
Approximate Distributed Monitoring
Under Partial Synchrony: Balancing

Speed & Accuracy

Borzoo Bonakdarpour1, Anik Momtaz1, Dejan Ničković2, and N. Ege Saraç3(B)

1 Michigan State University, East Lansing, USA
{borzoo,momtazan}@msu.edu

2 AIT Austrian Institute of Technology, Wien, Austria
dejan.nickovic@ait.ac.at

3 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
esarac@ista.ac.at

Abstract. In distributed systems with processes that do not share a
global clock, partial synchrony is achieved by clock synchronization that
guarantees bounded clock skew among all applications. Existing solu-
tions for distributed runtime verification under partial synchrony against
temporal logic specifications are exact but suffer from significant compu-
tational overhead. In this paper, we propose an approximate distributed
monitoring algorithm for Signal Temporal Logic (STL) that mitigates
this issue by abstracting away potential interleaving behaviors. This
conservative abstraction enables a significant speedup of the distributed
monitors, albeit with a tradeoff in accuracy. We address this tradeoff with
a methodology that combines our approximate monitor with its exact
counterpart, resulting in enhanced efficiency without sacrificing preci-
sion. We evaluate our approach with multiple experiments, showcasing
its efficacy in both real-world applications and synthetic examples.

Keywords: distributed systems · approximate monitoring · partial
synchrony

1 Introduction

Distributed systems are networks of independent agents that work together to
achieve a common objective. They come in many different forms. For exam-
ple, cloud computing uses distribution of resources and services over the inter-
net to offer to their users a scalable infrastructure with transparent on-demand
access to computing power and storage. Swarms of drones is another family of
distributed systems where individual drones collaborate to accomplish tasks like
search and rescue or package delivery. While each drone operates independently,
it also communicates and coordinates with others to successfully achieve their
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common objectives. The individual agents in a distributed system typically do
not share a global clock. To coordinate actions across multiple agents, clock syn-
chronization is often needed. While perfect clock synchronization is impractical
due to network latency and node failures, algorithms such as the Network Time
Protocol (NTP) allow agents to maintain a bounded skew between the synchro-
nized clocks. We then say that a distributed system has partial synchrony.

Formal verification of distributed system is a notoriously hard problem, due
to the combinatorial explosion of all possible interleavings in the behaviors col-
lected from individual agents. Runtime verification (RV) provides a more prag-
matic approach in which a behavior of a distributed system is observed and its
correctness is checked against a formal specification. We consider the distributed
RV setting where this task is performed by a single central monitor observing
the independent agents (as opposed to decentralized RV where the monitoring
task itself is distributed). Remotely related to the problem of distributed RV
under partial synchrony are distributed RV in the fully synchronous [5,8,9] and
asynchronous [6,7,12,17,19,21] settings as well as benchmarking tools [2] for
assessing monitoring overhead. The problem of distributed RV under partial
synchrony assumption has been studied for Linear Temporal Logic (LTL) [11]
and Signal Temporal Logic (STL) [18] specification languages. The proposed
solutions use Satisfiability-Modulo-Theory (SMT) solving to provide sound and
complete distributed monitoring procedures. Although distributed RV monitors
consume only a single distributed behavior at a time, this behavior can have
an excessive number of possible interleavings. Put another way, although RV
deals only with the verification of a single execution at run time, it is still prone
to evaluating an explosion of combinations. Hence, the exact distributed moni-
tors from the literature can still suffer from significant computational overhead.
This phenomenon has been observed even under partial synchrony [10,11], and
becomes problematic even for offline monitoring of a large set of log files.

To mitigate this issue, we propose a new approach for approximate RV of STL
under partial synchrony. In essence, we conservatively abstract away potential
interleavings in distributed behaviors, resulting in their overapproximation. This
abstraction simplifies the representation of distributed behaviors into a set of
Boolean expressions, taking into account regions of uncertainty created by clock
skews. We define monitoring operations that evaluate temporal specifications
over such expressions, which result in monitoring verdicts on overapproximated
behaviors. This approximate solution yields an inevitable tradeoff between accu-
racy and speedup. For applications where reduced accuracy is not acceptable,
we devise a methodology that combines approximate and exact monitors, with
the aim to benefit from the enhanced efficiency without sacrificing precision.
Approximate monitoring is also valuable in the sequential setting, with applica-
tions including monitoring with state estimation [4,23], quantitative monitoring
and its resource-precision tradeoffs [13–15], and various other uses [1,3].

We implemented our approach in a prototype tool and performed thorough
evaluations on both synthetic and real-world case studies (mutual separation in
swarm of drones and a water distribution system). We first demonstrated that in
many experiments, our approximate monitors achieve speedups of up to 5 orders
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of magnitude compared to the exact SMT-based solution. We empirically char-
acterized the classes of specifications and behaviors for which our approximate
monitors achieve good precision. We finally showed that combining exact and
approximate distributed RV yields significant efficiency gains on average without
sacrificing precision, even with low-accuracy approximate monitors.

2 Preliminaries

We denote by B = {�, ⊥} the set of Booleans, R the set of reals, R≥0 the set of
nonnegative reals, and R>0 the set of positive reals. An interval I ⊆ R of reals
with the end points a < b has length |b − a|.

Let Σ be a finite alphabet. We denote by Σ∗ the set of finite words over
Σ and by ε the empty word. For u ∈ Σ∗, we respectively write prefix(u) and
suffix(u) for the sets of prefixes and suffixes of u. We also let infix(u) = {v ∈
Σ∗ | ∃x, y ∈ Σ∗ : u = xvy}. For a nonempty word u ∈ Σ∗ and 1 ≤ i ≤ |u|,
we denote by u[i] the ith letter of u. Given u ∈ Σ∗ and � ≥ 1, we denote by
u� the word obtained by concatenating u by itself � − 1 times. Moreover, given
L ⊆ Σ∗, we define first(L) = {u[0] | u ∈ L}. For sets L1, L2 ⊆ Σ∗ of words, we
let L1 · L2 = {u · v | u ∈ L1, v ∈ L2}. For tuples (u1, . . . , um) and (v1, . . . , vm) of
words, we let (u1, . . . , um) · (v1, . . . , vm) = (u1v1, . . . , umvm).

We define the function destutter : Σ∗ → Σ∗ inductively. For all σ ∈ Σ ∪ {ε},
let destutter(σ) = σ. For all u ∈ Σ∗ such that u = σ1σ2v for some σ1, σ2 ∈ Σ
and v ∈ Σ∗, we define it as follows:

destutter(u) =
{

destutter(σ2v) if σ1 = σ2

σ1 · destutter(σ2v) otherwise

For a set L ⊆ Σ∗ of finite words, we define destutter(L) = {destutter(u) | u ∈
L}. We extend destutter to tuples of words in a synchronized manner: for all
σ ∈ Σ ∪ {ε} let destutter(σ, . . . , σ) = (σ, . . . , σ). Given a tuple (u1, . . . , um) =
(σ1,1σ1,2v1, . . . , σm,1σm,2vm) of words of the same length, destutter(u1, . . . , um)
is defined as expected:

destutter(u1, . . . , um) =
{

destutter(σ1,2v1, . . . , σm,2vm) if σi,1 = σi,2 for all 1 ≤ i ≤ m

(σ1,1, . . . , σm,1) · destutter(σ1,2v1, . . . , σm,2vm) otherwise

Moreover, given an integer k ≥ 0, we define stutterk : Σ∗ → Σ∗ such
that stutterk(u) = {v ∈ Σ∗ | |v| = k ∧ destutter(v) = destutter(u)} if
k ≥ |destutter(u)|, and stutterk(u) = ∅ otherwise.

Signal Temporal Logic (STL) [16]. Let A, B ⊂ R. A function f : A → B is
right-continuous iff lima→c+ f(a) = f(c) for all c ∈ A, and non-Zeno iff for
every bounded interval I ⊆ A there are finitely many a ∈ I such that f is not
continuous at a. A signal is a right-continuous, non-Zeno, piecewise-constant
function x : [0, d) → R where d ∈ R>0 is the duration of x and [0, d) is its
temporal domain. Let x : [0, d) → R be a signal. An event of x is a pair (t, x(t))
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where t ∈ [0, d). An edge of x is an event (t, x(t)) such that lims→t− x(s) �=
lims→t+ x(s). In particular, an edge is rising if lims→t− x(s) < lims→t+ x(s), and
it is falling otherwise. A signal x : [0, d) → R can be represented finitely by its
initial value and edges: if x has m edges, then x = (t0, v0)(t1, v1) . . . (tm, vm)
such that t0 = 0, ti−1 < ti, and (ti, vi) is an edge of x for all 1 ≤ i ≤ m.

Let AP be a set of atomic propositions. The syntax of STL is given by the
grammar ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ where p ∈ AP and I ⊆ R≥0 is an interval.

A trace w = (x1, . . . , xn) is a finite vector of signals. We express atomic
propositions as functions of trace values at a time point t, i.e., a proposition
p ∈ AP over a trace w = (x1, . . . , xn) is defined as fp(x1(t), . . . , xn(t)) > 0
where fp : Rn → R is a function. Given intervals I, J ⊆ R≥0, we define I ⊕ J =
{i + j | i ∈ I, j ∈ J}, and we simply write t for the singleton set {t}.

We recall the finite-trace qualitative semantics of STL defined over B. Let
d ∈ R>0 and w = (x1, . . . , xn) with xi : [0, d) → R for all 1 ≤ i ≤ n. Let ϕ1, ϕ2
be STL formulas and let t ∈ [0, d).

(w, t) |= p ⇐⇒ fp(x1(t), . . . , xn(t)) > 0
(w, t) |= ¬ϕ1 ⇐⇒ (w, t) |= ϕ1

(w, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (w, t) |= ϕ1 ∧ (w, t) |= ϕ2

(w, t) |= ϕ1UIϕ2 ⇐⇒ ∃t′ ∈ (t ⊕ I) ∩ [0, d) :
(w, t′) |= ϕ2 ∧ ∀t′′ ∈ (t, t′) : (w, t′′) |= ϕ1

We simply write w |= ϕ for (w, 0) |= ϕ. We additionally use the following
standard abbreviations: false = p ∧ ¬p, true = ¬false, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧
¬ϕ2), I ϕ = trueUIϕ, and I ϕ = ¬ I ¬ϕ. Moreover, the untimed temporal
operators are defined through their timed counterparts on the interval [0, ∞).

Distributed Semantics of STL [18]. We consider an asynchronous and
loosely-coupled message-passing system of n ≥ 2 reliable agents producing a
set of signals x1, . . . , xn, where for some d ∈ R>0 we have xi : [0, d) → R for all
1 ≤ i ≤ n. The agents do not share memory or a global clock. Only to formalize
statements, we speak of a hypothetical global clock and denote its value by T . For
local time values, we use the lowercase letters t and s. For a signal xi, we denote
by Vi the set of its events, and by Ei the set of its edges. We represent the local
clock of the ith agent as an increasing and divergent function ci : R≥0 → R≥0
that maps a global time T to a local time ci(T ).

We assume that the system is partially synchronous: the agents use a clock
synchronization algorithm that guarantees a bounded clock skew with respect
to the global clock, i.e., |ci(T ) − cj(T )| < ε for all 1 ≤ i, j ≤ N and T ∈ R≥0,
where ε ∈ R>0 is the maximum clock skew.

Definition 1. A distributed signal is a pair (S, �), where S = (x1, . . . , xn) is
a vector of signals and � is the happened-before relation between events defined
as follows: (1) For every agent, the events of its signals are totally ordered, i.e.,
for all 1 ≤ i ≤ n and all (t, xi(t)), (t′, xi(t′)) ∈ Vi, if t < t′ then (t, xi(t)) �



286 B. Bonakdarpour et al.

(t′, xi(t′)). (2) Every pair of events whose timestamps are at least ε apart is
totally ordered, i.e., for all 1 ≤ i, j ≤ n and all (t, xi(t)) ∈ Vi and (t′, xj(t′)) ∈ Vj,
if t + ε ≤ t′ then (t, xi(t)) � (t′, xj(t′)).

The notion of consistent cut captures possible global states.

Definition 2. Let (S, �) be a distributed signal of n signals, and V =
⋃n

i=1 Vi

be the set of its events. A set C ⊆ V is a consistent cut iff for every event in
C, all events that happened before it also belong to C, i.e., for all e, e′ ∈ V , if
e ∈ C and e′ � e, then e′ ∈ C.

We denote by C(T ) the set of consistent cuts at global time T . Given a
consistent cut C, its frontier fr(C) ⊆ C is the set consisting of the last events
in C of each signal, i.e., fr(C) =

⋃n
i=1{(t, xi(t)) ∈ Vi ∩ C | ∀t′ > t : (t′, xi(t′)) /∈

Vi ∩ C}.

Definition 3. A consistent cut flow is a function ccf : R≥0 → 2V that maps a
global clock value T to the frontier of a consistent cut at time T , i.e., ccf(T ) ∈
{fr(C) | C ∈ C(T )}.

Fig. 1. A distributed signal in
with consistent cuts C1, C2, C3
constituting a consistent cut
flow. Note that C′ is a non-
example since (2.5, x2(2.5)) ∈
fr(C′) and (1.6, x1(1.6)) /∈
fr(C′), but (1.6, x1(1.6)) hap-
pened before (2.5, x2(2.5)).

For all T, T ′ ∈ R≥0 and 1 ≤ i ≤ n, if T < T ′,
then for every pair of events (ci(T ), xi(ci(T ))) ∈
ccf(T ) and (ci(T ′), xi(ci(T ′))) ∈ ccf(T ′) we
have (ci(T ), xi(ci(T ))) � (ci(T ′), xi(ci(T ′))).
We denote by CCF(S, �) the set of all consis-
tent cut flows of the distributed signal (S, �).

Observe that a consistent cut flow of a dis-
tributed signal induces a vector of synchronous
signals which can be evaluated using the stan-
dard STL semantics described above. Let (S, �)
be a distributed signal of n signals x1, . . . , xn.
A consistent cut flow ccf ∈ CCF(S, �) yields
a trace wccf = (x′

1, . . . x′
n) on the temporal

domain [0, d) such that (ci(T ), xi(ci(T ))) ∈
ccf(T ) implies x′

i(T ) = xi(ci(T )) for all 1 ≤ i ≤
n and T ∈ [0, d). The set of traces of (S, �) is
given by Tr(S, �) = {wccf | ccf ∈ CCF(S, �)}
(Fig. 1).

We define the satisfaction of an STL formula ϕ by a distributed signal (S, �)
over a three-valued domain {�, ⊥, ?} Notice that we quantify universally over
traces for both satisfaction and violation.

[(S, �) |= ϕ] =

⎧⎪⎨
⎪⎩

� if ∀w ∈ Tr(S, �) : w |= ϕ

⊥ if ∀w ∈ Tr(S, �) : w |= ¬ϕ

? otherwise
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3 Overapproximation of the STL Distributed Semantics

To address the computational overhead in exact distributed monitoring, we
define STL+, a variant of STL whose syntax is the same as STL but semantics
provide a sound approximation of the STL distributed semantics. In particular,
given a distributed signal (S, �), STL+ considers an approximation Tr+(S, �)
of the set Tr(S, �) of synchronous traces where Tr(S, �) ⊆ Tr+(S, �). A signal
(S, �) satisfies (resp. violates) an STL+ formula ϕ iff all the traces in Tr+(S, �)
belong to the language of ϕ (resp. ¬ϕ).

[(S, �) |= ϕ]+ =

⎧⎪⎨
⎪⎩

� if ∀w ∈ Tr+(S, �) : w |= ϕ

⊥ if ∀w ∈ Tr+(S, �) : w |= ¬ϕ

? otherwise

Throughout the paper, we assume ϕ is copyless, i.e., each signal x ∈ S occurs
in ϕ at most once. Moreover, the signals are Boolean, non-Zeno, piecewise-
constant, and have no edge at time 0. We assume Boolean signals only for con-
venience; all the concepts and results generalize to non-Boolean signals because
finite-length piecewise-constant signals use only a finite number of values. We
note that our approach is a sound overapproximation also for non-copyless for-
mulas, although potentially less precise. In Sects. 4 and 5, we respectively define
Tr+ and present an algorithm to compute the semantics of STL+.

Theorem 1. For every STL formula ϕ and every distributed signal (S, �), if
[(S, �) |= ϕ]+ = � (resp. ⊥) then [(S, �) |= ϕ] = � (resp. ⊥).

Notice that both the distributed semantics of STL and the semantics of STL+

quantify universally over the set of traces for the verdicts � and ⊥. Therefore,
Theorem 1 holds for the verdicts � and ⊥, but not for ?.

4 Overapproximation of Synchronous Traces

In this section, given a distributed signal (S, �), we describe an overapproxima-
tion Tr+(S, �) of its set Tr(S, �) of synchronous traces. First, we present the
notion of canonical segmentation, a systematic way of partitioning the temporal
domain of a distributed signal to track partial synchrony. Second, we introduce
value expressions, sets of finite words representing signal behavior in a time
interval. Finally, we define Tr+ and show that it soundly approximates Tr.

Canonical Segmentation. Consider a Boolean signal x with a rising edge at
time t > ε. Due to clock skew, this edge occurs in the range (t − ε, t + ε) from
the monitor’s perspective. This range is an uncertainty region because within it,
the monitor can only tell that x changes from 0 to 1. Formally, given an edge
(t, x(t)), we define θlo(x, t) = max(0, t − ε) and θhi(x, t) = min(d, t + ε) as the
endpoints of the edge’s uncertainty region.
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Fig. 2. (a) A distributed signal (S, �) with x1 (top, red) and x2 (bottom, blue) whose
edges are marked with solid balls and their uncertainty regions are given as semi-
transparent boxes around the edges. The resulting canonical segmentation GS is shown
below the graphical representation of the signals. (b) The uncertainty regions of (S, �)
and the corresponding value expressions. (c) The tabular representation of the function
γ for (S, �), e.g., γ(x1, [3, 4)) = (suffix(01) · prefix(10)) \ {ε} = {01, 010, 1, 10}. (Color
figure online)

Given a temporal domain I = [0, d) ⊂ R≥0, a segmentation of I is a partition
of I into finitely many intervals I1, . . . , Ik, called segments, of the form Ij =
[tj , tj+1) such that tj < tj+1 for all 1 ≤ j ≤ k. By extension, a segmentation of
a collection of signals with the same temporal domain I is a segmentation of I.

Let (S, �) be a distributed signal of n signals. The canonical segmentation
GS of (S, �) the segmentation of S where the segment endpoints match the
temporal domain and uncertainty region endpoints. Formally, we define GS as
follows. For each signal xi, where 1 ≤ i ≤ n, let Fi be the set of uncertainty
region endpoints. Let F = {0, d}∪⋃n

i=1 Fi and let (sj)1≤j≤|F | be a nondecreasing
sequence of clock values corresponding to the elements of F . Then, the canonical
segmentation of (S, �) is GS = {I1, . . . , I|F |−1} where Ij = [sj , sj+1) for all
1 ≤ j < |F |. We show an example in Fig. 2a.

Value Expressions. Consider a Boolean signal x with a rising edge within
an uncertainty region of (t1, t2). As mentioned, the monitor only knows that
x changes from 0 to 1 in this interval. This knowledge is represented as a
finite word v = 01 over the alphabet Σ = {0, 1}. This representation, called
a value expression, encodes the uncertain behavior of an observed signal relative
to the monitor. Formally, a value expression is an element of Σ∗, where Σ is
the finite alphabet of signal values. Given a signal x and an edge (t, x(t)), the
value expression corresponding to the uncertainty region (θlo(x, t), θhi(x, t)) is
vx,t = v− · v+, where v− = lims→t− x(s) and v+ = lims→t+ x(s). We omit the
concatenation symbol · when the letters are clear from context. This definition
is general because finite-length piecewise-constant real-valued signals will only
have a finite number of values, making Σ finite.
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Notice that (i) uncertainty regions may overlap, and (ii) the canonical seg-
mentation may split an uncertainty region into multiple segments. Consider a
signal x with a rising edge in (1, 5) and a falling edge in (4, 8). The corresponding
value expressions are respectively v1 = 01 and v2 = 10. Notice that the behav-
ior of x in the interval [1, 4) can be expressed as prefix(v1), encoding whether
the rising edge has happened yet. Similarly, the behavior in [4, 5) is given by
suffix(v1) · prefix(v2), which captures whether the edges occur in this interval
(thanks to prefixing and suffixing) and the fact that the rising edge happens
before the falling edge (thanks to concatenation).

Formally, given a distributed signal (S, �), we define a function γ : S ×
GS → 2Σ∗ that maps each signal and segment of the canonical segmentation to
a set of value expressions, capturing the signal’s potential behaviors in the given
segment. Let x be a signal in S, and let R1, . . . , Rm be its uncertainty regions
where Ri = (ti, t′

i) and the corresponding value expression is vi for all 1 ≤ i ≤ m.
Now, let I ∈ GS be a segment with I = [s, s′) and for each 1 ≤ i ≤ m define the
set Vi of value expressions capturing how I relates with Ri in Eq. (1).

Vi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{vi} if ti = s ∧ s′ = t′
i

prefix(vi) if ti = s ∧ s′ < t′
i

suffix(vi) if ti > s ∧ s′ = t′
i

infix(vi) if ti > s ∧ s′ < t′
i

{ε} otherwise

(1)

The last case happens only when
I∩Ri is empty. We define γ as follows:

γ(x, I) = destutter(V1 ·V2 ·. . .·Vm)\{ε}

Observe that γ(x, I) contains all the
potential behaviors of x in segment I
by construction. However, it is poten-
tially overapproximate because the
sets V1, . . . , Vm contain redundancy by definition, and the concatenation does
not ensure that an edge is considered exactly once – see Fig. 2b and Fig. 2c.

Overapproximation of Tr. Consider a distributed signal (S, �) of n signals,
and let GS be its canonical segmentation. We describe how the function γ defines
a set Tr+(S, �) of synchronous traces that overapproximates the set Tr(S, �).
Consider x ∈ S, and let x′ be a signal with the same temporal domain, and let
I = [s, s′) be a segment in GS . Let (t1, x′(t1)), . . . , (t�, x′(t�)) be the edges of x′

in segment I with ti < ti+1 for all 1 ≤ i < �. The signal x′ is I-consistent with
x iff the value expression x′(s) · x′(t1) · . . . · x′(t�) belongs to γ(x, I). Moreover,
x′ is consistent with x iff it is I-consistent with x for all I ∈ GS . Now, let
S = (x1, . . . , xn) and define Tr+(S, �) as follows:

Tr+(S, �) = {(x′
1, . . . , x′

n) | x′
i is consistent with xi for all 1 ≤ i ≤ n}

Example 1. Recall (S, �) and its γ function from Fig. 2. Consider the syn-
chronous trace w ∈ Tr(S, �) where the rising edges of both signals occur at
time 3 and the falling edges at time 5. Such a signal w would be included
in Tr+(S, �) since for each i ∈ {1, 2}, the value expression 1 is contained in
γ(xi, [3, 4)) and γ(xi, [4, 5)), while 0 is contained in the remaining sets γ maps
xi to. Now, consider a synchronous trace (x′

1, x′
2) where both signals are initially

0, have rising edges at time 2 and 3.5, and falling edges at time 3 and 5. This
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trace does not belong to Tr(S, �) since x′
1 and x′

2 have more edges than x1 and
x2. However, it belongs to Tr+(S, �) since x′

1 and x′
2 are consistent with x1

and x2. Specifically, for each i ∈ {1, 2}, the value expression 01 is contained in
γ(xi, [1, 3)) and γ(xi, [3, 4)), the expression 1 is contained in γ(xi, [4, 5)), and 0
is contained in the remaining sets γ maps xi to.

Finally, we prove that Tr+ overapproximates Tr.

Lemma 1. For every distributed signal (S, �), we have Tr(S, �) ⊆ Tr+(S, �).

5 Monitoring Algorithm

In this section, for a distributed signal (S, �), we describe an algorithm to
compute [(S, �) |= ϕ]+ using the function γ from Sect. 4 without explicitly
computing Tr+(S, �). We introduce the asynchronous product of value expres-
sions to capture interleavings within segments, then evaluate untimed and timed
operators. Finally, we combine these steps to compute the semantics of STL+.
We also discuss an efficient implementation of the monitoring algorithm using
bit vectors, heuristics to enhance generalization for real-valued signals, and a
method to combine our approach with exact monitoring.

Asynchronous Products. Consider the value expressions u1 = 0 · 1 and u2 =
1 · 0 encoding the behaviors of two signals within a segment. Since behaviors
within a segment are asynchronous, to capture their potential interleavings, we
consider how the values in u1 and u2 can align. In particular, there are three
potential alignments: (i) the rising edge of u1 happens before the falling edge
of u2, (ii) the falling edge of u2 happens before the rising edge of u1, and (iii)
they happen simultaneously. We respectively represent these with the tuples
(011, 110), (001, 100), and (01, 10) where the first component encodes u1 and
the second u2. Formally, given two value expressions u1 and u2 (resp. sets L1
and L2 of value expressions), we define their asynchronous product as follows:

u1 ⊗ u2 =
{

destutter(v1, v2) | vi ∈ stutterk(ui), k = |u1| + |u2| − 1, i ∈ {1, 2}}
L1 ⊗ L2 = {u1 ⊗ u2 | u1 ∈ L1, u2 ∈ L2}

Asynchronous products of value expressions allow us to lift value expressions
to satisfaction signals of formulas.

Example 2. Recall (S, �) and its γ function given in Fig. 2. To compute the
value expressions encoding the satisfaction of x1 ∧ x2 in the segment [1, 3), we
first compute the asynchronous product γ(x1, [3, 4)) ⊗ γ(x2, [3, 4)), and then the
bitwise conjunction of each pair in the set. For example, taking the expression
010 for x1 and 01 for x2, the product contains the pair (010, 011). Its bitwise
conjunction is 010, encoding a potential behavior for the satisfaction of x1 ∧ x2.
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Untimed Operations. As hinted in Example 2, to compute the semantics, we
apply bitwise operations on value expressions and their asynchronous products
to transform them into encodings of satisfaction signals of formulas. For example,
to determine [(S, �) |= (x1 ∧ x2)]+, we first compute for each segment in GS

the set of value expressions for the satisfaction of x1 ∧ x2, and then from these
compute those of (x1 ∧ x2). This compositional approach allows us to evaluate
arbitrary STL+ formulas.

First, we define bitwise operations on Boolean value expressions encoding
atomic propositions. Then, we use these to evaluate untimed STL formulas over
sets of value expressions. Let u and v be Boolean value expressions of length �.
We denote by u & v the bitwise-and operation, by u | v the bitwise-or, and by
∼u the bitwise-negation. We also define the bitwise strong until operator:

uU0v =
(

max
i≤j≤�

(
min

(
v[j], min

i≤k≤j
u[k]

)))
1≤i≤�

As usual, we derive bitwise eventually as Eu = 1�U0u, bitwise always as Au =
∼(E∼u), and bitwise weak until as uU1v = (uU0 v)|(Au). The distinction between
U0 and U1 will be useful when we incrementally evaluate a formula. Finally, note
that the output of these operations is a value expression of length �. For example,
if u = 010, we have Eu = 110 and Au = 000.

Let (S, �) be a distributed signal. Consider an atomic proposition p ∈ AP
encoded as xp ∈ S and let ϕ1, ϕ2 be two STL formulas. We define the evaluation
of untimed formulas with respect to (S, �) and a segment I ∈ GS inductively:

�(S, �), I |= p� = γ(xp, I)
�(S, �), I |= ¬ϕ1� = {∼u | u ∈ �(S, �), I |= ϕ1�}

�(S, �), I |= ϕ1 ∧ ϕ2� = destutter({u1 & u2 | (u1, u2) ∈ �(S, �), I |= ϕ1� ⊗ �(S, �), I |= ϕ2�})
�(S, �), I |= ϕ1 Uϕ2� = destutter({u1Uau2 | (u1, u2) ∈ �(S, �), I |= ϕ1� ⊗ �(S, �), I |= ϕ2�,

a ∈ first(�(S, �), I′ |= ϕ1 Uϕ2�)})

where I ′ is the segment that follows I in GS , if it exists. For completeness, for
every formula ϕ we define �(S, �), I ′ |= ϕ� = {0} when I ′ /∈ GS . When I is the
first segment in GS , we simply write �(S, �) |= ϕ�. Similarly as above, we can
use the standard derived operators to compute the corresponding sets of value
expressions. For a given formula and a segment, the evaluation above produces a
set of value expressions encoding the formula’s satisfaction within the segment.

Example 3. Recall (S, �) and γ from Fig. 2. To compute �(S, �), [5, 7) |= (x1∧
x2)�, we first compute �(S, �), [5, 7) |= x1 ∧ x2� by taking the bitwise conjunc-
tion over the asynchronous product γ(x1, [5, 7)) ⊗ γ(x2, [5, 7)) and destuttering.
For example, since 010 ∈ γ(x1, [5, 7)) and 01 ∈ γ(x2, [5, 7)), the pair (0010, 0111)
is in the product, whose conjunction gives us 010 after destuttering. Repeat-
ing this for the rest, we obtain �(S, �), [5, 7) |= x1 ∧ x2� = {0, 01, 010, 1, 10}.
Finally, we compute �(S, �), [5, 7) |= (x1 ∧ x2)� by applying each expression
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in �(S, �), [5, 7) |= x1 ∧ x2� the bitwise eventually operator and destuttering.
The resulting set {0, 1, 10} encodes the satisfaction signal of (x1 ∧ x2) in [5, 7).
Note that we do not need to consider the evaluation of the next segment for the
eventually operator since �(S, �), [7, 8) |= x1 ∧ x2� = {0}.

Timed Operations. Handling timed operations requires a closer inspection as
value expressions are untimed by definition. We address this issue by considering
how a given evaluation interval relates with a given segmentation. For example,
take a segmentation GS = {[0, 4), [4, 6), [6, 10)} and an evaluation interval J =
[0, 5). Suppose we are interested in how a signal x ∈ S behaves with respect to
J over the first segment I = [0, 4). First, to see how J relates with GS with
respect to I = [0, 4), we “slide” the interval J over I ⊕ J = [0, 9) and consider
the different ways it intersects the segments in GS . Initially, J covers the entire
segment [0, 4) and the beginning of [4, 6), for which the potential behaviors of
x are captured by the set γ(x, [0, 4)) · prefix(γ(x, [4, 6))). Now, if we slide the
window and take J ′ = [3, 7), the window covers the ending of [0, 4), the entire
[4, 6), and the beginning of [6, 10), for which the potential behaviors are captured
by the set suffix(γ(x, [0, 4))) · γ(x, [4, 6)) · prefix(γ(x, [6, 9)). We call these sets the
profiles of J and J ′ with respect to (S, �), x, and I.

We first present the definitions, and then demonstrate them in Examples 4
and 5 and Fig. 3. Let (S, �) be a distributed signal, I ∈ GS be a segment, and
ϕ be an STL formula. Let us introduce some notation. First, we abbreviate the
set �(S, �), I |= ϕ� of value expressions as τϕ,I . Second, given an interval K, we
respectively denote by lK and rK its left and right end points. Third, recall that
we denote by F the set of end points of GS (see Sect. 4). Given an interval J ,
we define the profile of J with respect to (S, �), ϕ, and I as follows:

profile((S, �), ϕ, I, J) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

prefix(τϕ,I) if lI = lJ ∧ rI > rJ

infix(τϕ,I) if lI < lJ ∧ rI > rJ

τϕ,I · κ(ϕ, I, J) if lI = lJ ∧ rI ≤ rJ ∧ rJ ∈ F \ J

τϕ,I · κ(ϕ, I, J) · first(τϕ,I′ ) if lI = lJ ∧ rI ≤ rJ ∧ rJ ∈ F ∩ J

τϕ,I · κ(ϕ, I, J) · prefix(τϕ,I′ ) if lI = lJ ∧ rI ≤ rJ ∧ rJ /∈ F

suffix(τϕ,I) · κ(ϕ, I, J) if lI < lJ < rI ≤ rJ ∧ rJ ∈ F \ J

suffix(τϕ,I) · κ(ϕ, I, J) · first(τϕ,I′ ) if lI < lJ < rI ≤ rJ ∧ rJ ∈ F ∩ J

suffix(τϕ,I) · κ(ϕ, I, J) · prefix(τϕ,I′ ) if lI < lJ < rI ≤ rJ ∧ rJ /∈ F

{ε} otherwise

where we assume J is trimmed to fit the temporal domain of S and I ′ ∈ GS is
such that rJ ∈ I ′. Moreover, κ(ϕ, I, J) is the concatenation τϕ,I1 · . . . · τϕ,Im

such
that I, I1, . . . , Im, I ′ are consecutive segments in GS . If I1, . . . , Im do not exist,
we let κ(ϕ, I, J) = {ε}. Note that the last case happens when I ∩ J is empty.
We now formalize the intuitive approach of “sliding” J over the segmentation to
obtain the various profiles it produces as follows:
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pfs((S, �), ϕ, I, J) = {destutter(profile((S, �), ϕ, I, J ′)) | J ′ ⊆ I ⊕ J, J ′ ∼ J}

where J ′ ∼ J holds when |J ′| = |J | and J ′ contains an end point (left or
right) iff J does so. Note that although infinitely many intervals J ′ satisfy the
conditions given above (due to denseness of time), the set defined by pfs is finite.
We demonstrate this and the computation of pfs in Example 4 and Fig. 3.

Example 4. Recall (S, �) and γ from Fig. 2. We describe the computation of
pfs((S, �), x1, [1, 3), [0, 1)). Sliding the interval [0, 1) over the window [1, 3) ⊕
[0, 1) (see Fig. 3) gives us the following sets: P1 = destutter(prefix(γ(x1, [1, 3)))),
P2 = destutter(infix(γ(x1, [1, 3)))), and P3 = destutter(suffix(γ(x1, [1, 3)))) where
all equal to {0, 01, 1}. Moreover, we have P4 = destutter(suffix(γ(x1, [1, 3))) ·
prefix(γ(x1, [3, 4)))) = {0, 01, 010, 0101, 01010, 1, 10, 101, 1010}. We obtain that
pfs((S, �), x1, [1, 3), [0, 1)) = {P1, P2, P3, P4}. This set overapproximates the
potential behaviors of x1, for all t ∈ [1, 3), in the interval t ⊕ [0, 1).

Let ϕ1 and ϕ2 be two STL formulas. Intuitively, once we have the profiles of
a given interval J with respect to ϕ1 and ϕ2, we can evaluate the correspond-
ing untimed formulas on the product of these profiles and concatenate them.
Formally, we handle the evaluation of timed formulas as follows:

�(S, �), I |= ϕ1 UJϕ2� = destutter({u1U0u2 | (u1, u2) ∈ P1 ⊗ Q1} · . . .

. . . · {u1U0u2 | (u1, u2) ∈ Pk ⊗ Qk})

where pfs((S, �), ϕ1, I, J) = {P1, . . . , Pk} and pfs((S, �), ϕ2, I, J) =
{Q1, . . . , Qk} such that the intervals producing Pi and Qi respectively start
before those producing Pi+1 and Qi+1 for all 1 ≤ i < k.

Example 5. Let (S, �) and γ be as in Fig. 2. We demonstrate the evaluation
of the timed formula [0,1) x1 over the segment [1, 3). Recall from Example 4
the set pfs((S, �), x1, [1, 3), [0, 1)) = {P1, P2, P3, P4} of profiles. First, we apply
the bitwise eventually operator to each value expression in each of these profiles
separately: {Eu | u ∈ P1} = {Eu | u ∈ P2} = {Eu | u ∈ P3} = {0, 1}, and
{Eu | u ∈ P4} = {0, 10, 1}. We then concatenate these and destutter to obtain
�(S, �), [1, 3) |= [0,1) x1� = {0, 01, 010, 0101, 01010, 1, 10, 101, 1010}.

Computing the Semantics of STL+. Putting it all together, given a dis-
tributed signal (S, �) and an STL+ formula ϕ, we can compute [(S, �) |= ϕ]+
thanks to the following theorem.

Theorem 2. For every distributed signal (S, �) and STL formula ϕ we have
[(S, �) |= ϕ]+ = � (resp. ⊥, ?) iff first(�(S, �) |= ϕ�) = {1} (resp. {0}, {0, 1}).
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Fig. 3. The profiles of J = [0, 1) with
respect to x1 ∈ S of Fig. 2. A represen-
tative interval for each profile is shown
with solid black lines below the table.

Sets of Boolean Value Expressions
as Bit Vectors. Asynchronous products
are expensive to compute. Our imple-
mentation relies on the observation that
sets of boolean value expressions and
their operations can be efficiently imple-
mented through bit vectors. Intuitively,
to represent such a set, we encode each
element using its first bit and its length
since value expressions are boolean and
always destuttered. Moreover, to evalu-
ate untimed operations on such sets, we
only need to know the maximal lengths
of the four possible types of expressions (0 . . . 0, 0 . . . 1, 1 . . . 0, and 1 . . . 1) and
whether the set contains 0 or 1 (to handle some edge cases). This is because value
expressions within the same segments are completely asynchronous and the pos-
sible interleavings obtained from shorter expressions can be also obtained from
longer ones.

Generalization to Real-Valued Signals. Our approximate distributed mon-
itoring method, denoted Adm, can be extended to real-valued signals and numer-
ical predicates. The key is that finite-length piecewise-constant signals take
finitely many values. By defining Σ as a finite alphabet of these values, we can
compute atomic propositions as above. For example, if the asynchronous prod-
uct of two signals x1 and x2 yields (2 · 2 · 3, 1 · 0 · 1), adding these letter-by-letter
results in 3 · 2 · 4, and comparing with > 2 gives 101.

We can avoid explicit computation of asynchronous products for some formu-
las and numerical predicates. Since signals are asynchronous within segments,
we can compute potential value sets instead of sequences. This approach is
called Fine, denoted by Adm-F. Assuming x1 + x2 is constant within this seg-
ment, we can avoid explicit interleaving computations. Note that Adm-F overap-
proximates traces when order matters. The approach Coarse, denoted Adm-C,
abstracts Fine by only considering extreme values, which is useful for monotonic
operations where the extreme values of outputs derive from inputs.

We assumed so far that the central monitor runs on a process independent
of the observed agents. Lastly, we also consider a setting where the monitor runs
on one of the observed agents. This approach reduces asynchrony by using the
agent’s local clock as a reference point for the monitor. We call this Relative,
denoted Adm-Fr or Adm-Cr depending on the approach it is paired with. We
evaluate these in Sect. 6.

Combining Exact and Approximate Monitoring. We propose a method
that combines approximate distributed monitors (Adm) with their exact coun-
terparts (Edm) with the aim to achieve better computational performance while
remaining precise. The approach works as follows: Given a distributed signal
(S, �) and a formula ϕ, compute the approximate verdict v ← [(S, �) |= ϕ]+.
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If the verdict is inconclusive, i.e., v = ?, then compute and return the exact
verdict [(S, �) |= ϕ], else return v. We evaluate this approach in Sect. 6.

6 Experimental Evaluation

6.1 Research Questions

We seek answers to the following research questions (RQs):

RQ1.What is the tradeoff between the efficiency and the accuracy of approximate
distributed monitors? The approximate distributed monitoring comes with a
price in terms of the loss of accuracy. We want to understand the tradeoff between
the potential speedups that an approximate distributed monitor can achieve
when compared to its exact counterpart and the consequent loss in accuracy
due to the approximations. We would also like to identify the classes of signals
and properties for which this tradeoff is effective.
RQ2. Can the combination of approximate and exact distributed monitors
increase efficiency while preserving accuracy? We are interested in evaluating
whether a smart, combined use of approximate and exact distributed monitors
can still bring improvements in monitoring efficiency while guaranteeing the
accuracy of the monitoring verdicts.

6.2 Experimental Setup

Distributed Monitors. In our study, we compare our approximate distributed
monitoring (Adm) approach and its variants to an exact distributed monitoring
approach (Edm).1 For Edm, we take a variant of the distributed monitoring
procedure from [18] that allows to evaluate STL specifications over distributed
traces using SMT-solving. Originally, that procedure assumes that input sig-
nals are polynomial continuous functions. We adapt the SMT-based approach
to consider input signals as piecewise-constant signals to make a consistent com-
parison with Adm. We note that the passage from the polynomial continuous to
piecewise-constant input signals reduces the efficiency of the SMT-based mon-
itors. We also observe that the SMT-based monitors from [18] can split the
input trace into multiple segments and evaluate the specification incrementally,
segment-by-segment, allowing early termination of the monitor in some cases.
Since the focus of this paper is purely on the offline monitoring, we also use the
exact monitors without their incremental mode.

Experimental Subjects. To answer our research questions, we use (1) a ran-
dom generator (RG) of distributed traces, (2) a water tank (WT) case study,
and (3) a swarm of drones (SD) case study. The random generator (RG) uses
uniform distribution to generate distributed traces, in which the user can control
the duration d of the trace, as well as the ε bound on the uncertainty at which
the events happen. Water tank (WT) model is a SimuLink model of a hybrid

1 The code is available at https://github.com/egesarac/ApxDistMon.

https://github.com/egesarac/ApxDistMon
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Table 1. STL specifications used in the experiments.

Subject STL formula(s)
RG ϕ1 = (p ∧ q) ϕ2 = (p ⇒ q) ϕ3 = (p ⇒ [0,1) q)
WT ϕWT =

(∑n

i=1 xi > c
)

SD ϕSD =
∧

1≤i�=j≤n

(√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 > c

)

high pressure water distribution system consisting of two water tanks. Inlet pipes
connect each water tank to an external source, and outlet pipes distribute high
pressure water that is regulated by valves. Each valve is operated by a controller
that samples the outflow pressure at 20 Hz using its local clock. Our model is
a simplified emulation of the Refueling Water Storage Tanks (RWST) module
of an Emergency Core Cooling System (ECCS) of a Pressurized Water Reactor
Plant [24]. Swarm of drones (SD) model is generated using a path planning soft-
ware, Fly-by-Logic [22]. Here, a swarm of drones perform various reach-avoid
missions, while securing objectives such as reaching a goal within a deadline,
avoiding obstacles and collisions. The path planner finds the most robust trajec-
tory using a temporal logic robustness optimizer. These trajectories are sampled
at 20 Hz. Note that the actual values of clock skew are less important than
the fact that when clock skew exceeds the sampling interval, we encounter the
problem of uncertainty.

Specifications. Table 1 shows the STL specifications that we use to evaluate
our experimental subjects. Specifications ϕ1, ϕ2 and ϕ3 are monitored against
the distributed traces created by the random generator and represent different
classes and fragments of Boolean-valued temporal formulas. The first specifica-
tion ϕ1 is an LTL formula in which both the outer temporal operator ( ) and
the inner Boolean operator (∧) are conjunctive. The second formula ϕ2 is the
common LTL response formula which combines conjunctive ( ) and disjunctive
( , ⇒) operators. Finally, ϕ3 adds a bounded real-time response requirement to
the previous specification. The specification ϕW T associated to the water tank
case study is an STL formula in which a sum of signals originating from differ-
ent agents is compared to a constant. Finally, the specification ϕSD defines a
mutual separation property over a swarm of drones, requiring more sophisticated
arithmetic operations on signals originating from different agents.

Computing Platform. We used a laptop with Ubuntu 24.04, an AMD Ryzen
7 4800HS CPU at 2.90 GHz clock rate, and 16GB of RAM. Adm is implemented
in C++ and compiled using g++ version 13.2.0 with the optimization flag -O3
enabled, and Edm invokes the SMT-solver Z3 [20] and is based on [18].

6.3 Discussion

Random Generator. Figure 4 summarizes the results of evaluating specifica-
tions ϕ1 to ϕ3 against distributed traces from RG. The first column in the figure
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Fig. 4. Results on monitoring ϕ1 to ϕ3 on distributed traces created by the RG.

depicts a heatmap where cells show the speedup of Adm compared to Edm when
evaluating the formula on the given distributed trace with duration d and uncer-
tainty bound ε. The second column shows a heatmap where every cell shows the
percentage of false positives (FP) introduced by Adm, where Adm evaluates to
inconclusive when the Edm (real) verdict is true or false. Finally, the third col-
umn depicts a heatmap, where each cell estimates the achieved speedup when
combining Adm with Edm, compared to using only Edm.

We see that Adm consistently achieves speedups of several orders of magni-
tude compared to the Edm approach. The speedups range from several thousands
to almost 60 thousand times and are the highest for long signals with low uncer-
tainty bounds. The price paid in terms of accuracy highly depends on the type
of specification and the uncertainty bounds. For example, Adm is very accurate
when monitoring the property ϕ1 in which both the temporal and the combi-
natorial operators are conjunctive. On the other hand, having a combination of
conjunctive and disjunctive operations (as in ϕ2 and ϕ3) increases the number
of FPs. Surprisingly, we see that in these cases the introduction of FPs is higher
for lower values of ε. This is because even Edm gives many inconclusive verdicts
for higher values of ε. We see that adding real-time modalities to the temporal
operators increases FPs. Finally, we can see (Fig. 4 right column) that by com-
bining Edm and Adm, we consistently get better performance than by using
Edm only, even in cases where Adm introduces a high percentage of FPs.

Water Tank. Speedups increase with the number of signals n and decrease
with ε. The Adm-C method shows significant improvements over Edm, with
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Fig. 5. Running times for monitoring ϕWT in log scale. Time limit is 120 s, and timed-
out instances are not shown.

Fig. 6. Running times for monitoring ϕSD in log scale. Time limit is 360 s, and timed-
out instances are not shown.

up to a 104000× speedup in the best-case (when n = 4 and ε = 0.05) and an
8× speedup in the worst-case (when n = 2 and ε = 0.4). Note that ε = 0.4
is near the realistic upper limit [18], indicating no scalability issues. The Adm-
Cr method adds up to a 1.63× speedup over Adm-C. The Adm-Fr approach
significantly improves Adm-F, bringing it below the time-out limit with up to
a 476× speedup in non-time-out instances. As expected, Adm does not perform
well. All methods produce the same verdict for the considered traces (Fig. 5).

Swarm of Drones. Similar to the previous case scenario, speedups in the
mutual separation case increase with n and decrease with ε. The Adm-Fr
method achieves about a 78000× speedup in the best-case scenario (when n = 4
and ε = 0.05) and a 23× speedup in the worst-case (when n = 2 and ε = 0.25).
The Adm-F method performs slower than SMT in two cases where n is small
and ε is large. As in the previous case, Adm does not perform well. Additionally,
Adm-C and Adm-Cr are not applicable here because the arithmetic operations
are not monotonic. Again, all methods yield the same verdicts (Fig. 6).
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Summary. To answer RQ1, we find that Adm achieves a speedup of three to
five orders of magnitude over Edm. However, the efficiency-accuracy tradeoff
depends on the type of specifications, input signal duration, and maximal clock
skew. Arithmetic and timed operators are particularly affected by Adm’s overap-
proximations, reducing accuracy. Untimed temporal properties, especially those
without mixed conjunctive and disjunctive operations, maintain high accuracy
and offer an excellent tradeoff. Despite lower accuracy in some cases, combining
Adm and Edm still results in significant gains, positively answering RQ2.

7 Conclusion

We presented an approximate, modular procedure for distributed STL monitor-
ing that significantly improves efficiency over exact SMT-based methods. In this
paper, the focus was on the offline evaluation of distributed traces. We plan to
extend our monitoring approach to the online setting. We will also exploit the
modular nature of our monitors to have a better control over their accuracy.
More specifically, for every operator, we can either generate the exact or the
approximate evaluation algorithm.
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