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Abstract

In [KWO06] Kapustin and Witten conjectured that there is a mirror symmetry relation between
the hyperkahler structures on certain Higgs bundle moduli spaces. As a consequence, they
conjecture an equivalence between categories of BBB and BAA-branes. At the classical
level, this mirror symmetry is given by T-duality between semi-flat hyperkahler structures on
algebraic integrable systems.

In this thesis, we investigate the T-duality relation between hyperkahler structures and the
corresponding branes on affine torus bundles. We use the techniques of generalized geometry
to show that semi-flat hyperkahler structures are T-dual on algebraic integrable systems.
We also describe T-duality for generalized branes. Motivated by Fourier-Mukai transform
we upgrade the T-duality between generalized branes to T-duality of submanifolds endowed
with U(1)-bundles and connections. This T-duality in the appropriate context specializes to
T-duality between BBB and BAA-branes.
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CHAPTER

Introduction

Mirror symmetry is a conjectured mathematical duality between Calabi-Yau manifolds originat-
ing in string theory. It states that certain physical theories on mirror manifolds are isomorphic,
in particular, there exists an equivalence between their categories of boundary conditions
(branes). One of the main approaches to mirror symmetry is due to Stréminger, Yau and
Zaslow [SYZ96] who proposed that on the "classical level" mirror symmetry is given by
T-duality.

Mathematically T-duality describes a relationship between torus bundles fibered over the same
base, roughly exchanging the radius of each circle in the fibers. A mathematical definition was
first given by Bouwknegt, Evslin and Mathai [BEMO3]. In physics, T-duality exchanges certain
topological twists of supersymmetric sigma models on the T-dual manifolds, the A and B
twists [Wit98]. The A twist is defined using a symplectic structure while a B twist is related
to a complex structure, with corresponding boundary conditions called A and B-branes.

Initially, the category of A-branes on a symplectic manifold was thought to be the category of
Lagrangian submanifolds endowed with local systems, the Fukaya category. However, Kapustin
and Orlov [KOO01], as well as Gualtieri [Guall], independently showed that there exist A-branes
supported on coisotropic submanifolds endowed with Hermitian line bundles and non-flat
connections. The inclusion of such branes into the Fukaya category remains an open problem.
In [GW21] Gaiotto and Witten gave a conjecture to the space of homomorphisms between a
rank one Lagrangian and a space-filling A-brane, a method extended by Bischoff and Gualtieri
[BG21] to define morphisms between generalized branes. Nonetheless, examples of coisotropic
branes are rare, especially those that are neither space-filling nor Lagrangian. Additionally, the
theory of higher-rank coisotropic branes is still underdeveloped although a definition was given
by Herbst in [Her10].

The category of B-branes on a complex manifold is much better understood. It is the derived
category of coherent sheaves. On the zeroth level B-branes are complex submanifolds endowed
with holomorphic vector bundles, but one can argue that "stacking" branes and other physical
operations recover the entire derived category.

In the context of [SYZ96], T-duality maps A-branes on a symplectic torus fibration with
Lagrangian fibers to B-branes on a complex torus fibration with real fibers. The first mathe-
matical formulation of this duality is due to Arinkin and Polishchuk [AP98] who transformed
A-branes supported on Lagrangian sections of a torus fibration. Bruzzo, Marelli and Pioli
[BMPO2] extended this result to Lagrangian submanifolds which intersect the fibers in subtori
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of arbitrary dimension. They started by describing a Fourier-Mukai type transform for rank
one local systems supported on affine subtori of a single real torus [BMPO1].

Glazebook, Jardim and Kamber [GJKO04] developed a T-duality transformation for Hermitian
vector bundles with connections on torus bundles which are flat on the fibers. Here the bundles
are not assumed to be supported on Lagrangian submanifolds and it is not assumed that
the connection is flat. Their work and [BMPO01] indicate that a T-duality transformation
should be defined for Hermitian bundles with connections rather than just for A-branes. This
approach was further developed in [CLZ18] by Chan, Leung and Zhang who defined T-duality
for projectively flat Hermitian vector bundles supported on submanifolds which intersect the
fibers in subtori, even for bundles not flat on the torus fibers.

The motivation for this work came from the seminal paper of Kapustin and Witten [KW06].
The Higgs bundle moduli space with gauge group G is mirror, in the sense of Strominger-Yau-
Zaslow [SYZ96], to the Higgs bundle moduli space with the Langlands dual gauge group G*.
Kapustin and Witten utilised this duality to reformulate the geometric Langlands program to
the language of S-duality between gauge theories. In this process, they defined branes which
are boundary conditions in a triple of sigma models corresponding to complex and symplectic
structures coming from the hyperkahler structure on the moduli spaces. They called these
branes BBB and BAA-branes and they conjectured that such branes should map to each
other under mirror symmetry.

The hyperkahler structure on the Higgs moduli space is constructed via infinite dimensional
hyperkahler quotient. Meanwhile, on certain open subsets of the moduli space, there is
a second, simpler hyperkahler structure called the semi-flat hyperkahler structure [Fre97].
Gaiotto, Moore and Nietzke [GMN10, GMN13] have conjectured that one can understand
the original hyperkahler metric on the Higgs moduli space by adding instanton corrections to
the semi-flat metric. Similarly, they proposed building mirror symmetry between BBB and
BAA-branes by starting with BBB and BAA-branes of the semi-flat hyperahler structure,
where mirror symmetry is T-duality, and adding corrections.

While T-duality between A and B-branes is complicated, in the setting of [KW06] T-duality
is also supposed to map certain B-branes to B-branes. This B to B duality is supposed to
be realized by fiberwise Fourier-Mukai transform [Muk81]. Although this transform remains
poorly understood on the very singular fibers, Arinkin and Fedorov [AF15] have extended it
up to mildly singular fibers and showed the derived equivalence between large subsets of the
moduli spaces.

This thesis focuses on torus bundles with smooth fibers, where Fourier-Mukai transform is
well-defined. Therefore, if a brane is BBB or BAA one can take its T-dual as a B-brane
and use the result as a motivation. As also hinted by the work of Glazebook, Jardim and
Kamber [GJKO04] and Chan, Leung and Zhang [CLZ18] a Fourier-type transform should exist
for Hermitian vector bundles with connections. This unified transform should restrict to Fourier-
Mukai transform on certain holomorphic objects and to A to B duality on the appropriate
A-branes.

One of the most successful formalisms unifying A and B-theory is generalized geometry
introduced by Hitchin in the early 2000s. His theory has since been expanded by many of his
students. In [Gua03] Gualtieri introduced generalized complex structures which encompass
complex and symplectic structures. Moreover, in [Guall] he showed that branes have a natural
interpretation in this context as well. In [CG10] Cavalcanti and Gualtieri have also reformulated
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T-duality to the language of generalized geometry. This theory therefore provides the perfect
toolkit for a unified understanding of duality between branes.

The aim of this project was to explore the mirror symmetry relationship between BB B and
BAA-branes in hyperkahler manifolds with applications to the Higgs moduli space. In the end,
we restrict our attention to the semi-flat case where mirror symmetry is given by T-duality.
We give some insight into the structure of coisotropic BAA-branes and explain T-duality for
semi-flat hyperkahler structures based on T-duality in generalized geometry.

We have two sets of results. First, we describe in detail T-duality of generalized branes on affine
torus bundles with torsion Chern classes. This is an application of T-duality in generalized
geometry but has not been fully worked out yet. We first define a class of generalized branes
which we call "locally T-dualizable". Then, we study the conditions under which such branes
admit T-duals in this class.

Let M — B and M — B be a T-dual pair of affine torus bundles with torsion Chern class.
We call the fiber product of M and M over the base the correspondence space.

A

MXBM
K
M

S
S,

Definition (Definition 4.3.5). A locally T-dualizable brane in M is a pair L = (S, F'), where
S C M is an affine torus subbundle and F' € 9%(S) is a closed invariant two-form on S which
represents a rational cohomology class on the fibers of S.

(1.0.1)

We show that when the base of S is contractible a locally T-dualizable brane admits an entire
family of T-duals.

Theorem (Theorem 4.3.14). Let £ = (S, F) be a locally T-dualizable brane in M with 7(S)
simply connected. Then, there exists a foliation of S X sy M by affine torus subbundles

denoted by Z. For each such Z we denote by Sy, C M the image of Z under the projection
S Xr(8) M — M.

Then, S is an affine torus subbundle of M over m(S). Moreover, there exists a unique closed
invariant two-form F'; on Sz which represents a rational cohomology class on the fibers of
Sz and satisfies

Py F + Pl = piF,

where P € Q2(M x g M) is a closed invariant two-form and p; : Z — S and b, : Z — S,
are the projections.

Whenever two leaves Z; and Z5 of the foliation have the same image Szl = 5'32 we have
Moreover, then (Sz, F;) is a T-dual of the generalized brane (S, F).
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To prove this theorem we first construct an integrable distribution on S X (p) M using the
two-forms F € Q%(S) and P € Q2(M xp M). Then, we show that this distribution has
closed leaves, which we denote by Z, and the images of these leaves in M give the T-dual
branes S. That is, for a T-dual pair of generalized branes (S, F) and (S, F), we have the
following diagram.

(Z,p°F —p'F = P)

/ \
(5. F) (5. F) (1.02)
When the base of S is contractible there is no obstruction to the existence of multiple T-duals.
We finally study whether locally T-dualizable branes in non-trivial affine torus bundles admit

global T-duals. We find that there is a topological constraint to the existence of such T-duals
which is given as follows.

Theorem (Theorem 4.3.18). Let M and M be a T-dual pair and L = (S, F) a locally
T-dualizable brane of M. Then, L has a T-dual if and only if

q(cy;) € H(m(S),Tg N H(Vs)).

7(S)

Here, ¢, is the Chern class of M, q is a map induced by a morphism of local systems and
I'{ N H(Vg) is a sub local system of the dual of I's depending on F.

The existence of an affine torus subbundle in a non-trivial affine torus bundle is obstructed by
the Chern class and the monodromy. Theorem 4.3.18 is a direct consequence of this constraint

Our second set of results is the description of a T-duality transformation for "physical branes"
which are U(n)-bundles with connections supported on affine torus subbundles. We first focus
on rank one branes, that is U(1)-bundles. We build on our treatment of generalized branes, so
we restrict to connections whose curvatures are invariant two-forms. These results are partially
covered by [CLZ18] where T-duality is worked out for projectively flat U(d)-bundles supported
on affine torus subbundles in a special class of affine torus bundles. Our method differs from
the method of [CLZ18] and we expand to a more general class of torus bundles, specifically to
ones without smooth sections. On the other hand, we only treat rank one bundles and a very
specific case of higher rank bundles.

Our first theorem parallels Theorem 4.3.14 in that we first assume that the base 7(S) of the
submanifold S is contractible. We upgrade the two-form P € Q*(M x g M) from Theorem
4.3.14 to a U(1)-bundle with connection P, the relative Poincaré bundle.

Theorem (Theorem 7.2.7). Let S C M be an affine torus subbundle such that 7(S) is
contractible. Let L — S be a U(1)-bundle with connection as such that the curvature 2miF' is
invariant. Then, L = (S, F') is a locally T-dualizable generalized brane and the following hold.

1. There exists a unique generalized T-dual (S’A, [) of (S, F) such that for any leaf Z of
the foliation on S x sy M projecting onto S, the U(1)-bundle with connection

z/Z =pzL ®P|z

is trivial when restricted to the fibers of p, : Z — S.

4



2. For any leaf Z as in 1., we define the pushforward

as the direct image of the sheaf of fiber-wise flat sections of L. Then, E is a projectively
flat U(d?)-bundle with connection independent of Z, and the curvature of the connection
is given by F - Id € Q?(S,u(d?)).

3. Finally, there exists a projectively flat U(d)-bundle L — S such that
E=LeUd).

The curvature of the connection on L is - Id € Q(S,u(d)).
We say that (L, S) is the T-dual of (S, L).

The proof relies on techniques borrowed from many sources. We represent the U(1)-bundles
with connections by factors of automorphy. This description was used in [BMP01, BMP02],
in particular, the Poincaré bundle is described there.

We follow the technique of T-dualizing branes given in [AP98] and [BMPO01, BMPO02], that is
we pull back the U(1)-bundle L to the correspondence space and tensor it with the Poincaré
bundle. When L is flat on the fibers of S, the resulting bundle is flat on the fibers of
the projection S X (s M — M. Then one can take fiber-wise flat sections to define the
pushforward.

When L is not flat on the fibers, however, neither is its pullback to the correspondence space.
Here we use an idea from [GJKO04] to restrict to the leaves Z defined by the underlying
generalized branes (1.0.2). The restriction is now flat on the fibers of Z — S and we can
take flat sections to push forward as we do in Part 2.

It turns out, however, that the resulting image is not the genuine T-dual. Instead, it is the
T-dual tensored with a trivial bundle (cf. Part 3.). We demonstrate that one can recover the
genuine T-dual using techniques inspired by the Fourier-Mukai transform.

We generalize the local theorem to T-dual affine torus bundles with non-zero Chern classes.
To do this we introduce gerbes and topological T-duality based on Baraglia's work [Bar15]. In
this setting, T-dualizable branes are given by submanifolds endowed with bundles twisted by a
gerbe and we also re-define the Poincaré bundle as a twisted U(1)-bundle. We start with a
pair of topologically T-dual affine torus bundles with torsion Chern classes M and M endowed
with gerbes G and Q Our final theorem is as follows.

Theorem (Theorem 7.3.15). Let S C M be an affine torus subbundle and L — S a U(1)-
bundle with connection twisted by G|s. Let F' € Q?(S) be the curvature of the connection on
L. Then, (S, F) is a locally T-dualizable generalized brane and the following holds.

1. There exist global affine torus subbundles Z' C S X (g M, such that over any contractible

open set U C 7(S) the submanifold Z|y is a leaf of the local foliation of S X M
corresponding to the locally T-dualizable brane (S|v, F).

5



1. INTRODUCTION

2. There exists a submanifold Z C S X (s) M as in 1., such that the twisted line bundle

p*L&P is trivial on the fibers of p,, : Z — S. Moreover, over Z we have an isomorphism
between twisted U (1)-bundles

pPLRP =Ly
such that Ly is twisted by the gerbe f)*ZG

3. The T-dual (S, L), locally constructed as in Theorem 7.2.7, is a rank d T-dualizable
brane on M.

In the final section of this thesis, we study the relationship between T-dual generalized branes
and T-dual physical branes. Our final theorem concerns higher-rank T-dual branes with
projectively flat connections. These T-dual pairs were treated in [CLZ18] for affine torus
bundles that admit sections. We extend these results to torus bundles with torsion Chern
classes and to branes twisted by gerbes.

Theorem (Theorem 7.4.4). Let (S, F) and (S, F) be a T-dual pair of generalized branes such
that there exists a global submanifold Z C S x ) S asin (1.0.2). Let H be the fiberwise
component of F', and suppose that in a local symplectic frame {ju} of I's it can be written as

Let m = [];_; m; and n = [I;,, n;. Then, there exist flat gerbes G' and G on S and § such
that the following holds.

1. Overany Z C S Xns) S asin (1.0.2) the twisted Poincaré bundle is a trivialization of
ﬁ}@l ® (pyG')~t. Moreover,

A

G'®(Gls) ' =G and G ®(Glg)”!

I

7Go
where Gy is a gerbe on m(S).

2. Forany Z C S X5 S asin (1.0.2) there exists U(1)-bundles L and L on Z twisted
by p5G’ and f)*ZQI such that we have an isomorphism of gerbe trivializations

§(L) ®8(L)~"1 = 6(P). (1.0.3)

Moreover, AL is trivial on the fibers of p; : Z — S and L is trivial on the fibers of
Dy Z —S.

3. There exists a G'-module E of rank m on S and a Ql—module E of rank n on S such
that

E®U(m) = (pz).L and E@U(n) = (py).Ly. (1.0.4)
Moreover, the connections on E and E are projectively flat with curvatures given by

Fp=2miF - Id € Q*(S,u(m)) and Fj=2miF -Id € Q*(S,u(n)).

6



That is, for any pair of generalized T-duals, we can find higher-rank T-dualizable branes over
S and S which are T-dual in the sense of (1.0.3) and (1.0.4). Moreover, the connections of
these higher rank branes are projectively flat and the underlying generalized branes determine
their curvatures.

Our results apply to general branes, not just A or B-branes. We show that, in the appropriate
context, we recover the Fourier-Mukai transform and we explore T-duality between BBB and
BAA-branes through specific examples.

Organization of the thesis. Chapter 2 contains the necessary background on affine torus
bundles and algebraic integrable systems and we introduce the semi-flat hyperkahler structure.
We define it with respect to a flat connection on an algebraic integrable system. This slightly
extends the original definition given by Freed [Fre97].

In Chapter 3 we give the necessary background on generalized geometry and we introduce
generalized branes. We spend a section studying the structure of BAA-branes. We show that
whenever the leaf space of a coisotropic brane is a manifold, the brane structure descends to a
hyperkahler structure with an indefinite metric on the leaf space.

Proposition (Proposition 3.2.8 and Proposition 3.2.9). The leaf space of a coisotropic BAA
brane is hypercomplex. Moreover, there exists a symmetric non-degenerate two-tensor on the
leaf space, that is a pseudo-Riemannian metric, compatible with all three complex structures.

This constrains the geometry of coisotropic branes. We also generalize a result of Kamenova
and Verbitsky [KV19, Theorem 3.1] to coisotropic submanifolds of integrable systems.

Theorem (Theorem 3.2.13). Let 7 : M — B be an algebraic integrable system. Let Z C M
be a connected complex coisotropic submanifold such that Z projects to w(Z) smoothly and
regularly and let © € w(Z). Then, either Z N7 (z) = m ' (x) or for any leaf L, of the
characteristic foliation, passing through a point z € (m|z) () the intersection L, N7~ *(z) is
a disjoint union of translates of a subtorus in 7='(z), which is independent of z. In particular,
Z, = Z NnY(x) is foliated by translates of a subtorus in 7! (x).

If moreover, the characteristic foliation on Z has closed leaves, w(Z) inherits a special Kihler
structure from B.

At the beginning of Chapter 4, we introduce T-duality in generalized geometry. This chapter
contains the first part of our main results. We first show that on T-dual affine torus bundles
endowed with flat connections, the semi-flat hyperkahler structures are indeed T-dual.

Theorem (Theorem 4.2.4). Let M and M be algebraically integrable systems which are
T-dual in the sense of generalized geometry. Assume that M and M are endowed with
flat connections and the corresponding semi-flat hyperkahler structures. Then, the semi-flat
hyperkahler structure on M is T-dual to the semi-flat hyperkahler structure on M.

A local version of this theorem was already shown by Hitchin in [Hit99b], the novelty of our
treatment is that we put the metric on affine torus bundles globalizing the result of Hitchin.

After this, we turn our attention to generalized branes. We introduce T-duality for generalized
branes without restricting to A or B-type branes based on [CG10]. We define the class of
"locally T-dualizable" generalized branes. We construct the T-duals of locally T-dualizable
generalized branes over a contractible base (Theorem 4.3.14), and finally, we study whether

7
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locally T-dualizable branes admit global T-duals over a non-contractible base. We find that
there is a topological constraint to the existence of such T-duals (Theorem 4.3.18).

Chapter 5 is dedicated to the study of holomorphic line bundles on a complex torus. This
chapter motivates our treatment of T-duality. We describe the Fourier-Mukai transform of
holomorphic line bundles supported on affine subtori in an algebraic torus. In this chapter, we
also introduce factors of automorphy which are our main tools in generalizing this section’s
results. We describe the Fourier-Mukai transform using factors of automorphy.

In Chapter 6 we start working with "physical branes". We treat them as submanifolds endowed
with principal U(d)-bundles and connections. That is, we work with the frame bundles of
Hermitian vector bundles with connections instead of the vector bundles themselves. We
develop the theory of factors of automorphy for principal U(d)-bundles with connections. This
is analogous to the holomorphic description and also was used by Bruzzo, Marelli and Pioli
[BMPO1, BMPO02] in their treatment of T-duality for A-branes. We prove several technical
theorems analogous to the ones in Chapter 5.

Chapter 7 contains our main results about the T-duality of U(1)-bundles. We first describe
T-duality for U(1)-bundles supported on a single torus (Theorem 7.1.1). We show that
for bundles compatible with a complex structure the T-dual agrees with the Fourier-Mukai
transform. We then extend the factor of automorphy description to U(1)-bundles on a trivial
family of tori and prove Theorem 7.2.7. In Section 7.3, we introduce gerbes and topological
T-duality and prove Theorem 7.3.15. Finally, we prove Theorem 7.4.4 by first proving a local
version and then extending to a general base.

In Chapter 8 we conclude this thesis with a few possible extensions of our results.



CHAPTER

Affine torus bundles and integrable
systems

The starting points of SYZ mirror symmetry [SYZ96] are symplectic manifolds which admit
special Lagrangian torus fibrations. In this thesis we restrict our attention to fibrations with
smooth fibers and affine structure groups, that is to affine torus bundles and integrable systems.
In this chapter, we introduce these geometric objects and their properties which are needed in
the next chapters.

In the first section, we recall the linear algebra of compact tori, both real and complex, based
on their treatment in [BLO4]. In the second section, we introduce affine torus bundles following
[Barl5] and we define connections on them with special attention to flat ones. We also
explain how the Leray spectral sequence can be used to calculate the cohomology and its
degeneration when the torus bundle admits a flat connection. The third section focuses on
algebraic integrable systems, which are special cases of affine torus bundles admitting flat
connections. We recite the work of Freed [Fre97] who showed that the base of algebraic
integrable systems carry geometric structures called special Kahler structures. The end of
section 3 and section 4 introduces semi-flat hyperkahler structures on algebraic integrable
systems which are induced by a special Kahler structure and a flat connection.

2.1 Tori

In this section, we define real and complex compact tori and their duals. Moreover, we
introduce the most important morphisms of tori, translations, projections and isogenies.

A real torus T'= V/T" is defined as the quotient of a real vector space V' by a full rank lattice
I' C V. It inherits the abelian group structure from V. We denote the translation by an
element z € T as
t,: T —T
Y=yt

Let T'=V/I'r and T" = W/T'y» be tori. A homomorphism f : T — T’ can be lifted to a
homomorphism of the universal covers F': V' — W which we call the analytic representation

of f.
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Definition 2.1.1. An isogeny is a homomorphism f : T — T" with finite kernel. The degree
of an isogeny is deg(f) := |Ker(f)|.

The analytic representation of an isogeny is an isomorphism F': V' — W which induces an
injection F': I'r — I'7v. Hence, we may assume that ' = ¢d and I'r C I'7. In particular, we
have a short exact sequence of abelian groups

0—=I'r—I'r—>G—0

where |G| = [I'7v : I'r] = d, the degree of f. With the identification V' = W we also have
d-T're CTrp.

Let f : T — T’ be a homomorphism. Then, im(f) C T" is a subtorus and ker(f) C T is
a subgroup. Moreover, if we denote by ker(f)o the connected component of 0 in ker(f),
then ker(f)o is a subtorus of T and a finite index subgroup of ker(f). In particular, we can
decompose f as a projection g to T'/ker(f)o and an isogeny f’ onto its image.

T

! im(f)

X /f (2.1.1)

T/ker(f)o

This decomposition is called the Stein factorization of f. The proofs of these statements can
be found in [BLO4, Chapter 1.1] applied to complex tori.

Complex tori. Let V = CY9 be a g-dimensional complex vector space and I' C V' a full rank
lattice. Then, the torus
X =V/T

inherits the complex structure V. We call X a complex torus. A complex torus can be endowed
with the structure of an abelian variety if it admits a polarization, that is a Hermitian inner
product H : V x V — C which is positive definite and its imaginary part takes integer values
on I'. Homomorphisms of complex tori are holomorphic maps.

Let Y = W/T'y be another complex torus. If there is an isogeny f : X — Y and X is an
algebraic variety so is Y. Indeed, if H is the polarization on X and d = deg(f), then d - H is
a positive definite Hermitian form on V' = W whose imaginary part takes integer values on
I'y, sinced-T'y C I'y.
Dual tori. Let "= V/T be a real torus. Then, the dual torus is defined as

Tg = V*/TV, (2.1.2)
where TV C V* is the dual lattice defined by

V:={y"eV* |+ CZ}.

If X =V/T" is a complex torus we can also endow the dual torus with a complex structure.
We follow [BL04, Chapter 2.3]. Let

Q := Homg(V,C) (2.1.3)

10
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that is, the space of C-antilinear homomorphism from V' to C. Let us define the dual complex
lattice as

Ié:={y" € Q|im(y*()) C Z}. (2.1.4)
The dual complex torus is then given by
Xe = Q/TY.
We view V' as a real vector space with a complex structure I. Then

1
Vil = {2(1) —ilv) |v € V}

is again a real vector space with complex structure given by multiplication with ¢ € C. We
have (V,I) = (V*9,4) via the map v — 3(v—ilv). The dual vector space V* = Homg(V,R)
is endowed with the dual complex structure I*. For f € V*, we have I*f(v) = f(Iv) for all
v € V. Then, the space of C-antilinear forms is given by

Q= (V) = {f:V > C| fIv) = —if(0)} = {f +il'f | f € V"),

That is, (V*)%! = (V, —TI*) via the map f — i(f + i[* ). The multiplication by 7 is added
so that we have N
v =, Ty, F o i(f il f), (2.1.5)

In particular,

Xe = (V5 —I")/TV = Xp. (2.1.6)

We will denote the dual torus simply by X both in the real and complex cases.

2.2 Affine torus bundles

Fiber bundles with torus fibers are key players in T-duality. The most general mathematical
framework of T-duality is due to Baraglia [Barl5] who extended the theory to affine torus
bundles endowed with gerbes. In this section, we focus on affine torus bundles. We define
these objects, their monodromy local systems, vertical bundles and Chern classes and introduce
invariant forms on them. We describe several ways a connection on such fiber bundles can be
viewed and finally introduce the Leray spectral sequence which abuts to the cohomology.

Let 7" = R™/Z™ be the standard torus. We denote by Aff(T™) the group of affine transforma-
tions of T, that is Aff(T") = GL(n,Z) x T™ with GL(n,Z) acting on R" via the standard
representation preserving the lattice Z".

Definition 2.2.1. An affine torus bundle on a manifold B is a torus bundle 7 : M — B with
structure group Aff(7T").

In particular, there exists an Aff(7") principal bundle P — B such that

P XAff(Tn) T = M. (227)

11
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We may also identify M with P/GL(n,Z). Indeed, suppose we trivialize P on a cover {U;}
of B with transition functions (A;;, ¢;;) € GL(n,Z) x T™. Over U; the maps

P =~ U; x Aff(T™)

/ \

M|Ui it UZ X Aﬂ:(Tn) XAff(Tn) Tn L P/GL(n, Z)|Uz = Uz X TTL

are given by p(b, (A,t)) = [b, (A,1),0], q¢((b, (A,t)) =t and r[b, (A, 1), z] = (b, Ax +t) so we

have
)(1, =t

Therefore locally M|y, = P/GL(n,Z)|y, and the maps are compatible with the transition
functions.

Using the homomorphism ¢ : Aff(T") — G L(n,Z) we can define a principal GL(n,Z)-bundle

[b, (A,1),0] ~ [b, (A, (b, A-0+1).

Py:=P x4, GL(n,Z) (2.2.8)
which encodes the “linear part" of the transition functions of P and of M.

Definition 2.2.2. The monodromy local system of M is the local system I' := Py X z2)
Z™ — B and the vertical bundle of M is the flat vector bundle V' := Iy Xgpn,z) R", where
the associated bundles are constructed via the standard representations.

In this work, we assume every affine torus bundle to be orientable in the sense that V' is
orientable.

There are many other ways to define I" and V. We will explain a few here that will be used later.
First, notice that the vector bundle V' is the adjoint bundle of P. Indeed, Lie(Aff(7T")) = R™
and the adjoint action of Aff(T™) is given by

Adianso = j (A t)(1, s)(A_l, —A- lt) d (1, As) = Asy,

S$=50 dS S$=50

the action of ¢((A,t)) on R™. We then have

P X GL(TT,, Z) X GL(n,Z) R"=P X Ad Lle(AfF(T")) = ad(P)

Secondly, for any b € B the constant vector fields on the torus m—!(b) form a vector space
Vi, which glue together to form the vector bundle V' — B. The lattice I' C V' is given by
the constant vector fields whose flow is 1-periodic. Finally, we have V = (R'7,R)* and
I = (R'7w,Z)* where R and Z are the constant sheaves on M, since the stalk of R'7,Z at
b € B can be identified with H' (77!(b), Z) and that of R'7,R with H'(7~'(b), R). Moreover,
the vertical bundle pulled back to M can be identified with the subbundle of vertical vectors
in T M, that is the kernel of 7,.

12
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The vector bundle V' and lattice [' define a group bundle
My :=V/T (2.2.9)

whose local sections act on M by fiberwise translation. Choosing local sections of M over U;
we may identify My|y, = M|y, and the difference between M, and M can be measured by
the linear part of the transition functions viewed as sections ¢;; € I'(U;;, Mp). Let C{® and
C3y, be the sheaves of smooth sections of V' — B and M, — B respectively. The {c;;} form
a class in H'(B,C37)), and via the short exact sequence of sheaves

0—=T—=Cr —Cy, —0
using that C{* is acyclic we find that {c;;} determines a class ¢ € H*(B,T).
Definition 2.2.3. The class ¢ € H*(B,T) is called the Chern class of M.

The monodromy local system and the Chern class completely determine M according to the
following theorem.

Theorem 2.2.4 ([Barl4] Proposition 3.1, 3.2). Let B be locally contractible and paracompact.
To every pair (T, c), where T' is a Z"-valued local system on B and c € H*(B,T'), there is an
affine T™-bundle m : M — B with monodromy local system I" and twisted Chern class c¢. Two
pairs (I'1,c1), (Iy, ¢o) determine the same T™-bundle (up to bundle isomorphisms covering
the identity on B) if and only if there is an isomorphism ¢ : T'y — T’y of local systems which
sends ¢, to cy under the induced homomorphism ¢ : H?(B,T'1) — H?*(M, T'5).

Invariant forms. The group bundle My — B associated to an affine torus bundle M — B
has a canonical Ehresmann connection. Indeed, the vector bundle V' — B has a canonical flat
connection by requiring the sections of I to be flat. This connection descends to My = V/T" and
we call it the Gauss-Manin connection. Another way to describe it is that My = Fy X gz 1"
and Py is a principal GL(n,Z)-bundle on B which has a unique flat connection. The Gauss-
Manin connection is the induced connection. A principal GL(n,Z)-bundle is defined by a
representation of the fundamental group of B in GL(n,Z). This representation is also the
monodromy of the Gauss-Manin connection.

Even though M is not a principal bundle we can define invariant forms on it. Recall that P
can be viewed as a principal GL(n,Z)-bundle over M and let us denote by p : P — M the
projection. We use Definition 4.1. from [Bar15].

Definition 2.2.5. A differential form a € Q*(M) is said to be invariant if p*a is an Aff(T™)-
invariant form on P.
A form o on M pulls back to a GL(n, Z)-invariant form and we can write any (A, t) € Aff(T™)
s (1,t) - (A,0) so
RzﬁAyt)p*Oé = (Ra0Ruy)p'a= Ra,t)RzkA,o)p*Oé = R?l,t)P*Oéy
and p*« is invariant if and only if it is invariant under the action of 7" < Aff(T™).

We can view this action from the perspective of the action of My on M. Let us denote by
ts the translation along the fibers of M by a (possibly local) section s of M. Locally, over
U; C B we can write P|y, = U; x Aff(T") and the action of (1,t) € Aff(7T™) is given by

(bv (AOatO)) ' (17t) = (ba (AOt + tO))

13
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so we have that
PR (b, (Aot +t0))) = tase o p((b, (Ao, 1)),

where by Agt we mean the flat section of M, passing through (b, Agt). Notice that the locally
defined map
P xT" — Xy mapping (b, (Ao, to)) X t+— (b, Aot)

is just the quotient map Py x T™ — M, precomposed with P — F; so it is well-defined
globally. We thus have

P(Ray(2)) = tywpp(x) forany z € P,

so the action of T™ on P corresponds to the action of flat sections of M, on M. Therefore
the following lemma is clear.

Lemma 2.2.6. A differential form o on M is invariant if and only if tiac = « for any flat
local section s of Mj.

Similarly to principal bundles, the cohomology of an affine torus bundle can be computed
using invariant forms. We will use the following statement.

Lemma 2.2.7 ([Barl5] Corollary 4.1.). Any cohomology class h € H*(M,R) has an invariant
representative H € QF(M).

Connections. We can think of a connection on an affine torus bundle 7 : M — B in several
different ways. Firstly, as an Ehresmann connection, that is a split of the tangent bundle T'M
into horizontal and vertical subbundles

TM =Zn*TB&® 'V,

where 7V = ker(m.). We may furthermore require the split to be invariant under the
action of My on M, that is for any flat local section s passing through x € M we have
(ts)«(T T B)y = (7"TB)y, (a)-

From the discussion in the previous section, it is clear that such a connection can equivalently
be represented by an invariant 1-form A € Q'(M,7*V) which induces an isomorphism
A : ker(m,) — 7V. Here by invariant form we mean a form A such that its pullback
prA € QYUP,p*m*V) = QN(P, Lie(Aff(T™))) is equivariant with respect to the action of
Aff(T™). The horizontal subbundle is given by ker(A). Clearly, p*A is a principal bundle
connection on P and any connection on M is induced by a principal bundle connection on P.

In particular, the curvature of the connection p*A is a closed two-form F € Q*(B, ad(P)) =
Q?(B, V) which can also be understood as the obstruction to the integrability of the horizontal
vector bundle on M. More precisely, for any X, Y € T'B, if ( )¥ represents the horizontal lift
we have

FX,Y)=[X"v" - [X, V)",
where we identify F'(X,Y) € V with a constant vertical vector field on M.

The curvature form F represents a cohomology class in H*(B, V) and it is clear that it is the
image of the Chern class ¢ under the morphism H?(B,T') — H?(B, V). In particular, when
the Chern class of M is torsion, the decomposition

TM =7"TB o r*V

14
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is into integrable subbundles and we may find local coordinates representing the split.

Indeed, suppose that A € Q'(M, 7*V) is a flat connection on M. Let U € B be a contractible
open set and choose a local frame {vq,...,v,} of V|y. The v; pull back to an invariant frame
{v{'} of 7V and we may use A to identify the v; with an invariant frame of ker(m.). We
have

[UZA,,U;A] = [Ui7vj]A =0,
where we use that V' is the adjoint bundle of the overlying principal bundle and so its sections
can be endowed with a Lie bracket.

Similarly, a coordinate frame {e;} for TB can be lifted to an invariant frame {e/} of the
horizontal bundle. Since A is flat and {e;} come from a coordinate frame, we have
H _H H
e ) €5 | =[ei,e5]" =0.
In particular, {eff, v} is an integrable frame of T'M|; but the v cannot yield global
coordinates on the fiber. Nonetheless, choosing {v;} as a frame of I'|y; inside V| allows us

to integrate the v:! to 1-periodic coordinates.

Choosing these coordinates for a cover {U;} of B gives us an atlas {z’,p’} of 1-periodic
coordinates {p'} on the fiber and base coordinates {2/} such that {9,,} span the horizontal
distribution. In these coordinates the transition functions must be of the form 2’ = ¢;;(z)
and p’ = A;;jp + ¢;; moreover, ¢;; € I'(U;;, V/T') must be constant.

In conclusion, a choice of flat connection is equivalent to a choice of local 1-periodic coordinates
realizing the isomorphism
M|Ui = V/P|U1

such that the transition functions are constant.

Leray spectral sequence. Let f: M — B be a continuous map of topological spaces and
let F be a sheaf on M. To the data (M, B, f, F) we associate the Leray spectral sequence
EP4(f, F) associated to the composition of f, with the global sections functor converging to
the sheaf cohomology of F on M. In particular, there is a filtration

0=Frtir c P C ... C FY C F" =H"(M, F)
such that EP4(f, F) = FPPte/FPHLrta and the second page is given by H? (B, R f,F).

Let 7 : M — B be an affine torus bundle with monodromy local system I' — B and Chern
class c € H?(B,T). Let us first consider the Leray-Serre spectral sequence associated to the
constant sheaf Z. The second page is given by

E}(r, Z) = H*(B, R'm.Z) = H(B, AT")

and the differentials are given by cupping with the Chern class and contracting the coefficients
([Bar14] Proposition 3.3.).

Considering the same spectral sequence with R coefficients we have that
EYY(m,R) = HP(B, NTV™).

Moreover, the change of coefficients from Z to R induces a morphism of spectral sequences
EY(m,Z) — E%%(m R) so the second page differential d5 is given by cupping with the image
of cin H*(B,V).
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Lemma 2.2.8. Let m : M — B be an affine torus bundle. Then, the Leray spectral sequence
EP4(m,R) degenerates on the second page if and only if the Chern class of M is torsion.

Proof. Since we assume V' to be orientable, if rank(V) = n then A"V* = R. Moreover, via
the pairing AFV* @ A" FV* — A"V* = R we get an isomorphism AFV* = A"~V Consider
now the segment ds : HO(B, A"V*) — H2(B, A" 'V*) of E5(m,R). Using the established
isomorphisms it reads as

dy - H°(B,R) — H*(B,V), 1+ ][]

where [c] represents the image of the Chern class c in H2(B, V). Therefore, if d5 is zero, so is
[c] and ¢ must be torsion. |

On an affine torus bundle, there is also a filtration on differential forms
0=F""Q" Cc F"Q" C ... C F°Q" = Q"(M)

where

F'Q" ={w € Q" (M)| thitvyeetvyy, sw =0V Vi, ..., V; € TV}

and a choice of connection splits this filtration. The indexing is done in the opposite way to
match the filtration coming from the Leray spectral sequence. Indeed, when the connection is
flat, it also splits the filtration on cohomology coming from the Leray spectral sequence. In
particular, we have

H"(M,R) = @ HP (B, N1V™).

ptq=n

2.3 Algebraic integrable systems

Algebraic integrable systems are a special case of affine torus bundles endowed with interesting
geometric structures. The base of an algebraic integrable system is special Khaler and the total

space carries a semi-flat hyperkahler structure. In this section we introduce these structures
based on work of Freed [Fre97].

Definition 2.3.1. An algebraic integrable system is a holomorphic surjection 7 : M — B
between smooth complex manifolds such that the following hold

(1) M carries a holomorphic symplectic structure n € Q*°(M),

(2) the fibers of 7 are compact complex Lagrangian tori, and

(3) there exists a class @ € H?(M,R) such that its restriction o, to each fiber M, lies in
H?(M,, Z) " H (M,) C H?(M,,R) and defines a positive polarization.

A positive polarization on a complex torus M, =V, /T, is a non-degenerate Hermitian form
on V, which is positive definite and whose imaginary part takes integer values on I',. A
polarization can also be defined by a cohomology class o, € H*(M,, Z) N HY!(M,) as follows.
Let Fy € Q?(M,,R) be the unique invariant representative of a;. Then, we may consider E,
as an alternating bilinear form on V}, and define the corresponding Hermitian form as

Hy(v,w) = Ep(Iv,w) + iEp(v, w).
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We say that a;, € H?*(M,R) defines a positive polarization if H;, does. Note that this
convention differs from the convention we use for Kahler geometry. In a Kahler triple (g, I, w)
we take w = gI so the associated Hermitian metric is h = g — iw with Im(h) = —w.

Viewed as real manifolds w : M — B is an integrable system with respect to both Re(n) = o
and Im(n) so we can utilize the theory of real integrable systems, see for example [Dui80]. In
particular, if the fibers are compact Lagrangian submanifolds they are necessarily affine tori.
Indeed, let us choose local coordinates {z'} on some open U C B. Then, {f; = z' o} are
dimg (M) /2 Poisson commuting functions. The Hamiltonian flow along the corresponding
vector fields X;, = o~ 'df; endows the fibers with the affine torus structure.

For each b € B then we may consider the vector space V, of constant vector fields with
respect to the Hamiltonian action. Inside V}, there is a lattice I'y of vector fields whose flow
is one-periodic. The local vector fields Vj, glue together to a vector bundle V' — B and the
lattices to a local system I' — B. In conclusion, M is an affine torus bundle with monodromy
local system I' and Chern class defined as before.

Let X € V} be a constant vector field on the fiber 7=1(b). Then, since the fibers are Lagrangian
Lx0 is a basic one-form and we get a symplectic isomorphism

V = T*B|y.

The image of I" under this symplectomorphism is a Lagrangian submanifold, which we still
denote by I', in T*B. Since I is Lagrangian it must be spanned by closed one-forms viewed as
sections of T*B. Finally, via a Lagrangian section s : U — M we have a symplectomorphism

T*B/T|y = M|y.

In the algebraic case, we have a holomorphic symplectic form 7 with Re(n) = o and
Im(n) = I*o. Since 7 is a holomorphic map pulling back holomorphic coordinates {z‘} from
the base induces complex valued Poisson commuting functions {¢; = z' o7} on M. The
complex structure on the fibers induces a complex structure on V and V = T* B becomes a
holomorphic symplectomorphism.

In particular, the fibers of 7 : M — B are complex tori but the existence of polarization is a
non-trivial addition which allows us to define the special Kahler structure on the base. The
polarization also endows the fibers with a Kahler structure and by the relative hard Lefschetz
theorem the Leray spectral sequence for m : M — B degenerates on the second page. In
particular, as we have discussed before M as an affine torus bundle must have torsion Chern
class.

Special Kahler manifolds. Special Kahler geometry was first considered in the physics
literature as the geometry of scalars in four-dimensional N = 2 supersymmetric gauge theories.
A clear mathematical description was given by Freed in [Fre97] which we follow here.

Definition 2.3.2. A special Kahler structure on a manifold B is a triple (w, I, V) where w is
a symplectic form, I a compatible complex structure and V is a torsion-free, flat, symplectic
connection satisfying dv/ = 0.

In particular, (w, ) form a Kahler structure on B. In the definition we consider I as an
element of Q'(T'B) and dy as the operator Q'(T'B) — Q*(T'B).
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Since V is flat we may choose a flat local frame {¢;} for TB. If {¢'} is the dual frame of
T*B we must have de! = 0. Indeed, for X,Y € T'B we have

de'(X,Y) = X(Y) = V(X' — [X, Y],

which, since VyY = X(Yi)ei + YV e, is exactly the e; component of VyY — Vy X —
[X,Y] = 0. In particular, locally ¢’ = dz* and the {2’} form coordinates since [e;, e;] =
Ve.e; — Ve,e; = 0. We call coordinates {z'} flat whenever the corresponding vector fields
{0} are flat with respect to V.

The connection is symplectic, that is w is a parallel form with respect to V. In particular, in
the flat coordinates, w must have constant coefficients and by scaling we may choose the
{z'} to be flat Darboux coordinates. We can form an atlas of these flat coordinates and find

that the transition functions must be affine transformations preserving w, more precisely if
dim(M) = 2n we have

' =A-z+b A€ Sp2n,R), beR™

That is, a special Kahler manifold carries an affine structure.

Using flat coordinates, which do not have to be Darboux, one can show that the metric is
induced by a potential. This result is due to Hitchin.

Theorem 2.3.3. ([Hit99b, Section 4]) Let (B,V,w,I) be a special Kihler manifold and let
{z'} be flat coordinates. Then the Riemannian metric g is

8%

D2iDmd dr' ® dx

9

for some real function ¢. In fact, ¢ is a Kdhler potential.

Indeed, if I = I'-2- @ du’ in flat coordinates then the condition dy/ = 0 reads

7 Ou?
oL Ol _,
ouk  ou’
Then, the metric g = —wI can be written as
9ij = —wiklf
where w;; are constant due to Vw = 0. Finally,
0gi 0L OIF  Oga
= —wW'— = —wjpp—— = :
ou! oul Yow — o

and hence the matrix g is locally the derivative of a function ¥ : R® — R". Since g;; is also
symmetric, ¥ is also the derivative of a function ¢, : R® — R.

Finally, the dual of the flat connection V on 7™ B is again a flat connection. It can also be
seen as a connection on the fiber bundle p : T*B — B so it induces a splitting of TT*B into
horizontal and vertical subspaces

TT*B = p*TB & p*T"B.
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The horizontal subspace at = € T*B is given by the space (s;).(T,¢)B) where s, : B — T'B
is a flat section through z. This splitting turns out to respect the complex structure of T B.
Moreover, since V is flat this splitting is into integrable subbundles. That is, if {z%,y;} are
flat Darboux coordinates on B, let {p;, ¢'} be the dual fiberwise coordinates on T*B. Then,
{2, yi,pi,q'} are coordinates on T™* B realizing the splitting.

Let € T*B with p(x) = b so the tangent space at z is given by T, 7*B = T;B @& T, B.
The base is Kahler so (g, /,w) endows T, B with a Hermitian structure. Moreover, T*B is
holomorphic symplectic and the holomorphic symplectic form 7 is in standard form in the
splitting. In particular, we can write the complex structure I of T*B and the holomorphic
symplectic structure 7 in matrix form as

H:(é [O> Re(n)=<_(}d Iod>, Im(n)z—H*Re(n)=<([) _OI*>. (2.3.10)

Using the Kahler form w on B the triple at T, 7" B can be extended to a hypekahler structure
with Re(n) = wy and Im(n) = wk. The rest of the structures are given in matrix form as

—1 _ .1
wﬂz<°g wa) J:(_Og 90) K:M:(B 0 ) (23.11)

These expressions are coordinate independent so wy, J and K are globally defined and since
the splitting of TT*B is integrable, J and K are complex structures. To show that the
triple (I, J, K) defines a hyperkahler structure on 7™ B it remains to show that wy, wy and wg
are closed [Hit87a]. Indeed, since dn = 0 we have dwy = dwg = 0 and in the coordinates
{2, yi, pi, '} we may write wy as

wp = dz' A dy; — dp; \ dq’

which is closed. The corresponding metric is given by

(g9 O
g_(o 9‘1)‘

The hyperkahler metric defined here is what we call semi-flat hyperkdhler metric. In the next
section, we will see that such a metric can also be defined on algebraic integrable systems.

Special Kahler geometry on the base of an algebraic integrable system. We have
seen that an algebraic integrable system 7 : M — B defines a flat connection on B. Moreover,
the horizontal distribution of the dual connection, considered as an Ehresmann connection
on T*B = V', is complex Lagrangian. In particular, flat sections of T*B must be closed
one-forms.

Indeed, let s : B — T'B be a flat section, that is 5.7 B is complex Lagrangian in T(T*B). If
{x%,p;}?", are dual coordinates on T*B, then the real standard symplectic form is given by
o = dr = d(p;dz"’). Moreover, s, T*B is Lagrangian if and only if s*c = 0. In coordinates

s(x) = (2%, s;(x)) so we have
s*oc = s*d(1) = ds*(7) = d(s;dz") = ds.
The canonical holomorphic symplectic form on T B is given by n = 0 —il*o where I represents

the complex structure on T B. Note that in general for a real two-from, F' the tensor [I* F' is
not a two-form, it happens precisely when F' is the real part of a holomorphic two-form.

19



2.

AFFINE TORUS BUNDLES AND INTEGRABLE SYSTEMS

Similar calculations show that a section s : B — T* B defines a complex horizontal subspace if
and only if s —iI*s is a holomorphic (1, 0)-form. Finally, the horizontal subspace is Lagrangian
with respect to I'm(n) if and only if dI*s = 0. That is, s is a complex Lagrangian section
precisely when ds = 0, dI*s = 0 and 9(s — il*s) = 0. It is easy to see that any two of these
conditions imply the third.

As we have discussed before, the cohomology class o € H?(M,R) can be viewed as a family
of alternating bilinear forms {E}} on V, = T} B taking integer values on T',. The dual forms
{—E; '} then give smoothly varying alternating bilinear forms on 73,3, that is a two-form w.
The significance of the sign will become clear later. Locally, we can find a symplectic frame
{pi,v;} for the {Ey}, that is

Ey(pi,vj) = —didij,  Ey(pi, pj) = Ey(vi,v5) = 0,

where d; € Z~o and d;|d; ;1. The vector d = (dy, ...,d,) is called the type of the polarization
E}, and it must stay constant over a connected base. In particular, w can be written locally as
w = d; 'v; A ;. Moreover, since {j;,v;} are flat we may integrate them to flat coordinates
{z",y;} such that {dz’, dy;} is an integral frame of I and such that

S
d;

w =

dy; A dz’. (2.3.12)

Clearly, Vw = 0 and since V is torsion-free dw = 0 as well.

Finally, w is compatible with the complex structure on T'B, since FE,, which agrees fiberwise
with —w™!, is compatible with the complex structure on T}’ B. The reason for the minus sign
is clear now. Due to our convention for the Kahler form (I,w) defines a Kahler structure on
B with positive definite Kahler metric [*w.

The compatibility with the complex structure I is equivalent to the existence of conjugate
special complex coordinates {z%,w;} adapted to flat Darboux coordinates {z*,3;}. That
is {z'} and {w;} are two sets of complex coordinates on B satisfying Re(z") = z' and
Re(w;) = y;. These coordinates can be found as follows. The flat Darboux coordinates induce
a frame {dx", dy;} of T which on each fiber can be identified with a cycles {+*, d;} generating
Hi(M,,Z). The holomorphic coordinates are then given by integrating the holomorphic
symplectic form over these families of cycles

dz'= | n, dwy=— [ 7.
Vi [

One can also show that in these coordinates

9 _1(5_7,.3)
0z 2\9xt Yoy )

where 7;; is the period matrix of the fibers.

The conclusion is the following theorem from [Fre97], first stated in [DW95].

Theorem 2.3.4 ([Fre97] Theorem 3.4.). Let (M — B,n, «) be an algebraic integrable system.
Then, the Kihler form w and the connection V constructed above comprise of a special Kahler
structure on B. Furthermore, there is a lattice 'Y C T'M whose dual ' C T*B is a complex

Lagrangian submanifold, and the holonomy of V is contained in the integral symplectic group
defined by I.
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There is a second part of this theorem which states that a special Kahler manifold B together
with a complex Lagrangian lattice I whose dual is flat, 7*B/T" = M, with the structure of an
algebraic integrable system. Indeed, the holomorphic symplectic structure of T*B descends
to 7*B/I" and the dual of the Kahler form w induces the polarizations on the fibers. This
algebraic integrable system has a well-defined zero section which is complex Lagrangian.

Even more is true, however. We saw that holomorphic symplectic structure on 7B can be
extended to a semi-flat hyperkahler structure which is invariant under translation by I' C T*B.
In particular, it descends to a hyperkahler structure on T*B/T" extending the holomorphic
symplectic structure and such that for each b € B the Kahler form wy restricted to the
fiber T B/I'y, = (My), agrees with minus the polarization. The minus sign is due to our
conventions.

2.4 Semi-flat hyperkahler structure on an algebraic
integrable system

In this section we show that via a flat connection, the semi-flat hyperkahler structure can
also be extended to the algebraic integrable system © : M — B. On the other hand, this
hyperkahler structure may not extend the holomorphic symplectic structure. In the real case,
if an integrable system has a smooth section then it is diffeomorphic to 7*B/I" but it is only
symplectomorphic if it has a Lagrangian section [Dui80, Theorem 2.1]. In the holomorphic
case, Lagrangian sections are replaced by complex Lagrangian ones but the obstruction remains.
This issue is further explored in the second half of this section.

As we have discussed before M has torsion Chern class, so any connection will define an
integrable horizontal distribution. We have seen that a choice of such a connection can be
viewed as a choice of an atlas in which the transitions between the fiber coordinates are
constant affine transformations. Since the base of M is special Kdhler we may also choose
the base coordinates to be flat Darboux and the coordinates on the vertical bundle as the dual
coordinates on T*B.

The construction of these coordinates is via smooth sections as follows. Let s; : U; — M|y,
be any smooth sections, where {U;} is a good cover of B. The Chern class is given by
c={c¢;} € HY(B,C>(T*B/T")) = H*(B,T) defined as

S; = S; + Cij Cij - Uij — T*UU/F
Since c is torsion there exists some r € Z- such that r - ¢ is trivial. In particular there exist
local sections n;; : U;; — I" such that

1
Cij — ;nij = ll — lj for sections lz : U,L — T*B/F

Then, via the action of My on M, s; = s, — [; are local smooth sections of M which
differ by flat sections of 7" B/T" over double intersections. This translates to constant affine
transformations between coordinates.

These smooth sections together with flat coordinates on the base and their dual coordinates
on the cotangent bundle decompose the tangent bundle of M into integrable vertical and
horizontal subbundles

TM =7"TB & n*T*B.
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Therefore, the semi-flat hyperkahler structure on V' 4 VV* extended to the vector bundle on
TB @ T*B pulls back to an Mjy-invariant structure on M. This is indeed a hyperkahler
structure by the integrability of the horizontal distribution. In this hyperkahler structure the
local sections s; defining the flat connection are complex Lagrangian and via these sections
M|y, = T*U;/T as hyperkahler manifolds. The conclusion is the following theorem, which is
a slight extension of Theorem 3.8 of [Fre97].

Theorem 2.4.1. Let (M — B,n,«) be an algebraic integrable system. Then to any flat
connection on M we can associate a semi-flat hyperkahler structure on M . In particular, M, =
T*B/T" carries a canonical semi-flat hyperkahler structure via the Gauss-Manin connection.

It is clear from this perspective that the semi-flat structure extends the holomorphic symplectic
structure on M if we can find coordinates for the horizontal distribution via holomorphic
Lagrangian sections. In particular, only if the flat horizontal distribution of M can be chosen
to be complex Lagrangian.

The obstruction to this can be explained via the short exact sequence of shaves
0—-I—AT"B)— AT"B/T") = 0,

where A denotes complex Lagrangian sections with respect to the canonical holomorphic
symplectic structure n on T B.

A section of T* B is a one-form £ on B. It is Lagrangian with respect to Re(n) = o if d§¢ = 0.
Indeed, 0 = dr where 7 is the Liouville one-form, so we have *o = £*(dr) = d(£*1) = dE.
The section is holomorphic, if and only if £ — iI*¢ is a holomorphic one-form on B. Finally, if

¢ is Lagrangian with respect to Re(n) and holomorphic, it is also Lagrangian with respect to
Im(n).

The relevant part of the long exact sequence of cohomology is
.— HY(B,AN(T*B)) - HY(B,A(T*B/T)) — H*(B,T) — ...

Suppose that M — B has a smooth section s : B — X. Let y; : U; — M|y, be local
complex Lagrangian sections which define a class in H'(B, A(T*B/T)). Since it is in the
kernel of the boundary morphism it can be lifted to a class € H (B, A(T*B)) represented
by sections p;; : Uij — A(T*Uy;). Since C*=(T*B) is an acyclic sheaf H'(B,C>(T*B)) = 0
so there exist sections &; : U; — T*U; satisfying p;; = & — &;. That is, the sections s and ;
over U; are related as s|y, + & = p; where we take the image of & under T*B — T*B/T".

Let us take dual coordinates (x,p) = (%, p,) with respect to the sections s|y, and (Z,p) =
(z', p;) with respect to u; on M|y,. The two coordinates are related by 7 =z and p = p + &,.
Writing ; as a one-form &; = x,dz® we define Fi,5 = 0,xp as the matrix of differentials, so
we have d¢; = (F — F71),pdz™ A dz”. In the coordinates (,p) the holomorphic symplectic
structure (I, 0 — I*o) on M is in the standard form. Transforming to the coordinates (x, p)
we find

F—FT 1 1 0 N FT'[ - I*F —I*
o (FE N i (o ) o (I D). e

We can identify (F — FT),sdz® A dzP + i(I*F — FTT),3dz® A dz® with the pullback of
the holomorphic symplectic form on M via the section s : B — M. It is shown in [BDV20,
Proposition 2.10] that this pullback must be closed and have Hodge type (2,0) + (1,1).
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We see that the obstruction to the existence of a global complex Lagrangian section lies in
H!'(B, A(T*B)) and can be represented by a complex two-from on the base. If M — B is
an algebraic integrable system with torsion but non-zero Chern class, we have no chance of
finding a smooth section. On the other hand, if - ¢ = 0 for some r € Z-0 we may choose
local sections s; : U; — M such that s; = s; + rl 4t - n;; where r=t -n;; are flat sections
of T*U;; and also r-torsion elements of 7U;; /T

We can explain this in a coordinate-free way as follows. On B there is a short exact sequence
of local system

0 [ -5 7T T'[r] 0

where the local system I'[r] can be identified with the r-torsion points of 7*B/I'. Via the
induced map on cohomology H?(B,T") — H?(B,T") the Chern class ¢ of M maps to zero.
That is, c lies in the image of the boundary morphism H!(B,T'[r]) — H?(B,T) of the long
exact sequence which is equivalent to the representation of ¢ as the collection of sections

{r=t-ni;}.

The morphism of lattices -7 : I' — I'" induces a map of affine torus bundles p : M — M,
where M is the affine torus bundle corresponding to the local system I' with zero Chern class
(2.2.9). In the coordinates associated to the local sections s; of M and a global flat section
of My we have p(x,p) = (z,7 - p). The map p is a degree r*" isogeny on the fibers.

Locally we can write the sections s; as u; + & for some complex Lagrangian sections y;
of M and one-forms &; on the base. Then, the holomorphic symplectic structure of M is
given by (2.4.13) in the coordinates corresponding to the s;. We can then endow M, with a
holomorphic symplectic structure such that p is a local holomorphic symplectomorphism.

Now suppose that M, endowed with the induced holomorphic symplectic structure has a global
complex Lagrangian section i : B — M. Then, over a contractible cover, we may choose
preimages 1; of 1 which will be complex Lagrangian and which will differ by an r-torsion
element over double intersections. The conclusion of the previous section is the following
theorem.

Proposition 2.4.2. On an algebraic integrable system M there exists a semi-flat hyperkahler
structure extending the holomorphic symplectic structure if and only if My has a complex
Lagrangian section.

Example 2.4.3 (Higgs bundle moduli spaces). Let ¥ be a compact Riemann surface of genus
g > 2. Let K be the canonical bundle. A Higgs bundle of degree d and rank r on X is a pair
(V,®), where V' is a degree d rank r holomorphic vector bundle and ® is a holomorphic section

of End(V) ® K. We call ® the Higgs field. A Higgs bundle is stable (resp. semi-stable) if
any proper ¢-invariant subbundle F' C E satisfies

deg(F) _ deg(E)
rank(F) — rank(E)

(resp. deg(F)/rank(F) < deg(E)/rank(E)). For a fixed r and d there exists a coarse
moduli space parametrizing the isomorphism classes of semi-stable Higgs bundles M(r,d). It
was first constructed by Hitchin [Hit87b] using infinite dimensional hyperkahler quotient and
later by Nitsure [Nit91] and Simpson [Sim94a, Sim94b] via GIT quotient. The smooth points
of M(r,d), denoted by M?(r,d), correspond to stable Higgs bundles and carry a hyperkahler
structure.
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The characteristic polynomial of the Higgs field
det(l -2 —®)=2"+aix" ' +...+a

defines a map
h:M(d,r) — A=EH' (S, K
(@) 162 ( ) (2.4.14)
(E,®) — (a1,...,a,)

called the Hitchin map to an affine space, called the Hitchin base. In one of the holomorphic
symplectic structures, the fibers of M?*(d,r) are (singular) polarized complex Lagrangian tori,
that is M#(d, r) is an algebraic integrable system with singular fibers. The polarization is
induced by one of the Kahler forms. Let us denote by 4" the locus where the fibers of h are
smooth and let M"9(r,d) C M?(r,d) be the preimage of A" via h. Then

M9 (1, d) — AT (2.4.15)

is an integrable system in the sense of Definition 2.3.1.

An SL(r,C)-Higgs bundle is a Higgs bundle (V, ®) of rank r such that det(V') is trivial and
® € Endy(V) ® K is trace-free. Once again, there exists a moduli space parametrizing
SL(r,C)-Higgs bundles which we denote by Mgy (r, O). Here, r denotes the rank and O is
the trivial line bundle, that is, the determinant of V. Clearly,

M. (r,0) C M(r,0)

The restriction of the Hitchin map

MSL(T, O) — .Ao = éHl(E, KZ) (2416)

1=2

is again an algebraic integrable system with singular fibers. It turns out that this map has a
section over all of A called the Hitchin section.

In rank r = 2 the Hitchin section is constructed as follows [Hit92, Section 3]. The Hitchin
base is given by Ay = H°(Z, K2) the space of quadratic differentials. Let K'/? be a square
root of the canonical bundle, that is a spin structure on . Define the Higgs bundle (V,, ®,)
for an a € Ay as

Vo= KV2 g2 g :<1 O>'
a ) a a 1

It is easy to see that (V,, ®,) is stable for all a € Aj. This construction can be generalized to
any r > 3 and it is a complex Lagrangian section (see for example [HH21, Proposition 2.10]).

To the Hitchin section over A(® = Ay N A" we can associate a semi-flat hyperkahler

structure which has been extensively studied. It was conjectured by Gaiotto, Moore and
Nietzke [GMN10, GMN13] that the semi-flat metric is exponentially close to the original
hyperkahler metric far away from the locus of singular fibers Ay\A;™. This has only been
partially proved.
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CHAPTER

Generalized geometry

The term generalized geometry was introduced by Nigel Hitchin in 2002 referring to the study
of the bundle T'M + T* M on a differentiable manifold M. He was motivated by the double
field theory formalism of supersymmetric sigma models. Generalized geometry was further
developed by two of his students Marco Gualtieri and Gil Cavalcanti during their PhD. Gualtieri
demonstrated that generalized geometry unifies complex and symplectic structures into so-
called generalized complex structures. He also showed that the formalism of supersymmetric
sigma models can be encoded into generalized Kahler structures.

In this chapter, we first introduce the basic notions of generalized geometry. The remainder of
this section is dedicated to one of the most important notions of this thesis: branes. These
objects appear in all sorts of physical theories as boundary conditions, in our context they
come from supersymmetric sigma models. Gualtieri has also defined branes in the framework
of generalized geometry. We study different types of generalized branes which are compatible
with different generalized complex structures. The last subsection of this chapter contains the
first small results of this thesis regarding the structure of branes called BAA-branes.

3.1 Basic notions

In this section we follow the work of Gualtieri [Guall, Gua03]. We introduce Courant algebroids,
generalized complex/Kahler/hyperkahler structures and B-field transformations.

Let M be a smooth manifold.

Definition 3.1.1. A Courant algebroid on M is a quadruple (E,p,(,),[,]) where E — M
is a vector bundle, p : E — T'M is a morphism of vector bundles called the anchor, (,) is
a non-degenerate bilinear pairing on sections of £ and [,] is a bracket, called the Courant
bracket, satisfying the following for all z,y,z € T'(E):

L[z, [y, 2]] = [[=, 9], 2] + [y, [, 2],

2. p(l, y) = [p(x), p(y)],

3. [z, fyl = flo,y] + df (p(x))y for f e C>(M),
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4. p(x)(y, 2) = ([z,9], 2) + (Y, [z, 2]),

5. [x,z] = p*d(x,x).

An exact Courant algebroid is a Courant algebroid fitting into the short exact sequence

*

0 — T*M ‘X~ E L5 TM ——0. (3.1.1)

One can show that in an exact Courant algebroid, the image of T M is isotropic and the
bilinear pairing (,) has split signature. Moreover, there exist isotropic splittings s : TM — E
and via such a splitting £ = T'M + T M, the anchor map is projection to the first summand,
the pairing is given by

(X+EY +1) = (6 — eta(X))

and the bracket is
(X +&Y 4+ =[X, Y]+ Lxn — tyd + ixivy H

for a closed three-form H € Q?(M).

Choosing a different isotropic splitting s’ : T'"M — E changes H by an exact three form dB.
A change in isotropic splitting is called a B-field transformation. The isomorphism classes of
Courant algebroids are classified by the de Rham cohomology class of the three-form H and
each representative can be attained by a choice of isotropic splitting.

The novelty of generalized geometry is that several geometrical structures have analogues as
structures on £ =TM & T*M. Most importantly, complex and symplectic structures can be
viewed as examples of generalized complex structures.

Definition 3.1.2. A generalized almost complex structure on E is an endomorphism 7 :
E — E which is orthogonal with respect to the natural pairing and satisfies 72 = —Id.

A generalized almost complex structure decomposes the complexified bundle £ @ C into +1
eigenbundles. That is,
EFeC=LaL

where L = Im(3(Id + i7)) and L = Im(5(ld — iJ)). We say that a generalized almost
complex structure is integrable if L is involutive with respect to the Courant bracket.

Definition 3.1.3. A generalized complex structure (GCS) on E'is an integrable generalized
almost complex structure.

Alternatively, a generalized complex structure is a maximal isotropic subbundle L C F ® C
which is involutive with respect to the Courant bracket and satisfies L N L = 0, where L is
the conjugate of L. Moreover, as L is an isotropic subbundle it is endowed with the structure
of a Lie algebroid via the Courant bracket.

The complexification of the anchor map gives a morphism of complex vector bundles p :
E®C — TM ® C The type of a generalized complex structure is the complex codimension
k of the complex distribution p(L) C T'M ® C. The type of a generalized complex structure
may not be constant.
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The most commonly used examples of GCSs are induced by complex and symplectic structures.
If J is a complex structure on M then the complex type generalized almost complex structure
corresponding to J is

a-(y ) (312)

which is integrable whenever H3Y = 0. The +i eigenbundle of J; is given by
Ly=T"M® Q" (M).

This GCS has type k = dimg (M) /2.

If w € Q2(M) is a symplectic form on M, then the symplectic type generalized almost complex
structure is

0 —w!
T = (w 0 > (3.1.3)
which is integrable if and only if H = 0. The +: eigenbundle of 7, is
L,={X—-w(X)| X eTM & C}.

This GCS has type k = 0. If (M, J,w) is a Kahler manifold, there is both a symplectic and
complex type GCS associated to the Kahler structure for the Courant bracket with H = 0.
The pair (J.,, Js) is an example of a generalized Kahler structure.

In the case of a hyperkahler manifold (M, g, I, J, K) if we denote the Kahler forms by w;, wy
and wy there are three complex type J;, J;, Jk and three symplectic type J.,,, Jo,, Juwx
generalized complex structures on T'M & T* M with H = 0. Moreover, since I, J and K
obey the quaternionic relations, the corresponding generalized complex structures satisfy

1T Tk = —1, (3.1.4)
j(.d[j(,UJ - jK7 ijij - \7]7 ijij = jj- (315)

Such a structure is also called generalized hyperkéhler and it can also be defined for H # 0 as
three generalized Kahler structures which satisfy the generalized quaternionic relations (3.1.4)
and (3.1.5).

An important automorphism of exact Courant algebroids is the B-field transform corresponding
to some B € Q?(M). This can be seen as changing the isotropic splitting (3.1.1). It acts on
TM +T*M as the matrix

g (10

=5 )

X+ =X+E4+10xB, XeTM, E€T*M.

that is, it maps

The B-field transform changes the three-form which defines the Courant bracket as H +—
H + dB, so it is an automorphism precisely when B is closed. The B-field transform acts on
generalized complex structures J via conjugation

eB(T) =ePTe?, (3.1.6)
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and it changes the +: eigenbundle as
Lesyy =€PLy ={X + &+ X | X+ € Ly}, (3.1.7)

For example, if I and w are a complex and a symplectic structure on M and J;, J., are the
corresponding generalized complex structures we have

I 0 w'B —w™!
B -B __ B -B _
e = (BI+I*B —I*) e due = <w+Bw‘1B —Bw‘1> '

It can also be shown that any GCS of type k = 0 is the B-field transform of a symplectic type
GCS.

3.2 Generalized branes

The term “brane" originates from physics where it roughly means boundary conditions for
a certain theory. The branes we are concerned with are coming from topological twists of
two-dimensional nonlinear supersymmetric sigma models [GHR84]. In such a model the bosonic

fields are given by smooth maps
d: Y- M

from a base manifold ¥ to a target manifold M. Nonlinear means that the target space is
a manifold, not a vector space and two-dimensional refers to the dimension of the base .
The base Y is taken to be a Riemann surface and the target M is endowed with a metric and
a B-field, a collection of local two-forms B; € Q*(U;) with respect to a good cover {U;} of
M, which satisty dB; = dB; on double intersections. Such a B-field can be understood as
the curving of a connection on a U(1)-bundle gerbe whose curvature is the global three form
H € Q3(M) defined as H|y, = dB;. We call H the H-flux.

The fermionic fields are sections 1 of a bundle over the space of smooth maps > — M.
More precisely, we choose a spin bundle S on ¥ and at the point ® the field 1) takes value in
S ® ®*(T'M). The physical theory is given by an action functional on the space of bosonic
and fermionic fields depending on the metrics on and the B-field. Classically, the extremal
points of the action functional provide the physical trajectories of the particles.

Supersymmetry (SUSY) transformations mix the local components of the fermionic ) and the
bosonic ® fields and we say that the theory is supersymmetric whenever the action functional
is invariant under these transformations. The generators of the SUSY transformations are
sections of spin bundles on Y. In two dimensions the spin representation is not irreducible,
so spin bundles decompose as S = ST @& S~ into “left-handed” and “right-handed” parts.
When we say a theory is N' = (p, q)-supersymmetric we mean that there are p right-handed
and ¢ left-handed independent supersymmetry transformations under which the Lagrangian is
invariant.

On a two-dimensional nonlinear sigma model, the metric of M induces a pair of supersymmetry
transformations and any further ones act via complex structures on M. These complex
structures must be covariantly constant under certain connections which depend on the H-flux.
The induced geometry on the target space of an A = (p, ¢) supersymmetric sigma model is
called (p, q) hermitian geometry [HL20].

It has been shown that these geometries have a natural interpretation in generalized complex
geometry with the H-twisted Courant bracket on 7'M @ T*M. In [Gua03] Gualtieri proved
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that (p, q) = (2,2) geometry is equivalent to the existence of a generalized Kahler structure on
(TM & T*M, H). The general case was summarized in [HL20], in particular, (p,q) = (4,4)
corresponds to a generalized hyperkahler structure.

In this work, we will focus on the case when the B-field is flat, that is when H = 0, and
N = (2,2) or N = (4,4). Then, the complex structures have to be parallel with respect
to the Levi-Civita connection on M. Therefore, (2,2)-hermitian structure translates to a
Kahler structure and (4, 4)-hermitian structure to a hyperkahler structure on M. If moreover
the B-field vanishes, the corresponding generalized Kahler and hyperkahler structures are
precisely (3.1.2), (3.1.3) and (3.1.4), (3.1.5) respectively. Turning on the B-field amounts to
transforming the generalized complex structures via the B-field transform (3.1.6).

Witten in [Wit98] defined a twisting procedure which creates topological field theories from
supersymmetric sigma models. In the terminology “topological" means that the theory is
independent of the metric on the base X. The gist of the construction is that we require
the fermions to take values in different bundles than before but the action functional is kept
unchanged. In this procedure half of the supersymmetry is lost that is, the generators are
set to zero, but the other half is made into global symmetries with global generators. The
two-dimensional N' = (2,2) supersymmetric sigma model admits two different twists that
result in different physical theories which are called the A and B twists. In the Kahler case
(H = 0) the A twist results in a theory that only depends on the symplectic structure, while
the B twist only depends on the complex part of the original Kahler structure.

In the N' = (4, 4) supersymmetric H = 0 case the target manifold is hyperkahler and there are
a CP! worth of Kahler structures. Moreover, the topological twist can be performed along any
two of these Kahler structures. In conclusion a two-dimensional N = (4, 4) supersymmetric
sigma model admits a topological twist corresponding to each point of CP! x CP!.

When the base space ¥ is a Riemann surface with a boundary, varying the action with respect
to the fields and supersymmetry generators yields boundary equations of motion. The equations
of the bosonic field ® restrict where the boundary 0% of the base is mapped to [LZ03]. More
precisely, the constraints define a (local) distribution in the tangent bundle of the target M
and the boundary of the base space must map to a leaf of this distribution. A submanifold to
which the boundary 0% can be mapped is called the support of a brane. In the simplest, rank
one, case the fields on the boundary couple to a U(1) gauge field, which can be viewed as a
connection on a hermitian line bundle over the support of the brane. This is what physicists
call the Chan Pathon bundle of the brane. The gauge field is related to the difference between
two trivializations of the ambient gerbe providing the B-field. We call a pair (S, V) a rank one
brane where S is a submanifold of M and V is a connection on a hermitian line bundle on S.
In our discussion of branes in relation to generalized geometry only the curvature F' € Q%(S)
of this connection plays a role. In this context, we will think of a brane as a pair (S, F') of a
submanifold and a closed two-form.

The geometry of a brane is determined by the type of supersymmetry the boundary conditions
conserve. In particular, in the N' = (2,2) case there are two different types of branes which
conserve half of the supersymmetry. These are called A and B-branes and the name indicates
that when one considers the twisted theories, A-branes are compatible with the A twist and
B-branes with the B twist. In the N' = (4,4) supersymmetric sigma model there are special
branes which conserve more supersymmetry and therefore are compatible with a triple of
topological twist. In this section, we give a mathematical definition to all of these brane types
and study their geometry.
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The generalized geometry description of branes was introduced by Gualtieri [Guall]. This
definition led to the discovery of coisotropic A-branes independently from the work of Kapustin
and Orlov [KOO1].

Definition 3.2.1. A generalized submanifold of the manifold M endowed with the exact
Courant algebroid (TM & T*M, H), is a pair L = (S, F) of a submanifold S C M and
a two-form F' € Q?(S) such that dF = H|s. We will also call generalized submanifolds
generalized branes.

If M is the target space of a sigma model there is a gerbe with a connection on M whose
curvature is the three-form H twisting the Courant bracket. In the sigma models, branes
come equipped with vector bundles twisted by the ambient gerbe. The assumption dF' = H|g
requires the gerbe to be torsion when restricted to .S, meaning that there are finite-dimensional
vector bundles on S twisted by the gerbe. In particular, a generalized brane can support a
brane in the classical sense.

To a generalized submanifold £ we can associate an involutive subbundle
TﬁZ{X—FfETS@T*MB | LxF:€|S} (328)

of TM & T*M over S, which is called the generalized tangent bundle of the generalized
submanifold £. Suppose now that there is a generalized complex structure J : TM &T*M —
TM & T*M on M.

Let us denote by N*S the conormal bundle Ann(T'S) C T*M of S. Then, the generalized
tangent bundle fits into the short exact sequence

0= NS—7—TS—=0

and the two-from F' € Q?(S) can be viewed as the extension class of 7, inside TM & T*M.

Definition 3.2.2. A generalized submanifold £ = (S, F') is a generalized complex submanifold
if its generalized tangent bundle is invariant under 7, that is J(7;) = 7.

3.2.1 A and B-branes

For the NV = (2,2) supersymmetric sigma model with vanishing B-field the target space is a
Kahler manifold (M, g, J) and we have two generalized almost complex structures

J 0 0 —w!
‘I’:(o —J*)’ and j“:(w 0 )

which are both integrable. We use the following terminology:

Definition 3.2.3. A generalized A-brane is a generalized complex submanifold of the gen-
eralized complex manifold (M, J,, H = 0). A generalized B-brane is a generalized complex
submanifold of the generalized complex manifold (M, 7;, H = 0).

In these cases, if L = (S, F) is an A or B type brane then the two-form is closed since
dF = H|s = 0. The data corresponding to branes in N' = (2, 2) supersymmetric sigma models
was reformulated in terms of generalized geometry by Zabzine in [Zab04] and by Kapustin
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in [Kap03]. They showed that rank one physical branes are also generalized complex branes.
More precisely, when the B-field vanishes the topological A and B models are governed by
the symplectic and complex structures on the target. Then the generalized A and B-branes
with F' representing an integral cohomology class correspond to the rank one A and B-branes
of the topological sigma models.

A-branes. Let (S, F') be a generalized A-brane on a symplectic manifold (M,w). For F' = 0,
the generalized tangent bundle is 7, = N*S & T'S, so it is preserved by 7, if
w'N*S CcTS and wTS C N*S.

That is if S is both coisotropic and isotropic and therefore Lagrangian submanifold of M with
respect to the symplectic structure w. For F' # 0, we still have N*S C 7, and

w IN*S C TS,

so the submanifold S must be coisotropic, and therefore at least dim(M)/2 dimensional.

As the generalized complex structure 7, restricts to 7, we may write 7, @ C = ¢ & ¢ where (
is the image of 7, under %(I —1J,). The subbundle ¢ for any F'is just the intersection of
the +¢ eigenbundle of 7, with 7. Let us write j : S — M for the inclusion. Then we have,

(={X —iwX | X eTcM}N{X+(e(TS®T*M|s) ®C: 1xF = j*¢}
= {X —iwX | X € TcS, 1x(F+ij'w) =0}

where TcM =TM ® C and TS = TS ® C. Moreover,
(={X+iwX | X € TcS, 1x(F —ij*w) =0}.

Denote by A C TS the image of ¢ under the anchor map p: 7, ® C — TS and by A its

complex conjugate p(¢). The real distribution
A=ANA

is called the characteristic distribution of the coisotropic submanifold S. From the above
description of A and A

A={XeTS®C|ixF=0and txj*w=0}. (3.2.9)
Since A+ A =TS8 ® C, we can also write
A={XeTcS|ixj/w=0}={XeTcS | xF=0}. (3.2.10)
Then, A is an integrable distribution. Indeed, for XY € A and Z € T'S we have

Jw(X,Y],Z2)=X7wY,Z) - YjiwX,Z)+ Zjw(X,Y)+
+7w([X, Z2],Y) — j*w([Y, Z], X) — &j*w(X,Y, Z)
—0,

since T'S is integrable, dj*w = 0 and A C T'S is the symplectic orthogonal complement of T'S.
The characteristic distribution integrates to a foliation of .S which we call the characteristic
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foliation. Let S 22 S/A be the leaf space and assume it is a manifold. Denote the projection
byp:S —S.

The complex two-form F' +ij*w is basic with respect to the characteristic foliation, so the
two-forms I’ and w descend to non-degenerate closed two-forms F',w € Q?(S) via the usual
equalities B

p‘wo=j'w and p*'F =F.
The complex two-form F + iw then defines an almost complex structure

J:=w 'F.

on S. It is integrable, as X € T7°S if and only if FX =iwX so for X,Y € T;°S we have

F(X,Y]) = [Lx, ] F
= dixiy F + ixdiyF — tydix F — tyixdF
= idixtlyw + ttxdiy@ — iy dux@
== Z'L[X’y]a},
since both F" and @ are closed. In the complex structure .J the two-form F + i is holomorphic
symplectic.

For FF = 0 A-branes correspond to Lagrangian submanifolds with flat line bundles. On the
other hand, for ' # 0 the A-brane is supported on a coisotropic submanifold. These branes
are also endowed with a line bundle but with a connection that is only flat along the leaves of
the characteristic foliation. In particular, there are branes supported on the full target space
which we call space-filling branes.

Example 3.2.4 (Space filling coisotropic brane). Suppose (S, F') is an A-brane with S = M.
Then, the generalized tangent bundle is

o ={X+xF | X € TcM }.

By (3.2.10) the two-form F' must be non-degenerate and the leaf space is the whole manifold
M. Then, F + iw defines a new complex structure I = w='F on M.

B-branes. Let now (S, F') be a generalized B-brane on a complex manifold (M, I). Then,
forany X +¢& e,
T X +§ =1IX-I¢ e,

Therefore,
I(rs)ycrs

so S is a complex submanifold of M. Denote by j : S — M the inclusion. Then j*I* = [*j*
and for any (X + &) € 7, we have

L[)(F = —j*[*£ = —[*.]*5 = —[*LxF

that is F of type (1,1).

In conclusion, a B-brane corresponds to a complex submanifold S of M together with a
type (1,1) closed two-form F. When I represents an integral cohomology class, it can be
interpreted as the curvature of a holomorphic line bundle on S.
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Remark: On a Kahler manifold (X, I,w) a B-brane (S, F) is a complex, hence Kahler,
submanifold of with non-degenerate Kahler form w|s. On the other hand an A-brane is
coisotropic, so w|g is degenerate unless S is a space-filling brane. Therefore, a submanifold
which supports both A and B type branes corresponding to a Kahler structure must fill the
whole target manifold.

3.2.2 Hyperkadhler branes

Let (M, g,1,J, K) be a hyperkahler manifold with Kahler forms wy, w; and wg. Then, on M
there are actually a sphere S? worth of Kahler structures, since for any vector (a,b,c) € R3
such that a? + b? + ¢® = 1 the linear map

al +bJ+cK: TM = TM

is a complex structure with Kahler form aw; + bw; + cwg. We denote this two-sphere of
Kahler structures by S?.

If the B-field vanishes then on a hyperkahler manifold we can define six different generalized
complex structures (3.1.4), (3.1.5) corresponding to the three Kahler structures (I,wy),
(Jywy) and (K,wk). We may define a generalized Kahler structure with respect to any
v=(a,b,c) €S; as well. Indeed, if J, = al +bJ + cK

J, =adr +bJ;+cIx and T, = aT,, +bT,, + cTuy- (3.2.11)
since

(aw;! 4+ bwit + cwih) (awr + bwy + cwge) =
=a® + b + & + ab(w;twy + wilwr) + be(witwk + witwy) + Fac(w; twi + witwr)
— 1t ab(—1J — JI) + be(—JK — KJ) + ac(—TK — K1)
= 1.

We want to consider branes which are either A or B type with respect to the three Kahler
structures I, J and K. Naively, we would have eight kinds of special branes on a hyperkahler
manifold. However, from the relations (3.1.4) and (3.1.5) we see that a brane that is type
B in two complex structures is type B in the third as well and if a brane is A type in two
complex structures it is automatically B type in the third. Therefore the possible branes are:

1. BBB-branes: B type in all three complex structures,

2. AAB, ABA, BAA-branes: A type in two complex structures and B type in the third.

These brane types can also be defined for any triple of orthogonal complex structures in S?. It
is clear that a BBB brane is a B brane in all of the complex structures on M. Meanwhile, if
a brane is the second type from the list, it is an A brane with respect to a circle of Kahler
structures in S?, and a B-brane for Kahler structures furthest away from the circle. In this
case, the brane is neither A nor B type for the rest of the complex structures.
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BBB-branes. A BBB-brane is a generalized complex submanifold with respect to the
generalized complex structures J;, J; and Jk, or equivalently a hyperkahler submanifold S
of M together with a closed 2-form F € Q?(S) which is type (1,1) with respect to all three
complex structures. Such a 2-form, when it represents an integral cohomology class, can be
interpreted as the curvature of a line bundle which is holomorphic with respect to all three
complex structures. Such line bundles are called hyperholomorphic.

By the Atiyah-Ward correspondence [AW77], hyperholomorphic line bundles are in one-to-one
correspondence with holomorphic line bundles on the twistor space of M which are trivial on
the twistor lines. Hyperkahler submanifolds of M correspond to complex submanifolds which
are also foliated by the twistor lines. That is, BB B-branes on a hyperkahler manifold M are
in one-to-one correspondence with foliated submanifolds of the twistor space M together with
holomorphic line bundles that are trivial on the leaves of the foliation. This point of view on
BBB branes was fleshed out in the case of the Higgs moduli stack in [FH24].

Example 3.2.5. Let 7 : M — B be an algebraic integrable system endowed with a flat
connection and the corresponding semi-flat hyperkahler structure (2.3.10) (2.3.11). Then,

w 0
o)

is type (1, 1) with respect to all complex structures. It is clearly type (1, 1) with respect to I
and we have

. B 0 gwl+wg™\ (0 I*—TI%\
JF+FJ—<g_1w+w_1g -(,2, ", ) =0

Then, K*F + FK = 0 as well. In particular, (M, F) is a space-filling BB B-brane.
AAB/ABA/BAA-branes. A hyperkahler manifold is also a holomorphic symplectic manifold
in any of its complex structures. In particular, in complex structure I

Qr =wy +iwg

is a holomorphic symplectic form. A complex submanifold S of (M, I,€);) is called a holomor-
phic Lagrangian submanifold if Qs = 0.

Suppose now that £ = (S, F) is a BAA brane. Then,

1. S is a complex submanifold in the complex structure I and F'is type (1,1),

2. S'is a coisotropic submanifold in the symplectic structure w; and there is a characteristic
distribution

AJ:{XGTCs’ij*WJZO}:{XETCs|LxF:O},

3. Sis also a coisotropic submanifold in the symplectic structure wy and the characteristic
distribution is

AK:{XET(Cs|ij*wKZO}:{XETCs|LxF:0}.
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Clearly,
A = AJ = AK,

moreover, A is preserved by complex structure I. Indeed, if we denote by j : S — M the
inclusion and X € Ay, then X € Ag as

tixJ wg =t ixwir = gKI(j.X) = gJ(ju X) = txj wy.
Here we used that S is a complex submanifold, that is 7,/ X = I, X.

In conclusion, if A has constant rank, the leaves of the characteristic foliation are holomorphic
isotropic submanifolds of the holomorphic symplectic manifold (I, €2;). Meanwhile, the leaf
space, whenever it is a manifold, has two different complex structures coming from F + ij*w;
and F'+ 15wk . The line bundle corresponding to this brane with curvature F'is holomorphic
in the complex structure I and restricts to a holomorphic flat bundle to each leaf.

The same arguments hold for ABA and AAB branes by switching the three complex structures.

Example 3.2.6. If FF =0 then BAA-branes correspond to holomorphic Lagrangian submani-
folds of the holomorphic symplectic manifold (M, I, ;) with flat holomorphic bundles. An
example of such a brane is a fibre of the Hitchin fibration in M(r, d) [KWO06].

Example 3.2.7. Space filling BAA-brane: If we take F' = w; then M becomes a B-brane in
complex structure I, since wy is type (1,1). Moreover,

wjlwf =—Jg gl =K

is a complex structure, therefore (M, wy) is a space filling A-brane with respect to w;. Similarly,
it is an A-brane with respect to wg. Analogously, (M,w;) is an ABA-brane and (M, w) is
an AAB-brane.

3.2.3 On the structure of coisotropic BAA-branes

Since their discovery in the early 2000s coisotropic branes have remained mysterious. Mirror
symmetry, a conjectural equivalence of categories between A and B-branes, suggests that the
Fukaya category should be enhanced to also contain coisotropic branes. This problem has
yet to find a complete solution. One of the most influential ideas is by Gaiotto and Witten
[GW21] who postulate that the space of morphisms between a Lagrangian and a space-filling
A-brane should be related to a quantization of the Lagrangian brane. In [BG21] Bischoff and
Gualtieri constructed a Lagrangian-space filling pair of branes from any pair of generalized
branes and used the definition of [GW21] to define morphisms of generalized branes. Despite
all these advancements, in every case where mirror symmetry has been proven as a categorical
equivalence coisotropic branes are not present.

In this section, we do not consider morphisms only the objects, more precisely BAA-branes,
and look at the structure of those which are neither space-filling nor Lagrangian. We show first
that whenever the leaf space of the characteristic foliation is a manifold, the brane structure
descends to a space-filling BAA-brane structure on the leaf space. This result can be used to
assess whether a coisotropic submanifold carries a BAA-brane structure or not. Secondly, we
look at the geometry of holomorphic coisotropic submanifolds, without a brane structure, in
algebraic integrable systems. This result is a slight modification of Kamenova and Verbitsky's
[KV19] theorem about the structure of holomorphic Lagrangians.

35



3.

(GENERALIZED GEOMETRY

Leaf space of a BAA-brane. Let V be a symplectic vector space with symplectic form w.
Let Z C V be a coisotropic subspace with symplectic orthogonal complement Z¥ = A C Z.
Then the symplectic form induces a symplectic form @ on Z/A which we may view as a map
w:ZJA — (Z/A)*. We have two short exact sequences of vector spaces

0 A Z ZIA —— 0 (3.2.12)

0 —— (Z/A) Z A* 0, (3.2.13)

and we know that
7 =2V [Anny(Z) and A" =ZV*/Anny(A) = Z*[Anng(A).

Note, that Annz(A) is the image of Anny (A) under the projection V* — Z*. In particular,

(ZJA) = Anngz(A) = Anny (A)/Anny (Z). (3.2.14)
The symplectic form induces an isomorphism

w:ZIA— (Z/A)
which is the restriction of the ambient isomorphism
w:Z — Anny(A) C V*

since w : A — Anny(Z) is also an isomorphism.

Let (M, I,7n) be a holomorphic symplectic manifold. Let n = w; + iw,. Since 7 is type (2,0)
with respect to I, we have
I'n=nl.
Therefore,
I*wl = wll and ]*WQ = CUQI.

Let 7 : S C M be a holomorphic coisotropic submanifold together with a closed real two-form
F € QYY(S), such that (S, F) is a BAA brane. Denote by p; = j*w; and py = j*ws the
restriction of the real symplectic forms to the submanifold S. Let A be the real characteristic
distribution of S, that is

TSOA={XeTS| m(X)=0eT"S}
={X eTS| p(X)=0€T"S}
={X eTS|F(X)=0eT"S}.

Let -
S=S/A

be the leaf space of the characteristic foliation. Assume that S is a manifold and denote the
projection by p : S — S. As we have seen, the two-forms F, p;, p, descend to non-degenerate
closed two-forms F, p,, p, € Q2(S) on the leaf space and the complex two-forms F 4 ip, and
F + ip, then almost complex structures which we denote by

Ji=p'F and K:=p,'F.
The complex structure I also descends to S which we keep denoting by 1.
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Proposition 3.2.8. The leaf space of a coisotropic BAA brane is hypercomplex. That is,
I,J and K satisfy the quaternionic relations

1J=—-JI =K.

Proof. The claim of the lemma can be proven locally. At each point of S we have the following
inclusion of vector subspaces A C T'S C T'M which are all preserved by the complex structure
1. There is a short exact sequence

0=>A—=>TS—>TS—0

corresponding to the projection p : S — S = S/A. This is pointwise exactly (3.2.12) and we
have the dual sequence (3.2.13). To prove I.J = —JI we will lift to 'S C T'M and use the
relations between F', I and w;.

In particular, if X € T'S and X € T'S is any lift of it, then

P X =w(X)+ NS € Annpp(A)/N*S, (3.2.15)
and for any £ € T*S and any lift ¢ € Anngpy(A) we have
prlé =powytet eTs. (3.2.16)
Similarly, using (3.2.14) the image of F': T'S — T*S = T*M/N*S lies in AnnpyA/N*S =
T*S. Then, for X € T'S and any lift X € T'S we can write
F(X)=F(X) € Anngy(A)/N*S. (3.2.17)

First, we show IJ = —JI. Let X € T'S and X € T'S a lift if it. Then,
IJ(X) = Ip;'F(X)
=IpF(X) eqn. (3.2.17)
= Ip.wi ' F(X)" eqn. (3.2.16)
= pJwi ' F(X)" since TS and A are I-invariant
= pwi 'I"F(X)Y I* preserves N*S and Annpy(A)
= powi (I"F(X))Y Fis type (1,1)
= puwi (=FI(X))
— p (FIX))!
= —p,'F(IX) I preserves T'S and A
= —pr F(IX)

— —JI(X)

F
F

To show IJ = K note that all the above discussion applies to K, p, and w; as well. For
X eTS and X € TS as before we have

IJ(X) = Ip,w ' F(X)*
= pJw ' F(X)" from —I"w; = wy
= p*WQ_IF(X)E

= K(X).
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Proposition 3.2.9. On the leaf space S the tensor g := I*F is symmetric and non-degenerate,
that is a pseudo-Riemannian metric compatible with all three complex structures I, J and K.
Moreover, the forms F', p; and p, are the pseudo-Kahler forms corresponding to I, J and K.

Proof. The form F is type (1,1) with respect to I on S, by construction. As F' is anti-
symmetric seen as a linear map F : T'S — T*S we have F* = —F. Therefore, the two-tensor
I*F'is symmetric

(I'F)*=—-FI=1I"F.

Similarly we have J* = (p;'F)* = —F(—p;') = Fp; " and K* = (p;'F)* = —F(—p; ") =
Fpyt.
Compatibility with the complex structures is as follows.
I'gl =I'I'FI = —FI =I"F = g,
JgJ = ' I"Fp;'F = J*I*"J'F = —I*(J*)*F = I"'F = g,
Then, K*gK = g is automatically true.

The Kahler form associated to [ is
wr=gl =I"FI = —-FI*=F.
For the next step notice that F71ﬁ1 = J ' = —J = —p;'F and analogously for K. Therefore,

_ . w1 e _
gJ =—gJ ' = —I"FF 'p, = —I"p, = py,
_ B el _
gK = —gK~' = —I'FF P2 = —P1-

Note that in the equation —I*w; = wy each term respects the subbundles T'S and A of
TM and Annpy(A) and N*S of T*M, therefore the equality descends to S and we have
—1"py = po.

The holomorphic symplectic form corresponding to this pseudo-hyperkahler structure is p, —ip;
which is the image of —in = —i(w; + iwy) = wy — iw; the —i-rotated holomorphic symplectic
form of the ambient manifold. |

Example 3.2.10. Let M be hyperkahler with metric g complex structures I, J, K and Kahler
forms wy,wy,wg. Then (M, wy) is a space filling coisotropic BAA brane. lts leaf space is M
and the induced pseudo-hyperkahler structure is

I'=1I1, J=wluy=—Jglgl=-JI=K, K =wiw =-Kg'lgl=-KI=—].

Y

We see that the corresponding Kahler forms are really wx and —w; and the holomorphic
symplectic form w; + iwx was rotated to wx — iwy, i.e. it was multiplied by —i.

Example 3.2.11 (Non-example). The Higgs bundle moduli space M(r, d) over a Riemann
surface 3 (see Example 2.4.3) carries a C*-action sending (E, ®) to (E,\®) for A € C*.
This is a holomorphic action in one of the complex structures, which we denote by /. For a
fixed point 2 € M(r,d)¢” on can define its downward flow as

W ={y e M(rad) | }\ig%)\.y:x}.
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If  is a smooth point then W_." N M?(r,d) is a holomorphic Lagrangian subvariety of the
holomorphic symplectic structure corresponding to I [HH21, Proposition 2.10] . One can also
define the attractor for a component F' of the fixed point set M(r,d)®" as

+ _ : _ +
Wi ={y e M(r,d) | lim \.y € F} = IIELWI :

It can be shown [Hau] that there exists a component of the fixed point set which is isomorphic

to 3. The attractor Wy is a coisotropic submanifold of M?(r,d). Moreover, the leaf space

of its characteristic foliation is the cotangent bundle 7*% of ¥. In [Fei01] it was shown that

T*Y can not carry a complete hyperkahler metric, therefore W5 can not carry a BAA-brane
structure.

BAA branes in algebraic integrable systems. Kamenova and Verbitsky [KV19] showed
that when Z is a complex Lagrangian submanifold in an algebraic integrable system 7 : M — B,
such that Z projects to m(Z) smoothly then the intersection of Z with any fiber of X has to
be the disjoint union of translates of a subtorus. Such complex Lagrangians can be seen as
BAA-branes. On the other hand, we have seen that there exist BAA-branes which are not
Lagrangians but coisotropic. In this section, we follow [KV19] and generalize their proof for a
coisotropic submanifold Z. It is not true anymore that the intersections are subtori. On the
other hand, when 7 is foliated by the leaves of the characteristic distribution, each isotropic
leaf must intersect the fibers in translates of a subtorus. In [KV19] it was also shown that
for a Lagrangian Z the image m(Z) must be a special Kahler submanifold. In the coisotropic
case, this is true for the isotropic leaves.

Let V be a g dimensional real (or complex) vector space, and V* its dual. The space V 4 V*
is endowed with the canonical symplectic form w given by

WX +&Y +n) =&(Y) —n(X).

Let p: V 4+ V* — V be the projection to the first factor and denote by Ann(R) C V* the
annihilator of a linear subspace R C V. We first show a generalization of [KV19, Lemma 3.3].

Lemma 3.2.12. [et W C V + V* be a coisotropic subspace and let A C W be its
characteristic subspace, that is

A=W*={weW | ww W)=0}
Then, W NV* = Ann(p(A)) and ANV* = Ann(p(W)).

Proof. Since A = W* C W we have A“ = W as well. For the first claim, if £ € W N V™,
then for any w € A C W we have

w(w, &) = &(p(w)) =0,

and therefore £ € Ann(p(A)). On the other hand, if £ € Ann(p(A)), then for any w € A
w(w, &) = &(p(w)) =0,

sof e ANVF=WnNnV~

For the second claim, if £ € Ann(p(W)), then for any w € W we have w(w, §) = &(p(w)) = 0,
therefore £ € W N V* = AN V*. On the other hand, if £ € ANV* then w(w, ) = 0 for
any w € W, but then £(p(w)) = 0 so & € Ann(p(W)). n
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Let 7 : M — B be an algebraic integrable system and ¢ : Z C M a complex coisotropic
submanifold The characteristic distribution is denoted by A. Let us denote by L, the leaf of
the characteristic foliation passing through the point z € Z. These are immersed submanifolds
of Z and M. Finally, by modifying the proof of [KV19, Theorem 3.2] slightly we can prove
the following statement.

Theorem 3.2.13. Let Z C M be a connected complex coisotropic submanifold such that Z
projects to w(Z) smoothly and regularly and let x € w(Z). Then, either Z N7~ (x) = 7~ 1(2)
or for any leaf L, passing through a point z € (7|z)~!(x) the intersection L, N7~ !(z) is a
disjoint union of translates of a subtorus in 7T71(ZL‘>, which is independent of z. In particular,
Z, = Z N7 (x) is foliated by translates of a subtorus in 7= *(z).

If moreover, the characteristic foliation on Z has closed leaves, w(Z) inherits a special Kahler
structure from B.

Proof. We show: T,Z, = Ann(m.A,) C F,M, when x € w(Z) is smooth.

Via a complex Lagrangian section, the tangent bundle of an algebraic integrable system locally
splits as
TM =7*TB & n*T*B.

Moreover, the real part of the holomorphic symplectic form is just the canonical symplectic
form on V 4+ V* at each point with respect to this splitting.

At each point, z € Z, the tangent space 7.2 C T.M =T, B® T B is a coisotropic subspace
and A, is its symplectic orthogonal subspace. The vectors tangent to the fibre Z, C 77 1(z)
are given by T, Z N F.M =T;B. By Lemma 3.2.12 we know that

T.Z, = Ann(m.A,) C T:B.

Since A, = T, L, we can identify m,A, with T,.(7w(L.)) if the map L, — w(L,) is also regular.
Then along a certain leaf of the characteristic distribution, the tangent space 7,7, is constant.
On the other hand, generally, T, Z, can vary as we vary the leaves, even if 7 is regular restricted
to all the leaves, since different leaves can have different images in the base.

Consider now a leaf L intersecting Z, non-trivially. Its tangent bundle is given by A C
TZ C TM restricted to L. Using the second part of Lemma 3.2.12 we can understand the
intersection L N Z, as follows. The vectors tangent to L. N Z, at the point z are given by
A, NT}B, which by the Lemma above equals Ann(m.1.7,) = Ann(T,7(Z)). In particular,

T.(LNZ,) = Ann(T,w(Z)) Vze€ LNZ,.

That is, the tangent space of LN Z, is constant along the fiber, therefore it is a disjoint union
of translates of a certain subtorus of Z,. Moreover, Ann(T,m(Z)) is independent of the leaf
intersecting the fiber. Note that by this theorem the foliating subtorus may be dense. In that
case, Z, has to be the whole fiber as Z, is a closed submanifold of M. Otherwise, Z, is
foliated by the translates of a closed subtorus.

Alternatively, if we assume that the leaves are closed then the tori foliating Z N7 !(z) must
also be closed.

To show that 7(Z) inherits a special Kahler structure from B it suffices to show that the
connection restricts to a special Kéhler connection. Indeed, 7(Z) is a complex, hence Kahler
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submanifold of B, so the connection is the only missing piece. This holds if T'n(Z) C T B is
a flat subbundle, since the fact that w is flat, that dv/ = 0 and that V is torsion free follows
from 7(Z) being a submanifold.

At each smooth point = € 7(Z) the tangent space T, m(Z) is isomorphic to Ann(T(L N Z,))
where L is any leaf of the characteristic foliation which intersects the fibre over x. The
intersection L N Z, is union of translates of a closed subtorus in Z,., therefore H{(LNZ,,7Z) is
a sublattice in Hy(Z,,7Z). This sublattice cannot change in a neighbourhood without passing
through open fibers so locally L is an affine torus subbundle of M over w(Z). In particular, it
inherits the Gauss-Manin connection. |

Example 3.2.14. Let B = C? with complex coordinates (z,w) and real coordinates (x,y, u, v)
with z = 2 + iy and w = u + iw. Let ' C T*B be the lattice spanz{dx,dy, du,dv}. Then
flat Kahler structure on the base then defines a semi-flat hyperkahler structure on M = T*B/T’
so it is an algebraic integrable system. Denote the natural complex structure on T*B by 1
and the holomorphic symplectic form by Q. Let {z,y,u,v,p,q,r, s} be dual coordinates on
M with {p,q,r, s} 1-periodic. We have
Qr = (dp —idq) N (dx +idy) + (dr —ids) A (du + idv).

For any o € R the affine torus subbundle

Sea={w=a-z}yCM
is complex and since it is of complex codimension 1 it is also coisotropic. In coordinates

1:S = M

[tlat27p7qar73] = [t17t27at1aat27pa(brvs]
We have
i*Qr = (dp — idq) A (dty + idts) + a(dr — ids) A (dt; + idts).

o_,9 9_ aa}
or op’ Os dq
The leaves of the distribution A are dense in the fiber if « is irrational.

Ker(i*Qy) = A = {

Example 3.2.15. Recall from Example 3.2.11 that there is a coisotropic submanifold Wit
inside the smooth locus of the Higgs moduli space M?*(r,d) (2.4.3). lIts intersection with
the fibers of A9 : M"™9 — A" can be understood as follows. To each a € A" one can
associate a spectral curve S, C T3 which is a smooth projective curve determined by ®. The
BNR correspondence [BNR89] asserts that the fiber of i over a is isomorphic to the Jacobian
of the spectral curve Jac(S,) (for definition see Section 11.1 of [BLO4]). There is an injection

a:C— J(O)
called the Abel-Jacobi map [BL04, Corollary 11.15] and the intersection is given by
Wi nha) =S, C Jac(S,),

(conjectured by Bousseau, proved in [Hau]). In particular, Wi is a coisotropic submanifold of
an integrable system whose intersection with the fibers is not a union of affine subtori. The
submanifold Wy is foliated by Lagrangian submanifolds, the upward flows of points in X. The
null foliation is a refinement of these foliations. In [HH21] it was shown that the intersection
of the upward flows with the generic fibers h=!(a) is finitely many points, in particular, the
isotropic leaves also intersect the fibers in finitely many points. That is, in translates of affine
subtori.
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CHAPTER

T-duality in generalized geometry

Topological T-duality is a relation between affine torus bundles endowed with bundle gerbes or
equivalently, degree three integral cohomology classes. T-duality in generalized geometry can
be viewed as the “de Rham shadow" of it, a relation between affine torus bundles endowed
with degree three de Rham cohomology classes. In particular, two affine torus bundles with
some de Rham classes may be T-dual in the sense of generalized geometry but there might be
no integral classes allowing for a topological relation.

This chapter is organized as follows. In the first section, we review the relevant definitions
and theorems about T-duality in generalized geometry using works of Cavalcanti and Gualtieri
[CG10] and Baraglia [Barl4, Barl5]. In particular, we introduce the T-duality map, an
isomorphism of Courant algebroids derived from the T-duality relation.

In the second section, we first describe the Legendre transform of special Kahler structures
(Theorem 4.2.1). Then, we apply the T-duality map to algebraic integrable systems endowed
with semi-flat hyperkahler structures. We show that the T-dual of a semi-flat hyperkahler
structure is also a semi-flat hyperkahler structure and that they are connected by the Legendre
transform on the base (Theorem 4.2.4). The connection between T-duality and Legendre
transform has already been observed by Hitchin in [Hit99b]. The novelty of our treatment is
that we put the semi-flat hyperkahler structure on torus bundles endowed with flat connections.

In the last section, we apply T-duality to generalized branes. We first define a general
method of constructing T-duals locally, then determine a class of branes to which our method
applies. We call these branes "locally T-dualizable" (Definition 4.3.5). We show that locally
T-dualizable branes in a trivial affine torus bundle admit an entire family of T-duals (Theorem
4.3.14). Finally, we study the conditions under which a locally T-dualizable brane admits a
T-dual in a non-trivial affine torus bundle (Theorem 4.3.18).

4.1 Formalism

In this section, we review differential T-duality in the context of generalized geometry. T-duality
is a duality derived from physics between torus bundles endowed with H-fluxes. The first
mathematical description is due to Bouwknegt, Evslin and Mathai [BEMO03] who showed that
the T-duality relation induces an isomorphism on twisted cohomologies. The generalization of
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this result was used by Cavalcanti and Gualtieri [CG10] who reformulated the isomorphism of
twisted cohomologies to an isomorphism of Courant algebroids on T-dual pairs of principal
torus bundles. Finally, Baraglia [Barl4, Barl5] extended the results of [CG10] to T-dual pairs
of affine torus bundles.

Let m: M — B and 7 : ]\:4 — B be affine torus bundles and denote by C' = M xp M the
fiber product of M and M over B. Let H € Q3(M) and H € Q3(M) be closed invariant
3-forms. We have then the following diagram.

S (4.1.1)

Definition 4.1.1. We say that (M, H) and (M, H) are T-dual in the sense of generalized
geometry if there exists an invariant two-form P € Q%(C) which induces a non-degenerate
pairing

P:¢Veo§V =R

and such that
p*H — p*H = dP.

Note that even though the definition is given in terms of a specific representative, if H' =
H + dB is another invariant representative of the de Rham class of H, then (M, H') is also
T-dual to (M, H) via the two-form P’ = P — B. We could therefore define the relation
between pairs (M, [H]) and (M, [H]) where [H] € H*(M,R) and [H] € H*(M,R) but for
our purposes we want to set H = 0 and H = 0 and use the exact isomorphism outlined in
this chapter.

Example 4.1.2. Let 7 : M — B and # : M — B be affine torus bundles with monodromy
local systems I'y; and I';; and Chern classes ¢y and cj;. Suppose moreover that I'y, = T'y,
and the Chern classes of M and M are torsion. Then (M, 0) and (11, 0) are T-dual.

Indeed, we have an element p € H°(B, A*(T'y; + I';)) corresponding to the identity. The
image [P] of p in HY(B, A2(¢*V 4 ¢*V)) satisfies dy([P]) = 0 since the spectral sequence with
real coefficients degenerates on page 2. That is, there is a global de Rham class projecting
onto [P] under F*?(¢q,R) — E%%(¢,R).

A choice of flat connections A on M and A on M gives a representative
P={(p*ANp*A).

We can write this representative of P via flat coordinates associated to the connections A
and A. Since 'y, = T}, we can identify V 22 V* as well. Then we may choose dual frames of
I'ys and I';; which we can integrate to 1-periodic fiber coordinates {p;} on M and {p,} on
M. In these coordinates P = p*(dp,) A p*(dp').
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Remark. Note that we can relax the above example to M and M endowed with torsion
Chern classes and an isomorphism ¢ : V* — V. The same argument shows that there exists a
T-duality relation between (M, 0) and (A1, 0). On the other hand, if we want to upgrade this
differential T-duality to topological T-duality we must require Iy, = I';, which will be clear
later.

Let us now consider the geometric consequences of a T-duality relation between pairs (M, H)
and (M, f[) To the pair (M, H) we may associate an exact Courant algebroid £ = TM+T*M
together with the H-twisted Courant bracket. As we have defined invariant differential forms
we can also define invariant vector fields under the action of M, on M. Therefore M, acts on
the vector bundle £ and its invariant sections form a vector bundle E,.; over B. In [BCGO05]
it was shown that if H is also invariant, the Courant algebroid structure on £ reduces to one
on F,.q. This Courant algebroid is not exact anymore, indeed given a connection on M we
can split E,.q as
E..a=TBaeVaeT"BaV”".

We can repeat this construction on the other side to find another Courant algebroid Ered on
B. The following theorem was shown for principal torus bundles in [CG10] and more generally
for affine torus bundles in [Barl5].

Theorem 4.1.3. ([CG10, Theorem 3.1], [Bar15, Theorem 5.3]) Let (M, H) and (M, H) be
a T-dual pair of affine torus bundles endowed with H-fluxes. Then, there exists an isomorphism
of Courant algebroids

T: Ered — Ered

which we call the T-duality map.

We do not need every detail of the proof for our purposes but we need to understand the
T-duality map as it plays a crucial role in the next chapter.

As in most T-duality and adjacent relations, the morphism between the two objects goes
through the correspondence space via pulling, twisting with a universal object and pushing
down. Consider therefore a section of F,.4 as an invariant section X + & of TM +T*M = F.
We would like to lift this to an invariant section of T'C' + T™C' but this lift is not well-defined
for the vector component. Then we want to “twist" with the two-form P and push forward to
get an invariant section 