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ABSTRACT

The recent measurement of magnetic field strength inside the radiative interior of red giant stars has opened the way toward full 3D
characterization of the geometry of stable large-scale magnetic fields. However, current measurements, which are limited to dipolar
(` = 1) mixed modes, do not properly constrain the topology of magnetic fields due to degeneracies on the observed magnetic field
signature on such ` = 1 mode frequencies. Efforts focused toward unambiguous detections of magnetic field configurations are now
key to better understand angular momentum transport in stars. We investigated the detectability of complex magnetic field topologies
(such as the ones observed at the surface of stars with a radiative envelope with spectropolarimetry) inside the radiative interior of
red giants. We focused on a field composed of a combination of a dipole and a quadrupole (quadrudipole) and on an offset field. We
explored the potential of probing such magnetic field topologies from a combined measurement of magnetic signatures on ` = 1 and
quadrupolar (` = 2) mixed mode oscillation frequencies. We first derived the asymptotic theoretical formalism for computing the
asymmetric signature in the frequency pattern for ` = 2 modes due to a quadrudipole magnetic field. To access asymmetry parameters
for more complex magnetic field topologies, we numerically performed a grid search over the parameter space to map the degeneracy
of the signatures of given topologies. We demonstrate the crucial role played by ` = 2 mixed modes in accessing internal magnetic
fields with a quadrupolar component. The degeneracy of the quadrudipole compared to pure dipolar fields is lifted when considering
magnetic asymmetries in both ` = 1 and ` = 2 mode frequencies. In addition to the analytical derivation for the quadrudipole, we
present the prospect for complex magnetic field inversions using magnetic sensitivity kernels from standard perturbation analysis for
forward modeling. Using this method, we explored the detectability of offset magnetic fields from ` = 1 and ` = 2 frequencies and
demonstrate that offset fields may be mistaken for weak and centered magnetic fields, resulting in underestimating the magnetic field
strength in stellar cores. We emphasize the need to characterize ` = 2 mixed-mode frequencies, (along with the currently characterized
` = 1 mixed modes), to unveil the higher-order components of the geometry of buried magnetic fields and to better constrain angular
momentum transport inside stars.
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1. Introduction

The classic evolutionary picture of solar-like stars with stel-
lar cores spinning up after the end of the core hydro-
gen burning on the main sequence has been proven to
be, for the most part, incorrect. Indeed, measurements from
Beck et al. (2012), Mosser et al. (2012), Deheuvels et al. (2012,
2014, 2015, 2017, 2020), Di Mauro et al. (2016), Triana et al.
(2017), Gehan et al. (2018), Tayar et al. (2019) have indi-
cated a relatively slow rotation rate in radiative interiors
during advanced stages, which is incompatible with the
predicted rotation rates from classical hydrodynamic stel-
lar models (e.g., Eggenberger et al. 2012; Ceillier et al. 2013;
Marques et al. 2013). Among the key candidates to improve
stellar evolution models and efficiently reproduce observations
are magnetic fields. When considering magnetohydrodynamic
evolution involving the modified Tayler-Spruit dynamo for-
malisms (Tayler 1980; Spruit 1999, 2002; Mathis & Zahn 2005;
Fuller et al. 2019; Eggenberger et al. 2022; Moyano et al. 2023;
Petitdemange et al. 2023), the observed core and surface rota-
tion rates can be reproduced simultaneously. In addition, sta-
ble fossil fields resulting from past convective dynamo action
might be present inside the radiative core of red giants and
? Corresponding authors; srijanbdas@alumni.princeton.edu;
lisa.bugnet@ist.ac.at

may impact the angular momentum transport (e.g., Mestel 1987;
Duez & Mathis 2010). Theoretical predictions for the effect of
magnetic fields in red giant stars’ internal radiative zones on
the frequencies of the oscillations have been developed during
the past few years (Loi & Papaloizou 2020; Loi 2020, 2021;
Gomes & Lopes 2020; Bugnet et al. 2021; Mathis et al. 2021;
Li et al. 2022; Bugnet 2022; Mathis & Bugnet 2023), and they
have led to the detection of several magnetized red giant cores
by Li et al. (2022), Deheuvels et al. (2023), Li et al. (2023),
Hatt et al. (2024). These observed magnetic fields have in com-
mon a strong radial component up to a few hundred kilogauss in
amplitude in the vicinity of the hydrogen-burning shell (H-shell).
This is incompatible with the current Tayler-Spruit formalisms
generating strong toroidal components (Fuller et al. 2019). The
observed magnetic fields must therefore have a different origin
and could result from the stabilization of past dynamo fields
(e.g., Mestel 1987; Braithwaite 2008; Duez & Mathis 2010;
Bugnet et al. 2021).

Magnetic fields at the surface of white dwarfs and
intermediate-mass main-sequence stars have been observed to be
large scale (for instance in F stars Seach et al. 2020; Zwintz et al.
2020), with a dipolar poloidal field often dominating the spec-
tropolarimetry results (e.g., Donati & Landstreet 2009). This
geometry and associated strength are compatible with those
of the radial magnetic field component detected in red giant
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Fig. 1. Schematics of plausible red giant magnetic topologies explored in this study. The left panel shows a schematic diagram showing a dipole
and quadrupole (quadrudipole) magnetic field where the dipolar field component (solid black line) is inclined at an angle βd from the rotation
axis and the quadrupolar component (dashed black line) is inclined at an angle βq from the rotation axis. The purple circle indicates the hydrogen
burning shell. The inner light orange area indicates the radiative interior and the pink area indicates the convective envelope (not to scale). The
three rightmost panels present the three magnetic field configurations used in our study as described in Sect. 3. Case (a) shows a quadrudipole
magnetic field with aligned dipolar and quadrupolar axes, inclined with the rotation axis of an angle β = βd = βq. Case (b) shows an inclined mixed
quadrudipole with βd the angle between the rotation axis and the dipolar field, and βq, the angle between the rotation axis and the quadrupolar
field. Case (c) shows an offset dipole where the center of the dipole is shifted along the rotation axis by zo from the center of the star. For the three
right panels, we have used red and blue shades to indicate the strength of the positive and negative toroidal field component. The black lines with
arrows indicate field line directionality of the poloidal component.

cores (Li et al. 2022; Deheuvels et al. 2023; Li et al. 2023), and
could therefore have resulted from the conservation of such a
field in the radiative interior. However, not only dipolar but
also quadrupolar and higher-order components are also very
often detected (Maxted et al. 2000; Euchner et al. 2005, 2006;
Beuermann et al. 2007; Landstreet et al. 2017), and one pole
can present stronger fields than the other (hereafter called off-
set dipoles, e.g., Wickramasinghe & Ferrario 2000; Vennes et al.
2017; Hardy et al. 2023a,b; Hollands et al. 2023). This enhances
the need for the characterization of the geometry of fields
detected in red giants’ internal radiative zones, as they might
also not be pure dipoles. Accessing the magnetic field geometry
inside the radiative interior during the red giant branch is key
to understanding the origin of magnetic fields in white dwarfs
and to properly constraining the evolution of stars by includ-
ing magnetic effects. Indeed, if the amplitude of the field con-
trols how fast the angular momentum is redistributed, the geom-
etry is key to constraining how much material is going to be
redistributed in the radiative zone and therefore in the burning
layers.

From the current measurements by Li et al. (2022),
Deheuvels et al. (2023), Li et al. (2023), we have access to
the average radial magnetic field amplitude near the H-shell
(Li et al. 2022; Bhattacharya et al. 2024). However, given the
observed signatures in the frequency pattern, it is currently
impossible to confirm the complexity of the topology of the
internal field (as it is done through spectropolarimetry for sur-
face fields) for some of these stars, as the signature of the dipolar
configuration on dipolar mixed modes is partially degenerate
with higher-order magnetic field configurations (for instance
with a field with a quadrupolar component, see Mathis & Bugnet
2023).

We aim to lift the observational degeneracy between
the magnetic field configurations from the use of combined
constraints from dipolar (` = 1) and quadrupolar (` = 2) oscilla-
tions. In Sect. 2, we present analytical and computational devel-
opments to link the observed magnetic frequency asymmetries to
the magnetic topology. In Sect. 3, we investigate the detectability
of various magnetic field configurations as observed at the sur-
face of stars with a radiative envelope. We discuss the detectabil-
ity of mixed dipolar and quadrupolar configurations from a
combined study of ` = 1 and 2 oscillation frequencies as well as

the detectability study for offset magnetic fields along the rota-
tion axis in Sect. 4. Finally, we conclude on the future potential
of magnetoasteroseismology to unveil complex magnetic field
topologies.

2. Methods

2.1. Choice of the magnetic field configurations

Magnetic fields observed at the surface of stars with radiative
envelopes often present a large-scale topology. While dipolar
magnetic fields have been observed (e.g., Donati & Landstreet
2009), higher-order and more complex configurations have
also been detected through spectropolarimetry. For instance,
Kochukhov et al. (2022) observed a distorted dipolar topology at
the surface of ϕ Draconis, with a large inclination relative to the
rotation axis and an asymmetry between the two magnetic poles.
Cool Ap stars are known to exhibit an even more complex mag-
netic field topology; for example, 49 Cam has significant octupo-
lar contributions, including toroidal components (Silvester et al.
2017). We chose three magnetic field topologies characterized
by stable magnetic fields in the radiative zone and with low angu-
lar degree magnetic field configurations to be detectable using
asteroseismic observables (` = 1 and ` = 2 modes). The three
magnetic field configurations are presented in Fig. 1 and dis-
cussed below. We note that in panels (a)-(c) in Fig. 1, we have
used black lines to denote the direction of the poloidal field com-
ponent and red (blue) color shading to denote the positive (neg-
ative) toroidal field component.

Case (a) is a magnetic field with a dipolar component Bd
and a quadrupolar component Bq (hereafter quadrudipole; see
second panel of Fig. 1) that has aligned magnetic axes (βd for
the dipole is equal to βq for the quadrupole, as defined in the
left panel of Fig. 1). For this case, we allowed the magnetic field
axis to be inclined in relation to the rotation axis with an angle
β = βd = βq (aligned dipole and quadrupole), and we write the
ratio of the magnetic field strength of the quadrupole over the
dipole as R. Hence,

B(r, θ, ϕ) = Bd(r, θ̃, ϕ̃) + R Bq(r, θ̃, ϕ̃), (1)
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where (θ, ϕ) are the spherical coordinates with respect to the
rotation axis and (θ̃, ϕ̃) are the corresponding coordinates in a
frame that is inclined at an angle β compared to the rotation axis.

Case (b) is a misaligned quadrudipole (see third panel of
Fig. 1) where the dipolar and quadrupolar axes may have
different inclination angles with respect to the rotation axis
(βd , βq):

B(r, θ, ϕ) = Bd(r, θ̃d, ϕ̃d) + R Bq(r, θ̃q, ϕ̃q), (2)

where the coordinate system (θ̃d, ϕ̃d) is inclined by βd with
respect to the rotation axis and the coordinate system (θ̃q, ϕ̃q)
is inclined by βq with respect to the rotation axis. A recipe for
constructing the rotated dipole and quadrupole is laid out in
Appendix A for the readers’ convenience. We used simple iden-
tities offered by Wigner d-matrices for the necessary transforma-
tion between spherical coordinate systems.

Case (c) is an offset dipolar field with an offset along the
rotation axis (see case (c) in Fig. 1), resulting in one pole being
more magnetized than the other, as observed at the surface of
white dwarfs (e.g., Wickramasinghe & Ferrario 2000):

B(r, θ, ϕ) = Bd(r̃(zo), θ̃(zo), ϕ), (3)

where

r̃(zo) =

√
r2 + z2

o − 2r cos θzo, (4)

θ̃(zo) = atan2(r sin θ, r cos θ − zo), (5)

and zo is the offset of the center of the field along the
polar axis.

2.2. General definition of asymmetry parameters a`|m|

To investigate the detectability of these various large-scale mag-
netic field topologies inside the radiative interior of red giants,
we used the asymmetry they induce on ` = 1 and ` = 2
mixed-mode frequencies (as demonstrated in Bugnet et al. 2021;
Li et al. 2022). We considered a slowly rotating star to ensure
that the rotation can be treated as a first-order perturbation (valid
for slow rotators like red giants) and that this slowly rotating star
is weakly magnetized following the derivation in Bugnet et al.
(2021) (the magnetic field can as well be treated as a first-order
perturbation). When carrying out a linearization of the mag-
netohydrodynamic equations about a magnetostatic background
state, the Lorentz-state operator L affecting oscillation frequen-
cies may be expressed as (see Appendix A in Das et al. 2020, for
further details)

4π δLξ = B0 × (∇ × B1) − (∇ × B0) × B1 − ∇[ξ · (j0 × B0)], (6)

where B0 and B1 are the background and perturbed magnetic
field, respectively; ξ is the eigenstate of the mode; and j0 = ∇ ×
B0 is the background current density.

For a high radial order g-dominated mixed mode, the cou-
pling of eigenstate ξ`,m of a mode labelled by angular degree
` and azimuthal order m with eigenstate ξ`,m′ due to the mag-
netic linear operator L is given by a magnetic coupling matrix
M (Das et al. 2020; Li et al. 2022), such as

M`v`,k = ω1
`,kv`,k (7)

where ω1
`,k are the 2` + 1 linearly perturbed eigenfrequencies

corresponding to mode `, v`,k are the corresponding eigenvec-

tors, and the elements of the mode coupling matrix M` are
defined as

Mm,m′

`
=

〈
ξ`,m,L

(
ξ`,m′

)〉
2ω0

`

〈
ξ`,m′ , ξ`,m

〉 , (8)

where ω0
`

is the unperturbed frequency of the mixed mode of
order `. As expressed in Li et al. (2022), and further supported
by Bugnet et al. (2021) in the axisymmetric case, the magnetic
field’s presence induces asymmetries in mixed mode multiplets.
In our study, we consider that magnetic field effects are smaller
than rotational effects, resulting in a M` matrix with dominant
diagonal terms (we refer to Loi 2021, for the derivation of
the full coupling matrix that includes effects of inclination of
magnetic axis with respect to rotation axis). This is a reason-
able assumption, as observed magnetic fields by Li et al. (2022),
Deheuvels et al. (2023), Li et al. (2023) from ` = 1 frequencies
are detected on multiplets containing 2` + 1 components, and
not on (2` + 1)2. Thus, by neglecting the off-diagonal terms,
M` becomes a diagonal matrix, with the eigenfrequencies on the
diagonal. In this case, k = m and we write (v`,m, ω1

`,m) instead.
We generalized the formalism of Li et al. (2022) for the asymme-
try induced by magnetic fields on ` = 1 mixed mode frequencies
for any ` modes as

δ`,masym = ω`,−m + ω`,m − 2ω`,0 = (2` + 1) ζa`|m|ω`B. (9)
In Eq. (9), ζ is the coupling function of the mixed modes
(Goupil et al. 2013), and a`|m|, the asymmetry parameter, is
defined as

a`|m| =
M|m|,|m|
`

+ M−|m|,−|m|
`

− 2M0,0
`

Tr (M`)
(10)

with Tr (M`) =
∑`

m=−` Mm,m
`

, and ω`B the mean frequency shift:

ω`B =
Tr (M`)
2` + 1

. (11)

Figure 2 presents the definitions of the three asymmetry
parameters used in our study, for ` = 1 (a11) and ` = 2 (a21,
a22) oscillations. In the following subsections we outline the two
methods we have used to calculate magnetic frequency splittings
(and hence asymmetry parameters) – (i) the analytical approach,
similar to Mathis & Bugnet (2023), which adheres to the simpli-
fying assumptions mentioned in the supplementary Sect. S2.2 of
Li et al. (2022) and is sensitive to only the (θ, ϕ) angular depen-
dence of B2

r and (ii) the numerical approach using magsplitpy
(a rigorous computational framework for computing magnetic
splittings due to a general magnetic field, following the theoret-
ical underpinnings of Das et al. 2020), which is sensitive to all
components of magnetic fields and provides the full solution.

2.3. Analytical approach: Probing Br

For a magnetic field B = (Br, Bθ, Bϕ), it is known that the dom-
inant contribution to observed g-dominated mixed-mode fre-
quency splitting comes from the B2

r component (Bugnet et al.
2021; Mathis et al. 2021) in the vicinity of the H-shell (Li et al.
2022; Bhattacharya et al. 2024). As shown in Eq. (30) of Li et al.
(2022), the elements of this coupling matrix when considering
only the dominant magnetic term can be approximated as

Mm,m′

`
=

1
µ0

∫ ro

ri

[
∂(rξh)
∂r

]2 ∫ 2π

0

∫ π

0
B2

r ei(m′−m)ϕ

×

[
∂Ŷ`m
∂θ

∂Ŷ`m′
∂θ

+
mm′

sin2 θ
Ŷ`m Ŷ`m′

]
sin θ dr dθ dϕ, (12)
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Fig. 2. Definition of the asymmetry parameters a`|m| for the ` = 1 (top,
as in Li et al. 2022) and ` = 2 (bottom) oscillation multiplets.

where ξh is the radial variation of the horizontal component
of the eigenfunction, Y`m(θ, ϕ) = Ŷ`m(θ) eimϕ and ri, ro, are the
inner and outer turning points of the g-mode cavity. Using this
analytical expression and the Racah-Wigner algebra derived in
Appendix B of Mathis & Bugnet (2023), we obtain expressions
for the various Mm,m′

`
(see Mathis & Bugnet (2023) for ` = 1

modes, and our Appendix C for ` = 2 modes). From this, we
obtain analytical expressions of the asymmetry parameters for
various radial magnetic field topologies in Sect. 3.

For completeness, we also provide the analytical expressions
for the configuration-independent form of the asymmetry param-
eters constructed from these matrix elements:

a21 =

∫ ro

ri
K(r)
!

B2
r [8P4(cos θ) − P2(cos θ)] sin θ dθ dφ dr

7
∫ ro

ri
K(r)
!

B2
r sin θ dθ dφ dr

(13)

a22 =
4
∫ ro

ri
K(r)
!

B2
r [P4(cos θ) − P2(cos θ)] sin θ dθ dφ dr

7
∫ ro

ri
K(r)
!

B2
r sin θ dθ dφ dr

(14)

where, K(r) =
(
∂(rξh)
∂r

)2
. This also provides consistency in the

field where Li et al. (2022) provided these expressions for a11,
which we extend to a21 and a22.

A simple radial quadrudipole for theoretical calculations

Appendix A outlines the steps to obtain a rotation of a field on
the surface of a sphere – going from being axisymmetric on the
original coordinate system (θ, ϕ) to being non-axisymmetric on
(θ, ϕ). As shown, we use identities of Wigner-d matrices to do so.
In our case, we use the same analytical steps to tilt the axis of a
dipolar and quadrupolar field by βd and βq respectively to obtain
the expression for a general quadrudipole where the dipole and
quadrupole are not necessarily axis-aligned. By simplifying the
Wigner-d matrices required to tilt the field, we obtained the fol-

lowing analytical expression, which expands on the co-aligned
case from Mathis & Bugnet (2023):

Br(r, θ, ϕ,R, βd, βq) = B0 br(r)
1
2

√
3
π[

cos βd cos θ + sin βd sin θ cosϕ (15)

+

√
15
4
R
(1
3
− cos2 βq − cos2 θ + 3 cos2 βq cos2 θ

+ sin 2βq sin 2θ cosϕ + sin2 βq sin2 θ cos 2ϕ
)]
,

where R is the ratio of the strength of quadrupole to dipole as
defined in Mathis & Bugnet (2023). Here, we explicitly assume
that both the dipole and the quadrupole have the same radial
dependence br(r). This is a reasonable assumption since the
dominating contribution from the magnetic field on the mode
splitting occurs in the vicinity of the H-shell (Li et al. 2022;
Bhattacharya et al. 2024); hence, the radial profile of the field
does not significantly affect the magnetic field signature. We
use this formalism in Sect. 3 to compute asymmetry parame-
ters related to B2

r associated with various magnetic field topolo-
gies trapped in the radiative interior of the star. For an aligned
quadrudipole (Case (a), such that β = βd = βq), this reduces to
Eq. (25) and Eq. (28) of Mathis & Bugnet (2023) for R = 0 and
β = 0, respectively.

2.4. magsplitpy: Implementation of the full system

To estimate the signature of magnetic field topologies that
are more complex than a quadrudipole, deriving an analyti-
cal expression is no longer efficient. In the same spirit as the
inversion of rotation rates inside red giant stars from mixed-
mode splitting (e.g., Deheuvels et al. 2012; Di Mauro et al.
2016; Ahlborn et al. 2020; Pijpers et al. 2021), Das et al. (2020)
propose sensitivity kernels to probe a general magnetic field
topology.

Das et al. (2020) formulated a prescription to infer the global
solar magnetic field by using tools prevalent in terrestrial seis-
mology (Dahlen & Tromp 1999). The Das et al. (2020) formal-
ism is general enough to be seamlessly applied to other stars
whose internal structure (and hence mode eigenfunctions) can be
calculated from stellar evolution codes. In our study, we model
a typical red giant star using MESA (Paxton et al. 2011, 2013,
2015, 2018, 2019; Jermyn et al. 2023) and compute its eigen-
functions and eigenfrequencies using GYRE (Townsend & Teitler
2013; Townsend et al. 2014). The MESA1 computation is initial-
ized with a mass of 1.5M� and metallicity of Z = 0.02. We
extracted the model for which ∆ν = 14.49 µHz, which repre-
sents a typical red giant branch star. We define Rh as the radius
where the pp-nuclear reaction reaches its maximum, while Rc
is the radius at which the Brunt-Väisälä frequency first goes to
zero.

We note that Eqs. (13) and (14) for asymmetry parameters
are linear combinations of Legendre polynomials, unlike just
P2(cos θ) as for a11 as shown in Eq. (49) of Li et al. (2022). Con-
sequently, going to higher angular degree modes comes with the
asymmetry parameters being sensitive to more complex geom-
etry. This is where the framework of magsplitpy becomes a
powerful tool that we can use to numerically compute splittings
or asymmetries for any general field topology. In a nutshell,
magsplitpywould numerically evaluate matrix elements Mm,m′

`

1 The corresponding MESA inlist file is available on Zenodo at
https://doi.org/10.5281/zenodo.12804810
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and using Eq. (10), we can then find the asymmetry parameters
numerically. This is laid out in Sect. 2.4. Although in this study
we primarily focus on the g-dominated core-sensitive modes of
a typical red giant star, the magsplitpy framework can be used
for g-dominated, p-dominated or highly mixed modes for core,
intermediate or surface field detections.

2.4.1. Magnetic inversion kernels

Since the Lorentz force is given by (∇×B)×B, the perturbation
of interest are the components of the second rank Lorentz-stress
tensor H = BB. Therefore, to decompose these tensors in a
spherical geometry, Das et al. (2020) used generalized spherical
harmonics (GSH as in Appendix C of Dahlen & Tromp 1999)
Yµ

st(θ, ϕ) such as

B(r, θ, ϕ) =

∞∑
s=0

s∑
t=−s

∑
µ

Bµst(r) Yµ
st(θ, ϕ) êµ, (16)

H(r, θ, ϕ) =

∞∑
s=0

s∑
t=−s

∑
µν

hµνst (r) Yµ+ν
st (θ, ϕ) êµ êν, (17)

where (µ, ν) ∈ {−1, 0,+1}2 and the s and t subscripts denote
the spherical harmonic angular degree and azimuthal order. We
note that in this study, we used `,m for mode harmonics and s, t
for perturbation harmonics. The basis vectors in spherical polar
coordinates can be transformed to those in the GSH basis using
the following transformation:

ê− =
1
√

2
(êθ − iêϕ), ê0 = êr, ê+ = −

1
√

2
(êθ + iêϕ). (18)

for brevity of subscripts (and in keeping with the convention of
Dahlen & Tromp 1999), we denote µ = −1,+1 in the subscripts
as ê−, ê+ respectively.

As a result, the general elements of the matrix M` are
written as

Mm,m′

`
=

∑
st

∑
µν

∫ R�

0
dr r2

mm′B
µν
st (r) hµνst (r), (19)

with hµνst as the Lorentz-stress tensors for components (µ, ν)
and the spherical harmonic as (s, t), while mm′B

µν
st repre-

sents the respective magnetic inversion kernels. The complete
expressions of the kernel components mm′B

µν
st is laid out in

Appendix B (presented for ease of readers’ reference but origi-
nally found in Das et al. 2020). A similar expression was derived
in Mathis & Bugnet (2023). We note that since we are confined
to the self-coupling of multiplets (same n, ` coupling), we sup-
pressed these indices in the above expression.

2.4.2. Sensitivity of modes with degree ` to the magnetic
field topology

To ask the question of which components of the magnetic field B
are sensitive modes of degree `, we need to see how the Lorentz-
stress GSH is connected to the magnetic field GSH. This is
because modes are sensitive to components of H . As shown in

Appendix D of Das et al. (2020), they are related as follows:

hµνst =
∑

s1,s2,t1,t2

Bµs1t1 Bνs2t2

∫
Y∗µ+ν

st Yµ
s1t1 Yν

s2t2 dΩ

=
∑

s1,s2,t1,t2

Bµs1t1 Bνs2t2 (−1)µ+ν+t

√
(2s + 1)(2s1 + 1)(2s2 + 1)

4π

×

(
s1 s s2
µ −(µ + ν) ν

) (
s1 s s2
t1 −t t2

)
. (20)

Whether or not a degree of perturbation s will induce a frequency
splitting, depends on the angular degree ` of the mode of inter-
est. This is controlled by the triangle rule imposed by the Wigner
3- j symbols in Eq. (20). For simplicity, we assume that the mag-
netic field is a pure dipole, that is, s1 = s2 = 1. By the Wigner
3- j triangle rule |s1 − s2| ≤ s ≤ s1 + s2, there would be only
three degrees of Lorentz-stress tensor s = 0, 1, 2. When using
self-coupling of ` = 1 modes, the odd degree s = 1 is insensi-
tive since the kernel ``G00

1 = 0 (we note that G are the m inde-
pendent forms of the full kernels B, see Appendix B). So, for
self-coupling, ` = 1 modes are only sensitive to s = 0, 2 com-
ponents of Lorentz-stress. The magnetic field component s1 = 1
contributes to both these Lorentz-stress components. Therefore,
when using dipole modes ` = 1 (resp. quadrupole modes ` = 2),
the splittings and asymmetry parameters are sensitive to only up
to s = 2 (resp. s = 4) components of the Lorentz-stress tensor.

Therefore, the important conclusion from the above thought
experiment is that we can only infer even components of the
Lorentz stress. However, each of these components, let’s say
s = 2, contains contributions from all magnetic field components
s/2 ≤ s1 ≤ ∞. So, the s = 0 Lorentz-stress has information
from all Br components with angular degree s1 ≥ 0 (in reality
s1 ≥ 1, since s = 0 is a magnetic monopole). Similarly, the
s = 2 Lorentz stress component has information from all Br
components with angular degree s1 ≥ 1, the s = 4 Lorentz
stress component has information from all Br components with
angular degree s1 ≥ 2, and so on and so forth. Quadrupolar
modes (` = 2) are therefore extremely valuable for the search
of complex magnetic field topologies, as ` = 2 oscillation mode
frequencies are independent of the dipolar component of the
magnetic field, and give a direct insight into the high-order of
complexity of the field. This is the foundation of this study
and justifies the need for ` = 2 mode characterization in the
following sections.

2.4.3. Realistic quadrudipole configurations for signatures of
the full magnetic field with magsplitpy

In order not only to check the theoretical results obtained from
the simplified radial component of a quadrudipole but also to
investigate the signature of more complex topologies in Sect. 3,
we use a full quadrudipole topology in magsplitpy. Deriving
a force-free stable quadrudipole magnetic field in the radiative
interior from Broderick & Narayan (2008):

Bd(r, θ, ϕ) = Cd

[ j1(αdr)
r

cos θ êr

−
αdr j0(αdr) − j1(αdr)

2r
sin θ êθ

+
αd j1(αdr)

2
sin θ êϕ

]
, (21)
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and

Bq(r, θ, ϕ) = Cq

[ j2(αqr)
6r

(3 cos2 θ − 1) êr

−
αqr j1(αqr) − 2 j2(αqr)

6r
cos θ sin θ êθ

+
αq j2(αqr)

6
cos θ sin θ êϕ

]
, (22)

where jl∈[1,2] are the spherical bessel function of the first kind.
The parameters αd and αq are chosen such that the conditions
at the convective/radiative boundary are Br(Rc) = Bϕ(Rc) = 0
with Rc the radius of the radiative interior (see Prat et al. 2019;
Bugnet et al. 2021, for more details about the method). As a
result, both the quadrupolar and the dipolar field are zero out-
side the radiative region, that is, B(r ≥ Rc) = 0. Both fields
are normalized such that Br(Rh) = 1, where Rh is the radius of
the H-shell in the radiative zone. Therefore, for the full numer-
ical calculations using magsplitpy, we used the following 3D
field:

B(r, θ, ϕ) = Bd(r, θ, ϕ) + R Bq(r, θ, ϕ). (23)

In this general field configuration, we define R as the rel-
ative strength between radial components of the dipole and
quadrupole at the H-shell. This is a reasonable choice because
as evaluated in Bhattacharya et al. (2024) (and supported by
Li et al. 2022), the hydrogen burning region represents about
90% of the sensitivity of the ` = 1, 2 oscillation modes in the
core for the typical model red giant star chosen in our study and
the radial component dominates the magnetic sensitivity over all
other components. This quadrudipole general formalism is used
in Sect. 3 to estimate the detectability of Cases (a), (b), and (c)
from ` = 1 and ` = 2 oscillation asymmetries with magsplitpy.

3. Asymmetry parameters as a probe of magnetic
field topologies

3.1. Aligned dipolar field and quadrupolar field axes

We first explore the simpler Case (a) of an aligned dipole and
quadrupole defined in Eq. (1), that is, βd = βq = β, as previously
done for ` = 1 oscillation modes in Mathis & Bugnet (2023).
This reduces the parameters describing the topologies from the
previous section to (R, β).

3.1.1. Analytical results from the asymmetry parameters
associated with the radial component of the field

Plugging in the analytical definition of Br from Eq. (15) into the
simplified analytic expression in Eq. (12) and the definition of
asymmetry parameter in Eq. (10), we obtained

a11 =
(7 + 5R2)(1 + 3 cos 2β)

70(1 + R2)
(24)

for ` = 1 modes as in Mathis & Bugnet (2023) and

a21 =
−2 + 5R2 + 2(−3 + 5R2) cos 2β + 25R2 cos 4β

140
(
1 + R2) , (25)

a22 = −
16 + 5R2 + 4(12 + 5R2) cos 2β − 25R2 cos 4β

280
(
1 + R2) (26)

for ` = 2 modes. Our study only considers β ∈ [0◦ : 90◦] for all
three a`|m| because of the symmetry relation

a`|m|(R, 90◦ − β) = a`|m|(R, 90◦ + β). (27)

The first column of Fig. 3 represents the value of the a`|m|
parameters as function of β and R, from Eqs. (24), (25) and
(26), where only the radial component of the magnetic field is
used. The three rows in Fig. 3 show a11, a21 and a22 (from top
to bottom), respectively. Contour maps in these left panels of
Fig. 3 can be used to show that there are no theoretical degen-
eracies between the quadrudipole and a pure dipole when using
all three asymmetry parameters simultaneously. We see that if,
from observations, we get a11 > 0, a21 > 0 and a22 < 0, our
possibility of configurations is limited to a strong quadrupole
with a low inclination with respect to the rotation axis. A simi-
lar visual analysis of Fig. 3 shows how the availability of these
three asymmetry parameters drastically reduces the possibili-
ties in magnetic configurations. We conclude that the degener-
acy of the quadrudipole with a pure dipolar field observed in
Mathis & Bugnet (2023) is lifted when accessing ` = 1 and ` = 2
oscillation frequencies simultaneously. We discuss this in detail
in Sect. 4.1.

We would also like to point out some salient features of
the aligned quadrudipole: (i) For a11, we recover the null
line in asymmetry at ∼54.7◦ consistent with the findings in
Mathis & Bugnet (2023). For all magnetic obliquity below this
angle, a11 is positive and vice-versa. For a given β, the strength
of the asymmetry increases for a stronger dipolar component
(smaller |R|), (ii) For a pure dipole (or a small quadrupolar com-
ponent) a21 goes from being positive for high magnetic incli-
nation to negative for intermediate and low inclinations. This
changes to a double positive lobe at low and high β and a nega-
tive dip in intermediate β for stronger quadrupolar contribution.
(iii) For a22 we once, again have a more two-sided polarity where
for low β the asymmetry is negative and vice-versa. The null line
has a qualitatively different trend than a11. Further, for very low
inclinations and very strong quadrupolar contribution, we also
have a near zero a22.

3.1.2. Numerical calculation for the 3D magnetic field

To be able to recover the signature of the full 3D magnetic field,
we use magsplitpy. We use the magnetic field configuration of
aligned quadrudipole as shown in Case (a) of Fig. 1. We calculate
the magnetic splitting of these fields for the modes (n = −52, ` =
1) and (n = −95, ` = 2). These are obtained from the diagonal
elements of the matrix M` constructed according to Eq. (19).
Even though we do not explicitly compute the rotational ele-
ments in the matrix, the underlying assumption here is that rota-
tional effects dominate magnetic effects for the class of red giants
we are interested in. This renders the matrix diagonally domi-
nant (see supplementary section in Li et al. 2022). The compu-
tation of asymmetry parameters (which involves computing the
asymmetric splitting and the trace of the matrix) is independent
of rotational effects for a slow rotator. The above considerations
allowed us to simplify our analysis in this study by requiring the
computation of only the magnetic part of the coupling matrix
M`. Finally, for the aligned quadrudipole, we compute the asym-
metry parameters following Eq. (10) for a range of values of
magnetic inclination β and quadrupolar contribution |R|.

Fig. 3 also compares the numerical results obtained using
magsplitpywith the analytical relations found above. The mid-
dle panel shows the numerical results implementing the full 3D
vector field. For the same asymmetry parameter, we have used
the same color bar for both the analytical and numerical results
for ease of comparison. The rightmost panel shows the abso-
lute difference between the analytical and numerical results. The
difference between the analytical and numerical results is very
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Fig. 3. Color maps for each asymmetry parameter (top: a11, middle: a21, bottom: a22) for a co-aligned quadrudipole (βd = βq = β). The solid
(dashed) overplotted contours emphasize the values of the asymmetry parameters. Only |R| are shown since a`|m| are functions of R2. There is a
symmetry relation of a`|m|(90◦ −β) = a`|m|(90◦ +β) intrinsic to Eqs. (24)–(26); therefore, we limited β to the interval [0◦, 90◦]. Left panels: ` = 1, 2
theoretical degeneracy for a magnetic field of the case (a) in Fig. 1. Middle panels: same degeneracy computed with magsplitpy. Right panels:
Absolute difference between the numerical calculations and the analytical expressions of the asymmetry parameters.

promising: for a11 the maximum error is around 5% while for a21
and a22 its around 1%. This comparison demonstrates that the
approximation leading to the theoretical expressions for asym-
metry parameters in our study and in Mathis & Bugnet (2023)
are valid. For simple magnetic field geometry such as Case (a),
theoretical expressions can be used with confidence to relate
(a11, a21, a22) to (|R|, β).

This theoretical benchmarking also proves that magsplitpy
offers a general numerical framework to reliably compute
(a11, a21, a22) even if magnetic field topologies are too complex
for analytic developments. This has important implications in
terms of setting up an inverse problem, for instance when using
Bayesian inference schemes. To further demonstrate the poten-
tial of magsplitpy, we also present the results benchmarking
against the analytical results for a misaligned quadrudipole (see
Sect. 3.2 and Appendix D).

3.2. Nonaligned rotation, dipolar field, and quadrupolar field
axes

Section 3.1 investigated the simplest case of a multi-moment B
field for an aligned quadrudipole. In this section, we explore the
degeneracies of Case (b), a misaligned quadrudipole where the
dipolar and quadrupolar components have different inclination
angles with respect to the rotation axis. In the case of a mis-

aligned quadrudipole,

a11 =
7 + 5R2 + 21 cos 2βd + 15R2 cos 2βq

70(1 + R2)
. (28)

Again, we note the following specific cases (i) for R = 0 and
βd = βq = β, this matches with Eq. (26) of Mathis & Bugnet
(2023), and (ii) for βd = βq = 0, this matches with Eq. (29) of
Mathis & Bugnet (2023). Following the same method, we find
that for ` = 2, the two asymmetry parameters take the following
expressions:

a21 =
−2 + 5R2 − 6 cos 2βd + 10R2 cos 2βq + 25R2 cos 4βq

140
(
1 + R2) ,

(29)

a22 = −
16 + 5R2 + 48 cos 2βd + 20R2 cos 2βq − 25R2 cos 4βq

280
(
1 + R2) .

(30)

Similar to Eqs. (24)–(26) there is a symmetry relation present on
both angles in Eqs. (28)–(30), namely,

a`|m|(R, 90◦ − βd, βq) = a`|m|(R, 90◦ + βd, βq), (31)
a`|m|(R, βd, 90◦ − βq) = a`|m|(R, βd, 90◦ + βq). (32)
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Fig. 4. Color maps for each theoretical asymmetry parameter (top: a11, middle: a21, bottom: a22) for different values of R. The solid (dashed)
overplotted contours emphasize the values of the asymmetry parameters. Only the positive values of R are shown since a`|m| are functions of R2.
There are symmetry relations of a`|m|(R, 90◦−βd, βq) = a`|m|(R, 90◦+βd, βq), a`|m|(R, βd, 90◦−βq) = a`|m|(R, βd, 90◦+βq) intrinsic to Eqs. (28)–(30);
therefore, we limited βd and βq to the interval [0◦, 90◦]. From left to right, the figure shows how the theoretical a`|m| vary with increasing |R|.

In Appendix D we study the particular case of βq −βd = 90◦.
In Fig. D.1, we present the values of the asymmetry parameters,
calculated from the analytical formula and with magsplitpy,
depending on the ratio of the field amplitudes at the H-shell
and of the inclination βd. As in Case (a), the analytical expres-
sions provide robust results with similar precision compared to
the magsplitpy results. We observe that, as the quadrupolar
field strength increases with respect to the dipolar strength (|R|
increases), the variation of the asymmetry parameter values com-
pared to Case (a) increases. As this effect must also depend on
the angle βq, we variate the three parameters (|R|, βd, βq) and rep-
resent the results in Fig. D.2 (see discussion in Appendix D).

To summarize, Fig. 4 shows how the value of |R| affects the
asymmetry parameters. For |R| = 0.2 the contour lines are almost
vertical, indicating that a`|m| are independent of the quadrupole
angle βq (reasonable since the dipolar field dominates). For
|R| = 5.0 the result is the opposite, but there the asymmetry
parameters are independent of the dipole angle. Both a11 and a22
slowly interpolate between those two extrema as the field goes
from dipole-dominated to quadrupole-dominated (|R| increases)
while the magnitude of the asymmetry parameters stays roughly
constant. The parameter a21 is more sensitive to the quadrupolar
component of the field than a11 and a22. For small |R| we have
a21 ≈ 10−2, which grows by an order of magnitude as |R| → 1.
Thus, the magnitude of a21 is a good proxy for |R|, and con-
straints the quadrupolar angle.

3.3. Offset magnetic field

Lastly, we show the signature of an offset dipolar field (Case
(c) in Fig. 1) on the splittings of the ` = 1 and ` = 2 oscil-
lation modes, as observed at the surface of stars with radia-

tive envelopes (Donati & Landstreet 2009; Vennes et al. 2017;
Hardy et al. 2023a,b; Hollands et al. 2023). For this scenario, we
directly use the numerical method, as the theoretical develop-
ment of the asymmetry parameters becomes too convoluted for
a proper derivation. The magsplitpy results are presented in
Fig. 5 as a function of the offset zo. We observe that, starting
from a centered dipole, as we gradually offset the center of the
field (increase zo) up to the radius of the H-shell, all |a`|m|| con-
verge to zero. This is because the magnetic field topology probed
at the H-shell varies with zo, going from purely dipolar to higher-
order components when zo increases. As a result, the magnetic
field averages out along the H-shell, resulting in null asymme-
tries. Once zo is greater than Rh, there are no longer radial mag-
netic field lines of opposite sign canceling out at the H-shell. As
a result, |a`|m|| values increase, even though the field probed is
of low amplitude (this increase depends on the geometry of the
field, and might vary with the choice of the radial profile). Even-
tually, as zo increases, the magnetic field amplitude at the H-shell
decreases, and all |a`|m|| converge to zero again. We demonstrate
through the model Case (c) that a small offset of a large-scale
magnetic field along the rotation axis of about 3% of the extent
of the radiative cavity leads to a disappearance of magnetic field
effects on the symmetry of all the modes, due to the geome-
try of the H-shell. As a result, large-scale magnetic fields can
have the same effect as small-scale magnetic fields (such as the
one resulting from dynamo action; see, e.g., Fuller et al. 2019;
Petitdemange et al. 2023).

4. Results and discussion

The following subsections are dedicated toward demonstrating
the potential of ` = 2 mode splittings in lifting the topology
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Fig. 5. Asymmetry parameters a`,|m| depending on the offset of a mag-
netic field of type (c) in Fig. 1. The offset zo of the field is given relative
to the radiative zone radius. The black dashed line indicates the location
of the H-shell radius Rh.

degeneracy of the core magnetic field. The results of our study
is meant to serve as a motivation for focused efforts to hunt for
frequency splittings in ` = 2 mixed modes – which have been
typically harder to detect than ` = 1 splitting due to small ampli-
tudes. We first discuss the detectability of magnetic fields from
` = 2 mixed mode frequencies, and then develop on the path
toward detecting mixed ` = 2 oscillation modes in Sect. 4.6.

4.1. Detectability of quadrudipole magnetic fields from
` = 1, 2 modes

From the results in Sect. 3, we demonstrate the detectability
of quadrupolar magnetic field components from combined mea-
surement on the ` = 1 and ` = 2 mixed mode frequencies. The
top left panel of Fig. 6 presents three random examples of (R, β)
configuration in the case (a) of an aligned quadrudipole. The cor-
responding three asymmetry parameters are calculated, and their
possible values to properly recover (R, β) are represented in the
β versus |R| diagram in the other three panels. In the first step,
we demarcate (with white lines) the exact degeneracies in (R, β)
when using measurement only one kind of asymmetry parame-
ter (a11 or a21 or a22). The shaded areas around the lines of the
single a`|m| degeneracy represent the typical uncertainties that we
analyze in Sect. 4.2.

For Star 1, taking one asymmetry parameter only (such as
using only a11 from measuring the frequency splittings in ` = 1
modes) leads to a total degeneracy of the quadrudipole with a
purely dipolar field (as demonstrated by Mathis & Bugnet 2023).
Adding a second asymmetry parameter (i.e., using ` = 2 modes)
completely lifts this degeneracy, and both β and |R| can be
measured. Using the three asymmetry parameters confirms the
measurement and allowed us to simultaneously extract exact
measurements of β and |R|. The same conclusion can be drawn
for Star 2 if asymmetry parameters are known with high preci-
sion (see Sect. 4.2 for more details about uncertainties on asym-
metry parameters). However, a null asymmetry parameter, as is
the case for a11 in the case of Star 3 where β ≈ 55◦, is the worst-
case scenario for a characterization of the magnetic field topol-
ogy. Indeed, any small-scale magnetic field that averages out in

the H-shell, or a nonmagnetic radiative zone, results in a null
asymmetry parameter. It is therefore much harder to constrain
the magnetic field topology for the field inclination angle near-
ing 55◦, as illustrated in the bottom-right panel of Fig. 6.

4.2. Impact of the frequency resolution in the data on the
degeneracy

As every asteroseismic measurement comes with its own uncer-
tainty, we add in Fig. 6 the effect of the uncertainty on the mea-
sure of the asymmetry parameters on the inversion of β and
|R| through the shaded regions. The uncertainty on asymmetry
parameters is calculated as (see Appendix E)

δa`|m| ≈

√
6 δ f
δω`B

, (33)

with δ f the frequency resolution in the data and δω`B the aver-
aged magnetic shift modulated by the ζ function as defined in
Appendix E. For each of the chosen model stars in Sect. 4.1, we
show patches of light, intermediate, and dark shades. The light-
shaded area is indicative of the abundance of degenerate (|R|, β)
configurations on the availability of only one asymmetry param-
eter. The intermediate shaded region shows the reduced degener-
acy constrained by using two asymmetry parameters. The dark-
est shade, which is the smallest patch, shows the restricted area
in (|R|, β) space when all three asymmetry parameters are avail-
able. We note that the shaded area increases with increasing data
frequency resolution, here taken as 8nHz to mimic Kepler 4-year
data resolution. As a result, the quality of data of course plays a
major role in the detectability of complex magnetic field topol-
ogy. Typical Kepler data uncertainty leads to a small degener-
acy for Star 1, where the presence of a small quadrupolar com-
ponent becomes debatable. The inclination angle β remains well-
constrained. For Star 2, both the presence of the quadrupolar
component and the inclination angle of the field remain well-
constrained even with uncertainties on the asymmetry parameters.
If Star 3 hosts a quadrudipole, it surely has a strong quadrupolar
component and a well-constrained inclination angle near 55◦, but
the quadrupole to dipole strength ratio cannot be well constrained.
This goes back to the discussion in Sect. 4.1 about near-zero asym-
metry parameter values. In short, depending on the true (|R|, β)
parameters, the degeneracy regions can vary, and some stars might
be more easily characterized than others.

The uncertainty on the a`|m| parameters from Eq. (33) is about
0.08 when taking ω`B = 0.2 µHz. For |a`|m|| ranging from 0 up
to 0.4, the minimum uncertainty associated with observational
constraints with the Kepler mission is about 5%. As we demon-
strated in Sect. 3.1.2, the error induced by the chosen method-
ology to compute asymmetry parameters is lower than 5% for
a11 and lower than 1% for a21 and a22, the dominant source of
uncertainty on (|R|, β) results indeed from observations and not
from the chosen methodology.

4.3. Disentangling inclined quadrupoles

In Case (a), two out of three a`|m| are necessary to theoretically
constrain the field topology through the measure of |R| and β.
In Case (b), however, three independent a`|m| are needed to fully
constrain R, βd, and βq. As a result of Appendix C, we note that
a`|m| depend on each other through the relation

a22 + a21 +
5 M0,0

2

T B2
r (a11)

= 1, (34)
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Using        onlya11 Using        only Using        onlya21 a22
Fig. 6. Overlapping bands of iso-asymmetry values across a11, a21, and a22 demonstrating the drastic reduction of degeneracy in (|R|, β) space for
a co-aligned quadrudipole when using ` = 1 and ` = 2 oscillation modes simultaneously. The white line, dashed line, and dashed-dotted line
respectively indicate the analytical solution corresponding to the measurement of a11, a21, and a22 from Sect. 3.1. The width of colored bands
indicating typical uncertainty on the measurement of the asymmetry parameters is chosen to account for the finite data frequency resolution of
Kepler 4 years following Sect. 4.2.

where B2
r (a11) is an estimate of the horizontal average of

the squared average magnetic field across the g-mode cavity
obtained from the a11 measurements using only ` = 1 modes.
The term T captures the integrated effect (in radius) of the mode
sensitivity across the g-mode cavity in the radiative interior (see
Eq. (C.7)), which is independent of field strength or topology.
For a given field topology, M0,0

2 takes a particular value (shift
of the m = 0 quadrupolar mode). Therefore, the above equation
with three asymmetry parameters only has two degrees of free-
dom, that is, the third asymmetry parameter is determined from
the knowledge of the other two.

Therefore, we can only measure two independent asymme-
try parameters to constrain the field topology. The degeneracy
between the quadrudipole with or without inclination of the
quadrupole with respect to the dipole axis is therefore not fully
lifted when using ` = 1 and ` = 2 oscillation modes. Octupo-
lar mixed-mode frequencies would be required, which are very
unlikely to be detected in current datasets. Figure 7 shows the
resulting degeneracies for the three stars in Fig. 6. For Star 1,
assuming a quadrudipole configuration, we can deduce that (i)
the dipole is inclined with a small angle with the rotation axis

(βd . 25◦), (ii) that there is at least a small quadrupolar compo-
nentR, but (iii) the quadrupole can either be close to aligned with
the dipole or close to a 90◦ inclination. For Star 2, the topology is
much better constrained, with the dipole and quadrupole aligned
with each other and the relative strength R close to 1. Star 3
presents a full degeneracy in terms of the inclination angle of the
dipole, while the ratio R shows a dominant quadrupole with an
axis of about 50◦ with respect to the dipole. Figure 7 has been
simplified for readability; more comprehensive 2D degeneracy
maps (see Fig. D.2) are discussed in Appendix D. Depending on
the value of the asymmetry parameters, the degeneracy on the
quadrudipole inclinations is therefore highly variable, and care-
ful analyses will have to be performed on a case-by-case basis.

4.4. Impact of the centrality of the magnetic field on its
detectability and characterization

We initiated in Sect. 3.3 a discussion regarding the impact of the
centrality of large-scale magnetic fields on the observed asym-
metries and therefore on the detectability of large-scale magnetic
fields. In Fig. 8, we present the dependence of asymmetry param-
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Fig. 7. Degeneracies in the asymmetry parameters for the three stars in
Fig. 6. Each column is a projection on the plane of two of the three field
topology parameters (βq, βd), (βq,R).

eters on inclination βd of the dipole (solid lines and left axis) and
on offset zo (dashed lines and right axis). Even though a combi-
nation of the three asymmetry parameters is not perfectly the
same in the case of inclined or the offset dipole, the solutions are
very close to one another and lie within the uncertainty ranges
from Appendix E. Signatures of the inclined dipole on the sym-
metry of each ` multiplet can therefore be degenerate with those
of the offset dipole for β / 55◦ (see the pink regions in Fig. 8).

Star 1 from Fig. 6 has asymmetry parameter values such as
the field can be a quadrudipole inclined with a dipole angle of
βd = 25◦ and |R| of about 0.5 as in Fig. 6. However, a purely
dipolar field with an offset along the rotation axis of about 2% of
the radiative zone extent leads to very similar asymmetry values
(see Fig. 8). Including measurement uncertainties as described in
Appendix E, the offset dipole and the quadrudipole correspond-
ing to the asymmetry parameters of Star 1 would be degener-
ate. For Star 2 and Star 3, quadrudipoles with the configurations
discussed previously are not degenerated with an offset dipolar
field, as the a21 parameter corresponding to the quadrudipoles
cannot be recovered with a dipolar field (offset or not, see Fig. 3).

Additionally, we also include upper and lower boundaries of
offsets observed in white dwarfs for comparison. The minimum
amd maximum observed zo values are taken from Vennes et al.
(2017), Hardy et al. (2023a,b), Hollands et al. (2023). The red
star (J0017+004) corresponding to zo = 0.4 leads to near zero
asymmetry parameter values; it would be very hard to detect
such a magnetic field geometry from asymmetries, and one
would have to rely only on the global shifts ω`B. The blue star
(J0942+2052), corresponding to an offset of |zo| = 0.01 is close
to be degenerated with a centered dipole, but the three asym-
metry parameters would each lead to a different β`|m| angle.

Fig. 8. Asymmetry parameters a`,|m| depending on the inclination angle
of the field β in case (a) or on the offset of a magnetic field in the case
(c) in Fig. 1. The offset zo of the field is given relative to the radia-
tive zone radius. The pink region indicates, on each panel, the domain
for which both an inclined dipole and an offset dipole can yield to
the same asymmetry parameter. The blue and red stars show the mini-
mum and maximum offsets measured from the combination of studies
by Vennes et al. (2017), Hardy et al. (2023a,b), Hollands et al. (2023).
J0942+2052 has an offset of −0.01 (Hardy et al. 2023b) and J0017+004
of 0.40 (Hardy et al. 2023a).

To understand this in the more general case, we calculate all
asymmetry parameters a11(zo), a21(zo), a2(zo) for a fixed offset
zo. Then, we calculate for each asymmetry parameter the corre-
sponding inclination angles β`|m|. These three inclination angles
for different a`|m| might not be the same, and their differences
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Fig. 9. Differences between the inclination angles resulting from the
asymmetry parameters of different offsets.

are presented in Fig. 9. When the difference in angles is non-
zero the combination of asymmetry parameters is unique to an
offset dipole and can be distinguished from an inclined dipole,
which is the case for J0942+2052 but not for J0017+0041, which
is fully degenerate. This result has to be discussed in perspec-
tive with current uncertainties on the measure of asymmetry
parameters (see Appendix E). For instance, observations from
Li et al. (2022) lead to an uncertainty in the inclination angle of
∼±7◦ (see also Mathis & Bugnet 2023), which is higher than the
largest difference in β angles measured from asymmetry param-
eters in Fig. 9. As a result, even though asymmetry parameters
are not perfectly identical from the two configurations, it might
be complicated to distinguish between a centered dipole and an
offset one based on asymmetry parameter values with associated
observational uncertainties.

The average shift ω`B depends on the squared averaged mag-
netic field strength at the H-shell as well, which makes it sensi-
tive to only this particular layer. Strong offset magnetic fields
might therefore be confused for weaker centered fields when
using ω`B and a`|m|. This implies that magnetic fields might be
underestimated in red giant cores, as a stronger offset dipole can
have the same signature on the ` = 1 asymmetry parameter than
a weaker centered dipole (valid also for ` = 2). As a result, one
should be careful when extracting a magnetic field amplitude
from ω`B, which should rather be taken as a minimum amplitude
of the large-scale field.

4.5. Accessing asymmetry parameters

As demonstrated by Gough & Thompson (1990) and more
recently by Loi (2021), magnetic fields with a high inclina-
tion with respect to the rotation axis generate a second lift
of degeneracy of the mixed mode frequencies in the observer
frame. The relative amplitude of these additional components
of the mixed-mode multiplets compared to the central peaks
studied here strongly depends on the magnetic field amplitude.
As we place our study in the case of rotation-dominated sig-
natures, these additional multiplet components contain a small
fraction of the mode power density (Loi 2021) and have there-
fore been neglected in our study. As a second result of this
approximation, we could neglect the effect of magnetic fields
on the mode amplitudes. Therefore, we assumed that the ampli-

Table 1. Approximated access to asymmetry parameters depending on
the inclination of the star with the line of sight (following mode visibil-
ities as defined in Gizon & Solanki 2003).

i (◦) 0 10 40 70 80 90

a11 7 3 3 3 7
a21 7 3 7 3 7
a22 7 7 7 3 3
a22 − a21 7 7 3 3 7

tudes in mixed mode multiplets are consistent with the study of
Gizon & Solanki (2003) in the case of pure rotation (further jus-
tified by the study of Loi 2021, in the case of weak magnetic
fields).

As discussed in Gizon & Solanki (2003), all components of
a given (`,m) multiplet are not visible simultaneously, depend-
ing on the line of sight of the observation. This makes the
detectability of complex magnetic fields challenging, as we can-
not access all asymmetry parameters simultaneously. Following
Appendix C, assuming that magnetic fields are at play, the aver-
age shift of the ` = 2 multiplet ω`=2

B can always be estimated
when two out of the three |m| components are visible. As a result,
for a given inclination angle i ' 10◦, at least two components of
the ` = 2 mixed mode multiplet are visible (Gizon & Solanki
2003), which result in a systematic estimate for ω`B (i.e., the
denominator in Eq. (10)) when i ' 10◦. However, only asymme-
try parameters corresponding to the visible components of the
multiplet are simultaneously measurable, which depends on i.
In Table 1 we report the detectability of the various asymme-
try parameters given the inclination of the line of sight i with
respect to the rotation axis. Table 1 shows that we have access
to two asymmetry parameters (or of their combination) for most
of the inclination angles of the observations ([a11 and a21] for
10 / i / 40◦, [a11 and a22 − a21] for 40 / i / 70◦, and [a21
and a22] for 70 / i / 80◦). From Fig. 6 we observe that having
access to only one out of the two ` = 2 asymmetry parame-
ters or to their combination is theoretically enough as a11, a21,
and a22 are not independent (see Appendix C). In a realistic sce-
nario, depending on errors in the measure of the visible asym-
metries, two asymmetry parameters might be enough to partially
lift the topology degeneracy. The resulting degeneracy depends
on the true (R, β) combination (see Fig. 6 in the case of the
aligned quadrudipole). We conclude that topologies might be
unveiled from ` = 1, 2 frequencies following our study for stars
observed with an inclination angle 10 / i / 80◦ when assum-
ing rotation effects dominating magnetic effects. The full inves-
tigation of the effect of stronger magnetic fields on the ampli-
tudes and detectability of the different components of the mul-
tiplet given the line of sight will be the scope of a follow-up
paper.

4.6. The challenge of ` = 2 mixed modes detection

Due to the low coupling between acoustic and gravity quadrupo-
lar modes, ` = 2 g-dominated mixed modes have a very low
amplitude. As a result, ` = 2 mixed modes (sensitive to red giant
core magnetism) are extremely difficult to identify, and measur-
ing frequency splitting on these mixed modes is even more dif-
ficult (e.g., Ahlborn et al. 2020). While we are aware of these
challenges, efforts toward dedicated search for ` = 2 mixed
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modes in red giants should be one of the major focus in red giant
asteroseismology.

A crucial first step is to identify stellar candidates show-
ing promising magnetic signatures. Stars already known to be
magnetic from studying their ` = 1 modes are prime candi-
dates. In addition, adapting global detection methods specifically
designed for magnetism (such as the modified stretching of g-
mode period spacing using the ∆Π1 method for ` = 1 modes
as derived in Bugnet 2022) to ` = 2 modes would serve as
yet another effective precursor of magnetic signature in ` = 2
modes. These two-steps approach of fitting the power spectra to
identify ` = 2 magnetic signatures should be relatively simpler
than a direct fitting approach to detect ` = 2 mixed modes.

After these prior screening steps to extract a gold sample of
candidates, the final step would require a fine analysis of the fre-
quency in the ` = 2 regions. The past few years have seen con-
siderable advancement in sophisticated data analysis methods,
but no study implementing these methods to the detectability of
` = 2 mixed modes has been conducted recently. With a surge of
softwares suitable for highly efficient parallelized computation
across multiple CPU nodes such as emcee (Foreman-Mackey
2019) and JAX (Bradbury et al. 2018), we can now utilize pow-
erful optimization tools using Bayesian frameworks to identify
modes. Bayesian methods have already started gaining appli-
cations in asteroseismology, as done in identifying rotationally
split ` = 1 mixed modes (e.g., Kuszlewicz et al. 2023; Li et al.
2024). Efficient machine learning algorithms (Hon et al. 2017,
2018, 2019; Dhanpal et al. 2022, 2023) to identify mixed mode
frequency and period separation is yet another coming-of-the-
age tool that may be harnessed to fit for ` = 2 modes with mag-
netic signatures.

In addition to efficient new analysis tools, the most important
change that has happened over the past few years is that asteroseis-
mologists are no longer blind to signatures expected from magne-
tized red giants. These serve as crucial priors and constraints for
Bayesian and deep learning frameworks mentioned above. The
symmetric splitting of ` = 1 modes inform rotation and the asym-
metric splitting informs magnetism (and second order effects of
rotation, if significant). These constitute vital priors for ` = 2
rotational splittings and asymmetry parameters a2|m|, which are
required for the full characterization of ` = 2 modes. A specific
example of a constraining equation is Eq. (34), which effectively
passes on the information of the measured average radial field
B2

r (a11) from the ` = 1 asymmetry parameter a11 to the mea-
surement of asymmetric splitting of ` = 2 modes. Therefore,
a fitting routine for ` = 2 modes would account for all of this
prior information for stars that carry magnetic signatures in ` = 1
modes. Such fitting routines would be much more constrained,
which should facilitate magnetic detection in ` = 2 modes in stars
where ` = 1 modes carry magnetic signatures.

5. Conclusion and perspectives

We have demonstrated that a combined analysis of ` = 1 and
` = 2 mixed mode frequency asymmetries is key to access-
ing the quadrupolar component of magnetic fields. When using
asymmetry parameters associated with (` = 1, |m| = 1), (` =
2, |m| = 1), and (` = 2, |m| = 2) frequencies, the degener-
acy between the signature of aligned and centered dipolar and
quadrupolar components of the field can be lifted, allowing their
respective strength to be measured (depending on the resolution
in the data). Aligned quadrupolar fields can therefore be detected
from the study of ` = 2 oscillation modes. Depending on the

inclination of the quadrupole with respect to the dipole, a mis-
alignment might or might not be constrained from ` = 1 and
` = 2 frequencies.

As the observed magnetic fields in white dwarfs and
main-sequence intermediate stars show offset fields (e.g.,
Wickramasinghe & Ferrario 2000; Hardy et al. 2023b), we also
investigated the detectability of such topologies. We have
demonstrated that strong offset fields can be confused with
weaker and centered fields and that we do not currently have
a way to distinguish between them. As a result, the magnetic
field amplitudes estimated from shifts in the frequency pattern
should be considered a lower boundary for the true magnetic
field amplitude in the radiative zone.

Depending on the inclination of the rotation axis of the star
with respect to the line of sight, some asymmetry parameters
might not be measurable due to a low amplitude in |m| com-
ponents (Gizon & Solanki 2003; Gehan et al. 2021). Our results
therefore apply to stars observed with a line of sight i ∈ [10, 80]◦
(which is the case for most observed stars) and rotation effects
dominating magnetic effects, which is the case for magnetic
red giants detected so far (Li et al. 2022; Deheuvels et al. 2023;
Li et al. 2023).

While we have derived these magnetoasteroseismology pre-
scriptions for both ` = 1 and ` = 2 modes, ` = 2 mixed oscilla-
tion frequencies are extremely complicated to identify in astero-
seismic data (e.g., Ahlborn et al. 2020). For this reason, there has
not been a dedicated quest for the characterization of quadrupo-
lar mixed modes in the thousands of red giants observed by
Kepler, and it is thus lacking in the literature on red giant stars.
Considering the stars for which the rotation and magnetic fields
have been measured from ` = 1 oscillations, forward modeling
of the rotating and magnetic mixed-mode patterns including the
magnetic effects of topologies discussed above for ` = 2 modes
could be the solution to identify and take advantage of ` = 2 fre-
quencies and obtain a better constraint on the angular momentum
transport inside stars.
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Appendix A: Br expression for an inclined
quadrudipole

We briefly outline the mathematical steps to derive the expres-
sion of Br for a general quadrudipole, where the dipolar and
quadrupolar axes are not necessarily aligned. The schematic rep-
resentation of a general quadrudipole is shown in Fig. 1. The
dipole is inclined at an angle βd to the rotation axis and the
quadrupole is inclined at an angle βq to the rotation axis. To go
about constructing this, let’s start at the simpler case where the
symmetry axis of the dipole and quadrupole are aligned with the
rotation axis. The expression for the radial field component in
this case will look like

Br(r, θ, φ) = B0 br(r)
[
Y10(θ, ϕ) + R Y20(θ, ϕ)

]
, (A.1)

where R is the ratio of the strength of the quadrupole to the
dipole. Now, we want to incline the dipolar component by an
angle βd with respect to the rotation axis. For this, let’s first
choose a frame (θ̃d, ϕ̃d) where the dipole is axisymmetric and
then find the coordinate transform between (θ̃d, ϕ̃d) and (θ, ϕ).
Thanks to Wigner d-matrices (Varshalovich et al. 1988), we can
use the following relation to go from the axisymmetric frame to
a non-axisymmetric frame rotated by β:

Y`,m(θ, ϕ) = d(`)
m,0(βd) Y`,0(θ̃d, ϕ̃d) . (A.2)

Then, using the fact that Wigner d-matrices are unitary, we get
the expression

Y`,0(θ̃d, ϕ̃d) =
∑̀

m=−`

d(`)
0,m(βd) Y`,m(θ, ϕ) . (A.3)

So, for a dipole inclined at βd from the rotation axis and a
quadrupole aligned with the rotation axis, the expression for the
radial component of the magnetic field reads

Br(r, θ, φ) = B0 br(r)
[
Y10(θ̃d, ϕ̃d) + R Y20(θ, ϕ)

]
,

= B0 br(r)

 1∑
m=−1

d(1)
0,m(βd) Y1,m(θ, ϕ) + R Y20(θ, ϕ)

 .
(A.4)

Similarly, the transformation between a coordinate that is rotated
by βq (where the quadrupole is axisymmetric) and the coordinate
of axisymmetric rotation is given by

Y`,0(θ̃q, ϕ̃q) =
∑̀

m=−`

d(`)
0,m(βq) Y`,m(θ, ϕ) . (A.5)

Therefore, the total Br(r, θ, ϕ) where the dipole and quadrupole
are tilted by βd and βq with respect to the rotation axis is given
by

Br(r, θ, ϕ) = B0 br(r)
( 1∑

m=−1

d(1)
0,m(βd) Y1m(θ, ϕ)

+R

2∑
m=−2

d(2)
0,m(βq) Y2m(θ, ϕ)

)
. (A.6)

On plugging in the elements of the Wigner d-matrices, in
Eq. A.6, we get the expression in Eq. 15.

Appendix B: Magnetic inversion kernels

Section 2.4 outlines the numerical approach we adopt to cal-
culate the magnetic coupling matrix. A key component in the
numerical evaluation of magnetically perturbed stellar eigen-
states is its Lorentz-stress sensitivity kernels (originally laid
out in Das et al. 2020). These Lorentz-stress kernel components
k′kB

µν
st in Eq. 19, are defined as

k′kB
µν
st = 4π(−1)m′γ`′γsγ`

(
`′ s `
−m′ t m

)
k′kG

µν
s , (B.1)

where γ` =
√

2` + 1/4π and
(
`′ s `
−m′ t m

)
are the Wigner 3-

j symbols obtained from triple product of complex spherical
harmonics (see Appendix C of Dahlen & Tromp 1999). The m
independent part of the kernels k′kG

µν
s are functions of the stel-

lar eigenfunctions (hence the structure of the background stellar
model):

G−−s =
−1
2r2

[(
`′ s `
2 −2 0

)
χ−−1 (k, k′) +

(
`′ s `
0 −2 2

)
χ−−1 (k′, k)

+

(
`′ s `
1 −2 1

) {
χ−−2 (k, k′) + χ−−2 (k′, k)

}
+

(
`′ s `
3 −2 −1

)
χ−−3 (k, k′) +

(
`′ s `
−1 −2 3

)
χ−−3 (k′, k)

]
, (B.2)

G0−
s =

1
4r2

[(
`′ s `
1 −1 0

)
χ0−

1 (k, k′) +

(
`′ s `
0 −1 1

)
χ0−

1 (k′, k)

+

(
`′ s `
−1 −1 2

)
χ0−

2 (k, k′) +

(
`′ s `
2 −1 −1

)
χ0−

2 (k′, k)
]
, (B.3)

G00
s =

1
2r2 (1 + p)

{
1
2

(
`′ s `
0 0 0

) [
χ00

1 (k, k′) + χ00
1 (k′, k)

]
+

(
`′ s `
−1 0 1

) [
χ00

2 (k, k′) + χ00
2 (k′, k)

] }
, (B.4)

G+−
s =

1
4r2 (1 + p)

{
1
2

(
`′ s `
0 0 0

) [
χ+−

1 (k, k′) + χ+−
1 (k′, k)

]
+

(
`′ s `
−2 0 2

) [
χ+−

2 (k, k′) + χ+−
2 (k′, k)

]
+

(
`′ s `
−1 0 1

) [
χ+−

3 (k, k′) + χ+−
3 (k′, k)

] }
, (B.5)

where p = (−1)`+`
′+s and

χ−−1 (k) = Ω0`Ω2`

[
Vk(3Uk − 2Ω2

2`Vk + 3rU̇k) − rUkV̇k

]
, (B.6)

χ−−2 (k) = Ω2
0`

[
3UkVk + (Ω2

2` − 2Ω2
0`)V

2
k + rVkU̇k − rUkV̇k − U2

k

]
,

(B.7)
χ−−3 (k) = Ω2

0`Ω2`Ω3`V2
k , (B.8)

χ0−
1 (k) = Ω0`

[
4Ω2

0`V
2
k − 4rΩ2

0`VkV̇k + 2r2U̇kV̇k + r2VkÜk

+ Uk{8Uk − 6(Ω2
0` + 1)Vk + r(4V̇k − rV̈k)}

]
, (B.9)

χ0−
2 (k) = Ω2

0`Ω2`

[
UkVk + Vk(Uk − 4Vk + 3rV̇k) + rVkV̇k

]
, (B.10)

χ00
1 (k) = 2

[
− 2rUkU̇k + Ω2

0`r(VkU̇k + UkV̇k)

− 5Ω2
0`VkUk + 2Ω4

0`V
2
k + 3U2

k

]
, (B.11)

χ00
2 (k) = −Ω2

0`

[
− UkVk + V2

k + r(VkU̇k + UkV̇k) (B.12)

− 2rVkV̇k + r2V̇k
2]
, (B.13)

χ+−
1 (k) = 2

[
− 2rU̇kUk + Ω2

0`r(U̇kVk + UkV̇k) − r2U̇k
2

−Ω2
0`UkVk + U2

k

]
, (B.14)
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χ+−
2 (k) = −2Ω2

0`Ω
2
2`V

2
k , (B.15)

χ+−
3 (k) = Ω2

0`

[
r(UkV̇k − VkU̇k) − UkVk + U2

k

]
, (B.16)

and ΩN` =

√
1
2 (` + N)(` − N + 1). From visual inspection, the

coupling matrix Mk′k (built on the kernels) is hermitian, which
ensures real eigenfrequencies. Further, the (1 + p) factor in
Eq. B.4 & B.5 implies that for self-coupling of multiplets, the
frequency splittings are sensitive to only even s components of
the Lorentz-stress components h00

st and h+−
st arising from B2

r and
(B2

θ + B2
ϕ), respectively.

Appendix C: Elements and trace of magnetic
coupling matrix for ` = 2

C.1. Elements of the magnetic coupling matrix for ` = 2
modes

It is instructive to explicitly write out the expressions of the mag-
netic coupling matrix. We followed the same steps from Eq. 30
of Li et al. (2022) to find the elements of the magnetic coupling
matrix M` in the case of ` = 2 mixed modes:

M2,2
2 = M−2,−2

2 =
1

2 µ0 ω I
15
4

∫ ro

ri

[
∂(rξh)
∂r

]2 ∫ π

0
B2

r

{sin2 θ cos2 θ + sin2 θ}r2 sin θ dr dθ

M1,1
2 = M−1,−1

2 =
1

2 µ0 ω I
15
4

∫ ro

ri

[
∂(rξh)
∂r

]2 ∫ π

0
B2

r

{cos4 θ + sin4 θ − 2 cos2 θ sin2 θ + cos2 θ}

r2 sin θ dr dθ

M0,0
2 =

1
2 µ0 ω I

45
2

∫ ro

ri

[
∂(rξh)
∂r

]2 ∫ π

0
B2

r

sin2 θ cos2 θ r2 sin θ dr dθ

C.2. Obtaining net magnetic shift in ` = 2 from net magnetic
shift of ` = 1

Focusing on the angular part of the integrand other than the
dependence from B2

r , the elements of the magnetic coupling
matrix have the following angular dependence:

M2,2
2 ∝ sin2 θ cos2 θ + sin2 θ (C.1)

M1,1
2 ∝ 1 − 4 cos2 θ sin2 θ + cos2 θ (C.2)

M0,0
2 ∝ 6 sin2 θ cos2 θ. (C.3)

Using simple trigonometric identities, it is easy to see that this
angular part in the trace of M2 evaluates to Tr(M2) = 2 M2,2

2 +

2 M1,1
2 + M0,0

2 ∝ 4. The complete expression of the net magnetic
shift then becomes

Tr(M2) =
15

2 µ0 ω I

∫ ro

ri

[
∂(rξh)
∂r

]2 ∫ π

0
B2

r sin θ dr dθ . (C.4)

All ` = 1 mode frequencies are detectable in the range i ∈
[10, 80]◦ (Gizon & Solanki 2003). Li et al. (2022) used the net
shift in ` = 1 modes ω`=1

B to obtain the horizontal average of the
squared average magnetic field:

B2
r ∼

∫ π

0
B2

r sin θ dθ . (C.5)

Therefore, from an independent analysis of the ` = 1 modes
of the same star with i ∈ [10, 80]◦ in the first step, we can
estimate B2

r from the ` = 1 modes, which we can then use to
calculate Tr(M2) even if we only have explicit access to two
of the ω2|m| due to mode visibility induced by a relative incli-
nation between the rotation and magnetic axes. Using Eq. 10,
Eq. C.4, and Eq. C.5, we get the following relation between the
three asymmetry parameters:

a22 + a21 +
5 M0,0

2

T B2
r (a11)

= 1 , (C.6)

where the radial dependence of the mode sensitivity around the
H-shell is captured in

T =
15

2 µ0 ω I

∫ ro

ri

[
∂(rξh)
∂r

]2

dr . (C.7)

Appendix D: Numerical calculation for Case (b)

Similar to Sect. 3.1.2 we calculate the asymmetry parameters
for a magnetic field configuration of the case (b) in Fig. 1. The
quadrupolar field in this case is chosen to be inclined by 90◦
compared to the dipolar field. The resulting comparison between
the numerical results and the analytical expressions can be found
in Fig. D.1. Discrepancies between the numerical and the analyt-
ical method are once again negligible, as in Case (a).

Figure D.2 is an extension of Fig. 7. We use the asymmetry
parameter values corresponding to a Case (a) field with (β ∈
[0 : 90]◦, |R| ∈ [0.5, 1.1, 1.8]) and show the also possible (|R|,
βd, βq) parameters corresponding to a Case (b) field leading to
the same asymmetry values. Along the y-axis we vary the initial
angle on the aligned quadrudipole (Case (a) β = βd = βq. For
initial β of 0◦ and 90◦ the values of |R|, βd, βq are unique. If a
chosen star has an inclination angle β between 35◦ and 65◦, the
dipole angle is fully degenerate. The possible values |R|, βd, βq
can take for the three stars in Fig. 7 are shown as the horizontal
red lines, the red symbols indicating the case where βd = βq = β
corresponding to the aligned field as in Fig. 6. Star 1 can either
be i) an aligned quadrudipole with β = 25◦ and |R| = 0.5 or
ii) a misaligned quadrudipole with βd / 27◦, βq / 29◦ or '
77◦ and |R| ∈ [0.2 : 1.2]. Star 2 is very well constrained as an
aligned quadrudipole, with very small β. For Star 3 we cannot
constrain the dipole angle, but we know the quadrupole with an
angle between 45◦ and 58◦ must dominate the field strength.

Appendix E: Observational uncertainty on
asymmetry parameters

From Eq. 9 we know that ω`,−m +ω`,m−2ω`,0 = (2`+1)ζ a`|m| ω`B,
where our definition follows the convention of Li et al. (2022),
with

∑`
m=−` δω`,m = (2` + 1)ζ ω`B = (2` + 1)δω`B. Consequently,

we can write the asymmetry parameter in the following form:

a`|m| =
δω`,−m + δω`,m − 2δω`,0∑`

m=−` δω`,m
=

N
D
. (E.1)

Here, we have used the fact that the total perturbed frequency
ω`,m is a sum of the unperturbed degenerate frequencyω0

`
and the

splitting δω`,m. In the above expression, the numerator N and the
denominator D represent measurable quantities from the astero-
seismic power spectra. We then used the error propagation:

δa`|m|
a`|m|

=

√(
δN
N

)2

+

(
δD
D

)2

. (E.2)
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Fig. D.1. Same as Fig. 3 but in the case (b) of a misaligned quadrudipole in the case where βq − βd = 90◦.

To estimate the errors in N and D, we used the error propagation
for summations. This gave us δN =

√
6σω and δD =

√
3σω,

where σω is the uncertainty in measuring mode frequencies from
data. Plugging these into Eq. E.2, we obtained:

δa`|m| =
σω
√

3 δω`B

√√
2 +

δω`,−m + δω`,m − 2δω`,0∑`
m=−` δω`,m

2

(E.3)

Since asymmetry parameters are of the order O(10−1) — for
instance a11 ∈ [−0.2, 0.4] in Mathis & Bugnet (2023) for a dipo-
lar field — we can approximate Eq. E.3 to

δa`|m| ∼

√
2
3
σω

δω`B
=

√
6 δ f
δω`B

, (E.4)

where we assume the minimum reliable frequency resolution δ
is 3 times the satellite data resolution σω. For 4-year Kepler data,
δ f ≡ 7.2nHz and for a typical red giant star (as in Li et al. 2022)
since the average magnetic shift in gravity modes ω`B ∼ 200nHz
and ζ ≈ 1 for gravity-dominated modes, the above equation
gives us δa`|m| ∼ 0.08.

It must be noted that in the calculation for error estimation
presented in this Appendix, we have not accounted for the uncer-
tainty arising from the low amplitude of the peaks in ` = 2 g-
modes for typical red-giant stars. Since this is a difficult quan-
tity to estimate apriori (the prominence of the peak likely varies
on a star-by-star basis), we have chosen not to assign explicit
values to its uncertainty. Therefore, the widths of the contours

presented in the degeneracy plots represent the lower bounds of
predicted errors. However, since the goal here is to demonstrate
the decrease in the region of parameter degeneracy (e.g., overlap-
ping region in Fig. 6), choosing a lower bound for the uncertainty
demonstrates the idea we are trying to convey.
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Fig. D.2. Degeneracies in the asymmetry parameters for the three dipole to quadrupole strength ratios corresponding to Star 1 to 3 as a function of
the original β angle and |R| ratio.
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