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Abstract
For an arbitrary dimension 𝑛, we study:
∙ the polyharmonic Gaussian field ℎ𝐿 on the discrete torus 𝕋𝑛𝐿 =

1

𝐿
ℤ𝑛∕ℤ𝑛, that

is the random field whose law on ℝ𝕋𝑛𝐿 given by

𝑐𝑛 e
−𝑏𝑛
‖‖‖(−Δ𝐿)𝑛∕4ℎ‖‖‖2𝑑ℎ,

where 𝑑ℎ is the Lebesgue measure and Δ𝐿 is the discrete Laplacian;
∙ the associated discrete Liouville quantum gravity (LQG) measure associated
with it, that is, the random measure on 𝕋𝑛𝐿

𝜇𝐿(𝑑𝑧) = exp

(
𝛾ℎ𝐿(𝑧) −

𝛾2

2
𝐄ℎ𝐿(𝑧)

)
𝑑𝑧,

where 𝛾 is a regularity parameter.

As 𝐿 → ∞, we prove convergence of the fields ℎ𝐿 to the polyharmonic Gaus-
sian field ℎ on the continuous torus 𝕋𝑛 = ℝ𝑛∕ℤ𝑛, as well as convergence of the
random measures 𝜇𝐿 to the LQG measure 𝜇 on 𝕋𝑛, for all |𝛾| <√2𝑛.

1 INTRODUCTION

We study Gaussian random fields and the associated Liouville quantum gravity (LQG) measures on continuous and
discrete tori of arbitrary dimension. The random field ℎ on the continuous torus is a particular case of the copolyhar-
monic field introduced and analyzed in detail in [5] in great generality on all ‘admissible’ manifolds of even dimension.
One of the main goals now is to study the approximation of these fields and the associated LQG measures by their
discrete counterparts.
The polyharmonic fields ℎ on𝕋𝑛 ≅ [0, 1)𝑛 and ℎ𝐿 on𝕋𝑛𝐿 ≅ {0,

1

𝐿
, … ,

𝐿−1

𝐿
}𝑛 for 𝐿 ∈ ℕ are centered Gaussian random fields

with covariance functions

𝐄[ℎ(𝑥) ℎ(𝑦)] = 𝑘(𝑥, 𝑦) ∶=
1

𝑎𝑛
𝐺̊𝑛∕2(𝑥, 𝑦) ,

𝐄[ℎ𝐿(𝑥) ℎ𝐿(𝑦)] = 𝑘𝐿(𝑥, 𝑦) ∶=
1

𝑎𝑛
𝐺̊
𝑛∕2
𝐿 (𝑥, 𝑦) .
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SCHIAVO et al. 245

given in terms of the integral kernel for the ‘grounded’ inverse of the (continuous and discrete, resp.) poly-Laplacian
(−Δ)𝑛∕2 and (−Δ𝐿)𝑛∕2, and a normalization constant 𝑎𝑛 ∶=

2

Γ(𝑛∕2) (4𝜋)𝑛∕2
. Here and below, (−Δ)𝑠∕2 is, for every 𝑠 > 0,

the power of the Laplacian defined by means of the spectral theorem for self-adjoint operators on 𝐿2(𝕋𝑛). Its discrete
counterpart (−Δ𝐿)𝑠∕2 may be defined in the same way.
In particular, with the above choice of the normalization constant 𝑎𝑛,

Lemma 1.1 (See Lemma 2.4).

|||𝑘(𝑥, 𝑦) − log 1

𝑑(𝑥, 𝑦)
||| ≤ 𝐶 .

1.1 Characterization of the discrete polyharmonic field

Let 𝑛, 𝐿 ∈ ℕ be given and assume for convenience that 𝐿 is odd, letℤ𝑛𝐿 = {−
𝐿−1

2
, −

𝐿−1

2
+ 1,… ,

𝐿−1

2
}𝑛, and set𝑁 ∶= 𝐿𝑛 and

𝑐𝑛 ∶=
( 𝑎𝑛
2𝜋𝑁

)𝑁−1
2
⋅
∏

𝑧∈ℤ𝑛𝐿⧵{0}

(
4𝐿2

𝑛∑
𝑘=1

sin
2
(𝜋𝑧𝑘∕𝐿)

)𝑛∕4
.

Define the measure 𝝂(ℎ) on ℝ𝑁 ≅ ℝ𝕋𝑛𝐿 by

𝑑𝝂(ℎ) ∶= 𝑐𝑛 e
−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ‖2 𝑑𝑁(ℎ) ,

and denote by 𝝂 its push forward under the map

ℎ ↦ ℎ̊, ℎ̊𝑣 ∶= ℎ𝑣 −
1

𝑁

𝑁∑
𝑣=1

ℎ𝑣 .

In other words, 𝝂 = 𝝂
(
⋅ ||∑𝑁

𝑣=1 ℎ𝑣 = 0
)
.

Furthermore,

𝑇̊∗𝝂 = 𝐏̊ and 𝑇̊−1∗ 𝐏̊ = 𝝂 ,

where 𝐏̊ denotes the distribution of the ‘grounded white noise’ on 𝕋𝑛𝐿, explicitly given as

𝑑𝐏̊(Ξ) =
1

(2𝜋)
𝑁−1

2

e−
1

2𝑁
‖Ξ‖2

𝑑𝑁−1𝐻 (Ξ)

on the hyperplane𝐻 = {Ξ ∈ ℝ𝑁 ∶
∑𝑁

𝑣=1 Ξ𝑣 = 0}, and where

𝑇̊ ∶ ℎ ↦ Ξ =
√
𝑎𝑛 (−Δ𝐿)

𝑛∕4ℎ , 𝑇̊−1 ∶ Ξ ↦ ℎ =
1√
𝑎𝑛

𝐺̊
𝑛∕4
𝐿 Ξ .

Theorem 1.2 (cf. Theorem 3.4). The distribution of the discrete polyharmonic field on 𝕋𝑛𝐿 is given by the probability measure
𝝂 onℝ𝕋𝑛𝐿 ≅ ℝ𝑁 .

1.2 Convergence of the random fields

As 𝐿 → ∞, the polyharmonic fields ℎ𝐿 on the discrete tori converge to the polyharmonic field ℎ on the continuous torus.
This convergence of the fields, indeed, holds in great generality.

 15222616, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202400169 by C
ochraneA

ustria, W
iley O

nline L
ibrary on [13/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



246 SCHIAVO et al.

For a precise formulation, one either has to specify classes of test functions on 𝕋𝑛 which admit traces on 𝕋𝑛𝐿, or unique
ways of extending functions on 𝕋𝑛𝐿 onto 𝕋

𝑛.

Theorem 1.3 (Thm. 4.11, Thm. 4.12). For all 𝑓 ∈
⋃
𝑠>𝑛∕2 𝐻̊

𝑠(𝕋𝑛),

⟨ℎ𝐿, 𝑓⟩𝕋𝑛𝐿 → ⟨ℎ, 𝑓⟩𝕋𝑛 ,⟨ℎ𝐿,♭, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 , in 𝐿2(𝐏) as 𝐿 → ∞ ,

where ℎ𝐿,♭ denotes the piecewise constant extension to 𝕋𝑛 of ℎ𝐿.

Let𝐿 ⊂ ∞(𝕋𝑛) denote the linear span of the eigenfunctions𝜑𝑧 for the negative Laplacianwith associated eigenvalues
0 < 𝜆𝑧 < (𝐿𝜋)2, or more explicitly,

𝐿 ∶=

⎧⎪⎨⎪⎩𝑓 ∶ 𝑓(𝑥) =
∑
𝑧∈ℤ𝑛𝐿

[𝛼𝑧 cos(2𝜋𝑥 ⋅ 𝑧) + 𝛽𝑧 sin(2𝜋𝑥 ⋅ 𝑧)], 𝛼𝑧, 𝛽𝑧 ∈ ℝ

⎫⎪⎬⎪⎭ .
Theorem 1.4 (Thm. 4.13, Prop. 4.5). For all 𝑓 ∈ 𝐻̊−𝑛∕2(𝕋𝑛),

⟨ℎ𝐿,♯, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 ,⟨ℎ♯,𝐿, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 , in 𝐿2(𝐏) as 𝐿 → ∞ ,

whereℎ𝜔
𝐿,♯
denotes, for every𝜔, the unique function in𝐿 which coincides withℎ𝜔𝐿 on𝕋

𝑛
𝐿 , andℎ♯,𝐿 is the Fourier projection (23)

of ℎ at scale 𝐿.

The same convergence assertion also holds for the so-called spectrally reduced polyharmonic field ℎ−◦𝐿 on 𝕋𝑛𝐿 given in
terms of the eigenbasis {𝜑𝑧}𝑧∈ℤ𝑛𝐿 of the discrete Laplacian Δ𝐿 as

ℎ−◦𝐿 (𝑥) ∶=
∑
𝑧∈ℤ𝑛𝐿

(
𝐿2

𝜋2|𝑧|2
𝑛∑
𝑘=1

sin
2
(𝜋𝑧𝑘∕𝐿)

)−𝑛∕4 ⟨ℎ𝐿|𝜑𝑧⟩𝕋𝑛𝐿 ⋅ 𝜑𝑧(𝑥) .
Our convergence results apply to the case of arbitrary dimension 𝑛. In dimension 𝑛 ≤ 4, several results are available

in the literature for the convergence of other discrete fractional Gaussian fields of integer order to the corresponding
counterpart in the continuum, including, for example, the odometer for the sandpile model, or the membrane model. For
a comparison of these results with those in this work, see Section 4.4.

1.3 Convergence of the randommeasures

The convergence questions for the associated random measures are more subtle. Again, of course, one expects that the
Liouville measure 𝜇𝐿 on the discrete tori converge as 𝐿 → ∞ to the Liouville measure 𝜇 on the continuous torus. This
convergence of the random measure, however, only holds for small parameters 𝛾.

Theorem 1.5 (cf. Thm. 5.5). Assume |𝛾| <√𝑛

𝑒
, and let 𝑎 be an odd integer ≥ 2. Then, in the sense of Definition 5.2,

𝜇𝑎𝓁 → 𝜇 as 𝓁 → ∞ .
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SCHIAVO et al. 247

Analogous convergence results hold for the random measures associated with the Fourier extensions of the discrete
polyharmonic fields and the reduced discrete polyharmonic field, in the latter case even in thewhole range of subcriticality
𝛾 ∈ (−

√
2𝑛,
√
2𝑛).

Theorem 1.6 (cf. Thm. 5.3). If |𝛾| <√𝑛

𝑒
, then in the sense of Definition 5.2,

𝜇𝐿,♯ → 𝜇 as 𝐿 → ∞ ,

and for |𝛾| <√2𝑛, again in the sense of Definition 5.2,
𝜇−◦
𝐿,♯

→ 𝜇 as 𝐿 → ∞ .

1.4 Uniform integrability of the randommeasures

As an auxiliary result of independent interest, we provide a direct proof of the uniform integrability of (discrete, semi-
discrete, and continuous) random measures on the multidimensional torus.

Theorem 1.7 (cf. Thm. 5.6). Assume that |𝛾| <√𝑛

𝑒
. Then

sup
𝐿
𝐄
[||𝜇𝐿(𝕋𝑛𝐿)||2] < ∞

and

sup
𝐿
𝐄
[||𝜇𝐿,♯(𝕋𝑛)||2] < ∞ .

2 LAPLACIAN AND KERNELS ON CONTINUOUS AND DISCRETE TORI

2.1 Laplacian and kernels on the continuous torus

(a)
For 𝑛 ∈ ℕ, we denote by 𝕋𝑛 ∶= (ℝ∕ℤ)

𝑛 the continuous 𝑛-torus. Where it seems helpful, one can always think of the torus
𝕋𝑛 as the set [0, 1)𝑛 ⊂ ℝ𝑛. It inherits from ℝ𝑛 the additive group structure and the Lebesgue measure, denoted in the
following by 𝑑𝑛(𝑥) or simply by 𝑑𝑥. The distance on 𝕋𝑛 is given by

𝑑(𝑥, 𝑦) ∶=

(
𝑛∑
𝑘=1

(|𝑥𝑘 − 𝑦𝑘| ∧ |1 − 𝑥𝑘 + 𝑦𝑘|)2)1∕2 .
(b)
For 𝑧 ∈ ℤ𝑛 and 𝑥 ∈ 𝕋𝑛 put

Φ𝑧(𝑥) ∶= exp (2𝜋i 𝑧 ⋅ 𝑥) .

The family (Φ𝑧)𝑧∈ℤ𝑛 is a complete ON basis of 𝐿2
ℂ
(𝕋𝑛). It consists of eigenfunctions of the negative Laplacian −Δ =

−
∑𝑛

𝑘=1

𝜕2

𝜕𝑥2
𝑘

on 𝕋𝑛 with corresponding eigenvalues given by

𝜆𝑧 ∶= (2𝜋|𝑧|)2 .
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248 SCHIAVO et al.

(c)
The Fourier transform of the function 𝑓 ∈ 𝐿2

ℂ
(𝕋𝑛) is the function (or “sequence”) 𝑔 ∈ 𝓁2(ℤ𝑛) given by

𝑔(𝑧) ∶= ⟨𝑓,Φ𝑧⟩𝕋𝑛 ∶= ∫
𝕋𝑛
𝑓(𝑥)Φ𝑧(𝑥) 𝑑𝑥 .

Conversely, for 𝑔 as above and a.e. 𝑥 ∈ 𝕋𝑛,

𝑓(𝑥) =
∑
𝑧∈ℤ𝑛

𝑔(𝑧)Φ𝑧(𝑥) .

(d)
To obtain a complete ON basis (𝜑𝑧)𝑧∈ℤ𝑛 for the real 𝐿2-space, choose a subset ℤ̂𝑛 of ℤ𝑛 ⧵ {0} with

ℤ𝑛 ⧵ {0} = ℤ̂𝑛 ⊔
(
−ℤ̂𝑛
)
,

and define

𝜑𝑧(𝑥) ∶=

⎧⎪⎪⎨⎪⎪⎩

1√
2
(Φ𝑧 + Φ−𝑧)(𝑥) =

√
2 cos (2𝜋 𝑧 ⋅ 𝑥) if 𝑧 ∈ ℤ̂𝑛 ,

1√
2 𝑖
(Φ𝑧 − Φ−𝑧)(𝑥) =

√
2 sin (2𝜋 𝑧 ⋅ 𝑥) if 𝑧 ∈ −ℤ̂𝑛 ,

𝟏 if 𝑧 = 0 .

(e)
Functions 𝑓 on 𝕋𝑛 will be called grounded if ∫ 𝑓 𝑑𝑛 = 0. Let 𝐿̊2(𝕋𝑛) be the subspace of 𝐿2(𝕋𝑛) consisting of all grounded
functions. For 𝑠 > 0, we denote by 𝐻̊𝑠 the grounded Sobolev space defined as

𝐻̊𝑠(𝕋𝑛) ∶= (−Δ)−𝑠∕2𝐿̊2(𝕋𝑛) with norm ‖𝑓‖𝐻̊𝑠 ∶= ‖‖(−Δ)𝑠∕2𝑓‖‖𝐿2
and we define 𝐻̊−𝑠(𝕋𝑛) as the completion of 𝐿̊2(𝕋𝑛) w.r.t. the norm ‖𝑓‖𝐻̊−𝑠 ∶=

‖‖‖(−Δ)−𝑠∕2𝑓‖‖‖𝐿2 . (Note that −Δ is a strictly
positive self-adjoint operator on 𝐿̊2(𝕋𝑛), and thus its negative powers (−Δ)−𝑠, with 𝑠 > 0, may be defined again by means
of the spectral theorem.)
For 𝑠 ∈ ℝ, the Sobolev space 𝐻̊𝑠(𝕋𝑛) can be identified with a set of formal series:

𝐻̊𝑠(𝕋𝑛) =

{
𝑓 =

∑
𝑧∈ℤ𝑛⧵{0}

𝛼𝑧𝜑𝑧 ∶ 𝛼𝑧 ∈ ℝ,
∑

𝑧∈ℤ𝑛⧵{0}

|𝑧|2𝑠 |𝛼𝑧|2 < ∞

}
.

Then for all 𝑓 =
∑
𝑧∈ℤ𝑛⧵{0} 𝛼𝑧𝜑𝑧 ∈ 𝐻̊𝑟(𝕋𝑛) and 𝑔 =

∑
𝑧∈ℤ𝑛⧵{0} 𝛽𝑧𝜑𝑧 ∈ 𝐻̊𝑠(𝕋𝑛) with 𝑟 + 𝑠 ≥ 0,

⟨𝑓, 𝑔⟩𝕋𝑛 = ∑
𝑧∈ℤ𝑛⧵{0}

𝛼𝑧 𝛽𝑧.

The norm of 𝐻̊𝑠(𝕋𝑛) is given by the square root of
∑
𝑧∈ℤ𝑛⧵{0} |𝑧|2𝑠 |𝛼𝑧|2. Equivalently, it could be defined with 𝜆𝑠𝑧 in place

of |𝑧|2𝑠. This is the convention adopted in [5]. The two norms differ only by a factor (2𝜋)𝑠.
(f)
The 𝓁∞-norm of 𝑧 ∈ ℝ𝑛 is

‖𝑧‖∞ ∶= max
𝑘=1,…,𝑛

|𝑧𝑘| .
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SCHIAVO et al. 249

Given any function 𝑢 ∶ ℤ𝑛 → ℂ we define the principal value along cubes of the series
∑
𝑧 𝑢(𝑧) by

□∑
𝑧∈ℤ𝑛

𝑢(𝑧) ∶= lim
𝐿→∞

∑
𝑧∈ℤ𝑛, ‖𝑧‖∞<𝐿∕2 𝑢(𝑧)

provided the latter limit exists in ℂ or in ℝ ∪ {±∞}.

(g)
Since 𝕋𝑛 is compact, there exists a unique grounded Green kernel 𝐺̊ satisfying

𝐺̊(𝑥, 𝑦) ≃ |𝑥 − 𝑦|2−𝑛.
In particular, 𝐺̊ ∈ 𝐿𝑝(𝕋𝑛 × 𝕋𝑛) for all 𝑝 < 𝑛

𝑛−2
. We claim that we have:

𝐺̊(𝑥, 𝑦) =

□∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2 𝜑𝑧(𝑥) 𝜑𝑧(𝑦) =
□∑

𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2 Φ𝑧(𝑥)Φ𝑧(𝑦)
=

□∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2 Φ𝑧(𝑥 − 𝑦) =
□∑

𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2 cos (2𝜋 𝑧 ⋅ (𝑥 − 𝑦)),
where the convergence holds almost everywhere and in 𝐿𝑝 for 𝑝 < 𝑛∕(𝑛 − 2). Indeed consider the filtration (𝔉𝐿) where
𝔉𝐿 is the 𝜎-algebra generated by the 𝜑𝑧 for 𝑧 ∈ ℤ𝑛, ‖𝑧‖∞ < 𝐿∕2, and the associated closed martingale 𝐺̊𝐿 = 𝐄[𝐺̊|𝔉𝐿],
where expectation is with respect to 𝗏𝗈𝗅 ⊗ 𝗏𝗈𝗅. Take 𝑧 ∈ ℤ𝑛 with ‖𝑧‖∞ < 𝐿∕2. Since 𝜑𝑧 is𝔉𝐿-measurable, we get that

∫ 𝐺̊𝑘(𝑥, 𝑦)𝜑𝑧(𝑦)𝑑𝑦 = ∫ 𝐺̊(𝑥, 𝑦)𝜑𝑧(𝑦)𝑑𝑦 = (−Δ)
−1
𝜑𝑧(𝑥) = 𝜆−1𝑧 𝜑𝑧(𝑥).

On the other hand, when ‖𝑧‖∞ ≥ 𝐿∕2, since the 𝜑𝑧’s form an orthonormal basis, we find that 𝐄[𝜑𝑧|𝔉𝐿] = 0, and thus

∫ 𝐺̊𝐿(𝑥, 𝑦)𝜑𝑧(𝑦)𝑑𝑦 = 0.

This shows that

𝐺̊𝐿(𝑥, 𝑦) =
∑

𝑧∈ℤ𝑛𝐿⧵{0}

𝜆−1𝑧 𝜑𝑧(𝑥)𝜑𝑧(𝑦),

and thus the almost everywhere convergence of the series follows by the martingale convergence theorem.

(h)
The polyharmonic operator is defined as

𝑎𝑛 ⋅ (−Δ)
𝑛∕2 with 𝑎𝑛 ∶=

2

Γ(𝑛∕2) (4𝜋)𝑛∕2
.

The inverse operator admits a kernel denoted by 𝑘.
As for the Green kernel, we have the following representation.

Lemma 2.1. We have that

𝑘 =

□∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)𝑛 𝜑𝑧 ⊗ 𝜑𝑧,

where the series converges in 𝐿2(𝕋𝑛 × 𝕋𝑛) and almost-everywhere.
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250 SCHIAVO et al.

Remark 2.2. We conjecture that the convergence indeed holds everywhere but do not have a proof of this fact.

Proof. Since the series on the right-hand side is orthogonal, we find that

‖‖‖‖‖‖
∑

𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2
𝑧 𝜑𝑧 ⊗ 𝜑𝑧

‖‖‖‖‖‖𝐿2 =
∑

𝑧∈ℤ𝑛⧵{0}

(2𝜋|𝑧|)−2𝑛 < ∞.

This shows that the series actually converges in 𝐿2. The rest of the claim is obtained by a martingale argument as for the
previous lemma. □

We denote by 𝑝̊𝑡 the grounded heat kernel

𝑝̊𝑡(𝑥, 𝑦) ∶= 𝑝𝑡(𝑥, 𝑦) − 1 , 𝑥, 𝑦 ∈ 𝕋𝑛 .

Lemma 2.3. The function

𝑓 ∶ 𝑥⟼ 𝑘(𝑥, 0) =
1

Γ(𝑛∕2) ∫
∞

0

𝑝̊𝑡(𝑥, 0) 𝑡
𝑛∕2−1𝑑𝑡 (1)

is differentiable at every 𝑥 ∈ 𝕋𝑛 ⧵ {0}, and, for every 𝑘 ≤ 𝑛,

𝜕

𝜕𝑥𝑘
𝑓(𝑥) =

1

Γ(𝑛∕2) ∫
∞

0

𝜕

𝜕𝑥𝑘
𝑝̊𝑡(𝑥, 0) 𝑡

𝑛∕2−1𝑑𝑡 . (2)

Proof. The heat-kernel representation in Equation (1) holds as in [6, Lemma 2.4]. For fixed 𝑘 ≤ 𝑛, standardGaussian upper
heat kernel estimates provide the summability of the right-hand side in Equation (2), hence Equation (2) follows by dif-
ferentiation under integral sign. Since 𝑥 ↦

(
𝜕

𝜕𝑥𝑘
𝑝̊𝑡

)
(𝑥, 0) is continuous for every 𝑘 on the whole of 𝕋𝑛, we have that 𝜕

𝜕𝑥𝑘
𝑓

is continuous away from 0, and the differentiability of 𝑓 follows by standard arguments in multivariate calculus. □

The constant 𝑎𝑛 is chosen such in such a way that 𝑘 has exactly logarithmic divergence.

Lemma 2.4 [5, Prop. 2.13]. There exists a constant 𝐶 = 𝐶(𝑛) > 0 such that

||||𝑘(𝑥, 𝑦) − log 1

𝑑(𝑥, 𝑦)

|||| ≤ 𝐶 , 𝑥, 𝑦 ∈ 𝕋𝑛 . (3)

Proof. Note that the estimate in Proposition 2.13 in [5] for the kernel 𝐺𝑛∕2(𝑥, 𝑦) of the 𝑛∕2-power of the Green operator
holds not only for even but also for odd 𝑛. □

Remark 2.5. Let us note here thatwe rely—as in the proof of Lemma 2.3—on results in [5], proved there for copolyharmonic
operators on admissible manifolds 𝑀 of even dimension 𝑛. Copolyharmonic operators are pseudo-differential operators
on 𝑀 with the same principal symbol as the (integer) power (−Δ𝑔)𝑛∕2 of the Laplace–Beltrami operator Δ𝑔 on 𝑀, with
lower-order correction terms granting their covariance under conformal transformations.We call a manifold admissible if
the copolyharmonic operator is non-negative definite, with kernel exactly the one-dimensional subspace consisting of all
constant functions. While the fact that a copolyharmonic operator has non-negative spectrum depends on the geometry
of𝑀, the assumption of 𝑛 even is sufficient to grant that copolyharmonic operators have no zero-order term, so that their
kernel contains all constant functions.
In the case of 𝑛-dimensional flat tori with 𝑛 even, the copolyharmonic operators in [5] coincide with the (integer)

power (−Δ)𝑛∕2 of the standard Laplacian on the torus. In this case however, it is readily verified for every integer 𝑛
that (−Δ)𝑛∕2 is non-negative definite and that its kernel is the one-dimensional subspace consisting of all constant func-
tions. Thus, all results [5] concerned with the existence of Gaussian fields and their Gaussian multiplicative chaoses hold
with identical proof on flat tori of arbitrary dimension.
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SCHIAVO et al. 251

2.2 Laplacian and kernels on the discrete torus

(a)
For the sequel, fix 𝐿 ∈ ℕ. For convenience, we assume that 𝐿 is odd. Put

ℤ𝑛𝐿 ∶= {𝑧 ∈ ℤ𝑛 ∶ ‖𝑧‖∞ < 𝐿∕2} ,

and let

𝕋𝑛𝐿 ∶=
(
1

𝐿
ℤ
)𝑛/

ℤ𝑛

denote the discrete 𝑛-torus with edge length 1

𝐿
. Where helpful, one can think of the discrete torus 𝕋𝑛𝐿 as the set

1

𝐿
ℤ𝑛𝐿 =

{
𝑘

𝐿
∶ 𝑘 ∈ ℤ, 0 ≤ 𝑘 < 𝐿})𝑛 ⊂ ℝ𝑛. We always regard it as a subset of the continuous torus 𝕋𝑛. Furthermore, let

𝑚𝐿 ∶=
1

𝐿𝑛

∑
𝑧∈𝕋𝑛𝐿

𝛿𝑧

denote the normalized counting measure on 𝕋𝑛𝐿. Points 𝑣, 𝑢 ∈ 𝕋𝑛𝐿 are neighbors, in short 𝑣 ∼ 𝑢, if 𝑑(𝑣, 𝑢) = 1

𝐿
. Each point

in 𝕋𝑛𝐿 has 2𝑛 neighbors.

(b)
We define the discrete Laplacian Δ𝐿 acting on functions 𝑓 ∈ 𝐿2(𝕋𝑛𝐿) by

Δ𝐿𝑓(𝑣) ∶= 𝐿2 ⋅
∑
𝑢∼𝑣

[𝑓(𝑢) − 𝑓(𝑣)] = 2𝑛𝐿2(𝗉𝐿𝑓 − 𝑓)(𝑣)

with the transition kernel on 𝕋𝑛𝐿 given by

𝑝𝐿(𝑣, 𝑢) ∶=
𝐿𝑛

2𝑛
𝟏𝑣∼𝑢

and its action by (𝗉𝐿𝑓)(𝑣) = 𝐿−𝑛
∑
𝑢 𝑝𝐿(𝑣, 𝑢)𝑓(𝑢). Furthermore, we define the grounded transition kernel by

𝑝̊𝐿(𝑣, 𝑢) ∶= 𝑝𝐿(𝑣, 𝑢) − 1 .

The discrete Green operator acting on grounded functions 𝑓 ∈ 𝐿̊2(𝕋𝑛𝐿) is defined by

𝖦̊𝐿𝑓 ∶=
1

2𝑛𝐿2

∞∑
𝑘=0

𝗉𝑘𝐿𝑓 =
1

2𝑛𝐿2

∞∑
𝑘=0

𝗉̊𝑘𝐿𝑓 .

In particular, the grounded discrete Green kernel is given by

𝐺̊𝐿(𝑣, 𝑢) =
1

2𝑛𝐿2

∞∑
𝑘=0

𝑝̊𝑘𝐿(𝑣, 𝑢)

and its action by (𝖦̊𝐿𝑓)(𝑣) = 𝐿−𝑛
∑
𝑦 𝐺̊𝐿(𝑣, 𝑢)𝑓(𝑢).

(c)
A complete ON basis of the complex 𝐿2

ℂ
(𝕋𝑛𝐿,𝑚𝐿) is given by (Φ𝑧)𝑧∈ℤ𝑛𝐿 with

Φ𝑧(𝑣) ∶= exp (2𝜋i 𝑧 ⋅ 𝑣) , 𝑣 ∈ 𝕋𝑛𝐿 .
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252 SCHIAVO et al.

The functions Φ𝑧 are (normalized) eigenfunctions of the negative discrete Laplacian −Δ𝐿 with eigenvalues

𝜆𝐿,𝑧 ∶= 4𝐿2
𝑛∑
𝑘=1

sin
2
(𝜋𝑧𝑘∕𝐿) . (4)

Note that as 𝐿 → ∞, the right-hand side converges to 𝜆𝑧 = (2𝜋|𝑧|)2 for any 𝑧 ∈ ℤ𝑛.
A complete ON basis of 𝐿2

ℝ
(𝕋𝑛𝐿,𝑚𝐿) is given by the functions 𝜑𝑧 for 𝑧 ∈ ℤ𝑛𝐿 whereas before 𝜑0 ≡ 1 and 𝜑𝑧(𝑣) =√

2 cos (2𝜋 𝑧 ⋅ 𝑣) if 𝑧 ∈ ℤ̂𝑛 ∩ ℤ𝑛𝐿 and 𝜑𝑧(𝑣) =
√
2 sin (2𝜋 𝑧 ⋅ 𝑣) if 𝑧 ∈ (−ℤ̂𝑛) ∩ ℤ𝑛𝐿.

Remark 2.6. For even 𝐿, the previous definitions require some modifications. The set ℤ𝑛𝐿 has to be re-defined as

ℤ𝑛𝐿 ∶=
{
− 𝐿∕2 + 1,… , 𝐿∕2 − 1, 𝐿∕2

}𝑛
.

Each 𝑧 ∈ ℤ𝑛𝐿 we decompose into 𝑧′ ∶= (𝑧𝑘)𝑘∈𝜎𝑧 and 𝑧̃ ∶= (𝑧𝑘)𝑘∈𝜏𝑧 with 𝜎𝑧 ∶= {𝑘 ∈ {1, … , 𝑛} ∶ 𝑧𝑘 = 𝐿∕2}, 𝜏𝑧 ∶= {𝑘 ∈

{1, … , 𝑛} ∶ 𝑧𝑘 < 𝐿∕2}. Similarly, for 𝑣 ∈ 𝕋𝑛𝐿 we put 𝑣
′ ∶= (𝑣𝑘)𝑘∈𝜎𝑧 and 𝑣 ∶= (𝑣𝑘)𝑘∈𝜏𝑧 . Then

Φ𝑧(𝑣) = (−1)𝐿 |𝑣′|𝜎𝑧 ⋅ Φ𝑧̃(𝑣) with |𝑣′|𝜎𝑧 ∶= ∑
𝑘∈𝜎𝑧

𝑣𝑘 .

Thus, a complete ON basis of 𝐿2
ℝ
(𝕋𝑛𝐿,𝑚𝐿) is given by the functions

𝜑𝑧(𝑣) ∶= (−1)𝐿 |𝑣′|𝜎𝑧 ⋅ 𝜑𝑧̃(𝑣) , 𝑧 ∈ 𝑍𝑛𝐿 , (5)

where 𝜑𝑧̃ for 𝑧̃ ∈ ℤ𝑛 with ‖𝑧̃‖∞ < 𝐿∕2 is defined as before.

(d)
In terms of the discrete eigenfunctions, the discrete grounded Green kernel, the integral kernel of the inverse of−Δ𝐿 acting
on grounded 𝐿2-functions, is given as

𝐺̊𝐿(𝑣, 𝑢) =
∑

𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆𝐿,𝑧
𝜑𝑧(𝑣) 𝜑𝑧(𝑢) =

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆𝐿,𝑧
Φ𝑧(𝑣)Φ𝑧(𝑢)

=
∑

𝑧∈ℤ𝑛𝐿⧵{0}

1

4𝐿2
∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿)

⋅ cos (2𝜋 𝑧 ⋅ (𝑣 − 𝑢)) ,

and the discrete polyharmonic kernel 𝑘𝐿 (Figure 1), the integral kernel of the inverse of 𝑎𝑛(−Δ𝐿)𝑛∕2 acting on grounded
𝐿2-functions, as

𝑘𝐿(𝑣, 𝑢) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

𝜑𝑧(𝑣) 𝜑𝑧(𝑢) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

Φ𝑧(𝑣)Φ𝑧(𝑢)

=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1(
4𝐿2
∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿)

)𝑛∕2 ⋅ cos (2𝜋 𝑧 ⋅ (𝑣 − 𝑢)) . (6)

2.3 Extensions and projections

(a) Piecewise constant extension/projection
Set

𝑄𝐿 ∶=
[
−

1

2𝐿
,
1

2𝐿

)𝑛
and 𝑄𝐿(𝑣) ∶= 𝑣 + 𝑄𝐿 , 𝑣 ∈ 𝕋𝑛𝐿 . (7)
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SCHIAVO et al. 253

F IGURE 1 𝑘(0, 𝑦) (orange) and 𝑘11(0, 𝑦) (blue) for 𝑦 ∈ 𝕋2 (sectional view with one quadrant removed).

Observe that

𝕋𝑛 =
⨆
𝑣∈𝕋𝑛𝐿

𝑄𝐿(𝑣) .

Functions on 𝕋𝑛 are called piecewise constant if they are constant on each of the cubes 𝑄𝐿(𝑣), 𝑣 ∈ 𝕋𝑛𝐿. Every function 𝑓
on the discrete torus 𝕋𝑛𝐿 can be uniquely extended to a piecewise constant function 𝑓𝐿,♭(𝑥) by setting 𝑓𝐿,♭(𝑥) ∶= 𝑓(𝑣) if
𝑥 ∈ 𝑄𝐿(𝑣). In other words,

𝑓𝐿,♭(𝑥) = (𝗊̇𝐿,𝑓)(𝑥) ∶= ⟨𝑞𝐿(𝑥, ⋅ ), 𝑓⟩𝕋𝑛𝐿
with the Markov kernel 𝑞𝐿(𝑥, 𝑣) ∶= 𝐿𝑛 𝟏𝑄𝐿(𝑣)(𝑥) on 𝕋

𝑛 × 𝕋𝑛𝐿. The latter is the restriction of the Markov kernel

𝑞𝐿 = 𝐿𝑛
∑
𝑣∈𝕋𝑛𝐿

𝟏𝑄𝐿(𝑣) ⊗ 𝟏𝑄𝐿(𝑣) on 𝕋𝑛 × 𝕋𝑛. (8)

Note that ∫
𝕋𝑛
𝑞𝐿(𝑥, 𝑦)𝑑𝑦 = 1 as well as ∫

𝕋𝑛𝐿
𝑞𝐿(𝑥, 𝑣)𝑑𝑚𝐿(𝑣) = 1.

The projection from 𝐿2(𝕋𝑛) onto the set of piecewise constant functions on 𝕋𝑛 is given by 𝑓 ↦ 𝑓♭,𝐿 with

𝑓♭,𝐿(𝑥) = (𝗊𝐿𝑓)(𝑥) ∶= ⟨𝑞𝐿(𝑥, ⋅ ), 𝑓⟩𝕋𝑛 = 𝐿𝑛
∑
𝑣∈𝕋𝑛𝐿

⟨1𝑄𝐿(𝑣), 𝑓⟩𝕋𝑛 ⋅ 1𝑄𝐿(𝑣)(𝑥) . (9)

Here and in the following, the integral operators associated with kernels 𝑝, 𝑞, 𝑟will be denoted by 𝗉, 𝗊, 𝗋, resp. In general,
these are regarded as integral operators on𝕋𝑛. If wewant to regard themas integral operators on𝕋𝑛𝐿, wewrite 𝗉̇, 𝗊̇, 𝗋̇ instead.

(b) Fourier extension/projection
Let𝐿 denote the linear span of {𝜑𝑧 ∶ 𝑧 ∈ ℤ𝑛𝐿}. Every function 𝑓 on the discrete torus 𝕋

𝑛
𝐿 can be uniquely represented as

𝑓 =
∑
𝑧∈ℤ𝑛𝐿

𝛼𝑧𝜑𝑧 with suitable coefficients 𝛼𝑧 ∈ ℝ for 𝑧 ∈ ℤ𝑛𝐿, and thus uniquely extends to a function 𝑓𝐿,♯ ∈ 𝐿 on the
continuous torus 𝕋𝑛. Formally,

𝑓𝐿,♯(𝑥) ∶= (𝗋̇𝐿𝑓)(𝑥) ∶= ⟨𝑓, 𝑟𝐿(𝑥, ⋅ )⟩𝕋𝑛𝐿 ∶= ∑
𝑧∈ℤ𝑛𝐿

⟨𝑓, 𝜑𝑧⟩𝕋𝑛𝐿 ⋅ 𝜑𝑧(𝑥)
with the kernel

𝑟𝐿 ∶=
∑
𝑧∈ℤ𝑛𝐿

𝜑𝑧 ⊗ 𝜑𝑧 on 𝕋𝑛 × 𝕋𝑛. (10)
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254 SCHIAVO et al.

Regarded as a kernel on 𝕋𝑛𝐿 × 𝕋
𝑛, the latter defines the Fourier extension operator. As a kernel on 𝕋𝑛𝐿 × 𝕋

𝑛
𝐿 it indeed is

the identity.
Conversely, the projection from

⋃
𝑠 𝐻

𝑠(𝕋𝑛) onto𝐿 is given by 𝑓 ↦ 𝑓♯,𝐿 with

𝑓♯,𝐿(𝑥) ∶= (𝗋𝐿𝑓)(𝑥) ∶= ⟨𝑓, 𝑟𝐿(𝑥, ⋅ )⟩𝕋𝑛 ∶= ∑
𝑧∈ℤ𝑛𝐿

⟨𝑓, 𝜑𝑧⟩𝕋𝑛 𝜑𝑧(𝑥).
In particular, if 𝑓 =

∑
𝑧∈ℤ𝑛 𝛼𝑧𝜑𝑧 then 𝑓♯,𝐿 =

∑
𝑧∈ℤ𝑛𝐿

𝛼𝑧𝜑𝑧.

(c) Enhancement and reduction
For 𝑓 =

∑
𝑧∈ℤ𝑛𝐿

𝛼𝑧𝜑𝑧 ∈
⋃
𝑠 𝐻

𝑠(𝕋𝑛) we define its spectral reduction and its spectral enhancement, resp., by

𝑓−◦𝐿 ∶=
∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝐿,𝑧
𝜆𝑧

)𝑛∕4
𝛼𝑧𝜑𝑧, 𝑓+◦𝐿 ∶=

∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4
𝛼𝑧𝜑𝑧.

Note that

𝜆𝐿,𝑧
𝜆𝑧

=
𝐿2

𝜋2 |𝑧|2
𝑛∑
𝑘=1

sin
2
(𝜋𝑧𝑘∕𝐿) ∈

[
(2∕𝜋)2, 1

]
and → 1 as 𝐿 → ∞. (11)

Similarly, we define its integral reduction and its integral enhancement, resp., by

𝑓◦−𝐿 ∶=
∑
𝑧∈ℤ𝑛𝐿

𝜗𝐿,𝑧𝛼𝑧𝜑𝑧, 𝑓◦+𝐿 ∶=
∑
𝑧∈ℤ𝑛𝐿

1

𝜗𝐿,𝑧
𝛼𝑧𝜑𝑧

with

𝜗𝐿,𝑧 ∶=

𝑛∏
𝑘=1

(
𝐿

𝜋𝑧𝑘
sin
(𝜋𝑧𝑘
𝐿

))
∈ [(2∕𝜋)𝑛, 1] and → 1 as 𝐿 → ∞. (12)

In terms of integral operators this can be expressed as

𝑓−◦𝐿 = 𝗋−◦𝐿 𝑓, 𝑓+◦𝐿 = 𝗋+◦𝐿 𝑓, 𝑓◦−𝐿 = 𝗋◦−𝐿 𝑓, 𝑓◦+𝐿 = 𝗋◦+𝐿 𝑓

with integral and enhancement kernels on 𝕋𝑛 × 𝕋𝑛 defined as follows:

𝑟+𝐿 =
∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4
𝜗−1𝐿,𝑧 𝜑𝑧 ⊗ 𝜑𝑧 , 𝑟−𝐿 =

∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝑧
𝜆𝐿,𝑧

)−𝑛∕4
𝜗𝐿,𝑧 𝜑𝑧 ⊗ 𝜑𝑧 ,

𝑟+◦𝐿 =
∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4
𝜑𝑧 ⊗ 𝜑𝑧 , 𝑟−◦𝐿 =

∑
𝑧∈ℤ𝑛𝐿

(
𝜆𝑧
𝜆𝐿,𝑧

)−𝑛∕4
𝜑𝑧 ⊗ 𝜑𝑧 ,

𝑟◦+𝐿 =
∑
𝑧∈ℤ𝑛𝐿

𝜗−1𝐿,𝑧 𝜑𝑧 ⊗ 𝜑𝑧 , 𝑟◦−𝐿 =
∑
𝑧∈ℤ𝑛𝐿

𝜗𝐿,𝑧 𝜑𝑧 ⊗ 𝜑𝑧 .

Lemma 2.7. For 𝑓 ∈ 𝐿,

𝗊𝐿𝑓 = 𝑓◦−𝐿 on 𝕋𝑛𝐿 and 𝗊𝐿(𝑓
◦+
𝐿 ) = 𝑓 on 𝕋𝑛𝐿 .
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SCHIAVO et al. 255

Proof. For 𝑓 = Φ𝑧 with 𝑧 ∈ ℤ𝑛𝐿, and for 𝑣 ∈ 𝕋𝑛𝐿,

𝗊𝐿𝑓(𝑣) = 𝐿𝑛 ∫
𝑄𝐿(𝑣)

Φ𝑧(𝑥)𝑑𝑥 = Φ𝑧(𝑣) ⋅ 𝐿
𝑛 ∫

𝑄𝐿

Φ𝑧(𝑥)𝑑𝑥

= Φ𝑧(𝑣) ⋅

𝑛∏
𝑘=1

𝐿 ∫
1

2𝐿

−
1

2𝐿

cos(2𝜋𝑥𝑘𝑧𝑘)𝑑𝑥𝑘 = Φ𝑧(𝑣) ⋅

𝑛∏
𝑘=1

(
𝐿

𝜋𝑧𝑘
sin
(𝜋𝑧𝑘
𝐿

))
.

Therefore, for 𝑓 = 𝜑𝑧 with 𝑧 ∈ ℤ𝑛𝐿, and for 𝑣 ∈ 𝕋𝑛𝐿,

𝗊𝐿𝑓(𝑣) = 𝑓(𝑣) ⋅ 𝜗𝐿,𝑧 .

Thus, the claim follows. □

(d) Continuous versus discrete scalar product
For functions 𝑓 =

∑
𝑧∈ℤ𝑛𝐿

𝛼𝑧𝜑𝑧 and 𝑔 =
∑
𝑤∈ℤ𝑛𝐿

𝛽𝑤𝜑𝑤, the scalar products in 𝕋𝑛𝐿 and in 𝕋
𝑛 coincide:

⟨𝑓, 𝑔⟩𝕋𝑛𝐿 = ⟨𝑓, 𝑔⟩𝕋𝑛 = ∑
𝑧∈ℤ𝑛𝐿

𝛼𝑧 𝛽𝑧 .

This simple identity, however, no longer holds if the Fourier representation of 𝑓 and 𝑔 also contains terms with higher
frequencies.

Lemma 2.8.

(𝑖) For 𝑓 =
∑
𝑧∈ℤ𝑛𝐾

𝛼𝑧𝜑𝑧 and 𝑔 =
∑
𝑤∈ℤ𝑛𝐾

𝛽𝑤𝜑𝑤 ,

⟨𝑓, 𝑔⟩𝕋𝑛𝐿 = ∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛,‖𝑧+𝐿𝑤‖∞<𝐾∕2 𝛼𝑧 𝛽𝑧+𝐿𝑤 .

(𝑖𝑖) For any 𝛼 ∶ ℤ𝑛 → ℝ, the limit 𝑓 =
∑□

𝑧∈ℤ𝑛 𝛼𝑧𝜑𝑧 exists in 𝐿
2(𝕋𝑛𝐿) if and only if

sup
𝐾

‖‖‖ ∑
𝑧∈ℤ𝑛𝐾

𝛼𝑧𝜑𝑧
‖‖‖2𝕋𝑛𝐿 < ∞ (13)

(𝑖𝑖𝑖) For all 𝑓 =
∑□

𝑧∈ℤ𝑛 𝛼𝑧𝜑𝑧 and 𝑔 =
∑□

𝑤∈ℤ𝑛 𝛽𝑤𝜑𝑤 in 𝐿
2(𝕋𝑛𝐿),

⟨𝑓, 𝑔⟩𝕋𝑛𝐿 = lim
𝐾→∞

∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛∶‖𝑧+𝐿𝑤‖∞<𝐾∕2 𝛼𝑧𝛽𝑧+𝐿𝑤 , ⟨𝑓, 𝑔⟩𝕋𝑛 = □∑

𝑧∈ℤ𝑛
𝛼𝑧 𝛽𝑧.

Proof.

(𝑖) We prove the analogous assertion in the complex Hilbert space: for all 𝑓 =
∑
𝑧∈ℤ𝑛𝐾

𝑎𝑧Φ𝑧 and 𝑔 =
∑
𝑤∈ℤ𝑛𝐾

𝑏𝑤Φ𝑤,

⟨𝑓, 𝑔⟩𝕋𝑛𝐿 = ⟨ ∑
𝑧∈ℤ𝑛𝐾

𝑎𝑧Φ𝑧,
∑
𝑤∈ℤ𝑛𝐾

𝑏𝑤Φ𝑤

⟩
𝕋𝑛𝐿

= ∫
𝕋𝑛𝐿

∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛𝐾

𝑎𝑧 𝑏𝑤 exp (2𝜋𝑖 𝑣(𝑧 − 𝑤)) 𝑑𝑚𝐿(𝑣)
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256 SCHIAVO et al.

=
∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛𝐾

𝑎𝑧 𝑏𝑤 ⋅ ∫
𝕋𝑛𝐿

exp (2𝜋𝑖 𝑣(𝑧 − 𝑤)) 𝑑𝑚𝐿(𝑣)

=
∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛,‖𝑧+𝐿𝑤‖∞<𝐾∕2 𝑎𝑧 𝑏𝑧+𝐿𝑤

since for every 𝑧 ∈ ℤ𝑛

∫
𝕋𝑛𝐿

exp(2𝜋i 𝑣𝑧) 𝑑𝑚𝐿(𝑣) =

{
1, if 𝑧 ∈ 𝐿ℤ𝑛

0, else
.

The claim for the real Hilbert space then follows choosing 𝑎𝑧 =
1√
2
(𝛼𝑧 + i𝛼−𝑧) and 𝑎−𝑧 =

1√
2
(𝛼𝑧 − i𝛼−𝑧) for 𝑧 ∈ ℤ̂𝑛

and analogously 𝑏𝑧.
(𝑖𝑖) Assume first that 𝑓 ∈ 𝐿2(𝕋𝑛𝐿). Then,

∑
𝑧∈ℤ𝑛𝐾

𝛼𝑧𝜑𝑧 converges to 𝑓 in 𝐿2(𝕋𝑛𝐿). This implies Equation (13). Conversely,
assume that Equation (13) holds. Then, a martingale argument similar to that of Lemma 2.1 shows that 𝑓 is the limit
in 𝐿2(𝕋𝑛𝐿) of

∑
𝑧∈ℤ𝑛𝐾

𝛼𝑧𝜑𝑧.
(𝑖𝑖𝑖) We only need to show the first equation. By linearity it is sufficient to show it for 𝑓 = 𝑔. In view of what precedes,

we have

‖𝑓‖2𝕋𝑛𝐿 = lim
𝐾→∞

‖‖‖‖‖‖‖
∑
𝑧∈ℤ𝑛𝐾

𝛼𝑧𝜑𝑧

‖‖‖‖‖‖‖
2

= lim
𝐾→∞

∑
𝑧∈ℤ𝑛𝐾

∑
𝑤∈ℤ𝑛∶‖𝑧+𝐿𝑤‖∞<𝐾∕2 𝛼𝑧𝛼𝑧+𝐿𝑤,

which proves the claim. The convergence of the series is ensured by Equation (13). □

Remark 2.9. According to the previous lemma, in particular, for every 𝑓 =
∑□

𝑧∈ℤ𝑛 𝛼𝑧𝜑𝑧,

‖‖𝑓‖‖2𝕋𝑛𝐿 = ∑
𝑧∈ℤ𝑛

∑
𝑤∈ℤ𝑛

𝛼𝑧 𝛼𝑧+𝐿𝑤

if the latter series is absolutely convergent.
One can show (cf. proof of Theorem 4.11) that the latter series is absolutely convergent if 𝑓 ∈

⋃
𝑠>𝑛∕2 𝐻

𝑠(𝕋𝑛). This is in
accordance with the Sobolev embedding theorem which asserts that in this case 𝑓 ∈ (𝕋𝑛) and thus guarantees that the
pointwise evaluation of 𝑓 (at the lattice points of 𝕋𝑛𝐿) is meaningful.

3 THE POLYHARMONIC GAUSSIAN FIELD ON THE DISCRETE TORUS

3.1 Definition and construction of the field

Throughout the following, fix integers 𝑛 and 𝐿. For convenience, we assume that 𝐿 is odd, and we set 𝑁 ∶= 𝐿𝑛.

Definition 3.1. A random field ℎ𝐿 = (ℎ𝐿(𝑣))𝑣∈𝕋𝑛𝐿—defined on some probability space (Ω,𝔄, 𝐏)—is called polyharmonic
Gaussian field on the discrete torus 𝕋𝑛𝐿 (shortly: discrete polyharmonic Gaussian field) if it is a centered Gaussian field with
covariance function 𝑘𝐿 given by Equation (6).

Proposition 3.2. Given i.i.d. standardnormals 𝜉𝑧 for 𝑧 ∈ ℤ𝑛𝐿 ⧵ {0} onaprobability space (Ω,𝔄, 𝐏), a polyharmonicGaussian
field on 𝕋𝑛𝐿 is defined by

ℎ𝜔𝐿 (𝑣) ∶=
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕4
𝐿,𝑧

⋅ 𝜉𝜔𝑧 ⋅ 𝜑𝑧(𝑣) 𝑣 ∈ 𝕋𝑛𝐿 , 𝜔 ∈ Ω . (14)

Here, 𝜆𝐿,𝑧 = 4𝐿2
∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿) for 𝑧 ∈ ℤ𝑛𝐿 are the eigenvalues of the discrete Laplacian, see Equation (4), and the

eigenvalue 0 is excluded in the representation of the random field.
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SCHIAVO et al. 257

Proof. For all 𝑣, 𝑢 ∈ 𝕋𝑛𝐿,

𝐄[ℎ𝐿(𝑣) ℎ𝐿(𝑢)] =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ 𝜑𝑧(𝑣) 𝜑𝑧(𝑢) = 𝑘𝐿(𝑣, 𝑢) .
□

Alternatively, the polyharmonic field on the discrete torus 𝕋𝑛𝐿 can be defined in terms of the white noise on the discrete
torus. Recall that a random field Ξ = (Ξ𝑣)𝑣∈𝕋𝑛𝐿 is called white noise on (𝕋

𝑛
𝐿,𝑚𝐿) if the Ξ𝑣 for 𝑣 ∈ 𝕋𝑛𝐿 are independent

centered Gaussian random variables with variance 𝐿𝑛. (This normalization guarantees that ∫
𝕋𝑛𝐿
Ξ𝑣𝑑𝑚𝐿(𝑣) is  (0, 1)

distributed.)

Proposition 3.3. Given a white noise Ξ = (Ξ𝑣)𝑣∈𝕋𝑛𝐿 on (𝕋
𝑛
𝐿,𝑚𝐿), a polyharmonic Gaussian field on 𝕋𝑛𝐿 is defined by

ℎ𝜔𝐿 (𝑣) =
1√
𝑎𝑛 𝐿𝑛

∑
𝑢∈𝕋𝑛𝐿

𝐺̊
𝑛∕4
𝐿 (𝑣, 𝑢) Ξ𝜔𝑢

with

𝐺̊
𝑛∕4
𝐿 (𝑣, 𝑢) =

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕4
𝐿,𝑧

⋅ cos (2𝜋𝑧(𝑣 − 𝑢)) .

Proof. For all 𝑣, 𝑤 ∈ 𝕋𝑛𝐿,

𝐄[ℎ𝐿(𝑣) ℎ𝐿(𝑤)] =
1

𝑎𝑛 𝐿2𝑛

∑
𝑢∈𝕋𝑛𝐿

𝐺̊
𝑛∕4
𝐿 (𝑣, 𝑢) ⋅ 𝐺̊

𝑛∕4
𝐿 (𝑤, 𝑢) ⋅ 𝐿𝑛

=
1

𝑎𝑛
𝐺̊
𝑛∕2
𝐿 (𝑣, 𝑤) = 𝑘𝐿(𝑣, 𝑤) . □

In other words,

ℎ𝜔𝐿 =
1√
𝑎𝑛

𝖦̊
𝑛∕4
𝐿 Ξ𝜔 (15)

with Ξ ∶= (Ξ𝑣)𝑣∈𝕋𝑛𝐿 being a white noise on 𝕋
𝑛
𝐿. The latter is a Gaussian random variable on ℝ𝑁 ≅ ℝ𝕋𝑛𝐿—recall that 𝑁 =

𝐿𝑛—with distribution

𝑑𝐏(Ξ) =
1

(2𝜋𝑁)𝑁∕2
𝑒
−

1

2𝑁
‖Ξ‖2

𝑑𝑁(Ξ) .

Here, ‖Ξ‖ denotes the Euclidean norm of Ξ ∈ ℝ𝑁 , and thus under the identification ℝ𝑁 ≅ ℝ𝕋𝑛𝐿 ,

1

𝑁
‖Ξ‖2 = ‖Ξ‖2

𝐿2(𝕋𝑛𝐿,𝑚𝐿)
.

3.2 A second look on the polyharmonic Gaussian field on discrete tori

(a)
Consider the orthogonal decomposition ofℝ𝑁 into the lineℝ ⋅ (1, … , 1) and its orthogonal complement 𝐻̊ ∶= {Ξ ∈ ℝ𝑁 ∶∑𝑁

𝑣=1 Ξ𝑣 = 0}. More precisely, consider the maps

𝐴̄ ∶ ℝ𝑁 ⟶ℝ, Ξ⟼ Ξ̄ ∶=
1√
𝑁

𝑁∑
𝑣=1

Ξ𝑣
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258 SCHIAVO et al.

and

𝐴̊ ∶ ℝ𝑁 ⟶ 𝐻̊, Ξ⟼ Ξ̊ with Ξ̊𝑗 ∶= Ξ𝑗 −
1√
𝑁
Ξ̄ .

Note that 𝐴 ∶= (𝐴̊, 𝐴̄) ∶ ℝ𝑁 → 𝐻̊ × ℝ ⊂ ℝ1+𝑁 is a bijective linear map with 𝐴𝑇 𝐴 = 𝐸𝑁 and inverse given by

𝐵 ∶ 𝐻̊ × ℝ → ℝ𝑁, (Ξ̊, 𝑡) ↦ Ξ̊ +
𝑡√
𝑁
⋅ (1, … , 1) .

Thus, if 𝑁−1
𝐻̊

denotes the (𝑁 − 1)-dimensional Lebesgue measure on the hyperplane 𝐻̊ then on ℝ𝑁 ,

𝑁 = 𝑁−1
𝐻̊

⊗ 1 .

The push-forward 𝐴̄∗𝐏 is the normal distribution (0,
√
𝑁) on the real line. The push forward 𝐏̊ ∶= 𝐴̊∗𝐏, called (the

law of) the grounded white noise, is a Gaussian measure on the hyperplane 𝐻̊ given explicitly as

𝑑𝐏̊(Ξ) =
1

(2𝜋𝑁)
𝑁−1

2

𝑒
−

1

2𝑁
‖Ξ‖2

𝑑𝑁−1
𝐻̊

(Ξ) .

It can also be characterized as the conditional law 𝐏( ⋅ |𝐴̄ = 0).

(b)
Let us define a measure on ℝ𝑁 ≅ ℝ𝕋𝑛𝐿 by

𝑑𝝂(ℎ) ∶= 𝑐𝑛 𝑒
−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ‖2 𝑑𝑁(ℎ) , (16)

where

𝑐𝑛 ∶=
( 𝑎𝑛
2𝜋𝑁

)𝑁−1
2
⋅
∏

𝑧∈ℤ𝑛𝐿⧵{0}

(
4𝐿2

𝑛∑
𝑘=1

sin
2
(𝜋𝑧𝑘∕𝐿)

)𝑛∕4
, (17)

and consider the push-forwardmeasures under themaps 𝐴̄ and 𝐴̊ introduced above.On one hand, by the standard change-
of-variable formula for push-forward measures and since (−Δ𝐿)𝑛∕4𝐴̄ℎ = 0 for every ℎ ∈ ℝ𝑁 , we have that

𝐴̄∗𝝂 = 𝑐𝑛 1 on ℝ1 . (18)

On the other hand, again by the standard change-of-variable formula for push-forwardmeasures and since (−Δ𝐿)𝑛∕4𝐴̊ℎ =
(−Δ𝐿)

𝑛∕4ℎ for every ℎ ∈ ℝ𝑁 , we have that 𝝂 ∶= 𝐴̊∗𝝂 is a measure (actually, a probability measure as we will see below)
on the hyperplane 𝐻̊ ∶= {Ξ ∈ ℝ𝑁 ∶ Ξ̄ = 0} ≅ ℝ𝑁−1 given by

𝑑𝝂(ℎ) ∶= 𝑐𝑛 e
−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ‖2 𝑑𝑁−1

𝐻̊
(ℎ) .

Furthermore, since e−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ̄‖2 = 1 for every ℎ̄ ∈ ℝ ⋅ (1, … , 1), by orthogonality of 𝐻̊ andℝ ⋅ (1, … , 1) inℝ𝑁 and the

parallelogram identity, we have

e−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ̊‖2 = e−

𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ̊‖2e− 𝑎𝑛

2𝑁
‖(−Δ𝐿)𝑛∕4ℎ̄‖2 = e−

𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ‖2 , ℎ = (ℎ̊, ℎ̄) .
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SCHIAVO et al. 259

Thus, in light of Equation (18), we have the decomposition of measures

𝝂 = 𝑐𝑛 𝝂 ⊗ 1 .
(c)
Now consider the map

𝑇 ∶ ℝ𝑁 → ℝ𝑁 , ℎ ↦ Ξ =
√
𝑎𝑛 (−Δ𝐿)

𝑛∕4ℎ

as well as its restriction 𝑇̊ ∶ 𝐻̊ → 𝐻̊. The latter is bijective with inverse

𝑇̊−1 ∶ 𝐻̊ → 𝐻̊ , Ξ ↦ ℎ =
1√
𝑎𝑛

𝖦̊
𝑛∕4
𝐿 Ξ ,

cf. Equation (15), and with determinant

det 𝑇̊ = 𝑎
𝑁−1

2
𝑛 ⋅

∏
𝑧∈ℤ𝑛𝐿⧵{0}

𝜆
𝑛∕4
𝐿,𝑧 .

Theorem 3.4. The distribution of the discrete polyharmonic field on 𝕋𝑛𝐿 is given by the probability measure 𝝂 onℝ
𝕋𝑛𝐿 ≅ ℝ𝑁 .

(Indeed, it is supported there on the hyperplane of grounded fields.) Furthermore,

𝑇̊∗𝝂 = 𝐏̊ .

Proof. For bounded measurable 𝑓 on 𝐻̊,

∫
𝐻̊

𝑓(Ξ) 𝑑𝑇̊∗𝝂(Ξ) = ∫
𝐻̊

𝑓(𝑇̊ℎ) 𝑑𝝂(ℎ)

= 𝑐𝑛 ∫
𝐻̊

𝑓(𝑇̊ℎ) e−
𝑎𝑛
2𝑁
‖(−Δ𝐿)𝑛∕4ℎ‖2 𝑑𝑁−1

𝐻̊
(ℎ)

= 𝑐𝑛 ∫
𝐻̊

𝑓(𝑇̊ℎ) e−
1

2𝑁
‖𝑇̊ℎ‖2

𝑑𝑁−1
𝐻̊

(ℎ)

= 𝑐𝑛 det 𝑇̊
−1 ∫

𝐻̊

𝑓(Ξ) e−
1

2𝑁
‖Ξ‖2

𝑑𝑁−1
𝐻̊

(Ξ)

= 𝑐𝑛 det 𝑇̊
−1 (2𝜋𝑁)

𝑁−1

2 ∫
𝐻

𝑓(Ξ) 𝑑𝐏̊(Ξ).

Since 𝑐𝑛 det 𝑇̊−1 (2𝜋𝑁)
𝑁−1

2 = 1 according to our choice of 𝑐𝑛, this proves the claim. □

3.3 Reduced polyharmonic Gaussian fields on the discrete torus

Besides the polyharmonic Gaussian field ℎ𝐿 on the discrete torus, we occasionally consider two closely related random
fields ℎ−◦𝐿 and ℎ−𝐿 in the defining properties of which the eigenvalues 𝜆𝐿,𝑧 = 4𝐿2

∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿) of the discrete Lapla-

cian are replaced by the eigenvalues 𝜆𝑧 = (2𝜋|𝑧|)2 of the continuous Laplacian or by 𝜆𝑧 ⋅ 𝜗
−4∕𝑛
𝐿,𝑧 , resp., with 𝜗𝐿,𝑧 as in

Equation (12).
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260 SCHIAVO et al.

Definition 3.5. We define

(𝑖) the spectrally reduced discrete polyharmonic Gaussian field as the centered Gaussian field ℎ−◦𝐿 = (ℎ−◦𝐿 (𝑣))𝑣∈𝕋𝑛𝐿 with
covariance function

𝑘−◦𝐿 (𝑣, 𝑢) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝑧

𝜑𝑧(𝑣) 𝜑𝑧(𝑢) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

(2𝜋|𝑧|)𝑛 ⋅ cos (2𝜋 𝑧 ⋅ (𝑣 − 𝑢)) .
(𝑖𝑖) the reduced discrete polyharmonic Gaussian field as the centered Gaussian field ℎ−𝐿 = (ℎ−𝐿 (𝑣))𝑣∈𝕋𝑛𝐿 with covariance

function

𝑘−𝐿 (𝑣, 𝑢) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

𝜗2𝐿,𝑧

𝜆
𝑛∕2
𝑧

𝜑𝑧(𝑣) 𝜑𝑧(𝑢) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

𝜗2𝐿,𝑧

(2𝜋|𝑧|)𝑛 ⋅ cos (2𝜋 𝑧 ⋅ (𝑣 − 𝑢)) .
Similarly as before for ℎ𝐿, we obtain the following representation results.

Remark 3.6.

(𝑖) Given a polyharmonic Gaussian field ℎ𝐿 on 𝕋𝑛𝐿, a reduced polyharmonic Gaussian field and a spectrally reduced
polyharmonic Gaussian field on 𝕋𝑛𝐿 are defined by

ℎ−𝐿 ∶= 𝗋−𝐿 (ℎ𝐿), ℎ−◦𝐿 ∶= 𝗋−◦𝐿 (ℎ𝐿) .

(𝑖𝑖) Given i.i.d. standard normals 𝜉𝑧 for 𝑧 ∈ ℤ𝑛𝐿 ⧵ {0}, a reduced polyharmonic Gaussian field on 𝕋
𝑛
𝐿 is defined by

ℎ−𝐿 (𝑣) ∶=
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

𝜗𝐿,𝑧

𝜆
𝑛∕4
𝑧

⋅ 𝜉𝑧 ⋅ 𝜑𝑧(𝑣) . (19)

and a spectrally reduced polyharmonic Gaussian field by

ℎ−◦𝐿 (𝑣) ∶=
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕4
𝑧

⋅ 𝜉𝑧 ⋅ 𝜑𝑧(𝑣) . (20)

3.4 Extensions of the polyharmonic Gaussian field on the discrete torus

We consider the following extensions of discrete polyharmonic Gaussian fields to the continuous torus. Recall the
definition of 𝑄𝐿 and 𝑄𝐿(𝑣) in Equation (7).

Definition 3.7 (Extensions (Figure 4)). Given a discrete polyharmonic Gaussian field ℎ𝐿 on 𝕋𝑛𝐿 as in Definition 3.1, we
define

(𝑖) its piecewise constant extension by

ℎ𝐿,♭(𝑥) ∶= ℎ𝐿(𝑣) , 𝑥 ∈ 𝑄𝐿(𝑣) with 𝑣 ∈ 𝕋𝑛𝐿 ,

which is a centered Gaussian field on 𝕋𝑛 with covariance function

𝑘𝐿,♭(𝑥) ∶= 𝑘𝐿(𝑣) , 𝑥 ∈ 𝑄𝐿(𝑣) with 𝑣 ∈ 𝕋𝑛𝐿 ;
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SCHIAVO et al. 261

(𝑖𝑖) its Fourier extension by

ℎ𝐿,♯(𝑥) ∶= 𝗋̇𝐿ℎ(𝑥) = ⟨ℎ, 𝑟𝐿(𝑥, ⋅ )⟩𝕋𝑁𝐿 , 𝑥 ∈ 𝕋𝑛 , (21)

which is a centered Gaussian field on 𝕋𝑛 with covariance function

𝑘𝐿,♯(𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ cos (2𝜋 𝑧 ⋅ (𝑥 − 𝑦)) , 𝑥, 𝑦 ∈ 𝕋𝑛 . (22)

Similarly, given a spectrally reduced, resp. reduced, discrete polyharmonic Gaussian field ℎ−◦𝐿 , resp. ℎ−𝐿 , as in
Definition 3.5(𝑖), resp. (𝑖𝑖) on the discrete torus 𝕋𝑛𝐿, we define (in the natural way)

(𝑖𝑖𝑖) their piecewise constant extensions ℎ−◦
𝐿,♭
, resp. ℎ−

𝐿,♭
;

(𝑖𝑣) their Fourier extensions ℎ−◦
𝐿,♯
, resp. ℎ−

𝐿,♯
;

which are centered Gaussian fields on 𝕋𝑛.

Remark 3.8. As for ℎ𝐿,♭, let us note that

⟨ℎ𝐿,♭, 𝑓⟩𝕋𝑛 = ⟨ℎ𝐿, 𝗊𝐿𝑓⟩𝕋𝑛𝐿 , 𝑓 ∈ 𝐿2(𝕋𝑛) ,

with 𝗊𝐿𝑓 ∈ 𝐿2(𝕋𝑛𝐿) as in Equation (9). (Note that 𝗊𝐿𝑓(𝑣) = 𝐿𝑛 ∫
𝑄𝐿(𝑣)

𝑓(𝑦)𝑑𝑦 for 𝑣 ∈ 𝕋𝑛𝐿.)
As for ℎ𝐿,♯, let us note that, for every 𝜔, the function ℎ𝜔

𝐿,♯
is the unique function in 𝐿 with ℎ𝜔

𝐿,♯
= ℎ𝜔𝐿 on 𝕋𝑛𝐿,

cf. Equation (14). Furthermore, if a discrete polyharmonic Gaussian field ℎ𝐿 is given in its representation

ℎ𝐿(𝑣) =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕4
𝐿,𝑧

⋅ 𝜉𝑧 ⋅ 𝜑𝑧(𝑣) , 𝑣 ∈ 𝕋𝑛𝐿 ,

then, ℎ𝐿,♯ can be represented as

ℎ𝐿,♯(𝑥) ∶= 𝗋̇𝐿ℎ(𝑥) = ⟨ℎ, 𝑟𝐿(𝑥, ⋅ )⟩𝕋𝑁𝐿 = 1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕4
𝐿,𝑧

⋅ 𝜉𝑧 ⋅ 𝜑𝑧(𝑥) , 𝑥 ∈ 𝕋𝑛 .

4 THE POLYHARMONIC GAUSSIAN FIELD ON THE CONTINUOUS TORUS AND ITS
(SEMI-)DISCRETE APPROXIMATIONS

This section is devoted to the analysis of approximation properties for the polyharmonic field on the continuous torus in
terms of Gaussian fields on the discrete torus and semi-discrete extensions of the latter on the continuous torus.

∙ The basic objects are the polyharmonic field ℎ on the continuous torus and its discrete counterpart, the polyharmonic
field ℎ𝐿 on the discrete torus.

∙ Starting from the field ℎ on 𝕋𝑛, we define its Fourier projection (i.e., eigenfunction approximation) ℎ♯,𝐿, its piecewise
constant projection ℎ♭,𝐿, its natural projection ℎ◦,𝐿, and its enhanced projection ℎ+,𝐿. All of them are Gaussian random
fields on 𝕋𝑛.

∙ Starting from the fieldℎ𝐿 on𝕋𝑛𝐿, we define its Fourier extensionℎ𝐿,♯ and its piecewise constant extensionℎ𝐿,♭. Analogous
extensions are defined for the spectrally reduced discrete field ℎ−◦𝐿 and the reduced discrete field ℎ−𝐿 on 𝕋𝑛𝐿. All these
extensions are Gaussian random fields on 𝕋𝑛.
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262 SCHIAVO et al.

To summarize:

- ♭ stands for piecewise constant extension/projection, ♯ for Fourier extension/restriction;
- ℎ𝐿,∗ with ∗∈ {♭, ♯} denotes the respective extension of the discrete field ℎ𝐿; similarly for ℎ−◦𝐿 and ℎ−𝐿 ;
- ℎ∗,𝐿 with ∗∈ {♭, ♯, ◦, +} denotes the projection of the continuous field ℎ onto the respective class of fields of order 𝐿 on
the continuous torus (Figure 3).

4.1 The polyharmonic Gaussian field on the continuous torus and the convergence
properties of its projections

Definition 4.1. A random field ℎ = (⟨ℎ|𝑓⟩)𝑓∈𝐻𝑛∕2(𝕋𝑛) on the continuous 𝑛-torus is called polyharmonic Gaussian field if
it is a centered Gaussian field with covariance function 𝑘 in the sense that

𝐄[⟨ℎ|𝑓⟩ ⋅ ⟨ℎ|𝑔⟩] = ∫
𝕋𝑛

∫
𝕋𝑛
𝑓(𝑥)𝑘(𝑥, 𝑦)𝑔(𝑦) 𝑑𝑦 𝑑𝑥 , 𝑓, 𝑔 ∈ 𝐻𝑛∕2(𝕋𝑛) .

Proposition 4.2. The polyharmonic Gaussian field ℎ exists and can be realized in 𝐻̊−𝜖(𝕋𝑛). Furthermore, the pairing ⟨ℎ|𝑓⟩
continuously extends to all 𝑓 ∈ 𝐻̊−𝑛∕2(𝕋𝑛).

Proof. For even 𝑛, the polyharmonic field to be considered here is just a particular case of the co-polyharmonic field
considered in [5] on large classes of Riemannian manifolds. For flat spaces like the torus, the arguments for proving
Theorem 3.2 and Remarks 3.4 and 3.5 there obviously apply also to odd 𝑛. □

Recall that we set 𝜆𝑧 ∶= (2𝜋|𝑧|)2.
Definition 4.3 (Projections). Given a copolyharmonic Gaussian field ℎ on 𝕋𝑛, we define

(𝑖) its Fourier projection onto the space𝐿, see Section 2.3(a), by

ℎ♯,𝐿(𝑥) ∶= ⟨ℎ|𝑟𝐿(𝑥, ⋅ )⟩, 𝑟𝐿 ∶=
∑

𝑧∈ℤ𝑛𝐿⧵{0}

𝜑𝑧 ⊗ 𝜑𝑧 , (23)

which is a centered Gaussian field on 𝕋𝑛 with covariance function

𝑘♯,𝐿(𝑥, 𝑦) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝑧

⋅ cos (2𝜋 𝑧 ⋅ (𝑥 − 𝑦)) ; (24)

(𝑖𝑖) its piecewise constant projection, cf. Section 2.3(b), by

ℎ♭,𝐿(𝑥) ∶= ⟨ℎ|𝑞𝐿(𝑥, ⋅ )⟩, 𝑞𝐿 ∶= 𝐿𝑛
∑
𝑣∈𝕋𝑛𝐿

𝟏𝑄𝐿(𝑣) ⊗ 𝟏𝑄𝐿(𝑣) , (25)

which is a centered Gaussian field on 𝕋𝑛 with covariance function

𝑘♭,𝐿(𝑥, 𝑦) ∶= 𝔼
[
ℎ♭,𝐿(𝑥) ℎ♭,𝐿(𝑦)

]
= 𝐿2𝑛

∑
𝑣,𝑤∈𝕋𝑛𝐿

𝟏𝑄𝐿(𝑣)(𝑥) 𝟏𝑄𝐿(𝑤)(𝑦) ∫
𝑄𝐿(𝑣)

∫
𝑄𝐿(𝑤)

𝑘(𝑥′, 𝑦′) 𝑑𝑦′ 𝑑𝑥′ ; (26)

(𝑖𝑖𝑖) its enhanced piecewise constant projection (shortly: enhanced projection) by

ℎ+,𝐿(𝑥) ∶= ⟨ℎ|𝑝+,𝐿(𝑥, ⋅ )⟩ , 𝑝+,𝐿 ∶= 𝑞𝐿◦𝑟
+
𝐿 ,

𝑟+𝐿 ∶=
∑
𝑧∈ℤ𝑛𝐿

1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4
⋅ 𝜑𝑧 ⊗ 𝜑𝑧 ,

(27)
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SCHIAVO et al. 263

with 𝑞𝐿 as in Equation (25), which is a centered Gaussian field on 𝕋𝑛 with covariance function

𝑘+,𝐿(𝑥, 𝑦) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿

1

𝜗2𝐿,𝑧
⋅

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ 𝗊𝐿𝜑𝑧(𝑥) ⋅ 𝗊𝐿𝜑𝑧(𝑦) ; (28)

(𝑖𝑣) its natural projection as the piecewise constant projection of its Fourier projection:

ℎ◦,𝐿(𝑥) ∶= 𝗊𝐿(𝗋𝐿(ℎ))(𝑥) = ⟨ℎ|𝑝◦,𝐿(𝑥, ⋅ )⟩ , 𝑝◦,𝐿 ∶= 𝑞𝐿◦𝑟𝐿 , (29)

with 𝑟𝐿 as in Equation (23) and 𝑞𝐿 as in Equation (25), which is a centered Gaussian field on 𝕋𝑛 with covariance
function

𝑘◦,𝐿(𝑥, 𝑦) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿

1

𝜆
𝑛∕2
𝑧

⋅ 𝗊𝐿𝜑𝑧(𝑥) ⋅ 𝗊𝐿𝜑𝑧(𝑦) . (30)

Remark 4.4. We note that the random fields ℎ+,𝐿 and ℎ◦,𝐿 are piecewise constant, and may thus be equivalently regarded
as either piecewise constant random fields on the continuous torus 𝕋𝑛 or random fields on the discrete torus 𝕋𝑛𝐿.

Proposition 4.5 cf. [5, Props. 3.9, 3.11, and Ex. 3.12(𝑖𝑣)]. For all 𝑓 ∈ 𝐻̊−𝑛∕2(𝕋𝑛),

⟨ℎ♯,𝐿, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞

and for every 𝜖 > 0,

‖‖ℎ♯,𝐿 − ℎ‖‖𝐻−𝜖 in 𝐿2(𝐏) as 𝐿 → ∞ .

Proof. For the reader’s convenience, we briefly summarize the argument from [5] for the first assertion:

𝐄
[⟨ℎ − ℎ♯,𝐿, 𝑓⟩2] = 1

𝑎𝑛
𝐄

⎡⎢⎢⎢⎣
|||||||
∑

𝑧∈ℤ𝑛⧵ℤ𝑛𝐿

1

(2𝜋|𝑧|)𝑛∕2 𝜉𝑧 ⟨𝜑𝑧, 𝑓⟩
|||||||
2⎤⎥⎥⎥⎦

=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛⧵ℤ𝑛𝐿

1

(2𝜋|𝑧|)𝑛 ⟨𝜑𝑧, 𝑓⟩2 → 0

as 𝐿 → ∞, since ∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)𝑛 ⟨𝜑𝑧, 𝑓⟩2 = ‖‖(−Δ)−𝑛∕2𝑓‖‖2𝐿2 = ‖‖𝑓‖‖2𝐻̊−𝑛∕2 < ∞ .
□

Proposition 4.6. For all 𝑓 ∈ 𝐿2(𝕋𝑛),

⟨ℎ♭,𝐿, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞

and for every 𝑠 > 𝑛∕2,

‖‖ℎ♭,𝐿 − ℎ‖‖𝐻−𝑠 → 0 in 𝐿2(𝐏) as 𝐿 → ∞ .

Proof. Since ⟨ℎ♭,𝐿, 𝑓⟩𝕋𝑛 = ⟨ℎ, 𝗊𝐿𝑓⟩𝕋𝑛 with (𝗊𝐿𝑓)(𝑥) ∶= ∫
𝕋𝑛
𝑞𝐿(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦, we obtain

𝐄
[⟨ℎ♭,𝐿 − ℎ, 𝑓⟩2] = 𝐄

[⟨ℎ, 𝗊𝐿𝑓 − 𝑓⟩2] = ‖‖𝗊𝐿𝑓 − 𝑓‖‖2𝐻−𝑛∕2

≤ ‖‖𝗊𝐿𝑓 − 𝑓‖‖2𝐿2 → 0 as 𝐿 → ∞.
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264 SCHIAVO et al.

To prove the second assertion, let ℎ be given as

ℎ =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧
𝜑𝑧

𝜆
𝑛∕4
𝑧

from which we get

ℎ♭,𝐿 =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧
𝗊𝐿𝜑𝑧

𝜆
𝑛∕4
𝑧

=
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧

𝜆
𝑛∕4
𝑧

∑
𝑤∈ℤ𝑛⧵{0}

⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩𝜑𝑤 .

Consequently √
𝑎𝑛(−Δ)

−𝑠∕2
(ℎ − ℎ♭,𝐿) =

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧𝜆
−𝑛∕4−𝑠∕2
𝑧 (𝜑𝑧 − ⟨𝜑𝑧, 𝗊𝐿𝜑𝑧⟩𝜑𝑧)

−
∑

𝑧∈ℤ𝑛⧵{0}

𝜉𝑧𝜆
−𝑛∕4
𝑧

∑
𝑤∈ℤ𝑛⧵{0,𝑧}

𝜆
−𝑠∕2
𝑤 ⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩𝜑𝑤 .

Finally,

𝑎𝑛𝐄
[‖‖ℎ − ℎ♭,𝐿‖‖2𝐻−𝑠

]
=
∑

𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2−𝑠
𝑧 (1 − ⟨𝜑𝑧, 𝗊𝐿𝜑𝑧⟩)2

+
∑

𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2
𝑧

∑
𝑤∈ℤ𝑛⧵{0,𝑧}

𝜆−𝑠𝑤 ⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩2 . (31)

Since |⟨𝜑𝑧, 𝗊𝐿𝜑𝑧⟩| ≤ 1 for all 𝐿 and ⟨𝜑𝑧, 𝗊𝐿𝜑𝑧⟩→ 1 as 𝐿 → ∞ and∑
𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2−𝑠
𝑧 (1 − ⟨𝜑𝑧, 𝗊𝐿𝜑𝑧⟩)2 ≤ ∑

𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2−𝑠
𝑧 < ∞ ,

we find that the first term on the right-hand side of Equation (31) vanishes as 𝐿 → ∞. By Parseval’s identity and the fact
that 𝜆𝑧 ≥ 1 for all 𝑧 ≠ 0, we get that∑

𝑧∈ℤ𝑛⧵{0}

𝜆
−𝑛∕2
𝑧

∑
𝑤∈ℤ𝑛⧵{0,𝑧}

𝜆−𝑠𝑤 ⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩2 ≤ ∑
𝑤∈ℤ𝑛⧵{0}

𝜆−𝑠𝑤
∑

𝑧∈ℤ𝑛⧵{0,𝑤}

⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩2
=
∑

𝑤∈ℤ𝑛⧵{0}

𝜆−𝑠𝑤

[‖𝗊𝐿𝜑𝑤‖2𝐿2 − ⟨𝜑𝑤, 𝗊𝐿𝜑𝑤⟩2]
≤ ∑

𝑤∈ℤ𝑛⧵{0}

𝜆−𝑠𝑤

which converges since 𝑠 > 𝑛∕2. Moreover, 0 ≤ ‖𝗊𝐿𝜑𝑤‖2𝐿2 − ⟨𝜑𝑤, 𝗊𝐿𝜑𝑤⟩2 ≤ 1 for all 𝑤 and 𝐿, and ‖𝗊𝐿𝜑𝑤‖2𝐿2 −⟨𝜑𝑤, 𝗊𝐿𝜑𝑤⟩2 → 0 for all 𝑤 as 𝐿 → ∞. Thus, also the second term on the right-hand side of Equation (31) vanishes as
𝐿 → ∞. □

Lemma 4.7. Let ∗ denote either of the subscripts + and ◦. Then,

(𝑖) For all 𝑓 ∈ 𝐿2(𝕋𝑛),

𝗉∗,𝐿𝑓 → 𝑓 in 𝐿2(𝕋𝑛) as 𝐿 → ∞ .
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SCHIAVO et al. 265

(𝑖𝑖) On 𝕋𝑛 × 𝕋𝑛,

𝑘∗,𝐿 → 𝑘 in 𝐿0(𝕋𝑛) as 𝐿 → ∞ .

Proof. We prove the assertions for ∗= +. A proof of corresponding assertions for ∗= ◦ is similar and simpler, and therefore
it is omitted.

(𝑖) Recall that 𝗉+,𝐿 = 𝗊𝐿◦𝗋
+
𝐿 . From (the proof of) Example 3.12 in [5] we know that ‖𝗊𝐿𝑓 − 𝑓‖𝐿2 → 0 as 𝐿 → ∞ and, by

Jensen’s inequality,

‖‖𝗊𝐿𝑓 − 𝗊𝐿𝗋+𝐿 𝑓‖‖𝐿2 ≤ ‖‖𝑓 − 𝗋+𝐿 𝑓‖‖𝐿2 .
Moreover, the latter goes to 0 as 𝐿 → ∞ according to

‖‖𝑓 − 𝗋+𝐿 𝑓‖‖2𝐿2 = ‖‖‖‖‖‖
∑

‖𝑧‖∞<𝐿∕2
[
1 −

1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4]
⋅ ⟨𝑓, 𝜑𝑧⟩𝜑𝑧 + ∑

‖𝑧‖∞>𝐿∕2⟨𝑓, 𝜑𝑧⟩𝜑𝑧
‖‖‖‖‖‖
2

𝐿2

=
∑

‖𝑧‖∞<𝐿∕2
[
1 −

1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4]2
⋅ ⟨𝑓, 𝜑𝑧⟩2 + ∑

‖𝑧‖∞>𝐿∕2⟨𝑓, 𝜑𝑧⟩2 → 0.

The convergence of the last term here follows from the finiteness of
∑
𝑧⟨𝑓, 𝜑𝑧⟩2 = ‖𝑓‖2𝐿2 . The convergence of the first

term in the last displayed formula follows from the facts that
||||||1 − 1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4|||||| ≤ 𝐶 ∶= (
𝜋

2
)3𝑛∕2 for all 𝐿 and 𝑧,

that
||||||1 − 1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4||||||→ 0 for all 𝑧 as 𝐿 → ∞, and that
∑
𝑧⟨𝑓, 𝜑𝑧⟩2 < ∞.

(𝑖𝑖) Denote by 𝗊⊗2𝐿 the two-fold action of 𝗊𝐿 on functions of two variables, and put

𝑘+𝐿 (𝑥, 𝑦) ∶=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿

1

𝜗2𝐿,𝑧
⋅

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ 𝜑𝑧(𝑥) ⋅ 𝜑𝑧(𝑦). (32)

Then, 𝑘+,𝐿 = 𝗊⊗2𝐿 𝑘+𝐿 . The claimed convergence will follow from the three subsequent convergence assertions:

(1) 𝗊⊗2𝐿 𝑘(𝑥, 𝑦) → 𝑘(𝑥, 𝑦) locally uniformly for all 𝑥 ≠ 𝑦

(2) ∬ |||𝗊⊗2𝐿 𝑘+𝐿 − 𝗊
⊗2
𝐿 𝑘
|||2 𝑑𝑥𝑑𝑦 ≤ ∬ |||𝑘+𝐿 − 𝑘|||2 𝑑𝑥𝑑𝑦

(3) ∬ |||𝑘+𝐿 − 𝑘|||2 𝑑𝑥𝑑𝑦 → 0.

Assertion (1) here is trivial since 𝑘 is smooth outside the diagonal and since 𝑞𝐿 acts with bounded support ≤ 1∕𝐿 → 0.
Assertion (2) follows from a simple application of Jensen’s inequality. To prove assertion (3), observe that

∬ |||𝑘+𝐿 − 𝑘|||2𝑑𝑥𝑑𝑦 = 1

𝑎𝑛 ∬
|||||||
∑

𝑧∈ℤ𝑛⧵{0}

⎛⎜⎜⎝
1

𝜗2𝐿,𝑧 𝜆
𝑛∕2
𝐿,𝑧

𝟏{‖𝑧‖∞<𝐿∕2} − 1

𝜆
𝑛∕2
𝑧

⎞⎟⎟⎠𝜑𝑧(𝑥) 𝜑𝑧(𝑦)
|||||||
2

𝑑𝑥 𝑑𝑦

=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

⎛⎜⎜⎝
1

𝜗2𝐿,𝑧 𝜆
𝑛∕2
𝐿,𝑧

𝟏{‖𝑧‖∞<𝐿∕2} − 1

𝜆
𝑛∕2
𝑧

⎞⎟⎟⎠
2
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266 SCHIAVO et al.

=
1

𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2𝑛 ⎛⎜⎜⎝
𝜆
𝑛∕2
𝑧

𝜗2𝐿,𝑧 𝜆
𝑛∕2
𝐿,𝑧

𝟏{‖𝑧‖∞<𝐿∕2} − 1
⎞⎟⎟⎠
2

.

The latter converges to 0 as 𝐿 → ∞ since the term
(
(𝜆
𝑛∕2
𝑧 𝜗−2𝐿,𝑧 𝜆

−𝑛∕2
𝐿,𝑧 ) 𝟏{‖𝑧‖∞<𝐿∕2} − 1) is bounded uniformly in 𝐿 and 𝑧,

since it converges to 0 for every 𝑧 as 𝐿 → ∞, and since the sum
∑
𝑧∈ℤ𝑛⧵{0}

1

(2𝜋|𝑧|)2𝑛 is finite. □

Corollary 4.8. Let ∗ denote either of the subscripts + and ◦. Then for all 𝑓 ∈ 𝐿2(𝕋𝑛),

⟨ℎ∗,𝐿, 𝑓⟩𝕋𝑛 → ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞

and for every 𝑠 > 𝑛∕2,

‖‖ℎ∗,𝐿 − ℎ‖‖𝐻−𝑠 → 0 in 𝐿2(𝐏) as 𝐿 → ∞ .

Proof. To prove the first assertion, we estimate similar as in the proof of Proposition 4.6. The fact that ℎ∗,𝐿(𝑥) =⟨ℎ|𝑝∗,𝐿(𝑥, ⋅ )⟩ implies ⟨ℎ∗,𝐿, 𝑓⟩𝕋𝑛 = ⟨ℎ, 𝗉∗,𝐿𝑓⟩𝕋𝑛 and thus in turn
𝐄
[⟨ℎ∗,𝐿 − ℎ, 𝑓⟩2] = 𝐄

[⟨ℎ, 𝗉∗,𝐿𝑓 − 𝑓⟩2] = ‖‖𝗉∗,𝐿𝑓 − 𝑓‖‖2𝐻−𝑛∕2

≤ ‖‖𝗉∗,𝐿𝑓 − 𝑓‖‖2𝐿2 → 0 as 𝐿 → ∞.

To prove the second assertion, we follow the argument in Proposition 4.6. That is, we consider

ℎ =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧
𝜑𝑧

𝜆
𝑛∕4
𝑧

from which we get

ℎ∗,𝐿(𝑥) =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜉𝑧
⟨𝜑𝑧, 𝗉∗,𝐿(𝑥, ⋅)⟩

𝜆
𝑛∕4
𝑧

.

Then, the claim follows verbatim by noting that 𝑟𝐿𝜑𝑧 = 𝜑𝑧 and 𝑟+𝐿 𝜑𝑧 =
1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4
𝜑𝑧, where || 1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4 || is
uniformly bounded and 1

𝜗𝐿,𝑧
⋅

(
𝜆𝑧

𝜆𝐿,𝑧

)𝑛∕4
→ 1 as 𝐿 → ∞. □

4.2 Identifications

Among the fields introduced above, we have the following identifications. We note that these identifications show that
our notation of reductions/enhancements and projections/extensions is consistent, in the sense that it does not depend
on the order in which the operations expressed by symbols are applied.

Lemma 4.9 (Fourier extensions/restrictions). Let ℎ be a polyharmonic Gaussian field on 𝕋𝑛, and ℎ𝐿 be a discrete
polyharmonic Gaussian field on 𝕋𝑛𝐿 . Then,

(𝑖) the spectral enhancement ℎ+◦
♯,𝐿

of the Fourier projection ℎ♯,𝐿 of ℎ coincides in distribution with the Fourier extension ℎ𝐿,♯
of ℎ𝐿;
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SCHIAVO et al. 267

F IGURE 2 Fourier extension/projection of ℎ on25 with same realization of the randomness.

F IGURE 3 A realization of ℎ25,♯.

F IGURE 4 Two different approximations/extensions of the field ℎ with same realization of the randomness.

(𝑖𝑖) the Fourier approximation ℎ♯,𝐿 of ℎ coincides in distribution with the spectral reduction of the Fourier extension ℎ𝐿,♯
of ℎ𝐿 and with the Fourier extension ℎ−◦𝐿,♯ of the spectrally reduced discrete polyharmonic field ℎ

−◦
𝐿 .

(𝑖𝑖𝑖) the restriction to 𝕋𝑛𝐿 of the Fourier approximation ℎ♯,𝐿 of ℎ coincides in distribution with a spectrally reduced
polyharmonic field ℎ−◦𝐿 (Figures 2–4).

Proof. (𝑖) and (𝑖𝑖) follow from simple manipulations of the symbols. (𝑖𝑖𝑖) is an immediate consequence of (𝑖𝑖). □
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268 SCHIAVO et al.

Lemma 4.10 (Enhanced and natural extensions/restrictions). Let ℎ be a polyharmonic Gaussian field on 𝕋𝑛, and ℎ𝐿 be a
discrete polyharmonic Gaussian field on 𝕋𝑛𝐿 . Then,

(𝑖) the restriction to 𝕋𝑛𝐿 of the enhanced projection ℎ+,𝐿 of ℎ coincides in distribution with ℎ𝐿;
(𝑖𝑖) the restriction to 𝕋𝑛𝐿 of the natural projection ℎ◦,𝐿 of ℎ coincides in distribution with the reduced discrete polyharmonic

field ℎ−𝐿 ;
(𝑖𝑖𝑖) the natural projection ℎ◦,𝐿 of ℎ coincides in distribution with the piecewise constant extension ℎ−𝐿,♭ of the reduced discrete

polyharmonic field ℎ−𝐿 .

Proof. Without loss of generality, let ℎ be given in terms of standard i.i.d. normal variables (𝜉𝑧)𝑧∈ℤ𝑛⧵{0} as

ℎ =
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜆
𝑛∕4
𝑧

𝜉𝑧 𝜑𝑧 .

(𝑖) We have

𝗋+𝐿 (ℎ) =
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜗𝐿,𝑧

1

𝜆
𝑛∕4
𝐿,𝑧

𝜉𝑧 𝜑𝑧

on 𝕋𝑛. Thus for 𝑣 ∈ 𝕋𝑛𝐿,

ℎ+,𝐿(𝑣) =
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜗𝐿,𝑧

1

𝜆
𝑛∕4
𝐿,𝑧

𝜉𝑧 ⋅ 𝐿
𝑛 ∫

𝑄𝐿(𝑣)

𝜑𝑧(𝑦)𝑑𝑦

=
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜆
𝑛∕4
𝐿,𝑧

𝜉𝑧 𝜑𝑧(𝑣)

according to Lemma 2.7. Therefore, by Proposition 3.2, ℎ+,𝐿 is distributed according to the polyharmonic Gaussian
field on the discrete torus 𝕋𝑛𝐿.

(𝑖𝑖) We have

ℎ◦,𝐿(𝑥) =
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜆
𝑛∕4
𝑧

𝜉𝑧 ⋅
∑
𝑣∈𝕋𝑛𝐿

𝟏𝑄𝐿(𝑣)(𝑥) ⋅ 𝐿
𝑛 ∫

𝑄𝐿(𝑣)

𝜑𝑧(𝑦)𝑑𝑦,

and thus for 𝑣 ∈ 𝕋𝑛𝐿,

ℎ◦,𝐿(𝑣) =
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

1

𝜆
𝑛∕4
𝑧

𝜉𝑧 ⋅ 𝐿
𝑛 ∫

𝑄𝐿(𝑣)

𝜑𝑧(𝑦)𝑑𝑦

=
1√
𝑎𝑛

□∑
𝑧∈ℤ𝑛⧵{0}

𝜗𝐿,𝑧

𝜆
𝑛∕4
𝑧

𝜉𝑧 𝜑𝑧(𝑣)

according to Lemma 2.7. Therefore, the restriction of ℎ◦,𝐿 to 𝕋𝑛𝐿 is distributed as the reduced discrete polyharmonic
Gaussian field by the representation in Equation (19).

(𝑖𝑖𝑖) is an immediate consequence of (𝑖𝑖) and the fact that ℎ◦,𝐿 is piecewise constant on 𝕋𝑛. □
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SCHIAVO et al. 269

4.3 Convergence of polyharmonic Gaussian fields on the discrete torus

We have the following first convergence result.

Theorem 4.11. Let ℎ∗𝐿 be either ℎ𝐿, ℎ
−◦
𝐿 , or ℎ−𝐿 . Then, or all 𝑓 ∈

⋃
𝑠>𝑛∕2

𝐻𝑠(𝕋𝑛),

⟨ℎ∗𝐿, 𝑓⟩𝕋𝑛𝐿 → ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞ ,

Proof. We only show the assertion for ℎ𝐿.
Given 𝑓 =

∑
𝑧∈ℤ𝑛 𝛼𝑧𝜑𝑧 ∈

⋃
𝑠>𝑛∕2

𝐻𝑠(𝕋𝑛), according to Lemma 2.8,

⟨ℎ, 𝑓⟩𝕋𝑛 − ⟨ℎ𝐿, 𝑓⟩𝕋𝑛𝐿 = 1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

𝜉𝑧 ⋅
⎡⎢⎢⎣ 1

𝜆
𝑛∕4
𝑧

𝛼𝑧 −
1

𝜆
𝑛∕4
𝐿,𝑧

∑
𝑤∈ℤ𝑛

𝛼𝑧+𝐿𝑤

⎤⎥⎥⎦
+

1√
𝑎𝑛

∑
𝑧∈ℤ𝑛, ‖𝑧‖∞≥𝐿∕2

𝜉𝑧 ⋅
1

𝜆
𝑛∕4
𝑧

𝛼𝑧 .

Thus

𝑎𝑛 ⋅ 𝐄
[||⟨ℎ, 𝑓⟩𝕋𝑛 − ⟨ℎ𝐿, 𝑓⟩𝕋𝑛𝐿 ||2]

=
∑

𝑧∈ℤ𝑛𝐿⧵{0}

⎡⎢⎢⎣ 1

𝜆
𝑛∕4
𝑧

𝛼𝑧 −
1

𝜆
𝑛∕4
𝐿,𝑧

∑
𝑤∈ℤ𝑛

𝛼𝑧+𝐿𝑤

⎤⎥⎥⎦
2

+
∑

𝑧∈ℤ𝑛, ‖𝑧‖∞≥𝐿∕2
1

𝜆
𝑛∕2
𝑧

𝛼2𝑧

≤ 2
∑

𝑧∈ℤ𝑛𝐿⧵{0}

⎡⎢⎢⎣ 1

𝜆
𝑛∕4
𝑧

−
1

𝜆
𝑛∕4
𝐿,𝑧

⎤⎥⎥⎦
2

𝛼2𝑧

+ 2
∑

𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

[ ∑
𝑤∈ℤ𝑛⧵{0}

𝛼𝑧+𝐿𝑤

]2
+

∑
𝑧∈ℤ𝑛, ‖𝑧‖∞≥𝐿∕2

1

𝜆
𝑛∕2
𝑧

𝛼2𝑧

≤ 2

(2𝜋)𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

⎡⎢⎢⎣1 −
𝜆
𝑛∕4
𝑧

𝜆
𝑛∕4
𝐿,𝑧

⎤⎥⎥⎦
2

1|𝑧|𝑛 𝛼2𝑧
+

2

4𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1|𝑧|𝑛
[ ∑
𝑤∈ℤ𝑛⧵{0}

𝛼𝑧+𝐿𝑤

]2
+

1

(2𝜋)𝑛

∑
𝑧∈ℤ𝑛, ‖𝑧‖∞≥𝐿∕2

1|𝑧|𝑛 𝛼2𝑧 .
Now as 𝐿 → ∞, the last term vanishes since, in particular, 𝑓 ∈ 𝐻−𝑛∕2(𝕋𝑛), and also the first term vanishes, see the proof
of Theorem 4.13. To estimate the second term, choose 𝑠 > 𝑛∕2 with

∑
𝑧∈ℤ𝑛⧵{0} |𝑧|2𝑠|𝛼𝑧|2 < ∞, which exists by definition

of 𝑓. Then,

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1|𝑧|𝑛
[ ∑
𝑤∈ℤ𝑛⧵{0}

𝛼𝑧+𝐿𝑤

]2
≤ ∑

𝑧∈ℤ𝑛𝐿⧵{0}

[ ∑
𝑤∈ℤ𝑛⧵{0}

𝛼𝑧+𝐿𝑤

]2

≤ ∑
𝑧∈ℤ𝑛𝐿⧵{0}

[ ∑
𝑤∈ℤ𝑛⧵{0}

1|𝑧 + 𝐿𝑤|2𝑠
]
⋅

[ ∑
𝑤∈ℤ𝑛⧵{0}

|𝑧 + 𝐿𝑤|2𝑠 ⋅ |𝛼𝑧+𝐿𝑤|2] .
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270 SCHIAVO et al.

Estimating the term in the first bracket by

∑
𝑤∈ℤ𝑛⧵{0}

1|𝑧 + 𝐿𝑤|2𝑠 ≤ ∑
𝑢∈ℤ𝑛⧵{0}

1|𝑢|2𝑠 < ∞ ,

we then obtain that

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1|𝑧|𝑛
[ ∑
𝑤∈ℤ𝑛⧵{0}

𝛼𝑧+𝐿𝑤

]2
≤
[ ∑
𝑢∈ℤ𝑛⧵{0}

1|𝑢|2𝑠
]
⋅
∑

𝑧∈ℤ𝑛𝐿⧵{0}

[ ∑
𝑤∈ℤ𝑛⧵{0}

|𝑧 + 𝐿𝑤|2𝑠 ⋅ |𝛼𝑧+𝐿𝑤|2]

and it therefore suffices to show that the second factor vanishes as 𝐿 → ∞. Since 𝑧, 𝑤 ≠ 0, we have that |𝑧 + 𝐿𝑤| ≥ 𝐿∕2,
thus, relabeling 𝑣 ∶= 𝑧 + 𝐿𝑤,

∑
𝑧∈ℤ𝑛𝐿⧵{0}

[ ∑
𝑤∈ℤ𝑛⧵{0}

|𝑧 + 𝐿𝑤|2𝑠 ⋅ |𝛼𝑧+𝐿𝑤|2] =⎡⎢⎢⎣
∑

𝑣∈ℤ𝑛, ‖𝑣‖∞≥𝐿∕2
|𝑣|2𝑠 ⋅ |𝛼𝑣|2⎤⎥⎥⎦→ 0 as 𝐿 → ∞

being the remainder of a convergent series. □

Theorem 4.12. Let ℎ∗
𝐿,♭

be either ℎ𝐿,♭, ℎ−◦𝐿,♭, or ℎ
−
𝐿,♭
. Then, for all 𝑓 ∈

⋃
𝑠>𝑛∕2

𝐻𝑠(𝕋𝑛),

⟨ℎ∗
𝐿,♭
, 𝑓⟩

𝕋𝑛
→ ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞ . (33)

Furthermore, for every 𝑠 > 𝑛∕2,

‖‖ℎ𝐿,♭ − ℎ‖‖2𝐻̊−𝑠 → 0 in 𝐿2(𝐏) as 𝐿 → ∞ . (34)

Proof. We only show the assertions for ℎ𝐿,♭.
By construction,

⟨ℎ𝐿,♭, 𝑓⟩𝕋𝑛 − ⟨ℎ, 𝑓⟩𝕋𝑛 = ⟨ℎ𝐿, 𝗊𝐿𝑓 − 𝑓⟩𝕋𝑛𝐿 + ⟨ℎ𝐿, 𝑓⟩𝕋𝑛𝐿 − ⟨ℎ, 𝑓⟩𝕋𝑛
and according to the previous Theorem 4.11, ⟨ℎ𝐿, 𝑓⟩𝕋𝑛𝐿 − ⟨ℎ, 𝑓⟩𝕋𝑛 → 0 as 𝐿 → ∞. The first claim thus follows from

𝐄
[⟨ℎ𝐿, 𝗊𝐿𝑓 − 𝑓⟩2𝕋𝑛𝐿] = 1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

⟨𝜑𝑧, 𝗊𝐿𝑓 − 𝑓⟩2𝕋𝑛𝐿
≤ 1

4𝑛 𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1|𝑧|𝑛 ⟨𝜑𝑧, 𝗊𝐿𝑓 − 𝑓⟩2𝕋𝑛𝐿
=

1

4𝑛 𝑎𝑛
‖‖𝗊𝐿𝑓 − 𝑓‖‖2𝐻−𝑛∕2

≤ 1

4𝑛 𝑎𝑛
‖‖𝗊𝐿𝑓 − 𝑓‖‖2𝐿2 → 0 as 𝐿 → ∞

since by Sobolev embedding ⋃
𝑠>𝑛∕2

𝐻𝑠(𝕋𝑛) ⊂ (𝕋𝑛) .
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SCHIAVO et al. 271

For the second claim, observe that

ℎ𝐿,♭ =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛⧵{0}

𝜑𝑧
∑

𝑤∈ℤ𝑛𝐿⧵{0}

𝜆
−𝑛∕4
𝑤,𝐿 𝜉𝑤⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩.

From this, we get

𝑎𝑛‖‖ℎ𝐿,♭‖‖2𝐻−𝑠 =
∑

𝑧∈ℤ𝑛⧵{0}

𝜆−𝑠𝑧

⎛⎜⎜⎝
∑

𝑤∈ℤ𝑛𝐿⧵{0}

𝜆
−𝑛∕4
𝑤,𝐿 𝜉𝑤⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩⎞⎟⎟⎠

2

.

And thus

𝑎𝑛𝐄‖‖ℎ𝐿,♭‖‖2𝐻−𝑠 =
∑

𝑧∈ℤ𝑛⧵{0}

𝜆−𝑠𝑧
∑

𝑤∈ℤ𝑛𝐿⧵{0}

𝜆
−𝑛∕2
𝑤,𝐿 ⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩2.

On one hand, as 𝐿 → ∞, the summand converges to 𝜆−𝑠−𝑛∕2𝑧 1𝑧=𝑤. On the other hand, by Parseval’s identity, we find that∑
𝑤∈ℤ𝑛𝐿⧵{0}

𝜆
−𝑛∕2
𝑤,𝐿 ⟨𝜑𝑤, 𝗊𝐿𝜑𝑧⟩2 = ‖‖‖(−Δ𝐿)−𝑛∕2𝗊𝐿𝜑𝑧‖‖‖2𝐿2(𝕋𝑛𝐿) ≤ 1.

Thus, the sum is uniformly bounded since 𝑠 > 𝑛∕2. This shows that

𝐄‖‖ℎ𝐿,♭‖‖2𝐻−𝑠 → 𝐄‖ℎ‖2𝐻−𝑠 .

A similar computation shows that

𝐄⟨ℎ, ℎ𝐿,♭⟩𝐻−𝑠 → 𝐄‖ℎ‖2𝐻−𝑠 .

This concludes the proof of the second claim. □

Theorem 4.13. Let ℎ∗
𝐿,♯

be either ℎ𝐿,♯, ℎ−◦𝐿,♯, or ℎ
−
𝐿,♯
. For all 𝑓 ∈ 𝐻̊−𝑛∕2(𝕋𝑛),

⟨ℎ∗
𝐿,♯
, 𝑓⟩

𝕋𝑛
→ ⟨ℎ, 𝑓⟩𝕋𝑛 in 𝐿2(𝐏) as 𝐿 → ∞ , (35)

and for all 𝜖 > 0,

‖‖ℎ𝐿,♯ − ℎ‖‖2𝐻−𝜖 → 0 in 𝐿2(𝐏) as 𝐿 → ∞ . (36)

Proof. We only show the assertions for ℎ𝐿.
According to Proposition 4.5, we already know that ⟨ℎ♯,𝐿, 𝑓⟩→ ⟨ℎ, 𝑓⟩. Thus, it suffices to prove ⟨ℎ𝐿,♯ − ℎ♯,𝐿, 𝑓⟩→ 0.

This follows according to

𝐄
[⟨ℎ𝐿,♯ − ℎ♯,𝐿, 𝑓⟩2]
=

1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

⎛⎜⎜⎝
1

𝜆
𝑛∕2
𝐿,𝑧

−
1

𝜆
𝑛∕2
𝑧

⎞⎟⎟⎠ ⟨𝜑𝑧, 𝑓⟩2
=

1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

((
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕2
− 1

) ⟨𝜑𝑧, 𝑓⟩2
𝜆
𝑛∕2
𝑧

→ 0
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272 SCHIAVO et al.

as 𝐿 → ∞ by the dominated convergence theorem since

∑
𝑧∈ℤ𝑛⧵{0}

1

𝜆
𝑛∕2
𝑧

⟨𝜑𝑧, 𝑓⟩2 < ∞ ,

0 ≤
(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕2
− 1 ≤ 2𝑛

for all 𝑧 and 𝐿, and

(
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕2
− 1 → 0

as 𝐿 → ∞ for every 𝑧.
For the second claim, we use the fact that again by Proposition 4.5 for every 𝜖 > 0,

𝐄
[‖‖ℎ − ℎ♯,𝐿‖‖2𝐻̊−𝜖

]
→ 0 as 𝐿 → ∞ .

Furthermore,

𝐄
[‖‖ℎ𝐿,♯ − ℎ♯,𝐿‖‖2𝐻̊−𝜖

]
=

1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

⎛⎜⎜⎝
1

𝜆
𝑛∕4
𝐿,𝑧

−
1

(2𝜋|𝑧|)𝑛∕2
⎞⎟⎟⎠
2

1|𝑧|2𝜖
=

1

𝑎𝑛(2𝜋)𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

((
𝜆𝑧
𝜆𝐿,𝑧

)𝑛∕4
− 1

)2
1|𝑧|𝑛+2𝜖 → 0

as 𝐿 → ∞ by the same dominated convergence arguments as for the first claim. □

4.4 Related approaches and results

Remark 4.14 (Log-correlated Gaussian fields in the continuum). For 𝑛 = 1, the field ℎ is the lower limiting case of the
fractional Brownian motion with (regularity) parameter in ( 1

2
,
3

2
), see, for example, [7, 12]. For 𝑛 = 2, it is the celebrated

Gaussian free field (GFF) on 𝕋2, surveyed in [16]. For 𝑛 = 1, it coincides in distribution with the restriction of a GFF to a
line (𝕋1 ⊂ 𝕋2). For 𝑛 ≥ 3, it is a log-correlated Gaussian field surveyed in [7]. The conformal invariance of ℎ on𝕋𝑛 is a con-
sequence of the conformal invariance of the Laplace–Beltrami operator on flat geometries. The correct (i.e., conformally
covariant) construction of log-correlated Gaussian fields in general non-flat geometries may be found in [5].

Remark 4.15 (Discrete-to-continuum approximation). To the best of our knowledge, no discretization/discrete approxima-
tion results are available for log-correlated Gaussian fields in dimension 𝑛 ≥ 5. In small dimension however, Gaussian
fields analogous to ℎ are known to be scaling limits of different discrete models. For 𝑛 = 2, in light of the celebrated uni-
versality property of GFFs, the field ℎ is a scaling limit for a huge number of different discrete Gaussian and non-Gaussian
fields defined in various settings, from lattices to random environments, as, for example, the random conductance
model [1]. For 𝑛 = 4, the field ℎ is generated by the Neumann bi-Laplacian; the analogous field generated by the Dirichlet
bi-Laplacian on [0, 1]4 is the scaling limit of the membrane model [10, 13], see [2, 14], as well as of the odometer for the
divisible sandpile model [11], see [4]. We stress that our convergence results for different discretizations of ℎ hold in 𝐻̊−𝑠

with 𝑠 > 2, thus matching the same range of exponents as for the scaling limit of the sandpile odometer, see [3, Prop. 14].
On the other hand, the analogous scaling limit for the membrane model has so far been proven only in𝐻−𝑠 for 𝑠 > 6, see
[2, Thm. 3.11].
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SCHIAVO et al. 273

5 Liouville quantum gravity MEASURES ON DISCRETE AND CONTINUOUS TORI

We will introduce and analyze LQG measures on discrete and continuous tori. Our main result in this section will be that
as 𝐿 → ∞ the LQG measures on the discrete tori 𝕋𝑛𝐿 will converge to the LQG measure on the continuous torus 𝕋𝑛.
An analogous convergence assertion in greater generality will be proven for the so-called reduced LQG measures,

random measures on the discrete tori 𝕋𝑛𝐿 defined in terms of the discrete polyharmonic fields ℎ𝐿.

5.1 Liouville quantum gravity measure on the continuous torus and its approximations

We define the parameters

𝛾∗ ∶=
√
𝑛∕𝑒 and 𝛾∗ ∶=

√
2𝑛 .

We further make the following definitions of randommeasures on the common probability space (Ω,𝔄, 𝐏) supporting
the polyharmonic field ℎ.

Definition 5.1. For 𝛾 ∈ ℝ, define

(𝑖) the Fourier approximation 𝜇♯,𝐿 on 𝕋𝑛 by

𝑑𝜇♯,𝐿(𝑥) = exp

(
𝛾ℎ♯,𝐿(𝑥) −

𝛾2

2
𝑘♯,𝐿(𝑥, 𝑥)

)
𝑑𝑛(𝑥) ,

where ℎ♯,𝐿 denotes the Fourier projection (or eigenfunction approximation) of the polyharmonic field ℎ and 𝑘♯,𝐿 the
associated covariance function (which takes the constant value 1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

(2𝜋|𝑧|)𝑛 on the diagonal) as introduced
in Definition 4.3(𝑖).

(𝑖𝑖) the piecewise-constant approximation𝜇♭,𝐿 on 𝕋𝑛 by

𝑑𝜇♭,𝐿(𝑥) = exp

(
𝛾ℎ♭.𝐿(𝑥) −

𝛾2

2
𝑘♭,𝐿(𝑥, 𝑥)

)
𝑑𝑛(𝑥) ,

where ℎ♭,𝐿 denotes the piecewise constant projection of the polyharmonic field ℎ and 𝑘♭,𝐿 the associated covariance
function (which is constant on the diagonal) as introduced in Definition 4.3(𝑖𝑖).

(𝑖𝑖𝑖) the enhanced approximation𝜇+,𝐿 on 𝕋𝑛 by

𝑑𝜇+,𝐿(𝑥) = exp

(
𝛾ℎ+,𝐿(𝑥) −

𝛾2

2
𝑘+,𝐿(𝑥, 𝑥)

)
𝑑𝑛(𝑥) ,

where ℎ+,𝐿 denotes the enhanced projection of the polyharmonic field ℎ and 𝑘+,𝐿 the associated covariance function
as introduced in Definition 4.3(𝑖𝑖𝑖);

(𝑖𝑣) the natural approximation𝜇◦,𝐿 on 𝕋𝑛 by

𝑑𝜇◦,𝐿(𝑥) = exp

(
𝛾ℎ◦,𝐿(𝑥) −

𝛾2

2
𝑘◦,𝐿(𝑥, 𝑥)

)
𝑑𝑛(𝑥) ,

where ℎ◦,𝐿 denotes the natural projection of the polyharmonic field ℎ and 𝑘◦,𝐿 the associated covariance function as
introduced in Definition 4.3(𝑖𝑣);

(𝑣) the semi-discrete approximation𝜇𝐿,♯ (Figure 5) on 𝕋𝑛 by

𝑑𝜇𝐿,♯(𝑥) = exp

(
𝛾ℎ𝐿,♯(𝑥) −

𝛾2

2
𝑘𝐿,♯(𝑥, 𝑥)

)
𝑑𝑛(𝑥)
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274 SCHIAVO et al.

F IGURE 5 The Gaussian multiplicative chaos 𝜇𝐿,♯ on 𝕋2 for 𝐿 = 15, different values of 𝛾 and same realization of the randomness.

where ℎ𝐿,♯ denotes the Fourier extension of the discrete polyharmonic field ℎ𝐿 and 𝑘𝐿,♯ the associated covariance
function as introduced in Definition 3.7(𝑖𝑖);

(𝑣𝑖) the spectrally reduced semi-discrete approximation𝜇−◦
𝐿,♯

on 𝕋𝑛 by

𝑑𝜇−◦
𝐿,♯
(𝑥) = exp

(
𝛾ℎ−◦

𝐿,♯
(𝑥) −

𝛾2

2
𝑘−◦
𝐿,♯
(𝑥, 𝑥)

)
𝑑𝑛(𝑥)

where ℎ−◦
𝐿,♯

denotes the Fourier extension of the spectrally reduced discrete polyharmonic field ℎ−◦𝐿 and 𝑘−◦
𝐿,♯

the
associated covariance function as introduced in Definition 3.7(𝑖𝑣).

For a sequence (𝜇𝐿)𝐿 of random measures 𝜇𝐿 = 𝜇𝜔𝐿 on 𝕋𝑛 and a random measure 𝜇 = 𝜇𝜔, all defined on a same
probability space (Ω,𝔄, 𝐏), we further define the following mode of convergence.

Definition 5.2 (Convergence of random measures). We say that (𝜇𝐿)𝐿 converges to 𝜇 as 𝐿 → ∞ if both the following
conditions hold:

∙ 𝐏-a.s. weak convergence, that is,

lim
𝐿→∞∫

𝕋𝑛
𝑓𝑑𝜇𝜔𝐿 = ∫

𝕋𝑛
𝑓𝑑𝜇𝜔 for 𝐏-a.e. 𝜔, for every 𝑓 ∈ (𝕋𝑛) ;

∙ 𝐿1(𝐏)-convergence in 𝐿1(𝕋𝑛)∗, that is,

𝐿1(𝐏)- lim
𝐿→∞∫

𝕋𝑛
𝑓𝑑𝜇 ⋅𝐿 = ∫

𝕋𝑛
𝑓𝑑𝜇 ⋅ for every 𝑓 ∈ 𝐿1(𝕋𝑛) . (37)

Theorem 5.3. Assume |𝛾| < 𝛾∗. Then, there exists a unique Borel random measure 𝜇 = 𝜇𝜔 on 𝕋𝑛, namely the polyhar-
monic LQG measure (also: polyharmonic Gaussian multiplicative chaos), satisfying—all convergences are in the sense of
Definition 5.2

(𝑖) 𝜇♯,𝐿 → 𝜇 as𝐿 → ∞, and furthermoreEquation (37) holdswith𝐿1(𝐏)-convergence replaced by𝐿2(𝐏)-convergence if |𝛾| <√
𝑛;

(𝑖𝑖) 𝜇♭,𝐿 → 𝜇 as 𝐿 → ∞;
(𝑖𝑖𝑖) 𝜇−◦

𝐿,♯
→ 𝜇 as 𝐿 → ∞;

(𝑖𝑣) if |𝛾| <√𝑛, then 𝜇◦,𝐿 → 𝜇 as 𝐿 → ∞;
(𝑣) if |𝛾| < 𝛾∗, then 𝜇+,𝐿 → 𝜇 as 𝐿 → ∞;
(𝑣𝑖) if |𝛾| < 𝛾∗, then 𝜇𝐿,♯ → 𝜇 as 𝐿 → ∞.
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SCHIAVO et al. 275

We note that the randommeasures 𝜇−◦
𝐿,♯
and 𝜇𝐿,♯ are functions of the discrete fields ℎ𝐿, while all other randommeasures

above are functions of the continuum random fields ℎ.

Proof. (𝑖) and (𝑖𝑖) respectively hold by combining [5, Thms. 4.1 and 4.14] and [5, Thms. 4.1 and 4.13]. (𝑖𝑖𝑖) follows from
Lemma 4.9 and (𝑖).
In order to prove the remaining assertions, we verify the necessary assumptions in [5, Lem. 4.5], a rewriting in the

present setting of the general construction of Gaussian multiplicative chaoses by Shamov [15].
(𝑖𝑣) Lemma 4.7 provides the convergence results for the regularizing kernel 𝑝◦,𝐿 and for the covariance kernel 𝑘◦,𝐿. The

uniform integrability—even 𝐿2-boundedness—of the approximating sequence of randommeasures 𝜇◦,𝐿 follows from the
𝐿2-boundedness of the sequence of random measures 𝜇♯,𝐿 as stated in (𝑖) and a straightforward application of Jensen’s
inequality with the Markov kernel 𝑞𝐿:

sup
𝐿
𝔼
[||𝜇◦,𝐿(𝕋𝑛)||2] = sup

𝐿
𝔼

[|||||∫𝕋𝑛 exp
(
𝛾ℎ◦,𝐿(𝑥) −

𝛾2

2
𝑘◦,𝐿(𝑥)

)
𝑑𝑥
|||||
2]

= sup
𝐿 ∬

𝕋𝑛×𝕋𝑛
exp
(
𝛾2 𝑘◦,𝐿(𝑥, 𝑦)

)
𝑑𝑦 𝑑𝑥

≤ sup
𝐿 ∬

𝕋𝑛×𝕋𝑛
∬
𝕋𝑛×𝕋𝑛

exp
(
𝛾2 𝑘♯,𝐿(𝑥

′, 𝑦′)
)
𝑞𝐿(𝑥, 𝑥

′) 𝑞𝐿(𝑦, 𝑦
′) 𝑑𝑦′ 𝑑𝑥′ 𝑑𝑦 𝑑𝑥

= sup
𝐿 ∬

𝕋𝑛×𝕋𝑛
exp
(
𝛾2 𝑘♯,𝐿(𝑥, 𝑦)

)
𝑑𝑦 𝑑𝑥

= sup
𝐿
𝔼
[||𝜇♯,𝐿(𝕋𝑛)||2] = 𝔼

[|𝜇(𝕋𝑛)|2] < ∞ .

Alternatively, we can also use Jensen’s inequality directly at the level of ℎ◦,𝐿. Precisely, we find that

exp

(
𝛾ℎ◦,𝐿(𝑥) −

𝛾2

2
𝑘◦,𝐿(𝑥, 𝑥)

)
= exp

(
∫
(
𝛾ℎ♯,𝐿(𝑥

′) −
𝛾2

2
𝑘♯,𝐿(𝑥

′, 𝑥′′)

)
𝑞𝐿(𝑥, 𝑥

′)𝑞𝐿(𝑥, 𝑥
′′)𝑑𝑥𝑑𝑥′𝑑𝑥′′

)
≤ ∫ exp

(
𝛾ℎ♯,𝐿(𝑥

′) −
𝛾2

2
𝑘♯,𝐿(𝑥

′, 𝑥′′)

)
𝑞𝐿(𝑥, 𝑥

′)𝑞𝐿(𝑥, 𝑥
′′) ,

from which, we get

𝜇◦,𝐿(𝕋
𝑛) ≤ 𝜇♯,𝐿(𝕋

𝑛) .

(𝑣) Lemma 4.7 provides the convergence results for the regularizing kernel 𝑝+,𝐿 and for the covariance kernel 𝑘+,𝐿. The
uniform integrability of the approximating sequence of randommeasures𝜇+,𝐿 follows fromTheorem5.6 in the last section.
(𝑣𝑖) According to Lemma 4.9, the Fourier extension ℎ𝐿,♯ of the discrete random field ℎ𝐿 coincides in distribution with

the field obtained from the continuous field ℎ by regularizationwith the kernel 𝑟+◦𝐿 . Conditions (𝑖𝑖) and (𝑖𝑖𝑖) in [5, Lem. 4.5]
can be verified exactly as in the proof of Lemma 4.7. The uniform integrability of the approximating sequence of random
measures follows from Theorem 5.6 in the last section. □

5.2 Liouville quantum gravity measures on the discrete tori and their convergence

Let 𝑚𝐿 be the normalized counting measure
1

𝐿𝑛

∑
𝑢∈𝕋𝑛𝐿

𝛿𝑢 on the discrete torus 𝕋𝑛𝐿. Recall that if ℎ𝐿 is a polyharmonic
field on 𝕋𝑛𝐿 as in Equation (14), then

ℎ−𝐿 (𝑣) ∶= 𝗋−𝐿 (ℎ𝐿)(𝑣) =
1√
𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿

𝜗𝐿,𝑧

𝜆
𝑛∕4
𝑧

𝜉𝑧 𝜑𝑧(𝑣) , 𝑣 ∈ 𝕋𝑛𝐿 (38)

defines a reduced polyharmonic field on the discrete torus.
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276 SCHIAVO et al.

Definition 5.4. For 𝛾 ∈ ℝ, define

(𝑖) the polyharmonic LQG measure 𝜇𝐿 (also: discrete LQG measure) on 𝕋𝑛𝐿 by

𝑑𝜇𝐿(𝑣) = exp

(
𝛾ℎ𝐿(𝑣) −

𝛾2

2
𝑘𝐿(𝑣, 𝑣)

)
𝑑𝑚𝐿(𝑣) ,

where ℎ𝐿 is the polyharmonic Gaussian field on the discrete torus 𝕋𝑛𝐿 and 𝑘𝐿 its covariance function (which takes the
constant value 1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

on the diagonal of 𝕋𝑛𝐿) as introduced in Equations (14) and (6);

(𝑖𝑖) the reduced discrete LQG measure 𝜇−𝐿 on 𝕋
𝑛
𝐿 by

𝑑𝜇−𝐿 (𝑣) = exp

(
𝛾ℎ−𝐿 (𝑣) −

𝛾2

2
𝑘−𝐿 (𝑣, 𝑣)

)
𝑑𝑚𝐿(𝑣) ,

where ℎ−𝐿 denotes the reduced polyharmonic field in Equation (38) and 𝑘
−
𝐿 its covariance function.

In order to prove the convergence of the randommeasures 𝜇𝐿 on the discrete tori𝕋𝑛𝐿 as 𝐿 → ∞, wewill restrict ourselves
to subsequences for which the discrete tori are hierarchically ordered, say 𝐿 = 𝑎𝓁 as 𝓁 → ∞ for some fixed integer 𝑎 ≥ 2

and 𝓁 ∈ ℕ. For convenience, we will assume that 𝑎 is odd.

Theorem 5.5. Let 𝑎 be an odd integer ≥ 2. Then,

(𝑖) if |𝛾| < 𝛾∗ ∶=
√

𝑛

𝑒
, then 𝜇𝑎𝓁 → 𝜇 as 𝓁 → ∞ in the sense that Equation (37) holds for every 𝑓 ∈ (𝕋𝑛);

(𝑖𝑖) if |𝛾| <√𝑛, then 𝜇−
𝑎𝓁
→ 𝜇 as 𝓁 → ∞ in the sense that Equation (37) holds for every 𝑓 ∈ (𝕋𝑛).

Proof. Given 𝑎 as above, let us call a function 𝑓 on 𝕋𝑛 piecewise constant if it is constant on all cubes 𝑣 + 𝑄𝐿, 𝑣 ∈ 𝕋𝑛𝐿, for
some 𝐿 = 𝑎𝓁

′ .

(𝑖) For a piecewise constant 𝑓 and all 𝓁 ≥ 𝓁′,

∫ 𝑓 𝑑𝜇𝑎𝓁 = ∫ 𝑓 𝑑𝜇+,𝑎𝓁 . (39)

Indeed, the field ℎ+,𝑎𝓁 is constant all cubes 𝑣 + 𝑄𝑎𝓁 , 𝑣 ∈ 𝕋𝑛
𝑎𝓁
, and Lemma 4.10(𝑖) yields that the fields ℎ𝑎𝓁 and ℎ+,𝑎𝓁

coincide (in distribution) on the discrete torus 𝕋𝑛
𝑎𝓁
. Thus, also the associated LQG measures of all cubes 𝑣 + 𝑄𝑎𝓁 ,

𝑣 ∈ 𝕋𝑛
𝑎𝓁
, coincide.

Hence, for a piecewise constant functions 𝑓, the convergence

∫ 𝑓 𝑑𝜇𝑎𝓁 → ∫ 𝑓 𝑑𝜇 as 𝓁 → ∞

follows from the previous Theorem 5.3(𝑣).
For a continuous 𝑓, the claim follows by approximation of 𝑓 by piecewise constant 𝑓𝑗 , 𝑗 ∈ ℕ. Indeed,

𝐄

[||||∫ 𝑓 𝑑𝜇𝑎𝓁 − ∫ 𝑓𝑗 𝑑𝜇𝑎𝓁
||||
]
≤ 𝐄

[
∫ |||𝑓 − 𝑓𝑗||| 𝑑𝜇𝑎𝓁

]
= ∫ |||𝑓 − 𝑓𝑗|||𝑑𝑥 → 0

as 𝑗 → ∞, uniformly in 𝓁 ∈ ℕ, and similarly with 𝜇 in the place of 𝜇𝑎𝓁 .
(𝑖𝑖) For a piecewise constant 𝑓, according to Lemma 4.10(𝑖𝑖) for all 𝓁 ≥ 𝓁′,

∫ 𝑓 𝑑𝜇−
𝑎𝓁
= ∫ 𝑓 𝑑𝜇◦,𝑎𝓁 . (40)
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SCHIAVO et al. 277

Hence, for piecewise constant functions 𝑓, the convergence

∫ 𝑓 𝑑𝜇−
𝑎𝓁
→ ∫ 𝑓 𝑑𝜇 as 𝓁 → ∞

follows from the previous Theorem 5.3(𝑖𝑣). For a continuous 𝑓, the claim follows by approximation of 𝑓 by piecewise
constant 𝑓𝑗 , 𝑗 ∈ ℕ, as in (𝑖). □

5.3 Uniform integrability of discrete and semi-discrete Liouville quantum gravity
measures

Finally, we address the question of uniform integrability of approximating sequences of LQG measures. We provide a
self-contained argument for 𝐿2-boundedness, independent of Kahane’s work [9].

Theorem 5.6. Assume |𝛾| < 𝛾∗ ∶=
√

𝑛

𝑒
. Then

sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘𝐿,♯(0, 𝑦)

)
𝑑𝑛(𝑦) < ∞ , (41)

sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘𝐿,♭(0, 𝑦)

)
𝑑𝑛(𝑦) < ∞ , (42)

sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘+,𝐿(0, 𝑦)

)
𝑑𝑛(𝑦) < ∞ . (43)

Proof. In order to prove Equation (41), recall from Equation (22) that for 𝑥, 𝑦 ∈ 𝕋𝑛,

𝑘𝐿,♯(𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ exp (2𝜋i 𝑧 ⋅ (𝑥 − 𝑦)) ,

were, as usual, 𝜆𝐿,𝑧 = 4𝐿2
∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿). Given 𝜖 > 0, choose 𝑅 > 2 such that |𝑧| + 1

2

√
𝑛 ≤ (1 + 𝜖)|𝑧| for all 𝑧 ∈ ℤ𝑛

with ‖𝑧‖∞ ≥ 𝑅∕2, and 𝑆 > 1 such that 𝑡 ≤ (1 + 𝜖) sin(𝑡) for all 𝑡 ∈ [0,
𝜋

2𝑆
]. Decompose 𝑘𝐿,♯ for 𝐿 > 𝑅 𝑆 into 𝑘𝐿,𝑅,𝑆 + 𝑔𝐿,𝑅 +

𝑓𝐿,𝑆 with

𝑓𝐿,𝑆(𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵ℤ

𝑛
𝐿∕𝑆

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ e2𝜋i 𝑧⋅(𝑥−𝑦) , 𝑔𝐿,𝑅(𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝑅⧵{0}

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ e2𝜋i 𝑧⋅(𝑥−𝑦)

and

𝑘𝐿,𝑅,𝑆(𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛

𝐿∕𝑆
⧵ℤ𝑛𝑅

1

𝜆
𝑛∕2
𝐿,𝑧

⋅ e2𝜋i 𝑧⋅(𝑥−𝑦) .

For fixed 𝑅, obviously 𝑔𝐿,𝑅(𝑥, 𝑦) is uniformly bounded in 𝐿, 𝑥, 𝑦. Similarly, since sin(𝑡) ≥ 2

𝜋
𝑡 for 𝑡 ∈ [0, 𝜋∕2] we have

that for fixed 𝑆,

||𝑓𝐿,𝑆||(𝑥, 𝑦) ≤ 1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵ℤ

𝑛
𝐿∕𝑆

1

𝜆
𝑛∕2
𝐿,𝑧

≤ 1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵ℤ

𝑛
𝐿∕𝑆

1

4𝑛|𝑧|𝑛
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278 SCHIAVO et al.

≤ 1

4𝑛 𝑎𝑛 ∫
𝐵√

𝑛𝐿∕2
(0)⧵𝐵𝐿∕(2𝑆)(0)

1|𝑥|𝑛 𝑑𝑛(𝑥)
= 𝐶
[
log(
√
𝑛𝐿∕2) − log(𝐿∕(2𝑆))

]
= 𝐶′ < ∞ .

Thus, for Equation (41) to hold, it thus suffices to prove that

sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘𝐿,𝑅,𝑆(0, 𝑦)

)
𝑑𝑛(𝑦) < ∞ , (44)

for some 𝑅 > 2 as above.
In order to prove the latter, we follow the argument of the proof of Lemma 2, p. 611 in [17]. To start with, we use the

multi-dimensional Hausdorff–Young inequality, which can be found in [8, p. 248]:

For 𝑝 ≥ 2 ∫
𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑝 𝑑𝑦 ≤

⎛⎜⎜⎝
∑

𝑧∈ℤ𝑛
𝐿∕𝑆

⧵ℤ𝑛𝑅

|𝑐(𝑧)|𝑝′⎞⎟⎟⎠
𝑝−1

,

where 𝑐(𝑧) =
1

𝑎𝑛

(
4𝐿2
∑𝑛

𝑘=1 sin
2
(𝜋𝑧𝑘∕𝐿)

)−𝑛∕2
and 𝑝′ ∈ [1, 2] is the Hölder-conjugate. Since 𝜋|𝑧𝑘|∕𝐿 ≤ (1 +

𝜖)| sin(𝜋𝑧𝑘∕𝐿)| for all 𝑧𝑘∕𝐿 under consideration, we have that
∫
𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑝 𝑑𝑦 ≤ (1 + 𝜖)𝑛𝑝

′(𝑝−1)
⎛⎜⎜⎝
1

𝑎
𝑝′

𝑛

∑
𝑧∈ℤ𝑛

𝐿∕𝑆
⧵ℤ𝑛𝑅

1

(2𝜋|𝑧|)𝑛𝑝′
⎞⎟⎟⎠
𝑝−1

.

Let 𝑄1(𝑧) be the unit cube
∏𝑛

𝑖=1[𝑧 −
1

2
𝑒𝑖, 𝑧 +

1

2
𝑒𝑖] around 𝑧 ∈ ℤ𝑛. Since by assumption

|𝑥| ≤ |𝑧| + 1

2

√
𝑛 ≤ (1 +

1

2

√
𝑛)|𝑧| ≤ (1 + 𝜖)|𝑧|

for all 𝑥 ∈ 𝑄1(𝑧) and all 𝑧 with ‖𝑧‖∞ ≥ 𝑅∕2, we estimate

∑
𝑧∈ℤ𝑛

𝐿∕𝑆
⧵ℤ𝑛𝑅

∫
𝑄1(𝑧)

1|𝑧|𝑛𝑝′ 𝑑𝑥 ≤ ∑
𝑧∈ℤ𝑛⧵ℤ𝑛𝑅

(1 + 𝜖)
𝑛𝑝′ ∫

𝑄1(𝑧)

1|𝑥|𝑛𝑝′ 𝑑𝑥
≤(1 + 𝜖)𝑛𝑝′ ∫

ℝ𝑛⧵𝐵𝑅∕2(0)

1|𝑥|𝑛𝑝′ 𝑑𝑥.
With Cavalieri’s principle the integral can be estimated by

∫
ℝ𝑛⧵𝐵𝑅∕2(0)

1|𝑥|𝑛𝑝′ 𝑑𝑥 = ∫
∞

𝑅∕2

2𝜋𝑛∕2

Γ(𝑛∕2)
𝑟𝑛−1

1

𝑟𝑛𝑝′
𝑑𝑟

=
2𝜋𝑛∕2

Γ(𝑛∕2)

1

𝑛(𝑝′ − 1)

(
𝑅

2

)𝑛(1−𝑝′)
≤ 2𝜋𝑛∕2

Γ(𝑛∕2)

𝑝

𝑛

since 𝑝′ > 1 and 𝑅 ≥ 2. Hence, we obtain for 𝑘𝐿,𝑅,𝑆:

∫
𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑝 𝑑𝑦 ≤

(
(1 + 𝜖)2

2𝜋

)𝑛𝑝
1

𝑎
𝑝
𝑛

(
2𝜋𝑛∕2

Γ(𝑛∕2)

𝑝

𝑛

)𝑝−1
. (45)
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SCHIAVO et al. 279

Summing these terms over all 𝑝 ∈ ℕ ⧵ {1} yields

∑
𝑝≥2

𝛾2𝑝

𝑝! ∫
𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑝 𝑑𝑦 ≤∑

𝑝≥2
𝛾2𝑝

𝑝!

(
(1 + 𝜖)2𝑛

(2𝜋)𝑛𝑎𝑛

)𝑝(
2𝜋𝑛∕2

Γ(𝑛∕2)

𝑝

𝑛

)𝑝−1

=
𝑛Γ(𝑛∕2)

2𝜋𝑛∕2

∑
𝑝≥2

𝛾2𝑝

𝑝! 𝑝

(
(1 + 𝜖)2𝑛

(2𝜋)𝑛𝑎𝑛

2𝜋𝑛∕2𝑝

𝑛Γ(𝑛∕2)

)𝑝

∼
𝑛Γ(𝑛∕2)

2𝜋𝑛∕2

∑
𝑝≥2

1

𝑝
√
2𝜋𝑝

(
(1 + 𝜖)2𝑛2𝜋𝑛∕2𝑒𝛾2

(2𝜋)𝑛𝑎𝑛𝑛Γ(𝑛∕2)

)𝑝
,

where we used Stirling’s formula 𝑝! ∼
√
2𝜋𝑝(

𝑝

𝑒
)𝑝. The last sum is finite if

(1 + 𝜖)2𝑛𝛾2 <
(2𝜋)𝑛𝑎𝑛𝑛Γ(𝑛∕2)

2𝜋𝑛∕2𝑒
=
𝑛

𝑒
= 𝛾2∗ , (46)

where we inserted 𝑎𝑛 =
2

(4𝜋)𝑛∕2Γ(𝑛∕2)
. Since by assumption |𝛾| < 𝛾∗ and since 𝜖 > 0was arbitrary, by appropriate choice of

the latter, Equation (46) is satisfied.
To treat the cases 𝑝 = 0 and 𝑝 = 1, observe that (∫

𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑑𝑦)2 ≤ ∫

𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|2 𝑑𝑦. Thus, there exists a

constant 𝐶𝑅𝑛,𝛾 such that

∑
𝑝≥0

𝛾2𝑝

𝑝! ∫
𝕋𝑛
|𝑘𝐿,𝑅,𝑆(0, 𝑦)|𝑝 𝑑𝑦 ≤ 𝐶𝑅𝑛,𝛾,

uniformly in 𝐿, and thus in turn there exists a constant 𝐶♯𝑛,𝛾 such that

sup
𝐿

∑
𝑝≥0

𝛾2𝑝

𝑝! ∫
𝕋𝑛
|𝑘𝐿,♯(0, 𝑦)|𝑝 𝑑𝑦 ≤ 𝐶

♯
𝑛,𝛾,

which proves Equation (41).
In order to show Equation (42), note that

∫
𝕋𝑛
exp
(
𝛾2𝑘𝐿,♭(0, 𝑦)

)
𝑑𝑛(𝑦) = ∫

𝕋𝑛𝐿

exp
(
𝛾2𝑘𝐿(0, 𝑣)

)
𝑑𝑚𝐿(𝑣)

for every 𝐿. Furthermore, for 𝑝 ≥ 2,

∫
𝕋𝑛𝐿

|𝑘𝐿(0, 𝑣)|𝑝 𝑑𝑚𝐿(𝑣) ≤
⎛⎜⎜⎝
1

𝑎
𝑝′

𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

|𝑐(𝑧)|𝑝′⎞⎟⎟⎠
𝑝−1

.

Indeed, for 𝑝 = 2 this is due to Parseval’s identity, and for 𝑝 = ∞ this holds since | exp(2𝜋i𝑧(𝑥 − 𝑦))| = 1. The estimate
holds for all intermediate 𝑝 ∈ (2,∞) by virtue of the Riesz–Thorin theorem. Then, the proof of Equation (42) follows the
lines above.
In order to show Equation (43), recall that 𝑘+,𝐿 = 𝑞𝐿◦𝑘

+
𝐿 with 𝑘𝐿 given is Equation (32). Thus by Jensen’s inequality,

Equation (43) will follow from

sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘+𝐿 (0, 𝑦)

)
𝑑𝑛(𝑦) < ∞ . (47)
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280 SCHIAVO et al.

To prove this, we argue as before in (i), now with

𝑘+𝐿 (𝑥, 𝑦) =
1

𝑎𝑛

∑
𝑧∈ℤ𝑛𝐿⧵{0}

1

𝜗2𝐿,𝑧 𝜆
𝑛∕2
𝐿,𝑧

⋅ exp (2𝜋i 𝑧 ⋅ (𝑥 − 𝑦))

in the place of 𝑘𝐿,♯(𝑥, 𝑦). For given 𝜖 > 0, choose 𝑅 > 2 and 𝑆 > 1 as before. In particular, then 𝑡 ≤ (1 + 𝜖) sin(𝑡) for all
𝑡 ∈ [0,

𝜋

2𝑆
] and thus

1 ≥ 𝜗𝐿,𝑧 ≥ (1 + 𝜖)−𝑛 , 𝑧 ∈ ℤ𝑛
𝐿∕𝑆

.

Thus, decomposing 𝑘+𝐿 intro three factors as before and then arguing as before will prove the claim. □

Corollary 5.7. If |𝛾| < 𝛾∗, then for each 𝑓 ∈ 𝐿2(𝕋𝑛),

(𝑖) the family
(∫

𝕋𝑛
𝑓 𝑑𝜇𝐿,♯

)
𝐿∈ℕ

is 𝐿2(𝐏)-bounded,

(𝑖𝑖) the family
(∫

𝕋𝑛
𝑓 𝑑𝜇𝐿,♭

)
𝐿∈ℕ

is 𝐿2(𝐏)-bounded.

(𝑖𝑖𝑖) the family
(∫

𝕋𝑛
𝑓 𝑑𝜇+,𝐿

)
𝐿∈ℕ

is 𝐿2(𝐏)-bounded.

Proof.

(𝑖) Given 𝑓 ∈ 𝐿2(𝕋𝑛) and 𝛾 as above, consider the Gaussian variables

𝑌𝐿,♯ ∶= ∫
𝕋𝑛
𝑓 𝑑𝜇𝐿,♯ = ∫

𝕋𝑛
exp

(
𝛾ℎ𝐿,♯(𝑥) −

𝛾2

2
𝑘𝐿,♯(𝑥, 𝑥)

)
𝑓(𝑥) 𝑑𝑛(𝑥) .

Then

sup
𝐿
𝔼
[||𝑌𝐿,♯||2] = sup

𝐿 ∫
𝕋𝑛

∫
𝕋𝑛
exp
(
𝛾2𝑘𝐿,♯(𝑥, 𝑦)

)
𝑓(𝑥) 𝑓(𝑦) 𝑑𝑛(𝑦) 𝑑𝑛(𝑥)

≤ sup
𝐿 ∫

𝕋𝑛

[
∫
𝕋𝑛
exp
(
𝛾2𝑘𝐿,♯(𝑥, 𝑦)

)
𝑑𝑛(𝑦)

]
𝑓2(𝑥) 𝑑𝑛(𝑥)

and, by translation invariance of 𝑘𝐿,♯ and Equation (41),

≤ ‖𝑓‖2 ⋅ sup
𝐿 ∫

𝕋𝑛
exp
(
𝛾2𝑘𝐿,♯(0, 𝑦)

)
𝑑𝑛(𝑦) ≤ ‖𝑓‖2 ⋅ 𝐶♯𝑛,𝛾 < ∞.

(𝑖𝑖) Similarly, again by translation invariance of 𝑘𝐿,♯, and by Equation (42)

sup
𝐿
𝔼
[||𝑌𝐿,♭||2] ≤ ‖𝑓‖2 ⋅ sup

𝐿 ∫
𝕋𝑛
exp
(
𝛾2𝑘𝐿,♭(0, 𝑦)

)
𝑑𝑛(𝑦) ≤ ‖𝑓‖2 ⋅ 𝐶♭𝑛,𝛾 < ∞

for 𝑌𝐿,♭ ∶= ∫
𝕋𝑛
𝑓 𝑑𝜇𝐿,♭ = ∫

𝕋𝑛
exp
(
𝛾ℎ𝐿,♭(𝑥) −

𝛾2

2
𝑘𝐿,♭(𝑥, 𝑥)

)
𝑓(𝑥) 𝑑𝑛(𝑥).

(𝑖𝑖𝑖) Analogously. □
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