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1. Introduction

Every complex-valued polynomial P in the Euclidean space Rn admits a unique de-
composition

P = H0 + r2H1 + · · · + r2mHm,

where r2 = x2
1 + · · ·+ x2

n is the square of the Euclidean norm and each Hi is a harmonic 
polynomial. That is, Δ(Hi) = 0 for the Laplace operator

Δ = ∂2
x1

+ · · · + ∂2
xn
.

Here, x1, . . . , xn are coordinates on the Euclidean space Rn. This result, separation of 
variables, is a cornerstone of the classical theory of spherical harmonics. The underlying 
symmetry of the problem is given by the real orthogonal group of matrices preserving 
the Euclidean inner product.

We can ask about a similar decomposition for polynomials on (Rn)k, i.e. in multiple 
vector variables. It is known that such decomposition always exists [8,9] in any dimension 
n and for any number of variables k. However, separation of variables for complex-
valued polynomials in multiple vector variables need not be unique. This paper addresses 
the question of non-uniqueness, which is formally encoded as the kernel of a map φ
defined in (4) below. Following convention [6,9], we consider the complexified version of 
the problem with vector variables from Cn and the underlying symmetry given by the 
complex orthogonal group O(n) = O(n, C).

The theory of spherical harmonics can be formulated in a modern setting as an in-
stance of Howe duality [6–9]. It says that the space P = P((Cn)k) of complex-valued 
polynomials in k vector variables admits a multiplicity-free decomposition into irre-
ducible representations of the pair (O(n), sp(2k, C)), where sp(2k, C) is the complex 
symplectic Lie algebra. We give an operator realization of sp(2k, C) and a precise for-
mulation of this result in Section 2.1. The Howe duality decomposition of P involves 
unitarizable highest weight sp(2k, C)-modules L(λ). To understand non-uniqueness of 
separation of variables, we study these modules. The main tool for our exploration is a 
resolution of L(λ) by generalized Verma modules introduced by Enright and Willenbring 
in [5].

To begin studying decomposition of polynomials

P : (Cn)k −→ C

into invariant and harmonic polynomials, let us identify (Cn)k with the space Mk×n =
Mk×n(C) of complex k × n matrices. Each of the k vector variables of (Cn)k then 
corresponds to a row in Mk×n. For 1 ≤ i ≤ k and 1 ≤ j ≤ n, let xij denote the 
coordinate function on Mk×n which maps a matrix to its entry at position (i, j). Thus 
we are interested in the space
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P = P(Mk×n) = C[x11, x12, . . . , xkn]

of C-valued polynomials in vector variables xi = (xi1, . . . , xin). When we mention P
and its special subsets I and H defined below, we understand the dimension n and the 
number of variables k to be implicit.

We consider the complex orthogonal group O(n) = O(n, C) of n ×n matrices preserv-
ing the symmetric bilinear form (·, ·) on Cn given by

(u, v) = u1vn + u2vn−1 + · · · + unv1, u, v ∈ Cn. (1)

We choose this antidiagonal form so that there is a maximal torus of O(n) formed by its 
diagonal matrices. The group O(n) acts on the space P by

g · P (x) = P (xg), g ∈ O(n), P ∈ P,

where xg is the product of the full matrix variable x = (xij) with g ∈ O(n).
The ring of O(n)-invariant polynomials in P is defined as

I = I(Mk×n) = {P ∈ P : g · P = P for all g ∈ O(n)}.

The First Fundamental Theorem of invariant theory [7, p. 240] says that I is generated 
by quadratic polynomials

rij = (xi,xj) = xi1xjn + xi2xj,n−1 + · · · + xinxj1, 1 ≤ i ≤ j ≤ k. (2)

The space H = H(Mk×n) ⊂ P of harmonic polynomials is the common kernel of O(n)-
invariant Laplace operators

Δij = ∂xi1∂xjn
+ ∂xi2∂xj,n−1 · · · + ∂xin

∂xj1 , 1 ≤ i ≤ j ≤ k. (3)

Separation of variables for complex-valued polynomials can be formally defined as the 
problem of deciding if the multiplication map φ given by

φ : I ⊗H → P, I ⊗H �→ IH, (4)

is a linear isomorphism. Here, IH is the product of polynomials I ∈ I and H ∈ H. 
Throughout the paper, the symbol ⊗ denotes the tensor product ⊗C of complex vector 
spaces. It is known that φ is surjective for any values of n and k. The multiplication 
map is not always injective, though, and therefore we are interested in the kernel of φ. 
This subspace of I ⊗H is the sole focus of this work, so ‘the kernel’ always means Kerφ
throughout the paper.

A classical result [9] saying that separation of variables is unique in the stable range 
n ≥ 2k was extended to the semistable range n ≥ 2k−1 in [13]. Building on this method, 
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our paper provides partial results on the open problem of describing Kerφ in the non-
stable range n < 2k − 1. We show that the kernel of φ is always non-zero in this range 
and provide its precise structural description in the boundary non-stable cases n = 2k−2
and n = 2k − 3. More generally, we adopt an algorithmic procedure from [5] giving a 
resolution of Kerφ by free I-modules in the restricted non-stable range k ≤ n < 2k− 1. 
We further introduce a method of finding highest weights of generators for the kernel, 
which we use in Section 4 to construct an explicit list of the generators in the full non-
stable range n < 2k − 1. To give a slightly different type of information on Kerφ, we 
provide a way of calculating its Hilbert series also applicable in the full non-stable range.

The paper is based on author’s master thesis [1] defended at Charles University, 
Prague.

2. Methods for understanding the kernel

2.1. Howe duality decompositions

The starting point of our exploration is the Howe duality (O(n), sp(2k, C)). Let g =
p− ⊕ k ⊕ p+ denote the complex Lie algebra formed by the following O(n)-invariant 
differential operators on P:

p− = spanC{rij : 1 ≤ i ≤ j ≤ k},

k = spanC{hij : 1 ≤ i, j ≤ k},

p+ = spanC{Δij : 1 ≤ i ≤ j ≤ k}.

The multiplication operators rij and the Laplace operators Δij are defined in (2) and 
(3) above, while the mixed operators hij are given by

hij = xi1∂xj1 + · · · + xin∂xjn
+ n

2 δij , 1 ≤ i, j ≤ k.

Howe duality says that there is a multiplicity-free decomposition of P under the joint 
action of the pair (O(n), g), see below. Before formulating the decomposition, we develop 
necessary conventions regarding the structure of g.

The Lie algebra g = p−⊕k ⊕p+ is an operator realization of the complex symplectic Lie 
algebra sp(2k) = sp(2k, C) with its subalgebra k forming an instance of gl(k) = gl(k, C). 
A Cartan subalgebra common for both g and k is

h = span {h11, . . . , hkk}.

We choose the basis −h11, . . . , −hkk of h and denote by

ε1, . . . , εk ∈ h∗, εi : −hjj �→ δij ,
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its dual basis of h∗. Then εi + εj is a root of (g, h) corresponding to the root vector 
Δij and −εi − εj is a root with root vector rij . Moreover, εi − εj is a root with root 
vector hji when i 
= j. Let Δ denote the resulting root system of (g, h). The subsystem 
Δk = {±(εi − εj) : i < j} forms a root system of (k, h). The elements of Δk are referred 
to as compact roots.

Take ε1−ε2, . . . , εk−1−εk and 2εk to be the simple roots of Δ and denote the resulting 
positive root system by Δ+. Let Δ+

k
= Δ+ ∩Δk be the positive compact roots. Then we 

can speak of highest weights for g and for k. Throughout the text, we identify a weight 
λ ∈ h∗ with its coordinates (λ1, . . . , λk) with respect to ε1, . . . , εk.

Now we give decompositions of P = P(Mk×n) and H ⊂ P under the actions of the 
dual pairs (O(n), sp(2k)) and (O(n), gl(k)), respectively. First, we briefly recall some 
essential facts about irreducible representations of O(n). A partition is a finite weakly 
decreasing sequence λ = (λ1, . . . , λm) of non-negative integers. We identify a partition λ
with its Young diagram, which is a graphic representation of λ as a grid of left-justified 
rows with λi boxes in the i-th row. The depth of λ = (λ1, . . . , λm) is the number of rows 
in its Young diagram or, in other words, the largest integer d such that λd > 0. For 
example,

λ = (4, 3, 1, 0, 0) =

has depth equal to 3.
Highest weight theory for the special orthogonal group SO(n) gives a classification 

of its irreducible representations in terms of partitions. As a consequence, the finite-
dimensional irreducible representations of O(n) are classified by the set Σn of Young 
diagrams having at most n boxes in the first two columns [6,7,9]. A representation 
labeled by σ ∈ Σn is here denoted by Eσ.

Let Σn,k ⊂ Σn denote the set of Young diagrams from Σn of depth at most k. Then 
Σn,k is the set of labels for irreducible O(n)-representations occurring in P(Mk×n). 
For more details, see [6, Lecture 10]. Howe duality [6,8] gives a nice decomposition of 
P = P(Mk×n) under the commuting actions of O(n) and its dual partner sp(2k). Each 
irreducible O(n)-module Eσ occurring in P has an infinite multiplicity, which is resolved 
by tensoring with a unique infinite-dimensional sp(2k)-module of suitable type. More 
precisely, there is a multiplicity-free decomposition

P =
⊕

σ∈Σn,k

Eσ ⊗ L(σ�)

under the joint action of the pair (O(n), sp(2k)), where L(λ) is the irreducible highest 
weight sp(2k)-module of highest weight λ ∈ h∗. The transformation σ �→ σ� maps Σn,k

bijectively to the set of highest weights for irreducible sp(2k)-modules occurring in P. 
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In coordinates with respect to the basis ε1, . . . , εk, the highest weight σ� ∈ h∗ has the 
expression

σ� = (−σk − n

2 , . . . ,−σ1 −
n

2 ).

The Howe duality decomposition of P descends to a decomposition of H ⊂ P with the 
action of g = sp(2k) restricted to the action of k = gl(k). First of all, we note that the set 
Σn,k also classifies the irreducible O(n)-representations occurring in H. In other words, 
the spaces P and H have the same O(n)-spectrum. Moreover, there is a multiplicity-free 
decomposition [6, Lecture 9]

H =
⊕

σ∈Σn,k

Eσ ⊗ Fσ�

under the joint action of the pair (O(n), gl(k)), where Fλ denotes the finite-dimensional 
irreducible gl(k)-module of highest weight λ ∈ h∗.

In addition to sharing the O(n)-spectrum, the decompositions of P and of H are 
connected in the following natural sense. Let us take σ ∈ Σn,k and choose a realization 
of Fσ� as a subspace of H. Then it holds that the highest weight sp(2k)-module L(σ�)
is realized in P as L(σ�) = IFσ� , the span of all products of I with Fσ� . Thus Howe 
duality provides a concrete construction of abstract highest weight modules L(λ) in terms 
of polynomials.

Note that for each σ ∈ Σn,k, the module L(σ�) is not only an irreducible highest weight 
module as usually stated in results concerning Howe duality, but also unitarizable. This 
is thanks to the Fischer inner product 〈·|·〉 on P given by 〈P |Q〉 = (∂(P )Q∗)(0), where 
Q∗(x) = Q(x) and z denotes the complex conjugate of z.

Remark. There is an easy proof of surjectivity of the multiplication map φ : I ⊗H → P
using orthogonality with respect to 〈·|·〉. If we denote by I+ ⊂ I the space of invariants 
of positive degree, then there is an orthogonal decomposition P = H ⊕ I+P, see [6, 
Theorem 9.2]. Surjectivity of φ follows.

2.2. Generalized Verma modules

The Lie algebras g = sp(2k) and k = gl(k) constitute an example of a Hermitian 
symmetric pair, which allows for application of rich theory to our exploration. In par-
ticular, if (g, k) is a Hermitian symmetric pair and q is a maximal parabolic subalgebra 
of g whose Levi subalgebra is k, then strong results describing the unitarizable highest 
weight modules L(λ) are available. To use these results, we have to define generalized 
Verma modules N(λ) associated to q. For an overview of the theory, we refer to [12].

Consider the maximal parabolic subalgebra q = k ⊕ p+ of g, whose Levi subalgebra 
is indeed k. Let λ ∈ h∗ be a k-dominant integral weight and let Fλ be an irreducible 
k-module of highest weight λ and let p+ act on Fλ trivially, i.e. by p+ · Fλ = 0. Then 
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Fλ is a q-module and we define the generalized Verma module of highest weight λ with 
respect to the parabolic subalgebra q as the induced g-module

N(λ) = U(g) ⊗U(q) Fλ,

where U(a) is the universal enveloping algebra of a Lie algebra a. As a left S(p−)-module, 
N(λ) is isomorphic to S(p−) ⊗ Fλ by the Poincaré-Birkhoff-Witt (PBW) Theorem [4, 
2.1.11] thanks to the decomposition g = p− ⊕ q and the commutativity of p−. Moreover, 
N(λ) contains a unique proper maximal submodule and thus admits a unique irreducible 
quotient, the irreducible highest weight module L(λ). Note that in [3] and [5], symbols 
N(λ + ρ) and L(λ + ρ) are used in place of N(λ) and L(λ).

In Section 2.4, we introduce similar modules NA(λ) associated to the algebra A of 
O(n)-invariant differential operators on P(Mk×n), which forms a natural quotient of 
U(g).

2.3. Invariance of φ

Let us describe sp(2k)-module structures on I ⊗ H and on P = P(Mk×n) and then 
observe that φ : I ⊗ H → P intertwines them. The action on P is straightforward; the 
symplectic Lie algebra g = sp(2k) acts on P by the differential operators of which it 
consists. To endow I ⊗H with a g-module structure, we have to do a bit more work.

Let End(P) denote the algebra of linear endomorphisms of P. Consider the subalgebra 
A ⊂ End(P) generated by operators rij , hij , Δij spanning the Lie algebra g. Further let 
D(P) denote the Weyl algebra on P, i.e. the algebra of polynomial-coefficient differential 
operators on P. Then A = D(P)O(n) is exactly the subalgebra of D(P) consisting of 
O(n)-invariant differential operators, see e.g. [8, Theorem 7]. The inclusion of g in End(P)
induces an algebra map ψ : U(g) → End(P) whose image is the algebra A. Thus A is 
the quotient of U(g) by the two-sided ideal Kerψ. For details on the structure of Kerψ, 
we refer to [15, Section 5]. We can think of A as an enveloping algebra of g within the 
Weyl algebra D(P). The key takeaway for us is that the algebra A admits a natural left 
U(g)-module structure given by composition of operators in A:

X ·A = ψ(X)A, X ∈ U(g), A ∈ A.

Similarly, A forms a right U(g)-module with composition from the right. Recall the 
parabolic subalgebra q = k ⊕ p+ of g spanned by operators Δij and hij . Then the space 
H of harmonics forms a left U(q)-module, while A forms a right U(q)-module since 
U(q) ⊂ U(g). Therefore we can form the tensor product A ⊗U(q) H, which is naturally a 
left U(g)-module.

Observe that I ⊂ A once we identify an invariant I ∈ I with the multiplication 
operator I : P �→ IP on P. This inclusion induces an embedding i : I ⊗H → A ⊗H. On 
the other hand, there is a natural surjection of tensor products q : A ⊗H → A ⊗U(q) H. 
The composition
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ϕ : I ⊗H → A⊗U(q) H, ϕ = q ◦ i,

is an isomorphism of left I-modules by the PBW Theorem. This endows the space I⊗H
with the left U(g)-module structure of A ⊗U(q)H, which is in agreement with the natural 
left I-module structure on I ⊗H.

Finally, observe that the map φ : I ⊗H → P intertwines the actions of g. Indeed, the 
composition of two operators X ∈ g and I ∈ I on P is the same as their product in A
and hence

X · (IH) = (XI)H = φ((XI) ⊗U(q) H), X ∈ g, I ∈ I, H ∈ H.

Note that φ also intertwines the natural tensor product action of O(n) on I ⊗ H with 
the action of O(n) on P. Of course, the action on I ⊗H is trivial on the factors from I
and hence given by g · (I ⊗H) = I ⊗ (g ·H) for g ∈ O(n), I ∈ I, H ∈ H.

2.4. Generalized Verma modules for A

When we compare the definition of a generalized Verma module N(λ) and the module 
structure on I ⊗H, there is an important similarity; both are a result of tensoring over 
the parabolic algebra U(q) with a q-module on which p+ acts trivially. Now we make this 
connection more formal. As in Section 2.2, let λ ∈ h∗ be a k-dominant integral weight 
and take an irreducible k-module Fλ on which p+ acts trivially. By definition and by 
Howe duality, we know that H splits into such k-modules.

Define the generalized Verma module for A with respect to the parabolic subalgebra 
q as the induced g-module

NA(λ) = A⊗U(q) Fλ.

Then NA(λ) is a quotient of N(λ) since A is a quotient of U(g). Moreover, there is a 
left I-module isomorphism NA(λ) ∼= I ⊗Fλ by the PBW Theorem. Modules NA(λ) can 
be viewed as parabolic versions of Verma modules for algebras of invariant differential 
operators studied in [16]. Note that our situation provides concrete realizations of these 
abstract modules as tensor products I ⊗ Fλ of two spaces of special polynomials.

We have defined the g-module structure on I ⊗H in agreement with the definition of 
modules NA(λ). As a consequence, Howe duality for H gives the (O(n), sp(2k))-module 
decomposition

I ⊗H =
⊕

σ∈Σn,k

Eσ ⊗NA(σ�). (5)

2.5. Decomposition of Kerφ

Let us decompose the kernel of the multiplication map φ into isotypic components for 
O(n). Take σ ∈ Σn,k and choose a joint highest weight vector 0 
= Hσ ∈ H for the pair 
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(SO(n), gl(k)) of weight σ� with respect to gl(k) which generates an instance of Eσ in 
P under the action of O(n). Then Fσ� ⊂ H is realized in the space of harmonics as the 
gl(k)-module generated by Hσ and we can consider the restricted multiplication map

φσ : NA(σ�) = I ⊗ Fσ� → IFσ� = L(σ�), I ⊗H �→ IH.

Having chosen realizations of both Eσ and Fσ� as subsets of H generated by Hσ under 
the actions of O(n) and gl(k), respectively, we can identify the σ-isotypic component Hσ

in H with Eσ ⊗ Fσ� . Consider the restriction φ|I⊗Hσ
: I ⊗ Hσ → P of φ to I ⊗ Hσ, 

which is quite different from φσ since it involves Eσ in its domain. The identification 
Hσ

∼= Eσ ⊗ Fσ� allows us to express φ|I⊗Hσ
as

id⊗ φσ : Eσ ⊗NA(σ�) → Eσ ⊗ L(σ�),

where id : Eσ → Eσ is the identity. As a consequence, we obtain the decomposition

Kerφ =
⊕

σ∈Σn,k

Ker (φ|I⊗Hσ
) =

⊕
σ∈Σn,k

Eσ ⊗ Kerφσ

under the action of the pair (O(n), sp(2k)), which reduces the problem of describing 
Kerφ to understanding each Kerφσ. Of course, it may happen that for some σ ∈ Σn,k, 
the kernel of φσ is zero.

Before studying the restricted multiplication map φσ, we would like to decide when 
the generalized Verma modules N(λ) and NA(λ) coincide. If n ≥ 2k, then it holds [15, 
Theorem 5.2] that U(g) = A and the equality N(λ) = NA(λ) is automatic. However, 
even if U(g) and A are distinct, the respective generalized Verma modules can be the 
same. Indeed, the ring I of invariants is generally a quotient of S(p−) and equal to S(p−)
if and only if n ≥ k. The precise structure of I is the content of the Second Fundamental 
Theorem of invariant theory (SFT), see [7, p. 561]. By definition, the condition I = S(p−)
is sufficient for N(λ) = NA(λ) to hold for each λ. So if n ≥ k, the map

φσ : I ⊗ Fσ� → IFσ�

is an instance of the natural projection of the generalized Verma module N(σ�) onto 
L(σ�). Therefore Kerφσ is isomorphic to the maximal submodule in N(σ�) in this case, 
which is particularly useful since the modules N(λ) are generally understood better than 
the modules NA(λ).

In general, the map φσ is a surjection of NA(σ�) onto L(σ�). It fits into the commuta-
tive diagram of g-module maps below, where πσ is the surjection of N(σ�) onto NA(σ�)
induced by the natural projection U(g) → A.
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N(σ�) NA(σ�)

L(σ�)

πσ

φ̃σ

φσ

Instead of φσ, the composition φ̃σ = φσ ◦ πσ fits the setting as the projection N(σ�) →
L(σ�). Thus Kerφσ = πσ(Ker φ̃σ) is generally isomorphic to the quotient of the maximal 
submodule in N(σ�) by the kernel of πσ. Note that it might happen that πσ is an 
isomorphism, but φσ is not, and vice versa.

2.6. Resolution of unitarizable highest weight modules

In Theorem 2.1 below, we introduce a resolution of L(σ�) in terms of generalized 
Verma modules adapted from Enright and Willenbring [5, p. 340], which is our main 
tool for understanding the kernel of φσ. To be able to formulate the theorem, we need 
to develop some more notation.

Let Δ+
n denote the set of positive non-compact roots so that Δ+ is the disjoint union 

Δ+
k
∪ Δ+

n . Let W be the Weyl group of Δ. Given a root α ∈ Δ, its corresponding root 
reflection is denoted by sα ∈ W . A coroot for α is the element α∨ ∈ h satisfying

μ(α∨) = 2(α, μ)
(α, α) , μ ∈ h∗,

where (·, ·) is the Killing form on g. Let ρ denote the half-sum of positive roots in Δ.
Let λ ∈ h∗ be a k-dominant integral weight. Define the set Ψλ of singularities of λ + ρ

as the set of roots orthogonal to λ + ρ:

Ψλ = {α ∈ Δ : (α, λ + ρ) = 0}.

Let Wλ be the subgroup of W generated by the root reflections sα with α ∈ Δ+
n satisfying 

the following conditions:

(i) (λ + ρ, α∨) ∈ N+ = {1, 2, 3, . . . },
(ii) α is orthogonal to Ψλ,
(iii) if Ψλ contains a long root, then α is short.

From now on, we refer to this list simply as conditions (i)-(iii). Let Δλ denote the set of 
roots α ∈ Δ for which sα ∈ Wλ. Then Δλ is an abstract root system. Set Δ+

λ = Δλ∩Δ+

and Δλ,k = Δλ∩Δk with positive roots Δ+
λ,k = Δλ,k∩Δ+. We further define W k

λ = {w ∈
Wλ : Δ+

λ,k ⊂ wΔ+
λ } and

W k,i
λ = {w ∈ W k

λ : card(wΔ+
λ ∩ −Δ+

λ ) = i}.
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Finally, if μ ∈ h∗ is any k-integral weight, let μ+ denote the unique k-dominant integral 
weight in its orbit of the Weyl group for Δk.

Now we are ready to describe the resolution of Enright and Willenbring, which can 
be viewed as an analogue of the Bernstein-Gelfand-Gelfand (BGG) resolution for unita-
rizable highest weight modules in terms of generalized Verma modules.

Theorem 2.1. [5, p. 340] Let λ ∈ h∗ be a k-dominant integral weight. Let L(λ) be a unita-
rizable highest weight sp(2k)-module of highest weight λ. Then L(λ) admits a resolution

0 → Zλ
rλ

→ · · · → Zλ
1 → N(λ) → L(λ) → 0,

where rλ = card(Δ+
λ ∩ Δ+

n ) and Zλ
i =

∑
w∈W k,i

λ
N((w(λ + ρ))+ − ρ) for 1 ≤ i ≤ rλ.

The application of this result to our problem is straightforward. We can calculate the 
resolution of L(σ�) for each σ ∈ Σn,k. If n ≥ k and λ = σ�, we obtain a resolution

0 → Zλ
rλ

→ · · · → Zλ
1 → Kerφσ → 0

of Kerφσ by free I-modules Zλ
i . Taking a direct sum over Σn,k, we obtain a structural 

description of the kernel of φ. Even if n < k, the resolution of L(σ�) provides useful 
information and can be used for example to compute the Hilbert series of the kernel, see 
Section 2.8.

2.7. Highest weights of generators of Kerφ

In the general case, we wish to at least find a set of generators for the kernel of φ. This 
information is stored in the first resolving module Zλ

1 . Indeed, for each σ ∈ Σn,k, the 
kernel of φσ : I ⊗ Fσ� → L(σ�) is a quotient of the kernel of φ̃σ : N(σ�) → L(σ�), which 
is in turn isomorphic to a quotient of Zλ

1 . There is a quick way [3, p. 24] of calculating 
Zλ

1 which does not require finding the full root systems Δλ and Δλ,k.
Fix a k-dominant integral weight λ ∈ h∗ and denote by Γλ the set of non-compact 

positive roots α ∈ Δ+
n satisfying conditions (i)-(iii). We consider the usual partial order 

on Δ+ given by α < β if and only if β − α ∈ Δ+.

Proposition 2.1. Let L(λ) be a unitarizable highest weight module. Then the set Γλ is 
either empty, or it has a unique minimum γ such that Zλ

1 = N((sγ(λ + ρ))+ − ρ).

So if we manage to find a non-zero element v ∈ Kerφσ of weight λ′ = (sγ(λ +ρ))+−ρ, 
we can conclude that v generates the kernel of φσ as a g-module. In Section 4, we use 
this approach to find generators of the kernel of φ for any number of variables in any 
dimension. Moreover, the action of the Levi subalgebra k = gl(k) generates an instance 
of Fλ′ in Kerφσ and so the kernel of φσ is an I-module quotient of the free module 
NA(λ′) = I ⊗ Fλ′ .
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2.8. Hilbert series of Kerφ

In addition to the generating set, we can compute the Hilbert series of the kernel in 
the general cases when explicit structure through Theorem 2.1 is unavailable.

All modules encountered in this paper inherit a grading by non-negative integers from 
the natural grading of the symmetric algebra S(p−). More precisely, any generalized 
Verma module N(λ) = S(p−) ⊗ Fλ admits the grading N(λ)i = S(p−)i ⊗ Fλ, which 
induces a grading of the irreducible quotient L(λ). Moreover, the ring I of invariants 
inherits a grading from S(p−) and for each σ ∈ Σn,k, this induces a grading on I ⊗ Fσ� . 
Therefore Kerφσ admits a grading as its submodule. Let us remark that the grading 
of harmonic polynomials given by their homogeneous degree does not play a role here; 
regardless of σ, the space Fσ� = C ⊗ Fσ� always forms the 0-th graded component of 
I ⊗ Fσ� . Note that for all modules mentioned here, each of the graded components is a 
finite-dimensional vector space.

Given an S(p−)-module M =
⊕

i M
i graded by non-negative integers, we define its 

Hilbert series by

HM (q) =
∞∑
i=0

dimC(M i)qi.

Hilbert series of generalized Verma modules are easily computable as each N(λ) ∼=
S(p−) ⊗ Fλ is free over S(p−). Theorem 2.1 gives a resolution of L = L(λ) by free 
S(p−)-modules, which yields a straightforward way of computing HL(q). Note that [5]
provides an explicit formula for HL(q) with L = L(λ) under the assumption that λ is 
quasi-dominant, but this is not satisfied in most of our cases of interest.

We are ultimately interested in the Hilbert series of Kerφ. It can be easily derived from 
what we have indicated above. Fix σ ∈ Σn,k and consider the map φσ : I⊗Fσ� → L(σ�). 
The Hilbert series of I ⊗ Fσ� can be obtained directly from the Hilbert series of I. The 
SFT [7, p. 561] gives the precise structure of I as a quotient of S(p−) and can be used 
to calculate HI(q). So if we set K = Kerφσ and L = L(σ�), we obtain the formula

HK(q) = dim(Fσ�)HI(q) −HL(q). (6)

2.9. Example: Hilbert series in dimension two

Let us illustrate the calculation of Hilbert series in the case n = 2, k = 3. First of all, 
we compute HI(q) using the SFT, which says that in this case I is a quotient of S(p−)
by the principal ideal generated by the determinant of the symmetric 3 × 3 matrix (rij). 
The Hilbert series of this principal ideal equals the Hilbert series of S(p−) shifted by the 
degree of the determinant. Therefore

HI(q) = HS(p−)(q) − q3HS(p−)(q) = 1 + q + q2

5 .
(1 − q)



D. Beďatš / Journal of Algebra 651 (2024) 281–304 293
Note that the SFT is hidden implicitly in the resolution of Theorem 2.1 as well, which is 
another way of obtaining HI(q). Indeed, consider the trivial label σ = (0), then I = L(σ�)
and the resolution of L(σ�) describes I as the quotient of N(σ�) = S(p−) ⊗ Fσ� . To 
calculate dimensions of the gl(3)-modules Fλ, we use the Weyl dimension formula [7, 
p. 337].

The strategy is straightforward; for each

σ ∈ Σ2,3 = Σ2 = {(d) : d ≥ 0} ∪ {(1, 1)},

we compute the resolution of L(σ�) by generalized Verma modules, from which we easily 
obtain its Hilbert series. Having calculated HI(q), we use formula (6) to finish the task 
at hand. Note that the exponents of q in the Hilbert series of L(λ) are governed by 
the level of reduction of N(λ), which is the positive integer capturing the lowest degree 
of invariants contributing to Kerφσ. In our setting, it can be also computed as the 
contraction 〈λ + ρ, γ∨〉, where γ∨ is the coroot of γ = min Γλ from Proposition 2.1. See 
[3, pp. 24-25] for more details.

If σ = (1, 1), the resolution of L = L(σ�) from Theorem 2.1 is a short exact sequence

0 → N(−2,−2,−3) → N(−1,−2,−2) → L → 0.

The level of reduction for L is one and equals the exponent of q by which we multiply 
the Hilbert series for N(−2, −2, −3) in the calculation

HL(q) = HN(−1,−2,−2) − qHN(−2,−2,−3) = 3
(1 − q)5 .

Letting K = Kerφσ, we apply formula (6) and conclude that

HK(q) = 3q 1 + q

(1 − q)5 .

For σ = (1) and σ = (2), the resolution of L = L(σ�) is again a short exact sequence. 
Hence the maximal submodule of N = N(σ�) is isomorphic to Zσ�

1 , which is the general-
ized Verma module N(−2, −3, −3) for σ = (1) and N(−1, −3, −3) for σ = (2). Therefore 
the Hilbert series of K = Kerφσ is

HK(q) =

⎧⎨⎩3q2 1
(1−q)5 , σ = (1),

6q 1+q
(1−q)5 , σ = (2).

The exponent in q2 for σ = (1) is due to the fact that the level of reduction of N(σ�) is 
2.

Finally, if σ = (3 + d) for some d ≥ 0, then the resolution of L = L(σ�) is of length 3
and the resolving modules Zi = Zσ�

i are Z1 = N(−1, −3, −4 −d), Z2 = N(−2, −4, −4 −d)
and Z3 = N(−4, −4, −4 − d). For K = Kerφσ, formula (6) yields
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HK(q) = 3
2q

(d + 5)(d + 2) + 2(d + 3)q
(1 − q)5 .

3. Boundary non-stable cases and injectivity of φ

The method yields some immediate interesting results.

Proposition 3.1. Let k ≥ 2 and n = 2k − 2. Then

Ker φ ∼=
⊕
σ

Eσ ⊗ Ker φσ
∼=

⊕
σ

Eσ ⊗N(σ� − 2ε1)

under the action of the Howe dual pair (O(n), sp(2k)) with σ running over all Young 
diagrams σ ∈ Σn,k of depth k − 1 satisfying σk−1 ≥ 2.

Proof. By case analysis depending on the depth of Young diagrams, we check conditions 
(i)-(iii) for non-compact positive roots and compute the group Wλ and the root system 
Δλ associated to λ = σ� for each σ ∈ Σn,k. It turns out that for all depths other than 
k − 1, the group Wλ is trivial and hence the resolution of L(λ) from Theorem 2.1 has 
length rλ = 0. In these cases, N(λ) ∼= L(λ) is irreducible and Kerφσ = 0. When the 
depth of σ equals k − 1, the group Wλ depends on the value of σk−1. If σk−1 ≥ 2, then 
Wλ has two elements and the associated root system is Δλ = {±2ε1}. Therefore rλ = 1
and Kerφσ is isomorphic to Zλ

1 = N(λ − 2ε1). For σk−1 < 2, the group Wλ is again 
trivial and Kerφσ = 0. �
Proposition 3.2. Let k ≥ 3 and n = 2k − 3. Then

Ker φ ∼=
⊕
σ

Eσ ⊗ Ker φσ

under the action of the Howe dual pair (O(n), sp(2k)) with σ running over all Young 
diagrams σ ∈ Σn,k of depths k − 2 or k − 1 satisfying σk−2 ≥ 2 and

Ker φσ
∼=

{
N(σ� − 2ε1 − 2ε2), if depth(σ) = k − 2,
N(σ� − ε1 − ε2), if depth(σ) = k − 1.

Proof. The proof strategy is the same as in the even-dimensional situation. One only 
needs to show that rσ� = 1 when σ is of depth k − 2 or k − 1 with σk−2 ≥ 2 and that 
rσ� = 0 otherwise. In the first case, having computed the root system Δσ� , we use its 
only positive root γ = ε1 + ε2 to calculate the module Zσ�

1 = N((sγ(σ� + ρ))+ − ρ)
isomorphic to Kerφσ. �

As a very crude consequence, the kernel of φ is non-zero in the boundary non-stable 
cases n = 2k−2 and n = 2k−3 with n ≥ 2. Together with the following lemma, this fact 
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yields the first main result of this paper. Since we have to consider changing numbers of 
variables, we introduce notation φ(n,k) for the map

φ(n,k) : I(Mk×n) ⊗H(Mk×n) → P(Mk×n), I ⊗H �→ IH,

which carries out separation of k variables of dimension n. The lemma, interesting in its 
own right, says that in a fixed dimension, the kernels form an ascending chain of sets as 
we increase the number of variables.

Lemma 3.1. Let n ∈ N+ be fixed and let k ≤ l. Then there is an embedding Ker φ(n,k) →
Ker φ(n,l).

Proof. The claim follows from the three inclusions P(Mk×n) ⊂ P(Ml×n), H(Mk×n) ⊂
H(Mk×n) and I(Mk×n) ⊂ I(Ml×n). If these hold, then the kernels are also in inclusion 
since the map φ(n,k) becomes the restriction of φ(n,l) to the subset I(Mk×n) ⊗H(Mk×n).

The first inclusion is clear, while the second follows from the definition of Laplace 
operators Δij . Indeed, harmonics on Mk×n remain harmonic on Ml×n since all new 
Laplacians Δij with k < j ≤ l involve differentiation with respect to a new variable xjm

for some m = 1, . . . , n in each term.
The final inclusion follows from the SFT. The ring I(Mk×n) is the quotient of the 

polynomial ring Rk = C[r11, . . . , rkk] in variables rij with 1 ≤ i ≤ j ≤ k by the ideal 
Jk generated by all (n + 1) × (n + 1) minors of the symmetric k× k matrix (rij). Given 
the obvious inclusion Rk ⊂ Rl, one only has to check that Jk = Jl ∩Rk, which ensures 
injectivity of the ring map

I(Mk×n) = Rk/Jk → Rl/Jl = I(Ml×n), r + Jk �→ r + Jl.

The equality of ideals Jk = Jl ∩Rk is an elementary algebraic exercise. �
Theorem 3.1. The map φ(n,k) : I ⊗H → P(Mk×n) is injective if and only if n ≥ 2k− 1.

Proof. If n = 1, then the theorem holds. Indeed, if k = 1, then C[x] ∼= C[x2] ⊗(C⊕xC) =
I ⊗H, where x is a scalar variable. If k ≥ 2, then x2 ⊗ y − xy ⊗ x is a non-zero element 
of Ker φ, where x, y are any two of the k scalar variables.

Fix n ≥ 2 and consider k such that n = 2k− 2 if n is even and n = 2k− 3 if n is odd. 
Then k is the least number of variables such that n < 2k − 1 and for all l ≥ k, it holds 
that Kerφ(n,l) 
= 0 by Lemma 3.1. Hence if n < 2l − 1, the map φ is not injective.

For the converse, see [13]. In fact, the proof can be quickly replicated with the termi-
nology at hand. It is sufficient to check that all non-compact positive roots fail to satisfy 
condition (i) when n ≥ 2k − 1. Then the generalized Verma module N(λ) is irreducible 
for each relevant λ and so Kerφ = 0. �

In Section 4.3, we give a constructive proof of this result by producing formulas for 
non-zero elements of Kerφ(n,k) whenever n < 2k − 1.
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4. Generators of the kernel

We present the second main result of the paper, a general construction of highest 
weight vectors in the kernel of the multiplication map φ(n,k) in the full non-stable range 
n < 2k − 1.

4.1. Highest weight harmonics

Before describing generators of Kerφ, we need to understand the structure of harmonic 
polynomials in each dimension. Both [6] and [9] give explicit constructions for highest 
weight vectors in H, which we now briefly recall and adjust to fit our setup. Fix n, k ∈ N+

and let m = min(n, k). For j = 1, . . . , m, let δj denote the determinant of the j × j

submatrix forming the bottom right corner of the variable matrix x = (xil)k×n, i.e.

δj = det

⎛⎜⎜⎝
xk−j+1,n−j+1 xk−j+1,n−j+2 . . . xk−j+1,n
xk−j+2,n−j+1 xk−j+2,n−j+2 . . . xk−j+2,n

...
...

...
...

xk,n−j+1 xk,n−j+2 . . . xk,n

⎞⎟⎟⎠.

Take σ ∈ Σn,k and let aj = σj − σj+1 for j = 1, . . . , m, where σm+1 := 0. Then

δσ = δa1
1 δa2

2 . . . δam
m (7)

forms a joint (SO(n), gl(k)) highest weight vector in H of weight σ� with respect to gl(k). 
Note that the action on the determinant δj by an operator his with i 
= s exchanges the 
occurrence of the variable xsl with the occurrence of xil for any l = n − j + 1, . . . , n.

4.2. Calculation of highest weights in Kerφ

The method sketched out in Section 2.7 tells us that we should begin with finding the 
highest weight λ′ of Zλ

1 = N(λ′) for each σ ∈ Σn,k and λ = σ�. We will show that λ′ is the 
highest weight of Kerφσ unless σ = 0 is trivial. Quite surprisingly, it turns out that the 
task of calculating λ′ can be radically simplified in two steps. Firstly, we show precisely 
how the computation depends on the number of variables k in a fixed dimension n, which 
will later allow us to restrict our attention to the case k = n + 1. Secondly, we explain 
why it is sufficient to consider only ‘narrow’ Young diagrams σ ∈ Σn with at most two 
columns instead of considering all σ ∈ Σn. Let us begin the process by introducing some 
new notation. Before doing so, recall that Σn,k denotes the set of Young diagrams of 
depth at most k with at most n boxes in the first two columns.

Since we have to consider multiple Young diagrams σ ∈ Σn,k as well as different values 
of k at a time, we denote by λ′

(k)(σ) the weight

λ′
(k)(σ) = (sγ(σ� + ρ))+ − ρ
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calculated using the root γ = min Γk
σ� from Proposition 2.1. Here, Γk

λ denotes the set Γλ

of positive non-compact roots in sp(2k) satisfying conditions (i)-(iii). If k is irrelevant or 
clear from the context, we simply write λ′(σ) = λ′

(k)(σ) and Γλ = Γk
λ. It may happen that 

λ′(σ) is undefined, though, if the set Γσ� is empty. Therefore we only consider λ′
(k)(σ)

for σ ∈ Σ0
n,k, where Σ0

n,k denotes

Σ0
n,k = {σ ∈ Σn,k : Γk

σ� 
= ∅}.

Note that by Theorem 2.1, Σ0
n,k is exactly the set of σ ∈ Σn,k for which the generalized 

Verma module N(σ�) is reducible, i.e. N(σ�) � L(σ�). By the end of this section, we will 
be able to give an explicit description of Σ0

n,k based on the computations of λ′ below. The 
following lemma says that the operation σ �→ λ′

(k)(σ) is independent of k in a natural 
sense.

Lemma 4.1. If σ ∈ Σ0
n,k, then σ ∈ Σ0

n,k+1 and

λ′
(k+1)(σ) = (−n

2 , λ
′
(k)(σ)).

Conversely, if σ ∈ Σ0
n,k+1 ∩ Σn,k and λ′

(k+1)(σ) = (−n
2 , ν) for some k-tuple ν, then 

σ ∈ Σ0
n,k and λ′

(k)(σ) = ν.

Proof. The lemmas of this section are technical results which require checking conditions 
(i)-(iii) in quite a general setting. The procedure is carried out explicitly in [2, Section 
7], where one can find a case-by-case description of the set Γσ� of positive non-compact 
roots satisfying (i)-(iii).

Let us fix σ ∈ Σn,k and write Γm = Γm
σ� for m = k, k + 1. To prove the first claim, it 

is sufficient to show that if εi + εj is the lowest root in Γk, then εi+1 + εj+1 is the lowest 
root in Γk+1. Indeed, calculations in [2] say that there is an index set Im ⊂ {1, . . . , m}
such that

Γm = {εm+1−i + εm+1−j : i, j ∈ Im}.

In most cases, there is the additional requirement for i, j ∈ Im to be distinct, but this 
is not important for us here. What matters is that the set Im is described as Im =
{1, . . . , m} \ J , where the set J depends only on n and σ and not on m. Therefore 
Ik+1 = Ik or Ik+1 = Ik ∪ {k + 1}, which proves the claim concerning lowest roots of Γk

and Γk+1.
For the converse, it suffices to show that Γk+1 
= ∅ implies Γk 
= ∅ under the as-

sumption that the first entry of λ′
(k+1)(σ) is equal to −n/2. The rest follows from what 

we have proved above. If Ik+1 = Ik, then the claim clearly holds, so let us assume 
that Ik+1 = Ik ∪ {k + 1} and suppose that Γk = ∅ for contradiction. Then the low-
est root in Γk+1 is of the form γ = ε1 + εj for some j ≥ 1. Using the fact that the 
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entries of σ� + ρ form a strictly decreasing sequence, we deduce that the first entry of 
λ′

(k+1)(σ) = (sγ(σ� + ρ))+ − ρ must be bounded by −n/2 − σk−1 − 1 from above, a 
contradiction. �

Let us denote by Ωn,k ⊂ Σn,k the Young diagrams of Σn,k with at most two columns. 
An element

σ = (
d︷ ︸︸ ︷

2, . . . , 2︸ ︷︷ ︸
t

, 1, . . . , 1) ∈ Ωn,k

is uniquely determined by the non-negative integers t and d = depth(σ), which satisfy 
t + d ≤ n and t ≤ d ≤ k. We call such σ the narrow Young diagram of type (t, d). Also 
define Ω0

n,k = Ωn,k ∩Σ0
n,k, the set of narrow Young diagrams σ for which λ′

(k)(σ) exists. 
For example, Proposition 3.1 describing the even boundary non-stable case n = 2k − 2
says that the set Ω0

2k−2,k only contains the narrow Young diagram of type (k− 1, k− 1). 
There is a nice formula for λ′(σ) when σ is narrow.

Lemma 4.2. For any non-trivial narrow Young diagram

σ = (2, . . . , 2︸ ︷︷ ︸
t

, 1, . . . , 1︸ ︷︷ ︸
b

) ∈ Ωn,n+1,

it holds that σ ∈ Ω0
n,n+1 and

λ′
(n+1)(σ) = (−n

2 , . . . ,−
n

2︸ ︷︷ ︸
t

,−n

2 − 1, . . . ,−n

2 − 1︸ ︷︷ ︸
b

,−n

2 − 2, . . . ,−n

2 ).

Proof. Except for certain boundary cases, this is the content of the concluding example 
in [5, p. 374] combined with Lemma 4.1. The boundary cases are those in which t = 0 or 
b = 0 and checking conditions (i)-(iii) to compute the set Γσ� and thus the weight λ′(σ)
is fairly easy. �

The final technical lemma enables the reduction from all Young diagrams to the 
narrow ones. Thanks to Lemma 4.1, it is sufficient to consider the case k = n.

Lemma 4.3. Let σ ∈ Ωn,n be of type (t, d) and let μ = (μ1, . . . , μt) be a partition of depth 
at most t. If t > 0, then σ ∈ Ω0

n,n and σ + μ ∈ Σ0
n,n. In this case,

λ′
(n)(σ + μ) = λ′

(n)(σ) + (0, . . . , 0,−μt,−μt−1, . . . ,−μ1).

Proof. The claim that t > 0 implies σ ∈ Ω0
n,n is a direct consequence of Lemmas 4.1 and 

4.2. As in Lemma 4.1, the proof relies on the explicit description of Γλ provided by [2]. 
The proof can be divided into two steps. In the first step, we need to show that
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min Γσ� = min Γ(σ+μ)� , (8)

which immediately proves that σ + μ ∈ Σ0
n,n. In the second step, we show that the 

operation (sγ(σ� + ρ))+ only affects the first n + 1 − t indices of σ� + ρ, where γ is the 
minimum from (8). The proof of this claim is a straightforward case-by-case analysis, so 
we skip it and prove only equality (8).

Let us denote by I the index set of Γσ� and by J the index set of Γ(σ+μ)� , i.e. 
Γσ� = {εn+1−i+εn+1−j : i, j ∈ I} and similarly for Γ(σ+μ)� and J . In most cases, we also 
require i, j to be distinct. Either way, to prove equality (8), it is sufficient to show that 
I ⊂ J and j > max I for all j ∈ J\I. This is done by case analysis depending on the parity 
of n and the depth d of σ. For example, if n = 2p is even and d < p, then the calculations 
in [2] say that I = {n − d, n − t + 1} and I ⊂ J ⊂ {n − d, n − t + 1, n − t + 2, . . . , n}, so 
the claim holds. The remaining cases are very similar. �

Note that any σ ∈ Σn,k \Ωn,k can be uniquely decomposed as σ0 +μ with a ‘maximal’ 
σ0 ∈ Ωn,k and a suitable partition μ, so Lemma 4.3 is without loss of generality. Indeed, 
let t = max {i : σi ≥ 2} and d = depth(σ). Then we can take the narrow Young diagram 
σ0 ∈ Ωn,k of type (t, d) and put μi = σi − 2 for i = 1, . . . , t. Moreover, if σ ∈ Σn,k has 
such decomposition σ = σ0 + μ and σ ∈ Σ0

n,k, then σ0 ∈ Ω0
n,k. This follows for k = n

from Lemma 4.3 and then for general k from Lemma 4.1.
A consequence of Lemmas 4.1-4.3 is an explicit description of Σ0

n,k advertised above. 
Of course, the set Σ0

n,k is always empty in the semistable range n ≥ 2k − 1.

Proposition 4.1. Assume that n, k ∈ N+ satisfy n < 2k − 1.

(1) If k > n, then Σ0
n,k = Σn,k = Σn.

(2) If k ≤ n, then

Σ0
n,k = {σ ∈ Σn,k : σn+1−k ≥ 2}.

4.3. Highest weight vectors in Kerφ

Having described λ′
(k)(σ) for each σ ∈ Σ0

n,k, we are finally prepared to find a cor-
responding relation in Kerφσ of weight λ′

(k)(σ), which generates Kerφσ as an sp(2k)-
module. Each generating relation in dimension n will be formed by a minor of order n +1
in a matrix of rank n. The results of the previous section allow us to consider only the 
case k = n + 1 and σ ∈ Ω0

n,n+1, from which it is easy to derive generators of Kerφ(n,k)

in the full non-stable range n < 2k − 1.
Recall the bilinear form (·, ·) on Cn given in equation (1). Let Jn denote the matrix 

of (·, ·), i.e.
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Jn =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ .

For any n, k ∈ N+, we define M (n,k) to be the symmetric (n + k) × (n + k) matrix

M (n,k) =
(

x
In

)
Jn(xT , In) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

r11 . . . r1k x1n . . . x11
...

...
...

...
...

...
rk1 . . . rkk xkn . . . xk1
x1n . . . xkn 0 . . . 1
...

...
...

...
...

...
x11 . . . xk1 1 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where In is the n × n identity matrix. The rank of M (n,k) is clearly n and hence all its 
minors of order n + 1 are zero. Let a, b > 0 and define Ma,b = M

(n,k)
a,b as the square 

submatrix of M (n,k) = (mij) of order n + 1 whose entry at position (i, j) is equal to 
ma+i−1,b+j−1. Then all relations in Kerφ(n,k) emerge from the minors detMa,b with 
suitable choices of a, b. Here, we view detMa,b as an element of I ⊗ H, i.e. we put 
the tensor product sign ⊗ between each product of invariants rij and each product of 
variables xij . The expression detMa,b is a non-zero element of I ⊗H for suitable a and 
b, while φ(detMa,b) is the zero polynomial.

Theorem 4.1. Suppose that

σ = (2, . . . , 2, 1, . . . , 1) ∈ Ω0
n,n+1

is of type (t, d) with d > 0. Then

detM (n,n+1)
d+1,t+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

rd+1,t+1 . . . rd+1,n+1 xd+1,n . . . xd+1,n+1−t

...
...

...
...

...
...

rn+1,t+1 . . . rn+1,n+1 xn+1,n . . . xn+1,n+1−t

xt+1,n . . . xn+1,n 0 . . . 0
...

...
...

...
...

...
xt+1,n+1−d . . . xn+1,n+1−d 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
is a highest weight vector in Kerφ(n,n+1)

σ of weight λ′
(n+1)(σ).

Proof. Let us divide M = M
(n,n+1)
d+1,t+1 into the natural blocks:

M =
(

R Y
ZT 0

)
, R = (rij)i≥d+1

j≥t+1, Y = (xij)i≥d+1
j≥n+1−t, Z = (xij)i≥t+1

j≥n+1−d.

d×t
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Strictly speaking, the matrices Y and Z are equal to the corresponding variable subma-
trices of (xij) only after reversing their columns. However, we only consider their minors 
and any potential change of sign does not affect the argument.

Using cofactor expansions in multiple rows and columns, we observe that Dσ =
detMd+1,t+1 splits into a sum

Dσ =
∑
I,J

±DI,J , DI,J = (detRI
J) ⊗ (detYI)(detZJ),

where I runs over t-element subsets of {d +1, d +2, . . . , n +1} and J runs over d-element 
subsets of {t + 1, t + 2, . . . , n}. Moreover, detYI denotes the t × t minor of Y on rows 
indexed by I, detZJ denotes the d × d minor of Z on rows indexed by J , and detRI

J

denotes the minor of R of order n + 1 − d − t given by deleting rows in I and columns 
in J .

As a prerequisite, notice that each term DI,J in Dσ = detMd+1,t+1 is an element 
of I ⊗ Fσ� by the description of harmonics in Section 4.1 and hence Dσ ∈ Kerφσ. We 
should also check that Dσ 
= 0. This follows from the fact that monomials in rij of degree 
n + 1 − d − t form a linearly independent set in I, which is a consequence of the SFT 
since d > 0. We can fix any t-element subset I ⊂ {d + 1, d + 2, . . . , n + 1} and look at 
the non-zero term TI in Dσ of the form

TI = ±(
∏
i∈I

rii) ⊗ (detYI)(detZK∪I),

where K = {t + 1, t + 2, . . . , d}. Then there are no other terms in Dσ having 
∏

i∈I rii
as the left factor. Hence the non-zero term TI cannot get canceled out by any of the 
remaining terms in Dσ and so Dσ 
= 0.

To prove the theorem, it is now sufficient to check that for each I, J it holds that

hii ·DI,J =

⎧⎪⎪⎨⎪⎪⎩
n
2DI,J , if i = 1, . . . , t,
(1 + n

2 )DI,J , if i = t + 1, . . . , d,
(2 + n

2 )DI,J , if i = d + 1, . . . , n + 1.

This is quite straightforward since the scalar action of hii on detYI detZJ ∈ Fσ� is 
captured in σ�, while the scalar action of hii on a product 

∏
a,b rab is equal to the sum 

Σa,b(−εa − εb) of the corresponding non-compact roots evaluated on hii. In particular, 
the eigenvalue of hii acting on detRI

J is equal to 0 if i ∈ I ∩J , it is equal to 2 if i /∈ I ∪J

and it equals 1 otherwise. �
The lemmas of the previous section enable the following quick generalization to any 

number of variables and any Young diagram. Recall the definition (7) of the highest 
weight harmonic δσ ∈ Fσ� ⊂ H(Mk×n) for σ ∈ Σn,k.
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Corollary 4.1. Let σ0 ∈ Ω0
n,k be of type (t, d) and let μ = (μ1, . . . , μt) be a partition. Put 

σ = σ0 + μ. Then σ ∈ Σ0
n,k and

(detMd−n+k,t−n+k)δμ

is a highest weight vector in Kerφ(n,k)
σ of weight λ′

(k)(σ).

Proof. First, put k = n and μ = 0 and apply Lemma 4.1 to obtain the result of the 
theorem for narrow Young diagrams in the case of n variables. Then for any μ apply 
Lemma 4.3. Finally, apply Lemma 4.1 again to generalize to any k in the non-stable 
range n < 2k − 1. �

As a very special case, we obtain a constructive proof of Theorem 3.1. Indeed, there is 
a non-zero element detM (n,k)

1,1 in Kerφ(n,k) in the boundary non-stable cases n = 2k− 2
or n = 2k − 3, so Kerφ(n,k) 
= 0 whenever n < 2k − 1 by Lemma 3.1.

4.4. Concluding remarks

Let us finish with a brief discussion of what is known and what can be done further. 
We also include a small, but interesting result in Corollary 4.2.

Remark. A result analogous to Corollary 4.1 was presented by R. Howe during his lec-
tures [10] delivered in Prague in 2015, where he described generators of the kernel of a 
multiplication map with underlying symmetry given by the group GL(n, C). The author 
was unable to find a published version of the result. The theoretical apparatus mentioned 
in the lectures is presented in [11].

Remark. For each σ ∈ Σ0
n,k, we can act on the highest weight vector D1

σ =
(detMd−n+k,t−n+k)δμ from Corollary 4.1 by operators hij with i < j until we ob-
tain enough linearly independent relations D1

σ, . . . , D
s
σ ∈ Kerφσ, i.e. with s = dimFλ′

and λ′ = λ′
(k)(σ). Then it follows that Kerφσ is a quotient of the free I-module on 

D1
σ, . . . , D

s
σ. This set is moreover a minimal set of I-module generators of the kernel. 

For an explicit construction of the basis D1
σ, . . . , D

s
σ from the highest weight vector D1

σ, 
we refer to [14].

By exhibiting non-zero elements of Kerφ(n,k)
σ for each non-trivial σ ∈ Σ0

n,k, we have 
proved the difficult implication in the following criterion for irreducibility of generalized 
Verma modules NA(λ) for the algebra A of O(n)-invariant differential operators on 
P(Mk×n). The easy claim is that irreducibility of N(λ) implies irreducibility of NA(λ)
as in this case both must be isomorphic to L(λ).
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Corollary 4.2. Let σ ∈ Σn,k be a non-trivial Young diagram. It holds that σ ∈ Σ0
n,k if and 

only if Kerφ(n,k)
σ 
= 0. In other words, the generalized Verma module N(σ�) is reducible 

if and only if the generalized Verma module NA(σ�) for A is reducible.

In Corollary 4.1, we gave a list of generators of the kernel of φ. It remains an open 
problem to understand relations among these generators. More precisely, we would like 
to understand the I-module structure of each Kerφσ. Propositions 3.1 and 3.2 describe 
this structure when n = 2k − 2 or n = 2k − 3. One can go further and calculate the 
resolutions of the kernel by generalized Verma modules in the range k ≤ n < 2k − 3. In 
the remaining cases n < k, it is unclear what the structure of Kerφ might look like. To 
finish on a more positive note, let us include an example of a situation in which we have 
all the information.

Example. Consider the case of dimension n = 2 with k = 2 variables. We have Ω0
2,2 =

{(2)} and hence the only minor of M (2,2) to consider is the principal 3 × 3 minor

D(2) = det
(
r11 r12 x12
r12 r22 x22
x12 x22 0

)
= 2r12 ⊗ x12x22 − r11 ⊗ x2

22 − r22 ⊗ x2
12.

For σ = (a + 2) ∈ Σ0
2,2 with a ≥ 0, we multiply by xa

22 from the right to obtain

Dσ = D(2)x
a
22

as the highest weight vector in Kerφσ of weight λ′(σ) = (−3, −3 − a). Acting by h12 on 
Dσ and using Proposition 3.1, we conclude that Kerφσ is the free I-module generated 
by

D(2)x
i
12x

a−i
22 , i = 0, 1, . . . , a.
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