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Abstract
The response of clouds and moist-convective processes to heat loss to space
by long-wave radiative cooling is an important feedback in the Earth’s atmo-
sphere. It is known that moist convection increases roughly in equilibrium with
radiative cooling, an assumption often made in simplified models of the trop-
ical atmosphere. In this study, we use an idealised two-dimensional model of
the atmosphere introduced by Vallis et. al. and incorporate a bulk-cooling term,
which is an idealisation of radiative cooling in the atmosphere. We comment
briefly on the static stability of the system to dry and moist convection and char-
acteris its moist convective response to changes in the bulk cooling. We find
that, while the clear-sky regions of the model respond directly to the change in
the cooling term, the regions dominated by moist convective plumes are insen-
sitive to changes in cooling. Similar to previous findings from cloud-resolving
models, we too find in our idealised setting that the majority of the increase in
convection occurs via an increase in the areal coverage of convection, rather than
its intensity. We argue that these small-scale convective processes are an upper
bound on how quickly convective intensity can change to stay in equilibrium
with radiative cooling.
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1 INTRODUCTION

The cooling of the atmosphere by radiative heat loss to
space through outgoing long-wave radiation is one of
the most important feedbacks on global climate. Radia-
tive cooling occurs through a highly interactive, non-
linear mechanism with strong vertical and latitudinal
variations. Locally, it is strongly dependent on temper-
ature, water-vapour content, cloud height and type, the
nature of aerosols, partition of water into solid (ice) and
liquid phases, and several other atmospheric chemical
and physical properties. Globally, it is known that the

Earth is roughly in thermodynamic equilibrium, with the
annualised, global mean value of outgoing radiation mea-
sured to be ∼ 1.5K ⋅ d−1 (Jeevanjee & Fueglistaler, 2020).

Simplified models of the tropical atmosphere often
make the assumption of radiative convective equilib-
rium (RCE) the atmosphere is assumed to be in a
quasi-equlibrium where moist convection and radiative
cooling balance each other over long enough time-scales
through convective adjustment (Manabe & Strickler, 1964;
Tompkins & Craig, 1998). Moist convection is a mech-
anism by which heat from the Earth’s surface (heated
directly by incoming solar short-wave radiation) is
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transported upward in the atmosphere in the form of
both sensible heat, which is the direct transport of heat
by advection, and latent heat, through the transport of
water vapour, which condenses aloft in the atmosphere.
In RCE, these surface fluxes heating the atmosphere are
in equilibrium with radiative cooling.

While global climate models are used to understand
projected changes in climate and the feedback from var-
ious processes on the climate (Sherwood et al., 2015,
2020), recently cloud-resolving models (CRMs) have
become an important tool to investigate the tropical atmo-
sphere at smaller scale with higher resolution modelling
(Khairoutdinov & Randall, 2003). This approach has
gained prominence due to the fact that most GCMs rely on
convective parametrisations (Arakawa & Wu, 2013) and
are typically not run at high enough resolutions to resolve
convection due to the large computational requirements,
though recent advancements have made high-resolution
GCMs without convective parametrisations a reality
(Stevens et al., 2019). Clouds associated with moist con-
vection are known to be a large source of uncertainty
in global climate models (Bony & Dufresne, 2005; Klein
et al., 2017; Zelinka et al., 2022).

CRMs are typically run over smaller, often idealised
domains of the order of a few hundred to a few thousand
kilometres in the horizontal direction. CRMs have proved
to be extremely successful at providing key and valuable
insights into the processes of moist convection (Stauffer
& Wing, 2022; Wing & Emanuel, 2014) and also the pos-
sible changes in tropical climate with a changing climate
characterised by higher surface temperatures (Muller
et al., 2011). These idealisations allow for the examination
of the role of various feedbacks from processes involved in
moist convection through sensitivity experiments that are
simple to implement.

However, CRMs usually involve solving equations for
a large number of prognostic variables and model param-
eters, since they parametrise several small-scale processes
in great detail, in particular subgrid fluxes and cloud
microphysics, making interpretation of results difficult.
It is often found that the choice of such parametrisation
can have a significant impact on the resulting dynamics
(Parodi & Emanuel, 2009; Singh & O’Gorman, 2014). In
this situation, more theoretical and “blank-slate” simpli-
fied studies of moist convection with a few parameters and
highly idealised representation of small-scale processes
are valuable. Such an approach can lead to a simplified but
still qualitatively accurate representation of convection.
In line with this approach are recent studies by Pauluis
and Schumacher (2010). Hernandez-Duenas et al. (2013),
and Vallis et al. (2019), among others. Here the idea is to
represent only the main processes that drive the dynamics
of moist convection, that is, the release or absorption of

heat by the change of phases in water. This makes their
implementation, as well as interpretation, much more
straightforward. Another advantage of simplified mod-
els is the vast existing literature on idealised models of
dry convection. Rayleigh–Bénard convection is among
the best characterised and well-studied natural models
(Ahlers et al., 2009). As remarked by Vallis et al. (2019).
(henceforth Val2019), there is very little overlap between
the study of Rayleigh–Bénard convection and theoreti-
cal studies of atmospheric moist convection, particularly
of deep convection (i.e., convective clouds that span the
whole troposphere).

In the current study, we adopt a simple model of
moist convection that shares a number of features of
Rayleigh–Bénard convection, termed “Rainy–Bénard
convection” by Vallis et al. (2019). The Rainy–Bénard
model consists of a layer of incompressible, Boussinesq
fluid with the top and bottom of the layer held at con-
stant temperature (as in conventional Rayleigh–Bénard
convection), along with fixed moisture boundary con-
ditions. Virtual effects of water are neglected and water
vapour is assumed to condense and precipitate instanta-
neously upon reaching saturation. The saturation specific
humidity is assumed to follow a simple exponential
dependence on temperature. We take forward the model
of Rainy–Bénard convection and add a uniform, bulk
cooling term to mimic atmospheric radiative cooling. We
set realistic boundary conditions and fluid parameters,
within the limit of available computational resources, and
vary the single value of radiative cooling. We describe and
quantify the resulting dynamics, comparing it with known
results on the variation of radiative cooling in CRMs.

Notably, Robe and Emanuel (1996). found that, as the
radiative cooling (constant in their idealised CRM exper-
iments) was increased, the convective mass flux showed
a roughly linear increase in response. This is expected
theoretically, as the subsidence velocity outside clouds is
expected to increase proportionally to the radiative cool-
ing (Robe & Emanuel, 1996; Shutts & Gray, 1999). By
mass conservation, this implies a similar increase in the
upward mass flux in clouds. However, there are no theo-
retical constraints on how this increased cloud mass flux
is reached. This increase could come from either increased
mean vertical velocity in clouds or increased cloud area.
The scaling of mass flux in clouds is central to the problem
of cumulus parametrisation as originally formulated by
Arakawa and Schubert (1974).

Robe and Emanuel (1996)’s numerical simulations
showed that most of the convective mass flux increase
with strong cooling is due to increased cloud area, while
vertical velocities in clouds remain approximately con-
stant. Additional evidence for this scaling has also been
seen in numerical simulations of Shutts and Gray (1999).
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and Parodi and Emanuel (2009). Observational data (see
table 1 of Davies et al. (2013).) found a high correlation
between total precipitation and precipitation area (closely
related to cloud coverage), while finding a low correla-
tion between total precipitation and precipitation intensity
(closely related to updraft strength), strongly suggesting
that, in a convecting atmosphere, it is chiefly area rather
than intensity of convection that varies in response to
the large-scale forcing. The evidence for such a scaling is
reviewed in Yano and Plant (2012)., where the dynamic
implications of the independence of vertical velocity to
varying large-scale forcing while convective area increases
is also studied.

Here, we first investigate whether our simple model of
moist convection correctly captures this behaviour found
in more complex CRM simulations. Second, we explore
whether this can be understood using simple scalings
for the vertical velocity in clouds. Importantly, we argue
that the small changes in vertical velocities are due to
small-scale convective processes, which limit their ability
to increase strongly in response to the enhanced radiative
cooling.

The rest of the article is organised as follows. Section 2
describes the model and the parameters chosen for the
numerical experiments, along with a quick summary on
the large-scale balances that are expected from the model
equations. Section 3 summarises the results of our numer-
ical simulations. Section 3.1 briefly discusses the static
stability for the chosen fluid configuration in the pres-
ence and absence of moisture and radiative cooling. This
is followed by a detailed description of the behaviour of
the system when varying the bulk cooling in Section 3.2.
Chiefly, in Section 3.2.1 we examine the scaling of the
area fraction of the domain undergoing moist convec-
tion, the vertical velocity, and the convective mass flux
with the bulk-radiative cooling. In Sections 3.2.2–3.2.4, we
propose and examine predictions for the scaling of verti-
cal velocity extremes based on CAPE, buoyancy integrals,
and cloud-plume models. In Section 3.2.5, we compare
the velocity statistics for the moist model with the corre-
sponding dry convective model. We conclude the article in
Section 4 with a discussion of our results and avenues for
future work.

2 METHODOLOGY

2.1 Model and equations

Our starting point is the Rainy–Bénard equations of
Val2019, with an additional bulk cooling term −R in the
temperature equation, which represents the radiative cool-
ing to space, constant in space and time in our idealised

system. We write the equations explicitly in terms of the
temperature for a two-dimensional (x, z) Boussinesq fluid
with the buoyancy force proportional to the coefficient
of thermal expansion 𝛽. The equations for the velocity
u = (u,w), the temperature T, and the specific humidity q
(mass of water vapour per unit mass of air) are given by

𝛁 ⋅ u = 0, (1)
𝜕tu + (u ⋅ 𝛁)u = −𝛁p + 𝜈∇2u − 𝛽Tg, (2)

𝜕tT + u ⋅ 𝛁T + Γdw = 𝜅∇2T + Lv𝜏
−1(q − qs)+ − R, (3)

𝜕tq + u ⋅ 𝛁q = 𝜅q∇2q − 𝜏

−1(q − qs)+. (4)

Here, Γd is the dry-adiabatic lapse rate g∕cp with poten-
tial temperature 𝜃 defined as 𝜃 ≡ T + Γdz, g = (0, g) is the
amplitude of the acceleration due to gravity, cp is the spe-
cific heat capacity of dry air at constant pressure, and qs is
the saturation specific humidity of water vapour, which is a
function of temperature only in our case. Further, Lv is the
latent heat of condensation of water divided by cp, 𝜅 and 𝜅q
are the diffusivities of heat and moisture, respectively, and
𝜈 is the kinematic viscosity. a+ denotes the positive part
of a, where a+ = 0 when a is negative and a+ = a when
a is positive. 𝜏 is a time-scale of condensation, which is
set to be very small, so that condensation is almost instan-
taneous whenever the specific humidity of water vapour
q > qs. Note that condensates are assumed to precipitate
instantaneously, so there are no suspended condensates
(no sustained clouds) in our simulations.

In this system, q is assumed always to be small, such
that virtual effects arising from the presence of water
vapour are neglected. Thus, the changes in density and
heat capacity of air due to water vapour are not included
in the model. The simplified Clausius–Clapeyron equation
for the saturation specific humidity of water vapour in the
model is given by (Vallis et al., 2019)

qs(T) = q0 exp 𝛼(T − T0), (5)

where T0 = 300K, with q0 being the saturation specific
humidity at T = T0.

It remains to specify the boundary conditions for the
system. The domain is periodic in the horizontal direction.
The temperature and specific humidity are kept constant
at the top and bottom boundaries while the fluid is held
motionless. The values are

u(z = 0) = u(z = 10 km) = 0; (6)

T(z = 0) = 300 K; (7)

T(z = 10 km) = 230 K; (8)

q(z = 0) = 0.8qs(300 K) = 0.02 kg ⋅ kg−1; (9)

q(z = 10 km) = 0.1qs(230 K) = 5.26 × 10−5 kg ⋅ kg−1
.

(10)
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The bottom and top surfaces are held at constant rela-
tive humidities of 80% and 10% respectively. Henceforth,
we use Tbot and qbot to denote the set temperature and
specific humidity at the lower boundary and Ttop and qtop
to denote the same quantities at the top boundary. The
temperature difference between the lower surface and the
upper surface is 70 K, which is smaller than the “dry adia-
batic” value 100 K; the underlying dry system is thus stable
to dry convection. Other possible boundary conditions
include various combinations of prescribed constant heat
flux or constant moisture flux. We found that using fixed
flux for temperature or moisture often led to a drift in these
values until the boundary became supersaturated. In the
interest of continuity from Val2019, simplicity in under-
standing the underlying stability, and to avoid any numeri-
cal issues at the boundary, we retain the fixed-temperature
boundary conditions.

The equations are written here in terms of the tem-
perature T rather than buoyancy b (as in Val2019) and
with changes in density expressed through change in T
assumed to be proportional to the expansion coefficient 𝛽.
The choice of using temperature is to help readers to make
direct comparisons with dimensional, atmospheric values.
Dynamically, these equations are identical to the equations
in Val2019, except for the bulk-cooling term, which is the
main focus of our study.

We solve the adimensionalised equations (Equations
1–4) with length, time, and temperature normalised by
1 km, 1 hr, and 1 K respectively. The equations are solved
in Python using the initial value problem (IVP) command
from the Dedalus package (Burns et al., 2020). Dedalus

provides an open-source framework for solving differen-
tial equations by spectral decomposition. The equations
are solved by decomposition into spectral bases, using
Fourier bases for the horizontal direction and Chebyshev
polynomial bases for the vertical direction. Dedalus allows
the user to simply input differential equations as strings,
allowing for quick and easy code development.

It is possible here to define length, time, moisture, and
temperature scales based on the model parameters and
find non-dimensional parameters (such as the Rayleigh
number) that describe the dynamics of the system fully,
as is done in previous studies of idealised moist convec-
tion (Pauluis & Schumacher, 2010; Vallis et al., 2019). We
note here that the stability and scaling of the dynamical
response of the model itself to varying model parameters is
a problem of great interest to a wide section of researchers.
However, the current study is focused on understanding
the scaling of moist convection in the atmosphere using
the idealised model rather than a study of the model itself.
We include a short note on the non-dimensionalisation
of the equations in Appendix A to enable comparison
with previous direct numerical simulation studies for the
interested reader.

Table 1 summarises the parameters and scales used in
the simulations. The simulation corresponds to a domain
100km wide and 10km high. Values of temperature,
specific humidity, and saturation specific humidity are
realistic. We set large values for the dissipation constants
𝜅, 𝜈, and 𝜅q, while keeping their ratios realistic. That
is, the non-dimensional constants of viscous forces, the
Prandtl number Pr = 𝜈∕𝜅 and the water-vapour Prandtl

T A B L E 1 Parameters used for simulations of moist internally cooled convection with varying R, solved using Dedalus on a
100km × 10km domain and a 2048 × 256 grid. We set Tbot = 300K, Ttop = 230K, qbot = 0.8qs(Tbot), and qtop = 0.1qs(Ttop). In other
simulations, 𝜅, 𝛽g, and the boundary conditions are varied and the chosen parameters are stated clearly in the text describing the results.

Quantity Value in simulation Physical units Typical atmospheric value

Length 1 1 km –

Time 1 1 h –

Temperature 1 1 K –

𝜅 0.004 1.1m2 ⋅ s−1 ∼ 2 × 10−5 m2 ⋅ s−1

𝜈 0.0028 0.77m2 ⋅ s−1 ∼ 1.5 × 10−5 m2 ⋅ s−1

𝜅q 0.0052 1.43m2 ⋅ s−1 ∼ 2.6 × 10−5 m2 ⋅ s−1

𝛽g 1 7.5 × 10−5 m ⋅ s−2 ⋅ K−1 ∼ 0.03m ⋅ s−2 ⋅ K−1

Γd = g∕cp 10 10K ⋅ km−1 10K ⋅ km−1

Lv∕cp 2500 2500 K ∼2500 K

q0 0.025 0.025kg ⋅ kg−1 0.025kg ⋅ kg−1

𝛼 0.05516 0.05516K−1 ∼ 0.055K−1

R [0 − 0.3] [0 − 7.2] K ⋅ d−1 [1 − 2] K ⋅ d−1
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number Prq = 𝜅q∕𝜅 are both set to their dry-air values
of 0.7 and 1.3 respectively. Thus, we are simulating an
atmosphere where the viscous, dissipative forces are far
larger in magnitude and the buoyancy force (𝛽g) is weaker
than in reality. The Rayleigh number Ra is 6.25 × 109,
where the definition of the Rayleigh number follows the
one in Val2019 (see their equation 4.15a; more details can
be found in Appendix A). Increasing the Rayleigh num-
ber by decreasing the dissipation constants would require
a far higher resolution numerical grid and much greater
computational resources to have a well-resolved
energy cascade in the absence of any subgrid-scale
parametrisations.

The time-scale of condensation 𝜏 is set small enough
to ensure that large regions of supersaturation (i.e., with
relative humidity larger than 100%) do not develop any-
where in the domain, with the maximum relative humidity
attained staying below 1.02. This ensures that all simula-
tions are in the regime of instantaneous condensation and
precipitation. For the largest value of R = 7.2K ⋅ d−1, this
corresponds to 𝜏 = 0.36 s or 1 × 10−4 in simulation units.
For smaller values of R, 𝜏 is increased appropriately to have
faster simulation wall time. We have checked via shorter
runs that the precise value of 𝜏 chosen does not affect
the main results as long as the simulation remains in the
regime of instantaneous condensation.

2.2 Large-scale energy balance

For a system in thermal equilibrium, the sum of the sensi-
ble heat flux and the latent heat flux into the system from
the boundaries must balance the net radiative cooling in
the domain. This is expressed as

𝜅

Lz

(
𝜕zT|||z=Lz

− 𝜕zT|||z=0

)
+ Lv

𝜅q

Lz

(
𝜕zq|||z=Lz

− 𝜕zq|||z=0

)
= R.

(11)

The above equation is derived by first summing
Equation (3) and Equation (4) multiplied by Lv and then
considering the domain average of the resulting equation
in the steady state (overbars denote horizontal and time
averages). Time and horizontal derivatives vanish, due to
the steady-state condition and the periodic boundary con-
ditions respectively. Since w = 0 at the top and bottom
boundaries, the domain average depends only on the ver-
tical gradients of the temperature and specific humidity
evaluated at these boundaries.

The four terms on the left-hand side (LHS) of Equation
(11) are the sensible heat flux into the domain from the top
and bottom boundaries and the latent heat flux from the
top and bottom boundaries, respectively. The four terms
summing up to R is a check that the simulations are in

thermal equilibrium. The heightwise heat transfer can be
deduced by considering only the horizontal average of
the sum of Equation (3) and Lv times Equation (4). An
integration in the variable z between z and Lz gives

w(T + Lvq) − 𝜕z(𝜅T + Lv𝜅qq) = R(Lz − z) + C0. (12)

Here again, the overbar indicates the time and hor-
izontal average at a given height z and C0 is a constant
of integration equal to (minus) the sum of the outgoing
latent and sensible heat flux at the top boundary

(
C0 =

−𝜕z(𝜅T + Lv𝜅qq)|||z=Lz

)
. The first two terms on the LHS

represent the convective transport of sensible heat and
latent heat, respectively, while the latter two terms repre-
sent the conductive transport of sensible heat and latent
heat. The sum of these is thus a straight line in z with
slope −R. The convective transport terms show large vari-
ations in time, and Equation (12) is not satisfied at any
instantaneous time. Statistically, however, Equation (12)
is satisfied in our simulations, which is essential to ensure
that the statistics measured in the study represent the
true long-term, steady-state behaviour and not a transient
solution.

3 RESULTS

3.1 Conditional stability

For the temperature boundary conditions chosen, the dry
system (q = 0) with no radiative cooling (R = 0) is stable
to small perturbations, as the steady-state solution (u = 0,
𝜅∇2T = 0 ⇒ T(z) = (Ttop − Tbot)z∕Lz + Tbot) has a linear
temperature profile with a gradient of 7K ⋅ km−1 that is
less steep than the adiabatic lapse rate of 10K ⋅ km−1. In
the presence of moisture, the static stability is determined
by a combination of the moisture and temperature bound-
ary conditions. While the steady-state solution (q(z) =
(qtop − qbot)z∕Lz + qbot) is given by a linear decrease of q
with height, qs decreases much faster (exponentially) with
height, with condensation likely to trigger convection in
the system. The steady-state solution where condensation
occurs without convection and the latent heat is balanced
exclusively by thermal dissipation is discussed by Val2019
(section 5, “The drizzle solution”). When R is non-zero, the
steady-state solution depends on R—the variation of this
solution with R and its linear stability are not considered in
this study.

For the chosen qbot and qtop, the system is unstable
and shows moist convection even with R = 0. The con-
vection is not steady in time—instead, it is interspersed
by long time periods during which the fluid is quiescent
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F I G U R E 1 The temperature
and relative humidity profiles for
the moist simulations with R = 0.
(a) The anomaly of the horizontally
averaged temperature profile T
with respect to the linear
temperature profile
Tlin = (Ttop − Tbot)z∕Lz + Tbot for
different times. (b) Average relative
humidity profile q∕qs for different
times. Time is in simulation units.

and the temperature gradually decreases while the
quantity of moisture in the domain increases, both
quantities relaxing towards a linear profile. Thus, the rel-
ative humidity q∕qs increases through both an increase in
q and a decrease in qs. When the domain reaches satura-
tion in some regions, it leads to local condensation and
convection, which quickly becomes space-filling. Rapid
convective adjustment brings the system back to a qui-
escent warm, dry state through condensation and latent
heating and the process repeats cyclically. Figure 1, show-
ing the average temperature and relative humidity profiles
at different times, summarises this behaviour. Initially, at
t = 0 (light red, solid curve), the temperature is warm in
the bulk and the relative humidity is well below 1 every-
where. The temperature slowly shifts towards the linear
profile (darker shades of red) until around t = 725, where
q∕qs between z ∼ 6 and z ∼ 8 is very close to 1. Conden-
sation occurs here, heating up the system and causing the
temperature to once again gain a strong positive anomaly
with respect to the linear profile (blue dashed curves),
with the domain becoming drier. At t = 800 (light, blue
dashed curve), the system is again where it was at t = 0
(light, red dashed curve) and returns to a quiescent state.
Supplementary Movie 1 in the Supporting Information
shows an animation of the relative-humidity field (top
panel) and the profiles of T (bottom left panel), q, and qs
(bottom right panel).

For R > 0, the dry steady-state solution (u = 0) is
given by a parabolic temperature profile in z such that
𝜕

2
z T = R∕𝜅, which can be solved analytically for the

fixed-temperature boundary conditions. The static stabil-
ity of the solution can be ascertained by checking whether

𝜕zT < −10 K ⋅ km−1 everywhere. In our case, static
stability holds everywhere for R < 5.76 × 10−2 K ⋅ d−1.
Thus, even a small magnitude of radiative cooling alone
destabilises the fluid layer and leads to dry convection.
The precise small value of R for which the moist convec-
tion changes from intermittent to continuous has not been
explored in this study. Instead, we focus on the response of
moist convection to varying radiative cooling rates, which
we discuss next.

3.2 Varying radiative cooling

In the rest of the article, we focus on the behaviour of the
system for five non-zero values of radiative cooling, R =
0.72, 1.5, 1.95, 3.6, and 7.2K ⋅ d−1, varying the magnitude of
R by a factor of 10. The boundary conditions and all other
fluid parameters are kept fixed, while R is varied. When R is
increased, the domain is cooled in the bulk and the average
domain temperature decreases. Due to the decreased tem-
perature, there is also lesser moisture in the domain, as qs
decreases with T and any moisture beyond the saturation
specific humidity is rapidly removed by condensation.

Figure 2 shows instantaneous snapshots of the rela-
tive humidity (q∕qs) for two flows with R = 1.5K ⋅ d−1 (top
panel) and R = 3.6K ⋅ d−1 (lower panel). The two snap-
shots are shown for the instant at which the largest vertical
velocity w is realised throughout the run. Thus, the snap-
shots are not representative of the flow at other times. In
particular, for the R = 1.5K ⋅ d−1 case, there are usually
several smaller cloud plumes in the domain at most times
(see Supplementary Movie 2). The snapshot shown here
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7 of 20 AGASTHYA et al.

F I G U R E 2 Instantaneous snapshots of the relative humidity (q∕qs) for two simulations with R = 1.5K ⋅ d−1 (top panel) and
R = 3.6K ⋅ d−1 (bottom panel). The snapshots are taken at the time with the largest w value of the whole run. Dark solid lines represent
clouds, that is, contours of q∕qs = 0.98.

is instructive in lending a hint about how extreme verti-
cal velocities are generated. The largest values of w are
usually realised within plumes that have a large vertical
extent spanning almost the entire domain with a verti-
cally contiguous region of supersaturation, such as the
single plume in the top panel. For the lower panel,
this extreme w is realised in the plume centred close
to x = 10.

It is apparent from the snapshots that the flows with
larger R have a much larger area undergoing convec-
tion. This can be seen by comparing the fraction of the
domain occupied by the contours of 98% relative humid-
ity. While there are no real clouds in the simulation,
that is, we do not track condensed liquid water, it is
still possible to study cloudy dynamics by considering
“clouds” as grid points that are supersaturated, that is,
where the condensation term in Equation (3) is non-zero.
Due to the sharp discontinuity of this term, we hence-
forth define clouds as grid points with q∕qs > 0.98. While
our analysis and results remain virtually unchanged if
we include only supersaturated points, having a slightly
lower relative humidity threshold gives greater cloud
statistics.

We now recall the theoretical expectations for the
response of a moist convecting atmosphere to increased
radiative cooling. As mentioned in the Introduction, in
clouds the total upward mass flux Mc is expected to
increase linearly with radiative cooling. Indeed, in the con-
cluding remarks of the work by Robe and Emanuel (1996).,

the authors point out that, “The net upward mass flux car-
ried by moist convection is strongly constrained by the
requirement that the subsidence warming outside of the
active condensation balance the radiative cooling.” For a
Boussinesq fluid with constant density, the mass flux per
cloud is simply proportional to the average upward veloc-
ity in clouds, which we denote wc. If we denote with 𝜎 the
area fraction of cloudy grid points at a given height, mass
conservation yields

Mc = 𝜎wc = (1 − 𝜎)wsub, (13)

where Mc is the cloudy upward mass flux and wsub is
the average downward vertical velocity outside clouds.
The crux of Robe and Emanuel’s statement is that, since
wsub is unaffected by condensation, it must depend only
on the radiative cooling. This can be seen by consid-
ering Equation (3) outside clouds. Far away from the
vertical boundaries, we can neglect diffusion and, assum-
ing that horizontal advection is small, the time and
horizontal average of Equation (3) over the subsiding
region gives

⟨w(Γd + 𝜕zT)⟩sub ∼ −R, (14)

where ⟨⟩sub indicates the average over the clear-sky
regions. For the average velocity wsub outside clouds,
we have

wsub(Γd − Γm) ∼ R, (15)
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AGASTHYA et al. 8 of 20

where Γm = −𝜕zTsub is some typical (moist) value of
the lapse rate of the domain outside clouds, which is
meant to represent the moist adiabatic lapse rate in
clouds. Indeed, moist convection in clouds is expected
to bring the whole atmosphere towards this moist adi-
abatic lapse rate through gravity waves (Bretherton &
Smolarkiewicz, 1989). Thus the lapse rate outside clouds
is expected to match the moist adiabatic lapse rate in
clouds. Combining Equations (13) and (15) yields

Mc = 𝜎wc ∼ (1 − 𝜎)R∕(Γd − Γm). (16)

If we assume that Γm remains fixed with R and 𝜎 ≪

1, this gives Mc ∼ R, which is the oft-repeated state-
ment that the cloudy mass flux increases in equilibrium
with R.

3.2.1 Scaling of convective mass flux

The above theoretical constraints on the total mass flux
in clouds Mc = 𝜎wc do not predict whether the upward
mass flux increases due to an increase in the intensity of
convection and faster updraughts (greater wc) or through
an increase in the amount of convection that occurs at a
given time (greater 𝜎), or a combination of the two effects.
As mentioned in the Introduction, simulations in CRMs
(Robe & Emanuel, 1996) have found that an increase in
R leads to a large relative increase in 𝜎, while wc remains
nearly fixed even for large variations in the magnitude of
the imposed cooling.

Qualitatively, Figure 2 seems to indicate larger cloud
fraction with stronger radiation in our simple model as

well. We quantify the variation in wc, 𝜎, and Mc for
increasing R by measuring their individual relative
changes, relative to their value in the simulation with the
smallest R of R0 = 0.72 K ⋅ d−1. This is written as

Δ𝜎∕𝜎 = 𝜎(R) − 𝜎(R0)
𝜎(R0)

, (17)

and similarly for wc and Mc. The relative changes at height
z = 4.5km are shown in Figure 3a. This height corre-
sponds to a strongly convective zone, where wc is close to
its maximum value in the vertical while 𝜎 is increasing
with height. We consider this height as representative of
the convective strength and it is analogous to the height
selected by Robe and Emanuel (1996). for their analysis.

Figure 3a shows that the cloudy area fraction increases
linearly with R, with a tenfold increase in R (orΔR∕R = 9)
leading to a tenfold increase in 𝜎. wc shows only a small
change in magnitude, approximately doubling for the ten-
fold increase in R, while the convective mass flux Mc shows
a superlinear increase. It is clear that the bulk of the con-
tribution to the increased mass flux comes from the large
increase in the cloudy area fraction, consistent with pre-
vious results from CRMs and observations. Additionally,
we have checked for two cases (R = 1.5K ⋅ d−1 and R =
3.6K ⋅ d−1) that doubling the horizontal size of the domain
leaves wc and 𝜎 unchanged.

Figure 3b shows the variation of wsub with R at the
same height in the domain. The relative change in wsub is
> 20, showing that the subsidence velocity increases far
faster than the increase in magnitude of R. We compare
the subsidence velocity with the theoretical estimate from
Equation (15), with Γm taken to be the moist adiabatic

F I G U R E 3 (a) The relative change in the cloud volume fraction 𝜎, the time-averaged vertical velocity in clouds wc, and the convective
upward mass flux Mc measured at z = 4.5km. The y = x line is shown for reference. (b) Average measured downward velocity outside clouds
wsub compared with a descent in equilibrium with radiation and lapse rate equal to Γm (see Equation 15) at z = 4.5km. Here, for Γm we use
the theoretical moist adiabatic lapse rate for the domain average temperature measured in the simulation (see Equation 18).
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9 of 20 AGASTHYA et al.

lapse rate given by (see equation 3.4 of Val2019)

Γm = Γd

1 + Lv𝛼qs(T)
, (18)

where T is the measured horizontal average temperature
at a given height. We emphasise here that the measured
lapse-rate −dT∕dz in the domain differs slightly from
the theoretical moist-adiabatic lapse rate Γm—the mea-
sured value is about 1K ⋅ km−1 steeper than Γm in all
simulations—leading to an overestimate for wsub.

This discrepancy comes from the fact that the aver-
age measured wsub hides significant spatial variability in
vertical velocity over the domain, while the theoretical
estimates rely on the idealised assumption of a uni-
formly subsiding dry region outside clouds with perfectly
coherent rising moist plumes within clouds. This small
quantitative mismatch is interesting and deserves further
investigation, but is beyond the scope of this study. For our
purpose, it is sufficient to understand (Γd − Γm) as just a
multiplying lapse-rate scale for wsub so the product scales
as R. Note that wsub itself thus scales approximately with R
(Figure 3b), though not exactly. The value of Γm increases
with R (moist-adiabatic lapse rate becomes less steep) due
to the decrease in temperature at a given height—larger R
leads to a colder domain, leading to a decrease in qs and
thus a moist lapse rate that is closer to the dry lapse rate.

It is therefore clear that, in a moist-convective system,
the subsidence velocity outside clouds is set by a combina-
tion of R and the response of the temperature field to R. A
tenfold increase in R also leads to a halving of (Γd − Γm)
(or a doubling of (Γd − Γm)−1), which explains the large
increase of wsub. The subsidence velocity is thus directly
sensitive to R and is also influenced by the changing lapse
rate, which is an indirect effect of changing R. In summary,
our results show that, consistent with theory and CRM
simulations, the subsidence velocity scales approximately
linearly with the radiative cooling amplitude, albeit with a
slight change in the proportionality factor due to changes
in the moist adiabatic lapse rate. As a consequence, the
total cloud mass flux increases linearly with the radiative
cooling amplitude, largely due to increased cloud frac-
tion, while the average velocity in clouds remains largely
insensitive to the radiative cooling rate. The small change
over a large range of parameters is an indication that the
convective velocity scale is likely set by small-scale, con-
vective processes alone, a hypothesis that we investigate
further next.

3.2.2 Vertical velocity

The simple model of moist convection currently under
investigation correctly captures the variation in the cloudy

mass flux with changing R, as results from previous work
with CRMs have shown. The vertical velocity in the model
as yet remains unconstrained and it still remains unclear
what sets the updraught velocities. We investigate the
velocity extremes and the distribution of vertical veloc-
ity in the domain for different R. In all the simulations,
the median vertical velocity is slightly negative, with more
than half of the domain being occupied by subsiding flows
(w < 0). The up–down asymmetry is consistent with pre-
vious studies of dry stratified convection (Agasthya &
Muller, 2024; Berlengiero et al., 2012), with the −R term
breaking the up–down symmetry (discussed further in
Section 3.2.5). Further, the presence of moisture and con-
densation without evaporation in the model also leads to
latent heating of rising parcels of fluids, without a cor-
responding evaporative cooling of subsiding parcels. This
asymmetry exists in more complex models as well as in the
true atmosphere, due to the fact that some of the conden-
sates precipitate during ascent and are thus not present to
evaporate during descent.

Convective available potential energy (CAPE) is an
important measure used to characterise the instability of a
column of moist air. CAPE is a vertical buoyancy integral
calculated relative to a domain mean, where an idealised
parcel is assumed to rise first dry-adiabatically (𝜕zT =
−Γd), conserving its moisture content until it becomes sat-
urated (i.e., reaches the dew point), following which the
ascent is assumed to be moist-adiabatic (𝜕zT = −Γm, see
Equation 18). CAPE is used to estimate the maximum
kinetic energy such an idealised parcel can attain due to
buoyancy lifting. In general, for a parcel ascent that fol-
lows a given rising parcel temperature profile Tp(z), the
buoyancy integral Bi(Tp) up to a height z is given by

Bi(Tp) = 𝛽g
∫

z

0
(Tp(z) − T(z)) dz. (19)

The buoyancy integral leads to a prediction of verti-
cal velocity given by

√
2Bi for a parcel with temperature

Tp lifted through a background temperature profile T.
While CAPE, calculated using the moist-adiabatic ascent,
is commonly calculated for atmospheric soundings and to
predict the intensity of impending thunderstorms, (Singh
& O’Gorman, 2015) found a closer correlation between
the buoyancy integral of temperature extremes and the
maximum velocity in CRM simulations Bi(Textreme).

Here, we compare the 99.999th percentile (w99.999th)
as well as the maximum vertical velocity (wmax) at each
height with CAPE and the buoyancy integral velocity of
the 99.99th percentile, 99.999th percentile, and maximum
temperature attained at each height during the runs. The
upper panels of Figure 4 show wmax and w99.999th for three
values of R—the maximum w (red) remains remarkably
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AGASTHYA et al. 10 of 20

F I G U R E 4 Maximum vertical velocity wmax (solid line) and the 99.999th percentile vertical velocity w99.999th (dotted line) at each
height for (a) R = 1.5K ⋅ d−1, (b) R = 3.6K ⋅ d−1, and (c) R = 7.2K ⋅ d−1. This is compared with the velocity predicted by the buoyancy integral
of the maximum, 99.999th, and 99.99th percentiles of temperature (dashed lines from left to right) and CAPE (crosses). Panels (d) and (e)
show the values of the same quantities and their relative change respectively at z = 4.5km, indicated by a horizontal dashed line in the upper
panels, in addition to the average velocity in clouds wc.

similar even for large variations in R, while the 99.999th
percentile of w (purple) shows a small shift towards the
right. These represent the most rapidly rising thermal
plumes, with the fastest rising parcels without exception
lying inside clouds. Even as the cloudy mass flux and the
average downward velocity of the compensating subsid-
ing flow outside clouds both increase by an order of 20,
the maximum velocity in clouds as well as the average
velocity in clouds remains stubbornly fixed independent
of R. Zooming out momentarily, we found that the maxi-
mum vertical velocity at any height attained in the domain
stays strictly between 3.2 and 3.9m ⋅ s−1 even when Tbot
is raised to 302.5K or decreased to 297.5K, when Ttop is
increased or decreased by up to 15K, and even when 𝜅 is
halved, for various imposed values of R (a detailed study
of the dynamics of the model for varying parameters other

than R is not taken up in the current study). However,
when 𝛽g was increased by a factor of 5, an approximate
doubling of wmax was seen, indicating that wmax is most
closely related to the buoyancy integrals and the mech-
anism that sets the temperature anomaly of the cloudy
rising plumes.

Figure 4 also shows the vertical velocity predicted by
CAPE, as well as the buoyancy integrals of the high-
est percentiles of T. CAPE (orange crosses) seems like
an excellent prediction for wmax for R = 1.5K ⋅ d−1, as
seen in Figure 4a. This result, however, is not robust
when R is varied, as shown in Figure 4b,c, where CAPE
is a large overestimation of the vertical velocity. The
buoyancy integrals of the temperature extremes (going
from yellow to orange) predict the highest velocity per-
centiles extremely well, up to z ∼ 6km. The departure
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11 of 20 AGASTHYA et al.

of the temperature extremes from the domain average
temperatures (not shown) is also independent of R.
Figure 4d shows the values of wmax, w99.999th and the buoy-
ancy integral velocities at z = 4.5km as a function of R,
while Figure 4e shows the relative change of these quan-
tities as a function of the relative change in R. CAPE at
a fixed height increases linearly with increasing R—the
increase is due to the fact that the domain becomes colder
on average, while the temperature of a moist adiabatic
ascent remains fixed for the same boundary conditions.
The magnitudes of buoyancy integral velocities follow the
extreme vertical velocities closely, with the 99.99th per-
centile of temperature (yellow) being an excellent predic-
tor of the 99.999th percentile of w (purple). We also show
the average velocity in clouds wc for readers to make a
comparison with Figure 3a while noting the change in the
y-axis range.

The extreme velocities show a small increase (∼ 50%)
over the parameter range, which is broadly similar to
the growth in buoyancy integrals and in CAPE. How-
ever, the majority of this increase happens in going from
R = 0.7K ⋅ d−1 to R = 1.5K ⋅ d−1, following which the
extreme velocities remain nearly constant while CAPE
continues to grow linearly. It is important to note here that,
even if wmax grew similar to the CAPE velocity, the relative
increase is still very small compared with the increase in
𝜎 and Mc discussed in the previous section. Importantly,
regardless of the buoyancy estimate used to predict w
changes, these integrals are constraints on vertical velocity,
preventing its strong increase with R, and are responsible
for the fact that the increased mass flux is achieved almost
entirely through increased cloud fraction.

3.2.3 Velocity in individual clouds

In the previous section, we considered buoyancy integrals
of the temperature extrema from the entire simulation run
and found that these integrals scale very closely with the
extrema of vertical velocities from the simulation. While
this gives us cause for cautious optimism, it must be noted
that the profile of the maximum or 99.999th percentile
of temperature does not correspond exactly to any single
instant in the simulation. Here, we exploit the simplicity
of our idealised set-up to investigate individual clouds to
find the correlation between the maximum velocity within
a cloud plume and the buoyancy integral of this cloud. Not-
ing that the horizontally averaged temperature profile T
shows little variation in time, we measure the buoyancy
integral for individual clouds from the maximum temper-
ature attained at each height in the cloud. At leading order,
the balance between the advection term and the buoyancy
term in the vertical component of the momentum equation

(Equation 2) leads to

w𝜕zw ≈ 𝛽g(T(z) − T) ⟹ 1
2
(w(z)2 − w(z0)2)

≈ 𝛽g ×
∫

z

z0

(T(z) − T(z)) dz, (20)

where z0 is the height of the cloud base. Then, in a given
cloud, the parcel with the fastest vertical speed of ascent
wB should correspond to an upward-moving parcel, which
begins at z0 with vertical velocity w0 and accelerates at
a rate predicted by the buoyancy integral calculated with
respect to the maximum temperature in the cloud at the
given height. This leads to

max
x
(w(z)) ≈ wB(z) ≡

√
w2

0 + 2(z)

with

(z) = 𝛽g ×
∫

z

z0

max
x
(T(z) − T(z)) dz, (21)

where maxx f is the maximum of the function f at a
fixed height within the given cloud. Thus, wB is a pre-
diction for the maximum velocity inside a cloud, given
a profile of the maximum temperature inside the same
cloud.

Figure 5a shows the snapshot of the temperature
anomaly of a single “well-behaved” cloud from the simu-
lation with R = 1.5K ⋅ d−1, with the location of the vertical
velocity maximum corresponding well with the regions
shaded with the deepest red colour (warmest). A cloud
is defined as a contiguous region with q∕qs > 0.98, as in
the rest of the study. Additionally, we also impose the
condition that a cloud must contain at least one supersat-
urated (q∕qs > 1) grid point. This ensures that there are
no single grid-point clouds and the buoyancy statistics
are considered only where condensation is playing a role
in the dynamics. Clouds were identified using the “skim-
age.measure.regionprops” function of the scikit-image
Python package (van der Walt et al., 2014). Figure 5b
shows the maximum vertical velocity at each height
within the cloud, compared with the prediction wB from
Equation (21). We see that the predicted wB matches the
measured wmax excellently up to about the height at which
the cloud wmax profile reaches its maximum value in z.
The horizontal location of the w maximum in the cloud
(indicated by the black, dashed line in Figure 5a) also
indicates that this corresponds to a single, vertically rising
warm parcel. Above this height, which we denote as zmax,
wmax falls off, as the plume does not remain as coherent
and the temperature anomaly of the cloud decreases due
to a combination of adiabatic cooling of the fast-rising par-
cel, the decrease in moisture content due to condensation,

 1477870x, 2025, 766, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4902 by C
ochraneA

ustria, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



AGASTHYA et al. 12 of 20

F I G U R E 5 (a) Temperature anomaly with respect to domain and time-average horizontal mean in a chosen cloud plume. The
boundary of the cloud is the contour of 98% relative humidity and the black dashed line shows the location of the maximum w within the
cloud at a given height. (b) The maximum velocity wmax at each height for the cloud plume in panel (a) compared with the predicted vertical
velocity wB from the buoyancy integral. (c) The inset shows the scatter plot of wB and wmax within the cloud for all clouds in the simulation
with R = 1.5K ⋅ d−1 with w0, > 0. The main figure in panel (c) shows the same horizontally binned average of the same scatter plot for
other values of R. The dashed line represents the y = x line.

and turbulent entrainment of non-cloudy air at the edge
of clouds.

While wB (blue, dashed curve in Figure 5b) matches
wmax (orange, solid curve) very closely, it is still a small
overestimate. This is expected, given that a perfect bal-
ance between vertical advection and the buoyant forcing
is an idealisation, with diffusion, lateral mixing, and
non-hydrostatic pressure-gradient forces still playing
a part.

Figure 5a,b considers the behaviour of a single,
well-chosen cloud plume, which shows close to ideal
behaviour. To understand the overall behaviour of clouds
better, we consider all clouds in the simulation (sampled
every 0.5 hours) and calculate the buoyancy integral  up
to the height zmax at which the profile of wmax within the
cloud attains its maximum value. Since we are interested
in upward-moving plumes accelerated by buoyancy, we
choose those clouds that have w0 and  > 0. The inset to
Figure 5c shows a scatter plot of wB on the x-axis and the
maximum velocity wmax for all clouds for the simulation
with R = 1.5K ⋅ d−1. All points lie near a line of slope unity
(dark-dotted line). In the main panel, we present the same
data for varying R—the data are binned into intervals of
uniform wB and the average wmax for a given bin is plotted.
Again, for all R, the curves match almost exactly with the
line of slope unity, with wB being a small underestimate of
wmax for clouds with smaller wB and an overestimate for
clouds with larger wB. While the high frequency of sam-
pling can lead to the same cloud plume being sampled
multiple times over the course of its development, we have

checked that the result is robust even when the sampling
frequency is decreased to once every 20 hours, where each
consecutive snapshot is well decorrelated.

We found that larger values of wB (and hence wmax)
correspond to taller clouds, while the smaller values cor-
respond to clouds with a small vertical extent. The reason
that wB remains an overestimate for wmax in taller clouds
has been discussed above. For smaller clouds, we hypoth-
esise that the underestimate comes from smaller clouds
that develop close to the lower boundary and are accel-
erated upward by low-level horizontal convergence. We
must also note that the maximum vertical velocities here
are achieved by the upward acceleration of air parcels
during the evolution of the cloud plume, while we esti-
mate the cloud buoyancy using a frozen-in-time snapshot
of the temperature anomaly of the plume. The implicit
assumption here is that the vertical structure of the tem-
perature anomaly in the plume does not vary greatly in
time. While the close match between wB and wmax sug-
gests that the assumption is reasonable, caution must be
exercised in drawing conclusions from this calculation. We
have further checked that the same correlation holds for
wmax for the same cloud with the measured instantaneous
cloud buoyancy at prior times in the simulation, up to 10
simulation units prior.

Overall, the above results remain broadly consistent
with our hypothesis that, in individual cloud plumes, it
is small-scale temperature perturbations and anomalies
exclusively that drive the dynamics of the plume, with
minimum impact from large scales. This is true not only
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13 of 20 AGASTHYA et al.

of velocity extremes over the whole run, but also of the
velocity extreme in each cloud plume.

3.2.4 Predictions from entraining plume
models

In previous sections, we saw that the changes in vertical
velocities in updraughts were small and showed quanti-
tative agreement with buoyancy integrals. However, esti-
mating these buoyancy integrals requires the knowledge of
maximum temperatures or high temperature percentiles
in addition to the average temperature profile. Further, we
have seen above that, for a tenfold increase in R, the aver-
age vertical velocity in clouds and the vertical velocity of
the fastest rising parcels show a slow increase even as the
area of the domain showing moist convection increases
with R. The main impact of the variation in R is the change
in the temperature profile—the domain becomes colder
for larger R. Since we calculate the temperature profile of
a moist-adiabatic ascent from the surface where the sur-
face temperature and moisture boundary conditions do
not change, the theoretical moist-adiabatic profile stays
fixed for varying R. This cooling of the domain thus leads
to an increase in CAPE.

Unlike CRM simulations, where surface fluxes are
parametrised using bulk formulas, our simulations
develop a dissipative boundary layer where T and q
decrease steeply. Calculation of CAPE assumes ascent
along a dry adiabat from the surface up to the lifting con-
densation level (LCL), followed by ascent along a moist
adiabat. In our case, instead of following a dry adiabat to
the LCL, surface parcels are strongly affected by diffusion,
as the diffusive boundary layer covers a significant fraction
of the sub-cloud layer (∼ 50%) and the lapse rate in this
layer is significantly steeper than the dry adiabatic one.
The gradients in the diffusive layer also become steeper
with increasing R, in accordance with Equation (11).
Attempts to construct modified moist-adiabatic ascents
using the domain-average temperature profile from above
the dissipative layer, for example, starting from the height
of lowest cloud formation from the simulation or from
the height at which the domain-mean temperature first
reaches the dew point corresponding to qbot, also yield
poor predictions of wmax for varying R.

Here, we attempt to improve our quantitative estimates
of maximum velocity based on a theoretical estimate of
CAPE that accounts for the environmental temperature
profile as well as entrainment, which is the mixing of
non-cloudy, drier, and colder air from the environment
into cloud plumes. Entrainment is an important process
in the ascent of cloud plumes, one that we expect to play
a significant role in our case, where the temperature of

the environmental air varies significantly with variation
in R. We thus investigate the changes in vertical velocities
further in light of recent theoretical developments on what
sets the strength of updraughts (Singh & O’Gorman, 2013,
2015).

Singh and O’Gorman (2013). introduced a model to
quantify the effect of entrainment on undilute ascent.
The model begins by assuming that the atmosphere is
composed mainly of dilute cloud plumes, which entrain
environmental air at a typical rate of 𝜖 km−1. The rapid
equilibration of the horizontal temperature field by grav-
ity waves means that cloud plumes on average have zero
buoyancy relative to the environment. In our set-up, where
there are no virtual effects, this simply translates to the
clouds and the environment being at the same tempera-
ture. (This is true in our simulations, where the average
temperature anomaly in clouds is a very small positive
value.) Thus, the temperature profile of the entire domain
is identical to that of a cloud plume with this typical
entrainment rate of 𝜖.

The maximum vertical velocity then arises from the
ascent of a fully undilute (0 entrainment) plume in this
environment. The temperature anomaly ΔTu of this undi-
lute plume with respect to the environment follows the
relation

𝜕

𝜕z
(ΔTu) =

𝜖Lv

1 + 𝛼Lvqs(T)
(1 − Re)qs(T), (22)

where Re is the horizontal domain average relative humid-
ity and T is the average temperature at a given height z.
ΔTu is proportional to the entrainment rate, because an
undilute plume in an atmosphere with more entraining
cloud plumes is relatively more buoyant than an undi-
lute plume in an atmosphere with less entraining cloud
plumes. This approach has the added advantage that it
requires only an estimation of the domain-averaged tem-
perature profile and not any other measurements from
the simulations, such as the high-percentile temperature
values.

We use a fixed Re = 0.4, which is a typical value of rela-
tive humidity in the bulk of the domain. We have checked
that replacing Re with the measured, vertically varying
value from the simulations does not affect the results
significantly. Assuming entrainment to be inversely pro-
portional to height (Holloway & Neelin, 2009; Singh &
O’Gorman, 2013), we estimate ΔTu by starting the inte-
gration from the theoretical LCL for the given boundary
conditions (z = 0.404km). The actual height of the first
instance of condensation remains below 500m in the
simulations for all R. The estimate of ΔTu leads to a pre-
diction for wmax via the buoyancy integral as given by
Equation (19).
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AGASTHYA et al. 14 of 20

F I G U R E 6 Maximum
(solid curve) and 99.999th
percentile (dotted line) vertical
velocity at each height for the
entire simulation run
compared with the estimated
vertical velocity from the
buoyancy integral for a parcel
with temperature anomaly
given by Equation (22) with
three different entrainment
rates 𝜖 for (a) R = 1.5K ⋅ d−1,
(b) R = 3.6K ⋅ d−1, and (c)
R = 7.2K ⋅ d−1.

Figure 6 shows the predicted velocity using the
temperature of the undilute plume ascent for three
different values of 𝜖 for three values of R. The predicted
velocity is 0 until the height of the LCL, following which
it increases to match wmax very closely between z ∼ 3 and
6.5km, with the closest matching 𝜖 increasing for increas-
ing R. Higher entrainment for higher R flows can be
expected from the increased area undergoing convection,
which leads to greater turbulent kinetic energy and mix-
ing and a lower typical distance between plumes, which
leads to the inter-plume region being less quiescent. If we
assume as given that an entraining plume sets the environ-
mental temperature, the above results can be understood
as an estimate for the degree of entrainment in clouds in
the simulations, with enhanced entrainment (𝜖 going from
approximately 1.5∕zkm−1 to 3∕zkm−1) arising for larger
R. Importantly, we see that to have large increases in wmax
with increasing R would need relatively large changes in
the entrainment rate as suggested by the above plume
model.

3.2.5 Comparison with dry convection

Finally, to understand the effect of moisture on convection,
we compare the moist simulations with their correspond-
ing dry simulations, which are run with all parameters
identical except Lv, which is set to zero, so that moisture is
now a passive tracer without any impact on the dynamics,
given that virtual effects are ignored in the model. Uni-
formly cooled dry convection, known as the Prandtl sys-
tem, is a well-studied system in fluid dynamics literature
and finds several applications in the study of the atmo-
spheric boundary layer (see chapter 3 of (Emanuel, 1994)).
The differences in stability and heat transfer between the
dry and moist simulations are also of broader interest to

researchers interested in the study of models of thermal
convection, with possible applications to other natural
settings. These differences could also hold insights into
the dynamics of atmospheric moist convection.

Figure 7a shows the histogram of the vertical veloc-
ity for values of R for the dry case (dashed lines) as well
as the moist case (solid lines). Both histograms peak to
the left of w = 0, with the median velocity being neg-
ative (downward). The distributions of the dry systems
are flatter near w = 0, with the tails of the distribu-
tion being nearly symmetric. We note in passing that
the dry case without radiative cooling has an up–down
symmetry (the system remains invariant under the trans-
formation T ← −T, z ← −z), and interior cooling breaks
this symmetry (Agasthya & Muller, 2024; Berlengiero
et al., 2012). The moist distributions, on the other hand,
are more sharply peaked, with broad tails. The asym-
metry is also more pronounced, with the positive tail of
the moist distribution being broader than the negative
tail. Physically, this additional up–down asymmetry in
the moist case comes from precipitation. Upward con-
vection is associated with condensation and concomitant
release of latent heat, thus occurring on a moist adiabat.
However, since all condensates are assumed to precipitate
instantaneously in our simple model, the downward con-
vection does not contain condensates or the correspond-
ing latent cooling from evaporation, and instead occurs
on a dry adiabat. Note that the up–down asymmetry in
moist convection is also consistent with energetic argu-
ments, even in the absence of interior radiative cooling
(Bjerknes, 1938).1

Variation in R also impacts the histograms. Increas-
ing R increases the overall convection in the domain, as
measured by the convective heat flux wT, leading to larger
kinetic energy and greater velocities on average. This is
seen as a flattening of the distribution of w and a shift of
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15 of 20 AGASTHYA et al.

F I G U R E 7 Figure showing comparison of the statistics of vertical velocity w measured at height z = 4.5km for moist simulations
(solid lines) and dry simulations (dashed lines). (a) Normalised log histogram of simulations for two different values of R (see legend). The
dotted vertical line shows w = 0. (b) Relative change in the value of the 99.99th percentile, 0.01th percentile, and the root-mean-square value
of w plotted against relative change in R. (c) The fraction V+ of grid points with w > 0 and the skewness plotted against R.

the median w slightly to the left. It is worth noting that,
in the dry case, both the positive and the negative ends of
the distribution shift outward for an increase in the mag-
nitude of R. However, in the moist case only the negative
end of the distribution shifts significantly, while the pos-
itive extrema remain nearly fixed—this phenomenon in
the moist case has been discussed in detail in the previous
sections. We can quantify the shift in the distribution by
looking at their relative changes. Figure 7b shows the rela-
tive change in the 0.01th percentile, 99.99th percentile and
the root-mean-square (r.m.s.) value of w at a fixed height
for dry and moist simulations.

Indeed we see that, in the dry cases (dashed lines),
increasing R leads to a proportional increase in the
fastest updraughts (99.99th percentile) and the fastest
downdrafts (0.01th percentile), along with an increase
in the typical magnitude of w as measured by its r.m.s.
value. The subsiding branch of the moist distribution
behaves similarly to the dry distribution, while the r.m.s.
value shows a large increase compared with the dry
simulations.

Finally, in Figure 7c we study the fraction V+ of the
domain that has w positive (red curves). We emphasise
here that the area fraction V+ is different from the cloudy
area fraction 𝜎 discussed in earlier sections—the latter is
a feature of moist convection alone and is closely associ-
ated with moist convective plumes. V+ on the other hand
includes any point in the domain that is instantaneously
moving upward, even far away from clouds or convective
plumes, which could be caused either by turbulent fluc-
tuations or gravity waves. Such upward motion does not
necessarily lead to condensation. For both moist and dry
simulations, V+ lies just below 0.5. This asymmetry has
been studied previously (see (Agasthya & Muller, 2024)),
wherein highly convective, turbulent flows have nearly

half of the domain moving upward even in the presence
of a strong up–down asymmetry. A better measure of
the asymmetry is the skewness measure S, also shown
in Figure 7c (purple curves). The skewness of the dry
and moist simulations decreases with increasing magni-
tude of R. However, the skewness in the moist case is far
higher, indicating a greater degree of asymmetry in the
dynamics.

In the dry case, the large-scale balances given by
Equations (11) and (12) are still valid, with the moisture
terms dropping out of the equations. To compare the dry
and moist simulations further, we revisit the heat-transfer
equation (Equation 12), which when averaged over the
entire domain and divided throughout by the product RLz
gives

⟨wT⟩
RLz

+ Lv
⟨wq⟩
RLz

+ 𝜅ΔT
RL2

z
+ Lv

𝜅qΔq
RL2

z
= 1

2
+ C1. (23)

Here ⟨⋅⟩ represents the domain average of a quantity, ΔT
and Δq are the temperature difference Tbot − Ttop and
the moisture difference qbot − qtop, respectively, while C1
is a constant proportional to C0 given by C0∕(RL2

z). We
remind the reader that C0 represents the total heat flux
(sensible + latent) at the upper boundary and thus C1 is
the (negative of the) average non-dimensionalised heat
flux out of the domain at the top boundary for each
simulation.

The four terms on the LHS are non-dimensionalised
heat fluxes. The first two terms represent convective heat
fluxes and the next two terms represent conductive heat
fluxes, normalised by the net radiative cooling. We hence-
forth refer to these quantities as Term1, Term2, Term3, and
Term4 respectively. The scaling of non-dimensionalised
heat fluxes (usually referred to as the Nusselt number in
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T A B L E 2 The first four columns show the non-dimensional values of convective sensible heat flux, convective latent heat flux,
conductive sensible heat flux, and conductive latent heat flux corresponding to the four terms of Equation (23) for the different values of R in
the dry and moist simulations. The last column shows turbulent kinetic energy given by ⟨|u|2∕2⟩ in m2 ⋅ s−2.

Term1 Term2 Term3 Term4

⟨wT⟩∕(RLz) Lv⟨wq⟩∕(RLz) 𝜿𝚫T∕(RL2
z) 𝜿qLv𝚫q∕(RL2

z) TKE (m2 ⋅ s−2)

R (K ⋅ d−1) Dry Moist Dry Moist Dry Moist Dry Moist Dry Moist

0.72 0.1018 0.0235 0 0.2188 0.0933 0.0933 0 0.0864 0.0916 0.013

1.5 0.1074 0.0282 0 0.2807 0.0448 0.0448 0 0.0415 0.194 0.0283

1.95 0.1072 0.0309 0 0.2898 0.0345 0.0345 0 0.0319 0.2476 0.0376

3.6 0.1013 0.0320 0 0.300 0.0187 0.0187 0 0.0173 0.402 0.0685

7.2 0.0933 0.0395 0 0.2782 0.0093 0.0093 0 0.0086 0.7204 0.2054

the literature) has been studied widely for diverse models
of thermal convection (Bouillaut et al., 2019; Shraiman
& Siggia, 1990), including Rainy–Bénard convection
(Vallis et al., 2019). While we do not explore wide ranges
in the parameter phase-space, we believe that the varia-
tion of these fluxes for the changes in R that we impose can
be the starting point for researchers interested in study-
ing the behaviour of a moist internally cooled convective
system.

In Table 2, we compare these terms for the dry and
moist simulations. For the dry case, Term2 and Term4 are
identically 0, since there is no moisture in the domain.
Since ΔT is kept fixed, Term3 remains the same for
both dry and moist simulations for each value of R and
decreases as 1∕R.

For the dry simulations, Term1 remains nearly fixed,
showing an overall small decrease, with a small increase
from R = 0.72K ⋅ d−1 to R = 1.5K ⋅ d−1 followed by a
monotonic decrease. This indicates that the convective
heat flux scales sublinearly with R. The sum of Term1
and Term3 always remains lower than 0.2 and both terms
decrease with R, indicating that the fluxes at the bound-
aries are the dominant contribution to balancing the radia-
tive cooling, since from Equation (23) this requires |C1| >
0.3. This contribution also become increasingly larger for
larger R. For the moist simulations, on the other hand,
Term1 increases significantly with increasing R, while
Term2 increases until R = 3.6K ⋅ d−1 and then decreases.
We would expect that the term would continue to decrease
for even larger R as the domain becomes colder, hence
drier, and its behaviour starts to approach the dry sys-
tem. The regime for the first four values of R, where both
Term1 and Term3 increase in tandem, is interesting and
deserves further investigation. We hypothesise that, ini-
tially, increasing R acts by strongly destabilising the col-
umn of fluid, leading to more convective plumes, which
lead to more dry convection, and condensation due to the

rising plumes leads to increased latent heat flux. Why this
trend is opposite in dry convection and at what values of
R the drying effect become dominant is an open question
that is beyond the scope of the current study.

Finally we note that the sum of the four terms is
larger in the moist simulations compared with dry con-
vection, decreasing from 0.42 to 0.33 from the small-
est to the largest value of R. This indicates that the
boundary heating contribution is less important, which is
expected given that condensation acts as an extra source
of heating within the domain. The latent heat convective
flux (Term2) is indeed the dominant contribution to the
heat balance.

While in both cases the net heat transfer is identical
and is set by the large-scale balances with R, in the moist
case the transport of moisture also contributes to heat
transfer by latent heating. A moist updraught simultane-
ously transports sensible and latent heat upward. For this
reason, the dry systems have a larger kinetic energy and
need to have more convection, as indicated by Term1 being
larger in magnitude in the dry simulations. The final col-
umn in Table 2 shows the domain-averaged dimensional
turbulent kinetic energy (TKE) for each value of R. As
expected, the moist simulations have a lower TKE com-
pared with the dry simulations. We also see that the moist
simulations show a superlinear increase in TKE with R,
where, for a tenfold increase in R, there is a 15-fold increase
in TKE. This is in contrast to the dry simulations, where
the increase is sublinear. Figure 8 shows instantaneous
temperature and vertical velocity snapshots of moist con-
vection (left panels) and dry convection (right panels). The
moist case shows one strong rising hot, moist plume and
a broad region of subsidence outside this plume, whereas
the dry convection has an equal number of rising and
subsiding coherent plumes, respectively. This is consistent
with the large difference in the skewness measure and the
larger magnitude of ⟨wT⟩ and TKE in the dry simulations.
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17 of 20 AGASTHYA et al.

F I G U R E 8 Instantaneous snapshots of the heightwise temperature anomaly in K (top panels) and vertical velocity in m ⋅ s−1 (lower
panels) for dry simulations (left panels) and moist simulations (right panels) for the case of R = 1.5K ⋅ d−1.

4 CONCLUSION AND
DISCUSSION

We have presented here a study of Rainy–Bénard con-
vection, introduced by Vallis et al. (2019)., in line with
several similar models that have been studied earlier. We
run simulations for realistic fixed boundary temperature
and moisture boundary conditions on a two-dimensional
(2D) domain with aspect ratio 10 and vary the radiative
cooling R. We analyse and present the results for five differ-
ent values of R. The boundary conditions and parameters
are chosen such that, in the absence of radiative cooling
(R = 0), the system is conditionally unstable to moisture,
that is, the dry system is stable and the moist system is
unstable without steady convection (the domain alternates
between long phases of quiescence and short bursts of con-
vection). For the smallest value of (non-zero) R studied
here, the dry system without moisture and the moist sys-
tem show steady convection (convection occurring in the
domain at all times). Thus, the parameters chosen are such
that the underlying, stable dry Rayleigh–Bénard system
is destabilised simultaneously by both the introduction of
moisture and bulk radiative cooling.

We characterise the changing behaviour of the system
for varying R, in particular the change in the time-averaged
profiles of the prognostic variables temperature and
specific humidity. In line with previous findings from
CRM simulations as well as observations, we find in our
simplified model that the intensity of convection, mea-
sured by the average upward velocity in clouds, increases
much more slowly than R, while the cloudy area frac-
tion, measured as the fraction of points having relative
humidity q∕qs > 0.98, increases at a similar rate to R.
The corresponding increase in cloudy mass flux (vertical
velocity times cloudy area) can be related through mass
conservation to increased subsidence velocity. The average

subsidence velocity outside clouds increases with
increasing R, with a magnitude closely following the theo-
retical prediction from the heat equation in the absence of
condensation. This leads to the cloudy mass flux increas-
ing approximately linearly with R (albeit slightly faster
due to decreased (Γd − Γm), see Section 3.2.1), with the
increase being dominated by the increase in cloudy areas
of the domain.

We also investigate the maximum vertical velocity in
the simulations for different R, finding that the upward
velocity extremes remain nearly constant, with an increase
even slower than the average velocity in clouds. This was
compared with the convective available potential energy
(CAPE) and it was found that the prediction from CAPE
was an overestimation, with CAPE increasing uniformly
with increasing R while wmax remained fixed. The buoy-
ancy integrals of the extreme temperatures were instead
found to predict the extreme vertical velocities closely, con-
sistent with earlier findings in CRMs (Muller et al., 2011;
Singh & O’Gorman, 2013). Extreme vertical velocities
within individual cloud plumes were also found to be
closely related to the buoyancy integral of the extreme tem-
perature anomaly within the same cloud, showing that the
mechanism holds even for a single plume and not only as
a large-scale statistic.

The physical factors that set the maximum tempera-
ture remain an open question. In the study we provide
one possible explanation based on the ascent of an undi-
lute plume in an environment set by an entraining plume
model, following and adapting ideas introduced by Singh
and O’Gorman (2013). Importantly, regardless of the buoy-
ancy estimate used for w in updraughts, all the estimates
change only weakly with R, providing constraints from
convective physics that limit the increase in w and explain
why the convective mass flux increase is reached almost
entirely through increased cloud area.
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Finally, we compare the behaviour of the moist model
with the corresponding dry simulations, which sheds light
on the degree of up–down asymmetry inherent in the
system. Both the −R term in the equations and the asym-
metry between condensation and evaporation lead to an
up–down asymmetry. We find here that, while the dry
simulations with radiative cooling are well into the tur-
bulent convective regime and have only a small degree
of up–down asymmetry in the vertical velocity, as mea-
sured by the frequency of rising parcels of fluid or the
skewness of the vertical velocity, the moist simulations
show a larger degree of up–down asymmetry for all R,
with the behaviour of the moist system converging towards
dry convection for increasing R. We also note the vary-
ing heat-transfer characteristics and the kinetic energy
differences across the dry and moist simulations.

The main drawback of using idealised models with
direct numerical simulation as an atmospheric model is
the requirement for very fine resolution grids to have real-
istic values of molecular diffusivity and conductivity. In
the absence of such high resolution or parametrisation of
subgrid fluxes, we are forced to set 𝜅 and 𝜈 to unrealisti-
cally large values, with the most immediate effect being
the presence of a diffusive boundary layer (∼ 200m high)
that is far larger than the atmospheric skin layer (usually
a few metres thick). This impacts the relative humidity
and temperature profile in the convective bulk, leading to
measured values in the simulations that can differ from
realistic atmospheric values even when we impose real-
istic temperature and moisture boundary conditions and
values of R. The large values of diffusion in the model
also decrease the effective Reynolds number of the flow
and thus alter the turbulence characteristics of the flow.
Comparison with more complex CRMs and finer resolu-
tion direct numerical simulations is desirable to investigate
the role of boundary layers, surface fluxes, and small-scale
turbulent fluctuations further. We still find that our 2D ide-
alised model shows realistic behaviour in its response to
changing R and various convective processes. Further, sim-
ple models can be used as a starting point in the analysis
of basic fluid instabilities.

Future avenues of investigation, which retain the
simplicity and ease of implementation of the current
approach, include the response of the system to vary-
ing boundary conditions and changing fluid parameters,
such as 𝛽, 𝜈, 𝜅 to more realistic values by employing
higher resolution. Further, the first-order dynamic effects
of non-constant radiative cooling can also be investi-
gated using the current model—for example, varying the
R parameter as a function of whether the grid point is
cloudy (q > qs) or not. While here we emphasise the pos-
sible direct applications to the study of moist convection
as an alternative to CRMs and other more sophisticated

models, the current model by itself is of broad interest
to researchers studying fundamental fluid dynamics and
instabilities, chaos, turbulence, and dynamic systems in
general. The system is particularly rich in transitions and
dynamics, given that the dynamics of the system itself
feeds back on to the energetics of the system—moisture
provides a feedback between convection and energy as
more convection leads to more latent heating, thus more
buoyant forcing and convection. However, latent heating
aloft also stabilises the system by increasing the tempera-
ture of the bulk and decreasing the effective Rayleigh num-
ber. We believe that such simplified approaches can help
improve our fundamental understanding of the complex
behaviour of moist convection.
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APPENDIX A. NON-DIMENSIONAL
PARAMETERS

To non-dimensionalise the equations, we must define
appropriate length, time, and temperature scales, t0, and
 respectively. Given that our equations are identical to
(Vallis et al., 2019) apart from the −R term, any of the
three routes of non-dimensionalisation suggested in their
work (see their section 4.1, appendix A.1, and appendix
A.2) could be applied directly. This would easily lead to a
non-dimensionalised cooling rate given by Rt0∕ .

However, as noted in the main text, the leading cause
of instability and driver of convection in the current model
is the radiative cooling. It would be more appropriate to
non-dimensionalise the equations such that the applied

radiative cooling is of order unity as in previous works of
internally forced convection (Agasthya & Muller, 2024;
Berlengiero et al., 2012; Goluskin, 2015). We intro-
duce temperature and time-scales  and t0 respectively,
such that

R =  t−1
0 . (A1)

Using q0 as the specific humidity scale and the height
of the domain Lz as the length scale, we set t0 = L2

z∕𝜅 as
the time-scale, which gives 𝜅∕Lz as the velocity scale. This
is the usual diffusive scaling for velocity and it yields the
following non-dimensionalised equations:

𝛁 ⋅ u = 0, (A2)
𝜕tu + (u ⋅ 𝛁)u = −𝛁p + Pr∇2u + RaRT, (A3)

𝜕tT + u ⋅ 𝛁T + N1w = ∇2T + N2(q − qs)+ − 1, (A4)
𝜕tq + u ⋅ 𝛁q = Pr

q
∇2q − N3(q − qs)+, (A5)

where all state variables and operators are
non-dimensionalised by their respective scales. The
non-dimensional parameters are RaR, Pr, Prq, N1, N2 and
N3. These are given by

RaR =
𝛽gRL5

z

𝜈𝜅

2 ; Pr = 𝜈

𝜅

; Prq =
𝜅q

𝜅

; (A6)

N1 =
Γd𝜅

RLz
; N2 =

Lvq0

R𝜏
; N3 =

L2
z

𝜅𝜏

. (A7)

RaR is a radiative Rayleigh number analogous to the
buoyancy Rayleigh number and the condensation
Rayleigh number of Val2019. The parameter N1 is a
non-dimensional dry-adiabatic lapse rate. Given that the
condensation time-scale 𝜏 does not directly play a role in
the dynamics, we foresee that it is the ratio of N2 and N3
given by RL2

z∕(q0𝜅Lv) that plays an important role in set-
ting the dynamics of the system. Indeed, it is the ratio of
the buoyancy effect due to heat release by condensation
to the cooling by radiation, analogous to the parameter
denoted �̂� in Val2019.

The system is driven by three different forcings—the
thermal boundaries, the moisture boundaries, and the
bulk cooling. Understanding the dependence of the static
stability of the system on the various non-dimensional
parameters and the scaling of the dynamics of the system
in the convective regime as a function of these parameters
remains outside the scope of the current study. The inter-
ested reader is encouraged to look at Sparrow et al. (1964).
or within the references of Goluskin (2016). to under-
stand the stability and dynamics of dry, internally cooled
thermal fluid systems. Studies on the stability and dynam-
ics of moist models of thermal convection are admittedly
rarer.
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