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Abstract
There are a number of well-known problems and con-
jectures about partitioning graphs to satisfy local con-
straints. For example, the majority colouring conjecture
of Kreutzer, Oum, Seymour, van der Zypen and Wood
states that every directed graph has a 3-colouring such
that for every vertex 𝑣, atmost half of the out-neighbours
of 𝑣 have the same colour as 𝑣. As another example, the
internal partition conjecture, due to DeVos and to Ban
and Linial, states that for every 𝑑, all but finitelymany 𝑑-
regular graphs have a partition into two non-empty parts
such that for every vertex 𝑣, at least half of the neigh-
bours of 𝑣 lie in the same part as 𝑣. We prove several
results in this spirit: in particular, two of our results are
that the majority colouring conjecture holds for Erdős–
Rényi random directed graphs (of any density), and
that the internal partition conjecture holds if we per-
mit a tiny number of ‘exceptional vertices’. Our proofs
involve a variety of techniques, including several differ-
ent methods to analyse random recolouring processes.
One highlight is a personality-changing scheme: we ‘for-
get’ certain information based on the state of a Markov
chain, giving us more independence to work with.
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1 INTRODUCTION

It is a classical fact (perhaps first proved by Lovász; see [46, pp. 237–238]) that every (finite†) graph
has a red–blue colouring of its vertices, such that for every red vertex, at least half of its neighbours
are blue, and for each blue vertex, at least half of its neighbours are red. Such red–blue colourings
are often called external partitions, unfriendly partitions or disassortative partitions, and can be
interpreted from several different points of view. For example:

∙ A cut of a graph is a partition of its vertices into two parts, and the size of a cut is the number
of edges between the two parts. Finding the maximum possible size of a cut is called theMAX-
CUTproblem and is of fundamental importance in computer science and optimisation. External
partitions correspond precisely to those cuts which are locallymaximal, and have been studied
extensively in this context (see, e.g. [5, 19, 28, 51, 54]).

∙ The Ising model is one of the central objects of study in statistical physics. Given a graph 𝐺,
with a real-valued interaction on each edge, the Ising model describes a probability distribution
over the set of configurations of ±1-valued spins on the vertices of 𝐺, in terms of a Hamil-
tonian describing the energy of each configuration. In this setting, an important question is
to understand the locally energy-minimising configurations (see, e.g. [1, 16, 23, 35, 57]). If the
interactions all take the same negative value (this is the anti-ferromagnetic regime), the locally
energy-minimising configurations correspond precisely to external partitions of 𝐺.

∙ Minority dynamics (also studied as the dynamics of the El Farol bar problem; see, for example,
[17, 18, 24]) is a dynamical system on a social network where each person is coded either red or
blue. In each round, each person changes their colour to the least popular colour among their
neighbours. External partitions are precisely those colourings which are stable for minority
dynamics.

Although it is a near-triviality to show that every graph has an external partition, it is easy to
obtain highly non-trivial questions by making small changes to the definition of ‘external parti-
tion’. The purpose of this paper is to demonstrate how to make progress on various problems of
this type using probabilisticmethods and ideas, especially randomrecolouring processes. Beforewe
discuss our results, we start with some background on some of the concepts and questions in this
area.

1.1 Internal partitions

First, it is natural to consider the ‘opposite’ of an external partition: in an internal partition, at
least half of the neighbours of every red vertex are red, and at least half of the neighbours of
every blue vertex are blue. These colourings correspond to locally minimal cuts, locally energy-
minimising configurations in the ferromagnetic Ising model, or stable configurations of majority
dynamics (which has beenmuchmore thoroughly studied thanminority dynamics; see the survey
in [50]). See the introduction of [9] for a review of the graph theory literature on internal and
external partitions.
Some graphs (such as stars or cliques) only have ‘trivial’ internal partitions (in which all ver-

tices are the same colour). However, answering a conjecture of Thomassen, it was proved by

† This fact is actually false for uncountably infinite graphs, and it is a well-known open question whether it is true for
countably infinite graphs (this is the Unfriendly Partition Conjecture; see [2, 56]).
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Stiebitz [58] that one can always find a non-trivial ‘near-internal’ partition, where each vertex
has at most one more neighbour in its opposite colour than its own. A well-known conjecture in
this area is that regular graphs without internal partitions are extremely rare.

Conjecture 1.1. For every 𝑑 ∈ ℕ, there are only finitely many 𝑑-regular graphs with no non-trivial
internal partition.

As far as we can tell, this conjecture first appeared in print in a paper of Ban and Linial [9],
though it was previously posed in an open problem collection by DeVos [26].
Conjecture 1.1 is only known to hold for 𝑑 ∈ {1, 2, 3, 4, 6} (see [9, 55]). However, a weaker result

is known to hold for all even 𝑑: adapting Stiebitz’ ideas, it was proved by Linial and Louis [45]
that if 𝑑 is even, then a vanishingly small proportion of 𝑛-vertex 𝑑-regular graphs fail to have an
internal partition (in the language of random graphs: a random 𝑑-regular graph 𝔾reg(𝑛, 𝑑) has a
non-trivial internal partition whp†).

1.2 Bisections

A bisection is a red–blue colouring where the numbers of red and blue vertices are equal (or differ
by one, if the total number of vertices is odd). Although every graphhas an external partition, some
graphs (such as stars) do not have external bisections. However, one can ‘come close’ for almost
all graphs: resolving an old conjecture due to Füredi, it was recently proved by Ferber, Kwan,
Narayanan, Sah and Sawhney [31] that almost all graphs have bisections in which almost every
vertex is externally coloured (and bisections in which almost every vertex is internally coloured).
To be precise: whp, an Erdős–Rényi graph‡ 𝐺 ∼ 𝔾(𝑛, 1∕2) has a bisection in which all but 𝑜(𝑛)
vertices have at least half of their neighbours in the opposite colour (and a bisection in which all
but 𝑜(𝑛) vertices have at least half of their neighbours in their own colour).
This work has since been generalised in multiple directions. First, via a beautiful application

of Lindeberg’s replacement trick (inspired by work of Dembo, Montanari and Sen [25]), and a
delicate secondmoment calculation (building on earlier results by Gamarnik and Li [34]), Dandi,
Gamarnik and Zdeborová [23] proved that the conclusion of Füredi’s conjecture holds even for
quite sparse randomgraphs: it holdswhp for𝔾(𝑛, 𝑝𝑛) as long as𝑛𝑝𝑛 → ∞. In exciting recentwork,
Minzer, Sah and Sawhney [48] finally managed to handle true internal/external bisections (with-
out exceptional vertices): with a sophisticated second-moment calculation together with some
ideas from the analysis of Boolean functions, they proved that whp 𝐺 ∼ 𝔾(𝑛, 1∕2) has an external
bisection and an internal bisection. It is an open question whether this is also possible for sparser
(or denser) random graphs (though we note that graphs which are very close to being complete
do not have internal bisections).

Conjecture 1.2. For any 𝑝𝑛 ∈ [0, 1] (allowed to depend on 𝑛), whp 𝐺 ∼ 𝔾(𝑛, 𝑝𝑛) has an external
bisection. If (1 − 𝑝𝑛)𝑛 − log 𝑛 → ∞, then whp 𝐺 ∼ 𝔾(𝑛, 𝑝𝑛) also has an internal bisection.

†We say that a property holds with high probability, or ‘whp’ for short, if it holds with probability tending to 1. Here and
for the rest of the paper, all asymptotics are as 𝑛 → ∞, unless stated otherwise.
‡ In the Erdős–Rényi random graph 𝔾(𝑛, 𝑝) (perhaps more appropriately called the binomial random graph), we fix a set
of 𝑛 vertices and include each of the

(𝑛
2

)
possible edges with probability 𝑝 independently.
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It would also be very interesting to find the above internal/external bisections efficiently† (i.e.
via a polynomial-time randomised algorithm). Behrens, Arpino, Kivva and Zdeborová [11] used
ideas from statistical physics to study computational obstructions for certain types of partition-
ing problems in random graphs; their work indicates that the problem of finding an internal or
external bisection does not have such an obstruction.
We remark that there are a number of other fascinating conjectures about external and internal

bisections that are less closely related to our results in this paper: perhaps most notably, Bollobás
and Scott [14, Conjecture 8] conjectured an analogue of Stiebitz’ theorem for internal bisections,
and Ban and Linial [9, Conjecture 1] conjectured that every bridgeless cubic graph except the
Petersen graph has an external bisection.

1.3 Directed graphs

Generalising the notion of an external partition to directed graphs (‘digraphs’), we could ask for
a red–blue colouring with the property that for each vertex 𝑣, at most half of the out-neighbours
of 𝑣 have the same colour as 𝑣. For general digraphs, it is not always possible to find a colouring
satisfying this property (e.g. odd directed cycles are counterexamples). In a similar spirit to the
last two subsections, one could try to show that such a colouring is always ‘almost’ possible, or
that such a colouring exists for almost all digraphs, but so far most of the attention in this area
has focused on adding additional colours.
Specifically, for any vertex-colouring of a digraph, we say that a vertex is majority-coloured if

at most half of its out-neighbours have the same colour as it. If every vertex is majority-coloured,
we say that the colouring is a majority colouring. The following fascinating conjecture (typically
known as themajority colouring conjecture) wasmade by Kreutzer, Oum, Seymour, van der Zypen
and Wood [42].

Conjecture 1.3. Every directed graph has a majority 3-colouring.

Progress onConjecture 1.3 has come froma fewdifferent directions. Firstly, Kreutzer, Oum, Sey-
mour, van der Zypen andWood gave a simple proof that amajority 4-colouring always exists. They
also observed that in various settings, random 3-colourings can be useful, because in a random
3-colouring, on average, each vertex is the same colour as only a third of its neighbours. Specifi-
cally, if an 𝑛-vertex digraph hasminimumdegree at least about log 𝑛, then a random 3-colouring is
overwhelmingly likely to be a majority colouring, and in a 𝑑-regular graph with 𝑑 ⩾ 144, one can
use the Lovász Local Lemma to show that a random 3-colouring has positive probability of being
a majority 3-colouring. Also, via consideration of a list-colouring version of the problem, Anastos,
Lamaison, Steiner and Szabó [4] managed to prove the majority colouring conjecture for directed
graphs which have chromatic number‡ at most 6.
Certain variations on the theme of majority colouring have also been considered by various

authors (see, e.g. [6–8, 37, 41, 62]).

†Many graph partitioning theorems (e.g. those in [31, 45, 58]) can be easily turned into efficient algorithms, but the proofs
in [23, 48] cannot, on account of their use of the second moment method.
‡Here, the chromatic number of a directed graph is simply the chromatic number of the graph obtained by removing the
directions on the edges.
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1.4 Results

To state our results, it is convenient to introduce some notation. Given 𝜀 ∈ (0, 1), we say that a
red–blue colouring of an 𝑛-vertex graph is an 𝜀-almost-external partition (respectively, 𝜀-almost-
internal partition) if all but 𝜀𝑛 vertices have at least half of their neighbours in the opposite colour
(respectively, the same colour). Say that a vertex-colouring of an 𝑛-vertex directed graph is an
𝜀-almost-majority colouring if all but 𝜀𝑛 vertices are majority-coloured.
Our first result is an approximate version of the internal partition conjecture (Conjecture 1.1):

we prove a weakening where a small number of exceptional vertices are allowed. On the other
hand,we can demand that our partition is a bisection, and instead of considering𝑑-regular graphs,
we can consider the more general class of graphs whose maximum degree is at most 𝑑.

Theorem 1.4. Fix 𝑑 ∈ ℕ and 𝜀 > 0. Then there are only finitelymany graphs withmaximumdegree
at most 𝑑 which do not have an 𝜀-almost-internal bisection. There are also only finitely many such
graphs which do not have an 𝜀-almost-external bisection.
In both cases, the desired bisections can be found via a randomised algorithm whose expected

runtime is linear in the number of vertices.

Second, turning our attention to random graphs 𝔾(𝑛, 𝑝𝑛), we prove that in the very sparse
regime (where 𝑝𝑛 is of order at most 1∕𝑛), whp there is an 𝑜(1)-almost-internal bisection and
𝑜(1)-almost-external bisection. This complements the result of Dandi, Gamarnik and Zdeborová
discussed in Section 1.2, which handles the regime where 𝑝𝑛 is of larger order than 1∕𝑛.

Theorem 1.5. For any 𝑝𝑛 ∈ [0, 1] such that lim sup 𝑛𝑝𝑛 < ∞, whp 𝐺 ∼ 𝔾(𝑛, 𝑝𝑛) has an
𝑜(1)-almost-internal bisection and an 𝑜(1)-almost-external bisection.
In both cases, the desired bisections can be found via a randomised algorithm whose expected

runtime is linear in 𝑛.

Next, consider the binomial random directed graph 𝔻(𝑛, 𝑝) which has 𝑛 vertices, and each of
the 𝑛(𝑛 − 1) possible directed edges are present with probability 𝑝 independently. We prove the
majority colouring conjecture for binomial random directed graphs of any density. (This is most
interesting in the very sparse case; as we discussed in Section 1.3, any dense digraph can be easily
shown to have a majority 3-colouring).

Theorem 1.6. For any 𝑝𝑛 ∈ [0, 1] (allowed to depend on 𝑛), whp 𝐷 ∼ 𝔻(𝑛, 𝑝𝑛) has a majority 3-
colouring.
This colouring can be found via a randomised algorithm whose expected runtime is linear in 𝑛.

We will say more about our proof techniques in Section 2, but to give a very brief impression:
firstly, Theorems 1.5 and 1.4 are proved in a unified way, via analysis of a random recolouring
process (essentially, a ‘lazy’ version of majority orminority dynamics).We also consider a random
recolouring process in our proof of Theorem 1.6 (to find an approximate majority-3-colouring),
but some additional twists are required (in particular, we use a personality-changing scheme: we
‘forget’ certain information based on the state of a Markov chain, giving us more independence to
work with). After finding our approximate majority 3-colouring, we modify it to obtain a genuine
majority 3-colouring via analysis of a ‘subcritical list-assignment process’, and some list-colouring
ideas of Anastos, Lamaison, Steiner and Szabó [4]. Our subcriticality analysis also involves some
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6 of 49 ANASTOS et al.

new ideas, including a notion of a ‘virtual process’ which simulates a small portion of our process
under consideration.
In the spirit of the conjectures in Sections 1.1 and 1.2, we also show that for almost every digraph,

two colours are almost enough for a majority colouring. In fact, it suffices to consider bisections,
where the numbers of red and blue vertices are as equal as possible.

Theorem 1.7. Let 𝑝𝑛 be such that 𝑛𝑝𝑛(1 − 𝑝𝑛) → ∞. Then whp 𝐷 ∼ 𝔻(𝑛, 𝑝𝑛) has an 𝑜(1)-almost-
majority bisection.

Unlike Theorems 1.4–1.6, we do not have a constructive proof of Theorem 1.7 (our proof uses
the second moment method, proceeding along similar lines to the work of Dandi, Gamarnik and
Zdeborová [23]). In fact, we believe that it is computationally intractable to find almost-majority
bisections in random directed graphs: our proof of Theorem 1.7 can bemodified to show that 𝑜(1)-
almost-majority bisections satisfy the so-called overlap gap property, introduced byGamarnik (see,
e.g. [33]) as a heuristic certificate for computational intractability (see Remark 8.7).

Remark 1.8. Regarding all of our theorems about random (di-)graphs (Theorems 1.6–1.5): we
remark that there are two slightly different models of random graphs that are often collectively
referred to as ‘Erdős–Rényi random graphs’. We could either fix some 𝑝 ∈ [0, 1] and include each
(directed) edge with probability 𝑝 independently, or we could fix some integer 𝑚 and choose a
random (di-)graph with exactly 𝑚 edges.† There are seldom any important differences between
the models (e.g. 𝐺 ∼ 𝔾(𝑛, 𝑝) usually has about 𝑝

(𝑛
2

)
edges, and is essentially the same as a uni-

formly random graph with exactly ⌊𝑝(𝑛
2

)⌋ edges). All the results in this paper hold equally well
for both models, with minor changes to the proofs.

1.5 Further directions

We believe that Theorem 1.4 is an important step on the path to a full proof of the internal parti-
tion conjecture. We were able to obtain an approximate internal partition by running a random
recolouring process for a small number of steps; it seems plausible that such processes, if run
for long enough, tend to converge on an exact internal partition. However, the longer we wish to
run such a process, the harder it is to analyse its behaviour. Related issues are encountered in the
study of majority dynamics (see, e.g. [12]): there are a number of open problems concerning the
long-term behaviour of majority dynamics in various settings.
It might be possible to sidestep the above issue, and to combine an approximate result of the

type in Theorem 1.4 with a separate ‘completion’ step (we were successful in doing this in our
proof of Theorem 1.5). In particular, it may be possible to prepare ‘gadgets’ separately to our ran-
dom recolouring process, which assist with transforming an approximate solution into an exact
one (cf. the absorption method; see [59]). Note that one can always obtain an internal partition
by iteratively making local improvements; the challenge is to ensure that this internal partition
is non-trivial. So, we might imagine some arrangement of gadgets that ‘protects’ a subset of ver-
tices, ensuring that it can never become all-red or all-blue. However, it is unclear how to actually
implement this type of idea, without making very strong assumptions about the structure of
our graph.

† The former type of random graph was actually first considered by Gilbert [36], slightly earlier than the groundbreaking
work of Erdős and Rényi [29], which considered the second model.
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Wealso envision a path to the fullmajority colouring conjecture (for arbitrary digraphs) via ran-
dom recolouring processes, but for this, our random recolouring analysis needs to be made much
more robust. Theorem 1.6 is stated only for random digraphs, but as discussed in Remark 4.6, our
methods could conceivably be generalised to arbitrary digraphs with high girth. Without a girth
assumption, it seems that one would need quite different methods to analyse random recolouring
processes on digraphs.
Also, Theorem 1.7 suggests that there is a lot of ‘room’ in the majority colouring conjecture,

and that two colours are very nearly enough. For example, we see no obvious reason why a
Stiebitz-type theorem for ‘near-majority’ 2-colourings (or even bisections) should not be possible,
as follows.

Question 1.9. Is it true that every digraph 𝐷 has a bisection (or at least a 2-colouring) such that
each vertex has at most one more out-neighbour in its own colour than the opposite colour?

2 OUTLINE OF THE PAPER AND PROOFS

In this section, we sketch the ideas in the proofs of Theorems 1.6–1.7. The proof of The-
orem 1.6 is much more involved than the others, largely because Theorem 1.6 is about
exact majority-colourings, while the other theorems are only concerned with approximate
internal/external/majority colourings.

2.1 Majority 3-colouring of random digraphs

As a starting point for our proof of Theorem 1.6, note that if we consider a uniformly random 3-
colouring, then every vertex is majority-coloured with probability at least 2/3. (This probability
gets closer and closer to 1 as the out-degrees get larger, i.e. as the arc-sampling probability 𝑝 in
𝔻(𝑛, 𝑝) gets larger.)
In the regime where 𝑝 has order of magnitude 1∕𝑛 (which is our main regime of interest), in

a random 3-colouring, we expect that a non-negligible fraction of vertices will fail to be majority-
coloured. We can hope to improve the situation by randomly recolouring those vertices to a
different colour. One can do an explicit calculation to see that the expected proportion ofmajority-
coloured vertices does increase after such a recolouring, though we still expect there to be some
vertices which are not majority-coloured (e.g. the recolouring could have caused a vertex which
was originally majority-coloured to no longer be majority-coloured).

2.1.1 Random processes

It is then natural to consider a random greedy recolouring process, which repeatedly checkswhich
vertices fail to bemajority-coloured, and randomly recolours them: onemay hope that this process
tends to converge to a majority 3-colouring. In principle, one can explicitly compute the expected
proportion of majority-coloured vertices after any finite number of steps, but the formulas get out
of hand very rapidly (naïvely, the complexity of the formulas grows doubly-exponentially in the
number of steps, though since the process is Markovian, one can use ideas of Lacker, Ramanan
and Wu [44] to reduce this to a single-exponential dependence).
It is, however, possible to prove a (somewhat crude) recursive upper bound on the (asymptotic)

expected proportion 𝑓𝑡 of non-majority-coloured vertices at time 𝑡 (where we view 𝑡 as being fixed
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8 of 49 ANASTOS et al.

while 𝑛 → ∞), as follows. Firstly, note that our process is ‘local’: for the colour of a vertex 𝑤 to
influence the colour of a vertex 𝑣 in 𝑡 steps, there must be a directed path from 𝑣 to 𝑤 of length at
most 𝑡. Sparse random graphs are known to have very few short cycles, so in a typical outcome of
𝐷 ∼ 𝔻(𝑛, 𝑝), there are very few pairs of length-𝑡 directed paths that intersect after starting at two
different out-neighbours of the same vertex. We can use this to deduce that for most vertices 𝑣,
the colours of the out-neighbours of 𝑣 (until time 𝑡) are independent. Now, note that whenever a
vertex 𝑣 is not majority-coloured after 𝑡 steps, it must have happened that some colour ‘overtook’
as the majority colour at time 𝑡 (i.e. that colour appeared on at most half of the out-neighbours
of 𝑣 at time 𝑡 − 1, then more than half at time 𝑡). Since a 𝑓𝑡−1-fraction of vertices change their
colours between time 𝑡 − 1 and time 𝑡, and since almost all vertices have out-neighbours with
independent colours, we can explicitly compute (in terms of 𝑓𝑡−1) the expected proportion of
vertices witnessing an overtaking event, which gives us an upper bound for 𝑓𝑡.

2.1.2 Personality-changing

If 𝑝 = 𝜆∕𝑛 with (say) 𝜆 > 20, we can perform some careful analysis on fixed points of the above
recurrence, to deduce that lim𝑡→∞ 𝑓𝑡 = 0. However, our recurrence is not strong enough to handle
all 𝑝 (e.g. when 𝑝 = 10∕𝑛, we can prove that our recurrence converges to a non-zero fixed point).
Clearly, our recurrence is wasteful (essentially, we are computing the probability that any colour
overtakes at a vertex 𝑣, as an upper bound on the probability that the colour of 𝑣 overtakes at 𝑣).
However, due to a lack of independence, it does not seem tractable to modify our recurrence to
take this inefficiency into account.
Instead, we modify the process to intentionally ‘forget’ pertinent information, in a way that

seemingly makes it perform worse, but which introduces independence that makes it possible to
prove a stronger recurrence. Specifically, we introduce an auxiliary Markov chain at each vertex
which describes the ‘personality’ of the vertex at a given point in time (the personality describes
whether all available information is used to decide whether to change colour, or whether certain
information is intentionally ignored). With these ideas, we are able to prove a stronger recurrence
which allows us to prove lim𝑡→∞ 𝑓𝑡 = 0 without a lower bound on 𝑝 (here 𝑓𝑡 is the asymptotic
expected proportion of non-majority-coloured vertices after time 𝑡, in our modified recolouring
process).

2.1.3 List colouring and subcriticality

We are not yet done: with the above ideas, one can only find a 3-colouring of𝐷 ∼ 𝔻(𝑛, 𝑝) such that
almost all vertices aremajority-coloured. Indeed, there will typically be a small number of vertices
whose local neighbourhood has pathological structure not amenable to the above analysis, and
there is a limit on the number of steps we can control before our recursive analysis breaks down
(we can let 𝑡 grow with 𝑛, but not very rapidly).
It is well known that small subsets of sparse random graphs tend to have very simple structure

(in 𝐷 ∼ 𝔻(𝑛, 𝑝), whp any set of 𝑜(𝑛) vertices has average out-degree at most 1 + 𝑜(1)), so we
can hope to take advantage of this structure to ‘manually fix’ the ‘exceptional’ vertices which
are not majority-coloured. In particular, it is not hard to show that the subgraph induced by
the exceptional vertices has chromatic number at most 6; recall from Section 1.3 that (as proved
by Anastos, Lamaison, Steiner and Szabó [4]), such digraphs have a majority 3-colouring. Of
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 9 of 49

course, it does not suffice to find a majority 3-colouring of the exceptional vertices in isolation:
we must make sure that the exceptional vertices are coloured in a way that is ‘compatible’ with
the previously coloured non-exceptional vertices. It turns out that we will indeed be able to use
the ideas of [4], but significant additional work is required.
Firstly, instead of directly using themain result of [4], we extract amore general statement from

its proof: if we assign a pair of colours (i.e. a list of size 2) to each of the vertices of a digraph, and
if for each possible list, there are no directed cycles among the vertices with that list, then we can
find a majority colouring assigning each vertex a colour from its list.
In order to actually apply this result, we need a lot more information about the colouring pro-

duced by our random process (specifically, among the non-exceptional vertices which are already
majority-coloured, we need to understand whether they would become non-majority-coloured if
certain choices were made for the colours of the exceptional vertices). To this end, we define a
‘list-assignment process’ which expands the set of exceptional vertices, assigning lists as it goes,
and ensuring that the non-exceptional vertices are majority-coloured no matter what colour is
assigned from the lists of the exceptional vertices.
In order to study this list-assignment process (and, in particular, to show that only a small num-

ber of vertices are assigned lists), we need a number of different ideas. In particular, we introduce
the notion of a ‘virtual process’ which ‘simulates’ a small part of our actual list-assignment pro-
cess of interest. We are able to show (via comparison to subcritical branching process, and a union
bound) that whp all possible virtual list-assignment processes do not introduce too many excep-
tional vertices, andwe are separately able to show that our list-assignment process can be ‘covered’
by a small number of virtual processes (roughly speaking, we need to show that two different types
of growth are bounded in terms of each other).
We remark that related ‘self-bounding via subcriticality’ ideas appeared in previous work of

Cooley, Lee and Ravelomanana [20], studying warning propagation on random graphs. Also, it is
worth noting that the algorithmic proof of the Lovász Local Lemma due to Moser and Tardos [49]
(which has already been applied to the majority colouring conjecture [42]) proceeds by a related
subcriticality analysis of a certain ‘recolouring process’; our recolouring process can be viewed as
being more efficient but much more difficult to analyse.

2.2 Non-constructive majority 2-colouring of random digraphs

The proof of Theorem 1.7 proceeds along very similar lines as the proofs in [23, 34], but it turns out
that the relevant computations are much easier in the setting of random digraphs than the setting
of random graphs. Most of the effort goes towards estimating the second moment of the number
of majority bisections, which boils down to a large-deviations computation. This estimate is not
strong enough to prove Theorem 1.7 directly, but it can be ‘boosted’ using a concentration trick
due to Frieze [32].

2.3 Internal and external bisections

The proofs of Theorems 1.4 and 1.5 are essentially the same as each other. For concreteness, we
discuss the ‘internal’ part of Theorem 1.4 (i.e. we describe how to find an 𝜀-internal bisection in
an 𝑛-vertex graph with maximum degree at most 𝑑).
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10 of 49 ANASTOS et al.

The crucial observation is that internal partitions correspond precisely to cuts which are locally
minimal: if we start with any cut which does not correspond to an internal partition, then it is
possible to flip the colour of some vertex to decrease the size of the cut.† If we repeatedly flip
colours in this way, we will always end up with an internal partition; the challenge is to make
sure that the colour classes are not too imbalanced (e.g. if we are able to find an internal partition
in which the sizes of the colour classes differ by at most (2𝜀∕𝑑)𝑛, then we can flip at most 𝜀𝑑∕𝑛
vertices to obtain an 𝜀-internal bisection).
One might try to carefully design an algorithm that chooses which vertices to flip, in which

order, in such a way that the two colour classes stay balanced. However, as far as we can tell, this
seems to be completely intractable in general. Instead, wemake choices randomly (and choose the
initial red–blue colouring randomly as well). The idea is that if there is no particular bias towards
red or blue, then we should end up with a cut which is roughly half-red and half-blue.
It seems plausible that if one repeatedly chooses a uniformly random flip among all flips which

would decrease the size of the cut, then whp the resulting internal partition is nearly a bisection.
However, it is far from obvious how to prove this: one must track the process for a rather long
time (and there is non-trivial dependence between the steps), and there is no obvious ensemble of
statistics that drive the processwithwhich onemight hope to use the differential equationsmethod
(which is a standard way to study the trajectory of combinatorial random processes; see [61]).
Instead, we modify the process slightly, flipping large batches of vertices at once. As long as the
batches are not too large, one can show that the flips typically do not interfere with each other
very much, and the size of the cut decreases quite dramatically with each batch of flips. So, our
process runs for only a very small number of steps, and as a result, the dependencies are mild
enough to apply a standard concentration inequality to the numbers of red and blue vertices at
each step. Similar ideas (in the setting of dense random graphs, with a much more complicated
implementation) were used in [31].
We remark that our tuning of the batch size (not too small that we lose control over concen-

tration, and not so large that the flips interfere with each other) may be compared with tuning
of the learning rate in gradient descent and similar optimisation algorithms. We also remark that
the general idea of splitting a random process into batches also features in the celebrated Rödl
nibble [53] in probabilistic combinatorics, though the purpose of the batches is rather different.

2.4 Organisation

The proof of Theorem 1.6 spans Sections 3–7. Specifically, some key lemmas are stated in Section 3,
then our random recolouring process is described in Section 4, then the list-assignment process
is described and studied in Section 5, a list-colouring theorem is proved in Lemma 3.3, and every-
thing is put together in Section 7. Theorem 1.7 is proved in Section 8, and Theorems 1.5 and 1.4 are
proved in Section 9. We also have two appendices with the details of various routine calculations.

3 KEY LEMMAS FORMAJORITY 3-COLOURING

In this section, we outline the ingredients in the proof of Theorem 1.6. We restrict our attention to
the case 𝑝 = 𝑂(1∕𝑛) (if 𝑝 ⩾ 𝐶∕𝑛 for a suitably large constant 𝐶, we can prove Theorem 1.6 with a
much cruder version of the arguments outlined in this section, as we will see in Section 7).

†Nothing analogous to this seems to be true for majority colourings of digraphs!
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 11 of 49

Firstly, the following lemma tells us that whp we can majority-colour almost all the vertices of
a random graph, and is proved by an iterative recolouring process.

Lemma 3.1. Fix any constant 𝐶 > 0 and let 𝐷 ∼ 𝔻(𝑛, 𝑝) for 𝑝 ⩽ 𝐶∕𝑛. Then, whp 𝐷 has a
3-colouring in which all but 𝑜(𝑛) vertices are majority-coloured.

We prove Lemma 3.1 in Section 4. In that section, we first discuss how to crudely study
a naïve recolouring process via a recurrence, and then we show how to use a ‘personality-
changing’Markov chain to strategically forget information, eliminating certain dependencies and
facilitating a sharper analysis.
Actually, we remark that we include the statement of Lemma 3.1 purely for exposition. For the

rest of the proof of Theorem 1.6, we will not really need the statement of Lemma 3.1 per se; rather,
we will need the analysis of the random recolouring process in its proof.
Unfortunately, no matter how long we run our process, we cannot rule out the possibility that

some small number of vertices fail to be majority-coloured. However, we can benefit from the fact
that small subsets of sparse random graphs have very simple structure, as follows.

Lemma 3.2. For any constants 𝜀, 𝐶 > 0, there is 𝛿 > 0 such that the following holds. If 𝐺 ∼ 𝔾(𝑛, 𝑝)
for 𝑝 ⩽ 𝐶∕𝑛, then whp every vertex subset 𝑆 with |𝑆| ⩽ 𝛿𝑛 spans at most (1 + 𝜀)|𝑆| edges.
Lemma 3.2 follows from a routine calculation (which appears, e.g. in [40, Proof of Theorem 1]).
Recall that a graph is 𝑘-degenerate if every subgraph has a vertex with degree at most 𝑘. Such

graphs have chromatic number at most 𝑘 + 1. Note that Lemma 3.2 (applied with any 𝜀 < 1∕2)
implies that every subgraph of 𝔾(𝑛, 𝑝)with at most 𝛿𝑛 vertices is 2-degenerate, and therefore has
chromatic number at most 3. Instead of chromatic number, we will need to use Lemma 3.2 to
establish a somewhat more delicate partitioning property, as in the following lemma (adapted
from work of Anastos, Lamaison, Steiner and Szabó [4], and proved in Section 6).

Lemma 3.3. Let 𝐷 be a digraph with a distinguished vertex subset 𝑈, and assign to each 𝑣 ∈ 𝑈
a list 𝐿(𝑣) ⊆ {1, 2, 3} of size 2. Suppose that for each of the three possible lists, there is no directed
cycle among the vertices in𝑈 with that list. Then for any 3-colouring 𝑐 ∶ 𝑉(𝐷) ⧵ 𝑈 → {1, 2, 3} (of the
vertices without lists), we can complete the colouring by assigning a colour 𝑐(𝑣) ∈ 𝐿(𝑣) to each 𝑣 ∈ 𝑈,
in such a way that every 𝑣 ∈ 𝑈 is majority-coloured.

We emphasise that in Lemma 3.3, we make no guarantees about the majority-colouredness
of the vertices not in 𝑈, although when we apply this lemma, some appropriate conditions will
indeed be satisfied.
In order to apply Lemma 3.3 (with Lemma 3.2), we need a lot more information about the

colouring produced by Lemma 3.1. To this end, we define a ‘list-assignment process’ which
builds on the colouring from Lemma 3.1, assigning lists to a small subset of vertices based on
all the knock-on effects that would result from changing the colours of the initially non-majority-
coloured vertices. (Crucially, we show that these knock-on effects can be compared to a subcritical
branching process). The outcome of our list-assignment process is as follows.

Lemma 3.4. Fix any constant 𝐶 ⩾ 0.1 and let 𝐷 ∼ 𝔻(𝑛, 𝑝) for any 0.1∕𝑛 ⩽ 𝑝 ⩽ 𝐶∕𝑛. Whp we can
find a subset𝑈 ⊆ 𝑉(𝐷), an assignment of a colour 𝑐(𝑣) ∈ {1, 2, 3} to each 𝑣 ∉ 𝑈, and an assignment
of a list 𝐿(𝑣) to each 𝑣 ∈ 𝑈, such that the following hold.
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12 of 49 ANASTOS et al.

L1 For any completion of our partial colouring 𝑐, obtained by assigning a colour 𝑐(𝑣) ∈ 𝐿(𝑣) to each
𝑣 ∈ 𝑈, we have that every 𝑣 ∉ 𝑈 is majority-coloured with respect to 𝑐 (i.e. the initial partial
colouring is a ‘robust’majority colouring, in the sense that the vertices outside𝑈 remainmajority-
coloured no matter what we do inside𝑈).

L2 |𝑈| = 𝑜(𝑛).
L3 Each 𝑣 ∈ 𝑈 has list size |𝐿(𝑣)| = 2 or |𝐿(𝑣)| = 3.
L4 Every directed cycle in 𝐷[𝑈] contains at least two vertices with list size 3.
L5 There is 𝓁 = 𝑂(1) such that every length-𝓁 directed path in𝐷[𝑈] contains a vertex with list size 3.

Remark 3.5. Note that in Lemma 3.4, we assume the lower bound 𝑝 ⩾ 0.1∕𝑛. This is not very cru-
cial (it just makes technical considerations slightly more convenient in a minor part of the proof).
Due to this assumption, in our proof of Theorem 1.6, wewill treat the regime 𝑝 < 0.1∕𝑛 separately.

We prove Lemma 3.4 in Section 5. In Section 7, we then show how to combine Lemmas 3.2–3.4
to prove Theorem 1.6.

4 MAJORITY-COLOURING PROCESSES

In this section, we prove Lemma 3.1. Firstly, we describe a simple random process that attempts
to majority-colour a graph (but which is intractable to analyse exactly), and then we describe a
modificationwhich permits somewhat sharper analysis. In this section, we sometimes refer to the
three colours 1,2,3 as ‘red’, ‘green’ and ‘blue’.

4.1 A simple process

The most obvious candidate to prove Lemma 3.1 is the process that first randomly chooses an
initial colour for each vertex, and then repeatedly changes the colour of every vertex that is not
majority-coloured (making relevant choices randomly). That is to say, at each time step, we iden-
tify the set of all vertices which are not majority coloured, and we independently change each of
them to some random other colour (simultaneously).
Wewere not able to use this simple process to prove Lemma 3.1, but it is nonetheless instructive

to seewhat boundswe can provewith it (as awarm-up for the next subsection,wherewe introduce
a more sophisticated process). The first key observation is that this is a ‘local’ process: in order to
know the colour of a vertex 𝑣 after 𝑡 random recolouring steps, we only need to know about the
colours of vertices which can be reached from 𝑣 by directed paths of length at most 𝑡. Crucially,
𝔻(𝑛, 𝑝) locally converges to a Poisson(𝑛𝑝)Galton–Watson tree, as follows. We write dTV(𝑋, 𝑌) for
the total variation distance† between two random objects 𝑋 and 𝑌.

Lemma 4.1. Fix a constant 𝐶 > 0 and let 𝑝 ⩽ 𝐶∕𝑛. Let 𝑇 be a Poisson(𝑛𝑝) Galton–Watson tree
(with root 𝑟, say), and orient all the edges of 𝑇 away from the root 𝑟. Let 𝐷 ∼ 𝔻(𝑛, 𝑝). For a random
vertex 𝑣 ∈ 𝑉(𝐷), let 𝐷𝑡(𝑣) (respectively, 𝑇𝑡) be the subgraph of 𝐷 (respectively, of 𝑇) induced by those
vertices reachable by directed paths of length atmost 𝑡 from 𝑣 (respectively, from 𝑟). Then, for constant
𝑡, we have dTV(𝐷𝑡(𝑣), 𝑇𝑡) ⩽ 𝑂((log 𝑛)2𝑡∕𝑛).

† The total variation distance between two (discrete) probability distributions 𝜇, 𝜈, taking values in a space Ω, is the
supremum of |𝜇(𝐴) − 𝜈(𝐴)| over all 𝐴 ⊆ Ω.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 13 of 49

Proof sketch. Wewill be crude and brief with details, as very similar observations have beenmade
many times in the literature (see, e.g. [22, Theorem 6]). By a Chernoff bound, with probability
1 − 𝑜(1∕𝑛), each vertex in 𝐷 and 𝑇𝑡 has degree at most log 𝑛. In particular, considering breadth-
first search in 𝐷 starting from 𝑣, the probability that we reach any vertex via two different paths
of length at most 𝑡 (i.e. the probability that 𝐷𝑡(𝑣) is not one of the possible outcomes of 𝑇𝑡) is at
most 𝑝(log 𝑛)2𝑡 = 𝑂((log 𝑛)2𝑡∕𝑛).
Now, the out-degree of each vertex in 𝐷 has a Binomial(𝑛 − 1, 𝑝) distribution, while the out-

degree of each vertex in 𝑇 has a Poisson(𝑛𝑝) distribution. By standard estimates (see, e.g. [10,
Eq. (1.1)]), wehavedTV(Binomial(𝑛 − 1, 𝑝), Poisson(𝑛𝑝)) = 𝑂(𝑛𝑝2) = 𝑂(1∕𝑛). So, amongpossible
outcomes 𝑅 of 𝑇𝑡 which have maximum degree at most log 𝑛, we have ℙ[𝐷𝑡(𝑣) = 𝑅] ⩽ ℙ[𝑇𝑡 =
𝑅] + 𝑂((log 𝑛)𝑡∕𝑛) (noting that each such 𝑅 has at most (log 𝑛)𝑡 vertices). There are 𝑂((log 𝑛)𝑡)
different outcomes of 𝑅 to consider, so the desired result follows. □

Morally speaking, Lemma 4.1 says that to understand the behaviour of our random recolour-
ing process for 𝑡 = 𝑜(log 𝑛∕ log log 𝑛) steps, it suffices to consider an analogous process on a
Poisson(𝑛𝑝) Galton–Watson tree.
Now, say ‘time 𝑡’ is the moment in time just before the 𝑡th recolouring step (so at time 1, the

colouring is uniformly random). Say that a colour (say, red) overtakes for a vertex 𝑣 at time 𝑡 if the
following holds: at time 𝑡 − 1, there are at most deg+(𝑣)∕2 red vertices in the out-neighbourhood
of 𝑣, but at time 𝑡, there are more than deg+(𝑣)∕2 of them. Then, a vertex 𝑣 fails to be majority-
coloured at time 𝑡 if and only if the following holds: there is some colour 𝛾 such that 𝑣 has colour
𝛾 at time 𝑡, and 𝛾 overtakes for 𝑣 at time 𝑡.
Given 𝜆 ⩾ 0 and 𝑡 ∈ ℕ, let 𝑓𝑡 be the probability that if we perform our random recolouring pro-

cess on a Poisson(𝜆)Galton–Watson tree 𝑇, the root 𝑟 is not majority-coloured at time 𝑡 (meaning
that it will be randomly recoloured at the 𝑡th recolouring step). This probability is subject to the
randomness of 𝑇, and also the randomness of the recolouring process. We have

𝑓1 = ℙ[𝑟 is not majority-coloured at time 𝑡 = 1],

and for 𝑡 > 1,

𝑓𝑡 =
∑
𝛾

ℙ[𝑟 has colour 𝛾 at time 𝑡, and 𝛾 overtakes for 𝑟 at time 𝑡]

⩽ 3ℙ[red overtakes for 𝑟 at time 𝑡]

= 3𝑃𝜆(𝑓𝑡−1),

where

𝑃𝜆(𝑓) =
∞∑
𝑑=0

𝑒−𝜆𝜆𝑑

𝑑!
𝑄𝑑(𝑓),

and 𝑄𝑑(𝑓) is defined to be

⌊𝑑∕2⌋∑
𝑖=1

(
𝑑
𝑖

)(1
3

)𝑖(2
3

)𝑑−𝑖 𝑑∑
𝑗=⌊𝑑∕2⌋+1

𝑖∑
𝑘=0

(
𝑖
𝑘

)
𝑓𝑘(1 − 𝑓)𝑖−𝑘

(
𝑑 − 𝑖

𝑗 + 𝑘 − 𝑖

)(
𝑓

2

)𝑗−𝑖+𝑘(
1 −

𝑓

2

)𝑑−𝑗−𝑘
.

(4.1)
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14 of 49 ANASTOS et al.

To explain the formula for 𝑄𝑑(𝑓), consider a single vertex 𝑣 with 𝑑 out-neighbours 𝑣1, … , 𝑣𝑑.
Suppose that the colours of 𝑣1, … , 𝑣𝑑 are initially independently randomly chosen from
{red, green, blue}, and then every vertex independently decides to change its colour (to a different
one, chosen randomly) with probability 𝑓. Then, the probability that red overtakes as the major-
ity colour among 𝑣1, … , 𝑣𝑑 is precisely 𝑄𝑑(𝑓). Indeed, in the formula for 𝑄𝑑(𝑓), we represent by 𝑖
the possible numbers of red vertices before the overtaking event, and by 𝑗, the possible numbers
of red vertices after the overtaking event. We represent by 𝑘 the possible numbers of red vertices
being randomly recoloured during the overtaking event (so 𝑗 − 𝑖 + 𝑘 non-red vertices must be
recoloured to red).
To explain the rest of the above formulas: note that if we condition on the out-degree of 𝑟 being

𝑑, and we consider the 𝑑 disjoint subtrees 𝑇1, … , 𝑇𝑑 rooted at the 𝑑 out-neighbours 𝑣1, … , 𝑣𝑑 of 𝑟,
then 𝑇1, … , 𝑇𝑑 (together with their vertex-colourings at time 𝑡 − 1) are independent and have the
same distribution as 𝑇. For each 𝑖, the colour of 𝑣𝑖 changes at time 𝑡 if and only if 𝑣𝑖 is notmajority-
coloured at time 𝑡 − 1, which happens with probability 𝑓𝑡−1 (independently for each 𝑖). So, the
conditional probability that red overtakes for 𝑟 at time 𝑡 is precisely 𝑄𝑑(𝑓𝑡−1). The out-degree of
𝑟 is Poisson(𝜆)-distributed, so 𝑃𝜆(𝑓𝑡−1) is the unconditional probability that red overtakes for 𝑟 at
time 𝑡.
Now, one can check that 𝑃𝜆 is monotone increasing, so 3𝑃𝜆(3𝑃𝜆(… 3𝑃𝜆(𝑓1)… )) is an upper

bound for 𝑓𝑡. Unfortunately, an explicit computation shows that (say) 𝑃′10(0) > 1, so when 𝜆 = 10,
this recurrence will not tend to zero as 𝑡 → ∞ (it seems that this unfortunate situation happens
when 𝜆 is a real number in the approximate range 3 ⩽ 𝜆 ⩽ 20).

4.2 Personality-changing to improve the recurrence

Note that the above analysis features a lossy union bound (roughly speaking, this costs us a factor
of 3 in the recurrence). In order to improve the above analysis, we would ideally like to prove a
non-trivial upper bound on

ℙ[𝑟 is red at time 𝑡 | red overtakes for 𝑟 at time 𝑡]. (4.2)

Note that it is not too hard to describe the evolution of the colour of our root vertex 𝑟, given the
history of colours of overtaking events of its out-neighbours. Indeed, every time 𝛾 overtakes, we
ask if 𝑟 has colour 𝛾, and if so, we change it to a random other colour. We might hope to obtain
a non-trivial bound on the above probability by conditioning on an arbitrary possible history of
overtaking colours (determined by the colours of the out-neighbours of 𝑟), and proving a uni-
form upper bound on the probability that 𝑟 has colour 𝛾 at time 𝑡 given this particular history.
Unfortunately, for some very pathological histories, we cannot get a non-trivial bound this way
(e.g. given the history … , 1, 2, 1, 2, 1, 2 of overtaking colours, we can be almost certain that 𝑟 has
colour 3 at time 𝑡), and it seems to be difficult to say anything non-trivial about the distribution of
the overtaking-colour-history.
Instead, we consider a variation of our recolouring process (which is still ‘local’, but is no longer

‘Markovian’: transition probabilities will now depend on the entire history of the colours of the
out-neighbours).
At each point in time, every vertex now has a ‘personality’ as well as a colour: it can be paranoid

or thoughtful. The idea is that paranoid vertices randomly change their colour at each overtaking
event, regardless of their own colour (i.e. they change even if they do not have to). On the other
hand, thoughtful vertices do take their own colour into account, and may not switch if they do
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 15 of 49

not have to. However, if a vertex is thoughtful and decides not to randomly change its colour at
an overtaking event, then we change its personality to paranoid. (So, if a vertex 𝑣 is thoughtful,
then we can guarantee that the colour of 𝑣 was determined by a random resampling from the last
overtaking event. Thismeans that its colour is uniformly random among the two colours different
from the colour that overtook at the last overtaking event).
Specifically: initially, set all vertices to be paranoid with probability 1∕3, and thoughtful with

probability 2∕3 independently of each other. Then, when a colour 𝛾 overtakes for a vertex 𝑣, we
proceed as follows.

∙ If 𝑣 is thoughtful, we first define a real number 𝑝∗ ∈ {0, 1∕3, 1∕2} (which can be interpreted as
‘the probability that 𝑣 has colour 𝛾, given all relevant information except the current colour of
𝑣’).
– If 𝑣 has never changed its colour before, then 𝑝∗ = 1∕3.
– If, before the last time 𝑣 changed colour, it had colour 𝛾, then 𝑝∗ = 0.
– Otherwise, 𝑝∗ = 1∕2.
Now, flip a biased coin that comes up heads with probability (1∕2 − 𝑝∗)∕(1 − 𝑝∗) (so, infor-

mally, ‘given all relevant information except the current colour of 𝑣’, the probability that 𝑣 has
colour 𝛾 or that the coin came up heads is exactly 1∕2).
– If 𝑣 has colour 𝛾 or the coin came up heads, then randomly recolour 𝑣 to a colour other than
𝛾, but do not change its personality.

– Otherwise, do not change the colour of 𝑣 but change the personality of 𝑣 to paranoid.
∙ If 𝑣 is paranoid, randomly recolour 𝑣 to a colour other than 𝛾 (regardless of what colour 𝑣 has).
Change the personality of 𝑣 to thoughtful.

Note that for any vertex 𝑣, the personality of 𝑣 evolves according to a particular Markov chain
indexed by the points in time when overtaking events happen. Indeed, paranoid vertices always
transition to thoughtfulness, and thoughtful vertices stay thoughtful or transition to paranoidwith
probability 1/2. The initial personality distribution (inwhichwe are paranoidwith probability 1∕3)
is precisely the stationary distribution of this Markov chain. Moreover, note that for any vertex 𝑣
and any time 𝑡, the personality of 𝑣 is independent from the entire history of the colours of its
out-neighbours (and in particular, independent from the event that 𝛾 overtakes for 𝑣 at time 𝑡, for
any colour 𝛾).
Now, recalling that 𝑟 is the root of our Galton–Watson tree, define the events

𝑡 ∶= {𝑟 is paranoid at time 𝑡},

𝑡 ∶= {𝑟 is thoughtful at time 𝑡},

𝑡(𝛾) ∶= {𝛾 overtakes for 𝑟 at time 𝑡},

𝑡 ∶= {𝑟 changes its colour just after time 𝑡},

and let 𝑓𝑡 = ℙ[𝑡] be the probability that 𝑟 changes its colour just after time 𝑡 (i.e. during the 𝑡th
recolouring step). Then,

𝑓𝑡 =
∑
𝛾

ℙ[𝑡(𝛾)] ⋅ (ℙ[𝑡] ⋅ ℙ[𝑡 |𝑡 ∩ 𝑡(𝛾)] + ℙ[𝑡] ⋅ ℙ[𝑡 | 𝑡 ∩ 𝑡(𝛾)])

=
∑
𝛾

ℙ[𝑡(𝛾)] ⋅
(1
3
⋅ 1 +

2
3
⋅
1
2

)
=
2
3

∑
𝛾

ℙ[𝑡(𝛾)] = 2𝑃𝜆(𝑓𝑡−1). (4.3)
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16 of 49 ANASTOS et al.

Crucially, this is the same recurrence as we naïvely obtained in the last subsection, but with
the factor of 3 replaced with a factor of 2. It essentially remains to study the function 𝑃𝜆 and the
initial change probability 𝑓1; the following lemmas encapsulate the properties we will need.

Lemma 4.2. For any 𝜆 ⩾ 0, we have 𝑓1 ⩽ 1∕3.

Lemma 4.3. For any 𝜆 ⩾ 0 and 𝑓 ∈ [0, 1∕3], we have 2𝑃𝜆(𝑓) ⩽ 2𝑃′𝜆(0)𝑓 ⩽ 0.9999𝑓.

Remark 4.4. A simple way to prove that 2𝑃𝜆(𝑓) < 0.9999𝑓 for all 𝜆 ⩾ 0 would be to prove that
2𝑄𝑑(𝑓) < 0.9999𝑓 for all 𝑑 (since 𝑃𝜆 is a weighted average of the𝑄𝑑). However, this is not true (in
particular, 2𝑄′

𝑑
(0) is slightly larger than 1 for 𝑑 ∈ {7, 9, 11}), so we really need the averaging in the

definition of 𝑃𝜆.

Lemma 4.2 is more-or-less immediate: given any initial colouring of the out-neighbours of 𝑟, at
most one of the three possible colours for 𝑟 would cause 𝑟 not to be majority-coloured. Lemma 4.3
is more delicate, and we prove it in Appendix A with computer assistance. We remark that the
constant ‘0.9999’ is not sharp, and is chosenmerely for convenience of obtaining a rigourous proof
(the best possible constant seems to be about 0.83).
Now, Lemmas 4.2 and 4.3, together with the recurrence in Equation 4.3, imply that 𝑓𝑡 ⩽ (1∕3) ⋅

0.9999𝑡−1 < 0.9999𝑡, which is an upper bound on the probability that 𝑟 was majority-coloured at
time 𝑡. We record this in the following lemma.

Lemma 4.5. For any 𝜆 ⩾ 0, consider a Poisson(𝜆) Galton–Watson tree, with edges oriented away
from the root, and consider the randomrecolouring process described in this section (with personality-
changing). Just before the 𝑡th recolouring step, the probability that the root is majority-coloured is at
most 0.9999𝑡 .

Lemma 3.1 is a near-immediate corollary, as follows.

Proof of Lemma 3.1. Let 𝜆 = 𝑛𝑝 and consider the random recolouring process (with personality-
changing) on 𝐷 ∼ 𝔻(𝑛, 𝑝). Since this is a local process, by Lemmas 4.1 and 4.5, each vertex 𝑣 fails
to be majority-coloured at time 𝑡 with probability at most 0.9999𝑡 + 𝑂((log 𝑛)2𝑡∕𝑛). Taking say
𝑡 = log log 𝑛, we see that the expected number of vertices which are not majority-coloured at time
𝑡 is 𝑜(𝑛), and the desired result follows by Markov’s inequality. □

Remark 4.6. The above proof works for any sequence of digraphs (random or not) which locally
converge to a Poisson(𝜆) Galton–Watson tree. In fact, it is possible to make minor changes to the
proof to handle arbitrary high-girth digraphs which do not have too many vertices that are close
to each other and have out-degrees 7, 9 or 11 (recall from Remark 4.4 that 2𝑄′

𝑑
(0) can be greater

than 1 if 𝑑 ∈ {7, 9, 11}).
For digraphs which have many nearby vertices with degree 7, 9 and 11, we do not see how

to obtain an analogue of Lemma 3.1 without obtaining some non-trivial bounds on conditional
probabilities as in Equation 4.2. However, since 2𝑄′

𝑑
(0) is only ever very slightly larger than 1,

very weak bounds would suffice, and it may be possible to obtain such bounds by reasoning very
carefully about how the likely colour history of a vertex relates to the colour histories of its out-
neighbours.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 17 of 49

5 A LIST-ASSIGNMENT PROCESS

In this section, we prove Lemma 3.4.
Recall that Lemma 3.1 provides us with a 3-colouring of our random digraph 𝐷 ∼ 𝔻(𝑛, 𝑝) in

which almost all vertices are majority-coloured. We prove Lemma 3.4 with a list-assignment pro-
cess that initially only assigns lists to the non-majority-coloured vertices, but then recursively
considers the effects of choosing different colours in these lists. Specifically, for a vertex 𝑣 with
a list 𝐿(𝑣), if we were to change the colour of 𝑣 (to some new colour in 𝐿(𝑣)), we may cause other
vertices to become non-majority-coloured. Those vertices which are in danger of becoming non-
majority-coloured must themselves be assigned lists, and the effects of their colour changes must
be recursively investigated. Mostly, we assign lists of size 2, but occasionally, we need to assign
lists of size 3, when a vertex could become non-majority-coloured via two different pathways, or
when we are in danger of violating L4 or L5 of Lemma 3.4.
In detail, our list-assignment process is defined as follows.

Definition 5.1. Fix a parameter 𝓁 ∈ ℕ, a digraph 𝐷 and an initial colouring 𝑐 ∶ 𝑉(𝐷) → {1, 2, 3}.
Every vertex 𝑣 which has a list will always have a path danger level pd(𝑣) ∈ {0, 1, … ,𝓁 + 1}. We say
that a vertex is defective if it has a list with size 3. To ‘make a vertex defective’ is to give it the list
{1, 2, 3}, and also to give it a path danger level of zero. At all points in time, we write 𝑈 for the set
of vertices which have been assigned lists.

(1) Consider all the vertices which are not majority-coloured with respect to 𝑐. Make all such
vertices defective. (We say that these vertices are ‘colour-defective’.)

(2) Repeatedly do one of the following actions, as long as one is possible ((a) should always take
first priority, and (c) should always take second priority, but otherwise, choose which action
to do next according to some arbitrary but deterministic rule).
(a) If some vertex 𝑣 has pd(𝑣) = 𝓁 + 1, then make 𝑣 defective, changing pd(𝑣) to zero in the

process. (We say that 𝑣 is ‘path-defective’.)
(b) If there is a directed cycle of vertices in𝑈which currently has atmost one defective vertex,

then make all vertices in that cycle defective. (We say these vertices are ‘cycle-defective’).
(c) If there is any vertex 𝑣 (in all of 𝐷) which is an in-neighbour of two different vertices

𝑢, 𝑢′ ∈ 𝑈, then make 𝑣 defective. (We say that 𝑣 is ‘duplicate-defective’).
(d) If there is a vertex 𝑢 ∈ 𝑈, a colour 𝛾 ∈ 𝐿(𝑢) and a vertex 𝑣 ∉ 𝑈, such that changing the

colour of 𝑢 from 𝑐(𝑢) to 𝛾 would cause 𝑣 to no longer be majority-coloured (this can only
happen if 𝑐(𝑣) = 𝛾), then assign to 𝑣 the size-2 list 𝐿(𝑣) = {𝑐(𝑣), 𝑐(𝑣) + 1}, where addition
is mod 3. (This choice is basically arbitrary; the important thing is that 𝐿(𝑣) includes 𝑐(𝑣)
and a second colour chosen according to some deterministic rule.) Moreover, set pd(𝑣) =
pd(𝑢) + 1.

We emphasise that the above process is not a random process (every step is deterministic),
though we will only ever run it on random digraphs. Also, we emphasise that a vertex can be
defective in ‘two different ways’ (e.g. it is possible for a vertex to be both duplicate-defective and
path-defective).
After the list-assignment process completes, we have a list 𝐿(𝑣) assigned to each vertex 𝑣 ∈ 𝑈.

By construction, these lists, together with the colours 𝑐(𝑣) for each 𝑣 ∉ 𝑈, satisfy all the condi-
tions in Lemma 3.4 except possibly L2 (assuming 𝓁 = 𝑂(1)). So, in order to prove Lemma 3.4,
it suffices to show that if we run the random recolouring process described in Section 4.2 on a
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18 of 49 ANASTOS et al.

randomdigraph𝐷 ∼ 𝔻(𝑛, 𝑝), for some appropriate number of steps (to obtain an almost-majority-
colouring 𝑐 ∶ 𝑉(𝐷) → {1, 2, 3}), and subsequently run the above list-assignment process for some
appropriate 𝓁 = 𝑂(1), then whp we end up with |𝑈| = 𝑜(𝑛).
5.1 Proof strategy

In this subsection, we state the two key lemmas that underpin the proof of Lemma 3.4. Recall
from Lemma 3.1 that our random recolouring process whp provides us with a 3-colouring such
that the set of non-majority-coloured vertices𝑈 is very small. Roughly speaking, our approach to
prove Lemma 3.4 is as follows.

(A) Firstly, we show that, whp, if we do not create too many duplicate-defective vertices, then
𝑈 does not grow too much during the list-assignment process. This is because if we ignore
duplicate-defective vertices, then our list-assignment process is comparable to a subcritical
branching process (assuming that 𝓁 is sufficiently large that path-defective vertices do not
play a major role).

(B) Secondly, we show that whp the number of duplicate-defective vertices stays small relative
to the number of vertices explored during the list-assignment process. Indeed, when we have
explored a 𝛿-fraction of the graph, we expect about a 𝛿2-fraction of vertices to have been seen
more than once (thereby becoming duplicate-defective).

That is to say, we bound the number of duplicate-defective vertices in terms of |𝑈|, and conversely,
we bound |𝑈| in terms of the number of duplicate-defective vertices. At a very high level, this
kind of ‘self-bounding’ approach is common in the analysis of combinatorial random processes
(perhaps most famously, in the differential equations method; see [61]).
To formalise step (A), we define a ‘virtual’ version of the list-assignment process, which ‘replays

a recording’ of some part of the list-assignment process, to investigate the knock-on effects
that occur due to a particular set of vertices becoming duplicate-defective (or being initially
colour-defective, or becoming cycle-defective, but neither of these types of defective vertices are
too important as sparse random graphs typically have very few short cycles and our random
recolouring process typically leaves very few colour-defective vertices).

Definition 5.2. Fix a digraph 𝐷, a colouring 𝑐 ∶ 𝑉(𝐷) → {1, 2, 3}, a parameter 𝓁 ∈ ℕ, a set of
vertices𝑊 and a sequence �⃗� of elements of𝑊 ∪ (𝑉(𝐷) × ℕ) containing each𝑤 ∈ 𝑊 exactly once
(we call �⃗� the ‘tape’). The (𝑊, �⃗�)-virtual list-assignment process is defined as follows. We reuse
the notation and terminology from Definition 5.1.

(1) Initially, no vertices have lists (i.e. 𝑈 = ∅).
(2) While �⃗� is non-empty: consider the first entry 𝑒 of �⃗�.

(a) If 𝑒 is a single vertex 𝑤 ∈ 𝑊, then make 𝑤 defective, setting pd(𝑤) to zero in the process.
(We say that 𝑤 is ‘virtual-defective’.)

(b) If 𝑒 is a pair (𝑢, 𝑖), then check if 𝑢 ∈ 𝑈, and if 𝑖 ⩽ deg−(𝑢). If either of these does not hold,
abort the entire process.
∙ Let 𝑣 be the 𝑖th in-neighbour of 𝑢 (according to some pre-specified ordering of the in-
neighbours of 𝑣).

∙ Check if 𝑣 ismajority-coloured, and changing 𝑐(𝑢) to some other colour 𝛾 ∈ 𝐿(𝑢)would
cause 𝑣 to not be majority-coloured. Also, check if 𝑣 does not already have a list. If one
of these conditions fails, abort the entire process.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 19 of 49

∙ Set pd(𝑣) = pd(𝑢) + 1.
∙ If pd(𝑣) = 𝓁 + 1, then make 𝑣 defective. (We say that 𝑣 is ‘path-defective’.)
∙ Otherwise, assign to 𝑣 the size-2 list 𝐿(𝑣) = {𝑐(𝑣), 𝑐(𝑣) + 1}, where addition ismod 3 (i.e.
according to the same rule as in step (2d) in Definition 5.1).

(c) Remove 𝑒 from �⃗� (so the second element of �⃗� becomes the first, and so on).

Let 𝑅(𝑊, �⃗�) be the set of vertices which would be assigned a list if we ran the (𝑊, �⃗�)-virtual
list-assignment process.

The idea is that for every set of vertices 𝑊 that become defective at some point in the list-
assignment process, there is some tape �⃗� that records the order in which vertices were assigned
lists as a result of the vertices in𝑊 becoming defective (and as a result of the corresponding knock-
on effects). The virtual list-assignment process takes𝑊 and �⃗� as input, and ‘validates’ the tape
(making sure that vertices could indeed have been assigned lists in that order).
We remark that the order in which vertices are processed can have quite a dramatic effect on

the behaviour of the list-assignment process, purely due to the way path-defective vertices are
defined (path-defective vertices occur ‘every 𝓁 + 1 steps’, so if a vertex 𝑣 can be assigned a list
via two different pathways of different lengths, whether or not 𝑣 is path-defective can depend on
which pathway is taken first). This order-dependence is the reason we need a ‘tape’ specifying the
order in which vertices should be processed.
Now, steps (A) and (B) of our proof are captured in parts (A) and (B) of the following lemma.

Lemma 5.3. Fix a constant 𝐶 ⩾ 0.1. Let 0.1∕𝑛 ⩽ 𝑝 ⩽ 𝐶∕𝑛, 𝑡0 = (log log 𝑛)2, 𝓁 = 1010𝐶 and 𝐷 ∼
𝔻(𝑛, 𝑝). Run the random recolouring process (with personality-changing) described in Section 4.2,
until time 𝑡0, to obtain a colouring 𝑐 ∶ 𝑉(𝐷) → {1, 2, 3}. Then whp the following hold.

(A) For every set𝑊 of at least 𝑛0.9 vertices, and any tape �⃗�, we have |𝑅(𝑊, �⃗�)| ⩽ 2|𝑊|(log 𝑛)𝓁+3.
(B) Consider the list-assignment process described inDefinition 5.1 (which features an evolving set𝑈

of list-assigned vertices). Let 𝛿 = 1∕(log 𝑛)𝓁+10; at every moment of the list-assignment process
for which |𝑈| ⩽ 𝛿𝑛, the number of duplicate-defective vertices is at most 𝛿2𝑛(log 𝑛)3.

Remark 5.4. The choices of 𝑡0, 𝛿 are fairly arbitrary, and the bounds in Lemma 5.3 are rather
crude. In particular, taking 𝑡0 significantly larger than log log 𝑛means that after 𝑡0 steps of random
recolouring, whp there are so few non-majority-coloured vertices that we can tolerate𝑈 growing
by any poly-logarithmic factor during the list-assignment process. This ‘poly-logarithmic slack’
is very convenient as it allows us to take crude union bounds. With a more refined analysis, we
expect that it should be possible to take 𝑡0,𝓁 to be sufficiently large constants and 𝛿 a sufficiently
small constant, and it should be possible to remove logarithmic factors altogether.

We need some preparations before proving Lemma 5.3.

5.2 A marked configuration model

In order to reveal the colouring arising from 𝑡0 steps of the random recolouring process, we must
reveal certain information about our random digraph 𝐷 ∼ 𝔻(𝑛, 𝑝). Crucially, there is still plenty
of randomness remaining after this information is revealed; we need to use this randomness to
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20 of 49 ANASTOS et al.

study the list-assignment process. To get a handle on the remaining randomness, we compare the
conditional distribution of 𝐷 to a ‘marked configuration model’ (analogous to the well-known
configuration model often used to study degree-constrained random graphs; see, e.g. [60]).
Basically, for each vertex 𝑣, we first reveal its in- and out-degrees deg−(𝑣) and deg+(𝑣) according

to the distribution 𝔻(𝑛, 𝑝) (together with certain information about the outcome of the random
recolouring process). Then, we replace each vertex 𝑣 with deg−(𝑣) ‘in-stubs’ and deg+(𝑣) ‘out-
stubs’; our marked configuration model is obtained by randomly matching out-stubs to in-stubs.

Definition 5.5. A multidigraph is the digraph analogue of a multigraph: it may have directed
loops, and itmay havemultiple edges going in the same direction between a pair of vertices (called
parallel edges). We say that a multidigraph is marked if each vertex has a sequence of colours
associated with it.
Also, in this definition, we assume that all (multi)digraphs have an ordering on their vertices

(e.g. the vertex set of 𝔻(𝑛, 𝑝) can be taken to be {1, … , 𝑛}). For an ordered set 𝑆 of size 𝑑, and a
function𝜙 ∶ 𝑆 → 𝑋, wewrite [𝜙(𝑠) ∶ 𝑠 ∈ 𝑆] ∈ 𝑋𝑑 to denote the sequence of values𝜙(𝑠), according
to the order of 𝑆 (note that this is a sequence in 𝑋𝑑, not a function in 𝑋𝑆; we ‘forget’ the values of
𝑆 themselves).

∙ Let (𝑡) = {1, 2, 3}𝑡. Let 𝔻𝑡0(𝑛, 𝑝) be the distribution of the random marked digraph (𝐷, 𝑐)
defined by taking𝐷 ∼ 𝔻(𝑛, 𝑝), running the random recolouring process described in Section 4.2
(with personality-changing), until time 𝑡0, and for each vertex 𝑣, letting 𝑐(𝑣) ∈ (𝑡0) be the
sequence of colours taken by 𝑣 over the duration of the process.

∙ For any marked (multi)digraph (𝐷, 𝑐) and any vertex 𝑣 ∈ 𝑉(𝐷), let

𝑇𝐷,𝑐(𝑣) = (deg
+(𝑣), deg−(𝑣), 𝑐(𝑣), [𝑐(𝑢) ∶ 𝑢 ∈ 𝑁+(𝑣)])

encode the in-degrees and out-degrees of 𝑣, the mark of 𝑣 and the marks of the out-neighbours
of 𝑣. We think of 𝑇𝐷,𝑐 as a function 𝑉(𝐷) → ℕ × ℕ × (𝑡0) ×

⋃∞
𝑖=0 (𝑡0)

𝑖 . Let 𝕋𝑡0(𝑛, 𝑝) be the
distribution of 𝑇𝐷,𝑐, for (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝).

∙ Let �̂�𝑡0 (𝑛, 𝑝) be the distribution of the randommarkedmultidigraph (�̂�, 𝑐) defined as follows.
(1) Consider 𝑇 ∼ 𝕋𝑡0(𝑛, 𝑝).
(2) Let 𝑉 = {1, … , 𝑛} be the vertex set of 𝔻(𝑛, 𝑝), and for each vertex 𝑣 ∈ 𝑉:

(a) Create deg+(𝑣) vertices called outgoing stubs and deg−(𝑣) vertices called incoming stubs
(we will always refer to these as ‘stubs’, not ‘vertices’). Here, deg+(𝑣) and deg−(𝑣) are
as specified by 𝑇.

(b) Mark the incoming stubs with the sequence 𝑐(𝑣), andmark the outgoing stubs with the
sequences in [𝑐(𝑢) ∶ 𝑢 ∈ 𝑁+(𝑣)] (in any order). Again, this data is as specified by 𝑇.

So, in total, we now have an empty graph with
∑
𝑣∈𝑉

(
deg+(𝑣) + deg−(𝑣)

)
stubs, each of

which is marked with a sequence of colours.
(3) Then, for each of the 3𝑡0 sequences 𝛾 ∈ (𝑡0), let 𝑆+𝛾 be the collection of all outgoing stubs

marked with 𝛾 (among those generated by all vertices), and let 𝑆−
𝛾
be the collection of all

incoming stubs marked with 𝛾. Note that |𝑆+
𝛾
| = |𝑆−

𝛾
| is the sum of in-degrees of vertices in

𝐷 marked with 𝛾.
(4) For each 𝛾 ∈ (𝑡0), consider a uniformly random perfect matching (independent from the

remaining randomness of 𝐷) between 𝑆−
𝛾
and 𝑆+

𝛾
, and orient each edge of this matching

from 𝑆+
𝛾
to 𝑆−

𝛾
.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 21 of 49

(5) Now, for each vertex 𝑣, consider the deg+(𝑣) + deg−(𝑣) stubs that arose from 𝑣, and contract
these stubs back to a single vertex 𝑣. This gives a multidigraph �̂� with 𝑇�̂�,𝑐 = 𝑇.

Now, if (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝) and we condition on an outcome of 𝑇𝐷,𝑐, then by symmetry, 𝐷 is
simply a uniformly random digraph consistent with this 𝑇𝐷,𝑐. Also, if (�̂�, 𝑐) ∼ �̂�𝑡0(𝑛, 𝑝) and we
condition on an outcome of 𝑇�̂�,𝑐, then each possible outcome of 𝐷 is equally likely to appear as
�̂� (in (4), the number of matchings which would yield 𝐷 is always exactly

∏
𝑣 deg

+(𝑣)! deg−(𝑣)!).
However, �̂� can also take outcomes which are impossible for 𝐷 (namely those outcomes with
loops or parallel edges). We record these observations as follows.

Fact 5.6. Let (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝) and (�̂�, 𝑐) ∼ �̂�𝑡0(𝑛, 𝑝), and consider any possible outcome 𝑇 of
𝕋𝑡0(𝑛, 𝑝). Then the conditional distribution of 𝐷 given 𝑇𝐷,𝑐 = 𝑇 is the same as the conditional
distribution of �̂�, given that 𝑇�̂�,𝑐 = 𝑇 and that �̂� has no loops and no parallel edges.

5.3 Preliminary lemmas on randommarked digraphs

Before going further, we state some properties of 𝔻𝑡0(𝑛, 𝑝) and �̂�𝑡0 (𝑛, 𝑝). One of these is that whp
𝑇 ∼ 𝕋𝑡0(𝑛, 𝑝) has statistics very closely approximated by consideration of a Galton–Watson tree;
to state this formally, we need a definition.

Definition 5.7. Consider a Poisson(𝜆)Galton–Watson tree with root 𝑟 (with edges oriented away
from 𝑟). Independently, add a Poisson(𝜆) number of in-neighbours to 𝑟. On this tree, run 𝑡0 steps
of the random recolouring process described in Section 4.2, thereby obtaining a colour history
sequence 𝑐(𝑣) ∈ (𝑡0) for each vertex 𝑣. For any 𝑅 = (𝑑+, 𝑑−, 𝛾, (𝛾(1), … , 𝛾(𝑑+))), let

𝜇𝑡0,𝜆(𝑅) = ℙ[(deg
+(𝑟), deg−(𝑟), 𝑐(𝑟), [𝑐(𝑢) ∶ 𝑢 ∈ 𝑁+(𝑟)]) = 𝑅], 𝜈𝑡0,𝜆(𝛾) = ℙ[𝑐(𝑟) = 𝛾].

We omit the subscripts 𝑡0, 𝜆 when they are clear from context.

Now, the following basic properties of 𝔻𝑡0(𝑛, 𝑝) follow from routine calculations.

Lemma 5.8. Fix constants 𝐶 > 0 and 𝓁 ∈ ℕ, let 𝑝 = 𝜆∕𝑛 for some 𝜆 ⩽ 𝐶, let 𝑡0 = (log log 𝑛)2 and
let (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝) (so 𝑇𝐷,𝑐 ∼ 𝕋𝑡0(𝑛, 𝑝)). Then, whp the following properties are satisfied.

D1 deg+(𝑣), deg−(𝑣) ⩽ log 𝑛 for each 𝑣.
D2 For every 𝑅 ∈ ℕ × ℕ × (𝑡0) ×

⋃∞
𝑖=0 (𝑡0)

𝑖 , the number of vertices 𝑣 with 𝑇𝐷,𝑐(𝑣) = 𝑅 is 𝜇(𝑅)𝑛 +
𝑂(𝑛2∕3).

D3 There are at most
√
𝑛 vertices in cycles of length at most 2𝓁.

Proof sketch. D1 is a routine consequence of the Chernoff bound, and D3 follows from Markov’s
inequality and the fact that the expected number of cycles of length at most 2𝓁 is at most

2𝓁∑
𝑖=2

𝑛𝑖𝑝𝑖 ⩽
2𝓁∑
𝑖=2

𝐶𝑖 = 𝑂(1).

For D2, recall the random recolouring process described in Section 4.2, which describes how a
vertex 𝑣 should change its colour when an overtaking event occurs, depending on the personality
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22 of 49 ANASTOS et al.

of 𝑣 and potentially the result of a coin flip. We imagine that each vertex 𝑣 has a sequence of coin
flips 𝑠(𝑣) ∈ {0, 1}𝑡0 (the first two of which are biased to land heads with probability 1∕3 and 1∕4,
and the rest ofwhich are unbiased, landing headswith probability 1∕2). The first (1∕3-biased) coin
flip can be used to decide the initial personality of 𝑣, and the subsequent coin flips can be used to
determinewhich colour 𝑣 should change to at each overtaking event. (In the paranoid case,we just
need an unbiased coin flip; in the thoughtful case, we need a coin flip of bias (1∕2 − 𝑝∗)∕(1 − 𝑝∗),
which is equal to 1∕4, 1∕2 or 0 when 𝑝∗ is equal to 1∕3, 0 or 1∕2 respectively).
Also, we slightly modify the random recolouring process: vertices with in-degree greater than

log 𝑛 always have the colour ‘1’ (i.e. they do not randomly change their colour). When D1 occurs
(which it does whp), this change makes no difference to the process.
Let𝑋𝑅 be the number of vertices 𝑣with𝑇𝐷,𝑐(𝑣) = 𝑅 in ourmodified process. The purpose of our

modification is that if we consider a vertex 𝑣, and we consider any change to the initial colour of
𝑣, or 𝑠(𝑣), or the set of edges which are incident to 𝑣, then 𝑋𝑅 changes by at most (log 𝑛)𝑡0 = 𝑛𝑜(1)
(because the number of vertices that can be affected by our single-vertex change grows by a factor
of at most log 𝑛 in every step of the process). So, the desired result follows from the Azuma–
Hoeffding inequality (see for example [3, Theorem 7.2.1]). □

We also need some consequences of D1 and D2 above. To state these, we need some further
definitions.

Definition 5.9. Given a marked digraph (𝐷, 𝑐), let 𝑉𝛾 be the set of vertices marked with 𝛾. Let
deg𝛾(𝑣) be the number of out-neighbours of 𝑣 marked with 𝛾. So,∑

𝑣∈𝑉

deg𝛾(𝑣) =
∑
𝑣∈𝑉𝛾

deg−(𝑣).

Also, say that a vertex 𝑣 is 𝛾-critical if 𝑐𝑡0(𝑣) = 𝛾 and if 𝑣 has exactly ⌊deg+(𝑣)∕2⌋ out-neighbours
𝑤with 𝑐𝑡0(𝑤) = 𝛾 (i.e. if 𝛾 is ‘almost’ amajority colour among the out-neighbours of 𝑣, with respect
to 𝑐𝑡0). Let Crit(𝛾) be the set of vertices which are 𝛾-critical.

We next observe that the probabilities 𝜈(𝛾) defined in Definition 5.7 are not too small (this is
convenient for concentration inequalities).

Lemma 5.10. Fix a constant 𝐶 ⩾ 0.1 and let 0.1 ⩽ 𝜆 ⩽ 𝐶. For every 𝛾 ∈ (𝑡0), we have 𝜈𝑡0,𝜆(𝛾) ⩾
exp(−𝑂(𝑡20)).

Proof. Consider a Poisson(𝜆) Galton–Watson tree with root 𝑟 (with edges oriented away from
𝑟). Say that an index 𝑡 is a flip if 𝛾𝑡 ≠ 𝛾𝑡+1. Note that we can greedily find a sequence of colours
𝛾′1, … , 𝛾

′
𝑡0
such that 𝛾′𝑡 ≠ 𝛾

′
𝑡+1 for each 𝑡, and 𝛾𝑡 = 𝛾

′
𝑡 if and only if 𝑡 is a flip. Indeed, for 𝑡 = 1, … , 𝑡0

(in that order): if 𝑡 is not a flip, then there is at least one choice for 𝛾′𝑡 which is different from 𝛾
′
𝑡−1

and 𝛾𝑡, and if 𝑡 is a flip, then we can set 𝛾′𝑡 = 𝛾𝑡 (by considering the cases where 𝑡 − 1 is a flip or
not, one can check that this colour is different to 𝛾′𝑡−1).
Now, consider the following potential sequence of events.

(1) Regarding the structure of the tree itself: in each of the first 𝑡0 − 1 generations, only a single
child is born (so the local structure is a path of length 𝑡0 − 1 away from 𝑟). For 𝓁 < 𝑡0, let 𝑣𝓁
be the unique vertex at distance 𝓁 from 𝑣.

(2) The initial colour of 𝑟 = 𝑣0 (at time 1) is 𝛾1.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 23 of 49

(3) The initial colours of 𝑣1, … , 𝑣𝑡0−1 are all 𝛾
′
1.

(4) At the (𝑡 − 1)st recolouring step (i.e. at the 𝑡th step including the initial colouring):
∙ 𝑟 changes its colour to 𝛾𝑡 (if it already has colour 𝛾𝑡, it does not change).
∙ Each of 𝑣1, … , 𝑣𝑡0−𝑡 change their colour to 𝛾

′
𝑡 .

Note that this sequence of events occurs with probability exp(−Θ(𝑡20)). Indeed, the probability
that the first 𝑡0 generations have the desired path-like structure is exp(−Θ(𝑡0)) (here we are using
that 𝜆 ⩾ 0.1). Then, in the recolouring process, the events at the 𝑡th step occur with probability
exp(−Θ(𝑡0 − 𝑡)).
Finally, if this sequence of events occurs, note that 𝑟 has colour history 𝛾. □

We next state some consequences of D1 and D2.

Lemma 5.11. Recall the notation and definitions in Lemma 5.8, and assume 𝜆 ⩾ 0.1. Consider an
outcome of 𝑇𝐷,𝑐 of 𝕋𝑡0(𝑛, 𝑝) such that D1 and D2 hold. Then the following further properties hold.

T1 For every 𝑑 ∈ ℕ and every (𝛾(1), … , 𝛾(𝑑)) ∈ (𝑡0)
𝑑, there are(

𝑒−𝜆𝜆𝑑

𝑑!

𝑑∏
𝑖=1

𝜈(𝛾(𝑖))

)
𝑛 + 𝑂(𝑛3∕4)

vertices 𝑣 for which [𝑐(𝑢) ∶ 𝑢 ∈ 𝑁+(𝑣)] = (𝛾(1), … , 𝛾(𝑑)).
T2 There are at most 0.9999𝑡0𝑛 + 𝑛3∕4 vertices which are not majority-coloured with respect to 𝑐𝑡0 .
T3 For every 𝛾 ∈ (𝑡0), we have∑

𝑣∈𝑉

deg𝛾(𝑣) =
∑
𝑣∈𝑉𝛾

deg−(𝑣) = 𝜆𝜈(𝛾)𝑛 + 𝑂(𝑛3∕4).

T4 For every 𝛾 ∈ (𝑡0), we have∑
𝑣∈𝑉

deg𝛾(𝑣)2 = 𝑂(𝜈(𝛾)𝑛),
∑
𝑣∈𝑉𝛾

deg−(𝑣)2 = 𝑂(𝜈(𝛾)𝑛),
∑

𝑣∈𝑉∩𝑉𝛾

deg−(𝑣) deg𝛾(𝑣) = 𝑂(𝜈(𝛾)𝑛).

T5 For any 𝑑 ∈ ℕ,

∑
𝑣∈𝑉∶

deg−(𝑣)=𝑑

deg𝛾(𝑣) =
𝑒−𝜆𝜆𝑑

𝑑!

∑
𝑣∈𝑉

deg𝛾(𝑣) + 𝑂(𝑛3∕4).

Moreover, for any 𝛾 ∈ {1, 2, 3} with 𝛾𝑡0 ≠ 𝛾, we have∑
𝑣∈Crit(𝛾)∶
deg−(𝑣)=𝑑

deg𝛾(𝑣) ⩽
0.99999
𝜆

⋅
𝑒−𝜆𝜆𝑑

𝑑!

∑
𝑣∈𝑉

deg𝛾(𝑣) + 𝑂(𝑛3∕4).

Proof. As in Definition 5.7, consider a Poisson(𝜆) Galton–Watson tree with root 𝑟, with edges
oriented away from 𝑟, andwith a Poisson(𝜆)number of in-neighbours added to 𝑟. Consider 𝑡0 steps
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24 of 49 ANASTOS et al.

of our random recolouring process on this tree. (Recalling D2, we can study this Galton–Watson
tree to deduce statistical information about 𝑇𝐷,𝑐).
Firstly, T1 follows basically immediately from the definition of 𝜇(𝑅), and the fact that the chil-

dren of 𝑟 have independent colour histories (since the random recolouring process never looks at
in-neighbours). Note that we need to add the contributions from 3𝑡0 log 𝑛 different 𝑅 (correspond-
ing to each of the possibilities for deg−(𝑣) and 𝑐(𝑣)), so the corresponding error terms in D2 must
be compounded.
For T2, recall from Lemma 4.5 that after 𝑡0 steps, 𝑟 is majority-coloured with probability at least

0.9999𝑡0 . We can then add the contributions from all 𝑅 such that 𝑟 is majority-coloured at time 𝑡0.
Third, T3 similarly follows from the facts that 𝔼[deg+(𝑟)] = 𝜆, and that each child of 𝑟 has

colour history 𝛾 with probability 𝜈(𝛾), independently (we then need to consider a weighted sum
of contributions from different 𝑅, where the weights are at most log 𝑛 by D1).
T4 is very similar to T3, except that we instead use the formulas (writing 𝟙{𝐴} for the indicator

random variable of an event 𝐴)

𝔼[deg𝛾(𝑟)2] = 𝔼
[
deg+(𝑟)(deg+(𝑟) − 1)

]
𝜈(𝛾)2 + 𝔼[deg+(𝑟)]𝜈(𝛾)

= (𝜆𝜈(𝛾))2 + 𝜆𝜈(𝛾), 𝔼[𝟙{𝑐(𝑟) = 𝛾} deg−(𝑟)2] = 𝜈(𝛾)𝔼[(deg−(𝑟))2𝑛]

= 𝜈(𝛾)(𝜆2 + 𝜆), 𝔼[𝟙{𝑐(𝑟) = 𝛾} deg−(𝑟) deg𝛾(𝑟)]

= 𝜈(𝛾)𝔼[deg−(𝑟)]𝔼[deg+(𝑟)]𝜈(𝛾) = (𝜆𝜈(𝛾))2.

(All of these expressions are of the form 𝑂(𝜈(𝛾)), viewing 𝜆 as a constant).
The first part of T5 again follows similarly, using that

𝔼[𝟙{deg−(𝑣) = 𝑑} deg𝛾(𝑟)] =
𝑒−𝜆𝜆𝑑

𝑑!
𝔼[deg𝛾(𝑟)].

The second part of T5 is morally similar, but the calculations are a bit involved. If we condition on
𝑟 having exactly 𝑑 out-neighbours, then, for all 𝑖, the probability that 𝑟 has ⌊𝑑∕2⌋ out-neighbours
𝑤 with 𝑐𝑡0(𝑤) = 𝛾, and that the 𝑖th out-neighbour has colour history 𝛾, is

𝜈(𝛾)

(
𝑑 − 1⌊𝑑∕2⌋

)(1
3

)⌊𝑑∕2⌋(2
3

)𝑑−1−⌊𝑑∕2⌋
.

Recall that (due to the personality-changing) the event 𝑐𝑡0(𝑟) = 𝛾 occurs with conditional proba-
bility at most 2∕3 after conditioning on any outcome of the colour histories of the out-neighbours
of 𝑟. So,

𝔼[𝟙{𝑟 is 𝛾-critical} deg𝛾(𝑟)] ⩽ 2
3
𝜈(𝛾)

∞∑
𝑑=0

𝜆𝑑𝑒−𝜆

𝑑!
⋅ 𝑑 ⋅

(
𝑑 − 1⌊𝑑∕2⌋

)(1
3

)⌊𝑑∕2⌋(2
3

)𝑑−1−⌊𝑑∕2⌋
= 𝜈(𝛾)

∞∑
𝑑=0

𝜆𝑑𝑒−𝜆

𝑑!
(𝑑 − ⌊𝑑∕2⌋)( 𝑑⌊𝑑∕2⌋

)(1
3

)⌊𝑑∕2⌋(2
3

)𝑑−⌊𝑑∕2⌋
.

Now, recall the polynomial 𝑄𝑑 and the function 𝑃𝜆 from Section 4. We compute

𝑄′𝑑(0) =
1
2
(𝑑 − ⌊𝑑∕2⌋)( 𝑑⌊𝑑∕2⌋

)(1
3

)⌊𝑑∕2⌋(2
3

)𝑑−⌊𝑑∕2⌋
.

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70010 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PARTITIONING PROBLEMS VIA RANDOM PROCESSES 25 of 49

(Note that in the formula in Equation 4.1, one only needs to consider the term with 𝑖 = ⌊𝑑∕2⌋,
𝑗 = ⌊𝑑∕2⌋ + 1 and 𝑘 = 0, in which 𝑓 appears with a power of 1). So, by Lemma 4.3, we have

𝔼[𝟙{𝑟 is 𝛾-critical} deg𝛾(𝑟)] ⩽ 𝜈(𝛾)
∞∑
𝑑=0

𝜆𝑑𝑒−𝜆

𝑑!
⋅ 2𝑄′𝑑(0) ⩽ 𝜈(𝛾) ⋅ 2𝑃

′
𝜆(0)

⩽ 0.9999𝜈(𝛾) =
0.9999
𝜆

𝔼[deg𝛾(𝑟)],

and

𝔼[𝟙{deg−(𝑣) = 𝑑 and 𝑟 is 𝛾-critical} deg𝛾(𝑟)] ⩽ 𝑒
−𝜆𝜆𝑑

𝑑!
⋅
0.9999
𝜆

⋅ 𝔼[deg𝛾(𝑟)].

We can then prove T5 by considering an appropriate weighted sum of contributions from different
𝑅. □

Next, the following lemma shows that 𝔻𝑡0(𝑛, 𝑝) and �̂�𝑡0 (𝑛, 𝑝) are very closely related (cf.
‘contiguity’ lemmas in the study of random regular graphs; see [60, Section 4]).

Lemma 5.12. Fix a constant 𝐶, let 𝑝 ⩽ 𝐶∕𝑛, let (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝) and let (�̂�, 𝑐) ∼ �̂�𝑡0(𝑛, 𝑝).
Consider any possible outcome 𝑇 of 𝕋𝑡0(𝑛, 𝑝), such that D1 and D2 hold.
For any 𝑞 ∈ [0, 1], if an event holds with probability at least 1 − 𝑞 for �̂�, conditioned on the event

𝑇�̂�,𝑐 = 𝑇, then it holds with probability at least 1 − exp(𝑂(3𝑡0))𝑞 for 𝐷, conditioned on the event
𝑇𝐷,𝑐 = 𝑇.

Proof sketch. Recall the definition of �̂� ∼ �̂�𝑡0(𝑛, 𝑝) via random matchings between pairs of sets
𝑆−
𝛾
, 𝑆+
𝛾
. For amatching𝑀𝛾 from 𝑆+𝛾 to 𝑆

−
𝛾
, say that an edge of𝑀𝛾 is loop-inducing if it goes from an

outgoing stub to an incoming stub corresponding to the same vertex, and say that a pair of edges
of𝑀𝛾 are parallel-inducing if they go from outgoing stubs corresponding to a common vertex, to
incoming stubs corresponding to a second common vertex. Say that𝑀𝛾 is simple-inducing if it has
no loop-inducing edge, and no pair of parallel-inducing edges.
Note that conditioning on the event that �̂� has no loops or parallel edges is precisely the same as

conditioning on the event that each𝑀𝛾 is simple-inducing. The reasonwe do not need to take into
account the interaction between different𝑀𝛾 is that for each vertex 𝑣, all the incoming stubs are
marked with a common colour sequence 𝛾 (so the only possible parallel edges pointing towards
𝑣 arise from𝑀𝛾).
Recalling that the matchings 𝑀𝛾 are independent, it suffices to prove that for each 𝛾 ∈ (𝑡0),

the randommatching𝑀𝛾 is simple-inducing with probabilityΩ(1). Similar statements have been
proved many times for various types of random graph models with various assumptions (see [39]
and the references therein), and the standard techniques all work here. Perhaps, the simplest
way to deduce our desired fact from results in the literature is to observe that a random simple-
inducing matching𝑀𝛾 is equivalent to a random (simple) bipartite graph (with ‘left-vertices’ and
‘right-vertices’) where:

∙ the left-vertices are copies of the vertices in 𝑉𝛾;
∙ the right-vertices are copies of the vertices of𝐷 which have least one out-neighbour with colour
history 𝛾;
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26 of 49 ANASTOS et al.

∙ the left-degrees are constrained to be deg−(𝑣);
∙ the right-degrees are constrained to be deg𝛾(𝑣);
∙ we forbid any edge between two copies of the same vertex.

The number of viable bipartite graphs can be approximated very accurately using the for-
mula in [47, Theorem 2.3(b)] (it involves the quantities

∑
𝑣∈𝑉 deg

𝛾(𝑣)2
∑
𝑣∈𝑉𝛾

deg−(𝑣)2 and∑
𝑣∈𝑉∩𝑉𝛾

deg−(𝑣) deg𝛾(𝑣), which roughly correspond to the expected numbers of parallel edges
and loops). The desired estimate then follows from T4 (we divide the number of viable bipartite
graphs by the total number |𝑆+

𝛾
|! of possibilities for𝑀𝛾). □

5.4 Bounding the duplicate-defective vertices

In this subsection, we prove Lemma 5.3(B).

Proof of Lemma 5.3(B). Let (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝). Recall that our goal is to prove that if we run the
list-assignment process on 𝐷 (with initial colouring 𝑐 = 𝑐𝑡0), then whp, at every moment with|𝑈| ⩽ 𝛿𝑛, the number of duplicate-defective vertices is at most 𝛿2𝑛(log 𝑛)3.
Let (�̂�, 𝑐) ∼ �̂�𝑡0(𝑛, 𝑝), and for the rest of the proof condition on an outcome of 𝑇�̂�,𝑐 satisfying

D1 and D2. By Lemma 5.8 and Lemma 5.12, it suffices to prove that in our conditional probability
space, with probability at least, say, 1 − exp(−𝑛0.1), at every moment with |𝑈| ⩽ 𝛿𝑛, the number
of duplicate-defective vertices is at most 𝛿2𝑛(log 𝑛)3.
Step 1: Setup for iterative exposure. Recall from Definition 5.5 that �̂�𝑡0 (𝑛, 𝑝) is defined via a uni-

formly randommatching𝑀𝛾 between each 𝑆−𝛾 and 𝑆
+
𝛾
. We say that stubs 𝑠− ∈ 𝑆−

𝛾
and 𝑠+ ∈ 𝑆+

𝛾
are

partners if they form an edge in𝑀𝛾. Note that we can reveal𝑀𝛾 gradually, by repeatedly choosing
an incoming stub 𝑠− ∈ 𝑆−

𝛾
whose partner has not yet been revealed, and revealing the partner

𝑠+ ∈ 𝑆+
𝛾
of 𝑠−. No matter how we choose the order in which incoming stubs have their partners

revealed (even if we choose this order adaptively, based on the outcomes of previous revelations),
the order in which outgoing stubs have their partners revealed is uniformly random.
The upshot of this observation is that we can define𝑀𝛾 in terms of a uniformly random order-

ing ≺𝛾 of each 𝑆+𝛾 , together with a rule to decide in which order to reveal partners of stubs in 𝑆
−
𝛾
.

The order we choose is precisely the order in which vertices are processed in the list-assignment
process. Another way to say this is: we run the list-assignment process on �̂� while gradually
revealing the necessary information about �̂�. When we process a vertex 𝑣, we need to examine its
in-neighbours (in order to see whether they need to be assigned lists in response to the list of 𝑣),
which amounts to, for each 𝛾, revealing the partners of each of the incoming stubs in 𝑆−

𝛾
associ-

ated with 𝑣. We simply choose these partners to be the next available stubs in 𝑆+
𝛾
, according to the

ordering ≺𝛾.
Step 2: Characterising duplicate-defective vertices. The idea now is to describe the duplicate-

defective vertices in terms of the random orderings ≺𝛾. Suppose that we generate the 𝑀𝛾 in the
above way, and suppose that at some point in the process, we have revealed the partners of exactly
𝑎𝛾 of the stubs in 𝑆+𝛾 (for each 𝛾 ∈ (𝑡0)). By definition, these partner-revealed stubs are precisely
the first 𝑎𝛾 stubs in 𝑆+𝛾 with respect to ≺𝛾 (write 𝑆

+
𝛾
(𝑎𝛾) for the set of these stubs). Now, a vertex

can have been revealed as duplicate-defective only if it has two different outgoing stubs among
the 𝑆+

𝛾
(𝑎𝛾).
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 27 of 49

For a vector �⃗� = (𝑎𝛾 ∶ 𝛾 ∈ (𝑡0)), let 𝑋(�⃗�) be the number of vertices which have two different
outgoing stubs among the 𝑆+

𝛾
(𝑎𝛾). By D1, at each point in the list-assignment process, the total

number of revealed edges in the matchings 𝑀𝛾 is at most |𝑈| log 𝑛. So, it suffices to prove that
with probability at least 1 − exp(−𝑛0.1), for every choice of �⃗�with ‖�⃗�‖1 ⩽ 𝛿𝑛 log 𝑛, we have𝑋(�⃗�) ⩽
𝛿2𝑛(log 𝑛)3.
The number of choices of �⃗� is at most (𝛿𝑛 log 𝑛)3𝑡0 = exp(𝑜(𝑛0.1)), so by the union bound,

it actually suffices to individually show that for each �⃗� with ‖�⃗�‖1 ⩽ 𝛿𝑛 log 𝑛, we have 𝑋(�⃗�) ⩽
𝛿2𝑛(log 𝑛)3 with probability at least, say, 1 − exp(−2𝑛0.1).
Step 3: Expected value computation. We now compute 𝔼𝑋(�⃗�). For 𝑖 < 𝑗 ⩽ log 𝑛, let (𝑣, 𝑖, 𝑗) be

the event that a vertex 𝑣 contributes to 𝑋(�⃗�) via its 𝑖th and 𝑗th out-neighbours (i.e. the 𝑖th and 𝑗th
outgoing stubs corresponding to 𝑣 are both among the 𝑉+

𝛾
(𝑎𝛾)). Let (𝑣) =

⋃
𝑖,𝑗 (𝑣, 𝑖, 𝑗) be the

event that 𝑣 contributes to 𝑋(�⃗�) via any pair of out-neighbours.
Suppose 𝑣 has out-degree at least 𝑗, its 𝑖th out-neighbour has colour history 𝛾 and its 𝑗th out-

neighbour has colour history 𝜂. Then, using T3, we have

ℙ[(𝑣, 𝑖, 𝑗)] =

⎧⎪⎪⎨⎪⎪⎩

𝑎𝛾|𝑆+
𝛾
| ⋅ 𝑎𝜂|𝑆+

𝜂
| if 𝛾 ≠ 𝜂,

𝑎𝛾(𝑎𝛾 − 1)|𝑆+
𝛾
|(|𝑆+

𝛾
| − 1) if 𝛾 = 𝜂

⩽ 𝑂

( 𝑎𝛾𝑎𝜂

𝜈(𝛾)𝜈(𝜂)𝑛2

)
.

By T1, for a random vertex 𝑣rand, the distribution of [𝑐(𝑢) ∶ 𝑢 ∈ 𝑁+(𝑣rand)] is the same, up
to total variation distance 𝑂(𝑛−1∕4), as the distribution of the random sequence (𝛾(1), … , 𝛾(𝑑))
obtained by first letting 𝑑 ∼ Poisson(𝜆), and then letting 𝛾(1), … , 𝛾(𝑑) ∈ (𝑡0) be independent
random sequences each with distribution given by 𝜈. So, we have

ℙ[(𝑣rand, 𝑖, 𝑗)] = ℙ[Poisson(𝜆) ⩾ 𝑗]
∑

𝛾,𝜂∈(𝑡0)

𝜈(𝛾)𝜈(𝜂) ⋅ 𝑂
( 𝑎𝛾𝑎𝜂

𝜈(𝛾)𝜈(𝜂)𝑛2

)
+ 𝑂(𝑛−1∕4).

Note that for 𝑍 ∼ Poisson(𝜆), we have

∑
𝑖,𝑗∶1⩽𝑖<𝑗

ℙ[Poisson(𝜆) ⩾ 𝑗] =
∞∑
𝑞=0

𝑞 ℙ[𝑍 > 𝑞] =
𝔼𝑍2

2
= 𝑂(1),

so ℙ[(𝑣rand)] ⩽
∑
𝛾,𝜂∈(𝑡0)

𝑂(𝑎𝛾𝑎𝜂∕𝑛
2). It follows that

𝔼𝑋(�⃗�) ⩽
∑

𝛾,𝜂∈(𝑡0)

𝑛 ⋅ 𝑂
(𝑎𝛾𝑎𝜂
𝑛2

)
= 𝑂

( 1
𝑛
‖�⃗�‖21) ⩽ 𝑂(𝛿2𝑛(log 𝑛)2).

Step 4: Concentration. Now, note that we can generate the random orderings ≺𝛾 as follows. Asso-
ciate with each outgoing stub 𝑠 ∈

⋃
𝛾∈(𝑡0)

𝑆+
𝛾
an independent Uniform([0, 1]) random variable

𝑍𝑠. With probability 1, all of these random variables are distinct. Then, for each 𝛾 ∈ (𝑡0), let ≺𝛾
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28 of 49 ANASTOS et al.

be the ordering of 𝑆+
𝛾
defined by the relative sizes of the corresponding 𝑍𝑠. Note that if we alter

any individual 𝑍𝑠, we cannot change𝑋(�⃗�) bymore than 1. So, by the Azuma–Hoeffding inequality
(see, e.g. [3, Theorem 7.2.1]), we have

ℙ[𝑋(�⃗�) ⩾ 𝛿2𝑛(log 𝑛)3] ⩽ exp

(
−

(
𝛿2𝑛(log 𝑛)3 − 𝑂(𝛿2𝑛(log 𝑛)2)

)2
𝑂(𝑛)

)
⩽ exp(−2𝑛0.1),

as desired. □

Remark 5.13. In the statement of Lemma 5.3(B), we specified 𝛿 = 1∕(log 𝑛)𝓁+10, but in the above
proof, we really only used that 𝛿 is ‘not too big’ (say, 𝛿 ⩽ 𝑛−0.1 would have sufficed). To be precise,
for 𝛿 ⩾ 𝑛−0.1, we have proved that with probability at least 1 − exp(−2𝑛0.1), the following holds.
For any rule by which we explore �̂� by revealing in-neighbours of previously revealed vertices,
if we explore for at most 𝛿𝑛 log 𝑛 steps, then there will be at most 𝛿2𝑛(log 𝑛)3 vertices which are
revealed more than once (as in-neighbours of different vertices).

5.5 Subcriticality

In this subsection, we prove Lemma 5.3(A).

Proof of Lemma 5.3(A). Let (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝). Recall that |𝑅(𝑊, �⃗�)| is the total number of vertices
which would be assigned lists via the (𝑊, �⃗�)-virtual list-assignment process in the digraph𝐷. Our
goal is to prove that whp |𝑅(𝑊, �⃗�)| ⩽ 2|𝑊|(log 𝑛)𝓁+3 for all sets𝑊 with at least 𝑛0.9 vertices, and
all tapes �⃗�.
Let (�̂�, 𝑐) ∼ �̂�𝑡0(𝑛, 𝑝), and for the rest of the proof condition on an outcome of 𝑇�̂�,𝑐 satisfying

D1 and D2. By Lemma 5.12 and Lemma 5.8, it suffices to study �̂� instead of 𝐷: we will show that
with respect to virtual list-assignment processes on �̂�, with probability at least say 1 − exp(−𝑛0.1),
we have |𝑅(𝑊, �⃗�)| ⩽ 2|𝑊|𝑛(log 𝑛)𝓁+3 for all tapes �⃗� and all sets𝑊 with at least 𝑛0.9 vertices.
Step 1: Covering with small vertex sets. We need to study (𝑊, �⃗�)-virtual list-assignment processes

for large vertex sets𝑊. However, it is important that we only directly work with sets of vertices
whose size is not too close to 𝑛 (so that we only ever have to explore a small part of �̂�, and our
previously revealed vertices do not bias future revelations toomuch). It is easy to reduce our atten-
tion to such sets, by a covering argument. Note that for every set𝑊 with at least 𝑛0.9 vertices, we
can find covering sets𝑊1,… ,𝑊𝑏 (with𝑊 ⊆ 𝑊1 ∪ …𝑊𝑏), such that each𝑊𝑖 has size at most 𝑛0.9,
and the number of covering sets is 𝑏 ⩽ ⌊|𝑊|∕𝑛0.9⌋ + 1 ⩽ 2|𝑊|∕𝑛0.9. Also, note that for any tape
�⃗�, we can find tapes �⃗�1, … , �⃗�𝑏 such that

𝑅(𝑊, �⃗�) ⊆
𝑏⋃
𝑖=1

𝑅(𝑊𝑖, �⃗�𝑖). (5.1)

Indeed, in the (𝑊, �⃗�)-virtual list-assignment process, every vertex 𝑣 which has a list ‘owes’ its
list to some 𝑤 ∈ 𝑊, which started a periodic sequence of list-assignments and path-danger-level
assignments that led to 𝑣 being assigned a list.We should let �⃗�𝑖 be the sub-tape of �⃗� corresponding
to the list-assignments for the vertices which owe their list to the vertices in𝑊𝑖 . We remark that
for Equation 5.1, it is very important that we have tapes recording the precise order in which

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70010 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PARTITIONING PROBLEMS VIA RANDOM PROCESSES 29 of 49

list-assignments take place (due to some very subtle ways in which path-defective vertices can
interact, it does not seem to be possible to fix a global rule describing the order in which vertices
should be processed, such that Equation 5.1 always holds).
It now suffices to show that for any tape �⃗� and any set 𝑊 of at most 𝑛0.9 vertices, we have|𝑅(𝑊, �⃗�)| ⩽ 𝑛0.9(log 𝑛)𝓁+3.
Step 2: Compressing the tape. For any 𝑊, we are interested only in ‘maximal’ tapes �⃗�, which

cannot be extended to continue the (𝑊, �⃗�)-virtual list-assignment process any further. Such tapes
actually contain a lot of redundant information: in order to specify an outcome of the (𝑊, �⃗�)-
virtual list-assignment process, for maximal �⃗�, we are really only concerned about:

∙ for each 𝑤 ∈ 𝑊, which in-neighbours of 𝑤 have already been assigned lists at the moment 𝑤
becomes virtual-defective, and

∙ the ‘pathway’ via which each vertex gets assigned a list (specifically, if a vertex 𝑢 could be
assigned a list via two different vertices 𝑣, 𝑣′ with pd(𝑣) ≠ pd(𝑣′), then we need to know which
of the two is actually responsible for 𝑢 receiving its list).

So, instead of considering tapes specifying the entire execution of a virtual list-assignment pro-
cess,we consider ‘guides’, which specify the relevant informationmuchmore efficiently. Crucially,
this will permit us to take a union bound over all guides. To explain what information goes into a
guide, we need some more discussion of how �̂� is explored.
As in the proof of Lemma 5.3(B), we recall that �̂� is determined by randommatchings𝑀𝛾 (each

in-stub 𝑠 ∈ 𝑆−
𝛾
has a partner 𝑠 ∈ 𝑆+

𝛾
, and vice versa). We can reveal these matchings gradually as

we explore �̂�, revealing the identities of out-stubs according to random orderings ≺𝛾. Recalling
Remark 5.13 (and taking 𝛿 = 𝑛−0.08), note that with probability at least 1 − exp(−2𝑛0.1), the order-
ings≺𝛾 are such that if we run any virtual list-assignment process for at most 𝑛0.91 steps, there are
at most 𝑛0.89 vertices revealed as in-neighbours of multiple different vertices (call these vertices
‘duplicates’). Write dup for the event that this property of the ≺𝛾 holds.
Now, for a vertex set𝑊, a guide 𝐺 = (𝐴, 𝐵) consists of:

∙ A function 𝐴 ∶ 𝑊 →log 𝑛, where log 𝑛 is the collection of all subsets of {1, … , log 𝑛}. If
𝐴(𝑤) = 𝐼, this indicates that the in-neighbours of 𝑤 indexed by 𝑖 ∈ 𝐼 should be assigned
lists before 𝑤 is made virtual-defective (recall from D1 that every vertex has at most log 𝑛
in-neighbours.).

∙ A set 𝐵 of at most 𝑛0.89 log 𝑛 pairs (𝑢, 𝑖) ∈ 𝑉(�̂�) × {1, … , log 𝑛}. If (𝑢, 𝑖) ∈ 𝐵, this indicates that
we should not assign a list to the 𝑖th neighbour of 𝑢 (or even reveal its identity) when processing
𝑢 (because we want this neighbour to be assigned a list via some other vertex).

Recall that we are interested in showing that virtual list-assignment processes terminate after
at most 𝑛0.9(log 𝑛)𝓁+3 < 𝑛0.91 steps. So, we only need to include (𝑢, 𝑖) in 𝐵 if the 𝑖th in-neighbour
of 𝑢 is a duplicate. In practice, for every duplicate 𝑣, we include (𝑢, 𝑖𝑢→𝑣) ∈ 𝐵 for all but one of
the out-neighbours 𝑢 of 𝑣 (where we write 𝑖𝑢→𝑣 for the index of 𝑣 among the out-neighbours of
𝑢). The pair (𝑢, 𝑖𝑢→𝑣) that is not included in 𝐵 indicates the pathway via which we wish 𝑣 to be
assigned a list.
The upshot is that if dup holds, then we will only ever need to consider sets 𝐵 of size |𝐵| ⩽

𝑛0.89 log 𝑛, in accordance with the definition of a guide (in addition to there being at most 𝑛0.89
duplicates, we also recall from D1 that every vertex has at most log 𝑛 out-neighbours).
For a set 𝑊 of at most 𝑛0.9 vertices and a guide 𝐺 = (𝐴, 𝐵), we define the (𝑊,𝐺)-guided list-

assignment process to be just like the list-assignment process defined in Definition 5.1, except
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30 of 49 ANASTOS et al.

that we skip steps (1), (2b) and (2c) (i.e. there are no colour-defective, cycle-defective or duplicate-
defective vertices). In addition, the guide 𝐺 is used in the following way.

∙ In step (2d), we do not inspect the 𝑖th in-neighbour of a vertex 𝑢 ∈ 𝑈 (to see if we should assign
it a list) if (𝑢, 𝑖) ∈ 𝐵.

∙ In step (2d), when we are considering a vertex 𝑢 ∈ 𝑊, and deciding which in-neighbours of
𝑢 ∈ 𝑊 to inspect first, the in-neighbours indexed by 𝐴(𝑤) are always take priority.

∙ We add a new action (2e) (which takes priority over other actions): if there is a vertex 𝑤 ∈ 𝑊
such that its in-neighbours indexed by 𝐴(𝑤) have already been assigned lists, then make 𝑤
defective. (We say 𝑤 is ‘virtual-defective’).

Note that since we skip step (1), there are no vertices assigned lists at the start; the first list will
always be assigned in step (2e).
Let �̂�(𝑊,𝐺) be the set of vertices which would be assigned a list if we ran the (𝑊,𝐺)-guided

list-assignment process. If dup holds, and if |�̂�(𝑊,𝐺)| ⩽ 𝑛0.9(log 𝑛)𝓁+3 for each set𝑊 of at most
𝑛0.9 vertices and each guide 𝐺, then it follows that |𝑅(𝑊, �⃗�)| ⩽ 𝑛0.9(log 𝑛)𝓁+3 for each set𝑊 of at
most 𝑛0.9 vertices and each tape �⃗�.
So, fix a set𝑊 of at most 𝑛0.9 vertices, and a guide 𝐺. Our goal will be to prove that with prob-

ability at least 1 − exp(−2𝑛0.9 log 𝑛), we have |�̂�(𝑊,𝐺)| ⩽ 𝑛0.9(log 𝑛)𝓁+3. The desired result will
then easily follow from the union bound over at most 𝑛𝑛0.9 choices of𝑊 and at most

(2log 𝑛)𝑛
0.9

⋅ (𝑛2)𝑛
0.89 log 𝑛

choices of 𝐺 = (𝐴, 𝐵).
Step 3: Iterative exposure of in-neighbourhoods. As previously mentioned, we gradually reveal

information about the 𝑀𝛾 on demand, as we explore �̂� via the (𝑊,𝐺)-guided list-assignment
process. Crucially, at any moment where we have not yet explored very much of �⃗�, it is easy to
see that the revelations at the next step are ‘essentially uniform’.
Specifically, suppose that so far we have only revealed the in-neighbours of at most

𝑛0.9(log 𝑛)𝓁+3 vertices, and consider a vertex 𝑣 with 𝑐(𝑣) = 𝛾 and deg−(𝑣) = 𝑑, whose in-
neighbours have not yet been revealed. Given all the information revealed so far, let ̂ be the
conditional distribution of the set of outgoing stubs in 𝑆+

𝛾
which are matched with the 𝑑 incom-

ing stubs corresponding to 𝑣, and let  ∗ be a uniformly random set of 𝑑 stubs in 𝑆+
𝛾
(sampled

with replacement). We claim that dTV(̂ , ∗) = 𝑂(𝑛−0.09). To see this, note that by D1, we
have only revealed the partners of at most 𝑛0.9(log 𝑛)𝓁+4 stubs. By T3 and Lemma 5.10, we have|𝑆+
𝛾
| ⩾ 𝑛1−𝑜(1), and by D1, we have 𝑑 ⩽ log 𝑛, so

dTV(̂ , ∗) ⩽ 𝑂

(
𝑛0.9(log 𝑛)𝓁+4 + 𝑑|𝑆+

𝛾
|

)
= 𝑂(𝑛−0.09),

as claimed.
By the first part of T5, the probability that a random stub in 𝑆+

𝛾
corresponds to a vertex with

in-degree g is at most

𝜆g𝑒−𝜆

g !
+ 𝑛−1∕5. (5.2)
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 31 of 49

Moreover, if 𝑣 is not defective, then 𝐿(𝑣) contains the colours 𝛾𝑡0 and 𝛾
′ = 𝛾𝑡0 + 1 (mod 3). By

the second part of T5, the probability that a random stub in 𝑆+
𝛾
is 𝛾′-critical and corresponds to a

vertex with in-degree g is at most

0.99999
𝜆

⋅
𝜆g𝑒−𝜆

g !
+ 𝑛−1∕5. (5.3)

To summarise (5.3) and (5.2), and the fact that dTV(̂ , ∗) = 𝑂(𝑛−0.09): up to some error terms,
we can imagine that each of the 𝑑 in-neighbours of 𝑣 themselves have independent Poisson(𝜆)
in-degrees, and they are independently 𝛾′-critical with probability at most 0.99999∕𝜆.
Step 4: Comparison with a branching process. We now define an abstract branching process

which stochastically dominates the list-assignment process on �̂�.
Let  be the distribution of a random variable that is ⌊log 𝑛⌋ with probability 𝑛−0.08, and zero

otherwise. For two probability measures ,, write + for the distribution of the sum of inde-
pendent random variables distributed as  and . Note that if 𝑁 ∼ Poisson(𝜆) and (𝑋𝑖)∞𝑖=1 is a
sequence of i.i.d. Bernoulli(0.99999∕𝜆) random variables, then

∑𝑁
𝑖=1 𝑋𝑖 ∼ Poisson(0.99999). So,

given the considerations in the previous section, |�̂�(𝑊,𝐺)| is stochastically dominated by the
total population in the following non-homogeneous branching process.

(1) There are |𝑊| roots (‘generation zero’), whose numbers of offspring are given by deg−(𝑣) for
𝑣 ∈ 𝑊.

(2) In every generation divisible by 𝓁 + 1 (apart from generation zero), the offspring distribution
is Poisson(𝜆) +  .

(3) In every generation not divisible by 𝓁 + 1, the offspring distribution is Poisson(0.99999) +  .
(4) If the total population ever reaches 𝑛0.9(log 𝑛)𝓁+3, terminate the process and artificially add

𝑛 offspring to some vertex.

Step 5: ‘Contracting’ the branching process. In order to apply off-the-shelf concentration
inequalities from the literature, we compare the above branching process to a (homogeneous)
Galton–Watson process (essentially, we ‘contract’ the process into blocks of 𝓁 + 1 generations,
each of which can be viewed as a single generation in a Galton–Watson process). Let 𝑞 =∑
𝑣∈𝑊 deg

−(𝑣) ⩽ 𝑛0.9 log 𝑛 be the total number of individuals at generation 1 (i.e. the number of
offspring of the |𝑊| roots)
Let be the distribution of the number of individuals at generation 𝓁 + 1, in a branching pro-

cess with just one root individual (at generation zero), where generations zero through 𝓁 − 1
have offspring distribution Poisson(0.999999) +  , and generation 𝓁 has offspring distribution
Poisson(𝜆) +  . Then, (except for the artificial termination in (4)), the ‘contracted’ branching
process described above corresponds to 𝑞 independent Galton–Watson processes with offspring
distribution. Let 𝑌1,… , 𝑌𝑞 be the total populations of 𝑞 such independent processes.
Note that our ‘contraction’ operation reduces the total population by atmost a factor of (log 𝑛)𝓁 .

Let 𝑌∗ = (log 𝑛)𝓁(𝑌1 +⋯ + 𝑌𝑞), so that |�̂�(𝑊,𝐺)| is stochastically dominated by
𝑌∗ + 𝑛𝟙{𝑌∗ ⩾ 𝑛0.9(log 𝑛)𝓁+3}.

It now suffices to show that ℙ[𝑌∗ ⩾ 𝑛0.9(log 𝑛)𝓁+3] ⩽ exp(−2𝑛0.9 log 𝑛). This will follow from a
standard Chernoff bound for Galton–Watson processes, after computing some relevant quantities.

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70010 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



32 of 49 ANASTOS et al.

Step 6: Computations. Recall that the cumulant generating function (cgf) 𝜅𝑋 of a random vari-
able 𝑋 is given by 𝜃 ↦ log(𝔼 exp(𝜃𝑋)). The cgf of Poisson(𝛼) is 𝜅𝛼 ∶ 𝜃 ↦ 𝛼(𝑒𝜃 − 1), and the cgf of
 is

𝜅 ∶ 𝜃 ↦ log

(
exp(𝜃⌊log 𝑛⌋) − 1

𝑛0.08
+ 1

)
.

The cgf of Poisson(𝛼) +  is then 𝜅∗𝛼 ∶= 𝜅𝛼 + 𝜅 . Iterating the law of total expectation, we can see
that the cgf of is

𝜅 ∶ 𝑧 ↦ 𝜅∗𝜆(𝜅
∗
𝛽
(𝜅∗
𝛽
(… 𝜅∗

𝛽
(𝑧)… )))

(where 𝛽 = 0.99999 and 𝜅∗
𝛽
is iterated 𝓁 times).

Now, note that 𝜅′𝛼(0) = 𝛼 so by continuity, there is some 𝜃𝛼 > 0 such that 𝜅𝛼(𝜃) ⩽ 1.000001𝛼𝜃
for 0 ⩽ 𝜃 ⩽ 𝜃𝛼. Also, note that if 0 ⩽ 𝜃 ⩽ 0.08, then 𝜅 (𝜃) = 𝑜(1). So, with 𝜃∗ = min(𝜃1∕2, 𝜃𝐶, 0.08),
we have

𝜅(𝑒
𝜃∗) ⩽ (1.000001)𝓁+1𝐶(0.99999)𝓁𝜃∗ + 𝑜(1) ⩽ 𝜃∗∕2

(recall that 𝓁 = 1010𝐶 and that 𝜆 ⩽ 𝐶).
Let ℎ ∶ 𝑥 ↦ sup𝜃⩾0(𝜃𝑥 − 𝜅(𝑥)) be the Legendre transform of 𝜅, so the above considera-

tions show that ℎ(1) ⩾ 𝜃∗∕2 > 0 (note that this does not depend on 𝑛). By a Chernoff bound for
subcritical Galton–Watson processes (see, e.g. [27, Lemma 1.9]), for each 𝑖, we have

ℙ[𝑌𝑖 ⩾ 𝑘] ⩽ exp(−ℎ(1)𝑘).

Now, for 𝑘 = 𝑛0.9(log 𝑛)3, we have

ℙ[𝑌∗ ⩾ 𝑛0.9𝑛(log 𝑛)𝓁+3] = ℙ[𝑌1 +⋯ + 𝑌𝑞 ⩾ 𝑘] ⩽
∑

𝑘1,…,𝑘𝑞∈ℕ
𝑘1+⋯+𝑘𝑞=𝑘

𝑞∏
𝑖=1

ℙ[𝑌𝑖 ⩾ 𝑘𝑖]

⩽ 𝑛𝑞 exp(−ℎ(1)𝑘) ⩽ exp(−2𝑛0.9 log 𝑛),

as desired. □

5.6 Putting everything together

We are finally ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let 𝑡0 = (log log 𝑛)2 and (𝐷, 𝑐) ∼ 𝔻𝑡0(𝑛, 𝑝). Then, consider the list-assignment
process described in Definition 5.1, on 𝐷, with initial colouring 𝑐𝑡0 and with 𝓁 = 1010𝐶. Let 𝜏 be
the total number of steps that this process takes, let 𝑈(𝑖) be the set of vertices which have been
assigned lists after 𝑖 steps of the list-assignment process and let𝑊dup(𝑖) be the set of vertices that
have been marked as duplicate-defective after 𝑖 steps of the list-assignment process.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 33 of 49

Our objective is to prove that whp |𝑈(𝜏)| = 𝑜(𝑛); our final list-assignment will then satisfy the
conditions in Lemma 3.4 (with 𝑐 being the restriction of 𝑐𝑡0 to the vertices not in 𝑈).
Let 𝛿 = 1∕(log 𝑛)𝓁+10, and let 𝜏𝛿 = min(𝑖 ∶ |𝑈(𝑖)| ⩾ 𝛿𝑛) be the first time that 𝛿𝑛 vertices have

been assigned lists by our list-assignment process. Note that if 𝜏𝛿 = ∞, then |𝑈(𝜏)| = 𝑜(𝑛) and we
are done. By Lemma 5.3(B), whp either 𝜏𝛿 = ∞ or

(1) 𝑊dup(𝜏𝛿) ⩽ 𝛿
2𝑛(log 𝑛)3 = 𝛿𝑛∕(log 𝑛)𝓁+7.

Also, by D3 and T2, and Lemma 5.3(A), whp:

(2) at every point in the list-assignment process, there are at most
√
𝑛 ⩽ 𝛿𝑛∕(log 𝑛)𝓁+7 cycle-

defective vertices, and
(3) there are at most 0.9999𝑡0𝑛 + 𝑛3∕4 ⩽ 𝛿𝑛∕(log 𝑛)𝓁+7 colour-defective vertices (which are

marked as such at the start of the list-assignment process) and
(4) for every set𝑊 of at least 𝑛0.9 vertices, and every tape �⃗�, we have |𝑅(𝑊, �⃗�)| ⩽ 2|𝑊|(log 𝑛)𝓁+3.
But note that (1)–(4) cannot simultaneously hold. Indeed, suppose for the purpose of contradic-
tion that (1)–(4) all hold. Let𝑊 be the set of vertices which are colour-defective, cycle-defective
or duplicate-defective at time 𝜏𝛿. By (1)–(3), we have |𝑊| ⩽ 3𝛿𝑛∕(log 𝑛)𝓁+7. So, by (4), for some
suitable tape �⃗�, we have

|𝑈(𝜏𝛿)| ⩽ |𝑅(𝑊, �⃗�)| ⩽ 2( 3𝛿𝑛

(log 𝑛)𝓁+7

)
(log 𝑛)𝓁+3 < 𝛿𝑛,

which contradicts the definition of 𝜏𝛿. □

6 MAJORITY LIST-COLOURING GIVEN AN ACYCLIC PARTITION

Proof of Lemma 3.3. For each possible list 𝐿, let 𝑈𝐿 be the set of vertices with list 𝐿. We can
linearly order the vertices of 𝑈𝐿 in such a way that all arcs induced by 𝑈𝐿 go ‘backwards’ in the
ordering (i.e. if 𝑣 → 𝑢 is an arc in 𝐷[𝑈𝐿], then 𝑢 ≺𝐿 𝑣 according to our ordering ≺𝐿 on𝑈𝐿). Then,
independently for each 𝐿, we can greedily choose colours 𝑐(𝑣) ∈ 𝐿 for each 𝑣 ∈ 𝑈𝐿 (in the order
specified by ≺𝐿) as follows:

∙ Recall that all the vertices that are not in 𝑈 already come with a specified colour.
∙ When it comes time to colour vertex 𝑣, we have already chosen colours for all out-neighbours
𝑢 ∈ 𝑈𝐿 of 𝑣 (by the choice of the ordering ≺𝐿).

∙ For each possible list 𝐿′ ≠ 𝐿, and each out-neighbour 𝑢 ∈ 𝑈𝐿′ of 𝑣, imagine that 𝑐(𝑢) is coloured
with the unique colour in 𝐿 ∩ 𝐿′ (this is the ‘most pessimistic’ assumption).

∙ There is at most one colour appearing on more than half the out-neighbours of 𝑣 (according
to the real and imagined colour choices). So, we can make a choice 𝑐(𝑣) ∈ 𝐿 which is not this
colour. □

7 FINISHING THE PROOF OF Theorem 1.6

Finally, we can complete the proof of Theorem 1.6. Firstly, it is straightforward to take care of the
regime 𝑝 < 0.1∕𝑛.
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34 of 49 ANASTOS et al.

Proof of Theorem 1.6 in the case𝑝 < 0.1∕𝑛. Let𝑝′ = 1 − (1 − 𝑝)2 ⩽ 0.2∕𝑛. Note that if we remove
the directions on the edges of 𝐷 ∼ 𝔻(𝑛, 𝑝) (antiparallel arcs become a single undirected edge),
then we obtain a random graph 𝐺 ∼ 𝔾(𝑛, 𝑝′). It is well known (see, e.g. [15, Corollary 5.8]) that
such sparse random graphs whp have at most one cycle in every component, and are therefore
(properly) 3-colourable. Note that a proper 3-colouring is of 𝐺 is trivially a majority 3-colouring
of 𝐷. □
Next, we use Lemmas 3.4–3.2 to handle the case where 𝑝 has order of magnitude 1∕𝑛.
Proof of Theorem 1.6 in the case 0.1∕𝑛 ⩽ 𝑝 ⩽ 𝑂(1∕𝑛). Let 𝐷 ∼ 𝔻(𝑛, 𝑝) for any 0.1∕𝑛 ⩽ 𝑝 =

𝑂(1∕𝑛). Firstly, we recall the conclusion of Lemma 3.4: whp we can find a subset 𝑈 ⊆ 𝑉(𝐷), an
assignment of a colour 𝑐(𝑣) ∈ {1, 2, 3} to each 𝑣 ∉ 𝑈, and an assignment of a list 𝐿(𝑣) to each
𝑣 ∈ 𝑈, such that the following hold.

L1 For any completion of our partial colouring 𝑐, obtained by assigning colours 𝑐(𝑣) ∈ 𝐿(𝑣) to the
vertices 𝑣 ∈ 𝑈, all 𝑣 ∉ 𝑈 are majority-coloured with respect to 𝑐.

L2 |𝑈| = 𝑜(𝑛).
L3 Each 𝑣 ∈ 𝑈 has list size |𝐿(𝑣)| = 2 or |𝐿(𝑣)| = 3.
L4 Every directed cycle in 𝐷[𝑈] contains at least two vertices with list size 3.
L5 There is 𝓁 = 𝑂(1) such that every length-𝓁 directed path in 𝐷[𝑈] has a vertex with list size 3.

Combining L2 with Lemma 3.2, whp we have the following additional property.

L6 Every subset 𝑆 ⊂ 𝑈 spans at most (1 + 0.1∕𝓁)|𝑆| arcs.
It now suffices (by L1) to prove that if properties L2–L6 hold, then there is an assignment of

colours 𝑐(𝑣) ∈ 𝐿(𝑣) to each 𝑣 ∈ 𝑈, such that every vertex 𝑣 ∈ 𝑈 is majority-coloured. We will
prove this via Lemma 3.3 (recalling L3, we need to delete a colour from each of the lists of size 3,
in such a way that the assumption of Lemma 3.3 holds).
Let𝑊 ⊆ 𝑈 be the set of vertices with list size 3, and let 𝐺 be the (undirected) graph with vertex

set𝑊 obtained by putting an edge𝑤𝑤′ whenever there is a directed path between𝑤 and𝑤′ all of
whose internal vertices are in𝑈 ⧵𝑊 (by L5, such a path has length at most 𝓁 + 1, with at most 𝓁
internal vertices). In particular, we put an edge𝑤𝑤′ whenever there is an edge between𝑤 and𝑤′
in either direction.
We next claim that 𝐺 has a proper 3-colouring. Indeed, for any subset 𝑆 ⊆ 𝑉(𝐺), if we consider

the set 𝑆′ ⊆ 𝑉(𝐷) obtained by adding to 𝑆 all vertices of 𝑈 involved in all the paths of 𝐷 which
define the edges of 𝐺[𝑆], then 𝑒(𝐷[𝑆′]) ⩾ 𝑒(𝐺[𝑆]) + |𝑆′ ⧵ 𝑆|, while |𝑆′ ⧵ 𝑆| ⩽ 𝓁 ⋅ 𝑒(𝐺[𝑆′]) by L5, as
per the discussion in the previous paragraph (here we write 𝑒(𝐺) for the number of edges or arcs
in a graph or digraph 𝐺). On the other hand, 𝑒(𝐷[𝑆′]) ⩽ (1 + 0.1∕𝓁)|𝑆′| by L6. So, we have
𝑒(𝐺[𝑆]) ⩽ 𝑒(𝐷[𝑆′]) − |𝑆′ ⧵ 𝑆| ⩽ (1 + 0.1∕𝓁)|𝑆′| − |𝑆′ ⧵ 𝑆| = |𝑆| + (0.1∕𝓁)|𝑆′ ⧵ 𝑆| ⩽ 1.1|𝑆|,

meaning that 𝐺[𝑆] has average degree at most 2.2, and therefore, has a vertex with degree at most
2. Since this is true for all 𝑆 ⊆ 𝑉(𝐺), there is a proper 3-colouring 𝑐𝐺 ∶ 𝑊 → {1, 2, 3} of 𝐺.
Delete the colour 𝑐𝐺(𝑣) from the list 𝐿(𝑣), for each defective 𝑣 ∈ 𝑊. After this deletion, each

𝑣 ∈ 𝑈 has a list of size 2; to apply Lemma 3.3, it suffices to prove that for each of the three possible
lists 𝐿, there is no directed cycle among the vertices which have that list. Indeed, L4 implies that
any cycle in 𝑈 must contain at least two vertices in 𝑊, and if we take such a pair at minimal
distance along the cycle, then 𝑤𝑤′ must comprise an edge in 𝐺. But then 𝑐𝐺(𝑤) ≠ 𝑐𝐺(𝑤′), so 𝑤
and 𝑤′ have different lists. □
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 35 of 49

It remains to consider the case 𝑝 = 𝜔(1∕𝑛). Note that the case 𝑝 ⩾ 200 log 𝑛∕𝑛 is completely
trivial, because then whp all vertices have out-degree at least 100 log 𝑛, and a uniformly random
3-colouring is a majority colouring whp (as observed in [42, Theorem 3]). So, we only really need
to worry about the range where 𝜔(1∕𝑛) ⩽ 𝑝 ⩽ 200 log 𝑛∕𝑛. We use a much cruder version of the
above proof for the case𝑝 = Θ(1∕𝑛) (we consider a uniformly randomcolouring, assign lists based
on this colouring and then apply Lemma 3.3). We will need the following quantitative variant of
Lemma 3.2.

Lemma 7.1. Let 𝑝 = 𝜔(1∕𝑛) and 𝐺 ∼ 𝔾(𝑛, 𝑝). Then whp every vertex subset 𝑆 with |𝑆| ⩽ (𝑛𝑝)−21𝑛
spans at most 1.1|𝑆| edges.
Proof. Let 𝛿 = (𝑛𝑝)−21. The probability that there exists some 𝑆 violating the lemma statement is
at most

𝛿𝑛∑
𝑠=1

(
𝑛
𝑠

)(
𝑠2

1.1𝑠

)
𝑝1.1𝑠 ⩽

𝛿𝑛∑
𝑠=1

(𝑒𝑛
𝑠

)𝑠( 𝑒𝑠2
1.1𝑠

)1.1𝑠
𝑝1.1𝑠 =

𝛿𝑛∑
𝑠=1

(
𝑒2.1

1.11.1
𝑛𝑝

)𝑠
(𝑠𝑝)0.1𝑠

=
𝛿𝑛∑
𝑠=1

(
𝑂(1) 𝑛𝑝 (𝑠𝑝)0.1

)𝑠
⩽

𝛿𝑛∑
𝑠=1

(
𝑂(1)

𝑛𝑝

)𝑠
=
𝑂(1)

𝑛𝑝
= 𝑜(1),

as desired. (Here we used that when 𝑠 ⩽ 𝛿𝑛, we have (𝑠𝑝)0.1 ⩽ (𝑛𝑝)−2). □

Now we are finally ready to prove the remaining cases of Theorem 1.6.
Proof of Theorem 1.6 in the case 𝜔(1∕𝑛) ⩽ 𝑝 ⩽ 200 log 𝑛∕𝑛. Consider a uniformly random 3-

colouring, and say that a vertex 𝑣 is robustly majority-coloured if at most deg+(𝑣)∕2 − 1 of
its out-neighbours have the same colour as 𝑣. Let 𝑈0 be the set of vertices which are not
robustly majority-coloured.
For each𝑚, 𝑞, let 𝐵(𝑚, 𝑞) ∼ Binomial(𝑚, 𝑞). Then, for each vertex 𝑣, we have

ℙ[𝑣 ∈ 𝑈0] ⩽ ℙ[deg
+(𝑣) ⩽ 𝑛𝑝∕2] + sup

𝑑⩾𝑛𝑝∕2
ℙ[𝑣 ∈ 𝑈0 | deg+(𝑣) = 𝑑]

= ℙ[𝐵(𝑛 − 1, 𝑝) ⩽ 𝑛𝑝∕2] + sup
𝑑⩾𝑛𝑝∕2

ℙ[𝐵(𝑑, 1∕3) ⩾ 𝑑∕2 − 1] = 𝑒−Ω(𝑛𝑝),

by a Chernoff bound. By linearity of expectation and Markov’s inequality (recalling that 𝑛𝑝 =
𝜔(1)), whp the number of vertices |𝑈0| that fail to be robustly majority-coloured is at most
𝑒−Ω(𝑛𝑝)𝑛. It suffices to show that this property, together with the property in Lemma 7.1, implies
the statement of Theorem 1.6 (so, for the rest of the proof, we no longer use the randomness of 𝐷
or our random 3-colouring).
Starting with 𝑈 = 𝑈0, we iteratively expand the set 𝑈 as follows. Whenever there is a vertex

outside𝑈withmore than one out-neighbour in𝑈, add that vertex to𝑈. We claim that this process
cannot continue for more than 2|𝑈0| steps; indeed, after 2|𝑈0| steps, we would have |𝑈| = 3|𝑈0|
and 𝑒(𝐷[𝑈]) ⩾ 2(2|𝑈0|), which would contradict the property in Lemma 7.1.
We have now found a set𝑈 of only 𝑒−Ω(𝑛𝑝)𝑛 vertices such that all vertices outside𝑈 are robustly

majority-coloured and have at most one out-neighbour in𝑈 (this means that the vertices outside
𝑈 will remain majority-coloured no matter how we recolour the vertices in 𝑈). It now suffices
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36 of 49 ANASTOS et al.

to colour the vertices in 𝑈. To this end, note that the property in Lemma 7.1 implies that the
graph underlying 𝐷[𝑈] is 2-degenerate, so has chromatic number at most 3. So, we can partition
𝐷[𝑈] into three independent sets, assign to each of these independent sets a list of size 2 and
apply Lemma 3.3. (It would also be easy to find an appropriate colouring with a direct greedy
argument). □

8 NON-CONSTRUCTIVEMAJORITY 2-COLOURING

In this section, we prove Theorem 1.7. The key ingredient for the proof of Theorem 1.7 is the
following lemma estimating the first and second moments of the number of majority bisections.

Lemma 8.1. Let 𝐷 ∼ 𝔻(𝑛, 𝑝𝑛), where 𝑛𝑝𝑛(1 − 𝑝𝑛) → ∞, and let 𝑋 be the number of majority
bisections in 𝐷. Then,

(1) 𝔼𝑋 ⩾ 𝑒−𝑜(𝑛),
(2) 𝔼𝑋2 ⩽ 𝑒𝑜(𝑛).

The proof of Lemma 8.1 is essentially a large-deviations calculation, similar to the calculations
in [23]. We defer this proof until Section 8.1.
By the Paley–Zygmund inequality, it follows from Lemma 8.1 that ℙ[𝑋 ≠ 0] ⩾ (𝔼𝑋)2∕𝔼𝑋2 =

𝑒−𝑜(𝑛). That is to say, it is not exponentially unlikely that 𝐷 has a majority bisection. In order to
deduce from this that 𝐷 has an almost-majority 2-colouring whp, we adapt a concentration trick
that seems to have been first used by Frieze [32], in the same way as [23]. Namely, we define a sec-
ond randomvariable𝑍measuring (in some appropriate sense) how close to amajority 2-colouring
we can obtain, observe that 𝑍 is concentrated around its mean and deduce that 𝔼𝑍 = 𝑜(𝑛) (oth-
erwise it would not be possible to have ℙ[𝑍 ≠ 0] ⩾ 𝑒−𝑜(𝑛)). We will take our random variable 𝑍 to
be the minimum defect of our random colouring, defined as follows.

Definition 8.2. Given a 2-colouring 𝑐 ∶ 𝑉(𝐺) → {1, 2} and a vertex 𝑣 ∈ 𝑉(𝐺), we define the defect

def (𝑣; 𝑐) = min
(|{𝑤 ∈ 𝑁+(𝑣) ∶ 𝑐(𝑤) = 𝑐(𝑣)}| − |{𝑤 ∈ 𝑁+(𝑣) ∶ 𝑐(𝑤) ≠ 𝑐(𝑣)}|, 0).

In words, the defect is zero if 𝑣 is majority-coloured, and otherwise the defect is the number of
same-coloured out-neighbours of 𝑣 minus the number of oppositely-coloured out-neighbours of
𝑣. Then, the defect of the entire colouring 𝑐 is defined as

def (𝑐) =
∑

𝑣∈𝑉(𝐺)

def (𝑣; 𝑐).

We need the fact that the minimum defect of a random digraph is tightly concentrated, as
follows.

Lemma 8.3. Let 𝐷 ∼ 𝔻(𝑛, 𝑑∕𝑛) with 𝑑∗ ∶= min(𝑑, 𝑛 − 𝑑) ⩾ 1, and let 𝑍 be the minimum defect
among all bisections of 𝐷. Then for large 𝑛 and any 𝜀 ⩾ 0, we have

ℙ[|𝑍 − 𝔼𝑍| ⩾ 𝜀√𝑑∗𝑛] ⩽ exp(−𝜀2𝑛∕20).
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Proof. If any edge is added or removed from 𝐷, then 𝑍 changes by at most 2. So, a bounded-
difference inequality such as [43, Theorem 2.11] shows that

ℙ[|𝑍 − 𝔼𝑍| ⩾ 𝑡] ⩽ exp(− 𝑡2

16𝑛(𝑛 − 1)min(𝑝, 1 − 𝑝) + 4𝑡

)
for any 𝑡 ⩾ 0. The desired result follows. □

We also need the fact that in a random graph, there is no bisection in whichmany vertices have
small positive defect.

Lemma 8.4. Consider 𝑑𝑛 and 𝜀𝑛 such that 𝜀𝑛 → 0 and 𝑑∗𝑛 ∶= min(𝑑𝑛, 𝑛 − 𝑑𝑛) → ∞. Then whp
𝐷 ∼ 𝔻(𝑛, 𝑑𝑛∕𝑛) has the property that for every bisection 𝑐 ∶ 𝑉(𝐷) → {1, 2}, there are at most 𝑜(𝑛)
vertices 𝑣 with 0 < def (𝑣; 𝑐) ⩽ 𝜀𝑛

√
𝑑∗𝑛.

Proof. Fix a bisection 𝑐 ∶ 𝑉(𝐺) → {1, 2}. For 𝑖 ∈ {1, 2}, let deg𝑖(𝑣) be the number of out-neighbours
of 𝑣 with 𝑐(𝑣) = 𝑖. Note that we can only have 0 < def (𝑣; 𝑐) ⩽ 𝑜(

√
𝑑∗𝑛) if | deg1(𝑣) − deg2(𝑣)| ⩽

𝑜(
√
𝑑∗𝑛). We will show that with probability 1 − 𝑜(2−𝑛), at most 𝑜(𝑛) vertices have | deg1(𝑣) −

deg2(𝑣)| ⩽ 𝑜(√𝑑∗𝑛); the desired result will follow from a union bound over bisections.
To this end, note that all 2𝑛 random variables of the form deg𝑖(𝑣) are independent. Note that

deg2(𝑣) has a Binomial(𝑛∕2, 𝑑𝑛∕𝑛) distribution,† so by direct calculation or an anticoncentra-
tion inequality such as [21, Lemma 8.1], we havemax𝑥∈ℕ ℙ[deg2(𝑣) = 𝑥] = 𝑂(1∕

√
𝑑∗𝑛). It follows

that

ℙ[| deg1(𝑣) − deg2(𝑣)| ⩽ 𝜀√𝑑∗𝑛] = 𝔼[ℙ[deg2(𝑣) ∈ [deg1(𝑣) − 𝜀√𝑑∗𝑛, deg1(𝑣) + 𝜀√𝑑∗𝑛] |||| deg1(𝑣)
]]

= 𝑂(𝜀𝑛) ⩽
√
𝜀𝑛.

So, with 𝛿 = 10∕ log(1∕𝜀𝑛) = 𝑜(1), we have

ℙ[| deg1(𝑣) − deg2(𝑣)| ⩽ 𝜀𝑛√𝑑∗𝑛 for 𝛿𝑛 different 𝑣] ⩽ (
𝑛
𝛿𝑛

)
(
√
𝜀𝑛)

𝛿𝑛

⩽ exp ((𝛿 log(𝑒∕𝛿) − (1∕2)𝛿 log(1∕𝜀𝑛))𝑛) = 𝑜(2
−𝑛).

The desired result follows. □

Proof of Theorem 1.7. Let 𝐷 ∼ 𝔻(𝑛, 𝑝𝑛) with 𝑛𝑝𝑛(1 − 𝑝𝑛) → ∞, and let 𝑑∗𝑛 = min(𝑛𝑝𝑛, 𝑛 − 𝑛𝑝𝑛)
(so 𝑑∗𝑛 → ∞). We wish to prove that 𝐷 has an 𝑜(1)-almost-majority bisection whp.
Let 𝑍 be the minimum defect among all bisections of 𝐷. Using the Paley–Zygmund inequality,

we have

ℙ[𝑍 = 0] = ℙ[𝑋 ≠ 0] ⩾
(𝔼𝑋)2

𝔼𝑋2
⩾ 𝑒−𝑜(𝑛).

† Strictly speaking, if 𝑛 is odd, then the distribution is Binomial(⌊𝑛∕2⌋, 𝑑𝑛∕𝑛) or Binomial(⌈𝑛∕2⌉, 𝑑𝑛∕𝑛) (i.e. there are
some rounding considerations). This does not materially affect the rest of the proof.
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38 of 49 ANASTOS et al.

On the other hand, we have

ℙ[𝑍 = 0] ⩽ ℙ[|𝑍 − 𝔼𝑍| ⩾ 𝔼𝑍].
Combining these inequalities with Lemma 8.3, we see that 𝔼𝑍 = 𝑜(

√
𝑑∗𝑛𝑛), so using Lemma 8.3

again, we see that whp 𝑍 = 𝑜(
√
𝑑∗𝑛𝑛). That is to say, whp there is a bisection with defect 𝑜(

√
𝑑∗𝑛𝑛).

By Lemma 8.4, whp there are at most 𝑜(𝑛) vertices responsible for this defect, as desired. □

8.1 Moment calculations

In this subsection, we prove Lemma 8.1. Firstly, we need to understand the probability that a
particular vertex is majority-coloured, or that a pair of vertices are both majority-coloured. In a
directed graph 𝐷, we define the overlap between two colourings 𝑐, 𝑐′ ∶ 𝑉(𝐷) → {1, 2} to be the
fraction of vertices 𝑣 ∈ 𝑉(𝐷) for which 𝑐(𝑣) = 𝑐′(𝑣).

Lemma 8.5. Fix a constant 𝜀 > 0. Let𝐷 ∼ 𝔻(𝑛, 𝑝𝑛)with 𝑛𝑝𝑛(1 − 𝑝𝑛) → ∞, and fix a pair of bisec-
tions 𝑐, 𝑐′ ∶ 𝑉(𝐷) → {1, 2} with overlap 𝛼 ∈ [𝜀, 1 − 𝜀]. For a vertex 𝑣, let 𝑣 and  ′𝑣 be the events that
𝑣 is majority-coloured with respect to 𝑐 and with respect to 𝑐′. Then, for every vertex 𝑣:

(1) ℙ[𝑣] = 1∕2 + 𝑜(1);
(2) ℙ[𝑣 ∩  ′𝑣] =

1
𝜋
arctan

(√
𝛼
1−𝛼

)
+ 𝑜(1) if 𝑐(𝑣) = 𝑐′(𝑣);

(3) ℙ[𝑣 ∩  ′𝑣] =
1
𝜋
arctan

(√
1−𝛼
𝛼

)
+ 𝑜(1) if 𝑐(𝑣) ≠ 𝑐′(𝑣).

Proof. Fix a vertex 𝑣. First, (1) is easy to prove by a direct computation, but as a warm-up for (2)
and (3), we give a proof using Gaussian approximation. For 𝑖 ∈ {1, 2}, let deg𝑖(𝑣) be the number
of neighbours of 𝑣 with 𝑐(𝑣) = 𝑖. Let

𝑋 =
deg1(𝑣) − deg2(𝑣)√

𝑛𝑝𝑛(1 − 𝑝𝑛)
,

and consider a Gaussian random variable 𝑍 ∼ (0, 1). By the Berry–Esseen theorem [13, 30], for
any interval 𝐼 ⊆ ℝ, we have

ℙ[𝑋 ∈ 𝐼] = ℙ[𝑍 ∈ 𝐼] + 𝑂

(
1√

𝑛𝑝𝑛(1 − 𝑝𝑛)

)
.

Note that 𝑣 is precisely the event that𝑋 ⩽ 0 (if 𝑐(𝑣) = 1) or that𝑋 ⩾ 0 (if 𝑐(𝑣) = 2). So, (1) follows
from the approximation of 𝑋 by 𝑍 and the symmetry of (0, 1).
We next prove (2) in the case that 𝑐(𝑣) = 𝑐′(𝑣) = 1 (then (3) and the other case of (2) follow from

a very similar calculation). For 𝑖, 𝑗 ∈ {1, 2}, let𝑉𝑖𝑗 be the set of vertices𝑤with (𝑐(𝑤), 𝑐′(𝑤)) = (𝑖, 𝑗),
and note that

|𝑉𝑖𝑗| ={
𝛼𝑛∕2 if 𝑖 = 𝑗,
(1 − 𝛼)𝑛∕2 if 𝑖 ≠ 𝑗.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 39 of 49

Let deg𝑖𝑗(𝑣) = 𝑁(𝑣) ∩ 𝑉𝑖𝑗 be the number of neighbours that 𝑣 has in 𝑉𝑖𝑗 , so 𝑣 ∩  ′𝑣 is the event
that

deg11(𝑣) + deg12(𝑣) ⩽ deg21(𝑣) + deg22(𝑣) and deg11(𝑣) + deg21(𝑣) ⩽ deg12(𝑣) + deg22(𝑣),

or equivalently that

deg22(𝑣) − deg11(𝑣) ⩾ | deg21(𝑣) − deg12(𝑣)|.
Let

�⃗� =

(
deg22(𝑣) − deg11(𝑣)√

𝛼𝑛𝑝𝑛(1 − 𝑝𝑛)
,
deg21(𝑣) − deg12(𝑣)√
(1 − 𝛼)𝑛𝑝𝑛(1 − 𝑝𝑛)

)
∈ ℝ2,

and consider a bivariate standardGaussian randomvector �⃗� ∈ ℝ2. By amultivariate Berry–Esseen
theorem (see, e.g. [52]), for any convex 𝑈 ⊆ ℝ2, we have

ℙ[�⃗� ∈ 𝑈] = ℙ[�⃗� ∈ 𝑈] + 𝑂

(
1√

𝛼(1 − 𝛼)𝑛𝑝𝑛(1 − 𝑝𝑛)

)
.

In particular,

ℙ[𝑣 ∩  ′𝑣] = ℙ[
√
𝛼𝑍1 ⩾

√
1 − 𝛼|𝑍2|] + 𝑜(1).

Now, for �⃗� ∈ ℝ2, let ∠�⃗� ∈ (−𝜋, 𝜋] be the angle of �⃗� when expressed in polar coordinates. By
the rotational invariance of �⃗�, we have

ℙ[
√
𝛼𝑍1 ⩾

√
1 − 𝛼|𝑍2|] = ℙ[|∠�⃗�| ⩽ arctan(√

𝛼
1 − 𝛼

)]

=
2 arctan

(√
𝛼
1−𝛼

)
2𝜋

.

The desired conclusion follows. □

Next, we need a basic numerical inequality to understand the contribution to 𝔼𝑋2 from the
various overlaps 𝛼.

Lemma 8.6. Define the function 𝑓 ∶ (0, 1) → ℝ by

𝑓(𝛼) = 𝛼

(
log

(
arctan

(√
𝛼

1 − 𝛼

))
− log 𝛼

)

+ (1 − 𝛼)

(
log

(
arctan

(√
1 − 𝛼
𝛼

))
− log(1 − 𝛼)

)
+ log

( 2
𝜋

)
.
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40 of 49 ANASTOS et al.

F IGURE 1 A plot of the function 𝑓 from Lemma 8.6.

Then, 𝑓(𝛼) ⩽ 0 for all 𝛼 ∈ (0, 1), and 𝑓(𝛼) = 0 if and only if 𝛼 = 1∕2.

Wewere not able to find a clean proof of Lemma 8.6, though it is very believable given a plot of
𝑓 (see Figure 1). In Appendix B, we sketch how to formally verify it by combining some computer
calculations with Taylor’s theorem.

Proof of Lemma 8.1. For a bisection 𝑐 ∶ 𝑉(𝐷) → {1, 2}, let 𝑐𝑣 be the event that 𝑣 is majority-
coloured with respect to 𝑐. If we fix a particular 𝑐, then the 𝑛 events 𝑐𝑣 are independent, so the
probability that 𝑐 is a majority-colouring is (1∕2 + 𝑜(1))𝑛 by Lemma 8.5(1). So,

𝔼𝑋 =

(
𝑛
𝑛∕2

)
(1∕2 + 𝑜(1))𝑛 ⩾ 𝑒−𝑜(𝑛),

proving Lemma 8.1(1). For Lemma 8.1(2), let

𝑝𝛼(𝑛) =

(
1
𝜋
arctan

(√
𝛼

1 − 𝛼

))𝛼𝑛(
1
𝜋
arctan

(√
1 − 𝛼
𝛼

))(1−𝛼)𝑛
.

Now, the estimates in Lemma 8.5 hold for any (arbitrarily small) constant 𝜀 > 0, so they must
also hold when 𝜀 → 0 sufficiently slowly. (Concretely, inspecting the proof of Lemma 8.5, we can
take 𝜀 = 1∕

√
min(𝑛𝑝𝑛, 𝑛 − 𝑛𝑝𝑛) = 𝑜(1)). If we consider particular 𝑐, 𝑐′ with overlap 𝛼 ∈ [𝜀, 1 −

𝜀], then the 𝑛 events of the form 𝑐𝑣 ∩ 𝑐
′

𝑣 are independent, so the probability that 𝑐, 𝑐′ are both
majority-colourings is

ℙ

[ ⋂
𝑣∈𝑉(𝐷)

(𝑐𝑣 ∩ 𝑐
′

𝑣 )

]
= 𝑝𝛼(𝑛)𝑒

𝑜(𝑛),

by Lemma 8.5(2). We can only use this bound for 𝛼 ∈ [𝜀, 1 − 𝜀]; for 𝛼 ∉ [𝜀, 1 − 𝜀], we simply use
the upper bound

ℙ

[ ⋂
𝑣∈𝑉(𝐷)

(𝑐𝑣 ∩ 𝑐
′

𝑣 )

]
⩽ ℙ

[ ⋂
𝑣∈𝑉(𝐷)

𝑐𝑣

]
= (1∕2 + 𝑜(1))𝑛

from (1). Now, if bisections 𝑐, 𝑐′ have overlap 𝛼, it must be the case that 𝑐(𝑣) = 𝑐′(𝑣) = 1 for exactly
𝛼(𝑛∕2) different 𝑣, and 𝑐(𝑣) = 𝑐′(𝑣) = 2 for exactly 𝛼(𝑛∕2) different 𝑣. So, we obtain
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 41 of 49

𝔼𝑋2 ⩽
∑
𝑎∈ℕ∶

2𝑎∕𝑛∈[0,𝜀]∪[1−𝜀,1]

(
𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)2
(1∕2 + 𝑜(1))𝑛 +

∑
𝑎∈ℕ∶

2𝑎∕𝑛∈[𝜀,1−𝜀]

(
𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)2
𝑝2𝑎∕𝑛(𝑛)𝑒

𝑜(𝑛)

⩽ 2
⌊𝜀𝑛∕2⌋∑
𝑎=0

(
𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)2
(1∕2 + 𝑜(1))𝑛 +

𝑛∕2−⌊𝜀𝑛∕2⌋∑
𝑎=⌈𝜀𝑛∕2⌉

(
𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)2
𝑝2𝑎∕𝑛(𝑛)𝑒

𝑜(𝑛). (8.1)

Note that(
𝑛
𝑛∕2

)(
𝑛∕2

𝑥(𝑛∕2)

)2
= 2𝑛+𝑜(𝑛)(exp (𝐻(𝑥)(𝑛∕2) + 𝑜(𝑛)))2 = exp (𝐻(𝑥)𝑛 + 𝑛 log 2 + 𝑜(𝑛)),

where 𝐻(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥). So, recalling the function 𝑓 from Lemma 8.6, and
recalling that 𝑓(𝑥) ⩽ 0 for all 𝑥 ∈ (0, 1), we have that for 𝑎 ∈ [⌈𝜀𝑛∕2⌉, 𝑛∕2 − ⌊𝜀𝑛∕2⌋],(

𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)2
𝑝2𝑎∕𝑛(𝑛) = exp (𝑓(2𝛼∕𝑛)𝑛 + 𝑜(𝑛)) = 𝑒

𝑜(𝑛).

Then, recalling that 𝜀 = 𝑜(1), we observe that(
𝑛
𝑛∕2

)(
𝑛∕2
𝑎

)
(1∕2 + 𝑜(1))𝑛 = 𝑒𝑜(𝑛)

for 𝑎 ⩽ 𝜀𝑛∕2. Recalling Equation 8.1, we deduce that 𝔼𝑋2 = 2𝑛𝑒𝑜(𝑛) = 𝑒𝑜(𝑛). □

Remark 8.7. The proof of Theorem 1.7 (in particular, the fact that 𝑓(𝑥) is negative for 𝑥 ∉
{0, 1∕2, 1}, from Lemma 8.6) essentially shows that in𝐷 ∼ 𝔻(𝑛, 𝑝𝑛) (with 𝑛𝑝𝑛(1 − 𝑝𝑛) → ∞), whp
every pair of 𝑜(1)-almost-majority bisections has overlap very close to 0, 1∕2 or 1. That is to say,
the space of almost-majority bisections is extremely disconnected, and, in particular, the overlap
gap property (see, e.g. [33]) is satisfied. This strongly suggests that it is computationally intractable
to actually locate 𝑜(1)-almost-majority bisections in random digraphs, despite the fact that they
exist whp. We remark that our proof does not show that the space of all 𝑜(1)-almost-majority 2-
colourings (not necessarily bisections) satisfies the overlap gap property, but we suspect that this
fact could also be established with some additional (more involved) moment calculations.

9 INTERNAL AND EXTERNAL BISECTIONS

In this section, we prove Theorem 1.4, and give the (easy) deduction of Theorem 1.5. Given a
partition of the vertices of a graph into two parts, say that a vertex is internal if it has at least as
many neighbours on its side as the opposite side.

Proof of Theorem 1.4. Fix a graph 𝐺 on the vertex set 𝑉 = {1, … , 𝑛}with maximum degree at most
𝑑 and let 𝜀 > 0. Assuming 𝑛 is sufficiently large, we will show that there is a bisection in which
all but 𝜀𝑛 vertices are internal (the ‘external’ problem can be solved in an identical manner).
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42 of 49 ANASTOS et al.

Choose a uniformly random vertex partition 𝑉 = 𝐴0 ∪ 𝐵0 (i.e. flip a fair coin for each vertex
to decide its part). Then, let 𝑝 = 1∕𝑑 and 𝐾 = 5𝑑2∕𝜀, and to each vertex 𝑣, independently assign
a random binary sequence 𝑠(𝑣) ∼ Bernoulli(𝑝)⊗𝐾 (i.e. a sequence of 𝑝-biased coin flips). Then,
iteratively, for each 𝑖 ∈ {1, … , 𝐾}: starting from the partition 𝐴𝑖−1 ∪ 𝐵𝑖−1, define a new partition
𝐴𝑖 ∪ 𝐵𝑖 as follows. For each vertex 𝑣 that is not internal and such that 𝑠(𝑣)𝑖 = 1, move 𝑣 to the
other part of the partition. We can view this as a ‘lazy’ greedy swapping process, where in each
step, we swap a 𝑝-fraction of the vertices that are not internal.
Let 𝑍𝑖 be the number of vertices that are not internal with respect to the partition 𝐴𝑖 ∪ 𝐵𝑖 . We

now claim that there is some 𝑡 < 𝐾 such that 𝑍𝑡 ⩽ 𝜀𝑛∕2 with probability at least 𝜀∕(4𝑑). For the
purpose of contradiction, assume that this is false.
Let𝑋𝑖 be the number of edges between𝐴𝑖 and𝐵𝑖 . For an outcome of (𝐴𝑖−1, 𝐵𝑖−1)with𝑍𝑖 ⩾ 𝜀𝑛∕2,

note that

𝔼[𝑋𝑖|𝐴𝑖−1, 𝐵𝑖−1] ⩽ 𝑋𝑖−1 − 𝑝𝑍𝑖−1 + 𝑝2 ⋅ 𝑑𝑍𝑖−12 ⩽ 𝑋𝑖−1 −
𝑝

2
⋅ 𝑍𝑖−1 ⩽ 𝑋𝑖−1 −

𝜀
4𝑑
𝑛.

Indeed, if a vertex is not internal, then moving that single vertex to the other side of the partition
decreases the number of edges between the two parts. Since we are moving multiple vertices at
once, we also need to account for the edges which have both their endpointsmoved together (note
that there are at most 𝑑𝑍𝑖−1∕2 edges both of whose endpoints are not internal).
For all 𝑖 ⩽ 𝐾, since we are assuming that 𝑍𝑖−1 ⩽ 𝜀𝑛∕2 with probability less than 𝜀∕(4𝑑2), we

deduce the unconditional bound

𝔼[𝑋𝑖 − 𝑋𝑖−1] ⩽ ℙ[𝑍𝑖 ⩽ 𝜀𝑛∕2] |𝐸(𝐺)| + ℙ[𝑍𝑖 > 𝜀𝑛∕2]𝔼[𝑋𝑖 − 𝑋𝑖−1|𝑍𝑖 > 𝜀𝑛∕2]
⩽

𝜀
4𝑑2

⋅
𝑑𝑛
2
−

(
1 −

𝜀
4𝑑2

) 𝜀
4𝑑
𝑛 ⩽ −

𝜀
9𝑑
𝑛

(assuming, as we may, that 𝜀∕𝑑 is sufficiently small). It follows that 𝔼[𝑋𝐾 − 𝑋0] ⩽ −𝐾𝜀𝑛∕(9𝑑) <
−𝑑𝑛∕2, which is a contradiction because each 0 ⩽ 𝑋𝑖 ⩽ |𝐸(𝐺)| ⩽ 𝑑𝑛∕2.
We have proved that there is some 𝑡 for which 𝑍𝑡 ⩽ 𝜀𝑛∕2with probability at least 𝜀∕(4𝑑2). Next

note that if, for a single vertex 𝑣, we modify the initial part that 𝑣 appears in, and/or the contents
of the list 𝑠(𝑣), then as a result, |𝐴𝑡| can change by at most 𝑑𝑡 ⩽ 𝑑𝐾 (because 𝐺 has maximum
degree at most 𝑑, the number of vertices that can be affected by our single-vertex change grows by
a factor of at most 𝑑 in every round of our process). So, by the Azuma–Hoeffding inequality (see,
e.g. [3, Theorem 7.2.1]), we have

ℙ[|𝐴𝑡| < 𝔼|𝐴𝑡| − 𝜀𝑛∕2𝑑] ⩽ exp(−(𝜀𝑛∕2𝑑)2𝑛𝑑2𝐾

)
= exp

(
−

𝜀2

4𝑑10𝑑2∕𝜀+2
⋅ 𝑛

)
,

and by symmetry, the same inequality holds for 𝐵𝑡.
By symmetry, 𝔼|𝐴𝑡| = 𝔼|𝐵𝑡| = 𝑛∕2, so if 𝑛 is sufficiently large with respect to 𝜀, 𝑑, with positive

probability, we have 𝑍𝑡 ⩽ 𝜀𝑛∕2 and |𝐴𝑡|, |𝐵𝑡| ⩾ 𝑛∕2 − 𝜀𝑛∕2𝑑 (recall that 𝑍𝑡 ⩽ 𝜀𝑛∕2 with probabil-
ity at least 𝜀∕(4𝑑2)). We can move at most 𝜀𝑛∕4𝑑 vertices from 𝐴𝑡 to 𝐵𝑡 (or vice versa) to obtain
a bisection, and doing so causes at most (𝑑 + 1)𝜀𝑛∕4𝑑 < 𝜀𝑛∕2 additional vertices to stop being
internal (since each vertex we move has degree at most 𝑑). So, we obtain a bisection in which all
but at most 𝜀𝑛 vertices are internal, as desired. □

We now deduce Theorem 1.5.
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PARTITIONING PROBLEMS VIA RANDOM PROCESSES 43 of 49

Proof of Theorem 1.5. We show that for any fixed 𝜀 > 0, whp 𝐺 has a 3𝜀-almost-internal bisection
(virtually the same proof shows that 𝐺 has a 3𝜀-almost-external bisection). The desired result will
follow, taking 𝜀 → 0 sufficiently slowly.
Let 𝑉⩾𝑑 be the set of vertices with degree at least 𝑑. A simple calculation (see, e.g. [38,

Lemma 6.2(A4)]) shows that there is some 𝑑 (depending only on 𝜀) such that whp |𝑉⩾𝑑| ⩽ 𝜀𝑛 and∑
𝑣∈𝑉⩾𝑑

deg(𝑣) ⩽ 𝜀𝑛. By Theorem 1.4, the graph 𝐺 − 𝑉⩾𝑑 obtained by removing high-degree ver-
tices has an 𝜀-almost-internal bisection.We can then arbitrarily extend this to a 3𝜀-almost-internal
bisection of 𝐺. □

APPENDIX A: COMPUTATIONS FOR THE RECOLOURING RECURRENCE
In this section, we prove Lemma 4.3. Recall that 𝑃𝜆 is a weighted average of the 𝑄𝑑. For most 𝑑,
we will take advantage of the inequality 𝑄𝑑(𝑓) ⩽ 𝑎𝑑𝑓, where

𝑎𝑑 = 𝑑 ⋅
1
3
⋅

𝑑∑
𝑖=⌊𝑑∕2⌋

(
𝑑 − 1
𝑖

)(1
3

)𝑖(2
3

)𝑑−1−𝑖
.

The easiest way to see this inequality is to recall the interpretation of 𝑄𝑑(𝑓) as the probability
of the event that a particular colour (say, red) ‘overtakes’ among a set of 𝑑 vertices (i.e. we start
with a random 3-colouring, and for each vertex, randomly change it to a different colour with
probability 𝑓; then we consider the event that red enjoyed a strict majority after but not before
these changes). For this overtaking event to occur, there must have been a vertex which changed
to red (this happens for each vertex with probability 𝑓∕3), and at least ⌊𝑑∕2⌋ other vertices must
be red after the changes.
Now, Lemma 4.3 is a consequence of the following lemmas.

Lemma A.1. 2𝑎𝑑 < 0.98 for even 𝑑, for 𝑑 = 1, and for odd 𝑑 ⩾ 29.

Lemma A.2. 𝑄′′
𝑑
(𝑓) ⩽ 0 for odd 3 ⩽ 𝑑 ⩽ 27 and 𝑓 ∈ [0, 1∕3].

Lemma A.3. 2𝑄′
𝑑
(0) ⩽ 0.99 for odd 𝑑 ⩽ 27 with 𝑑 ∉ {7, 9, 11}.

Lemma A.4. We have

2𝑄′7(0) =
2240
2187

≈ 1.024, 2𝑄′9(0) =
2240
2187

≈ 1.024, 2𝑄′11(0) =
19712
19683

≈ 1.001.

Lemma A.5. Let 𝑍 ∼ Poisson(𝜆) for any 𝜆 > 0. Then,

0.99ℙ[𝑍 ∉ {7, 9, 11}] +
2240
2187

ℙ[𝑍 = 7] +
2240
2187

ℙ[𝑍 = 9] +
19712
19683

ℙ[𝑍 = 11] < 0.999.

With the exception of Lemma A.1, all of these lemmas can be straightforwardly proved by com-
puter. Specifically, for LemmaA.2, we need to be able to estimate (to provably sufficient accuracy)
the roots of some explicit single-variable polynomials of degree up to 25, and for Lemma A.5,
we need to be able to estimate the maximum value of the function 𝜆 ↦ 𝑒−𝜆𝑝(𝜆) for an explicit
degree-11 polynomial 𝑝 (upon differentiating, this amounts to estimating the roots of a different
polynomial of degree 11).
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Proof of Lemma A.1. Noting that ⌊𝑑∕2⌋ = ⌈(𝑑 − 1)∕2⌉, so (𝑑−1
𝑖

)
⩽
( 𝑑−1⌊𝑑∕2⌋) for all 𝑖, we have

2𝑎𝑑 =
2𝑑
3

𝑑∑
𝑖=⌊𝑑∕2⌋

(
𝑑 − 1
𝑖

)(1
3

)𝑖(2
3

)𝑑−1−𝑖
⩽ 𝑑

(
𝑑 − 1⌊𝑑∕2⌋

)(
2𝑑−⌊𝑑∕2⌋
3𝑑

) 𝑑∑
𝑖=⌊𝑑∕2⌋

(1
2

)𝑖−⌊𝑑∕2⌋
⩽ 2𝑑

(
𝑑 − 1⌊𝑑∕2⌋

)(
2𝑑−⌊𝑑∕2⌋
3𝑑

)
.

Let 𝑏𝑑 = 2𝑑
( 𝑑−1⌊𝑑∕2⌋)( 2𝑑−⌊𝑑∕2⌋3𝑑

)
. We may compute 𝑏24 ⩽ 0.95, and note that if 𝑑 ⩾ 24 is even, then

𝑏𝑑
𝑏𝑑+2

=
𝑑
(𝑑−1
𝑑∕2

)
(𝑑 + 2)

( 𝑑+1
𝑑∕2+1

)
(2∕9)

=
9𝑑(𝑑∕2 + 1)(𝑑∕2)

2(𝑑 + 2)𝑑(𝑑 + 1)
=
9
8
⋅
𝑑

𝑑 + 1
> 1.

Also, we may compute 𝑏33 ⩽ 0.95, and note that if 𝑑 ⩾ 33 is odd, then

𝑏𝑑
𝑏𝑑+2

=
𝑑
( 𝑑−1
(𝑑−1)∕2

)
(𝑑 + 2)

( 𝑑+1
(𝑑+1)∕2

)
(2∕9)

=
9
2
⋅
((𝑑 + 1)∕2)2

(𝑑 + 1)(𝑑 + 2)
=
9
8
⋅
𝑑 + 1
𝑑 + 2

> 1.

So, it suffices to observe (by computer) that 2𝑎𝑑 ⩽ 0.98 for even 𝑑 ⩽ 22 and odd 29 ⩽ 𝑑 ⩽ 31. □

APPENDIX B: AN INEQUALITY FOR THE SECONDMOMENT CALCULATION
In this section, we explain how to prove Lemma 8.6 (with the assistance of a computer).

Proof Sketch for Lemma 8.6. By considering the substitution tan2 𝑥 = 𝛼∕(1 − 𝛼) for 𝛼 ∈ (0, 1)
(hence𝛼 = sin2 𝑥 and 1 − 𝛼 = cos2 𝑥), it suffices to prove that the function g ∶ (0, 𝜋∕2) ↦ ℝ given
by

g(𝑥) = (sin2 𝑥) ⋅ (log 𝑥) − (sin2 𝑥) ⋅
(
log sin2 𝑥

)
+ (cos2 𝑥) ⋅ (log(𝜋∕2 − 𝑥)) − (cos2 𝑥) ⋅

(
log cos2 𝑥

)
− log(𝜋∕2)

is non-positive, and is equal to zero only when 𝑥 = 𝜋∕4. The idea is to first use Taylor expansions
to deal with small neighbourhoods of the points 0, 𝜋∕4, 𝜋∕2. Away from these points, we have
enough room to prove the desired inequality by computing g(𝑥) for a fine mesh of 𝑥 and applying
the mean value theorem.
So, we partition the interval (0, 𝜋∕2) as 𝐼1 ∪ 𝐼2 ∪ 𝐼3 ∪ 𝐼, where

𝐼1 = (0, 0.1], 𝐼2 = [𝜋∕4 − 0.1, 𝜋∕4 + 0.1], 𝐼3 = [𝜋∕2 − 0.1, 𝜋∕2)

and

𝐼 = (0, 𝜋∕2) ⧵ (𝐼1 ∪ 𝐼2 ∪ 𝐼3) = (0.1, 𝜋∕4 − 0.1) ∪ (𝜋∕4 + 0.1, 𝜋∕2 − 0.1).
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Step 1: Intervals 𝐼1 and 𝐼3. First, we show that g(𝑥) ⩽ −0.1𝑥 < 0 when 𝑥 ∈ 𝐼1.
For 𝑥 ∈ 𝐼1, Taylor expansions yield

𝑥 − 𝑥3∕6 ⩽ sin 𝑥 ⩽ 𝑥, 1 − 𝑥2∕2 ⩽ cos 𝑥 ⩽ 1, 𝑥 ⩽ − log(1 − 𝑥) ⩽ 𝑥 + 𝑥2,

which we will use throughout the proof for 𝑥 ∈ 𝐼1 below.
For the first two terms in g(𝑥), the following inequalities hold:

(sin2 𝑥) ⋅ (log 𝑥 − log sin2 𝑥) ⩽ 𝑥2(log 𝑥 − log sin2 𝑥) = −𝑥2 log
(
sin2 𝑥
𝑥

)
⩽ −𝑥2 log

(
(𝑥 − 𝑥3∕6)2

𝑥

)
= −𝑥2 log(𝑥(1 − 𝑥2∕6)2) = −𝑥2 log 𝑥 − 2𝑥2 log(1 − 𝑥2∕6)

⩽ −𝑥2 log 𝑥 + 2𝑥2(𝑥2∕6 + (𝑥2∕6)2)

⩽ −𝑥2 log 𝑥 + 0.001𝑥

⩽ −(0.1 log 0.1)𝑥 + 0.001𝑥

⩽ 0.4𝑥,

where the second-last inequality follows because 𝑥 ∈ (0, 0.1] and the function 𝑦 ↦ −𝑦 log 𝑦 is
increasing in 𝐼1. Analogously, we obtain the following inequalities for the third and fourth terms
in g(𝑥):

(cos2 𝑥) ⋅ (log(𝜋∕2 − 𝑥) − log cos2 𝑥) ⩽ log(𝜋∕2 − 𝑥) − log cos2 𝑥

= log(𝜋∕2) + log(1 − 2𝑥∕𝜋) − 2 log cos 𝑥

⩽ log(𝜋∕2) + log(1 − 2𝑥∕𝜋) − 2 log(1 − 𝑥2∕2)

⩽ log(𝜋∕2) − 2𝑥∕𝜋 + 2(𝑥2∕2 + (𝑥2∕2)2)

⩽ log(𝜋∕2) − 0.5𝑥,

where the last inequality follows because 𝑥 ∈ (0, 0.1].
By summing up the two inequalities above, we get

g(𝑥) ⩽ −0.1𝑥 < 0 for 𝑥 ∈ 𝐼1 = (0, 0.1], (B.1)

as desired.
To deal with the interval 𝐼3, recall that sin 𝑥 = cos(𝜋∕2 − 𝑥) for 𝑥 ∈ ℝ. Thus, g(𝑥) = g(𝜋∕2 − 𝑥)

for 𝑥 ∈ (0, 𝜋∕2). Moreover, if 𝑥 ∈ 𝐼3, then 𝜋∕2 − 𝑥 ∈ 𝐼1. Thus, (B.1) implies that

g(𝑥) = g(𝜋∕2 − 𝑥) ⩽ −0.1(𝜋∕2 − 𝑥) < 0 for 𝑥 ∈ 𝐼3 = [𝜋∕2 − 0.1, 𝜋∕2).

Step 2: Interval 𝐼2. For 𝑥 ∈ 𝐼2, we will use the inequalities||||𝑥 − (𝜋∕2) sin2 𝑥(𝜋∕2) sin2 𝑥

||||, |||| (𝜋∕2 − 𝑥) − (𝜋∕2) cos2 𝑥(𝜋∕2) cos2 𝑥

|||| ⩽ 1
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(which hold with plenty of room to spare). Note also that log(1 + 𝑦) ⩽ 𝑦 − 𝑦2∕4 for |𝑦| ⩽ 1, so
(using − log(𝜋∕2) = − sin2 𝑥 log(𝜋∕2) − cos2 𝑥 log(𝜋∕2)),

g(𝑥) = (sin2 𝑥) ⋅

(
log

(
𝑥

(𝜋∕2) sin2 𝑥

))
+ (cos2 𝑥) ⋅

(
log

(
(𝜋∕2 − 𝑥)

(𝜋∕2) cos2 𝑥

))

⩽ sin2 𝑥
⎛⎜⎜⎝
(
𝑥 − (𝜋∕2) sin2 𝑥

(𝜋∕2) sin2 𝑥

)
−
1
4

(
𝑥 − (𝜋∕2) sin2 𝑥

(𝜋∕2) sin2 𝑥

)2⎞⎟⎟⎠
+ cos2 𝑥

((
(𝜋∕2 − 𝑥) − (𝜋∕2) cos2 𝑥

(𝜋∕2) cos2 𝑥

)
−
1
4

(
(𝜋∕2 − 𝑥) − (𝜋∕2) cos2 𝑥

(𝜋∕2) cos2 𝑥

)2)

= −sin2 𝑥 ⋅
1
4

(
𝑥 − (𝜋∕2) sin2 𝑥

(𝜋∕2) sin2 𝑥

)2
− cos2 𝑥 ⋅

1
4

(
(𝜋∕2 − 𝑥) − (𝜋∕2) cos2 𝑥

(𝜋∕2) cos2 𝑥

)2
⩽ 0.

Thus, we have

g(𝑥) ⩽ 0 for 𝑥 ∈ 𝐼2 = [𝜋∕4 − 0.1, 𝜋∕4 + 0.1].

In addition, g(𝑥) = 0 only when the last inequality holds with equality, that is, when 𝑥 −
(𝜋∕2) sin2 𝑥 = 0. As the derivative of 𝑥 − (𝜋∕2) sin2 𝑥 is strictly negative for 𝑥 ∈ 𝐼2 (it is always
upper-bounded by 1 − 𝜋 sin(𝜋∕4 − 0.1) cos(𝜋∕4 + 0.1) ≈ −0.259), we have that g(𝑥) is injective
on 𝐼2. Thus, g(𝑥) = 0 only if 𝑥 = 𝜋∕4.
Step 3: Interval 𝐼. Observe that g ′(𝑥) is a linear combination of eight terms, each of which con-

sists of a multiplicative constant at most four times the product of at most three terms taken from
the following list:

sin 𝑥, cos 𝑥, log 𝑥, 1∕𝑥, log sin 𝑥, log(𝜋∕2 − 𝑥), 1∕(𝜋∕2 − 𝑥), log cos 𝑥.

Note that each of these terms is at most 10 (in absolute value) for 𝑥 ∈ 𝐼. So, for 𝑥 ∈ 𝐼, we have|g ′(𝑥)| ⩽ 8 ⋅ 4 ⋅ 103 ⩽ 5000. Let 𝑀 = 𝐼 ∩ {𝑖 ⋅ 10−5 ∶ 𝑖 ∈ ℤ}. We can evaluate g at all points in 𝑀
on a computer, and thereby check thatmax{g(𝑥) ∶ 𝑥 ∈ 𝑀} ⩽ −0.02. So, the mean value theorem
implies that for 𝑥 ∈ 𝐼, we have

g(𝑥) ⩽ −0.02 + 5000 ⋅ 10−5 < 0 for 𝑥 ∈ 𝐼 = (0.1, 𝜋∕4 − 0.1) ∪ (𝜋∕4 + 0.1, 𝜋∕2 − 0.1). □
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