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ABSTRACT: Diffusion models have recently emerged as powerful tools for the generation of new molecular and material
structures. The key insight is that the noise in these models is related to the response of the atoms to displacement, and the
denoising step is thus analogous to the geometry relaxation of atomistic systems starting from a random structure. Building on this,
we present a generative method called Response Matching (RM), which leverages the fact that each stable material or molecule
exists at the minimum of its potential energy surface. Any perturbation induces a response in energy and stress, driving the structure
back to equilibrium. Matching this response is closely related to score matching in diffusion models. Another important aspect of
state-of-the-art diffusion models is the incorporation of physical symmetries such as translation, rotation, and periodicity. RM
employs a machine learning interatomic potential and random structure search as the denoising model, inherently respecting these
symmetries and exploiting the locality of atomic interactions. RM handles both molecules and bulk materials under the same
framework. Its efficiency and generalization are demonstrated on three systems: a small organic molecular data set, stable crystals
from the Materials Project, and one-shot learning on a single diamond configuration.

■ INTRODUCTION
The exploration of new materials and molecules is crucial for
technological advancements. Previous approaches rely on
human intuition to propose and synthesize new molecules or
high-throughput computational screening.1 While these meth-
ods have led to some of the most important discoveries in
history, they are often time-consuming and expensive, restricting
the chemical space explored. This has encouraged the use of
machine learning to generate new molecular2 and material
structures by training on data sets of equilibrium atomistic
structures.3,4 For example, the autoregressive G-SchNet5 and
equivariant normalizing flows (ENF)6 have been employed to
generate three-dimensional equilibrium structures of small
organic molecules, while variational auto-encoders have been
used for material generation.7 More recently, diffusion models
have been utilized for generating molecules8−14 and materi-
als.15−17 Additionally, these models can be conditioned on
specific chemical or biological properties through guidance
mechanisms.18−21

A crucial aspect of recent generative models for molecules is
the encoding of geometric symmetries such as translations and
rotations. Formaterials, it is also essential to account for periodic
boundary conditions (PBC) in the structures.7,15 Moreover,
efficiently accounting for different element types is vital since

materials can contain over a hundred elements from the periodic
table.

However, current generative models of atomistic structures
do not incorporate a key inductive bias: the locality of atomic
interactions. According to the locality assumption, the energy
and forces acting on an atom depend solely on its neighboring
atoms within a specific cutoff radius. This assumption is crucial
for the success of most state-of-the-art machine learning
interatomic potentials (MLIPs).22−28

Another key insight is that every stable material or molecule
resides at the minimum of the potential energy surface (PES) of
the system. As such, when slight perturbations are introduced to
the atomic positions of the stable structure, the resulting forces
guide the structure back to its equilibrium state during
relaxation. This insight was used in Crystal Diffusion Variational
AutoEncoder (CDVAE)7 and generated new structures based
on latent space representations.29 One can also use this idea in
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the reverse sense, for example, to learn a coarse-grained force
field from the underlying distribution of atomistic configurations
using a diffusion model.30

Here, we introduce a generative method for materials and
molecules, Response Matching (RM), which leverages the
locality of atomic interactions and the PES minimum while
naturally incorporating permutation, translation, rotation, and
periodic invariances. We highlight how RM is closely related to
the Denoising Diffusion Probabilistic Model (DDPM).31,32

Finally, we demonstrate the RM model across three systems: a
small organic molecular data set, stable crystals from the
Materials Project,1 and a single diamond configuration training
datum.

■ METHODS
Themethod discussion begins by referencing foundational work
on DDPMs,31,32 which involves a noise model and a denoising
neural network. The noise model corrupts a data point x to a
sampled log signal-to-noise ratio, λ, as follows

= +x x (1)

where ϵ is a random noise. The denoising model learns to
predict the clean input x from xλ, or equivalently, the added
noise. The denoising neural network with parameters θ is trained
on the score-matching objective over multiple noise scales

=L x( ) 2 (2)

Mirroring DDPM, Response Matching also includes a noise
step and a denoising step. Noise is directly applied to the
Cartesian coordinates of atomic structures. Consider the
coordinates of an equilibrium structure as R0 = (r1, ..., rN),
where ri denotes the position of atom i. Random atomic
displacements are added to this initial structure, generating a
sequence of increasingly amorphous structures, Rλ. These noisy
displacements can be determined all at once based on a
continuum of distributions of λ, rather than being added step by
step. The displacement for each atom i is represented as Δri,λ,
and for periodic atomic structures, this displacement follows the
minimal image convention in PBC. For simplicity, we later omit
λ in the subscripts.

As each equilibrium structure lies at the minimum of the PES,
the forces on the atoms are nearly zero. When displacements are
applied to these atomic positions, the atomic forces deviate from
zero and tend to pull the atoms back to their original
coordinates. The harmonic approximation, a simple yet widely
used physical assumption in quantum mechanical calculations
and atomistic modeling, states: the force on the atom i is

= kF ri i
H (3)

The tilde notation on the force indicates its fictitious nature. The
force constant k is not a physical value but rather a
hyperparameter of the RM model. This approximation
effectively attaches a harmonic spring of stiffness k between
the current position of atom i and its equilibrium position. In the
present work, k is chosen as a constant throughout, which can be
mapped to the choice of αλ = 1 and a constant σλ = 1/k in eq 1 of
DDPMduring scorematching. Alternatively, one can also use a k
that is dependent on the magnitude of the atomic displacement
(or equivalently, λ), which is akin to setting a specific different
noising schedule in DDPM.

We also incorporate a physical inductive bias: atoms cannot
approach too closely due to strong repulsive forces at short

distances. To account for this effect, we apply a short-range
repulsive pairwise potential between atom pairs i and j, such as
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where rji is the scalar distance between the pair, rc is typically a
fraction of an Angstrom, and m and n are hyperparameters
dictating the strength of the repulsion. The resulting repulsive
force on the atom i is
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(5)

summed over all the atoms jwithin the distance rc from the atom
i. Combining the harmonic and repulsive forces, the total
fictitious force on atom i is F̃i = F̃i

H + F̃i
R.

For periodic systems, we also add distortions to their periodic
cell to create the elastic strain γ. The associated stress is
approximated utilizing the stress−strain relationship for
isotropic elastic materials

= C (6)

where the components of ϵ include normal and shear moduli
that are treated as hyperparameters. For molecules without
periodicity, the lattice strain step is skipped.

The general idea of RM is to use a denoising model with
parameters θ to fit to the fictitious response properties, i.e.,
forces and stresses. The corresponding objective function is

= +
=

L F F
i

N

i i
1

2 2

(7)

where β balances the relative weight between the force loss and
the stress loss. Compared with the objective in DDPM eq 2, One
can see that the mathematical framework is identical, with RM
employing a physics-inspired response to the noise instead of the
noise itself.

Using machine learning interatomic potentials (MLIPs) for
this denoising model is advantageous because they inherently
incorporate the translational, rotational, and permutational
symmetries of atomic systems. Additionally, MLIPs exploit the
nearsightedness of atomic interactions, expressing the system’s
total potential energy as the sum of the atomic energies for each
atom, i.e.

=E E
i

i
(8)

The forces can readily be computed by taking the derivatives of
the total energy with respect to atomic coordinates, and the
stress can be computed from the virial.

AnyMLIPmethods can be used for this purpose, e.g., Behler−
Parrinello neural network potentials,22 GAP,23 Moment Tensor
Potentials (MTPs),24 Atomic Cluster Expansion (ACE),25

proper orthogonal descriptors (POD),33 NequIP,26 MACE,27

to name a few.Here, we use Cartesian Atomic Cluster Expansion
(CACE)28 without using message passing layers, due to its
efficiency and alchemical learning capabilities, which are
important for learning PES of materials with diverse elements.
It is worth noting that CACE without message passing is
mathematically equivalent to ACE,25 MTPs,24 POD,33 and
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MACE27 with no message passing, so the results obtained in this
paper are in principle transferable to these other MLIP methods.

In CACE, an atom is treated as a node on a graph, and edges
connect atoms within a cutoff radius rcut. Each chemical element
is embedded using the learnable vector θ. The type of edge that
connects two atoms, i and j, is encoded using the tensor product
of the embedding vectors of the two nodes, T = θi ⊗ θj. The
length of the edge, rji, is described using a radial basis R. The
angular component of the edge, rĵi, is encoded using an angular
basis L. The edge basis combines all of this information

=i j T R r L r( , ) ( , ) ( ) ( )i j n ji jil lcn c (9)

The atom-centered representation is made by summing over all
the edges of a node

=A i j( , )i
j i

l l,cn
( )

cn
(10)

The orientation-dependent A features are symmetrized to get
the rotationally invariant B features of different body orders ν,
e.g., for ν = 234

=B Al( )i i
l

l,cnl
(2)

,cn
2

(11)

Then, a multilayer perceptron (MLP) maps these invariant
features to the target of the atomic energy of each atom i

=E BMLP( )i i (12)

After the MLIP is trained using the objective in eq 7, it is then
used for the denoising step in RM. As the denoising model has a
pseudo potential energy surface Ẽ, rather than performing
denoising with a fixed schedule, one can directly search for local
minima on the Ẽ. This is effectively a random structure search
process (RSS):35 For each RSS run, we first chose a reasonable
cell shape at random and added atoms of chosen elements and
composition into the simulation cell at random positions while
keeping the initial density of the cell close to the typical density
range of this system. We set a lower bound on the interatomic
distance for each pair of atomic species but otherwise imposed
no additional constraints on the initial structures. We then relax
both the atomic positions and simulation cell using the Fast

Inertial Relaxation Engine (FIRE) optimizer,36 which continues
until the pseudo forces on the atoms become negligible. FIRE
dynamically adjusts step sizes for faster convergence,36 making it
a common choice in atomistic simulations due to its efficiency.
Alternatively, one can use other methods such as Langevin
dynamics, simulated annealing,37 evolutionary algorithm,38

particle-swarm optimization, and Bayesian optimization.39 If
Langevin dynamics is used here, the process can then bemapped
to the denoising step using the reverse-time stochastic
differential equations in diffusion models,40,41 when the pseudo
energy is the so-called energy function.42 The choice of the
optimization method will likely influence the probability of
finding the global minimum on the PES versus the other local
minima. For the purpose of finding newmaterials andmolecules,
it may not always be advantageous to maximize this probability
as the local minima can also correspond to synthesizable
structures.

■ EXAMPLES
MoleculeGeneration: QM7b.QM7b43 is curated based on

GDB-1344 (a database of nearly 1 billion stable and synthetically
accessible organic molecules), and it is composed of 7211
molecules of up to 23 atoms (including 7 heavy atoms of C, N,
O, S, and Cl).

During training, random displacements with a maximum
magnitude of 1.6 Å were added to all the atoms in the original
molecules, and a CACE potential was employed to learn these
pseudo forces. We used rcut = 4.5 Å, lmax = 3, νmax = 3, and
Nembedding = 3. The model has 16,490 trainable parameters.
Training takes roughly 1 day on a laptop.

Notably, as training is solely based on the pseudo forces,
atomization energy or other molecular properties were not
included. However, as seen in Figure 1a, the atomization energy,
Eat, is highly correlated with Ẽ, with a Pearson correlation
coefficient of R = 0.98. This high correlation primarily results
from the additivity of atomic energies eq 8, an important bias in
the MLIP. Furthermore, the MLIP captures subtle energy
differences between distinct atomic environments. We com-
pared the actual atomization energy per atom with the pseudo
energy per atom for molecules with the most common

Figure 1. Comparison between the actual atomization energy (Eat) and the pseudo energy (Ẽ) predicted by the RM model for small molecules in the
QM7b data set. (a) Shows a comparison of the energies per molecule. (b) Shows the comparison of the energies per atom for the molecules with the
most common compositions in QM7b. The Pearson correlation coefficients R are provided in the legends.
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compositions in QM7b. Each composition appears approx-
imately 200−300 times in the training set. Figure 1a illustrates
that Eat per atom is significantly correlated with Ẽ per atom
across these compositions. The MLIP identifies these energy
differences because the training structures are PES minima.

To generate new molecules, we randomly placed atoms of
specific compositions in an orthorhombic box without periodic
conditions, with the sole constraint that the minimum
interatomic distance be at least 0.7 Å. We conducted two sets
of generation tasks: the first set used compositions well-
represented in the training set, while the second set included
compositions that were out-of-distribution (containing 8−9
heavy atoms). Generating a single structure by geometry
relaxation generally takes less than 10 s on a laptop. Currently,
the geometry relaxation is performed in serial mode, and it may
be dramatically accelerated by relaxing many molecules together
using one, sparsely connected, atomic graph. Figure 2 displays
selected configurations generated using the denoising model.

We assess model performance by evaluating the chemical
feasibility of the generated molecules and determining whether
the model can learn chemical rules from data. Finding a rigorous
and unbiased evaluation metric is challenging, and previous
studies have used various criteria to assess the feasibility of a
molecule represented in three-dimensional coordinates. For
instance, a stability metric46 checks whether all atoms in a
molecule have correct valence based on specific bond distances.
A common validity measure47 assesses whether a molecule can
be sanitized by RDKit48 using default settings. However, a
number of problems with these metrics were noticed,14

including the inconsistent criteria in different studies and the
discrepency between the criteria and actual chemical soundness.
In Table 1, we compare the validity and stability results from
recent models trained on small molecule data sets, including
ENF,46 the E(3) Equivariant Diffusion Model (EDM),8 the
MiDi diffusion model, which generates both two-dimensional
(2D) molecular graphs and their corresponding three-dimen-
sional (3D) coordinates,49 the Geometric Latent Diffusion
Model (GEOLDM),10 the Geometry-Complete Diffusion
Model (GCDM),13 and SemlaFlow, an equivariant model

trained using flow matching along with scale optimal trans-
port.14

Here, we use a set of comprehensive and stringent criteria
offered by PoseBusters:45 RDKit’s chemical sanitization check
(equivalent to the aforementioned validity), all atoms
connected, bond lengths, bond angles, internal steric clash,
aromatic ring flatness, double bond flatness, and the calculated
energy of the input molecule based on a force field. The energy
calculation step also includes a valency check for each atom,
which is akin to the stability check. Figure 2 illustrates the
percentage of molecules with given compositions that pass these
chemical feasibility checks. For comparison, the first row
displays statistics for the QM7b set. Each criterion provides
different insights into the chemical structure, and the pass
percentages vary but are correlated. The feasibility percentages
are highly dependent on the specific compositions. Overall, the
feasibility rate is quite high. The sanitization (validity) rate
ranges from 80 to 100%, which is similar to rates reported in
previous studies trained on the QM9 data set. The average
values of stability and validity are reported in Table 1.
Material Generation: Materials Project Structures.We

used the MP-20 structures as in ref 7, includes almost all
experimentally stable materials from the Materials Project
(MP)1 with unit cells including at most 20 atoms. The training
set contains 27,136 structures.

During the training, cell distortion of up to 0.1 Å was applied,
and random displacements with a maximum magnitude of 0.8 Å

Figure 2. Illustrations of small molecules generated by using the RM model. (a) Shows the percentage of the molecules with given composition that
passes the chemical feasibility checks using PoseBusters.45 The last column indicates the percentage that passes all of the checks. (b) contains selected
molecular configurations. The carbon, oxygen, nitrogen, sulfur, chlorine, and hydrogen atoms are colored using black, red, blue, yellow, green, and
white, repectively.

Table 1. Stability and Validity Metrics of Different Molecular
Generation Models

model and train set stability (%) validity (%)

ENF (14k QM9)46 4.9 40.2
EDM (100k QM9)8 82 91.9
MiDi (100k QM9)49 84 97.9
GEOLDM (100k QM9)10 89.4 93.8
GCDM (100k QM9)13 85.7 94.8
SemlaFlow (100k QM9)14 99.4 99.6
RM (7.2k QM7) 85.6 92.7
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were added to all atoms. A CACE potential was used to learn
these pseudo forces and stresses. We used rcut = 4 Å, lmax = 2, νmax
= 2, and Nembedding = 4 for aggressive alchemical compression.
The model has 16,312 trainable parameters. The training time
took 2 days on an A10 card.

The alchemical learning capacity of CACE not only enhances
learning efficiency but is crucial to developing a model that is
applicable throughout the periodic table. The learnable
embedding θ for each element type encodes its chemical
information and can be visualized to provide insights into data-
driven similarities. Given that Nembedding = 4 in this case, we
performed principal component analysis (PCA) and plotted the
first two principal component axes in Figure 3. The elements are
color-coded on the basis of their chemical groups, and the PCA
map reveals that elements in the same group tend to cluster
together. Elements within a group often have similar
appearances and behaviors because they possess the same
number of electrons in their outermost shell. This demonstrates
that the element embedding scheme effectively captures the
nature of the periodic table in a data-driven manner.

To generate new crystals, we randomly placed atoms of
specific compositions in a box with periodic conditions with an
initial molar volume that is from linear regression of the total
volume with respect to the chemical elements from training
structures. We then performed FIRE optimization for both the
cell and atomic positions. We test our model on the same
selected set as used in DiffCSP,17 which contains 10 binary and 5
ternary compounds in the MP-20 test set. For each of these
compositions, we generated 30 structures and compared them
to the group truth using StructureMatcher from pymatgen.50

For eight of these compounds (Ag6O2, Bi2F8, Co2Sb2, Co4B2,
Cr4Si4, KZnF3, Sr2O4, and YMg3), we found the ground truth
structures. Such match rate is similar to USPEX,17,38 a crystal
structure prediction software using the evolutionary algorithm
to search for stable structures based on density functional theory

calculations, although worse than the 11/15 match rate using
DiffCSP.17

To demonstrate how the RM model can help scientific
applications, we used it for the Li−S battery system, which is an
attractive candidate for numerous energy storage applications.51

We searched for a number of stoichiometries of LixS(1−x). As
sulfur is highly polymorphic and has complex structures, we used
the known pure S structures from MP. To organize the
generated structures, we plotted the pseudo convex hull using
the pseudo excess energy, Ẽex = Ẽ − xẼLi − (1 − x)ẼS, in Figure 4.

In reality, Li2S should be the stable phase on the energy convex
hall51 rather than LiS, but the overall trend in stability for LiS
compounds is captured. It is worth cautioning that such results
are not trustworthy, especially because energies did not enter the
training of the model, and one always has to check against
quantum mechanical calculations. Nevertheless, the trained RM

Figure 3. Similarity of chemical elements visualized using the first two principal components (PCs) of the CACE embedding matrix θ in the RM
denoising model. Each element is colored according to its chemical group. The size of the symbol indicates the size of the elements. The noble gas
element Ne is outside the plot.

Figure 4. Pseudo convex hull of the generated Li−S structures at
different Li fractions. The colored markers denote the generated
structures that matched with the known structures in the Materials
Project1 using StructureMatcher from pymatgen,50 and the material
IDs are given in the legend. The filled (hollow) symbols indicate
structures that are not in the training set.
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model can offer a quick and perhaps insightful first step in
exploring a system. Several structures in the MP1 are found, and
they typically have lower pseudo energies, which suggests that
one can use Ẽ for additional screening. Among the seven
matched MP structures, only the materials with IDs mp-10173
(Li, P63/mmc), mp-1125 (Li2S, Pnma), and mp-1153 (Li2S,
Fm3m̅) are in the training set.
One-Shot Learning: A Single Diamond Structure. To

show the data efficiency and generalization of the RM, we
trained on a single data point of a cubic diamond structure. In
the noising stage, uniform random displacement with a
maximum magnitude of 0.8 Å and lattice strain up to 0.1 were
added to the original structure with a molar volume of 4.4 Å3.
For the CACE potential, we used rcut = 4.5 Å, lmax = 3, νmax = 3,
and Nembedding = 1. The model only has 2137 trainable
parameters. Training takes less than 1 h on a laptop. During
the relaxation stage, 2−12 carbon atoms were randomly placed
in a simulation box with the molar volume set to be between 3.8
and 5.6 Å3. Generating one structure takes a few seconds,
depending on the system size.

We plot the pseudo energy Ẽ against molar volume for the
obtained structures in Figure 5. The cubic diamond structures

(blue dots in Figure 5) consistently have the lowest Ẽ at all molar
volumes compared to the other structures found. The lowest-
energy cubic diamond has a molar volume of 4.4 Å3, which
matches the training configuration exactly. Hexagonal diamonds
(red dots in Figure 5) and diamonds with stacking faults (purple
dots in Figure 5) are also frequently found. Notably, a set of
graphite structures (in the inset of Figure 5) with varying
volumes were identified. Graphite structures differ significantly
from diamonds, consisting of stacked layers of carbon atoms in a
hexagonal lattice. Within each layer, carbon atoms form strong
covalent bonds with three neighboring atoms in a trigonal planar
arrangement. The hexagonal diamonds, diamonds with stacking
faults, and graphite structures are all local minima on the pseudo
energy surface, while the cubic diamond is the true global
minimum. This example thus demonstrates that tracing the local

minima can generate out-of-distribution, yet physically mean-
ingful structures.

■ DISCUSSION
In summary, Response Matching (RM) is a generative method
that has a noising step equivalent to other diffusionmodels and a
denoising model that is effectively crystal structure prediction
using a machine learning interatomic potential. Just as
DDPMs31,32 are trained to predict added noise, the MLIP in
RM is trained to predict the response of the system to the added
noise. These responses, in the form of pseudo forces and stress,
are simply proportional to the noise. The benefits of usingMLIP
for denoising include: (i) Exploiting the locality of atomic
interactions while naturally respecting permutation, translation,
rotation, and periodic invariances. (ii) Allowing RM to
simultaneously handle both molecules and bulk materials with
and without periodic boundary conditions. (iii) Enabling
advanced optimization methods such as FIRE,36 simulated
annealing,37 particle-swarm optimization and Bayesian opti-
mization39 during denoising rather than adhering to a fixed
schedule. (iv) The pseudo energies from the RM model are not
directly trained but are somehow correlated with the real
energies of the systems, which may offer physical insights and an
additional way of screening the generated structures. Moreover,
given that MLIPs are well-developed, their advances can be
directly transferred to generative models of materials and
molecules.

The current RM model can be extended in several ways: (i)
Most crystals fall into a limited set of space groups. In crystal
structure prediction, a common technique is to select a space
group based on popularity and snap to it during relaxation.35

This approach can also be applied to RM, which could enhance
model efficiency by reducing the search space to realistic
structures and facilitating the generation of experimentally
relevant crystals. (ii) One can incorporate another term, ∥yθ −
y∥2 in the objective function in eq 7, with y being the specific
properties, such as bandgap, solubility, or thermal stability. This
can enable RM to generate molecules and materials conditioned
on specific properties, which is crucial for designing functional
materials with targeted properties. (iii) Rather than fixing
composition, alchemical swaps of elements using Monte Carlo
moves or another generative model can dynamically determine
atom types during denoising. (iv) One can further synergize RM
and MLIPs, for example, training foundation models using both
data from quantum mechanical calculations and unlabeled
structural data. These enhancements would further expand the
applicability and flexibility of RM in the generation of materials
and molecular structures.
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