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Abstract

In [KW06] Kapustin and Witten conjectured that there is a mirror symmetry relation between
the hyperkähler structures on certain Higgs bundle moduli spaces. As a consequence, they
conjecture an equivalence between categories of BBB and BAA-branes. At the classical
level, this mirror symmetry is given by T-duality between semi-flat hyperkähler structures on
algebraic integrable systems.
In this thesis, we investigate the T-duality relation between hyperkähler structures and the
corresponding branes on affine torus bundles. We use the techniques of generalized geometry
to show that semi-flat hyperkähler structures are T-dual on algebraic integrable systems.
We also describe T-duality for generalized branes. Motivated by Fourier-Mukai transform
we upgrade the T-duality between generalized branes to T-duality of submanifolds endowed
with U(1)-bundles and connections. This T-duality in the appropriate context specializes to
T-duality between BBB and BAA-branes.
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CHAPTER 1
Introduction

Mirror symmetry is a conjectured mathematical duality between Calabi-Yau manifolds originat-
ing in string theory. It states that certain physical theories on mirror manifolds are isomorphic,
in particular, there exists an equivalence between their categories of boundary conditions
(branes). One of the main approaches to mirror symmetry is due to Ströminger, Yau and
Zaslow [SYZ96] who proposed that on the "classical level" mirror symmetry is given by
T-duality.
Mathematically T-duality describes a relationship between torus bundles fibered over the same
base, roughly exchanging the radius of each circle in the fibers. A mathematical definition was
first given by Bouwknegt, Evslin and Mathai [BEM03]. In physics, T-duality exchanges certain
topological twists of supersymmetric sigma models on the T-dual manifolds, the A and B
twists [Wit98]. The A twist is defined using a symplectic structure while a B twist is related
to a complex structure, with corresponding boundary conditions called A and B-branes.
Initially, the category of A-branes on a symplectic manifold was thought to be the category of
Lagrangian submanifolds endowed with local systems, the Fukaya category. However, Kapustin
and Orlov [KO01], as well as Gualtieri [Gua11], independently showed that there exist A-branes
supported on coisotropic submanifolds endowed with Hermitian line bundles and non-flat
connections. The inclusion of such branes into the Fukaya category remains an open problem.
In [GW21] Gaiotto and Witten gave a conjecture to the space of homomorphisms between a
rank one Lagrangian and a space-filling A-brane, a method extended by Bischoff and Gualtieri
[BG21] to define morphisms between generalized branes. Nonetheless, examples of coisotropic
branes are rare, especially those that are neither space-filling nor Lagrangian. Additionally, the
theory of higher-rank coisotropic branes is still underdeveloped although a definition was given
by Herbst in [Her10].
The category of B-branes on a complex manifold is much better understood. It is the derived
category of coherent sheaves. On the zeroth level B-branes are complex submanifolds endowed
with holomorphic vector bundles, but one can argue that "stacking" branes and other physical
operations recover the entire derived category.
In the context of [SYZ96], T-duality maps A-branes on a symplectic torus fibration with
Lagrangian fibers to B-branes on a complex torus fibration with real fibers. The first mathe-
matical formulation of this duality is due to Arinkin and Polishchuk [AP98] who transformed
A-branes supported on Lagrangian sections of a torus fibration. Bruzzo, Marelli and Pioli
[BMP02] extended this result to Lagrangian submanifolds which intersect the fibers in subtori
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1. Introduction

of arbitrary dimension. They started by describing a Fourier-Mukai type transform for rank
one local systems supported on affine subtori of a single real torus [BMP01].

Glazebook, Jardim and Kamber [GJK04] developed a T-duality transformation for Hermitian
vector bundles with connections on torus bundles which are flat on the fibers. Here the bundles
are not assumed to be supported on Lagrangian submanifolds and it is not assumed that
the connection is flat. Their work and [BMP01] indicate that a T-duality transformation
should be defined for Hermitian bundles with connections rather than just for A-branes. This
approach was further developed in [CLZ18] by Chan, Leung and Zhang who defined T-duality
for projectively flat Hermitian vector bundles supported on submanifolds which intersect the
fibers in subtori, even for bundles not flat on the torus fibers.

The motivation for this work came from the seminal paper of Kapustin and Witten [KW06].
The Higgs bundle moduli space with gauge group G is mirror, in the sense of Strominger-Yau-
Zaslow [SYZ96], to the Higgs bundle moduli space with the Langlands dual gauge group GL.
Kapustin and Witten utilised this duality to reformulate the geometric Langlands program to
the language of S-duality between gauge theories. In this process, they defined branes which
are boundary conditions in a triple of sigma models corresponding to complex and symplectic
structures coming from the hyperkähler structure on the moduli spaces. They called these
branes BBB and BAA-branes and they conjectured that such branes should map to each
other under mirror symmetry.

The hyperkähler structure on the Higgs moduli space is constructed via infinite dimensional
hyperkähler quotient. Meanwhile, on certain open subsets of the moduli space, there is
a second, simpler hyperkähler structure called the semi-flat hyperkähler structure [Fre97].
Gaiotto, Moore and Nietzke [GMN10, GMN13] have conjectured that one can understand
the original hyperkähler metric on the Higgs moduli space by adding instanton corrections to
the semi-flat metric. Similarly, they proposed building mirror symmetry between BBB and
BAA-branes by starting with BBB and BAA-branes of the semi-flat hyperähler structure,
where mirror symmetry is T-duality, and adding corrections.

While T-duality between A and B-branes is complicated, in the setting of [KW06] T-duality
is also supposed to map certain B-branes to B-branes. This B to B duality is supposed to
be realized by fiberwise Fourier-Mukai transform [Muk81]. Although this transform remains
poorly understood on the very singular fibers, Arinkin and Fedorov [AF15] have extended it
up to mildly singular fibers and showed the derived equivalence between large subsets of the
moduli spaces.

This thesis focuses on torus bundles with smooth fibers, where Fourier-Mukai transform is
well-defined. Therefore, if a brane is BBB or BAA one can take its T-dual as a B-brane
and use the result as a motivation. As also hinted by the work of Glazebook, Jardim and
Kamber [GJK04] and Chan, Leung and Zhang [CLZ18] a Fourier-type transform should exist
for Hermitian vector bundles with connections. This unified transform should restrict to Fourier-
Mukai transform on certain holomorphic objects and to A to B duality on the appropriate
A-branes.

One of the most successful formalisms unifying A and B-theory is generalized geometry
introduced by Hitchin in the early 2000s. His theory has since been expanded by many of his
students. In [Gua03] Gualtieri introduced generalized complex structures which encompass
complex and symplectic structures. Moreover, in [Gua11] he showed that branes have a natural
interpretation in this context as well. In [CG10] Cavalcanti and Gualtieri have also reformulated
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T-duality to the language of generalized geometry. This theory therefore provides the perfect
toolkit for a unified understanding of duality between branes.

The aim of this project was to explore the mirror symmetry relationship between BBB and
BAA-branes in hyperkähler manifolds with applications to the Higgs moduli space. In the end,
we restrict our attention to the semi-flat case where mirror symmetry is given by T-duality.
We give some insight into the structure of coisotropic BAA-branes and explain T-duality for
semi-flat hyperkähler structures based on T-duality in generalized geometry.

We have two sets of results. First, we describe in detail T-duality of generalized branes on affine
torus bundles with torsion Chern classes. This is an application of T-duality in generalized
geometry but has not been fully worked out yet. We first define a class of generalized branes
which we call "locally T-dualizable". Then, we study the conditions under which such branes
admit T-duals in this class.

Let M → B and M̂ → B be a T-dual pair of affine torus bundles with torsion Chern class.
We call the fiber product of M and M̂ over the base the correspondence space.

M ×B M̂

M M̂

B

p̂p

π π̂

(1.0.1)

Definition (Definition 4.3.5). A locally T-dualizable brane in M is a pair L = (S, F ), where
S ⊂ M is an affine torus subbundle and F ∈ Ω2(S) is a closed invariant two-form on S which
represents a rational cohomology class on the fibers of S.

We show that when the base of S is contractible a locally T-dualizable brane admits an entire
family of T-duals.

Theorem (Theorem 4.3.14). Let L = (S, F ) be a locally T-dualizable brane in M with π(S)
simply connected. Then, there exists a foliation of S ×π(S) M̂ by affine torus subbundles
denoted by Z. For each such Z we denote by ŜZ ⊂ M̂ the image of Z under the projection
S ×π(S) M̂ → M̂ .

Then, ŜZ is an affine torus subbundle of M̂ over π(S). Moreover, there exists a unique closed
invariant two-form F̂Z on ŜZ which represents a rational cohomology class on the fibers of
ŜZ and satisfies

p∗
ZF + P |Z = p̂∗

ZF̂ ,

where P ∈ Ω2(M ×B M̂) is a closed invariant two-form and pZ : Z → S and p̂Z : Z → ŜZ
are the projections.

Whenever two leaves Z1 and Z2 of the foliation have the same image ŜZ1 = ŜZ2 we have

F̂Z1 = F̂Z2 .

Moreover, then (ŜZ , F̂Z) is a T-dual of the generalized brane (S, F ).

3



1. Introduction

To prove this theorem we first construct an integrable distribution on S ×π(B) M̂ using the
two-forms F ∈ Ω2(S) and P ∈ Ω2(M ×B M̂). Then, we show that this distribution has
closed leaves, which we denote by Z, and the images of these leaves in M̂ give the T-dual
branes Ŝ. That is, for a T-dual pair of generalized branes (S, F ) and (Ŝ, F̂ ), we have the
following diagram.

(Z, p̂∗F̂ − p∗F = P )

(S, F ) (Ŝ, F̂ )

π(S)

p̂p

π π̂

(1.0.2)

When the base of S is contractible there is no obstruction to the existence of multiple T-duals.
We finally study whether locally T-dualizable branes in non-trivial affine torus bundles admit
global T-duals. We find that there is a topological constraint to the existence of such T-duals
which is given as follows.
Theorem (Theorem 4.3.18). Let M and M̂ be a T-dual pair and L = (S, F ) a locally
T-dualizable brane of M . Then, L has a T-dual if and only if

q(cM̂) ∈ H2(π(S),Γ∨
S ∩H(VS)).

Here, cM̂ is the Chern class of M̂ , q is a map induced by a morphism of local systems and
Γ∨
S ∩H(VS) is a sub local system of the dual of ΓS depending on F .

The existence of an affine torus subbundle in a non-trivial affine torus bundle is obstructed by
the Chern class and the monodromy. Theorem 4.3.18 is a direct consequence of this constraint
Our second set of results is the description of a T-duality transformation for "physical branes"
which are U(n)-bundles with connections supported on affine torus subbundles. We first focus
on rank one branes, that is U(1)-bundles. We build on our treatment of generalized branes, so
we restrict to connections whose curvatures are invariant two-forms. These results are partially
covered by [CLZ18] where T-duality is worked out for projectively flat U(d)-bundles supported
on affine torus subbundles in a special class of affine torus bundles. Our method differs from
the method of [CLZ18] and we expand to a more general class of torus bundles, specifically to
ones without smooth sections. On the other hand, we only treat rank one bundles and a very
specific case of higher rank bundles.
Our first theorem parallels Theorem 4.3.14 in that we first assume that the base π(S) of the
submanifold S is contractible. We upgrade the two-form P ∈ Ω2(M ×B M̂) from Theorem
4.3.14 to a U(1)-bundle with connection P , the relative Poincaré bundle.
Theorem (Theorem 7.2.7). Let S ⊂ M be an affine torus subbundle such that π(S) is
contractible. Let L → S be a U(1)-bundle with connection as such that the curvature 2πiF is
invariant. Then, L = (S, F ) is a locally T-dualizable generalized brane and the following hold.

1. There exists a unique generalized T-dual (Ŝ, F̂ ) of (S, F ) such that for any leaf Z of
the foliation on S ×π(S) M̂ projecting onto Ŝ, the U(1)-bundle with connection

L̂Z := p∗
ZL⊗ P|Z

is trivial when restricted to the fibers of p̂Z : Z → Ŝ.

4



2. For any leaf Z as in 1., we define the pushforward

Ê := (p̂Z)∗L̂Z ,

as the direct image of the sheaf of fiber-wise flat sections of L̂Z . Then, Ê is a projectively
flat U(d2)-bundle with connection independent of Z, and the curvature of the connection
is given by F̂ · Id ∈ Ω2(Ŝ, u(d2)).

3. Finally, there exists a projectively flat U(d)-bundle L̂ → Ŝ such that

Ê ∼= L̂⊗ U(d).

The curvature of the connection on L̂ is F̂ · Id ∈ Ω2(Ŝ, u(d)).

We say that (L̂, Ŝ) is the T-dual of (S, L).

The proof relies on techniques borrowed from many sources. We represent the U(1)-bundles
with connections by factors of automorphy. This description was used in [BMP01, BMP02],
in particular, the Poincaré bundle is described there.

We follow the technique of T-dualizing branes given in [AP98] and [BMP01, BMP02], that is
we pull back the U(1)-bundle L to the correspondence space and tensor it with the Poincaré
bundle. When L is flat on the fibers of S, the resulting bundle is flat on the fibers of
the projection S ×π(S) M̂ → M̂ . Then one can take fiber-wise flat sections to define the
pushforward.

When L is not flat on the fibers, however, neither is its pullback to the correspondence space.
Here we use an idea from [GJK04] to restrict to the leaves Z defined by the underlying
generalized branes (1.0.2). The restriction is now flat on the fibers of Z → Ŝ and we can
take flat sections to push forward as we do in Part 2.

It turns out, however, that the resulting image is not the genuine T-dual. Instead, it is the
T-dual tensored with a trivial bundle (cf. Part 3.). We demonstrate that one can recover the
genuine T-dual using techniques inspired by the Fourier-Mukai transform.

We generalize the local theorem to T-dual affine torus bundles with non-zero Chern classes.
To do this we introduce gerbes and topological T-duality based on Baraglia’s work [Bar15]. In
this setting, T-dualizable branes are given by submanifolds endowed with bundles twisted by a
gerbe and we also re-define the Poincaré bundle as a twisted U(1)-bundle. We start with a
pair of topologically T-dual affine torus bundles with torsion Chern classes M and M̂ endowed
with gerbes G and Ĝ. Our final theorem is as follows.

Theorem (Theorem 7.3.15). Let S ⊂ M be an affine torus subbundle and L → S a U(1)-
bundle with connection twisted by G|S. Let F ∈ Ω2(S) be the curvature of the connection on
L. Then, (S, F ) is a locally T-dualizable generalized brane and the following holds.

1. There exist global affine torus subbundles Z ⊂ S×π(S)M̂ , such that over any contractible
open set U ⊂ π(S) the submanifold Z|U is a leaf of the local foliation of S ×U M̂
corresponding to the locally T-dualizable brane (S|U , F ).

5



1. Introduction

2. There exists a submanifold Z ⊂ S ×π(S) M̂ as in 1., such that the twisted line bundle
p∗L⊗P is trivial on the fibers of p̂Z : Z → Ŝ. Moreover, over Z we have an isomorphism
between twisted U(1)-bundles

p∗L⊗ P ∼= L̂Z

such that L̂Z is twisted by the gerbe p̂∗
ZĜ.

3. The T-dual (Ŝ, L̂), locally constructed as in Theorem 7.2.7, is a rank d T-dualizable
brane on M̂ .

In the final section of this thesis, we study the relationship between T-dual generalized branes
and T-dual physical branes. Our final theorem concerns higher-rank T-dual branes with
projectively flat connections. These T-dual pairs were treated in [CLZ18] for affine torus
bundles that admit sections. We extend these results to torus bundles with torsion Chern
classes and to branes twisted by gerbes.

Theorem (Theorem 7.4.4). Let (S, F ) and (Ŝ, F̂ ) be a T-dual pair of generalized branes such
that there exists a global submanifold Z ⊂ S ×π(S) Ŝ as in (1.0.2). Let H be the fiberwise
component of F , and suppose that in a local symplectic frame {µ} of ΓS it can be written as

H =
r∑︂
i=1

ni
mi

µ∗
i ∧ µ∗

i+r.

Let m = ∏︁r
i=1 mi and n = ∏︁r

i+1 ni. Then, there exist flat gerbes G ′ and Ĝ
′ on S and Ŝ such

that the following holds.

1. Over any Z ⊂ S ×π(S) Ŝ as in (1.0.2) the twisted Poincaré bundle is a trivialization of
p̂∗
ZĜ

′
⊗ (p∗

ZG ′)−1. Moreover,

G ′ ⊗ (G|S)−1 ∼= π∗G0 and Ĝ
′
⊗ (Ĝ|Ŝ)−1 ∼= π̂∗G0

where G0 is a gerbe on π(S).

2. For any Z ⊂ S ×π(S) Ŝ as in (1.0.2) there exists U(1)-bundles L and L̂ on Z twisted
by p∗

ZG ′ and p̂∗
ZĜ

′ such that we have an isomorphism of gerbe trivializations

δ(L̂) ⊗ δ(L)−1 ∼= δ(P). (1.0.3)

Moreover, L is trivial on the fibers of pZ : Z → S and L̂ is trivial on the fibers of
p̂Z : Z → Ŝ.

3. There exists a G ′-module E of rank m on S and a Ĝ
′-module Ê of rank n on Ŝ such

that

E ⊗ U(m) ∼= (pZ)∗L and Ê ⊗ U(n) ∼= (p̂Z)∗L̂Z . (1.0.4)

Moreover, the connections on E and Ê are projectively flat with curvatures given by

FE = 2πiF · Id ∈ Ω2(S, u(m)) and FÊ = 2πiF̂ · Id ∈ Ω2(Ŝ, u(n)).

6



That is, for any pair of generalized T-duals, we can find higher-rank T-dualizable branes over
S and Ŝ which are T-dual in the sense of (1.0.3) and (1.0.4). Moreover, the connections of
these higher rank branes are projectively flat and the underlying generalized branes determine
their curvatures.
Our results apply to general branes, not just A or B-branes. We show that, in the appropriate
context, we recover the Fourier-Mukai transform and we explore T-duality between BBB and
BAA-branes through specific examples.
Organization of the thesis. Chapter 2 contains the necessary background on affine torus
bundles and algebraic integrable systems and we introduce the semi-flat hyperkähler structure.
We define it with respect to a flat connection on an algebraic integrable system. This slightly
extends the original definition given by Freed [Fre97].
In Chapter 3 we give the necessary background on generalized geometry and we introduce
generalized branes. We spend a section studying the structure of BAA-branes. We show that
whenever the leaf space of a coisotropic brane is a manifold, the brane structure descends to a
hyperkähler structure with an indefinite metric on the leaf space.

Proposition (Proposition 3.2.8 and Proposition 3.2.9). The leaf space of a coisotropic BAA
brane is hypercomplex. Moreover, there exists a symmetric non-degenerate two-tensor on the
leaf space, that is a pseudo-Riemannian metric, compatible with all three complex structures.

This constrains the geometry of coisotropic branes. We also generalize a result of Kamenova
and Verbitsky [KV19, Theorem 3.1] to coisotropic submanifolds of integrable systems.

Theorem (Theorem 3.2.13). Let π : M → B be an algebraic integrable system. Let Z ⊂ M
be a connected complex coisotropic submanifold such that Z projects to π(Z) smoothly and
regularly and let x ∈ π(Z). Then, either Z ∩ π−1(x) = π−1(x) or for any leaf Lz, of the
characteristic foliation, passing through a point z ∈ (π|Z)−1(x) the intersection Lz ∩π−1(x) is
a disjoint union of translates of a subtorus in π−1(x), which is independent of z. In particular,
Zx := Z ∩ π−1(x) is foliated by translates of a subtorus in π−1(x).

If moreover, the characteristic foliation on Z has closed leaves, π(Z) inherits a special Kähler
structure from B.

At the beginning of Chapter 4, we introduce T-duality in generalized geometry. This chapter
contains the first part of our main results. We first show that on T-dual affine torus bundles
endowed with flat connections, the semi-flat hyperkähler structures are indeed T-dual.

Theorem (Theorem 4.2.4). Let M and M̂ be algebraically integrable systems which are
T-dual in the sense of generalized geometry. Assume that M and M̂ are endowed with
flat connections and the corresponding semi-flat hyperkähler structures. Then, the semi-flat
hyperkähler structure on M is T-dual to the semi-flat hyperkähler structure on M̂ .

A local version of this theorem was already shown by Hitchin in [Hit99b], the novelty of our
treatment is that we put the metric on affine torus bundles globalizing the result of Hitchin.
After this, we turn our attention to generalized branes. We introduce T-duality for generalized
branes without restricting to A or B-type branes based on [CG10]. We define the class of
"locally T-dualizable" generalized branes. We construct the T-duals of locally T-dualizable
generalized branes over a contractible base (Theorem 4.3.14), and finally, we study whether
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1. Introduction

locally T-dualizable branes admit global T-duals over a non-contractible base. We find that
there is a topological constraint to the existence of such T-duals (Theorem 4.3.18).
Chapter 5 is dedicated to the study of holomorphic line bundles on a complex torus. This
chapter motivates our treatment of T-duality. We describe the Fourier-Mukai transform of
holomorphic line bundles supported on affine subtori in an algebraic torus. In this chapter, we
also introduce factors of automorphy which are our main tools in generalizing this section’s
results. We describe the Fourier-Mukai transform using factors of automorphy.
In Chapter 6 we start working with "physical branes". We treat them as submanifolds endowed
with principal U(d)-bundles and connections. That is, we work with the frame bundles of
Hermitian vector bundles with connections instead of the vector bundles themselves. We
develop the theory of factors of automorphy for principal U(d)-bundles with connections. This
is analogous to the holomorphic description and also was used by Bruzzo, Marelli and Pioli
[BMP01, BMP02] in their treatment of T-duality for A-branes. We prove several technical
theorems analogous to the ones in Chapter 5.
Chapter 7 contains our main results about the T-duality of U(1)-bundles. We first describe
T-duality for U(1)-bundles supported on a single torus (Theorem 7.1.1). We show that
for bundles compatible with a complex structure the T-dual agrees with the Fourier-Mukai
transform. We then extend the factor of automorphy description to U(1)-bundles on a trivial
family of tori and prove Theorem 7.2.7. In Section 7.3, we introduce gerbes and topological
T-duality and prove Theorem 7.3.15. Finally, we prove Theorem 7.4.4 by first proving a local
version and then extending to a general base.
In Chapter 8 we conclude this thesis with a few possible extensions of our results.
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CHAPTER 2
Affine torus bundles and integrable

systems

The starting points of SYZ mirror symmetry [SYZ96] are symplectic manifolds which admit
special Lagrangian torus fibrations. In this thesis we restrict our attention to fibrations with
smooth fibers and affine structure groups, that is to affine torus bundles and integrable systems.
In this chapter, we introduce these geometric objects and their properties which are needed in
the next chapters.
In the first section, we recall the linear algebra of compact tori, both real and complex, based
on their treatment in [BL04]. In the second section, we introduce affine torus bundles following
[Bar15] and we define connections on them with special attention to flat ones. We also
explain how the Leray spectral sequence can be used to calculate the cohomology and its
degeneration when the torus bundle admits a flat connection. The third section focuses on
algebraic integrable systems, which are special cases of affine torus bundles admitting flat
connections. We recite the work of Freed [Fre97] who showed that the base of algebraic
integrable systems carry geometric structures called special Kähler structures. The end of
section 3 and section 4 introduces semi-flat hyperkähler structures on algebraic integrable
systems which are induced by a special Kähler structure and a flat connection.

2.1 Tori

In this section, we define real and complex compact tori and their duals. Moreover, we
introduce the most important morphisms of tori, translations, projections and isogenies.
A real torus T = V/Γ is defined as the quotient of a real vector space V by a full rank lattice
Γ ⊂ V . It inherits the abelian group structure from V . We denote the translation by an
element x ∈ T as

tx : T → T

y ↦→ y + x.

Let T = V/ΓT and T ′ = W/ΓT ′ be tori. A homomorphism f : T → T ′ can be lifted to a
homomorphism of the universal covers F : V → W which we call the analytic representation
of f .

9



2. Affine torus bundles and integrable systems

Definition 2.1.1. An isogeny is a homomorphism f : T → T ′ with finite kernel. The degree
of an isogeny is deg(f) := |Ker(f)|.

The analytic representation of an isogeny is an isomorphism F : V → W which induces an
injection F : ΓT → ΓT ′ . Hence, we may assume that F = id and ΓT ⊂ ΓT ′ . In particular, we
have a short exact sequence of abelian groups

0 → ΓT → ΓT ′ → G → 0

where |G| = [ΓT ′ : ΓT ] = d, the degree of f . With the identification V = W we also have
d · ΓT ′ ⊂ ΓT .
Let f : T → T ′ be a homomorphism. Then, im(f) ⊂ T ′ is a subtorus and ker(f) ⊂ T is
a subgroup. Moreover, if we denote by ker(f)0 the connected component of 0 in ker(f),
then ker(f)0 is a subtorus of T and a finite index subgroup of ker(f). In particular, we can
decompose f as a projection q to T/ker(f)0 and an isogeny f ′ onto its image.

T im(f)

T/ker(f)0

f

q
f ′

(2.1.1)

This decomposition is called the Stein factorization of f . The proofs of these statements can
be found in [BL04, Chapter 1.1] applied to complex tori.

Complex tori. Let V ∼= Cg be a g-dimensional complex vector space and Γ ⊂ V a full rank
lattice. Then, the torus

X := V/Γ
inherits the complex structure V . We call X a complex torus. A complex torus can be endowed
with the structure of an abelian variety if it admits a polarization, that is a Hermitian inner
product H : V × V → C which is positive definite and its imaginary part takes integer values
on Γ. Homomorphisms of complex tori are holomorphic maps.
Let Y = W/ΓY be another complex torus. If there is an isogeny f : X → Y and X is an
algebraic variety so is Y . Indeed, if H is the polarization on X and d = deg(f), then d ·H is
a positive definite Hermitian form on V ∼= W whose imaginary part takes integer values on
ΓY , since d · ΓY ⊂ ΓX .

Dual tori. Let T = V/Γ be a real torus. Then, the dual torus is defined as

T̂R := V ∗/Γ∨, (2.1.2)

where Γ∨ ⊂ V ∗ is the dual lattice defined by

Γ∨ := {γ∗ ∈ V ∗ | γ∗(Γ) ⊂ Z}.

If X = V/Γ is a complex torus we can also endow the dual torus with a complex structure.
We follow [BL04, Chapter 2.3]. Let

Ω := HomC̄(V,C) (2.1.3)

10



2.2. Affine torus bundles

that is, the space of C-antilinear homomorphism from V to C. Let us define the dual complex
lattice as

Γ∨
C := {γ∗ ∈ Ω | im(γ∗(Γ)) ⊂ Z}. (2.1.4)

The dual complex torus is then given by

X̂C := Ω/Γ∨
C.

We view V as a real vector space with a complex structure I. Then

V 1,0 =
{︃1

2(v − iIv) | v ∈ V
}︃

is again a real vector space with complex structure given by multiplication with i ∈ C. We
have (V, I) ∼= (V 1,0, i) via the map v ↦→ 1

2(v− iIv). The dual vector space V ∗ = HomR(V,R)
is endowed with the dual complex structure I∗. For f ∈ V ∗, we have I∗f(v) = f(Iv) for all
v ∈ V . Then, the space of C-antilinear forms is given by

Ω = (V ∗)0,1 = {f : V → C | f(Iv) = −if(v)} = {f + iI∗f | f ∈ V ∗}.

That is, (V ∗)0,1 ∼= (V,−I∗) via the map f ↦→ i(f + iI∗f). The multiplication by i is added
so that we have

Γ∨ Γ∨
C, f ↦→ i(f + iI∗f).

∼= (2.1.5)

In particular,

X̂C ∼= (V ∗,−I∗)/Γ∨ = X̂R. (2.1.6)

We will denote the dual torus simply by X̂ both in the real and complex cases.

2.2 Affine torus bundles

Fiber bundles with torus fibers are key players in T-duality. The most general mathematical
framework of T-duality is due to Baraglia [Bar15] who extended the theory to affine torus
bundles endowed with gerbes. In this section, we focus on affine torus bundles. We define
these objects, their monodromy local systems, vertical bundles and Chern classes and introduce
invariant forms on them. We describe several ways a connection on such fiber bundles can be
viewed and finally introduce the Leray spectral sequence which abuts to the cohomology.
Let T n = Rn/Zn be the standard torus. We denote by Aff(T n) the group of affine transforma-
tions of T n, that is Aff(T n) = GL(n,Z) ⋉ T n with GL(n,Z) acting on Rn via the standard
representation preserving the lattice Zn.

Definition 2.2.1. An affine torus bundle on a manifold B is a torus bundle π : M → B with
structure group Aff(T n).

In particular, there exists an Aff(T n) principal bundle P → B such that

P ×Aff(Tn) T
n = M. (2.2.7)

11



2. Affine torus bundles and integrable systems

We may also identify M with P/GL(n,Z). Indeed, suppose we trivialize P on a cover {Ui}
of B with transition functions (Aij, cij) ∈ GL(n,Z) ⋉ T n. Over Ui the maps

P ∼= Ui × Aff(T n)

M |Ui
∼= Ui × Aff(T n) ×Aff(Tn) T

n P/GL(n,Z)|Ui
∼= Ui × T n

qp

r

are given by p(b, (A, t)) = [b, (A, t), 0], q((b, (A, t)) = t and r[b, (A, t), x] = (b, Ax+ t) so we
have

(b, (A, t)

[︁
b, (A, t), 0

]︁
∼
[︁
b, (A, t)(1,−t′), t′

]︁
(b, t) = (b, A · 0 + t).

qp

r

Therefore locally M |Ui
∼= P/GL(n,Z)|Ui

and the maps are compatible with the transition
functions.
Using the homomorphism ϕ : Aff(T n) → GL(n,Z) we can define a principal GL(n,Z)-bundle

P0 := P ×ϕ GL(n,Z) (2.2.8)

which encodes the “linear part" of the transition functions of P and of M .

Definition 2.2.2. The monodromy local system of M is the local system Γ := P0 ×GL(n,Z)
Zn → B and the vertical bundle of M is the flat vector bundle V := P0 ×GL(n,Z) Rn, where
the associated bundles are constructed via the standard representations.

In this work, we assume every affine torus bundle to be orientable in the sense that V is
orientable.
There are many other ways to define Γ and V . We will explain a few here that will be used later.
First, notice that the vector bundle V is the adjoint bundle of P . Indeed, Lie(Aff(T n)) = Rn

and the adjoint action of Aff(T n) is given by

Ad(A,t)s0 = d

ds

⃓⃓⃓⃓
s=s0

(A, t)(1, s)(A−1,−A−1t) = d

ds

⃓⃓⃓⃓
s=s0

(1, As) = As0,

the action of ϕ((A, t)) on Rn. We then have

P ×ϕ GL(n,Z) ×GL(n,Z) Rn = P ×Ad Lie(Aff(T n)) = ad(P ).

Secondly, for any b ∈ B the constant vector fields on the torus π−1(b) form a vector space
Vb which glue together to form the vector bundle V → B. The lattice Γ ⊂ V is given by
the constant vector fields whose flow is 1-periodic. Finally, we have V ∼= (R1π∗R)∗ and
Γ ∼= (R1π∗Z)∗ where R and Z are the constant sheaves on M , since the stalk of R1π∗Z at
b ∈ B can be identified with H1(π−1(b),Z) and that of R1π∗R with H1(π−1(b),R). Moreover,
the vertical bundle pulled back to M can be identified with the subbundle of vertical vectors
in TM , that is the kernel of π∗.
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2.2. Affine torus bundles

The vector bundle V and lattice Γ define a group bundle

M0 := V/Γ (2.2.9)

whose local sections act on M by fiberwise translation. Choosing local sections of M over Ui
we may identify M0|Ui

∼= M |Ui
and the difference between M0 and M can be measured by

the linear part of the transition functions viewed as sections cij ∈ Γ(Uij,M0). Let C∞
V and

C∞
M0 be the sheaves of smooth sections of V → B and M0 → B respectively. The {cij} form

a class in H1(B, C∞
M0), and via the short exact sequence of sheaves

0 → Γ → C∞
V → C∞

M0 → 0

using that C∞
V is acyclic we find that {cij} determines a class c ∈ H2(B,Γ).

Definition 2.2.3. The class c ∈ H2(B,Γ) is called the Chern class of M .

The monodromy local system and the Chern class completely determine M according to the
following theorem.

Theorem 2.2.4 ([Bar14] Proposition 3.1, 3.2). Let B be locally contractible and paracompact.
To every pair (Γ, c), where Γ is a Zn-valued local system on B and c ∈ H2(B,Γ), there is an
affine T n-bundle π : M → B with monodromy local system Γ and twisted Chern class c. Two
pairs (Γ1, c1), (Γ2, c2) determine the same T n-bundle (up to bundle isomorphisms covering
the identity on B) if and only if there is an isomorphism ϕ : Γ1 → Γ2 of local systems which
sends c1 to c2 under the induced homomorphism ϕ : H2(B,Γ1) → H2(M,Γ2).

Invariant forms. The group bundle M0 → B associated to an affine torus bundle M → B
has a canonical Ehresmann connection. Indeed, the vector bundle V → B has a canonical flat
connection by requiring the sections of Γ to be flat. This connection descends to M0 = V/Γ and
we call it the Gauss-Manin connection. Another way to describe it is that M0 ∼= P0 ×GL(n,Z)T

n

and P0 is a principal GL(n,Z)-bundle on B which has a unique flat connection. The Gauss-
Manin connection is the induced connection. A principal GL(n,Z)-bundle is defined by a
representation of the fundamental group of B in GL(n,Z). This representation is also the
monodromy of the Gauss-Manin connection.
Even though M is not a principal bundle we can define invariant forms on it. Recall that P
can be viewed as a principal GL(n,Z)-bundle over M and let us denote by p : P → M the
projection. We use Definition 4.1. from [Bar15].

Definition 2.2.5. A differential form α ∈ Ωk(M) is said to be invariant if p∗α is an Aff(T n)-
invariant form on P .

A form α on M pulls back to a GL(n,Z)-invariant form and we can write any (A, t) ∈ Aff(T n)
as (1, t) · (A, 0) so

R∗
(A,t)p

∗α = (R(A,0)R(1,t))∗p∗α = R∗
(1,t)R

∗
(A,0)p

∗α = R∗
(1,t)p

∗α,

and p∗α is invariant if and only if it is invariant under the action of T n ≤ Aff(T n).
We can view this action from the perspective of the action of M0 on M . Let us denote by
ts the translation along the fibers of M by a (possibly local) section s of M0. Locally, over
Ui ⊂ B we can write P |Ui

∼= Ui × Aff(T n) and the action of (1, t) ∈ Aff(T n) is given by

(b, (A0, t0)) · (1, t) = (b, (A0t+ t0))
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2. Affine torus bundles and integrable systems

so we have that
p(R(1,t)(b, (A0t+ t0))) = tA0t ◦ p((b, (A0, t))),

where by A0t we mean the flat section of M0 passing through (b, A0t). Notice that the locally
defined map

µ : P × T n → X0 mapping (b, (A0, t0)) × t ↦→ (b, A0t)
is just the quotient map P0 × T n → M0 precomposed with P → P0 so it is well-defined
globally. We thus have

p(R(1,t)(x)) = tµ(x,t)p(x) for any x ∈ P,

so the action of T n on P corresponds to the action of flat sections of M0 on M . Therefore
the following lemma is clear.

Lemma 2.2.6. A differential form α on M is invariant if and only if t∗sα = α for any flat
local section s of M0.

Similarly to principal bundles, the cohomology of an affine torus bundle can be computed
using invariant forms. We will use the following statement.

Lemma 2.2.7 ([Bar15] Corollary 4.1.). Any cohomology class h ∈ Hk(M,R) has an invariant
representative H ∈ Ωk(M).

Connections. We can think of a connection on an affine torus bundle π : M → B in several
different ways. Firstly, as an Ehresmann connection, that is a split of the tangent bundle TM
into horizontal and vertical subbundles

TM ∼= π∗TB ⊕ π∗V,

where π∗V = ker(π∗). We may furthermore require the split to be invariant under the
action of M0 on M , that is for any flat local section s passing through x ∈ M we have
(ts)∗(π∗TB)x = (π∗TB)ts(x).
From the discussion in the previous section, it is clear that such a connection can equivalently
be represented by an invariant 1-form A ∈ Ω1(M,π∗V ) which induces an isomorphism
A : ker(π∗) → π∗V . Here by invariant form we mean a form A such that its pullback
p∗A ∈ Ω1(P, p∗π∗V ) = Ω1(P,Lie(Aff(T n))) is equivariant with respect to the action of
Aff(T n). The horizontal subbundle is given by ker(A). Clearly, p∗A is a principal bundle
connection on P and any connection on M is induced by a principal bundle connection on P .
In particular, the curvature of the connection p∗A is a closed two-form F ∈ Ω2(B, ad(P )) =
Ω2(B, V ) which can also be understood as the obstruction to the integrability of the horizontal
vector bundle on M . More precisely, for any X, Y ∈ TB, if ( )H represents the horizontal lift
we have

F (X, Y ) = [XH , Y H ] − [X, Y ]H ,
where we identify F (X, Y ) ∈ V with a constant vertical vector field on M .
The curvature form F represents a cohomology class in H2(B, V ) and it is clear that it is the
image of the Chern class c under the morphism H2(B,Γ) → H2(B, V ). In particular, when
the Chern class of M is torsion, the decomposition

TM = π∗TB ⊕ π∗V
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2.2. Affine torus bundles

is into integrable subbundles and we may find local coordinates representing the split.
Indeed, suppose that A ∈ Ω1(M,π∗V ) is a flat connection on M . Let U ∈ B be a contractible
open set and choose a local frame {v1, ..., vn} of V |U . The vi pull back to an invariant frame
{vAi } of π∗V and we may use A to identify the vi with an invariant frame of ker(π∗). We
have

[vAi , vAj ] = [vi, vj]A = 0,
where we use that V is the adjoint bundle of the overlying principal bundle and so its sections
can be endowed with a Lie bracket.
Similarly, a coordinate frame {ei} for TB can be lifted to an invariant frame {eHi } of the
horizontal bundle. Since A is flat and {ei} come from a coordinate frame, we have

[eHi , eHj ] = [ei, ej]H = 0.

In particular, {eHi , vAi } is an integrable frame of TM |U but the vAi cannot yield global
coordinates on the fiber. Nonetheless, choosing {vi} as a frame of Γ|U inside V |U allows us
to integrate the vAi to 1-periodic coordinates.
Choosing these coordinates for a cover {Ui} of B gives us an atlas {xi, pj} of 1-periodic
coordinates {pi} on the fiber and base coordinates {xj} such that {∂xj

} span the horizontal
distribution. In these coordinates the transition functions must be of the form x′ = ϕij(x)
and p′ = Aijp+ cij moreover, cij ∈ Γ(Uij, V/Γ) must be constant.
In conclusion, a choice of flat connection is equivalent to a choice of local 1-periodic coordinates
realizing the isomorphism

M |Ui
∼= V/Γ|Ui

such that the transition functions are constant.

Leray spectral sequence. Let f : M → B be a continuous map of topological spaces and
let F be a sheaf on M . To the data (M,B, f,F) we associate the Leray spectral sequence
Ep,q
r (f,F) associated to the composition of f∗ with the global sections functor converging to

the sheaf cohomology of F on M . In particular, there is a filtration

0 = F n+1,n ⊂ F n,n ⊂ ... ⊂ F 1,n ⊂ F 0,n = Hn(M,F)

such that Ep,q
∞ (f,F) ∼= F p,p+q/F p+1,p+q and the second page is given by Hp(B,Rqf∗F).

Let π : M → B be an affine torus bundle with monodromy local system Γ → B and Chern
class c ∈ H2(B,Γ). Let us first consider the Leray-Serre spectral sequence associated to the
constant sheaf Z. The second page is given by

Ep,q
2 (π,Z) = H2(B,Rqπ∗Z) ∼= H2(B,∧qΓ∗)

and the differentials are given by cupping with the Chern class and contracting the coefficients
([Bar14] Proposition 3.3.).
Considering the same spectral sequence with R coefficients we have that

Ep,q
2 (π,R) = Hp(B,∧qV ∗).

Moreover, the change of coefficients from Z to R induces a morphism of spectral sequences
Ep,q

2 (π,Z) → Ep,q
2 (π,R) so the second page differential dR2 is given by cupping with the image

of c in H2(B, V ).
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2. Affine torus bundles and integrable systems

Lemma 2.2.8. Let π : M → B be an affine torus bundle. Then, the Leray spectral sequence
Ep,q
r (π,R) degenerates on the second page if and only if the Chern class of M is torsion.

Proof. Since we assume V to be orientable, if rank(V ) = n then ∧nV ∗ ∼= R. Moreover, via
the pairing ∧kV ∗ ⊗ ∧n−kV ∗ → ∧nV ∗ ∼= R we get an isomorphism ∧kV ∗ ∼= ∧n−kV . Consider
now the segment dR2 : H0(B,∧nV ∗) → H2(B,∧n−1V ∗) of Ep,q

2 (π,R). Using the established
isomorphisms it reads as

dR2 : H0(B,R) → H2(B, V ), 1 ↦→ [c]

where [c] represents the image of the Chern class c in H2(B, V ). Therefore, if dR2 is zero, so is
[c] and c must be torsion.

On an affine torus bundle, there is also a filtration on differential forms

0 = F n+1Ωn ⊂ F nΩn ⊂ ... ⊂ F 0Ωn = Ωn(M)

where
F iΩn = {ω ∈ Ωn(M)| ιV1ιV2 ...ιVn+1−i

ω = 0 ∀ V1, ..., Vi ∈ π∗V }.

and a choice of connection splits this filtration. The indexing is done in the opposite way to
match the filtration coming from the Leray spectral sequence. Indeed, when the connection is
flat, it also splits the filtration on cohomology coming from the Leray spectral sequence. In
particular, we have

Hn(M,R) =
⨁︂

p+q=n
Hp(B,∧qV ∗).

2.3 Algebraic integrable systems

Algebraic integrable systems are a special case of affine torus bundles endowed with interesting
geometric structures. The base of an algebraic integrable system is special Khäler and the total
space carries a semi-flat hyperkähler structure. In this section we introduce these structures
based on work of Freed [Fre97].

Definition 2.3.1. An algebraic integrable system is a holomorphic surjection π : M → B
between smooth complex manifolds such that the following hold
(1) M carries a holomorphic symplectic structure η ∈ Ω2,0(M),
(2) the fibers of π are compact complex Lagrangian tori, and
(3) there exists a class α ∈ H2(M,R) such that its restriction αb to each fiber Mb lies in
H2(Mb,Z) ∩ H1,1(Mb) ⊂ H2(Mb,R) and defines a positive polarization.

A positive polarization on a complex torus Mb
∼= Vb/Γb is a non-degenerate Hermitian form

on Vb which is positive definite and whose imaginary part takes integer values on Γb. A
polarization can also be defined by a cohomology class αb ∈ H2(Mb,Z) ∩ H1,1(Mb) as follows.
Let Eb ∈ Ω2(Mb,R) be the unique invariant representative of αb. Then, we may consider Eb
as an alternating bilinear form on Vb and define the corresponding Hermitian form as

Hb(v, w) = Eb(Iv, w) + iEb(v, w).
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2.3. Algebraic integrable systems

We say that αb ∈ H2(M,R) defines a positive polarization if Hb does. Note that this
convention differs from the convention we use for Kähler geometry. In a Kähler triple (g, I, ω)
we take ω = gI so the associated Hermitian metric is h = g − iω with Im(h) = −ω.
Viewed as real manifolds π : M → B is an integrable system with respect to both Re(η) = σ
and Im(η) so we can utilize the theory of real integrable systems, see for example [Dui80]. In
particular, if the fibers are compact Lagrangian submanifolds they are necessarily affine tori.
Indeed, let us choose local coordinates {xi} on some open U ⊂ B. Then, {fi = xi ◦ π} are
dimR(M)/2 Poisson commuting functions. The Hamiltonian flow along the corresponding
vector fields Xfi

= σ−1dfi endows the fibers with the affine torus structure.
For each b ∈ B then we may consider the vector space Vb of constant vector fields with
respect to the Hamiltonian action. Inside Vb there is a lattice Γb of vector fields whose flow
is one-periodic. The local vector fields Vb glue together to a vector bundle V → B and the
lattices to a local system Γ → B. In conclusion, M is an affine torus bundle with monodromy
local system Γ and Chern class defined as before.
Let X ∈ Vb be a constant vector field on the fiber π−1(b). Then, since the fibers are Lagrangian
ιXσ is a basic one-form and we get a symplectic isomorphism

V ∼= T ∗B|U .

The image of Γ under this symplectomorphism is a Lagrangian submanifold, which we still
denote by Γ, in T ∗B. Since Γ is Lagrangian it must be spanned by closed one-forms viewed as
sections of T ∗B. Finally, via a Lagrangian section s : U → M we have a symplectomorphism

T ∗B/Γ|U ∼= M |U .

In the algebraic case, we have a holomorphic symplectic form η with Re(η) = σ and
Im(η) = I∗σ. Since π is a holomorphic map pulling back holomorphic coordinates {zi} from
the base induces complex valued Poisson commuting functions {φi = zi ◦ π} on M . The
complex structure on the fibers induces a complex structure on V and V ∼= T ∗B becomes a
holomorphic symplectomorphism.
In particular, the fibers of π : M → B are complex tori but the existence of polarization is a
non-trivial addition which allows us to define the special Kähler structure on the base. The
polarization also endows the fibers with a Kähler structure and by the relative hard Lefschetz
theorem the Leray spectral sequence for π : M → B degenerates on the second page. In
particular, as we have discussed before M as an affine torus bundle must have torsion Chern
class.

Special Kähler manifolds. Special Kähler geometry was first considered in the physics
literature as the geometry of scalars in four-dimensional N = 2 supersymmetric gauge theories.
A clear mathematical description was given by Freed in [Fre97] which we follow here.

Definition 2.3.2. A special Kähler structure on a manifold B is a triple (ω, I,∇) where ω is
a symplectic form, I a compatible complex structure and ∇ is a torsion-free, flat, symplectic
connection satisfying d∇I = 0.

In particular, (ω, I) form a Kähler structure on B. In the definition we consider I as an
element of Ω1(TB) and d∇ as the operator Ω1(TB) → Ω2(TB).
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2. Affine torus bundles and integrable systems

Since ∇ is flat we may choose a flat local frame {ei} for TB. If {ei} is the dual frame of
T ∗B we must have dei = 0. Indeed, for X, Y ∈ TB we have

dei(X, Y ) = X(Y i) − Y (X i) − [X, Y ]i,

which, since ∇XY = X(Y i)ei + Y i∇Xei, is exactly the ei component of ∇XY − ∇YX −
[X, Y ] = 0. In particular, locally ei = dxi and the {xi} form coordinates since [ei, ej] =
∇ei

ej − ∇ei
ej = 0. We call coordinates {xi} flat whenever the corresponding vector fields

{∂xi} are flat with respect to ∇.

The connection is symplectic, that is ω is a parallel form with respect to ∇. In particular, in
the flat coordinates, ω must have constant coefficients and by scaling we may choose the
{xi} to be flat Darboux coordinates. We can form an atlas of these flat coordinates and find
that the transition functions must be affine transformations preserving ω, more precisely if
dim(M) = 2n we have

x′ = A · x+ b A ∈ Sp(2n,R), b ∈ R2n.

That is, a special Kähler manifold carries an affine structure.

Using flat coordinates, which do not have to be Darboux, one can show that the metric is
induced by a potential. This result is due to Hitchin.

Theorem 2.3.3. ([Hit99b, Section 4]) Let (B,∇, ω, I) be a special Kähler manifold and let
{xi} be flat coordinates. Then the Riemannian metric g is

g = ∂2ϕ

∂xi∂xj
dxi ⊗ dxj

for some real function ϕ. In fact, ϕ is a Kähler potential.

Indeed, if I = I ij
∂
∂ui ⊗ duj in flat coordinates then the condition d∇I = 0 reads

∂I ij
∂uk

− ∂I ik
∂uj

= 0.

Then, the metric g = −ωI can be written as

gij = −ωikIkj

where ωij are constant due to ∇ω = 0. Finally,

∂gij
∂ul

= −ωik
∂Ikj
∂ul

= −ωik
∂Ikl
∂uj

= ∂gil
∂uj

and hence the matrix g is locally the derivative of a function Ψ : Rn → Rn. Since gij is also
symmetric, Ψ is also the derivative of a function ϕα : Rn → R.

Finally, the dual of the flat connection ∇ on T ∗B is again a flat connection. It can also be
seen as a connection on the fiber bundle p : T ∗B → B so it induces a splitting of TT ∗B into
horizontal and vertical subspaces

TT ∗B ∼= p∗TB ⊕ p∗T ∗B.
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2.3. Algebraic integrable systems

The horizontal subspace at x ∈ T ∗B is given by the space (sx)∗(Tp(ξ)B) where sx : B → TB
is a flat section through x. This splitting turns out to respect the complex structure of T ∗B.
Moreover, since ∇ is flat this splitting is into integrable subbundles. That is, if {xi, yi} are
flat Darboux coordinates on B, let {pi, qi} be the dual fiberwise coordinates on T ∗B. Then,
{xi, yi, pi, qi} are coordinates on T ∗B realizing the splitting.
Let x ∈ T ∗B with p(x) = b so the tangent space at x is given by TxT ∗B = T ∗

b B ⊕ TbB.
The base is Kähler so (g, I, ω) endows TbB with a Hermitian structure. Moreover, T ∗B is
holomorphic symplectic and the holomorphic symplectic form η is in standard form in the
splitting. In particular, we can write the complex structure I of T ∗B and the holomorphic
symplectic structure η in matrix form as

I =
(︄
I 0
0 I∗

)︄
, Re(η) =

(︄
0 Id

−Id 0

)︄
, Im(η) = −I∗Re(η) =

(︄
0 −I∗

I 0

)︄
. (2.3.10)

Using the Kähler form ω on B the triple at TxT ∗B can be extended to a hypekähler structure
with Re(η) = ωJ and Im(η) = ωK. The rest of the structures are given in matrix form as

ωI =
(︄
ω 0
0 ω−1

)︄
J =

(︄
0 g−1

−g 0

)︄
K = IJ =

(︄
0 −ω−1

ω 0

)︄
. (2.3.11)

These expressions are coordinate independent so ωI, J and K are globally defined and since
the splitting of TT ∗B is integrable, J and K are complex structures. To show that the
triple (I, J,K) defines a hyperkähler structure on T ∗B it remains to show that ωI, ωJ and ωK
are closed [Hit87a]. Indeed, since dη = 0 we have dωJ = dωK = 0 and in the coordinates
{xi, yi, pi, qi} we may write ωI as

ωI = dxi ∧ dyi − dpi ∧ dqi

which is closed. The corresponding metric is given by

G =
(︄
g 0
0 g−1

)︄
.

The hyperkähler metric defined here is what we call semi-flat hyperkähler metric. In the next
section, we will see that such a metric can also be defined on algebraic integrable systems.

Special Kähler geometry on the base of an algebraic integrable system. We have
seen that an algebraic integrable system π : M → B defines a flat connection on B. Moreover,
the horizontal distribution of the dual connection, considered as an Ehresmann connection
on T ∗B ∼= V , is complex Lagrangian. In particular, flat sections of T ∗B must be closed
one-forms.
Indeed, let s : B → TB be a flat section, that is s∗TB is complex Lagrangian in T (T ∗B). If
{xi, pi}2n

i=1 are dual coordinates on T ∗B, then the real standard symplectic form is given by
σ = dτ = d(pidxi). Moreover, s∗T

∗B is Lagrangian if and only if s∗σ = 0. In coordinates
s(x) = (xi, si(x)) so we have

s∗σ = s∗d(τ) = ds∗(τ) = d(sidxi) = ds.

The canonical holomorphic symplectic form on T ∗B is given by η = σ−iI∗σ where I represents
the complex structure on T ∗B. Note that in general for a real two-from, F the tensor I∗F is
not a two-form, it happens precisely when F is the real part of a holomorphic two-form.
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2. Affine torus bundles and integrable systems

Similar calculations show that a section s : B → T ∗B defines a complex horizontal subspace if
and only if s− iI∗s is a holomorphic (1, 0)-form. Finally, the horizontal subspace is Lagrangian
with respect to Im(η) if and only if dI∗s = 0. That is, s is a complex Lagrangian section
precisely when ds = 0, dI∗s = 0 and ∂(s− iI∗s) = 0. It is easy to see that any two of these
conditions imply the third.
As we have discussed before, the cohomology class α ∈ H2(M,R) can be viewed as a family
of alternating bilinear forms {Eb} on Vb ∼= T ∗

b B taking integer values on Γb. The dual forms
{−E−1

b } then give smoothly varying alternating bilinear forms on TbB, that is a two-form ω.
The significance of the sign will become clear later. Locally, we can find a symplectic frame
{µi, νi} for the {Eb}, that is

Eb(µi, νj) = −diδij, Eb(µi, µj) = Eb(νi, νj) = 0,

where di ∈ Z>0 and di|di+1. The vector d = (d1, ..., dn) is called the type of the polarization
Eb and it must stay constant over a connected base. In particular, ω can be written locally as
ω = d−1

i νi ∧ µi. Moreover, since {µi, νi} are flat we may integrate them to flat coordinates
{xi, yi} such that {dxi, dyi} is an integral frame of Γ and such that

ω = 1
di
dyi ∧ dxi. (2.3.12)

Clearly, ∇ω = 0 and since ∇ is torsion-free dω = 0 as well.
Finally, ω is compatible with the complex structure on TB, since Eb, which agrees fiberwise
with −ω−1, is compatible with the complex structure on T ∗

b B. The reason for the minus sign
is clear now. Due to our convention for the Kähler form (I, ω) defines a Kähler structure on
B with positive definite Kähler metric I∗ω.
The compatibility with the complex structure I is equivalent to the existence of conjugate
special complex coordinates {zi, wi} adapted to flat Darboux coordinates {xi, yi}. That
is {zi} and {wi} are two sets of complex coordinates on B satisfying Re(zi) = xi and
Re(wi) = yi. These coordinates can be found as follows. The flat Darboux coordinates induce
a frame {dxi, dyi} of Γ which on each fiber can be identified with a cycles {γi, δi} generating
H1(Mb,Z). The holomorphic coordinates are then given by integrating the holomorphic
symplectic form over these families of cycles

dzi =
∫︂
γi

η, dwi = −
∫︂
δi
η.

One can also show that in these coordinates
∂

∂zi
= 1

2

(︃
∂

∂xi
− τij

∂

∂yj

)︃
.

where τij is the period matrix of the fibers.
The conclusion is the following theorem from [Fre97], first stated in [DW95].

Theorem 2.3.4 ([Fre97] Theorem 3.4.). Let (M → B, η, α) be an algebraic integrable system.
Then, the Kähler form ω and the connection ∇ constructed above comprise of a special Kähler
structure on B. Furthermore, there is a lattice Γ∨ ⊂ TM whose dual Γ ⊂ T ∗B is a complex
Lagrangian submanifold, and the holonomy of ∇ is contained in the integral symplectic group
defined by Γ.
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2.4. Semi-flat hyperkähler structure on an algebraic integrable system

There is a second part of this theorem which states that a special Kähler manifold B together
with a complex Lagrangian lattice Γ whose dual is flat, T ∗B/Γ = M0 with the structure of an
algebraic integrable system. Indeed, the holomorphic symplectic structure of T ∗B descends
to T ∗B/Γ and the dual of the Kähler form ω induces the polarizations on the fibers. This
algebraic integrable system has a well-defined zero section which is complex Lagrangian.
Even more is true, however. We saw that holomorphic symplectic structure on T ∗B can be
extended to a semi-flat hyperkähler structure which is invariant under translation by Γ ⊂ T ∗B.
In particular, it descends to a hyperkähler structure on T ∗B/Γ extending the holomorphic
symplectic structure and such that for each b ∈ B the Kähler form ωI restricted to the
fiber T ∗

b B/Γb = (M0)b agrees with minus the polarization. The minus sign is due to our
conventions.

2.4 Semi-flat hyperkähler structure on an algebraic
integrable system

In this section we show that via a flat connection, the semi-flat hyperkähler structure can
also be extended to the algebraic integrable system π : M → B. On the other hand, this
hyperkähler structure may not extend the holomorphic symplectic structure. In the real case,
if an integrable system has a smooth section then it is diffeomorphic to T ∗B/Γ but it is only
symplectomorphic if it has a Lagrangian section [Dui80, Theorem 2.1]. In the holomorphic
case, Lagrangian sections are replaced by complex Lagrangian ones but the obstruction remains.
This issue is further explored in the second half of this section.
As we have discussed before M has torsion Chern class, so any connection will define an
integrable horizontal distribution. We have seen that a choice of such a connection can be
viewed as a choice of an atlas in which the transitions between the fiber coordinates are
constant affine transformations. Since the base of M is special Kähler we may also choose
the base coordinates to be flat Darboux and the coordinates on the vertical bundle as the dual
coordinates on T ∗B.
The construction of these coordinates is via smooth sections as follows. Let si : Ui → M |Ui

be any smooth sections, where {Ui} is a good cover of B. The Chern class is given by
c = {cij} ∈ H1(B, C∞(T ∗B/Γ)) ∼= H2(B,Γ) defined as

s′
i = s′

j + cij cij : Uij → T ∗Uij/Γ.

Since c is torsion there exists some r ∈ Z>0 such that r · c is trivial. In particular there exist
local sections nij : Uij → Γ such that

cij − 1
r
nij = li − lj for sections li : Ui → T ∗B/Γ.

Then, via the action of M0 on M , si = s′
i − li are local smooth sections of M which

differ by flat sections of T ∗B/Γ over double intersections. This translates to constant affine
transformations between coordinates.
These smooth sections together with flat coordinates on the base and their dual coordinates
on the cotangent bundle decompose the tangent bundle of M into integrable vertical and
horizontal subbundles

TM ∼= π∗TB ⊕ π∗T ∗B.
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2. Affine torus bundles and integrable systems

Therefore, the semi-flat hyperkähler structure on V + V ∗ extended to the vector bundle on
TB ⊕ T ∗B pulls back to an M0-invariant structure on M . This is indeed a hyperkähler
structure by the integrability of the horizontal distribution. In this hyperkähler structure the
local sections si defining the flat connection are complex Lagrangian and via these sections
M |Ui

∼= T ∗Ui/Γ as hyperkähler manifolds. The conclusion is the following theorem, which is
a slight extension of Theorem 3.8 of [Fre97].

Theorem 2.4.1. Let (M → B, η, α) be an algebraic integrable system. Then to any flat
connection on M we can associate a semi-flat hyperkähler structure on M . In particular, M0 =
T ∗B/Γ carries a canonical semi-flat hyperkähler structure via the Gauss-Manin connection.

It is clear from this perspective that the semi-flat structure extends the holomorphic symplectic
structure on M if we can find coordinates for the horizontal distribution via holomorphic
Lagrangian sections. In particular, only if the flat horizontal distribution of M can be chosen
to be complex Lagrangian.
The obstruction to this can be explained via the short exact sequence of shaves

0 → Γ → Λ(T ∗B) → Λ(T ∗B/Γ) → 0,

where Λ denotes complex Lagrangian sections with respect to the canonical holomorphic
symplectic structure η on T ∗B.
A section of T ∗B is a one-form ξ on B. It is Lagrangian with respect to Re(η) = σ if dξ = 0.
Indeed, σ = dτ where τ is the Liouville one-form, so we have ξ∗σ = ξ∗(dτ) = d(ξ∗τ) = dξ.
The section is holomorphic, if and only if ξ − iI∗ξ is a holomorphic one-form on B. Finally, if
ξ is Lagrangian with respect to Re(η) and holomorphic, it is also Lagrangian with respect to
Im(η).
The relevant part of the long exact sequence of cohomology is

. . . → H1(B,Λ(T ∗B)) → H1(B,Λ(T ∗B/Γ)) → H2(B,Γ) → . . .

Suppose that M → B has a smooth section s : B → X. Let µi : Ui → M |Ui
be local

complex Lagrangian sections which define a class in H1(B,Λ(T ∗B/Γ)). Since it is in the
kernel of the boundary morphism it can be lifted to a class µ ∈ H1(B,Λ(T ∗B)) represented
by sections µij : Uij → Λ(T ∗Uij). Since C∞(T ∗B) is an acyclic sheaf H1(B, C∞(T ∗B)) = 0
so there exist sections ξi : Ui → T ∗Ui satisfying µij = ξi − ξj. That is, the sections s and µi
over Ui are related as s|Ui

+ ξi = µi where we take the image of ξi under T ∗B → T ∗B/Γ.
Let us take dual coordinates (x, p) = (xα, pα) with respect to the sections s|Ui

and (x̃, p̃) =
(x̃i, p̃i) with respect to µi on M |Ui

. The two coordinates are related by x̃ = x and p̃ = p+ ξi.
Writing ξi as a one-form ξi = χαdx

α we define Fαβ = ∂αχβ as the matrix of differentials, so
we have dξi = (F − F T )αβdxα ∧ dxβ. In the coordinates (x̃, p̃) the holomorphic symplectic
structure (I, σ − I∗σ) on M is in the standard form. Transforming to the coordinates (x, p)
we find

σ =
(︄
F − F T 1

−1 0

)︄
, I =

(︄
I 0

I∗F − FI I∗

)︄
, −I∗σ =

(︄
F T I − I∗F −I∗

I 0

)︄
. (2.4.13)

We can identify (F − F T )αβdxα ∧ dxβ + i(I∗F − F T I)αβdxα ∧ dxβ with the pullback of
the holomorphic symplectic form on M via the section s : B → M . It is shown in [BDV20,
Proposition 2.10] that this pullback must be closed and have Hodge type (2, 0) + (1, 1).
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2.4. Semi-flat hyperkähler structure on an algebraic integrable system

We see that the obstruction to the existence of a global complex Lagrangian section lies in
H1(B,Λ(T ∗B)) and can be represented by a complex two-from on the base. If M → B is
an algebraic integrable system with torsion but non-zero Chern class, we have no chance of
finding a smooth section. On the other hand, if r · c = 0 for some r ∈ Z>0 we may choose
local sections si : Ui → M such that si = sj + r−1 + r−1 · nij where r−1 · nij are flat sections
of T ∗Uij and also r-torsion elements of T ∗Uij/Γ.

We can explain this in a coordinate-free way as follows. On B there is a short exact sequence
of local system

0 Γ Γ Γ[r] 0·r

where the local system Γ[r] can be identified with the r-torsion points of T ∗B/Γ. Via the
induced map on cohomology H2(B,Γ) → H2(B,Γ) the Chern class c of M maps to zero.
That is, c lies in the image of the boundary morphism H1(B,Γ[r]) → H2(B,Γ) of the long
exact sequence which is equivalent to the representation of c as the collection of sections
{r−1 · nij}.

The morphism of lattices ·r : Γ → Γ induces a map of affine torus bundles ρ : M → M0
where M0 is the affine torus bundle corresponding to the local system Γ with zero Chern class
(2.2.9). In the coordinates associated to the local sections si of M and a global flat section
of M0 we have ρ(x, p) = (x, r · p). The map ρ is a degree r2n isogeny on the fibers.

Locally we can write the sections si as µi + ξi for some complex Lagrangian sections µi
of M and one-forms ξi on the base. Then, the holomorphic symplectic structure of M is
given by (2.4.13) in the coordinates corresponding to the si. We can then endow M0 with a
holomorphic symplectic structure such that ρ is a local holomorphic symplectomorphism.

Now suppose that M0 endowed with the induced holomorphic symplectic structure has a global
complex Lagrangian section µ : B → M0. Then, over a contractible cover, we may choose
preimages µi of µ which will be complex Lagrangian and which will differ by an r-torsion
element over double intersections. The conclusion of the previous section is the following
theorem.

Proposition 2.4.2. On an algebraic integrable system M there exists a semi-flat hyperkähler
structure extending the holomorphic symplectic structure if and only if M0 has a complex
Lagrangian section.

Example 2.4.3 (Higgs bundle moduli spaces). Let Σ be a compact Riemann surface of genus
g ≥ 2. Let K be the canonical bundle. A Higgs bundle of degree d and rank r on Σ is a pair
(V,Φ), where V is a degree d rank r holomorphic vector bundle and Φ is a holomorphic section
of End(V ) ⊗K. We call Φ the Higgs field. A Higgs bundle is stable (resp. semi-stable) if
any proper ϕ-invariant subbundle F ⊂ E satisfies

deg(F )
rank(F ) <

deg(E)
rank(E)

(resp. deg(F )/rank(F ) ≤ deg(E)/rank(E)). For a fixed r and d there exists a coarse
moduli space parametrizing the isomorphism classes of semi-stable Higgs bundles M(r, d). It
was first constructed by Hitchin [Hit87b] using infinite dimensional hyperkähler quotient and
later by Nitsure [Nit91] and Simpson [Sim94a, Sim94b] via GIT quotient. The smooth points
of M(r, d), denoted by Ms(r, d), correspond to stable Higgs bundles and carry a hyperkähler
structure.
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2. Affine torus bundles and integrable systems

The characteristic polynomial of the Higgs field

det(I · x− Φ) = xr + a1x
r−1 + ...+ a1

defines a map
h : M(d, r) → A =

r⨁︂
i=1

H0(Σ, K⊗i)

(E,Φ) ↦→ (a1, ..., ar)
(2.4.14)

called the Hitchin map to an affine space, called the Hitchin base. In one of the holomorphic
symplectic structures, the fibers of Ms(d, r) are (singular) polarized complex Lagrangian tori,
that is Ms(d, r) is an algebraic integrable system with singular fibers. The polarization is
induced by one of the Kähler forms. Let us denote by Areg the locus where the fibers of h are
smooth and let Mreg(r, d) ⊂ Ms(r, d) be the preimage of Areg via h. Then

Mreg(r, d) → Areg (2.4.15)

is an integrable system in the sense of Definition 2.3.1.
An SL(r,C)-Higgs bundle is a Higgs bundle (V,Φ) of rank r such that det(V ) is trivial and
Φ ∈ End0(V ) ⊗ K is trace-free. Once again, there exists a moduli space parametrizing
SL(r,C)-Higgs bundles which we denote by MSL(r,O). Here, r denotes the rank and O is
the trivial line bundle, that is, the determinant of V . Clearly,

MSL(r,O) ⊂ M(r, 0).

The restriction of the Hitchin map

MSL(r,O) → A0 =
n⨁︂
i=2

Hi(Σ, Ki) (2.4.16)

is again an algebraic integrable system with singular fibers. It turns out that this map has a
section over all of A0 called the Hitchin section.
In rank r = 2 the Hitchin section is constructed as follows [Hit92, Section 3]. The Hitchin
base is given by A0 = H0(Σ, K2) the space of quadratic differentials. Let K1/2 be a square
root of the canonical bundle, that is a spin structure on Σ. Define the Higgs bundle (Va,Φa)
for an a ∈ A0 as

Va = K1/2 +K−1/2, Φa =
(︄

1 0
a 1

)︄
.

It is easy to see that (Va,Φa) is stable for all a ∈ A0. This construction can be generalized to
any r ≥ 3 and it is a complex Lagrangian section (see for example [HH21, Proposition 2.10]).
To the Hitchin section over Areg

0 = A0 ∩ Areg we can associate a semi-flat hyperkähler
structure which has been extensively studied. It was conjectured by Gaiotto, Moore and
Nietzke [GMN10, GMN13] that the semi-flat metric is exponentially close to the original
hyperkähler metric far away from the locus of singular fibers A0\Areg

0 . This has only been
partially proved.
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CHAPTER 3
Generalized geometry

The term generalized geometry was introduced by Nigel Hitchin in 2002 referring to the study
of the bundle TM + T ∗M on a differentiable manifold M . He was motivated by the double
field theory formalism of supersymmetric sigma models. Generalized geometry was further
developed by two of his students Marco Gualtieri and Gil Cavalcanti during their PhD. Gualtieri
demonstrated that generalized geometry unifies complex and symplectic structures into so-
called generalized complex structures. He also showed that the formalism of supersymmetric
sigma models can be encoded into generalized Kähler structures.

In this chapter, we first introduce the basic notions of generalized geometry. The remainder of
this section is dedicated to one of the most important notions of this thesis: branes. These
objects appear in all sorts of physical theories as boundary conditions, in our context they
come from supersymmetric sigma models. Gualtieri has also defined branes in the framework
of generalized geometry. We study different types of generalized branes which are compatible
with different generalized complex structures. The last subsection of this chapter contains the
first small results of this thesis regarding the structure of branes called BAA-branes.

3.1 Basic notions

In this section we follow the work of Gualtieri [Gua11, Gua03]. We introduce Courant algebroids,
generalized complex/Kähler/hyperkähler structures and B-field transformations.

Let M be a smooth manifold.

Definition 3.1.1. A Courant algebroid on M is a quadruple (E, ρ, ⟨, ⟩, [, ]) where E → M
is a vector bundle, ρ : E → TM is a morphism of vector bundles called the anchor, ⟨, ⟩ is
a non-degenerate bilinear pairing on sections of E and [, ] is a bracket, called the Courant
bracket, satisfying the following for all x, y, z ∈ Γ(E):

1. [x, [y, z]] = [[x, y], z] + [y, [x, z]],

2. ρ([x, y]) = [ρ(x), ρ(y)],

3. [x, fy] = f [x, y] + df(ρ(x))y for f ∈ C∞(M),
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3. Generalized geometry

4. ρ(x)⟨y, z⟩ = ⟨[x, y], z⟩ + ⟨y, [x, z]⟩,

5. [x, x] = ρ∗d⟨x, x⟩.

An exact Courant algebroid is a Courant algebroid fitting into the short exact sequence

0 T ∗M E TM 0.ρ∗ ρ (3.1.1)

One can show that in an exact Courant algebroid, the image of T ∗M is isotropic and the
bilinear pairing ⟨, ⟩ has split signature. Moreover, there exist isotropic splittings s : TM → E
and via such a splitting E ∼= TM + T ∗M , the anchor map is projection to the first summand,
the pairing is given by

⟨X + ξ, Y + η⟩ = 1
2(ξ(Y ) − eta(X))

and the bracket is

[X + ξ, Y + η] = [X, Y ] + LXη − ιY dξ + ιXιYH

for a closed three-form H ∈ Ω2(M).

Choosing a different isotropic splitting s′ : TM → E changes H by an exact three form dB.
A change in isotropic splitting is called a B-field transformation. The isomorphism classes of
Courant algebroids are classified by the de Rham cohomology class of the three-form H and
each representative can be attained by a choice of isotropic splitting.

The novelty of generalized geometry is that several geometrical structures have analogues as
structures on E = TM ⊕ T ∗M . Most importantly, complex and symplectic structures can be
viewed as examples of generalized complex structures.

Definition 3.1.2. A generalized almost complex structure on E is an endomorphism J :
E → E which is orthogonal with respect to the natural pairing and satisfies J 2 = −Id.

A generalized almost complex structure decomposes the complexified bundle E ⊗ C into ±i
eigenbundles. That is,

E ⊗ C = L⊕ L

where L = Im(1
2(Id + iJ )) and L = Im(1

2(Id − iJ )). We say that a generalized almost
complex structure is integrable if L is involutive with respect to the Courant bracket.

Definition 3.1.3. A generalized complex structure (GCS) on E is an integrable generalized
almost complex structure.

Alternatively, a generalized complex structure is a maximal isotropic subbundle L ⊂ E ⊗ C
which is involutive with respect to the Courant bracket and satisfies L ∩ L = 0, where L is
the conjugate of L. Moreover, as L is an isotropic subbundle it is endowed with the structure
of a Lie algebroid via the Courant bracket.

The complexification of the anchor map gives a morphism of complex vector bundles ρ :
E ⊗ C → TM ⊗ C The type of a generalized complex structure is the complex codimension
k of the complex distribution ρ(L) ⊂ TM ⊗ C. The type of a generalized complex structure
may not be constant.
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3.1. Basic notions

The most commonly used examples of GCSs are induced by complex and symplectic structures.
If J is a complex structure on M then the complex type generalized almost complex structure
corresponding to J is

JJ =
(︄
J 0
0 −J∗

)︄
(3.1.2)

which is integrable whenever H3,0 = 0. The +i eigenbundle of JJ is given by

LJ = T 1,0M ⊕ Ω0,1(M).

This GCS has type k = dimR(M)/2.
If ω ∈ Ω2(M) is a symplectic form on M , then the symplectic type generalized almost complex
structure is

Jω =
(︄

0 −ω−1

ω 0

)︄
(3.1.3)

which is integrable if and only if H = 0. The +i eigenbundle of Jω is

Lω = {X − iω(X) | X ∈ TM ⊗ C}.

This GCS has type k = 0. If (M,J, ω) is a Kähler manifold, there is both a symplectic and
complex type GCS associated to the Kähler structure for the Courant bracket with H = 0.
The pair (Jω,JJ) is an example of a generalized Kähler structure.
In the case of a hyperkähler manifold (M, g, I, J,K) if we denote the Kähler forms by ωI , ωJ
and ωK there are three complex type JI , JJ , JK and three symplectic type JωI

, JωJ
, JωK

generalized complex structures on TM ⊕ T ∗M with H = 0. Moreover, since I, J and K
obey the quaternionic relations, the corresponding generalized complex structures satisfy

JIJJJK = −1, (3.1.4)
JωI

JωJ
= JK , JωJ

JωK
= JI , JωK

JωI
= JJ . (3.1.5)

Such a structure is also called generalized hyperkähler and it can also be defined for H ̸= 0 as
three generalized Kähler structures which satisfy the generalized quaternionic relations (3.1.4)
and (3.1.5).
An important automorphism of exact Courant algebroids is the B-field transform corresponding
to some B ∈ Ω2(M). This can be seen as changing the isotropic splitting (3.1.1). It acts on
TM + T ∗M as the matrix

eB =
(︄

1 0
B 1

)︄
that is, it maps

eB(X + ξ) = X + ξ + ιXB, X ∈ TM, ξ ∈ T ∗M.

The B-field transform changes the three-form which defines the Courant bracket as H ↦→
H + dB, so it is an automorphism precisely when B is closed. The B-field transform acts on
generalized complex structures J via conjugation

eB(J ) = eBJ e−B, (3.1.6)
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3. Generalized geometry

and it changes the +i eigenbundle as

LeB(J ) = eBLJ = {X + ξ + ιBX | X + ξ ∈ LJ }. (3.1.7)

For example, if I and ω are a complex and a symplectic structure on M and JI , Jω are the
corresponding generalized complex structures we have

eBJIe
−B =

(︄
I 0

BI + I∗B −I∗

)︄
, eBJωe

−B =
(︄

ω−1B −ω−1

ω +Bω−1B −Bω−1

)︄
.

It can also be shown that any GCS of type k = 0 is the B-field transform of a symplectic type
GCS.

3.2 Generalized branes

The term “brane" originates from physics where it roughly means boundary conditions for
a certain theory. The branes we are concerned with are coming from topological twists of
two-dimensional nonlinear supersymmetric sigma models [GHR84]. In such a model the bosonic
fields are given by smooth maps

Φ : Σ → M

from a base manifold Σ to a target manifold M . Nonlinear means that the target space is
a manifold, not a vector space and two-dimensional refers to the dimension of the base Σ.
The base Σ is taken to be a Riemann surface and the target M is endowed with a metric and
a B-field, a collection of local two-forms Bi ∈ Ω2(Ui) with respect to a good cover {Ui} of
M , which satisfy dBi = dBj on double intersections. Such a B-field can be understood as
the curving of a connection on a U(1)-bundle gerbe whose curvature is the global three form
H ∈ Ω3(M) defined as H|Ui

= dBi. We call H the H-flux.
The fermionic fields are sections ψ of a bundle over the space of smooth maps Σ → M .
More precisely, we choose a spin bundle S on Σ and at the point Φ the field ψ takes value in
S ⊗ Φ∗(TM). The physical theory is given by an action functional on the space of bosonic
and fermionic fields depending on the metrics on and the B-field. Classically, the extremal
points of the action functional provide the physical trajectories of the particles.
Supersymmetry (SUSY) transformations mix the local components of the fermionic ψ and the
bosonic Φ fields and we say that the theory is supersymmetric whenever the action functional
is invariant under these transformations. The generators of the SUSY transformations are
sections of spin bundles on Σ. In two dimensions the spin representation is not irreducible,
so spin bundles decompose as S = S+ ⊕ S− into “left-handed” and “right-handed” parts.
When we say a theory is N = (p, q)-supersymmetric we mean that there are p right-handed
and q left-handed independent supersymmetry transformations under which the Lagrangian is
invariant.
On a two-dimensional nonlinear sigma model, the metric of M induces a pair of supersymmetry
transformations and any further ones act via complex structures on M . These complex
structures must be covariantly constant under certain connections which depend on the H-flux.
The induced geometry on the target space of an N = (p, q) supersymmetric sigma model is
called (p, q) hermitian geometry [HL20].
It has been shown that these geometries have a natural interpretation in generalized complex
geometry with the H-twisted Courant bracket on TM ⊕ T ∗M . In [Gua03] Gualtieri proved
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that (p, q) = (2, 2) geometry is equivalent to the existence of a generalized Kähler structure on
(TM ⊕ T ∗M,H). The general case was summarized in [HL20], in particular, (p, q) = (4, 4)
corresponds to a generalized hyperkähler structure.

In this work, we will focus on the case when the B-field is flat, that is when H = 0, and
N = (2, 2) or N = (4, 4). Then, the complex structures have to be parallel with respect
to the Levi-Civita connection on M . Therefore, (2, 2)-hermitian structure translates to a
Kähler structure and (4, 4)-hermitian structure to a hyperkähler structure on M . If moreover
the B-field vanishes, the corresponding generalized Kähler and hyperkähler structures are
precisely (3.1.2), (3.1.3) and (3.1.4), (3.1.5) respectively. Turning on the B-field amounts to
transforming the generalized complex structures via the B-field transform (3.1.6).

Witten in [Wit98] defined a twisting procedure which creates topological field theories from
supersymmetric sigma models. In the terminology “topological" means that the theory is
independent of the metric on the base Σ. The gist of the construction is that we require
the fermions to take values in different bundles than before but the action functional is kept
unchanged. In this procedure half of the supersymmetry is lost that is, the generators are
set to zero, but the other half is made into global symmetries with global generators. The
two-dimensional N = (2, 2) supersymmetric sigma model admits two different twists that
result in different physical theories which are called the A and B twists. In the Kähler case
(H = 0) the A twist results in a theory that only depends on the symplectic structure, while
the B twist only depends on the complex part of the original Kähler structure.

In the N = (4, 4) supersymmetric H = 0 case the target manifold is hyperkähler and there are
a CP1 worth of Kähler structures. Moreover, the topological twist can be performed along any
two of these Kähler structures. In conclusion a two-dimensional N = (4, 4) supersymmetric
sigma model admits a topological twist corresponding to each point of CP1 × CP1.

When the base space Σ is a Riemann surface with a boundary, varying the action with respect
to the fields and supersymmetry generators yields boundary equations of motion. The equations
of the bosonic field Φ restrict where the boundary ∂Σ of the base is mapped to [LZ03]. More
precisely, the constraints define a (local) distribution in the tangent bundle of the target M
and the boundary of the base space must map to a leaf of this distribution. A submanifold to
which the boundary ∂Σ can be mapped is called the support of a brane. In the simplest, rank
one, case the fields on the boundary couple to a U(1) gauge field, which can be viewed as a
connection on a hermitian line bundle over the support of the brane. This is what physicists
call the Chan Pathon bundle of the brane. The gauge field is related to the difference between
two trivializations of the ambient gerbe providing the B-field. We call a pair (S,∇) a rank one
brane where S is a submanifold of M and ∇ is a connection on a hermitian line bundle on S.
In our discussion of branes in relation to generalized geometry only the curvature F ∈ Ω2(S)
of this connection plays a role. In this context, we will think of a brane as a pair (S, F ) of a
submanifold and a closed two-form.

The geometry of a brane is determined by the type of supersymmetry the boundary conditions
conserve. In particular, in the N = (2, 2) case there are two different types of branes which
conserve half of the supersymmetry. These are called A and B-branes and the name indicates
that when one considers the twisted theories, A-branes are compatible with the A twist and
B-branes with the B twist. In the N = (4, 4) supersymmetric sigma model there are special
branes which conserve more supersymmetry and therefore are compatible with a triple of
topological twist. In this section, we give a mathematical definition to all of these brane types
and study their geometry.
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3. Generalized geometry

The generalized geometry description of branes was introduced by Gualtieri [Gua11]. This
definition led to the discovery of coisotropic A-branes independently from the work of Kapustin
and Orlov [KO01].

Definition 3.2.1. A generalized submanifold of the manifold M endowed with the exact
Courant algebroid (TM ⊕ T ∗M,H), is a pair L = (S, F ) of a submanifold S ⊂ M and
a two-form F ∈ Ω2(S) such that dF = H|S. We will also call generalized submanifolds
generalized branes.

If M is the target space of a sigma model there is a gerbe with a connection on M whose
curvature is the three-form H twisting the Courant bracket. In the sigma models, branes
come equipped with vector bundles twisted by the ambient gerbe. The assumption dF = H|S
requires the gerbe to be torsion when restricted to S, meaning that there are finite-dimensional
vector bundles on S twisted by the gerbe. In particular, a generalized brane can support a
brane in the classical sense.
To a generalized submanifold L we can associate an involutive subbundle

τL = {X + ξ ∈ TS ⊕ T ∗M |S | ιXF = ξ|S} (3.2.8)

of TM ⊕ T ∗M over S, which is called the generalized tangent bundle of the generalized
submanifold L. Suppose now that there is a generalized complex structure J : TM⊕T ∗M →
TM ⊕ T ∗M on M .
Let us denote by N∗S the conormal bundle Ann(TS) ⊂ T ∗M of S. Then, the generalized
tangent bundle fits into the short exact sequence

0 → N∗S → τL → TS → 0

and the two-from F ∈ Ω2(S) can be viewed as the extension class of τL inside TM ⊕ T ∗M .

Definition 3.2.2. A generalized submanifold L = (S, F ) is a generalized complex submanifold
if its generalized tangent bundle is invariant under J , that is J (τL) = τL.

3.2.1 A and B-branes

For the N = (2, 2) supersymmetric sigma model with vanishing B-field the target space is a
Kähler manifold (M, g, J) and we have two generalized almost complex structures

JJ =
(︄
J 0
0 −J∗

)︄
, and Jω =

(︄
0 −ω−1

ω 0

)︄

which are both integrable. We use the following terminology:

Definition 3.2.3. A generalized A-brane is a generalized complex submanifold of the gen-
eralized complex manifold (M,Jω, H = 0). A generalized B-brane is a generalized complex
submanifold of the generalized complex manifold (M,JJ , H = 0).

In these cases, if L = (S, F ) is an A or B type brane then the two-form is closed since
dF = H|S = 0. The data corresponding to branes in N = (2, 2) supersymmetric sigma models
was reformulated in terms of generalized geometry by Zabzine in [Zab04] and by Kapustin
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in [Kap03]. They showed that rank one physical branes are also generalized complex branes.
More precisely, when the B-field vanishes the topological A and B models are governed by
the symplectic and complex structures on the target. Then the generalized A and B-branes
with F representing an integral cohomology class correspond to the rank one A and B-branes
of the topological sigma models.

A-branes. Let (S, F ) be a generalized A-brane on a symplectic manifold (M,ω). For F = 0,
the generalized tangent bundle is τL ∼= N∗S ⊕ TS, so it is preserved by Jω if

ω−1N∗S ⊂ TS and ωTS ⊂ N∗S.

That is if S is both coisotropic and isotropic and therefore Lagrangian submanifold of M with
respect to the symplectic structure ω. For F ̸= 0, we still have N∗S ⊂ τL and

ω−1N∗S ⊂ TS,

so the submanifold S must be coisotropic, and therefore at least dim(M)/2 dimensional.
As the generalized complex structure Jω restricts to τL we may write τL ⊗ C = ℓ⊕ ℓ where ℓ
is the image of τL under 1

2(I − iJω). The subbundle ℓ for any F is just the intersection of
the +i eigenbundle of Jω with τL. Let us write j : S → M for the inclusion. Then we have,

ℓ = {X − iωX | X ∈ TCM} ∩ {X + ξ ∈ (TS ⊕ T ∗M |S) ⊗ C : ιXF = j∗ξ}
= {X − iωX | X ∈ TCS, ιX(F + ij∗ω) = 0}.

where TCM = TM ⊗ C and TCS = TS ⊗ C. Moreover,

ℓ = {X + iωX | X ∈ TCS, ιX(F − ij∗ω) = 0}.

Denote by A ⊂ TCS the image of ℓ under the anchor map ρ : τL ⊗ C → TCS and by A its
complex conjugate ρ(ℓ). The real distribution

∆ = A ∩ A

is called the characteristic distribution of the coisotropic submanifold S. From the above
description of A and A

∆ = {X ∈ TS ⊗ C | ιXF = 0 and ιXj∗ω = 0}. (3.2.9)

Since A+ A = TS ⊗ C, we can also write

∆ = {X ∈ TCS | ιXj∗ω = 0 } = {X ∈ TCS | ιXF = 0 }. (3.2.10)

Then, ∆ is an integrable distribution. Indeed, for X, Y ∈ ∆ and Z ∈ TS we have

j∗ω([X, Y ], Z) =Xj∗ω(Y, Z) − Y j∗ω(X,Z) + Zj∗ω(X, Y )+
+ j∗ω([X,Z], Y ) − j∗ω([Y, Z], X) − dj∗ω(X, Y, Z)

=0,

since TS is integrable, dj∗ω = 0 and ∆ ⊂ TS is the symplectic orthogonal complement of TS.
The characteristic distribution integrates to a foliation of S which we call the characteristic
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foliation. Let S̄ ∼= S/∆ be the leaf space and assume it is a manifold. Denote the projection
by p : S → S̄.
The complex two-form F + ij∗ω is basic with respect to the characteristic foliation, so the
two-forms F and ω descend to non-degenerate closed two-forms F̄ , ω̄ ∈ Ω2(S̄) via the usual
equalities

p∗ω̄ = j∗ω and p∗F̄ = F.

The complex two-form F̄ + iω̄ then defines an almost complex structure

J := ω̄−1F̄ .

on S̄. It is integrable, as X ∈ T 1,0
J S̄ if and only if F̄X = iω̄X so for X, Y ∈ T 1,0

J S̄ we have

F̄ ([X, Y ]) = [LX , ιY ]F̄
= dιXιY F̄ + ιXdιY F̄ − ιY dιXF̄ − ιY ιXdF̄

= idιXιY ω̄ + iιXdιY ω̄ − iιY dιX ω̄

= iι[X,Y ]ω̄,

since both F̄ and ω̄ are closed. In the complex structure J the two-form F̄ + iω̄ is holomorphic
symplectic.
For F = 0 A-branes correspond to Lagrangian submanifolds with flat line bundles. On the
other hand, for F ̸= 0 the A-brane is supported on a coisotropic submanifold. These branes
are also endowed with a line bundle but with a connection that is only flat along the leaves of
the characteristic foliation. In particular, there are branes supported on the full target space
which we call space-filling branes.

Example 3.2.4 (Space filling coisotropic brane). Suppose (S, F ) is an A-brane with S = M .
Then, the generalized tangent bundle is

τL = {X + ιXF | X ∈ TCM }.

By (3.2.10) the two-form F must be non-degenerate and the leaf space is the whole manifold
M . Then, F + iω defines a new complex structure I = ω−1F on M .

B-branes. Let now (S, F ) be a generalized B-brane on a complex manifold (M, I). Then,
for any X + ξ ∈ τL

JI(X + ξ) = IX − I∗ξ ∈ τL.

Therefore,
I(TS) ⊂ TS

so S is a complex submanifold of M . Denote by j : S → M the inclusion. Then j∗I∗ = I∗j∗

and for any (X + ξ) ∈ τL, we have

ιIXF = −j∗I∗ξ = −I∗j∗ξ = −I∗ιXF

that is F of type (1, 1).
In conclusion, a B-brane corresponds to a complex submanifold S of M together with a
type (1, 1) closed two-form F . When F represents an integral cohomology class, it can be
interpreted as the curvature of a holomorphic line bundle on S.

32



3.2. Generalized branes

Remark: On a Kähler manifold (X, I, ω) a B-brane (S, F ) is a complex, hence Kähler,
submanifold of with non-degenerate Kähler form ω|S. On the other hand an A-brane is
coisotropic, so ω|S is degenerate unless S is a space-filling brane. Therefore, a submanifold
which supports both A and B type branes corresponding to a Kähler structure must fill the
whole target manifold.

3.2.2 Hyperkähler branes

Let (M, g, I, J,K) be a hyperkähler manifold with Kähler forms ωI , ωJ and ωK . Then, on M
there are actually a sphere S2 worth of Kähler structures, since for any vector (a, b, c) ∈ R3

such that a2 + b2 + c2 = 1 the linear map

aI + bJ + cK : TM → TM

is a complex structure with Kähler form aωI + bωJ + cωK . We denote this two-sphere of
Kähler structures by S2

h.

If the B-field vanishes then on a hyperkähler manifold we can define six different generalized
complex structures (3.1.4), (3.1.5) corresponding to the three Kähler structures (I, ωI),
(J, ωJ) and (K,ωK). We may define a generalized Kähler structure with respect to any
v = (a, b, c) ∈ S2

h as well. Indeed, if Jv = aI + bJ + cK

JJv = aJI + bJJ + cJK and Jωv = aJωI
+ bJωJ

+ cJωK
. (3.2.11)

since

(aω−1
I + bω−1

J + cω−1
K )(aωI + bωJ + cωK) =

= a2 + b2 + c2 + ab(ω−1
I ωJ + ω−1

J ωI) + bc(ω−1
J ωK + ω−1

K ωJ) + +ac(ω−1
I ωK + ω−1

K ωI)
= 1 + ab(−IJ − JI) + bc(−JK −KJ) + ac(−IK −KI)
= 1.

We want to consider branes which are either A or B type with respect to the three Kähler
structures I, J and K. Naively, we would have eight kinds of special branes on a hyperkähler
manifold. However, from the relations (3.1.4) and (3.1.5) we see that a brane that is type
B in two complex structures is type B in the third as well and if a brane is A type in two
complex structures it is automatically B type in the third. Therefore the possible branes are:

1. BBB-branes: B type in all three complex structures,

2. AAB, ABA, BAA-branes: A type in two complex structures and B type in the third.

These brane types can also be defined for any triple of orthogonal complex structures in S2
h. It

is clear that a BBB brane is a B brane in all of the complex structures on M . Meanwhile, if
a brane is the second type from the list, it is an A brane with respect to a circle of Kähler
structures in S2

h, and a B-brane for Kähler structures furthest away from the circle. In this
case, the brane is neither A nor B type for the rest of the complex structures.
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BBB-branes. A BBB-brane is a generalized complex submanifold with respect to the
generalized complex structures JI , JJ and JK , or equivalently a hyperkähler submanifold S
of M together with a closed 2-form F ∈ Ω2(S) which is type (1, 1) with respect to all three
complex structures. Such a 2-form, when it represents an integral cohomology class, can be
interpreted as the curvature of a line bundle which is holomorphic with respect to all three
complex structures. Such line bundles are called hyperholomorphic.

By the Atiyah-Ward correspondence [AW77], hyperholomorphic line bundles are in one-to-one
correspondence with holomorphic line bundles on the twistor space of M which are trivial on
the twistor lines. Hyperkähler submanifolds of M correspond to complex submanifolds which
are also foliated by the twistor lines. That is, BBB-branes on a hyperkähler manifold M are
in one-to-one correspondence with foliated submanifolds of the twistor space M together with
holomorphic line bundles that are trivial on the leaves of the foliation. This point of view on
BBB branes was fleshed out in the case of the Higgs moduli stack in [FH24].

Example 3.2.5. Let π : M → B be an algebraic integrable system endowed with a flat
connection and the corresponding semi-flat hyperkähler structure (2.3.10) (2.3.11). Then,

F =
(︄
ω 0
0 −ω−1

)︄

is type (1, 1) with respect to all complex structures. It is clearly type (1, 1) with respect to I
and we have

J∗F + FJ =
(︄

0 gω−1 + ωg−1

g−1ω + ω−1g

)︄
=
(︄

0 I∗ − I∗

I − I 0

)︄
= 0.

Then, K∗F + FK = 0 as well. In particular, (M,F ) is a space-filling BBB-brane.

AAB/ABA/BAA-branes. A hyperkähler manifold is also a holomorphic symplectic manifold
in any of its complex structures. In particular, in complex structure I

ΩI = ωJ + iωK

is a holomorphic symplectic form. A complex submanifold S of (M, I,ΩI) is called a holomor-
phic Lagrangian submanifold if ΩI |S = 0.

Suppose now that L = (S, F ) is a BAA brane. Then,

1. S is a complex submanifold in the complex structure I and F is type (1, 1),

2. S is a coisotropic submanifold in the symplectic structure ωJ and there is a characteristic
distribution

∆J = {X ∈ TCS | ιXj∗ωJ = 0 } = { X ∈ TCS | ιXF = 0 },

3. S is also a coisotropic submanifold in the symplectic structure ωK and the characteristic
distribution is

∆K = {X ∈ TCS | ιXj∗ωK = 0 } = { X ∈ TCS | ιXF = 0 }.
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Clearly,
∆ := ∆J = ∆K ,

moreover, ∆ is preserved by complex structure I. Indeed, if we denote by j : S → M the
inclusion and X ∈ ∆J , then IX ∈ ∆K as

ιIXj
∗ωK = ιj∗IXωK = gKI(j∗X) = gJ(j∗X) = ιXj

∗ωJ .

Here we used that S is a complex submanifold, that is j∗IX = Ij∗X.
In conclusion, if ∆ has constant rank, the leaves of the characteristic foliation are holomorphic
isotropic submanifolds of the holomorphic symplectic manifold (I,ΩI). Meanwhile, the leaf
space, whenever it is a manifold, has two different complex structures coming from F + ij∗ωJ
and F + ij∗ωK . The line bundle corresponding to this brane with curvature F is holomorphic
in the complex structure I and restricts to a holomorphic flat bundle to each leaf.
The same arguments hold for ABA and AAB branes by switching the three complex structures.

Example 3.2.6. If F = 0 then BAA-branes correspond to holomorphic Lagrangian submani-
folds of the holomorphic symplectic manifold (M, I,ΩI) with flat holomorphic bundles. An
example of such a brane is a fibre of the Hitchin fibration in M(r, d) [KW06].

Example 3.2.7. Space filling BAA-brane: If we take F = ωI then M becomes a B-brane in
complex structure I, since ωI is type (1, 1). Moreover,

ω−1
J ωI = −Jg−1gI = K

is a complex structure, therefore (M,ωI) is a space filling A-brane with respect to ωJ . Similarly,
it is an A-brane with respect to ωK . Analogously, (M,ωJ) is an ABA-brane and (M,ωK) is
an AAB-brane.

3.2.3 On the structure of coisotropic BAA-branes

Since their discovery in the early 2000s coisotropic branes have remained mysterious. Mirror
symmetry, a conjectural equivalence of categories between A and B-branes, suggests that the
Fukaya category should be enhanced to also contain coisotropic branes. This problem has
yet to find a complete solution. One of the most influential ideas is by Gaiotto and Witten
[GW21] who postulate that the space of morphisms between a Lagrangian and a space-filling
A-brane should be related to a quantization of the Lagrangian brane. In [BG21] Bischoff and
Gualtieri constructed a Lagrangian-space filling pair of branes from any pair of generalized
branes and used the definition of [GW21] to define morphisms of generalized branes. Despite
all these advancements, in every case where mirror symmetry has been proven as a categorical
equivalence coisotropic branes are not present.
In this section, we do not consider morphisms only the objects, more precisely BAA-branes,
and look at the structure of those which are neither space-filling nor Lagrangian. We show first
that whenever the leaf space of the characteristic foliation is a manifold, the brane structure
descends to a space-filling BAA-brane structure on the leaf space. This result can be used to
assess whether a coisotropic submanifold carries a BAA-brane structure or not. Secondly, we
look at the geometry of holomorphic coisotropic submanifolds, without a brane structure, in
algebraic integrable systems. This result is a slight modification of Kamenova and Verbitsky’s
[KV19] theorem about the structure of holomorphic Lagrangians.
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Leaf space of a BAA-brane. Let V be a symplectic vector space with symplectic form ω.
Let Z ⊂ V be a coisotropic subspace with symplectic orthogonal complement Zω = ∆ ⊂ Z.
Then the symplectic form induces a symplectic form ω̄ on Z/∆ which we may view as a map
ω̄ : Z/∆ → (Z/∆)∗. We have two short exact sequences of vector spaces

0 ∆ Z Z/∆ 0 (3.2.12)

0 (Z/∆)∗ Z∗ ∆∗ 0, (3.2.13)

and we know that

Z∗ ∼= V ∗/AnnV (Z) and ∆∗ ∼= V ∗/AnnV (∆) ∼= Z∗/AnnZ(∆).

Note, that AnnZ(∆) is the image of AnnV (∆) under the projection V ∗ → Z∗. In particular,

(Z/∆)∗ ∼= AnnZ(∆) ∼= AnnV (∆)/AnnV (Z). (3.2.14)

The symplectic form induces an isomorphism

ω̄ : Z/∆ → (Z/∆)∗

which is the restriction of the ambient isomorphism

ω : Z → AnnV (∆) ⊂ V ∗

since ω : ∆ → AnnV (Z) is also an isomorphism.
Let (M, I, η) be a holomorphic symplectic manifold. Let η = ω1 + iω2. Since η is type (2, 0)
with respect to I, we have

I∗η = ηI.

Therefore,
I∗ω1 = ω1I and I∗ω2 = ω2I.

Let j : S ⊂ M be a holomorphic coisotropic submanifold together with a closed real two-form
F ∈ Ω1,1(S), such that (S, F ) is a BAA brane. Denote by ρ1 = j∗ω1 and ρ2 = j∗ω2 the
restriction of the real symplectic forms to the submanifold S. Let ∆ be the real characteristic
distribution of S, that is

TS ⊃ ∆ = {X ∈ TS| ρ1(X) = 0 ∈ T ∗S}
= {X ∈ TS| ρ2(X) = 0 ∈ T ∗S}
= {X ∈ TS| F (X) = 0 ∈ T ∗S}.

Let
S̄ ∼= S/∆

be the leaf space of the characteristic foliation. Assume that S̄ is a manifold and denote the
projection by p : S → S̄. As we have seen, the two-forms F, ρ1, ρ2 descend to non-degenerate
closed two-forms F̄ , ρ̄1, ρ̄2 ∈ Ω2(S̄) on the leaf space and the complex two-forms F̄ + iρ̄1 and
F̄ + iρ̄2 then almost complex structures which we denote by

J := ρ̄−1
1 F̄ and K := ρ̄−1

2 F̄ .

The complex structure I also descends to S̄ which we keep denoting by I.
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Proposition 3.2.8. The leaf space of a coisotropic BAA brane is hypercomplex. That is,
I, J and K satisfy the quaternionic relations

IJ = −JI = K.

Proof. The claim of the lemma can be proven locally. At each point of S we have the following
inclusion of vector subspaces ∆ ⊂ TS ⊂ TM which are all preserved by the complex structure
I. There is a short exact sequence

0 → ∆ → TS → T S̄ → 0

corresponding to the projection p : S → S̄ = S/∆. This is pointwise exactly (3.2.12) and we
have the dual sequence (3.2.13). To prove IJ = −JI we will lift to TS ⊂ TM and use the
relations between F, I and ω1.
In particular, if X̄ ∈ T S̄ and X ∈ TS is any lift of it, then

ρ̄1X̄ = ω1(X) +N∗S ∈ AnnTM(∆)/N∗S, (3.2.15)

and for any ξ ∈ T ∗S̄ and any lift ξℓ ∈ AnnTM(∆) we have

ρ̄−1
1 ξ = p∗ω

−1
1 ξℓ ∈ TS. (3.2.16)

Similarly, using (3.2.14) the image of F : TS → T ∗S = T ∗M/N∗S lies in AnnTM∆/N∗S ∼=
T ∗S̄. Then, for X̄ ∈ T S̄ and any lift X ∈ TS we can write

F̄ (X̄) = F (X) ∈ AnnTM(∆)/N∗S. (3.2.17)

First, we show IJ = −JI. Let X̄ ∈ T S̄ and X ∈ TS a lift if it. Then,

IJ(X̄) = Iρ̄−1
1 F̄ (X̄)

= Iρ̄1F (X) eqn. (3.2.17)
= Ip∗ω

−1
1 F (X)ℓ eqn. (3.2.16)

= p∗Iω
−1
1 F (X)ℓ since TS and ∆ are I-invariant

= p∗ω
−1
1 I∗F (X)ℓ I∗ preserves N∗S and AnnTM(∆)

= p∗ω
−1
1 (I∗F (X))ℓ F is type (1,1)

= p∗ω
−1
1 (−FI(X))ℓ

= −p∗ω
−1
1 (F (IX))ℓ

= −ρ̄−1
1 F (IX) I preserves TS and ∆

= −ρ̄−1
1 F̄ (IX̄)

= −JI(X̄)

To show IJ = K note that all the above discussion applies to K, ρ̄2 and ω2 as well. For
X̄ ∈ T S̄ and X ∈ TS as before we have

IJ(X̄) = Ip∗ω
−1
1 F (X)ℓ

= p∗Iω
−1
1 F (X)ℓ from −I∗ω1 = ω2

= p∗ω
−1
2 F (X)ℓ

= K(X̄).
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3. Generalized geometry

Proposition 3.2.9. On the leaf space S̄ the tensor ḡ := I∗F̄ is symmetric and non-degenerate,
that is a pseudo-Riemannian metric compatible with all three complex structures I, J and K.
Moreover, the forms F̄ , ρ̄1 and ρ̄2 are the pseudo-Kähler forms corresponding to I, J and K.

Proof. The form F̄ is type (1, 1) with respect to I on S̄, by construction. As F is anti-
symmetric seen as a linear map F̄ : T S̄ → T ∗S̄ we have F ∗ = −F . Therefore, the two-tensor
I∗F is symmetric

(I∗F )∗ = −FI = I∗F.

Similarly we have J∗ = (ρ̄−1
1 F̄ )∗ = −F̄ (−ρ̄−1

1 ) = F̄ ρ̄−1
1 and K∗ = (ρ̄−1

2 F̄ )∗ = −F̄ (−ρ̄−1
2 ) =

F̄ ρ̄−1
2 .

Compatibility with the complex structures is as follows.

I∗ḡI = I∗I∗F̄ I = −F̄ I = I∗F̄ = ḡ,

J∗ḡJ = J∗I∗F̄ ρ̄−1
1 F̄ = J∗I∗J∗F̄ = −I∗(J∗)2F̄ = I∗F̄ = ḡ,

Then, K∗ḡK = ḡ is automatically true.
The Kähler form associated to I is

ωI = ḡI = I∗F̄ I = −F̄ I2 = F̄ .

For the next step notice that F̄−1
ρ̄1 = J−1 = −J = −ρ̄−1

1 F̄ and analogously for K. Therefore,

ḡJ = −ḡJ−1 = −I∗F̄ F̄
−1
ρ̄1 = −I∗ρ̄1 = ρ̄2,

ḡK = −ḡK−1 = −I∗F̄ F̄
−1
ρ̄2 = −ρ̄1.

Note that in the equation −I∗ω1 = ω2 each term respects the subbundles TS and ∆ of
TM and AnnTM(∆) and N∗S of T ∗M , therefore the equality descends to S̄ and we have
−I∗ρ̄1 = ρ̄2.
The holomorphic symplectic form corresponding to this pseudo-hyperkähler structure is ρ̄2 − iρ̄1
which is the image of −iη = −i(ω1 + iω2) = ω2 − iω1 the −i-rotated holomorphic symplectic
form of the ambient manifold.

Example 3.2.10. Let M be hyperkähler with metric g complex structures I, J,K and Kähler
forms ωI , ωJ , ωK . Then (M,ωI) is a space filling coisotropic BAA brane. Its leaf space is M
and the induced pseudo-hyperkähler structure is

I ′ = I, J ′ = ω−1
J ωI = −Jg−1gI = −JI = K, K ′ = ω−1

K ωI = −Kg−1gI = −KI = −J.

We see that the corresponding Kähler forms are really ωK and −ωJ and the holomorphic
symplectic form ωJ + iωK was rotated to ωK − iωJ , i.e. it was multiplied by −i.

Example 3.2.11 (Non-example). The Higgs bundle moduli space M(r, d) over a Riemann
surface Σ (see Example 2.4.3) carries a C×-action sending (E,Φ) to (E, λΦ) for λ ∈ C×.
This is a holomorphic action in one of the complex structures, which we denote by I. For a
fixed point x ∈ M(r, d)C× on can define its downward flow as

W+
x = {y ∈ M(r, d) | lim

λ→0
λ.y = x}.
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3.2. Generalized branes

If x is a smooth point then W+
x ∩ Ms(r, d) is a holomorphic Lagrangian subvariety of the

holomorphic symplectic structure corresponding to I [HH21, Proposition 2.10] . One can also
define the attractor for a component F of the fixed point set M(r, d)C× as

W+
F = {y ∈ M(r, d) | lim

λ→0
λ.y ∈ F} =

∐︂
x∈F

W+
x .

It can be shown [Hau] that there exists a component of the fixed point set which is isomorphic
to Σ. The attractor W+

Σ is a coisotropic submanifold of Ms(r, d). Moreover, the leaf space
of its characteristic foliation is the cotangent bundle T ∗Σ of Σ. In [Fei01] it was shown that
T ∗Σ can not carry a complete hyperkähler metric, therefore W+

Σ can not carry a BAA-brane
structure.

BAA branes in algebraic integrable systems. Kamenova and Verbitsky [KV19] showed
that when Z is a complex Lagrangian submanifold in an algebraic integrable system π : M → B,
such that Z projects to π(Z) smoothly then the intersection of Z with any fiber of X has to
be the disjoint union of translates of a subtorus. Such complex Lagrangians can be seen as
BAA-branes. On the other hand, we have seen that there exist BAA-branes which are not
Lagrangians but coisotropic. In this section, we follow [KV19] and generalize their proof for a
coisotropic submanifold Z. It is not true anymore that the intersections are subtori. On the
other hand, when Z is foliated by the leaves of the characteristic distribution, each isotropic
leaf must intersect the fibers in translates of a subtorus. In [KV19] it was also shown that
for a Lagrangian Z the image π(Z) must be a special Kähler submanifold. In the coisotropic
case, this is true for the isotropic leaves.
Let V be a g dimensional real (or complex) vector space, and V ∗ its dual. The space V + V ∗

is endowed with the canonical symplectic form ω given by

ω(X + ξ, Y + η) = ξ(Y ) − η(X).

Let p : V + V ∗ → V be the projection to the first factor and denote by Ann(R) ⊂ V ∗ the
annihilator of a linear subspace R ⊂ V . We first show a generalization of [KV19, Lemma 3.3].

Lemma 3.2.12. Let W ⊂ V + V ∗ be a coisotropic subspace and let ∆ ⊂ W be its
characteristic subspace, that is

∆ = W ω = {w ∈ W | ω(w,W ) = 0}.

Then, W ∩ V ∗ = Ann(p(∆)) and ∆ ∩ V ∗ = Ann(p(W )).

Proof. Since ∆ = W ω ⊂ W we have ∆ω = W as well. For the first claim, if ξ ∈ W ∩ V ∗,
then for any w ∈ ∆ ⊂ W we have

ω(w, ξ) = ξ(p(w)) = 0,

and therefore ξ ∈ Ann(p(∆)). On the other hand, if ξ ∈ Ann(p(∆)), then for any w ∈ ∆

ω(w, ξ) = ξ(p(w)) = 0,

so ξ ∈ ∆ω ∩ V ∗ = W ∩ V ∗.
For the second claim, if ξ ∈ Ann(p(W )), then for any w ∈ W we have ω(w, ξ) = ξ(p(w)) = 0,
therefore ξ ∈ W ω ∩ V ∗ = ∆ ∩ V ∗. On the other hand, if ξ ∈ ∆ ∩ V ∗ then ω(w, ξ) = 0 for
any w ∈ W , but then ξ(p(w)) = 0 so ξ ∈ Ann(p(W )).
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3. Generalized geometry

Let π : M → B be an algebraic integrable system and i : Z ⊂ M a complex coisotropic
submanifold The characteristic distribution is denoted by ∆. Let us denote by Lz the leaf of
the characteristic foliation passing through the point z ∈ Z. These are immersed submanifolds
of Z and M . Finally, by modifying the proof of [KV19, Theorem 3.2] slightly we can prove
the following statement.

Theorem 3.2.13. Let Z ⊂ M be a connected complex coisotropic submanifold such that Z
projects to π(Z) smoothly and regularly and let x ∈ π(Z). Then, either Z ∩ π−1(x) = π−1(x)
or for any leaf Lz passing through a point z ∈ (π|Z)−1(x) the intersection Lz ∩ π−1(x) is a
disjoint union of translates of a subtorus in π−1(x), which is independent of z. In particular,
Zx := Z ∩ π−1(x) is foliated by translates of a subtorus in π−1(x).

If moreover, the characteristic foliation on Z has closed leaves, π(Z) inherits a special Kähler
structure from B.

Proof. We show: TzZx = Ann(π∗∆z) ⊂ FzM , when x ∈ π(Z) is smooth.

Via a complex Lagrangian section, the tangent bundle of an algebraic integrable system locally
splits as

TM = π∗TB ⊕ π∗T ∗B.

Moreover, the real part of the holomorphic symplectic form is just the canonical symplectic
form on V + V ∗ at each point with respect to this splitting.

At each point, z ∈ Zx the tangent space TzZ ⊂ TzM ∼= TxB⊕T ∗
xB is a coisotropic subspace

and ∆z is its symplectic orthogonal subspace. The vectors tangent to the fibre Zx ⊂ π−1(x)
are given by TzZ ∩ FzM = T ∗

xB. By Lemma 3.2.12 we know that

TzZx = Ann(π∗∆z) ⊂ T ∗
xB.

Since ∆z = TzLz we can identify π∗∆z with Tx(π(Lz)) if the map Lz → π(Lz) is also regular.
Then along a certain leaf of the characteristic distribution, the tangent space TzZx is constant.
On the other hand, generally, TzZx can vary as we vary the leaves, even if π is regular restricted
to all the leaves, since different leaves can have different images in the base.

Consider now a leaf L intersecting Zx non-trivially. Its tangent bundle is given by ∆ ⊂
TZ ⊂ TM restricted to L. Using the second part of Lemma 3.2.12 we can understand the
intersection L ∩ Zx as follows. The vectors tangent to L ∩ Zx at the point z are given by
∆z ∩ T ∗

xB, which by the Lemma above equals Ann(π∗TzZx) = Ann(Txπ(Z)). In particular,

Tz(L ∩ Zx) = Ann(Txπ(Z)) ∀z ∈ L ∩ Zx.

That is, the tangent space of L∩Zx is constant along the fiber, therefore it is a disjoint union
of translates of a certain subtorus of Zx. Moreover, Ann(Txπ(Z)) is independent of the leaf
intersecting the fiber. Note that by this theorem the foliating subtorus may be dense. In that
case, Zx has to be the whole fiber as Zx is a closed submanifold of M . Otherwise, Zx is
foliated by the translates of a closed subtorus.

Alternatively, if we assume that the leaves are closed then the tori foliating Z ∩ π−1(x) must
also be closed.

To show that π(Z) inherits a special Kähler structure from B it suffices to show that the
connection restricts to a special Kähler connection. Indeed, π(Z) is a complex, hence Kähler
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3.2. Generalized branes

submanifold of B, so the connection is the only missing piece. This holds if Tπ(Z) ⊂ TB is
a flat subbundle, since the fact that ω is flat, that d∇I = 0 and that ∇ is torsion free follows
from π(Z) being a submanifold.
At each smooth point x ∈ π(Z) the tangent space Txπ(Z) is isomorphic to Ann(T (L ∩ Zx))
where L is any leaf of the characteristic foliation which intersects the fibre over x. The
intersection L∩Zx is union of translates of a closed subtorus in Zx, therefore H1(L∩Zx,Z) is
a sublattice in H1(Zx,Z). This sublattice cannot change in a neighbourhood without passing
through open fibers so locally L is an affine torus subbundle of M over π(Z). In particular, it
inherits the Gauss-Manin connection.

Example 3.2.14. Let B = C2 with complex coordinates (z, w) and real coordinates (x, y, u, v)
with z = x+ iy and w = u+ iw. Let Γ ⊂ T ∗B be the lattice spanZ{dx, dy, du, dv}. Then
flat Kähler structure on the base then defines a semi-flat hyperkähler structure on M = T ∗B/Γ
so it is an algebraic integrable system. Denote the natural complex structure on T ∗B by I
and the holomorphic symplectic form by ΩI . Let {x, y, u, v, p, q, r, s} be dual coordinates on
M with {p, q, r, s} 1-periodic. We have

ΩI = (dp− idq) ∧ (dx+ idy) + (dr − ids) ∧ (du+ idv).
For any α ∈ R the affine torus subbundle

Sα = {w = α · z} ⊂ M

is complex and since it is of complex codimension 1 it is also coisotropic. In coordinates
i : S ↪→ M

[t1, t2, p, q, r, s] ↦→ [t1, t2, αt1, αt2, p, q, r, s]
We have

i∗ΩI = (dp− idq) ∧ (dt1 + idt2) + α(dr − ids) ∧ (dt1 + idt2).

Ker(i∗ΩI) = ∆ =
{︃
∂

∂r
− α

∂

∂p
,
∂

∂s
− α

∂

∂q

}︃
The leaves of the distribution ∆ are dense in the fiber if α is irrational.
Example 3.2.15. Recall from Example 3.2.11 that there is a coisotropic submanifold W+

Σ
inside the smooth locus of the Higgs moduli space Ms(r, d) (2.4.3). Its intersection with
the fibers of hreg : Mreg → Areg can be understood as follows. To each a ∈ Areg one can
associate a spectral curve Sa ⊂ T ∗Σ which is a smooth projective curve determined by Φ. The
BNR correspondence [BNR89] asserts that the fiber of h over a is isomorphic to the Jacobian
of the spectral curve Jac(Sa) (for definition see Section 11.1 of [BL04]). There is an injection

α : C → J(C)
called the Abel-Jacobi map [BL04, Corollary 11.15] and the intersection is given by

W+
Σ ∩ h−1(a) = Sa ⊂ Jac(Sa),

(conjectured by Bousseau, proved in [Hau]). In particular, W+
Σ is a coisotropic submanifold of

an integrable system whose intersection with the fibers is not a union of affine subtori. The
submanifold W+

Σ is foliated by Lagrangian submanifolds, the upward flows of points in Σ. The
null foliation is a refinement of these foliations. In [HH21] it was shown that the intersection
of the upward flows with the generic fibers h−1(a) is finitely many points, in particular, the
isotropic leaves also intersect the fibers in finitely many points. That is, in translates of affine
subtori.
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CHAPTER 4
T-duality in generalized geometry

Topological T-duality is a relation between affine torus bundles endowed with bundle gerbes or
equivalently, degree three integral cohomology classes. T-duality in generalized geometry can
be viewed as the “de Rham shadow" of it, a relation between affine torus bundles endowed
with degree three de Rham cohomology classes. In particular, two affine torus bundles with
some de Rham classes may be T-dual in the sense of generalized geometry but there might be
no integral classes allowing for a topological relation.

This chapter is organized as follows. In the first section, we review the relevant definitions
and theorems about T-duality in generalized geometry using works of Cavalcanti and Gualtieri
[CG10] and Baraglia [Bar14, Bar15]. In particular, we introduce the T-duality map, an
isomorphism of Courant algebroids derived from the T-duality relation.

In the second section, we first describe the Legendre transform of special Kähler structures
(Theorem 4.2.1). Then, we apply the T-duality map to algebraic integrable systems endowed
with semi-flat hyperkähler structures. We show that the T-dual of a semi-flat hyperkähler
structure is also a semi-flat hyperkähler structure and that they are connected by the Legendre
transform on the base (Theorem 4.2.4). The connection between T-duality and Legendre
transform has already been observed by Hitchin in [Hit99b]. The novelty of our treatment is
that we put the semi-flat hyperkähler structure on torus bundles endowed with flat connections.

In the last section, we apply T-duality to generalized branes. We first define a general
method of constructing T-duals locally, then determine a class of branes to which our method
applies. We call these branes "locally T-dualizable" (Definition 4.3.5). We show that locally
T-dualizable branes in a trivial affine torus bundle admit an entire family of T-duals (Theorem
4.3.14). Finally, we study the conditions under which a locally T-dualizable brane admits a
T-dual in a non-trivial affine torus bundle (Theorem 4.3.18).

4.1 Formalism

In this section, we review differential T-duality in the context of generalized geometry. T-duality
is a duality derived from physics between torus bundles endowed with H-fluxes. The first
mathematical description is due to Bouwknegt, Evslin and Mathai [BEM03] who showed that
the T-duality relation induces an isomorphism on twisted cohomologies. The generalization of
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this result was used by Cavalcanti and Gualtieri [CG10] who reformulated the isomorphism of
twisted cohomologies to an isomorphism of Courant algebroids on T-dual pairs of principal
torus bundles. Finally, Baraglia [Bar14, Bar15] extended the results of [CG10] to T-dual pairs
of affine torus bundles.

Let π : M → B and π̂ : M̂ → B be affine torus bundles and denote by C = M ×B M̂ the
fiber product of M and M̂ over B. Let H ∈ Ω3(M) and Ĥ ∈ Ω3(M̂) be closed invariant
3-forms. We have then the following diagram.

C

M M̂

B

p p̂

q

π π̂

(4.1.1)

Definition 4.1.1. We say that (M,H) and (M̂, Ĥ) are T-dual in the sense of generalized
geometry if there exists an invariant two-form P ∈ Ω2(C) which induces a non-degenerate
pairing

P : q∗V ⊗ q̂∗V̂ → R

and such that
p̂∗Ĥ − p∗H = dP.

Note that even though the definition is given in terms of a specific representative, if H ′ =
H + dB is another invariant representative of the de Rham class of H, then (M,H ′) is also
T-dual to (M, Ĥ) via the two-form P ′ = P − B. We could therefore define the relation
between pairs (M, [H]) and (M̂, [Ĥ]) where [H] ∈ H3(M,R) and [Ĥ] ∈ H3(M̂,R) but for
our purposes we want to set H = 0 and Ĥ = 0 and use the exact isomorphism outlined in
this chapter.

Example 4.1.2. Let π : M → B and π̂ : M̂ → B be affine torus bundles with monodromy
local systems ΓM and ΓM̂ and Chern classes cM and cM̂ . Suppose moreover that Γ∨

M
∼= ΓM̂

and the Chern classes of M and M̂ are torsion. Then (M, 0) and (M̂, 0) are T-dual.

Indeed, we have an element p ∈ H0(B,∧2(ΓM + ΓM̂)) corresponding to the identity. The
image [P ] of p in H0(B,∧2(q∗V + q∗V̂ )) satisfies d2([P ]) = 0 since the spectral sequence with
real coefficients degenerates on page 2. That is, there is a global de Rham class projecting
onto [P ] under F 2,2(q,R) → E2,0

∞ (q,R).

A choice of flat connections A on M and Â on M̂ gives a representative

P = ⟨p̂∗Â ∧ p∗A⟩.

We can write this representative of P via flat coordinates associated to the connections A
and Â. Since ΓM̂ ∼= Γ∨

M we can identify V̂ ∼= V ∗ as well. Then we may choose dual frames of
ΓM and ΓM̂ which we can integrate to 1-periodic fiber coordinates {pi} on M and {p̂i} on
M̂ . In these coordinates P = p̂∗(dp̂i) ∧ p∗(dpi).
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Remark. Note that we can relax the above example to M and M̂ endowed with torsion
Chern classes and an isomorphism ϕ : V ∗ → V̂ . The same argument shows that there exists a
T-duality relation between (M, 0) and (M̂, 0). On the other hand, if we want to upgrade this
differential T-duality to topological T-duality we must require Γ∨

M
∼= ΓM̂ which will be clear

later.
Let us now consider the geometric consequences of a T-duality relation between pairs (M,H)
and (M̂, Ĥ). To the pair (M,H) we may associate an exact Courant algebroid E = TM+T ∗M
together with the H-twisted Courant bracket. As we have defined invariant differential forms
we can also define invariant vector fields under the action of M0 on M . Therefore M0 acts on
the vector bundle E and its invariant sections form a vector bundle Ered over B. In [BCG05]
it was shown that if H is also invariant, the Courant algebroid structure on E reduces to one
on Ered. This Courant algebroid is not exact anymore, indeed given a connection on M we
can split Ered as

Ered ∼= TB ⊕ V ⊕ T ∗B ⊕ V ∗.

We can repeat this construction on the other side to find another Courant algebroid Êred on
B. The following theorem was shown for principal torus bundles in [CG10] and more generally
for affine torus bundles in [Bar15].

Theorem 4.1.3. ([CG10, Theorem 3.1], [Bar15, Theorem 5.3]) Let (M,H) and (M̂, Ĥ) be
a T-dual pair of affine torus bundles endowed with H-fluxes. Then, there exists an isomorphism
of Courant algebroids

T : Ered → Êred

which we call the T-duality map.

We do not need every detail of the proof for our purposes but we need to understand the
T-duality map as it plays a crucial role in the next chapter.
As in most T-duality and adjacent relations, the morphism between the two objects goes
through the correspondence space via pulling, twisting with a universal object and pushing
down. Consider therefore a section of Ered as an invariant section X + ξ of TM + T ∗M = E.
We would like to lift this to an invariant section of TC + T ∗C but this lift is not well-defined
for the vector component. Then we want to “twist" with the two-form P and push forward to
get an invariant section of TM̂ + T ∗M̂ . Once again, pushing forward is not well-defined for
the covector unless it is basic.
These two ambiguities can be used to cancel each other and come to a unique solution. Let
us choose a lift

X̂ + p∗ξ ∈ TC + T ∗C

such that p∗X̂ = X and moreover such that in

X̂ + p∗ξ + ιX̂P ∈ TC + T ∗C

the covector component p∗ξ + ιX̂P is basic with respect to p̂ : C → M̂ .

Since P is non-degenerate there is a unique such lift X̂ and we may define

T (X + ξ) = p̂∗(X̂ + p∗ξ + ιX̂P ). (4.1.2)

Although the isomorphism is between Courant algebroids on the base B, the invariant sections
span E and Ê so we can also transfer certain invariant features of E to Ê. In particular, via
the T-duality map one can also transport invariant generalized complex structures.
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Theorem 4.1.4. [CG10, Theorem 4.1] Let (M,H) and (M̂, Ĥ) be T-dual spaces. Then
a generalized complex (or generalized Kähler) structure on M which is invariant under the
action of M0 is transformed via T into an invariant generalized complex (or generalized Kähler)
structure on M̂ .

Proof. (sketch) A generalized complex structure decomposes E ⊗ C into complex maximal
isotropic subbundles L and L of satisfying L∩L = 0. A GCS is “invariant" if these subbundles
are invariant. Therefore, we get a decomposition of Ered ⊗ C into Lred and Lred. The T-dual
of these T (Lred) = L̂red and T (Lred) = L̂red is another GCS which can be lifted to an invariant
GCS on Ê. One can also show that T respects multiplication, that is for two generalized
complex structures J1 and J2 we have

T (J1 · J2) = T (J1) · T (J2).

This theorem appeared only as a theorem for M and M̂ being principal torus bundles but the
version concerning affine torus bundles is a straightforward consequence of Baraglia’s [Bar15,
Theorem 5.3].

It is explained in [CG10] that the T-duality map although maps generalized complex structures
to generalized complex structures, does not preserve their type. If π : M → B is endowed with
invariant complex structure I and symplectic structure ω then we denote the corresponding
generalized complex structures by JI and Jω. The type of JI is k = dimR(M)/2 and the
type of Jω is k = 0. The table [CG10, Table 1] shows that if the fibers of π : M → B are
complex, the T-dual of JI is again a complex type generalized complex structure, Moreover,
the fibers of M̂ are also complex submanifolds with respect to the induced complex structures.
Meanwhile, if the fibers are “real" the T-dual of JI is a symplectic type generalized complex
structure with respect to which the fibers of M̂ are Lagrangian. Finally, if the fibers of M are
symplectic with respect to ω, the T-dual of Jω is a symplectic type GCS and the fibers stay
symplectic.

This is an instance of the A-B type switching which we will see in our examples in the next
section.

4.2 T-duality of semi-flat hyperkähler structure

The Legendre transform is a classical transform which assigns to a convex real-valued function
another convex real-valued function. It has been generalized to many different geometric
situations, it appears for example as the translation between Lagrangian and Hamiltonian
dynamics. A very important application is [HKLR87] where it was shown that one can cook
up a new hyperkähler structure from a hyperkähler structure on R4n invariant under the action
of R2n. The connection between this hyperkähler Legendre transform and T-duality has been
understood before [Hit99b] as a transformation between structures on vector bundles. Here
we first recount the relevant classical background, then we show that T-duality applied to
affine torus bundles in the generalized geometry context also recovers the expected results.
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4.2. T-duality of semi-flat hyperkähler structure

4.2.1 Legendre transform

In this section, we reprove the Legendre transform of special Kähler structures. Legendre
transform is a classical transformation applied to convex functions. It appeared in the context
of hyperkähler metrics in [HKLR87, Section 3 (G)] and in the context of special Kähler
geometry and T-duality in [Hit99b, Section 5]. The theorem below is a reformulation of the
aforementioned results.

Theorem 4.2.1 (Legendre transform). Let (B,ω, I,∇) be a special Kähler manifold. Then,
the dual connection ∇̂ on T ∗B pulled back via the isomorphism induced by the Kähler metric
g : TB → T ∗B defines a new special Kähler structure (ω, I, ∇̂) on B. Moreover, a potential
of this new special Kähler structure can be obtained as the Legendre transform of a potential
of (ω, I,∇).

Proof. Let g be the Kähler metric on B. Choose a good cover {Uα} of B and flat Darboux
coordinates {ui}2n

i=1 = {xi, yi}ni=1 on each coordinate patch Uα. That is the symplectic form
is in canonical form

ω|Uα = dxi ∧ dyi

and the coordinates satisfy ∇dxi = ∇dyi = 0. The transition functions between such special
coordinate charts are affine transformations, that is for {x′, y′} coordinates on Uβ we have(︄

x
y

)︄
= A

(︄
x′

y′

)︄
+ b with A ∈ Sp(2n,R), b ∈ R2n.

An atlas of these flat Darboux coordinate charts defines the affine structure on B which
encodes the connection ∇.
We now can define a new set of special coordinates which will define an affine structure and a
connection. Let ϕα : Uα → R be a potential for g, that is, in the flat coordinates {ui}

gij = ∂2ϕα
∂ui∂uj

.

Let us now use the gradient Ψα on Uα ⊂ Rn of ϕα to define the new set of coordinates as

vi := (Ψα)i = ∂ϕα
∂ui

.

Since the derivative of Ψα is given by the matrix of g which is invertible, this transformation
is a well-defined change of coordinates. Writing out in detail we have

dvi = ∂vi
∂uj

duj = ∂2ϕα
∂uj∂ui

duj = gjidu
j = gijdu

j,

∂

∂vi
= ∂uj

∂vi

∂

∂uj
= gji

∂

∂uj
= gij

∂

∂uj
,

indeed, since δij = dvj( ∂
∂vi

) = ∂vj

∂uk
duk(∂ul

∂vi

∂
∂ul ) = ∂vj

∂uk

∂ul

∂vi
δkl = ∂vj

∂uk

∂uk

∂vi
so ∂uj

∂vi
= gji. In

particular, we see that dvi is the frame of T ∗B obtained from the frame ∂
∂ui of TB under the

isomorphism g : TB → T ∗B induced by the Kähler metric.
The Kähler structure in the new coordinates is then clearly given (as matrices)

Î = gIg−1 = −I∗, ω̂ = g−1ωg−1 = g−1gIg−1 = Ig−1 = −ω−1, ĝ = g−1gg−1 = g−1,
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4. T-duality in generalized geometry

where −I∗ is the matrix the transpose of the matrix of −I in coordinates {ui} and so on. In
particular, since ω is in standard form in the flat Darboux coordinates, the matrix of −ω−1 is
again the standard symplectic form.
Finally, the new connection is defined as the flat connection with respect to which the
coordinates {vi}2n

i=1 are flat. Then, ∇̂ is torsion-free since the local flat framing {dvi} of T ∗M
is associated with a coordinate system, so[︃

∂

∂vi
,
∂

∂vj

]︃
= 0 = ∇ ∂

∂vi

∂

∂vj
− ∇ ∂

∂vj

∂

∂vi
.

The connection is symplectic, ∇̂ω̂ = 0 since the coefficients of ω̂ are constant in the flat
coordinates. To prove the last identity

d∇̂Î = 0,

one has to show that ĝ can also be given locally as the Hessian of a potential ϕ̂α. Indeed, ϕ̂α
is the Legendre transform of the potential ϕα. Let

ϕ̂α(v1, ..., v2n) := uivi − ϕα(u1, ..., u2n) ⊂ R

where at any p ∈ B point p = (u1, ..., u2n) = (v1, ..., v2n) are the dual coordinates. This is
again a clear calculation.
It remains to show that newly constructed special coordinates define an affine structure, that
is the locally defined (ĝ, ω̂, Î , ∇̂) extends globally to B.
If ϕα and ϕβ are potentials for the Kähler metric g over Uα in coordinates (u1, ..., u2n) and
Uβ in coordinates (ū1, ..., ū2n) then by definition

(v1, ..., v2n) =
(︄
∂ϕα
∂u1 , ...,

∂ϕα
∂u2n

)︄

(v̄1, ..., v̄2n) =
(︄
∂ϕβ
∂ū1 , ...,

∂ϕβ
∂ū2n

)︄
.

The transition between flat Darboux coordinates is an affine transformation, that is

ūi = Aiju
j + bj A ∈ Sp(2n,R), b ∈ R2n.

We know that in coordinates {ui}, resp. {ūi}, the metric tensor is given by the Hessian of ϕα,
resp. ϕβ. On the overlap Uα ∩ Uβ

gij = ∂2ϕα
∂ui∂uj

,

ḡij = ∂2ϕβ
∂ūi∂ūj

= ∂

∂ūi
∂

∂ūj
ϕβ(u(ū)) = ∂

∂ūi

(︃
∂ϕβ
∂uk

∂uk

∂ūj

)︃
= ∂2ϕβ
∂ul∂uk

∂ul

∂ūi
∂uk

∂ūj
+ ∂ϕβ
∂uk

∂2uk

∂ūi∂ūj

= ∂2ϕβ
∂ul∂uk

∂ul

∂ūi
∂uk

∂ūj

since the transition is affine. As g is a (0, 2)-tensor we have

gijdu
i ⊗ duj = ḡijdū

i ⊗ dūj = ḡij
∂ūi

∂uk
∂ūj

∂ul
duk ⊗ dul
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that is,
∂2ϕα
∂ui∂uj

= gij = ḡkl
∂ūk

∂ui
∂ūl

∂uj
= ∂2ϕβ
∂um∂un

∂um

∂ūk
∂un

∂ūl
∂ūk

∂ui
∂ūl

∂uj
= ∂2ϕβ
∂um∂un

δmi δ
n
j = ∂2ϕβ

∂ui∂uj
.

In particular, the difference between ϕα and ϕβ is at most linear in {ui} and we have
∂ϕα
∂ui

= ∂ϕβ
∂ui

+ ci

with c ∈ R2n. In conclusion,

vi = ∂ϕα
∂ui

= ∂ϕβ
∂ui

+ ci = ∂ϕβ
∂ūk

∂ūk

∂ui
+ ci = v̄kA

k
i + ci.

In flat coordinates {vi} on Ûα and {v̄i} on Ûβ we have

vi = v̄kA
k
i + ci

that is, the transition between the dual coordinates is again affine

v̄ = Âv + ĉ

but with Â = (A−1)T ∈ Sp(2n,R) and the translation part is governed by the linear difference
between ϕα and ϕβ.

Monodromy. The linear part of the transition functions of {ui} is the inverse transpose of
that for {vj}. As these transition functions around nontrivial loops define the monodromy of
∇ and ∇̂ these monodromies can be viewed as dual representations of π1(B) acting on TxB
or T ∗

xB for some x ∈ B. On the other hand, monodromy is only defined up to conjugation
which amounts to linear change in the coordinates. Namely, let

v′
i = vi+n, v′

i+n = −vi for all i = 1, ..., n

on each coordinate patch, so that the new affine structure will have transition functions whose
linear part is

Ω(Â)Ω−1 = (Â−1)T = A,

where Ω is the standard symplectic matrix. Indeed, since A ∈ Sp(2n,R) it satisfies

ATΩA = Ω.

That is the monodromy of ∇ and ∇̂ agree up to conjugation which is just the fact that any
Sp(2n,R)-representation is self-dual. On the other hand, the two connections are generally
distinct, as the coordinates {vi} are only flat for ∇ if g is constant. Indeed,

∇dvi = ∇gijduj = ∂gij
∂uk

duk ⊗ duj.

Remark 4.2.2 (Semi-flat hyperkähler metrics). The two special Kähler structures on B define
semi-flat hyperkähler structures on T ∗B and on TB. In the coordinates {ui} if we denote by
{pi} the canonical coordinates on the cotangent fibres we have

I =
(︄
I 0
0 I∗

)︄
, J =

(︄
0 g−1

−g 0

)︄
, K =

(︄
0 −ω−1

ω 0

)︄
, (4.2.3)

ωI =
(︄
ω 0
0 ω−1

)︄
, ωJ =

(︄
0 1

−1 0

)︄
, ωK =

(︄
0 −I∗

I 0

)︄
. (4.2.4)
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4. T-duality in generalized geometry

Similarly, in coordinates {vi} and their canonical dual coordinates {qi} we have another
hyperkähler structure Î, Ĵ, K̂, ωÎ, ωĴ, ωK̂ in the same block-diagonal form but with g, ω and I
replaced by ĝ = g−1, ω̂ = −ω−1 and Î = −I∗. Rewriting in coordinates {ui, qi} we find a
semi-flat hyperkähler structure on TB given by

Î =
(︄
I 0
0 −I

)︄
, Ĵ =

(︄
0 1

−1 0

)︄
, K̂ =

(︄
0 I
I 0

)︄
, (4.2.5)

ωÎ =
(︄
ω 0
0 −ω

)︄
, ωĴ =

(︄
0 g

−g 0

)︄
, ωK̂ =

(︄
0 ω
ω 0

)︄
. (4.2.6)

This hyperkähler structure appears also in Hitchin’s paper [Hit99b] where he shows that it is
obtained by the hyperkähler Legendre transform [HKLR87].

Let π : M → B be an algebraic integrable system and let (I, ω,∇) be the induced special
Kähler structure on the base B. Let {xi, yi} be flat coordinates on B such that {dxi, dyi} is a
symplectic frame of the monodromy lattice Γ ⊂ T ∗B with respect to the fiberwise polarization.
Then,

ω = 1
di
dyi ∧ dxi.

where di ∈ N with di|di+1 for i = 1, .., n− 1 give the type of the polarization. We call these
coordinates flat Darboux coordinates as in the corresponding frame the polarization is in
standard form.
The special Kähler structure on B induces an affine structure which can also be understood
as the monodromy of the flat connection ∇. The transition functions between flat Darboux
coordinate charts are constant affine transformations(︄

x′

y′

)︄
= A

(︄
x
y

)︄
+ c.

such that A is a transformation between frames of the lattice Γ, thus the Kähler form is
preserved. In conclusion, A lies in the group

Sp(Γ∨) = {A ∈ SL(2n,Z) | ATωA = ω},

the symplectic group associated to the dual lattice. Indeed, if d = ∏︁
i di then −d · ω is the

polarization dual to Eb on the dual lattice Γ∨ ⊂ TB.
The dual lattice also defines a special Kähler structure on the base via the Legendre transform.
If B in special coordinates is defined via transition functions (Aαβ), then the Legendre
transformed affine structure in the new coordinates have transition functions ((A−1

αβ)T ). These
do not lie in Sp(Γ∨) anymore, but in Sp(Γ) defined as

Sp(Γ) = {A ∈ SL(2n,Z) | ATω−1A = ω−1}.

The following proposition is clear from the proof of Theorem 4.2.1.
Proposition 4.2.3 (Legendre transform 2.). Let B be the base of an algebraic integrable
system with induced special Kähler structure (g, I, ω,∇). Then the connection ∇̂ of the
dual special Kähler structure has monodromy representation ρ̂ : π1(B̂) → Sp(Γ) dual to the
monodromy representation of ∇.

The two groups Sp(Γ) and Sp(Γ∨) coincide and equal Sp(2n,Z) if and only if ω is a principal
polarization, that is when its type is d = (1, ..., 1). Then the two monodromy representations
are again equivalent via conjugation by ω.
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4.2. T-duality of semi-flat hyperkähler structure

4.2.2 T-duality of semi-flat hyperkähler structures

In this section, we show that on a T-dual pair of algebraic integrable systems, the T-dual of a
semi-flat hyperkähler structure is again a semi-flat hyperkähler structure. We moreover show
that the corresponding transformation on the base is the Legendre transform of special Kähler
structures.
Let us view the integrable system π : M → B as an affine torus fibration with monodromy
local system Γ ⊂ T ∗B ∼= V and torsion Chern class c ∈ H2(B,Γ). Let A be a flat connection
and endow M with the corresponding semi-flat hyperkähler structure (4.2.3), (4.2.4).
The dual lattice Γ∨ → B together with a torsion class ĉ ∈ H2(B,Γ∨) defines another affine
torus fibration π̂ : M̂ → B. The vertical bundle of M̂ is TB and the Gauss-Manin connection
is the Legendre transformed connection ∇̂ on B. Let Â be a connection on M̂ and endow
M̂ with the corresponding semi-flat hyperkähler structure. In coordinates corresponding to
coordinates on TB the semi-flat hyperkähler structure on M̂ is given by (4.2.5), (4.2.6).
In complex structure Î the map π̂ is holomorphic and the fibres are compact Lagrangian
submanifolds with respect to the holomorphic symplectic structure ωĴ + iωK̂. Moreover, over
any point, b ∈ B the fibre M̂ b and Mb are torsors under dual tori.
Given a family of polarizations on the fibres, M̂ becomes an algebraic integrable system. The
fiber M̂ b of π̂ over b ∈ B is a complex torus M̂ b

∼= V ∗
b /Γ∨

b , where Mb
∼= V/Γ is the fiber of

π over B. The restriction of ωÎ to the fiber M̂ b is an invariant Kähler form. Then −ωÎ|M̂b

can be viewed as an alternating bilinear pairing on V ∗
b compatible with the complex structure

inducing a positive definite Hermitian structure. That is, a smoothly varying family of inner
products {Êb}b∈B. Note, however, that these do not take integral values on the lattice Γ∨.
Indeed for any b ∈ B we have −ωÎ|M̂b

= ω. In the basis provided by the fiber coordinates it is
given by

Êb =
(︄

0 D−1

−D−1 0

)︄
,

where D = diag(d1, ..., dn) as before. This inner product is not integral but it can be scaled
to be integral.
Let us scale Eb to get polarized fibres. If d = d1 · ... · dn then the matrix

d · Eb =
(︄

0 dD−1

−dD−1 0

)︄

defines the dual polarization on the fibres of M̂ as defined in [BL99].
We can also scale the special Kähler structure (B, I, d ·g, d ·ω, ∇̂). The associated hyperkähler
structure in the splitting above is given by

Î
d = Î =

⎛⎝Î 0
0 Î

∗

⎞⎠ , Ĵ
d =

(︄
0 1

d
ĝ−1

−dĝ 0

)︄
, K̂

d =
(︄

0 −1
d
ω̂−1

dω̂ 0

)︄
, (4.2.7)

ωÎd =
(︄
dω̂ 0
0 1

d
ω̂−1

)︄
, ωĴd = ωĴ =

(︄
0 1

−1 0

)︄
, ωK̂d = ωK̂ =

⎛⎝0 −Î
∗

Î 0

⎞⎠ . (4.2.8)

Since only the metric and the Kähler form is changed on the base, the holomorphic symplectic
structure of M̂ is the same in the new hyperkähler structure. Denote by M̂d the integrable
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4. T-duality in generalized geometry

system with the scaled metric, which now has a smoothly varying family of polarizations on
the fibres. We saw that the fibres Mb and M̂d

b are torsors under dual tori and now we see that
they are torsors under dual polarized tori.

In the next theorem, we will show that the Legendre transformed semi-flat hyperkähler
structures are T-dual to each other. Under T-duality the volume of the fiber inverts, which
can be seen from the fact that the {Êb}b∈B do not induce polarizations on the fibers unless
the fibers have volume 1. The relationship between Legendre transforms and T-duality has
been observed by Hitchin already in [Hit99b].

Consider the usual T-duality diamond

M ×B M̂

M M̂

B

p p̂

q

π π̂

We have seen already that (M, 0) and (M̂, 0) are T-dual in the sense of generalized geometry,
by setting P = ⟨p̂∗Â ∧ p∗A⟩. In Baraglia’s terminology [Bar15] (A, Â, 0) is a T-duality triple.
We can show the following.

Theorem 4.2.4. Let (M,A) and (M̂, Â) be as above. Then, via P = ⟨p̂∗Â ∧ p∗A⟩, the
semi-flat hyperkähler structure on M is T-dual to the semi-flat hyperkähler structure on M̂ .

Proof. We work locally using coordinates associated to the flat connections. Over an open set
U ⊂ B let {xi, pi} be dual coordinates on M spanning the vertical and horizontal distributions.
Let {yi} be the Legendre transformed flat coordinates on B as described in the proof of 4.2.1.
Then if {yi, p̂i} are dual coordinates dp̂i is a frame of Γ∨ and {yi, p̂i} are coordinates on M̂
spanning the vertical and horizontal distributions of Â. The flat connections are defined by
the choice of 1-periodic fiber coordinates, so we may change the base coordinates to {xi}.

We may define 1-periodic coordinates on M ×B M̂ by pulling back pi and p̂i which defines a
flat connection on the correspondence space. Let us use coordinates {xi, pi, p̂i} on M ×B M̂ .
We have

P = dp̂i ∧ dpi.

In these coordinates an invariant section of TM ⊕ T ∗M is given by

X + ξ = X i
b

∂

∂xi
+Xf

i

∂

∂pi
+ ξbidx

i + ξifdpi,

and via the T-duality map (4.1.2) it becomes

T (X + ξ) = X i
b

∂

∂xi
+ ξif

∂

∂p̂i
+ ξbidx

i +Xf
i dp̂i.

That is, if we use the connections to split the tangent and cotangent bundles, we have

Ered ∼= TB ⊕ T ∗B ⊕ T ∗B ⊕ TB, and Êred = TB ⊕ TB ⊕ T ∗B ⊕ T ∗B

52



4.2. T-duality of semi-flat hyperkähler structure

and the T-duality map is just swapping the second and third components.
To calculate the T-dual of the semi-flat hyperkähler structure (I, J,K, ωI, ωJ, ωK) we have
to promote it to a generalized hyperkähler structure (JI,JJ,JK,JωI ,JωJ ,JωK) as in (3.1.4).
The corresponding reduced +i eigenbundles are as follows.

LI = {(X − iIX, ξ − iI∗ξ, η + iI∗η,X + iIX) | X, Y ∈ TB, ξ, η ∈ T ∗B},
LωI = {(X, ξ,−iωX,−iω−1ξ) | X ∈ TCB, ξ ∈ T ∗

CB},
LJ = {(X − ig−1ξ, ξ + igX, η − igY, Y + ig−1η) | X, Y ∈ TB, ξ, η ∈ T ∗B},
LωJ = {(X, ξ,−iξ, iX) | X ∈ TCB, ξ ∈ T ∗

CB},
LK = {(X + iω−1ξ, ξ − iωX, η − iωY, Y + iω−1η) | X, Y ∈ TB, ξ, η ∈ T ∗B},
LωK = {(X, ξ, iI∗ξ,−iIX) | X ∈ TCB, ξ ∈ T ∗

CB}.

We can do the same for the semi-flat hyperkähler structure (Î, Ĵ, K̂, ωÎ, ωĴ, ωK̂) on M̂ . We
have to use the form (4.2.5), (4.2.6) so that T-duality is just swapping components of the
split. The reduced +i eigenbundles in Ê are

L̂Î = {(X − iIX, Y + iIY, ξ + iI∗ξ, η − iI∗X) | X, Y ∈ TB, ξ, η ∈ T ∗B},
L̂ωÎ

= {(X, Y,−iωX, iωY ) | X ∈ TCB, ξ ∈ T ∗
CB},

L̂Ĵ = {(X + iY,−Y + iX, ξ + iη,−η + iξ) | X, Y ∈ TB, ξ, η ∈ T ∗B},
L̂ωĴ

= {(X, Y,−igY, igX) | X ∈ TCB, ξ ∈ T ∗
CB},

L̂K̂ = {(X,−iIX, ξ, iI∗ξ) | X ∈ TCB, ξ ∈ T ∗
CB},

L̂ωK̂
= {(X, Y,−iωX,−iωY ) | X ∈ TCB, ξ ∈ T ∗

CB}.

Indeed under T we have

T (LI) = L̂Î, T (LωI) = L̂ωÎ
, (4.2.9)

T (LJ) = L̂ωĴ
, T (LωJ) = L̂Ĵ, (4.2.10)

T (LK) = L̂ωK̂
, T (LωK) = L̂K̂. (4.2.11)

Remark 4.2.5. Even though the two semi-flat hyperkähler structures are T-dual, two of the
complex structures map to symplectic structures (4.2.10) and (4.2.11). This is the switching
of type described in [CG10, Table 1] and the switching between A and B-models in physics.
In our case, the switching is between BAA and BBB models or between ABA and AAB
models. The former was the base of Kapustin and Witten’s treatment of the geometric
Langlands program in [KW06].

We have seen in Theorem 4.2.3 the connections ∇ and ∇̂ have dual monodromy, and they
are only equivalent when the polarizations on the fibers are principal, that is when the fibers
have volume 1.
Let π : M → B be an algebraic integrable system with principally polarized fibers. Then, the
cohomology class α ∈ H2(B,R) restricted to the fibers induces an isomorphism

E : Γ → Γ∨.
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4. T-duality in generalized geometry

Let c ∈ H2(B,Γ) be the Chern class of M and define ĉ := E(c) ∈ H2(B,Γ∨). Then, by
Theorem 2.2.4 the affine torus bundle M̂ defined by Γ∨ and ĉ is isomorphic to M . Let A be
a connection on M and Â the pullback of A via the isomorphism on M̂ . Then we have the
following.

Theorem 4.2.6. Let M be a principally polarized algebraic integrable system. Then, M is
self T-dual and T-duality of the semi-flat hyperkähler structure is hyperkähler rotation.

Proof. Let (Γ, c) be the local system and Chern class associated to M and denote by M̂
the affine torus bundle corresponding to (Γ∨, E(c)). Let {xi, pi, pi} be dual coordinates on
M ×B M̂ as in the proof of 4.2.4. Then, the induced isomorphism ϕ : M → M̂ in coordinates
is given by

ϕ : (xi, pi) ↦→ (xi, E(pi))

where E is the matrix representation of the polarization. In particular, in dual flat coordinates
on M we have E = −ω−1. Since the coordinates are flat, the differential of ϕ is

Dϕ = ϕ∗ =
(︄

1 0
0 −ω−1

)︄
, ϕ∗ = (Dϕ)−1 =

(︄
1 0
0 −ω

)︄
.

Then, the pullback of the T-dual semi-flat hyperkähler structure (4.2.5), (4.2.6) is as follows.

ϕ∗Î = ϕ−1
∗ Îϕ∗ =

(︄
I 0
0 I∗

)︄
, ϕ∗Ĵ =

(︄
0 −ω−1

ω 0

)︄
, ϕ∗K̂ =

(︄
0 −g−1

g 0

)︄

ϕ∗ωÎ = (ϕ∗)TωÎϕ∗ =
(︄
ω 0
0 ω−1

)︄
, ϕ∗ωĴ =

(︄
0 −I∗

I 0

)︄
, ϕ∗ωK̂ =

(︄
0 −1
1 0

)︄
.

In conclusion, the pullback of the T-dual semiflat hyperkähler structure is precisely the
hyperkähler rotation I ↦→ I, J ↦→ K, K ↦→ −J.

Example 4.2.7. The generic fiber of the Higgs bundle moduli space M(r, d) → A is the
Jacobian of the spectral curve which is a principally polarized Abelian variety (Example 3.2.15).

Remark 4.2.8. The fact that T-duality does not map the polarization to a polarization in
the non-principally polarized case can be seen in light of Fourier-Mukai transform [Muk81].
T-duality preserves the types of generalized complex structures (4.2.9) corresponding to one
of the Kähler structures. This is supposed to be a generalized geometry shadow of the
Fourier-Mukai transform. The Fourier transform of an ample line bundle connected to a
non-principal polarization is not an ample line bundle but a vector bundle whose determinant
bundle is ample. This is a hint that T-duality of generalized complex structures may be a
derivative of T-duality of branes rather than the other way around.

4.2.3 Deformations of holomorphic symplectic structure under
T-duality.

Let A be a flat connection on an algebraic integrable system π : M → B. Recall, from Section
2.4 that if the horizontal distribution of A is not complex Lagrangian then the holomorphic
symplectic structure of the semi-flat hyperkähler structure does not agree with the original
holomorphic symplectic structure. Instead, we can write the holomorphic symplectic structure
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4.2. T-duality of semi-flat hyperkähler structure

of M as a deformation (2.4.13) of the semi-flat holomorphic symplectic structure via a global
two-form on the base which is type (1,1)+(0,2).
In this section, we will calculate the T-dual of the deformed holomorphic symplectic structure.
We will find that a deformation of the semi-flat holomorphic symplectic structure maps to a
B-field transform (3.1.6) of the T-dual.
We work locally. Let U ⊂ B be an open set, s : U → M a smooth section such that s∗(TB)
spans the horizontal distribution of A. Let µ : U → M be a complex Lagrangian section ofM .
Then there exists some ξ : U → T ∗U such that µ = s + ξ. The connection A splits the
tangent bundle of T ∗B and the differential of ξ in block diagonal form can be written as

Dξ : TbU → TbU + T ∗
b U, Dξ =

(︄
1
F

)︄
,

where F − F T gives the coefficients of dξ.
Then, in the split provided by the connection, we can write the holomorphic symplectic
structure of M as the deformation of the semi-flat structures I, ωJ and ωK

IF =
(︄

I 0
I∗F − FI I∗

)︄
, ωFJ =

(︄
F − F T 1

−1 0

)︄
, ωFK =

(︄
F T I − I∗F −I∗

I 0

)︄
.

We write JIF , JωF
J

and JωF
K

for the corresponding generalized complex structures.

Theorem 4.2.9. In the setting of Theorem 4.2.4 the T-duals of JIF , JωF
J

and JωF
K

are locally
the B-field transforms of JÎ, JĴ and JK̂ with B-field

B =
(︄

0 F T

−F 0

)︄
.

Proof. Once again, we calculate the reduced Lred for JωF
J

and JωF
K

which we denote by LωF
J

and LωF
K

. We have

LωF
J

= {(X, ξ,−iξ − iFX + iF TX,+iX) | X ∈ TCB, ξ ∈ T ∗
CB}

LωF
K

= {(X, ξ,−iF T IX + iI∗FX + iI∗ξ,−iIX) | X ∈ TCB, ξ ∈ T ∗
CB}

The T-duals are given by
T (LωF

J
) = {(X, iX,−iξ − iFX + iF TX, ξ) | X ∈ TCB, ξ ∈ T ∗

CB}

let ξ′ = ξ + FX

= {(X, iX,−iξ′ + iF TX, ξ′ − FX) | X ∈ TCB, ξ ∈ T ∗
CB}

T (LωF
K

) = {(X,−iIX, iI∗ξ − iF T IX + iI∗FX, ξ) | X ∈ TCB, ξ ∈ T ∗
CB}

taking ξ′ = iI∗ξ + I∗FX

= {(X,−iIX, ξ′ − iF T IX, iI∗ξ′ − F TX) | X ∈ TCB, ξ ∈ T ∗
CB}.

Using that the B-field transform acts on the +i eigenbundles as L ↦→ eBL we have that
T (JωF

J
) = eBJĴe

−B, T (JωF
K

) = eBJK̂e
−B.

Then,
T (JIF ) = T (JωF

J
· JωF

K
) = T (JωF

J
) · T (JωF

K
) = eBJĴe

−BeBJK̂e
−B = eBJÎe

−B.
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4. T-duality in generalized geometry

Remark 4.2.10. The B-field transforms of JωÎ
, JωĴ

and JωK̂
extend the triple T (JIF ), T (JωF

J
)

and T (JωF
K

) to a local generalized hyperkähler structure on X̂. Taking T−1 then extends
JIF ,JωF

J
,JωF

K
to one. This extension is just the semi-flat hyperkähler structure corresponding

to a local flat connection in which µ is a flat complex Lagrangian section. This indeed cannot
extend to a global structure if µ is not a flat section of a global flat connection. The obstruction
to extending to a global semi-flat structure can also be seen in the local nature of F . If there
are local sections µi such that µi = si + ξi and Fi = Fj then ξi − ξj must be constant, and
the µi define a flat connection. The interplay between B-field transform and deformations of
complex structures was also observed in [Saw12]

Even though F is not well-defined globally, IF , ωFJ and ωFK are. In particular, the T-duals are
well-defined generalized complex structures and we may write

T (JωF
J

) = eB1JĴe
−B1 , T (JωF

K
) = eB2JK̂e

−B2

for
B1 =

(︄
0 F T − F
0 0

)︄
, B2 =

(︄
0 I∗FI + F T

0 0

)︄
.

We also have,

T (JIF ) =

= T (JωF
J

)T (JωF
K

) = e−B1JĴe
B1e−B2JK̂e

B2 =

⎛⎜⎜⎜⎜⎝
I 0 0 0
0 −I 0 0
0 I∗F T − F T I −I∗ 0

I∗F − FI 0 0 I∗

⎞⎟⎟⎟⎟⎠ .

4.3 T-duality of generalized branes

Let (M,H) and (M̂,H) be a T-dual pair in the sense of generalized geometry fibered over
the base B. The T-duality relationship can be reformulated as an isomorphism (4.1.3) of
Courant algebroids on the base reduced from M and M̂ . We T-dualize an invariant generalized
complex structure on M by reducing its +i eigenbundle and applying the T-duality map (4.1.3).
Theorem 4.1.4 states that the resulting subbundle is the reduction of the +i eigenbundle of a
generalized complex structure on M̂ . We say that these generalized complex structures are
T-dual.

We also associate a maximal isotropic subbundle to a generalized brane, its generalized tangent
bundle (3.2.8). Therefore, we may T-dualize a generalized brane analogously, by first reducing
then using the T-duality map and finally proving that the resulting subbundle is the reduction
of a generalized tangent bundle. There are several obstructions to this program and the rest
of this chapter is dedicated to understanding to what degree it can be carried out. Some
consequences of the T-duality relation for generalized complex branes have also been explored
by Ben-Bassat in [BB06].

The first obstruction is that T-duality applies to invariant structures. Therefore, we must
restrict our attention to generalized branes which are invariant in a way. We will use the
following definition.
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4.3. T-duality of generalized branes

Definition 4.3.1. Let π : M → B be an affine torus bundle and H ∈ Ω3(M) a closed
invariant three-form. Let L = (S, F ) be a generalized brane of (M,H). We say that L is
invariant if there exist invariant sections of TM ⊕ T ∗M which span τL over S.

If L is an invariant generalized brane, then the invariant sections spanning τL define a subbundle

(τL)red ⊂ Ered.

Definition 4.3.2. Let (M,H) and (M̂, Ĥ) be a T-dual pair in the sense of Definition 4.1.1.
Let L = (S, F ) and L̂ = (Ŝ, F̂ ) be invariant generalized branes on M and M̂ . We say that L
and L̂ are T-dual if

T ((τL)red) = (τL̂)red.

This definition applies in a very general setting but we will only consider T-dual pairs of
affine torus bundles with torsion Chern classes endowed with zero H-flux. Similarly to the
construction of the T-duality map (4.1.3) we will construct T-dual branes by pulling the
generalized tangent bundle back to the correspondence space, transforming via a two-form
and then pushing down.
In the next section, we first describe the general construction of a T-dual brane. Then,
we will determine a class of invariant generalized complex branes to which our method can
be applied. We call these generalized complex branes locally T-dualizable. In the last two
sections, we determine the T-duals of a locally T-dualizable generalized complex brane first on
a topologically trivial affine torus bundle and then in a general setting.

4.3.1 General construction

Let π : M → B be an affine torus bundle with torsion Chern class c and let π̂ : M̂ → B
be a T-dual of it in the sense of Example 4.1.2. That is, ΓM̂ ∼= Γ∨

M and ĉ is also torsion.
Write p : M ×B M̂ → M and p̂ : M ×B M̂ → M̂ for the projections. Let A and Â be flat
connections on M and M̂ and let P = ⟨p̂∗Â∧ p∗A⟩ ∈ Ω2(M ×B M̂) be the associated closed
two-form.
Our plan of constructing a T-dual for a generalized brane L = (S, F ) is the following. Let
i : S ×π(S) M̂ ↪−→ M ×B M̂ be the inclusion. Let pS be the restriction of p : M ×B M̂ → M

to S ×π(S) M̂ and p̂S the restriction of p̂ : M ×B M̂ → M̂ ,

S ×π(S) M̂

S M̂ |π(S)

pS
p̂S .

Then,
p∗
SF + i∗P ∈ Ω2(S ×π(S) M̂)

is a closed two form. We have the short exact sequence

0 ker(p̂S) T (S ×π(S) M̂) TM̂ 0(p̂S)∗ (4.3.12)
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4. T-duality in generalized geometry

and its dual

0 T ∗M̂ T ∗(S ×π(S) M̂) Ω1
S×π(S)M̂/M̂

0(p̂S)∗ q (4.3.13)

where Ω1
S×π(S)M̂/M̂

is the space of relative differentials.

Consider now the linear map

(F + P )1 := q ◦ (p∗
SF − i∗P ) : T (S ×π(S) M̂) → T ∗(S ×π(S) M̂) → Ω1

S×π(S)M̂/M̂
(4.3.14)

and let

∆ := ker(F + P )1 ⊂ T (S ×π(S) M̂) (4.3.15)

be its kernel. In Section 4.3.2 we will find a class of generalized branes, with π(S) contractible,
such that the distribution ∆ is integrable with closed leaves. We will call these branes locally
T-dualizable.
Given, that the distribution ∆ is integrable with closed leaves, we consider a closed leaf Z of
the induced foliation. Then p̂|Z : Z → M̂ has closed image which we denote by Ŝ. In this
setting, we have the following diagram.

Z M ×π(S) M̂

S Ŝ π−1(π(S)) π̂−1(π(S))

pZ p̂Z

iZ

p p̂

iS iŜ

(4.3.16)

In Section 4.3.4, we show that for a locally T-dualizable generalized brane with π(S) con-
tractible, and for any Ŝ fitting into the diagram 4.3.16 there exists a unique closed two-form
F̂ ∈ Ω2(Ŝ) such that

p∗
zF + i∗ZP = p̂∗F̂ .

Finally, we will show that L = (S, F ) and L̂ = (Ŝ, F̂ ) are T-dual generalized submanifolds.
This is the content of Theorem 4.3.14.
In the last section, we consider generalized branes without the assumption that π(S) is
contractible. We show that being locally T-dualizable is not enough for a global T-dual to
exist. We give the precise constraints in Theorem 4.3.18.
Generalized branes are only the de Rham shadows of physical branes which are submanifolds
endowed with Hermitian vector bundles with connections. We can also view these bundles as
principal U(d)-bundles with connections. We eventually, in Chapter 7, will generalize the above
construction to rank 1 branes, that is to U(1)-bundles with connections as follows. Let L → S
be a U(1)-bundle with a connection ∇ whose curvature is 2πiF . On the correspondence
space, M ×B M̂ there exists a U(1)-bundle with connection twisted by a gerbe, the Poincaré
bundle P , whose curvature is 2πiP . On a leaf Z of ∆ let us define the U(1)-bundle L̂Z with
connection ∇̂Z via the equation

L̂Z ∼= p∗
ZL⊗ i∗ZP∗. (4.3.17)
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4.3. T-duality of generalized branes

Via the standard representation of U(1) on C, L̂Z defines a Hermitian line bundle on S×π(S)M̂

and ∇̂Z a Hermitian connection. We can decompose it as

∇̂Z = ∇̂
1
Z + ∇̂

2
Z

such that
∇̂

1
Z : Γ(L̂Z) → Γ(L̂Z ⊗ Ω1

S×π(S)M̂/M̂
)

and
∇̂

2
Z : Γ(L̂Z) → Γ(L̂Z ⊗ (p̂S)∗T ∗M̂).

We show that there exists a leaf Z of ∆ such that ∇̂
1
Z is trivial and we define Ŝ := p̂Z(Z), as

before and

L̂ := (p̂Z)∗ker(∇̂
1
Z). (4.3.18)

The connection ∇̂
2
Z induces a connection ∇̂ on L̂.

Taking flat sections is the original method of Arinkin and Polishchuk [AP98] for Lagrangian
sections which was extended to Lagrangian affine torus subbundles by Bruzzo Marelli and Pioli
in [BMP01, BMP02] using factors of automorphy. Finally, Glazebook, Jardim and Kamber
[GJK04] described the Fourier-Mukai transform of vector bundles which are flat only on the
fibers by restricting to a leaf as we are here.
It turns out that the full picture for U(1)-bundles which are not flat on the fibers of π : M → B
is more complicated. In [CLZ18] Chan, Leung and Zhang gave a distinct construction for such
bundles. Our method is simpler but also more restrictive in terms of application. Chapter 7
will explain the necessary modifications to the method above.

4.3.2 The integrability of the distribution ∆

Our construction relies on the distribution ∆ being integrable with closed leaves. This restricts
the geometry of S significantly, but we still end up with an interesting class of examples. In
this section, we define this class and show that the corresponding distribution ∆ is integrable
with closed leaves.
Let S ⊂ M be a submanifold such that π(S) ⊂ B is a submanifold and S intersects the fibers
of M |π(S) = π−1(π(S)) in equidimentional affine subtori. Then, for any b ∈ π(S), via the
inclusion S → M restricted to the fiber

H1(Sb,Z) ⊂ H1(Mb,Z)

defines a sublattice. Since the fibers of S are closed in the fibers of M this sublattice is locally
trivial. Therefore we have an inclusion of local systems

ΓS ⊂ ΓM |π(S)

over π(S). That is, S is a affine torus subbundle of M . Kamenova and Verbitsky [KV19,
Theorem 3.2] showed that in an integrable system over regular points of πS any holomorphic
Lagrangian is of this form, with possibly disconnected fibers. Here we restrict our attention to
connected fibers.
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4. T-duality in generalized geometry

Suppose that S ⊂ M is an affine torus subbundle. Suppose that B = π(S) for ease of
notation, otherwise we restrict M to π(S). We have a short exact sequence of lattices

0 ΓS ΓM ΓM/ΓS 0, (4.3.19)

and that of flat vector bundles

0 VS VM VM/VS 0. (4.3.20)

Then S is a torsor under S0 = VS/ΓS and M under M0 = VM/ΓM . The short exact sequences
(4.3.19) and (4.3.20) induce an inclusion S0 → M0. If π(S) is simply connected a choice of
sections sS : π(S) → S and sM : π(S) → M induce isomorphisms M ∼= M0 and S ∼= S0. On
the other hand, if sS and sM do not agree, viewed as sections of M , the inclusion S → M
does not agree with S0 → M0. Let us denote by tb the translation along the fibers of M by a
section b of M0. We have the following commutative diagram.

S0 M0 ∼= M

S M

∼= tsS−sM
(4.3.21)

Of course, locally we could promote the section sS to a section of M . On the other hand,
T-duality is connected to a choice of flat connection on M which can be given by local
trivializations. It is also more intuitive to fix a trivialization of the ambient space and study
submanifolds in these fixed coordinates.
The translation of S0 in M depends only on the image of sB − sM in VM/VS up to the lattice
ΓM/ΓS. That is, with a fixed choice of section for M we can still choose the sS such that
sS − sM lies in an orthogonal complement of VS ⊂ VM up to an orthogonal complement of
the lattice ΓS ⊂ ΓM .

Lemma 4.3.3. Let S ⊂ M be an affine torus subbundle with π(S) simply connected and let
F ∈ Ω2(S) be a closed invariant two-form. Then, ∆ is integrable.

Proof. Let U = π(S). Therefore,
S ∼= U × T l

and there exist coordinates [y1, ..., yk, q
1, ..., ql] on S and [x1, ..., xm, p

1, ..., pn] on M |U such
that qi and pi are 1-periodic and the inclusion of S to M in coordinates is

iS : S ↪−→ M

[y, q] ↦→ [ϕ(y), q1, .., ql, bl+1, ..., bn],

where bi : U → R/Z are smooth functions. Indeed, following the commutative diagram
(4.3.21) the coordinates on M |U and S are given by local sections sM and sS of M |U and S,
and frames of ΓM |U and ΓS respectively. A frame of ΓS can always be extended to a frame of
ΓM |U and this extension gives an orthogonal decomposition VM ∼= VS ⊕ (VM/VS). Then, the
difference sS can be chosen such that sS − sM = b ∈ VM/VS up to ΓM/ΓS.
The correspondence space M ×U M̂ has dual coordinates [x1, .., xn, p

1, .., pn, p̂1, .., p̂n] as in
Example 4.1.2 and the inclusion is given by

i : S ×U M̂ −→ M ×U M̂

[y, q, p̂] ↦→ [ϕ(y), q, b, p̂].
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In these coordinates P = dp̂i ∧ dpi and therefore i∗P is given by

i∗P =
l∑︂

µ=1
dp̂µ ∧ dqµ +

n∑︂
µ=l+1

dp̂µ ∧ dbµ.

Also, if pS : S ×U M̂ → S is the projection we have

p∗
SF =

k∑︂
i,j=1

Fijdyi ∧ dyj +
∑︂
i=1,..k
µ=1,...l

Giµdyi ∧ dqµ +
l∑︂

µ,ν=1
Hµνdq

µ ∧ dqν .

In these coordinates, p∗
SF + i∗P can be written in matrix form as

p∗
SF + i∗P =

⎛⎜⎜⎜⎜⎝
Fij −GT

µi −(∂ibµ)T −(∂ibµ)T
Giµ Hµν −Iµν 0
∂ib

µ Iµν 0 0
∂ib

µ 0 0 0

⎞⎟⎟⎟⎟⎠
where the blocks are made up of (k, l, n− l, n− l) columns and I is the l × l identity matrix.

A vector field X ∈ ∆ is in the kernel of (F + P )1 if it satisfies

GXb +HXf = −
(︂
I 0

)︂
X̂
f (4.3.22)

where Xb, Xf and X̂f are the components of X in the basis { ∂
∂yi
, ∂
∂qµ

∂
∂p̂ν

} . That is,

∆ = span
{︃
∂

∂yi
−Giµ

∂

∂p̂µ
, i = 1, ..k; ∂

∂qµ
−Hµν

∂

∂p̂ν
, µ = 1, ...l; ∂

∂p̂µ
, µ = l+ 1, ..., n

}︃
.

Let us calculate the Lie brackets of this frame. Firstly, since H and G only depend on q and y[︃
∂

∂yi
−Giµ

∂

∂p̂µ
,
∂

∂p̂τ

]︃
=
[︃
∂

∂qµ
−Hµν

∂

∂p̂ν
,
∂

∂p̂τ

]︃
= 0.

The other brackets are[︃
∂

∂yi
−Giµ

∂

∂p̂µ
,
∂

∂qµ
−Hµν

∂

∂p̂ν

]︃
= (∂qµGiν − ∂qµHτν)

∂

∂p̂ν
, i = 1, ..k; µ, ν = 1, ..., l;

[︃
∂

∂yi
−Giµ

∂

∂p̂µ
,
∂

∂yj
−Gjµ

∂

∂p̂µ

]︃
= (∂yj

Giµ − ∂yi
Gjµ) ∂

∂p̂µ
, i, j = 1, ..k; µ = 1, ..., l;

[︃
∂

∂qµ
−Hµν

∂

∂p̂ν
,
∂

∂qτ
−Hτν

∂

∂p̂ν

]︃
= (∂qτHµν − ∂qµHτν)

∂

∂p̂µ
, µ, ν, τ = 1, ..., l.

Since F is invariant Fij, Giµ and Hµν are independent of qµ and the first and third brackets
vanish. Moreover, since F is closed,

∂yj
Giµ − ∂yi

Gjµ = ∂qµFij = 0.

Therefore, ∆ is integrable.
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Lemma 4.3.4. Let (S, F ) be as in Lemma 4.3.3 and assume that F represents a rational
cohomology class on S (i.e. on each fiber of S). Then ∆ has closed leaves which foliate
S ×π(S) M̂ .

Proof. In the coordinates used in the previous lemma, we have shown that the distribution ∆
is spanned by

∆ = span
{︃
∂

∂yi
−Gi

µ

∂

∂p̂µ
, i = 1, ..k; ∂

∂qµ
−Hµν

∂

∂p̂ν
, µ = 1, ...l; ∂

∂p̂µ
, µ = l + 1, ..., n

}︃
.

Maximal integral submanifolds of this distribution are closed only if Hµν are rational numbers,
otherwise, the leaves would be dense in the fibers. Since Hµνdq

µ ∧ dqν is the unique invariant
representative of the cohomology class of F on the fiber its rationality is equivalent to Hµν

being rational. Indeed, over b ∈ π(S) the cohomology H2(Sb,R) of the fiber is given by ∧2t∗,
where t is the Lie algebra of Sb. For any set of 1-periodic coordinates {q1, ..., ql} a basis of
∧2t∗ is given by {dqµ ∧ dqν}µ<ν . Moreover, {dqµ ∧ dqν}µ<ν is also a basis of H2(Sb,Z) and
H2(Sb,Q).

Definition 4.3.5. Let L = (S, F ) be a generalized brane in an affine torus bundle M with
torsion Chern class and zero H-flux. We call L locally T-dualizable if S is an affine torus
subbundle of M and F is an invariant closed two-form on S representing rational cohomology
classes when restricted to the fibers.

Note that the generalized tangent bundle of a locally T-dualizable brane L is indeed spanned
by invariant sections, that is L is invariant in the sense of Definition 4.3.1.

4.3.3 Local structure of leaves and T-duals

From the previous section, it is clear that starting with locally T-dualizable brane L = (S, F )
we can construct the diagram (4.3.16). That is there exists some submanifolds Z ⊂ S×π(S) M̂

and Ŝ ⊂ M̂ |π(S) which fit into (4.3.16). In this section, we will show that Z and Ŝ are also
affine torus subbundles of S ×π(S) M̂ and M̂ respectively and we give a precise definition of
their monodromy local systems in terms of ΓS and ΓM . We will also determine the space
closed leaves Z of ∆ and the space of potential T-duals Ŝ.

We first work in coordinates. Let M, M̂,B, S, F as in Lemma 4.3.4. Then, there exist
coordinates [y1, ..., yk, q

1, ..., ql] on S and [x1, ..., xn, p
1, ..., pn] on M such that qi and pi are

1-periodic and the inclusion of S to M in coordinates is

i0 : S ↪−→ M

[y, q] ↦→ [ϕ(y), q1, .., ql, bl+1, ..., bn],

where bi : B → R/Z are smooth functions. Moreover, in these coordinates, F is given by

F =
k∑︂

i,j=1
F ij

0 dyi ∧ dyj +
∑︂
i=1,..k
µ=1,...l

Gi
µdyi ∧ dqµ +

l∑︂
µ,ν=1

Hµνdq
µ ∧ dqν . (4.3.23)
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Since F is closed and its coefficients do not depend on the fiber coordinates we find that F0
is the pullback of a closed two-form from the base, moreover

∂iG
j
µ = ∂jG

i
µ ∀i, j = 1, ..., k; and ∂iHµν = 0 ∀i = 1, ..k, µ, ν = 1, ..., l.

This means firstly, Hµν is a constant anti-symmetric matrix in these coordinates and secondly,
there exists Gµ : B → R, µ = 1, ..., l such that

Gi
µ = ∂iGµ. (4.3.24)

We may further assume that the periodic coordinates (q1, ..., ql) form a symplectic basis for
H, that is in these coordinates

Hµνdq
µ ∧ dqν =

r∑︂
i=1

didq
i ∧ dqr+i (4.3.25)

with di = ni/mi ∈ Q>0 and ni,mi ∈ Z>0 with gcd(ni,mi) = 1.

The vector fields spanning ∆ all commute so we may integrate them into coordinates and
we can also construct periodic coordinates for the fibers of Z → B. These observations are
summarized in the following lemma.

Lemma 4.3.6. Any leaf Z of the foliation defined by ∆ can be endowed with coordinates

Z = [y1, ..., yk, q
1, ..., ql, q̂l+1, ..., q̂n]

were qi and q̂i are 1-periodic and in which the inclusion

iZ : Z ↪−→ S ×π(S) M̂

is given by

[y, q, q̂] ↦→ [y,H1q,−H2q −G+ c, q̂].

Where H1, H2 ∈ Zl×l are integer matrices, H1 = diag(m1, ...,mr,m1, ...,mr, 1, ..., 1) and
H2 is a degenerate symplectic matrix of type (n1, ..., nr), that is

H2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1
...

nr
−n1

...
−nr

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and c ∈ (R/Z)l is a constant vector. The map is an injection because ni and mi are relatively
primes.
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4. T-duality in generalized geometry

The maximal integral submanifolds all intersect the fibers of S ×π(S) M̂ in n-dimensional
subtori and the leaf space of ∆ is parametrized by the values of cµ ∈ R/Z, that is a torus of
rank l. A priori it is just an affine torus, in which choosing Gµ is equivalent to choosing zero.

Denote by p̂Z the restriction of p̂ to a leaf Z of the foliation and the image by ŜZ as in
(4.3.16). It is a closed submanifold of M̂ and has coordinates [y1, ..., yk, s1, ..., s2r, q̂l+1, ..., q̂n]
where {sµ} and {q̂µ} are 1-periodic on the fibers. The inclusion iŜZ

: ŜZ ↪−→ M̂ is given in
coordinates by

iŜZ
:[y, s1, ..., s2r, q̂l+1, ..., q̂n] ↦→
↦→ [ϕ(y), s1 −G1 + c1, ..., s2r −G2r + c2r,−G2r+1 + c2r+1, ...,−Gl + cl, q̂l+1, ..., q̂n].

(4.3.26)
Here the inclusion of sµ is somewhat arbitrary but it makes our calculations easier. Once again,
choosing coordinates on ŜZ amounts to changing the local section which we may do freely
without changing the connection on M̂ . In particular, in these coordinates the projection

p̂Z : Z → ŜZ

is given simply by

[y, q, q̂] ↦→ [y, n1q
r+1, ..., nrq

2r,−n1q
1, ...,−nrqr, q̂l+1, ..., q̂n]. (4.3.27)

The image ŜZ ⊂ M̂ is a closed submanifold, moreover it is again a trivial affine torus subbundle
of M̂ .
As we have discussed in Lemma 4.3.6 any leaf Z ⊂ S ×π(S) M̂ of ∆ is an affine torus
subbundle. That is, Z is a torsor under some group bundle Z0 = VZ/ΓZ → π(S) with
inclusions VZ ⊂ VS ⊕ VM̂ and ΓZ ⊂ ΓS ⊕ ΓM̂ . Let us determine ΓZ and VZ now.
Since we assume that the torus bundle πS : S → π(S) is trivial, the corresponding Leray
spectral sequence degenerates on the second page with both R and Z coefficients. In particular,
the two-form F ∈ H2(S,R) determines a class

H ∈ H0(π(S),∧2V ∗
S ), (4.3.28)

via the map H2(S,R) ∼= F 0,2(πS,R) → E0,2
∞ (πS,R) ∼= E0,2

2 (πS,R). The rationality condition
says that H is in the image of

H0(π(S),∧2Γ∨
S ⊗ Q) → H0(π(S),∧2V ∗

S ).

We have, therefore, an alternating bilinear form H on VS which takes rational values on ΓS.
We may choose a frame {µ1, ..., µn} for ΓS which is symplectic with respect to H, that is, H
is of the form

H =
r∑︂
i=1

ni
mi

µ∗
i ∧ µ∗

r+i

for some 2r ≤ n with ni,mi ∈ N>0 and gcd(ni,mi) = 1. More precisely, there exists a
minimal m such that m ·H takes integer values on the lattice ΓS. Then by the elementary
divisor theorem, we may bring m ·H to normal form m ·H = ∑︁r

i=1 diµ
∗
i ∧µ∗

r+i where di ∈ N>0
and di|di+1. Finally, we divide out by the greatest common divisors element-wise so

ni = di
gcd(m, di)

and mi = m

gcd(m, di)
.
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4.3. T-duality of generalized branes

Using the symplectic frame to generate 1-periodic coordinates for S recovers the expression
(4.3.23) for F with which the fiber component is given by (4.3.25). Indeed, the ni and mi in
Lemma 4.3.6 are the same as here.

Definition 4.3.7. For H ∈ H0(π(S),∧2Γ∨
S ⊗ Q) let ΓH ⊂ ΓS be the sublattice

ΓH = spanZ{m1µ1, ...,mrµr,m1µr+1, ...,mrµ2r, µ2r+1, ..., µn}

with respect to a choice of symplectic frame.

Lemma 4.3.8. The sublattice ΓH ⊂ ΓS is independent of the choice of symplectic frame.

Proof. Let {ν1, ..., νn} be another symplectic frame. Then, there exists a matrix A ∈ SL(n,Z)
such that Aµ = ν and ATν∗ = µ∗ which satisfies AHAT = H. Writing A and H as block
matrices

A =
(︄
a b
c d

)︄
and H =

(︄
H0 0
0 0

)︄
,

where a and H0 are 2r × 2r matrices, we find that aH0a
T = 0 and c = 0.

Denote by ΓµH and ΓνH the sublattices of ΓS as above, corresponding to the two frames. Let
M be the n× n diagonal matrix M = diag(m1, ...,mr,m1, ...,mr, 1, ..., 1). Then, the frame
for ΓµH is Mµ and for ΓνH is Mν. Therefore,

Mν = MAµ = MAM−1(Mµ).

So ΓµH = ΓνH if and only if MAM−1 is in SL(n,Z). Since

MAM−1 =
(︄
mam−1 mb

0 d

)︄
with m = diag(m1, ...,mr,m1, ...,mr),

MAM−1 is in SL(n,Z) if and only if mam−1 is integral. Let n and d be the matrices

n =
(︄

0 diag(n1, ..., nr)
−diag(n1, ..., nr) 0

)︄
, d =

(︄
0 diag(d1, ..., dr)

−diag(d1, ..., dr) 0

)︄

so we have
H0 = m−1n = m−1d.

Therefore,
am−1naT = m−1n ⇒ mam−1 = n(aT )−1n−1

that is, mam−1 is integral if and only if n(aT )−1n−1 is integral.
We use that a = H0(aT )−1H−1

0 = d(aT )−1d−1 and (a−1)T are integral. Let aij be the entries
of the top left r × r submatrix of A. Then we know that

di
dj
aij ∈ Z

for all i, j = 1, ..., r. Then,

ni
nj
aij is

⎧⎪⎨⎪⎩∈ Z since ni|nj j ≤ i
di

dj
aij

gcd(m,dj)
gcd(m,di) ∈ Z as gcd(m, dj)|gcd(m, di) since dj|di j > i.

The same argument works for the other three r × r submatrices of a, so mam−1 is integral.
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4. T-duality in generalized geometry

The short exact sequences dual to (4.3.19) and (4.3.20) are given by

0 Ann(ΓS) Γ∨
M Γ∨

S 0, (4.3.29)

and
0 Ann(VS) V ∗

M V ∗
S 0. (4.3.30)

Then, S ×π(S) M̂ is an affine torus subbundle of M ×π(S) M̂ and its local system fits into the
short exact sequence

0 Ann(ΓS) ΓS ⊕ Γ∨
M ΓS ⊕ Γ∨

S 0, (4.3.31)

with corresponding vertical bundles

0 Ann(VS) VS ⊕ V ∗
M VS ⊕ V ∗

S 0. (4.3.32)

In particular, following the diagram (4.3.21) and the discussion in Lemma 4.3.3 we may write

S ×π(S) M̂ = t(b,0)

(︃
S0 ×π(S) M̂

)︃
,

where now t represents translation in M ×π(S) M̂ by sections of M0 ×π(S) M̂0.
On ΓH ⊂ ΓS the bilinear form H is integral and so it induces a map ΓH → Γ∨

S. Denote by
GraphΓ(−H) the graph of −H in ΓH⊕Γ∨

S which is a primitive sublattice since gcd(ni,mi) = 1.
Denote by Graph(−H) the graph of −H : VS → V ∗

S inside VS ⊕ V ∗
S .

We can now reformulate Lemma 4.3.6 in a coordinate-free way as follows.

Lemma 4.3.9. The leaves Z of ∆ are affine torus subbundles of S ×π(S) M̂ and the
corresponding group bundle Z0 = VZ/ΓZ can be defined through the restrictions of the short
exact sequences (4.3.31) and (4.3.32) to the graph of −H. That is,

0 Ann(ΓS) ΓZ GraphΓ(−H) 0 (4.3.33)

0 Ann(VS) VZ Graph(−H) 0 (4.3.34)

That is, given a choice of sections for S and M̂ the submanifold Z can be identified with

Z = tb̂(Z0) ⊂ S ×π(S) M̂

where now t is the translation inside S ×π(S) M̂ by sections of (VS ⊕ V ∗
M)/(ΓS ⊕ Γ∨

M).
The leaf Z only depends on the image of b̂ in VS ⊕ V ∗

S /Graph(−H) up to elements of
ΓS ⊕ Γ∨

S/Graph
Γ(−H). From Lemma 4.3.6 it is clear that the slope of this section is fixed

by F ∈ Ω2(S).
We have Graph(−H) ∼= VS and GraphΓ(−H) ∼= ΓH . Therefore, VS ⊕ V ∗

S /Graph(−H) ∼=
V ∗
S . Let {µ1, ...µl} be a symplectic basis of VS for H and {µ∗

1, ..., µ
∗
l } the dual basis in V ∗

S ,
then the lattice dual to ΓH is given by

Γ∨
S ⊂ Γ∨

H = spanZ

⟨︃
µ∗

1
m1

, ...,
µ∗
r

mr

,
µ∗
r+1
m1

, ...,
µ∗

2r
mr

, µ∗
2r+1, ..., µ

∗
l

⟩︃
. (4.3.35)

Since ΓH is independent of the choice of basis so is Γ∨
H . From this description, ΓS ⊕

Gamma∨
S/Graph

Γ(−H) ∼= Γ∨
H . We have the following proposition.
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4.3. T-duality of generalized branes

Proposition 4.3.10. Over contractible π(S), the space of leaves of ∆ is parametrized by flat
sections of the torus bundle V ∗

S /Γ∨
H . These leaves foliate S ×π(S) M̂ .

Let us now examine the image of leaves Z under the projection p̂ : Z → M̂ . From the
coordinate expression (4.3.27) again we readily see the following lemma.
Lemma 4.3.11. For any Z leaf of ∆ the image ŜZ of p̂ : Z → M̂ is an affine torus subbundle
of M̂ . The corresponding group bundle Ŝ0 = VŜ/ΓŜ with VŜ ⊂ V ∗

M and ΓŜ ⊂ Γ∨
M is

independent of Z and is given by the following short exact sequences.

0 Ann(VS) VŜ H(VS) 0 (4.3.36)

0 Ann(ΓS) ΓŜ Γ∨
S ∩H(VS) 0 (4.3.37)

These are once again the restrictions of (4.3.30) and (4.3.29) to the subbundle H(VS) =
Im(−H : VS → V ∗

S ) and the primitive sublattice cut out by it.

Again the space of images is parametrized by constant sections of V ∗
M/VŜ

∼= V ∗
S /H(VS) ∼=

coker(H) up to sections of Γ∨
M/ΓŜ ∼= Γ∨

S/(H(VS) ∩ Γ∨
S). That is, up to the image of Γ∨

S in
coker(H). Let us denote it by coker(H,Γ∨

S).
Proposition 4.3.12. When π(S) is contractible, the space of images ŜZ corresponding to
leaves of ∆ under p̂ is parametrized by flat section of coker(H)/coker(H,Γ∨

S). The images
foliate M̂ |π(S)

Then, the space of leaves Z mapping onto a fixed Ŝ is parametrized by Ker(V ∗
S →

V ∗
S /H(VS)) = H(VS) up to elements of Ker(Γ∨

H → Γ∨
S/(H(Vs)∩Γ∨

S)). By expressing Γ∨
H and

Γ∨
S in a symplectic basis as in (4.3.35) it is clear that Γ∨

S/(H(VS) ∩ Γ∨
S) ∼= Γ∨

H/(H(VS) ∩ Γ∨
H).

Moreover, H(VS) ∩ Γ∨
H = H(ΓS). Finally, the following corollary is clear.

Corollary 4.3.13. When π(S) is contractible, space of leaves of ∆ mapping onto the same Ŝ
is parametrized by constant sections of H(VS)/H(ΓS). The leaves mapping onto Ŝ foliate
S ×π(S) Ŝ.

The maps pZ : Z → S and p̂Z : Z → ŜZ are the composition of a fiber-wise homomorphism
of group bundles and a translation by a section in M or M̂ . The corresponding fiber-wise
homomorphism p0 and p̂0 are given in the following diagrams

0 Ann(VS) VZ VS 0

0 Ann(VS) VŜ H(VS) 0

∼= p̂0

p0

−H

q

(4.3.38)

0 Ann(ΓS) ΓZ ΓH 0

0 Ann(ΓS) ΓŜ H(VS) ∩ Γ∨
S 0

∼= p̂0

p0

−H

q

(4.3.39)

where we use that ΓH ⊂ ΓS.
From the diagrams, it is clear that the fibers of p̂Z : Z → ŜZ are ∏︁r

i=1 n
2
i disjoint copies of

l − 2r dimensional tori and the fibers of pZ : Z → S are the disjoint union of ∏︁r
i=1 m

2
i copies

of n− l dimensional tori.
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4. T-duality in generalized geometry

4.3.4 T-dual of generalized branes over contractible base

Finally, we can prove the following theorem which states that a locally T-dualizable generalized
brane admits T-duals in the sense of Definition 4.3.2.

Theorem 4.3.14. Let S ⊂ M be a submanifold which is also an affine torus subbundle of M
over π(S). Assume that π(S) is simply connected and let F ∈ Ω2(S) be an invariant closed
two-form such that the restriction of F to each fiber represents a rational cohomology class.
Consider the distribution ∆ defined in the previous section and let Z be a leaf of the foliation
given by ∆. Let ŜZ ⊂ M̂ be the image of p̂Z : Z → M̂ .

Then, ŜZ is an affine torus subbundle of M̂ over π(S). Moreover, there exists a unique closed
invariant two-form F̂Z on ŜZ which represents a rational cohomology class on the fibers of
ŜZ and satisfies

p∗
ZF + i∗ZP = p̂∗

ZF̂ .

Whenever two leaves Z1 and Z2 of ∆ have the same image ŜZ1 = ŜZ2 we have

F̂Z1 = F̂Z2 .

Moreover, then (ŜZ , F̂Z) is a T-dual of the generalized brane (S, F ).

Clearly, based on this picture a single generalized brane may have several T-duals. Any leaf Z
of the distribution ∆ produces a T-dual and some may produce the same. By Proposition
4.3.12 the space of T-duals is parametrized by an l− 2r dimensional torus and by Proposition
4.3.13 the leaves mapping to a certain T-dual are parameterized by a 2r dimensional torus.
Furthermore, the leaves projecting to the same Ŝ foliate S ×π(S) Ŝ.

Proof. We have already seen, assuming simply connectedness of the base, that Ŝ is a trivial
affine torus subbundle of M̂ . Moreover, any leaf of ∆ can be parameterized as Z = [y, q, q̂]
with q and q̂ being 1-periodic and we have

iZ : Z ↪→ S ×π(S) M̂

[y, q, q̂] ↦→ [ϕ(y), H1q, b,−H2q −G+ c, q̂].

The constants cµ ∈ R/Z, µ = 1, ..., l parametrize the leaf space of ∆ as described in
Proposition 4.3.10. Let us first calculate F̂Z . We have

i∗ZP =i∗Z(dp̂µ ∧ dpµ)

=
r∑︂

µ=1
mµnµdq

r+µ ∧ dqµ +
r∑︂

µ=1
−mµnµdq

µ ∧ dqµ+r+

+
∑︂

µ=1...r
i=1...k

(mµ(−∂iGµdyi) ∧ dqµ +mµ(−∂iGµ+rdyi) ∧ dqµ+r)+

+
∑︂

µ=2r,...l
i=1...k

(−∂iGµdyi) ∧ dqµ +
n∑︂

µ=l+1
dq̂µ ∧ dbµ

= − 2
r∑︂

µ=1
nµmµdq

µ ∧ dqµ+r −
∑︂

µ=1...l
i=1...k

hµ∂iGµdq
µ ∧ dyi −

∑︂
µ=l+1,...,n
i=1,...,k

∂ib
µdyi ∧ dq̂µ,
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4.3. T-duality of generalized branes

where hµ = mµ and hµ+r = mµ for µ = 1, ..., r and hµ = 1 for µ = 2r + 1, ..., l. We have

p∗
ZF =

k∑︂
i,j=1

F ij
0 dyi ∧ dyj +

∑︂
µ=1...l
i=1...k

hµG
i
µdyi ∧ dqµ +

r∑︂
µ=1

nµ
mµ

m2
µdq

µ ∧ dqµ+r

with Gi
µ = ∂iGµ. Therefore,

p∗
ZF + i∗ZP =

k∑︂
i,j=1

F ij
0 dyi ∧ dyj −

∑︂
µ=l+1,...,n
i=1,...,k

∂ib
µdyi ∧ dq̂µ −

r∑︂
µ=1

nµmµdq
µ ∧ dqµ+r.

In the coordinates [y, s, q̂] on Ŝ we have

p∗
ZF + i∗ZP = p̂∗

ZF̂Z

for

F̂Z =
k∑︂

i,j=1
F ij

0 dyi ∧ dyj −
∑︂

µ=l+1,...,n
i=1,...,k

∂ib
µdyi ∧ dq̂µ −

r∑︂
µ=1

mµ

nµ
dsµ ∧ dsµ+r. (4.3.40)

The two-form F̂ is unique since p̂Z : Z → ŜZ is a submersion.
The maximal integral submanifolds of ∆ are all diffeomorphic and the different leaves are
given by translates of the Z0. According to Corollary 4.3.13 the difference between leaves that
map to the same Ŝ is a translation by a constant (c1, ..., c2r) ∈ (R/Z)2r. This constant does
not affect p∗

ZF + i∗ZP even though pZ and iZ are different. Moreover, if we fix a section of
ŜZ for a leaf Z such that p̂Z is given by (4.3.27), the projection from any other leaf is given
by a constant translation in the s-coordinates. This again, does not affect the resulting F̂Z .
It remains to show that L = (S, F ) and L̂ = (Ŝ, F̂ ) are T-dual generalized branes. We will
show explicitly that T (τL)red = (τL̂)red but the statement can be seen from the construction.
The T-dual of an invariant subbundle τL in (TM + T ∗M)|S is constructed by pulling back to
an appropriate subbundle ˆ︂τL in the correspondence space, taking the B-field transform ePˆ︂τL
and pushing down. We will see that ∆ is precisely the image of ePˆ︂τL in the tangent bundle of
S ×π(S) M̂ . Moreover, the equation p∗

ZF + i∗ZP = p̂∗
ZF̂ ensures that the pushforward of ePˆ︂τL

restricted to Ŝ is the generalized tangent bundle of L̂.
Let us work in the usual coordinates on S and M from Lemma 4.3.3, that is

iS : S ↪−→ M,

[y1, ..., yk, q
1, ..., ql] ↦→ [ϕ1(y), ..., ϕm(y),q1, .., ql, bl+1, ..., bn] = [x1, .., xm, p

1, ..., pn].

Then, the tangent bundle of S in TM |S is given by

TS = spanC∞(S)

⎧⎨⎩
∂
∂yj

= ∑︁m
i=1

∂ϕi

∂yj

∂
∂xi

+∑︁n
µ=l+1

∂bµ

∂yj

∂
∂pµ for j = 1, ..., k

∂
∂qµ = ∂

∂pµ for µ = 1, ..., l

⎫⎬⎭ (4.3.41)

and the projection T ∗M → T ∗S is given by

dxi ↦→
k∑︂
j=1

∂ϕi
∂yj

dyj (i = 1, ...m); dpµ ↦→ dqµ (µ = 1, ..., l);

dpµ ↦→
k∑︂
j=1

∂bµ

∂yj
dyj (µ = l + 1, ..., n).
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The generalized tangent bundle of L is a subbundle of E = TM + T ∗M over S given by
τL = {X + ξ ∈ TS ⊕ T ∗M |S | ιXF = ξ|S}.

That is, the reduced generalized tangent bundle is spanned by invariant sections, that is

(τL)red =
{︃
X + ξ =

k∑︂
j=1

Xj
∂

∂yj
+

l∑︂
µ=1

Xµ ∂

∂qµ
+

m∑︂
i=1

ξidxi +
n∑︂
µ=1

ξµdp
µ

⃓⃓⃓⃓
⃓⃓⃓⃓
Xj, X

µ, ξi, ξµ ∈ C∞(π(S)) satisfying (4.3.42)
}︃

where, using the expression (4.3.23) for F the equality ιXF = ξ|S reads as
k∑︂
i=1

F ijXi −
l∑︂

µ=1
Gj
µX

µ =
m∑︂
i=1

ξi
∂ϕi
∂yj

+
n∑︂
µ=1

ξµ
∂bµ

∂yj
, (j = 1, ..., k)

Gj
µXj +HνµX

ν = ξµ, (µ = 1, ..., l).
(4.3.42)

These invariant sections indeed extend to a neighbourhood of S ⊂ M . Their T-dual is
calculated by pulling back to the correspondence space, B-field transform by P and then
pushing down to M̂ . A lift of a section in (τL)red is given by

X̂ + p∗ξ =
k∑︂
j=1

Xj
∂

∂yj
+

l∑︂
µ=1

Xµ ∂

∂qµ
+

n∑︂
µ=1

X̂µ
∂

∂p̂µ
+

m∑︂
i=1

ξidxi +
n∑︂
µ=1

ξµdp
µ,

X̂µ, Xj, X
µ, ξi, ξµ ∈ C∞(π(S)),

and we have to choose X̂µ such that ιX̂P + p∗ξ is basic with respect to p̂ : M ×B M̂ → M̂ .
Using the expression (4.3.41) of TS ⊂ TM |S, we have

ιX̂P + p∗ξ = −
l∑︂

µ=1
Xµdp̂µ −

∑︂
j=1,...,k
µ=l+1,...,n

Xj
∂bµ

∂yj
dp̂µ +

∑︂
µ=1,...,n

X̂µdp
µ +

m∑︂
i=1

ξidxi +
n∑︂
µ=1

ξµdp
µ.

This is basic with respect to p̂ if and only if

−X̂µ = ξµ =
k∑︂
j=1

Gj
µXj +

l∑︂
ν=1

HµνX
ν (µ = 1, ..., l) and − X̂µ = ξµ (µ = l + 1, ...., n),

that is, if and only if X̂ ∈ ∆ by (4.3.22). Finally, the image of (τL)red under the T-duality
map is

T (τL)red =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X + ξ = ∑︁k
j=1 Xj

∂
∂yj

+∑︁l
µ=1

(︃
Gj
µXj +HµνX

ν

)︃
∂
∂p̂µ

+∑︁n
µ=l+1 X̂µ

∂
∂p̂µ

+
+∑︁m

i=1 ξ
idxi −∑︁l

µ=1 X
µdp̂µ −∑︁

j=1,...,k
µ=l+1,...,n

Xj
∂bµ

∂yj
dp̂µ,

X̂µ, Xj, X
µ, ξi ∈ C∞(π(S)), satisfying for j = 1, ..., k∑︁k

i=1 F
ijXi −∑︁l

µ=1 G
j
µX

µ = ∑︁m
i=1 ξ

i ∂ϕi

∂yj
−∑︁n

µ=l+1 X̂µ
∂bµ

∂yj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

As in the calculations before we assume that Hµν is rank 2r ≤ l and is in standard form
(4.3.25). Let us calculate (τL̂)red, similarly to (τL)red. The tangent bundle to Ŝ in TM̂ |Ŝ in
the coordinates (4.3.26) is

T Ŝ = spanC∞(Ŝ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂yj

= ∑︁m
i=1

∂ϕi

∂yj

∂
∂xi

−∑︁l
µ=1

∂Gµ

∂yj

∂
∂p̂µ

j = 1, ..., k
∂
∂sµ

= ∂
∂p̂µ

µ = 1, ..., 2r
∂
∂q̂µ

= ∂
∂p̂µ

µ = l + 1, ..., n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (4.3.43)

70
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Writing Gj
µ = ∂yj

Gµ, the map T ∗M |Ŝ → T ∗Ŝ is given by

dxi ↦→
k∑︂
i=1

∂ϕi
∂yj

dyj (i = 1, ...,m); dp̂µ ↦→ dsµ −
k∑︂
j=1

Gj
µdyj (µ = 1, ..., 2r);

dp̂µ ↦→ −
k∑︂
j=1

Gj
µdyj (µ = 2r + 1, ..., l); dp̂µ ↦→ dq̂µ (µ = l + 1, ...n).

(4.3.44)

Then, using the coordinate expression (4.3.40) for F̂ we have

(τL̂)red =
{︃ k∑︂
j=1

Xj
∂

∂yj
+

2r∑︂
µ=1

Xµ
∂

∂sµ
+

n∑︂
µ=l+1

X̂µ
∂

∂q̂µ
+

m∑︂
i=1

ξidxi +
n∑︂
µ=1

ξµdp̂µ

⃓⃓⃓⃓
⃓⃓⃓⃓
Xj, Xµ, X̂µ, ξ

i, ξµ ∈ C∞(π(S)) satisfying 4.3.45
}︃
,

where (4.3.45) is the coordinate expression for ιXF̂ = ξ|Ŝ, that is,

k∑︂
j=1

F ijXi +
n∑︂

µ=l+1

∂bµ

∂yj
X̂µ =

m∑︂
i=1

ξi
∂ϕi
∂yj

−
l∑︂

µ=1
ξµGj

µ, (j = 1, ..., k);

−∂bµ

∂yj
Xj = ξµ (µ = l + 1, ..., n);

−mµ

nµ
Xµ = ξr+µ,

mµ

nµ
Xr+µ = ξµ, (µ = 1, ..., r).

(4.3.45)

Using (4.3.43) to express the vectors tangent to Ŝ as vectors on M̂ we indeed see that

T (τL)red = (τL̂)red.

Notice that the T-duals (Ŝ, F̂ ) of (S, F ) are all diffeomorphic and differ by a constant
translation along the fibers above π(S). To arrive at a more precise picture we will have to
upgrade the current method to include bundles with connections. This will solve the problem
of multiple T-duals and we will see that roughly when an integral F has non-integral T-dual it
means that the T-dual bundle has higher rank.

Since our construction of T-duals is compatible with T-duality of generalized complex structures
the following theorem is clear.

Theorem 4.3.15. On T-dual integrable systems as in Theorem 4.2.4 BAA-branes map to
BBB-branes.

Proof. Indeed, if a generalized brane is compatible with a generalized complex structure its
T-dual will be compatible with the T-dual generalized complex structure.
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4. T-duality in generalized geometry

4.3.5 T-dual of generalized branes over general base

To prove the global version of T-duality we first have to investigate the relationship between
the Chern class and monodromy of an affine torus subbundle S in a non-trivial affine torus
bundle π : M → B. It turns out that the Chern class of the T-dual imposes a non-trivial
topological constraint on the T-dualizability of generalized branes on M (Theorem 4.3.18).
Let us denote by ΓM → B and cM ∈ H2(B,ΓM) the monodromy local system and Chern
class of M and let S ⊂ M be an affine torus subbundle. The monodromy local system of S
can be constructed functorially as the sheaf (R1(πS)∗ZS)∗, where ZS is the constant Z sheaf
on S. We have the commutative diagram

S M |π(S)

π(S)

i

πS π

and the constant sheaf ZS on S can be written as i∗ZM for the constant sheaf ZM on M |π(S).
In particular, there is a map ZM → i∗i

∗ZM and since πS = π ◦ i and i∗ is exact also

Γ∗
M |π(S) = (R1π∗Z)|π(S) → R1(πS)∗ZS = R1π∗ ◦ i∗(i∗ZM) = Γ∗

S.

The dual map
ΓS → ΓM |π(S)

can be understood as the fiberwise inclusion H1(Sb,Z) → H1(Mb,Z) for any b ∈ π(S).

Let us assume that B = π(S) for ease of notation, as we may restrict M to π(S) otherwise.
The monodromy and Chern class of M = M |π(S) can be explicitly constructed from the
transition functions. Let {Uα} be a good cover of π(S) = B and (yα, pα) local coordinates
where pα are 1-periodic. The coordinates pα can be taken such that S is given by

S|Uµ = {(yα, p1
α, ..., p

n
α) : pµα = bµα ∈ R/Z µ = l, ..., n}.

Let us write pα = (p1
α, p

2
α) such that

p1
α = (p1

α, ..., p
l
α) and p2

α = (pl+1
α , ..., pnα).

Over Uαβ = Uα ∩ Uβ the transition in the periodic coordinates is given by

pβ = Aαβpα + cαβ.

When M has torsion Chern class we may assume that the cαβ are constant. Then, since S
has to be preserved A must be upper block-diagonal in the local decompositions pα = (p1

α, p
2
α)

and pβ = (p1
β, p

2
β). We write

Aαβ =
(︄
Bαβ Cαβ

0 Dαβ

)︄
and cαβ =

(︄
c1
αβ

c2
αβ

)︄
. (4.3.46)

The cocycle conditions of {Aαβ} in the above decomposition read as

BγαBβγBαβ = Id, DγβDβγDαβ = Id,

BγαBβγCαβ +BγαCβγDαβ + CγαDβγDαβ = 0.
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4.3. T-duality of generalized branes

If (yα, qα) are coordinates on S|Uα with qα 1-periodic the inclusion S → M is of the usual
form

[yα, qα] ↦→ [yα, qα, bα].

Then, the transition functions for S are given by

qβ = Bαβqα + Cαβbα + c1
αβ

with the condition that
bβ = Dαβbα + c2

αβ.

In particular, the monodromy of S is given by {Bαβ} and the Chern class by {Cαβbα + c1
αβ}.

More precisely, the Chern class cS ∈ H2(π(S),ΓS) of S is

δ{Cαβbα + c1
αβ} = BγαBβγCαβbα +BγαBβγc

1
αβ +BγαCβγbβ +Bγαc

1
βγ + Cγαbγ + c1

γα

= (BγαBβγCαβ +BγαCβγDαβ + CγαDβγDαβ)bα+
+BγαCβγc

2
αβ + CγαDβγc

2
αβ + Cγαc

2
βγ +BγαBβγc

1
αβ +Bγαc

1
βγ + c1

γα

= BγαCβγc
2
αβ + CγαDβγc

2
αβ + Cγαc

2
βγ +BγαBβγc

1
αβ +Bγαc

1
βγ + c1

γα

= n1
αβγ

if we write the Chern class {nαβγ} ∈ H2(π(S),ΓM) of M as {(n1
αβγ, n

2
αβγ)} in the frame of

ΓM induced by the coordinates (p1
α, p

2
α). In particular, if cM is torsion, so is cS and there exists

constant representatives {mαβ} of {Cαβbα + c1
αβ}. That is, there exists ξα ∈ Γ(Uα, VS/ΓS)

such that
Bαβξα − ξβ = Cαβbα + c1

αβ −mαβ.

Then, changing coordinates to
q̃α = qα + ξα

changes the transition functions along S as(︄
Bαβ 0

0 Dαβ

)︄(︄
q̃α
bα

)︄
+
(︄
mαβ

c2
αβ

)︄
=
(︄
q̃β
bβ

)︄
.

In general, if p̃1
α = p1

α + ξα we have

p̃1
β = p1

β + ξβ = Bαβp
1
α + Cαβp

2
α + c1

αβ + ξβ = Bαβ p̃
1
α + Cαβp

2
α − Cαβbα +mαβ

and if we also set p̃2
α = p2

α − bα using that bβ = Dαβbα + c2
αβ the new transition functions are

(︄
Bαβ Cαβ

0 Dαβ

)︄(︄
p̃α
p̃β

)︄
+
(︄
mαβ

0

)︄
=
(︄
p̃1
β

p̃2
β

)︄
.

The following lemma is clear from this description.

Lemma 4.3.16. Let S ⊂ M be an affine torus subbundle. Then, the Chern class cM of
M |π(S) is the image of the Chern class cS of S under the map

H2(π(S),ΓS) → H2(π(S),ΓM |π(S))

induced by the inclusion ΓS → ΓM |π(S).
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4. T-duality in generalized geometry

Let us assume that M has torsion Chern class and let L = (S, F ) be a locally T-dualizable
generalized brane and let M̂ be a T-dual in the sense of Example 4.1.2. Let {Uα} be a good
cover of π(S). The brane L locally fits into the framework of Theorem 4.3.14, so there exist
T-duals (Ŝα, F̂α) of (Sα, Fα) = (π−1

S (Uα), F |π−1
S (Uα)) as generalized branes in M̂α = M̂ |Uα .

On the other hand, the local T-duals may not glue together, since, as we saw before, the
existence of a global submanifold Ŝ ⊂ M̂ |π(S) restricts the Chern class and monodromy of
M̂ |π(S). The following theorem is the first step toward explaining the exact conditions we
must impose on (S, F ) to obtain a global T-dual in the sense of generalized geometry.

Lemma 4.3.17. Let (S, F ) be as above and let {Uα} be a good cover of π(S) = B. Suppose
that there exists a set (Ŝα, F̂α) of local T-duals in M̂α such that the Ŝα glue to a cover of an
affine torus subbundle Ŝ of M̂ . Then, the local two-forms F̂α also glue together and (Ŝ, F̂ )
is a global generalized T-dual of S.

Proof. Let E = TM + T ∗M and τL ⊂ E|S be the generalized tangent bundle of the
generalized brane L = (S, F ). Then, (τL)red is a well defined distribution in Ered|π(S). The
generalized tangent bundles τL̂α

of the local T-duals L̂α = (Ŝα, F̂α) satisfy over π(S)

T (τL)red = (τL̂α
)red.

That is, if π̂ : M̂ |π(S) → π(S) is the projection, then

τL̂α
=
(︃
π̂∗T (τL)red

)︃⃓⃓⃓⃓
Ŝα

.

The τL̂α
fit into the short exact sequence

0 N∗Ŝα τL̂α
T Ŝα 0,ρ̂

where ρ̂ : TM̂ + T ∗M̂ → TM̂ is the anchor map. In particular, the T-duals Ŝα are integral
submanifolds of the distribution ρ̂(τL̂α

).

The existence of a global Ŝ ⊂ M̂ means that T Ŝα = T Ŝ and over Ŝ the τL̂α
are given by the

maximal isotropic subbundle (π̂∗T (τL)red)|Ŝ of Ê = TM̂⊕T ∗M̂ . By [Gua03, Proposition 2.6]
every involutive maximal isotropic L ⊂ Ê can be expressed as a generalized tangent bundle
over the integral submanifolds of ρ̂(L). Indeed, τL is involutive, therefore so is its T-dual, and
there exists F̂ ∈ Ω2(Ŝ) such that (π̂∗T (τL)red)|Ŝ = {X + ξ ∈ T Ŝ + T ∗M̂ |Ŝ | ιXF̂ = ξ|Ŝ}.
The τL̂α

are given by

τL̂α
= {X + ξ ∈ T Ŝ|Ŝα

⊕ T ∗M̂ |Ŝα
: ιXF̂α = ξ|Ŝα

}.

That is in an all X ∈ T Ŝ locally over a cover of Ŝ we have

ιXF̂ = ιXF̂α

and therefore
F̂ = F̂α.
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4.3. T-duality of generalized branes

This Lemma can also be proven explicitly by using local coordinates as in Theorem 4.3.14 and
the transition functions (4.3.46).
Let again (M, 0) and (M̂, 0) be a T-dual pair in the sense of Example 4.1.2 and L = (S, F ) a
locally T-dualizable generalized brane in M . Let {Uα} be a good cover of π(S). The local
T-duals Ŝα are affine torus subbundles of M̂ |Uα and their local systems are determined by the
short exact sequence (4.3.37)

0 Ann(ΓS) ΓŜα
Γ∨
S ∩Hα(VSα) 0.

Here, Hα are locally the images of [F |Sα ] under the projection H2(S|Uα ,R) → H2(Uα,∧2V ∗
Sα

).
Since we assume that M has torsion Chern class, so does πS : S → π(S). In particular, the
Leray spectral sequence Ep,q

r (πS,R) degenerates on the second page and there is a global map

H2(S,R) → H2(π(S),∧2V ∗
S ), [F ] ↦→ H. (4.3.47)

That is, H : VS → V ∗
S is well defined over π(S) and consequently ΓŜ ⊂ ΓM̂ |π(S) is also

globally defined by the short exact sequence

0 Ann(ΓS) ΓŜ Γ∨
S ∩H(VS) 0.

In conclusion, the existence of a global T-dual to (S, F ) is only obstructed by the Chern class
cM̂ ∈ H2(π(S),ΓM̂) of M̂ in accordance with Lemma 4.3.16.
The global T-dual exists if and only if cM̂ over π(S) is in the image

H2(π(S),ΓŜ) → H2(π(S),ΓM̂). (4.3.48)

Since the projection ΓŜ → Γ∨
S ∩ H(VS) is the restriction of the projection q : ΓM̂ → Γ∨

S to
the preimage of H(VS) we may rephrase (4.3.48) in terms of Γ∨

S . Denote by q also the map
induced on cohomology. The following theorem is now clear.

Theorem 4.3.18. Let (M, 0) and (M̂, 0) be a T-dual pair and (S, F ) a locally T-dualizable
brane of M . Then, (S, F ) has a T-dual if and only if

q(cM̂) ∈ H2(π(S),Γ∨
S ∩H(VS)).

Example 4.3.19. Let B be a manifold such that H2(B,Z) has a torsion element β. Then,
the principal circle bundle M = B × S1 is T-dual to the circle bundle M̂ = (Γ̂ = Z, ĉ = β).
The brane L = (M, 0) on M is locally T-dualizable but its T-dual should be an integral
submanifold of the horizontal distribution of M̂ which is also a section. This does not exist
because ĉ ̸= 0 and indeed the condition of Theorem 4.3.18 is not satisfied. On the other hand,
there exists a multisection of M̂ .

Example 4.3.20. Let B = C with complex coordinate z = x+ iy and Γ = spanZ{dx, dy} ⊂
T ∗B the trivial lattice. Let {z, w} be dual complex coordinates on M = T ∗B/Γ. The group
Z2 acts on M via −1 : (z, w) ↦→ (−z,−w) with fixed points over 0 ∈ C. The quotient is a
torus fibration over C ∼= C/Z2 with a singular fiber over 0 ∈ C. This space can also be seen
as the moduli space of parabolic rank one Higgs bundles over CP1 with four marked points
[Hau98, Section 4.].
Let us denote by M ′ the fibers over C − {0}. This is an affine torus bundle with monodromy
in SL(2,Z) and no Chern class. Therefore the fibers of M ′ are principally polarized and the
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4. T-duality in generalized geometry

Kähler structure on the base induces a semi-flat hyperkähler structure on M ′. This is self
T-dual in the sense of Theorem 4.2.6. Let L = (M, 0) be a BBB-brane. Then its T-dual
(BAA)-branes are sections of M which are integral submanifolds of the horizontal distribution.
These correspond to the invariant sections of T ∗(C − {0})/Γ under the action of Z2. There
are four of these corresponding to the 2-torsion points of the square torus.

Example 4.3.21. Let M be an algebraic integrable system of real dimension 4n endowed
with a flat connection and the corresponding semi-flat hyperkähler structure. Let M̂ be a
T-dual as in Example 4.1.2 endowed with a flat connection and with the T-dual semi-flat
hyperkähler structure as in Theorem 4.2.4.
Let L = (M,ωI) be the space filling coisotropic BAA-brane on M (Example 3.2.7). That is,

ωI =
(︄
ω 0
0 ω−1

)︄

Then L is locally T-dualizable since ωI restricts to the fibers as minus the polarization which
is an integral cohomology class. Moreover, there exists a global T-dual since H(VM) = V ∗

M .
Let L̂ = (M̂, F̂ ) be the space filling BBB-brane of Example 3.2.5. That is in the coordinates
of Theorem 4.2.4 we have

F̂ =
(︄
ω 0
0 ω

)︄
.

It is once again a T-dualizable brane but now F̂ represents a rational cohomology class on the
fibers.

Lemma 4.3.22. The T-dual of the space filling BAA brane L is the space filling BBB-brane
L̂

Proof. Indeed, in flat Darboux coordinates {xi, yi}ni=1 and dual fiber coordinates {pi, qi}ni=1
we can write ω as (2.3.12) and we have

ωI =
n∑︂
i=1

1
di
dyi ∧ dxi +

n∑︂
i=1

didpi ∧ dqi.

Let {p̂i, q̂i}ni=1 be dual fiberwise coordinates on M̂ → B. Then, following the proof of Theorem
4.3.14 the T-dual brane is space filling Ŝ = M̂ and the two-form is given by

F̂ =
n∑︂
i=1

1
di
dyi ∧ dxi −

n∑︂
i=1

1
di
dp̂i ∧ dq̂i

which is precisely L̂.

In the setting of topological T-duality, there is a gerbe G on M corresponding to a degree three
integral cohomology class h ∈ H3(M,Z), which lies in the second filtered piece F 2H3(M,Z)
of the Leray filtration. Via the isomorphisms

E2,1
∞ (π,Z) ∼=

Ker(d2 : E2,1
2 → E4,0

2 )
Im(d2 : E0,2

2 → E2,1
2 )

∼=
F 2H3(M,Z)
F 3H3(M,Z)

h defines a class [h] ∈ E2,1
∞ . If (M̂, Ĝ) is a topological T-dual to (M,G) then the Chern

class cM̂ is an element in H2(B,Γ∨
M ) ∼= E2,1

2 (π,Z). A consequence of topological T-duality is
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[Bar15, Proposition 3.5] that cM̂ is actually in the kernel of d2 so it also defines a class [cM̂ ]
in E2,1

∞ and we have
[h] = [cM̂ ] ∈ E2,1

∞ (π,Z).

Then, Theorem 4.3.48 can be viewed as a statement about the restriction of the gerbe G to
S. The restriction G|S of the gerbe has characteristic class h|S, the image of h pulled back
along the inclusion S → M

H3(M,Z) → H3(S,Z).

Since the Leray spectral sequence is functorial, the class h|S lies in F 2H3(S,Z) and determines
a class in E2,1

∞ (πS,Z). The Chern class cM̂ of M̂ restricted to π(S) lies in H2(π(S),Γ∨
M ). By

[Bar14, Proposition 3.3] the d2 differential of the Leray spectral sequence is given by cupping
with the Chern class. Moreover, by Lemma 4.3.16 the Chern class of M |π(S) is the image of
the Chern class of S. That is, if cM̂ is d2-closed in H2(π(S),Γ∨

M), then q(cM̂) is d2-closed in
H2(π(S),Γ∨

S) = E2,1
2 (πS,Z) and we have

[h|S] = [q(cM̂)] ∈ E2,1
∞ (πS,Z). (4.3.49)

Remark 4.3.23. Let S ⊂ M be an affine torus subbundle such that G|S is trivial. Then, for
any F ∈ Ω2(S) invariant there exist T-duals (Ŝ, F̂ ). On the other hand, Ĝ|Ŝ may not be
trivial as it is governed by the Chern class of M .

In the examples before we have seen that T-duality in generalized geometry is not one-to-one,
we have to upgrade generalized branes to physical branes to get such a correspondence. The
following theorem is a step towards understanding T-duality of unitary bundles and we will
refer back to it in Section 7.3.

Theorem 4.3.24. Let (S, F ) be a generalized brane such that it has a global T-dual (Ŝ, F̂ ).
Then, the local leaves of the distribution ∆ glue together to affine torus subbundles of S×π(S) Ŝ
if and only if the following two conditions hold

1. c ∈ H2(π(S),ΓH),

2. −H(c) = q(ĉ) ∈ H2(π(S), q(ΓŜ)).

Where by H we mean the map induced on cohomology by H : ΓH → q(ΓŜ).

Proof. The local leaves of ∆ glue together if and only if the Chern class of S ×π(S) Ŝ which
equals to p∗

0c+ p̂∗
0ĉ ∈ H2(π(S),ΓS + ΓŜ) lies in the image of H2(π(S),ΓZ). Recall, that the

maps p0 : ΓZ → ΓS and p̂0 → ΓŜ are given via the following diagram.

0 Ann(ΓS) ΓZ ΓH 0

0 Ann(ΓS) ΓŜ H(VS) ∩ Γ∨
M 0

∼= p̂0

p0

−H

q

In particular, if p∗
0c + p̂∗

0ĉ = cZ ∈ H2(π(S),ΓZ) then p0(cZ) = c so c ∈ H2(π(S),ΓH) and
q(ĉ) = q(p̂0(cZ)) = −H(p0(cZ)) = −H(c). Where by every map we mean the induced map
on cohomology.
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Example 4.3.25. In the setting of Example 4.3.21 let H ∈ H0(B,∧2Γ∨) be the fiberwise
component of ωI. Then, Γ∨ and the Chern class ĉ = −H(c) ∈ H2(B,Γ∨) define a T-dual of
M and the space filling BAA-brane L = (M,ωI) satisfies the conditions of Theorem 4.3.24.
Moreover, if the fibers of M are principally polarized, M ∼= M̂ via H and the two-form of the
T-dual L̂ = (M, F̂ ) from example 4.3.21 restricts to the same cohomology class on the fiber
as ωI.
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CHAPTER 5
Complex tori, Fourier-Mukai transform

and factors of automorphy

In the last chapter, we have seen T-duality of generalized branes. The rest of this thesis is
dedicated to T-duality of physical branes of supersymmetric sigma models. These can be
viewed as submanifolds endowed with either Hermitian vector bundles and connections or
principal U(d)-bundles with connections. Unfortunately, our method from Chapter 4 only
applies to branes which are related to generalized branes. Following the argument of [Kap03]
generalized branes with integral two-forms correspond to rank-1 branes. Therefore, we start
with U(1)-bundles supported on affine torus subbundles.
When a physical brane is compatible with the "B-type" topological twist, the Hermitian
connection must be compatible with a complex structure on the manifold and induce a
holomorphic structure. That is, physical B-branes are holomorphic vector bundles supported
on submanifolds. It can be argued that on a complex manifold "stacking branes" and other
physical processes induce the entire derived category of coherent sheaves as the category
of B-branes. Moreover, it is postulated in [KW06] that in the setting of T-duality when a
complex structure is mapped to a complex structure (4.2.9) T-duality of B-branes should be
given by Fourier-Mukai transform.
In this chapter, we focus on the mathematical formalism of those B-branes on a complex
torus which are given by holomorphic line bundles supported on affine subtori. The results of
this chapter will motivate our treatment of general branes on affine torus bundles.
In the first section, we give an introduction to line bundles on complex tori based on [BL04,
Chapter 2]. We introduce the factors of automorphy description of holomorphic line bundles
which will be our main tool in the following chapters. We present the Appel-Humbert theorem
which states that every holomorphic line bundle has a canonical factor of automorphy. Finally,
we define the Poincaré line bundle.
In the next section, we define the Fourier-Mukai transform and give a full description of
the Fourier-Mukai transform of line bundles supported on affine subtori. This section aims
to derive an alternative description of the transform for these special sheaves as the direct
summand of another sheaf. This result for non-degenerate line bundles is [BL04, Corollary
14.3.6] and the generalizations follow from basic properties of the Fourier-Mukai transform.
The last section is dedicated to developing the machinery of factors of automorphy to reprove
the result (5.2.17) of the previous section. We define the factor of automorphy of a holomorphic
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vector bundle which is the pushforward of a line bundle along an isogeny. Such factors of
automorphy have been studied before by Matsushima [Mat76] who identified the class of vector
bundles which can be obtained by such pushforwards. We prove some lemmas with factors
of automorphy and finally reprove (5.2.24) without using properties of the Fourier-Mukai
transform.

5.1 Line bundles on complex tori

In this section, we introduce factors of automorphy, a method of describing holomorphic line
bundles on a complex torus. We define the canonical factor associated to a line bundle. We
also mention how one can describe any holomorphic vector bundle using factors of automorphy
on a torus. This description can be generalized to U(d)-bundles bundles with connections as
well, which will be the topic of the next chapter. We finally introduce the Poincaré line bundle.
Let X = V/Γ be a complex torus and L → X a holomorphic line bundle. Let OX be the
sheaf of holomorphic functions on X and O∗

X be the sheaf of non-vanishing holomorphic
functions. We have the short exact sequence

0 Z OX O∗
X 0exp(2πi· ) (5.1.1)

and L is represented by a class in H1(X,O∗
X). Since the line bundle L is trivial when pulled

back to the universal cover V we may construct L as the quotient of V × C by an action of
the fundamental group π1(X) = Γ. This action is governed by a factor of automorphy.

Definition 5.1.1. A holomorphic factor of automorphy on a complex torus X = V/Γ is a
map

a : V × Γ → C

holomorphic in V which satisfies

a(v, λ+ µ) = a(v + λ, µ) · a(v, λ).

Two factors of automorphy a and a′ are equivalent if there exists a holomorphic function
h : V → C such that

a′(v, γ) = h(v + γ)a(v, γ)h(v)−1.

A factor of automorphy defines an action of Γ on V × C by

γ.(v, t) = (v + γ, a(v, γ)t) (v, t) ∈ V × C, γ ∈ Γ,

and therefore a line bundle
L = V ×Γ C := (V × C)/Γ.

By [BL04, Proposition B1.] every holomorphic line bundle can be constructed this way.
The presentation of a line bundle using a factor of automorphy is not unique but the Appel-
Humbert theorem asserts that there is a canonical choice. Via the boundary morphism in the
long exact sequence corresponding to (5.1.1)

... H1(X,O) H1(X,O∗
X) H2(X,Z) ...

c1
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5.1. Line bundles on complex tori

the class of L ∈ H1(X,O∗
X) maps to the first Chern class c1(L) ∈ H2(X,Z) of L. There

is an isomorphism from H2(X,Z) to the space of alternating bilinear forms Alt2(Γ,Z) on Γ
taking integer values. Indeed, there is a unique invariant representative ω of the class c1(L) in
Ω2(X). We may identify V with the tangent space at any x ∈ X and define E ∈ Alt2(V,R)
as ωx. Since ω is invariant, E does not depend on x ∈ X. Moreover, since ω represents an
integral cohomology class E takes integer values on Γ. Furthermore, if ω is the Chern class of
a holomorphic line bundle it must be of Hodge type (1, 1). In particular,

E(Iv, Iw) = E(v, w) v, w ∈ V, (5.1.2)

and E defines a Hermitian pairing

H(v, w) = E(Iv, w) + iE(v, w). (5.1.3)

Hermitian forms on V whose imaginary part takes integer values on Γ form a group under
addition called the Neron-Severi group NS(X) of X. The group of holomorphic line bundles
on X is called the Picard group and denoted by Pic(X). Via the construction above, we have
a surjection Pic(X) → NS(X).
The Hermitian form corresponding to a line bundle L describes completely its topological type
but not its holomorphic structure. That is Pic(X) → NS(X) is not injective. The following
lemma describes the kernel, which we denote by Pic0(X).

Lemma 5.1.2. ([BL04, Proposition 2.2.2]) Let L → X be a flat line bundle, that is c1(L) = 0.
Then there exists a factor of automorphy aL for L which is constant on V × e and takes value
in U(1) ⊂ C×.

Any such factor of automorphy is given by a homomorphism

χ : Γ → U(1)

and two such factors represent the same line bundle if and only if they are conjugate to
each other by an element of U(1). In particular, if we denote by Hom(Γ, U(1)) the space of
characters of Γ we have an isomorphism

Hom(Γ, U(1)) ∼= Pic0(X),

between the space of characters and the space of flat holomorphic line bundles. Even more,
the space of characters is precisely the dual torus (2.1.6) under the identification

X̂ → Hom(Γ, U(1))

f ↦→
(︃
γ ↦→ exp(2πiIm(f(γ)))

)︃
,

(5.1.4)

where we lift f to an element in V ∗.
The difference between holomorphic line bundles which have the same Chern class is not a
character when the Chern class is not zero, but a semi-character.

Definition 5.1.3. Let H ∈ NS(X) be a Hermitian pairing on X. A semicharacter for H is a
map

χ : Γ → U(1)
which satisfies for all λ, µ ∈ Γ

χ(λ+ µ) = χ(λ)χ(µ)exp(iπ · Im(H(λ, µ)))
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5. Complex tori, Fourier-Mukai transform and factors of automorphy

Let us define the group

P(Γ) := {(H,χ) | H ∈ NS(X), χ a semicharacter for H.},
with group operation: (H1, χ1) · (H2, χ2) = (H1 +H2, χ1 · χ2).

(5.1.5)

Now we are ready to state the following theorem.

Theorem 5.1.4. (Appel-Humbert Theorem [BL04, 2.2.3]) There is an isomorphism of groups

P(Γ) → Pic(X)

(H,χ) ↦→ a(H,χ)(v, λ) = χ(λ)exp
(︃
πH(v, λ) + π

2H(λ, λ)
)︃
.

(5.1.6)

which fits into the isomorphism of short exact sequences

0 Hom(Γ, U(1)) P(Γ) NS(X) 0

0 Pic0(X) Pic(X) NS(X) 0.

∼= =

We call (5.1.6) the canonical factor of automorphy of the line bundle L.

To a line bundle L on X we can associate a homomorphism

ϕL : X → X̂

x ↦→ t∗xL⊗ L−1 (5.1.7)

whose analytic representation is H : V → V ∗. This is clear by the canonical factor (5.1.6)
representation of L. We denote the kernel of ϕL by K(L) and the connected component
of the identity in K(L) by K(L)0. We say that the line bundle L is non-degenerate if and
only if K(L) is finite and ϕL is an isogeny. Clearly, L is non-degenerate if and only if H is a
non-degenerate Hermitian pairing on V .

Vector bundles via factors of automorphy. Higher rank vector bundles on a complex
torus can also be described using factors of automorphy [Ien11]. Let X = V/Γ be a complex
torus.

Definition 5.1.5. An r-dimensional holomorphic factor of automorphy is a map

a : V × Γ → GL(n,C)

holomorphic in V and satisfying a(v, λ+ µ) = a(v+ λ, µ) · a(v, λ) for all v ∈ V and λ, µ ∈ Γ.
Two such factors of automorphy a and a′ are equivalent if there exists a holomorphic function
h : V → GL(n,C) such that

a′(v, λ) = h(v + λ) · a(v, λ) · h(v)−1.

An r-dimensional holomorphic factor of automorphy defines a rank r vector bundle on X as

E := V ×Γ Cr = V × Cr/Γ

where γ ∈ Γ acts on (v, t) ∈ V × Cr by γ(v, t) = (v + γ, a(v, γ)t). We have the following
theorem.
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5.2. Fourier-Mukai transform of line bundles supported on affine subtori

Theorem 5.1.6. [Ien11, Theorem 3.2] Let p : V → X be the projection. Then every rank
r holomorphic vector bundle E on X such that p∗E is trivial, can be represented by an
r-dimensional holomorphic factor of automorphy.

Since the complex vector space V is a Stein manifold, the classification of holomorphic and
complex topological vector bundles coincide. In particular, every holomorphic vector bundle
is trivial on V so every vector bundle on a complex torus can be represented by a factor of
automorphy.

Poincaré line bundle. We have seen that the dual torus X̂ parametrizes the flat line bundles
on X. The Poincaré bundle is the universal object over X × X̂, that is a holomorphic line
bundle P → X × X̂ such that
(1) P|X×{L} ∼= L,
(2) P|{0}×X̂ is trivial.
The second condition is called the normalization.
The Poincaré line bundle can be defined by a canonical factor of automorphy on X × X̂ due
to Theorem 5.1.4. Recall that the dual torus is defined as X̂ = Ω/Γ∨

C, where Ω is the space
of C valued C-antilinear functions on V . Let us first define the Hermitian pairing

H0 : (V × Ω) × (V × Ω) → C
H0(v + v̂, w + ŵ) = v̂(w) + ŵ(v).

(5.1.8)

We have ImH0(Γ + Γ∨
C,Γ + Γ∨

C) ⊂ Z by definition of Γ∨
C (2.1.4). It remains to assign a

semicharacter to H0. Let

χ0 : Γ + Γ∨
C → U(1),

λ+ λ̂ ↦→ exp(iπ · Imλ̂(λ)).
(5.1.9)

Then, the Poincaré line bundle is defined by the factor of automorphy a(H0,χ0), that is

aP(v + v̂, λ+ λ̂) = exp
(︃
πv̂(λ) + πλ̂(v) + πλ̂(λ)

)︃
. (5.1.10)

For the proof of the properties and uniqueness see [BL04, Theorem 2.5.1].

5.2 Fourier-Mukai transform of line bundles supported
on affine subtori

Let X be a g-dimensional complex abelian variety, that is a complex torus X = V/Γ which
admits a polarization. Let X̂ be the dual torus and P the Poincaré line bundle on X × X̂.
Denote the projections from X × X̂ to X and X̂ by p and p̂ respectively.

X × X̂

X X̂

p p̂
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Let us denote by Db(X) and Db(X̂) the bounded derived categories of coherent sheaves on
X and X̂ respectively. The functor FMX = Rp̂∗(p∗( ) ⊗ P) induces a derived equivalence
between Db(X) and Db(X̂) [Muk81]. We say that a sheaf F is W.I.T. of index k if
FMX(F) = Rp̂∗(p∗F ⊗ P) is a complex concentrated in degree k. For a W.I.T. sheaf F of
index k we define the Fourier-Mukai transform of F as

F̂ := Rkp̂∗(p∗F ⊗ P). (5.2.11)

In this section, we will show that any sheaf which is a line bundle supported on an affine
subtorus S ⊂ X is W.I.T . Moreover, we derive an expression which describes the Fourier-
Mukai transform of such sheaves via non-derived pushforwards along morphisms of abelian
varieties. These results are easy applications of well-known properties of the Fourier-Mukai
transform (see [Muk81][Sch19][BL04]).

5.2.1 Non-degenerate line bundles

Let L be a non-degenerate line bundle on X, that is the Chern class of L can be regarded as a
non-degenerate Hermitian pairing H on V . Denote by Im(H) = E its imaginary part, which
is a non-degenerate alternating bilinear pairing on V taking integer values on Γ. Therefore,
we may choose symplectic basis {µ1, ..., µg, λ1, .., λg} of Γ with respect to E, That is, is

E(µi, λj) = diδij, E(µi, µj) = E(δi, δj) = 0, i, j = 1, ..., g. (5.2.12)

where di ∈ Z>0. We say that L is of type (d1, ..., dg) and that d = d1 · ... · dg is the degree
of L. The number d is independent of the choice of symplectic basis since it is the square
root of the determinant, called the Pfaffian, of E denoted by Pf(E). If H has r positive and
s negative eigenvalues with r + s = g we say that the index of L is s. The name ‘index’ is
related to the fact that the line bundle L is a W.I.T. sheaf of index s. The Fourier-Mukai
transform L̂ is a vector bundle of rank d [BL04, Theorem 3.5.5 and Lemma 14.2.1].
There exists an isogeny f : X → Y and a non-degenerate line bundle N of type (1, ..., 1) on
Y such that f ∗N = L. Indeed, consider a decomposition Γ = Γ1 + Γ2 of Γ into maximal
isotropic sub-lattices with respect to E. For example in a symplectic basis (5.2.12) we can set
Γ1 = {µ1, ..., µg} and Γ2 = {λ1, ..., λg}. Then define

ΓY := Γ1 ⊕ E−1(Γ∨
1 ) ⊃ ΓX , (5.2.13)

and let us define = Y := V/ΓY . We have an isogeny f : X → Y induced by identity on V
and Y is also an abelian variety.
The line bundle L is described by (H,χ) where χ is a semicharacter for H. To define N
on Y such that f ∗N = L we have to describe (HN , χN). By definition of ΓY , we may take
H = HN and we only have to describe χN . For any λ ∈ ΓX the semicharacter χ of L can be
written as follows

χ(λ) = exp(iπE(λ1, λ2) + 2πiv̂(λ)) (5.2.14)

where λ = λ1 + λ2 is the decomposition of λ with respect to Γ = Γ1 + Γ2 and v̂ ∈ V ∗.
This description of χ readily extends to a semicharacter of HN = H on Y which clearly pulls
back to that of L under f . In particular, N is defined by the same data as L in the specific
decomposition Γ = Γ1 + Γ2.
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5.2. Fourier-Mukai transform of line bundles supported on affine subtori

Note that the choice of Y and N is far from unique. Any decomposition of Γ with respect to
H will induce a torus Y and a line bundle N and we may also twist N by any character of ΓY
which restricts to the trivial character on Γ.

Given a choice of (Y,N) we have the commutative diagram

X X̂

Y Ŷ

ϕL

f

ϕN

f̂ (5.2.15)

where f̂ : Ŷ → X̂ is the dual homomorphism of f defined as the pullback of flat line bundles
from Y to X via f . It is again an isogeny of the same degree as f [BL04, Proposition 2.4.3].

It is shown in [BL04, Corollary 14.3.9] that L̂ can be calculated as the pushforward of N−1

under isogenies. In particular,
L̂ = f̂ ∗(ϕN)∗N

−1 (5.2.16)

This corollary shows that f̂ ∗(ϕN)∗N
−1 is independent of the choice of Y and N , it depends

only on L.

In addition, in [BL04, Corollary 14.3.6] it is shown that

(ϕL)∗L
−1 ∼= L̂⊗Hs(X,L) ∼= ˆ︁L⊗ O⊕d

X̂
. (5.2.17)

In the next sections, we will generalize (5.2.16) and (5.2.17) to non-degenerate line bundles
and also to line bundles supported on affine subtori. The upshot of these calculations is that
line bundles on subtori are special sheaves, in the sense that their Fourier-Mukai transform
can be calculated without really relying on derived geometry. There is a bigger class of vector
bundles that have this property, called semihomogeneous vector bundles. These are vector
bundles whose projectivization is homogeneous, that is translation invariant. Every line bundle
is semihomogeneous. Mukai studied these objects in [Muk78] and many of his observations
can be paralleled with our construction of T-dual generalized branes.

5.2.2 Degenerate line bundles

Let L be a line bundle on X with Chern class H, a Hermitian inner product with r positive
and s negative eigenvalues where now s+ r < g. The homomorphism

ϕL : X → X̂

is not surjective anymore as its analytification is given by H : V → V ∗. Hence, its image
Im(ϕL) =: ˆ︁S and the connected component of its kernel K(L)0 are abelian subvarieties of X̂
and X respectively. The Stein factorisation of ϕL is a decomposition of ϕL into a projection
and an isogeny to its image. We have

X Ŝ

X/K(L)0

ϕL

qL fL
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where qL is a projection and fL is an isogeny. There exists a symplectic basis

{µ1, ..., µr, λ1, ..., λr, ϵ2r+1, ..., ϵ2g}

for E = Im(H) on Γ such that

E(µi, λj) = diδij, E(µi, µj) = E(λi, λj) = E(µi, ϵk) = E(λi, ϵk) = 0,
i, j = 1, ..., r, k = 2r + 1, ..., 2g

with di ∈ Z>0. The number d = d1 · ... · d2r is again called the degree of L and it is also the
degree of the isogeny fL. It is again independent of the choice of symplectic basis and it is
called the reduced Pfaffian of E denoted by Pfr(E).
We have the dual short exact sequences

0 K(L)0 X X/K(L)0 0i qL

and
0 ˆ︂X/K(L)0 X̂ ˆ︂K(L)0 0,q̂L î

and ˆ︁S = im(ϕL) = ker(î) (see [BL04] Lemma 2.4.5.). Let us denote by S the torus X/K(L)0.
Then, ˆ︁S is the complex torus dual to S.
We have the following two lemmas.

Lemma 5.2.1. Let L → X be a line bundle and i : K(L)0 → X the inclusion. Then, i∗L is
flat.

Proof. Let x̄ ∈ K(L)0 be a point which we may also consider as a point x in X via the
inclusion i. We have a commuting diagram

X X

K(L)0 K(L)0

tx

i

tx̄

i

and therefore
t∗x̄i

∗L⊗ (i∗L)−1 = i∗(t∗xL⊗ L−1) = i∗OX = OK(L)0

since x ∈ K(L)0 which is in the kernel of ϕL. That is, i∗L is invariant under all the translations
in K(L)0 and therefore flat.

Lemma 5.2.2. Let L be a line bundle on X, and L0 a flat bundle. Then,

ϕL⊗L0 = ϕL,

in particular,
K(L⊗ L0)0 = K(L)0

Proof. t∗x(L⊗L0)⊗(L−1⊗L−1
0 ) = t∗xL⊗t∗xL0⊗L−1⊗L0 = t∗xL⊗L0⊗L−1⊗L−1

0 = t∗xL⊗L−1,
where we use that flat line bundles are translation invariant.
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A degenerate line bundle is flat when restricted to K(L)0. Moreover, if it is trivial on K(L)0,
then it is trivial on all the fibers of qL : X → X/K(L)0. Indeed, with the notation of Lemma
5.2.1 for any b ∈ X

L|tbK(L)0 = i∗t∗bL = t∗qL(b)i
∗L = i∗L.

We prove our result in two steps. First, we assume that L|K(L)0 is trivial, then in the second
step, we relax this assumption.

Step I. Suppose, that L|K(L)0 is trivial. Then, there exists a non-degenerate line bundle L0
of index s on X/K(L)0 such that L ∼= (qL)∗L0. The isogeny fL is then given by the isogeny
ϕL0 under the identification ˆ︁S ∼= ˆ︂X/K(L)0.

Using (5.2.17) for L0 and the Stein factorization of ϕL we have
(ϕL)∗L

−1 = (ϕL0)∗(qL)∗(q∗
LL

−1
0 )

= (ϕL0)∗(L−1
0 ⊗ (qL)∗OX) (projection formula)

= (ϕL0)∗L
−1
0 (*)

= ˆ︂L0 ⊗Hs(S, L0) (by 5.2.17).
For (∗) we use that qL is projective with connected fibers, X and Y are smooth so (qL)∗OX =
OS. To calculate the Fourier-Mukai transform of L we use the following theorem.
Theorem 5.2.3. ([CJ18, Proposition 2.3]) If f : X → Y is a quotient of abelian varieties we
have equivalences of functors

FMX ◦ f ∗ ◦ [dimX] ∼= f̂ ∗ ◦ FMY ◦ [dimY ] and f ∗ ◦ FMY
∼= FMX ◦ f̂ ∗,

where FMX = Rp̂∗(p∗( ) ⊗ PX) for any abelian variety X.

We have
FMX(L) = FMX((qL)∗L0) = (q̂L)∗FMS(L0)[dimS − dimX].

Since L0 is non-degenerate and its Chern class has s negative eigenvalues it is W.I.T. of index
s so

FMY (L0) = ˆ︂L0[−s],
where ˆ︂L0 is a rank d = Pfr(E) vector bundle on ˆ︁S. The dimension of S is r + s so we have

FMX(L) = (q̂L)∗
ˆ︂L0[r − g].

That is, L is a W.I.T. sheaf of index g − r and its Fourier-Mukai transform isˆ︁L = (q̂L)∗
ˆ︂L0.

Since L0 is non-degenerate there exists an abelian variety S0 an isogeny f : S → S0 and a type
(1, ..., 1) non-degenerate line bundle N0 on S0 such that L0 = f ∗N0 and ˆ︂L0 = f̂ ∗(ϕN0)∗N

−1
0 .

We have the following commutative diagram.

X ˆ︂X
S ˆ︁S
S0

ˆ︂S0

ϕL

qL

f

ϕL0

q̂L

ϕN0

f̂

(5.2.18)
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In particular,

ˆ︁L = (q̂L)∗f̂ ∗(ϕN0)∗N
−1
0 . (5.2.19)

Recall that we showed on Ŝ that (ϕL)∗L
−1 = ˆ︂L0 ⊗Hs(S, L0) so on X̂ we have

(ϕL)∗L
−1 = (q̂L)∗(ˆ︂L0 ⊗Hs(S, L0))

= (q̂L)∗(ˆ︂L0) ⊗Hs(S, L0) (projection formula)
= ˆ︁L⊗ O⊕d

X̂
.

(5.2.20)

Where we use that Hs(X,L) ∼= Hs(S, L0) ∼= Cd, see [BL04, Theorem 3.5.5].

Step II. Suppose now that L|K(L)0 is not trivial.

Due to Lemma 5.2.1, there exists a point x̂ ∈ X̂ such that L ⊗ Px̂ is trivial restricted to
K(L)0, moreover K(L)0 = K(L⊗ Px̂)0 by Lemma 5.2.2. Therefore, L⊗ Px̂ is a W.I.T. sheaf
of index g0 − r, where r is the number of positive eigenvalues of the first Chern class of L.
By [BL04, Proposition 14.3.1] if L⊗ Px̂ is a W.I.T. sheaf of index g − r then so is L and

ˆ︁L = t∗−x̂( ˆ︂L⊗ Px̂). (5.2.21)

Moreover, since ϕL = ϕL⊗Px̂
we know

(ϕL)∗(L⊗ Px̂)−1 = ˆ︂L⊗ Px̂ ⊗Hs(X,L⊗ Px̂)

that is,

t∗−x̂(ϕL)∗(L−1 ⊗ P−x̂) ∼= ˆ︁L⊗ O⊕d
X̂
. (5.2.22)

In particular, ˆ︁L is a rank d = Pfr(E) vector bundle supported on Ŝ + x̂. The result is
independent of the choice of x̂.

5.2.3 Line bundles supported on affine subtori

Let S ⊂ X be a g0-dimesnional affine subtorus in X, that is it is the translation of an abelian
subvariety of X. In particular, for any x ∈ S the subtorus S0 = S − x is an abelian subvariety
of X. Let L → S be a line bundle. Then, L0 := t∗xL is a line bundle supported on the abelian
subvariety S0.
Let i : S0 → X be the inclusion homomorphism and its dual î : X̂ → Ŝ0 is a surjection. We
may use the second equation in Theorem 5.2.3 to relate the FMX(L) to FMS0(L0).

FMX(L) = FMX(t∗−xL0)
= FMX(L0) ⊗ Px [BL04, Proposition 14.7.8]
= FMX(i∗L0) ⊗ Px

= î
∗
FMS0(L0) ⊗ Px

= î
∗ˆ︂L0[r − g0] ⊗ Px.
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That is, L is a W.I.T. sheaf of index g0 − r and
ˆ︁L = î

∗ˆ︂L0 ⊗ Px. (5.2.23)

Note that the result does not depend on the choice of x ∈ S.
By (5.2.21) the support of ˆ︁L is the preimage of an an affine subtorus under the projection
î : X̂ → Ŝ0. Therefore, there exists ŝ ∈ Ŝ0 such that

t∗−ŝ(ϕL0)∗(L−1
0 ⊗ PS

−ŝ) ∼= ˆ︂L0 ⊗Hs(S, L0 ⊗ PS
ŝ )

so

î
∗
t∗−ŝ(ϕL0)∗(L−1

0 ⊗ PS
−ŝ) ⊗ Px

∼= ˆ︁L⊗ O⊕d
X̂
. (5.2.24)

5.3 Fourier-Mukai transform via factors of automorphy

The goal of this section is to prove (5.2.17) for non-degenerate line bundles using factors of
automorphy. In the next chapter, we will generalize this to U(1)-bundles with connections.
Eventually, these results will be used to prove a statement analogous to the final result (5.2.24)
of the previous section about the T-dual of U(1)-bundles.
In this section, we will first describe the pushforward of a line bundle under an isogeny using
factors of automorphy and show that the pushforward of a line bundle under an isogeny is
semihomogeneous. We describe explicitly the pushforward of the structure sheaf along an
isogeny. We also prove a lemma which substitutes the property of the Fourier-Mukai transform
that translation is mapped to tensoring with a flat line bundle. This section will conclude
in Proposition 5.3.10 with a proof of (5.2.17) without using properties of the Fourier-Mukai
transform.
Let f : X → Y be a degree n isogeny of abelian varieties and L → X be a holomorphic line
bundle on X. Since f is a covering map it is finite flat and f∗L is a rank n vector bundle on
Y .

Remark 5.3.1. Let K(f) ⊂ X be the kernel of f : X → Y . Then,

f ∗f∗L ∼=
⨁︂

x∈K(f)
t∗xL.

Remark 5.3.2. The dual map f ∗ = f̂ is also an isogeny of degree n, so there are line bundles
{Li}i=1,...,n such that f ∗Li ∼= OX , that is {Li} = Ker(f̂). On the other hand, this means,
that if L is a line bundle on X then

L ∼= L⊗OX
f ∗Li, i = 1, ..., n.

In particular, by the projection formula, we have on Y

f∗L ∼= f∗(L⊗OX
f ∗Li) = f∗L⊗OY

Li ∀i = 1, ..., n. (5.3.25)

We want to understand the direct image f∗L using factors of automorphy. Let us write
X = V/ΓX and Y = W/ΓY . As we have discussed in Section 2.1, the analytification F of f
is an isomorphism so we may assume that W = V and F = id. Then, ΓX ⊂ ΓY .
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5. Complex tori, Fourier-Mukai transform and factors of automorphy

The line bundle L on X = V/ΓX can be constructed as an associated bundle

L ∼= V ×ΓX
C

where λ ∈ ΓX acts as λ.(v, t) = (v + λ, aL(v, λ)t) via the factor of automorphy aL. By
Theorem 5.1.6 the vector bundle f∗L can also be described via a factor of automorphy on
Y = V/ΓY

af∗L : V × ΓY → GL(n,C).

Even though the factor of automorphy is not a representation, we mimic the construction of
an induced representation. We consider aL roughly as a representation of V × ΓX on C with
(v, λ) ∈ V × ΓX acting on t ∈ C as

(v, λ) : t ↦→ aL(v, λ)t.

Let {λ1, ..., λn} be a full set of representatives of the cosets [ΓY : ΓX ]. That is,

ΓY =
n∐︂
i=1

λiΓX .

We define a representation of V × ΓY on

Cn =
n⨁︂
i=1

λiC.

For any λ ∈ ΓY we write
λ+ λi = λλ(i) + Λi

λ

where λ(i) ∈ {1, ..., n} and Λi
λ ∈ ΓX . That is, we write λ + λi as an element of the coset

λλ(i)ΓX . Note that this way λ induces a permutation of {1, ..., n}. Indeed, if λ + λi and
λ+ λj were in the same coset, then λi − λj would be in ΓX which contradicts that they form
a set of representatives.

We define the action of (v, λ) ∈ V × ΓY as follows

(v, λ) :
n∑︂
i=1

λiti ↦→
n∑︂
i=1

λλ(i)aL(v + λi,Λi
λ)ti.

As a matrix we represent this action as

af∗L : V × ΓY → GLn(C)

af∗L(v, λ) =
(︃
aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃
ij
.

(5.3.26)

Proposition 5.3.3. The map af∗L is a factor of automorphy, independent of the choice of
representatives and represents f∗L.

Proof. First we show that af∗L satisfies the product rule

af∗L(v, λ+ µ) = af∗L(v + λ, µ)af∗L(v, µ)
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5.3. Fourier-Mukai transform via factors of automorphy

for factors of automorphy. Let λ+λi = λλ(i) + Λi
λ and µ+λi = λµ(i) + Λi

µ with Λi
λ,Λi

µ ∈ ΓX .
Then,

af∗L(v + λ, µ)af∗L(v, µ) =
(︃ n∑︂
j=1

aL(v + λ+ λµ(i),Λi
µ)δµ(i)

j aL(v + λλ(j),Λj
λ)δ

λ(j)
k

)︃
ik

[δµ(i)
j δ

λ(j)
k ̸= 0 if and only if µ(i) = j and λ(j) = λ(µ(i)) = (λ+ µ)(i) = k]

=
(︃
aL(v + λ+ λµ(i),Λi

µ)aL(v + λλ(µ(i)),Λµ(i)
λ )

)︃
iλ(µ(i))

=
(︃
aL(v + λλ(µ(i)) + Λµ(i)

λ ,Λi
µ)aL(v + λλ(µ(i)),Λµ(i)

λ )
)︃
iλ(µ(i))

=
(︃
aL(v + λλ(µ(i)),Λµ(i)

λ + Λi
µ)
)︃
iλ(µ(i))

=
(︃
aL(v + λ(λ+µ)(i),Λi

λ+µ)
)︃
i(λ+µ)(i)

= af∗L(v, λ+ µ),

since λ+ µ+ λi = λ+ λµ(i) + Λi
µ = λλ(µ(i)) + Λµ(i)

λ + Λi
µ.

To show that the description is independent of the choice of generators let {λ′
1, ..., λ

′
n} be

another set of generators such that λ′
i − λi = µi ∈ ΓX . Then, for any λ ∈ ΓY we have

λ+ λ′
i = λ+ λi + µi = λλ(i) + Λi

λ + µi = λ′
λ(i) − µλ(i) + Λi

λ + µi.

That is, Λ′i
λ = Λi

λ + µi − µλ(i) and we have

aL(v + λ′
λ(i),Λ′i

λ) = aL(v + λλ(i) + µλ(i),Λi
λ + µi − µλ(i))

= aL(v + λλ(i),Λi
λ + µi)aL(v + λλ(i), µλ(i))−1

= aL(v + λλ(i) + Λi
λ, µi)aL(v + λλ(i),Λi

λ)aL(v + λλ(i), µλ(i))−1

= aL(v + λi + λ, µi)aL(v + λλ(i),Λi
λ)aL(v + λλ(i), µλ(i))−1.

Define the holomorphic function

ϕ : V → GLn(C)
ϕ(v) = diag(aL(v + λ1, µ1), ..., aL(v + λn, µn)).

If we denote by a′
f∗L the factor of automorphy defined using the representatives {λ′

1, ..., λ
′
n},

then we have
a′
f∗L(v, λ) = ϕ(v + λ)af∗L(v, λ)ϕ−1(v),

that is, af∗L and a′
f∗L are equivalent.

Finally, if E is the holomorphic vector bundle corresponding to af∗L we need to show for any
U ⊂ Y connected open

Γ(f−1(U), L) ∼= Γ(U,E).
If X ∼= V/ΓX and Y ∼= V/ΓY let Ū be the preimage of U and also of f−1(U) in V . A section
s ∈ Γ(U,E) is given by a map

s : Ū → Cn

satisfying s(v + λ) = af∗L(v, λ)s for all λ ∈ π1(U) ≤ ΓY , where π1 is the fundamental group
with any choice of base point.
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To write af∗L we chose a set of representatives of the cosets ΓY /ΓX . We also have
π1(f−1(U)) ≤ π1(U). From the isomorphism theorem

π1(U)/π1(f−1(U)) = π1(U)/(π1(U) ∩ ΓX) = π1(U)ΓX/ΓX

with π1(U)ΓX ≤ ΓY a subgroup. So we may choose representatives of the cosets ΓY /ΓX
such that the first [π1(U) : π1(f−1(U)] of them represent the cosets π1(U)/π1(f−1(U)) and
such that λ1 ∈ ΓX .
If we write s = (s1, ..., sn) with si : Ū → C, the si satisfy

si(v + λ) = aL(v + λλ(i),Λi
λ)sλ(i)(v).

In particular, aL(v, λ1)−1s1 can be seen as a section of L over f−1(U) since for all λ ∈
π1(U) ∩ ΓX = π1(f−1(U)) it satisfies

aL(v + λ, λ1)−1s1(v + λ) = aL(v + λ, λ1)aL(v + λ1, λ)s1(v)
= aL(v, λ)aL(v, λ+ λ1)−1aL(v, λ+ λ1)aL(v, λ1)−1s1(v)
= aL(v, λ)aL(v, λ1)−1s1(v).

So we have a map Γ(U,E) → Γ(f−1(U), L). The inverse map Γ(f−1(U), L) is given as
follows. A section s ∈ Γ(f−1(U), L) is a map

s : Ū → C

satisfying s(v + λ) = aL(v, λ)s(v) for all λ ∈ π1(f−1(U)). We may construct a section

(s1, ..., sn) : Ū → Cn

as si(v) := s(v + λi). Then for any λ ∈ π1(U) we have

si(v + λ) = s(v + λ+ λi) = s(v + λλ(i) + Λi
λ) = aL(v + λλ(i),Λi

λ)si(v + λλ(i))
= aL(v + λλ(i),Λi

λ)sλ(i)(v)

In [Mat76, Proposition 3.1] Matsushima explained how one can view the factors of automorphy
of line bundles as holomorphic representations of the Heisenberg group GH(Γ) associated to
the lattice Γ and to a Hermitian pairing H ∈ NS(X). The Heisenberg group is V × ΓX with
a modified product rule such that factors of automorphy become representations. From this
point of view, the pushforward is really the induced representation.
He also studied representations of the group GH(Γ) for H ∈ NS(X) ⊗ Q. That is, the
imaginary part of the Hermitian pairing is only required to take rational values on the lattice.
Matsushima showed that the vector bundles which can be constructed from irreducible
representations of GH(Γ) are the ones whose factor of automorphy can be brought to the
form.

aE(v, γ) = exp
(︃
πH(v, γ) + π

2H(γ, γ)
)︃

· U(γ)

where U is a semi-representation of Γ in U(n) with respect to H.
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Definition 5.3.4. A semi-representation of Γ in U(n) with respect to H ∈ NS(X) ⊗ Q is a
map

U : Γ → U(n)
which satisfies

U(λ+ µ) = U(λ)U(µ)exp(iπImH(λ, µ)).

These factors of automorphy describe semihomogeneous vector bundles, holomorphic vector
bundles whose projectivization is homogeneous. It is easy to see that f∗L is semihomogeneous.

af∗L(v, λ) =

=
(︃

χ(Λiλ)exp(πH(v + λλ(i), Λiλ) + π

2 H(Λiλ, Λiλ))δjλ(i)

)︃i
j

=
(︃

χ(Λiλ)exp(πH(v + λλ(i), λ + λi − λλ(i)) + π

2 H(λ + λi − λλ(i), λ + λi − λλ(i)))δ
j
λ(i))

)︃i
j

=
(︃

χ(Λiλ)exp

(︃
πH(v, λ) + π

2 H(λ, λ) + πH(v, λi − λλ(i)) + πH(λλ(i), λ + λi − λλ(i))
)︃

×

× exp

(︃
π

2 H(λ, λi − λλ(i)) + π

2 H(λi − λλ(i), λ) + π

2 H(λi − λλ(i), λi − λλ(i))δ
j
λ(i)

)︃i
j

=ϕ(v + λ)exp

(︃
πH(v, λ) + π

2 H(λ, λ)
)︃

·
(︃

χ(Λiλ)exp

(︃
iπImH(λ + λi, λ − λλ(i))

)︃
δjλ(i)

)︃i
j
ϕ(v)−1

(5.3.27)
for ϕ(v) = diag

(︃
exp

(︃
πH(v, λi) + π

2H(λi, λi)
)︃)︃

.

It turns out that the converse is also true. A holomorphic vector bundle E on X is simple
and semihomogeneous if and only if there exists an isogeny f : Y → X whose degree is the
rank of E and a line bundle L on X such that f∗L = E ([Mat76, Theorem 8.1], [Muk78,
Proposition 7.3]). Such vector bundles are also called projectively flat as they admit Hermitian
connections whose curvature F ∈ Ω2(X,End(E)) is a two-form times the identity [Kob87,
Theorem 4.7.54].

Lemma 5.3.5. Let f : X → Y be a degree n isogeny between g-dimensional complex tori.
Let {L1, ..., Ln} be the flat line bundles forming the kernel of f̂ : Ŷ → X̂. Then,

f∗OX =
n⨁︂
i=1

Li.

Proof. Since OX is flat, its factor of automorphy is independent of V and it is actually a
representation aOX

: ΓX → U(1). Since OX is the trivial holomorphic line bundle aOX
is the

trivial representation. Then, af∗OX
is again independent of V and is given by the induced

representation ΓY → GLn(C). The quotient ΓY /ΓX = G is a finite abelian group so we may
write

G = Z/d1Z ⊕ ...⊕ Z/dgZ

for some di ∈ Z>0 such that d1 · ... · dg = n. Let (λ1, ..., λg) be a generating subset of ΓY
which project to a set of generators of G. Then,

S =
{︃ k∑︂
i=1

miλi | mi ∈ {0, ..., di − 1}
}︃

is a full set of representatives of the ΓX-cosets in ΓY .
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Since af∗OX
is a representation it is sufficient to describe af∗OX

(λi) for i = 1, ..., g. It is a
permutation matrix of order di acting on S by sending

k∑︂
j=1

mjλj ↦→
k∑︂
j=1

mjλj + λi.

Moreover, since

Cn =
g⨂︂
i=1

Cdi =
g⨂︂
i=1

di−1⨁︂
m=0

emλi
C

and af∗OX
(λj) only acts on the jth tensor factor we may write it as a tensor product represen-

tation

af∗OX
(λj) = Idd1×d1 ⊗ ...⊗Iddj−1×dj−1 ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 0 . . . 0
0 1 0 . . . 0
... ...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠⊗Iddj+1×dj+1 ⊗ ...⊗Iddg×dg

We may diagonalize this representation by changing the basis of Cdi for all i = 1, ..., g as⎛⎜⎜⎜⎜⎜⎝
e0λi

e1λi...
e(di−1)λi

⎞⎟⎟⎟⎟⎟⎠ ↦→

⎛⎜⎜⎜⎜⎜⎜⎝
e0λi

+ e1λi
+ ...+ e(di−1)λi

e0λi
+ ξie1λi

+ ...+ ξdi−1
i e(di−1)λi...

e0λi
+ ξdi−1

i e1λi
+ ...+ ξ

(di−1)2

i e(di−1)λi

⎞⎟⎟⎟⎟⎟⎟⎠ (5.3.28)

where ξi is a primitive dth
i root of unity. Changing the basis can be seen as an equivalence

relation between the factors of automorphy. If S is the change of basis it can be seen as a
constant, hence holomorphic, function ϕ : V → GLn(C), ϕ(v) = S. We may also divide out
by the determinant of S to induce a unitary change of basis. The new (diagonal) factor of
automorphy is then given by ϕ(v + λ)af∗L(v, λ)ϕ(v)−1.
In this new basis, our representation is given by

af∗OX
(λj) = Idd1×d1 ⊗ ...⊗ Iddj−1×dj−1 ⊗

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0
0 ξi . . . 0
... ...
0 . . . 0 ξdi−1

i

⎞⎟⎟⎟⎟⎟⎠⊗ Iddj+1×dj+1 ⊗ ...⊗ Iddg×dg .

That is,

f∗OX =
g⨂︂
i=1

di⨁︂
j=1

Ljξi
,

where Lξi
is the line bundle given by the factor of automorphy

aLξi
(λj) = ξiδij.

Exchanging addition and multiplication we find

f∗OX =
⨁︂

mi∈[0,...,di−1]

g⨂︂
i=1

L
mj

ξi
,

and the line bundles ⨂︁g
i=1 L

mi
ξi

for all mi ∈ [0, ..., di − 1] and all i = 1, ..., g are precisely the
ones in the kernel of f .
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Remark 5.3.6. Any flat line bundle L → X has a factor of automorphy which is a represen-
tation ΓX → U(1). Therefore, the induced representation ΓY → GLn(C) is again unitary.
More precisely, in the notation of the previous lemma

af∗L(λj) =

= Idd1×d1 ⊗ ...⊗ Iddj−1×dj−1 ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 aL(djλj)
1 0 0 . . . 0
0 1 0 . . . 0
... ...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠⊗ Iddj+1×dj+1 ⊗ ...⊗ Iddg×dg .

Again this matrix is unitary, hence it is unitarily diagonalizable. Moreover all af∗L(λj) commute
therefore they are simultaneously diagonalizable as in the case of af∗OX

. If we denote the dual
isogeny by f̂ : Ŷ → X̂ the same proof as before yields

f∗L ∼=
⨁︂

N∈f̂−1(L)

N.

Let L → X be a non-degenerate line bundle of type (d1, ..., dg). Then, the corresponding
isogeny

ϕL : X → X̂

is of degree d2 = d2
1 · ... · d2

g and

ΓX̂/ΓX =
(︃
Z/d1Z

)︃⊕2
⊕ ...⊕

(︃
Z/dgZ

)︃⊕2
.

We have seen before that there exists an isogeny f : X → Y of degree d and a non-degenerate
line bundle N → Y of type (1, ..., 1) such that f ∗N = L and that we have the following
commutative diagram.

X X̂

Y Ŷ

ϕL

f

ϕN

f̂ (5.3.29)

Lemma 5.3.7. Let N → Y be a non-degenerate type (1, ..., 1) line bundle on the complex
torus Y . Then for any flat line bundle Lŷ ∈ Pic0(Y ) corresponding to ŷ ∈ Ŷ we have

(ϕN)∗(N−1 ⊗ Lŷ) ∼= t∗−ŷ(ϕN)∗N
−1.

Proof. The canonical factor of automorphy for N−1 is given by

aN−1(v, λ) = χ(λ)−1exp(−πH(v, λ) − π

2H(λ, λ))

if N corresponds to the Chern class H and semicharacter χ. The analytification of ϕN is
given by

ϕN : V → V ∗, v ↦→ H(v),
and H(ΓY ) ⊂ Γ∗

Y = ΓŶ . Hence,

a(ϕN )∗N−1(v̂, λ̂) = χ(H−1(λ̂))−1exp(−πH(H−1(v̂), H−1(λ̂)) − π

2H(H−1(λ̂), H−1(λ̂)))

= χ(H−1(λ̂))−1exp(−πH−1(λ̂, v̂) − π

2H
−1(λ̂, λ̂)),
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where we use that

H(H−1(v̂), H−1(λ̂)) =
(︃
H ◦H−1(v̂)

)︃
(H−1(λ̂)) = v̂(H−1(λ̂)) = H−1(λ̂, v̂). (5.3.30)

The flat line bundle Lŷ is given by the factor of automorphy

aLŷ
(v, λ) = exp(2πi · Imŷ(λ)).

Then,

a(ϕN )∗(N−1⊗Lŷ)(v̂, λ̂) =

= χ(H−1(λ̂))−1exp(−πH−1(λ̂, v̂) − π

2H
−1(λ̂, λ̂)) · exp(2πi · Imŷ(H−1(λ̂)))

= χ(H−1(λ̂))−1exp(−πH−1(λ̂, v̂) − π

2H
−1(λ̂, λ̂)) · exp(π · (H−1(λ̂, ŷ) −H−1(ŷ, λ̂)))

= χ(H−1(λ̂))−1exp(−πH−1(λ̂, v̂ − ŷ) − π

2H
−1(λ̂, λ̂)) · exp(−π ·H−1(ŷ, λ̂))

The function ϕ : V ∗ → C given by ϕ(v̂) = exp(π · H−1(ŷ, v̂)) is holomorphic in v̂ as
H−1(ŷ, v̂) = v̂(H−1(ŷ)). Therefore, via ϕ the factor of automorphy a(ϕN )∗(N−1⊗Lŷ) is equiva-
lent to the factor of automorphy

at∗−ŷ(ϕN )∗N−1(v̂, λ̂) = a(ϕN )∗N−1(v̂ − ŷ, λ̂)

= χ(H−1(λ̂))−1exp(−πH−1(λ̂, v̂ − ŷ) − π

2H
−1(λ̂, λ̂)).

Remark 5.3.8. Note that for the Fourier-Mukai transform we have [BL04, Proposition 14.3.1]

ˆ︂N ⊗ Lŷ = (ϕN)∗(N ⊗ Lŷ)−1 = (ϕN)∗(N−1 ⊗ L−ŷ) = t∗ŷ(ϕN)∗N
−1 = t∗ŷN̂ .

Lemma 5.3.9. Let f : X → Y be a degree n isogeny of g dimensional complex abelian
varieties. Let x ∈ Ker(f) be a point in X and F a sheaf on X. Then,

f∗t
∗
xF ∼= f∗F .

Proof. The sheaf f∗t
∗
xF is given over U ⊂ Y as

Γ(U, f∗t
∗
xF) = Γ(f−1(U), t∗xF) = Γ(txf−1(U),F) = Γ(f−1(U),F).

Indeed, since f is an isogeny, it is a homomorphism so f(x+ y) = f(x) + f(y) = f(y) for
any x ∈ K(f) and y ∈ X.

Proposition 5.3.10. We have

(ϕL)∗L
−1 ∼= f̂ ∗(ϕN)∗N

−1 ⊗Hs(X,L)

where s is the index of L.
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Proof. For a non-degenerate line bundle L of index s and degree d we have Hs(X,L) ∼= Cd

[BL04, Theorem 3.5.5]. Then,

(ϕL)∗L
−1 = f̂ ∗(ϕN)∗f∗f

∗N (5.3.29)
= f̂ ∗(ϕN)∗f∗(f ∗N ⊗OX

OX)
= f̂ ∗(ϕN)∗(N ⊗OY

f∗OX) (projection formula)
= f̂ ∗(ϕN)∗(N ⊗OY

⊕ŷ∈Ker(f̂)Lŷ) (Lemma 5.3.5)

= f̂ ∗(ϕN)∗(⊕ŷ∈Ker(f̂)N
−1 ⊗ Lŷ)

=
⨁︂

ŷ∈Ker(f̂)

f̂ ∗(ϕN)∗(N−1 ⊗ Lŷ)

=
⨁︂

ŷ∈Ker(f̂)

f̂ ∗(ϕN)∗(N−1 ⊗ Lŷ) (Lemma 5.3.7)

=
⨁︂

ŷ∈Ker(f̂)

f̂ ∗t
∗
−ŷ(ϕN)∗N

−1 (Lemma 5.3.9)

=
⨁︂

ŷ∈Ker(f̂)

f̂ ∗(ϕN)∗N
−1.

The isogeny f : X → Y is also of degree d so |Ker(f̂)| = d and we are done.
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CHAPTER 6
Factors of automorphy on real tori

In this chapter, we describe how the factor of automorphy construction generalizes to principal
U(n)-bundles with connections. This description for U(1)-bundles was used by Bruzzo, Marelli
and Pioli in [BMP01, BMP02] where they described the T-dual of flat U(1)-bundles supported
on affine torus subbundles of affine torus bundles with trivial Chern classes. Their work
greatly influenced ours as they have shown that using factors of automorphy one can translate
techniques from the theory of complex tori to the real case.
In the first section, we define factors of automorphy for principal U(d)-bundles. These classify
principal U(d)-bundles topologically. Then, we describe how one can encode a connection on
a principal bundle to a pair of a factor of automorphy and a one-form. We prove a version of
the Appel-Humbert Theorem for U(1)-bundles with connections. However, in the U(1)-case
we cannot find a canonical factor for all the bundles, we have to restrict to those whose
connection has invariant curvature. This aligns with your idea of enhancing T-duality of
generalized branes to T-duality of physical branes. Indeed, if S is an affine torus subbundle of
an affine torus bundle endowed with a U(1)-bundle L → S with a connection whose curvature
2πiF is invariant, then (S, F ) is a locally T-dualizable brane.
In the next section, we prove the statement analogous to Proposition 5.3.10 for U(1)-bundles
with connections. We spend most of the section showing that our construction is independent
of the choices we make. In the holomorphic case, the uniqueness of the Fourier-Mukai
transform takes care of this problem.
Then, we describe the pushforward of a U(1)-bundle with connection along a general ho-
momorphism of real tori. We then prove the analogue of (5.2.20) for U(1)-bundles with
connections.
Finally, we show how the canonical factor of a holomorphic line bundle on a complex torus
induces a canonical factor of the underlying U(1)-bundle with a connection. We show that
pushing forward the holomorphic line bundle or the U(1)-bundle yields the same result and
define the U(1)-version of the Poincaré line bundle for real tori.

6.1 General construction

In this section, we define factors of automorphy for principal U(n)-bundles on a real torus
and explain how one can represent a connection on it. We then define the pushforward of a

99



6. Factors of automorphy on real tori

U(1)-bundle along an isogeny analogously to the holomorphic case. We define an analogue of
the map ϕL for those U(1)-bundles with connections whose curvature is an invariant two-form.
We prove a version of the Appel-Humbert theorem for these bundles as well. Finally, we show
that once again, the pushforward of such a U(1)-bundle along an isogeny is projectively flat.
Let X = V/Γ be a real torus with quotient map π : V → X.

Definition 6.1.1. A U(n) factor of automorphy is a smooth function

aP : V × ΓX → U(n),

satisfying
aP (v, λ+ µ) = aP (v + λ, µ)aP (v, λ).

Two factors of automorphy aP and a′
P are equivalent if they are related by a map ϕ : V → U(n)

via
a′
P (v, λ) = ϕ(v + λ)aP (v, λ)ϕ(v)−1.

The equivalence classes of U(n) factors of automorphy are the first cohomology of the
group Γ in the ring C∞(V, U(n)) of U(n)-valued smooth functions on V . We denote it by
H1(Γ, C∞(V, U(n))). We can mimic the proof of [BL04, Proposition B1] or that of [Ien11,
Theorem 3.2] to prove the following.

Theorem 6.1.2. There is a bijection of sets

ϕ1 : H1(Γ, C∞(V, U(n))) → PrinU(n)(X),

where PrinU(n)(X) denotes the isomorphism classes of principal U(n)-bundles on X.

The map ϕ1 is the associated bundle construction. The transition functions of the associated
bundle can be described explicitly as follows. Let {Ui} be a good cover of X and let Wi ⊂ V
be a lift of Ui for all i with πi := π|Wi

: Wi → Ui diffeomorphisms. Then, for any pair (i, j)
there exists a unique λij ∈ Γ such that π−1

i (x) + λij = π−1
j (x) for all x ∈ Uij . For a factor of

automorphy f define gij = f(π−1
i (x), λij) ∈ Γ(Uij, U(n)). Then, (gij) ∈ H1(X, C∞

U(n)) due
to the factor-of automorphy condition and that λij + λjk = λik.

We omit the proof as it is a straightforward adaptation of the proofs in the referenced works.
Let aP be a factor of automorphy. We define the associated principal bundle as the quotient
bundle

P := V ×Γ U(n)
under the action λ(v, A) = (v + λ, aP (v, λ)A) for λ ∈ Γ and (v,A) ∈ V × U(n). A principal
bundle connection on V × U(n) descends to one on P if and only if is invariant under the
action of Γ. Denote the Lie algebra of U(n) by u(n). We can prove the following.

Proposition 6.1.3. There is a one-to-one correspondence between equivalence classes of
principal bundle connections on P → X and equivalence classes of pairs (f, A) where f is a
factor of automorphy representing P and A ∈ Ω1(V, u(n)) is a one-form satisfying

A(v + γ) = f(v, γ)A(v)f(v, γ)−1 − df(v, γ) · f−1(v, γ).

Two pairs (f, A) and (f ′, A′) are equivalent if for a smooth function ϕ : V → U(n) we have

f ′(v, λ) = ϕ(v + λ)f(v, λ)ϕ(v)−1

A′(v) = ϕ(v)A(v)ϕ−1(v) − dϕ(v) · ϕ−1(v).
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6.1. General construction

Proof. The proof is standard in gauge theory. There is a one-to-one correspondence between
principal bundle connections on P → X and those on V × U(n) → V invariant under
the action of Γ = π1(X). Two connections ω1 and ω2 on P are equivalent if there is
an automorphism φ of P such that ω1 = φ∗ω2. Automorphisms of P also descend from
automorphisms of V × U(n) generated by global functions ϕ : V → U(n). We will show that
invariant connections are in one-to-one correspondence with one-forms A as in the statement
and that the equivalence relation corresponds to pulling back under automorphisms.

Let π : V ×U(n) → P be the projection. Given a trivialization, that is a section s : V → π∗P
we get an isomorphism π∗P ∼= V × U(n). Let ω ∈ Ω1(P, u(n)) be a connection on P .
Since π is U(n)-equivariant, that is, a map of principal bundles, π∗ω ∈ Ω1(V × U(n), u) is a
connection on V × U(n). Using the section s we define

A := s∗π∗ω.

An automorphism of π∗P can be regarded as changing the section s to s′(v) = s(v) · ϕ(v) for
some ϕ : V → U(n). The new section changes the connection form as

A′(v) = (s′)∗π∗ω(v) = s∗R∗
ϕ(v)π

∗ω(v).

Consider real coordinates (vα, uij) on V × U(n), where the coordinates on U(n) are entries
of a unitary matrix. The fundamental vector fields of the U(n)-action are given by

Xξ = d

dt

⃓⃓⃓⃓
t=0
exp(tξ).(v, U) = d

dt

⃓⃓⃓⃓
t=0

(v, Uexp(tξ)) = (Uξ)ij
∂

∂uij
, ξ ∈ u(n).

Since π∗ω is a connection, for any ξ ∈ u(n) we have π∗ω(Xξ) = ξ. In coordinates, if θij is a
basis of u(n) we can write

π∗ω = ωαdv
α + ωijθ

ij,

where vα are u(n)-valued functions on V × U(n) and ωij = (ωij)αβduαβ for some functions
(ωij)αβ on V × U(n). Then, from π∗ω(Xξ) = ξ we find that (ωij)αβ(v, U) = (U−1)ijδαβij ,
that is we can write schematically

π∗ω = ωαdv
α + U−1dU.

The equivariance condition implies that gωα(v, Ug)g−1 = ωα(v, U) as functions with values
in u(n) as U−1dU is already equivariant. Finally,

R∗
ϕ(v)π

∗ω(v, U) = ωα(v, Uϕ(v))dvα + (Uϕ(v))−1d(Uϕ(v))
= ϕ(v)−1ωα(v, U)ϕ(v) + ϕ(v)−1U−1(dUϕ(v) + Udϕ(v))
= ϕ(v)−1ωα(v, U)ϕ(v) + ϕ(v)−1U−1dUϕ(v) + ϕ(v)−1dϕ(v)
= ϕ(v)−1π∗ω(v, U)ϕ(v) + ϕ(v)−1dϕ(v),

and hence,
A′(v) = s∗R∗

ϕ(v)π
∗ω(v) = ϕ(v)−1A(v)ϕ(v) + ϕ−1(v)dϕ(v).

The automorphism s′(v) = s(v) · ϕ(v) changes the factor of automorphy as well. The action
of Γ in a trivialization coming from s is given by

ϕγ(s(v) · U) = ϕγ(v, U) = (v + γ, f(v, γ)U) = s(v + γ) · f(v, γ)U.
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6. Factors of automorphy on real tori

Since s′(v) = s(v) · ϕ(v), we have

ϕγ(s′(v)·U) = ϕγ(s(v)·ϕ(v)U) = s(v+γ)·f(v, γ)ϕ(v)U = s′(v+γ)·ϕ(v+γ)−1f(v, γ)ϕ(v)U

therefore,
f ′(v, γ) = ϕ(v + γ)−1f(v, γ)ϕ(v).

In addition, π∗ω is Γ-invariant, that is

ϕ∗
γπ

∗ω = π∗ω,

therefore,

A(v) = s∗π∗ω(v)
= s∗ϕ∗

γπ
∗ω(v)

= s∗(R∗
f(v,γ)π

∗ω(v + γ, U))
= s∗(f(v, γ)−1ω(v + γ, U)f(v, γ) + f(v, γ)−1df(v, γ))
= f(v, γ)−1A(v + γ)f(v, γ) + f(v, γ)−1df(v, γ).

Note that the relation ϕ∗
γπ

∗ω(v, U) = R∗
f(v,γ)π

∗ω(v+ γ, U) only holds along the section s(V ).

Pushforward of U(1)-bundles under isogeny. Let X = V/ΓX and Y = W/ΓY be real
tori and let f : X → Y be a degree n isogeny. Recall, that the analytification of f is its lift
of it to a linear isomorphism F : V → W . That is, we may assume that V = W , F = id and
ΓX ⊂ ΓY . Let {λ1, ..., λn} be a full set of representatives of the cosets ΓY /ΓX .
Let L → X be a U(1)-bundle with a connection defined by a pair (aL, AL). Then, the
pushforward f∗L of L along the isogeny f is given by the factor of automorphy

af∗L : V × ΓY → U(n)

af∗L(v, λ) =
(︃
aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃i
j

(6.1.1)

analogously to the holomorphic definition (5.3.26). Note that af∗L is really unitary, since

af∗L(v, λ)∗ =
(︃
aL(v + λλ(i),Λi

λ)−1δ
λ(i)
j

)︃j
i

= af∗L(v, λ)−1.

We also have to describe the connection, which is a diagonal matrix

Af∗L(v) =
(︃
AL(v + λi)δij

)︃i
j
. (6.1.2)

To show that this is a connection on f∗L we have to show that

Af∗L(v + λ) = af∗L(v, λ)Af∗L(v)af∗L(v, λ)−1 − daf∗L(v, λ) · af∗L(v, λ)−1

for all λ ∈ ΓY . Indeed, for all i we have

AL(v + λ+ λi) = AL(v + λλ(i)) − daL(v + λλ(i),Λi
λ) · aL(v + λλ(i),Λi

λ)−1

which is precisely the condition on AL, hence Af∗L is a well-defined connection on f∗L.
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6.1. General construction

Lemma 6.1.4. The U(n)-bundle with connection (af∗L, Af∗L) is independent of the choice
of representatives (λ1, ..., λn).

Proof. We do the same calculation as in the holomorphic case. If (λ′
1, ..., λ

′
n) is the other set

of representatives defining (a′
f∗L, A

′
f∗L) and we set λ′

i − λi = µi we may define the function

ϕ : V → U(n), ϕ(v) = diag(aL(v + λ1, µ1), ..., aL(v + λn, µn))

and we have
a′
f∗L(v, λ) = ϕ(v + λ)aE(V, λ)ϕ(v)−1.

It is left to show
A′
f∗L = ϕAEϕ

−1 − dϕ · ϕ−1 = AE − dϕ · ϕ−1.

because diagonal matrices commute. Indeed,

A′
L(v)ii = AL(v + λ′

i) = AL(v + λi + µi)
= AL(v + λi) − daL(v + λi, µi)aL(v + λi, µi)−1

= AL(v)ii − dϕ(v)iiϕ(v)−1
ii .

In later calculations, we will use the projection formula repeatedly. Although it is quite clear
that it holds in this setting we give a quick proof here.

Proposition 6.1.5 (Projection formula). Let f : X → Y be a degree n isogeny whose
analytification is given by the identity map V → V and ΓX ⊂ ΓY . Let N be a U(1)-bundle
with connection on Y and L a U(1)-bundle with connection on X. Then,

f∗(f ∗N ⊗ L) ∼= N ⊗ f∗L. (6.1.3)

Proof. For any v ∈ V and λ ∈ ΓY we have

af∗(f∗N⊗L)(v, λ) =
(︃
af∗N(v + λλ(i),Λi

λ)aL(v + λλ(i),Λi
λ)δ

λ(i)
j

)︃
ij

=
(︃
aN(v + λλ(i),Λi

λ)aL(v + λλ(i),Λi
λ)δ

λ(i)
j

)︃
ij

=
(︃
aN(v, λλ(i) + Λi

λ)aN(v, λλ(i))−1aL(v + λλ(i),Λi
λ)δ

λ(i)
j

)︃
ij

=
(︃
aN(v, λ+ λi)aN(v, λλ(i))−1aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃
ij

=
(︃
aN(v + λ, λi)aN(v, λ)aN(v, λλ(i))−1aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃
ij

= aN(v, λ) ·
(︃
aN(v + λ, λi)aN(v, λλ(i))−1aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃
ij

= aN(v, λ)ϕ(v + λ)
(︃
aL(v + λλ(i),Λi

λ)δ
λ(i)
j

)︃
ij
ϕ(v)−1

for the function ϕ : V → U(n) given by

ϕ(v) = diag(aN(v, λ1), ..., aN(v, λn)).
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6. Factors of automorphy on real tori

Moreover,
(f ∗AN)(v + λi) + AL(v + λi) − dlogϕ(v)ii = AN(v) + AL(v + λi)

so the connection on f∗(F ∗N ⊗ L) is
Af∗(f∗N⊗L)(v) = AN(v) · Idn×n + Af∗L(v) = AN⊗f∗L(v).

Analogue of the map ϕL. The map ϕL : X → X̂ in the case of holomorphic bundles was
defined as

x ↦→ t∗xL⊗ L−1

mapping to the dual torus X̂ ∼= Pic0(X). For U(1)-bundles with connections X̂ ∼=
Hom(π1(X), U(1)) is the space of characters. It can be also viewed as the space of flat
U(1)-bundles with connection due to the following lemma.

Lemma 6.1.6. Every U(1)-bundle with a flat connection can be represented by a constant
factor of automorphy and AL = 0.

Proof. Let aL : V × Γ → U(1) be the factor of automorphy of L on X and AL the
corresponding connection one-form. Then, since dAL = 0 there exists a real function fL on V
such that AL = 2πidf and if we write ϕ = exp(2πif) we see that AL = dϕ · ϕ−1. Therefore,
the factor of automorphy a′

L(v, λ) = ϕ(v + λ)aL(v, λ)ϕ(v)−1 corresponds to A′
L = 0.

Then, A′
L(v+λ)−A′

L(v) = 0 = −da′
L·(a′

L)−1 and we find that da′
L = 0, therefore it is constant.

In particular, aL : Γ → U(1) is a representation of Γ and the connection on L has monodromy
−aL(λ) around the loop λ ∈ π1(X). Therefore the dual torus X̂ = Hom(π1(X), U(1)) can
be identified with the space of flat U(1)-bundles.

For line bundles, the equivalence relation (aL, AL) ∼ϕ (a′
L, A

′
L) does not change the curvature.

Indeed, the curvature of the connection induced by AL is simply given by dAL. It is a priori
only a two-form on V , but also

dAL(v + λ) = dAL(v) − d(dlog(aL(v, λ))) = dA(v)

therefore dAL is a well-defined closed two-form on X. Hence, if AϕL = AL − dϕϕ−1 then
dAϕL = dAL − d(dlogϕ) = dAL.

The curvature of the connection on t∗xL⊗ L−1 is given by
d(t∗xAL) − dAL = t∗xFL − FL

if FL ∈ Ω2(X,R) is the curvature of the connection on L. In particular, the map ϕL is only
well defined as a map to the dual torus, if

t∗xF = F ∀x ∈ X

that is, if F is an invariant two-from.
When it is defined, ϕL : X → X̂ is a homomorphism and its kernel K(L) is a disjoint union of
affine subtori. We denote the connected component of the identity by K(L)0. It is a subgroup
which fits into the short exact sequence of groups

0 K(L)0 X X/K(L)0 0. (6.1.4)
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6.1. General construction

Appel-Humbert theorem. For U(1)-bundles with invariant curvatures, we can mimic the
proof of the Appel-Humbert Theorem [BL04, Theorem 2.2.3] to show that there is a canonical
choice of factor of automorphy.
Let F ∈ Ω2(X) be an invariant two-form on the real torus X = V/Γ, that is t∗xF = F
for all x ∈ X. Every invariant form on a torus is closed and represents a cohomology class
in H2(X,R). Once again, a two-from can be seen as an alternating bilinear form acting
point-wise on the tangent spaces of X. We have isomorphisms TxX ∼= V so for any x ∈ X the
restriction of the two-form Fx to TxX induces an alternating bilinear pairing on V . Whenever
F is invariant, this pairing is independent of x ∈ X and we denote it again by F . Whenever
F represents an integral cohomology class, the induced pairing is integral on Γ which gives
the isomorphism H2(X,Z) ∼= Alt2(Γ,Z).
Let us define the real analogue of group P(Γ) (5.1.5). In the complex case, we took Hermitian
inner products from NS(X) which is a subgroup of H2(X,Z). In the real case, we do not have
to restrict ourselves to elements which are compatible with a complex structure. Moreover,
the space of semicharacters only depends on the imaginary part of the Hermitian forms so the
definition can remain unchanged.

Definition 6.1.7. Let F ∈ Alt2(Γ,Z) be an alternating bilinear pairing on Γ taking integer
values. Then, a semicharacter for F is a map

χ : Γ → U(1)

satisfying
χ(λ+ µ) = χ(λ)χ(µ)exp(iπF (λ, µ)).

Finally, we can define the group:

PR(Γ) := {(F, χ) | F ∈ Ω2(X) invariant, [F ] ∈ H2(X,Z), χ a semicharacter for F},
(F1, χ1) · (F2, χ2) = (F1 + F2, χ1 · χ2).

(6.1.5)
Let us denote by A the group of line bundles on X with invariant curvatures under the tensor
product. The map

PR(Γ) ↦→ A
is defined as follows:

(χ, F ) ↦→ aL(v, λ) = χ(λ)exp(iπF (v, λ)), AL = iπF (v, dv). (6.1.6)

Clearly, AL satisfies
AL(v + λ) = AL(v) − aL(v, λ)−1daL(v, λ).

Let dim(V ) = n and {v1, ..., vn} be linear coordinates on V inducing 1-periodic coordinates
on X. Then we can write F as

F =
∑︂
i<j

Fijdv
i ∧ dvj,

and the connection
AL(v) = iπ

∑︂
i<j

Fij(vidvj − vjdvi).

This description of AL is independent of the choice of 1-periodic coordinates. Indeed,
changing coordinates is a constant linear transformation v′ = Av with A ∈ SL(n,Z). Then
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dv′ = Adv and ∂
∂v′ = (A−1)T ∂

∂v
. In the new coordinates F = 2πiF ′

ijdv
′i ∧ dv′j with

F ′
ij = Fkl(A−1)ki (A−1)lj. The new connection 1-form is

A′
L = iπ

∑︂
i<j

F ′
ij(v′idv′j − v′jdv′i)

= iπ
∑︂
i<j

Fkl(A−1)ki (A−1)lj(v′idv′j − v′jdv′i)

= iπ
∑︂
i<j

Fkl((A−1)ki v′i(A−1)ljdv′j − (A−1)ljv′j(A−1)ki dv′i)

= iπ
∑︂
i<j

Fij(vidvj − vjdvi)

= AL.

We can finally prove the following theorem.

Theorem 6.1.8 (Modification of the Appel-Humbert theorem). There is an isomorphism of
short exact sequences

1 Hom(Γ, U(1)) PR(Γ) Alt2(Γ,Z) 1

1 X̂ A H2(X,Z) 1

∼= ∼= =

c1

Proof. We know that the map A → H2(X,Z) is given by (f, A) ↦→ [dA] since dA is a
well-defined two-form on X. Therefore, the second square in the diagram commutes. The
kernel of the map (f, A) ↦→ [dA] is the space of line bundles with zero curvature. These by
Lemma 6.1.6 are in one-to-one correspondence with Hom(Γ, U(1)), the space of characters.
Therefore the first square commutes as well. By the five lemma, we have an isomorphism in
the middle.
We call the representations of line bundles (6.1.6) under the map PR(Γ) → A the canonical
factor.

Let L be a U(1)-bundle with invariant curvature F . From the canonical representation, it is
clear that the analytification of ϕL is given by F : V → V ∗.
Moreover, given an isogeny f : X → Y the pushforward f∗L is a U(n)-bundle with connection
which defines a Hermitian vector bundle E with a Hermitian connection via the standard
representation. From (6.1.2) the curvature of this connection is

dAf∗L = F · Id ∈ Ω2(Y,End(E)),

that is E is projectively flat. We will say that f∗L is projectively flat when the induced
Hermitian vector bundle is. As we have mentioned in the holomorphic case projectively flat
Hermitian vector bundles have special factors of automorphy [Kob87, Theorem 4.7.54]. This
is true even if the Hermitian vector bundle does not admit a holomorphic structure, that is
when F ∈ H2(X,Q) does not lie in NS(X) ⊗ Q. We define semi-representations as before.

Definition 6.1.9. Let F ∈ Ω2(X) be an invariant two-form on X = V/Γ representing a
rational cohomology class [F ] ∈ H2(X,Q). A semi-representation for F in U(n) is a map

U : Γ → U(n)
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6.2. Non-degenerate U(1)-bundles

satisfying for all λ, µ ∈ Γ

U(λ+ µ) = exp(iπF (λ, µ))U(λ)U(µ)

We have,

af∗L(v, λ) =

=
(︃
χ(Λi

λ)exp(iπF (v + λλ(i),Λi
λ)δ

j
λ(i)

)︃i
j

=
(︃
χ(Λi

λ)exp(iπF (v + λλ(i), λ+ λi − λλ(i))δjλ(i)

)︃i
j

Λi
λ = λ+ λi − λλ(i)

=
(︃
χ(Λi

λ)exp(iπF (v, λ) + iπF (v + λ, λi)−

− iπF (λ, λi) − iπF (v, λλ(i)) + iπF (λλi
, λ+ λi))δjλ(i)

)︃i
j

= ϕ(v + λ)exp(iπF (v, λ))
(︃
χ(Λi

λ)exp(iπF (λ+ λi, λ− λλ(i))δjλ(i)

)︃i
j
ϕ(v)−1

(6.1.7)

for ϕ(v) = diag
(︃
exp(iπF (v, λi)

)︃
so f∗L is a projectively flat bundle with

Af∗L(v) =
(︃
iπF (v + λi, dv)δij

)︃i
j

=
(︃
iπF (v, dv)δij

)︃i
j

− ϕ−1dϕ.

(6.1.8)

6.2 Non-degenerate U(1)-bundles

From now on when we say "U(1)-bundle with connection" we assume that the curvature of
the connection is invariant. Finally, we are ready to show an analogue of Proposition 5.3.10
for U(1)-bundles. More precisely, if L → X is a U(1)-bundle with connection such that ϕL is
a degree d2 isogeny, we will show that the U(d2)-bundle (ϕL)∗L

−1 can be decomposed into
the product of U(d)-bundles.
Our strategy is the same as in the holomorphic case. We first show that there exists an isogeny
f : Y → X and a U(1)-bundle with connection N → Y such that f ∗N = L and such that
ϕN : Y → Ŷ is an isomorphism. Then, we use the commutative diagram

X X̂

Y Ŷ

ϕL

f

ϕN

∼=

f̂

to show
(ϕL)∗L

−1 ∼= (f̂ ∗(ϕN)∗N
−1) ⊗ U(d).

We explain in detail what we mean by the tensor product in Theorem 6.2.2.

Definition 6.2.1. A U(1)-bundle with connection on a torus is called non-degenerate if the
curvature of the connection is a non-degenerate two-form. It is called degenerate otherwise.
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Let X = V/Γ be areal torus and let L → X be a non-degenerate U(1)-bundle with connection.
Then the dimension of X must be even, let dimR(X) = 2r. The bundle L can be represented
by the canonical factor as

aL(v, γ) = χ(γ)exp(iπF (v, γ)), AL(v) = iπF (v, dx),

where we denote by {x1, ..., xn} the coordinates on V which are 1-periodic on X. In particular
we can choose {xi} such that the basis {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} of Γ forms
a symplectic basis for F , that is

F =
r∑︂
i=1

didx
i ∧ dxr+i (6.2.9)

with di ∈ Z>0. Once again, we call (d1, ..., dr) the type of L and d = d1 · ... · dr the degree
of L.

Consider now a decomposition
Γ = Γ1 ⊕ Γ2

into maximal isotropic subspaces with respect to F . Let

V = V1 ⊕ V2 = (Γ1 ⊗ R) ⊕ (Γ2 ⊗ R)

the decomposition into maximal isotropics induced on V . For example with respect to the
symplectic frame {xi} we can choose Γ1 and Γ2 as the integer span of the first and second r basis
vectors respectively, then we have V1 = {xr+1 = ... = x2r = 0} and V2 = {x1 = ... = xr = 0}.

The dual vector space V ∗ and dual lattice Γ∨ inherit the decomposition as well. We have
V ∗ = V ∗

1 ⊕ V ∗
2 where

F (V1) = V ∗
2 and F (V2) = V ∗

1

and Γ∨ = Γ∨
1 ⊕ Γ∨

2 where Γ∨
i = {v∗ ∈ V ∗

i | v∗(Γi) ⊂ Z}. Clearly,

F (Γ1) ⊂ Γ∨
2 and F (Γ2) ⊂ Γ∨

1

and the decomposition of V ∗ and Γ∨ are decompositions into maximal isotropics with respect
to F−1. Indeed, let {x̂1, ..., x̂2r} be coordinates on X̂ dual to {xi} in the sense that the
induce dual bases on Γ and Γ∨. Then,

F−1 = −2πi
r∑︂
i=1

1
di
dx̂i ∧ dx̂r+i, (6.2.10)

moreover V ∗
1 = {x̂r+1 = ... = x̂2r = 0} and {x̂1 = ... = x̂r = 0}.

Let

ΓY := Γ1 ⊕ F−1(Γ∨
1 ) (6.2.11)

and define

Y := V/ΓY . (6.2.12)

Since ΓX ⊂ ΓY we have a degree d isogeny f : X → Y .
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Restricting F to ΓY is a type (1, ..., 1) pairing and we may extend χ to a semicharacter of F
over ΓY . Therefore, we can define a U(1)-bundle N on Y via the pair (aN , AN)

aN(v, γ) = χ(γ)exp(iπF (v, γ)), AN(v) = iπF (v, dy) (6.2.13)

where now γ ∈ ΓY and {y1, ..., y2r} are coordinates on V which induce 1-periodic coordinates
on Y . We have, f ∗N ∼= L.
For example if {xi} are symplectic coordinates as before, we can set

yi = xi, i = 1, ..., r; yr+i = 1
di
xr+i, i = 1, ...r.

and we have
F = 2πi

r∑︂
i=1

dyi ∧ dyr+i.

Let us construct f̂ ∗(ϕN )∗N
−1. It is the pushforward of a line bundle along an isogeny so it is

a projectively flat U(d)-bundle with a connection. Let us first calculate (ϕN)∗N
−1. We have

Γ∨
Y = F (ΓY ) = Γ∨

1 ⊕ F (Γ1)

since N is a type (1, ..., 1) line bundle and ϕN is an isomorphism. Therefore, for all v̂ ∈ V ∗

and γ̂ ∈ Γ∨
Y we have

a(ϕN )∗N−1(v̂, γ̂) = χ(F−1(γ̂))−1exp(iπF−1(v̂, γ̂)),
A(ϕN )∗N−1(v̂) = −iπF−1(ŷ, dŷ),

where we use that −F (F−1(v̂), F−1(γ̂)) = −v̂(F−1(γ̂)) = −F−1(γ̂, v̂) = F−1(v̂, γ̂).

The degree d isogeny f̂ : Ŷ → X̂ is induced by the inclusion Γ∨
Y = Γ∨

1 ⊕F (Γ1) ⊂ Γ∨ = Γ∨
1 ⊕Γ∨

2 .
To define f̂ ∗(ϕN)∗N

−1 we use a set of representatives of

Γ∨ : Γ∨
Y = Γ∨

2 : F (Γ1).

Choose these representatives {λ1, ..., λd} in Γ∨
2 ∈ V ∗

2 . The kernel of f̂ is given by the points
of Γ∨

2 /F (Γ1) so any ŷ ∈ ker(f̂) can be represented by one of the λis.

We write λ̂+ λi = λ̂1 + λ̂2 + λi = λ̂1 + λλ̂(i) + Λi
λ̂

so f̂ ∗(ϕN)∗N
−1 is given as follows.

af̂∗(ϕN )∗N−1(v̂, λ̂) =
(︃
a(ϕN )∗N−1(v̂ + λλ̂(i), λ̂1 + Λi

λ̂
)δj
λ̂(i)

)︃i
j

=
(︃
χ(F−1(λ̂1 + Λi

λ̂
))−1exp(iπF−1(v̂ + λλ̂(i), λ̂1 + Λi

λ̂
))δj

λ̂(i)

)︃i
j
.

Using that F−1(λi, λj) = 0 and changing the representative by ϕ(v̂) =
(︃
exp(−iπF−1(v̂, λi))

)︃i
iwe get

af̂∗(ϕN )∗N−1(v̂, λ̂) =

= exp(iπF−1(v̂, λ̂)) ·
(︃
χ(F−1(λ̂1 + Λi

λ̂
))−1exp(iπF−1(λλ̂(i), λ̂) − iπF−1(λ̂, λi))δjλ̂(j)

)︃i
j

= exp(iπF−1(v̂, λ̂)) · Uf̂∗(ϕN )∗N−1(λ̂),
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where Uf̂∗(ϕN )∗N−1(λ̂) : Γ∨ → U(d) is a semi-representation for F−1. We further rewrite it as

U f̂∗(ϕN )∗N−1(λ̂) =

=
(︃
χ(F−1(λ̂1 + Λi

λ̂
))−1exp(iπF−1(λλ̂(i), λ̂1) − iπF−1(λ̂1, λi))δjλ̂(j)

)︃i
j

=
(︃
χ(F−1(λ̂1))−1χ(F−1(Λi

λ̂
))−1×

× exp(−iπF−1(λ̂2 + λi − λλ̂(i), λ̂1) + iπF−1(λλ̂(i), λ̂1) − iπF−1(λ̂1, λi))δjλ̂(j)

)︃i
j

=
(︃
χ(F−1(λ̂1))−1χ(F−1(Λi

λ̂
))−1exp(−iπF−1(λ̂2, λ̂1) + 2πiF−1(λλ̂(i), λ̂1))δjλ̂(j)

)︃i
j
.

(6.2.14)
The corresponding connection is given by

Af̂∗(ϕN )∗N−1(v̂) =
(︃
A(ϕN )∗N−1(v̂ + λi)δij

)︃i
j
,

=
(︃
iπF−1(v̂, dv̂) + iπF−1(λi, dv̂)

)︃i
i
,

so changing the representative by ϕ(v̂) =
(︃
exp(−iπF−1(v̂, λi))

)︃i
i

we get

Af̂∗(ϕN )∗N−1(v̂) = iπF−1(v̂, dv̂) · Id. (6.2.15)

The analogue of Proposition 5.3.10 for principal bundles with connections can be phrased in
terms of the Hermitian vector bundles they define via the standard representation. Let EN
be the rank d Hermitian vector bundle corresponding to f̂ ∗(ϕN)∗N

−1 and EL the rank d2

Hermitian vector bundle corresponding to (ϕL)∗L
−1. We claim, that

EL ∼= E⊕d
N ,

as Hermitian vector bundles with connections. In terms of the principal bundles we can say
that the principal U(d2)-bundle admits a reduction of the structure group to the subgroup
U(d) of U(d2) via the homomorphism

ρ : U(d) → U(d2), A ↦→

⎛⎜⎜⎜⎜⎜⎝
A 0 ... 0
0 A ... 0
... . . . ...
0 0 ... A

⎞⎟⎟⎟⎟⎟⎠ . (6.2.16)

In terms of principal bundles, we will write PL = PN ⊗ U(d) when such reduction of structure
group is possible.

Theorem 6.2.2. Let L → X be a degree d non-degenerate U(1)-bundle with invariant
curvature F , f : X → Y an isogeny, N → Y a type (1,...,1) line bundle such that f ∗N = L.
Then,

(ϕL)∗L
−1 =

(︃
f̂ ∗(ϕN)∗N

−1
)︃

⊗ U(d).

More precisely, we can find representatives of (ϕL)∗L
−1 of the form

a(ϕL)∗L−1(v̂, λ̂) = exp(iπF−1(v̂, λ̂)) · U(ϕL)∗L−1(λ̂),
A(ϕL)∗L−1(v̂) = iπF−1(v̂, dv̂) · Idd2×d2 ,
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and of f̂ ∗(ϕN)∗N
−1

af̂∗(ϕN )∗N−1(v̂, λ̂) = exp(iπF−1(v̂, λ̂)) · Uf̂∗(ϕN )∗N−1(λ̂),
Af̂∗(ϕN )∗N−1(v̂) = iπF−1(v̂, dv̂) · Idd×d,

such that the semi-representations U(ϕL)∗L−1 and Uf̂∗(ϕN )∗N−1 of Γ∨ satisfy

U(ϕL)∗L−1 = ρ ◦ Uf̂∗(ϕN )∗N−1 : Γ∨ → U(d2).

Proof. Let us calculate the semi-representation of (ϕL)∗L
−1. We take representatives of

Γ∨ : F (Γ) = (Γ∨
1 ⊕ Γ∨

2 ) : (F (Γ2) ⊕ F (Γ1))

as follows. Let {λ1, ..., λd} be the full set of representatives of Γ∨
2 : F (Γ1) in V ∗

2 as in the
construction of f̂ ∗(ϕN )∗N

−1 and let {µ1, ..., µd} be a full set of representatives of Γ∨
1 : F (Γ2)

in V ∗
1 . Then, ϵij = µi + λj is a full set of representatives of Γ∨ : F (Γ).

We write λ̂+ ϵij = λ̂1 + µi + λ̂2 + λj = µλ̂(i) +M i
λ̂

+ λλ̂(j) + Λj

λ̂

a(ϕL)∗L−1(v̂, λ̂) =

=
(︃
aL−1(F−1(v̂ + µλ̂(i) + λλ̂(j)), F

−1(M i
λ̂

+ Λj

λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

=
(︃
χ(F−1(M i

λ̂
+ Λj

λ̂
))−1exp(iπF−1(v̂ + µλ̂(i) + λλ̂(j),M

i
λ̂

+ Λj

λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl
.

Changing the representative by ϕ(v̂) =
(︃
exp(−iπF−1(v̂, µi + λj))

)︃ij
ij

yields,

a(ϕL)∗L−1(v̂, λ̂) = exp(iπF−1(v̂, λ̂)) · U(ϕL)∗L−1(λ̂),

where U(ϕL)∗L−1 : Γ∨ → U(d2) is a semi-representation. The connection one-form, after
changing the representative by ϕ(v̂) = exp(−iπF−1(v̂, µi + λj))ijij is given by

A(ϕL)∗L−1(v̂) = iπF−1(v̂, dv̂) · Id.

We may further change the semi-representation by conjugating with constant matrices which
does not change the connection.

U(ϕL)∗L−1(λ̂) =

=
(︃

χ(F −1(M i
λ̂

+ Λj
λ̂
))−1exp(−iπF −1(λ̂, µi + λj) + iπF −1(µλ̂(i) + λλ̂(j), M i

λ̂
+ Λj

λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

=
(︃

χ(F −1(M i
λ̂
))−1χ(F −1(Λj

λ̂
))−1exp(iπF −1(M i

λ̂
, Λj

λ̂
))×

× exp(−iπF −1(λ̂1, λj) − iπF −1(λ̂2, µi) + iπF −1(µλ̂(i), Λj
λ̂
) + iπF −1(λλ̂(j), M i

λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

.
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Using the extension of χ to ΓY and that F−1(µi,Λj

λ̂
) ∈ Z we have

U (ϕL)∗L−1(λ̂) =

=
(︃

χ(F −1(λ̂1))−1χ(F −1(µi))−1χ(F −1(µλ̂(i)))χ(F −1(Λj
λ̂
))−1exp(iπF −1(λ̂1 + µi, Λj

λ̂
))×

× exp(−iπF −1(λ̂1, λj) − iπF −1(λ̂2, µi) + iπF −1(λλ̂(j), M i
λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

=
(︃

χ(F −1(λ̂1))−1χ(F −1(Λj
λ̂
))−1exp(iπF −1(λ̂1, Λj

λ̂
) − iπF −1(λ̂1, λj)) + iπF −1(λλ̂(j), λ̂1))×

× χ(F −1(µi))−1χ(F −1(µλ̂(i)))exp(−iπF −1(λ̂2, µi) + iπF −1(λλ̂(j), µi − µλ̂(i)))×

× exp(−iπF −1(µi, Λj
λ̂
))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

.

Changing the representatives by ϕ(v̂)ijij = χ(F−1(µi))exp(−iπF−1(µi, λj)) yields

U (ϕL)∗L−1(λ̂) =

=
(︃

χ(F −1(λ̂1))−1χ(F −1(Λj
λ̂
))−1×

× exp(iπF −1(λ̂1, Λj
λ̂
) − iπF −1(λ̂1, λj)) + iπF −1(λλ̂(j), λ̂1))δk

λ̂(i)δ
l
λ̂(j)

)︃ij
kl

=
(︃

χ(F −1(λ̂1))−1χ(F −1(Λj
λ̂
))−1exp(iπF −1(λ̂1, λ̂2) − 2πiF −1(λ̂1, λλ̂(j)))δ

k
λ̂(i)δ

l
λ̂(j)

)︃ij
kl

.

That is for any λ̂ ∈ Γ∨

U(ϕL)∗L−1(λ̂) ∼= Uf̂∗(ϕN )∗N−1(λ̂) ⊗ E(λ̂)

where E is a representation of Γ∨ in U(d) given by

E : Γ∨ → U(d), λ̂ ↦→
(︃
δi
λ̂(i)

)︃
.

The permutation i ↦→ λ̂(i) is from the change λ̂+ µi = µλ̂(i) +M i
λ̂

+ λ̂2, in particular E is
trivial on F (Γ2) + Γ∨

2 .

Analogously to the proof of f∗C ∼= ⊕Li∈Ker(f̂)Li (Lemma 5.3.5) one can show that the
vector bundle defined by E is the sum of all the line bundles corresponding to characters of
Γ∨ which are trivial on F (Γ2) ⊕ Γ∨

2 . These characters can be represented by elements in
(F (Γ2) ⊕ Γ∨

2 )∨ ∼= F−1(Γ∨
2 ) ⊕ Γ2 which do not belong to (Γ∨)∨ ∼= Γ1 ⊕ Γ2.

The cosets F−1(Γ∨
2 ) : Γ2 are represented exactly by F−1(λ1), ..., F−1(λn) where λi represent

Γ∨
2 : F (Γ1). That is,

E ∼=
d⨁︂
i=1

Lλi

where Lλi
are given by

aLλi
: Γ∨ → U(1), aLλi

(λ̂) = exp(2πiF−1(λi, λ̂)).
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Rewriting E into its diagonal form, using the Vandermond-type change of basis (5.3.28), gives
us the following.

U(ϕL)∗L−1(λ̂) =

=
(︃
Uf̂∗(ϕN )∗N−1(λ̂)

)︃j
l

⊗
(︃
exp(2πiF−1(λi, λ̂))δki

)︃i
k

=
d⨁︂
i=1

(︃
Uf̂∗(ϕN )∗N−1(λ̂) · exp(2πiF−1(λi, λ̂1))

)︃j
l

=
d⨁︂
i=1

(︃
χ(F−1(λ̂1))−1χ(F−1(Λj

λ̂
))−1×

× exp(iπF−1(λ̂1, λ̂2) − 2πiF−1(λ̂1, λλ̂(j))) · δl
λ̂(j) · exp(2πiF−1(λi, λ̂1))

)︃j
l

=
d⨁︂
i=1

(︃
χ(F−1(λ̂1))−1χ(F−1(Λj

λ̂
))−1exp(iπF−1(λ̂1, λ̂2) − 2πiF−1(λ̂1, λλ̂(j) + λi)) · δl

λ̂(j)

)︃j
l

=
d⨁︂
i=1

Uf̂∗(ϕN )∗N−1(λ̂)

after we change the set of representatives from {λ1, ..., λd} to {λ1 + λi, ..., λd + λi} for each
i.

6.2.1 Independence of the choice of f and N

For a non-degenerate holomorphic line bundle L → X on a complex torus, the vector bundle
f̂ ∗(ϕN )∗N

−1 agrees with the Fourier-Mukai transform of L, therefore it is independent of the
choice of isogeny f : Y → X and line bundle N → Y . In the U(1)-case we want to define
a T-dual which agrees with the Fourier-Mukai transform for B-branes. To achieve this we
must show, without relying on the Fourier-Mukai transform, that the bundle f̂ ∗(ϕN)∗N

−1 is
independent of the choices of isogeny f : Y → X and U(1)-bundle N → Y .

First, we show that given an isogeny f : Y → X constructed as (6.2.11) and (6.2.12) the
bundle f̂ ∗(ϕN)∗N

−1 is independent of the choice of line bundle N → Y satisfying f ∗N = L.
We construct Y by choosing a decomposition Γ = Γ1 + Γ2 with respect to the curvature F of
the connection on L. Different choices of decompositions yield different tori Y and different
isogenies f : Y → X. In Part II. we show that the result is also independent of the choice of
decomposition.

Part I. Choice of line bundle N . We may multiply N by any line bundle which pulls
back to the trivial bundle on X. These line bundles are precisely the ones corresponding to
ŷ ∈ Ker(f̂). We need the following two lemmas which are real analogues of Lemmas 5.3.7
and 5.3.9.

Lemma 6.2.3. Let N → Y be a type (1, ..., 1) non-degenerate line bundle. Then, for any
ŷ ∈ Ŷ we have

(ϕN)∗(N−1 ⊗ Lŷ) ∼= t∗−ŷ(ϕN)∗N
−1.
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Proof. We represent N by the canonical factor as
aN(v, λ) = χ(λ)exp(iπF (v, λ)), AN(v) = iπF (v, dv).

The line bundle Lŷ is represented by
aLŷ

(v, λ) = exp(2πiŷ(λ)), ALŷ
= 0

if we view ŷ ∈ V ∗ as a lift of ŷ ∈ Ŷ . Then,
a(ϕN )∗(N−1⊗Lŷ)(v̂, λ̂) = χ(F−1(λ̂))−1exp(−iπF (F−1(v̂), F−1(λ̂))exp(2πiŷ(F−1(λ̂)))

= χ(F−1(λ̂))−1exp(iπF−1(v̂, λ̂)exp(2πiF−1(λ̂, ŷ))
= χ(F−1(λ̂))−1exp(iπF−1(v̂ − ŷ, λ̂))exp(−πiF−1(ŷ, λ̂))
= a(ϕN )∗N−1(v̂ − ŷ, λ̂)exp(−πiF−1(ŷ, λ̂))

meanwhile,
A(ϕN )∗(N−1⊗Lŷ)(v̂) = A(ϕN )∗N−1(v̂) = iπF−1(v̂, dv̂).

Changing the factor of automorphy and connection by ϕ(v̂) = exp(πiF−1(ŷ, v̂)) results in

a(ϕN )∗(N−1⊗Lŷ)(v̂, λ̂) = a(ϕN )∗N−1(v̂ − ŷ, λ̂), A(ϕN )∗(N−1⊗Lŷ)(v̂) = A(ϕN )∗N−1(v̂ − ŷ).

using the specific form of AN−1 .

Lemma 6.2.4. Let f : X → Y be an isogeny and L a line bundle on X. Then, for any
x ∈ Ker(f) we have

f∗t
∗
xL

∼= f∗L.

Proof. A point x ∈ X lies in Ker(f) if it is in ΓY /ΓX . Let λx ∈ ΓY be a preimage of x ∈ X
in the universal cover. Then, t∗xL is represented by

at∗xL(v, λ) = aL(v + λx, λ), At∗xL(v) = AL(v + λx).

Therefore,

af∗t∗xL(v, λ) =
(︃
aL(v + λx + λλ(i),Λi

λ)δ
λ(i)
j

)︃i
j

Af∗t∗xL(v) =
(︃
AL(v + λx + λi)δij

)︃i
j
.

Since {λ1, ..., λn} is a full set of representatives of ΓY /ΓX and λx ∈ ΓY , {λx+λ1, ..., λx+λn}
is again a full set of representatives. As we have proved before, the pushforward does not
depend on the choice of representatives. Note that

λ+ λi = λλ(i) + Λi
λ

so
λ+ λx + λi = λx + λλ(i) + Λi

λ.

Since ϕN = ϕN⊗Lŷ
for any ŷ ∈ Ŷ , we have for any ŷ ∈ Ker(f̂)

f̂ ∗(ϕN)∗(N−1 ⊗ Lŷ) = f̂ ∗t
∗
−ŷ(ϕN)∗N

−1 = f̂ ∗(ϕN)∗N
−1.

Therefore, f̂ ∗(ϕN)∗N
−1 is independent of the choice of N given the isogeny f : X → Y .
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Part II. Choice of decomposition. Our strategy is as follows. We first calculate how
the lattice ΓY changes if we change the decomposition. We can choose symplectic frames
with respect to both decompositions, then the change of basis between the two frames is an
integral symplectic linear transformation. We can view the changing of lattices as changing
the symplectic frames. We follow the work of Hua and Reiner [HR49] to find generators of
the integral symplectic group transforming symplectic frames into each other. We finally show
that changing the frame by any of these generators does not change the resulting U(d)-bundle
f̂ ∗(ϕN)∗N

−1.
Let Γ = Γ1 ⊕ Γ2 be a decomposition and {xi, yi}ri=1 one-periodic coordinates on X with
respect to this decomposition. That is, under the identification V ∼= TxX for any point x ∈ X
the coordinate basis { ∂

∂xi
}i=1,..,r and { ∂

∂yi
}i=1,...,r is a basis of Γ1 and Γ2 respectively. We may

also assume that the induced frame is symplectic so we can write

F =
r∑︂
i=1

didx
i ∧ dyi.

for positive integers di.
Suppose Γ = Γ′

1 ⊕ Γ′
2 and let {ui, vi} be 1-periodic coordinates with respect to this decompo-

sition which also form a symplectic frame for F .
Let us represent F in matrix form as

F =
(︄

0 F
−F 0

)︄
∈ GL(2r,Z), (6.2.17)

with F = diag(d1, ..., dr). Then the change of basis between the coordinates {xi, yi} and
{ui, vi} can be represented by a matrix

S =
(︄
A B
C D

)︄
∈ SL(2r,Z) (6.2.18)

such that
S
(︄

0 F
−F 0

)︄
ST =

(︄
0 F

−F 0

)︄
(6.2.19)

and the coordinates transform as(︄
AT CT

BT DT

)︄(︄
x
y

)︄
=
(︄
u
v

)︄
.

We defined ΓY as Γ1 ⊕F−1(Γ∨
1 ) so ΓY ′ = Γ′

1 ⊕F−1(Γ′∨
1 ). The new 1-periodic coordinates on

Y are {xi, diyi} so ΓY is spanned by { ∂
∂xi , d

−1
i

∂
∂yi } and on Y ′ are {ui, divi}. The transition

between them is given by (︄
AT CTF−1

FBT FDTF−1

)︄(︄
x
Fy

)︄
=
(︄
u
Fv

)︄
.

The two lattices ΓY and ΓY ′ coincide if and only if this new transition is integral. From the
symplectic property of S we know that

S−1 =
(︄

0 F
−F 0

)︄
ST

(︄
0 −F−1

F−1 0

)︄
=
(︄
FDTF−1 −FBTF−1

−FCTF−1 FATF−1

)︄

which is again in SL(2r,Z) so FDTF−1 is integral. That is if CF−1 is integral ΓY = ΓY ′ .
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Generators of Sp(F ,Z). We will denote 2r × 2r matrices by mathcal letters and r × r
matrices by latin letters. We denote the r × r identity matrix by I. Let F , the alternating
non-degenerate bilinear pairing on Γ, be given in normal form as

F =
(︄

0 F
−F 0

)︄

where F = diag(d1, ..., dr) with di ∈ Z>0 and di|di+1. Let Sp(F ,Z) be the space of 2r × 2r
matrices S lying in SL(2r,Z) satisfying

SFST = F .

In [HR49, Page 1] Hua and Reiner gave the full set of representatives of the group Sp(2r,Z),
that is of the group Sp(F ,Z), where F is the standard symplectic matrix with d1 = ... = dr = 1.
We can slightly modify their proof to find a full set of representatives of Sp(F ,Z) with general
F .

Theorem 6.2.5. The group Sp(F ,Z) is generated by the following types of elements

(I) Translations:

S =
(︄
I S
0 I

)︄

where S satisfies SF = FST .

(II) Rotations:

S =
(︄
A 0
0 D

)︄

where D = F (A−1)TF−1.

(III) Semi-involutions:

S =
(︄

J I − J
J − I J

)︄

where J is a diagonal matrix whose diagonal elements are 0’s and 1’s, so that J2 = J and
(I − J)2 = I − J .

Theorem 6.2.5 differs from the result of [HR49] in two points. In (II) we require D =
F (A−1)TF−1 instead of D = (A−1)T and in (I) we require that S satisfies SF = FST

instead of S being symmetric. We give a name to this last property.

Definition 6.2.6. We say an r × r matrix S is F -symmetric if it satisfies SF = FST .

The proof of Theorem 6.2.5 relies on two lemmas which we also modify slightly from [HR49].

Lemma 6.2.7. Let m be a nonzero integer and T an r×r F -symmetrix matrix (not necessarily
integral) and suppose that m does not divide at least one of the elements of T . Then there
exists an F -symmetric matrix matrix S with integral elements such that

0 < |det(T −mS)| < d1

dr
|m|r.
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6.2. Non-degenerate U(1)-bundles

We modified [HR49, Lemma 1] by changing "symmetric" to "F -symmetric" and adding the
scaling factor d1/dr to the right-hand side of the inequality. The proof is also a word-for-word
retelling of the relevant proof of Hua and Reiner with "symmetric" exchanged by "F -symmetric"
and the right scaling factors added.

Proof of Lemma 6.2.7. For r = 1 we have T = t and we may write t = s ·m+ r + {t} for
s, r ∈ Z, |r| < m and {t} the fractional part of t. S = [s] is the matrix we are looking for.
For r = 2 let T = (tij) and S = (sij). The F -symmetry condition requires that d2t12 = d1t21.
Since d1|d2 this means t12 = d1

d2
t21 and s12 = d1

d2
s21. We have

|det(T −mS)| = |(t11 −ms11)(t22 −ms22) − d1

d2
(t21 −ms21)2|.

If m divides both t11 and t22 it cannot divide t21 by our assumption. Let then s11 = t11/m
and s22 = t22/m and let s21 such that |t21 −ms21| < m and we are done.
If m does not divide at least one of the diagonal elements, say t11 let s21 be an arbitrary
integer and choose s11 such that |t11 −ms11| < m. Then we have

|det(T −mS)| = | −m(t11 −ms11)s22 + ...|,

where ... denotes the already fixed terms not involving s22. Using the Euclidean algorithm on
... there exists an s22 such that

|det(T −mS)| ≤ |m(t11 −ms11)| < |m|2.

We proceed by induction on r. Suppose that the result has been established for r − 1 with
r ≥ 3. Let T be an r × r matrix and suppose that tij is not divisible by m. Let tkk be a
diagonal element not in the same row or column as tij . Let T1 be the (r− 1) × (r− 1) matrix
obtained from T by removing the kth row and column and let S1 be obtained the same way
from S. By the induction hypothesis, we may choose an F -symmetric S1 such that

0 < |det(T1 −mS1)| <

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1
dr−1

|m|r−1

d1
dr

|m|r−1

d2
dr

|m|r−1

≤ d1

dr
|m|r−1,

since d1 ≥ d2 and dr−1 ≥ dr. Fix now slk and skp for l = k + 1, ..., n and p = 1, ..., k − 1
arbitrarily. Then, skl = dl

dk
slk and spk = dp

dk
and we have

|det(T −mS)| = | −mskkdet(T1 −mS1) + ...|,

where the terms ... do not involve skk. Using again the Euclidean algorithm we can choose
skk such that

|det(T −mS)| ≤ |m| · |det(T1 −mS1)| <
d1

dr
|m|r.

Lemma 6.2.8. Let A and B be integer matrices satisfying AFBT = BFAT and let det(A) ̸=
0. Then, there exists an F -symmetric integer matrix S such that either

B − AS = 0

or
0 < |det(B − AS)| < d1

dr
|det(A)|.
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Once again we have modified [HR49, Lemma 2] by simply changing "symmetric" to "F -
symmetric" and adding the right scaling factors. The proof is again the proof from the paper
with the same changes.

Proof of Lemma 6.2.8. Let m = |det(A)|. From AFBT = BFAT the matrix A−1B is F -
symmetric but may be no longer integral. Then either every element of A−1B is an integer, in
which case there exists an F -symmetric S with A−1B = mS and B − AS = 0, or, by 6.2.7
there exists F -symmetric matrices R and S such that S is integral

mA−1B = mS +R

and 0 < |R| < d1
dr

|m|r. Then, B − AS = AR/m and

0 < |det(B − AS)| =
⃓⃓⃓⃓
det
(︃
AR

m

)︃⃓⃓⃓⃓
= |det(A)| · |det(R)|

|m|r
= |det(R)|

|m|r−1 <
d1

dr
|m|.

Proof of Theorem 6.2.5. We follow word-for-word the proof from [HR49, Section 3] just
exchanging "symmetric" to "F -symmetric" and taking care of the scaling factors. Let

S =
(︄
A B
C D

)︄
.

The relation SFST = F implies that AFDT − BFCT = F so not both A and B are 0.
Moreover, (︄

A B
C D

)︄(︄
0 I

−I 0

)︄
=
(︄

−B A
∗ ∗

)︄
so we may assume that A has rank k > 0. Furthermore,(︄

U1 0
0 U2

)︄(︄
A B
C D

)︄(︄
V1 0
0 V2

)︄
=
(︄
U1AV1 ∗

∗ ∗

)︄

where U2 = F (UT
1 )−1F−1 and V2 = F (V T

1 )−1F−1 so we may take A to have the form

A =
(︄
A1 0
A2 0

)︄

where A1 is an k × k non-degenerate matrix. We write B as

B =
(︄
B1 ∗
∗ ∗

)︄

where again B1 is an k×k matrix. From SFST = F we have A1F1B
T
1 = B1F1A

T
1 . By Lemma

6.2.8, there exists an integral matrix S1 such that either A1S1 +B1 = 0 or A1S1 +B1 = R1
with 0 < |det(R1)| < (d1/dk) · |det(A1)|. Let

S =
(︄
S1 0
0 0

)︄
.
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6.2. Non-degenerate U(1)-bundles

Then, (︄
A B
C D

)︄(︄
I S
0 I

)︄
=
(︄
A AS +B
∗ ∗

)︄

so either B1 becomes 0 or it is replaced by R1 while A is unaltered. If the latter occurs we
proceed as follows: let

J =
(︄

0 0
0 I(r−k)×(r−k)

)︄
.

Then, (︄
A B
C D

)︄(︄
J I − J

J − I J

)︄
=
(︄
A′ ∗
∗ ∗

)︄

where
A′ = AJ +B(J − I) =

(︄
−R1 0

∗ 0

)︄
.

We now repeat the process as before. Since there are finitely many positive integers less than
(d1/dk) · |det(A1)|, this process eventually terminates. Thus, by multiplying by matrices of
the form (I) − (III) we arrive to a matrix

S =
(︄
A0 B0
C0 D0

)︄

with
A0 =

(︄
R 0
∗ ∗

)︄
, B0 =

(︄
0 ∗
∗ ∗

)︄

where det(R) ̸= 0. Since A0FB
T
0 = B0FA

T
0 we see that B0 must be of the form

B0 =
(︄

0 ∗
0 ∗

)︄
.

But then, (︄
0 I

−I 0

)︄(︄
A0 B0
C0 D0

)︄(︄
J I − J

J − I J

)︄
=
(︄
A+ B+

0 D+

)︄

where J is as before. Finally, an upper block diagonal matrix in Sp(F ,Z) can be written as(︄
A B
0 D

)︄
=
(︄
U 0
0 V

)︄(︄
I S
0 I

)︄

with U = A, V = D and S = BD−1 = BF (AT )F−1.

Let L → X = V/Γ be a non-degenerate U(1)-bundle with connection and let us construct an
isogeny f : Y → X as (6.2.11) and (6.2.12) via a decomposition Γ = Γ1 + Γ2. Let N → Y
be a U(1)-bundle with connection such that f ∗N = L.

Theorem 6.2.9. Let (Y,N) be a pair as above together with a degree d isogeny f : X → Y .
Then, f̂ ∗(ϕN)∗N

−1 is independent of the choice of Y and N with the prescribed properties.
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Proof. It remains to show that f̂ ∗(ϕN)∗N
−1 is independent of the choice of decomposition

Γ = Γ1 + Γ2, where we define Y = V/ΓY as V/(Γ1 + F−1(Γ∨
1 ). Let Γ = Γ′

1 ⊕ Γ′
2 be another

decomposition. Let (xi, yi) and (ui, vi) be 1-periodic coordinates for the two decompositions
in which F is in normal form, that is,

F =
r∑︂
i=1

didx
i ∧ dyi =

r∑︂
i=1

didu
i ∧ dvi

where di are positive integers and di|di+1. Therefore, we can write F in matrix form F (6.2.17)
and the transition matrix between the coordinates is S ∈ Sp(F ,Z) (6.2.18).
By Theorem 6.2.5 such an S can be written as the product of two types of matrices: (I.) upper
block-diagonal matrices, a combination of translations and rotations, and (II.) semi-involutions.
We prove separately that our construction is independent of base change by these generators
to conclude the result.
(Step I.) S is upper block-diagonal

S =
(︄
A B
0 D

)︄
.

We have to investigate the difference between F (λ1, λ2) and F (λ′
1, λ

′
2) for λ = λ1 + λ2 with

respect to Γ = Γ1 + Γ2 and λ = λ′
1 + λ′

2 with respect to Γ = Γ′
1 + Γ′

2. Using the bases
corresponding to the 1-periodic coordinates we have(︄

AT 0
BT DT

)︄(︄
λ1
λ2

)︄
=
(︄
λ′

1
λ′

2

)︄
.

and F (λ1, λ2) = λT1 Fλ2 so

F (λ′
1, λ

′
2) = (λ′

1)TFλ′
2 = (ATλ1)TF(BTλ1 +DTλ2) = λT1AFD

Tλ2 + λT1AFB
Tλ1

Since SFST = F we have

F (λ′
1, λ

′
2) = F (λ1, λ2) + λT1 (AFBT )λ1

where AFBT is symmetric. In particular, for any λ ∈ Γ we have

exp(iπλT1 (AFBT )λ1) = exp
(︃
iπ

r∑︂
i=1

(AFBT )ii(λ1)i
)︃
.

If we express the semi-character χ for L either as

χL(λ) = exp(iπF (λ1, λ2) + 2πix̂(λ))

or as
χL(λ) = exp(iπF (λ′

1, λ
′
2) + 2πix̂′(λ))

then, x̂′ = x̂+ 1
2
∑︁r
i=1(AFBT )ii(xi)∗, where (xi)∗ is the element of the dual basis on V ∗ dual

to xi.
Consider now ΓY = Γ1 + F−1(Γ∨

1 ) and ΓY ′ = Γ′
1 + F−1(Γ′∨

1 ). From the description (xi, diyi)
and (ui, divi) are 1-periodic coordinates for these lattices and we have(︄

AT 0
FBT FDTF−1

)︄(︄
x
Fy

)︄
=
(︄
u
Fv

)︄
.
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The matrix
S ′ =

(︄
A BF
0 F−1DF

)︄
is integral, since S−1 = FSTF .
It remains to show that extending χL to ΓY does not depend on the description we chose,
that is

exp(iπF (λ1, λ2) + 2πix̂(λ)) = exp(iπF (λ′
1, λ

′
2) + 2πix̂′(λ))

for any λ ∈ ΓY . Note, that S ′ ∈ Sp(Z) that is

S ′
(︄

0 I
−I 0

)︄
(S ′)T =

(︄
0 I

−I 0

)︄

and F acts as
(︄

0 I
−I 0

)︄
on ΓY . That is for λ ∈ ΓY we have

F (λ1, λ2) = λT1 λ2

and
F (λ′

1, λ
′
2) = (ATλ1)T (FBTλ1 + FDTF−1λ2) = λT1 λ2 + λT1AFB

Tλ1

so the difference between x and x′ still cancels out the difference between F (λ1, λ2) and
F (λ′

1, λ
′
2).

(Step II.) S is a semi-involution

S =
(︄

J I − J
J − I J

)︄

for J a diagonal matrix with entries 0 and 1. We will show the proof for

J =
(︄

0 0
0 I(n−1)×(n−1)

)︄

and explain how it implies the general setting. Let {xi, yi} be 1-periodic coordinates for
Γ = Γ1 + Γ2 and {−y1, x2, ..., xr, x1, y2, ..., yr} 1-periodic coordinates for Γ = Γ′

1 + Γ′
2. In

both cases
F =

r∑︂
i=1

didx
i ∧ dyi

and we define

ΓY = span
{︃
∂

∂xi
,− 1

di

∂

∂yi

}︃
,

ΓY ′ = span
{︃

− ∂

∂y1
,
∂

∂x2
, ...,

∂

∂xr
,− 1

d1

∂

∂x1
,− 1

d2

∂

∂y2
, ...,− 1

dr

∂

∂yr

}︃
moreover,

F (λ1, λ2) = F (λ′
1, λ

′
2).

so the semicharacter χL(λ) = exp(iπF (λ1, λ2) + 2πix̂(λ)) which extends to both ΓY and
ΓY ′ defining N and N ′. The dual lattices are given by

Γ∨
Y = {dxi, didyi}, Γ∨

Y ′ = {−dy1, dx2, ..., dxr, d1dx1, d2dy2, ..., drdyr}.
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Let us now calculate L̂1 = f̂ ∗(ϕN)∗N
−1 and L̂2 = f̂

′
∗(ϕN ′)∗(N ′)−1. We need to choose

representatives for Γ∨ : Γ∨
Y and Γ∨ : Γ∨

Y ′ , so let them be

λm =
r∑︂
i=1

midyi, mi ∈ {0, ..., di − 1}

and
µm = m1dxi +

r∑︂
i=2

midyi, mi ∈ {0, ..., di − 1}

respectively.
Both L̂1 and L̂2 are projectively flat vector bundles on X̂ of the same rank and same curvature.
In particular, their factor of automorphy is of the form

aL̂1
(v̂, λ̂) = exp(iπF−1(v̂, λ̂))U1(λ̂) and aL̂2

(v̂, λ̂) = exp(iπF−1(v̂, λ̂))U2(λ̂)

where U1, U2 : Γ∨ → U(d) are semi-representations. Both vector bundles are endowed with
the same connection

AL̂1
(v̂) = AL̂2

(v̂) =
(︃
iπF−1(v̂, dv̂)

)︃i
i
.

Let us investigate the semi-representations U1, U2 : Γ∨ → U(d). We have

U1(λ̂) =

=
(︂
χN(F−1(Λm

λ̂
))−1exp(−iπ(F−1(λ̂, λ̂m) + F−1(λ̂λ̂(m), λ̂) + F−1(λ̂λ̂(m), λ̂m)))δp

λ̂(m)

)︃m
p

=
(︂
χN(F−1(Λm

λ̂
))−1exp(−iπ(F−1(λ̂, λ̂m) + F−1(λ̂λ̂(m), λ̂)))δp

λ̂(m)

)︃m
p
.

Since

χN(F−1(Λm

λ̂
))−1) = exp

(︃
− iπF ((Λm

λ̂
)1, (Λm

λ̂
)2) − 2πiF−1(λ̂+ λ̂m − λ̂λ̂(m), x̂)

)︃
,

changing the factor of automorphy by the constant ϕ(v) = diag(exp(2πiF−1(λ̂m, x̂))) yields

U1(λ̂) = exp(−2πiF−1(λ̂, x̂))×

×
(︃
exp(−iπF ((Λm

λ̂
)1, (Λm

λ̂
)2)exp(−iπ(F−1(λ̂, λ̂m) + F−1(λ̂λ̂(m), λ̂)))δp

λ̂(m)

)︃m
p
.

Note that a constant change in the factor of automorphy does not change the connection.
Similarly,

U2(λ̂) = exp(−2πiF−1(λ̂, x̂))×

×
(︃
exp(−iπF ((Mm

λ̂
)1, (Mm

λ̂
)2)exp(−iπ(F−1(λ̂, µ̂m) + F−1(µ̂λ̂(m), λ̂)))δp

λ̂(m)

)︃m
p
.

A semi-representation Γ∨ is defined by its value on the generators {dx1, ..., dxr, dy1, ..., dyr}.
On {dx2, ..., dxr, dy2, ..., dyr} the two semi-representations agree, in particular for i = 2, ..., r

U1(dxi) = U2(dxi) = exp(−2πiF−1(dxi, x̂))
(︃
exp(−2iπF−1(dxi,midyi)

)︃m
m

= exp(−2πiF−1(dxi, x̂))
(︃
exp

(︃2πimi

di

)︃)︃m
m
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and
U1(dyi) = U2(dyi) = exp(−2πiF−1(dxi, x̂))

(︃
δpi
mi+1

)︃)︃m
p

Meanwhile, for λ̂ = dx1 or λ̂ = dy1 we have

U1(dx1) = exp(−2πiF−1(dx1, x̂))
(︃
exp

(︃2πim1

d1

)︃)︃m
m
,

U2(dx1) = exp(−2πiF−1(dx1, x̂))
(︃
δp1
m1+1

)︃m
p

U1(dy1) = exp(−2πiF−1(dy1, x̂))
(︃
δp1
m1+1

)︃)︃m
p
,

U2(dy1) = exp(−2πiF−1(dy1, x̂)
(︃
exp(−2πiF−1(dy1,m1dx

1))
)︃m
m

= exp(−2πiF−1(dy1, x̂)
(︃
exp

(︃
− 2πim1

d1

)︃)︃m
m

(6.2.20)

These two semi-representations are conjugate to each other via a constant Vandermond-type
matrix

V = 1√
d1

(︃
exp

(︃2πi(m1 − 1)(p1 − 1)
d1

)︃)︃m
p

(6.2.21)

that is,
V −1U1V = U2

and therefore L̂1 ∼= L̂2.
Changing the basis using a more general J would mean that we flip xi and yi for a subset of
{1, ..., n}. This would mean that U1 and U2 would be different on all of the flipped generators.
On the other hand, the difference is again conjugating by a rank d matrix V which can be
decomposed into the tensor product V1 ⊗ ... ⊗ Vn where Vi is of rank di. Each Vi is either
the identity if xi and yi were not flipped or a Vandermond matrix as above if xi and yi were
flipped. In conclusion L̂1 ∼= L̂2 again.

Example 6.2.10. In two dimensions, that is r = 1, and in coordinates {x, y} the matrices
(6.2.20) are given by

U1(dy) = U2(dx) = (δji+1)ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
... ...
0 0 ... 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

U1(dx) =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0
0 ξ . . . 0
... ...
0 0 . . . ξd−1

⎞⎟⎟⎟⎟⎟⎠ , and U2(dy) =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0
0 ξ−1 . . . 0
... ...
0 0 . . . ξ−d+1

⎞⎟⎟⎟⎟⎟⎠ .
so

V −1U1(dy)V = U2(dy).
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6. Factors of automorphy on real tori

Therefore,

U2(dx) = U1(dy) = V U2(dy)V −1 = V −1U1(dx)V = V −1U2(dy)−1V

if and only if
V 2U2(dy) = U2(dy)−1V 2.

Indeed,

(V 2)ij =
∑︂
k

V i
kV

k
j = 1

d

∑︂
k

exp
(︃

2πi(i− 1)(k − 1) + (j − 1)(k − 1)
d

)︃

=

⎧⎨⎩1 if i+ j − 2 = 0, d
0 otherwise.

Writing out in matrix form

V 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 0
0 0 ... 0 1
0 0 ... 1 0
... ...
0 1 ... 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

So

V 2U2(dy) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 0
0 0 ... 0 ξ−d+1

0 0 ... ξ−d+2 0
... ...
0 ξ−1 ... 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , and U2(dy)−1V 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 0
0 0 ... 0 ξ1

0 0 ... ξ2 0
... ...
0 ξd−1 ... 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

6.3 Degenerate U(1)-bundles

Let X = V/Γ be a real n-dimensional torus and let L → X be a degenerate U(1)-bundle.
Then, if the curvature of the connection is invariant we can represent L by the canonical
factor of automorphy

aL(v, λ) = χ(λ)exp(iπF (v, λ)), AL(v) = iπF (v, dv).

The analytification of ϕL : X → X̂ is given by x ↦→ F (x) whose kernel is the subspace
Ker(F ). Therefore, the kernel of ϕL is a disjoint union of subtori K(L) of X. Moreover, ϕL
is not surjective anymore, its image is given by F (V )/F (Γ).

In this section, we generalize Theorem 6.2.2 to degenerate U(1)-bundles analogously to the
holomorphic situation (5.2.20). To do this we have to define the pushforward of a U(1)-bundle
with connection along a general homomorphism of real tori. Any homomorphism decomposes
as the composition of an isogeny and a projection (Stein factorization) so it suffices to define
the pushforward along a projection.

Let q : X → Y be a projection between real tori with connected torus fibers and let L → X be
a U(1)-bundle with a connection on X. Let E be the Hermitian line bundle with a Hermitian
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connection ∇ on X associated to L via the standard representation. Then, using the short
exact sequence

0 → q∗Ω1(Y ) → Ω1(X) → Ω1
X/Y → 0

for complex-valued differential forms, we may take the relative fiber-wise component

∇1 : Γ(L) → Γ(L⊗ Ω1
X/Y )

of ∇ on L. Finally, we give the following definition.

Definition 6.3.1. Let q : X → Y be a projection between real tori with connected torus
fibers and let L → X be a U(1)-bundle with a connection. Then, if the sheaf

q∗E = q∗Ker(∇1)

is again a Hermitian line bundle with a connection, then q∗L is defined to be the frame bundle
of q∗E.

If there exists a Hermitian line bundle with a connection E0 → Y such that q∗E0 = E,
then q∗E = q∗Ker(∇1) = E0. If E is flat on the fibers of q but not trivial, then q∗E =
q∗Ker(∇1) = 0 as a flat but non-trivial Hermitian line bundle on a torus has no global flat
sections.

This point of view extends to isogenies as well, since any principal bundle is trivial over a
discrete set of points. In particular, our definition of the pushforward of a U(1)-bundle along
an isogeny is recovered if we consider instead pushing forward the sheaf Ker(∇1) and the
induced connection on the direct image sheaf.

Let again L → X be a degenerate U(1)-bundle with connection on X and consider the
corresponding homomorphism ϕL : X → X̂. The connected component of the identity
K(L)0 ⊂ X in Ker(ϕL) of the kernel of ϕL is given by Ker(F )/(Ker(F ) ∩ Γ). From the
representation of L by the canonical factor of automorphy it is easy to see that L|K(L)0 is flat.
Note, that ϕL depends only on F so for any flat U(1)-bundle L0 we have ϕL⊗L0 = ϕL.

Suppose now that L|K(L)0 is trivial. Then, L is also trivial on any translates of K(L)0. This
is once again easy to see from the canonical factor. Therefore, there exists a U(1)-bundle N
on X/K(L)0 such that L = q∗N where q : X → X/K(L)0 is the projection. We may now
decompose ϕL into a projection with connected fibers and an isogeny onto its image via the
commutative square

X X̂

X/K(L)0 ˆ︂X/K(L)0

q

ϕL

ϕN

q̂ (6.3.22)

In particular,

(ϕL)∗L
−1 = q̂∗(ϕN)∗q∗L

−1 = q̂∗(ϕN)∗N
−1. (6.3.23)

Note that q̂ is a closed embedding so pushing forward along it is just the same sheaf supported
on the image. We can finally prove the following theorem.
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Theorem 6.3.2. Let L → X be a U(1)-bundle with connection and invariant curvature 2πiF
and let d := Pfr(F ) be the reduced Pfaffian of F . Suppose that L|K(L)0 is trivial. Then,
(ϕL)∗L

−1 is a U(d2)-bundle with a connection supported on Im(ϕL) and on Im(ϕL) using
the same notation as in Theorem 6.2.2 we have

(ϕL)∗L
−1 ∼= L̂⊗ U(d)

for a projectively flat U(d)-bundle L̂ on Im(ϕL).

Proof. From (6.3.23) and the discussion before we know that there exists a non-degenerate
U(1)-bundle N on X/K(L)0 such that q∗N = L and q∗L − N . The analytification of
q : X → X/K(L)0 is given by the projection q : V → V/Ker(F ). The map on lattices is
given by Γ → Γ/(Γ ∩Ker(F )).
The line bundle N can described via the following factor of automorphy and connection
one-form. For any v ∈ V/Ker(F ) and λ ∈ Γ/(Γ ∩Ker(F ))

aN(v, λ) = aL(v̄, λ̄), AN(v) = AL(v̄),

where v̄ ∈ V and λ̄ ∈ Γ are lifts of v and λ, and (aL, AL) is the canonical factor of automorphy
and one-form (6.1.6) for L. This definition does not depend on the lift because L is trivial on
K(L)|0.
Then N−1 = q∗L

−1 and N−1 is a degree d non-degenerate U(1)-bundle on X/K(L)0.
Therefore, by Theorem 6.2.2 there exists a projectively flat U(d)-bundle L̂ on ˆ︂X/K(L)0 such
that (ϕN)∗N

−1 ∼= L̂⊗ U(d).

6.4 Transition between holomorphic and unitary
description

Let X = V/Γ be a complex torus and L → X a holomorphic line bundle. Then choosing
a Hermitian metric on the fibers L we can associate to L a U(1)-bundle endowed with a
connection. In this section, we show that on a complex torus, there is a canonical way of doing
so and that the corresponding connections on the U(1)-bundles have invariant curvatures.
Moreover, in this setting the homomorphism ϕL is independent of whether we view L as a
holomorphic line bundle or a U(1)-bundle with connection. We also show that pushing forward
along an isogeny as a holomorphic line bundle or as a U(1)-bundle coincide. Finally, we explain
how one can define the Poincaré line bundle of a real torus.
Let X be torus defined as X = V/Γ and suppose that there is a complex structure I ∈ End(V )
endowing X with the structure of a complex torus. The complex structure on X can also be
understood via the complex vector space V 1,0 with the complex structure acting as i via the
map

V → V 1,0

v ↦→ 1
2(v − iIv).

Let E be an alternating bilinear form on V taking integer values on Γ and satisfying E(I , I ) =
E( , ). Then, the hermitian form H(v, w) = E(Iv, w) + iE(v, w) lies in NS(X). Let L be
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a U(1)-bundle with connection AL such that E = dAL. Then, the Hermitian structure H
is compatible with the complex structure on X and there is a holomorphic structure on L.
Denote by L be the holomorphic line bundle associated to L.
Representing the line bundles by the canonical factors of automorphy we have

aL(v, λ) = χ(λ)exp(iπE(v, λ)), AL(v) = iπE(v, dv),

and
aL(v, λ) = χ(λ)exp

(︃
πH(v, λ) + π

2H(λ, λ)
)︃
.

Proposition 6.4.1. We have a commutative diagram

V 1,0 (V ∗)0,1

V V ∗

H

1
2 (v−iIv)

E

v̂+iI∗v̂
(6.4.24)

that is, ϕL = ϕL.

Proof. Indeed,

H
(︃1

2(v − iIv)
)︃

= 1
2

(︃
E(Iv) + iE(v) + iE(v) + E(Iv)

)︃
= iE(v) − (I∗E)(v)
= i(E(v) + iI∗E(v)).

Let f : X → Y be a degree d isogeny of complex tori. We have seen that the pushforward
can be written in terms of a semi-representation both in the holomorphic and in the U(1)-case.
Indeed, by (5.3.27) and (6.1.7) (6.1.8) we have

af∗L(v, λ) = exp(iπE(v, λ)) · U(λ), AL(v) = iπE(v, dv) · Idd×d,

af∗L = exp
(︃
πH(v, λ) + π

2H(λ, λ)
)︃

· U(λ)

for the same semi-representation
U : ΓY → U(d).

The Poincaré bundle. We have defined the Poincaré line bundle on X × X̂ via a canonical
factor of automorphy. The underlying U(1)-bundle with connection can be generalized as
the Poincaré bundle on X × X̂ where X is a real torus. This was also the starting point of
the work of Bruzzo, Marelli and Pioli (cf. [BMP01, Section 2.1]). With the conventions for
the complex structure of the dual torus established in Chapter 1, we have the commutative
diagram similar to (6.4.24)

V 1,0 + (V ∗)0,1 V 1,0 + (V ∗)0,1

V + V ∗ V + V ∗

H

1
2 (v−iIv)+i(v̂+iI∗v̂)

E

1
2 (v−iIv)+i(v̂+iI∗v̂)
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where H(v+ v̂, w+ ŵ) = ŵ(v) + v̂(w). The map E is the imaginary part of H, so using that

i

2(v̂ + iI∗v̂)(v + iIv) = i

2(v̂(v) + iv̂(Iv) + i∗I∗v̂(v) − I∗v̂(Iv)) = −v̂(Iv) + iv̂(v),

we have

E(v + v̂, w + ŵ) = v̂(w) − ŵ(v) (6.4.25)

the natural non-degenerate anti-symmetric bilinear pairing on V + V ∗.
The holomorphic Poincaré bundle (5.1.10) is defined by the factor of automorphy

a(v + v̂, λ+ λ̂) = exp
(︃
π · v̂(λ) + π · λ̂(v) + π · λ̂(λ)

)︃
,

v + v̂ ∈ V 1,0 + (V ∗)0,1, λ+ λ̂ ∈ ΓC + Γ∨
C.

Therefore, in real coordinates we have

aP(v + v̂, λ+ λ̂) = exp(iπ(λ̂(λ) + v̂(λ) − λ̂(v)))
AP(v + v̂) = iπ(v̂dv − vdv̂)

v + v̂ ∈ V + V ∗, λ+ λ̂ ∈ Γ + Γ∨,

and the curvature is 2πiP = 2πi dv̂ ∧ dv.

(6.4.26)

We can view the dual torus X̂ as the space of flat U(1)-bundles (cf. Lemma 6.1.6). Then it
is easy to see that the Poincaré bundle (6.4.26) P on X × X̂ satisfies
(1) P|X×{L ∼= L,
(2) P|{0}×X̂ is trivial,
analogously to the holomorphic case.
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CHAPTER 7
T-duality for U(1)-bundles with

connections

In this Chapter, we finally upgrade T-duality of generalized branes to T-duality of physical
branes. Here, we do not restrict ourselves to A or B-branes but we do account for the fact
that the T-dual of a B-brane should be given by the Fourier-Mukai transform.

The history of T-duality for A-branes started with the work of Arinkin and Polishchuk [AP98]
who T-dualized local systems on Lagrangian sections of an affine torus bundle. Later, Bruzzo,
Marelli and Pioli [BMP01, BMP02] extended the ideas of [AP98] to local systems supported
on Lagrangian submanifolds which are affine torus subbundles. They represented these local
systems as flat connections on a U(d)-bundle using factors of automorphy. Finally, Glazebook
Jardim and Kamber defined a T-dual for U(d)-bundles with connections on an affine torus
bundle when the connection is flat on the fiber. The only work, that the author is aware of,
which deals with U(d)-bundles that are not flat on the fiber is [CLZ18] by Chan, Leung and
Zhang. They have given a different construction that we will explain briefly below. When
a brane is BAA on a hyperkähler manifold, one can apply Fourier-Mukai transform to the
underlying B-brane. The resulting holomorphic object in the context of [KW06] and Theorem
4.2.4 is supposed to be a BBB-brane but finding the right hyperholomorphic structure is not
possible in general.

Let us first recall our plan from Section 4.3. Let (M,H = 0) and (M̂, Ĥ = 0) be a T-dual
pair of affine torus bundles with torsion Chern classes in the sense of generalized geometry.
Let S ⊂ X be an affine torus subbundle and L → S a U(1)-bundle with connection such
that the curvature 2πiF ∈ Ω2(S) of the connection is invariant. Then, (S, F ) is a locally
T-dualizable brane and we can locally construct the following diagram (4.3.16).

Z M ×π(S) M̂

S Ŝ π−1(π(S)) π̂−1(π(S))

pZ p̂Z

iZ

p p̂

iS iŜ

In Part 1 of Theorems 7.1.1, 7.2.7 and 7.3.15 we show that one can find leaves Z ⊂ S×π(S) M̂
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on which the U(1)-bundle with connection

L̂Z := p∗
ZL⊗ P|Z

is trivial on the fibers of p̂Z : Z → Ŝ. Here P → M ×B M̂ is the Poincaré bundle which is
either a U(1)-bundle with connection or a gerbe trivialization. Then we naively define the
T-dual as

Ê := p̂∗L̂Z .

Glazebook, Jardim and Kamber also used this method in [GJK04] to T-dualize U(d)-bundles
with connections but those bundles were all flat on the fibers. The structure of the leaves
(cf. Lemma 4.3.9) depends on the restrictions of F to the fibers. Moreover, the projection
p̂Z : Z → Ŝ is determined by a fiberwise homomorphism of tori. If the curvature F is zero
when restricted to the fibers of S this homomorphism is just a projection but when F is
non-zero it is the composition of a projection and an isogeny. The analytification of this
isogeny is given by −F restricted to the fiber.

Therefore, when L restricted to the fibers of S is flat, q∗L̂Z determines the genuine T-dual
of (S, L) in accordance with [GJK04]. On the other hand, when L is not flat on the fiber,
p̂Z is the composition of a projection and a degree d2 isogeny, where d is the degree of L on
the fibers. Then we show, analogously to Theorem 6.3.2, that there exists a projectively flat
U(d)-bundle L̂ → Ŝ such that

Ê = L̂⊗ U(d).

This is Part 3. of Theorems 7.1.1, 7.2.7 and 7.3.15.

In [CLZ18] Chan, Leung and Zhang gave a different construction. They start with an affine
torus subbundle S ⊂ X in an affine torus bundle together with a U(1)-bundle L → S with a
connection whose curvature is invariant. They associate a spinor bundle S → S to the pair
(S, L) which depends on the curvature. This spinor bundle is trivial when the curvature of L
is trivial on the fibers of S. Then, they T-dualize L⊗ S together with a Dirac operator with
the method of Arinkin and Polishchuk. They come to the same conclusion as we do but their
method avoids the extra factor in the T-dual.

This chapter is organized as follows. In Section 7.1, we carry out our program for a single
real torus and show that the result coincides with (5.2.24). That is, on a complex torus
the Fourier-Mukai transform of a holomorphic line bundle supported on an affine subtorus is
the same as its T-dual as a U(1)-bundle with connection. The main result of this section is
Theorem 7.1.1.

In Section 7.2, we T-dualize branes on a trivial affine torus bundle. Here we first extend
the factor of automorphy description to U(1)-bundles with connections on trivial affine torus
bundles. We prove a relative version of the Appel-Humbert theorem. Then we generalize the
main result of Section 7.1.

Finally, in Section 7.3, we define T-duality for branes on affine torus bundles with torsion
Chern classes. To achieve this we have to refine the T-duality relation from the generalized
geometry setting to topological T-duality. Following [Bar15] we recall the relevant background
on gerbes, gerbe connections and gerbe modules and the definition of topological T-duality.
We define the Poincaré bundle (6.4.26) as a gerbe and generalize Theorem 7.1.1.
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7.1 On a torus

In this section, we T-dualize U(1)-bundles with connections supported on affine subtori of
a real torus. Let X ∼= V/Γ be a real torus, X̂ ∼= V ∗/Γ∨ the dual torus and P the Poincaré
bundle (6.4.26) on X × X̂. Then, the tori X and X̂, viewed as trivial torus bundles over a
point, are T-dual in the sense of generalized geometry (Definition 4.1.1) with H = 0, Ĥ = 0
and P ∈ Ω2(X × X̂) the curvature of Poincaré bundle divided by 2πi.
Let S ⊂ X be an affine subtorus and L → S a U(1)-bundle with a connection whose curvature
is 2πiF with F ∈ Ω2(S) invariant. In this section, we construct the T-dual of (S, L) and
show that our construction recovers the Fourier-Mukai transform when the U(1)-bundle and
the connection are compatible with a complex structure on the torus.
The pair L = (S, F ) is a T-dualizable generalized brane on X and it has T-duals in the sense
of generalized geometry since the base is contractible (cf. Theorem 4.3.14). The T-duals are
constructed via the diagram

Z X × X̂

S Ŝ X X̂

pZ p̂Z

iZ

p p̂

iS
iŜ

(7.1.1)

where Z is a leaf of the integrable distribution ∆ = (F + P )1 (4.3.14). On Z we define the
U(1)-bundle L̂Z with connection via the equation

L̂Z ∼= p∗
ZL⊗ i∗ZP∗. (7.1.2)

Then we have the following theorem.

Theorem 7.1.1. In the setting above, the following hold.

1. There exists a single generalized T-dual L̂ = (Ŝ, F̂ ) in X̂ of L = (S, F ) such that for
any Z with p̂Z(Z) = Ŝ the U(1)-bundle with connection L̂Z is trivial on the fibers of
p̂Z : Z → Ŝ.

2. For any leaf Z mapping onto Ŝ as in 1., the pushforward

Ê = (p̂Z)∗L̂Z

is a projectively flat U(d2)-bundle independent of Z. The curvature of the connection
on Ê is given by 2πiF̂ · Id ∈ Ω2(Ŝ, End(Ê)).

3. There exists a projectively flat U(d)-bundle L̂ on Ŝ which satisfies

Ê ∼= L̂⊗ U(d)

in the sense of Theorems 6.2.2 and 6.3.2. Moreover, the curvature of the connection on
L̂ is 2πiF̂ · Id ∈ Ω2(Ŝ, End(L̂)).

Definition 7.1.2. The T-dual of (S, L) is (Ŝ, L̂) as in theorem 7.1.1.
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Remark 7.1.3. The last part of our theorem shows that in general taking fiberwise flat
sections (the naive T-dual), does not give the right answer, but a vector bundle with the
action of Z/dZ. Only after we "divide out" by this action, in part 3., we find a T-dual with
the properties we want. In particular, if L has a holomorphic structure so does L̂ and L and
L̂ are Fourier-Mukai partners.

Proof of Theorem 7.1.1. The submanifold S ⊂ X is an affine subtorus, that is there exists
b ∈ X such that

S = tbS0 = S0 + b, (7.1.3)

where S0 is a subgroup of X. Then, S0 is given by VS/ΓS where VS ⊂ V is a subspace and
ΓS = Γ ∩ V is a primitive sublattice. We can write

L ∼= (tb)∗L0 (7.1.4)

where L0 → S0 is a U(1)-bundle with a connection whose curvature is invariant on S0. We
denote this curvature also with 2πiF and we describe L0 by a canonical factor of automorphy

aL0(s, γ) = χ0(γ)exp(iπF (s, γ) + 2πiĉ(γ)), AL0(s) = iπF (s, ds), (7.1.5)

for s ∈ VS and γ ∈ ΓS. Here, ĉ ∈ V ∗
S is a character of S0 lifted from V ∗

S /Γ∨
S and χ0 is

a semi-character for F on ΓS such that it vanishes on Ker(F ) ∩ ΓS. More precisely, F
is non-degenerate and integral on ΓS/(Ker(F ) ∩ ΓS) so may decompose this lattice into
maximal isotropics with respect to F

ΓS/(Ker(F ) ∩ ΓS) = Γ1 ⊕ Γ2.

Then if we denote the projection r : ΓS → Γ1 ⊕ Γ2 a semi-character χ0 can be given as

χ0(γ) = exp(iπF (r(γ)1, r(γ)2)), where r(γ) = r(γ)1 + r(γ)2, r(γ)i ∈ Γi. (7.1.6)

Suppose that b′ ∈ X is another element such that S0 + b = S0 + b′. Then b − b′ ∈ S0
and L ∼= (tb)∗L0 ∼= (tb′)∗L

′
0 that is L′

0
∼= (tb−b′)∗L0 ∼= t∗b′−bL0. In particular, after changing

representatives

aL′
0
(s, γ) = aL0(s+ b′ − b, γ) = aL0(s, γ) · exp(2πiF (b′ − b, γ)), AL′

0
(s) = AL0(s).

(7.1.7)

That is, we change ĉ ↦→ ĉ+ F (b′ − b) by changing b to b′.
We identify S × X̂ with a translate of S0 × X̂ = (VS × V ∗)/(ΓS + Γ∨) as

S × X̂ = t(b,0)(S0 × X̂) ⊂ X × Ŝ (7.1.8)

so we have
P|S×X̂ = P|t(b,0)(S0×X̂) = (t(b,0))∗

(︃
(t∗(b,0)P)|S0×X̂

)︃
we can represent (t∗(b,0)P)|S0×X̂ by the factor of automorphy

aP(s, v̂; γ, λ̂) = exp
(︃
iπ(v̂(γ) − λ̂(s+ b) + λ̂(γ))

)︃
, AP(s, v̂) = iπ(v̂ · ds− (s+ b) · dv̂),
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with s+ v̂ ∈ VS + V ∗ and γ + λ̂ ∈ ΓS + Γ∨. Identifying S with S0 + b′ would again change
the representative of (t∗(b,0)P)|S0×X̂ by exchanging b with b′.

By Lemma 4.3.9 the leaves of the distribution ∆ are affine subtori of S × X̂ modelled on
VZ/ΓZ , where VZ ⊂ VS + V ∗ and ΓZ ⊂ VS + V ∗ fit into the short exact sequences (4.3.34)
and (4.3.33). By Proposition 4.3.10 the space of leaves is parametrized by points of the torus
V ∗
S /Γ∨

S , the elements of (VS + V ∗)/VZ up to elements of (ΓS + Γ∨)/ΓZ . Denote elements of
V ∗
S /Γ∨

S by c, and the corresponding leaf by Zc. Let c̄ ∈ VS + V ∗ be a lift of c, so we have

Zc ∼= t(b,0)(tc̄Z0) ⊂ t(b,0)(S0 × X̂) = S × X̂. (7.1.9)

Note that we can choose c̄ ∈ V ∗
X because F is integral. The image of Zc under the projection

p̂ : S × X̂ → X̂ is a subtorus of X̂ modelled on VŜ/ΓŜ where VŜ ⊂ V ∗ and ΓŜ ⊂ Γ∨ fit into
the shirt exact sequences (4.3.36) and (4.3.37). By Lemma 4.3.12 the space of images is
parametrized by the torus coker(F )/coker(F,Γ∨

S), that is by elements of V ∗
S /F (VS) up to

elements of the lattice Γ∨
S/(Γ∨

S ∩ F (VS)).
Let us denote the image of Zc under the projection p̂ by Ŝ p̂(c). Then, p̂Zc

: Zc → Ŝ p̂(c) is the
composition of a homomorphism and a translation. Moreover, the projection pZc

: Zc → S can
also be written as the composition of a homomorphism and a translation. The homomorphism
parts p0 and p̂0 of pZc and p̂Zc

respectively are given by the following diagrams.

0 Ann(VS) VZ VS 0

0 Ann(VS) VŜ F (VS) 0,

∼=

p0

p̂0 −F

q
(7.1.10)

0 Ann(ΓS) ΓZ ΓS 0

0 Ann(ΓS) ΓŜ F (VS) ∩ Γ∨
S 0.

∼=

p0

p̂0 −F

q

(7.1.11)

Indeed p0 and p̂0 are the restrictions of V + V ∗ → V and V + V ∗ → V ∗ to VZ and ΓZ . Then
we have the commutative diagram

Z0 Zc

S0 Sp̂(c)

p̂0

t(b,0)◦tc̄

p̂Zc

tc

(7.1.12)

and we see that p̂(c) in coker(F )/coker(F,Γ∨
S) is represented by c = p̂0(c̄) ∈ V ∗

S . Here we
abuse notation, and we also denote by c the lift of c ∈ V ∗

S /Γ∨
S to V ∗

X .
Let L̂Zc = (p∗L⊗ P)|Zc . We have on the correspondence space

p∗L⊗ P ∼= p∗(tb)∗L0 ⊗ P ∼= (t(b,0))∗p
∗L0 ⊗ P ∼= (t(b,0))∗

(︃
p∗L0 ⊗ t∗(b,0)P

)︃
so we have

L̂Zc = (t(b,0))∗

(︃
p∗L0 ⊗ t∗(b,0)P

)︃⃓⃓⃓⃓
tc̄Z0

. (7.1.13)
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7. T-duality for U(1)-bundles with connections

Let us denote by Lc the U(1)-bundle

Lc ∼= t∗c̄

(︃
p∗L0 ⊗ t∗(b,0)P)

⃓⃓⃓⃓
tc̄Z0

∼=
(︃
t∗c̄p

∗L0 ⊗ t∗c̄t
∗
(b,0)P

)︃⃓⃓⃓⃓
Z0

, (7.1.14)

so we have L̂Zc
∼= (t(b,0) ◦ tc̄)∗Lc. It is a U(1)-bundle on Z0, therefore it can be represented by

a canonical factor of automorphy. For v ∈ VZ and γ ∈ ΓZ , with notation as in the diagrams
(7.1.10) and (7.1.11) and using that p̂0(c̄) = c and p0(ĉ) = 0 we have

aLc(v, λ) =

=exp
(︃
iπ((p̂0(v) + c)(p0(λ)) − (p̂0(λ))(p0(v) + b) + iπp̂0(λ)(p0(λ))

)︃
×

× χ0(p0(λ))exp
(︃
iπF (p0(v), p0(λ)) + 2πiĉ(p0(λ))

)︃
=χ0(p0(λ))exp

(︃
iπ(−F (p0(v), p0(λ)) + c(p0(λ)) + F (p0(λ), p0(v)) − p̂0(v)(b))

)︃
×

× exp
(︃

− iπF (p0(λ), p0(λ)) + iπF (p0(v), p0(λ)) + 2πiĉ(p0(λ))
)︃

=χ0(p0(λ))exp
(︃

− iπF (p0(v), p0(λ)) + iπc(p0(λ)) − iπp̂0(v)(b) + 2πiĉ(p0(λ))
)︃
,

ALc(v) = iπF (p0(v) + b, dp0(v)) + iπ(p̂0(v) + c) · dp0(v) − (p0(v) + b) · dp̂0(v)
=iπF (p0(v), dp0(v)) − iπF (p0(v), dp0(v)) + iπc · dp0(v)+

+ iπF (dp0(v), p0(v)) − b · dp̂0(v)
= − iπF (p0(v), dp0(v)) + iπc · dp0(v) − iπb · dp̂0(v).

Changing the representatives by ϕ(v) = exp(−πib · p̂0(v) + iπc · p0(v)) we have

aLc(v, λ) = χ0(p0(λ))×

× exp
(︃

− iπF (p0(v), p0(λ)) − 2πip̂0(λ)(b) + 2πi(ĉ+ c)(p0(λ))
)︃

ALc(v) = −iπF (p0(v), dp0(v)).

(7.1.15)

The line bundle Lc is independent of the choice of b ∈ X. Indeed, changing b to b′

would add the term −2πip̂0(λ)(b′ − b) to the factor of automorphy but we would have
to also change ĉ to ĉ + F (b′ − b) (see (7.1.7)). Using that b′ − b ∈ VS we get that
−p̂0(λ)(b′ − b) = (q ◦ p̂0)(λ)(b′ − b) = −(−F ◦ p0)(λ)(b′ − b) = F (p0(λ), b′ − b). Meanwhile,
F (b′ − b)(p0(λ)) = F (b′ − b, p0(λ)). Therefore the resulting bundle and connection does not
depend on the choice of b ∈ X.
Proof of 1.: By (7.1.10) the kernel of p̂0 : VZ → VŜ surjects onto Ker(−F ) ⊂ VS via
p0. Henceforth, the fibers of p̂Zc

: Zc → Ŝ p̂(c) are disjoint union of affine tori modelled on
Ker(−F )/(Ker(−F ) ∩ ΓS) ∼= K(L)0 (6.1.4). On K(L)0 the restriction of Lc is flat and it
is given by the image of ĉ+ c ∈ V ∗

S /Γ∨
S along the surjection

ĵ : V ∗
S /Γ∨

S → ˆ︂K(L)0

dual to the inclusion j : K(L)0 → S. The other components of the fiber are translations of
K(L)0 by the preimage of a full set of representatives {λ1, ..., λd2} of (H(VS) ∩ Γ∨

S) : H(ΓS).
But Lc is invariant under such translations as

at∗
F −1(λi)

Lc(v, λ) = exp
(︃

− iπλi(p0(λ))
)︃
aLc(v, λ), At∗

F −1(λi)
Lc(v) = ALc(v) − iπλi(dp0(v)),
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7.1. On a torus

so changing the representative by ϕ(v) = exp(−iπλi(p0(v))) gives the isomorphism.
In particular, Lc is trivial on the fibers of p̂Zc

if and only if ĉ+ c lies in the kernel of ĵ or from
the point of view of vector spaces if and only if ĉ+ c lies in F (VS). By Corollary 4.3.13 the
space of leaves mapping to a single T-dual is indeed parametrized by elements of F (VS)/F (ΓS)
so there is a single T-dual Ŝ such that Lc is trivial on all Zc mapping onto Ŝ.
Proof of 2.: Let us now calculate (p̂c)∗Lc for c such that Lc is trivial on the fibers. We
decompose p̂Zc

into a translation and a homomorphism as in (7.1.12)

p̂Zc
= tc ◦ p̂0 : Zc → Ŝ p̂(c)

where we choose a lift of c ∈ V ∗
S /Γ∨

S to an element c of X̂. Let

Êc := (p̂0)∗Lc.

By (7.1.15) we can write
Lc ∼= (p∗

0L
S
c ) ⊗ p̂∗

0Pb

where LSc → S0 and Pb → Ŝ0 are U(1)-bundles given by

aLS
c
(s, γ) = χ0(γ)exp(−iπF (s, γ) + 2πi(ĉ+ c)(γ)), ALS

c
(s) = −iπF (s, ds),

aPb
(ŝ, γ̂) = exp(−2πiγ̂(b)), APb

= 0.

In particular, using the projection formula

Êc = (p̂0)∗(Lc) ∼=
(︃

(p̂0)∗p
∗
0L

S
c

)︃
⊗ Pb,

and by the commutative square in (7.1.10) and (7.1.11) we have

Êc
∼=
(︃
q∗(−ϕL0)∗L

S
c

)︃
⊗ Pb,

where −ϕL0 is the isogeny whose analytification is −F . Notice that Pb is P|{b}×X̂ restricted
to Ŝ0.
That is, to determine Êc we only need to determine (−ϕL0)∗L

S
c . Writing out the definition of

the pushforwards (6.3.1) we find

(−ϕL0)∗L
S
c

∼= (ϕL0)∗(L−1
0 ⊗ P̂−c), (7.1.16)

where P̂−c = P|S×{−c}. Therefore, Ê ∼= (tc)∗Êc
∼= t∗−cÊc is

Ê ∼= t∗−c

(︃
q∗(ϕL0)∗(L−1

0 ⊗ P̂−c)
)︃

⊗ t∗−cPb

since c is the lift of an element in V ∗
S /Γ∨

S to X̂ we have t∗−cq∗ = q∗t∗−c and since Pb is flat we
have t∗−cPb = Pb. In conclusion,

Ê ∼=
(︃
q∗t∗−c(ϕL0)∗(L−1

0 ⊗ P̂−c)
)︃

⊗ Pb. (7.1.17)

The curvature of the connection is indeed given by the two-form q∗F−1 = F̂ .
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7. T-duality for U(1)-bundles with connections

Finally, to show that Ê is well defined, let Zc′ with c′ ∈ V ∗
S be another leaf projecting onto

Ŝ p̂(c). Then again ĉ+ c′ ∈ Im(F ) and

(tc)∗Êc
∼= (tc′)∗Êc′ if and only if (tc−c′)∗Êc

∼= Êc′ .

We have c− c′ ∈ Im(F ) as well so (tc−c′)∗Êc
∼= Êc′ if and only if

(tc−c′)∗(ϕL0)∗(L−1
0 ⊗ P̂−c) ∼= (ϕL0)∗(L−1

0 ⊗ P̂−c′)

Indeed, analogously to Lemma 5.3.7, we have

(tc′−c)∗(ϕL0)∗(L−1
0 ⊗ P̂−c) ∼= (ϕL0)∗(P̂c−c′ ⊗ L−1

0 ⊗ P̂−c) ∼= (ϕL0)∗(L−1
0 ⊗ P̂−c′).

Proof of 3.: By Theorem 6.3.2 there exist projectively flat U(d)-bundles L̂c on Ŝ0 such that
on Ŝ

Ê ∼=
(︃
q∗t∗−c(L̂c ⊗ U(d))

)︃
⊗ Pb

∼=
(︃
q∗t∗−cL̂c ⊗ Pb

)︃
⊗ q∗U(d).

Comparing to (5.2.24), it is clear that starting with a holomorphic line bundle on a complex
torus and taking its Fourier-Mukai transform is the same as starting with the U(1)-bundle
with connection associated to the constant Hermitian form and taking its T-dual.

7.2 On affine torus bundles with contractible base

We would like to generalize Theorem 7.1.1 to physical branes in affine torus bundles. In this
section, we work locally, that is on trivial affine torus bundles over a contractible base. In
the first subsection, we extend the factor of automorphy description for U(1)-bundles with
connections on a trivial family of tori. We prove a version of the Appel-Humbert theorem for
these bundles as well. Finally, in the second subsection, we prove the analogue of Theorem
7.1.1.

7.2.1 Factors of automorphy in family

Let U be a simply connected open subset of Rk and let T n = V/Γ = Rn/Zn be the standard
torus. In this section, we prove a version of the Appel-Humbert theorem for U(1)-bundles
with connection and invariant curvature on M = U × T n.
We can identify M with V/Γ, where V = U ×Rn is the trivial vector bundle and Γ = U ×Zn
is the trivial lattice. The lattice Γ is again isomorphic to the fundamental group π(M) and
it acts on the universal cover U × V of M fiberwise. We define factors of automorphy for
U(d)-bundles as follows.

Definition 7.2.1. A U(d)-factor of automorphy on M is a smooth map

aE : U × V × Γ → U(n)
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7.2. On affine torus bundles with contractible base

satisfying
aE(y, v;λ+ µ) = aE(y, v + λ;µ)aE(y, v;λ).

Two such factors of automorphy aE and a′
E are equivalent is there exists a smooth map

ϕ(y, v) : U × V → U(n) such that

a′
E(y, v;λ) = ϕ(y, v + λ)aE(y, v;λ)ϕ(y, v)−1. (7.2.18)

We may define a U(d)-bundle on M as the induced bundle

E ∼= (U × V ) ×Γ U(d)

under the action λ.(y, v, t) = (y, v + λ, aE(y, v;λ)t). A connection on E can be specified by
a one form AE ∈ Ω1(U × V, u(n)) satisfying

AE(y, v + λ) = aE(y, v;λ)AE(y, v)aE(y, v;λ)−1 − daE(y, v;λ) · aE(y, v;λ). (7.2.19)

Two pairs (aE, AE) and (a′
E, A

′
E) are equivalent if there exists a a smooth map ϕ(y, v) :

U × V → U(n) such that a′
E and aE are related by ϕ as in (7.2.18) and

A′
E(y, v) = ϕ(y, v)AE(y, v)ϕ(y, v)−1 − dϕ(y, v) · ϕ−1(y, v).

Following the proof of Proposition 6.1.3 we can prove the following.

Theorem 7.2.2. There is a one-to-one correspondence between equivalence classes of principal
U(d)-bundles with connections E → M and equivalence classes of pairs (aE, AE) as in
Definition 7.2.1 and (7.2.19).

Let us now focus on U(1)-bundles with connections or the associated Hermitian line bundles.
Again, as in the “absolute case" (when U is a single point) the first Chern class of a pair
(aL, AL) is given by the cohomology class

1
2πidAL ∈ H2(M,Z) ∼= H2(T n,Z).

Lemma 7.2.3. Let L → M be a U(1)-bundle with a flat connection on M . Then, L can be
uniquely represented by a pair (AL, aL) with aL constant on U × V and AL = 0.

Proof. The proof is the same as in the absolute case (Lemma 6.1.6). Let (AL, aL) be a
representative of L. Since dAL = F = 0 there exists a function f : U × V → R such that
AL = 2πidf. Changing the representatives by ϕ(y, v) = exp(2πif) sets AL = 0 invariant
under translation by Γ. Using the compatibility between AL and aL we find that daL = 0 and
hence constant on U × V .

Lemma 7.2.3 proves that a global flat bundle on M is again given by a character, that is by an
element of Hom(Γ, U(1)) ∼= T n̂. Let us denote by Ω2

cl(U) the space of closed real two-forms
on U and by Γ(U, T n̂) the space of smooth sections from U to the torus dual to T n. The
following lemma describes connections with invariant curvature on the topologically trivial
U(1)-bundle on M .

Lemma 7.2.4. The equivalence classes of connections on the topologically trivial U(1)-bundle
with invariant curvature are in bijection with the space Ω2

cl(U) × Γ(U, T̂ n).
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Proof. Let {y1, ..., yk} be global coordinates on U and {q1, ..., qn} one-periodic coordinates
on T n such that { ∂

∂qµ } is a frame for Γ ⊂ V ∼= TxT
n for any x ∈ T n. Then, {yi, qµ} provide

global periodic coordinates for M .
Any invariant F = F∇ can be written in coordinates {yi, qµ} as

F = 2πi
k∑︂

i,j=1
F 0
ijdy

i ∧ dyj + 2πi
∑︂

i=1,...,k
µ=1,..,n

Giµdy
i ∧ dqµ + πi

n∑︂
µ,ν=1

Hµνdq
µ ∧ dqν ,

where F 0
ij and Giµ are independent of the q coordinates and Hµν are constant integers. The

cohomology class of F depends only on Hµν and [F ] = 0 if and only if Hµν = 0. In particular,

F = 2πi
k∑︂

i,j=1
F 0
ijdy

i ∧ dyj + 2πi
∑︂

i=1,...,k
µ=1,..,n

Giµdy
i ∧ dqµ.

Since dF = 0 there exists Gµ : U → R for µ = 1, ..., n such that Giµ = ∂Gµ

∂yi and
A0 = 2πi∑︁k

i=1 A
0
i dy

i such that dA0 = 2πi∑︁k
i,j=1 F

0
ijdy

i ∧ dyj. Note that A0 is well-defined
up to exact forms on U and Gµ are well-defined up to constant functions.
Let L′ be the line bundle on M corresponding to the pair (AL′ = −A0−2πi∑︁n

µ=1 Gµdq
µ, aL′ ≡

1). Then, L ⊗ L′ is a flat line bundle on M and therefore there exists a representative
(aL⊗L′ , AL⊗L′) such that AL⊗L′ = AL + AL′ = 0 and aL⊗L′ = aL ⊗ a′

L = aL is constant on
U × V . That is, there exists a global character t̂ ∈ T̂

n such that aL(y, q;λ) = exp(2πit̄(λ)),
where t̄ ∈ V ∗ is a lift of t̂ ∈ V ∗/Γ∨ to V ∗.
Changing the representative again by ϕ(y, q) = exp(2πit̄ · q) we have

(AL + AL′)(y, q) = 2πi
n∑︂
µ=1

t̄µdq
µ, aL ⊗ aL′ ≡ 1.

In particular, we find a representative for L

AL(y, q) = A0 + 2πi
n∑︂
µ=1

(Gµ + t̄µ)dqµ, aL(y, q, λ) = 1, (7.2.20)

where we only made choices for A0 such that dA0 = F 0, for Gµ such that dGµ = ∑︁
Giµdy

i

and for t̄ ∈ V ∗ such that it projects to t̂ ∈ T̂
n.

If we choose a different (A0)′ then A0−(A0)′ is closed and hence exact on U . So if A0−(A0)′ =
2πidf then the two representatives of L are equivalent via ϕ(y, q) = ϕ(y) = exp(2πif(y)).

To show (7.2.20) is well defined it remains to show that Gµ + t̄µ is a well-defined family of
characters associated to L. Suppose that we chose G′

µ. Then, there exists a representative
for L with

A′
L(y, q) = A0 + 2πi

n∑︂
µ=1

(G′
µ + t̄

′
µ)dqµ, a′

L(y, q, λ) = 1.

Then,
(AL − A′

L, aL ⊗ (a′
L)−1) =

(︃
2πi

n∑︂
µ=1

(Gµ + t̄µ −G′
µ − t̄

′
µ)dqµ, 1

)︃
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7.2. On affine torus bundles with contractible base

is a representative of the trivial connection on the topologically trivial U(1)-bundle. In
particular, there must exists a function ϕ : U × V → U(1) such that

1 = ϕ(y, q + λ)ϕ(y, q)−1,
n∑︂
µ=1

(Gµ + t̄µ −G′
µ − t̄

′
µ)dqµ = dlogϕ(y, q).

From the second equation, ϕ(y, µ) = exp(2πi(Gµ + tµ̄ −G′
µ − t̄

′
µ)qµ) up to constant and it is

invariant under translation by elements of Γ if and only if G+ t̄−G′ − t̄
′ ∈ Γ∨.

Remark 7.2.5. Let L be a U(1)-bundle corresponding to the pair (F 0, G) where F 0 ∈ Ω2
cl(U)

and G : U → T̂
n. Then, if dA0 = F we may represent L by the pair

AL = 2πiA0 − 2πidG(q), aL(y, q;λ) = exp(2πiG(λ)). (7.2.21)

Indeed, this differs from (7.2.20) by ϕ(y, q) = exp(2πiG(q)).

Finally, we can prove a version of the Appel-Humbert Theorem 6.1.8 for U(1)-bundles with
connections on a trivial family of tori.
Let PU

R (Γ) be the group of triples (F 0, H, χ) where F 0 ∈ Ω2
cl(U) is a closed two-form on U ,

H ∈ Alt2(Γ,Z) ∼= H2(M,Z) ∼= H2(T n,Z) and χ : U × Γ → U(1) is a semicharacter for H.
That is, for any two sections λ, µ : U → Γ we have

χ(λ+ µ) = χ(λ)χ(µ)exp(iπH(λ, µ))

where we evaluate H fiberwise. The group multiplication is given by

(F 0, H, χ) · ((F 0)′, H ′, χ′) = (F 0 + (F 0)′, H +H ′, χ · χ′).

Let us denote by A the group of U(1)-bundles on U × T n with connections whose curvature
is invariant and by A0 the connections with invariant curvature on the trivial U(1)-bundle.

Theorem 7.2.6 (Appel-Humbert Theorem in family). There exists an isomorphism

PU
R (Γ) → A

such that
(F 0, H, χ) ↦→ (AL, aL = χ(λ)exp(iπH(q, λ)).

Proof. To define the map PU
R (Γ) → A we have to find a well-defined AL corresponding to

(F 0, H, χ). Firstly, the space of semi-characters χ : U × Γ → U(1) for some H is a torsor
over the space of characters Γ(U, T̂ n). Indeed, for any two semi-characters χ, χ′ for H we
have

χ′(λ+ µ) · χ(λ+ µ)−1 = χ′(λ)χ′(µ)χ(λ)−1χ(µ)−1exp(iπH(µ, λ))exp(−iπH(µ, λ)).

Let χ0
H be a constant semi-character for H on U × Γ, that is a semi-character pulled back

from Γ. Then, χ can be written as

χ(λ) = χ0
H(λ)exp(2πiG(λ))
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7. T-duality for U(1)-bundles with connections

for some G ∈ Γ(U, T̂ n). Let us denote by Ḡ a lift of G to Γ(U,Rn) and let A0 ∈ Ω1(U) be
such that dA0 = F 0. Let L be the U(1)-bundle with connection associated to the following
representatives

aL(y, q;λ) = χ(λ)exp(iπH(q, µ)),
AL(y, q) = 2πiA0 − 2πi

∑︂
µ=1,...,n
i=1,...,k

∂iḠµq
µdyi + iπ

∑︂
µν

Hµνq
µdqν

= 2πiA0 − 2πidḠ(q) + iπH(q, dq).

We have to show that this map is well-defined.
Again, if (A0)′ is such that d(A0)′ = dA0 = F 0 then there exists a function f : U → R
such that A0 − (A0)′ = 2πif and the two pairs (aL, AL) and (aL, A′

L) are equivalent via
ϕ(y) = exp(2πif).
Suppose now that we choose a different constant semi-character χ1

H for H. Then, there exists
a unique t̂ ∈ T̂ such that

χ0
H(λ) = χ1

H(λ) · exp(2πit̂ · λ)
In particular,

χ(λ) = χ1
H(λ)exp(2πi(G+ t̂) · λ)

and given any lift t̄ of t̂ to Rn we have ∂iḠµ = ∂i(Ḡµ + t̄µ) so the representative (aL, AL) of
L is unchanged.
Finally, suppose that Ḡ′ is a different lift of G to Γ(U,Rn). Then, Ḡ′ − Ḡ : U → Γ∨ so there
exists a constant λ̂ ∈ Γ∨ such that Ḡ′

µ(y) = Ḡµ(y) + λ̂µ. In particular, the expression for
(AL, aL) remains unchanged.
Finally, the map defined above provides a morphism of short exact sequences,

1 Ω2
cl(U) × Γ(U, T n̂) PU

R (Γ) Alt2(Γ,Z) 1

1 A0 A H2(M,Z) 1

∼= ∼=

and by the five lemma, we have isomorphism in the middle.

7.2.2 Main theorem on contractible base

We are finally ready to generalize Theorem 7.1.1 to branes in a trivial affine torus bundle. We
will assume that the support of the brane S ⊂ M is an affine torus subbundle in the affine
torus bundle π : M → B such that π(S) is trivial. Then, we can represent U(1)-bundles with
connections on S by the factors of automorphy described in Theorem 7.2.6.
Let π : M → B be an affine torus bundle with a section, that is M ∼= V/Γ. Let π : M̂ → B
be the dual torus bundle M̂ ∼= V ∗/Γ∨. Let U ⊂ B open and {y, v} local coordinates on M |U .
Let {y, v̂} be local coordinates on M̂ |U such that {v} and {v̂} include dual frames of Γ and
Γ∨ on the fibers. Then we can define the Poincaré bundle on M ×U M̂ as the pullback of the
Poincaré bundle from one of the fibers

aP(y, v, v̂;λ, λ̂) = exp(iπ(v̂(λ) − λ̂(v) + λ̂(λ))), AP(y, v, v̂) = iπ(v̂dv − vdv̂). (7.2.22)
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7.2. On affine torus bundles with contractible base

Since the Chern class of M and M̂ are trivial, the transition functions between fiberwise
coordinates are linear transformations which preserve aP and AP . Therefore, P is a well-
defined U(1)-bundle with a connection whose curvature is given locally by 2πidv̂ ∧ dv. Via
the two-form P = dv̂ ∧ dv the torus bundles (M,H = 0) and (M̂, Ĥ = 0) are T-dual in the
sense of generalized geometry.
Let S ⊂ M be an affine torus subbundle such that π(S) is contractible. Let L → S be a
U(1)-bundle with a connection such that the curvature 2πiF of the connection is invariant.
Then once again, L = (S, F ) is a locally T-dualizable generalized brane and we can construct
the diagram:

Z M ×π(S) M̂

S Ŝ π−1(π(S)) π̂−1(π(S))

pZ p̂Z

iZ

p p̂

iS iŜ

With this notation, we have the following theorem.

Theorem 7.2.7. Let S ⊂ M be an affine torus subbundle such that π(S) is contractible. Let
L → S be a U(1)-bundle with connection as such that the curvature 2πiF is invariant. Then,
the following hold.

1. There exists a unique generalized T-dual (Ŝ, F̂ ) of (S, F ) such that for any leaf Z of ∆
projecting onto Ŝ via p̂ the U(1)-bundle with connection

L̂Z := p∗L⊗ P|Z

is trivial when restricted to the fibers of p̂Z : Z → Ŝ.

2. For any leaf Z as in 1., the pushforward

Ê := (p̂Z)∗LZ

is a projectively flat U(d2)-bundle with connection independent of Z, and the curvature
of the connection is given by F̂ · Id ∈ Ω2(Ŝ, u(d2)).

3. Finally, there exists a projectively flat U(d)-bundle L̂ → Ŝ such that

Ê ∼= L̂⊗ U(d)

in the sense of Theorem 6.3.2. The curvature of the connection on L̂ is F̂ · Id ∈
Ω2(Ŝ, u(d)).

We say that (L̂, Ŝ) is the T-dual of (S, L).

Proof. We begin analogously to the proof of Theorem 7.1.1. Let us denote the base by U .
The affine torus subbundle S ⊂ M is a translate of S0 ∼= VS/ΓS by a section b ∈ Γ(U,M)
that is,

S = tb(S0).
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By Theorem 7.2.6 we can represent L0 = t∗bL → S0 as a triple (F 0, H, χ) where F 0 ∈ Ω2
cl(U),

H ∈ H0(U,∧2Γ∨
S) and χ : U × ΓS → U(1) is a semi-character for H.

As in Theorem 7.2.6 we may choose a decomposition ΓS/(Ker(H) ∩ ΓS) = Γ1 + Γ2 for H.
Then the corresponding constant semicharacter is

χ0(λ) = exp(iπH(r(λ)1, r(λ)2)), λ ∈ Γ(U,ΓS)

where r : ΓS → ΓS/(Ker(H) ∩ ΓS) is the projection and r(λ) = r(λ)1 + r(λ)2 with respect
to the decomposition. A factor of automorphy and connection 1-form representing the triple
(F 0, H, χ) are given by

aL0 : U × VS × ΓS → U(1)
aL0(y, v;λ) = χ0(λ)exp(iπH(v, λ) + 2πiG(λ))
AL0(y, v) = 2πiA0 − 2πidG · v + iπH(v, dv),

where dG : TU → V ∗
S means the derivative of G : U → V ∗

S /Γ∨
S and · denotes contraction

between elements of VS and V ∗
S .

By Lemma 4.3.9 the leaves Z of the distribution ∆ in S ×U M̂ are affine torus subbundles
modelled on Z0 = VZ/ΓZ ⊂ S0 ×M̂ . By Proposition 4.3.10 the space of leaves is parametrized
by flat sections of V ∗

S /Γ∨
S . For c ∈ V ∗

S /Γ∨
S let

Zc := t(b,−G+c)Z0 ⊂ S × M̂,

where we choose a lift of −G+ c : U → V ∗
S to a section −G+ c : U → V ∗

M , which we denote
by the same letters. Let

LZ = (p∗L⊗ P)|Z ∼= (t(b,−G+c))∗Lc

for Lc → Z0 given by

Lc :=
(︃
t∗(b,−G+c)(p∗L⊗ P)

)︃⃓⃓⃓⃓
Z0

=
(︃
p∗

0L0 ⊗ t∗(b,−G+c)P
)︃⃓⃓⃓⃓
Z0

. (7.2.23)

By Lemma 4.3.11 the image of any leaf Z ⊂ S × M̂ is an affine torus subbundle of M̂
modelled on Ŝ0 = VŜ/ΓŜ. The homomorphism p0 : Z0 → S0 and p̂0 : Z0 → Ŝ0 are induced
by the restrictions of the projections p0 : V + V ∗ → V and p̂0 : V + V ∗ → V ∗. They fit into
the following morphisms of short exact sequences.

0 Ann(VS) VZ VS 0

0 Ann(VS) VŜ H(VS) 0

0 Ann(ΓS) ΓZ ΓS 0

0 Ann(ΓS) ΓŜ H(VS) ∩ Γ∨
S 0.

∼=

p0

p̂0 −H

q

∼=

p0

p̂0 −H

q

(7.2.24)
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Then a representative of Lc is given as follows.

aLc(y, v;λ) =
=χ0(p0(λ))exp(iπH(p0(v), p0(λ)) + 2πiG(p0(λ)))×

× exp
(︃
iπp̂0(λ)(p0(λ)) + iπ(p̂0(v) −G+ c)(p0(λ)) − iπp̂0(λ)(p0(v) + b)

)︃
=χ0(p0(λ))exp(iπH(p0(v), p0(λ)) + 2πiG(p0(λ)))×

× exp
(︃

− iπH(p0(λ), p0(λ)) − iπH(p0(v), p0(λ)) + iπ(−G+ c)(p0(λ))
)︃

×

× exp
(︃
iπH(p0(λ), p0(v)) − iπp̂0(λ)(b)

)︃
=χ0(p0(λ))exp(−iπH(p0(v), p0(λ)) + iπ(G+ c)(p0(λ)) − iπp̂0(λ)(b)),

ALc(y, v) =
=2πiA0 − 2πidG · p0(v) + iπH(v, dv) + iπ(p̂0(v) −G+ c) · d(p0(v) + b)−

− iπ(p0(v) + b) · d(p̂0(v) −G+ c)
=2πiA0 − 2πidG · p0(v) + iπH(p0(v), dp0(v)) −H(p0(v), dp0(v)) + iπp̂0(v) · db+

+ iπ(−G+ c) · dp0(v) + iπ(−G+ c) · db+H(dp0(v), p0(v)) − iπb · dp̂0(v)+
+ iπp0(v) · dG+ iπb · dG

=2πiA0 + iπ(−G+ c) · db+ iπb · dG+ iπp̂0(v) · db− iπb · dp̂0(v)−
− iπH(p0(v), dp0(v)) + iπ(−G+ c) · dp0(v) − iπp0(v) · dG.

Changing the representative by ϕ(v) = exp(−iπ(G+ c) · p0(v) − iπp̂0(v) · b+ iπ(−G+ c) · b)
we find

aLc(y, v;λ) =χ0(p0(λ))exp(−iπH(p0(v), p0(λ)) − 2πip̂0(λ)(b)) (7.2.25)
ALc(y, v) =2πi(A0 + b · dG) + 2πip̂0(v) · db+ 2πic · dp0(v) − iπH(p0(v), dp0(v)).

The maps pZc
: Zc → Ŝc can then be decomposed into homomorphisms and translations. We

have the commutative square
Z0 Zc

Ŝ0 Ŝc

t(b,−G+c)

p̂0 pZc

t−G+c

. (7.2.26)

Proof of 1.: Same as the proof of Theorem 7.1.1 Part 1. The kernel of p̂0 is the disjoint union
of affine tori. The connected component of the identity is

Ker(p̂0)0 = Ker(H)/(Ker(H) ∩ ΓS),

and the other components are translates of it by elements {λ1, ..., λd2} such that
{H(λ1), ..., H(λd2)} is a full set of representatives of (H(VS)∩Γ∨

S) : H(ΓS). The U(1)-bundle
Lc is invariant under translations by λi so it is trivial on the fibers if it is trivial when restricted
to K0 = Ker(p̂0)0. The restriction Lc|K0 is given by the image of c ∈ V ∗

S in coker(H), that
is Lc|K0 is trivial if and only if c ∈ H(VS). By Proposition 4.3.13 this defines a unique image
Ŝ.
Proof of 2.: For c ∈ H(VS) let us define

Êc = (p̂0)∗Lc.
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7. T-duality for U(1)-bundles with connections

It is a projectively flat U(d)2-bundle on Ŝ0. We could follow the proof of Theorem 7.1.1 Part
2. here as well but instead we write out the full calculation to avoid proving analogues of the
necessary lemmas.

We use the decomposition ΓS/(Ker(H)∩ΓS) = Γ1 +Γ2 to decompose H(VS) = V1 +V2 with
Vi = H(Γi) ⊗ R and we take representatives {δi}i=1,...,d and {ϵj}j=1,...,d of (Vi ∩ Γ∨

S) : H(Γi)
for i = 1, 2 respectively. Let Ei and Dj for i, j = 1, ..., d be lifts of the representatives to ΓŜ
so we have.

aÊc
(y, v̂;λ) =

(︃
χ0(−H−1(q(Λij

λ )))×

× exp(iπH−1(q(v̂) + δλ(i) + ϵλ(j), q(Λij
λ )) − 2πiΛij

λ (b))δkλ(i)δ
l
λ(j)

)︃ij
kl
,

AÊc
(y, v̂) =

(︃
2πi(A0 + b · dG) + 2πi(v̂ +Di + Ej) · db+

+ 2πiH−1(c, dq(v̂)) + iπH−1(q(v̂) + δi + ϵj, dq(v))
)︃ij
ij
.

Changing the representatives by the diagonal matrix valued function

ϕ(v̂)ijij = exp
(︃

2πi(Di + Ej) · b− iπH−1(q(v̂), δi + ϵj)
)︃
,

we get

aÊc
(y, v̂; λ) = exp

(︃
iπH−1(q(v̂), q(λ)) − 2πiλ(b)

)︃
· UÊc

(q(λ)), (7.2.27)

UÊc
(q(λ)) =

(︃
χ0(−H−1(q(Λijλ )))exp(iπH−1(q(λ) + δi + ϵj , q(λ) − δλ(i) − ϵλ(j)))δkλ(i)δ

l
λ(j)

)︃ij
kl

,

AÊc
(y, v̂) =

(︃
2πi(A0 + b · dG) + 2πiv̂ · db + 2πiH−1(c, dq(v̂)) + iπH−1(q(v̂), dq(v))

)︃
· Id.

It remains to show that Êc is independent of the choices we made. Namely, of c ∈ H(VS), of
the lift of G : U → V ∗

S to G : U → V ∗
M and of the choice of b : U → M .

Independence of c ∈ H(VS). We have

p̂∗Lc
∼= (t−G+c)∗Êc

Let c′ ∈ H(VS) ⊂ V ∗
S indicate another leaf and its lift c′ ∈ V ∗

M . Then,

p̂∗Lc
∼= p̂∗L̂c′ if and only if t∗c′−cÊc

∼= Êc′ .

Since c only enters the description of Êc as an element of H(VS) ⊂ V ∗
S it is clear that Êc

does not depend on the choice of lift of c along V ∗
M → V ∗

S .

at∗
c′−c

Êc
(y, v̂;λ) = aÊc

(y, v̂ + c′ − c, λ)

= exp
(︃
iπH−1(q(v̂) + c′ − c, q(λ)) − 2πiλ(b)

)︃
· UÊc

(q(λ)),
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At∗
c′−c

Êc
(y, v̂) =

(︃
2πi(A0 + b · dG) + 2πi(v̂ + c′ − c) · db+ 2πiH−1(c, dq(v̂))+

+ iπH−1(q(v̂) + c′ − c, dq(v))
)︃

· Id.

=
(︃

2πi(A0 + b · dG) + 2πi(v̂ + c′ − c) · db+ iπH−1(c+ c′, dq(v̂))+

+ iπH−1(q(v̂), dq(v))
)︃

· Id.

Changing the representatives by ϕ(y, v̂) = exp
(︃

2πi(c′ − c) · b− iπH−1(c′ − c, q(v̂))
)︃

yields
the desired isomorphism.
Independence of lifting G. From the description of L the section G ∈ Γ(U, V ∗

S ) is well
defined up to constant translation. In the construction of Ê we chose a lift of it to a section
G ∈ Γ(U, V ∗

M).
Suppose now that we chose a different lift G′ ∈ Γ(U, V ∗

M). Let

Ê
′
c

∼= (p̂0)∗

(︃
(p∗

0L
′
0 ⊗ t∗(b′,−G′+c)P)|Z0)

)︃
,

so (t−G+c)∗Êc
∼= (t−G′+c)∗Ê

′
c if and only if

Ê
′
c

∼= t∗G−G′Êc

Since G only enters the description of Êc as dG we readily see that it is independent of
constant translations in V ∗

S and we may suppose that G−G′ ∈ Γ(U,Ann(VS)). Inspecting
(7.2.27) and changing the representatives of t∗G−G′Êc by ϕ(v̂) = exp(2πi(G−G′) · b) yields
the desired isomorphism.
Independence of b. Let b′ ∈ Γ(U,M) such that S = tbS0 = tb′S0, then we have b − b′ ∈
Γ(U, S0) and since L ∼= t∗−bL0 ∼= t∗−b′L′

0 we have

L′
0

∼= t∗b′−bL0.

In particular,

aL′
0
(y, v;λ) = χ0(λ)exp(iπH(v + b′ − b, λ))exp(2πiG(λ)),
AL′

0
(y, v) = 2πiA0 − 2πi∂UG · (v + b′ − b) + iπH(v + b′ − b, d(v + b′ − b)),

= 2πi
(︃
A0 − dG · (b′ − b) + 1

2H(b′ − b, d(b′ − b))
)︃

− 2πidG · v+

+ iπH(v, d(b− b′)) + iπH(b′ − b, dv) + iπH(v, dv).

Changing the representatives by ϕ(v) = exp(iπH(b′ − b, v)) we find that L′
0 corresponds to

the triple ((F 0)′, H, χ′) with

χ′(λ) = χ0(λ)exp(2πi(G+H(b′ − b))(λ)),
(F 0)′ = F 0 + 2πidG · d(b′ − b) + iπH(d(b′ − b) ∧ d(b′ − b)),

with (A0)′ = A0 − (b′ − b) · dG+ 1
2H((b′ − b), d(b′ − b)).

Let Ê ′
c = (p̂0)∗

(︃
p∗

0L
′
0 ⊗ t∗(b′,−G′+c)P)|Z0

)︃
so (t−G′+c)∗Ê

′
c

∼= (t−G+c)∗Êc if and only if

Ê
′
c

∼= t∗G−G′Êc.
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Since G−G′ = H(b− b′) we have

at∗
G−G′ Êc

(y, v̂;λ) = exp(iπH−1(q(v̂) +H(b− b′), q(λ)) − 2πiλ(b)) · UÊc
(q(λ))

= exp(−iπq(λ)(b− b′)) · a
Ê

′
c
(y, v̂;λ),

At∗
G−G′ Êc

(y, v̂) =

=
(︃

2πi(A0 + b · dG) + 2πi(v̂ +H(b− b′)) · db+ 2πiH−1(c, dq(v̂) + dH(b− b′))+

+ iπH−1(q(v̂) +H(b− b′), dq(v̂) + dH(b− b′))
)︃

· Id.

=
(︃

2πi(A0 + b · dG) + 2πiv̂ · db′ − 2πiv̂ · (b′ − b) + 2πiH(b− b′)) · db+

+ 2πiH−1(c, dq(v̂)) − 2πid(b− b′) · c+ iπH−1(q(v̂), dq̂) + iπ(b− b′) · dq(v̂)−

− iπd(b− b′) · q(v̂) + iπH(d(b− b′), b− b′)
)︃

· Id,

since q(v̂) · d(b′ − b) = v̂ · d(b′ − b) we have

=
(︃

2πi(A0 + b · dG+ 1
2H(b′ − b, d(b′ − b)) −H(b′ − b) · db)−

− 2πic · (b− b′) − πiq(v̂) · d(b′ − b) − πi(b′ − b) · dq(v̂) + 2πiv̂ · db′+

+ 2πiH−1(c, dq(v̂)) + iπH−1(q(v̂), dq(v̂))
)︃

· Id.

Finally, changing the representatives by

ϕ(y, v̂) = exp
(︃
iπq(v̂) · (b− b′) + 2πiH(b′ − b) · b′ − 2πic · (b′ − b)

)︃
yields the desired isomorphism. Note also that

(A0)′ + b′ · dG′ = A0 − (b′ − b) · dG+ 1
2H(b′ − b, d(b′ − b)) + b′ · dG+ b′ · dH(b′ − b).

Proof of 3.: The semi-representation UÊc
is the pullback of a constant semi-representation

from H(VS) ∩ Γ∨
S . Moreover,

χ0(−H−1(q(Λij
λ ))) = χ0(H−1(q(Λij

λ )))−1.

In particular, UÊc
is of the form U(ϕL)∗L−1 for a suitable U(1)-bundle on S0. That is we can

readily apply Theorem 6.3.2 to show

UÊc

∼= ρ ◦ UL̂c

where ρ : U(d) → U(d2) is the diagonal embedding (6.2.16) and

UL̂c
: U × ΓŜ → U(d)

is a constant semi-representation for H−1 pulled back from H(VS) ∩ Γ∨
S .
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Remark 7.2.8. As in the absolute case (Part 2. Theorem 7.1.1),
Lc ∼= p̂∗

0P̂b ⊗ (p0)∗LSc

where P̂b = P|M×U {b}. Moreover,
(p̂0)∗Lc = P̂b ⊗ (p̂0)∗(p0)∗LSc

and
(p̂0)∗(p0)∗LSc = q∗(−ϕH)∗L

S
c = q∗(ϕH)∗(L−1

0 ⊗ P−G+c)
where ϕH is the fiberwise isogeny defined by H : VS → V ∗

S and P−G+c = P|M×U {−G+c}. In
particular, we can write (cf. (7.1.17))

Ê = q∗t∗−G+c(ϕH)∗

(︃
L−1

0 ⊗ P|−G+c

)︃
⊗ P̂b. (7.2.28)

Example 7.2.9. Let π : M → B be an algebraic integrable system that admits a Lagrangian
section over a contractible base. Let M̂ → B be the affine torus bundle with zero Chern class
and monodromy local system Γ∨

M . Then, by Theorem 4.2.4 M̂ is also an algebraic integrable
system and M and M̂ carry T-dual semi-flat hyperkähler structures.
In Example 4.3.21 we described a T-dual pair of space-filling generalized branes corresponding
to the semi-flat structures. These pairs can be enhanced to T-dual pairs of bundles with
connections.
Let us denote by ωI one of the Kähler forms of the semi-flat hyperkähler structure on M . In
terms of the special Kähler structure (g, I, ω,∇) on B it is given by

ωI =
(︄
ω 0
0 ω−1

)︄
,

and (M,ωI) is a space-filling BAA-brane. There exist U(1)-bundles with connections LA
whose curvature is 2πiωI. These can be represented as

aA(x, v;λ) = χ0(λ)exp(iπω−1(v, λ) + 2πic(λ))
AA(x, v) = iπω−1(v, dv) + iπω(x, dx),

(7.2.29)

where c : B → V ∗
M/Γ∨

M is a constant character. The T-dual of this brane depends on the type
of the polarization.
If the polarization which defines ωI is principal, then M ∼= M̂ and the T-dual of LA is again a
U(1)-bundle L̂B represented by

aB(x, v̂; λ̂) = χ0(−ω(λ̂))exp(iπω(v̂, λ̂))
AB(x, v̂) = iπω(v̂, dv̂) + 2πiω(c, dv̂) + iπω(x, dx).

(7.2.30)

Pulling back via the isomorphism ϕ : M → M̂ we find
(ϕ∗aB)(x, v;λ) = aB(x, ω−1(v);ω−1(λ))

= χ0(−ω(ω−1(λ)))exp(iπω(ω−1(v), ω−1(λ)))
= χ0(−λ)exp(iπω−1(λ, v))
= χ0(−λ)exp(−iπω−1(v, λ))

(ϕ∗AB)(x, v) = AB(x, ω−1(v))
= iπω(ω−1(v), dω−1(v)) + 2πiω(c, dω−1(v)) + iπω(x, dx)
= iπω−1(dv, v) + 2πic · dv + iπω(x, dx)
= −iπω−1(v, dv) + 2πic · v + 2πiω(x, dx).
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That is, via the isomorphism induced by the polarization the T-dual of the brane (M,LA)
restricts to each fiber as the U(1)-bundle dual to LA. This is a well-known property of the
Fourier-Mukai transform as well.
If the polarization is not principal, but of type d the T-dual of (M,LA) is a projectively flat
U(d)-bundle L̂B represented as follows.

aB(x, v̂; λ̂) = exp(iπω(v̂, λ̂))
(︃
χ0(−ω(λ̂1 + Λi

λ̂
))exp(iπω(λ̂+ λi, λ̂− λλ̂(i)))δ

j

λ̂(i)

)︃
AB(x, v̂) = (iπω(v̂, dv̂) + 2πiω(c, dv̂) + iπω(x, dx)) · Idd×d.

Using the specific form of χ0 we can write

χ0(−ω(λ̂1 + Λi
λ̂
)) = exp

(︃
iπω−1(−ω(λ̂1 + Λi

λ̂
)1,−ω(λ̂1 + Λi

λ̂
)2)
)︃

= exp
(︃
iπω−1(ω(λ̂1), ω(Λi

λ̂
))
)︃

= exp
(︃
iπω(Λi

λ̂
, λ̂1)

)︃
= exp

(︃
iπω(λ̂1, λ̂2 + λi − λλ̂(i))

)︃
,

where we use that ω(Λi
λ̂
, λ̂1) ∈ Z. Then, we have

ω(λ̂1, λ̂2 + λi − λλ̂(i)) + ω(λ̂+ λi, λ̂− λλ̂(i)) =

= ω(λ̂1, λ̂2) + ω(λ̂1, λi) − ω(λ̂1, λλ̂(i)) + ω(λ̂1, λ̂2) − ω(λ̂1, λλ(i)ˆ ) + ω(λ̂2, λ̂1) + ω(λi, λ̂1)

= ω(λ̂1, λ̂2) − 2ω(λ̂1, λλ̂(i))

and

aB(x, v̂; λ̂) = exp(iπω(v̂, λ̂))
(︃
exp(iπω(λ̂1, λ̂2) + 2πiω(λλ̂(i), λ̂1))δjλ̂(i)

)︃
AB(x, v̂) =

(︃
iπω(v̂, dv̂) + 2πiω(c, dv̂) + iπω(x, dx)

)︃
· Idd×d.

(7.2.31)

The underlying generalized brane in both cases is the BBB-brane (M̂, F̂ ) with

F̂ =
(︄
ω 0
0 ω

)︄
.

Remark 7.2.10. Note that if M and M̂ as above admit a section but B is not simply
connected, then we may define (M,LA) and (M̂, L̂

B) locally using affine coordinates on the
fibers. Since the local representatives are invariant under the change of coordinates (see
Lemma 7.3.14), the local bundles glue together to a global T-dual pair.

7.3 On affine torus bundles over general base

We would like to generalize Theorem 7.2.7 to U(1)-bundles supported on affine torus subbundles
S of affine torus bundles M → B with torsion Chern classes. Already in the generalized
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7.3. On affine torus bundles over general base

geometry setting, the existence of T-duals depends on a topological constraint (cf. Theorem
4.3.18), which is related to the Chern class of the T-dual affine torus bundle M̂ → B. To
upgrade to theorems about U(1)-bundles we have to impose even stronger constraints.

To state Theorem 7.2.7 on a general base we first have to define the Poincaré bundle on
M ×B M̂ analogously to (7.2.22). It is easy to see that when M and M̂ do not admit smooth
sections such a U(1)-bundle cannot exist. Instead, we define P as a twisted U(1)-bundle
or equivalently as a gerbe trivialization. Moreover, we also have to relax the definition of a
physical brane from a U(1)-bundle supported on S to a twisted U(1)-bundle. The precise
description of these twists is the content of topological T-duality.

In the first subsection, we discuss the theory of gerbes, gerbe connections and gerbe modules.
Then, we give the precise definition of topological T-duality. In the following subsection, we
define the Poincaré bundle as a gerbe on the product affine torus bundles with torsion Chern
classes M and M̂ which are T-dual in the sense of generalized geometry. In Proposition 7.3.10
we explain when such M and M̂ are also topologically T-dual. Finally, in the last subsection,
we give a version of Theorem 7.2.7 on a general base.

7.3.1 Gerbes and topological T-duality

T-duality in generalized geometry connects affine torus bundles fibered over the same base
endowed with H-fluxes, that is closed differential three-forms. Even though the definition is
phrased in terms of differential forms, the existence of a T-duality relation between two affine
torus bundles depends only on the de Rham classes of the H-fluxes. Topological T-duality is
the refinement of this relationship to integer cohomology classes.

Let M be a differentiable manifold. Degree three de Rham cohomology H3(M,R) classifies the
equivalence classes of exact Courant algebroids on M . The degree three integral cohomology
H3(M,Z) classifies U(1)-bundle gerbes which replace Courant algebroids in topological T-
duality. The H-flux is replaced by the curvature of a gerbe connection. In this section, we
introduce a ‘working definition’ of gerbes, following notes of Hitchin [Hit99a] and Sections
2.2. and 4.3. in [Bar15]. For a more general discussion see [Ste00].

Definition 7.3.1. A U(1)-bundle gerbe G on M is a triple (U , L, ϕ), where U = {Ui} is
an open cover of M , L = {Lij} is a collection of U(1)-bundles Lij → Uij on the double
intersections, together with isomorphisms

Lij ∼= L−1
ji ,

ϕ = {ϕijk} is a collection of trivializations of ϕijk : Ljk ⊗ L−1
ik ⊗ Lij on Uijk, such that

δϕ = ϕjkl · ϕ−1
ikl · ϕijl · ϕ−1

ijk = 1

on Uijkl, where the 1 on the left-hand is understood as the canonical trivialization of the
product LjkL−1

jl LklL
−1
kl LilL

−1
ik LjlL

−1
il LjkL

−1
jk LikL

−1
ij .

A gerbe is defined via line bundles and open covers so it can be restricted to submanifolds or
pulled back along smooth maps. We can define tensor products and duals of gerbes in the
obvious way.
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7. T-duality for U(1)-bundles with connections

Suppose that G = (U , L, ϕ) is a gerbe on M and U ′ is a refinement of U . That is for all
U ′
j ∈ U ′ there exists an Uρ(j) ∈ U with U ′

j ⊂ Uρ(j). The map ρ is called the refinement map.
We define the refinement of G as the gerbe (U ′, L′ = {Lρ(i)ρ(j)}, ϕ′ = {ϕρ(i)ρ(j)ρ(k)}).
There are two different notions of isomorphisms of gerbes called strict and stable isomorphisms.
A strict isomorphism µ : G → G ′ between two gerbes G = (U , L, ϕ) and G ′ = (U ′, L′, ϕ′) can
exists if U = U ′. In this case, it is a collection of isomorphism

µij : Lij → L′
ij

such that the diagram
Lij ⊗ Ljk L′

ij ⊗ L′
jk

Lik L′
ik

ϕijk

µij⊗µjk

ϕ′
ijk

µik

commutes.
To define stable isomorphisms we have to first define trivial gerbe. Let U be an open cover
of M and N = {Ni → Ui} be a collection of U(1)-bundles. The gerbe trivial gerbe δ(N) is
defined by the U(1)-bundles

Lij = Ni ⊗N−1
j on Uij

and the canonical trivializations of LijL−1
ik Lij = LiL

−1
j LiL

−1
k LiL

−1
j . A gerbe G is called

trivializable if there exists a refinement G ′ of G, and a strict isomorphism µ : G ′ → δ(N) to a
trivial gerbe.
Two gerbes G and G on M are called stably isomorphic if after passing to a common refinement
there exists a trivial gerbe δ(N) on the refinement and a strict isomorphism

µ : G ⊗ δ(N) → G ′.

A trivialization of a U(1)-bundle can be understood as a section. Suppose G is a gerbe defined
on a good cover U so each Lij is trivializable. Let sij be a choice of sections of Lij. Then,
on LjkL−1

ik Lij there are two trivializations, one coming from the sij and one from ϕijk. We
can write

sijs
∗
iksij = gijkϕijk

for U(1)-valued functions gijk. By δϕ = 0, the collection {gijk} is a Čech cocycle in
Č

2(U , CU(1)), do it represents a cohomology class h ∈ H2(M, CU(1)) ∼= H3(M,Z). This class
is called the Dixmier-Douday class of the gerbe G. If G is not defined over a good cover
we define its Dixmier-Douady class as the class of a refinement of it to a good cover. The
Dixmier-Douady class of a gerbe is trivial if and only if it is trivializable over any refinement of
its cover. In particular, the Dixmier-Douady class characterizes the stable isomorphism classes
of gerbes.

Definition 7.3.2. A connection on a gerbe G = (U , L, ϕ) is a collection of connections ∇ij

on Lij such that
∇ijk(ϕijk) = 0,

where ∇ijk is the induced connection on LjkL−1
ik Lij, together with a collection of two-forms

Fi ∈ Ω2(Ui) satisfying
Fi − Fj = F∇ij

.
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7.3. On affine torus bundles over general base

The collection of two forms {Fi} is called the curving of the connection. Since dF∇ij
= 0

the three-forms {dFi} glue together to a global closed three-form H ∈ Ω3(M) called the
curvature of the gerbe connection and curving.

The curvature of a gerbe connection represents the image of the Dixmier-Douady class of
the gerbe in de Rham cohomology. When H = 0 we say that the gerbe connection is flat.
The notion of strict isomorphism can be defined for gerbes with connections and curvings by
requiring that µij are isomorphism of U(1)-bundles with connections and that the curvings
agree.

Gerbe modules. We are interested in branes on manifolds endowed with gerbes. In
generalized geometry, a generalized submanifold is a submanifold S together with a two-form
which satisfies dF = H|S. This can be viewed as a trivialization of the exact Courant algebroid
over S. Therefore, if the enhancement of an exact Courant algebroid to integral cohomology
is a gerbe, the enhancement of a generalized brane must be a submanifold together with a
gerbe trivialization. This definition is slightly too restrictive though. Indeed, a gerbe which is
trivial in de Rham cohomology may not be trivial in integral cohomology. These gerbes do not
admit trivializations but they admit higher-rank twisted bundles. We refer to these as gerbe
modules.

Definition 7.3.3. Let G = (U , L, ϕ) be a gerbe on M . A rank d gerbe module is a collection
of U(d)-bundles Ei → Ui together with isomorphisms

φij : Ei → Ej ⊗ Lij

such that the diagram
Ei Ej ⊗ Lij

Ek ⊗ Lik Ek ⊗ Lij ⊗ Ljk

φij

φik φjk

ϕijk

commutes.

The tensor product in the definition is understood as follows. We can associate a rank d
hermitian vector bundle to Ej and a hermitian line bundle to Lij. Their tensor product is a
rank d hermitian vector bundle and the U(d)-bundle Ej ⊗ Lij is its frame bundle. In terms of
transition functions the transition functions of Ej ⊗ Lij is the tensor product of the transition
functions of Ej and Lij.

A rank 1 gerbe module is precisely a trivialization. Moreover, if G admits a rank d gerbe
module E, the collection of U(1)-bundles {det(Ei)} is a rank 1 module of Gd. In particular,
if G admits a rank d gerbe module its Dixmier-Douady class must be d-torsion.

We can easily generalize a rank 1 gerbe module to a gerbe module with connection.

Definition 7.3.4. A rank 1 module of a gerbe G with connection is a rank 1 gerbe module
E such that each U(1)-bundle Ei is endowed with a connection ∇i, φij are isomorphisms of
bundles with connections and the curvatures of ∇i give the curving of the connection on G.
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7. T-duality for U(1)-bundles with connections

This definition can be extended to higher-rank modules with projectively flat connections.

Definition 7.3.5. A rank d module of a gerbe G with connection is a rank d gerbe module
E such that each U(d)-bundle Ei is endowed with a projectively flat connection ∇i, φij are
isomorphisms of bundles with connections and the curvatures of ∇i are Fi · Id where {Fi} is
the curving of the connection on G.

Even though gerbe modules are defined with respect to a certain cover, it is clear that we can
restrict them to any refinement and still get a gerbe module. Moreover, tensoring a gerbe
module with a rank 1 gerbe module changes the twisting gerbe by a trivial gerbe. In particular,
the category of gerbe modules only depends on the stable isomorphism class of the gerbe.

Topological T-duality. We have seen that T-duality has a description in generalized
geometry but T-duality first arose from string theory as a duality between torus bundles
endowed with gerbes. This duality underlies the conjecture of Strominger-Yau-Zaslow [SYZ96]
which states that mirror symmetry in the zeroth order should be T-duality. A mathematical
formulation of topological T-duality was first laid out by Bouwknegt, Evslin and Mathai in
[BEM03] where T-duality is described as duality between principal torus bundles. Here we
follow the work of Baraglia [Bar14, Bar15] who extended the definition to affine torus bundles
endowed with gerbes.

We simplify Baraglia’s work slightly as his definition uses graded gerbes. We assume that all
our torus bundles are oriented so the grading does not play a role. Moreover, he includes the
lifting gerbe of the vertical bundle in his definition which corresponds to the third integral
Stiefel-Whitney class W3(V ) of the vertical bundle. The inclusion of this has physical reasons.
Our aim in this project was to consider BBB and BAA branes on algebraic integrable systems
where the vertical bundle is a complex vector bundle, so W3(V ) = 0. Therefore, our definition
agrees with Baraglia’s in the relevant cases.

Let us consider the usual T-duality diamond once again.

M ×B M̂

M M̂

B

q

p p̂

π π̂

Definition 7.3.6 (Definition 3.1 of [Bar15]). Let π : M → B and π̂ : M̂ → B be rank n
affine torus bundles on B. Let G and Ĝ be gerbes on M and M̂ respectively. We say that
(M,G) and (M̂, Ĝ) are topologically T-dual if the following holds:
(1) For all b ∈ B the restrictions G|π−1(b) and Ĝ|π̂−1(b) are trivial.
(2) There exists a stable isomorphism µ : p∗G → p̂∗Ĝ.
(3) The isomorphism µ satisfies the Poincaré property.

We will not explain the Poincaré property in detail here (see [Bar15, page 14.]). It roughly
states that if the strict isomorphism underlying µ is given by µ : p∗G ⊗ δ(P) → p̂∗Ĝ, then the
local line bundles P generating δ(P) look like the Poincaré line bundle (7.2.22). In the next
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7.3. On affine torus bundles over general base

section, we will explicitly construct a pair of gerbes on affine torus bundles with torsion Chern
classes and we spell out the isomorphism µ as well. This will satisfy the Poincaré property and
we will only work in this framework.

As in the differentiable situation, not every pair (M,G) admits a T-dual, there is a topological
restriction on the Dixmier-Douady class of G. To understand this constraint we have to view
the class h ∈ H3(M,Z) as a class in H2(M, CU(1)), where CU(1) is the sheaf of U(1)-valued
functions on M . The second page of the Leray spectral sequence on π : M → B corresponding
to the sheaf CU(1) is given by

Ep,q
2 (π, CU(1)) = Hp(B,Rqπ∗CU(1)),

in particular,
E2,0

2 (π, CU(1)) = E2,0
∞ (π, CU(1)) = H2(B, π∗CU(1)).

The boundary morphism E2,0
∞ (π, CU(1)) = F 2,2(π, CU(1)) → H2(M, CU(1)) is given by the

pullback π∗ (see [Bar15, section 3.2]).

Theorem 7.3.7. [Bar15, Theorem 3.1] Let (M,G) be an affine torus bundle endowed with a
gerbe and denote by h ∈ H2(M, CU(1)) the Dixmier-Douady class of G. Then there exists a
T-dual of (M,G) if and only if h lies in the image of the pullback

π∗ : H2(B, π∗CU(1)) → H2(M, CU(1)).

Consider the short exact sequence of sheaves

0 → Z → CR → CU(1) → 0

where CR and CU(1) are the sheaves of smooth R and U(1) valued functions on M , respectively.
Via the boundary morphism in the long exact sequence of derived direct images, we have

Rqπ∗CU(1) ∼= Rq+1π∗Z = ∧q+1Γ∗ ∀q ≥ 1

as CR is a fine sheaf so Rqπ∗CR = 0 for q ≥ 1.

By [Bar15, Theorem 3.2] there is a morphism of spectral sequences

δr : Ep,q
r (π, CU(1)) → Ep,q+1

r (π,Z)

which on the second page is induced by the boundary morphism Rqπ∗CU(1) → Rq+1π∗Z.
Moreover, the boundary morphism δ : Hn(M, CU(1)) → Hn+1(M,Z) in the long exact sequence
of cohomology respects the Leray filtrations (with a shift) and induces an isomorphism

δ : F 2,2(π, CU(1)) → F 2,3(π,Z).

Together with the projection F 2,3(π,Z) → F 2,3(π,Z)/F 3,3(π,Z) = E2,1
∞ (π,Z) the class h

defines an element

[h] ∈ E2,1
∞ (π,Z). (7.3.32)

The following topological consequences of T-duality are important for our discussions later.
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7. T-duality for U(1)-bundles with connections

Proposition 7.3.8. [Bar15, Proposition 3.1 and Proposition 3.5] Let (M,G) and (M̂, Ĝ) be
topological T-duals. Denote the monodromy local systems of M and M̂ by Γ and Γ̂. Then,
we have

Γ∨ ∼= Γ̂. (7.3.33)

In particular, taking the cup product of the Chern classes c ∈ H2(B,Γ) of M and ĉ ∈ H2(B,Γ∨)
of M̂ and contracting the coefficients yields a class ⟨c ∪ ĉ⟩ ∈ H4(B,Z). We have

⟨c ∪ ĉ⟩ = 0. (7.3.34)

Cupping with the Chern class is the second-page differential in the Leray spectral sequence
so by (7.3.34) ĉ defines a class [c] in E2,1

∞ (π,Z) and [c] in E2,1
∞ (π̂,Z). Let h ∈ HH3(M,Z)

and ĥ ∈ H3(M̂,Z) be the Dixmier-Douady classes of G and Ĝ. By (7.3.32) these also define
classes in E2,1

∞ (π,Z) and E2,1
∞ (π̂,Z) respectively. We have

[h] = [ĉ] ∈ E2,1(π,Z) and [ĥ] = [c] ∈ E2,1
∞ (π̂,Z). (7.3.35)

7.3.2 The Poincaré bundle as a gerbe

Let π : M → B be an affine torus bundle with monodromy local system Γ → B and torsion
Chern class c ∈ H2(B,Γ). Let π̂ : M̂ → B be another affine torus bundle with Γ̂ ∼= Γ∨

and torsion Chern class ĉ ∈ H2(B,Γ∨). Then, (M, 0) and (M̂, 0) are T-dual in the sense of
generalized geometry (see Example 4.1.2). In this section, we construct the gerbe δ(P) from
local Poincaré line bundles and give a condition to when the generalized geometry T-duality
can be enhanced to topological T-duality.
Let us choose flat connections A and Â of M and M̂ and let P = ⟨p∗Â ∧ p̂∗Â⟩ be the closed
two-form as before. Let U = {Ui} be a good cover of B and let us choose flat sections of
M |Ui

and M̂ |Ui
with respect to A and Â. Let us also choose dual coordinates on the fibers of

M and M̂ so the transition functions are

ψij : M ×Ui
M̂ |q−1(Uij) → M ×Uj

M̂ |q−1(Uij)

(y, v, v̂) ↦→ (ρij(y), Aijv + cij, Âij v̂ + ĉij),
(7.3.36)

with Âij = (A−1
ij )T and cij : Uij → V and ĉij : Uij → V ∗ constant. We may lift the transition

functions to diffeomorphisms

ψij : V ×Ui
V ∗|Uij

→ V ×Uj
V ∗|Uij

(y, v, v̂) ↦→ (ρij(y), Aijv + cij, Âij v̂ + ĉij),
(7.3.37)

which then satisfy

ψki◦ψjk◦ψij = t(nijk,n̂ijk) : (y, v, v̂) ↦→ (y, v+nijk, v̂+n̂ijk), nijk ∈ Γ, n̂ijk ∈ Γ∨, (7.3.38)

where c = {nijk} ∈ H2(B,Γ) and ĉ = {n̂ijk} ∈ H2(B,Γ∨) are Čech representatives of the
Chern classes.
Via the local trivializations, we can define the Poincaré line bundle Pi over M ×Ui

M̂ as
(7.2.22)

aP
i (y, v, v̂;λ, λ̂) = exp(iπ(v̂(λ) − λ̂(v) + λ̂(λ))), AP

i (y, v, v̂) = iπ(v̂dv − vdv̂).
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That is, with N = ∐︁
iM ×Ui

M̂ and P → N given by Pi the triple (δ(P), N,M ×B M̂) is a
trivial U(1)-bundle gerbe with a flat connection and curving 2πiP ∈ Ω2(M ×B M̂,C). It is
represented over q−1(Uij) by the U(1)-bundle Pij = Pi ⊗ ψ∗

ijP−1
j

aP
ij(y, v, v̂;λ, λ̂) = exp(−iπĉij(Aijλ) + iπ(Âijλ̂)(cij)),

AP
ij = −iπĉij(Aijdv) + iπ(Âijdv̂)(cij)).

(7.3.39)

The gerbe product is given by a trivialization ϕP
ijk of Pij ⊗ψ∗

ijPjk ⊗P−1
ik ⊗Pij . This represents

a cohomology class in H1(M ×B M̂, CU(1)), the Dixmier-Douady class of the gerbe. The gerbe
product of the trivializable gerbe δ(P) can be determined as explained in [Bar15, Proposition
3.2], but here we use a different method which can be used to calculate the gerbe product of
non-trivializable gerbes as well.
Suppose that a gerbe G is represented by U(1) bundles Lαβ on the double intersections of
some open covers. If Lαβ are trivializable on Uαβ we may choose trivializing sections sαβ of
them. Then, sβγ ⊗ s∗

αγ ⊗ sαβ is a section of the trivial bundle, that is a U(1)-valued function
gαβγ. The product rule ensures that δg = 0.
Let us determine the gerbe product of δ(P) now. The U(1)-bundles Pij are topologically
trivial on q−1(Uij), only the connection is non-trivial. A trivializing section of Pij is a function
θij : V ×Uij

V ∗ → U(1) such that

aP
ij(y, v, v̂;λ, λ̂) = θij(y, v + λ, v̂ + λ̂) · θij(y, v, v̂)−1.

Let
θij(y, v, v̂) = exp(−iπĉij(Aijv) + iπ(Âij v̂)(cij)).

Then, the gerbe product ϕP
ijk is a function which satisfies

ϕP
ijk(y, v + λ, v̂ + λ̂) · ϕP

ijk(y, v, v̂)−1 = 1, (7.3.40)
ψ∗
ijAjk − Aki + Aij + dlogψ∗

ijθjk − dlogθik + dlogθij = −dlogϕP
ijk, (7.3.41)

(δg)ijk = 1, (7.3.42)

where δ denotes the Čech differential and the right-hand side of (7.3.40) is given by
(ψ∗

ija
P
jk·(aP

ik)−1·aij)(y, v, v̂;λ, λ̂)·(ψ∗
ijθ

−1
jk ·θik·θ−1

ij )(y, v+λ, v̂+λ̂)·(ψ∗
ijθjk·θ−1

ik ·θij)(y, v, v̂) = 1.
From (7.3.41) we have

−2πin̂ijk · dv + 2πidv̂ · nijk = −dlogϕP
ijk(y, v, v̂)

so
ϕP
ijk(y, v, v̂) = exp(−2πiv̂(nijk) + 2πin̂ijk(v)) · φijk

where φijk is constant. Then, if (7.3.42) holds we have
ψ∗
ijϕ

P
jkl · (ϕP

ikl)−1 · ϕP
ijl · (ϕP

ijk)−1 = (δφ)ijkl · exp(−2πiĉij(njkl) + 2πin̂jkl(cij))

Let us denote by γ the Čech cochain {cij} ∈ Č
1(U , V ) and by γ̂ the cochain {ĉij} ∈

Č(Uij, V ∗). These represent the translation parts of the transition functions so we have
δγ = {nijk} = c ∈ Č

2(U ,Γ) and δγ̂ = {n̂ijk} = ĉ ∈ Č
2(U ,Γ∨). Then,

δ⟨γ ∪ γ̂⟩ = ⟨δγ ∪ γ̂⟩ − ⟨γ ∪ δγ̂⟩ = ⟨njkl, ĉij⟩ − ⟨cij, n̂jkl⟩,

where we use that ⟨njkl, ĉij⟩ = −⟨c ∪ γ̂⟩klji = ⟨c ∪ γ̂⟩ijkl. In conclusion

ϕP
ijk(y, v, v̂) = exp

(︃
− 2πiv̂(nijk) + 2πin̂ijk(v) + 2πi⟨γ ∪ γ̂⟩ijk

)︃
. (7.3.43)
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Definition 7.3.9. In the above setting the trivial gerbe δ(P) or the collection of line bundles
{Pi} is called the twisted Poincaré bundle.

The twisted Poincaré bundle depends on the choice of flat connections but also on the choice
of cover and sections as they provide the normalizations of Pi.

Proposition 7.3.10. The affine torus bundles M and M̂ can be endowed with gerbes G and
Ĝ such that (M,G) and (M̂,G) are topologically T-dual if and only if

⟨c ∪ ĉ⟩ = 0 ∈ H4(B,Z).

Proof. If (M,G) and (M̂, Ĝ) are topologically T-dual, then ⟨c∪ ĉ⟩ = 0 by [Bar15, Proposition
3.5]. The opposite indication is also a consequence of Baraglia’s work, one can follow for
example the proof of [Bar15, Theorem 3.1]. Here, we spell out roughly the same proof by
constructing the gerbes G and Ĝ explicitly, which we will use later.

Let’s assume that ⟨c∪ ĉ⟩ = 0. Let δ(P) be the twisted Poincaré bundle associated to a choice
of flat connections A, Â, cover U = {Ui} and local flat sections of M and M̂ . We show that
there exists bundle gerbes G and Ĝ with connections and curvings on M and M̂ such that on
M ×B M̂ we have a strict isomorphism

µ : p∗G ⊗ δ(P) → p∗Ĝ

of gerbes with connections which induces a stable isomorphism [µ] : p∗G → p̂∗Ĝ.

Over triple intersections of the cover M ×Ui
M̂ the gerbe products g, ĝ and gP of G, Ĝ and

P have to satisfy
p∗g · gP

ijk = p̂∗ĝijk · δ(µij),

where µij represents the gerbe isomorphism.

We set the gerbe product of G to

gijk(y, v) = exp(2πin̂jkl(v) − 2πifijk) (7.3.44)

over π−1(Uijk) for some appropriate functions fijk : Uijk → R such that δ(g) = 1. Since
⟨c ∪ ĉ⟩ = 0 ∈ H4(B,Z) there exists some m = {mijkl} ∈ Č

3(U ,Z) such that

⟨c ∪ ĉ⟩ijklm = ⟨nijk, n̂klm⟩ = (δm)ijklm.

Then, we have
δ⟨c ∪ γ̂⟩ = ⟨c ∪ δγ̂⟩ = δm

so ⟨c ∪ γ̂⟩ −m must be exact in Č3(U , C∞
R ). Therefore, we can write

n̂jkl(cij) = mijkl + (δf)ijkl,

where mijkl ∈ Z and {fijk} ∈ Č
2(U , C∞

R ).

We can represent this gerbe with local U(1)-bundles Lij on the double intersections and endow
it with a connection. The Lij are represented by the factor of automorphy and connection
1-form
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7.3. On affine torus bundles over general base

aG
ij(y, v;λ) = exp(πiĉij(Aijλ)),
AG
ij(y, v) = iπĉij(Aijdv) + 2πiϵij,

(7.3.45)

where ϵij ∈ Ω1(Uij,R). We can trivialize Lij as
aG
ij(y, v;λ) = θij(y, v + λ) · θ−1

ij (y, v)

with
θG
ij(y, v) = exp(iπĉij(Aijv)).

Then, by the analogue of (7.3.41) we have
2πin̂ijk · dv + 2πi(ϵjk − ϵik + ϵij) = −dlog gijk.

That is ϵjk − ϵik + ϵij = dfijk. Indeed, such ϵij exist since the sheaf of differential forms is fine.
The curvature of this gerbe connection is determined by the curvature of the local bundles so
it is basic. We can find a flat connection on G if and only if we can find constant {fijk} as
in 7.3.44. This could happen if the gerbe product represented a torsion cohomology class in
H3(M,Z).
Analogously we define the gerbe Ĝ on M̂ via the gerbe product on the triple intersections of
π̂−1(Uijk) as

ĝijk(y, v̂) = exp(−2πiv̂(nijk) − 2πif̂ ijk) (7.3.46)

with f̂ ijk = fijk + ⟨cij ∪ ĉjk⟩. Then, ⟨γ ∪ ĉ⟩ = m+ δf̂ and δ(gĜ) = 1.

Local bundles L̂ij representing Ĝ and a connection are given by

aĜ
ij(y, v̂; λ̂) = exp(iπ(Âijλ̂)(cij)),

AĜ
ij(y, v̂) = iπcij · Âijdv̂ + 2πiϵij,

(7.3.47)

with local trivializations
θĜ
ij(y, v̂) = exp(iπ(Âij v̂)(cij)).

Once again the curvature of this connection is a basic three-form.
Finally, we need to find isomorphisms

µij : p∗Lij ⊗ Pij → p̂∗L̂ij

which commute with the gerbe products. The local trivializations θij, θG
ij and θĜ

ij the µij can
be represented by U(1)-valued functions on V ×Uij

V ∗, satisfying
1 = µij(y, v + λ, v̂ + λ) · µij(y, v, v̂)−1, (7.3.48)
0 = −dlogµij (7.3.49)

p∗gijk · ϕP
ijk · p̂∗ĝ−1

ijk = ψ∗
ijµjk · µ−1

ik · µij, (7.3.50)
where the left-hand side of (7.3.49) is given by

p∗(AG
ij + dlogθG

ij) + AP
ij + dlogθij − p̂∗(AĜ

ij + dlogθĜ
ij) = 0.

By construction µij = 1 satisfies all the conditions.
The equation (7.3.50) is equation 3.9. of [Bar15] in the proof of Theorem 3.1. In particular,
given such µij the induced stable isomorphism [µ] : p∗G → p̂∗Ĝ satisfies the Poincaré property.

157



7. T-duality for U(1)-bundles with connections

Note that the representatives {gijk} and {ĝijk} of the gerbe products on G and Ĝ actually lie
in H2(B, π∗CU(1)) and H2(B, π̂∗CU(1)). In particular, their Dixmier-Douady classes h and ĥ lie
in F 2,2H2(M, CU(1)) and F 2,2H2(M̂, CU(1)) in line with Theorem 7.3.7.

Remark 7.3.11. The theorem shows that given ⟨c ∪ ĉ⟩ = 0, there exist T-dual gerbes with
connections on M and M̂ and that the curvatures of the gerbe connections are given by a
basic 3-form pulled back from the base. The existence of a connection further restricts the
topology of M and M̂ but if G admits a flat connection so does Ĝ.

7.3.3 Main theorem on general base

In this section, we update Theorem 7.2.7 to physical branes on an affine torus bundle endowed
with a gerbe. We first define branes in this context, which are given by gerbe modules with
connections. Then, we prove a technical lemma and finally state and prove our final result
Theorem 7.3.15.

Let (M,G) and (M̂, Ĝ) be a T-dual pair as in Theorem 7.3.10 such that G and Ĝ are flat.

Definition 7.3.12. A rank d brane on M is a pair (S,E) of an affine torus subbundle S ⊂ M
and a rank d module E → S of the gerbe G|S after we shift the curving of G|S by the curvature
of E.

This definition makes sense since the line bundles defining G are flat. That is, if E = {(Ei,∇i)}
is a collection of projectively flat U(d)-bundles with isomorphisms φij : Ei → Ej ⊗ Lij then
the two-froms describing the curvatures of ∇i satisfy F∇i

= F∇j
over Uij. That is, they

define a global closed two-form F ∈ Ω2(S). This global two-form is then a curving for the
flat connection on G|S.

The curving of the gerbe connection corresponds to the B-field in physics. That is, shifting the
curving can be seen as “turning on the B-field" without changing the connection. We do not
restrict ourselves to a specific B-field as we did not constrain it in the generalized geometry
case either. Indeed, with our current definition, we can associate to a rank d brane (S,E) a
generalized brane (S, F ). Since our methods only apply to line bundles and generalized branes
which have invariant curvatures we have the following definition.

Definition 7.3.13. A rank d brane (S,E) is called T-dualizable if the corresponding generalized
brane (S, F ) is T-dualizable. That is, if and only if F ∈ Ω2(S) is invariant.

The following lemma will be necessary to describe T-dualizable branes and prove a global
theorem.

Lemma 7.3.14. Consider H ∈ H0(B,∧2Γ∗) as a family of alternating bilinear forms on
the fibers of Γ with values in Z. Then, there exists a global semicharacter χ0 for H. More
precisely χ0 : Γ → U(1) such that for any b ∈ B, χ0(b) : Γb → U(1) is a semicharacter for
H|Γb

.

Proof. Let {Uα} be a good cover of B so we may represent H as a collection of alternating
bilinear forms {Hα} acting on Γ|Uα

∼= Uα × Zn which satisfy ψ∗
αβHβ = Hα.
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7.3. On affine torus bundles over general base

We define χ0 locally on Uα using a decomposition for Hα. Let {µ1, ...µn} with µi ∈ Γ(U,Zn) ∼=
Zn be a symplectic frame for Hα. That is,

Hα(µi, µr+i) = hi, i = 1, ..., r and Hα(µl, λ) = 0 l = 2r + 1, ..., n, λ ∈ Γα.

A decomposition of Γα with respect to Hα is given by Γα = Γ1
α + Γ2

α + Γ0
α where Γ1

α =
span{µi | i = 1, ...r}, Γ2

α = span{µr+i | i = 1, ..., r} and Γ0
α = span{µl | l = 2r+1, ..., n}.

We then decompose each λ ∈ Γ|Uα as λ = λ1 + λ2 + λ0 and we define

χα(λ) := exp(iπHα(λ1, λ2)).

We may choose the local decompositions to be compatible with the transition functions ψαβ in
the following sense. If {µi} is a symplectic frame for Hα, then {ψαβµi} = {νi} is a symplectic
frame for Hβ over Uαβ. But since the transition functions are constant and so are sections
of Γβ there is no issue of extending νi to a symplectic frame of Hβ over Uβ. Then, Γ1

β =
span{νi | i = 1, ...r}, Γ2

β = span{νr+i | i = 1, ...r} and Γ0
β = span{νl | l = 2r + 1, ..., n} is

a decomposition with respect to Hβ.

Let λ ∈ Γ(Uα,β,Zn) be a local section of Γ. By the choice of decompositions, ψαβ(λ1) =
(ψαβλ)1 so we have

(ψ∗
αβχβ)(λ) = χβ(ψαβλ) = exp(iπHβ((ψαβλ)1, (ψαβλ)2) = exp(iπHβ(ψαβ(λ1), ψαβ(λ2))

= exp(iπHα(λ1, λ2)) = χα(λ)

so {χα} glue together to a global χ0.

Theorem 7.3.15. Let (S, L) be a rank 1 T-dualizable brane on (M,G). Let F ∈ Ω2(S) be
the curvature of L and denote the fiberwise component of F by H ∈ H0(π(S),Γ∨

S). Then
the following holds.

1. −H(c) = q(ĉ) ∈ H2(B,Γ∨
S), that is the distribution ∆ on M ×B M̂ has closed leaves

Z which are affine torus subbundles over π(S) (Theorem 4.3.24).

2. There exists a leaf Z ⊂ S ×π(S) M̂ such that the collection of line bundles p∗Li ⊗ Pi

are trivial on the fibers of p̂Z . Moreover, over Z we have an isomorphism between
collections of U(1)-bundles

p∗L⊗ P ∼= L̂

such that δ(L̂) is a trivialization of p̂∗Ĝ.

3. The T-dual (Ŝ, L̂) is a rank d T-dualizable brane on M̂ .

Proof of 1. Let V , VS and Γ, ΓS be the vertical bundle and the monodromy local system of
M and S respectively. Let U = {Ui} be the good cover of B defining G. By passing to a
refinement if necessary we can assume that U ∩ π(S) = {Ui ∩ π(S) = Vi} is also a good
cover. Let us denote by Si the intersection π−1(Vi) ∩ S and by Sij = Si ∩ Sj. Then L is
represented by local bundles Li → Si which are T-dualizable bundles in the sense of Theorem
7.2.7. The gerbe G|S is represented by LG

ij|Sij
. If the L = {Li} form a gerbe module then we

have a strict isomorphism between the trivial gerbe δ(L) and G|S.
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7. T-duality for U(1)-bundles with connections

Since all the line bundles LG
ij|Sij

and Li ⊗ L−1
j are trivializable we may chose sections sG

ij of
LG
ij|Sij

and sLij of Li ⊗ L−1
j . Then the isomorphisms over Sij

µij : Li ⊗ L−1
j → LG

ij|Sij

are represented by functions mij : Sij → U(1) such that

µij(sLij) = mijs
G
ij.

These must commute with the gerbe products. More precisely, if we denote by {gijk} and
{gLijk} the gerbe products of of G and δ(L) we have

gijk · (gLijk)−1 = ψ∗
ijmjk ·m−1

ik ·mij.

That is,
{gijk} = {gLijk} ∈ H2(π(S), (πS)∗CU(1))

and
−q(ĉ) = δ2{gLijk} ∈ H2(π(S),Γ∨

S),
so it suffices to show that δ2{gLijk} = H(c).
We denote by M0 = V/Γ and S0 = VS/ΓS the group bundles corresponding to M and S.
Since S is a submanifold of M |π(S) the Chern class c of M |π(S) is given by Chern class cS
of S (Lemma 4.3.16). In particular, we have a projection M |π(S) → (M0|π(S))/S0 and S is
the preimage of a section b. That is, there exists bi : Vi → M0 such that Si = tbi

S0 and
bi − bj ∈ S0.
By 7.2.6 we have unique representatives for Li, and now we would like to determine Li ⊗L−1

j .
For this, we have to calculate the transition functions of S as we did in the discussion before
Lemma 4.3.16. In the notation of (4.3.46) we have

ψij : t−bi
Si → t−bi

Sj

[y, q] ↦→ [ϕij(y), Bijq + Cijbi + c1
ij],

(7.3.51)

with bj = Dijbi + c2
ij . Let us denote the translations by c̃ij = Cijbi + c1

ij . We can lift (7.3.51)
to diffeomorphisms ψij : VS|Vi

→ VS|Vj
so they satisfy

ψik ◦ ψjk ◦ ψij = tñijk
, (7.3.52)

where {ñijk} = cS ∈ H2(π(S),Γ∨
S).

Now we can represent Li (actually t∗bi
Li as in the proof of Theorems 7.1.1 and 7.2.7) with a

canonical factor (Theorem 7.2.6) using the invariant constant semicharacter from Lemma 7.3.14
and we can calculate the gerbe product of δ(L) as before. We have for y ∈ Vi, v ∈ VS, λ ∈ ΓS

aLi
· (ψ∗

ijaLj
)−1(y, v;λ) =exp

(︃
− iπH(c̃ij, Bijλ) + 2πi(Gi −BT

ijGj)(λ)
)︃
,

(ALi
− ψ∗

ijALj
)(y, v) =2πi(A0

i − A0
j) − 2πi(dGi −BT

ijdGj) · v + 2πidGj · c̃ij−
− iπH(c̃ij, Bijdv) − iπH(Bijv, dc̃ij) − iπH(c̃ij, dc̃ij).

A trivializing section is given by the function

θij(y, v) = exp(−iπH(c̃ij, Bijv) + 2πi(Gi −BT
ijGj)(v)), (7.3.53)

160



7.3. On affine torus bundles over general base

then,
Aijk = δ(Aij − dlogθij)

is

Aijk = − 2πi
(︃

(Gj −BT
jkGk) · d(Bijv + c̃ij) + dGk · c̃jk − (Gi −BT

ijGk)dv − dGk · c̃ik+

+ (Gi −BT
ijGj)dv + dGj · c̃ij

)︃
− iπ

(︃
H(c̃jk, dc̃jk) −H(c̃ik, dc̃ik) +H(c̃ij, dc̃ij)

)︃
− 2πiH(ñijk, dv) − 2πiH(c̃jk, Bjkdc̃ij).

Using several times that δ(c̃ij) = ñijk we find

Aijk(y, v) = −dlog
(︃
exp(2πiH(ñijk, v)) · µijk(y)

)︃
with

µijk =exp
(︃
iπH(Bjkc̃ij, c̃ik) − iπH(ñkji, c̃ik) − iπH(ñkji, Bjkc̃ij)

)︃
×

× exp
(︃

2πi(Gj −BT
jkGk)c̃ij + 2πiGkñkij + fijk

)︃
.

The map δ2 is given by

δ2 : H2(π(S), (πS)∗CU(1)) → H2(π(S),Γ∨
S)

{gijk} ↦→ {λ ↦→ dlog(gijk)(v + λ) − dlog(gijk)(v)},

therefore it is clear that δ2({gLijk}) = H(cS).

Proof of 2. By Part 1. the Chern class of M̂ |π(S) is in the image of

H2(π(S),Γ∨
Ŝ
) → H2(π(S),Γ∨

M),

and the Chern class of S ×π(S) M̂ is in the image of

H2(π(S),ΓZ) → H2(π(S),ΓS + Γ∨
M).

Therefore, for any global Ŝ there exists a global leaf Z ⊂ S ×π(S) Ŝ. That is, there exists
a global leaf Z such that {p∗L ⊗ Pi} are trivial on the fibers of p̂Z if and only if the local
unique T-duals (Ŝi, L̂i) form a global submanifold of M̂ |π(S).

Similarly to the discussion in Part 1., by Proposition 4.3.12 any global Ŝ is the preimage of a
section under the projection

ρ : M̂ → coker(H)/coker(H,Γ∨
S).

The image of the local T-duals Ŝi ⊂ M̂ under ρ is a local section. By the diagram 7.2.26
these local sections are given by

[−Gi] : Vi → coker(H)/coker(H,Γ∨
S),

the images of −Gi : Vi → V ∗
S under the projection V ∗

S → V ∗
S /Im(H). We, therefore, need to

show that the [−Gi] form a global section.
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7. T-duality for U(1)-bundles with connections

Recall, that via the trivializing sections sLij and sG
ij the isomorphism µij : Li ⊗ L−1

j → LG
ij|Sij

are given by functions. These satisfy

ALi
− ψ∗ALj

+ dlogθij − AG
ij − dlogθG

ij = −dlogµij,

where θij is (7.3.53) and θG
ij trivializes LG

ij|Sij
. The LG

ij|Sij
are represented by

aG
ij(y, v;λ) = exp(iπĉij(Bijλ))
AG
ij(y, v) = iπĉij ·Bijdv + iπĉij · dc̃ij

so

θG
ij(y, v) = exp(iπĉij(Bijv)), (7.3.54)

and we have

−dlogµij = 2πi(A0
i − A0

j − 1
2H(c̃ij, dc̃ij) + dGj · c̃ij)− (7.3.55)

− 2πi(H(BT
ij c̃ij) −Gi +BT

ijGj −BT
ij ĉij) · dv. (7.3.56)

Since Fi = dALi
= dALj

= Fj the first term in (7.3.55) is a closed one-form pulled back from
Vij. Therefore, there exists fij : Vij → U(1) such that

−dlogµij − dlogπ∗
Sfij = −2πi(H(BT

ij c̃ij) −Gi +BT
ijGj −BT

ij ĉij) · dv. (7.3.57)

The expression H(BT
ij c̃ij) −Gi +BT

ijGj −BT
ij ĉij depends only on y and the left-hand side of

(7.3.57) is closed, therefore H(BT
ij c̃ij) −Gi +BT

ijGj −BT
ij ĉij must be constant n̂ij and

µij · π∗
Sfij = exp(−2πin̂ij(v) + (constant)) : Sij → U(1).

That is n̂ij(λ) ∈ Z and n̂ij ∈ ΓS ∨ .

Going back to the local sections [−Gi], we have

[−Gi] + [BT
ijGj] = [H(BT

ij c̃ij) −Gi +BT
ijGj −BT

ij ĉij] = [n̂ij] = 0,

where we use that q(ĉ) ∈ H2(π(S), Im(H) ∩ Γ∨
S).

Proof of 3. We have isomorphisms

L̂i ∼= p̂∗
ZL

G
ij ⊗ Lj

so by the projection formula

Êi = (p̂Z)∗Li ∼= (p̂Z)∗Lj ⊗ LG
ij = Êj ⊗ LG

ij.

In particular, using that Êi = ⊕dL̂i

L̂i ∼= L̂j ⊗ LG
ij.
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Example 7.3.16. Let M → B be an algebraic integrable system with principally polarized
fibers. Then, M carries a semi-flat hyperkähler structure and by Theorem 4.2.6 the affine
torus bundle M endowed with H = 0 flux is self-T-dual in the sense of generalized geometry.
It is easy to see that M can also be endowed with a (trivializable) gerbe such that (M,G) is
topologically self-T-dual.
Let ω be the Kähler form of the special Kähler structure on the base B. Then the restriction
of ωI, one of the kähler forms of the semi-flat metric (4.2.3, 4.2.4), to the fibers is

ω−1 ∈ H0(B,∧2Γ∨
M).

With our conventions for the kähler form, the restriction is minus the polarization, therefore
ω−1 induces an isomorphism ω−1 : ΓM → Γ∨

M . If we set

ĉ := −ω−1(c) = −d2(ω−1),

then ⟨c ∪ ĉ⟩ = d2 ◦ d2(ω−1) = 0.
Let M̂ → B be the affine torus bundle with local system ΓM = Γ∨

M and Chern class ĉ and let
G and Ĝ be the gerbes defined in Proposition 7.3.10.
Let now U = {Ui} be a good cover of B. Then on M |Ui

= Mi we can define the U(1)-bundle
with connection (Mi, L

A
i ) corresponding to the generalized brane (M,ωI) (Example 7.2.9). We

can calculate the gerbe product associated with the trivial gerbe δ(LA) as in the construction
of the Poincaré bundle as a gerbe. It is easy to see that δ(LA) is a trivialization of G. Moreover,
the local T-duals (M̂ i, L̂

B

i ) trivialize Ĝ.
Therefore, M endowed with the trivial gerbe corresponding to the class h ∈ H3(M,Z) is
topologically self-T-dual. On the other hand, if we denote by ϕ : M → M̂ the isomorphism
induced by polarization, the pullback of L̂Bi via ϕ is not LAi (cf. Example 7.2.9). These are
instead different U(1)-bundles which restrict to the fibre as the duals of LAi . In particular, the
pullback ϕ∗Ĝ is only stably isomorphic to G not strictly.
If M is not principally polarized, then we can still set ĉ := −ω−1(c) ∈ H2(B,Γ∨

M ). If we take
M̂ to be affine torus bundle with monodromy local system Γ∨

M and Chern class ĉ, then there
exist gerbes G and Ĝ such that (M,G) and (M̂, Ĝ) are topologically T-dual. The gerbe G on
M is still trivialized by (Mi, L

A
i ), but its T-dual is now a higher rank brane given locally by

(M̂ i, L̂
B

i ) forming a gerbe module of Ĝ.

7.4 T-duality of higher rank branes

In this section, we consider T-duality of higher-rank branes. More precisely, we will see that
we can upgrade T-duality of generalized branes to T-duality of twisted U(n)-bundles with
connections.
Let M and M̂ be a pair of topologically T-dual affine torus bundles in the sense of Proposition
7.3.10 endowed with flat connections and gerbes G and Ĝ. In the previous section, we assumed
that G and Ĝ admitted flat connections but this is not necessary for the following discussion.
Let (S, F ) be a generalized brane in M which admits global generalized T-duals and it satisfies
the conditions of Theorem 4.3.24. Let (Ŝ, F̂ ) be a generalized T-dual of (S, F ). Then, by
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7. T-duality for U(1)-bundles with connections

Theorem 4.3.24 there exists an affine torus subbundle Z ⊂ S ×π(S) Ŝ which fits into the
following diagram.

(Z, p̂∗
ZF̂ − p∗

ZF = P |Z)

(S, F ) (Ŝ, F̂ )

pZ p̂Z (7.4.58)

Suppose first that π(S) is simply connected. Then we can prove the following local statement.

Theorem 7.4.1. Let H be the fiberwise component of F , and suppose that in a local
symplectic frame {µ} of ΓS it can be written as

H =
r∑︂
i=1

ni
mi

µ∗
i ∧ µ∗

i+r.

Let m = ∏︁r
i=1 mi and n = ∏︁r

i+1 ni. Then, for any Z ⊂ S ×π(S) Ŝ there exist U(1)-bundles
LZ and L̂Z with connections which satisfy

LZ ⊗ P|Z ∼= L̂Z . (7.4.59)

Moreover, there exists a projectively flat U(m)-bundle with connection E → S and a
projectively flat U(n)-bundle with connection Ê → Ŝ such that for any Z we have

(pZ)∗LZ ∼= E ⊗ U(m), (p̂Z)∗L̂Z ∼= Ê ⊗ U(n), (7.4.60)

and the curvatures of the connections on E and Ê are given by

FE = 2πiF · Id ∈ Ω2(S, u(m)) and FÊ = 2πiF̂ · Id ∈ Ω2(Ŝ, u(n)).

That is, for any pair of generalized T-duals, we can find higher-rank branes over S and Ŝ which
are T-dual in the sense of 7.4.59 and 7.4.60. Moreover, the connections of these higher rank
branes are projectively flat and their curvatures are determined by the underlying generalized
branes.

Remark 7.4.2. We can apply this theorem to dual complex tori M and M̂ and T-dualizable
generalized B-branes (S, F ) and (Ŝ, F̂ ). Then the resulting sheaves E and Ê are Fourier-
Mukai pairs of semihomogeneous vector bundles supported on affine subtori. Therefore, calling
(S,E) and (Ŝ, Ê) a T-dual pair of higher rank branes is justified.

Proof of Theorem 7.4.1. We first determine P|Z in terms of factors of automorpy for a choice
of (S, F ) and (Ŝ, F̂ ) and Z ⊂ S ×π(S) Ŝ.
Locally we can write S as tbS0 inside M |π(S) for b : π(S) → M . We then have Z = tb,−GZ0

in S ×π(S) M̂ , where G : π(S) → M̂ is a lift of a section π(S) → V ∗
S /Γ∨

S determined up to a
constant by F ∈ Ω2(S). Then, Ŝ = t−GŜ0. We have the maps

Z0

S0 Ŝ0

p0 p̂0
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7.4. T-duality of higher rank branes

modelled on the homomorphisms

0 Ann(ΓS) ΓZ ΓH 0

0 Ann(ΓS) ΓŜ Γ∨
S ∩H(VS) 0.

∼= p̂0

p0

−H

q

Then, pZ and p̂Z are determined by the commutative diagrams

Z0 Z Z0 Z

S0 S, Ŝ0 Ŝ

p0

t(b,−G)

pZ p̂0

t(b,−G)

p̂Z

tb t−G

.

Let us write P0
Z → Z0 for t∗(b,−G)(P|Z). We have

P|Z = (t(b,−G))∗

(︃
(t∗(b,−G)P)|Z0

)︃
so P0

Z = (t∗(b,−G)P)|Z0 . The bundle (t∗(b,−G)P) on M ×π(S) M̂ is represented by

a(t∗(b,−G)P)(v, v̂;λ, λ̂) = aP(v + b, v̂ −G;λ, λ̂)

= exp(iπ(λ̂(λ) + v̂(λ) − λ̂(v) −G(λ) − λ̂(b)))
A(t∗(b,−G)P)(v, v̂) = iπ(v̂ −G) · d(v + b) − (v + b) · d(v̂ −G))

= iπ(v̂ · dv − v̂ · dv) − iπG · dv + iπv · dG− iπb · dv̂ + iπv̂ · db
− iπG · db+ iπb · dG.

Therefore,

aP0
Z
(v;λ) = exp

(︃
iπ
(︃
p̂0(λ)(p0(λ)) + p̂0(v)(p0(λ)) − p̂0(λ)(p0(v)) −G(p0(λ)) − p̂0(λ)(b)

)︃)︃
= exp

(︃
iπ
(︃

−H(p0(λ), p0(λ)) −H(p0(v), p0(λ)) +H(p0(λ), p0(v))

−G(p0(λ)) − p̂0(λ)(b)
)︃)︃

= exp
(︃

− 2πiH(p0(b), p0(λ)) − iπG(p0(λ)) − iπp̂0(λ)(b)
)︃
,

AP0
Z
(v) = iπ(−H(p0(v)) · dp0(v) + p0(v) · dH(p0(v))) − iπGdp0(v) + iπp0(v) · dG

− iπbdp̂0(v) + iπp̂0(v) · db− iπG · db+ iπb · dG
= −2πiH(p0(v), dp0(v)) − iπGdp0(v) + iπp0(v) · dG− iπbdp̂0(v) + iπp̂0(v) · db

− iπG · db+ iπb · dG.

Let us change the representatives by

ϕ(v) = exp(iπ(G(p0(v)) + p̂0(v)(b) + iπG · b))

so we have

aP0
Z
(v;λ) = exp(−2πiH(p0(v), p0(λ))),

AP0
Z
(v) = −2πiH(p0(v), dp0(v)) − 2πiG · dp0(v) − 2πib · dp̂0(v) − 2πib · dG.
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7. T-duality for U(1)-bundles with connections

The two-form F ∈ Ω2(S) pulls back to a two-form t∗bF ∈ Ω2(S0) under the diffeomorphism
tb : S0 → S. We can write

p∗
0t

∗
bF = 2πiH(dp0(v), dp0(v)) + 2πidG ∧ dp0(v) + 2πiF 0

Let A0 ∈ Ω1(π(S)) be a two-form such that dA0 = F 0 and define the U(1)-bundles with
connection L0

Z and L̂0
Z on Z0 as

aL0
Z
(v;λ) = χ0(λ)exp(iπH(p0(v), p0(λ)))

AL0
Z
(v) = iπH(p0(v), dp0(v)) + 2πiG · dp0(v) + 2πiA0,

a
L̂

0
Z
(v;λ) = χ0(λ)exp(−iπH(p0(v), p0(λ))),

A
L̂

0
Z
(v) = −iπH(p0(v), dp0(v)) − 2πib · dp̂0(v) − 2πib · dG+ 2πiA0.

Then we have
L0
Z ⊗ P0

Z
∼= L̂

0
Z

on Z0.
We can now repeat the proof of Theorem 7.2.7 to show that (p̂Z)∗L̂Z is independent of the
choice of Z and of the choice of representatives and that

(p̂Z)∗L̂Z = Ê ⊗ U(n).

To show that the analogous statement holds for LZ we have to view (S, F ) as the T-dual
of (Ŝ, F̂ ) and work backwards. If we view M as the dual of M̂ , the corresponding Poincaré
bundle is given by P−1, so we have on Z

L̂Z ⊗ P−1|Z = LZ .

Moreover, on Ŝ we can determine the fiber-wise component

Ĥ ∈ H0(π(S),∧2Γ∨
Ŝ

⊗ Q)

of the two-form F̂ , which acts on VŜ as

Ĥ(v̂, v̂) = H−1(q(v̂), q(v̂)).

Then repeating all the arguments in Chapter 4 we can show that the vertical bundle VZ and
monodromy local system ΓZ of Z0 can be expressed also as

0 Ann(ΓŜ) ΓZ ΓĤ 0

0 Ann(VŜ) VZ VŜ 0

and we can express p0 and p̂0 via the maps

0 Ann(ΓŜ) ΓZ ΓĤ 0

0 Ann(ΓŜ) ΓS Ĥ(VŜ) ∩ Γ∨
Ŝ

0.

∼=

p̂0

p0 −Ĥ

q̂
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7.4. T-duality of higher rank branes

Repeating the proofs of Theorem 7.3.15 shows that

(pZ)∗LZ ∼= E ⊗ U(m).

The resulting pair (S,E) and (Ŝ, Ê) are also shown to be T-dual in [CLZ18].

Remark 7.4.3. Looking more closely at the factors of automorphy representing E and Ê it is
easy to show that

p∗
ZE

∼= LZ ⊗ U(n) and p̂∗
ZÊ

∼= L̂Z ⊗ U(m).

We can extend our theorem to T-dual torus bundles over a non-contractible base. Theorem
7.3.10 shows that if M and M̂ satisfy ⟨c ∪ ĉ⟩ = 0 ∈ H4(M,Z) we can find gerbes with
connections G and Ĝ on M and M̂ respectively such that the pairs (M,G) and (M̂, Ĝ) are
topologically T-dual. The gerbes G and Ĝ may not be flat, but their connections’ curvatures
are basic.

Let (S, F ) and (Ŝ, F̂ ) be a pair of T-dual generalized branes for zero H-flux, that is dF = 0
and dF̂ = 0. Moreover, assume that there exists a global leaf Z ⊂ S ×π(S) Ŝ fitting into the
diagram,

(Z, p̂∗
ZF̂ − p∗

ZF = P |Z)

(S, F ) (Ŝ, F̂ ).

pZ p̂Z (7.4.61)

The following theorem shows that even if G and Ĝ are not flat, over S and Ŝ there exist flat
gerbes with gerbe modules which are locally T-dual in the sense of Theorem 7.4.1.

Theorem 7.4.4. In the above setting let m and n be the positive integers as in Theorem
7.4.1. Then, there exist flat gerbes G ′ and Ĝ

′ on S and Ŝ such that the following holds.

1. Over any Z ⊂ S ×π(S) Ŝ as in (7.4.61) the twisted Poincaré bundle is a trivialization of
p̂∗
ZĜ

′
⊗ (p∗

ZG ′)−1. Moreover,

G ′ ⊗ (G|S)−1 ∼= π∗G0 and Ĝ
′
⊗ (Ĝ|Ŝ)−1 ∼= π̂∗G0

where G0 is a gerbe on π(S).

2. For any Z ⊂ S ×π(S) Ŝ as in (7.4.61) there exists U(1)-bundles L and L̂ on Z twisted
by p∗

ZG ′ and p̂∗
ZĜ

′ such that we have an isomorphism of gerbe trivializations

δ(L̂) ⊗ δ(L)−1 ∼= δ(P).

Moreover, L is trivial on the fibers of pZ : Z → S and L̂ is trivial on the fibers of
p̂Z : Z → Ŝ.
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7. T-duality for U(1)-bundles with connections

3. There exists a G ′-module E of rank m on S and a Ĝ
′-module Ê of rank n on Ŝ such

that
E ⊗ U(m) ∼= (pZ)∗L and Ê ⊗ U(n) ∼= (p̂Z)∗L̂Z .

Moreover, the connections on E and Ê are projectively flat with curvatures given by

FE = 2πiF · Id ∈ Ω2(S, u(m)) and FÊ = 2πiF̂ · Id ∈ Ω2(Ŝ, u(n)).

Proof. We define G ′ and Ĝ
′ via the local line bundles LZ and L̂Z of Theorem 7.4.1.

Let V be a good cover of B such that U := {π(S) ∩ V | V ∈ V} is a good cover of π(S).
Then, for any Z ⊂ S ×π(S) Ŝ we can define line bundles Li and L̂i over Zi = q−1(Ui) ∩ Z for
Ui ∈ U as in Theorem 7.4.1.
Analogously to (7.3.36), the transition functions for Z over the cover {Zi} can be written as

ψZij : Zi → Zj

(y, v) ↦→ (ρij(y), AZijv + cZij).

We define a trivializable gerbe δ(L) on Z via the collection of U(1)-bundles {Li}. Over
Zi ∩ Zj we can represent δ(L) by the the local flat U(1)-bundles via the following factor of
automoprhy and connection one forms.

aLi⊗(ψZ
ij)∗L−1

j
(y, v;λ) = exp(−iπH(p0(cZij), p0(AZijλ))),

ALi⊗(ψZ
ij)∗L−1

j
(y, v) = −iπH(p0(cZij), dp0(AZijv)) − iπH(p0(AZijv), dp0(cZij))+

+ 2πiGi · dp0(v) − 2πiGj · dp0(AZijv) − 2πiGjdp0(cZij)−
− iπH(p0(cZij), dp0(cZij)) + 2πi(A0

i − A0
j).

Since dALi⊗(ψZ
ij)∗L−1

j
= Fi − Fj = 0 we have

2πiGjdp0(cZij) − iπH(p0(cZij), dp0(cZij)) + 2πi(A0
i − A0

j) = 2πidϕij(y)

for some basic functions ϕij : Uij → R. We can calculate the gerbe product as in Section
7.3.2, so we find

g′
ijk(y, v) = exp(−2πiH(p0(nZijk), p0(v)) + hijk(y)) ∈ H2(π(S), q∗CU(1)),

where hijk are smooth functions pulled back from Uijk.

Using that Zi = t(bi,−Gi)Z0 and that Z is a global submanifold of S ×π(S) Ŝ we find that for
all i, j we have in

−((ASij)T )−1H(p0(v)) − ((ASij)T )−1Gi + q(ĉij)

= −H(p0(AZijv)) −H(p0(cZij)) −Gj ∈
(︂
V ∗
S /Γ∨

S

)︂ ⃓⃓⃓⃓
Uij

,

where q : V ∗
M → V ∗

S is the projection and ĉij ∈ H1(π(S), V ∗
M/Γ∨

M) represents the Chern class
of M̂ . Since (ASij)THp0(AZij) = (ASij)THASij = H we have

(ASij)T q(ĉij) = −(ASij)TH(p0(cZij)) +Gi − (ASij)TGj ∈
(︂
V ∗
S /Γ∨

S

)︂ ⃓⃓⃓⃓
Uij

. (7.4.62)
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7.4. T-duality of higher rank branes

The consequence of (7.4.62) is of course the equality of Chern classes q(ĉ|π(S)) = −H(cZ) ∈
H2(π(S),Γ∨

S ∩H(VS)).
Using (7.4.62) it is clear that we can define a gerbe G ′ over S such that p∗

ZG ′ ∼= δ(L). The
gerbe G ′ can be represented over the cover {Si := π−1

S (Ui)} of S via the flat line bundles on
the double overlaps

a′
ij(y, v : λ) = exp

(︂
iπq(ĉij)(ASijλ) − iπ(Gi − (ASij)TGj)(λ)

)︂
,

A′
ij(y, v) = iπq(ĉij)ASijdv + iπ(Gi − (ASij)TGj)dv + iπ(dGi − (ASij)TdGj)(v) + 2πidfij,

and the gerbe product

g′
ijk(y, v) = exp

(︂
2πiq(n̂ijk)(v) + hijk(y)

)︂
We can change the representatives of Lij by

µij(y, v) = exp
(︂
iπ(Gi − (ASij)TGj) · v

)︂
,

which only changes the gerbe product by a basic function.
Similarly, we can define δ(L̂) as the flat trivializable gerbe associated to the U(1)-bundles {L̂i}
on the cover q−1(Ui). Calculating L̂i ⊗ L̂

−1
j on the double overlaps and the gerbe product on

the triple overlaps shows again that δ(L̂) ∼= p̂∗
ZĜ

′ for a flat gerbe on Ŝ.
Since locally Pi

∼= L−1
i ⊗ L̂i Part 2 follows. Part 3 is an immediate consequence of Theorem

7.4.1 and Part 1 and 2.
Finally, we have to show that G ′ and Ĝ

′ are isomorphic to G|S and Ĝ|Ŝ up to a flat gerbe
pulled back from the base. We show this for G ′ and G|S as the T-dual side follows analogously.
From (7.3.44) the gerbe product for G|S is given by

gijk(y, v) = exp
(︂
2πiq(n̂ijk) · v + 2πinijk · bi − 2πifijk

)︂
and the local line bundles are

aG
ij(y, v;λ) = exp(πiq(ĉij)(ASijλ)),
AG
ij(y, v) = iπq(ĉij)(ASijdv) + iπĉij · Aij · dbi + 2πiϵij.

After changing the representatives of G ′ by µij it becomes clear that G ′ ⊗Ĝ|−1
S is a gerbe pulled

back from the base. Moreover, since p∗
ZG ′ ⊗ p̂∗

Z(cĜ′)−1 ∼= p∗
zG|S ⊗ p̂∗

ZĜ
−1 Part 1 follows.
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CHAPTER 8
Conclusions

Semihomogeneous vector bundles. As we have mentioned in Remark 7.4.2 the results
of Theorem 7.4.1 are closely tied to the works of Matsushima [Mat76], Mukai [Muk78] and
others on semihomogeneous vector bundles. On a complex torus X = V/Γ one can define
the Heisenberg group GH(Γ) corresponding to any Hermitian pairing H ∈ NS(X) ⊗ Q, or
the Heisenberg group GE(Γ) corresponding to the imaginary part E of H. Holomorphic
representations of these groups can be reformulated into factors of automorphy, therefore they
define holomorphic vector bundles on X.
Matsushima showed that there is a bijection between holomorphic representations of GH(Γ)
and GE(Γ) and further established that there is a distinguished irreducible representation for
any H. The vector bundles corresponding to these irreducible representations are precisely the
simple semihomogeneous vector bundles on X.
In [Muk78] Mukai described the category of semihomogeneous vector bundles on a complex
torus. For any element δ ∈ NS(X) ⊗ Q there is a subcategory Sδ and the category of
semihomogeneous vector bundles is given by ⊕Sδ. Within Sδ, up to tensoring with a flat
bundle, there is a unique simple vector bundle, which corresponds to the distinguished irreducible
representation of the Heisenberg group associated to δ.
In Theorem 7.4.1 the bundles E and Ê should be (at least fiber-wise) analogous to the
simple semihomogeneous vector bundles corresponding to irreducible representations of the
appropriate Heisenberg groups. Since the curvatures of the connections are not necessarily
compatible with a complex structure, we should extend Matsushima’s analysis to accommodate
this setting.
The work of Matsushima, Mukai, and others on semihomogeneous vector bundles, along with
the contributions of Chan, Leung, and Zhang on T-duality and also Theorem 7.4.1, indicates
that the Fourier-Mukai transform of semihomogeneous vector bundles - and similarly, the
T-duality of projectively flat bundles with invariant curvatures - can be understood via linear
data on the fibers. Such a description could be easily worked out similarly to the Fourier-Mukai
transform of line bundles supported on affine subtori (Section 5.2). This might already exist
in the literature but the author is currently unaware of any references.

T-duality of generalized branes with non-zero H-flux. There are several ways one could
extend the results of this thesis concerning generalized branes. The first direction could be to
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8. Conclusions

include non-zero H-flux and study the locally T-dualizable branes. Suppose that (M,H) and
(M̂, Ĥ) are T-dual affine torus bundles in the sense of generalized geometry. Then, [Bar15,
Theorem 4.1.] states that given connections A and Â on M and M̂ respectively, we have

p̂∗Ĥ − p∗H = d⟨p̂∗Â ∧ p∗A⟩

after possibly changing H and Ĥ by B-field transforms. In this case, however, the connections
A and Â are not flat and we cannot find coordinates for the horizontal distribution.
A generalized brane in (M,H) is a pair L = (S, F ) such that S ⊂ M is a submanifold
and F ∈ Ω2(S) is a two-form satisfying dF = H|S. Once again we can restrict to branes
supported on affine torus subbundles with invariant two-forms. Then, we can still reduce
the generalized tangent bundle τL and T-dualize it using the T-duality map 4.1.3. Then,
we can construct an invariant subbundle of TM̂ |π(S) ⊕ T ∗M̂ |π(S) which is still maximal
isotropic and Courant integrable. The image of this subbundle under the anchor map is an
integrable distribution. We could also construct this distribution as before, by going through
the distribution ∆ ⊂ T (S ×π(S) M̂) in the correspondence space. On the other hand, the
integrability of ∆ is not clear. Moreover, even if ∆ is integrable, we cannot find coordinates
which also span the horizontal distribution. This makes the calculations in coordinates less
enlightening. Therefore, to generalize one must find a coordinate-free way to study the
distribution ∆ and the T-duals of (S, F ).

T-duality on the twistor space. There have been attempts to define the Fourier-Mukai
transform on the space of lambda connections [Del95, Sim96], which serve as an algebraic
analogue to the twistor space construction [HKLR87, Section (F)] for the Higgs bundle moduli
space.
Given T-dual algebraic integrable systems (M, 0) and (M̂, 0) it is easy to see that their twistor
spaces (Z, 0) and (Ẑ, 0) are also T-dual in the sense of generalized geometry. Indeed, the
twistor space Z of M as a differentiable manifold is just M × S2, the product of M with
the sphere. Therefore, T-duality between Z and Ẑ is the pullback of the T-duality relation
between M and M̂ from the base B to B × S2.
The semi-flat hyperkähler structures on these spaces induce holomorphic symplectic structures
on the twistor spaces. Then, the T-dual of the generalized complex structure (GCS) associated
with the holomorphic structure on Z is a mixed-type GCS on Ẑ. Over the poles of S2, it
remains a complex type, while at the other points of the sphere, it becomes a symplectic type
GCS. This is analogous to the BBB-BAA T-duality.
Via the Atiyah-Ward correspondence, BBB-branes already have a well-established description
on the twistor space. Then, BAA-branes could be studied on the twistor space as special
branes of this mixed type GCS. There is potential to develop an analogous geometric framework
for the BAA side.
In [GS13] Glover and Sawon gave a twistor space construction for generalized hyperkähler
manifolds. One could extend T-duality to this setting as well.

Applications to the Higgs bundle moduli space. One could use the results established
in this thesis to study branes on the Higgs bundle moduli spaces M(r, d) as well (cf. Example
2.4.3). The smooth locus of these moduli spaces carries a hyperkähler metric, which we call
the Hitchin metric, in which the fibration M(r, d) → A is an algebraic integrable system. The
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moduli spaces M(r, 0), of rank r degree zero Higgs bundles, admit a holomorphic Lagrangian
section therefore on these components we can construct a semi-flat hyperkähler structure.
Then, both the semi-flat and the Hitchin metric induce the same holomorphic symplectic
structure on M(r, 0) and therefore the BAA-branes of the semi-flat metric coincide with the
BAA-branes of the Hitchin metric.
One could then T-dualize the semi-flat BAA-branes and study the resulting semi-flat BBB-
branes. These are going to be a hyperholomorphic bundles with respect to the T-dual semi-flat
metric, but not the Hitchin metric. One could study the deformations of the semi-flat
hyperholomorphic connections to find a mirror-symmetry relation between BAA and BBB-
branes of the Hitchin metric. This is also the idea underlying the conjectures of Gaiotto,
Moore and Nietzke [GMN10, GMN13].
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