbs ensemble, but not on
the microscopic details of the local unitary gates. In the
integrable circuits, we have retrieved the formula in a fully

analytic manner, in the scope of the generalized hydro-
dynamics, as a result of a nontrivial resummation over
the spectrum of quasiparticle excitations. This required a
closed-form analytic solution of the thermodynamic Bethe
ansatz equations of the Heisenberg spin-s chain, which, as
far as we are aware, has not been reported previously.

The second key property of quantum many-body spin
ratchets concerns the anomalous nature of the macro-
scopic current fluctuations in Gibbs states, which is man-
ifested at the level of the full counting statistics of the
time-integrated spin current density. In the absence of
thermodynamic forces, probabilities of large current fluc-
tuations in time-reversal symmetric systems do not depend
on the direction of the flow, as encapsulated by the
Gallavotti-Cohen fluctuation symmetry. In stark contrast,
in quantum many-body spin ratchets the fluctuation sym-
metry no longer holds in Gibbs states. This consequently
indicates that such states do not represent thermody-
namic equilibrium states of many-body ratchets. Instead,
we demonstrate that in quantum many-body ratchets the
Gallavotti-Cohen relation is superseded by a generalized
fluctuations symmetry: the large current fluctuations in
one direction are connected to fluctuations in the opposite
direction, in a spatially reflected system.

Our study of the dynamics in quantum many-body spin
ratchets opens up several interesting research directions.
Particularly, there remain several questions concerning the
universality of the drift velocity:

(a) As demonstrated, the drift velocity is insensitive
to integrability, so far as the functional form of
the local unitary gate is preserved. We remind that
breaking of integrability has been achieved through
the choice of gate parameters. It however remains
unclear whether relaxing the functional form of the
unitary gates [while preserving the SU(2) symme-
try] can have any impact. We leave this aspect to
future studies.

(b) A similar type of drift has been reported to under-
lie the coarse-grained entanglement dynamics in a
staggered circuit studied in Ref. [98], albeit the pre-
cise form of the drift velocity therein differs from
ours. For a more comprehensive understanding, it
would be worthwhile investigating various other
realizations of unitary circuits with a spatial stag-
gered structure. An example is the recently proposed
circuit whose unitary gates encode the two-body
scattering of particles with different masses in a
supersymmetric quantum field theory [108].

The second part of our work stimulates fundamental ques-
tions pertaining to the role of the space-time symmetries
on macroscopic dynamical phenomena and, more specif-
ically, the properties of atypical current fluctuations in
maximum-entropy stationary states:
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(a) It is important to determine whether the established
generalized fluctuation relation Eq. (61) requires
both PT and charge-conjugation symmetry C inde-
pendently, or there is perhaps a more general fluctu-
ation relation hinging only on the CPT invariance.

(b) While it appears plausible that T symmetry is not
only sufficient but also necessary for the validity
of the Gallavotti-Cohen relation, this still remains
formally unresolved. Investigation of spontaneous-
current fluctuations [109–116] could provide a valu-
able insight on this question.
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APPENDIX A: EMBEDDING OF A QUANTUM
RATCHET

Here, we show how ratchet circuits with s1 �= s2 can
be realized in terms of quantum unitary gates acting
on a homogeneous chain of spin-1/2 particles or qubits
with local Hilbert space H1/2 ∼= C2. This is achieved by
encoding higher spins into multiqubit spaces.

The first step is to embed a local spin-sj space Hsj into
a space of nj qubits using embedding maps �j : Hsj ↪→
H⊗nj

1/2 = Vdj ⊕ Vdj ,

�j =
sj∑

m=−sj

|αm〉 〈m| , (A1)

where |αm〉 form some orthonormal basis of a subspace
Vdj

∼= Hsj of dimension dj = 2sj + 1 ≤ 2nj .

Introducing�1,2 ≡ �1 ⊗�2, we next define a family of
quantum gates Vemb ∈ End[H⊗(n1+n2)

1/2 ],

Vemb = �1,2V�†
1,2+

(
1 −�1,2�

†
1,2

)
W, (A2)

where W ∈ End[H⊗(n1+n2)
1/2 ] is an arbitrary unitary gate sat-

isfying [W,1 −�1,2�
†
1,2] = 0, and 1 denotes an identity

on H⊗(n1+n2)
1/2 . The first term in Eq. (A2) represents embed-

ding of V into the product space Vd1 ⊗ Vd2 , whereas the
second term encodes an arbitrary unitary dynamics on
its complement H(n1+n2)

1/2 \ (Vd1 ⊗ Vd2), onto which 1 −
�1,2�

†
1,2 projects. Using that �†

j�j = 1Hsj
is an identity

on Hsj , we deduce that Vemb is unitary,

VembV†
emb=1. (A3)

Finally, we require a permutation P(n1↔n2) that swaps the
first n1 qubits with the last n2 ones, and which can be
efficiently encoded as a sequence of pairwise SWAP gates.
Applying the permutation after Vemb, we obtain a unitary
gate Uemb = P(n1↔n2)Vemb, which encodes the local gate
U : Hs1 ⊗ Hs2 → Hs2 ⊗ Hs1 of a quantum ratchet as an
operator on H⊗(n1+n2)

1/2 . To form the circuit, the unitary
gates Uemb must be arranged in a brickwork fashion, with
each consecutive layer shifted n2 sites to the right relative
to the previous one.

Example 1. To exemplify the construction, we explic-
itly work out the simplest case with s1 = 1 and s2 = 1/2,
by embedding U as an operator acting on the Hilbert space
H⊗3

1/2 of three qubits. In particular, we embed the spin-1
Hilbert space into the triplet subspace of the first two qubits
using �1 : H1 ↪→ (H1/2)

⊗2 [cf. Eq. (A1)], given by

�1 = |↑↑〉 〈1| + 1√
2
(|↑↓〉 + |↓↑〉) 〈0| + |↓↓〉 〈−1| .

(A4)

The second spin, s2 = 1/2, is instead identified with the
third qubit—the corresponding embedding �2 : H1/2 ↪→
H1/2 is trivial, i.e., �2 = 1H1/2 .

Note that, since�1�
†
1 projects onto a triplet subspace of

H⊗2
1/2, we have

1 −�1,2�
†
1,2 = p(s) ⊗1H1/2 , (A5)
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where

p(s) = 1
2
(|↑↓〉 − |↓↑〉) (〈↑↓| − 〈↓↑|) (A6)

projects onto a one-dimensional subspace associated with
a spin singlet. For a unitary operator W commuting with
the projector Eq. (A5), there exists a unitary 2 × 2 matrix
Z ∈ End(H1/2), such that (p(s) ⊗1H1/2)W = p(s) ⊗ Z. The

embedded gate Eq. (A2) then reads

Vemb = (�1 ⊗ 1H1/2)V(�
†
1 ⊗ 1H1/2)+ p(s) ⊗Z. (A7)

For simplicity, we will set Z = 1H1/2 in the following.
Lastly, the permutation P1,1/2 is embedded as P(2↔1) =

SWAP1,2 SWAP2,3, interchanging the first two with the last
qubit. In the computational basis of the three-qubit Hilbert
space, the embedded unitary gate thus reads

Uemb = P(2↔1)Vemb =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 2i
2τ+3i

2(τ+i)
2τ+3i 0 − i

2τ+3i 0 0 0

0 2i
2τ+3i − i

2τ+3i 0 2(τ+i)
2τ+3i 0 0 0

0 0 0 2i
2τ+3i 0 2i

2τ+3i
2τ−i
2τ+3i 0

0 2τ−i
2τ+3i

2i
2τ+3i 0 2i

2τ+3i 0 0 0

0 0 0 2(τ+i)
2τ+3i 0 − i

2τ+3i
2i

2τ+3i 0

0 0 0 − i
2τ+3i 0 2(τ+i)

2τ+3i
2i

2τ+3i 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

We note that instead of using an embedding into a mul-
tiqubit space, one could have alternatively employed a
two-fold copy of the larger spin space, namely, one could
have used an embedding Hs1 ⊗ Hs2 ↪→ Hsmax ⊗ Hsmax ,
where smax = max(s1, s2). Such an embedding could, for
instance, be utilized in a quantum processor based on
trapped ions [107].

APPENDIX B: PT SYMMETRY

In this Appendix, we give a detailed proof of the PT
symmetry, specializing to quantum ratchets composed of
identical unitary gates Eq. (3) with VT = V. A particu-
lar example is the integrable ratchet, in which V is the R
matrix, Eq. (5).

To keep track of the ordering of spins, we first attach
upper indices to the quantum gate, Eq. (3), i.e., U = Us1,s2 .
The space reflection � 
→ L − �+ 1 acts as

P(Us1,s2) = Us2,s1 . (B1)

The quantum gate, Eq. (3), exchanges the neighboring
spins and can therefore be represented as

Us1,s2 =
s1∑

α,β=−s1

s2∑

j ,k=−s2

Uj α,βk |j α〉 〈βk| , (B2)

where the matrix elements Uj α,βk depend on τ ∈ R. Here
and throughout the Appendix we use a convention in

which Greek (Latin) indices enumerate the basis vectors
of spin-s1 (respectively, spin-s2) spaces, mainly to help
distinguishing between the two different spins.

A particular case of the gate Eq. (B2) is the permutation,
Ps1,s2 , whose matrix elements are Pj α,βk = δj ,kδα,β , and one
can verify that the following holds:

Ps1,s2Us2,s1 = Us1,s2Ps2,s1 . (B3)

Along with (Ps1,s2)T = Ps2,s1 = (Ps1,s2)−1 and assuming
the symmetry VT = V [cf. Eq. (6) for the integrable case]
we now have

P(Us1,s2) = Ps2,s1Vs2,s1 = (Vs2,s1Ps1,s2)T

= (Ps1,s2Us2,s1Ps1,s2)T = (Us1,s2)T, (B4)

i.e., Eq. (9).
In general, UT differs from U and the circuit thus breaks

the P symmetry. There however exists an additional antiu-
nitary transformation T , such that the full propagator given
in Eqs. (1) and (2) satisfies

PT (U) = U
−1 (B5)

and is hence PT symmetric.
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To see this, we first note that the one-site lattice shift
�s1,s2 in the backward direction, defined in Eq. (17), acts as

�s1,s2 |α1, j1,α2, j2, . . . ,αL/2, jL/2〉
= |j1,α2, j2,α3, . . . ,αL/2, jL/2,α1〉 . (B6)

On the same lattice, composed of consecutive spins
s1, s2, s1, . . . , s2, the shift in the opposite direction is�−1

s2,s1
,

and it notably differs from �−1
s1,s2

when s1 �= s2 (it acts on
a chain with a different ordering of spins). Since all of the
unitary gates in the integrable ratchet are identical, we then
have

�−1
s2,s1

Ue�s1,s2 = Uo, or �s1,s2Ue�
−1
s2,s1

= Uo, (B7)

where we have taken into account that the order in which
the opposite lattice shifts are applied does not matter.
Using this freedom of choice we can then write

U
−1
o U

−1
e︸ ︷︷ ︸

U−1

= (�s2,s1U
−1
e �−1

s1,s2
)(�s1,s2U

−1
o �−1

s2,s1
)

= �s2,s1KU
T
e U

T
oK�−1

s2,s1

= �s2,s1KP(UeUo︸ ︷︷ ︸
U

)K�−1
s2,s1

, (B8)

where K denotes the antiunitary conjugation. We have used
unitarity of the evolution in passing to the second line, and
Eq. (9) in passing to the third line. Note that P acts simul-
taneously on all local unitary gates and, in general, cannot
be written as an adjoint action of a product of some local
operators. Finally, defining the antiunitary time reversal T
as the adjoint action of �s2,s1K , Eq. (B8) demonstrates the
PT symmetry of a brickwork ratchet composed of unitary
gates U = Ps1,s2V with VT = V.

APPENDIX C: INTEGRABILITY

Here, we show that the ratchet circuit composed of uni-
tary gates Eq. (3), with V = Rs1,s2(τ ) given in Eq. (5),
originates in the integrable family of transfer matrices,
Eq. (15). Specifically, we will prove the transfer-matrix
shift properties Eq. (16), which, combined, yield the prop-
agator U and the two-site lattice shift T in the backward
(i.e., west) direction—see Eq. (18). The two-site lattice
shift explicitly reads

T = Ts2

(τ
2

)
Ts1

(
−τ

2

)
= �s2,s1�s1,s2 , (C1)

where Eqs. (16) and (B7) have been used. It is formally
an endomorphism, i.e., T ∈ End[(Hs1 ⊗ Hs2)

⊗L/2], and
Eq. (18) implies the two-site shift invariance of the cir-
cuit, [ U, T ] = 0. This follows from the commutation of

transfer matrices for any pair of spins s1, s2 ∈ N/2,

[
Ts1(λ), Ts2(μ)

] = 0, (C2)

which is a consequence of the Yang-Baxter Eq. (10).
The eigenvalues of U and T are, respectively, of the

form exp(i2εtot) and exp(−2iptot), where εtot is the total
quasienergy and ptot the total quasimomentum. After
demonstrating the validity of the shift properties Eq. (16)
in Appendix C 1, we will review the algebraic Bethe ansatz
diagonalization of the transfer matrices Ts(λ) in Appendix
C 2. We will show that the total quasienergy and quasi-
momentum, respectively, εtot and ptot, are extensive: they
can be obtained as a sum of single-magnon contributions,
Eqs. (24) and (21). Finally, the explicit form of the Bethe
equations will be reported in Appendix C 3.

1. Propagator from transfer matrices

In this section we derive the transfer-matrix shift prop-
erties Eq. (16) using the exchange relations

Ps2,s2
a,c Us2,s1

b,c = Us1,s2
a,b Ps2,s1

a,c , (C3)

Ps1,s2
a,c Us2,s1

b,c = Us1,s2
a,b Ps1,s1

a,c , (C4)

Ps1,s2
a,c Ps2,s2

b,c = Ps2,s2
a,b Ps1,s2

a,c , (C5)

and Eq. (B3). Note that these relations hold also when U
is substituted by its inverse U−1, or by Ps1,s2 (recall that
U becomes a permutation when τ → ∞). The above rela-
tions are proven using a basis decomposition similar to the
one in Eq. (B2), with the first, second, and third index in
the bra-ket notation corresponding to the spaces a, b, and
c, respectively. For example, for Eq. (C3) we have

Ps2,s2
a,c Us2,s1

b,c =
∑

α,i,j

|iαj 〉 〈j αi|
∑

m,γ ,δ,k,l

Ukγ ,δl |mγ k〉 〈mlδ|

=
∑

α,δ,i,j ,l

Uiα,δl |iαj 〉 〈jlδ|

=
∑

α,δ,i,j ,l

Uiα,δl |iαj 〉 〈δlj | Ps2,s1
a,c

= Us1,s2
a,b Ps2,s1

a,c , (C6)

and similarly for other relations.

a. North-west light-cone lattice shift

First, we derive the lattice shift in the north-west direc-
tion. To this end, we consider the transfer matrix with
a spin-s2 auxiliary space, evaluated at λ = τ/2. Using
Rs2,s2(0) = Ps2,s2 , Rs1,s2(τ ) = Ps2,s1Us1,s2 , and identifica-
tion of the sites 0 and L due to periodic boundary condi-
tions, we have
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Ts2

(τ
2

)
= Tra

→∏

1≤�≤L/2

Rs1,s2
2�−1,a(τ )R

s2,s2
2�,a (0) = Tra

→∏

1≤�≤L/2

Ps2,s1
2�−1,aUs1,s2

2�−1,aPs2,s2
2�,a

= Tra

→∏

1≤�≤L/2

Ps2,s2
2�−2,aPs2,s1

2�−1,a︸ ︷︷ ︸
Eq. (C3)

Us1,s2
2�−1,a = Tra

→∏

1≤�≤L/2

Ps1,s2
2�−2,2�−1 Ps2,s1

2�−2,aUs1,s2
2�−1,a︸ ︷︷ ︸

Eq. (C4)

= Tra

→∏

1≤j ≤L/2

Ps1,s2
2�−2,2�−1Us2,s1

2�−2,2�−1︸ ︷︷ ︸
Eq. (B3)

Ps2,s2
2�−2,a = Tra

→∏

1≤�≤L/2

Us1,s2
2�−2,2�−1Ps2,s1

2�−2,2�−1Ps2,s2
2�−2,a

= Ue Tra

→∏

1≤�≤L/2

Ps2,s1
2�−2,2�−1Ps2,s2

2�−2,a = Ue

⎛

⎝
→∏

1≤�≤L/2

Ps2,s1
2�−2,2�−1

⎞

⎠ Tra

→∏

1≤�≤L/2

Ps2,s2
2�−2,a

= Ue

⎛

⎝
→∏

1≤�≤L/2

Ps2,s1
2�−2,2�−1

⎞

⎠
→∏

2≤�≤L/2

Ps2,s2
2�−2,L = Ue

⎛

⎝
→∏

2≤�≤L/2

Ps2,s1
2�−2,2�−1

⎞

⎠Ps2,s1
L,1

→∏

2≤�≤L/2

Ps2,s2
2�−2,L

︸ ︷︷ ︸
Eq. (C5)

= Ue

⎛

⎜⎝
→∏

2≤�≤L/2

Ps2,s1
2�−2,2�−1Ps2,s2

1,2�−2︸ ︷︷ ︸
Eq. (C5)

⎞

⎟⎠Ps1,s2
1,L = Ue

⎛

⎜⎝
→∏

2≤�≤L/2

Ps2,s2
1,2�−1Ps1,s2

2�−1,2�−2︸ ︷︷ ︸
Eq. (C3)

⎞

⎟⎠Ps1,s2
1,L

= Ue

⎛

⎝
→∏

2≤�≤L/2

Ps1,s2
1,2�−2Ps2,s1

1,2�−1

⎞

⎠Ps1,s2
1,L = Ue�s1,s2 , (C7)

where �s1,s2 is a one-site lattice shift in the negative (i.e., west) direction. We have denoted which one of the exchange
relations Eqs. (C3)–(C5) has to be used on a given pair of matrices in order to exchange them. On passing from the fourth
to the fifth line we have also recognized that TraPs2,s2

L,a = 1. This concludes the derivation of the north-west lattice shift
reported on the left-hand side of Eq. (16).

b. South-west light-cone lattice shift

We now consider the south-west lattice shift: we will derive it from the transfer matrix with auxiliary spin s1, evaluated
at λ = −τ/2. Equation (3), together with V = Rs1,s2(τ ) and normalization Eq. (7), implies

Rs2,s1(−τ) = [Rs2,s1(τ )]−1 = [Us2,s1 ]−1Ps2,s1

= [U−1]s1,s2Ps2,s1 , (C8)

where the fact that the quantum gate contains a permutation has been used in the last equality. With this in mind, we now
have

Ts1

(
−τ

2

)
= Tra

→∏

1≤�≤L/2

Rs1,s1
2�−1,a(0)R

s2,s1
2�,a (−τ) = Tra

→∏

1≤�≤L/2

Ps1,s1
2�−1,a[U−1]s1,s2

2�,a︸ ︷︷ ︸
Eq. (C3)

Ps2,s1
2�,a

= Tra

→∏

1≤�≤L/2

[U−1]s2,s1
2�−1,2�P

s1,s2
2�−1,aPs2,s1

2�,a = U
−1
o Tra

→∏

1≤�≤L/2

Ps1,s2
2�−1,aPs2,s1

2�,a

= U
−1
o Tra Ps1,s2

1,a

⎛

⎝
→∏

1≤�≤L/2−1

Ps2,s1
2�,a Ps1,s2

2�+1,a

⎞

⎠

︸ ︷︷ ︸
Eqs. (C4), (C3)

Ps2,s1
L,a
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= U
−1
o

⎛

⎝
→∏

1≤�≤L/2−1

Ps1,s2
1,2� Ps2,s1

1,2�+1

⎞

⎠Tra Ps1,s2
1,a Ps2,s1

L,a︸ ︷︷ ︸
Eq. (C4)

= U
−1
o

⎛

⎝
→∏

1≤�≤L/2−1

Ps1,s2
1,2� Ps2,s1

1,2�+1

⎞

⎠Ps1,s2
1,L

= U
−1
o �s1,s2 . (C9)

In the fourth line we have again used TraPs1,s1
1,a = 1. This

yields the lattice shift in the south-west direction, reported
on the right-hand side of Eq. (16).

2. Eigenvalues of transfer matrices and lattice shifts

Here, we review the algebraic Bethe ansatz diagonal-
ization of the integrable ratchet circuit. Following Refs.
[118,119], which discuss the higher-spin isotropic Heisen-
berg model, we write the transfer matrix Eq. (15) of the
integrable quantum ratchet as

Ts(λ) = TraM (s)(λ) =
s∑

n=−s

M (s)
n,n(λ), (C10)

where

M (s)(λ) ≡
→∏

1≤j ≤L/2

Rs1,s
2j −1,a

(
λ+ τ

2

)
Rs2,s

2j ,a

(
λ− τ

2

)
(C11)

is a (2s + 1)× (2s + 1) monodromy matrix on the spin-
s auxiliary space labeled with a (note that the auxiliary
spin s is not necessarily equal to any of the two physi-
cal spins s1, s2). Its entries M (s)

m,n(λ), with m, n ∈ {−s, −s +
1, . . . , s}, are operators acting on the full Hilbert space(
Hs1 ⊗ Hs2

)⊗L/2.
The central role in diagonalizing the family of trans-

fer matrices Ts(λ) is played by the fundamental trans-
fer matrix, associated with auxiliary spin s = 1/2. It is
obtained by tracing out the auxiliary space in the mon-
odromy matrix

M (1/2)
(
λ− i

2

)
=
(

A(λ) B(λ)
C(λ) D(λ)

)
, (C12)

in which the spectral parameter has been shifted [120]. In
particular, an N -magnon eigenvector of Ts(λ) reads (see,
e.g., Ref. [85])

|{λj }N
j =1〉 =

N∏

j =1

B(λj ) |vac〉 , (C13)

where commuting operators B(λj ), with j = 1, . . . , N ,
have been applied to the vacuum (highest-weight) state

|vac〉 = |s1, s2, s1, s2, . . . , s1, s2︸ ︷︷ ︸
L

〉 , (C14)

and λj denote the rapidities, which satisfy nonlinear Bethe
Eqs. (19).

Following Refs. [85,118,119] one now requires two
ingredients in order to obtain the eigenvalues of Ts(λ):

(1) commutation relations that allow us to move
M (s)

n,n(λ) past the sequence of operators B(λj ) in
Eq. (C13), so that we can apply it to the vacuum
state Eq. (C14);

(2) the vacuum eigenvalues of M (s)
n,n(λ).

In the rest of Sec. C 2 we first specify these two ingre-
dients and then use them to obtain the eigenvalues of
transfer matrices, of the propagator U, and those of the
lattice-shift operator T. From them, we then determine the
quasienergies and quasimomenta.

a. Ingredients

Firstly we describe the commutation relations between
M (s)

n,n(λ) and B(μ). They are obtained by considering the
appropriate matrix elements in the following relation:

M (1/2)
a

(
μ− i

2

)
M (s)

b (λ)R1/2,s
a,b

(
λ− μ+ i

2

)

= R1/2,s
a,b

(
λ− μ+ i

2

)
M (s)

b (λ)M (1/2)
a

(
μ− i

2

)
,

(C15)

which holds by virtue of the Yang-Baxter Eq. (10). Here,
we have temporarily attached lower indices a and b to
monodromy matrices. They denote the auxiliary spaces
of respective spins 1/2 and s. Equating the matrix ele-
ments on both sides of Eq. (C15) yields relations between
the entries of the two monodromy matrices. The coeffi-
cients in these relations are the elements of the R matrix
R1/2,s

a,b (λ− μ+ i/2). Crucially, they do not depend on the
inhomogeneity parameter τ in the monodromy matrix,
Eq. (C11).
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The relation we are interested in involves M (s)
n,n(λ) and

B(μ). It was reported in Refs. [118,119] and reads

M (s)
n,n(λ)B(μ) = c(s)0

(
λ− μ+ i

2
; n
)

B(μ)M (s)
n,n(λ)

+ c(s)1

(
λ− μ+ i

2
; n
)

M (s)
n,n−1(λ)A(μ)

+ c(s)2

(
λ− μ+ i

2
; n
)

M (s)
n+1,n(λ)D(μ)

+ c(s)3

(
λ− μ+ i

2
; n
)

M (s)
n+1,n−1(λ)C(μ),

(C16)

where the τ -independent coefficients c(s)j (λ; n) are [121]

c(s)0 (λ; n) =
(
λ− is − i

2

) (
λ+ is + i

2

)
(
λ+ in − i

2

) (
λ+ in + i

2

) ,

c(s)1 (λ; n) =
√
(n + s)(n − s − 1)
λ+ in − i

2

,

c(s)2 (λ; n) = −
√
(n − s)(n + s + 1)
λ+ in + i

2

, (C17)

c(s)3 (λ; n) = −
√
(s2 − n2)[(s + 1)2 − n2](
λ+ in + i

2

) (
λ+ in − i

2

) .

Note that the spectral parameter μ in the functions c(s)j
in Eq. (C16) has been shifted as μ 
→ μ− i/2. This is
because operators A(μ), B(μ), C(μ), and D(μ) are inferred
from the monodromy matrix, Eq. (C12), with the same
shift in the spectral parameter. Of paricular importance
is the first term on the right-hand side of Eq. (C16): it
exchanges M (s)

n,n(λ) with a magnon creation operator B(μ),
producing a factor given by the function c(s)0 (λ− μ+
i/2; n). The latter will “dress” the vacuum eigenvalue of
M (s)

n,n(λ).
We now consider the vacuum eigenvalues of the mon-

odromy’s diagonal entries M (s)
n,n(λ). For our purposes, it

will suffice to consider s ∈ {s1, s2}, but the discussion
below remains valid for other values of the auxiliary spin s.
Following Ref. [85], the vacuum eigenvalues are obtained
by noting that the R matrix becomes upper triangular when
applied to the vacuum state |vac〉. Specifically, denoting
the physical spin by sp (sp = s1 for odd-site indices j and
sp = s2 for even-site indices j ), we have [122]

Rs,sp
a,j (λ) |sp〉j =

⎛

⎜⎜⎜⎜⎜⎜⎝

α(s)s (λ; sp) |sp〉j

α
(s)
s−1(λ; sp) |sp〉j ∗

. . .
0 α

(s)
−s+1(λ; sp) |sp〉j

α
(s)
−s(λ; sp) |sp〉j

⎞

⎟⎟⎟⎟⎟⎟⎠
. (C18)

Here, α(s)n (λ; sp), with n ∈ {−s, −s + 1, . . . , s}, are some
functions which can be computed explicitly and satisfy the
following properties:

(1) α(s)n (0; s) = 0 if n �= s;
(2) for any sp , s, and λ, we have α(s)s (λ; sp) = 1.

When acting on the vacuum state, Eq. (C14), the mon-
odromy M (s)(λ) becomes a product of R matrices of the
form, Eq. (C18). Since the latter are upper triangular, the
diagonal entries of M (s)(λ) satisfy

M (s)
n,n(λ) |vac〉 = [

α(s)n (λ+; s1)α
(s)
n (λ−; s2)

] L
2 |vac〉 , (C19)

where we have used a shorthand notation λ± = λ± τ/2.

b. Eigenvalues of the transfer matrix

Applying the monodromy M (s)(λ) to a Bethe state,
Eq. (C13), its diagonal entries, Eq. (C19), get “dressed”

due to commutation relations, Eq. (C16). Tracing the mon-
odromy over the auxiliary space, as per Eq. (C10), we then
obtain

Ts(λ) |{λj }〉 = �s(λ; {λj }) |{λj }〉 + unwanted terms,

(C20)

�s(λ; {λj }) =
s∑

n=−s

[α(s)n (λ+; s1)α
(s)
n (λ−; s2)]

L
2

×
N∏

j =1

c(s)0

(
λ− λj + i

2
; n
)

, (C21)

where s = s1, s2. Assuming that rapidities λj satisfy Bethe
Eqs. (19), the “unwanted terms” in Eq. (C20) dis-
appear—see, e.g., Refs. [85,119]. �s(λ; {λj }) given in
Eq. (C21) are then the eigenvalues of the transfer matrix
with a spin-s auxiliary space.
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c. Eigenvalues of the propagator and the lattice shift

The propagator and the lattice-shift operator can be writ-
ten in terms of transfer matrices—cf. Eq. (18). We exploit
this to obtain

U |{λj }〉 = �s2

(
τ
2 ; {λj }

)

�s1

(− τ
2 ; {λj }

) |{λj }〉 = ei2εtot |{λj }〉 . (C22)

Since α(s)n�=s(0; s) = 0 and α(s)s (λ; sp) = 1, for any sp , many
terms in the eigenvalue Eq. (C21) disappear, leaving us
with

ei2εtot =
N∏

j =1

c(s2)
0

(
τ
2 − λj + i

2 ; s2
)

c(s1)
0

(− τ
2 − λj + i

2 ; s1
)

=
N∏

j =1

(
λj + τ

2 − is1
) (
λj − τ

2 + is2
)

(
λj + τ

2 + is1
) (
λj − τ

2 − is2
) . (C23)

The quasienergy is extensive, i.e., εtot = ∑N
j =1 ε(λj ), and

the single-magnon quasienergies Eq. (24) are obtained
from

ei2ε(λ) = (λ+−is1)(λ−+is2)

(λ++is1)(λ−−is2)
. (C24)

The eigenvalue of the two-site lattice shift operator is
obtained similarly [see Eq. (18)]:

T |{λj }〉 = �s2

(τ
2

; {λj }
)
�s1

(
−τ

2
; {λj }

)
|{λj }〉

= e−i2ptot |{λj }〉 . (C25)

It reads

e−i2ptot =
N∏

j =1

c(s2)
0

(
τ

2
− λj + i

2
; s2

)

× c(s1)
0

(
−τ

2
− λj + i

2
; s1

)

=
N∏

j =1

(
λj + τ

2 + is1
) (
λj − τ

2 + is2
)

(
λj + τ

2 − is1
) (
λj − τ

2 − is2
) , (C26)

and the total quasimomentum is extensive as well: ptot =∑N
j =1 p(λj ). We can identify the single-magnon quasimo-

mentum Eq. (21) from

e−2ip(λ) = (λ++is1)(λ−+is2)

(λ+−is1)(λ−−is2)
. (C27)

3. Bethe equations

The entries of the fundamental monodromy matrix,
Eq. (C12), satisfy commutation relations Eq. (C16) spe-
cialized to the case λ 
→ λ− i/2 and s = 1/2:

A(λ)B(μ) = c(1/2)0

(
λ− μ;

1
2

)
B(μ)A(λ)

+ c(1/2)1

(
λ− μ;

1
2

)
B(λ)A(μ),

D(λ)B(μ) = c(1/2)0

(
λ− μ; −1

2

)
B(μ)D(λ)

+ c(1/2)2

(
λ− μ; −1

2

)
B(λ)D(μ).

(C28)

Following Ref. [85], these relations allow us to identify the
two-magnon scattering amplitude as

S(λ− μ) = c(1/2)0

(
λ− μ; − 1

2

)

c(1/2)0

(
λ− μ; 1

2

) = λ− μ+ i
λ− μ− i

. (C29)

Using Eqs. (C27) and (C29) in the quantization condition,
Eq. (19), for the single-magnon quasimomenta, we rewrite
the Bethe equations in an explicit form as

[(
λj + τ

2 + is1
) (
λj − τ

2 + is2
)

(
λj + τ

2 − is1
) (
λj − τ

2 − is2
)
] L

2

=
N∏

k=1
k �=j

λj − λk + i
λj − λk − i

.

(C30)

APPENDIX D: THERMODYNAMIC BETHE
ANSATZ

This Appendix describes the Bethe ansatz and its solu-
tion in the thermodynamic (TD) limit N , L → ∞, at a fixed
ratio N/L, where N is the particle number and L the system
size. In Appendix D 1 we describe the Bethe ansatz equa-
tions in the thermodynamic limit (the so-called Bethe-Yang
equation). In Appendix D 2 we define the dressing opera-
tion, i.e., a renormalization of the bare charge carried by
the quasiparticles, necessitated by their interaction. Lastly,
Appendix D 3 describes a novel solution of the Bethe-Yang
equation with a particular emphasis on the computation of
the drift velocity.

1. Bethe-Yang equation

For large L, the solutions of Bethe ansatz equations
organize into the so-called “m-strings,” i.e., complexes
of m bound magnons carrying m quanta of magnetiza-
tion, referred to as the bare charge qm = m. Let there be
Mm m-strings in a particular solution of the Bethe ansatz
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equations. Up to corrections exponentially small in L, the
corresponding rapidities read

λm,j
α = λm

α + i
2
(m + 1 − 2j ), j = 1, . . . , m, (D1)

where λm
α ∈ R, for α = 1, . . . , Mm, are the string centers,

which become densely distributed in the TD limit. Their
distributions satisfy an appropriate TD limit of the Bethe
ansatz equations, which we will refer to as the Bethe-Yang
equation.

In a chain of alternating spins, the quasienergies,
Eq. (24), and quasimomenta, Eq. (21), are sums of contri-
butions from sublattices of spins s1 and s2. As will become
clear later on, the same holds for the distribution of the
string centers, which is why we will first consider the
Bethe-Yang equation of a homogeneous spin-s Heisen-
berg chain. The latter’s Bethe equations are obtained by
setting s1 = s2 = s and τ = 0 in Eq. (C30). Inserting the
string from Eq. (D1) and multiplying the equations for
j = 1, . . . , m, one obtains the equations for the string cen-
ters λm

α (see Ref. [118] and also Sec. 8.2 in Ref. [123] for
an analogous procedure in a spin-1/2 Heisenberg chain).
Taking then the logarithm, one obtains the Bethe-Yang
equation in the TD limit.

Specifically, let b ≡ 2s and let ρ tot(b)
m (λ) be the total

state densities, defined so that Lρ tot(b)
m (λ)dλ is the num-

ber of available m-string centers in the rapidity interval
[λ, λ+ dλ) ⊂ R. To define a macrostate of the system,
one in addition requires the distribution of the occupied
m-string centers, ρ(b)m (λ), or equivalently, the occupancy
ratio nm(λ) ≡ ρ(b)m (λ)/ρ tot(b)

m (λ). Treating m ∈ N as a dis-
crete index and λ ∈ R as a continuous one, we can define
a matrix n with elements nm(λ)δm,m′δ(λ− λ′), and a vec-
tor ρtot(b) with components ρ tot(b)

m (λ). The Bethe-Yang
equation reads

(1 + Kn)ρtot(b) = K(b), (D2)

where the components of the vector K(b) are the strings’
bare quasimomentum derivatives

K (b)
m (λ) ≡ 1

2π
∂λp (b)m (λ) =

min(m,b)∑

�=1

K|m−b|−1+2�(λ), (D3)

expressed in terms of functions

Km≥1(λ) = 1
2π

m
λ2 + (m/2)2

, K0(λ) ≡ 0. (D4)

Finally, K is a matrix with elements

Km,�(λ− λ′) =
(m+�)/2−1∑

j =|m−�|/2
[K2j (λ− λ′)+ K2j +2(λ− λ′)]

= K (�)

m−1(λ− λ′)+ K (�)

m+1(λ− λ′). (D5)

In this compact notation, the matrix product involves sum-
mation over the discrete mode index m and integration over
the continuous rapidity λ (i.e., convolution).

To determine both ρtot(b) and n, we require another set
of equations, which are obtained by maximizing the ther-
modynamic free energy. A crucial simplification occurs in
the thermodynamic state described by the density matrix
Eq. (36). There, n is determined from thermodynamic
equations that do not depend on spin s, and we can there-
fore use n computed in a homogeneous spin-1/2 Heisen-
berg model. Moreover, in such a state the occupancy ratio
does not depend on the rapidity either—it reads

nm = 1
X 2

m(μ)
, (D6)

where

Xm(μ) = sinh
(
[m + 1]μ2

)

sinh
(
μ

2

) (D7)

is an su(2) character (see, e.g., Section 8.4 in Ref. [123] or
the Supplemental Material of Ref. [44]).

Crucially, the Bethe-Yang Eq. (D2) is linear in ρtot(b),
and n does not depend on the spin. Hence, since the
bare quasimomentum in the integrable ratchet is a sum
of two contributions, [K (b1)

m (λ+)+ K (b2)
m (λ−)]/2, the solu-

tion of Eq. (D2) will be a sum as well: [ρ tot(b1)
m (λ+)+

ρ
tot(b2)
m (λ−)]/2.

2. Dressing and screening operations

Bethe-Yang Eq. (D2) is a specific example of the dress-
ing equation [53]

(1 + Kn)qdr = q ⇒ qdr = (1 + Kn)−1q, (D8)

which encodes the effect of the interactions between the
quasiparticles on the charge carried by them. In particular,
according to Eq. (D2) the total state density is associated
with a dressed derivative of the quasimomentum:

2πρtot(b) ≡ (p(b)′)dr. (D9)

Example 2. The dressing equation for the quasiparticle
magnetization qm = m is solved by

qdr
m = ∂μ log(n−1

m − 1), (D10)

where nm is given in Eq. (D6).

Example 1. According to Eq. (D5) the kernel Km,� is a
sum of bare quasimomenta and can therefore be dressed as
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well. We have Kdr = (1 + Kn)−1K or, elementwise,

Kdr
m,�(λ) = ρ

tot(�)
m−1 (λ)+ ρ

tot(�)
m+1 (λ), (D11)

where ρ tot(b)
0 (λ) ≡ 0 and ρ tot(0)

m (λ) ≡ 0. We now note that,
since Kdrn is an operator series in Kn, it commutes with
1 + Kn, and the dressing operator is then simply found to
be (1 + Kn)−1 = 1 − Kdrn. It then follows that

qscr ≡ q − qdr = Kdrn q, (D12)

which may be understood as a screened charge, and which
we use in the expression for the third scaled cumulant of
the time-integrated spin current in Sec. IV C. Written out
explicitly in terms of the convolution, the screened charge
reads

qscr
m (λ) =

∞∑

�=1

∫
dλ′ Kdr

m,�(λ− λ′)n�(λ′)q�(λ′). (D13)

3. Solution of the Bethe-Yang equation

Bethe-Yang Eq. (D2) can be rewritten as a three-point
recurrence relation for the total state densities ρ tot(b)

m (λ).
Its derivation is based on the observation that the Fourier-
transformed kernels K̂m(k) ≡ ∫

dλe−ikλKm(λ) = e−m|k|/2
satisfy

K̂m − ŝ(K̂m+1 + K̂m−1) = δm,1ŝ, (D14)

where ŝ(k) = [2 cosh(k/2)]−1 and K̂0 ≡ 0 [44]. In the
rapidity space one then has

∑

m

(δn,mδ − In,ms) � K (b)
m = δn,bs, (D15)

where (f � g)(λ) = ∫
dλ′f (λ− λ′)g(λ′) denotes the con-

volution, δ is the δ function, and In,m = δn,m+1 + δn,m−1.

Expressing the integral kernel Eq. (D5) as Km,� =∑
n Im,nK (�)

n in the Bethe-Yang Eq. (D2), applying on it the
matrix with elements δn,mδ(λ− λ′)− In,ms(λ− λ′), and
invoking Eq. (D15), we then obtain the recurrence for the
total state density. In the Fourier space it reads

ŝ−1ρ̂ tot(b)
m −

∞∑

�=1

Im,�(1 − n�)ρ̂
tot(b)
� = δm,b, (D16)

where we have used that nm in the state described by the
density matrix Eq. (36) does not depend on the rapidity λ.
In the following, we describe how to obtain a closed-form
solution of this recurrence.

a. Total state density

Let us introduce z ≡ eμ/2 and consider only k > 0, since
Eq. (D16) is invariant under the transformation k 
→ −k.
The occupancy ratio is given in Eq. (D6), and it depends
only on z through the su(2) character Eq. (D7). Setting the
source term on the right-hand side of Eq. (D16) to zero, we
first find two homogeneous solutions

φ
(b)
m;±(k; z) = Xm(z)

X1(z)

(
e±(m−1)k/2

Xm−1(z)
− e±(m+1)k/2

Xm+1(z)

)
. (D17)

With the source term present, homogeneous solutions
should be glued together at the index m = b. In
particular, since the total state density should obey
lim|λ|→∞ ρ tot(b)

m (λ) = 0, we will take the following ansatz:

ρ̂ tot(b)
m =

{
A(b)φ

(b)
m;− + B(b)φ(b)m;+ m < b,

C(b)φ(b)m;− m ≥ b,
(D18)

where the coefficients A(b), B(b), and C(b) are some func-
tions of k and z, determined by plugging the ansatz into the
recurrence Eq. (D16). In particular, two equations at the
index value m = b and one at m = 1 suffice to determine
the three coefficients. The relevant Eqs. (D16) are

2 cosh
(

k
2

)
ρ̂

tot(b)
1 − X 2

2 − 1
X 2

2
ρ̂

tot(b)
2 = 0,

2 cosh
(

k
2

)
ρ̂

tot(b)
b−1 − X 2

b − 1
X 2

b
ρ̂

tot(b)
b − X 2

b−2 − 1

X 2
b−2

ρ̂
tot(b)
b−2 = 0,

2 cosh
(

k
2

)
ρ̂

tot(b)
b − X 2

b+1 − 1

X 2
b+1

ρ̂
tot(b)
b+1 − X 2

b−1 − 1

X 2
b−1

ρ̂
tot(b)
b−1 = 1,

(D19)
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and the coefficients that solve them take the following form:

A(b)(k; z) = − (1 + z2)(z2 + z2(b+1)[ekz2 − 1] − ek)

(ek − 1)(z2(b+1) − 1)(z4 − z2[ek + e−k] + 1)
e−(b+2)k/2, B(b)(k; z) = −ekA(b)(k; z),

C(b)(k; z) = (1 + z2)
{
z2(b+1)[e(b+2)k − z2ek(ebk − 1)− 1] + z2(1 − e(b+2)k)+ e(b+1)k − ek

}

(ek − 1)(ek − z2)(z2ek − 1)(z2(b+1) − 1)
e−bk/2.

(D20)

Using Eq. (D20) in the ansatz Eq. (D18), we obtain the
expression for the Fourier transform of the total state den-
sity, which is valid on the entire domain of k ∈ R. It can be
compactly written as

ρ̂ tot(b)
m (k; z) = Xm

XbXm−1Xm+1
�̂
(max (m,b))
min (m,b) (k; z), (D21)

where we have defined

�̂(b)m (k; z) ≡ e−(m+b+1) |k|
2
[
Xb+1(z)e|k| − Xb−1(z)

]

×
m−1∑

j =0

Xj (z)Xm−j −1(z)e(m−j −1)|k|

= e−(m+b+1) |k|
2

m∑

j =0

[
Xb+1(z)Xj (z)Xm−j −1(z)

−Xb−1(z)Xj −1(z)Xm−j (z)
]

e(m−j )|k|. (D22)

The latter function can be further simplified at half-filling
μ = 0, where limz→1 Xm(z) = m + 1, and we obtain

�̂(b)m (k; 1) = e−(m+b+1) |k|
2

m∑

j =0

[m(2j + b + 2)

− 2j (j + b + 1)] e(m−j )|k|. (D23)

b. Drift velocity

We now return to a chain of alternating spins s1 and
s2. The single-magnon quasimomentum, Eq. (21), and
quasienergy, Eq. (24), in the integrable ratchet imply that
the quasienergies and quasimomenta of quasiparticles (i.e.,
bound states of magnons) can be obtained from

ε = 1
2

(
p(b1)+ −p(b2)−

)
,

p = 1
2

(
p(b1)+ +p(b2)−

)
,

(D24)

respectively, where the elements p (b)m (λ±) of p(b)± denote
the quasimomenta of m-strings in the homogeneous
Heisenberg chain of spins s = b/2. Differentiating on λ,
using the linear dressing Eq. (D8), in which 1 + Kn does

not depend on the spins s1 and s2, and invoking Eq. (D9),
we now recognize

(ε′)dr = π
[
ρ

tot(b1)+ −ρ
tot(b2)−

]
,

(p′)dr ≡ 2πρtot = π
[
ρ

tot(b1)+ +ρ
tot(b2)−

]
.

(D25)

The lower labels ± again refer to the shift λ± = λ± τ/2
in the rapidity, i.e., in the continuous row index of a vector.
From here, the effective velocity Eq. (41) of a quasiparticle
in an alternating spin chain can be obtained, expressed in
terms of the total state densities whose Fourier transforms
are given in Eq. (D21):

veff
m (λ) = ρ

tot(b1)
m (λ+)− ρ

tot(b2)
m (λ−)

ρ
tot(b1)
m (λ+)+ ρ

tot(b2)
m (λ−)

. (D26)

In order to obtain the drift velocity Eq. (42), we now have
to evaluate infinitely many integrals

am(μ) = (qdr
m )

2
∫

dλχm(λ)v
eff
m (λ)

= (qdr
m )

2X 2
m − 1
2X 4

m

∫
dλ
[
ρ tot(b1)

m (λ+)− ρ tot(b2)
m (λ−)

]
,

bm(μ) = (qdr
m )

2
∫

dλχm(λ)

= (qdr
m )

2X 2
m − 1
2X 4

m

∫
dλ
[
ρ tot(b1)

m (λ+)+ ρ tot(b2)
m (λ−)

]
,

(D27)

in terms of which vd = (
∑

m am)/(
∑

m bm). Here, χm(λ) =
ρ tot

m (λ)nm(1 − nm) are mode susceptibilities, and the occu-
pancy functions Eq. (D6) have been used. In passing to
the second line in Eq. (D27) we have used Eq. (D26) for
the effective velocity and the total state density ρ tot

m (λ) =
[ρ tot(b1)

m (λ+)+ ρ
tot(b2)
m (λ−)]/2, inferred from Eq. (D25).

We will now assume that the result at half-filling
(μ = 0) can be obtained by considering only the lead-
ing order in μ of all involved expressions, i.e., separately
in the numerator and denominator of vd. In the leading
order, the su(2) characters Xm are independent of μ, while
the dressed magnetization is proportional to the chemical
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potential, qdr
m = (1/6)μ(m + 1)2 + O(μ2). We then have

am(μ) = μ2m(m + 2)
72

[
I(b1)

m

(τ
2

)
− I(b2)

m

(
−τ

2

)]

+ O(μ3),

bm(μ) = μ2m(m + 2)
72

[
I(b1)

m

(τ
2

)
+ I(b2)

m

(
−τ

2

)]

+ O(μ3),
(D28)

where we have defined I(b)m (ν) ≡ ∫
dλρ tot(b)

m (λ+ ν). We
can evaluate them using the solutions of the Bethe-Yang
Eqs. (D21) at half-filling [i.e., together with Eq. (D23)],
obtaining

I(b)m (ν) =
{
(m+1)2
3(b+1) m < b,
b(b+2)(m+1)

3m(m+2) m ≥ b.
(D29)

Notably, they are independent of ν, so the drift velocity
cannot depend on the parameter τ of the unitary gate. Split-
ting the sums in the drift velocity vd = (

∑
m am)/(

∑
m bm)

into those over the intervals m < max(b1, b2) and m ≥
max(b1, b2), we see that the latter will be divergent and the
former negligible in comparison. Keeping only the terms
with m ≥ max(b1, b2) finally leads us to

vd(μ = 0) = b1(b1 + 2)− b2(b2 + 2)
b1(b1 + 2)+ b2(b2 + 2)

, (D30)

which is equivalent to Eq. (44).
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[43] M. Ljubotina, M. Žnidarič, and T. Prosen, Spin diffusion
from an inhomogeneous quench in an integrable system,
Nat. Commun. 8, 16117 (2017).

[44] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen,
Superdiffusion in one-dimensional quantum lattice mod-
els, Phys. Rev. Lett. 121, 230602 (2018).

[45] M. Ljubotina, M. Žnidarič, and T. Prosen, Kardar-Parisi-
Zhang physics in the quantum Heisenberg magnet, Phys.
Rev. Lett. 122, 210602 (2019).

[46] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,
Anomalous spin diffusion in one-dimensional antiferro-
magnets, Phys. Rev. Lett. 123, 186601 (2019).

[47] M. Dupont and J. E. Moore, Universal spin dynamics in
infinite-temperature one-dimensional quantum magnets,
Phys. Rev. B 101, 121106(R) (2020).

[48] V. B. Bulchandani, Kardar-Parisi-Zhang universality from
soft gauge modes, Phys. Rev. B 101, 041411(R) (2020).

[49] V. B. Bulchandani, C. Karrasch, and J. E. Moore,
Superdiffusive transport of energy in one-dimensional
metals, Proc. Natl. Acad. Sci. USA 117, 12713 (2020).

[50] B. Ye, F. Machado, J. Kemp, R. B. Hutson, and N. Y.
Yao, Universal Kardar-Parisi-Zhang dynamics in inte-
grable quantum systems, Phys. Rev. Lett. 129, 230602
(2022).

[51] Ž. Krajnik, J. Schmidt, E. Ilievski, and T. Prosen, Dynam-
ical criticality of magnetization transfer in integrable spin
chains, Phys. Rev. Lett. 132, 017101 (2024).

[52] E. Rosenberg, et al., Dynamics of magnetization at infinite
temperature in a Heisenberg spin chain, Science 384, 48
(2024).

[53] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura,
Emergent hydrodynamics in integrable quantum systems
out of equilibrium, Phys. Rev. X 6, 041065 (2016).

[54] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti,
Transport in out-of-equilibrium XXZ chains: Exact pro-
files of charges and currents, Phys. Rev. Lett. 117, 207201
(2016).

[55] J. Myers, M. J. Bhaseen, R. J. Harris, and B. Doyon,
Transport fluctuations in integrable models out of equi-
librium, SciPost Phys. 8, 007 (2020).

[56] B. Doyon, G. Perfetto, T. Sasamoto, and T. Yoshimura,
Ballistic macroscopic fluctuation theory, SciPost Phys. 15,
136 (2023).

[57] P. Reimann, M. Grifoni, and P. Hänggi, Quantum ratchets,
Phys. Rev. Lett. 79, 10 (1997).

[58] S. Denisov, L. Morales-Molina, S. Flach, and P. Hänggi,
Periodically driven quantum ratchets: Symmetries and
resonances, Phys. Rev. A 75, 063424 (2007).

[59] T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-
Molina, and M. Weitz, Directed transport of atoms
in a Hamiltonian quantum ratchet, Science 326, 1241
(2009).

[60] K. Hamamoto, T. Park, H. Ishizuka, and N. Nagaosa, Scal-
ing theory of a quantum ratchet, Phys. Rev. B 99, 064307
(2019).

[61] D. Bernard and B. Doyon, Energy flow in non-equilibrium
conformal field theory, J. Phys. A 45, 362001 (2012).

[62] D. Bernard and B. Doyon, Non-equilibrium steady states
in conformal field theory, Ann. Henri Poincaré 16, 113
(2015).

[63] A. De Luca, M. Collura, and J. De Nardis, Nonequilib-
rium spin transport in integrable spin chains: Persistent
currents and emergence of magnetic domains, Phys. Rev.
B 96, 020403 (2017).

[64] B. Bertini, L. Piroli, and P. Calabrese, Universal broaden-
ing of the light cone in low-temperature transport, Phys.
Rev. Lett. 120, 176801 (2018).

030356-24

https://doi.org/10.22331/q-2023-11-03-1160
https://doi.org/10.21468/SciPostPhys.15.3.092
https://doi.org/10.22331/q-2024-02-20-1260
https://doi.org/10.1016/j.aop.2021.168593
https://doi.org/10.1088/1751-8121/acc369
https://doi.org/10.1002/qute.202300345
https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.1088/1742-5468/ac12c7
https://doi.org/10.1126/science.abk2397
https://doi.org/10.1126/science.abk2400
https://doi.org/10.1103/PRXQuantum.5.010317
https://doi.org/10.1103/PRXQuantum.5.010316
https://doi.org/10.1103/PhysRevResearch.5.043019
https://doi.org/10.1103/PhysRevB.107.184312
https://doi.org/10.1103/PhysRevB.105.104302
https://doi.org/10.1103/physrevlett.106.220601
https://doi.org/10.1103/PhysRevX.11.031023
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/physrevlett.122.210602
https://doi.org/10.1103/PhysRevLett.123.186601
https://doi.org/10.1103/PhysRevB.101.121106
https://doi.org/10.1103/PhysRevB.101.041411
https://doi.org/10.1073/pnas.1916213117
https://doi.org/10.1103/physrevlett.129.230602
https://doi.org/10.1103/PhysRevLett.132.017101
https://doi.org/10.1126/science.adi7877
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.21468/SciPostPhys.8.1.007
https://doi.org/10.21468/SciPostPhys.15.4.136
https://doi.org/10.1103/PhysRevLett.79.10
https://doi.org/10.1103/PhysRevA.75.063424
https://doi.org/10.1126/science.1179546
https://doi.org/10.1103/PhysRevB.99.064307
https://doi.org/10.1088/1751-8113/45/36/362001
https://doi.org/10.1007/s00023-014-0314-8
https://doi.org/10.1103/PhysRevB.96.020403
https://doi.org/10.1103/PhysRevLett.120.176801


QUANTUM MANY-BODY SPIN RATCHETS PRX QUANTUM 5, 030356 (2024)

[65] L. Mazza, J. Viti, M. Carrega, D. Rossini, and A. De
Luca, Energy transport in an integrable parafermionic
chain via generalized hydrodynamics, Phys. Rev. B 98,
075421 (2018).

[66] B. Bertini, L. Piroli, and M. Kormos, Transport in the sine-
Gordon field theory: From generalized hydrodynamics to
semiclassics, Phys. Rev. B 100, 035108 (2019).

[67] M. Gruber and V. Eisler, Magnetization and entanglement
after a geometric quench in the XXZ chain, Phys. Rev. B
99, 174403 (2019).

[68] M. Michel, G. Mahler, and J. Gemmer, Fourier’s law
from Schrödinger dynamics, Phys. Rev. Lett. 95, 180602
(2005).

[69] M. Michel, O. Hess, H. Wichterich, and J. Gemmer,
Transport in open spin chains: A Monte Carlo wave-
function approach, Phys. Rev. B 77, 104303 (2008).

[70] T. Prosen and M. Žnidarič, Matrix product simulations
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[72] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive
and subdiffusive spin transport in the ergodic phase of
a many-body localizable system, Phys. Rev. Lett. 117,
040601 (2016).

[73] V. Popkov, T. Prosen, and L. Zadnik, Exact nonequi-
librium steady state of open XXZ/XYZ spin-1/2 chain
with Dirichlet boundary conditions, Phys. Rev. Lett. 124,
160403 (2020).

[74] V. Popkov, T. Prosen, and L. Zadnik, Inhomogeneous
matrix product ansatz and exact steady states of boundary-
driven spin chains at large dissipation, Phys. Rev. E 101,
042122 (2020).

[75] T. Prosen, Matrix product solutions of boundary driven
quantum chains, J. Phys. A 48, 373001 (2015).

[76] A. Das, M. Kulkarni, H. Spohn, and A. Dhar, Kardar-
Parisi-Zhang scaling for an integrable lattice Landau-
Lifshitz spin chain, Phys. Rev. E 100, 042116 (2019).

[77] Ž. Krajnik and T. Prosen, Kardar–Parisi–Zhang Physics
in integrable rotationally symmetric dynamics on discrete
space–time lattice, J. Stat. Phys. 179, 110 (2020).

[78] F. Weiner, P. Schmitteckert, S. Bera, and F. Evers,
High-temperature spin dynamics in the Heisenberg chain:
Magnon propagation and emerging Kardar-Parisi-Zhang
scaling in the zero-magnetization limit, Phys. Rev. B 101,
045115 (2020).

[79] D. Bernard and B. Doyon, Time-reversal symmetry and
fluctuation relations in non-equilibrium quantum steady
states, J. Phys. A 46, 372001 (2013).

[80] M. Ljubotina, L. Zadnik, and T. Prosen, Ballistic spin
transport in a periodically driven integrable quantum sys-
tem, Phys. Rev. Lett. 122, 150605 (2019).

[81] M. Medenjak, T. Prosen, and L. Zadnik, Rigorous bounds
on dynamical response functions and time-translation
symmetry breaking, SciPost Phys. 9, 003 (2020).

[82] E. Vernier, B. Bertini, G. Giudici, and L. Piroli, Integrable
digital quantum simulation: Generalized Gibbs ensembles
and Trotter transitions, Phys. Rev. Lett. 130, 260401
(2023).

[83] A. Hutsalyuk, Y. Jiang, B. Pozsgay, H. Xu, and Y. Zhang,
Exact spin correlators of integrable quantum circuits from
algebraic geometry, ArXiv:2405.16070.

[84] P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin, Yang-
Baxter equation and representation theory: I, Lett. Math.
Phys. 5, 393 (1981).

[85] L. D. Faddeev, How algebraic Bethe ansatz works for
integrable model, ArXiv:hep-th/9605187.

[86] A. G. Bytsko and A. Doikou, Thermodynamics and con-
formal properties of XXZ chains with alternating spins,
J. Phys. A 37, 4465 (2004).

[87] C. Destri and H. De Vega, Light-cone lattice approach to
fermionic theories in 2D, Nucl. Phys. B 290, 363 (1987).

[88] C. Destri and H. J. de Vega, Light-cone lattices and the
exact solution of chiral fermion and sigma models, J. Phys.
A 22, 1329 (1989).

[89] A. Y. Volkov and L. D. Faddeev, Quantum inverse scat-
tering method on a spacetime lattice, Theor. Math. Phys.
92, 837 (1992).

[90] A. Morvan, et al., Formation of robust bound states of
interacting microwave photons, Nature 612, 240 (2022).

[91] E. K. Sklyanin, Classical limits of the SU(2)-invariant
solutions of the Yang-Baxter equation, J. Sov. Math. 40,
93 (1988).

[92] Ž. Krajnik, E. Ilievski, and T. Prosen, Integrable matrix
models in discrete space-time, SciPost Phys. 9, 038
(2020).

[93] Ž. Krajnik, E. Ilievski, T. Prosen, and V. Pasquier,
Anisotropic Landau-Lifshitz model in discrete space-time,
SciPost Phys. 11, 051 (2021).

[94] J. D. Nardis, B. Doyon, M. Medenjak, and M. Panfil, Cor-
relation functions and transport coefficients in generalised
hydrodynamics, J. Stat. Mech. 2022, 014002 (2022).

[95] The bare charge qm of a bound state should not be con-
fused with the on-site magnetization densities defined in
Eq. (31), which always have the upper index indicating
the odd or even bond.

[96] B. Doyon and H. Spohn, Drude weight for the Lieb-
Liniger Bose gas, SciPost Phys. 3, 039 (2017).

[97] Here the quasiparticles’ bare quasienergy and quasimo-
mentum, namely εm(λ) and pm(λ), should not be confused
with the eigenvalues Eqs. (21) and (24) of the lattice-shift
operators [53,54].

[98] Z. Gong, A. Nahum, and L. Piroli, Coarse-grained entan-
glement and operator growth in anomalous dynamics,
Phys. Rev. Lett. 128, 080602 (2022).

[99] S. Gopalakrishnan and R. Vasseur, Kinetic theory of spin
diffusion and superdiffusion in XXZ spin chains, Phys.
Rev. Lett. 122, 127202 (2019).

[100] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,
Universality classes of spin transport in one-dimensional
isotropic magnets: The onset of logarithmic anomalies,
Phys. Rev. Lett. 124, 210605 (2020).

[101] This is allowed, since the current in the continuity Eq. (35)
is defined up to an additive constant shift.

[102] Ž. Krajnik, J. Schmidt, V. Pasquier, E. Ilievski, and
T. Prosen, Exact anomalous current fluctuations in a
deterministic interacting model, Phys. Rev. Lett. 128,
160601 (2022).

[103] H. Touchette, The large deviation approach to statistical
mechanics, Phys. Rep. 478, 1 (2009).

030356-25

https://doi.org/10.1103/PhysRevB.98.075421
https://doi.org/10.1103/PhysRevB.100.035108
https://doi.org/10.1103/PhysRevB.99.174403
https://doi.org/10.1103/PhysRevLett.95.180602
https://doi.org/10.1103/PhysRevB.77.104303
https://doi.org/10.1088/1742-5468/2009/02/P02035
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.124.160403
https://doi.org/10.1103/PhysRevE.101.042122
https://doi.org/10.1088/1751-8113/48/37/373001
https://doi.org/10.1103/PhysRevE.100.042116
https://doi.org/10.1007/s10955-020-02523-1
https://doi.org/10.1103/PhysRevB.101.045115
https://doi.org/10.1088/1751-8113/46/37/372001
https://doi.org/10.1103/PhysRevLett.122.150605
https://doi.org/10.21468/SciPostPhys.9.1.003
https://doi.org/10.1103/PhysRevLett.130.260401
https://arxiv.org/abs/2405.16070
https://doi.org/10.1007/BF02285311
https://arxiv.org/abs/hep-th/9605187
https://doi.org/10.1088/0305-4470/37/16/001
https://doi.org/10.1016/0550-3213(87)90193-3
https://doi.org/10.1088/0305-4470/22/9/022
https://doi.org/10.1007/BF01015552
https://doi.org/10.1038/s41586-022-05348-y
https://doi.org/10.1007/bf01084941
https://doi.org/10.21468/SciPostPhys.9.3.038
https://doi.org/10.21468/SciPostPhys.11.3.051
https://doi.org/10.1088/1742-5468/ac3658
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1103/PhysRevLett.128.080602
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevLett.124.210605
https://doi.org/10.1103/PhysRevLett.128.160601
https://doi.org/10.1016/j.physrep.2009.05.002


LENART ZADNIK et al. PRX QUANTUM 5, 030356 (2024)

[104] W. Bryc, A remark on the connection between the large
deviation principle and the central limit theorem, Stat.
Probab. Lett. 18, 253 (1993).

[105] Ž. Krajnik, J. Schmidt, V. Pasquier, T. Prosen, and E.
Ilievski, Universal anomalous fluctuations in charged
single-file systems, Phys. Rev. Res. 6, 013260
(2024).

[106] D.-L. Vu, A diagrammatic approach towards the thermo-
dynamics of integrable systems, ArXiv:2008.06901.

[107] M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt,
P. Schindler, and T. Monz, A universal qudit quantum
processor with trapped ions, Nat. Phys. 18, 1053 (2022).

[108] P. Richelli, K. Schoutens, and A. Zorzato, Brick
wall quantum circuits with global fermionic symmetry,
ArXiv:2402.18440.

[109] G. Eliashberg, Electrical current and magnetic fields in
conductors with mirror-isomeric structure, JETP Lett. 38,
220 (1983).

[110] B. Tavger, On the effect of spontaneous conduction, Phys.
Lett. A 116, 123 (1986).

[111] E. I. Blount, Impossibility of spontaneous current in equi-
librium, Phys. Rev. B 38, 6711 (1988).

[112] B. I. Halperin, J. March-Russell, and F. Wilczek, Conse-
quences of time-reversal-symmetry violation in models of
high-Tc superconductors, Phys. Rev. B 40, 8726 (1989).

[113] M. E. Simón and A. A. Aligia, System with time-
reversal symmetry breaking, Phys. Rev. B 46, 3676
(1992).

[114] A. Roy and T. Quella, Chiral Haldane phases of SU(N )
quantum spin chains, Phys. Rev. B 97, 155148 (2018).

[115] K. A. Madsen, P. W. Brouwer, and M. Breitkreiz, Equi-
librium current in a Weyl semimetal–superconductor het-
erostructure, Phys. Rev. B 104, 035109 (2021).

[116] H. Kobayashi and H. Watanabe, Vanishing and nonvan-
ishing persistent currents of various conserved quantities,
Phys. Rev. Lett. 129, 176601 (2022).

[117] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor Software Library for tensor network calculations,
SciPost Phys. Codebases 4, 4 (2022).

[118] H. M. Babujian, Exact solution of the isotropic Heisenberg
chain with arbitrary spins: Thermodynamics of the model,
Nucl. Phys. B 215, 317 (1983).

[119] H. M. Babujian, Exact solution of the one-dimensional
isotropic Heisenberg chain with arbitrary spins S, Phys.
Lett. A 90, 479 (1982).

[120] In what follows, shifting the spectral parameter allows us
to reuse some of the results of the algebraic Bethe ansatz
described in Ref. [85]. There, the fundamental transfer
matrix consists of Lax operators—the R matrices with a
shifted spectral parameter.

[121] As a result of a different choice of spectral parameter
in the R matrix, the coefficients reported in Eq. (37) in
Ref. [118] are reproduced by substituting our spectral
parameter λ with λ/i. Moreover, the first coefficient (i.e.,
c(s)0 ) in Ref. [118] seems to contain a typo: the correct coef-
ficient, coinciding with ours up to an imaginary unit in
the spectral parameter, is instead reported in Eq. (20) in
Ref. [119].

[122] In Eq. (C18) we have exchanged the order of the spaces
labeled by j and a. In the new ordering we can use the
standard convention for the matrix representation of the
tensor product, in which the elements of the matrix act on
the space with the second index, i.e., j .

[123] M. Takahashi, Thermodynamics of One-Dimensional
Solvable Models (Cambridge University Press, New York,
1999).

030356-26

https://doi.org/10.1016/0167-7152(93)90012-8
https://doi.org/10.1103/PhysRevResearch.6.013260
https://arxiv.org/abs/2008.06901
https://doi.org/10.1038/s41567-022-01658-0
https://arxiv.org/abs/2402.18440
https://doi.org/10.1016/0375-9601(86)90297-5
https://doi.org/10.1103/PhysRevB.38.6711
https://doi.org/10.1103/PhysRevB.40.8726
https://doi.org/10.1103/PhysRevB.46.3676
https://doi.org/10.1103/PhysRevB.97.155148
https://doi.org/10.1103/PhysRevB.104.035109
https://doi.org/10.1103/PhysRevLett.129.176601
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1016/0550-3213(83)90668-5
https://doi.org/10.1016/0375-9601(82)90403-0

	I.. INTRODUCTION
	II.. QUANTUM SPIN RATCHET CIRCUITS
	A.. Isotropic spin ratchets
	B.. PT symmetry

	III.. INTEGRABLE QUANTUM RATCHET
	A.. Magnon dispersion relation
	B.. Homogeneous chain and integrable Trotterization
	C.. Semiclassical limit

	IV.. TRANSPORT PROPERTIES AND HYDRODYNAMICS
	A.. Magnetization density and current
	B.. Dynamical structure factor and drift velocity
	1.. Hydrodynamics in an integrable ratchet
	2.. Exact drift velocity in the noninteracting limit
	3.. Universality of drift velocity and spreading of correlations

	C.. Large-scale current fluctuations
	1.. Breakdown of the Gallavotti-Cohen relation
	2.. Generalized fluctuation symmetry


	V.. DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: EMBEDDING OF A QUANTUM RATCHET
	. APPENDIX B: PT SYMMETRY
	. APPENDIX C: INTEGRABILITY
	1.. Propagator from transfer matrices
	a.. North-west light-cone lattice shift
	b.. South-west light-cone lattice shift

	2.. Eigenvalues of transfer matrices and lattice shifts
	a.. Ingredients
	b.. Eigenvalues of the transfer matrix
	c.. Eigenvalues of the propagator and the lattice shift

	3.. Bethe equations

	. APPENDIX D: THERMODYNAMIC BETHE ANSATZ
	1.. Bethe-Yang equation
	2.. Dressing and screening operations
	3.. Solution of the Bethe-Yang equation
	a.. Total state density
	b.. Drift velocity


	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


