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The advancement of quantum simulators motivates the development of a theoretical framework to assist
with efficient state preparation in quantum many-body systems. Generally, preparing a target entangled
state via unitary evolution with time-dependent couplings is a challenging task and very little is known
about the existence of solutions and their properties. In this work we develop a constructive approach for
preparing matrix product states (MPS) via continuous unitary evolution. We provide an explicit construc-
tion of the operator that exactly implements the evolution of a given MPS along a specified direction in
its tangent space. This operator can be written as a sum of local terms of finite range, yet it is in general
non-Hermitian. Relying on the explicit construction of the non-Hermitian generator of the dynamics, we
demonstrate the existence of a Hermitian sequence of operators that implements the desired MPS evolu-
tion with an error that decreases exponentially with the operator range. The construction is benchmarked
on an explicit periodic trajectory in a translationally invariant MPS manifold. We demonstrate that the Flo-
quet unitary generating the dynamics over one period of the trajectory features an approximate MPS-like
eigenstate embedded among a sea of thermalizing eigenstates. These results show that our construction is
not only useful for state preparation and control of many-body systems, but also provides a generic route
towards Floquet scars—periodically driven models with quasilocal generators of dynamics that have exact

MPS eigenstates in their spectrum.
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I. INTRODUCTION

The ongoing progress in the development of quantum
simulators [1-10], calls for the understanding of efficient
control frameworks for interacting quantum systems. In
this context, a critical challenge is the task of state prepara-
tion that entails generating nontrivial states through unitary
dynamics, employing a limited set of control parame-
ters that are available in a specific quantum simulator. In
recent years, many different approaches to quantum control
have been proposed, based either on analytics or numer-
ics. Analytic examples include those based on the adiabatic
theorem [11], as well as counterdiabatic methods [12-21].

Numerical approaches to quantum control often rely
on brute-force optimization procedures of the fidelity of
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the target state [22-26]. Calculating the fidelity result-
ing from a given unitary evolution is computationally
costly due to the exponential growth of the Hilbert space,
which scales with the number of components in inter-
acting quantum systems. In one dimension this prob-
lem can be mitigated by expressing the quantum wave
function in the form of matrix product states (MPS)
[27]. As a consequence, MPS-based numerical algorithms
[23-26,28-30] were applied to a number of control prob-
lems in one dimension. More recently, machine learning
numerical approaches were also introduced [31-34].

In addition to enabling efficient numerical simulations,
MPS were also used in an analytic approach [35] intro-
duced by some of the authors of the present paper and
their collaborators. Specifically, Ljubotina et al. [35] pro-
vided a variational construction of the optimal controls
for generating an evolution of a specific MPS along a
given direction from its tangent manifold; see Fig. 1 below.
The variational construction relied on the minimization
of the so-called leakage, which quantifies the discrepancy
between the desired unitary evolution and that generated
by the available controls from a chosen operator basis.
This approach may be viewed as a counterpart of the
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FIG. 1. Schematic representation of the desired trajectory
[ (1)), here chosen to be closed with [y (0)) = | (7)), within
the MPS manifold W. We seek to identify an operator O, gener-
ating the desired dynamics at each point along the trajectory, such
that the discrepancy between the desired direction in the tangent
space and the unitary evolution is vanishing, |y) = 0.

time-dependent variational principle (TDVP), which con-
structs the optimal projection of the dynamics generated
by a specific Hamiltonian onto the MPS manifold [36].
While the TDVP minimizes the leakage over directions in
the tangent space, Ljubotina et al. [35] introduced leakage
minimization with respect to the generators of the unitary
dynamics for a fixed tangent space direction.

The variational approach [35], although being practi-
cal, left a crucial unanswered question: what does it take
to generate exact dynamics along a given tangent space
direction of the MPS manifold? We address this ques-
tion in the present work by providing an explicit operator
construction for the generators of the MPS tangent space
evolution, similar to the construction of parent Hamiltoni-
ans [37,38]. Our approach gives an exact generator of the
MPS tangent space, written as a translationally invariant
sum of local operators of finite range that is in gen-
eral non-Hermitian. While these non-Hermitian generators
deserve future study, their implementation may generally
not be possible in real experiments where evolution is often
unitary, which in turn requires Hermitian generators.

Hence, in the second part of our work we provide a
construction for a sequence of approximate Hermitian gen-
erators of the tangent space with an increasing range of
support of the local operators. We demonstrate that, upon
increasing the support of the operators, the error quantified
by leakage decreases exponentially. Moreover, we numeri-
cally show that, using optimization over the remaining free
parameters, the sequence of approximate Hermitian opera-
tors may be made convergent in operator space, which can
lead to exact Hermitian quasilocal tangent space genera-
tors. While the existence of such operators is known for
ground states of gapped Hamiltonians from quasiadiabatic
continuation [39], our work provides a specific route to the
construction of such operators that relies only on the MPS
and does not make use of parent Hamiltonians.

Finally, we use our approach to numerically construct
the Hermitian family of generators of dynamics over an
example closed-loop MPS trajectory. We verify that our
numerical construction becomes progressively more exact
with an increasing range of support for the local terms in

the generators, and consider the properties of the resulting
Floquet unitary operator, which corresponds to the dynam-
ics integrated over a period of the MPS trajectory. By
construction, this Floquet unitary features an MPS eigen-
state that becomes increasingly accurate when increasing
the support of the local operators. At the same time the
majority of eigenstates of the constructed Floquet uni-
tary are chaotic. Therefore, the resulting Floquet system
provides an example of weak violation of the so-called Flo-
quet eigenstate thermalization hypothesis (ETH) [40—44].
The Floquet ETH implies that all eigenstates of a Floquet
operator correspond to infinite temperature, whereas the
Floquet operator constructed from quasilocal MPS tangent
space generators features an exact MPS eigenstate dubbed
a Floquet quantum scar [45,46].

The construction of the Floquet model with an ETH-
violating MPS eigenstate establishes a surprising relation
between the generators of tangent space dynamics and
Floquet scars. While scars in a Floquet setting were consid-
ered previously [47—51], our results suggest that any MPS
periodic trajectory has a corresponding Floquet model
with quasilocal generators of dynamics that implement
the dynamics along the MPS trajectory exactly. Thus, our
work suggests that scars in a Floquet setting may be quite
abundant, and calls for a systematic exploration of Flo-
quet scars and their use as a means of quantum control in
many-body systems.

The remainder of the paper is structured as follows. In
Sec. I we define the quantum control problem over an
MPS manifold and introduce the necessary notation. Then,
in Sec. IIT A we present the construction of the exact non-
Hermitian driving operators. This is followed by Sec. I1I B,
where we construct the sequence of approximate Hermi-
tian driving operators, and bound the leakage stemming
from this approximation. Having discussed the theoreti-
cal aspect, we proceed, in Sec. IV, by demonstrating our
construction and its performance for a specific MPS trajec-
tory. Furthermore, we show that the operator series can be
made convergent to an exact seemingly quasilocal operator
through the use of the free parameters. Finally, we discuss
some of the remaining open questions and potential future
directions in Sec. V. The paper concludes with several
appendices that discuss the details of the free parameters
present in the construction of the generators, the deriva-
tion of the leakage bound, and the MPS trajectory studied
in this work, and that include further numerical details
concerning the Floquet propagator we obtain with our
approach.

II. MPS CONTROL PROBLEM AND NOTATION

In this section we first provide a general formulation of
the control problem of MPS as considered in this work. We
then introduce the relevant properties of MPS that will be
used throughout the work.
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A. Finding generators of an MPS tangent space

We start by defining the problem of finding genera-
tors of dynamics along a certain direction within an MPS
manifold. Let us consider a one-dimensional chain of N
spins s; we can then define a Hilbert space of all states

H = C®"", where d = 25 + 1 is the local Hilbert space
dimension associated with a single site. We can now define
a trajectory of quantum states | (¢)), with ¢ € [0, T], within
an MPS manifold ¥ C H, as sketched in Fig. 1. While the
details of an MPS will be defined below, we are ready to
formulate the control problem. Specifically, given a state
|v (1)) and a desired evolution direction 9|y (¢)), we aim
to find an operator O(¢) that generates the evolution

¥ () = =10 (D). (1

We note that this operator is in general dependent on the
point along the trajectory. Figure 1 illustrates a schematic
of this setup, introducing vector |y ), given by the differ-
ence between the right- and left-hand sides of Eq. (1). This
vector vanishes if an exact solution is found and its norm,
known as leakage, will be used to quantify the quality of
the solution.

We are interested in the solution of the above problem
when operator O (for brevity, we omit the time dependence
in O and |¢) from this point on) is written as a sum of
r-local terms, denoted O,.:

O, = Z Oiitr—1- (2)

Here 0;;+,—1 is a combination of local operators acting
nontrivially on sites [i,7 4+ » — 1] and the sum is taken over
the entire chain. While numerically we use periodic bound-
ary conditions, our analytic construction will consider an
infinite system, where boundary conditions are not rele-
vant. Before we can present the explicit construction of O,
we need to introduce some notation for MPS and discuss
the properties of MPS used in our construction.

B. Properties of MPS and their tangent spaces

First, we define an MPS with bond dimension x that
is used to parameterize quantum states throughout this
work as

N
)= Tr [HA?’}@» 3)
s i=1

where the A are x x x complex matrices and s runs
over all states in the computational basis. In this work
we consider the MPS to be translationally invariant,
with all matrices being identical, 47 = 4°. However, we
note that our construction can also be extended to non-
translationally-invariant MPS; however, all derivations

here will be performed for the translationally invariant
case.
We can now define the one-site transfer matrix

d
T=>) A'Q4, (4)

where 45 is the complex conjugate of 4*. Considering the
eigenvalues and eigenvectors of the transfer matrix, we
define the left and right eigenvectors as T|R;) = A;|R;) and
(Li|T = A;i(L;|, which satisfy the condition (L;|R;) = §;;
for all i,j. We assume both that the state is normalized
and that the transfer matrix has a unique dominant eigen-
value, with A; = 1, which always holds for an injective
MPS, which we discuss below. We then introduce a simpli-
fied notation for the corresponding dominant eigenvectors
[R1) = |R) and (L] = (L|. These become particularly rel-
evant when one considers the r-site transfer matrix, 7.
When the number of sites » is large, » — oo, the transfer
matrix converges to 7 = lim,_, o, T" = |[R)(L].

Furthermore, in order to describe the time evolution,
we need to consider the tangent space 7/, W of the MPS
manifold W at an arbitrary point |¢). We introduce the
notation 04 = 9,4(t), where 9,4 (¢) is defined with the spe-
cific choice of the MPS trajectory. Using the fact that 9;|v)
is an element of the tangent space 7),)W, we note that
oY) must be orthogonal to the original MPS i in the
thermodynamic limit,

d
(W1oy) = NI )[4 0] @ ABIR) = 0. (5)

s=1

Note that in general this overlap can take any purely imag-
inary value; however, we can always set the value to zero
without loss of generality as this amounts to a simple
modification of the global phase of our state.

An important restriction for our construction of the tan-
gent space generators is that the MPS is injective [37,38].
This can be understood by considering the map between
the doubled space of virtual (bond) indices V, ® V, = C* 2
of dimension y? and the physical states in the Hilbert space
Ag) - V;r) = C? of rsites of dimension d’, where d is the
local Hilbert space dimension [52]. Such a map is illus-
trated in Fig. 2. Injectivity amounts to the condition that
the rank of the map must be equal to 2, or, equivalently,
dim Af;) = 2. If this happens for some r, it in fact holds
whenever r is above some threshold r., where [2log,; x ] <
re <2x%(6 +1log, x) (the first inequality follows from
dimensional arguments, and the second is the quantum
Wielandt inequality [53]). Here Af;) can be viewed as the
subspace of the total Hilbert space of  sites, representable
by the MPS on r sites. Finally, we denote the orthogonal
complement of Af;) in Vp(’) by BY ie., Vp(’) = Af;) o Bf;);
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FIG. 2. We can view a section of the MPS containing r sites
as a map from the doubled auxiliary space V, ® V, to a subspace
Ag) of the Hilbert space of r sites (V" = C*). In this picture the
injectivity of the MPS implies that dim Af;) = x? for sufficiently
large r.

it contains the r-site states that are orthogonal to those rep-
resentable by the MPS. Similarly, we can define .Ag)w c

V(" as the subspace representable by the derivative of the
MPS, with the derivative taken on the jth site (the corre-
sponding map can be obtained by replacing the j th tensor
A by 94 in Fig. 2). These spaces will play an important
role later in the definitions of the free parameters of our
generators.

Injectivity has important implications for the MPS. First,
injectivity implies the uniqueness of the largest dominant
eigenvalue A} = 1 (set to one by normalization) of the
transfer matrix defined above [38,54,55]. Second, injec-
tivity also allows us to define a left inverse /, of the map
illustrated in Fig. 2 according to the condition

where T is transfer matrix of r sites, 7", whose legs are
then reordered to form a matrix in the vertical direction
by merging the two bottom and two top legs, as shown
in the equation. Such a left inverse is unique and anni-
hilates all states in Bl(/,’) while acting as a regular inverse
on the remaining subspace .AE,?. The action of such a left-

inverse operator when applied to an MPS state can be
represented as

This operator will play a key role in the construction of the
tangent space generators below.

ITII. CONSTRUCTION OF TANGENT SPACE
GENERATORS

This section presents the main details of our construc-
tion of the tangent space generators. In Sec. III A we

present the explicit form of a finite-range non-Hermitian
tangent space generator and discuss the available free
parameters that allow us to modify the operator. How-
ever, since generators of unitary dynamics must be Her-
mitian, we also demonstrate a construction of a sequence
of approximate Hermitian generators of the tangent space
dynamics in Sec. III B. Moreover, we show that the leak-
age that controls the quality of the approximation decreases
at least exponentially with support » for this sequence of
Hermitian operators.

A. Non-Hermitian generators

The basic idea behind the construction of the driving
operator O, is presented in Fig. 3. By applying the left
inverse /, to » contiguous tensors in the MPS and using
Eq. (7), we can effectively replace the tensors in this
region. Thus, the solution to the tangent space generators
is given by the sum of local range-r operators

1 J T
AlL...dpAlL... LA
0(1‘{222' - . ) (8)

such that 09) =D 0,(;,1”_1. Here j, 1 <j <, repre-
sents the site at which the derivative term is applied. This
is an explicit solution that provides the generators of the
MPS tangent space, and it is guaranteed to exist as soon as
the range of operators r is sufficiently large, such that the
left inverse /, can be found. However, this solution is gen-
erally non-Hermitian—an issue that we address in detail in
the next section. Furthermore, this solution is by no means
unique, and below we discuss two qualitatively different
sets of free parameters that allow us to change the form of
operator O,, while maintaining the property that it solves
Eq. (1) exactly [56].

ktj—1

(4)
Ok kr—1

FIG. 3. Schematic construction of the tangent space generator.
Note that the position of the derivative term is arbitrary; in fact,
one can even take a sum of contributions with different positions
(see the text for details).
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The first set of free parameters originates from the
“redistribution” of the derivative term among  sites within
the range of operator /,. Note that in Eq. (8) we position the
derivative term d4; at some position j . However, this posi-
tion is arbitrary, and in fact we are free to choose any linear
combination of derivatives at sites j = 1,...,r with (not
necessarily positive) weights o; such that Z;zl o = 1.
Such spreading of the derivative leads to a modified local
operator that is expressed as a linear sum

P
)
Oiptr1 = Y00, ©)
j=1
with operators ol ; +r , defined in Eq. (8). A similar trans-

formation then also follows for the translationally invariant
sum O, = Zj o Oﬁ’ ) As we will see later, the redistribu-
tion of the derivative among r sites can have a nontrivial
effect on the resulting tangent space generator.

The second set of free parameters emerges from the
fact that operator o, , is defined through the left inverse in
Eq. (8). From the properties of the left inverse discussed
in Sec. IIB we observe that o;, is a map between the

subspaces A( — A(, s> and annihilates states in the com-

plement space, pr). Since operator o;, acts nontrivially

only on a subspace of the full physical Hilbert space V"
of r sites, we can modify it as

0/11 =01, + Zcx,y Ix) (1, (10)
Xy

where x € {V’} and y € {Bf/f)} run over the basis of their
respective spaces (note that both x and y are vectors in
the full local Hilbert space V[S’)). Physically, this modifi-
cation corresponds to adding a (non-Hermitian) local term
to operator o;, that annihilates [y/), similar to the con-
struction of the parent Hamiltonian [57]. As such a local
term acts nontrivially only on the complement space Bf;),
it annihilates the MPS state and thus the modified oper-
ator Olr still solves —i ), 0} ;.. (1Y) = 3]¥). We note
that in what follows we restrict the above freedom to
x € {B(‘;)} rather than the complete Hilbert space of 7 sites.
This restriction is important since the construction of the
Hermitian generators will require the minimization of the

action of o/lTJ on the MPS state |¢). The redefinition of

01, according to Eq. (10), provided x € {Bi,f)}, will thus
ensure that the free parameters do not affect the action of
o’z_jr on the MPS state |1/). As a result we will be left with
(d" — x?)?* free real parameters Cry-

B. Approximate Hermitian driving operators and the
leakage bound

As we discussed in the previous section, the solution to
the generators of the MPS tangent space is not unique. In

particular, any operator O, that solves Eq. (1) can be mod-
ified as O, + X, and will remain a good solution as long
as operator X', which is not necessarily Hermitian, anni-
hilates the MPS state X |[{) = 0. This freedom is at the
core of our construction of the Hermitian driving opera-
tor below. In particular, we note that operator OI, while
not satisfying the property thp) = 0 exactly, satisfies it
progressively better with increasing r, as we show below.
This allows us to take the following construction of the
Hermitian generators of the tangent space:
H,=0,+ 0. (11)
This leads to an exponentially decreasing leakage with
increasing operator support 7.
Specifically, in Appendix B we demonstrate that the
following bound on the norm of state OIW) holds for
sufficiently large ranges r:

+ (r—1 x-l
10 1Y) 2 < Nel|as] 5 . (12)

Here ¢ € R is a scalar constant dependent on various
parameters of the MPS and the rate of its change but inde-
pendent of » [58], X, is the subleading eigenvalue (i.e.,
second largest in absolute value) of the transfer matrix
T in the usual horizontal direction, and ||-||, is the vec-
tor 2-norm. Note that injectivity of the MPS guarantees
that |A,| < 1, thus implying an exponential decay of the
norm of ||0I|gb)||2 as u” for any positive p satisfying
Ml < u < 1.

This bound can then be used to bound the leakage from
the evolution generated by these operators. As shown in
Fig. 1, we define the leakage vector as the difference
between the desired and actual changes of state

ly) = —iH[y) — o¥). 13)
Since the non-Hermitian operator O, generates the exact
dynamics —iO,|Y¥) = 9,|v¥), we can quickly identify |y) =
—in |). From this, it follows that the norm of the leakage
is directly bounded by bound (12).

We have demonstrated that the sequence of Hermitian
operators H, satisfies Eq. (1) with exponentially increas-
ing precision as we increase the support r. At the same
time, operators with different supports, for instance H,
and H,.,, are not guaranteed to be close to each other
in terms of operator norms. Such convergence in opera-
tor space with increasing r is a desirable property, since
it would allow one to define a quasilocal Hermitian gen-
erator of the tangent space. While demonstrating such a
property remains an interesting direction for future analyt-
ical work, we demonstrate in the following section that it
is possible to achieve quasilocality of H, using numerical
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optimization over the free parameters in the redefinition
of operator o, in Eq. (10). Let us note that the existence
of such quasilocal generators for MPS trajectories can be
shown by applying quasiadiabatic continuation [39] to the
MPS parent Hamiltonian, which is gapped due to injectiv-
ity [37]. Since the action of O and the resulting generator of
quasiadiabatic evolution on the MPS space are the same by
construction, an appropriate, sufficiently flexible, choice
of free parameters should therefore allow us to generally
construct a quasilocal generator.

IV. FROM LOCAL GENERATORS OF THE MPS
TANGENT SPACE TO A FLOQUET MODEL

In this section we implement the construction of Hermi-
tian tangent space generators introduced in the previous
section. We start with a definition of an example MPS
trajectory in Sec. IV A. Next, in Sec. IVB we numeri-
cally demonstrate the bound from Sec. III B that implies
an exponentially decreasing leakage with » and show that
the sequence of operators H, can be made quasilocal in the
limit » — oo. Finally, in Sec. IV C we turn to study the uni-
tary dynamics over the entire period of the chosen closed
MPS trajectory. We show that the resulting Floquet unitary
has an MPS-like eigenstate that we dub a Floquet quantum
scar.

A. MPS manifold and trajectory

We use the MPS trajectory found in Ref. [59] from the
TDVP projection of unitary Hamiltonian dynamics onto a
low-bond-dimension MPS manifold. This trajectory was
also used in Ref. [35] to construct the generators of MPS
dynamics with a variational approach. The trajectory in the

(a) -
101 ® oc [Aaf
_____ x |/\2|2r
Lyt
=
=
=107
¢ apy =1
« optimized N
2 4 6 8
T
FIG. 4.

MPS manifold is specified by the explicit form of the 4°
matrices for a spin-1/2 system,

cos D cos be™/28; 4

cos 0 sin be /2§,
£ 4
sind sin be'c~¥/2§ |

sin 0 cos be/“ T/ |

(14)

with real MPS parameters a,b,¢,0 € [—7,]. The tra-
jectory is now described by the four real-valued periodic
functions a(?), b(¢), c(f), 0(¢) with period T~ 2.098 shown
in Fig. 10 in Appendix C [60]. We note that the MPS
above is not in canonical form; however, it is injective
almost everywhere on the MPS manifold, and it is injective
everywhere on the chosen MPS trajectory.

B. Exponential decay of infidelity and quasilocality

We now study the properties of the approximate Hermi-
tian operators in this example. Specifically, we numerically
evaluate the leakage as a function of the operator support
and show that it decreases exponentially, as predicted by
the bound in Eq. (12). Furthermore, we show how one
can use the free parameters c,,, defined in Eq. (10), to
numerically obtain a series of operators converging to an
increasingly exact quasilocal Hermitian driving operator.

We first look at the operators at a random point and
direction within the MPS manifold; specifically, we take
(a,b,c,0) = (1.05,—0.48,0.39,1.2) and 9,(a,b,c,0) =
(—3.81,1.29,2.1, —0.49). In Fig. 4(a) we show the expo-
nential decay of ||o;r|1ﬁ) ||§ with », which indicates an
exponential decrease in leakage for the Hermitian opera-
tor (11), as predicted by the bound. Note that the two sets
of points shown in Fig. 4(a) differ only in the choice of the
distribution of the derivative term over the 7 sites (e; ), with

(b) .
10
= -1 °
z 107,
= . °
% 1073 °
< .
_ 10*0 [ ]
° b Ay = 1
[ ]
P 4 6 8

(a) The norm of of|y) shows a clear exponential decay in agreement with the predictions from the upper bound. The dark

red points correspond to placing the derivative in the middle of the r sites, while the orange points are obtained by minimizing the
norm over «; . Optimizing over the derivative distribution ¢; will typically lead to faster convergence. The lines show exponential fits
to the data; note that the exponent of the solid line is precisely that predicted by the bound in Eq. (12), whereas after optimization over
«; the decay is faster. (b) The choice of ; can have a strong effect on the norm that is exponentially sensitive to the location of the
term where we insert the derivative. Here we only show the simple cases where the derivative is fully localized on a given site x and
all other o, = 0 for all y # x.
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the faster converging set being optimized over «;, while in
the other case we simply put the derivative term on the
middle site. We note that this simple choice is in general a
safe choice when restricting the derivative term to a single
site, as shown in Fig. 4(b) for a random state in our MPS
manifold, though naturally optimization can provide better
results. Importantly, this optimization is a simple positive
semidefinite quadratic problem with » — 1 variables and
thus not computationally intensive.

After numerically demonstrating the exponential
decrease of the leakage with operator range, which is
also predicted by bound (12) proven in Appendix B, we
consider the operator space convergence of the driving
operators. As noted at the end of Sec. III A, the free param-
eters ¢, [defined in Eq. (10)] are now restricted further as
we do not wish the free parameters to lead to any additional
action in either OZW) or O,|). If we can achieve expo-
nential convergence in operator space, this would imply
that exact driving can be achieved with a quasilocal Her-
mitian operator. Specifically, we consider the Frobenius
norm || H,| r, due to its invariance under unitary operations.
This allows us to expand H, =27r Zp cp ®;_; 0¥ over
a Pauli basis, where p is a string of length » with entries
pi € {x,y,z,0} representing the three Pauli matrices and
the identity matrix, respectively. We can then express the
norm as [|H,[lr =Y, c;.

This approach allows us to elegantly handle translational
invariance. Recall that our construction gives us access to

H, as a sum of local densities 4, ;,—1 = 0; 471 + OZi 1
Clearly, when expanding this over a Pauli basis, there is
some freedom as to which 4, the elements with supports
smaller than 7 are allocated to. In the Pauli basis we can
resolve this ambiguity by considering only strings s where
the first element is not an identity matrix. Any elements
where this is not the case are shifted to the left and added
to the corresponding element. Thus, entries do not repeat
for different values of i and translational invariance can be
taken into account by computing an upper bound ||H, || <
Nk ||r. To attempt to achieve convergence in the opera-
tors as r increases, we determine the free parameters ¢, ,
such that the norm ||4,_; — A, ||F is minimized.

In Fig. 5 we show the convergent series and the struc-
ture of the largest operator after optimization over the
free parameters c,,, which shows exponentially decay-
ing weights for longer-range terms. Our numerical explo-
ration suggests that this convergence can be achieved for
any combination of MPS parameters, although the con-
vergence rate varies depending on the choice of MPS
parameters and the tangent space direction.

C. Approximate Floquet scars

Finally, we apply our approach to drive the state along a
trajectory within the MPS manifold specified in Sec. IV A.
We test our construction using exact diagonalization to

10" ; °
°
1004 e
10715
o
1072.
DL
1073 llor—1 — OI'HQF
1 2 3 4 5
T
FIG. 5. Operator space convergence properties after optimiza-

tion over the free parameters aimed at obtaining a convergent
operator series with respect to the Frobenius operator norm. The
dark red points show the weight of the operator corresponding
to Pauli strings with support » for os. The orange points show
the norm of the difference between solutions with consecutive
supports.

simulate the full quantum dynamics of the model. Note
that, for simplicity, we omit the optimization over the free
parameters ¢, ,. We also restrict our numerical calculations
to periodic boundary conditions as that is more in line
with the expected behavior in the thermodynamic limit,
which we considered analytically. Furthermore, this allows
us to resolve translational invariance that will simplify our
calculations and allow us to reach larger system sizes.

We first consider how well the constructed tangent space
generators implement the dynamics along the MPS trajec-
tory. To this end, we construct the propagator that encodes
the dynamics from time O to ¢,

U(t) = ’Texp{—i/ H,.(s)ds}, (15)
0

where H,(s) is the approximate Hermitian tangent space
generator of dynamics along the MPS trajectory con-
structed from the sum of range-r local operators discussed
in Sec. III. Setting the time equal to the period of the tra-
jectory, 1 =7, we would get the Floquet unitary, U" =
U, () [61].

To quantify the accuracy of our generated dynamics
Fig. 6 shows the log fidelity per site f/ = —In F'/N, with
F = [(y ()| U.(9)|(0))]*>. We observe two distinct trends.
Firstly, f is approximately converged with respect to the
system size, suggesting that the log fidelity per spin is
a well-defined quantity. Secondly, we see that increas-
ing the range » in U,(f) leads to roughly exponential
improvements, as expected from the bound obtained in
Sec. III.

Next, we study the properties of the spectrum of the Flo-
quet unitary, Ur, which encodes the dynamics over one
period of the MPS trajectory. We observe that the density
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FIG. 6. We show the log fidelity per site defined as
f =—InF/N, where F = |(¥()|U.()|¥(0)))? is the fidelity.
Increasing support » shows the predicted exponential decrease
in infidelity 1 — F'. We show data for several system sizes, indi-
cating reasonably good convergence; note that one expects the
results to converge to a fixed curve for N — oo.

of states is smooth, with only small variations, suggesting
that the system does not have any quasiconserved quanti-
ties that would manifest as minibands. We also find that
the statistics of eigenvalues of Up show level repulsion
[56]. This suggests that the constructed Floquet unitary
is far from any prethermal regimes [62] and is instead
fully chaotic. At the same time, a more detailed look at
the spectrum in Fig. 7 reveals the existence of anomalous
eigenstates in the spectrum.

In particular, while the majority of eigenstates of the
Ur seem to satisfy the Floquet eigenstate thermalization
hypothesis [42,63—65] in the sense of having large entan-
glement entropy and small overlap with weakly entangled
MPS states, Fig. 7 clearly reveals the existence of a spe-
cial MPS-like eigenstate in the spectrum of Ur. We note
that in the limit lim,_, o, limy_, o, our construction of Her-
mitian tangent space generators becomes exact, and is thus
expected to give at least one nonergodic eigenstate of Ug,
corresponding to the initial MPS state. Numerical data sup-
port the conclusion that the remainder of the spectrum is
fully ergodic. At the same time, at finite », the MPS is not
an exact eigenstate of Ur and its hybridization with nearby
eigenstates leads to several eigenstates with anomalous
entanglement and enhanced overlap with the MPS state.
Further results supporting these conclusions are presented
in Appendix D.

Finally, our construction can, as demonstrated by the
results above, also be seen as a framework that can produce
perfect Floquet scars from arbitrary periodic MPS trajec-
tories when considering quasilocal operators. For local
operators with fixed supports, our construction still leads
to Floquet operators with one or several nonergodic states
in an otherwise fully chaotic spectrum.

FIG. 7. The overlap of the eigenstates of the Floquet propa-
gator with the MPS initial state (a) as well as the (half-cut) von
Neumann entanglement entropy (S) of these eigenstates (b) both
reveal that, while nearly all eigenstates are typical, there is a
single exception in the eigenstate with the largest overlap with
the MPS state. Thus, while the propagator is otherwise chaotic,
there exists a single weakly entangled eigenstate, which can be
viewed as a Floquet scar in the model. Data obtained from cal-
culations with » =4 and N = 14 in the zero momentum sector
with periodic boundary conditions.

V. DISCUSSION

In this work we presented a constructive approach for
finding generators of dynamics in the tangent space of an
MPS manifold. We defined the exact tangent space gen-
erators that are generally non-Hermitian and thus do not
correspond to unitary dynamics. In addition, we demon-
strated that tangent space generators can be made Her-
mitian, at the expense of introducing a small error that
decreases exponentially with the range of the local terms
within the operators. Furthermore, we conjectured and
demonstrated numerically that such a sequence of Hermi-
tian operators can be made convergent, leading to exact
quasilocal Hermitian generators of the MPS tangent space.

Considering the dynamics induced by the generators of
the MPS tangent space over the periodic trajectory within
the MPS manifold, we defined a periodically driven Flo-
quet model with a local Hamiltonian that depends on
time smoothly. Although such Floquet models are gener-
ally believed to obey the Floquet eigenstate thermalization
hypothesis [42,63—65], our construction leads to Floquet
models that violate these expectations. The Floquet model
constructed from our approach is expected to have at least
one eigenstate that is given by the MPS in the infinite-
range limit, where the Hermitian tangent space generator
becomes exact. We numerically verified that the Floquet
spectra observed at finite sizes and ranges are indeed
consistent with these expectations.
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The construction of MPS tangent space generators in
this work is of both practical and conceptual utility. Practi-
cally, our construction can be used to understand the most
important operator terms needed for optimal control along
a specific entangled trajectory. Although our construction
generally returns a combination of all allowed operators
within a certain range, in practice only a small number of
operators has a dominant contribution. It would be inter-
esting to check whether the dominant operators agree with
the expectations from counterdiabatic terms [66], or if our
approach is able to uncover different families of relevant
operators. In a different setting where one considers an
MPS approximation to the ground state of a gapped Hamil-
tonian, the variational ansatz for quasiparticle excitations
belongs to the tangent space [36,67—70]. Thus, exact tan-
gent space generators constructed in this work may be used
to excite quasiparticles above such gapped ground states.

Conceptually, our construction opens the door to the
study of the properties of tangent space generators more
systematically. It is desirable to extend the relation
between the structure of the tangent space generators and
their complexity on the one hand, and the properties of the
local MPS and the chosen tangent space direction on the
other hand.

Another intriguing question revealed by our work con-
cerns the existence of finite-range exact Hermitian tangent
space generators. We know simple examples of the exact
MPS dynamics generated by operators that are sums of
mutually commuting terms [71]. However, it is desirable
to understand if such a construction can be generalized
beyond the sums of mutually commuting operators to
“frustration-free” local generators of exact MPS dynamics
(in analogy to the frustration-free Hamiltonian construc-
tion) [37,72]. If successful, these models may become
instrumental in our understanding of unitary dynamics.

A different stride of our work is the establishment of
the connection between generators of the tangent space in
MPS manifolds and quantum many-body scars [46]. Our
results imply that any periodic trajectory over an MPS
manifold has a parent Floquet model, whose dynamics
is generated by a quasilocal Hamiltonian that smoothly
depends on time, and where the corresponding MPS state
is an exact eigenstate. This invites a systematic study of
quantum scars in Floquet models, and suggests that they
may be more common than previously anticipated. Under-
standing the microscopic mechanism that protects the MPS
eigenstate of such Floquet models from hybridizing with
other eigenstates and thermalizing remains an interest-
ing open question. Likewise, it may be interesting to
understand the classical dynamics generated by such Flo-
quet models obtained after a TDVP projection [45,59,67],
and study the construction in the case of trajectories that
generate a large amount of entanglement.

Furthermore, it may be worth expanding our construc-
tion to other types of tensor networks, such as projected

entangled pair states (PEPSs) for two- and higher-
dimensional systems. Our construction of the exact non-
Hermitian generators can be straightforwardly extended
to injective PEPSs. Approximate Hermitian generators
can also be obtained in an analogous approach, and on
physical grounds we expect these Hermitian generators to
improve exponentially with increasing operator range [39].
However, due to a lack of comparable analytic methods,
rigorous proofs of exponential convergence similar to our
Appendix B are likely to be difficult for generic PEPSs.

Finally, it may be interesting to extend our approach
beyond the manifold of tensor networks, in particular,
considering other variational forms of quantum wave func-
tions. Intuitively, we expect that variational ansatzes that
are capable of capturing the unitary dynamics of the system
may allow for a similar local or quasilocal construction of
the corresponding tangent space generators. Thus, under-
standing the structure of the tangent space generators may
provide a useful test for the utility of other variational
ansatzes, and may also be useful for understanding the
complexity and practical routes of state preparation beyond
matrix product states.
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APPENDIX A: FREE PARAMETERS

In this appendix we describe the various free parameters
of our driving operator o1, the mechanisms behind their
emergence, and the relations between them. Specifically,
we discuss the following free parameters below.

(1) Free parameters «; that describe the distribution
of the derivative. These parameters are defined in
Eq. (9); they are used to bound the leakage in
Sec. III B and to optimize the fidelity of the approx-
imate Hermitian driving scheme in Sec. [V B.

(2) Free parameters cy, that stem from the lack of
any restrictions on the action of o), to states in
Bf;). These parameters are defined in Eq. (10), and
they are used to numerically obtain operator space
convergence in Sec. [V B.
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(3) Free parameters that might arise due to changing the
gauge of the MPS, potentially in a time-dependent
way. They are not discussed in the main text; how-
ever, in Appendix B we use time-independent gauge
invariance to set a fixed gauge for the bound.

(4) Free parameters emergent from the so-called tele-
scoping series summation rule [67,73—75]. These
are also not discussed in the main text.

1. Distribution of the derivative

Let us first discuss the «;, which are already defined
in the main text in Eq. (9). The choice of these param-
eters has a clear effect on the driving operator o;, and
as a result on the leakage of the Hermitian driving oper-
ator hy, = 01, + OL when acting on the MPS state [/).
As such, we consider the choice of these parameters rel-
evant as they can have an impact on the performance
of the obtained driving protocol. As we discuss below,
these parameters can be viewed as a subset of those aris-
ing from the telescoping summation, which we discuss in
Appendix A 4 below.

2. Action on the complement space

Next, we can consider the parameters c,, defined in
Eq. (10). These parameters in the most generic case have
xe{V) and y € {Bf;)}, running over the basis of the
complete Hilbert space and the image complement, respec-
tively. However, throughout the main text we considered a
subset of these parameters, where we restricted x € {Bf/f)}.
This restricted set of parameters was used to obtain con-
vergence in operator space in Sec. IV B. We note that
while the restricted set of free parameters c,, has no
effect on the time dynamics of the chosen MPS state |/)
these parameters will affect the dynamics of other states.
Thus, varying these parameters one may essentially obtain
different generators of dynamics (or Floquet propagators
when considered over a periodic trajectory) that are guar-
anteed to share only the single MPS eigenstate (in the limit
7 — 00).

Next, we discuss the remaining parameters, c,, with
X € {Af;)} andy € {Bg)}. These parameters were not con-
sidered throughout our work due to the particular way in
which we construct the Hermitian generators. In particular,
the nonzero value of such parameters would immediately
contribute to the leakage that is given by OLW). Hence,
although this freedom is not used in our work, it may be
useful for other constructions of Hermitian tangent space
generators.

Finally, let us comment that parameters ¢, are not
related to parameters «;. Indeed, c,, emerge as an addi-
tion, orthogonal to the term with the left inverse (1), due
to the restriction y € {Bf;)}. Conversely, changing «; con-
cerns the redistribution of the derivative MPS tensors (04),

which are contracted with the left inverse, and thus acts
nontrivially only on states in A(‘;). Similarly, the gauge
transformations and telescoping series that we discuss next
also act only on Ag) and are thus also not related to c, .
Note that while this clearly shows that the effects of these
parameters are strictly different to the other groups of free
parameters, when considering O,.,, the same may not be true
when considering the Hermitian generator H, and further
investigation is needed to fully understand the potential
relations in that setting.

3. Choice of MPS gauge

Next we consider time-independent gauge transforma-
tions of the MPS 4} = G;_14,G;', with G being some
invertible x x x complex matrix, which is constant along
the entire trajectory. As our construction of the driving
operators o; ;1 is invariant under such a gauge transfor-
mation, this will not lead to any additional freedom.

However, adding a time-dependent gauge transforma-
tion G; — G;(¢), which depends on the time, or, equiva-
lently, position along the chosen trajectory, could impact
the resulting Hermitian operator and give rise to additional
free parameters. This follows from the transformation for
the derivative 9,4(t) = Bt[Gi_l(t)Ai(t)Gi_l(t)] that modi-
fies the derivative tensors by additional terms of the form
[[0,G()]G~ (1), G(HA() G~ (1)]. Although these transfor-
mations are nontrivial, their effect was not considered in
the current work, in part because of the potential adverse
impact on the norm of the leakage, which could require
more complicated numerical optimization. Lastly, the free
parameters resulting from such a time-dependent gauge
transformation are a subset of the telescoping degrees of
freedom discussed below.

4. Telescoping series

Finally, we briefly comment on the free parameters
that can be obtained through the use of the telescop-
ing sum. Specifically, these are changes to the operators
0ii+r—1, Which do not impact O,|y) =), 0;;1,—1|V¥), as
they should cancel out when summing over i. A schematic
construction of such operators o], ., that can be added to
our original construction (0;;4,—1 — 0jjyr—1 + 0;,1‘ 1) 18
presented in Fig. 8.

Note that while these operators preserve the perfor-
mance of the non-Hermitian driving scheme, they can have
an effect on the Hermitian scheme. Indeed, while we do
not consider this freedom explicitly in the manuscript,
in order to avoid excess numerical optimization over the
various parameters, this freedom is implicitly exploited
when optimizing over «;. It is straightforward to see that
optimization over ¢; fits into this broader family of tele-
scoping freedom. Furthermore, the time-dependent gauge
deformations can also be seen as a subset of the same tele-
scoping freedom. In this sense, this telescoping freedom
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Z‘i-t

k&.j

Xk

zz+r 1=

J+€ k

FIG. 8. The action of operators 01 i+r—1 (shown in the figure)
on the MPS state |/ (¢)) cancels out when summing over all sites,

:0iiv,—11¥) = 0. Therefore, such operators can be added to
the non-Hermitian driving operator without affecting the driving
along the chosen MPS trajectory. Parameters k, &,; in the figure
run over the ranges k € [1,r — 1], & € [1,r — k], andj € [0,r —
k — &],and /is defined as/ = r — k — j . Finally, X, is an arbitrary
tensor acting on k sites.

describes all deformations except for those described by
cxy (see Appendix A 2), which are clearly distinct when
considering their effect on 0. As mentioned previously,
this is easily seen by writing the deformations to our

)
operator as of(l’ff et — J oy XY ], where (y] € BY,

telescoping ny dzw|Z> (w|, where (w| € A() (see

ii+r—1
Sec. II B for the definitions of subspaces Av, and Bf/f)).
is the orthogonal complement of

()«
telescoping
d ii+r—1

and o,

Since the subspace B,
complement

Litr—1 are clearly distinct.

Af;), operators o,

l l

APPENDIX B: THE CONVERGENCE BOUND

In this appendix we derive the convergence bound given
in Eq. (12). From Eq. (2), we have

10T 1) 12 < D 1001 19) 12, (B1)

and thus it suffices to bound the summands on the right-
hand side. We consider the canonical o;;4,—1 constructed
without the optimizations described in the main text, i.e.,
where 0,4° sits only at the central site, a; = 8, ,/2); any
upper bound for this specific choice will clearly also upper
bound ||01.TJ. 1Y) 2 for an o;;1,1 optimized over the
derivative distribution parameters o; .

In the following, we assume an injective MPS. Let us
now consider

i 2 i
10;ir—1 [V 2 = (Y l0iigr-10;4,—y 1),

which corresponds to the tensor network shown in
Fig. 9(a). For simplicity, we restrict to odd » = 2¢ + 1; for
even r, one has two different £ on the left and right. We
can now choose to work in any gauge we want, with one
caveat: a gauge change 4% > Y4Y~! will leave the dia-
gram in Fig. 9(a) unchanged (with /.. defined in terms of the
new A), except that 9,4° is transformed to Y(9,4°)Y~! =
D,A* rather than to 9,(Y4°Y~') (which does make a d1f-
ference since the gauge choice will typically depend on ¢;
for the same reason, the outcome of the construction of
O, will depend on the gauge). We denote this transformed
derivative by D; in the following, and choose to work in the
right-canonical gauge. That is, the right and left transfer
matrix fixed points willbe R = 1 and L > O with trL = 1
(here R and L are the matrix forms of the corresponding
eigenvectors of the transfer matrix).

(B2)

(b)

®=(I;)"

FIG. 9. Diagrammatic representation of the norm from Eq. (B2) (left) and the simplified expression in Eq. (B3) (right). Note that we
consider the operator range to be odd, » = 2¢ + 1; in the case of an even operator range, » = 2¢, one instead has £ and £ — 1 sites on
the left and right sides of the derivative term, respectively. Note that the middle section (marked with ®) simplifies to a single inverse,
since it can be rewritten as simply (7 )yl (T )~!. On the right-hand side the objects with all arrows pointing in or out (e.g., o~ L,
R) can be viewed as vectors (ket and bra, respectively), while p and p” are operators that act on their respective spaces.
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Let us now simplify and rewrite the diagram in Fig. 9(a). First, we define p := T¥ to be the transfer matrix of & sites
read in the vertical direction. Because of the construction of I, [see Eq. (6)], the 77 in the middle cancels with one of
the (T7)~'. We are thus left with the diagram shown in Fig. 9(b), where the arrows indicate the direction in which the
operators act. Importantly, we interpret o !, L, R, as well as the 4; and D,A4; as vectors. The expression in Fig. 9(b) thus
amounts to the formula

0], 1913 =Y [0 7' ® (D) @ DA 1P (0 ® p @ p7 ® pIPLIL) ® IR) ® |4°) ® |47)]

s,8'

= tf[P{( 2 |AS><DtA-‘|> ® (Z |As/)(DtAs/|) ® (L) ® |R)](ol|)}7?1<p ®p®p"® pT)] (B3)

=5

Here P is a permutation of components in the tensor product that ensures that the expression matches that presented on
the right-hand side of the expression in Fig. 9.

We now use the fact that 7' converges to |R)(L|. From Ref. [76, Theorem 4.3 and Section 4.3] (note that our 7 is trace
preserving due to the gauge choice), we have

IT" = IRLIle= sup [(T"® 1)@) — (AL & V(@)1 < Cx. [ha)ral"n? ! (B4)

=0, [o]1=1

with A, the subleading eigenvalue (i.e., second largest in absolute value) of 7, and where

3/2 2N\ x2-1
5 5 2 1 — |2
Cx, [A2) =4e"x(x” + 1 max | 1, ———— : (B5)
1 —[Az] |22
Here, ||-||; is the trace norm and ||-||, the diamond norm [77,78]. By setting w = Y |i,i){j,j| (i.e., the unnormalized
maximally entangled state) in Eq. (B4) and noting that the || - ||; norm acts in the vertical direction (i.e., on the density

matrix that is output by the channel)—which means that (7" ® 1)(w) = T, (IL)(R| ® 1)(w) = L ® R—we obtain

2_
1o = poollt < XC(xs 122D 2ol €1 =2 e(0), (B6)

where the extra factor of x comes from ||w||; = x, and we have defined poo = L ® R.

We now use Eq. (5), which states that the expectation value of a single 9,4 in the fixed point vanishes. In our scenario,
this means that the diagram in Fig. 9(b) will be zero if we replace either both p by ps, or correspondingly both p”. Note
that this also works with D,4, as can be seen by returning to the original gauge. We can now bound Eq. (B3) as

S @ p @ p" ® PN =1r{S[(0 ® p — Poo ® Poc) + P ® Pl ® [(07 @ p” — pL, ® pL) + pL ® pL1}

(%)
<SP ® P — Poe ® poc) ® (T ® p" — pL @ P21
+ [[S poo ® poo ® (07 ® 7 — pL, & PL)II+ -+ (B7a)

=0

< ISloll o ® P — Poo ® Pooll?, (B7b)

where we have used the triangle inequality in (x), and the terms in Eq. (B7a) vanish for the reason just discussed. We can
further bound

0 ® P = P ® Pl NP R P =P Pooclli + 10 ® Poo — Poo & Pooll
=llellille — poolli + llosollt 12 — Poollt
<2xe(). (BS)
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It remains to bound ||S]|« (the spectral norm of S). To this
end, we define

B = H > |A“><D,A“'|‘ (B9)

>
oo

which is a property of the chosen MPS trajectory. In par-
ticular, it is bounded as long as the rate of change 9,4 is
bounded. Then, from Eq. (B3) we have

ISlleo = BAIIL) ® IR)) (0" [loo
= B2/ (LIL) (RIR) (0~ |o ).

(B10)

We have (L|L) =trl? <1 (as 0 <L <1 and trL =1)
and trR =tr1 = x. To bound (o ~!|o "), where o = T7,
denote by k := [Amin(L)| the smallest eigenvalue of L,
and choose 7 such that () < k/2. Then, [L® R —o||; <
e(r) < k/2, and thus |Anyin(0)]| > «/2. Thus,

1, — _ 1 4
0 'lo™" = §i e HIP = §,~ o) = a2k
(B11)

By inserting this into Eq. (B10), we arrive at ||S]lco <

28%x [k
We can now put this back into Eq. (B7b) to arrive at

2 2)(
P Xy eop
8ﬂ2X5

K
8P C b (] x-t
- K| Aa 2\ ’

i 2
0 ;4,115 =

COxs Aol A2 €27

(B12)

which proves the exponential decay of OZi +r—1|¥), and thus
convergence to Hermiticity, as 7 is increased. In particular,
the right-hand side is bounded by any exponential decay
with a basis strictly larger than |A;|. Note that the obtained
bound is uniform, as long as the conditioning number « of
the entanglement spectrum is bounded from below along
the trajectory, the correlation length does not diverge (i.e.,
|Az| stays bounded away from 1), and the rate of change
of the MPS g is bounded, which is always true for a peri-
odic continuously differentiable trajectory (for the specific
trajectory used as an example in our work, B takes values
between 2 and 14).

APPENDIX C: CLOSED-LOOP TRAJECTORY

In this appendix we provide a more detailed description
of the closed-loop trajectory used in the main text. The tra-
jectory within the MPS manifold in Eq. (14) was obtained

-

t

FIG. 10. Time dependence of the MPS parameters as defined
in Refs. [35,59]. The trajectory was obtained by applying the
TDVP to an Ising Hamiltonian on the MPS in Eq. (14) with the
starting point set to (a, b, ¢,0) = (0.2607, 0.9, 4.888, 0.4308).

in Ref. [59] using the TDVP projection of the unitary
dynamics generated by the Ising model; however, this
trajectory had large leakage, reflecting the rapid growth
of entanglement in the dynamics generated by the Ising
model. The large leakage means that quantum dynamics
generated by the Ising model did not follow the MPS tra-
jectory, but would “leak” to other states outside of this
MPS manifold. The trajectory was studied in a previ-
ous control paper [35], where a variational approach was
used to reduce the leakage along the trajectory. Neverthe-
less, due to the variational character of the approach in
Ref. [35], the reduced leakage remained nonzero.

We note that existence of periodic trajectories in the
TDVP projection of unitary quantum dynamics is natural
from the point of view of dynamical systems. The TDVP
projection turns the Schrédinger equation into a first-order
system of differential equations with a symplectic struc-
ture [59,67]. In the typical case we expect that the resulting
classical dynamics is nonintegrable, and thus, as a chaotic
system, it is expected to have an infinite number of periodic
trajectories.

Because of the fact that the projected dynamics only
approximately captures the dynamics of the quantum sys-
tem, the shortest periodic trajectories are typically the most
relevant. In particular, Michailidis et al. [59] found a rela-
tively short periodic trajectory, with a period of #) &~ 2.098
in units where the leading coupling in the Hamiltonian was
set to one. The trajectory is defined by the time-dependent
values of the MPS parameters a, b, ¢, 0, which are shown
in Fig. 10.

APPENDIX D: NUMERICAL STUDY OF THE
FLOQUET UNITARY

In this appendix we present further numerical results
on the properties of the Floquet propagator obtained
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by considering driving along the trajectory, defined in
Eq. (15). By construction, the Hamiltonian is translation
invariant; thus, we can resolve this symmetry and work in
a reduced Hilbert space defined by the chosen momentum
sector. As our initial state lies in the zero momentum sec-
tor, we restrict our calculations to that sector exclusively.
In particular, we consider the properties of the spectrum of
the Floquet propagator
Ur|®,) = ¢l Py), (Dl)
where the |®,) are the eigenvectors and the ¢, are the cor-
responding eigenvalues. The latter are related to those of
the Floquet Hamiltonian Hp = iln Uy as
en = ilng,. (D2)
To construct the propagator, we use the QuSpin package
[79,80] to build the driving Hamiltonian and then apply the
odientw solver from SciPy [81] to find the solution of the
time-dependent Schrédinger equation and get propagator
U, at each time step. The solver was used with a maximum
number of steps, 107, and an absolute error tolerance of
atol =107°.

First, we consider the smoothed density of states (DOS)
of the propagator to determine that there are no unusual
features in the vicinity of the energy of the MPS-like
eigenstate of Ur. We define the smoothed DOS as

—(e—en)2/2c72

1 1
0s(€) = — e >
D Xn: V2mo?

(D3)

where the e, are the eigenvalues of the Floquet Hamilto-
nian, D is the dimension of the Hilbert space in the consid-
ered symmetry sector, and o is the smoothing parameter.

In Fig. 11(a) we observe that the smoothed density of
state has a constant value, although for varying system
sizes, some deviations exist, which reduce with the sys-
tem size. This suggests that the system is not far from the
thermodynamic limit, where the smoothed density of state
is expected to be constant. The oscillations observed in the
smoothed DOS also show no sign of correlation with the
quasienergy of the MPS-like eigenstate, which suggests
that this eigenstate is not protected by a gap and can be
viewed as a true middle-of-the-spectrum state.

Second, we study the distribution of the neighboring
eigenvalue ratios 7 = min(sy,, s,—1)/max(s,, S,—1), where
Sy = eny1 — ey, of the obtained propagator to determine
whether it is generic or has any additional special features,
apart from the single eigenstate we were aiming to obtain.
In Fig. 11(b) we observe good agreement with random
matrix theory predictions [82], which aligns with expec-
tations for chaotic models. Specifically, the eigenvalues of
the propagator match the results predicted by the circular
orthogonal ensemble (COE). Interestingly, COE results are
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FIG. 11. (a) Smoothed density of states (DOS) with 6> = 0.05

for different system sizes. (b) Spectral ratio distribution with
r=4 and N = 14. The smoothed DOS show clear agreement
with COE predictions, as is expected for chaotic systems. Fur-
thermore, the smoothed density-of-state data show no gap around
the energy of our special state (eigenstate with the largest overlap
with the MPS state—energy marked with a dashed vertical line),
which can thus be viewed to be in the middle of the spectrum
with no effective gaps.

usually associated with time-reversal symmetry. However,
this symmetry is not apparent in our example. The gener-
ator of the dynamics contains all possible Pauli terms and
thus circular unitary ensemble statistics would instead be
expected.

In case the constructed propagator leads to dynamics
with no leakage, we expect to find the MPS state among
its eigenstates. Figure 12(a) shows the maximal overlap
of the desired MPS states with the eigenvectors of the
evolution operator (or Floquet Hamiltonian). Our analy-
sis reveals a notable trend: at small support (e.g., » = 3)
the overlap of the eigenstates with the initial MPS state
shows no significant outliers. However, as the support is
increased, the overlap shifts increasingly to a single state,
which from now on we refer to as the special state. This is
in line with the expectation that at » — oo the initial MPS
state should be an exact eigenstate of the unitary. Neverthe-
less, for finite support 7, the estimate in Eq. (12) suggests
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FIG. 12. (a) Dependence of the maximal overlap of the initial

state |1 (0)) and eigenstates of U(7) for different system sizes and
operators. (b) Half-cut entanglement entropies for different sys-
tem sizes and states. For » = 46, the eigenstates states that have
the biggest overlap with the initial state and minimal entropy are
the same.

that the MPS state is not an eigenstate. Furthermore, we
observe that the drop in overlap appears later in system
size for larger support, which is also consistent with the
bound in Eq. (12) that suggests perfect driving in the limit
r— 00.

Additionally, we examined the entanglement of these
special states compared to the average entanglement across
all eigenstates, shown in Fig. 12(b). Here S = —Trp, In p4
is the von Neumann entanglement entropy, where p, is
the reduced density matrix of the left half of the sys-
tem. In case of an odd system size the system is split
such that [N /2] sites are in the left section. The aver-
age entanglement is the same for operators with dif-
ferent supports and depends only on the system size,
which is in line with expectations from the Floquet ETH
[42,63—65]. Conversely, the special state shows signif-
icantly lower entanglement. By increasing the support
of the driving Hamiltonian, the entanglement of special
states is reduced further and should in the limit » — oo
converge to the entanglement of the initial MPS state
(Smps = 0.1594).
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FIG. 13. We show observable values for (Y, 07) /N on differ-
ent eigenstates of the Floquet propagator for different supports
r. For r = 6, the special eigenstate almost achieves the value of
the initial MPS state, in line with expectations from the fidelity
with the MPS state. The averages over all eigenstates have signif-
icantly different values, indicating that the special states violate
the Floquet ETH.

In a similar spirit, we studied the properties of the
eigenstates of the evolution operator by examining the
expectation values of local observables. It is reasonable to
expect that the state most similar to the MPS state would
exhibit similar expectation values, while for the rest of the
eigenstates, one would expect the Floquet ETH to hold. In
Fig. 13 we show the expectation values of ) 0! /N, which
confirm this intuition. Here the o“ are the correspond-
ing Pauli matrices with o € {x,y,z}. Special states for all
support operators have significantly different expectation
values of observables compared to the mean, signaling
a violation of the Floquet ETH for that state. Different
operators such as ) . 0/N and ) ;07 /N show qualita-
tively similar results and are thus not shown. Furthermore,
the expectation values of the special state tend towards
the expectation values of the MPS state with increasing
support 7.

All our observations suggest that, within the predomi-
nantly chaotic spectrum of Ur constructed from MPS tan-
gent space generators, there exists a unique state exhibiting
revivals, thereby violating the expectations set by the Flo-
quet ETH [42,63—65]. Finally, we note that the jump
systematically observed in Figs. 12 and 13 for » = 6 and
N =9 appears to be an accidental hybridization event
that can happen for finite », where two eigenstates with
nearly degenerate eigenvalues have a strong overlap with
the MPS state.
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