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Abstract

Biological vision is unlike a camera; rather than transmitting light information faithfully, early
visual circuits process the visual scene to convey only the relevant information in an efficient
manner. Consequentially, the nature of this visual processing then depends on what is the
relevant information in a scene and on the notion of efficiency. In this work, I study how visual
processing is modulated by two different variations in the visual scene. First, I discovered that
in the mouse (Mus musculus) retina, Retinal Ganglion Cells in the upper and lower visual
field have differences in the center surround structure of their receptive fields. Comparison
with models of efficient coding show that this adaptation likely evolved to cope with the
brightness gradient from the sky to the ground that is pervasive in natural scenes. In the
second project, I study how the downstream neurons in the Superior Colliculus dynamically
change their temporal selectivity depending on the ambient luminance and behavioral state.
As the scene gets darker or when the animal is is less aroused, the neuronal responses get
laggier, while still maintaining their relative timing with respect to the population. Overall, this
work emphasises the need to understand visual processing in the context of specific demands
of the animal in its the environment. The adaptive changes in the visual system, from the
retinal ganglion cells to the superior colliculus, highlight the intricate ways in which biological
vision optimizes the processing of visual information.
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CHAPTER 1
Introduction

Adaptation is a ubiquitous phenomenon that allows sensory systems to adjust their processing
of incoming information based on changes in input statistics. The natural world is rich with
both regularities and variations. Animals, including humans, need to adapt their physiology
and behavior in order to best respond to such rich statistical information in the environment.
Some examples of this phenomenon can be found in our daily life; think about how we are
able to hear and understand speech in a loud action movie or a quiet whisper. Or when we
are overcome by a certain smell while entering a room, but don’t even notice it after a few
minutes. Humans can even extend their sensory adaptations externally, for instance by tinting
sunglasses to be darker at the top than the bottom, to account for the fact that the bright
Sun only shines from above.

Why must sensory systems adapt to the incoming stimuli? For the simple reason that they
should transmit as much relevant information about the input as possible (Atick, 2011; Barlow,
1961), but they only have limited resources to do so, a theoretical framework known as
’Efficient Coding’ (Laughlin, 1981). For instance, a sensory neuron may be constrained by
metabolic demands, the dynamic range of its outputs, or inherent biological noise. Natural
inputs, on the other hand, can have vast dynamical range, or vary across extremely fast or
slow timescales. Adaptation allows the system to continue to be parsimonious with resource
use, even as changes in input statistics demand an update to the coding strategy.

While adaptation is prevalent in all sensory systems, the visual system is one of the better
understood sensory modalities for the main reason that it is far easier to reproduce most kinds
of visual stimuli in the lab, than it is to reproduce all the different odorants or touch sensations,
etc. The mechanisms and principles learnt from studying visual adaptation have also been
found in other modalities and will likely continue to inform sensory neuroscience in the future.

In this thesis, I investigate how the peripheral visual system in mice modulates the spatial or
temporal representations of visual stimuli as a response to the different statistics of natural
scenes. More specifically, in Chapter 2, I uncover how different locations of the retina have
evolved different spatial processing strategies to compensate for the large luminance range
between the sky and the ground. In Chapter 3, I investigate how a prominent retino-recipient
part of the brain, the Superior Colliculus, dynamically adjusts the temporal dynamics of the
neural code when the amount of light changes, like at different times of the day, or when the
animal’s pupil dilates.
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1. Introduction

To guide the reader, I will first introduce the parts of the mouse visual system relevant for
this purpose. I will then discuss the recording technologies and computational theories that
actually allow us to probe these questions.

1.1 The Mouse Visual System

The visual system is responsible for capturing, processing and interpreting information about
the visual environment. The process begins in the eye, which is connected via the optic nerve
to the image forming and non-image-forming pathways of the brain. The non-image forming
functions of the visual system include circadian entrainment, optokinetic reflex and pupillary
light reflex which are typically controlled by dedicated nucleii in the brain (Seabrook et al.,
2017).

The hallmark of the image forming pathway is retinotopy: the phenomenon where nearby
points in visual space are represented by nearby neurons in anatomical space. From the
retina, one image-forming pathway leads to the Primary Visual Cortex (V1) via the Lateral
Geniculate Nucleus (LGN) and the other heads to the Optic Tectum, also known as the Superior
Colliculus (SC). The geniculocortical pathway is evolutionarily newer and highly developed
only in mammals, while the tectal pathway evolved with the first vertebrates—jawless fishes.
The relative importance and sophistication of the thalamic and tectal pathways varies across
different vertebrate species (Isa et al., 2021).

1.1.1 The Retina

The vertebrate retina is a complex and highly species-specialized structure that serves as
the starting point of the visual system. Not only is it responsible for transducing light into
neural signals, but a sophisticated 3-layer network of neurons also shapes the signal to extract
spectral-spatio-temporal features that are conveyed to the brain via the optic nerve.

Anatomy of the Retina

The retina is a layered neural tissue, approximately 100-300m in thickness, located at the
back of the eye. From outside going inwards, these layers are the Outer Nuclear layer, Outer
Plexiform Layer, Inner Nuclear Layer, Inner Plexiform Layer, and the Ganglion Cell Layers (Fig.
1.1. These layers house more than 100 different cell types (Masland, 2012; Yan et al., 2020),
divided into the following major classes:

• Photoreceptors are input neurons containing receptors called opsins, that convert
photons into electrochemcial signals through a cascade of biochemical reactions (Fu,
n.d.). Most mammalian retinas have two to three types of cone photoreceptors and one
type of rod photoreceptor. Rods are highly sensitive to low light levels and are crucial
for night vision, while cones carry more color information and function at brighter light
levels. While some primates, including humans, evolved to have a third, red-sensitive
(~560nm), L opsin, most mammalian cones possess one of two types of opsins, S or M
opsin, which have their peak sensitivity in the UV-blue (~400nm) and green (~520nm)
portions of the visual spectrum, respectively.

In the mouse retina, the distribution of these two cone opsins is non-uniform, with the
upward-facing ventral retina and the downward-facing dorsal retina containing more of

2



1.1. The Mouse Visual System

A B

Figure 1.1: A. Schematic diagram of the organization of the Retina. B. Light micrograph of
the a vertical section through the central human retina. Lightly adapted from Webvision by
Dr. Helga Kolb / CC-BY-NC-4.0

the S or M opsins, respectively (Ortín-Martínez et al., 2014; Szél et al., 1992). This
effectively divides the mouse retina into three functional domains: (1) the ventral retina
which is dominated by the S opsin, where even ’M cones’ co-express both M and S opsin,
(2) a narrow Opsin Transition Zone (OTZ) where the S opsin expression drastically falls
off (Nadal-Nicolás et al., 2020) and (3) a dorsal retina mostly dominated by the M opsin,
with occasional ’true S cones’. This remarkable bias in the spectral sensitivity of the
very first layer of the visual system has also been found in species as varied as hyenas
and dragonflies. Experiments in mice have shown that from an information theoretic
point of view, this non-uniform distribution would allow the photoreceptors to optimally
encode contrast information contained in the UV or Green channel in the upper or lower
parts of visual scenes (Baden et al., 2013) (see also 1.2.2).

• Horizontal cells are inhibitory interneurons in the retina that mediate lateral interactions
between photoreceptors and bipolar cells, playing a crucial role in visual processes such
as contrast enhancement or color opponency (Chapot et al., 2017; Joesch & Meister,
2016; VanLeeuwen et al., 2009). These cells have wide dendritic arborizations, creating a
lateral network that is further extended through gap junctions, modulating photoreceptor
output and contributing to their large receptive field sizes (Shelley et al., 2006). Apart
from their somewhat contested role in establishing the inhibitory surrounds of ganglion
cells (Chaya et al., 2017; Cook & McReynolds, 1998; Drinnenberg et al., 2018; Mangel,
1991; Ströh et al., 2018), they have recently been shown to also modulate the temporal
dynamics of retinal output in a multitude of ways (Drinnenberg et al., 2018).

• Bipolar cells serve as the bridge between the photoreceptors and the retinal ganglion
cells. They are broadly categorized into cone bipolar cells, which relay signals from the
different cones, and rod bipolar cells, which is one of the outputs of the rod pathways.
Recent studies have expanded our understanding of the genetic and functional diversity
of bipolar cells in the mouse retina. Single-cell transcriptomic analysis has classified
various bipolar cells into around 15 types, uncovering their unique genetic profiles and
potential roles in visual signaling (Shekhar et al., 2016). Additionally, research utilizing
genetic tools to report Glutamate release by the bipolar cells has provided insights
into how these cells contribute to the processing of visual information through their

3
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1. Introduction

interplay with amacrine cells (Franke et al., 2017). An important feature of bipolar
cell morphology is the laminar manner in which their axons connect to the ganglion
cells. The axons of ON and OFF bipolar cells stratify into different sub-layers of the
inner plexiform layer, separated by cholinergic amacrine cells, which are then sampled
selectively by the dendritic trees of ON or OFF type ganglion cells.

• Amacrine cells Amacrine cells are a highly diverse group of inhibitory interneurons in
the retina that play pivotal roles in modulating visual signals before they are transmitted
to the brain. In the mouse retina, over 60 distinct types of amacrine cells have identified
based on their morphology, neurotransmitter content, and connectivity patterns (Masland,
2012; Yan et al., 2020). These cells are primarily located in the inner nuclear layer and
interact within the inner plexiform layer, forming synapses with bipolar cells, ganglion
cells, and other amacrine cells. They are essential for various aspects of visual processing,
including temporal modulation, contrast enhancement, direction selectivity (Vaney et al.,
2012), and the shaping of receptive fields of bipolar cells (Franke et al., 2017).

Recent studies have provided significant insights into the specific functions and con-
nectivity of different amacrine cell types in the mouse retina. For instance, starburst
amacrine cells, which release both acetylcholine and GABA, are crucial for direction
selectivity. They asymmetrically inhibit direction-selective ganglion cells, allowing these
cells to respond preferentially to motion in a specific direction (Euler et al., 2002; Fried
et al., 2002). Another example is the AII amacrine cell, which plays a key role in
scotopic (low-light) vision by linking the rod photoreceptor pathways to cone bipolar
cells, effectively transmitting rod signals to both ON and OFF pathways (Demb &
Singer, 2012). These findings highlight the complex interplay of various amacrine cell
types in refining retinal output and enhancing visual processing in mice.

• Retinal Ganglion Cells (RGCs) are the output layer of the retina, since their axons
make up the optic nerve that proceeds up into the brain. The oldest and broadest
possible classification of RGCs is based on whether they fire to increments, decrements, or
both, of small spots of light, dividing them into ON, OFF or ON-OFF RGCs respectively
(Hartline, 1938; Lettvin et al., 1959). This division of labor allows the retina to use
much fewer spikes than a purely ON-ON organisation would have permitted (Gjorgjieva
et al., 2014). As the size of the dark or bright spot is made larger, initially the RGC
response gets stronger, but after a certain size, the response gets weaker rather than
saturating. This was the discovery of an inhibitory surround around the center region,
that has the opposite polarity (OFF surround for ON Center and vice-versa) and actively
suppresses the signal from the center (Barlow et al., 1957).

Unfortunately for the lovers of simplicity, as stimulation and recording techniques
improved, RGCs were found to be picky for much more than just simple brightening
or dimming spots. Mouse RGCs are nowadays classified into more than 40 subtypes,
each one selective for a specific subset of stimuli (Baden et al., 2016; Goetz et al.,
2022), and covering the visual space in non-overlapping ’mosaics’ (Wässle et al., 1981;
Wässle, 2004). These ’functional types’ typically also correspond to unique dendritic
morphologies or gene expression profiles (Sanes & Masland, 2015), and target vastly
different regions of the brain (Martersteck et al., 2017). Since RGCs represent the
final retinal output to the brain, these different functional types can be thought to
decompose the input image into parallel channels of extracted features like size, color,
speed, direction or orientation. While some of these output features can be somewhat
explained on the basis on RGC morphological features, like asymmetry (Kim et al.,
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1.2. Studying the Visual System

2008) or laminar stratification (Famiglietti & Kolb, 1976) of their dendritic trees, the
contribution of the preceding cells of the retinal circuitry in extracting these output
features remains an active area of research.

1.1.2 The Superior Colliculus

The Superior Colliculus is an evolutionarily conserved visual structure of the midbrain, that
plays a key role in attentional shifts, multisensory integration and innate behaviors ranging
from approach to avoidance (Basso et al., 2021). The most superficial layers of the Superior
Colliculus (sSC) receive direct visual inputs from the retina and visual cortex. The intermediate
layers (iSC) also receive somatosensory and auditory inputs from the cortex, inferior colliculus,
cerebellum, and basal ganglia (Doykos et al., 2020; May, 2006). Finally, the deepest layers of
the SC (dSC) receive these multimodal inputs from the upper layers and command orienting
movements of the eye/pinna/head/body towards targets or away from threats (Basso & May,
2017).

In the mouse brain, 85-90% of all RGC axons innervate the SC, even more than the canonical
LGN-cortical pathway (Ellis et al., 2016). The axon terminals of RGC subtypes have been
observed to retinotopically stratify at different depths in the SC, forming overlapping maps
representing different stimulus features (Hofbauer & Dräger, 1985; Huberman et al., 2009;
Kim et al., 2010). Each SC cell can receive inputs from ~5 RGCs and each RGC can synapse
~5 SC cells (Sibille et al., 2022). However, we are only now beginning to understand how
these retinal maps affect the way the SC processes visual information. What features conveyed
by RGC subtypes continue to be represented by SC neurons and what features are extracted
de novo, continues to be an active area of research (Malmazet et al., 2024; Reinhard et al.,
2019; Shi et al., 2017).

Despite being just one synapse from the retina and being responsible for a plethora of visually
guided behaviors, the repertoire and modulation of visual responses in the SC has been much
less explored than say, the visual cortex (Y.-t. Li & Meister, 2023). The SC also receives
neuromodulatory inputs from a number of brain nuclei (Doykos et al., 2020; May, 2006),
hinting the possibility that visual coding in the SC may adapt much more dynamically to visual
and behavioral context than the retina can. For instance, (Joshi et al., 2016) investigated the
relationships between pupil diameter and neuronal activity in several brain regions, including
the SC. They found that changes in pupil size correlate with neuronal activity in the SC,
supporting the idea that arousal-linked cholinergic or noradrenergic inputs could influence
visual processing in the SC. The SC has also been shown to receive strong inhibitory inputs
from the ventral LGN, that can help suppress visual responses during self-motion generated
motion blur (Vega-Zuniga et al., 2024).

1.2 Studying the Visual System

1.2.1 Models of Receptive Fields

The Receptive Field (RF) of a neuron is the subspace of stimuli that maximally modulates a
neuron’s response. Equivalently, it is also described as the stimulus subspace that the neuron’s
activity carries the most information about. Some of the earliest methods of determining
this subspace were developed by Barlow et al. (1957) and Hubel and Wiesel (1959), showing
different visual patterns to an anesthetized cat and observing which patterns evoked the most
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Figure 1.2: Diagram showing how the STA is calculated
A stimulus (consisting here of a checkerboard with random pixels) is presented, and spikes
from the neuron are recorded. The stimuli in some time window preceding each spike (here
consisting of 3 time bins) are selected (color boxes) and then averaged to obtain the STA.

The STA indicates that this neuron is selective for a bright spot of light just before the spike,
in the top-left corner of the checkerboard. Reproduced without changes © User:StphTphsn /

Wikimedia Commons / CC-BY-SA-4.0

spikes in a visual neuron. This continues to be a common method of interrogating neurons,
by presenting them with dots/disks of different radii and colors, bars and stripes of different
orientations and widths, and noting the ’tuning curves’ of responses against different stimulus
parameters.

More principled methods of RF determination are borrowed from the system identification
theory in electrical engineering. Here, a neuron’s response is modeled as a Linear Time
Invariant system, and presenting stimuli with known statistical properties, for example, a
Dirac’s delta impulse or white noise, allows recovering the (linear) transformation that the
neuron performs on the stimulus to generate its response. A slightly more general approach
models visual neurons as Linear-Nonlinear (LN) units where the product of the RF and the
input is passed through a non-linear activation function (Pitkow & Meister, 2012). If a radially
symmetric stimulus, like Gaussian or binary white noise, is used as the stimulus, the linear
component of the LN model can be estimated by a Spike Triggered Average (STA), where the
stimuli before each spike are collected and averaged (Chichilnisky, 2001). Figure 1.2 shows a
schematic of how the STA recovers RFs from a white noise stimulus.

While these linear estimates of RFs were a significant upgrade over tuning curves, natural
stimuli are rarely gaussian distributed. Newer methods for estimating receptive fields from
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1.2. Studying the Visual System

arbitrary stimuli deploy information theory to estimate which stimulus properties does the
neuron carry the most information about, the so called Maximally Informative Dimensions
(MID). And indeed, RFs of neurons do look quantitatively different when they are probed with
natural scenes, as opposed to gaussian white noise (Sharpee et al., 2006). See also (Sharpee,
2013) for an excellent review on different strategies for computing receptive fields for visual
neurons. Remarkably though, theoretical work has shown that using maximum likelihood to fit
LN models is equivalent to estimating the MID with plug-in estimates of entropy (Williamson
et al., 2015).

Over the years, various extensions of the LN model have been developed, for example by
including multiple linear filters followed by a multi-dimensional non-linearity (de Ruyter van
Steveninck & Bialek, 1988; Rajan et al., 2013). Another important extension of the LN model
instead allows modeling multiple layered non-linearities, in a so called LNLN model. These
models have more expressive power and allow identifying ’subunits’ of receptive fields, which
in the case of RGCs, likely correspond to contributions from individual bipolar cell (Gollisch &
Meister, 2008). The natural extension of stacking more and more layers of linear filters and
non-linearities is the Convolutional Neural Networks (CNN) (Fukushima, 1980).

In recent years, CNNs have been used to model the hierarchical non-linear processing performed
by the visual system at various stages (Bashivan et al., 2019; Franke et al., 2022; Goldin et al.,
2022; McIntosh et al., 2016; Walker et al., 2019). These models even allow researchers to
generate putative input images that would maximally activate a given neuron and then test
that prediction in-vivo (Bashivan et al., 2019; Walker et al., 2019). Further, the extrapolation
power of these neural networks allows researchers to study how the neurons would respond
under different behavioral states (Franke et al., 2022) or to slight perturbations of the input
image (Goldin et al., 2022), beyond what can be observed easily with limited experimental
data.

1.2.2 Constraints and Adaptations: Normative Perspectives

Over the years, a number of prominent computational neuroscience theories have tried to
explain sensory neural coding strategies under the guiding principles of information theory
(Barlow, 1961; Shannon, 1948). Under this normative umbrella, the goal of a sensory neuron
is to recode information about the inputs under different constraints like noise, output levels,
metabolic cost, sparsity, etc. Different theories differ in the exact objectives and constraints of
model neurons, and the equivalence of these various formulations and their rigorous comparison
to physiological data continues to be an active area of research (Chalk et al., 2018; Młynarski
et al., 2021). See Weber et al. (2019) for a comprehensive review of the commonalities and
differences in these theories, with an emphasis on adaptation. A short summary of the most
relevant ideas and observations in this broad topic is highlighted below.

Efficient Coding

The efficient coding hypothesis formalizes the notion of efficiency under constraints by
postulating that neurons should maximize the mutual information between the stimulus and
response, while minimizing some well defined constraints. Different approaches differ in the
exact definition of these constraints and that lends to the broad applicability of this formulation.

For instance, a neuron only has a finite range of response levels, whether membrane potential
or spiking rate, with which it must encode the incoming visual signal. A classic study by
Laughlin (1981) introduced the idea of how a visual neuron may best utilize its output response
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range while taking relative occurrences of its inputs into account. Comparing the neuron to an
information channel, the range of responses should be utilized with equal probability, so as to
maximize the entropy of the output (Shannon, 1948). To encode a visual input that is itself
not uniformly distributed, the same number of output levels must be used for a wider range of
less common inputs, as compared to a narrow range of more common inputs. In other words,
an efficient visual system would utilize more of its dynamics range in finely disambiguating the
most common inputs. Quantitatively, the (normalized) input-output relation of the neuron
should be identical to the cumulative distribution of inputs, a phenomenon known as histogram
equalization. This was initially found to be the case for the large monopolar cells in the blowfly
visual system (Laughlin, 1981) and has since been found repeatedly across sensory neurons
(Baden et al., 2013; Clemens et al., 2018; Maravall et al., 2007) even as the distribution of
inputs is changed.

Atick and Redlich (1990) formalized how the limited dynamic range of the optic nerve
should shape the spatial processing in the retina in order to maximize the amount of sensory
information. In order to maximize information transfer under a given channel capacity of the
optic nerve, they derived, ab-initio, that retinal filters should have surround antagonism under
a high Signal to Noise Ratio (SNR) regime, and perform smoothing to combat noise under
low SNR.

Another often quoted fact about the brain is that it consumes 20% of the body’s energy input,
despite measuring only 2% in bodyweight (Rolfe & Brown, 1997). Since most of this energy
is used by neurons for electrical and chemical signalling in the form of spikes, the system must
constantly make a trade-off between fidelity and metabolic cost. However, single spikes can be
quite noisy, and thus neurons must use metabolically costlier spike bursts for encoding inputs.
This delicate balance between noise, metabolic cost and information transmission was tested
by (Balasubramanian & Berry, 2002) and salamander RGCs were found to avoid using burst
lengths that were either too noisy or too costly, maximising information transmission under
these dual constraints.

Sparse Coding

The observation of reducing spike counts has also been studied more abstractly under the
notion of Sparse Coding. Visual neurons in the cortex have been found to be highly selective
to input features, only rarely firing spikes and only for their preferred stimuli. How can a few
neurons firing at any given time carry all the information necessary to encode visual scenes?
(Olshausen & Field, 1996) developed a method to decompose a collection of natural images
into an ensemble of basis features, under the constraint that only a few of them may be
summed at a time to try and recreate the original images. Remarkably, the basis features
obtained from this procedure closely resemble the RFs of primary visual cortical neurons. A
conceptually similar procedure decomposed an ensemble of natural sounds and found that
the wavelet-like basis functions closely resemble the responses of the auditory nerve (Lewicki,
2002).

Predictive Coding

Due to the spatial and temporal structure of natural phenomenon, sensory inputs are highly
correlated across space and time. One way to increase encoding efficiency is to use the
statistical nature of these correlations to ’predict’ inputs from one other, thus reducing the
need to transmit redundant information to downstream neurons (Barlow, 1961). This can
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be implemented in the spatial domain by making a prediction of the center from surrounding
values, and only responding when the center differs from the surround. The resulting operation
resembles the antagonistic center-surround observed in retinal ganglion cells (Srinivasan et al.,
1982). This operation can also be thought of as a spatial derivative. Similarly in the temporal
domain, a derivative filter that subtracts away slow varying, and thus predictive, components
of the input would also allow for such predictive coding (Atick & Redlich, 1990; Srinivasan
et al., 1982). On a population level, it has been postulated that brain regions higher in the
visual hierarchy may maintain and feed back a prediction of the stimulus representation by
lower neurons, which the latter can use to detect incoming stimuli that deviate from this
prediction (Mumford, 1992; Rao & Ballard, 1999).

Crucially, even though Efficient Coding (Atick & Redlich, 1990, 1992) and Predictive Coding
(Srinivasan et al., 1982) use different objectives to derive optimal receptive fields, both
normative frameworks predict qualitatively similar effects of SNR on the shape of receptive
fields. As the signal-to-noise worsens, for example under dimmer conditions, the surround is
no longer predictive of the center, and spatial RFs start to emphasize integrating all available
inputs, rather than subtracting away redundancies (Atick & Redlich, 1990; Doi & Lewicki,
2006; Srinivasan et al., 1982). In the temporal domain as well, the filters start to emphasize
lower frequency information at higher nose levels (Atick & Redlich, 1992; Srinivasan et al.,
1982). Even when the statistics of the inputs change rapidly, these spatiotemporal properties
of RGC RFs continue to adapt on a second-by-second basis so as to maximize information
transfer about unexpected stimulus features (Hosoya et al., 2005).

1.2.3 Methods of Population Neurophysiology

Brains are made of billions of neurons, and studying the properties of these neurons individually
can only get us so far. Over the years, the retina has been a prime model system for developing
methods to study neuronal populations en masse. The ex-vivo retina preparation, despite being
a complete system, closely resembles cultured cells, and was thus one of the first applications
of both Mulit-Electrode Array (MEA) and 2 Photon calcium imaging (Denk & Detwiler, 1999;
Meister et al., 1994). MEA consist of a 2D arrangement of microscopic conducting contact
sites that measure the electric potentials generated by neurons. Since all neurons generate
potential gradients in their membranes, either with or without spikes, in principle, the MEA
method can be used for studying any brain region of any species.

The 2 photon imaging method, on the other hand, relies on fluorescence microscopy to measure
a proxy of membrane potentials. Typically, a dye or protein (known as calcium indicator) is
inserted in the neurons that changes its brightness based on the amount of Ca+2 in the cell,
which in turn is modulated (predictably) by the membrane potential. While using calcium
imaging in the retina, there is inherent interference due to the light-sensitive nature of the tissue.
The excitation or emitted light from fluorescence imaging can activate/saturate photoreceptors,
while the visual stimulation can be captured into the imaging. Using the 2 photon effect to
separate the spectra of the imaging and stimulation helps ameliorate these effects, but does
introduce another artifact of a scanning laser that elicits strong visual responses and is akin to
a moving bright bar superimposed on the visual stimulus (Euler et al., 2019).

In Chapter 2, I introduce a new calcium imaging method that separates the two spectra
of the photoreceptors and the imaging by using a newer generation of red-shifted calcium
indicators. This approach takes advantage of the fact that mice, like most mammals, do not
possess red-sensitive L photoreceptors, allowing us to avoid exciting the retinal circuitry with
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the fluorescence imaging light. Appendix A discusses an alternate line of research that this
approach allows— specifically, utilising in-vivo 2 photon calcium imaging to reconstruct RFs
of RGCs axonal boutons in the SC. In chapter 3, I use a fork-shaped MEA called Neuropixels
(Steinmetz et al., 2021), to model RFs from hundreds of SC neurons and study their adaptation
to different luminance levels and behavioral states.
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CHAPTER 2
Retinal adaptations to visual statistics

across elevation

The following article was published in Nature Neuroscience on 23 March 2023. The main
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Panoramic visual statistics shape retina-wide 
organization of receptive fields

Divyansh Gupta    1,3, Wiktor Młynarski1,3, Anton Sumser    1,2,3, Olga Symonova1, 

Jan Svatoň    1 & Maximilian Joesch    1 

Statistics of natural scenes are not uniform—their structure varies 

dramatically from ground to sky. It remains unknown whether these 

nonuniformities are reflected in the large-scale organization of the early 

visual system and what benefits such adaptations would confer. Here, by 

relying on the efficient coding hypothesis, we predict that changes in the 

structure of receptive fields across visual space increase the efficiency of 

sensory coding. Using the mouse (Mus musculus) as a model species, we 

show that receptive fields of retinal ganglion cells change their shape along 

the dorsoventral retinal axis, with a marked surround asymmetry at the 

visual horizon, in agreement with our predictions. Our work demonstrates 

that, according to principles of efficient coding, the panoramic structure of 

natural scenes is exploited by the retina across space and cell types.

The idea that sensory neurons exploit the statistical structure of natural 

stimuli to minimize the metabolic cost of information transmission 

has been a guiding principle in neuroscience for over half a century1–3. 

This conceptual framework, known as the efficient coding hypothesis4, 

has provided successful theoretical accounts of sensory coding across 

species and sensory systems5–8 with the retina being the paramount 

example9. Most of the work in the retina has focused on retinal gan-

glion cells (RGCs), the neurons that relay visual information from the 

eye to the brain. It has been demonstrated that multiple properties of 

RGCs—the shape of receptive fields (RFs)10–13, organization of RF mosa-

ics14,15 and the ratio of ON to OFF RGC cell types16—can be explained as 

adaptations to the natural sensory environment. In all the mentioned 

cases, ab initio theoretical predictions about efficient encoding of 

natural scenes have led to a better understanding of the physiological 

and anatomical properties of the retina.

One way a sensory neuron could implement an efficient code is 

by removing predictable (or redundant) components from sensory 

stimuli, in a transformation known as predictive coding (PC). This 

prominent hypothesis suggests that the center–surround structure 

of R    G C R  F s i  s a   m  a n  if  e s  ta tion o  f s  u c h d  e s  ign p  r i  nc  i p  le    10. A  c c  or  ding t  o 

this hypothesis, the surround computes a prediction of the stimulus 

value in the center of the RF. The predicted value is then ‘subtracted’ 

from the center through inhibition, which dramatically reduces the 

amount of neural resources used to convey the stimulus downstream. 

PC and related information–theoretic principles11–13,17 typically assume 

that the structure of natural scenes is uniform across the visual field. 

However, as demonstrated recently, local contrast and luminance vary 

prominently across the elevation within the natural visual field of a 

mouse18,19. Such systematic variation affects the signal-to-noise ratio 

(SNR) of the input to RGCs. To understand how this inhomogeneous 

noise structure should shape RGC RFs, we developed a simple, predic-

tive coding model. When adapted to natural statistics of mouse vision, 

our model generates three key predictions linking the shape of optimal 

RFs and their position within the visual field. First, the relative surround 

strength should increase with increasing elevation, due to a consistent 

increase in brightness from the dim ground to the bright sky. Second, 

the center size should decrease along the same axis. Third, due to a 

rapid change of signal intensity between lower and upper FOVs, RFs 

centered on the horizon should have strongly asymmetric surrounds, 

with the upper half being stronger than the bottom one.

To test these predictions experimentally, we established a new 

system that enables recording and characterization of the RF structure 

at high resolution, at the scale of thousands of RGCs in a single retina. 

Such technological development enabled us to collect a dataset of 

31,135 RGC RFs covering the entire central retina, which was crucial 

to test our theory. We found a close agreement between theoretically 

optimal RF architecture and the variation of RF shapes across the 

retina, suggesting that RGCs exploit global asymmetries of natural 
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scenes are spatially inhomogeneous. To understand this inhomogene-

ity, we examined a set of natural images collected specifically to study 

mouse vision18. In agreement with previous studies18,19, we found that 

the power of the light intensity decreases gradually with the elevation 

and drops off suddenly close to the simulated horizon line (Fig. 1b,c). 

Under the assumption of constant noise level, the SNR of photorecep-

tor outputs (that is, RGC inputs) should therefore follow the analogous 

pattern (Fig. 1c). Moreover, due to an abrupt change of the stimulus 

power, stimuli centered at the horizon yield a highly nonuniform SNR 

pattern (Fig. 1d). To find how such inhomogeneities could affect sen-

sory representations across the retina, we numerically optimized RFs 

to minimize the strength of neural responses averaged across a set of 

natural image stimuli (Methods).

The shape of the optimal RF depends on the relative strength 

and the structure of noise. When the SNR decreases, the center of 

the optimal RF broadens, and the surround becomes more diffuse  

(Fig. 1e). These trends are dependent on the relative change but not on 

the absolute SNR. This qualitative change is manifested in increasing 

relative surround strength (Fig. 1f) and decreasing center sizes (Fig. 1f). 

The optimal RF shape is additionally modulated by the spatial pattern 

of the SNR (Fig. 1g). When the SNR is spatially nonuniform (for exam-

ple, when the signal is stronger in the upper half of the stimulus), the 

optimal RF becomes asymmetric (Fig. 1g). This effect is particularly 

visible in the increasing asymmetry of the surround as a function of 

SNR asymmetry (Fig. 1h). Because of such systematic variation in the 

stimulus power across the visual field, the PC model predicted three 

scenes for maximizing coding efficiency. Furthermore, we explored 

these adaptations across the diversity of functional RGC types20, each 

thought to share the same physiology, morphology and intraretinal 

connectivity21–24. We identified a systematic dorsoventral variation of 

the RF shape, regardless of the functional type. Finally, we show that 

these global adaptations are preserved in awake-behaving animals with 

intact eyes. Our results thus indicate that adaptations to the panoramic 

natural statistics structure retinal representations used by the brain.

Results
Efficient coding predicts receptive field shapes across the 
visual field
To understand how the statistical structure of natural scenes shapes 

RFs across the visual field, we developed a model of sensory coding in 

RGCs (Fig. 1a). Our approach is closely related to the PC theory, which 

postulates that RGCs recode outputs of photoreceptor cells to minimize 

the metabolic cost of sensory information transmission10. Following 

this theory, we modeled neural responses as a linear combination of 

the RF and natural stimuli, distorted by different sources of constant 

noise, for example, biochemical or synaptic9,25,26 (Fig. 1a). The computa-

tion performed by such RFs can be understood as the difference of the 

weighted center of the stimulus and its surrounding neighborhood. Our 

model generates predictions consistent with PC (Extended Data Fig. 1) 

as well as related theories of efficient sensory coding11,13.

Predictive coding theory of the retina assumes that statistics of 

natural stimuli are stationary across the visual field10. However, natural 
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Fig. 1 | Predictive coding and natural scene statistics. a, Schematic of the 

linear model of a receptive ganglion cell encoding noisy photoreceptor outputs. 

b, Average stimulus power in the mouse FOV in the UV range (natural image 

data, courtesy of H. Asari18). Orange dashed line denotes the simulated horizon. 

Orange frame illustrates the size of the model RF. c, Stimulus power in the UV 

range (left; red line) and example noise power level (left; gray line) as a function of 

elevation in the visual field. Increasing stimulus power increases the SNR (right). 

d, Vertical SNR asymmetry in the UV range as a function of elevation in the visual 

field (left). Change in SNR asymmetry is due to asymmetric power in the stimulus 

at the horizon line (right). e, Predictive coding RFs optimal for different levels of 

SNR. RFs were smoothed with a 2 × 2-pixel window for display purposes.  

f, Relative surround strength (top) and center size (bottom) of optimal predictive 

coding RFs increase and decrease respectively, with increasing photoreceptor 

SNR. Purple, green and orange lines correspond to the UV, green and joint 

spectra, respectively. g, Predictive coding RFs optimal for different levels of 

vertical SNR asymmetry. RFs were smoothed with a 2×2-pixel window for display 

purposes. h, Surround asymmetry of optimal predictive coding RFs increases 

with increasing vertical SNR asymmetry of photoreceptor output. Line colors 

analogous to f.
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qualitative links between the position of a neuron in the retina and 

the shape of its RF. First, the strength of the RF surround relative to 

the center should be increasing with elevation across the visual field. 

Second, the size of the center should increase in the opposite direc-

tion. Third, RFs located at the horizon should have surrounds that are 

substantially stronger in the upper half than in the lower half. Such 

distribution of RF shapes would indicate that RGCs exploit global sta-

tistics of the visual field to maximize the efficiency of sensory coding. 

These three predictions stand in contrast to the dominant view that 

RGC RFs are uniform across the retinal surface. Furthermore, predic-

tions of the PC model are reproducible across different ranges of the 

light spectrum (Fig. 1f,h) and sets of natural stimuli (Extended Data  

Fig. 1) and depend primarily on weak assumptions about the correlation 

structure of natural images10 (Supplementary Note 1 and Extended 

Data Fig. 2). We thus consider them to be a robust consequence of the 

efficient coding hypothesis.

Large-scale characterization of receptive fields across  
the retina
Testing these theoretical predictions requires a high-resolution char-

acterization of RGC RFs from extended regions of the retinal surface. 

Currently, however, it is not practical to perform such large-scale char-

acterizations with any of the existing methods. Multiphoton imag-

ing approaches can measure large numbers of RGCs20,27, but only at a 

moderate throughput (~150 RGCs at a time20,27). Multielectrode array 

recording approaches have improved this number but are limited 
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spectra of mouse photoreceptors (purple, S-opsin; green, M-opsin). Normalized 

emission spectra of the UV and green light emitted by the DLP projector (filled 

purple, UV; filled green, green stimulus light), epifluorescence (orange) and 

two-photon (red) excitation are overlaid. b, Schematic of the epifluorescence 

imaging setup. c, Montage of five consecutively recorded fields (orange dashed 

box denotes one field) of a whole-mounted mouse retina from a Vglut2-ires-cre; 

TITL-R-CaMP1.07-D; ROSA26-ZtTA triple-transgenic mouse. Inset: black, imaged 

montage; red, retinal outline. d, Double-labeled immunostaining of RCamp1.07-

expressing RGCs (red) and RBPMS (cyan; n = 3). e, As in d but labeling with SMI32 

(cyan). Arrowheads depict double-labeled cells. f, Example Ca2+ signals (gray, five 

repetitions; black, mean) from DS (top) and non-DS (bottom) RGCs. g, Example 

distribution of preferred directions in one FOV. Inset shows a polar plot of DS 

preference. h, Example Ca2+ signals to chirp stimulus from three different RGCs 

(gray, five repetitions; black, mean). i, Recording Ca2+ signal stability across 

sequentially imaged FOVs for nine retinas (each session lasted ~25 min, 3–7 

sessions per retina). White lines denote medians, and minima and maxima of 
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respectively. j, Example RFs recorded using ‘shifting’ white noise (top) and their 

respective parametrizations (bottom). Blue and red ellipses correspond to 2 s.d. 

contours of the ON and OFF Gaussians, respectively. k, Histogram of goodness of 

fit for all recorded RFs.
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by the recording area that is placed on top of the electrode array15. 

Moreover, RF estimates generated by current approaches lack a clear 

surround structure20. To circumvent these limitations, we designed a 

high-throughput and low-cost epifluorescence approach that enables 

imaging a larger field of view (FOV; 1.7 mm2 sampling at ~1 µm per pixel) 

and permits >1 h-long recordings of the same FOV while avoiding arti-

facts caused by small retina wrinkles and laser scanning. Our method 

takes advantage of red calcium sensors (for example, RCamp1.07)28 

that separate the Ca2+ indicator’s red-shifted excitation light from the 

opsin absorption spectrum (Fig. 2a,b and Methods), and allows robust 

responses to ultraviolet (UV) visual stimulation. We used the VGluT2-cre 

driver line to specifically target RGCs (Fig. 2c), leading to a uniform 

expression across the entire retina. All RCamp1.07-positive somata 

correspond to RGCs, as seen by the RGC-specific marker RBPMS29  

(Fig. 2d). Double-positive cells accounted for ~40% of all RGCs. 

This expression pattern appears to be RGC-type specific, as seen 

by co-labeling of SMI32 alpha-RGCs. Alpha-RGCs were consistently 

excluded from the expression profile, apart from a single, sparse 

and spatially distributed type (Fig. 2e). Using this line, we were able 

to reproduce and expand previous large-scale imaging results in sin-

gle retinas, as seen in direction-selective (DS) and non-DS responses  

(Fig. 2f), the cardinal DS response distributions (Fig. 2g) and clustering 

and reproducibility of responses to changes in frequency, contrast and 

luminance, known as the ‘chirp’ stimulus20 (Fig. 2h and Extended Data 

Fig. 3). By sequentially recording 3–7 FOVs (Fig. 2c), each for approxi-

mately 25 min, we could record neural activity from up to ~6 mm2 

of retinal surface (~40% of the total retinal area). By experimental 

design, the position of each FOV was random. Moreover, the strength 

of the functional responses in each consecutive session was unaltered  

(Fig. 2i). Importantly, using a new ‘shifting’ white-noise approach, where 

the checker positions are randomly shifted to increase the RF spatial 

resolution (Extended Data Fig. 4a–f, Methods and ref. 30), we were able 
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Fig. 3 | Retina-wide receptive field architecture. a, Average spatial RFs of all 

RGCs pooled from square bins of 300 µm in size at different positions of one 

retina (n = 64 ± 52 cells per bin; black cross indicates the optic nerve head).  

b, Top row, optimal RFs predicted by the model at different elevations of 

the visual scene. Bottom row, average spatial RFs of neurons along different 

dorsoventral locations on the retina. c, Top, radial profiles of model RFs at 

different SNR levels. Bottom, mean radial profiles of RGC RFs in bins along the 

dorsoventral axis. d, Mean relative surround strengths of RGCs within 100-µm 

bins, pooled from n = 6 retinas. e, Relative surround strengths for RGCs within 

six equally spaced bins along the dorsoventral axis (color indicates the mean 

and s.e.m. pooled from n = 15,686 RFs, gray lines denote individual retinas, 

and the inset shows linear regression weights of RF parameter on elevation 

(EL) and azimuth (AZ)). f,h, Same as d, but for center size and vertical surround 

asymmetry, respectively. g,i, Same as e, but for center size and vertical surround 

asymmetry, respectively. j, Left, one of the retinas, immunostained for 

S-opsin. Black box shows the region imaged for RF mapping. Right, normalized 

histograms of surround orientations of RGCs within corresponding bins marked 

on the left. k, Data from h overlaid on a sinusoidal projection of visual space (n = 6 

retinas). The animal is centered at 0° latitude and 0° longitude facing toward the 

viewer, and the black line shows the area of the visual field viewed by one eye.  

P values for two-sided Kolmogorov–Smirnov test: 6.11 × 10−5 (e), 2.84 × 10−4 (g) 

and 1.16 × 10−5 (i); see Extended Data Fig. 6 for extensive statistical comparisons). 

V, ventral; N, nasal; D, dorsal; T, temporal. a.u., arbitrary units.
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to estimate high-resolution and high-SNR spatiotemporal RFs for ~85% 

of recorded cells (Fig. 2j). The quality of these RF estimates allowed for 

automatic parametrization of the spatial RF into the center and sur-

round using a difference of Gaussians model (Figs. 2j,k, Extended Data 

Fig. 4g–l and Methods). In total, we recorded 11 retinas, reconstructing 

and parametrizing 31,135 spatiotemporal RFs, enabling an unprec-

edented opportunity to index RGC responses across single retinas. 

This methodology will enable functional developmental screens and 

circuit dissections due to its simplicity, efficiency and affordability, 

extending the current retinal research toolbox.

Receptive fields are adapted to anisotropic natural scene 
statistics
Taking advantage of the high-resolution RFs, we examined variations 

in RF shapes and strengths across the retina. Given that the PC model 

does not determine the polarity of the optimal RF and to globally com-

pare all retinal RFs, ON-center RFs were flipped in sign, such that all 

centers were negative, and all surrounds were positive. This allowed 

us to pool across all cells within small bins on the retinal surface and 

visualize the average spatial RF at different locations of the retina  

(Fig. 3a and Extended Data Fig. 5a). We observed a general and repro-

ducible trend across 11 retinas: a streak-shaped area where all RF sur-

rounds were oriented toward the optic nerve, and below which, hardly 

any RF surrounds were observed (Fig. 3a and Extended Data Fig. 5a). 

To compare these spatial variations of RFs with our theoretical predic-

tions, we oriented six of the recorded retinas to a common coordinate 

system using the immunohistochemically determined S-opsin gradient. 

Average RFs in the ventral, centrodorsal and peripheral-dorsal retina  

(Fig. 3b) qualitatively matched model RFs predicted for the upper, 

medial and lower visual fields, respectively (Fig. 3b). To confirm 

the change of relative surround strengths independently from sur-

round asymmetry, we computed the radial profiles of RFs and these 

also strongly resembled the radial profiles for model RFs (Fig. 3c).  

Overall, model RFs qualitatively reproduced all aspects of average 

spatial RFs across different elevations with remarkable detail.

To measure these phenomena quantitatively, we made use of the 

RF parametrizations and pooled RF parameters for all cells in different 

two-dimensional (2D; Fig. 3d–h) or one-dimensional (1D; Fig. 3e–i)  

bins across the retina. In line with our theoretical predictions  

(Fig. 1f), our analysis shows that the relative surround strength 

increases gradually along the dorsoventral axis (Fig. 3d), a trend visible 

in every single retina (Fig. 3e). Next, we explored if we could observe 

any global change in RF center size. As predicted (Fig. 1f), center sizes 

decreased only across the dorsoventral axis (Fig. 3f,g and Extended 

Data Fig. 6). While examining the spatial distribution of differences in 

upper and lower halves of the RF surrounds, we identified a consistent 

and prominent asymmetric streak in the dorsal retina, between 700 and 

900 µm dorsally from the optic nerve (Fig. 3h,i), as one would expect 

from asymmetric visual inputs (Fig. 1e). Accordingly, linear regressions 

weights were substantially stronger in elevation, but not azimuth, for 

all three trends (Fig. 3e–i and Extended Data Fig. 6). Overlaying the 

measured RF asymmetries with the opsin gradient indicated that the 

asymmetry is pronounced in the opsin transition zone (Fig. 3j). To test 

whether this streak corresponds to the horizon line within the animal’s 

visual field, we transformed the retinal coordinates to visual coordi-

nates31 and used the S-opsin gradient32 to define the dorsoventral axis 

(Fig. 3j,k and Methods). In visual coordinates, the center of this asym-

metric streak is located at 0° elevation, spanning the entire azimuth 

of our imaged FOVs (Fig. 3k), in line with our theoretical predictions 

(Fig. 1c). Finally, these trends also aligned in five additionally imaged 

retinas, where the true orientation could not be determined by the 

opsin gradient (Extended Data Fig. 7).

Adaptations to natural scene statistics across retinal pathways
It has long been assumed that specific RGC pathways have stereo-

typed response properties, shaped by the interactions between direct 
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Smirnov test: 6.17 × 10−5 (c), 0.02 (d) and 2.62 × 10−7 (e).
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excitation in their center and indirect inhibition in their surround33. 

Thus, one would expect that these center–surround interactions are 

uniform across visual space for most RGC pathways. To assess the 

specificity of the observed RF adaptations across functional RGC path-

ways, we clustered cells based on the temporal RF profile of 31,135 

RGCs into functional groups using a Gaussian mixture model (GMM), 

as done previously20. Consistent with the proportion of RGCs labeled 

in our line (Fig. 2d), we defined ten functional clusters (Fig. 4a). Chirp 

responses were not used for clustering because we observed reliable 

responses only in RGCs with weak surrounds. Therefore, for RGCs with 

strong surround, the chirps did not help us to match cluster identities 

(Extended Data Fig. 3c,d), despite finding new response properties 

that would have aided classification (for example, clusters 3, 11 and 

14; Extended Data Fig. 3b). Each cluster group had distinctly shaped 

temporal filters, corresponding to different functional properties 

such as ON or OFF selectivity, transient or sustained responses, and 

monophasic or biphasic selectivity, as seen in their average profiles 

(Fig. 4a). Cluster membership statistics were conserved across differ-

ent retinas (Extended Data Fig. 8). Moreover, the relative positions of 

RGCs belonging to individual clusters tile the retina in a mosaic-like 

arrangement in many cases (Fig. 4b), confirming that some clusters are 

indeed functionally distinct and irreducible RGC types15. As expected, 

many clusters represent a combination of RGC types that cannot be 

identified solely by their temporal profiles (Fig. 4b, cluster 10; see Sup-

plementary Table 1 for tiling statistics). We next used this classification 

and looked at the relative surround strength, center size and asymmet-

ric strength across clusters (Fig. 4c). As with the global pooling of RF 

(Fig. 3), cells in each functionally defined cluster increase their relative 

surround strengths gradually in the dorsoventral axis and decrease 

their center sizes accordingly. Moreover, all clusters contribute to 

the asymmetric streak (Extended Data Fig. 8c), consistent with the 

distribution of asymmetries in the opsin transition zone, where most 

cells have a strongly oriented surround with a ventral bias (Fig. 3k). All 

three trends were statistically significant for all clusters in elevation, 

*** *** ***
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Fig. 5 | Colliculus-wide retinal ganglion cell’s receptive field architecture. 

a, Schematic of in vivo multiphoton imaging setup. b, FOV of a standard 

multiphoton recording of RGC axons expressing GCaMP8m in the SC (maximum 

projection, n = 10 sessions of three animals). c, Immunostaining of GCaMP8m of 

an example coronal section of the SC (n = 3 animals), showing homogeneous RGC 

labeling across the visual layers (green). d, Example RGC bouton RFs recorded 

using ‘shifting’ white noise (left) and their respective vertical 1D center profiles 

(1D RFs; right) at different elevation levels (gray lines). Note, ON-center RFs 

were inverted as done in Fig. 3. e, Average 1D RFs in 0.22° bins over elevation 

(smoothed horizontally in a 5° Gaussian window for display purposes).  

f, Example average RFs binned at a 4.1° visual angle (left), with their respective 1D 

RFs (right) at different elevation levels (gray bars). g, Relative surround strength 

of 4.1° binned and parametrized average 1D RFs; shading indicates the s.e.m. 

across azimuth bins (Extended Data Fig. 9g–i). Inset shows linear regression 

weights of individual bouton (n = 9,810) 1D RF parameters on elevation (EL) and 

azimuth (AZ). h,i, As in g, but for center size and vertical asymmetry, respectively. 

(P values for two-sided Kolmogorov–Smirnov test: 2.91 × 10−10 (g), 1.16 × 10−12 (h) 

and 1.48 × 10−6 (i). 2p, two photon.
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but not azimuth (Supplementary Table 1). These results indicate that 

a substantial proportion of RGC pathways adapt to the constraints 

imposed by natural statistics.

In vivo panoramic receptive field anisotropies match 
predictions
To test whether the adaptations to the panoramic visual scene statis-

tics affect sensory coding during behavior in naturalistic conditions, 

we decided to map RFs of the RGC axonal terminals in the superior 

colliculus (SC; Fig. 5a,b). These experiments have the advantage of 

testing our hypothesis in retinas that retain the complete adaptation 

machinery, from an attached pigment epithelium to functioning pupil 

constriction. Moreover, they provide important additional insights 

into the effects of the M-cone and rod pathways, which are saturated 

in our ex vivo retinal imaging system. For this purpose, we expressed 

the calcium indicator GCaMP8m34 in RGCs, using adeno-associated 

viruses (AAVs) in three mice. Subsequent implantation of a cranial 

window above the SC allows for visualization of RGC axonal terminal 

activity with two-photon calcium imaging in awake, behaving mice. 

The FOV varied for each recording from 0.32 to 1.85 mm2 (median 

of 0.68 mm2) of superficial SC surface (Fig. 5b), encompassing 23 to 

57 (median of 41) visual degrees in elevation. GCaMP8m expression 

spread homogeneously across the SC (Fig. 5c). Using the same previ-

ously used ‘shifting checker’ stimulus, we recorded 53,000 terminals 

in total, reconstructing 10,000 RFs above our quality index (Methods). 

Compared to the RFs recorded from ex vivo retinas, in vivo measured 

RFs were blurred along the main axis of saccadic movements (Figs. 2d  

and 5d; RFs). Thus, to compare across animals, we aligned the RFs of 

each animal to their respective saccadic plane, which, due to the head 

fixation, had one consistent axis parallel to the ground to each animal as 

shown previously35 (Extended Data Fig. 9a–c) and corrected the mouse 

head position to match the retinal coordinates (Methods). To avoid any 

bias due to eye movements, we then used the 1D profiles (1D RFs) of the 

orthogonal axis for further analysis (Figs. 5e). By binning and averag-

ing 1D RFs along the lateromedial axis, spanning from the lower visual 

field to the higher visual field (Fig. 5fg–i and Extended Data Fig. 9d), 

the three predicted trends became visible: (1) the surround strength 

increased, (2) the center size reduced and (3) the surround became 

more symmetric. Similarly to our retinal results (Fig. 3b), the mean 2D 

RFs qualitatively matched model RFs predicted for the upper, medial 

and lower visual fields (Fig. 5f). Next, we analyzed the RF parameters 

on mean 1D RFs across visual space. As with previous results, the RF 

properties were significantly different above and below the horizon 

and had substantial regression weights on elevation (Fig. 5g–i) but not 

on azimuth (Extended Data Fig. 9h–l). Consistently, the average visual 

maps (Extended Data Fig. 5b) resembled the ones measured ex vivo 

(Fig. 3d–h). Thus, our in vivo results provide independent corrobora-

tion that the visual system is adapted to the constraints imposed by 

the panoramic natural statistics.

Discussion
In this study, we leveraged a new, high-throughput neural imaging setup 

(Fig. 2) to identify a novel kind of adaptation to panoramic scene sta-

tistics in the retina. In agreement with theoretical predictions derived 

from the efficient coding framework (Fig. 1), our experimental results 

indicate that the global RF architecture is adapted to encode panoramic 

natural scenes efficiently (Figs. 3 and 4). These results were further cor-

roborated in RGC terminals of awake animals (Fig. 5), indicating that 

panoramic, efficient representations impact downstream processing 

during behavior. Classically, RGCs are known to dynamically change 

the strength of the RF surround in response to varying light levels36,37, 

which is thought to further increase the efficiency of sensory cod-

ing9,38,39. Our findings demonstrate that, in addition to such dynamic 

effects, RF shapes are also determined by static factors, namely their 

position within the visual field. In that way, the retina simultaneously 

exploits the large-scale spatial and fine-scale temporal structure of 

the visual space.

How could the visual system establish such global RF architecture 

without fine-tuning each RGC pathway independently? One partial 

mechanism would be the nonuniform distribution of spectral sen-

sitivity across the retina32. Such distribution has been discussed to 

be relevant for color vision40, contrast coding19,41 and the detection 

of aerial predators in the sky42, but simultaneously, could influence 

the static RF adaptations. For example, whereas the mouse retina has 

green light-sensing photoreceptors across the entire retina (M-opsin 

and Rod-opsin), UV sensitivity follows a sharp dorsoventral gradient 

(S-opsin)32. From the RGC’s perspective, both inputs will be added 

at mesopic conditions, leading to a net enhancement of the UV sen-

sitivity from the ground to the sky. Our in vivo results support this 

perspective by corroborating the ex vivo findings in an intact eye. 

Intriguingly, in vivo and ex vivo measured RFs differ subtly. Whereas ex 

vivo RFs show a clear asymmetrical peak at the horizon, in vivo RFs are 

more asymmetric across large proportions of the visual field (Fig. 5j). 

This is consistent with PC predictions because natural image patches 

located above the horizon tend to be vertically asymmetric (Fig. 1d) 

due to a gradient of stimulus power (Fig. 1b). Such an RF pattern indi-

cates that other mechanisms, apart from the S-opsin gradient, have 

to be involved. One possibility could be the circuitry mediating the 

asymmetric surround of J-RGCs33,40, which is ventrally displaced and 

sensitive to M-cones and rods. Interestingly, the vertical gradient of 

stimulus power will flatten at lower ambient light levels, for example, 

at dusk and dawn. In conjunction, the relative strength of UV sensitivity 

and the antagonistic surround would also decrease36,37. In these condi-

tions, efficient coding hypothesis would predict a more homogeneous 

RF distribution across the dorsoventral axis. Conversely, the horizon 

will become more prominent in photopic conditions, where rods are 

less active. In such situations, the in vivo RF architecture should have a 

localized asymmetric streak, as measured in our ex vivo data. It would 

be revealing to test if the retina-wide RF organization is dynamically 

reshaped under scotopic and photopic conditions. Finally, to fully 

benefit from this panoramic retinal code, the eye should maintain a 

relatively constant position on the horizon. In agreement with this idea, 

eye and head movements stabilize the retinal image remarkably well, 

on average ~10° in azimuthal angle, during behavior35,43.

A distinct, yet related question can be asked about the emergence 

of DS computations in retinorecipient areas, such as the SC, where neu-

rons integrate input from the entire retina, including the asymmetric 

streak. DS encoding can emerge as a consequence of an asymmetric and 

time-shifted surround, as shown before33,44. Consistent with the meas-

ured center–surround asymmetry, some studies have described these 

neurons as sensitive to upward motion45, whereas others do not find 

such specificity46,47. The efficient coding interpretation, such as the one 

adopted here, suggests that the key to resolving this puzzle might be 

understanding the statistics of what the animal ought to see in nature.

Our theoretical predictions established qualitative links between 

properties of RFs and their elevation within the visual field. They can 

be therefore thought of as a first-order approximation of how the 

retina is adapted to large-scale, spatial statistics of natural scenes. The 

exact pattern of global retinal adaptation should vary across species 

occupying diverse environments. It has been found that dorsoventral 

opsin gradients are present in many different mammalian species. For 

example, the rabbit, Chilean subterranean rodent cururo, European 

mole, the shrew and even the spotted hyena42,48 show higher S-opsin 

expression in the ventral retina. However, not all ecological niches 

are identical. For example, in dense forests, the vertical gradients of 

luminance and contrast are less prominent, and a clear horizon line 

might not be apparent. Interestingly, forest mice species whose opsin 

distribution has been described present a spatially uniform opsin 

distribution49. This further strengthens our hypothesis, which relates 

the global organization of the retina to the statistics of the ecological 

19



Nature Neuroscience | Volume 26 | April 2023 | 606–614 613

Article https://doi.org/10.1038/s41593-023-01280-0

visual field. Understanding this adaptation in more detail will require 

a careful analysis of stimuli from the ecological sensory niche, as well 

as an estimation of biophysical parameters such as biological SNR, RF 

size and tiling to refine our theoretical predictions. The combination 

of these approaches will be a critical requirement for building a more 

general theory of vision across the animal kingdom50.
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Methods
Theory
We modeled neural responses rt as a dot product of the model RF ÷× and 

noisy stimulus vectors (image patches) s ÷t 6 rt = × ÷

Tst, where T denotes 

vector transposition. RFs (filters) were optimized to minimize the fol-

lowing cost function:

L (

÷

×) = ï

:

r

2

t

ï

t

+ »

N

3

i=1

×

2

i

d(i)

Where d(i) is the squared distance between the i-th value of the RF and 

the one with the peak absolute value, and λ is the strength of the spatial 

locality constraint. This form of the locality constraint was introduced 

in ref. 11, and it has been demonstrated that it is consistent with RGC 

properties11,13. We note that the activity-related term in the cost function 

is equivalent to maximizing the sparsity of the neural activity quantified 

as the average absolute value of neural responses8. Without the spatial 

locality constraint (that is, λ = 0), the optimal RF is an oriented, 

Gabor-like filter. During optimization, to avoid convergence to trivial 

solutions, the norm of the RF ÷

× was constant and equal to 1. Overall, 

this cost function enforces minimization of activity conveyed down-

stream, while preserving the information about the image and meeting 

the locality constraints. Conceptually, this goal is equivalent to that of 

the PC model10. Our model generates predictions consistent with the 

PC model proposed in ref. 10 (Extended Data Fig. 1). It is, however, more 

flexible, and enables us to capture changes in the center size.

We modeled output of photoreceptor cells (stimuli st) as natural 

image patches distorted with the additive Gaussian noise with variance 

σ
2 that is: s

t,i

= x

t,i

+ ¿, where ¿ > N(0,Ã2) is the noise term. To simulate 

different SNR conditions, we manipulated the noise variance level, and 

optimized RFs for each of the noise levels separately.

We optimized RFs by numerically minimizing the cost function L 

via gradient descent. For training, we used a dataset of 50,000 square 

image patches of 27 × 27 pixels in size taken from a dataset of natu-

ral images from the mouse visual environment18. We sampled images 

uniformly across the upper and lower visual fields. Each image patch 

was normalized to have a zero mean and unit variance. To simulate the 

impact of changing SNR, we normalized images with added noise. Dur-

ing optimization, the dimensionality of natural image data was reduced 

with principal-component analysis (PCA) to 128 dimensions. For each 

noise level, dimensionality reduction was performed using the same 

matrix of PCA components computed on noiseless data. To simulate 

the impact of changing SNR homogeneity, before normalization we 

multiplied the bottom half of each image by a scaling factor of less 

than one, resulting in the range of vertical surround asymmetry values 

reported in Fig. 1h. After such scaling, we normalized the data and added 

noise of constant variance. During optimization of RFs on asymmetric 

stimuli, we computed PCA for each level of SNR asymmetry separately.

In all cases, before optimization, in order to enforce that the RF is 

centered in the image patch, we initialized RFs with random Gaussian 

noise with variance equal to 0.1 but set the central pixel value to −1. We 

independently optimized RFs using images taken in the UV and green 

parts of the spectrum, as well as in the ‘joint’ spectrum where intensity 

of each pixel was the average of green and UV values. To ensure that 

results do not depend on the choice of natural image dataset, we per-

formed the simulations with the images of the African savanna from 

the van Hateren repository used in ref. 51 (Extended Data Fig. 2).

To evaluate RF properties, we defined the size of the RF to be the 

smallest circle that included 90% of energy (that is, ×2

i

) of optimal RFs 

averaged across all noise levels (Fig. 1b,c). Within that circle, we defined 

the center to be all ÷× values smaller than 0, and the surround to be those 

larger than or equal to 0. The strength of the surround was thus equal 

to 
3

i6×

i

g0

|×

i

| and the center to 3

i6×

i

<0

|×

i

|. Sizes of the center were simply 

numbers of entries that were smaller than 0.

To characterize changes in contrast and luminance across the 

visual field, we used natural images published in ref. 18. We limited our 

analysis to UV images only; however, light statistics of the green channel 

do not differ qualitatively. The images provided in ref. 18 were divided 

into two classes—upper visual field and lower visual field. To simulate 

the visual horizon, we concatenated pairs of images randomly selected 

from the upper and lower visual fields. We created a dataset of 1,000 

such concatenated images and used them to compute the mean and 

variance of light intensity as estimates of local luminance and contrast, 

as well as to estimate the SNR as a function of elevation. To estimate 

the vertical asymmetry of the SNR pattern we used a square stimulus 

window, and a fixed noise variance. We note that key, qualitative aspects 

of our predictions do not depend on these choices. For each position 

y of the window along the vertical dimension of the visual field, we 

computed the vertical SNR asymmetry as: asym ( y) =

m

y

up

2m

y

down

m

y

up

+m

y

down

 where 

m

y

up

 and m y

down

 are sums of the SNR value within the stimulus window 

above and below its midline, respectively.

Animals
Mouse protocols were reviewed by the institutional preclinical core 

facility at IST Austria. All breeding and experimentation were per-

formed under a license approved by the Austrian Federal Ministry 

of Science and Research in accordance with the Austrian and EU ani-

mal laws (BMF-66.018/0017-WF/V/3b/2017). For retinal experiments, 

triple-transgenic male and female mice (n = 8 mice, 3 males, 5 females; 

n = 11 retinas, 5 from the left eye, 6 from the right) aged 5–12 weeks were 

used for this study (Vglut2-ires-cre ( JAX 28863), TITL-R-CaMP1.07-D 

( JAX 030217) and ROSA26-ZtTA ( JAX 012266)). Original strains were 

obtained from Jackson Laboratories. For in vivo imaging experiments, 

C57BL/6J ( JAX, 000664; n = 3, 2 males, 1 female), aged 6–11 weeks at 

eye injection, were used. The mice were housed in a standard (in vivo 

inverted) 12-h day–night cycle and euthanized by cervical dislocation 

before in vitro imaging.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Low 

SNR RFs were excluded from analysis, as described below. As done 

previously20, only chirp responses that passed a quality criterion were 

used for further analysis. Given the nature of the retinal experiments, 

the location of the recordings was randomized to prevent any biases 

in the outcome.

Ex vivo imaging
The dark-adapted mouse retina was isolated under far-red light (LED 

peak 735 nm, additionally filtered with a 735-nm LP filter eliciting an 

isomerization rate of ~17 R s−1) in oxygenated Ames’ medium (Sigma) 

with constant bubbling (95% O2, 5% CO2) at room temperature. Left 

and right retinas were kept separate for identification. Four incisions 

were made to flat mount the retina, with ganglion cells facing up, on 

an 18-mm coverslip (VWR, 631-0153), and held down with a filter paper 

(Merck, GSWP01300) with a ~2.5 mm × 2.5 mm imaging window cut 

out. The preparation was then placed in a heated (32 °C) superfusion 

chamber on the stage of a custom-built upright fluorescence micro-

scope. The retina was left to recover for a minimum of 10 min with the 

excitation light of the microscope turned on. An amber LED (Thorlabs, 

M595L4) filtered with a BP filter (Thorlabs, FB580-10) was used for 

excitation and a BP filter (Thorlabs, 641-75) in series with a 600-nm 

LP filter (Thorlabs, FEL0600) was used for collection. Background 

excitation light intensity was at a constant mean photopic intensity of 

105 R s−1 per rod (at 585 ± 5 nm). Isomerization rates were determined 

using opsin templates52 and assuming that the mouse rod has an optical 

density at peak absorption wavelength of 0.015 µm−1, a length of 24 µm, 

a diameter of 1.4 µm and a quantum efficiency of 0.67 (refs. 53,54). Each 

retina was tiled by recording 3–7 different FOVs at ×10 magnification 
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(Olympus XLUMPLFLN20XW objective) using a sCMOS camera (Pho-

tometrics Prime 95B) at 10 frames per second and 1.1-µm pixel resolu-

tion. Setup was controlled and data were acquired using custom-built 

LabVIEW software (National Instruments, version 2019).

Visual stimuli for retinal experiments
Light stimuli were delivered from a modified Texas Instruments DLPL-

CR4500EVM DLP projector through a custom-made lens system and 

focused onto the photoreceptors (frame rate of 60 Hz, magnification 

of 2.5 µm per pixel, total area of 3.2 mm × 2 mm). The projector’s blue 

LED was replaced with a high-power UV LED (ProLight 1 W UV LED, 

peak 405 nm), to improve the differential stimulation of S pigments. 

Two SP filters in series (Thorlabs, FESH0550) were put in the stimulus 

path to block green light from entering the camera. Intensities and 

spectra were measured using a calibrated spectrometer (Thorlabs, 

CCS-100) and a digital power meter (Thorlabs, S130C sensor). A shift-

ing spatiotemporal white-noise stimulus was presented using a binary 

pseudorandom sequence, in which the two primary lights (green and 

UV) varied dependently. All white-noise stimuli were presented at a 

6-Hz update for 15 min. The checker size was 100 × 100 µm and the 

entire grid was shifted by random multiples of 10 µm in both x axis and 

y axis after every frame. In comparison experiments, static checkers 

(without shifts) of 100 × 100 µm and 25 × 25 µm were interleaved with 

the shifting checkers in chunks of 5 min for a total of 20 min for each 

of the three checker types. A ‘chirp’ stimulus with a 1-s bright step, 

increasing amplitude (0 to 127 over 8 s) and increasing frequency (0 

to 4 Hz over 8 s) was repeated for five trials to reproduce clustering of 

responses20. Moving square gratings (temporal frequency of 0.6 cycles 

per second and spatial frequency of 0.025 cycles per micron) or a wide 

bright bar (1 mm s−1 speed, 2 mm width) in eight directions, repeated 

for five trials, were used for assessing direction selectivity. All visual 

stimuli were generated using the Psychtoolbox (version 3)55.

Histology
After the ex vivo recordings, some of the retinas were fixed with 4% 

paraformaldehyde (PFA) for 30 min and stained for S-opsin and RFP. 

Retinas were incubated for 7 d at 4 °C in PBS, containing 5% donkey 

serum, 0.5% Triton X-100, goat anti S-opsin (1:500 dilution; Rockland, 

600-101-MP7) and rabbit anti-RFP (1:1,000 dilution; Rockland, 600-401-

379). After washing thrice in PBS for 15 min each, retinas were incubated 

overnight in secondary antibodies, donkey anti-goat Alexa Fluor 488 

(1:1,000 dilution; Abcam, ab150129) and donkey anti-rabbit Alexa Fluor 

594 (1:1,000 dilution; Invitrogen, R37119). Retinas were then mounted 

and imaged with an Olympus VS120 Slidescanner with a ×20 objective. 

For cell-type characterization, Vglut2-ires-cre; TITL-R-CaMP1.07-D; 

ROSA26-ZtTA mice were euthanized and perfused intracardially, fol-

lowed by retina extraction and staining for RBMPS or SMI32, along with 

RFP (primary antibodies: guinea pig anti-RBPMS (1:500 dilution; Sigma, 

ABN1376), mouse anti-SMI32 (1:500 dilution; BioLegend, 801701), 

rabbit anti-RFP (1:1,000 dilution; Rockland, 600-401-379) or mouse 

anti-RFP (1:500 dilution; MBL, M155-3); secondary antibodies: goat 

anti-guinea pig Alexa Fluor 647 (1:1,000 dilution; Invitrogen, A21450), 

donkey anti-mouse Alexa Fluor 647 (1:1,000 dilution; Abcam, A-31571) 

and donkey anti-rabbit Alexa Fluor 594 (1:1,000 dilution; Invitrogen, 

R37119). The staining protocol was the same as above and these retinas 

were imaged with a Leica SP8 confocal microscope.

After the final in vivo recording, mice were terminally anesthe-

tized with ketamine/xylazine (100 mg per kg body weight/10 mg per 

kg body weight) intraperitoneally (i.p.) and transcardially perfused 

with PBS, followed by 4% PFA. Brains were extracted and post-fixed in 

4% PFA at 4 °C overnight. Brains were then washed and transferred to 

30% sucrose solution for cryoprotection overnight at 4 °C and subse-

quently frozen and the midbrain coronally sliced into 40-µm sections 

on a Leica SM2010R sliding microtome. Sections were washed and then 

incubated in PBS, containing 5% donkey serum, 0.3% Triton X-100 and 

goat anti-GFP (1:2,000 dilution; Abcam, ab6673) overnight at 4 °C. After 

washing thrice in PBS for 15 min each, brain sections were incubated for 

1 h in secondary antibody solution, donkey anti-goat Alexa Fluor 488 

(1:1,000 dilution; Abcam, ab150129), washed thrice again in PBS and 

mounted on slides, where they were stained with DAPI (not shown) and 

coverslipped with custom-made Mowiol. Brain sections were imaged 

with a Nikon CSU-W1 spinning disk confocal microscope at ×20 tile 

stack acquisition. Shading correction was performed on image stacks 

with BaSiC56 in ImageJ and, finally, maximum projection was performed 

over the whole stack.

Preprocessing
Regions of interest (ROIs) were detected automatically from raw cal-

cium movies using Suite2p54. Fluorescence traces, F, were detrended 

by computing dF/F, where the 8th percentile in a 20-s sliding window 

centered around each time point was taken as the baseline fluores-

cence. Different FOVs from the same retina were stitched together 

based on coordinates from the stage motors and repeated ROIs in 

overlapping regions were manually annotated using an open-source 

tool57. Repeated ROIs with the highest score in Suite2p’s built-in classi-

fier were kept for analysis. The deconvolved signal from Suite2p (with 

tau = 1.0 s) was used for calculating RFs.

The median dF/F response across trials was taken as the response 

to the chirp and normalized by dividing by the maximum of the abso-

lute values across time. Quality Index was computed as in ref. 20, and 

only responses with a score > 0.45 were kept for clustering (8,019 of 

30,798 neurons). For moving gratings and bar, the mean across tri-

als and maximum across time was taken as the response in any one 

direction.

Receptive field mapping
The RF for each neuron was computed as a calcium-triggered average. 

The spatiotemporal RF at latency τ, position (x,y) for neuron i was 

computed as

RF (i, x, y, Ä) =

T

3

t=1

s (x, y, t 2 Ä) ç r (i, t) 2

T

3

t=1

s(x, y, t 2 Ä) ç

N

3

j=1

r(j, t),

where r(i,t) is the deconvolved response of neuron i at time t, s(x,y,t)) 

is the white-noise stimulus, T is the length of the recording and N is 

the total number of neurons in the recording. The second term in this 

equation subtracts away the residual distribution of the stimulus and 

the contribution of slow bleaching that is common to all neurons in 

that recording and leads to RFs that had noticeably less noise. Only 

the UV channel of the stimulus was used for RF mapping. The latency 

τ was varied in increments of 0.025 s (40 Hz), and the stimulus was 

interpolated by using the last frame before a particular time, t-τ. The 

RF for each neuron was normalized between −1 and 1 by subtracting the 

mean value of the RF at latencies τ < 0, and dividing by the maximum 

absolute value of the entire RF.

The location of the center of an RF was estimated by finding the 

pixel that varied the most across time, P
var

= argmax Var

t

(x, y)  where 

Var

t

(x, y)

 is the variance across time for position (x,y). Each neuron’s  

RF was cropped within a square window of edge 1 mm centered on this 

pixel. The SNR of an RF was computed as the peak-to-noise ratio where 

the power of noise was estimated in regions with distance >0.5 mm 

from the point Pvar. Only RFs with a peak SNR > 15 dB were kept for 

analysis (31,135 selected RFs of 37,086 recorded neurons). The location 

of the RF in time was found in a similar way; T
var

= argmax Var

xy

(t)   

here, Varxy (t) is the variance in space.

Parametrization of receptive fields
We parametrized spatiotemporal properties of the center and surround 

of the RFs as a sum of two 2D Gaussian distributions (Gaussians) G1 + G2. 

The first Gaussian represents the center of the RF; its amplitude can be 
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either negative or positive corresponding to an OFF or an ON cell. The 

amplitude of the second Gaussian is required to be of the opposite sign 

to model the properties of the surround. We computed a spatial rep-

resentation of the RF, denoted as RF2D as the median of the RF within a 

small time window around Tvar. To reduce noise, we excluded the pixels 

that were weakly correlated with Pvar across time. The sum of 2D Gauss-

ians G1 + G2 was then fitted to RF2D. Each Gaussian is defined by the 

amplitude A, center (mx

,m

y

), width (Ãx,Ãy) and the orientation angle θ. 

We fit only one Gaussian G1 to parametrize the location (mx

,m

y

), the size 

and the orientation θ1 of the center. In the next step, we fit the sum of 

Gaussians, where we fixed (mx

,m

y

,Ã

x0

,Ã

y0

,»

1

) parameters of G1 while 

allowing all other parameters to be fitted anew.

Here we differentiated two types of RFs: a RF with a strong center 

and a weaker surround that largely overlap, and a RF where both 

center and surround components are strong and well separated. For 

the first case, we imposed a constraint such that the center of G2 is 

within the distance d = 2 min (Ãx0
1

,Ã

y0

1

) from the center (mx

1

,m

y

1

). We 

implemented this constraint as a penalty sigmoid function 

P(dist(G

1

,G

2

)) of the distance between the locations of the center and 

surround components. We added P(dist(G
1

,G

2

)) to the Gaussian mix-

ture and allowed it to be prohibitively large for dist(G1, G2)> d. Encod-

ing the constraint in this manner allowed us to remove the bias for 

the location of the surround on the diagonals of the RF2D, which oth-

erwise happens when fitting Gaussian mixture on the square 

bound-constrained region. There were no constraints for the second 

type of the RFs where the surround component is strong and more 

distant from the center. To decide the type of the RF, we found the 

maximum and minimum points of the RF, and we computed the dis-

tance between them and the ratio of their absolute values. If the ratio 

of the smaller to the bigger values was less than 0.75 or if the distance 

between the extrema points was less than d, then we classified such 

an RF as the first type, and as the second type otherwise. Experimen-

tally, we found that imposing such a constraint on the location of the 

second Gaussian leads to a better fitted sum of Gaussians for RFs with 

largely overlapping center and surround components. All the fitting 

procedures were implemented using the nonlinear least-squares 

solver lsqcurvefit in MATLAB.

Using parametrization, we computed various RF characteristics. 

We found two sets of pixels corresponding to the center and the sur-

round. Center pixels are the pixels within two standard deviations 

from the center of the G1. Surround pixels are the pixels within two 

standard deviations from the center of the G2 and that are not center 

pixels. The center size is the number of pixels in the center set, con-

verted to mm2 for display. The relative surround strength is the ratio 

of the absolute value of sum of surround pixels to the absolute value 

of sum of center pixels. Vertical surround asymmetry is defined as 

(u 2 l)/(u + l) where u and l denote the absolute value of sum of pixels 

in the upper and lower halves of the surround pixels, respectively. 

The distance between the center and the surround is the distance 

between the center of mass (COM) of the center pixels and the COM 

of the surround pixels. The orientation is the angle between the hori-

zontal axis and the line connecting the two COMs. Radial profiles were 

computed as the average values of the pixels in RF2D within rings of 

increasing radii centered on the point Pvar. The average value of the 

center or surround pixels across time was taken to be the RF center 

or surround temporal dynamics, respectively. The R2 goodness of fit 

was computed as
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where M = G1 + G2 is the RF parametrization. The values of the above RF 

parameters are reported for a few representative neurons in Extended 

Data Fig. 4.

Retina alignment
All functional imaging experiments were performed with randomized 

retina orientations. For retinas that were co-stained against S-opsin 

and RCaMP1.07 (n = 6 retinas), the direction with the highest density 

of S-opsin was taken to be the ventral direction58. The stitched maxi-

mal projection images of the functional imaging experiments were 

aligned to the RCaMP channel using the retinal vasculature. In each of 

these retinas, we observed that a streak of asymmetric surrounds was 

always consistently present across the dorsal retina. Thus, we assumed 

this to be a reproducible feature, which we then used to manually align 

the remaining n = 5 retinas that did not have an S-opsin staining (and 

hence no ground truth orientation). To avoid any potential circular 

arguments, we present the location of neurons from these five retinas 

only in Extended Data Fig. 7, with a clear indication that the retinal 

orientation is presumed.

The coordinates of cells from each retina were then translated to 

make the optic nerve the zero of the coordinate system and rotated 

such that the positive y axis denoted ventral direction. Left retinas were 

flipped in the nasotemporal axis such that the positive x axis denoted 

nasal direction for all retinas. All spatial RFs were also translated and 

rotated accordingly. The cartesian retinal coordinates of cells in the 

stained retinas were converted to spherical visual coordinates using 

the R package Retistruct, assuming the optical axis of the mouse eye 

to be oriented at an azimuth of 64° and an elevation of 22° from the 

long axis of the animal31.

Binning of receptive field properties
For 2D bins, the retinal space from −1,500 µm to 1,500 µm in both 

nasotemporal and dorsoventral axes was divided into a square grid and 

all neurons within each bin were collected. Only 2D bins with at least 

five neurons were analyzed to minimize sampling bias. The spatial RF 

values of all neurons within each bin of 300 µm in size were averaged 

and plotted at the location of the bin in Fig. 3a and Extended Data Fig. 6. 

The RF parameter values of neurons within each bin of size 50 µm were 

averaged to yield a 2D map of the parameter, and this map was visual-

ized (without smoothing) in Fig. 3d–h. Owing to its area-preserving 

property, the sinusoidal projection of visual space was binned in the 

same way as the retinal surface, and the fraction of cells in each bin that 

had ventrally oriented surrounds were plotted in Fig. 3k.

For 1D analysis, the bins were defined along the dorsoventral or 

nasotemporal axis based on the range of coordinates in a particular 

group (by retina (Fig. 3) or cluster (Fig. 4)). The range was divided 

into six equally spaced bins and the mean parameter value of neurons 

within each bin was plotted at the coordinate of the center of the bin. 

As a summary statistic, two-sample Kolmogorov–Smirnov-tests were 

performed between ventral and dorsal samples of these binned values 

(n = 56 (Fig. 3) and n = 60 (Fig. 4) samples). Two-sample Kolmogo-

rov–Smirnov tests (with Bonferroni correction for multiple compari-

sons) were also performed between raw values of RF parameters for 

Extended Data Fig. 6. In addition, the weights of linear regressions of 

RF parameters in elevation (dorsoventral) and azimuth (nasotemporal) 

orientations are reported.

Clustering into functional types
The GMM procedure developed in ref. 20 was used for clustering tem-

poral RFs and chirp responses, separately. In brief, after normalization, 

the trace was first reduced in dimension using PCA (10 components for 

temporal RFs and 20 components for chirp responses) and then GMM 

models with diagonal covariance matrices were fitted while increasing 

the number of clusters. The numbers of clusters were identified to be 10 

for temporal RFs and 20 for chirp responses based on elbow points in 

the respective Bayesian information criteria curves. One chirp cluster 

(n = 68 cells) lacked stimulus-evoked responses and was discarded on 

visual inspection. To assess the degree of overlap between the RFs of 

neurons belonging to each of the clusters, we defined the tiling index 
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(TI) of the cluster K as the area of the union of all RF centers in a cluster, 

divided by the sum of their individual areas:

TI

K

=

Area(*

i*K

RF

i

)

3

i*K

Area(RF

i

)

The value of this index for each cluster was computed separately 

for each retina and the mean and s.d. across retinas are reported in 

Supplementary Table 1.

Viral eye injections
For viral-mediated gene transfer, 6- to 11-week-old wild-type C57BL/6J 

mice ( JAX, 000664) were anesthetized with ketamine/xylazine by i.p. 

injection. A 1/2-inch, 30-gauge needle was used to make a small hole 

in the temporal eye, below the cornea. Then, 1 µl of vitreous fluid was 

withdrawn and 1 µl of AAV2.7M8-syn-GCaMP8m viral vector solu-

tion (at a titer of ~1 × 1013 genome copies per ml, ISTA viral facility) 

was injected into the subretinal space with a Hamilton syringe and a 

33-gauge blunt-ended needle.

Mouse surgery for in vivo imaging
Two to three weeks after viral eye injections, mice were injected 

with meloxicam (20 mg per kg body weight, subcutaneous (s.c.), 

3.125 mg ml−1 solution) and dexamethasone (0.2 mg per kg body weight 

i.p., 0.02 mg ml−1 solution). Anesthesia was induced by 2.5% isoflurane 

in oxygen in an anesthesia chamber. The mouse was subsequently 

fixed in a stereotaxic device (Kopf) with a constant isoflurane supply 

at 0.7% to 1.2% in O2 and body temperature controlled by a heating pad 

to 37.5 °C. After the assertion that reflexes subsided, the cranium was 

exposed and cleaned of periosteum and connective tissue. A circular 

craniotomy of 4 mm in diameter was drilled above the left SC and from 

this point onwards, the exposed brain was constantly irrigated with 

artificial cerebrospinal fluid. The exposed dura mater was removed, 

and subsequently, the left transverse sinus was sutured twice with 

9-0 monofil surgical suture material (B. Braun) and cut between the 

sutures. Cortical areas covering the left SC were aspirated with a cell 

culture vacuum pump (Accuris) connected to a blunt needle of 0.5 mm 

in diameter. A 3-mm circular coverslip was glued (Norland optical adhe-

sives 61) to a thin-walled custom-made conical ring, made from stainless 

steel. The coverslip ring was inserted into the cavity left by the aspirated 

cortex, so that the glass was sitting flush on the surface of the SC. Slight 

pressure was applied with the help of a thinned toothpick, fixed to the 

stereotaxic arm. The space around the insert was filled with Dura-Gel 

(Cambridge Neurotech) and the insert was fixed in place with VetBond 

(3M). After cleaning and drying the surrounding cranium, a multilayer 

of glues was applied. First, to provide adhesion to the bone, All-in-One 

Optibond (Kerr) was applied and hardened by blue light (B.A. Optima 

10). Second, Charisma Flow (Kulzer) was applied to cover the exposed 

bone and fix the metal ring in place by also applying blue light. After 

removal of the fixation toothpick, a custom-designed and manufactured 

(RPD) headplate, selective laser-sintered from the medical alloy TiAl6V4 

(containing a small bath chamber and micro-ridges for repeatable fixa-

tion in the setup), was positioned in place and glued to the Charisma 

on the cranium with Paladur (Kulzer). Mice were given 300 µl of saline 

and 20 mg per kg body weight meloxicam (s.c.), before removing them 

from the stereotaxic frame and letting them wake up while keeping 

them warm on a heating pad. Another dose of 20 mg per kg body weight 

meloxicam s.c. and 0.2 mg per kg body weight i.p. dexamethasone was 

further injected 24 h after conclusion of the surgery. After the implanta-

tion surgery, animals were allowed to recover for 1 week.

In vivo visual stimulation and eye movements
Mice were head-fixed while awake using a custom-manufactured clamp, 

connected to a three-axis motorized stage (8MT167-25LS, Standa). 

Mice could run freely on a custom-designed spherical treadmill (20-cm 

diameter). Visual stimuli were projected by a modified LightCrafter 

(Texas Instruments) at 60 Hz, reflected by a quarter-sphere mirror 

(Modulor) below the mouse and presented on a custom-made spher-

ical dome (80 cm in diameter) with the mouse’s head at its center. 

The green and blue LEDs in the projector were replaced by cyan (LZ1-

00DB00-0100, Osram) and UV (LZ1-00UB00-01U6, Osram) LEDs 

respectively. A double bandpass filter (387/480 HD Dualband Filter, 

Semrock) was positioned in front of the projector to not contaminate 

the imaging. The reflected red channel of the projector was captured by 

a transimpedance photo-amplifier (PDA36A2, Thorlabs) and digitized 

for synchronization. Cyan and UV LED powers were adjusted so that the 

reflectance on the screen matched the relative excitation of M-cones 

and S-cones during an overcast day, determined and calibrated using 

opsin templates52 and a spectrometer (CCS-100, Thorlabs). Stimuli 

were designed and presented with Psychtoolbox (version 3)55, running 

on MATLAB 2020b (MathWorks). Stimulus frames were morphed on 

the GPU using a customized projection map and an OpenGL shader 

to counteract the distortions resulting from the spherical mirror and 

dome. The dome setup allows the presentation of mesopic stimuli from 

circa 100° on the left to circa 135° on the right in azimuth and from circa 

50° below to circa 50° above the equator in elevation.

Visual stimuli were like ex vivo retinal imaging experiments: A 

shifting spatiotemporal white-noise stimulus was presented using 

a binary pseudorandom sequence, in which the two primary lights 

(cyan and UV) varied dependently. All pseudo white-noise stimuli were 

presented at a 5-Hz update in 5-min episodes, interleaved with different 

stimuli (for example, gray screen, moving gratings (not shown)) with a 

total pseudo white-noise duration of 15–60 min (median of 25 min) per 

recording. The checker size was a visual angle of 8 × 8° and the entire 

grid was shifted by random multiples of a 0.4° visual angle in both eleva-

tion and azimuth axis after every frame. Eye movements of the right 

eye were recorded with a camera (Basler acA1920-150um, 18–108 mm 

macro zoom lens (MVL7000, ThorLabs), set at 100 mm, and infrared 

illumination of 830 nm) via an infrared mirror at 50 frames per second.

In vivo retinal terminal imaging
Two-photon axonal terminal imaging was performed on a custom-built 

microscope, controlled by ScanImage (Vidrio Technologies) running 

on MATLAB 2020b (MathWorks) and a PXI system (National Instru-

ments). The beam from a pulsed Ti:Sapphire laser (Mai-Tai DeepSee, 

Spectra-Physics) was scanned by a galvanometric-resonant (8 kHz) mir-

ror combination (Cambridge Scientific) and expanded to underfill the 

back-aperture of the objective (×16 0.8-NA water-immersion, Nikon); 

1.9 × 1.9-mm FOV; 30-Hz frame rates. Fast volumetric imaging was 

acquired with a piezo actuator (P-725.4CA, Physik Instrumente). Emit-

ted light was collected (FF775-Di01, Semrock), split (580 nm long-pass, 

FF580-FDi01, Semrock), bandpass filtered (green, FF03-525/50; red, 

FF01-641/75; Semrock), measured (GaAsP photomultiplier tubes, 

H10770B-40, Hamamatsu), amplified (TIA60, Thorlabs) and digitized 

(PXIe-7961R NI FlexRIO FPGA, NI 5734 16-bit, National Instruments). 

The laser wavelength was set between 920 and 950 nm. Average laser 

output power at the objective ranged from 57 to 101 mW (median of 

69 mW)56. A FOV of 0.32–1.85 mm2 (median of 0.68 mm2) was imaged 

over 3–7 planes (median of 6 planes) with a plane distance of 14–40 µm 

(median of 25 µm) at a pixel size of 0.6–1.9 µm (median of 1.3 µm) and a 

volume rate of 4.3–9.5 Hz (median of 5.0 Hz). Each mouse was recorded 

in 2–4 imaging sessions on different days. In a subset of mice (n = 2) in 

separate imaging sessions, absence of substantial z-motion was veri-

fied by injecting 40 µl of Texas Red dextran (3000 MW, X 14.3 mg ml−1, 

diluted in saline, Themo Fisher Scientific) s.c. and imaging brightly red 

labeled blood vessels at 980 nm59.

In vivo eye movement analysis
Behavior videos were analyzed with DeepLabCut60, labeling eight 

points around the pupil. The eight points were then fitted to an ellipse 
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and the ellipse center position transformed to rotational coordinates 

under the assumption of eyeball radius = 1.5 mm61, using custom Python 

scripts. The median of all eye positions was set to zero azimuth and 

elevation, that is, all eye coordinates were relative to the median posi-

tion. The individual horizontal axis, which varied slightly between mice 

due to differences in the positioning of the head plate, was corrected 

by leveraging a behavioral feature of head-fixed mice: Saccadic move-

ments are nearly exclusively in one plane35. Saccades were extracted 

by determining events of fast position changes on a median filtered 

position trace (median filter window of 0.7 s, minimal saccadic speed 

of 45° per second, minimal saccade amplitude of 3°, minimal saccade 

interval of 0.25 s). The preferred saccadic orientation and orientation 

tuning was determined in a similar fashion as that for neuronal visual 

orientation tuning based on circular variance:
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with ¿ as the saccadic orientation angle, r ̄ as saccadic orientation tun-

ing, rt as saccade amplitude and �훼t as direction of saccade t (Extended 

Data Fig. 9a–c). Saccade orientation tuning was very high, with mean 

selectivity = 0.8.

In vivo axonal terminal analysis
Functional calcium imaging data were first analyzed with suite2p 

(v0.10.0)62 for motion correction and ROI extraction. ROIs were then 

curated manually based on morphological and activity shape. Fur-

ther analysis was performed in custom MATLAB R2021a (MathWorks) 

scripts: dF/F0 was estimated based on published procedures63 by first 

subtracting neuropil contamination (from suite2p, fluorescence signal 

of 350 pixels surrounding the ROI, excluding other ROIs) with a factor 

of 0.5 (estimated from fluorescence of small capillaries as reported 

previously). From the neuropil-corrected ROI fluorescence, baseline F0 

was defined as the 8th percentile of a moving window of 15 s64. dF/F0 was 

then calculated by first subtracting and then dividing the fluorescence 

trace by the median of the same 15-s window63. Fluorescence SNR was 

defined for each neuron by dividing the 99th percentile of the dF/F trace 

(‘signal’) by the standard deviation of its negative values after baseline 

correction (‘noise’). Only axonal segments with a fluorescence SNR ≥ 5 

were included in further analysis. The deconvolved signal from Suite2p 

(with tau = 0.7 s) was used for calculating RFs. Note that multiple axonal 

ROIs can originate from the same RGC. Spatiotemporal RF analysis for 

in vivo retinal terminals was conducted as for ex vivo RGC imaging, 

but on visual stimuli downsampled to a resolution of a 1° visual angle. 

The resulting 50 × 50° RFs were contaminated by eye movements and 

exhibited a lower SNR (as determined by temporal variance of the most 

varying pixel over the temporal variance of pixels with >50° visual angle 

distance) than ex vivo soma recordings, requiring further inclusion 

criteria: SNR > 15 (as in ex vivo data) and peak variance over time located 

at tau values between −0.1 and 0.6 s. Additionally, the retinotopic 

projection pattern of RGCs to the SC was utilized by fitting a map from 

visual coordinates to collicular space. For each recording, RF center 

azimuth and elevation values were fitted separately to the location of 

the ROI in the SC using the ‘poly22’ fit option in MATLAB and using only 

the highest 15% ROIs in SNR and SNR as a fitting weight. Boutons with 

peak location of the RF deviating by more than a 20° visual angle from 

its expected location based on the retinotopy fits were removed from 

further analysis (828 boutons removed).

The main saccadic axis was used to rotate the computed spatial 

RFs around their respective center and the center positions in visual 

space as spherical rotation around the approximate eye axis (65° from 

frontal direction in the horizontal plane). Finally, while freely moving 

mice hold their head at an approximate pitch angle of 30° downwards65, 

in vivo imaging allowed only for a pitch angle of 10° downwards. To 

compensate, the center positions of all RFs were spherically rotated 20° 

downwards around the main pitch axis (90° from frontal direction in 

horizontal plane). Note that these calculations only allow an estimate 

of the position of the horizon in free locomotion.

To avoid biasing the analyses by eye movements, RF parametriza-

tion was conducted on mean vertical 1D profiles of extracted 50 × 50° 

2D RF crops at the peak azimuthal position ± 1°, where ON center bou-

ton RFs were inverted. To extract parameters from 1D RFs, they were 

fitted with a difference of two Gaussians, initialized with the central 

peak magnitude (Mpeak) and width (Wpeak). The fitting procedure was 

then constrained with amplitudecenter ∈ [Mpeak/2, inf], amplitudesurround 

∈ [0,inf], locationcenter ∈ [−20, 20]°, locationsurround ∈ [−25, 25]° (edge of 

crop), sigmacenter ∈ [Wpeak/4, inf] and sigmasurround ∈ [Wpeak, inf]. Boutons 

with a center fit location in 1D RFs of more than 5° or with a surround 

fit location of more than 25° distant from peak estimation based on 

variance in 2D RFs, were excluded from further analysis (1,609 bou-

tons removed). Extraction of parameters was identical to ex vivo RF 

parametrization, except center size, where in vivo 2sigmacenter of the 

fit was used.

For presenting RF characteristics of RGC axonal boutons in the SC, 

the centered 1D RFs were binned and averaged in each bin. RF param-

eters varying over elevation and azimuth are presented as parameters 

of the fit on the mean 1D RF in the respective bin. Linear regression 

weights were computed from the parameters and location of each 

individual bouton.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
Data used in the analysis can be found at ISTA data repository: https://

doi.org/10.15479/AT:ISTA:12370.

Code availability
Code used to generate the results is available at GitHub: https://github.

com/joesch-lab/panoramic-retina/.
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Extended Data Fig. 1 | Predictive coding predictions derived from a 

previously proposed model. (a) Average luminance (left panel) and local 

contrasts (right panel) in the mouse field of view in the ultraviolet range. Red 

dashed lines separate elevation bands. Orange opaque rectangle denotes the 

horizon band. Natural image data - courtesy of Hiroki Asari18. (b) Receptive 

fields optimized for each band in (a). (c) Relative surround-to-center strength 

as a function of the elevation band. (d) Surround asymmetry as a function of 

elevation band. Orange mark denotes the horizon band.
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Extended Data Fig. 2 | Predictive coding model trained with an alternative 

set of natural images. We used natural images of animals and landscapes of the 

African savanna from van Hateren repository, used in51 (a) Top - RFs optimized at 

different levels of SNR. Bottom – center size (purple line) and relative surround 

strength (black line) plotted as a function of the SNR. (b) Top - RFs optimized 

at different levels of the vertical SNR asymmetry. Bottom – vertical surround 

asymmetry plotted as a function of the vertical SNR asymmetry of the model 

photoreceptor output (RGC input). (c) RFs predicted for different positions 

within the visual field. (d) Horizontal cross-sections of model RFs in (c).
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Extended Data Fig. 3 | Clustering of Ca2+ signals to “chirp” stimulus shows 

segregation into functional types. (a) normalized Ca2+ responses to changes in 

frequency, contrast, and luminance, known as “chirp” stimulus from RGCs, sorted 

by cluster ids, as determined by GMM. (b) Mean and standard deviation of each 

cluster reveal ON (cluster 2, 4, 8, 9, 10, 11, 13, 14, 18), OFF (5, 12, 15, 16), ON-OFF (3, 6, 

7, 17), suppressed-by contrast (1, 19) RGC-types, as well as differences in frequency 

tuning to slow (for example, cluster 4), mid (for example, cluster 3), fast (for 

example, cluster 11) and all frequency modulations (for example, cluster 2) or 

difference in luminance sensitivity (for example, compare ON responsive cluster 

14 and 18). Note: clusters 15 and 19 are not homogeneous, as seen in their large 

standard deviations. (c) Chirp-response quality index versus surround strength, 

determined using their spatiotemporal filters (as in Fig. 2J). Good-quality chirp 

responses have a strong bias for weak surrounds. (d) Distribution of chirp quality 

index for weak and strong surround, as defined in (c, see color code).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison and parametrizations of RFs. (a) 

Schematic of binary white noise stimuli used for recovering RFs during imaging 

experiments for static checkers with grid size 100 ×100 µm2. (b) Spatial RFs of 

9 representative neurons were generated from the stimuli above. (c,d) Same as 

(a,b) for the same neurons, but for static 25 µm sized checkers. (e,f) Same as in 

(a,b) for the same neurons but for a shifting checkers with grid size 100 ×100 µm2, 

where the entire grid was shifted by random multiples of 10 µm in both x- and 

y-axis. While the static 100 µm checkers were too low resolution for automatic 

analysis and the static 25 µm checkers were unable to drive many neurons 

strongly enough to elicit sufficient responses for RF reconstruction, the moving 

white noise stimulus was able to unambiguously recover the most detail in the 

center–surround structure of RFs. (g) Spatial receptive field snapshot at the peak 

center strength. (h) Difference of Gaussians model fitted to the spatial RF. Ellipses 

represent 2 SD of the two Gaussians. (i) Temporal trace of the mean value of pixels 

within the respective Gaussians (top: center, bottom: surround). Dashed line 

represents no correlation between stimulus and response. (j) Values of different 

parameters of the RF reconstruction (Peak SNR), the goodness of fit (R2), center-

surround structure (Center Size, Rel. Surround Strength) and eccentricity of 

surround (Vertical Asymmetry, Surround Distance, Surround Orientation). All 

neurons are plotted with the same scale and limits (after normalization). (k) 

Schematic depicting the parametrization of the receptive field in (g), showing the 

surround distance (“d”) and orientation (“�훂”). (l) Example parametrizations.
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Extended Data Fig. 5 | Spatial structure of average RFs across the retina and 

superior colliculus. (a) Average spatial RFs of all RGCs in square bins of size 

300 µm at different positions of the retinal surface. As in Fig. 3a, but including 

cells from 6 retinas (n = 220 ± 200 cells per bin). Black cross: optic nerve head 

position. (b) Average spatial RFs of all RGC boutons in square bins of size 5.6 ° 

at different positions in visual space. n = 93 ± 68 boutons per bin, only bins with 

n > = 20 boutons shown.
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Extended Data Fig. 6 | Homogeneity of receptive field architecture in the 

temporal-nasal axis. (a) Top: Mean relative surround strength at 6 different 

dorsoventral positions. Bottom: p-values of two-sided Kolmogorov-Smirnov 

tests (with Bonferroni correction) between all pairs of bins. Darker colors 

represent higher significance levels that the cells in the two corresponding bins 

have different surround strengths. (b) Same as (a), but for trends and significance 

levels across the naso-temporal axis. (c,d) Same as (a,b), respectively, but 

for center sizes. (e,f) Same as (a,b), respectively, but for Vertical surround 

asymmetry (n = 6 retinas with S-opsin staining).
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Extended Data Fig. 7 | Surround strength, center size and asymmetric streak 

align in retinas without an S-opsin staining. (a) Mean relative surround 

strengths of RGCs within 100 µm bins, pooled from n = 5 retinas. (Same as Fig. 3d)  

(b) Relative surround strengths for RGCs within 6 equally spaced bins along 

the presumed dorsoventral axis (color: mean and SEM pooled from n = 15449 

RFs, grey lines: individual retinas). (c & e) Same as (a), but for center size and 

vertical surround asymmetry, respectively. (d & f) same as (b), but for center 

size and vertical surround asymmetry, respectively. (p-values for two-sided 

Kolmogorov-Smirnov test: (b) 0.0047, (d): 0.0168, (f): 2.3766e-04.
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Extended Data Fig. 8 | Proportions of cluster membership. (a) Fraction 

of cells from each retina that were classified into each of the 10 temporal RF 

clusters (from Fig. 4). (b) Fraction of cells across dorsoventral positions within 

bins of width 500 µm. (c) Distribution of relative surround to center strength, 

center sizes and vertical asymmetry for each cluster, subdivided into ventral 

(above the optic nerve) and dorsal (below the optic nerve). For all statistics, see 

Supplementary Table 1.
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Extended Data Fig. 9 | Sampling RGC bouton receptive field architecture 

across superior colliculus. (a) Two example video frame crops of eye in two 

extreme horizontal positions. (b) Polar scatter plot of individual saccade 

amplitudes and directions (gray dots) in example recording and computed 

saccade axis (orange line, saccadic orientation tuning r̄ = 0.92). (c) Saccade axes 

of all recordings (n = 10 in 3 mice) close to the horizon (offset = 5.5 ± 2.9 °). (d) 

Relative surround strengths of mean 1-d-RFs within 4.3 ° bins. n = 45 ± 40 boutons 

per bin, only bins with n > = 5 boutons shown. (e & f) Same as (d), but for center 

size and vertical surround asymmetry, respectively. (g) Example RGC bouton 

receptive fields recorded using “shifting” white noise (left) and their respective 

1-d RFs (right) at different azimuth positions (gray lines). (h) Average 1-d RFs, in 

smoothed 0.22 ° bins over azimuth. (i) Example average receptive fields binned 

at 2.9 ° visual angle (left), with their respective 1-d RFs (right) at different azimuth 

positions (gray bars). (j) Relative surround strength of 4.1 ° binned average 1-d 

RFs, shading indicating SEM across elevation bins (shown in (a)). Regression 

weights for both elevation and azimuth shown in Fig. 5g. (k, l) as ( j), but for center 

size and vertical asymmetry, respectively. p-values indicated in j-l for two-sided 

Kolmogorov-Smirnov test.
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Supplementary Information 

Supplementary Note 1 

Here by following the derivation and assumptions proposed in 10, we present an alternative, 

analytically-tractable model of predictive coding in retinal receptive fields. The receptive field 

model in 10 assumes that the center pixel �ā,ýÿ�ā of the t-th stimulus �ā⃗⃗  ⃗ is subtracted from its 

linear prediction computed from the surround � ā,ĀĂÿ. Instead of encoding the raw value of the 

central pixel, the model RGC encodes the difference between this prediction and the center in 

order to minimize the dynamic range of its output. The optimal prediction weights �⃗⃗  are 

optimized to minimize the mean squared error: 

Ā(�) = +(�ā,ýÿ�ā 2 �⃗⃗ �� ā,ĀĂÿ)2,ā 
where ÿ denotes vector transposition.  

The optimal vector of surround weights �⃗⃗   is a solution to the following equation: 

ý−ý�⃗⃗ = ý⃗ ý 

where ýÿ,Ā = +�ā,ÿ�ā,Ā,ā is the spatial autocorrelation of natural images, and ÿ, Ā index pixels 

within an image patch, ý⃗ ý is the autocorrelation vector of the center pixel with all other pixels, 

and ý−ý is the square correlation matrix of all pixels without the center pixel. 

The correlation function ýÿ,Ā is approximated analytically as: 

ýÿ,Ā = ýÿýĀ + þÿþĀ exp [2 þ(ÿ,Ā)� ], for ÿ b Ā and, 

ýÿ,Ā = ýÿ2 + þÿ2 + þ2, for ÿ = Ā, 
Where ýÿ and þÿ are mean and standard deviation of the i-th entry of the image intensity 

respectively, �(ÿ, Ā) is the Euclidean, spatial distance between entries labeled ÿ and Ā, ÿ is a 

constant controlling the decay of the correlation, and þ is the standard deviation of the noise. 



2 

 

The term þÿþĀ  vanishes for ÿ b Ā because noise is assumed to be uncorrelated. 

To approximate the spatial autocorrelation function of natural images as a function of elevation 

within the visual field, we created a dataset of images with simulated horizon as described in 

the Methods. We then divided each of these images into uniformly separated horizontal bands. 

We sampled square image patches within each band. We then computed mean vectors ý⃗⃗ � and 

standard deviation vectors þ �, where the upper index � indicates the elevation band. Individual 

entries of these vectors corresponded to mean and variance of pixel values within the elevation 

band � respectively. We assumed constant values of the decay constant ÿ and noise standard 

deviation þ. Ratio of surround-to-center strength and surround asymmetry were computed as 

described in the Methods. We note that our results do not depend qualitatively on parameter 

choice and reveal similar trends across a broad range of parameter values. 
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CHAPTER 3
Collicular adaptations to internal and

external context

Abstract — Sensory systems constantly adapt their representations to maintain efficient
processing and perception across contexts. Previous ex-vivo experimental work in the retina
has shown that the spatiotemporal filters shift to higher frequencies with increasing luminance,
while neurons in the visual cortex are modulated by the behavioral demands of the animal.
However, the adaptability of the superior colliculus (SC), an important sensorimotor hub,
to such external and internal contexts is less understood. Here, we try to address this gap
using neuropixel recordings in awake-behaving mice, measuring high-resolution spatiotemporal
receptive fields at different light levels and arousal states. Early results suggest that the SC
primarily adjusts temporal processing through latency shifts without significant changes in
frequency selectivity. Additionally, we show that pupil dynamics also modulate receptive field
(RF) latencies in a manner similar to luminance adaptation, with faster visual responses at
times of higher arousal. These latency shifts were conserved for all neurons in a population,
suggesting that relative timing between neurons may play a crucial role in maintaining an
invariant visual code across internal and external contexts.

3.1 Introduction

Sensory systems exhibit remarkable adaptabil-
ity, adjusting to changing environmental con-
ditions to maintain efficient processing and
accurate perception. The amount of ambient
light increases by roughly 8-10 orders of magni-
tude (~billion-fold) between a moonless night
(scotopic) and high noon (photopic)(Spitschan
et al., 2016). In the early visual system, ex-vivo

retinal ganglion cells (RGCs) have been shown
to adapt their filtering properties in response
to varying light levels. As light levels increase,
the center-surround structure of spatial filters
becomes more pronounced and temporal fil-
ters become faster and more biphasic (Barlow
et al., 1957; Enroth-Cugell & Shapley, 1973;

Ogawa et al., 1966; Ruda et al., 2022). As
a result, RGCs tend to emphasize lower fre-
quency content at lower light levels. These
adaptations align with efficient coding theories,
which suggest that sensory systems subtract
away predictable components of the environ-
ment in order to maximize information transfer
(Atick & Redlich, 1990; Barlow, 1961; Srini-
vasan et al., 1982). Crucially, this subtraction
is only possible given sufficient Signal to Noise
Ratio (SNR), and thus, optimal filters look
like stretched monophasic integrators at low
light levels, and faster biphasic differentiators
at higher light levels (Atick & Redlich, 1990;
Gupta et al., 2023; Srinivasan et al., 1982).
Some RGC responses have even been found
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to reverse their ON or OFF polarity depend-
ing on global or local brightness levels (Goldin
et al., 2022; Tikidji-Hamburyan et al., 2015),
presumably to continue to signal unexpected
inputs under changing contexts.

Such diversity in coding strategies by the retina
raises the question about how downstream ar-
eas interpret these adaptive codes and whether
they also show similar adaptations in filtering
properties. Although studies have failed to find
significant luminance adaptations of spatial
tuning in the visual cortex (Bisti et al., 1977;
Duffy & Hubel, 2007; O’Shea et al., 2024;
Ramoa et al., 1985), more dynamic modula-
tions of visual coding have indeed been found
in-vivo. Arousal-like signals, as measured by
locomotion or pupil dilation, have been shown
to dynamically affect the firing rates or spec-
tral preferences of cortical neurons (Franke
et al., 2022; Niell & Stryker, 2010; Reimer
et al., 2014; Saleem & Busse, 2023; Vinck
et al., 2015), altering sensory processing based
on behavioral demands.

While substantial adaptation research has fo-
cused on the retina and the primary visual
cortex, the adaptability of another important
visual pathway, the superior colliculus (SC), un-
der varying environmental and arousal states
remains less understood. The SC is crucial for
computing spatial attention to guide orienting
behaviors (Basso & May, 2017; Krauzlis et al.,
2013), yet the repertoire of its visual processing
capabilities is only starting to be fully appreci-
ated (Hafed et al., 2023; Y.-t. Li & Meister,
2023). It remains largely unknown if it adjusts
its visual processing under different luminance
levels like the retina or varying arousal states
like the cortex. Studies that have looked at
modulation of SC visual responses with loco-
motion have found somewhat mixed effects on
response amplitude and spatial tuning (Ito et
al., 2017; Savier et al., 2019; Schröder et al.,
2020). Furthermore, owing to the limitations
of calcium imaging, these studies often did not
have enough temporal resolution, to investi-
gate fine modulation of temporal processing.

In the present study, we leverage the power of

high-throughput Neuropixel recordings (Stein-
metz et al., 2021) and high-resolution spa-
tiotemporal receptive field analysis (Gupta et
al., 2023) to explore the adaptation of visually
responsive SC cells under changing luminance
and arousal settings. Our current results show
that under lower light levels or low arousal
states, neural populations in the SC slow down
their response latencies in concert. This tem-
poral latency was measurable both in spike
timings of responses to natural movies and in
temporal RFs measured from white noise anal-
ysis. Unlike retinal adaptations, we did not see
a significant stretching of spatial or temporal
filters under low light levels. These prelimi-
nary results suggest that the SC may utilize
a relative timing code to maintain invariant
visual representations across light levels, while
also facilitating faster visual processing under
states of higher arousal.

3.2 Results

Population spike timing changes with

luminance

To study the effects of luminance on visual
responses in the intact early visual system,
we recorded neural activity from the superior
colliculus of a mouse running on a spherical
treadmill, while viewing stimulus movies on
an immersive dome screen (Fig. 3.1A). Using
Neuropixel 2.0 probes, we could target the visu-
ally responsive superficial SC (sSC) on all four
of its shanks, allowing us to collect data from
a span of around 800µm along the medio-
lateral and rostro-caudal extent of the SC (Fig.
3.1B). We varied the mean luminance of the
visual input using neutral density filters, going
from a scotopic regime to roughly mesopic,
while allowing some time for bright adaption
in between (Fig. 3.1C).

Spike responses to repeated trials revealed
that population spike timing varies system-
atically with luminance. Firstly, spike rasters
and Peri-Stimulus Time Histograms (PSTHs)
demonstrate that although the time-varying
firing rate of a given neuron did not appear to

42



100x

Brighter

m
SC

sS
C

sS
C

sS
C

sS
C

RS
P

RS
P

RS
P

RS
P

m
SC

m
SC

sSC

Figure 3.1: Population spike timing changes with luminance. (A) Schematic of recording setup for in-vivo

extracellular electrophysiology. (B) Left, trajectory of Neuropixel 2.0 insertions in the superficial superior

colliculus (sSC). Right, the brain structures encountered along the length of the 4 shanks. Schematic adapted

from the Pinpoint software (Birman et al., 2023) using the Allen Mouse Brain Atlas. Green, Retrosplenial

Cortex (RSP), Pink: SC. (C) Stimulus paradigm schematic showing example frames from the Natural Movie

and Shifting White Noise Stimuli at different mean luminance levels. (D1) Top, spike raster plot for one

neuron showing the timing of spike responses to different repeats of the natural movie stimulus at the dim

and bright conditions. Bottom, mean response across trials, i.e. the Peri-Stimulus Time Histogram (PSTH),

in spikes/second. (D2) Same as (D1) but for white noise stimulus. The dim PSTH slightly lags behind the

bright PSTH for both stimuli types. (E) The cross-correlation function between the dim and bright PSTHs of

the neuron in (D) and the lag at which it peaks. Note that positive lags indicate a leading bright PSTH. (F)

Distributions of the lags at which the cross correlations peak for a population of simultaneously recorded SC

neurons visualised as a ’raincloud’ plot (Allen et al., 2021). One sample Wilcoxon test for greater than zero

lag; Natural Movies p-value=9.8e-12, White Noise p-value=2.7e-7
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change its shape between the dim and bright
conditions, the dim responses lagged the bright
responses by a consistent delay (Fig. 3.1D).
This phenomenon was observed for both the
natural movies and the white noise stimulus.

Next, we quantified this temporal lag using
cross-correlation analysis, which showed that
although the PSTHs in the dim and bright con-
ditions were highly correlated to each other,
the peak of this correlation was at a positive
lag of around 30ms, confirming that dim re-
sponses do largely mimic bright responses but
with a considerable lag (Fig. 3.1E). Finally,
and perhaps most strikingly, this lag was simi-
lar for all neurons in the recorded population
(Fig. 3.1F), suggesting that the entire popula-
tion slows down in concert.

Temporal RFs shift with mean luminance

The effect of faster responses under higher
luminance (and vice-versa) was also observed
in the temporal receptive fields of SC neu-
rons. We computed the spatiotemporal filters
for dim and bright conditions separately using
the shifting white noise stimulus introduced
previously, and then decomposed them into
spatial snapshots and temporal traces (Gupta
et al., 2023). Although the spatial filters were
mostly unchanged across luminance, the dim
temporal filters appeared to be delayed ver-
sions of the bright filters (Fig. 3.2A1-2). This
latency between the dim and the bright tempo-
ral filters can be quantified by measuring the
difference in time to peak of the two filters for
each neuron. Similar to the cross-correlation
analysis of PSTHs (Fig. 3.1F), it was observed
that these delays could range from 20 to 60ms,
but were tightly clustered for all neurons of
each simultaneously recorded population (Fig.
3.2B).

A delay in the peak of the temporal filters can
be caused either when the filter is stretched
in the time axis (corresponding to selectivity
for lower frequencies in the Fourier domain) or
shifted (corresponding to a phase difference).
Previous experimental and theoretical work has
shown that ex-vivo retinal ganglion cells (RGC)

tend to show a change in their frequency tuning
with light levels, with stretched filters at low
light levels (Enroth-Cugell & Shapley, 1973;
Ogawa et al., 1966; Ruda et al., 2022). To
quantitatively distinguish between these two
possibilities, we parameterized the temporal
RFs with a biphasic function adapted from
(Adelson & Bergen, 1985) (Fig. 3.2A3). First,
all the parameters of the function (sign, first
phase, second phase, stretch, and shift) were
fitted to the bright RF, and then either the
stretch or the shift was re-optimized to best fit
the dim RFs, while keeping the other param-
eters fixed. This analysis shows that for two
of the four animals, the dim RFs were closer
to a shifted version of the bright RFs, than to
a stretched version, while for the other two,
the shifted or stretched filters were comparably
good at describing dim RFs (Fig. 3.2C). The
variability between animals could possibly arise
from differences in the initial dark adaptation
period, and requires further investigation. See
also the discussion section (3.3).

Pupil size modulates RF dynamics

In the intact visual system, the pupil also plays
an important role in modulating the amount
of light reaching the retina. Besides being
modulated by external light levels (via the
pupillary light reflex), the pupil diameter can
also change dynamically under constant lumi-
nance by upto 10-fold as a result of the state
of arousal of the animal (Joshi et al., 2016)
(Fig. 3.3A-B). Neurons in the mouse visual
cortex have been found to change their spec-
tral preferences as the arousal state changes
(Franke et al., 2022), however the effect of
this dynamic behavioral modulation on spa-
tiotemporal feature selectivity is still unknown.

To study the effect of pupil dilation on feature
selectivity, we computed spatiotemporal RFs
separately at different pupil sizes. The dura-
tion of the recording was divided into ’rest’ or
’active’ epochs based on the pupil area being
below or above the 33rd and 66th percentiles,
respectively. The absolute thresholds were
thus different for each animal, but the upper
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Figure 3.2: Shifts in temporal RFs across luminance. (A1) Temporal RFs for 4 representative neurons under

dim and bright white noise stimuli. (A2) Spatial RFs for the neurons in (A1). (A3) Left, a parametric biphasic

function fitted to the bright temporal RFs along with its goodness of fit (R2). Right, performance of the

parametric function in describing the dim RFs when only a stretch or a shift was allowed, while fixing the other

parameters to the bright fit. Solid lines show the temporal RFs from (A1) and dashed or dotted lines show

fits. (B) Differences in the peak timepoint of the temporal RF between the dim and bright conditions. One

sample Wilcoxon test for pooled data with n = 114 neurons, p = 2.9e-17. Wilcoxon test for animal means, N

= 4 animals, p = 0.0625. (C) Comparison of goodness of fit to the dim RFs for parametric functions that

allow either stretch or shift to the bright fits, as in (A3), n = 132 neurons. Dashed lines inside the violin plots

represent quartiles.
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Figure 3.3: Changes in RF dynamics with behavioral

state. (A) Example frames from the eye tracking cam-

era showing differences in pupil size. (B) Recording

epochs selected for computing rest or active RFs, based

on the thresholded pupil area at the time of each spike.

(C) Temporal and spatial RFs for the same neurons as

in 3.2 (A), but for rest or active states under dim lu-

minance. (D) Differences in the peak timepoint of the

temporal RF between the active and rest conditions.

One sample Wilcoxon test for pooled data with n =

111 neurons, p = 5.9e-13. Wilcoxon test for animal

means, N = 4 animals, p = 0.0625.

threshold was, on average, 81 ± 53 percent
larger than the lower threshold. The spikes in
these epochs were collected and subsampled
to ensure that equal number of spikes were
used for the STA computation under both con-
ditions. (Fig. 3.3B). Despite using just 1/3rd
of the total spikes (or about 5 minutes of effec-
tive recordings), robust RF estimates could be
obtained for each behavioral state (Fig. 3.3C).
Only stimuli under the ’dim’ luminance condi-
tion were used for this analysis, since tracking
of the smaller pupil was less reliable under the
’bright’ condition.

Similar to the effects of background luminance,
the spatial RFs were largely unchanged across
behavioral states, while the temporal filters
showed a small but consistent delay (15-30ms)
in the rest state (Fig. 3.3C left). Measur-
ing the difference in time to peak of these
temporal filters showed that, similar to (Fig.
3.2B), the response latencies of all neurons in
a population shift by the same amount as the
behavioral state of the animal changes (Fig.
3.3D).

3.3 Discussion

In this study, we set out to investigate how
changes in external or internal context shapes
the processing of visual information in the early
visual system. We found that both luminance
and arousal states cause a concerted change in
the response timings of SC populations. Spike
timings, and likewise receptive fields, are much
faster in mesopic conditions than in the sco-
topic regime. At the same time, arousal, as
measured by pupil dilation, also reduces la-
tency in visual processing. Our results high-
light the dynamical interplay between sensory
processing and behavioral demands.

Comparison to Efficient Coding

The defining feature of visual adaptation from
scotopic to mesopic regime is the activation of
the cone pathway. Cone responses are known
to be faster than that of rods, with a rod-
cone latency of 20-80ms, depending on species,
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background illumination and whether latencies
are measured physiologically or psychophysi-
cally (Barbur, 1982; Baylor & Hodgkin, 1974;
Schneeweis & Schnapf, 1995; Zele et al.,
2008). Although these rod-cone latencies are
consistent with the differences in latencies we
have observed in the SC (Fig. 3.3F and 3.2B),
rods are also more sluggish, and one would
expect downstream temporal filters to also
stretch. Retinal ganglion cell RFs have been
suggested to utilize this longer integration time
to emphasize lower frequency information as
a means to combat the lower SNR in the
dark (Atick & Redlich, 1990; Srinivasan et
al., 1982).

In contrast to RGC RFs (Enroth-Cugell &
Shapley, 1973; Ogawa et al., 1966; Ruda et al.,
2022), however, we do not see a prominent
stretching of temporal RF at low light levels
(Fig. 3.2C). Thus, our data suggests that at
the level of the SC, the only adaptation nec-
essary in filter properties is a shift in timing,
while the frequency components of spatial and
temporal processing remain unchanged. For
this to happen, the stretched scotopic RGC
filters would have to be ’sharpened’ again in
the SC. The convergence of different types
of RGC channels onto individual downstream
neurons (O’Shea et al., 2024) has been pro-
posed as one potential mechanism for luminant
invariant representations in the visual cortex.

Relative timing code

Although adaptations in RGC filters allow the
system to continue to operate under low SNR
regimes, it poses a challenge for downstream
circuits to interpret this altered encoding to
extract similar stimulus features, that is, to
maintain an invariant percept across light lev-
els (O’Shea et al., 2024). When RGC temporal
filters are stretched at low luminance, the spike
timings of individual neurons would become
less reliable.

Our observation regarding timing shifts within
a population provide an important hint to the
properties of the neural code that may be
important for invariant representations across

luminance and behavioral states (Wienbar &
Schwartz, 2018). Even as responses for in-
dividual neurons get delayed at low light lev-
els or low arousal, these latencies are similar
for the entire population (Figs. 3.1F, 3.2B
and 3.3D), and thus the relative timing of
spikes between neurons must be conserved.
Such relative timing codes have been shown
to carry more information about the stimulus
than firing rates in the barrel cortex (Petersen
et al., 2001) and the retina (Gollisch & Meis-
ter, 2008). Interestingly, contrast changes also
cause a delay in spike timings of individual neu-
rons, but preserve the relative timing between
pairs of neurons. This allows a common de-
coding mechanism, simulating a downstream
neuron interpreting a relative timing code, to
perform well independent of input contrast
(Gollisch & Meister, 2008). Our results in the
coordinated temporal shifts of the neural popu-
lation suggest that a similar mechanism might
be at play in the superior colliculus, in order
to adjust to an altered code coming from the
RGCs at different luminance levels.

Behavioral modulation of visual

processing

Even when the external luminance is kept con-
stant, we see a change in RF dynamics with
pupil size. One explanation would be that
since pupil dilation changes the amount of
light reaching the retina, this could be enough
to cause some of the luminance adaptation
observed above. The absolute magnitude of
this latency shift due to behavioral state would
be smaller than the shift due to luminance,
since the pupil size changes only by about 3-
to 10-fold as opposed to the 100-fold change
imposed in the luminance experiments. If the
modulation of temporal latencies is just due to
effective light levels, then this would explain
why the change in latencies in (Fig. 3.3D) is
considerably smaller than those in (Fig. 3.2B).

However, arousal-related neuromodulatory ef-
fects cannot be ruled out in dynamically shap-
ing visual computation. Pupil dilation is
strongly linked to the release of norepinephrine
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from the Locus coeruleus which projects to
the intermediate SC (Joshi et al., 2016). The
effect of this norepinephrinergic projection on
visual processing in the SC, if any, is largely un-
known and is the subject on ongoing research
in our lab. Pupil dilation has also been found to
strongly correlate with inhibitory GABA-ergic
inputs from the ventral Lateral Geniculate Nu-
cleus (vLGN) to the SC (Vega-Zuniga et al.,
2024). This vLGN to SC projection has been
shown to sharpen spatial tuning in the SC by
strengthening the inhibitory surround (Z. Li
et al., 2023). Although we did not notice any
striking changes in spatial surrounds across
behavioral states, more diligent quantification
can yet reveal subtle differences in surround
strengths (Gupta et al., 2023). Lastly, the
effect of histamine on the optic tract and LGN
shows a strikingly similar shift in RF latencies
without significantly altering frequency tuning
(Tripodi & Asari, 2024).

One way to disentangle the luminance vs neu-
romodulatory source of this modulation would
be to control the amount of light entering the
eye. This can be done pharmacologically by
dilating the pupil of one eye with Atropine
(O’Shea et al., 2024) and measuring arousal
either by tracking the pupil area of the other
eye, or by using the animal’s running speed as
a proxy (Erisken et al., 2014).

As for the need of behavioral modulation of
visual processing, one can imagine several sce-
narios where faster visual processing during
aroused states could lead to a survival advan-
tage. For instance, auditory or olfactory cues
of a lurking predator could preemptively in-
crease the arousal level of the animal, leading
to a faster visual reaction time when needed.
This prediction of faster reaction times at big-
ger pupil sizes may already be testable by re-
analyzing publicly available large behavioral
datasets (Groblewski et al., 2020).

Limitations of this study

The consistent nature of the observed tem-
poral shifts leads to a potential concern of
synchronization artifacts, for example through

clock drifts across long recordings. Although
this possibility cannot be ruled out completely
yet, we have not been able to find any such
discrepancies to the best of our ability. It is
also worth noting that such artifacts would be
much less likely to contaminate results from
(Fig. 3.3) since the epochs being compared
are closely interspersed, unlike (Figs. 3.1 and
3.2), where the need for light adaptation ne-
cessitates long gaps between the spike trains
or RFs being compared.

Another important caveat of our data is the
somewhat large animal to animal variability in
the shifts of population response timings (Figs.
3.2B and 3.3D). One potential cause is that
the duration for the initial dark adaptation was
not standardized, and thus, the rods may have
been at different levels of sensitivity across ani-
mals. This is an important factor that will have
to be more carefully controlled in future ex-
periments. Currently, statistical comparisons
are reported in two ways: after pooling all
neurons across animals, and for the means of
individual animals. More sophisticated statis-
tical methods, like mixed effects models or
generalized linear mixed models, could appro-
priately account for the hierarchical nature of
these data. This structure is often neglected
in neuroscience studies and is slowly being ad-
dressed in the field (Aarts et al., 2014; Yu
et al., 2022). The differences in behavioral
modulation of latency are more understand-
able considering that the relative pupil dilation
between rest and active states can be different
for different animals.

Additionally, the experiments comparing spike
timings (Fig. 3.1) need to be repeated for
more animals (currently only N=1 animal is
shown). The quality of RF estimates was used
as an inclusion criteria to select visually respon-
sive neurons for the cross-correlation analysis.
However, there are technical challenges with
estimating the Spike Triggered Average from
white noise with a repetitive trial structure,
and thus only natural movie will be used for
future experiments to keep the recordings rea-
sonably short.
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3.4 Methods

3.4.1 Animal Management

All electrophysiology experiments were per-
formed on male and female adult wild type
C57BL6/J mice. All experimental procedures
were approved by the Ethics Review Board
at ISTA and the animal husbandry was car-
ried out by the Preclinical Facility at ISTA.
The mice were singly or doubly housed, and
their home cages contained a running wheel
to better habituate the animals to running on
a treadmill. The lighting followed a standard
12 hour day-night cycle, and the experiments
were carried out during the night phase, when
mice tend to be more active.

3.4.2 Surgical Preparation

The mice were first anesthetized with 2-4%
isoflurane, and then injected with Ketamine
and Xylazine (100 mg/kg, 10 mg/kg, i.p.).
This was followed by injection of Meloxi-
cam (20mg/kg Subcutaneous), application of
Oleovital over the eyes, and shaving of the
scalp. The mice were then placed on a heating
pad and mounted to the stereotax equipment
(Kopf). Anesthesia was maintained with ~1%
isoflurane. The surgery was sometimes split
into two phases performed on different days,
to allow more time for recovery. The preceding
steps were common between the two phases.
In the first phase, a custom 3D-printed tita-
nium headplate was cemented onto the skull
and the coordinates of the future craniotomy
were marked. Local anesthesia was applied
over the scalp, and after disinfection with Be-
tadiene, incisions were made to expose the
skull. The periosteum was then cleared and
the bone surface was dried with compressed
air and scored with a needle. The rectangu-
lar craniotomy coordinates used for the left
SC were 3-4mm posterior and 0-1.5mm lateral
from Bregma. However, the exact location var-
ied slightly across animals to try to keep the
craniotomy as medial and posterior as possible,
while avoiding the sagittal sinus and left trans-
verse sinus. These blood vessels are partially

visible when the skull is still wet. Another cran-
iotomy was marked for the reference electrode,
roughly 2mm anterior and 2mm right lateral
from Bregma. The coordinates were marked
on the skull with a micropipette tip dipped
in Methylene blue or with a sharp graphite
pencil. Finally, the skull around the marked ar-
eas was covered first with Optibond, and then
Karizma, to prepare it for cementing. The
U-shaped headplate was cemented with C&B
MetaBond and a small well was created to sep-
arate the SC craniotomy from the reference
electrode.

The second surgery involved the actual cran-
iotomy and insertion of the reference electrode.
The craniotomies were made by careful drilling
over the marked coordinates with 0.3-0.5mm
drill bit, while avoiding the major blood ves-
sels. For the SC craniotomy, the edges of the
rectangle were thinned, till the the bone is-
land moved almost freely. Then a forcep was
carefully inserted under the bone and the en-
tire piece was removed whole. Any bleeding
was contained with Haemostatic sponges. The
brain was kept wet with saline and if unsharp-
ened Neuropixels were being used, the dura
was carefully removed. The exposed brain was
then covered with KwikSil or DuraGel. The
reference craniotomy was drilled similarly and
the male side of a thin gold pin was inserted.
The gap between the pin and the craniotomy
was filled with vaseline, and the exposed fe-
male sides of the pin were cemented in the
shape of a volcano. The mice were reinjected
with 150 µL metacam after each surgery and
returned to a heated home cage.

3.4.3 Behavioral Tracking

In our head-fixed setup, the mouse runs freely
on a lightweight styrofoam ball supported by
custom-designed frictionless bearings. The
running velocity of the mouse is tracked in the
3 axes via optical sensors (ADNS3080). An in-
frared camera in the setup recorded a video of
the right face of the animal via a heat mirror.
The pupil was tracked by consecutive passes
through two ResNet models in DeepLabCut
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(Mathis et al., 2018). The first pass tracked
the gross position of the eye in the video, and
then a high-res crop around the eye was used
to track 8 points around the pupil in the sec-
ond pass. An ellipse was fitted around these 8
points and the area of this ellipse was used as
the pupil area.

3.4.4 Stimulus

In the recording setup, the animal was sur-
rounded by a spherical screen (80cm diameter)
that covers ~170° of horizontal and ~90° of ver-
tical visual field. Visual stimuli were presented
via a spherical mirror by a DLP projector (Tex-
asInstruments LightCrafter 4500) modified to
emit UV in the blue channel. The relative
currents of the green and UV channels were
calibrated to approximately match S and M
cone activation at twilight (Spitschan et al.,
2016) using the respective opsin templates
(Govardovskii et al., 2000). The estimated
rhodopsin isomerizations per second per rod
(R*) were 10

3 in the ’bright’ condition and an
OD2 filter (Thorlabs NE520B) was added in
the projector path to get approximately 100-
fold reduction in the ’dim’ condition. Stimuli
were designed and presented with Psychtool-
box, running on MATLAB 2017a (MathWorks).
Stimulus frames were morphed on the GPU
using a customized projection map and an
OpenGL shader to counteract the distortions
resulting from the spherical mirror and dome.

A shifting spatiotemporal white-noise stimulus
was presented using a binary pseudorandom se-
quence, in which the two color channels (Green
and UV) varied dependently. All white-noise
stimuli were presented at a 20-Hz update for
15 minutes. The checker size was a visual an-
gle of 6 × 6° and the entire grid was shifted by
random multiples of 0.6° visual angle in both
elevation and azimuth axis after every frame
(Gupta et al., 2023). In some experiments,
the seed (and state) of the random number
generator for the white noise was reset to the
initial value every 10 seconds for 90 repeti-
tions. The natural movie was an achromatic
’mouse-view’ video recorded by one of the au-

thors at 120Hz and presented at 60Hz. To
avoid sudden jumps in the scene, the movie
was played forwards for 10 seconds and back-
wards for 10 seconds for 50 repetitions. The
white noise and natural movie were first shown
under the dim condition, the OD2 filter was
then removed, and both the stimuli were re-
peated after the animal was allowed to adapt
to the mean ’bright’ luminance for at least 10
minutes.

3.4.5 Electrophysiology

On the day of the recording, the KwikSil, if
used, was removed and the brain was irrigated
with saline. Unsharpened or sharpened Neu-
ropixel 2.0 probes were slowly lowered verti-
cally down into the craniotomy with a micro-
manipulator (Luigs and Neumann) while avoid-
ing any visible blood vessels. After reaching
the depth of about 800µm, the speed of the
probe was automated to 1µm/sec till the ret-
rosplenial cortex was passed and the dorsal SC
surface was found. Dim flashes of white noise
were used as a probing stimulus to identify the
visually responsive sSC along the probe length.
The probe was lowered by a further 700 µm
after the start of the SC to a final depth of
around 1800-2100µm from the brain surface.

Full bandwidth signals were recorded from 96
channels at the tip of each of the 4 shanks
at 20kHz using the SpikeGLX software. The
data was preprocessed by high-pass filtering
above 400Hz and common median referencing
(Rolston et al., 2009) using the SpikeInter-
face python package (Buccino et al., 2020).
Sessions from all stimulus periods (excluding
the dark/light adaptation) were concatenated
and drift correction and spike sorting was then
performed with KiloSort 3 (Pachitariu et al.,
2023) on an Nvidia RTX 3060 GPU.

3.4.6 Receptive Field Analysis

Spatiotemporal receptive fields were computed
and analysed as described previously (Gupta
et al., 2023). In brief, the spike triggered aver-
age was computed with latencies at 60Hz upto
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450ms before and 50ms after each spike (Rieke
et al., 1999). For behaviorally conditioned RFs,
lower and upper thresholds of pupil area were
defined at the 33rd and 66th percentiles of the
distribution. Only spikes at times when the
pupil was below (/above) the lower (/upper)
threshold were used for the rest (/active) RF.
The minimum of the spike counts in both sets
was found and the same number of spikes were
randomly subsampled from the other set.

Each RF was normalized between -1 and 1 by
subtracting the mean value of the pixels at the
edges of the screen (outside of any RFs) and
dividing by the maximum absolute value of the
entire RF. The SNR of an RF was computed
as the peak-to-noise ratio where the power of
noise was again estimated in regions at the
edges of the screen. A threshold SNR of 19dB
was used to select visually responsive units.
Only units that crossed this threshold in both
brightness conditions were used for RF com-
parisons. RFs were computed for both green
and UV channels but most UV RFs were of
inadequate SNR and hence could not be used
for reliable comparisons.

The location of the center of an RF was esti-
mated by finding the pixel that varied the most
across time. Each neuron’s RF was cropped
within a square window of edge 29° of visual
angle centered on this pixel. The temporal
RF was estimated as the mean of a 2x2 pixel
window around the center pixel across time.
The spatial RF was defined as the mean of
3 frames around the time when the variance
across the spatial dimensions was the highest.
To ensure comparable amplitudes, the center
pixel and the snapshot time for the ’dim’ vs
’bright’ or ’rest’ vs ’active’ was allowed to be
vary slightly but the cropping was always done
around the same center pixel for each neuron.

3.4.7 RF Parametrization

A biphasic polynomial with an exponential de-
cay was used to parameterize temporal RFs.
The functional form was adapted from (Adel-
son & Bergen, 1985) to allow a temporal shift.

RF(t) = s
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e
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′
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′
= α(t − t0)

where,

s ∈ {−1, 1} denotes OFF or ON

c1 > 0 represents the 1st phase

c2 > 0 represents the 2nd phase

α > 0 stretches time

t0 > 0 shifts time

scipy.optimize.curve_fit was used
to perform the fitting to the bright RF. For the
dim RF, all the parameters were then fixed to
their bright values, except either α or t0 that
were then refitted to the dim RF.

3.4.8 Spike Rasters

Units were selected for the spike timing anal-
ysis if their receptive field SNRs were above
threshold in at least one of the brightness con-
ditions. The spike trains were assigned into
individual trials and then binned at 5ms bins.
The peri-stimulus time histograms were com-
puted by averaging the firing rates across trials.
The PSTHs were first normalized by dividing
by their L

2 norm (numpy.linalg.norm)
and then the cross-correlation between the
dim and bright PSTHs was calculated us-
ing numpy.correlate. The xarray and
pandas python packages were used for orga-
nizing and manipulating the data.

3.5 Data Availability

The spike-sorted electrophysiology data, la-
beled eye tracking data, and stimulus movies
will be made available, preferably as Neuro-
data without border (NWB) files (Rübel et al.,
2022), upon journal publication. .

3.6 Code Availability

All analysis and visualization code will be made
public on GitHub upon journal publication.
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CHAPTER 4
Discussion

In this thesis I have explored how spatial processing in the retina takes into account the
fact that the sky is almost always brighter than the ground (Chapter 2), and how temporal
processing in the Superior Colliculus (SC) speeds up when light levels allow it, or when the
cognitive state of the animal demands it (Chapter 3). The center-surround receptive field
structure of Retinal Ganglion Cell (RGC) somas (Fig. 2.3), and their terminals in the SC (Fig.
2.5), was found to change between the upper and lower visual fields, in order to efficiently
account for differences in mean luminance encountered by these regions (Fig. 2.1). When
the animal was exposed to different ambient luminance levels, individual neurons in the SC,
however, barely changed the shape of their spatiotemporal filters (Fig. 3.2). Under more light
or increased arousal (Fig. 3.3), neurons instead seem to code similar features, but faster.

The need for more

One common theme in the two projects is the advance in recording technologies that allow
simultaneous measurements from an increasing number of neurons. The number of simul-
taneously recordable electrode sites in the brain, like Moore’s law, has been doubling about
every 7 years for more than five decades (Stevenson, 2013; Stevenson & Kording, 2011). For
recordings in the SC, we used the Neuropixel arrays (Fig. 3.1), the current generation of
devices to push this trend forwards, which are designed and distributed by a large consortium
of neuroscience labs (Jun et al., 2017; Steinmetz et al., 2021). The high throughput of this
technology allowed us to see subtle effects in population spike timing within single animals
(Fig. 3.1). Although physical constraints like energy dissipation, intrinsic noise, and scattering
do exist to limit the spatiotemporal resolution and range of different methods to different
extents, neural recordings can realistically continue to scale at this pace at least for the coming
century (Marblestone et al., 2013; Stevenson & Kording, 2011).

The retina-imaging system we developed continues this trajectory, by leveraging the use of
red-shifted Calcium indicators to dramatically increase the recordable surface of the retina
compared to previous 2-Photon retinal imaging systems (Fig. 2.2). Red shifted indicators
represent the demand for calcium indicators that can be imaged from deeper depths of the
brain with less scattering (Dana et al., 2016; Farrants et al., 2024; Shcherbakova, 2021;
Shemetov et al., 2021), and somewhat coincidentally have the side-effect of not interfering
with mammalian opsins (Euler et al., 2019). One can therefore predict that as more far-red
and infrared calcium indicators become sufficiently bright and sensitive, 1-Photon imaging
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systems will continue to push the limits of retinal imaging, eventually enabling recording
responses from M or even L opsins (Cheong et al., 2018; Fyk-Kolodziej et al., 2014; Gupta
et al., 2023). It would not have been possible to observe the localized specializations within
individual retinas (Fig. 2.3), without the spatial extent offered by this method. The lower cost
of this system with respect to 2-photon approaches can allow labs all over the world to study
development of retinal wiring, carry out functional drug screenings, extend comparative studies
to non-model organisms, and investigate fundamental topics in population retinal coding and
their topographic variations. As a concrete example, macroscopic imaging of retinal waves can
be extended from spontaneous stage 1 and 2 waves, to include light-evoked stage 3 waves, by
switching from the green GCaMP to the red RCaMP or jRGECO1a indicators (Voufo et al.,
2023). Another application is highlighted in Appendix A to show how functional properties of
RGCs that project to specific retinorecipient targets can be investigated.

Mechanisms of receptive field adaptations across retinal space

The main finding from our retina work is that the center-surround structure of receptive
fields is anisotropic across the retina. RGCs in the ventral retina have smaller RF centers
and stronger surrounds, while the dorsal retina has larger RF centers and very little surround
suppression (Fig. 2.3). A natural question to ask regarding this anisotropy of the mouse retina,
is its mechanistic origin. The striking difference in S opsin expression at the photoreceptor
level provides the first hint that the responses of downstream RGCs in the ventral and dorsal
retina ought to be different (Nadal-Nicolás et al., 2020; Ortín-Martínez et al., 2014; Szél et al.,
1992). RGC properties, like dendritic morphology (El-Danaf & Huberman, 2019), spectral
tuning (Nadal-Nicolás et al., 2020; Szatko et al., 2020), contrast tuning (Baden et al., 2013)
and temporal dynamics (Warwick et al., 2018) do indeed vary for several RGC types along the
dorsoventral axis, and the strongest effect we observed, in the asymmetry of surrounds, was
exactly at the opsin transition zone (Fig. 2.3). Tellingly, species of mice that live in forested
or hedged areas, where the elevation gradient of luminance is likely obscured by vegetation, do
not show a dorsoventral gradient of opsins (Szél et al., 1994).

A recent study shines light specifically on how surround strengths might vary from the dorsal
to ventral retina. Spinelli et al. (2024) found that various aspects of horizontal cells, a
putative source of surround inhibition to RGCs (Chaya et al., 2017; Mangel, 1991; Ströh
et al., 2018), vary in key characteristics like density, morphology and electrical synapses along
the dorsoventral axis. The dorsal retina has fewer horizontal cells, with larger arborizations
and more expansive electrical coupling. This positions horizontal cells to provide weaker and
more diffuse surround inhibition (Joesch & Meister, 2016) to dorsal RGCs as opposed to
their ventral counterparts. Although the relative role of horizontal cells and amacrine cells
in RGC surround inhibition is often debated (Cook & McReynolds, 1998; Drinnenberg et al.,
2018; Franke et al., 2017), our results regarding topographic variation of surround inhibition
across RGC types (Fig. 2.4), in light of these retina-wide horizontal cell anisotropies (Spinelli
et al., 2024), point towards the role of inhibition from horizontal cells in globally modulating
surround strengths across the dorsoventral axis in most, if not all, downstream RGCs.

Theoretical perspectives

The efficient coding theory provides a compelling framework for explaining how metabolic
constraints dictate necessary adaptations to visual representations conveyed by the retina.
When noise is low enough (i.e. under bright conditions), RGCs remove predictable information
from the visual scene (Atick & Redlich, 1990; Barlow, 1961; Srinivasan et al., 1982), for
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instance by subtracting ’surround’ing information from the center within their spatial RFs
or by biphasic filtering in the temporal domain. When noise is higher (i.e. under darker
conditions), surrounds get weaker and temporal filters get stretched and become less biphasic,
leading to selectivity for lower spatiotemporal frequencies (Enroth-Cugell & Shapley, 1973;
Ogawa et al., 1966; Ruda et al., 2022). Since light levels follow a gradient from the sky to
the ground, we theorized and discovered that receptive fields of RGCs in different parts of
the retina have different center-surround structures, in line with an efficient representation of
panoramic natural scenes (Gupta et al., 2023).

Remarkably, however, just one synapse later in the SC, we found that given enough time for
steady-state adaptation to luminance changes, the spatial or temporal features represented by
individual SC neurons did not change significantly with light levels (Fig. 3.2). This begs the
question of why the adaptations predicted by efficient coding are followed to different extents
by these two visual structures?

Firstly, efficient codes do not prescribe how far down the visual hierarchy such adaptations
should persist. It is possible that while RGCs have to contend with photoreceptor noise, in
the form of a dark current, at low light levels, the adapted retinal code may offer a relatively
’denoised’ input to the downstream areas, reducing the need for re-adapting at every visual relay.
At the same time, the retina has to compress all visual information into ~50k axons of the optic
nerve (Claes & Moons, 2022), whereas the brain has a lot more neuronal resources, with the
V1 alone containing 10 times as many neurons (Herculano-Houzel et al., 2013). This suggests
that efficient adaptations may hold more importance at the sensory periphery. Research in
these downstream visual areas, like the V1, has also shown that representations of spatial and
temporal tuning (Bisti et al., 1977; O’Shea et al., 2024) or orientation and direction selectivity
(Bisti et al., 1977; Duffy & Hubel, 2007) are largely invariant to background luminance.

Furthermore, it is not clear how downstream areas may continue to interpret such altered codes
from the sensory periphery, to infer behaviorally-relevant features under changing contexts
(Machens et al., 2005; Młynarski & Hermundstad, 2018, 2021). As RGC temporal filters
get stretched at low light levels, the spike timings of individual RGCs would become less
reliable compared to the same stimulus under bright conditions. The coordinated shifts of
population activity that we observed in the SC (Fig. 3.1) suggests one possible mechanism
that downstream areas might employ to interpret the retina’s dynamic output. Even when
individual neurons alter their spike timings, a code that utilizes relative timing between neurons
can continue to function under such changing contexts (Gollisch & Meister, 2008), provided
that neurons in the population shift by the same amount, as observed in our SC experiments.
In line with this perspective, noise correlations between pairs of RGCs have been found to
increase under scotopic conditions (Ruda et al., 2020), possibly to compensate for decreased
precision in the spike timing of individual RGCs.

Overall, it seems the adaptations necessary for efficient coding at the sensory periphery, need
not be the same throughout the visual pathway, and a different set of resource and behavioral
constraints instead prioritize invariant representations across luminance levels via population
timing mechanisms. Our work thus provides exciting new directions for experimental validation
of efficiency in retinorecipient areas, and a rethinking of the necessary constraints beyond the
retina.

55



Ethological relevance of observed adaptations

Based on the functional differences we found at the level of the retinal output, one can
hypothesize that there should be a difference in visual acuity between the upper and lower
visual fields. Since RGCs in the upper visual field have smaller centers and stronger surrounds
(Fig. 2.3), mice would have higher visual acuity overhead. A large fraction of RGCs in the
ventral retina do indeed respond to small stimuli (Zhang et al., 2012). Mice face the threat
of predation mainly from birds of prey, and the ability to resolve smaller stimuli in the upper
visual field would be highly adaptive for survival (Heukamp et al., 2020; Yilmaz & Meister,
2013). Interestingly, a study of representation of visual space in the primate SC has shown that
the upper visual field is afforded higher neural resolution (Hafed & Chen, 2016), presumably
because objects in the upper visual field tend to be farther, and thus smaller. RF or spatial
tuning maps of the mouse SC, like that of direction selectivity (Y.-t. Li et al., 2020), or direct
behavioral assays of acuity would be needed to assess the downstream consequences of the
center-surround differences in the upper and lower visual fields.

Our results in the SC show that representations of visual features, do not change significantly
with changing luminance levels. Given the SC’s role in detection of abrupt and salient changes
to guide orienting responses (Basso & May, 2017; Krauzlis et al., 2013; F. Liang et al., 2015;
Zhao et al., 2014; Zingg et al., 2017), such invariant encoding might be more important for
the SC to reliably execute behavioral responses (Savier et al., 2019). In light of this, it is
worthwhile to note that SC visual responses become faster when the animal is aroused (Fig.
3.3). This particular adaptation may be caused either by increased light from a wider pupil or
by neuromodulation, and would facilitate faster threat detection by the SC at times of danger.

Concluding Remarks

The phenomenon of adaptation can arise with regards to different features of natural statistics,
and can occur at different time scales, from evolutionary to sub-second. A comprehensive
understanding of vision, therefore, will require compiling global and local adaptations across
different nodes in the visual hierarchy, as they are modulated by diverse environmental and
internal factors.

In this thesis, I have investigated visual adaptations from multiple angles. Retinal study utilized
ex-vivo calcium imaging, while the SC recordings were in-vivo electrophysiology. In the retina,
we found adaptations that were built into neurons at different anatomical location. In the SC,
adaptations were to be found within the properties of individual cells under different contexts.
The retina likely took millennia to adapt to the brightness gradient across elevation, while the
SC adaptations unfold dynamically in minutes or possibly seconds. The retinal adaptations
concern processing of spatial information, and the SC adaptations were only found in the
temporal domain. The retina emphasizes metabolically efficient representations, which the SC
then uses to form a stable code that can be timed appropriately for behavioral output. These
findings thus encompass various facets of visual adaptation to offer a broader understanding
of how the visual system as a whole may efficiently represent the environment, while being
flexible enough to adjust to different internal and external contexts.
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APPENDIX A
Functional imaging of RGCs projecting

to genetically defined targets

The retina projects to ~40 different retiorecipient regions in the brain and each region can
receive inputs from different combinations of RGC types (Berson, 2008; Kay et al., 2011;
Kerschensteiner & Feller, 2024; L. Liang et al., 2018; Martersteck et al., 2017; Reinhard et al.,
2019). One common approach to study the functional properties of the projecting RGCs, is
with patch electrophysiology. A retrograde virus carrying a fluorescent protein is injected in the
retinorecipient region, and only the fluorescently labelled RGCs are patched (Reinhard et al.,
2019). Although this method can be combined with morphological analysis of these RGCs,
the functional properties of only a handful of projecting RGCs can be studied per retina.

Our retinal imaging system (Gupta et al., 2023), in combination with a rabies labelling approach
(Sumser et al., 2022) can vastly increase the throughput of investigating functional properties
of RGC projections, while allowing precise genetically defined targeting of retinorecipient areas.
In this approach, an AAV starter virus carrying TVA (AAV-DIO-EF1a-TVA-P2A-N2cG) is
first injected in the brain region of interest of a cre reporter mouse line. For example, widefield
neurons of the SC can be targeted with NTSR1-cre mouse line (Gale & Murphy, 2014), or the
inhibitory neuron of vLGN can be targeted with the Gad2-cre line (Vega-Zuniga et al., 2024).
Because of the DIO formulation, TVA will only be expressed in the cre+ cells. Next, a rabies
virus, carrying a red calcium indicator (RVdGenvA-N2c-jRGECO1a) is injected in the same
region. The rabies then jumps pre-synaptically from the TVA+ neurons, carrying the calcium
indicator to the RGCs.

Once the rabies has expressed, the retina can be harvested and imaged, as described in chapter
2. Fig A.1 shows results from two such proof-of-concept recordings from RGCs that project
to the vLGN or the SC. In these early experiments, 20-40 RGCs could be easily detected
with suite2p (Pachitariu et al., 2017) in each recording (Fig. A.1A,C), and likely many more
could be detected with imaging and analysis optimizations. Looking at responses to the chirp
stimulus (Baden et al., 2016) of a few neurons, it can be seen that vLGN projecting RGCs
tend have relatively similar responses (Fig. A.1B), while widefield neurons in the SC receive
inputs from a wide variety of RGC subtypes (Fig. A.1D).

The cre dependence of the starter virus allows genetic targeting of specific sub-populations
within a larger region, for example widefield neurons within the SC, or precise targeting of smaller
brain nuclei, for example, the vLGN. These pilot experiments show that this technique can
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greatly simplify the functional study of RGC projections to specific retino-recipient populations,
allowing high throughput investigation of how different retinal output channels influence visual
processing by different nodes in the visual system.

Figure A.1: RGCs projecting to vLGN and widefield nuerons in SC. (A) Maximum projection
across time of jRGECO1a-positive RGCs that project to Gad2-positive neurons in the vLGN.
All detected ROIs have colored masks and cells presented in B are marked with open circles.
(B) Fluorescence traces of four example RGCs from (A). Bottom: Intensity of the chirp
stimulus across time. (C) Same as (A), but for jRGECO1a-positive RGCs that project to
NTSR1-positive widefield (WF) neurons in the SC. (D) Same as (B), but for example RGCs
in (C)
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