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BIRKHOFF CONJECTURE FOR NEARLY CENTRALLY
SYMMETRIC DOMAINS

V. Kaloshin, C.E. Koudjinan, and Ke Zhang

Abstract. In this paper we prove a perturbative version of a remarkable Bialy–
Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative
Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-
symmetric convex domain with integrable billiard is ellipse. We combine techniques
from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by
Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain
close enough to a centrally symmetric one with integrable billiard is ellipse. To
combine these results we derive a slight extension of Bialy–Mironov (Ann. Math.
196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent
to the C0-integrability condition used in their paper.

1 Introduction

A mathematical billiard is a system describing the inertial motion of a point mass
inside a domain, with elastic reflections at the boundary (which is assumed to have
infinite mass). This simple model was first proposed by G. D. Birkhoff as a math-
ematical playground where “the formal side, usually so formidable in dynamics,
almost completely disappears and only the interesting qualitative questions need to
be considered,” [Bir20, pp. 155–156].

This dynamical system associated to billiards has simple local dynamics, however,
its study turns out to be really complex and has many important open questions, see
e.g. [Gut12]. In this paper we study integrable billiards and Birkhoff conjecture. Let
us first recall some properties of the billiard map. We refer e.g. to [Tab05, Sib04], for
a more comprehensive introduction to the study of billiards.

Let Ω be a bounded strictly convex domain in R
2 (for short billiard table) with Cr

boundary ∂Ω, with r ≥ 3.1 The phase space M of the billiard map consists of unit
vectors (x, v) whose foot points x are on ∂Ω and that have inward directions. The
billiard ball map T : M → M takes (x, v) to (x′, v′), where x′ represents the point
where the trajectory starting at x with velocity v hits the boundary ∂Ω again, and v′

is the reflected velocity, according to the standard reflection law: angle of incidence

Keywords and phrases: Birkhoff billiard, Birkhoff conjecture, Integrability
1 Observe that if Ω is not convex, then the billiard map is not continuous; in this article we will

be interested only in strictly convex domains. Moreover, as pointed out by Halpern [Hal77], if the
boundary is not at least C3, then the flow might not be complete.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-024-00695-6&domain=pdf
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Figure 1: Billiard map: T (s, θ) = (s′, θ′).

is equal to the angle of reflection. Assume that the boundary ∂Ω is parametrized
by arc–length s and let γ : T|∂Ω| →R

2 denote such a parametrization, where T|∂Ω| :=
R/Z ·|∂Ω| and |∂Ω| is the length of ∂Ω. Let θ be the angle between v and the positive
tangent to ∂Ω at s. Hence, M can be identified with the annulus AΩ := T|∂Ω|× (0, π)
and the billiard map T can be described as (see fig. 1)

T : (s, θ) �−→ (s′, θ′),

where (s, θ), (s′, θ′) ∈AΩ.
A billiard trajectory is called (p, q)–periodic if the trajectory is q–periodic and the

orbit winds around the boundary p times within one period. Equivalently, after lifing
the trajectory {(sn, θn)}n∈Z to the universal cover R× (0, π), we have sq = s0 +p|∂Ω|.
For such orbits, the rotation number is given by p/q. Furthermore, there exist at least
two periodic orbits of rotation number p/q,2 for any rational p/q by a Theorem by
Birkhoff [Bir13].

The central objects of this paper are the notions of caustics and integrability. To
state a version of Birkhoff conjecture, we introduce some notions.

Definition 1. (i) A curve C ⊆ Ω is called a caustic for the billiard on the table Ω
if any billiard orbit having one segment tangent to C has all its segments tangent to
it.

A caustic is called (p, q)–rationally integrable (p, q ∈ N with p ≤ q/2) if all its
tangential orbits are (p, q)–periodic; whenever p = 1, we shall simply call such a
caustic q–rationally integrable.

2 In the present paper, rationals are considered in reduced form.
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(ii) A billiard table Ω is called q0–rationally integrable (resp. weakly integrable)
if it admits a (p, q)–rationally (resp. a q–rationally) integrable caustic for each 0 <

p/q ≤ 1/q0 (resp. q ≥ q0).

We start with a classical result by M. Bialy [Bia93] who proved the following
theorem concerning global integrability: if the phase space of the billiard ball map
is globally foliated by continuous invariant curves that are not null–homotopic, then
it is a circular billiard.

A strong version of Birkhoff conjecture states that for any q0 > 1, a q0–rationally
weakly integrable billiard is a billiard in an ellipse. For domains close to ellipses this
conjectures was settled for q0 = 3 in [ASK16, KS18] and for q0 = 4,5 in [HKS18]. For
q0 > 3 in a recent work of Koval [Kov21]. Recently Bialy-Mironov [BM17] proved a
remarkable global result stating that any centrally symmetric domain that is C0-
integrable in the phase space between the boundary and a 4–rationally integrable
caustic is an ellipse [BM22].

Our main result is a perturbative version of this result and is a combination of
[KS18] and [BM22]: a 4-rationally integrable domain with a 3–rationally integrable

caustic sufficiently close to any centrally symmetric domain is an ellipse.

1.1 Main result (a technical formulation). Let Ω be a strictly convex subset
of R2 containing the origin O, with boundary ∂Ω. It is more convenient to use the
support function to represent the boundary, defined by

hΩ(ψ) = sup{x cosψ + y sinψ : (x, y) ∈Ω}, ψ ∈ [0,2π].

(see fig. 3). Denoting by γΩ(ψ) = (xΩ(ψ), yΩ(ψ)) the Cartesean coordinates of the
point on ∂Ω corresponding to (ψ,hΩ(ψ)), we have3

⎧
⎨

⎩

xΩ(ψ) = hΩ(ψ) cosψ− h′
Ω(ψ) sinψ

yΩ(ψ) = hΩ(ψ) sinψ + h′
Ω(ψ) cosψ,

(1)

where h′
Ω denotes the derivative of hΩ. In particular, if the support functions of

two boundaries are Cm-close, then their corresponding parametrization (1) by ψ are
Cm−1-close.

Moreover, let hΩ ∈Cm. Then, denoting by s(ψ) the arc–length parameter corre-
sponding to ψ, we have

s′(ψ) =
√

x′
Ω(ψ)2 + y′Ω(ψ)2 (1)= hΩ(ψ) + h′′

Ω(ψ) = 1/kΩ(ψ)> 0, (2)

where kΩ(ψ) is the curvature of ∂Ω w.r.t. the parameter ψ and for the last equal-
ity we refer the reader to [Res15]. The change of parametrization ψ �→ s(ψ) is a
Cm−1–diffeomorphism.

3 We refer the reader to [Res15] for more details.
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Figure 2: Billiard in an ellipse.

Figure 3: Support function of Ω.

Example The support function of the ellipse Ea,b := {(x, y) ∈ R
2 : x2/a2 + y2/b2 =

1}, a≥ b > 0, is given by

hEa,b
(ψ) =

√

a2 cos2ψ + b2 sin2ψ = a
√

1− e2 sin2ψ, e :=
√

1− (b/a)2 . (3)

Moreover, the billiard dynamic in a non–degenerate ellipse (i.e. a > b) is illustrated
in fig. 2.
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Theorem 2. Let Ω0 be a centrally symmetric, strictly convex domain with support

function h0 ∈Cm(R/(2πZ)), with m≥ 40. Assume that the curvature satisfies

kΩ0(ψ)> κ0 > 0,

and ‖h0‖Cm < M . Then there exists ε0 > 0 depending only on κ0, |∂Ω0|, and M ,

such that the following holds.

Assume that the domain Ωε with support function hε satisfies

‖hε‖Cm < 2M, ‖hε − h‖C5 < ε0,

and Ωε admits a 3–rationally integrable caustic, and satisfies either of the following

integrability conditions:

(1) The phase space between the 4–rationally integrable caustic and the boundary

is foliated by continuous invariant graphs over the T component.

(2) The billiard is 4-rationally integrable.

Then Ωε is an ellipse.

Remark 3. (i) Condition (1) in Theorem 2, called C0-integrability, is identical
to the one in [BM22]. We will show that condition (2) is equivalent to condition
(1), following arguments of [A+15].

(ii) There are two different notions of “rational integrability” in the literature. In
[KS18], it corresponds to our “rational weak integrability”. Our definition of
“rational integrability” agrees with the one in [Kov21] and is strictly stronger
(since we also require (p, q)-caustics to exist).

If a billiard is 4-rationally integrable, and in addition admits a 3-rationally
integrable caustic, then the billiard is 3-rationally weakly integrable, whence
verifies the condition in [KS18].

The reminder of the paper is organized as follows. In § 2, after recalling the clas-
sical (§ 2.1) and the non–standard (§ 2.2) symplectic coordinates systems of the
billiard map, we provide quantitative estimates on the change between the corre-
sponding parameters (§ 2.3). In § 3.1, we provide some properties of the 4–periodic
orbits in a billiard table which is close to a centrally symmetric one (Theorem 10).
In § 3.2, we prove that a nearly–centrally–symmetric and 4–rationally integrable bil-
liard table is necessarily close to some ellipse E0. In § 3.3.1, we prove the closeness
of the billiard table to the ellipse E0 in the elliptic polar coordinates associated to E0
(Lemma 17). In § 3.3.3, we complete the proof of the main Theorem 2. We collect in
§ Appendix A some technical facts. In § Appendix B, we prove an interpolation–type
result. In § Appendix C, we prove the uniqueness of the (p, q)-loop orbit, which is
a more general version of q-loop orbits needed for our proof. See Definition 5. In §
Appendix D, we prove the equivalence between the rational and the C0–integrability.
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Figure 4: Non standard Bialy–Mironov generating function.

2 Generating functions and some auxiliary facts

2.1 The traditional billiard generating function. Denote the Euclidean distance
between two points of ∂Ω by

l(s, s′) := |γ(s)− γ(s′)|.

Then, one checks easily

∂sl(s, s′) =− cosθ, ∂s′ l(s, s′) = cosθ′, (4)

where T (s, θ) = (s′, θ′). In particular, if we lift everything to the universal cover and
introduce the new coordinates (x, y) = (s, cosθ) ∈R× [−1,1], then the billiard map
is a twist map with l as generating function, and it preserves the area form dx∧dy.4

For the main text of this paper, we will only use the Bialy–Mironov generating
function introduced in the next section. However, we do use the traditional generating
function in the Appendix.

2.2 Bialy–Mironov generating function. The following non–standard generating
function for the billiard map has been discovered by Bialy and Mironov [BM17] (see
fig. 4)

S(ϕ,ϕ′) = 2h
(
ϕ+ϕ′

2

)

sin
(
ϕ′ −ϕ

2

)

.

In the (ϕ,p)–coordinates, the billiard map T reads: T (ϕ,p) = (ϕ′, p′) iff
⎧
⎨

⎩

p=−S1(ϕ,ϕ′) = h(ψ) cos δ− h′(ψ) sin δ

p′ = S2(ϕ,ϕ′) = h(ψ) cos δ + h′(ψ) sin δ
(5)

4 See [Tab05, Sib04] for details.
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where ψ = 1
2(ϕ+ϕ′), δ = 1

2(ϕ′ −ϕ), and S1 := ∂ϕS, S2 := ∂ϕ′S, (for later use) S12 :=
∂2
ϕϕ′S, etc.

Denote by γε the ψ–parametrization of ∂Ω given by (1), by Sε its Bialy–Mironov
generating function and by Tε the billiard map in the coordinate (ϕ,p).

2.3 Some estimates using the support function parametrization. Given ε1 > 0,
define the space

V = {h ∈Cm(T) : ‖h‖Cm < 2M, ‖h− h0‖C5 < ε1}. (6)

We assuem that ε1 is small enough so that the curvature function associated to h ∈ V
satsifies

kΩ(ψ)> κ0/2, ∀ψ ∈ T.

Moreover, ε1 will be chosen so that Proposition 7 applies, which depends only on κ0,
|∂Ω0|, M .

Throughout the proof we assume hε ∈ V and set

ε = ‖hε − h0‖C5 .

We shall write f = On(ε) if ‖f‖Cn ≤ C1ε for a constant C1 depending only on κ0,
|∂Ω0|, M . In particular, f =On(1) means f has bounded Cn norm.

Denote by sε the arc–length parameter of ∂Ω. Then,

Lemma 4. The change of parametrization ψ �→ sε(ψ) is a Cm−1–diffeomorphism with

inverse s �→ ψε(s), and we have

ψε =Om−1(1), sε =Om−1(1), ψ̃ε =O4(ε), s̃ε =O4(ε), (7)

where ψ̃ε := ψε −ψ0 and s̃ε := sε − s0.

Proof. Indeed, (2) implies sε is a Cm−1–diffeomorphism and s′ε = hε +h′′
ε = h0 +h′′

0 +
O3(ε) = s′0 + O3(ε). Thus, s̃ε = O4(ε). Therefore, by the implicit function theorem,
its inverse ψε satisfies ψ̃ε =O4(ε). �

3 Proof of Theorem 2

3.1 Properties of 4–periodic orbits in nearly–centrally–symmetric billiard tables.
In this section, we prove that the properties of the one parameter family of 4–gons
“persists” up to small corrections on tables which are close to a centrally–symmetric
one and admits a 4–rationally integrable caustic.

Definition 5. Given q ≥ 2, an orbit segment of the billiard is called a q-loop orbit

if the segment bounces q times back to its starting point, winding around the table
exactly once.
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Figure 5: The 4–loop angle function dΩε in ∂Ωε.

Remark 6. A q-loop orbit is not necessarily a periodic orbit, as the final angle of incidence
is not required to equal to the inital angle of reflection.

For a billiard Ω with parametrized boundary γ, the q-loop orbit starting at any
γ(ψ) always exists, by taking the maximum perimeter q-gon that starts and ends at
γ(ψ). It is unique if the billiard is nearly circular, see [HZ22]. In Proposition 7, we
show that the 4-loop orbit exists for both the billiards Ω0 and Ωε.

Proposition 7. There exists ε2 > 0 and C > 0 depending only on κ0 and ‖γ0‖C4 ,

such that the following hold.

Consider the space of closed curves γ : T→R
2

Vγ = {γ : ‖γ − γ0‖C2 < ε2, ‖γ‖C4 <C},

then each γ is the boundary of a convex billiard (since ε2 is small enough). Suppose

there exists at least one γε ∈ Vγ such that γε admits a 4–rationally integrable caustic,

then for all γ ∈ Vγ , the corresponding billiard admits unique 4-loop orbit starting at

every point on the boundary.

Proposition 7 follows from a more general result for (p, q)-loop orbit, for both
twist map and billiards. The proof is presented in Appendix C.

Definition 8. Assume the billiard Ω admits a unique 4-loop orbit starting at any
point on the boundary. We define dΩ(ψ) ∈ (0, π) to be the unique initial angle for
the unique 4-loop orbit of the billiard in Ω starting at the point γ(ψ).(see fig. 5).

We can choose ε1 in (6) small enough so that hε ∈ V implies γε ∈ Vγ . Therefore
the 4-loop angle functions dε and d0 are both defined.

The following lemma is derived from the proof of Proposition 7, whose proof is
in Appendix C.
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Lemma 9. (i) dε is Cm−1 with dε =Om−1(1), and d̃ε = dε − d0 =O3(ε).
(ii) There exists 0< d< d< π such that d < d0, dε < d.

We have the following.

Theorem 10 (Perturbative Theorem 4.1 [BM22]). (i) dε(ψ + π) = dε(ψ) +O3(ε) and

each 4–periodic billiard trajectory is O2(ε)–close to a parallelogram.

(ii) The tangent line to Ω at the vertices of any 4–periodic billiard trajectory form

a quadrilateral which is O2(ε)–close to a rectangle.

(iii) dε(ψ + π
2 ) = π

2 − dε(ψ) +O2(ε).
(iv) There exists R0 > 0 such that

h2
ε(ψ) + h2

ε(ψ +
π

2
) =R2

0 +O3(ε) =:R2
ε , (8)

hε(ψ) =R0 sindε(ψ) +O2(ε), hε(ψ +
π

2
) =R0 cosdε(ψ) +O2(ε) . (9)

Proof. (i) Observe that, by Lemma A.1, the central symmetry of Ω0 implies d0(ψ +
π) = d0(ψ). Then, by Lemma 9, we have

dε(ψ + π) = d0(ψ + π) + d̃ε(ψ + π) = d0(ψ) + d̃ε(ψ + π) =

dε(ψ) + d̃ε(ψ + π)− d̃ε(ψ) = dε(ψ) +O3(ε).

Next, we show the last part of (i): writing

Ψ2
ε(ψ) = ψ + π + f(ψ), (10)

it is enough to show

f =O2(ε). (11)

Indeed, by Lemma A.3

Ψ3
ε(ψ) = Ψε(ψ + π + f(ψ))

= Ψε(ψ + π) +
∫ 1

0
Ψ′

ε(ψ + π + tf(ψ))dt · f(ψ)

= Ψε(ψ) + π + Ψ̃ε(ψ + π)− Ψ̃ε(ψ) +
∫ 1

0
Ψ′

ε(ψ + π + tf(ψ))dt · f(ψ)

=: Ψε(ψ) + π + f1(ψ),

and

ψ + 2π = Ψ4
ε(ψ)

= Ψε(Ψε(ψ) + π + f1(ψ))

= Ψε(Ψε(ψ) + π) +
∫ 1

0
Ψ′

ε(Ψε(ψ) + π + tf1(ψ))dt · f1(ψ)
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= Ψ2
ε(ψ) + π + Ψ̃ε(Ψε(ψ) + π)− Ψ̃ε(Ψε(ψ))

+
∫ 1

0
Ψ′

ε(Ψε(ψ) + π + tf1(ψ))dt · f1(ψ)

= ψ + π + f(ψ) + π + Ψ̃ε(Ψε(ψ) + π)− Ψ̃ε(Ψε(ψ))

+
∫ 1

0
Ψ′

ε(Ψε(ψ) + π + tf1(ψ))dt · f1(ψ)

=: ψ + 2π + f2(ψ),

i.e.

f2(ψ)≡ 0,

where

f1(ψ) := Ψ̃ε(ψ + π)− Ψ̃ε(ψ) +
∫ 1

0
Ψ′

ε(ψ + π + tf(ψ))dt · f(ψ), (12)

f2(ψ) := f(ψ) + Ψ̃ε(Ψε(ψ) + π)− Ψ̃ε(Ψε(ψ)) +
∫ 1

0
Ψ′

ε(Ψε(ψ) + π + tf1(ψ))dt · f1(ψ)

=
(

1 + Ψ′
ε(Ψε(ψ) + π + t1f1(ψ)) ·Ψ′

ε(ψ + π + t2f(ψ))
)

f(ψ)+

+ Ψ̃ε(Ψε(ψ) + π)− Ψ̃ε(Ψε(ψ)) + (Ψ̃ε(ψ + π)− Ψ̃ε(ψ))Ψ′
ε(Ψε(ψ) + π

+ t3f1(ψ)), (13)

for some t1, t2, t3 ∈ (0,1).
Hence, as 0 ≡ f2(ψ), it follows

−
(

1 + Ψ′
ε(Ψε(ψ) + π + t1f1(ψ)) ·Ψ′

ε(ψ + π + t2f(ψ))
)

f(ψ) =

Ψ̃ε(Ψε(ψ) + π)− Ψ̃ε(Ψε(ψ))+

+ (Ψ̃ε(ψ + π)− Ψ̃ε(ψ)) ·Ψ′
ε(Ψε(ψ) + π + t3f1(ψ)) .

By Lemma A.3, Ψ̃ε =O3(ε). Now, observe that Ψε is strictly increasing by the strict
convexity of the caustic C . Then, Ψ′

ε > 0 and

1 + Ψ′
ε(ψ1) ·Ψ′

ε(ψ2) > 1, ∀ψ1, ψ2 ∈ T, (14)

Thus, the Faà di Bruno’s formula yields (11) by induction.
(ii) Indeed,

dε(Ψ2
ε(ψ)) (10)= dε(ψ+π+ f1(ψ)) (12),(11),(A.2)= dε(ψ+π)+O2(ε)

(i)= dε(ψ)+O2(ε), (15)

so that, as in [BM22],

2π = 2
(
dε(ψ) + dε(Ψε(ψ)) + dε(Ψ2

ε(ψ)) + dε(Ψ3
ε(ψ))

)
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(15)= 4(dε(ψ) + dε(Ψε(ψ))) +O2(ε)

i.e.

dε(ψ) + dε(Ψε(ψ)) =
π

2
+O2(ε), (16)

proving (ii).
(iii) Recalling that ψ is the angle formed by the outer unit normal of ∂Ωε at ψ

with the x–axis, (16) then implies

Ψε(ψ) = ψ +
π

2
+O2(ε), (17)

which, together with (16) imply the last assertion in (iii).
Next, we prove 0 < d ≤ dε(ψ) ≤ d < π/2. Indeed, dε being continuous on the

compact T then, it admits a minimum and a maximum i.e. there are ψmin, ψmax ∈ T

s.t. dε(ψmin) ≤ dε(ψ) ≤ dε(ψmax), forall ψ ∈ T. Obviously, dε(ψ) > 0 forall ψ ∈ T.
Thus, dε(ψmin)> 0, and 0< dε(ψmax + π

2 ) = π
2 −dε(ψmax)+O3(ε) which implies that

π
2 − dε(ψmax)> 0, concluding the proof of (iii).

(iv) First of all, by Lemma A.1,

hε(ψ + π) = h0(ψ + π) + h̃ε(ψ + π) = h0(ψ) + h̃ε(ψ + π) = hε(ψ)

+ h̃ε(ψ + π)− h̃ε(ψ). (18)

Then, just as in [BM22], we obtain on one hand

hε(ψ) cosdε(ψ) + h′
ε(ψ) sindε(ψ)

(5)= hε(Ψε(ψ)) cosdε(Ψε(ψ))− h′
ε(Ψε(ψ)) sindε(Ψε(ψ))

(17)= hε(ψ +
π

2
) cosdε(ψ +

π

2
)− h′

ε(ψ +
π

2
) sindε(ψ +

π

2
) +O2(ε) ,

and, on the other hand

hε(ψ +
π

2
) cosdε(ψ +

π

2
)− h′

ε(ψ +
π

2
) sindε(ψ +

π

2
) +O2(ε)

(17)=

(17)= hε(Ψε(ψ)) cosdε(Ψε(ψ))− h′
ε(Ψε(ψ)) sindε(Ψε(ψ))

(5)= hε(Ψ2
ε(ψ)) cosdε(Ψ2

ε(ψ)) + h′
ε(Ψ2

ε(ψ)) sindε(Ψ2
ε(ψ))

(10),(11)= hε(ψ + π) cosdε(ψ + π)− h′
ε(ψ + π) sindε(ψ + π) +O2(ε)

(18)= hε(ψ) cosdε(ψ + π)− h′
ε(ψ) sindε(ψ + π) +O2(ε)

(i)= hε(ψ) cosdε(ψ)− h′
ε(ψ) sindε(ψ) +O2(ε) ,



1984 V. KALOSHIN ET AL. GAFA

and, summing and subtracting up yields
⎧
⎪⎨

⎪⎩

hε(ψ +
π

2
) cosdε(ψ +

π

2
) = hε(ψ) cosdε(ψ) +O2(ε) ,

h′
ε(ψ +

π

2
) sindε(ψ +

π

2
) =−h′

ε(ψ) sindε(ψ) +O2(ε) ,

which, combined with dε(ψ + π
2 ) = π

2 − dε(ψ) +O2(ε) (cf. (iii)) yields
⎧
⎪⎨

⎪⎩

hε(ψ +
π

2
) sindε(ψ) = hε(ψ) cosdε(ψ) +O2(ε) ,

h′
ε(ψ +

π

2
) cosdε(ψ) =−h′

ε(ψ) sindε(ψ) +O2(ε) .
(19)

Now, multiplying the two equations in (19) side–wise, we obtain
(

hε(ψ +
π

2
)h′

ε(ψ +
π

2
) + hε(ψ)h′

ε(ψ)
)

sin 2dε(ψ) =O2(ε) ,

which together with

sin 2dε(ψ) = sin2d0(ψ) + 2d̃ε(ψ)
∫ 1

0
cos(2d0(ψ) + t2d̃ε(ψ))dt

Lemma 9= sin2d0(ψ) +O3(ε) ,

imply

1
2

(

h2
ε(ψ) + h2

ε(ψ +
π

2
)
)′

= h′
ε(ψ)hε(ψ) + h′

ε(ψ +
π

2
)hε(ψ +

π

2
) =O2(ε),

proving (8), R0 being the constant of integration from 0 to ψ.
From (8), it follows

hε(ψ) =Rε sindε(ψ), hε(ψ +
π

2
) =Rε cosdε(ψ), (20)

for some dε(ψ) ∈ [0, π/2] since hε > 0. Since hε > 0, (20) yields dε(ψ) =−i log 1
Rε

(hε×
(ψ+ π

2 )+ ihε(ψ)) and, hence, dε(ψ) is Cm+1–smooth. Now, plugging (20) in the first
equation in (19), we obtain Rε sin(dε − dε) = O2(ε) and, by definition of Rε in (8),
yields sin(dε − dε) = O2(ε). Then, by continuity, dε(ψ) − dε(ψ) (8)= nεπ + O2(ε), for
some nε ∈ Z. It turns out that nε = 0 since dε(ψ),dε(ψ) ∈ [0, π/2]. Hence, plugging
dε(ψ) = dε(ψ) +O2(ε) in (20) and recalling the definition of Rε as in (8), we obtain
(9). �

3.2 Nearly–centrally–symmetry and 3–rational integrability imply closeness to an
ellipse. Denote

Uε :=−hε(h′
ε)2(hε + h′′

ε)
(1

2
dε −

1
4

sin 2dε
)
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+ (h′′
εh

2
ε + 3hε(h′

ε)2)(hε + h′′
ε)

(1
8
dε −

1
32

sin 4dε
)

.

We have the following statement.

Proposition 11 (see [BM22]). Suppose for the billiard Ωε, the part of the phase

space between the 4–rationally integrable caustic and the boundary is foliated by

C0–rotational invariant curves, then

∫ 2π

0
Uε dψ ≤ 0. (21)

Proof. We refer to cf. [BM22, Eq. (19)], noting that the proof in [BM22, Sect. 5.1]
there up to this formula does not use the central symmetry assumption. �

The assumption of C0-integrability can be replaced by rational integrability.

Proposition 12 (See Proposition D.1). The billiard Ω is q0-rationally integrable if

and only if the part of the phase space between the q0–rationally integrable caustic

and the boundary is foliated by C0–rotational invariant curves.

We now proceed with (21).

Lemma 13 (Perturbative Lemma 5.1 [BM22]).
∫ 2π

0
Uε(ψ)dψ =

πR4
0

512

∫ 2π

0
((μ′′

ε)2 − 4(μ′
ε)2)dψ +O(ε), (22)

with με(ψ) = cos(2dε(ψ)).

Proof. In our setting, [BM22, Eq. (20)] reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

hε =R0 sindε +O2(ε) ,

h′
ε =R0 cosdε d′ε +O1(ε) ,

h′′
ε =R0 cosdε d′′ε −R0 sindε(d′ε)2 +O(ε) ,

dε(ψ +
π

2
) =

π

2
− dε(ψ) +O2(ε) .

(23)

Thus, mimicking the proof of [BM22, Lemma 5.1], we obtain (22). �

Writing με, μ0 in Fourier series as με =:
∑

j∈Z μ̂ε,j e
ijψ and μ0 =:

∑
j∈Z μ̂0,j e

ijψ, we
have:

Lemma 14. We have με − (μ̂0,−2 e
−i2ψ + μ̂0,2 e

i2ψ) =O1(
√
ε).

Proof. Indeed, by (22) and (21), we have, for some C > 0
∫ 2π

0
((μ′′

ε)2 − 4(μ′
ε)2)dψ ≤C ε. (24)
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Since μ0 = cos(2d0) is π–periodic,5 we have μ̂0,2k+1 = 0 for all k ∈ Z so that

|μ̂ε,±1| = |μ̂ε,±1 − μ̂0,±1|= |
∫ 2π

0
(με − μ0)(ψ)e±iψdψ| ≤ 2π‖με − μ0‖C0 =

= 4π‖ sin(dε − d0) sin(dε + d0)‖C0 ≤ 4π‖ sin(dε − d0)‖C0
Lemma 9= O(ε). (25)

Thus,

∑

k∈Z\{0,±2}
k4|μ̂ε,k|2 = (|μ̂ε,−1|2 + |μ̂ε,1|2) +

∑

|k|≥3
k4|μ̂ε,k|2

≤ (|μ̂ε,−1|2 + |μ̂ε,1|2) +
∑

|k|≥3
(k2 − 4)k2|μ̂ε,k|2

= 4(|μ̂ε,−1|2 + |μ̂ε,1|2) +
∑

k∈Z
(k2 − 4)k2|μ̂ε,k|2

= 4(|μ̂ε,−1|2 + |μ̂ε,1|2) +
1
2π

∫ 2π

0
((μ′′

ε)2 − 4(μ′
ε)2)dψ

(by Parseval’s identity)
(24),(25)

≤ C ε ,

i.e. με − (μ̂ε,0 + μ̂ε,−2 e
−i2ψ + μ̂ε,2 e

i2ψ) ∈ H2(T) and ‖με − (μ̂ε,0 + μ̂ε,−2 e
−i2ψ +

μ̂ε,2 e
i2ψ)‖H2 ≤ C

√
ε. Therefore, Sobolev’s embedding theorem yields με − (μ̂ε,0 +

μ̂ε,−2 e
−i2ψ + μ̂ε,2 e

i2ψ) = O1(
√
ε). To conclude the proof, we show μ̂ε,0 = O(ε) and

μ̂ε,±2 = μ̂0,±2 +O(ε). Indeed, since (recall (9))

R2
0με =R2

0 cos2dε(ψ) =R2
0(cos2 dε − sin2 dε) = h2

ε(ψ +
π

2
)− h2

ε(ψ) +O2(ε),

We obtain, taking the average over [0,2π], μ̂ε,0 =O(ε).
Finally, for any k ∈ Z, |μ̂ε,k − μ̂0,k| ≤ ‖με − μ0‖C0 =O(ε). �

Denote by E0 the ellipse given by the support function

ȟ0 :=
1√
2
R0

√

1− (μ̂0,−2 e−i2ψ + μ̂0,2 ei2ψ) ,

by ď0 its 4–loop angle function. Let μ̌0 = cos(2ď0) and ȟε := hε. Let 0 ≤ e0 < 1
be the eccentricity and c0 the semi–focal distance of the ellipse E0, and by γ̌0 its
ψ–parametrization. We are in position to complete the present section by proving
that Ωε is close to the ellipse E0.

5 Recall that d0 is π–periodic.
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Observe that (cf. [BM22, Eq. (20)])
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȟ0 = Ř0 sin ď0 ,

ȟ′
0 = Ř0 cos ď0 ď

′
0 ,

ȟ′′
0 = Ř0 cos ď0 ď

′′
0 − Ř0 sin ď0(ď′0)2 ,

ď0(ψ +
π

2
) =

π

2
− ď0(ψ) .

(26)

for some Ř0 > 0.

Lemma 15. (i) ȟε = ȟ0 +O1(
√
ε).

(ii) hε − ȟ0 =O2(ε
1
8 ).

Proof. (i) Indeed, recalling Lemma 14, we have

h2
ε

(23)= R2
0 sin2 dε +O2(ε)

=
R2

0
2

(1− cos2dε) +O2(ε)

=
R2

0
2

(1− με) +O2(ε)

= ȟ2
0 +O1(

√
ε),

hence

hε = ȟ0 +O1(
√
ε). (27)

(ii) We apply Lemma B.1 with f = ȟε, δ =
√
ε, l =m− 1 to get the claim. �

Lemma 16. γε ∈Cm−1(T) with γε =Om−1(1) and γε − γ̌0 =O1(ε
1
8 ).

Proof. Since

γε(ψ) = hε(ψ)
(

cosψ
sinψ

)

+ h′
ε(ψ)

(
− sinψ
cosψ

)

,

For some uniform constant C

‖γε‖Cm−1 ≤C‖hε‖Cm ,

and

‖γε − γ̌0‖C1 ≤C‖hε − ȟ0‖C2 =O(ε
1
8 ). (28)

�

3.3 Proof of Theorem 2 using [KS18]. For arbitrary eccentricity 0 ≤ e0 < 1 of
the ellipse E0, we shall apply the following local Birkhoff conjecture result [KS18,
Main Theorem]. For, we first introduce the so–called elliptic polar coordinates.
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3.3.1 Elliptic polar coordinates. Assume that the ellipse E0 has semi-focal dis-
tance c0 and eccentricity e0. We consider the elliptic polar coordinates adapted to
this family, given by

[
x

y

]

= Φ(λ, θ) = c0

[
coshλ cosθ
sinhλ sin θ

]

: [0,∞)×T→R
2.

Φ is a diffeomorphism from (0,∞)×T onto its image. In these coordinates, the ellipse
E0 is given by

{(λ0, θ) : θ ∈ T}

where e0 = 1/ cosh(λ0).
Let γ̌0(ψ) be the parametrization for E0 in the support function parameter, and

as before γε = γε(ψ) is the paremetrization of Ωε, and recall γε =Om−1(1), γε − γ̌ =
O1(ε).

Lemma 17. There exists ε2 > 0 depending only on M and γ̌0 such that if

‖γε − γ̌0‖C1 < ε2,

there exists a Cm−1 function λε : T→ R such that γε is represented as the graph of

λε in elliptic polar coordinates, i.e.

{(λε(θ), θ) : θ ∈ T}= {Φ−1 ◦ γε(ψ) : ψ ∈ T}.

Moreover,

λε =Om−1(1), λε−λ0 =O1(ε
1
8 ).

Proof. Assume that ε2 is chosen such that the curve γε is contained in a compact
tubular neighborhood of E0. Throughout the proof, C denotes a constant that de-
pends only on E0 and ε1, but may change meaning from line to line.

Denote

(λ̄ε(ψ), θ̄ε(ψ)) = Φ−1 ◦ γε(ψ),

and define λ̄0, θ̄0 similarly for γ̌0. Then λ̄0(ψ) = λ0 and θ̄0(ψ) is a diffeomorphism
T→ T with Cm norm depending only on γ̌0. Indeed, on γ̌0, the change of parameter
from ψ to arclength parameter s, and the one from s to θ are both C∞ smooth.

Using smoothness of Φ−1, we have

‖λ̄ε‖Cm−1 ,‖θ̄ε‖Cm−1 ≤C, ‖λ̄ε − λ0‖C1 ,‖θ̄ε − θ̄0‖C1 ≤C‖γε − γ̌0‖C1 .

If ε1 is small enough, θ̄ε(ψ) is also a diffeomorphism T→ T with ‖θ̄−1
ε − θ̄−1

0 ‖C1 ≤
C‖γε − γ̌0‖C1 ≤ Cε

1
8 , ‖θ̄−1

ε − θ̄−1
0 ‖Cm−1 ≤ C‖γε − γ̌0‖Cm−1 = O(1), where we have

applied Lemma 16. Then

λε(θ) = λ̄ε ◦ θ̄−1
ε (θ)

verifies the conclusion of the lemma. �
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3.3.2 Statement of the local Birkhoff conjecture result in [KS18].

Theorem 18 ([KS18]). Let �≥ 39. For every M > 0, there exists δ = δ(M) > 0 such

that the following holds: if Ω is a 3–rationally weakly integrable C�–smooth billiard

table so that ∂Ω = E0 + λΩ with ‖λΩ‖C� ≤M and ‖λΩ‖C1 ≤ δ then ∂Ω is an ellipse.

3.3.3 Completion of the proof of Theorem 2. By Lemma 17, λε = O�(1) with
� := m− 1 ≥ 39, and λε − λ0 = O1(ε

1
8 ). Choose ε0 small enough so that ε ∈ (0, ε0)

implies ‖λε − λ0‖C1 < δ, where δ is from Theorem 18, we conclude that ∂Ωε is an
ellipse. �

Appendix A: Some technical facts

Lemma A.1. Let Ω be a strictly convex planar domain and denote by h its support

function. Then Ω is centrally symmetric with center at the origin iff h(ψ+π) = h(ψ),
for all ψ ∈ [0,2π].

Proof. Recall (1), that

γ(ψ) = h(ψ)
(

cosψ
sinψ

)

+ h′(ψ)
(
− sinψ
cosψ

)

.

Then, Ω is centrally symmetric iff γ(ψ + π) + γ(ψ)≡ 0 which, in turn, is equivalent
to h(ψ + π)− h(ψ)≡ 0. �

Lemma A.2. We have T0, Tε ∈Cm−1, T0, Tε =Om−1(1), and T̃ε = Tε − T0 =O4(ε).

Proof. The formula (1) and h ∈Cm implies γ ∈Cm−1. By [Dou82], the billiard map
is Cm−2. To upgrade regularity, we note that (cf. [Gol01, Proposition 25.5])

T ′(ϕ,p) =
(

−S11 · (S12)−1 −(S12)−1

S21 − S22 · S11 · (S12)−1 −S22 · (S12)−1

)

, (A.1)

we get T ′
0, T

′
ε ∈Cm−2 and T0, Tε ∈Cm−1. Moreover, Sε−S0 =O5(ε) and (A.1) implies

T̃ε =O4(ε). �

Consider the map Ψε : T � ψ �→ ψ′ ∈ T, where ψ′ is the ψ–parameter corresponding
to the next bouncing point of the billiard trajectory in Ωε starting at ψ with the
angle dε(ψ); we shall denote its lift to R by Ψε as well. Then,

Lemma A.3. (i) Ψ0(ψ + π) = Ψ0(ψ) + π.

(ii) Ψε = Ψ0 + Ψ̃ε and Ψε(ψ + π) = Ψε(ψ) + π + Ψ̃ε(ψ + π)− Ψ̃ε(ψ), with

Ψ̃ε =O3(ε). (A.2)

Proof. (i) This is obvious by the symmetry of Ω0 and the uniqueness of the direction
which comes back at the starting point after 3 reflections.
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(ii) Observe that

Ψε = ψε ◦ π1 ◦ Tε ◦ (sε, cosdε).

Then, Taylor’s expansion yields, for some t0, t1, t2 ∈ (0,1),

Ψ̃ε = ψ̃ε ◦ π1Tε(sε, cosdε) +ψ′
0 (π1T0(s0, cosd0) +R1) · [π1T

′
0((s0, cosd0) +R2)]

where

R1 = t2

[

π1T
′
0((s0, cosd0) + t1(s̃ε,− sin(d0 + t0d̃ε) · d̃ε)

· (s̃ε,− sin(d0 + t0d̃ε) · d̃ε) + π1T̃ε(sε, dε)
]

,

R2 =
[
π1T

′
0((s0, cosd0) + t1(s̃ε,− sin(d0 + t0d̃ε) · d̃ε)

· (s̃ε,− sin(d0 + t0d̃ε) · d̃ε) + π1T̃ε(sε, cosdε)
]
.

Therefore, (A.2) holds. Moreover,

Ψε(ψ + π) = Ψ0(ψ + π) + Ψ̃ε(ψ + π)
(i)= Ψ0(ψ) + π + Ψ̃ε(ψ + π)

= Ψε(ψ) + π + Ψ̃ε(ψ + π)− Ψ̃ε(ψ). �

Appendix B: Interpolation–type result

Lemma B.1. Suppose f ∈C l(T) where l≥ 6, ‖f‖Cl =C > 0 and ‖f‖C1 = δ. Then

f =O2(δ
1
4 ).

Proof. Choose σ = 7
2 , we estimate the Sobolev norm ‖f‖Hσ which bounds ‖f‖C2 .

Let f̂k be the Fourier series of f , then by the Hausdorf-Young inequality

|k|l|f̂k| ≤ ‖(f (l))̂‖L∞ ≤ ‖f (l)‖L1 ≤ ‖f‖Cl ,

we obtain (write 〈f〉= max{1, |k|})

|f̂k| ≤C〈k〉−l

and similarly

|f̂k| ≤ δ〈k〉−1.

For a > 0 to be determined,
∑

〈k〉≥δ−a

〈k〉2σ|f̂k|2 ≤C2
∑

〈k〉≥δ−a

〈k〉2(σ−l) ≤C2δ2a
∑

〈k〉≥δ−a

〈k〉2(σ−l+1) ≤C1δ
2a
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for some C1 > 0, since σ− l + 1 = 9
2 − l≤−3

2 . On the other hand,
∑

〈k〉<δ−a

〈k〉2σ|f̂k|2 ≤ δ2
∑

〈k〉<δ−a

〈k〉2(σ−1) ≤ 2δ2δ−a · δ−2a(σ−1) = 2δ2+a−2aσ.

Set 2a= 2 + a− 2aσ, we get a = 2
1+2σ = 1

4 . It follows that

‖f‖C2 ≤ ‖f‖Hσ =
(
∑

k

〈k〉2σ|f̂k|2
) 1

2

=O(δa) =O(δ
1
4 ). �

Appendix C: Uniqueness of the (p, q)-loop orbits

We will begin with the general setting of twist maps and specialize to billiards later
in this section.

Consider a C2 generating function H : R× R→ R which satisfies the following
conditions:

(1) H(x+ 1, x′ + 1) =H(x,x′).
(2) There exists M > 0 such that supx,x′ |∂ijH(x,x′)|<M , i, j ∈ 1,2.
(3) There exists ρ > 0 such that ∂12H(x,x′) <−ρ for all x, x′.

We remark that condition (3) implies the traditional twist (x′ �→ ∂2H(x,x′) is mono-
tone) and superlinearity (lim|x′−x|→∞H(x,x′)/|x′ − x| = ∞) conditions. In fact H

satisfies the conditions defined by Mather (see [MF94]), which implies all the classi-
cal results of Aubry-Mather theory. Then H defines an exact area preserving twist
map F = F (x, r) on R×R via

F (x, r) = (x′, r′) ⇐⇒ r =−∂1H(x,x′), r′ = ∂2H(x,x′), (C.1)

which also projects to a map of T×R. Note that

∂12H(x,x′) =− ∂r

∂x′ <−ρ < 0,

which implies the mapping r �→ x′ = π1F (x, r) is an increasing global diffeomorphism.
Moreover, ‖DF‖, ‖DF−1‖ are bounded by a constant depending only on ‖D2H‖C0

and ρ.
An orbit (xk, rk) of F on R×R is uniquely determined by the sequence (xk), and

any orbit (xk, rk) ∈ T×R admits a unique lift (x̃k) once a lift of x0 is chosen.
We say (x, r) is (p, q)-periodic if for the lifted map F ,

F q(x, r) = (x+ p, r).

We say the orbit of (x, r) is a (p, q)-loop orbit if for the lifted map F ,

π1F
q(x, r) = x+ p.



1992 V. KALOSHIN ET AL. GAFA

(p, q)-loop orbits aren’t necessarily periodic on T×R.
An invariant curve γ of F is called essential if it is not homotopic to a point. γ is

said to be (p, q)–rationally integrable if every orbit on γ is (p, q)-periodic. We have
the following classical theorem by Birkhoff ([Bir22]), and the proof of the Lipschitz
constant can be found in [HF83].

Theorem C.1 ([Bir22, HF83]). Any essential invariant curve of a twist map is a

Lipschitz graph over T. Moreover, the Lipschitz constant depends only on ‖D2H‖C0

and ρ.

Proposition C.2. Suppose the twist map F admits a (p, q)–rationally integrable

curve γ. Then there is ε3 > 0, c > 0, depending only on q, ‖D2H‖C0 , ‖D3H‖C0 , and

ρ such that the following hold.

If F1 is a twist map whose generating function H1 satisfies ‖H1 −H‖C2 < ε3,

then (after lifting to R×R) the equation

F q
1 (x, r) = x+ p

has a unique solution r̄(x) for every x. Moreover,

|∂rF q
1 (x, r̄(x))|> c. (C.2)

Lemma C.3. Let γ be a continuous invariant graph of the twist map F : T× R→
T×R, and suppose T×R \ γ = U+ ∪U−, where U± are the components above and

below γ. Then both U± are invariant.

There exists c > 0 depending only on ‖D2H‖C0 , such that if (xk, rk)k∈Z is an orbit

in either U+ or U−, for all j < k, we have

π1F
k−j(V (xj)∩ γ)− xk > ck−jρvdist((xj , rj), γ), if {(xj , rj)} ⊆ U−,

π1F
k−j(V (xj)∩ γ)− xk <−ck−jρvdist((xj , rj), γ), if {(xj , rj)} ⊆ U+,

(C.3)

where

vdist((x, r), γ) = dist((x, r), V (x)∩ γ).

the comparison is done after lifting F to R×R.

Proof. The twist property implies that for all x ∈ R, the curve F (V (x)) is a mono-
tonically increasing curve. This implies for any (x, r) above γ, the image F (x, r) will
still be above γ. The invariance of U± follows.

We only prove the lemma in the case that the orbit is contained in U−, as the
other case is similar. Let (xk, δk) = V (xk) ∩ γ, then by assumption, δk > rk. By the
twist propery,

π1F (xk, δk)− xk+1 ≥
∫ δk

rk

∂rπ1F (x, r)dr > ρ(δk − rk) > 0, ∀k ∈ Z.

In particular, π1F (xj , δj)> xj+1.
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Since γ is an invariant graph, the mapping

gγ : x �→ π1F (V (x)∩ γ)

is an orientation preserving diffeomorphism on T. Moreover, since γ is Lipschitz with
constant depending only on ‖D2H‖C0 and ρ, the Lipschitz constant of gγ and g−1

γ

depends only on the same constants.
For the rest of the proof, F stands for the lifted map to R × R. Let c =

1/‖Dg−1
γ ‖C0 ∈ (0,1], then for all y > x ∈R

π1F (V (y)∩ γ)− π1F (V (x)∩ γ)> c(y− x)> 0. (C.4)

We first prove by induction that

π1F
k−j(xj , δj)− xk > 0. (C.5)

Indeed, assume by induction that π1F
k−j−1(xj , δj)− xk−1 > 0, we have

π1F
k−j(xj , δj) = π1F (V (π1F

k−j−1(xj , δj))∩ γ)> π1F (V (xk−1)∩ γ) > xk.

We now have

π1F
k−j(xj , δj)> π1F

k−j−1(V (xj+1 + ρ(δj − rj))∩ γ)

> ck−j−1ρ(δj − rj) + π1F
k−j−1(xj+1, δj+1)> ck−jρ(δj − rj) + xk,

where the second inequality is by applying (C.4) k − j − 1 times, and the third is
due to (C.5). �

Proof of Proposition C.2. Lemma C.3 implies that if (x, r) ∈ U− (resp U+), then for
the lifted map F , π1F

q(x, r) < x + p (resp. π1F
q(x, r) > x + p). In other words, for

any given x, the unique solution to

π1F
q(x, r) = x+ p

is given by the condition (x, r) ∈ γ.
For the “moreover” part, we note that π1F

q(x, r) = x+ p for (x, r) ∈ γ, and (C.3)
implies

∂rπ1F
q(x, r)> cqρ. (C.6)

There exists r0 > 0 depending only on q and ‖D2F‖C0 (hence ‖D3H‖C0), such that

∂rπ1F
q(x, r)> cqρ/2, if vdist((x, r), γ)< r0. (C.7)

Moreover, from (C.3),

F q(V (x)∩ γ + (0, r))− (x+ p)> cqρr0, r ≥ r0,

F q(V (x)∩ γ − (0, r))− (x+ p)<−cqρr0, r ≥ r0.
(C.8)
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For any F1 that is ε0-C1-close to F with ε0 depending only on r0 and cqρ, (C.7)
and (C.8) holds for F1, as long as we replace cqρ with cqρ/2. These equations imply
uniqueness of the solution

π1F
q(x, r)− (x+ p) = 0.

Finally, (C.2) follows from (C.7). �

We now specialize to the billiard case. Given a billiard boundary Ω, define the
generating function

HΩ(s1, s2) =−l(s1, s2)

for all s1, s2 ∈R such that 0 ≤ s2 − s1 ≤ 1. Then the billiard map can be written as

F (s1, r1) = (s2, r2) ⇐⇒ r1 =−∂1HΩ(s1, s2), r2 = ∂2HΩ(s1, s2),

where the relation between the r variable and the reflection angle θ is r = − cosθ
(see Fig. 1). One checks that the billiard map is defined on T× (−1,1) extensible
continuously to [−1,1].

While the billiard map is a twist map in this sense, it has vanishing twist at the
boundary. Indeed, if

F (s1, r1) = (s2, r2), r1 =− cosθ1, r2 =− cosθ2,

where θ1(s1, s2) =∠(γ̇(s1), γ(s2)− γ(s1)), θ2(s1, s2) =∠(γ(s2)− γ(s1), γ̇(s2)) ∈ [0, π],
then

∂12H(s1, s2) =
∂r2

∂s1
=−∂r1

∂s2
= sin θ2

∂θ2

∂s1
=−sin θ2

sin θ1
l(s1, s2), (C.9)

where the last identity ∂θ2
∂s1

=− l
sinθ1

can be found in [KS06], (V.4.9). As s2 − s1 → 0,
(C.9) converges to 0, as seen from the next lemma.

Lemma C.4. Suppose the boundary γ is normalized to arclength 1 with arclength

parametrization, and assume the curvature bound

0< κ0 ≤ κ(s)≤ κ1.

Then there exists C > 1 depending only on κ0, κ1 such that

C−1 distT(s1, s2)≤ l(s1, s2)≤C distT(s1, s2),

C−1 distT(s1, s2)≤ θ1, θ2 ≤C distT(s1, s2),

C−1 distT(s1, s2)≤ |∂12H(s1, s2)| ≤C distT(s1, s2).

for all s ∈ T.



GAFA BIRKHOFF CONJECTURE FOR NEARLY CENTRALLY SYMMETRIC DOMAINS 1995

Proof. Thoughout the proof, we write f � g if f ≤Cg for a constant depending only
on κ0, κ1, and f ≈ g if f � g and g � f .

For a fixed s1 ∈R, consider the function

α(s) =∠(γ̇(s), γ̇(s1))

defined which maps [s1, s1 + 1] diffeomorphically to [0,2π].

Perform a rotation so that γ̇(s1) = (1,0), then γ(s2) − γ(s1) =
∫ s2
s1

[
cosα(s)
sinα(s)

]

ds.

This mean in general

l(s1, s2) = |γ(s2)− γ(s1)|=
∣
∣
∣
∣
∣

∫ s2

s1

[
cosα(s)
sinα(s)

]

ds

∣
∣
∣
∣
∣
.

Let

S1 = {s ∈ [s1, s1 + 1] : α(s) ∈ [0,
π

4
]∪ [2π− π

4
,2π]}, S2 = [s1, s1 + 1] \ S1.

If s ∈ S1, notting cosα(s)≥ 0, we have

l(s1, s2)≥
∫ s2

s1

cosα(s)ds≥ min
s∈[s1,s2]

cosα(s)distT(s1, s2)� (s2 − s1).

For any t1 < t2

α(t2)− α(t1) =
∫ t2

t1

κ(s)ds≈ t2 − t1,

we have
π

4
≤min{α(s∗),2π− α(s∗)}� min{s∗ − s1, s1 + 1− s∗}= distT(s1, s∗).

Let s∗ denote the s ∈ [s1, s1 +1] which minimimizes l(s1, s) on the set over all s ∈ S2.
Then either α(s∗) ∈ [π4 , π] or α(s∗) ∈ [π,2π− π

4 ]. Assume the former as the other case
is similar. For s2 ∈ S,

l(s1, s2)≥ l(s1, s∗) ≥
∫ s∗

s1

sinα(s)ds≥
∫ s1+π/4

s1+π/8
sinα(s)ds� distT(s1, s∗)

� π

4
� distT(s1, s2)

since distT(s2 − s1) ≤ 1
2 . We have proven the bound l(s1, s2) � distT(s1, s2). The

other bound is trivial since chord length is always smaller than arclength: l(s1, s2)≤
distT(s1, s2). The first inequality follows.

For the second inequality, let θ1, θ2 be as in (C.9). Rotate the axis so that γ′(s1) =
(1,0), we have

sin θ1 =
∫ s2
s1

sinα(s)ds
l(s1, s2)

=−
∫ s1+1
s2

sinα(s)ds
l(s1, s2)

.
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If s2 ∈ S1, then

| sin θ1| ≈
distT(s1, s2)2

l(s1, s2)
≈ distT(s1, s2).

If s2 ∈ S2, we let s∗ minimize sin θ1 over S2, argue similarly as before to get

| sin θ1|�
distT(s1, s∗)2

l(s1, s2)
� distT(s1, s2).

The upper bound | sin θ1|� distT(s1, s2) is trivial since distT(s1, s2)� 1 when s2 ∈ S2.
Moreover, the same estimate works for θ2 by symmetry. By (C.9), we get

|∂12H(s1, s2)| ≈ distT(s1, s2)

as required. �

Proposition C.5. Let Ω be a strictly convex billiard table and let γ(s) be the ar-

clength parametrized boundary, and κ(s) the curvature function, we assume that

there is κ0 > 0 and C > 0 such that

κ(s)> κ0, |∂Ω|<C, ‖γ‖C3 <C.

Suppose the billiard map T admits a (p, q)-rationally integrable caustic.

Then there is ε4 > 0, c > 0, depending only on q, C, and κ0, such that if billiard

table Ω1 whose boundary γ1 satisfies ‖γ1 − γ‖C2 < ε4, for the lifted billiard map T1,

the equation

π1F
q
1 (s, r) = s+ p

has a unique solution r̄(s), with

|∂rπ1F
q
1 (s, r̄(s))|> c, |r̄(s)± 1|> c.

Proof. Without loss of generality, assume |∂Ω| is normalized to 1. We continue the
use of notations � and ≈, where the constant factor depends on q, C, and κ0.

Suppose F (s1, r1) = (s2, r2), then Lemma C.4 implies

|∂rπ1F (s1, r1)| ≈
1

|∂12H(s1, s2)
≈ distT(s1, s2)−1.

Assume that s2 − s1 ∈ (0, 1
2) so that distT(s1, s2) = s2 − s1, then

π1F (s1, r1)− s1 = π1F (s1, r1)− π1F (s1,−1) =
∫ r

−1
∂rπ1F (s1, σ)dσ

� |r + 1|(s2 − s1)−1 = 2sin2 θ1

2
(s2 − s1)−1 ≈ s2 − s1,

noting that θ1 ≈ s2 − s1. If (sk, rk), 0 ≤ k ≤ q is a (p, q)-loop orbit, then

p= sq − s0 ≈ sk − sk−1
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for any 1≤ k ≤ q, where the constant factor may depend on q. Therefore, there exists
a constant δ0 > 0 such that

sk − sk−1 > δ0, 1≤ k ≤ q

for any q-loop orbit. Since |r̄(s)+1|= |r0 +1| ≈ (s1−s0)2, there exists c > 0 such that
|r̄(s)+ 1|> c. When s2 − s1 is close to 1, a symmetric argument yields |r̄(s)− 1|> c.

The billiard map F is uniformly twist on the part of the phase space where 1−δ0 >

s2 −s1 > δ0. Modifying the generating function HΩ(s1, s2) on the set s2 −s1 ≤ δ0 and
s2 − s1 ≥ p − δ0 so that the modified generating function to H is uniformly twist
and defined on R×R, with the map denoted F̃ . We now apply Proposition C.2 to
get uniqueness of (p, q)-loop orbit for the map F̃ and any small C3 perturbation H1
to the generating function H . Our proposition now follows since any q-loop orbit of
F must be a (1, q)-loop orbit of F̃ , and a C3-small perturbation to γ results in a
C3-small perturbation to the generating function H . �

Finally, we are ready to prove Propisition 7.

Proof of Proposition 7. Choose ε5 > 0 such that all the curves in

V1 = {γ : ‖γ − γ0‖C2 < ε1, ‖γ‖C4 <C},

all admits the bounds

κ(s)> κ/2.

For a curve γ = γ(ψ) parametrized using the normal angle ψ, let ψ = gγ(s) be
the coordinate change to the arclength coordinates. The coordinate changes gγ and
g−1
γ admits uniform C3 bounds depending only on κ0 and C. Therefore there exists
C1 > 1 such that

C−1
1 ‖γ − γ0‖C2 ≤ ‖γ ◦ gγ − γ0 ◦ gγ0‖C2 <C1‖γ − γ0‖C2

and

‖γ ◦ gγ‖C3 <C1

for all γ ∈ V1.
Let ε4 be the small parameter given in Proposition C.5, which depends only on

κ, q, C and C1. In particular, if γε ∈ V1 admits 4-rationally-integrable caustic, then
any arclength parametrized curve η satisfying

‖η− γε ◦ gγε‖C2 < ε4

admits unique 4-loop orbits. Define ε1 = min{ε4, ε5}, and

V = {γ : ‖γ − γ0‖<C−1
1 ε0, ‖γ‖C4 <C},
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then if γε ∈ V admits a 4-caustic, for any other γ ∈ V , we have

‖γ ◦ gγ − γε ◦ gγε‖C2 ≤C1‖γ − γε‖C2 < ε4,

hence γ admits unique 4-loop orbits. �

Proof of Lemma 9. Let F0(s, r), Fε(s, r) denote the billiard map for Ω0, Ωε in the
traditional coordinates, and let ψ = g0(s), ψ = gε(s) the coordinate change between
ψ and s. In the notation of Proposition C.5,

− cosd0(ψ) = r̄0 ◦ g−1
0 (ψ), − cosdε(ψ) = r̄ε ◦ g−1

ε (ψ).

Then there exists c > 0 such that |r̄0 ± 1|> c, |r̄ε± 1|> c, or equivalently, 0< d< d0,
dε < d< π for some d, d.

By Proposition C.5, r̄ is the unique solution to

F 4(s, r) = s+ 1,

and since |∂rπ1F
4(s, r)|> c > 0, the implicit function applies. When F is Cm−1, so

is r̄ with r̄ =Om(1). The implicit function theorem also implies

‖r̄ε − r̄0‖C3 � ‖Fε − F0‖C3 � ‖γ0 − γε‖C4 � ‖h0 − hε‖C5 . �

Appendix D: Relation between rational and C0 integrability

Let p1/q1 < p2/q2 ∈Q∩ (0,∞), we say the billiard map in the domain Ω is rationally
integrable in the interval [p1/q1, p2/q2] if for every rational number ρ ∈ [p1/q1, p2/q2]∩
Q, there exists a smooth, strictly convex caustic on which the dynamics is conjugate
to a rigid rotation with rotation number ρ. Same as in the previous section, we use
the generating function HΩ(s1, s2) =−l(s1, s2), and the billiard map is given by

F (s, r) = (s1, r1), ⇐⇒ r =−∂1HΩ(s, s1), r1 = ∂2HΩ(s, s1),

with r = − cosθ. The map is defined on T × (−1,1) extending continously to T ×
{−1,1}. In this point of view, rotation numbers of invariant curve can range from 0
to 1 (with the counter clockwise rotation counts as rotation number [1/2,1]).

A homotopically non-trivial invariant curve shall be called an essential invariant
curve.

We will prove the following statement.

Proposition D.1. Suppose the billiard admit two essential invariant curves γ1, γ2
on which the dynamics are conjugate to rigid rotations of rotation numbers ρ1 < ρ2 ∈
Q. Then the billiard is rationally integrable on [ρ1, ρ2] if and only if it is C0-integrable

on the phase space between γ1 and γ2.

Proposition D.1 follows from a more general result about twist maps. The as-
sumption for the generating function is the same as in the previous section.
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Definition D.2. We say an orbit {(xk, rk)}k∈Z of F has no conjugate points if for
all j < k, we have

∂(π1F
k−j(x, r))
∂r

∣
∣
∣
(xj ,rj)

�= 0,

where π1(x, r) = x.

Proposition D.3. Suppose H satisfies the conditions (1) - (3) stated above. Let γ1
and γ2 be two essential invariant curves of F , on which the dynamics are conjugate

to rigid rotations of rotation numbers ρ1 < ρ2 ∈Q. Then the following are equivalent.

(a) F is rationally integrable on [ρ1, ρ2].
(b) F has no conjugate points for all the orbits in the phase space between γ1 and

γ2.

(c) F is C0-integrable on the phase space between γ1 and γ2.

Proof of Proposition D.1 using Proposition D.3. Suppose the billiard table is nor-
malized to perimeter 1. The generating function HΩ(s1, s2) can be extended to the set
s′2 − s′1 ∈ [0,1] in R×R, and for any ε > 0, ∂12Hω <−ρ(ε)< 0 over s′2 − s′1 ∈ [ε,1− ε].
The generating function admits a smooth, periodic extension to R×R keeping the
estimate ∂12H < −ρ(ε) and uniform bound on the second derivatives (see [MF94],
Sect. 8). There exists δ(ε) > 0 satisfying limε→0 δ(ε) = 0, such that extended map
coincide with the billiard map over the set T × [−1 + δ(ε),1 − δ(ε)]. Finally, our
proposition follows by choosing ε small enough such that the phase space between
the two rational invariant curves are contained in the set T× [−1 + δ(ε),1 − δ(ε)],
and applying Proposition D.3 to the extension system. �

For the case of Tonelli Hamiltonians on T
n ×R

n and under the assumption that
there is a totally periodic Lagrangian invariant graph for every rational vector, Propo-
sition D.3 is essentially proven in Sect. 2.2 and 2.3 of [A+15]. We provide a proof
here because the twist map case cannot be directly reduced to the Tonelli case (al-
though the proofs are very similar), and also the notion of rationally integrable on
an interval is purely one-dimensional. We mostly follow the arguments of [A+15],
and also mention [AMS22] where some analogous statements in higher dimensional
twist maps are proven.

We will start with the implication (a) ⇒ (c).
For c ∈R, define Ac : T×T→R by

Ac(x, y) = min{H(x′, y′)− c(y′ − x′) : x′ = x, y′ = y mod 1} .

Given x′
0, . . . , x

′
n ∈R, let us denote

H ((x′
k)nk=0) =

n−1∑

k=0
H(x′

k, x
′
k+1),
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and define An
c : T×T→R by

An
c (x, y) = min

{
n−1∑

k=0
Ac(xk, xk+1) : x0 = x, xn = y

}

= min{H((x′
k)nk=0) : x′

0 = x, x′
n = y mod 1} .

The Lax-Oleinik operator T :C(T) →C(T) is defined as

Tcu(x) = min
y∈T

{u(y) +Ac(y,x)} .

We have the following standard results from weak KAM theory.

Proposition D.4 (see [Fat05, Zav10]). (1) All An
c (x, y) are equi-Lipschitz in

both variables.

(2) There exists unique α(c) ∈ R called Mather’s alpha function such that all

An
c (x, y) + nα(c) are equibounded. In particular, −α(c) = limn→∞

1
nA

n
c (x, y).

(3) α(c) is a convex function in c ∈R.

(4) (Weak KAM Theorem) There exists u ∈ C(T) called a weak KAM solution

such that Tcu+ α(c) = u.

(5) If u is a weak KAM solution, then for every x ∈ T, there exists an F -orbit

(xk, rk)0k=−∞ with x0 = x, such that

An
c (x−n, x0) + u(x−n) =

0∑

k=−n

Ac(xk, xk + 1) + u(x−n) = u(x0).

This orbit is called a calibrated orbit for u.

Birkhoff’s Theorem says any continuous invariant graph γ of F must be Lipschitz.
Then there exists a C1,1 function u and c ∈R such that γ = {(x, c+ du(x)) : x ∈ T}.

Lemma D.5. Let u ∈C1(T) and γ = {(x,du(x)) : x ∈ T} is invariant under T . Then

u is a weak KAM solution:

Tcu+ α(c) = u.

Suppose in addition that γ is a p/q periodic invariant curve. Let (x′
k, r

′
k)

q
k=0 the

lift of any orbit on γ to R×R. Then

H ((x′
k)

q
k=0) = min

{
H ((y′k)

q
k=0) : y′0 = x0, y

′
q = x′

q = x′
0 + p

}
. (D.1)

Conversely, any sequence satisfying (D.1) is the projection of a lifted orbit from γ.

If (xk) denote the projection of x′
k to T, we have

Aq
c(x0, x0) + qα(c) = 0. (D.2)

Proof. Let x′ ∈R be a lift of x ∈ T, then

Tcu(x) = min
y′∈R

{u(y′) +H(y′, x′)− c(x′ − y′)} ,
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where u is treated as a periodic function on R. If y′0 reaches the minimum, then

du(y′0) + ∂1H(y′0, x′) + c = 0.

This means F (y′0, c+ du(y′0)) = (x′, p) where p= ∂2H(y′0, x′). Since γ is invariant, we
must have p = c+du(x′). Since F is a diffeomorphism, y′0 is unique. This implies Tcu

is differentiable at x and

d(Tcu)(x′) = ∂2H(y′0, x′)− c = du(x′).

It follows that Tcu− u is a constant, which necessarily equals −α(c). Note that this
argument proves that the minimum in

min
y

{u(y) +Ac(y,x)}= Tcu(x) = u(x)− α(c)

is necessarily achieved at x−1, where F (x−1, c+ du(x−1) = (x,du(x)).
Suppose γ is p/q periodic. For every x ∈ T, let x0 = x, (xk, c+du(xk)) = T k(x0, c+

du(x0)) ∈ T×R, and let x′
k denote the projection of the lift of (xk, c+ du(xk)). The

argument in the first half of this proof implies (x′
k)0≤k≤q−1 is the unique minimizer

over y′k for

u(y′0) +
∑

k=0

(
H(y′k, y′k+1)− c(y′k+1 − y′k)

)
, such that y′q = x′

q.

Therefore it is also the unique minimizer over (y′k)
q−1
k=1 which satisfies y′0 = x′

0 and
y′q = x′

q. Under this constraint, u(y′0) and
∑q−1

k=0 c(y′k+1 − y′k) are constants, therefore
(x′

k) is the unique minimizer of
∑p−1

k=0H(y′k, y′k+1) over the same constraints. This
proves both (D.1) and its converse.

Moreover, we know that

u(x0)− qα(c) = T q
c u(x0) = u(x0) +An

c (x0, x0),

this proves (D.2). �

We define the Peierl’s barrier hc : T×T→R by

hc(x, y) = lim inf
n→∞

(An
c (x, y) + nα(c)) .

The projected Aubry set is

A(c) = {x : hc(x,x) = 0}.

The following properties hold for the Peierls barrier.

Proposition D.6 (See [Fat05, Zav10]). (1) hc(x, y) is Lipschitz in both vari-

ables, hc(x,x)≥ 0.
(2) For every x ∈ T, hc(x, ·) is a weak KAM solution.

(3) If x ∈A(c), then there is a unique hc(x, ·) calibrated orbit ending at (x, r(x)).
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(4) (Mather’s graph theorem) r(x) is a Lipchitz function over A(c).

For x ∈A(c), let (x, r(x)) be given by Proposition D.6. Then

Ã(c) = {(x, r(x)) : x ∈A(c)}

is well defined and is called the Aubry set. It is a compact invariant set under F .

Lemma D.7. For every x ∈ T, let (xk, rk)0k=−∞ be any orbit calibrated by hc(x, ·) and
x′
k be the lift of the orbit to R. Then the limit

lim
k→−∞

x′
0 − x′

k

|k|

exists and depends only on c, denoted ρ(c). The map c �→ ρ(c) is monotone over all

c’s for which Ã(c) is a graph over T.

Proof. Let (x′
k) corresponds to a lifted orbit, we call (k,x′

k) the graph of (x′
k). We

claim that the graph of any two lifted calibrated orbits (x′
k) and (y′k) cannot cross

each other in R
2.

Suppose the contrary holds. By the Aubry Crossing Lemma (see [MF94], also note
that it only holds in dimension 1), if any two graphs (k,x′

k)0k=−n, (k, y′k)0k=−n crosses
each other in R

2, then there exists two other sequences z′k, w′
k such that z′−k = x′

−k,
z′0 = y0, w−k = y′−k, w0 = x′

0 such that

H((z′k)) +H((w′
k))<H((x′

k)) +H((y′k)).

It follows that

An
c (z−n, z0) +An

c (w−n,w0) <An
c (x−k, x0) +An

c (y−k, y0),

where removing ′ stands for projection to T. This contradicts the fact that x−k and
y−k mninimizes hc(y, ·) +An

c (·, x0) and hc(y, ·) +An
c (·, y0) respectively.

If a calibrated orbit does not have a well defined rotation number, then there
exists two lifts of it that intersect each other. Similarly, any two orbits with different
rotation numbers admit intersecting lifts. This proves ρ is well defined. Moreover,
the twist property implies that if r2 > r1, then the rotation number of the orbit of
(x, r2) is larger than that of (x, r1). This implies c �→ ρ(c) is monotone. �

The following proposition proves (a) ⇒ (c) in Proposition D.3.

Proposition D.8. Suppose F is rationally integrable in [ρ1, ρ2]. Then for any c ∈R

such that ρ(c) ∈ [ρ1, ρ2], the Aubry set Ã(c) projects onto T. For every c ∈ T, the

map Gx : c �→ Ã(c)∩ π−1(x) is a homeomorphism onto its image.

As a corollary, the set in T × R bounded by the invariant curves of rotation

numbers ρ1 < ρ2 ∈Q are foliated by the Aubry sets Ã(c), ρ(c) ∈ [ρ1, ρ2].

Proof. Suppose c ∈ (ρ1, ρ2), we first show that A(c) = T. Given x ∈ T, let nj →∞
such that A

nj
c (x,x)→ hc(x,x), and let (xj

k, r
j
k)0k=−nj

be minimizers for A
nj
c (x,x). let
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(x∞
k , r∞k )0k=−∞ be any limit point of the sequence (xj

k, r
j
k) in j in term wise conver-

gence. We have

Anj
c (x,xj

k) + (nj − k)α(c) +Ak(xj
k, x) + kα(c) =Anj

c (x,x) + njα(c)

Taking lim inf to both sides, we get

hc(x,x∞
k ) +Ak(x∞

k , x) + kα(c)≤ hc(x,x).

Since the opposite inequality follows directly from definition, we get x∞
k is calibrated

by hc(x, ·). It follows from Lemma D.7 that ρ((x∞
k )) = ρ(c). Since (xj

k) converges to
(x∞

k ), then for any lift (ξjk) of (xj
k), we have

ξjnj
− ξj0
nj

→ ρ(c) ∈ (ρ1, ρ2).

Since the orbit (xj
k) is minimizing, (ξjk) is a minimizer of (D.1) with p = ξjnj

− ξj0
and q = nj . Lemma D.5 then implies the orbit (xj

k) is contained in some periodic
invariant curve γ and A

nj
c (x,x) + njα(c) = 0. Taking lim inf, we get

hc(x,x)≤ 0.

Since hc(x,x) ≥ 0, we have x ∈ A(c). Moreover, the argument also proves that for
any (x, r) ∈ A(c), there exists a sequence γk of periodic invariant curves such that
γk ∩ π−1(x) → (x, r), where π(x, r) = x is the projection. Since all those invariant
curves are Aubry sets, this means there exists ck such that ρ(ck) → ρ(c) and Ã(ck)∩
π−1(x)→Ã(c)∩ π−1(x).

Suppose c1, c2 ∈ R is such that Ã(c1) ∩ Ã(c2) �= ∅. Proposition D.6 implies that
there must exists x ∈A(c1)∩A(c2) such that u1 = hc1(x, ·) and u2 = hc2(x, ·) have a
common calibrated orbit at x. Let (x′

k)k≤0 denote the lift of this orbit, we have

α(c1) = lim
n→∞

1
n
H((xk)0k=−n)−

c1 · (x′
0 − x′

−n)
n

= lim
n→∞

1
n
H((xk)0k=−n)− c1 · ρ((x′

k)),

where the limit exists due to Lemma D.7. Apply the same calculation to c′ over the
same orbit, we get

α(c1)− α(c2) = (c1 − c2) · ρ((xk)).
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The above equality combined with the convexity of α implies α is a linear function
on [c1, c2]. Suppose (y(n)

k , r
(n)
k )nk=0 is the lift of a minimizer for An

(c1+c2)/2(x,x), then

An
(c1+c2)/2(x,x) + nα

(
c1 + c2

2

)

=H ((yk)nk=0)−
c1 + c2

2
· (yn − y0) + α

(
c1 + c2

2

)

=
1
2

(H ((yk))− c1 · (yn − y0) + α(c1)) +
1
2

(H ((yk))− c2 · (yn − y0) + α(c2))

≥ 1
2
(
An

c1(x,x) + nα(c1) +An
c2(x,x) + nα(c2)

)
≥ 0.

(D.3)

Suppose x ∈A((c1 +c2)/2), then there exists nk →∞ such that Ank

(c1+c2)/2)(x,x)→ 0.
Then (D.3) implies that the c1 and c2 action of the same orbits also converges to
0. This implies any limit points of (x, r(nk)

0 ) converges to a point in Ã(c1) ∩ Ã(c2).
As a result, Ã((c1 + c2)/2) ⊆ Ã(c1) ∩ Ã(c2). Since all three Aubry set are graphs
over T as we just proved, we have Ã(c1) = Ã(c2). Finally, c1 = c2 since c is uniquely
determined by the invariant graph γ via the relation γ = (x, c+ du(x)).

Since ψ : c �→ ρ(c) is monotone, the set {c : ρ(c) ∈ [ρ1, ρ2]} is an interval [c1, c2].
The set ψ([c1, c2]) contains all rational numbers in [ρ1, ρ2]. We have proven that the
map Gx : c �→ Ã(c) ∩ π−1(x) is one-to-one over [c1, c2]. Moreover, the disjointedness
of different Ã(c) implies the map c �→Gx(c) is monotone, and we have proved that
Gx is the continuous extension of Gx|{c : ρ(c) ∈ Q}, hence continuous. The above
argument shows that Gx is a homeomorphism. �

Proof of Proposition D.3. We have already proven (a) ⇒ (c).
To prove (c) ⇒ (b), note that by Lemma D.5, every invariant curve of the system

is the graph of the gradient of a weak KAM solution, and every orbit on the curve is
calibrated by this solution. This implies, in particular, that every orbit is minimizing.
It is well known that minimizing orbits don’t have conjugate points, see for example
[Arn10, CI99]. This proves (c) ⇒ (b).

We now prove (b) ⇒ (a). We follow the proof in [A+15], Sect. 2.2. Let U denote
the part of the phase space between two invariant curves. For x ∈ T, let V (x) =
{x}× [−1,1] be the vertical fiber at x. Then the no conjugate point condition imply
that the map F k (lifted to R× [−1,1]) is a global diffeomorphism from V (x)∩U to
its image. In particular, the set F k(V (x)∩U)∩ V (x) has at most one point.

Given x′ ∈R and p/q ∈ [ρ1, ρ2], define the (p, q)-minimal action function

Mp,q(x′) = min{H((xk)qk=0 : x0 = x′, xq = x′ + p}.

It’s known since Birkhoff that the critical points of Mp,q corresponds to periodic
orbit. In particular, minMp,q and maxMp,q corresponds to periodic orbits. Before
proceeding, let’s first prove the following:

Claim If (xk)qk=1 is the lift of a periodic orbit outside of U , then (xq−x0)/q /∈ [ρ1, ρ2].
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Proof of claim. There are two cases, either (x0, r0) is below γ1, or it is above γ2 (in
terms of the r coordinate). We will only prove assuming the former as the other case
is similar. Let (xk, δk) = V (xk)∩ γ1, then by Lemma C.3,

π1F
k(x0, δ0)> xk

for all k ≥ 0. It follows that xq−x0
q ≤ limk→∞

π1Fkq(x0,δ0)
kq = ρ1. The inequality is strict

since γ1 already contain all periodic orbits of rotation number ρ1. This concludes the
proof of the Claim.

Continuing with the proof, let (yk)qk=0 be the maximizer for Mp,q. Since (yk)
is periodic, we have π1F

nq(y0) = y0 + np for all n ≥ 1. Our claim implies that the
periodic orbit associated with (yk) is contained in U , hence y0 is the unique solution
to the equation

π1F
nq(y0) = y0 + np.

Moreover, since the orbit realizing Mnp,nq satisfies the same equation, they must
coincide. Let

C = max
p−1<xq−x0<p+1

min
x1,...,xq−1

H((xk)qk=0),

we have

nH((yk)qk=0) =Mnp,nq(y0)≤ 2C + (n− 2)minMp,q,

because we can move the inner (n− 2) cycles to the minimum cycles of Mp,q, and
pay C action connecting y0 to the cycle in the first q steps, and another C action
connecting the cycle back to ynq. Divide by n and take limit, we get maxMp,q =
H((yk)qk=0) = minMp,q, implying Mp,q is constant. Since every point x is a critical
point of Mp,q, there exists a invariant curve consisting entirely of p/q periodic orbits.
This concludes the proof (b) ⇒ (a). �
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