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sian field i on the continuous torus T" = R" /Z", as well as convergence of the

random measures y;, to the LQG measure y on T", for all |y| < y/2n.

1 | INTRODUCTION

We study Gaussian random fields and the associated Liouville quantum gravity (LQG) measures on continuous and
discrete tori of arbitrary dimension. The random field h on the continuous torus is a particular case of the copolyhar-
monic field introduced and analyzed in detail in [5] in great generality on all ‘admissible’ manifolds of even dimension.
One of the main goals now is to study the approximation of these fields and the associated LQG measures by their
discrete counterparts.

The polyharmonic fields hon T" = [0,1)" and h; on Tf ~ {0, % s %}” for L € N are centered Gaussian random fields
with covariance functions

B[A() hO)] = kx,y) = —— 6"7(x,)

1 on/2

E[h, () (0] =k (x,p) 1= — G (x,p) -
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given in terms of the integral kernel for the ‘grounded’ inverse of the (continuous and discrete, resp.) poly-Laplacian

_A/2 _ n/2 ot - 2 _A)S/2 ;
(=A)*"4 and (—A;)™=, and a normalization constant a,, : YL Here and below, (—A)%/“ is, for every s > 0,

the power of the Laplacian defined by means of the spectral theorem for self-adjoint operators on L?(T"). Its discrete
counterpart (—A; )*/? may be defined in the same way.
In particular, with the above choice of the normalization constant a,,,

Lemma 1.1 (See Lemma 2.4).

1

k(xa Y) - 10 S C
8t
1.1 | Characterization of the discrete polyharmonic field
Let n, L € N be given and assume for convenience that L is odd, let ZZ = {—%, —% +1,.., ?}”, andset N := L" and

N-1 n n/4
c, = (22\]) 2. H <4L2 Z:sin2 (n'zk/L)> )

2€Z7\{0} k=1

Define the measure 9(h) on RN =~ R'Z by

2L\ (—AL)*hl|?

dv(h) :=c,e 2N dcNe) ,

and denote by v its push forward under the map

In other words, » = 17( . | szl h, = 0)_
Furthermore,

T.wv=P and T "P=v,

where P denotes the distribution of the ‘grounded white noise’ on T?, explicitly given as

o —LyEz
dB(E) = ———¢ v del-l(®)

Q)T

on the hyperplane H = {E € R" : Zgzl &, = 0}, and where

o

TiheE8=ya,(-0)"*h, T :E-h=

Theorem 1.2 (cf. Theorem 3.4). The distribution of the discrete polyharmonic field on T is given by the probability measure
vonR'L = RV,
1.2 | Convergence of the random fields

As L — o0, the polyharmonic fields h; on the discrete tori converge to the polyharmonic field i on the continuous torus.
This convergence of the fields, indeed, holds in great generality.
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For a precise formulation, one either has to specify classes of test functions on T" which admit traces on T}, or unique
ways of extending functions on T} onto T".

Theorem 1.3 (Thm. 4.11, Thm. 4.12). Forall f € Us>n/2 HS(T™),

has Frer = (af)n

<hL,b’ f>‘|]'n - <h’f>1yn >

inLl>’(P)asL — oo ,

where hy ), denotes the piecewise constant extension to T" of hy.

Let D; c C*(T™)denote the linear span of the eigenfunctions ¢, for the negative Laplacian with associated eigenvalues
0 < A, < (Lm)?, or more explicitly,

Dy :=5f: fx)= Z [, cos(27x - 2) + B, sin(27x - 2)], a5, B, €ER

n
zeZL

Theorem 1.4 (Thm. 4.13, Prop. 4.5). For all f € H~"/2(T"),

(g f)pn = (1 f)en

(s f) e = (B fdpn

inL>(P)asL - oo ,
where h‘L", denotes, for every w, the unique function in Dy, which coincides with hi’ on T}, and hy ; is the Fourier projection (23)
of h at scale L.

The same convergence assertion also holds for the so-called spectrally reduced polyharmonic field h;° on T} given in
terms of the eigenbasis {qoz}zezz of the discrete Laplacian A; as

n —n/4
2
hzo(x) = Z <ﬁ ]{leinz(”zk/L)> <hL|¢z>'n'g : (pZ(X) .

Our convergence results apply to the case of arbitrary dimension #n. In dimension n < 4, several results are available
in the literature for the convergence of other discrete fractional Gaussian fields of integer order to the corresponding
counterpart in the continuum, including, for example, the odometer for the sandpile model, or the membrane model. For
a comparison of these results with those in this work, see Section 4.4.

1.3 | Convergence of the random measures
The convergence questions for the associated random measures are more subtle. Again, of course, one expects that the

Liouville measure y; on the discrete tori converge as L — oo to the Liouville measure x4 on the continuous torus. This
convergence of the random measure, however, only holds for small parameters y.

Theorem 1.5 (cf. Thm. 5.5). Assume |y| < \/E, and let a be an odd integer > 2. Then, in the sense of Definition 5.2,
e

Mot = M ast — oo .
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Analogous convergence results hold for the random measures associated with the Fourier extensions of the discrete
polyharmonic fields and the reduced discrete polyharmonic field, in the latter case even in the whole range of subcriticality

y € (—V2n,/2n).

Theorem 1.6 (cf. Thm. 5.3). If |y| < \/g then in the sense of Definition 5.2,
Mpg = M asL — oo,

and for |y| < \/ﬂ again in the sense of Definition 5.2,

—0

Mg 7 H asL — oo .

1.4 | Uniform integrability of the random measures

As an auxiliary result of independent interest, we provide a direct proof of the uniform integrability of (discrete, semi-
discrete, and continuous) random measures on the multidimensional torus.

Theorem 1.7 (cf. Thm. 5.6). Assume that |y| < \/E Then
e

E ™| <
sup [I#L( L)I] co
and

s%pE[|yL’n(T”)|2] <.

2 | LAPLACIAN AND KERNELS ON CONTINUOUS AND DISCRETE TORI

2.1 | Laplacian and kernels on the continuous torus

(@)

For n € N, we denote by T" := (R/Z)" the continuous n-torus. Where it seems helpful, one can always think of the torus
T" as the set [0,1)" ¢ R". It inherits from R" the additive group structure and the Lebesgue measure, denoted in the
following by d£"(x) or simply by dx. The distance on T" is given by

. 1/2
d(x,y) := <2(|xk—Yk|/\|1—xk +yk|)2> :
k=1

(b)

Forz € Z" and x € T" put
D,(x) :=exp(miz - x) .

The family (®,),c7» is a complete ON basis of Lé(T”). It consists of eigenfunctions of the negative Laplacian —A =

n 2 . . . .
-2 ) on T" with corresponding eigenvalues given by

A, 1= (Qr|z])? .
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(c)

The Fourier transform of the function f € Lé(T”) is the function (or “sequence”) g € £%(Z") given by

82 = (.2 1= [ fOB(0dx
Tn
Conversely, for g as above and a.e. x € T",

f@) =) 8@),(x).

zeZn

(d
To obtain a complete ON basis (¢,),c 7« for the real L?-space, choose a subset Z" of Z" \ {0} with

Zr\{0y= 2" u (-2),

and define
%((I)z +®_)x)=V2cos@rz-x) ifzeZ",
P, (x) = ﬁ(d)z —®_)(x)=+2sin@rz-x) ifze-2",
1 ifz=0.
(e)

Functions f on T" will be called grounded if / f d£" = 0. Let L2(T") be the subspace of L>(T") consisting of all grounded
functions. For s > 0, we denote by H® the grounded Sobolev space defined as

HS(T) 1= (=A)™2L2(T")  withnorm Il := [|(=A)2f ],

and we define H—5(T") as the completion of £.2(T") w.r.t. the norm || f|| f-s = “(—A)‘S/ 2f HLZ. (Note that —A is a strictly

positive self-adjoint operator on L2(T"), and thus its negative powers (—A)~*, with s > 0, may be defined again by means
of the spectral theorem.)
For s € R, the Sobolev space H*(T") can be identified with a set of formal series:

HS(T") = {f: Z e, : o, ER, Z |z|25|ocZ|2<oo}.

zeZn\{0} z€Zm\{0}

Then for all f = ZzeZ"\{O} a,p, € H'(T")and g = ZzeZ"\{O} B,e, € H(T") withr + 5 > 0,

(fr8)m= ), ap.

z€ZM\{0}

The norm of H*(T") is given by the square root of ZZEZ”\{O} |z|* |a,|%. Equivalently, it could be defined with 1 in place

of |z|%. This is the convention adopted in [5]. The two norms differ only by a factor (27)".

@

The £*®°-norm of z € R" is

.....
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Given any function u : Z" — C we define the principal value along cubes of the series Y’ u(z) by

O
Y uz) := lim > u(z)

L—oo
zeZn zeZ", ||zl ,<L/2

provided the latter limit exists in C or in R U {£oo}.

®

Since T" is compact, there exists a unique grounded Green kernel G satisfying
o 2—
GO, y) = |x =y

In particular, G € LP(T" x T") for all p < Lz We claim that we have:
n_

] ]
. 1 1 —
Gy = ) ——=p.@e.= Y = 0x)P,y)
zezmgoy (21212 zezmgoy (21212
= D (x—y)= cos(2mz - (x — y)),
seomop (271z1)? ceomo (271z1)?

where the convergence holds almost everywhere and in L? for p < n/(n — 2). Indeed consider the filtration () where
&1 is the o-algebra generated by the ¢, for z € Z", ||z|| , < L/2, and the associated closed martingale G°L = E[él%L],
where expectation is with respect to vol ® vol. Take z € Z" with ||z|| , < L/2. Since ¢, is & -measurable, we get that

/ (e g o)y = / 8Py = (—A) " 0.(x) = 47, (x).

On the other hand, when ||z|| , > L/2, since the ¢,’s form an orthonormal basis, we find that E[p,| ] = 0, and thus

/ GL(x, )@, (y)dy = 0.
This shows that

Gy = Y e (0)p.),
z€ZI\{0}

and thus the almost everywhere convergence of the series follows by the martingale convergence theorem.

(h
The polyharmonic operator is defined as

n/2 : . 2

a, - (—4A) with a, '= ——— .
I'(n/2) (4m)"/2
The inverse operator admits a kernel denoted by k.
As for the Green kernel, we have the following representation.
Lemma 2.1. We have that
E: 1
k= p Pz ® Pz
zezmgoy (212D)"

where the series converges in L>(T" x T") and almost-everywhere.
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Remark 2.2. We conjecture that the convergence indeed holds everywhere but do not have a proof of this fact.

Proof. Since the series on the right-hand side is orthogonal, we find that

Y "e.@e| = Y @) <.

zeZ"\{0} 2 Z€EZM\(0}

This shows that the series actually converges in L. The rest of the claim is obtained by a martingale argument as for the
previous lemma. O

We denote by p, the grounded heat kernel
b(x,y) :=px,y)-1,  xyeT".

Lemma 2.3. The function

© Y —s — 1 a ° n/2—1
fix k(x,0) F(n/z)/o Pi(x,0)t dt (@)

is differentiable at every x € T" \ {0}, and, for every k < n,

1
I(n/2)

9 iy = T n/2-1
s flx) = /0 ax, Di(x,0)¢t dt . 2)

Proof. The heat-kernel representation in Equation (1) holds as in [6, Lemma 2.4]. For fixed k < n, standard Gaussian upper
heat kernel estimates provide the summability of the right-hand side in Equation (2), hence Equation (2) follows by dif-

ferentiation under integral sign. Since x — <ai j’),) (x,0) is continuous for every k on the whole of T", we have that ai f
Xk Xk
is continuous away from 0, and the differentiability of f follows by standard arguments in multivariate calculus. O

The constant a,, is chosen such in such a way that k has exactly logarithmic divergence.

Lemma 2.4 [5, Prop. 2.13]. There exists a constant C = C(n) > 0 such that

1
k(x,y)—1 <C, ,ye T, 3
(x,y) —log dx.y) X,y (3)
Proof. Note that the estimate in Proposition 2.13 in [5] for the kernel G"/2(x, y) of the n/2-power of the Green operator
holds not only for even but also for odd n. O

Remark?2.5. Let us note here that we rely—as in the proof of Lemma 2.3— on results in [ 5], proved there for copolyharmonic
operators on admissible manifolds M of even dimension n. Copolyharmonic operators are pseudo-differential operators
on M with the same principal symbol as the (integer) power (—Ag)”/ 2 of the Laplace-Beltrami operator Ag on M, with
lower-order correction terms granting their covariance under conformal transformations. We call a manifold admissible if
the copolyharmonic operator is non-negative definite, with kernel exactly the one-dimensional subspace consisting of all
constant functions. While the fact that a copolyharmonic operator has non-negative spectrum depends on the geometry
of M, the assumption of n even is sufficient to grant that copolyharmonic operators have no zero-order term, so that their
kernel contains all constant functions.

In the case of n-dimensional flat tori with n even, the copolyharmonic operators in [5] coincide with the (integer)
power (—A)"/? of the standard Laplacian on the torus. In this case however, it is readily verified for every integer n
that (—A)"/? is non-negative definite and that its kernel is the one-dimensional subspace consisting of all constant func-
tions. Thus, all results [5] concerned with the existence of Gaussian fields and their Gaussian multiplicative chaoses hold
with identical proof on flat tori of arbitrary dimension.
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2.2 | Laplacian and kernels on the discrete torus
(@)

For the sequel, fix L € N. For convenience, we assume that L is odd. Put
7t i={zeZ": |zllo <L/2},

and let
1 n
n .__
= (32) /27

denote the discrete n-torus with edge length % Where helpful, one can think of the discrete torus T} as the set %ZZ =

{% : ke z, 0<k<L})" c R". We always regard it as a subset of the continuous torus T". Furthermore, let

mLZ=Lin25Z

n
z€T}

denote the normalized counting measure on T7. Points v, u € T} are neighbors, in short v ~ u, if d(v, u) = % Each point
in T} has 2n neighbors.

(b)

We define the discrete Laplacian A; acting on functions f € LZ(TTZ) by

Apf() :=L?- Y [f@) = f(v)] = 2nLA(pLf — f)(v)

u~v
with the transition kernel on T} given by

n

L
pL(U,u) = %lv,wu
and its action by (p.f)(v) = L™" Zu pr.(v,u)f(u). Furthermore, we define the grounded transition kernel by
pr(uv,u) ;= pr(v,u)—1.

The discrete Green operator acting on grounded functions f € IiZ(TZ) is defined by

o)

[Se]
P | k 1 .
6uf =50 kZOpo =50 kZOpo :

In particular, the grounded discrete Green kernel is given by

[¢3]

o 1 o
Grv,u) = —— ¥’ pj(v,w)
k=0

and its action by (G, f)(v) = L™" Zy Gr(v, u)f(w).

(©
A complete ON basis of the complex Lé (T%, m;) is given by (‘Pz)zezg with

®,(v) :=exp(27wiz-v), veT].
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The functions @, are (normalized) eigenfunctions of the negative discrete Laplacian —A; with eigenvalues
n
A 1=4L2 Y sin® (w2 /L) . (4)
k=1

Note that as L — oo, the right-hand side converges to 1, = (27|z|)? for any z € Z".
A complete ON basis of Lﬂé(T”,mL) is given by the functions ¢, for z € Z] whereas before gy =1 and ¢,(v) =

V2 cos@rz-v)ifze Z"n Z} and @,(v) = V2sin@rz-v)ifz € (-Z"n z}.
Remark 2.6. For even L, the previous definitions require some modifications. The set Z] has to be re-defined as
7t i={-L/2+1,..,L/2-1,L/2}" .

Each z € Z] we decompose into z' := (zi)kes, and Z := (Z ke, With 0, :={k €{l,..,n} : zx =L/2}, 7, :={k €
{1,..,n} . z < L/2}. Similarly, for v € T} we put v’ := (VU )keo, and U := (U )ker,- Then

;) = (-D)" ez - 9;(0)  with [v']o, 1= D] vy -

keo,

Thus, a complete ON basis of anq{ (T%, my) is given by the functions

P.(v) 1= (-1 Ve py(0), zezp, ©
where @; for Z € Z" with ||Z||, < L/2 is defined as before.

(d
In terms of the discrete eigenfunctions, the discrete grounded Green kernel, the integral kernel of the inverse of —A; acting
on grounded L2-functions, is given as

1

Gow= Y —e@e= Y 008w

zezi\{o} "7 zezi\jo} " 12
1
= — -cosmz-(v—u)),
sezm\op 47 Xy, sin” (wzi /L)

and the discrete polyharmonic kernel k; (Figure 1), the integral kernel of the inverse of a,(—A;)"/? acting on grounded
L2-functions, as

1 1 1 1 —
kuw=_— 3 —ee=_— > —20(0)0:w
" ez} A " zezi\o} Ay,

1 1

=— Z n/z-cos(Zﬂz-(v—u)). (6)
" zezi\(0} <4L2 Yo sin’ (7TZk/L)>

2.3 | Extensions and projections

(a) Piecewise constant extension/projection
Set

1 1

Q := _Z’Z> and Q(v) :=v+Q, VET]. @)
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~ -
\\k\/ L

-0505

FIGURE 1 k(0,y) (orange) and k4,(0, y) (blue) for y € T? (sectional view with one quadrant removed).

Observe that

=] ]QWw.

n
vel;

Functions on T" are called piecewise constant if they are constant on each of the cubes Q;(v),v € T}. Every function f
on the discrete torus T} can be uniquely extended to a piecewise constant function f ;(x) by setting f; ,(x) := f(v) if
x € Qr(v). In other words,

Srp() =, H(x) = (qr(x, '),sz

with the Markov kernel g; (x,v) := L" 1, (,)(x) on T" X T}. The latter is the restriction of the Markov kernel

qr, = L" Z lQL(U) ® lQL(U) on T" x T". (8)
veT}
Note that an q.(x,y)dy = 1 as well as an q(x,v)dm;(v) = 1.
L
The projection from L?(T™) onto the set of piecewise constant functions on T" is given by f + f}, ; with

Fru) = @@ = (@ . =L Y Aoy e Loy - ©

n
ve'U'L

Here and in the following, the integral operators associated with kernels p, g, r will be denoted by p, g, r, resp. In general,
these are regarded as integral operators on T". If we want to regard them as integral operators on T”, we write p, g, f instead.

(b) Fourier extension/projection

Let Dy, denote the linear span of {¢, : z € Z]}. Every function f on the discrete torus T} can be uniquely represented as

f=2, <zn %@, with suitable coefficients a, € R for z € Z7, and thus uniquely extends to a function f1 4 € Dy, on the
L

continuous torus T". Formally,

Fra) i= (NG = (Forile N 1= X (f2 )y - a(x)

ZEZZ
with the kernel

rp = Z ?, Qp, onT"xT" (10)

n
ZEZ]
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Regarded as a kernel on T} x T", the latter defines the Fourier extension operator. As a kernel on T} x T} it indeed is

the identity.

Conversely, the projection from | J, H*(T") onto Dy is given by f ~ f;; with

i) i= (N = (Fores Npn 1= 3 (Fo@adpn @500,

In particular, if f = ¥ _, o, then fy; = Zzezg a,Q,.

(¢) Enhancement and reduction

zeZ}

For f = Zzezg a,p, € U, H(T") we define its spectral reduction and its spectral enhancement, resp., by

n/4

AL
fro= (AZ> Pz

n z
zE€Z;

Note that

/1L,z L

A, 2

1 n/4
2'0 = z <AZ> APz

n L,z
ZEZ]

2 n
T 72z Z sin’ (72, /L) € [(2/m)%1] and - 1asL — co.
k=1

Similarly, we define its integral reduction and its integral enhancement, resp., by

fL_ = Z ’9L,zaz§027

n
zeZL

with

1
o+ .__
L = Z 19L’Z aZ¢Z

n
ZEZL

O, = H <L sin(nTZk>) € [2/m)",1] and — lasL — oo.

nz
k=1 k

In terms of integral operators this can be expressed as

on — rEOf’ z-o — rz—c)f’

LS A

with integral and enhancement kernels on T" x T" defined as follows:

1 n/4
rr=2 ( Z) L. Q0.

n L,z
ZE€Z;]

1 n/4
r2'°=z <_Z> P Q¢ ,

/‘le
z€Z} ’
o+ __ -1
=Y 9 le.®e.,
ZEZZ

Lemma 2.7. For f € Dy,

QU

af =f;~ onTz an

1 —n/4
rL_=Z</12> 19L,z§0z®fpz,

1 —n/4
VZ°=Z< Z> P Q¢ ,

/IL,Z

rZ‘: Z 19L,zq’z®¢z .

n
zeZL

a(f;")=fonT}.

an

(12)

95UB01 7 SUOWIWOD 9A1E81D 3|qeot [dde 8y} Ag peusenob ale sajole YO 9SO S9|nI Joj Akeigi]8uUlUQ A8]IM UO (SUO N IPUD-pUE-SWRILIO" A8 | 1M ATelq 1 [Bul [UO//:SANL) SUONIPUOD PUe SWB | 8U18eS *[5Z0Z/TO/ST] Uo AleiqiTauliuQ 48] e LN yeUeI0D Aq 69T00VZ0Z eUBL/ZO0T OT/I0p/W00" A8 1M AeIq Ul juo//:sdny Wouy pepeojumod ‘T ‘SZ0¢ ‘9T9222ST



, MATHEMATISCHE
SCHIAVO ET AL NACHRICHTEN 255

Proof. For f = ®, withz € Z",and forv € Tf,

Quf@) = L" / ®,(x)dx = ®,(v) - L" / ®,(x)dx
Qr(v) Qr,

= ®,(v) - HL /21 cos(2mxy z )dx, = ®,(v) - H <an,€ Sm(ﬂLZk))

2L

Therefore, for f = ¢, with z € Z}, and forv € T},
qf) =f) -9, -
Thus, the claim follows. n

(d) Continuous versus discrete scalar product
For functions f = Zzezz a,p,and g = Zwezf Buw®w, the scalar products in T} and in T" coincide:

<f’g>1rg = <f’g>1rn = z azﬁz .

n
ZEZ]

This simple identity, however, no longer holds if the Fourier representation of f and g also contains terms with higher
frequencies.

Lemma 2.8.
(i) Forf = Zzezz a,p;and g = ZwEZZ BuwPuws

<f’g>'n'z = Z 2 azﬁz+Lw .

z€Z; WEZM ||z+Lw| o <K /2
(ii) Foranya : 7" — R, the limit f = Zzljezn a,p, exists in LZ(TZ) if and only if

2
sup “ Z a, ey, < 00
K n T
ZEZK

(13)

O O .
(iii) Forallf =¥, a,p,andg= Y= BuPu in LA(TP),

O
(f.g)p = lim 3 > Borrws 8= D, % B
zeZ" weZ":||z+Lw|| <K/2 zEZN
Proof.
(i) We prove the analogous assertion in the complex Hilbert space: for all f = Zz ezn a,d,and g = Zw ezn b,®,,

Sy =( X a:t. Y budy)

z€Zy wezy ™

:/ Z Z a, by, exp 27i v(z — w)) dmy (v)
™

L ZEZ" wEZ"
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2 Z a, Bw . / exp (27iv(z — w))dmy(v)
T

n n n
zeZK weZK L

Z Z a; Ez+Lw

2€Zy wEZM || z+Lw|| <K /2

since for every z € Z"

1, ifzelLz"
0, else '

/

The claim for the real Hilbert space then follows choosing a, =

exp(2rivz)dm(v) = {
L
L

V2

+ia_,)anda_, = —=(a, —ia_,) forz € 2"

1

%(az
and analogously b,.

(ii) Assume first that f € LZ(TFE’). Then, ZZGZI”( a,@, converges to f in LZ(TZ). This implies Equation (13). Conversely,
assume that Equation (13) holds. Then, a martingale argument similar to that of Lemma 2.1 shows that f is the limit
in LA(T}) of Zzez; AP

(iiif) We only need to show the first equation. By linearity it is sufficient to show it for f = g. In view of what precedes,

we have
2
2 . .
||f”'ﬂ'" = lim z @l = lim Z Az %zt Lws
L K- " K—o0 ' "
2€Zy €7y WEZ Hlz4+Lwll <K /2
which proves the claim. The convergence of the series is ensured by Equation (13). [l

Remark 2.9. According to the previous lemma, in particular, for every f = ZZDE n APz,
2
”f”TTZ = Z Z Az Az+Lw
zEZM weZ!

if the latter series is absolutely convergent.

One can show (cf. proof of Theorem 4.11) that the latter series is absolutely convergent if f € J. , nH S(T"). This is in
accordance with the Sobolev embedding theorem which asserts that in this case f € C(T") and thus guarantees that the
pointwise evaluation of f (at the lattice points of T}) is meaningful.

3 | THE POLYHARMONIC GAUSSIAN FIELD ON THE DISCRETE TORUS

3.1 | Definition and construction of the field

Throughout the following, fix integers n and L. For convenience, we assume that L is odd, and we set N := L".
Definition 3.1. A random field h; = (hL(U))veTg —defined on some probability space (Q, 2, P)—is called polyharmonic
Gaussian field on the discrete torus T} (shortly: discrete polyharmonic Gaussian field) if it is a centered Gaussian field with

covariance function k; given by Equation (6).

Proposition 3.2. Given i.i.d. standard normals €, forz € Z] \ {0} on a probability space (Q, 2, P), a polyharmonic Gaussian
field on T} is defined by

1 1
h?) = — z w7 -E2 -, (V) veT! , weQ. (14)
Vn zezi\io} A1,

Here, A, = 4L? ZZ=1 sin® (mzy /L) for z € Z] are the eigenvalues of the discrete Laplacian, see Equation (4), and the
eigenvalue 0 is excluded in the representation of the random field.
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Proof. Forallv,u € T7,

Bl ) b)) = — 7 9000 = ko). -
" zezi\0} A1,

Alternatively, the polyharmonic field on the discrete torus T} can be defined in terms of the white noise on the discrete
torus. Recall that a random field E = (EU)UQT? is called white noise on (T}, my) if the E, for v € T} are independent

centered Gaussian random variables with variance L". (This normalization guarantees that /T" E,dmy(v) is N(0,1)
L
distributed.)

Proposition 3.3. Given a white noise E = (Ev)uevg on (T}, my), a polyharmonic Gaussian field on T} is defined by

1

h? () =
L a, L"

Z 52/4(12, u)E%

n
uel;

with

C??“(v,u) = Z HLM -cos 2mz(v — u)) .
zeZ\(0} A,

Proof. Forallv,w € T7,

Bl (o) )] = —— 3 & 0,u)- 6w, - L7
a L ueT}
1.
= —nGZ/Z(v,w) =k (v, w) . O
In other words,
he = 1@y (15)

with B := (EU)UETZ being a white noise on T}. The latter is a Gaussian random variable on RN =~ R'I—recall that N =
L"—with distribution

— - lEI2
dP(E) e "l aeNE) .

"~ (2aN)N/2
Here, ||Z|| denotes the Euclidean norm of & € RV, and thus under the identification RN = RTQ,

1 -
=EI2 = IIEIZ, 7, - -
N LA(T}.my)

3.2 | Asecond look on the polyharmonic Gaussian field on discrete tori

(a)

Consider the orthogonal decomposition of RV into the line R - (1, ..., 1) and its orthogonal complement H:={EeRN:

Z{Ll &, = 0}. More precisely, consider the maps
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and
N & = = A 1 =
A:RY—H, Er—E with Hi=8;— =

Note that A := (4, 4) : RN - H x R ¢ RN is a bijective linear map with A” A = Ey and inverse given by

o 5 o t
B:HXR->RN, EbHe-E+—-(1,..,1).
N

Thus, if Eg ~1 denotes the (N — 1)-dimensional Lebesgue measure on the hyperplane H then on RN,
N _ pN-1 1
LY = EI:I RL .
The push-forward A, P is the normal distribution N'(0, \/ﬁ ) on the real line. The push forward P := A,P, called (the
law of) the grounded white noise, is a Gaussian measure on the hyperplane H given explicitly as

1

. T 1=
db(Z) = e w "l .

(2wN) 2~

It can also be characterized as the conditional law P(- |4 = 0).

(b)

Let us define a measure on RN =~ R'Z by

L ||(—AL) 4|2

dd(h) :=c,e o dcN(h) , (16)
where
Ne1 n n/4
L a, \ 2 ) 2 .2
c, = (27TN> H <4L Z sin” (7 zy /L)) , a7
2eZ\{0} k=1

and consider the push-forward measures under the maps A and A introduced above. On one hand, by the standard change-
of-variable formula for push-forward measures and since (—A; )"/*Ah = 0 for every h € RY, we have that

Av=c, L' onR!. 18)

On the other hand, again by the standard change-of-variable formula for push-forward measures and since (—A;)"/*Ah =
(=Ap)"*h for every h € RN, we have that v := A, % is a measure (actually, a probability measure as we will see below)

=

on the hyperplane H :={E € RN : & = 0} @ RV~! given by

L ||(—AL) 42

dv(h) :=c,e N dﬁg_l(h) .

_an A /A2 _ .
Furthermore, since e 2n A 5RIE 1foreveryh € R-(1,...,1), by orthogonality of H and R - (1, ... ,1) in RY and the

parallelogram identity, we have

_n A AR 2 A A VA2 =2 1(=A YA R)12 _An A /A2 o -
eI IR FRIP _ =S NCA PRIP = SN RIE _ =SEIaM E  Ey
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Thus, in light of Equation (18), we have the decomposition of measures
P=c,v@L'.

(©)

Now consider the map
T :RN - RN, h B =/a,(-A)"*h
as well as its restriction T : H — H. The latter is bijective with inverse

T1:H-H, E-h

cf. Equation (15), and with determinant
N-1
detT =a,? - H /12/24 .
2eZ7\{0}

Theorem 3.4. The distribution of the discrete polyharmonic field on T} is given by the probability measure v on R ~ RN,
(Indeed, it is supported there on the hyperplane of grounded fields.) Furthermore,

o

T*v:f’.

Proof. For bounded measurable f on H,

/ FE@)dfv(@) = / F(Eh)dv(h)
H

H

o _an A /4R 2 _
:Cn/ﬁf(Th)e 2N”( L) Il dﬁg 1(h)
1 ..
=c, / F(inye w T g pN=104)

0 H

o _ L=z
= ¢, det T~ / f(Ee wlEl del=\(E)
H

N

=c,detT! (zer)T_1 / f(E)dP(B).
H

N-1
Since ¢, detT~! (22N) 2 = 1 according to our choice of c,, this proves the claim. O

3.3 | Reduced polyharmonic Gaussian fields on the discrete torus

Besides the polyharmonic Gaussian field h; on the discrete torus, we occasionally consider two closely related random
fields h; ° and h; in the defining properties of which the eigenvalues 4; , = 412 ZZ=1 sin’ (7z; /L) of the discrete Lapla-

cian are replaced by the eigenvalues 1, = (27r|z|)? of the continuous Laplacian or by 4, - SL_‘;/ " resp., with S, asin
Equation (12).
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Definition 3.5. We define

(i) the spectrally reduced discrete polyharmonic Gaussian field as the centered Gaussian field h; ° = (hL_o(v))veTﬁ with
covariance function

ki °(,u) := L z L o, (V) p,(u) = ai Z _1 -cos(2mrz-(v—u)).

n 2e7M\{0} /1;/2 n 2€77\{0} Q2r|z|)"

(ii) the reduced discrete polyharmonic Gaussian field as the centered Gaussian field h; = (hZ(U))UETZ with covariance
function

192 2
1 Lz 1 Lz
k7 (v,u) ;== — Z — p,(V) p,(u) = — Z —— .cosRmz-(L—u)).
L z z
n zeZ7\(0} /12/2 a, 2€Z\(0} @r|z|)m

Similarly as before for &;, we obtain the following representation results.
Remark 3.6.

(i) Given a polyharmonic Gaussian field h; on T”, a reduced polyharmonic Gaussian field and a spectrally reduced
polyharmonic Gaussian field on T} are defined by

heo=r(h), R =1y

(if) Giveni.i.d.standard normals &, for z € Z] \ {0}, a reduced polyharmonic Gaussian field on T} is defined by

1 4,
2 e (19)
Vn zezi\jo} A,

and a spectrally reduced polyharmonic Gaussian field by

hy (v) =

1 1
h°(v) = Y — i &e). (20)
‘ \/a_n z€ZM\{0} /12/ ¢
3.4 | Extensions of the polyharmonic Gaussian field on the discrete torus

We consider the following extensions of discrete polyharmonic Gaussian fields to the continuous torus. Recall the
definition of Q; and Q;(v) in Equation (7).

Definition 3.7 (Extensions (Figure 4)). Given a discrete polyharmonic Gaussian field h; on T} as in Definition 3.1, we
define

(i) its piecewise constant extension by
hpp(x) 1= hy(V), x € Q;(v) withv e T? ,
which is a centered Gaussian field on T" with covariance function

kpp(x) :=kp(v), x € Q. (v)withv € T? ;
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(ii) its Fourier extension by
hpg(x) :=iph(x) = (h,ri(x, - Dy s xeT", 1
which is a centered Gaussian field on T" with covariance function

kpy(x,y) = 1 Z 1/ -cosrz-(x—Yy)), x,yeTl". (22)
an " zeZ!\{0} /1LZ

Similarly, given a spectrally reduced, resp. reduced, discrete polyharmonic Gaussian field h;°, resp. h;, as in
Definition 3.5(i), resp. (ii) on the discrete torus T?, we define (in the natural way)

(iii) their piecewise constant extensions h_ , resp. hL )

(iv) their Fourier extensions h_ resp. h

Ly Ly

which are centered Gaussian fields on T".

Remark 3.8. As for hy ), let us note that
(hips Flpn = (hLaqu>'|]'Z ) fer*a,
with g f € L*(T}) as in Equation (9). (Note that q;, f(v) = L" fQ ©) f)dy forv e T}.)

As for hp g, let us note that, for every w, the function h“)Ii is the unique functlon in D; with h“) = h{ on T},
cf. Equation (14). Furthermore, if a discrete polyharmonic Gaussian field h; is given in its representatlon

1 n
) = —= Y e, veT,

n zeZ)\o} A,

then, h; 4 can be represented as

B = i) = (e Ny = ——= Y, o Egu(0,  x€T

Van zez7\j0} /1L .

4 | THE POLYHARMONIC GAUSSIAN FIELD ON THE CONTINUOUS TORUS AND ITS
(SEMI-)DISCRETE APPROXIMATIONS

This section is devoted to the analysis of approximation properties for the polyharmonic field on the continuous torus in
terms of Gaussian fields on the discrete torus and semi-discrete extensions of the latter on the continuous torus.

» The basic objects are the polyharmonic field 4 on the continuous torus and its discrete counterpart, the polyharmonic
field h; on the discrete torus.

* Starting from the field 4 on T", we define its Fourier projection (i.e., eigenfunction approximation) hy , its piecewise
constant projection hy, 1, its natural projection h, 1, and its enhanced projection h, ;. All of them are Gaussian random
fields on T".

* Starting from the field h;, on T}, we define its Fourier extension h; s and its piecewise constant extension ;. Analogous
extensions are defined for the spectrally reduced discrete field 4 ° and the reduced discrete field 4, on T7. All these
extensions are Gaussian random fields on T".
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To summarize:

- b stands for piecewise constant extension/projection, #f for Fourier extension/restriction;

- hg . with =€ {b, 1} denotes the respective extension of the discrete field h; ; similarly for h;° and h;

- h,; with =€ {b,#}, o, +} denotes the projection of the continuous field & onto the respective class of fields of order L on
the continuous torus (Figure 3).

4.1 | The polyharmonic Gaussian field on the continuous torus and the convergence
properties of its projections

Definition 4.1. A random field h = ((h|f)) ferm/2(Tn) ON the continuous n-torus is called polyharmonic Gaussian field if
it is a centered Gaussian field with covariance function k in the sense that

E[(hIf) - (hlg)] = /T /T FOkG g0 dydx . fog € HYATY) .

Proposition 4.2. The polyharmonic Gaussian field h exists and can be realized in H=¢(T"). Furthermore, the pairing (h|f)
continuously extends to all f € H/2(T™).

Proof. For even n, the polyharmonic field to be considered here is just a particular case of the co-polyharmonic field
considered in [5] on large classes of Riemannian manifolds. For flat spaces like the torus, the arguments for proving
Theorem 3.2 and Remarks 3.4 and 3.5 there obviously apply also to odd n. O

Recall that we set 1, := (27|z])%.
Definition 4.3 (Projections). Given a copolyharmonic Gaussian field 4 on T", we define

(i) its Fourier projection onto the space Dy, see Section 2.3(a), by

hyr(x) i= (hlrp(x, ), = Y 9, @9, (23)
zeZM\{0}

which is a centered Gaussian field on T" with covariance function

1 1
kin(x.9) = o= e;\{()} o Cos@rz (=) (24)
z L z

(ii) its piecewise constant projection, cf. Section 2.3(b), by

hy 1 (%) := (hlqr(x, -)), qr :=L" Z 19, 0) ® 1o, (v) » (25)

n
UGTL

which is a centered Gaussian field on T" with covariance function

62009) = Elu 0] =27 Y lou@lqw® [ [ kwahdyds o
v,weT} Qr(v) Y Qr(w)
(iii) its enhanced piecewise constant projection (shortly: enhanced projection) by
hy 1 (x) :=(hlp;r(x, ), Pr =qrorf
/4
rf = Loem ﬁ : <%>n - @
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with q; as in Equation (25), which is a centered Gaussian field on T" with covariance function
1 1 1
kip(x,y) = — - T we(0) - ae:(v) (28)
an n 192 AH/Z
z€Z] "Lz Lz

(iv) its natural projection as the piecewise constant projection of its Fourier projection:

ho 1 (x) = qp(rp(W)(x) = (hlpor(x, -)) , Por ‘=qrorg , (29)
with r; as in Equation (23) and g; as in Equation (25), which is a centered Gaussian field on T" with covariance
function

Kor(e) i= — 3 —— - q10.(%) - 10.0) (30)
o L\X,Y) = a, & n/ qL®z arez\y) -
zeZL z

Remark 4.4. We note that the random fields k., ; and h, ; are piecewise constant, and may thus be equivalently regarded
as either piecewise constant random fields on the continuous torus T" or random fields on the discrete torus T7.

Proposition 4.5 cf. [5, Props. 3.9, 3.11, and Ex. 3.12(iv)]. For all f € H~"/2(T"),

(hipof)pe = (0 f)pn in L2(P)asL — oo
and for every € > 0,
hsr — h||H_€ in L*(P)aslL - .

Proof. For the reader’s convenience, we briefly summarize the argument from [5] for the first assertion:

2

E[(h—hyp, )] = aLnE ZZ”\Z" m &2 (92 f)

=L Y (.0

n
a, ZEZ"\ZZ (27Z'|Z|)

as L — oo, since

1 ) 5
2 i @ 1 = AT E I = (g < oo
s F lzD) | Iz = 17 Wig-or .

Proposition 4.6. Forall f € L*(T"),

(ot f)gn = (o f)yn iR LA(P)asL — oo
and forevery s > n/2,

AL =,y =0 inL*P)asL — co .
Proof. Since (., £}y, = (h,aL.f )y With (@./)(X) 1= [y, 1(x, ¥)f () dy, we obtain

E[(h,, — h, )] = E[(harf = )] = llanf = fllrns

< ||qu—f||i2 -0 asL — oo.
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To prove the second assertion, let h be given as

1 P
h= gz nj4
Vn zezn\oy A,
from which we get
1 qLPz 1 gz
hb,L = gz = — Z (¢w’ qL¢z>§0w .
Vn zezn\{o} /12/ N Van zezn\{o} /1;’/ N wezZn\{o}
Consequently
—s/2 —n/4—s/2
Va8 Ph-mp) = Y e, — (9. 009,092
zeZn\{0}
—n/4 —s/2
- Z gz/lz " Z ﬂ'wS/ <§0wr qL¢z>¢w .
zeZ"\{0} weZ"\{0,z}
Finally,
2 —n/2— 2
a,E [“h - hb,L”H—s] = Z /12 "/ S(l - <¢Z’ qL§OZ>)
zeZ"\{0} 1)
31
-n/2 _
+ 2 ﬂ'z o Z /1ws<§0w’ qL§Dz>2 .
zeZn\{0} wezZn\{0,z}

Since [{¢,, qr.9,)| < 1forall L and {(¢,,q;9,) > 1asL — oo and

Y A0 (pnae) s Y LV <o,
zeZm\{0} zeZM\{0}

we find that the first term on the right-hand side of Equation (31) vanishes as L — oo. By Parseval’s identity and the fact
that 4, > 1 for all z # 0, we get that

Y oA"Y P @eae)?< Y A Y (Puags)

z€Z"\{0} weZm\{0,z} wezr\{0} z€Z"\{0,w}

> 4 Il - 9w @)
wezm\{0}

DI

weZn\{0}

IN

which converges since s> n/2. Moreover, 0 < ||quow||i2 —{Puw>qrPw)* <1 for all w and L, and ||quch||i2 —
(Pw>qrPw)? — 0 for all w as L — oo. Thus, also the second term on the right-hand side of Equation (31) vanishes as
L = 0. d
Lemma 4.7. Let * denote either of the subscripts + and o. Then,

(i) Forall f € L*(T™),

p..f = f in L* (M asL - .
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(i) OnT" xT",
k.p =k inL°%(T")asL - oo .

Proof. We prove the assertions for = +. A proof of corresponding assertions for = o is similar and simpler, and therefore
it is omitted.

(i) Recall thatp, = qLor From (the proof of) Example 3.12 in [5] we know that ||q;.f — f|l;2 = 0 as L — oo and, by
Jensen’s inequality,

||QLf_ quz-f”Lz < ”f_ rz-f”Lz :

Moreover, the latter goes to 0 as L — oo according to

2

/4

2 1 L\
”f_rz—f”LZ: Z ll_s (/12> l'(f’¢z>¢z+ Z (fs92) Pz

lIzlloo<L/2 Lz \L3 l12lleo>L/2 12

1 1 n/4 2
= 2 [1—19—-<A—Z) ] (et Y (L) >0

lzlloo<L/2 Lz Lz lIzlleo>L/2

The convergence of the last term here follows from the finiteness of Z (f,0,) = |If || . The convergence of the first

n/4
1— —. ( A ) <C
‘9L,z /1L,z

— 0forall zas L — oo, and that ), (f,,)* < co.

term in the last displayed formula follows from the facts that

n/4
1 A,
19L,z /IL,Z

(ii) Denote by qf’z the two-fold action of q; on functions of two variables, and put

= (%)3"/2 for all L and z,

that |1 —

1 1

c @ (X) - @ (¥). (32)
n ZEZE 19L,

n/2
L,z

Then, k, | = ®2chr The claimed convergence will follow from the three subsequent convergence assertions:

@) q®°k(x,y) — k(x,y) locally uniformly for all x # y
2 2
@ J |q?2kf _q?2k| dxdy < Jf |kiF —k| dxdy
2
©ON |kL+ - k‘ dxdy — 0.

Assertion (1) here is trivial since k is smooth outside the diagonal and since gq; acts with bounded support < 1/L — 0.
Assertion (2) follows from a simple application of Jensen’s inequality. To prove assertion (3), observe that

2

1
kt —k dxdy_—// Lz <n/2 — =55 | #2(0) @2(y)| dxdy
//‘ ‘ e} 92 /ln/Z AZ/Z

2

B i 1 1
= 2 Mizle<L/2 Tz

O seimo| 97, 41
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n/2 2
= : & Lz o<r/2y — 1
- z|| o<
n sezmo; B71ZD" 87, /lz’fz ?

n/2

The latter converges to 0 as L — oo since the term ((/1 L 5 L . )I{IIZIIOO<L /23— 1) is bounded uniformly in L and z,

since it converges to O for every z as L — oo, and since the sum ZZEZ"\{O} m is finite. O
Corollary 4.8. Let * denote either of the subscripts + and o. Then for all f € L*(T"),

(s Ppn = By in L*(P)asL — o
and forevery s > n/2,

|her =R, =0 inL’(P)asL — oo .

Proof. To prove the first assertion, we estimate similar as in the proof of Proposition 4.6. The fact that h, ;(x) =
(hlp. 1 (x, -)) implies (A1, f), = (h,p,..f)y, and thus in turn

2
E[(hy —ho f )] = E[(rporf = ] = [Purf = I}
2
<|pirf =fll =0 asL— co.
To prove the second assertion, we follow the argument in Proposition 4.6. That is, we consider

1 g ¢Z

h= g
Van om0

from which we get

5 <¢z’ P L(x )>
\/a— Z z n/4 )
n zeZ"\{0}

h*,L (x) =

n/4
A .
= | is
L,z AL,z

n/4
-<Az> —lasL — oo. O

/IL,z

n/4
Then, the claim follows verbatim by noting that r; ¢, = ¢, and rzrqoz =1. < A ) Pz»

SL,z AL,z

uniformly bounded and
L,z

4.2 | Identifications

Among the fields introduced above, we have the following identifications. We note that these identifications show that
our notation of reductions/enhancements and projections/extensions is consistent, in the sense that it does not depend
on the order in which the operations expressed by symbols are applied.

Lemma 4.9 (Fourier extensions/restrictions). Let h be a polyharmonic Gaussian field on T", and h; be a discrete
polyharmonic Gaussian field on T}. Then,

(i) the spectral enhancement h+° of the Fourier projection hy 1, of h coincides in distribution with the Fourier extension hy, y
of hy;
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(A) has.g (B) hg,25 (C) has,y (blue) and hy o5 (orange)

FIGURE 2 Fourier extension/projection of h on D,; with same realization of the randomness.

FIGURE 3  Arealization of hys .

(B) i1,

FIGURE 4 Two different approximations/extensions of the field 4 with same realization of the randomness.

(ii) the Fourier approximation hy; of h coincides in distribution with the spectral reduction of the Fourier extension hy, g
of h; and with the Fourier extension hL_; of the spectrally reduced discrete polyharmonic field h; °.
(iii) the restriction to T} of the Fourier approximation hy; of h coincides in distribution with a spectrally reduced
polyharmonic field h; ° (Figures 2-4).

Proof. (i) and (ii) follow from simple manipulations of the symbols. (iii) is an immediate consequence of (ii). O
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Lemma 4.10 (Enhanced and natural extensions/restrictions). Let h be a polyharmonic Gaussian field on T", and h; be a
discrete polyharmonic Gaussian field on T. Then,

(i) the restriction to T} of the enhanced projection h. ; of h coincides in distribution with hy;
(ii) the restriction to T} of the natural projection h, 1, of h coincides in distribution with the reduced discrete polyharmonic
field h7;
(iii) the natural projection h, 1, of h coincides in distribution with the piecewise constant extension h]:b of the reduced discrete
polyharmonic field h; .

Proof. Without loss of generality, let h be given in terms of standard i.i.d. normal variables (§,),czn\o; as

1 21

_gzgoz .

h=
Van zeZZ"\{O} P

(i) We have

]
1 1 1
ri(h) = Y 5o
Z

Van ezmg 91z 27
on T". Thus for v € T,

O

1 1 1
hos(0) = —— I N / 0, (")dy
Vn zezzn\{o} 8L9Z /1;,/24 Qr(v)

1 O

1
= > —7z 5292 (V)
Vn zezm\jo} A1,

according to Lemma 2.7. Therefore, by Proposition 3.2, h, y is distributed according to the polyharmonic Gaussian
field on the discrete torus T7.
(ii) We have

Ol
1 1
hoi@=—= ¥ = Y low@- I [ a0
VAan zezn\{o} /1;’/ * veT” i QL(v)

and thus forv € Tz,
O

L A e
hop (v) = N Y bl /Q Rt

n zezm\{0} A

O
1 9L,
= 2 n/i gz §02(0)
Van zezn\jo} A,

according to Lemma 2.7. Therefore, the restriction of h, ; to T} is distributed as the reduced discrete polyharmonic
Gaussian field by the representation in Equation (19).
(iii) is an immediate consequence of (ii) and the fact that h,; is piecewise constant on T". O
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4.3 | Convergence of polyharmonic Gaussian fields on the discrete torus

We have the following first convergence result.

Theorem 4.11. Let hz be either h;, hz°, orh; . Then,orall f € U H),

s>n/2

Mo fyy = (o f)pn i L2(P)asL — oo ,

Proof. We only show the assertion for &;.
Given f =3 _ .o,9, € |J H’(T"),according to Lemma 2.8,

s>n/2

(h,f>Tn_<hL,f>1]'z=\/—n Z gz n/4 az /1:/4 2 Az+Lw

zeZ}\{0} Z Lz wezn

1 1
gz : n_/4az .
Van zezn, |zllo2L/2 Az

+

Thus

E|[(. )r0 = (e )y ]

2

1 1 1
= X |oa%on X G| v ) —ha
ez} A A wezn ze7n, Izllw2L/2 A

2

1 1|,
<2 Z n/4 n/4 az
zeZ)\(0}| 47 AL,

2
+2 Z Ll Z aZ+Lw] + Z %oc
zeZn, |

zeZ\{0} /12’/22 wezZn\{o} |z||oozL/z/l/
/4 ?
/ln
<2 - l_i_/4 Lnag
(27m) 2eZ\(0} Al |z|

2
2 1 1 1,
tw 2 Wl 2 ] P N Tt

zeZ;\{0} wezZn\{0} zeZn, ||z||o=L/2

Now as L — o0, the last term vanishes since, in particular, f € H -n/ 2(T™), and also the first term vanishes, see the proof
of Theorem 4.13. To estimate the second term, choose s > n/2 with Zz c7m\{0} |z|*|a,|? < o0, which exists by definition
of f. Then,

y #l Y amwrs > [ > ocz+Lwr

z€Z;\{0} weZzZM\{0} zez\{o} Lwezr\{o}
—1 2 2
> Z l z |Z+Lw|251 ) l Z |Z+Lw| S Iaz+Lw| ] .
zeZ\{0} Lwezm\{0} weZn\{0}
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Estimating the term in the first bracket by

we then obtain that

2
> |Zl|l Y “z+Lw] s[ 3 %l Y l S Izt Lo e,
|ul 2eZM\(0}

2€Z\{0} wezZn\{0} uezn\{o} wezn\{0}

and it therefore suffices to show that the second factor vanishes as L — 0. Since z, w # 0, we have that |z + Lw| > L/2,
thus, relabeling v := z + Lw,

2 l 2 |z + Lw|* - Iaz+Lw|2] = Z V|- |ay|?’| =0 asL — o
zeZ]\{0} Lwez"\{0} veZN, ||Vl >L/2
being the remainder of a convergent series. O

Theorem 4.12. Let hz,b be either hy p, h]:;, or h]:b. Then, forall f € |J H(T"),

s>n/2
(hz,b,f)w = (h, [l in L*(P)asL - o . (33)
Furthermore, for every s > n/2,
Iy = k|5 = 0 inL2(P)asL — co. (34)

Proof. We only show the assertions for aj, .
By construction,

<h'L,|75f>'[|'n - <h’ f)‘[]'n = <h'La qu - f)‘ﬂ';" + <hL9 f)"[g - <ha f)‘[n
and according to the previous Theorem 4.11, (hy, f)yn — (h, f)n = 0as L — oo. The first claim thus follows from
L

— Y —emaf -y

n zeZ]\0} A,

E[(hy,auf = )% |

1 1 2
= Z W(¢quLf_f>'|]'g

n z€Z\{0}

1 2
m ”qu - f”H—n/z

1 2
4n q “qu_flle_)O asL — oo
n

since by Sobolev embedding

U H5(T") c C(T") .

s>n/2
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For the second claim, observe that

1 —n/4
hL,b = Z Pz 2 Awi/ §w<¢wa ngoz}-
Van zezn\{o}  wez!\{0}

From this, we get

alslie = Y 2 Y AV u(ewae)
zeZn\{0} weZ\{0}

And thus

wEhl = Y Y 2 e ae.)
zeZn\{0} weZ7\{0}

s—n/2

On one hand, as L. — oo, the summand converges to 4, 1,—,- On the other hand, by Parseval’s identity, we find that

n/2 2

— 2 —_
Z lw,"L/ <¢w,qL¢z>2=H(—AL) arLe:
weZ"\{o}

<1
12T
Thus, the sum is uniformly bounded since s > n/2. This shows that
2 2
E|lhz ;- = Ellall-.

A similar computation shows that

E(h, by, = Elhll}-.

H-s

This concludes the proof of the second claim. O

Theorem 4.13. Let hz be either hy y, h, or h;ﬁ' Forall f € H/2(TM),

Ii Ly

(o ), = () in L*(P)asL — oo, (35)
and for all e > 0,
g =R =0 inL*(P)asL — oo . (36)
Proof. We only show the assertions for h; .

According to Proposition 4.5, we already know that (hy, f) — (h, f). Thus, it suffices to prove (h;y — hy, f) — 0.
This follows according to

E[(hpy — hyr, )2

1 1 _ 1
a n/2 n/2
" zez\{0} /1L,/Z o

2, \"? )
"o ((A) 1) E=E o
An zeZ!\{0} Lz Az

@z f)*
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as L — oo by the dominated convergence theorem since

Y e fi <o,

zezmgoy A

1 n/2
0< z ) —1<2"
(AL,Z

for all zand L, and

1 O
L,z

For the second claim, we use the fact that again by Proposition 4.5 for every € > 0,

E[”h - hﬁ,L“?fI_e] -0 aslL - .

Furthermore,
2
2 1 1 1 1
E[Hhm - hﬁ,L”ﬁ;—e] = - 3
@n zeZ\{0} /12’/24 (27'L'|z|)n/2 |z|2
2
n/4
s 3 () ) e
G27)" L omoy \ N |z
as L — oo by the same dominated convergence arguments as for the first claim. O

4.4 | Related approaches and results

Remark 4.14 (Log-correlated Gaussian fields in the continuum). For n = 1, the field A is the lower limiting case of the
fractional Brownian motion with (regularity) parameter in (%, %), see, for example, [7, 12]. For n = 2, it is the celebrated

Gaussian free field (GFF) on T2, surveyed in [16]. For n = 1, it coincides in distribution with the restriction of a GFF to a
line (T! ¢ T?). For n > 3, itis alog-correlated Gaussian field surveyed in [7]. The conformal invariance of h on T" is a con-
sequence of the conformal invariance of the Laplace-Beltrami operator on flat geometries. The correct (i.e., conformally
covariant) construction of log-correlated Gaussian fields in general non-flat geometries may be found in [5].

Remark 4.15 (Discrete-to-continuum approximation). To the best of our knowledge, no discretization/discrete approxima-
tion results are available for log-correlated Gaussian fields in dimension n > 5. In small dimension however, Gaussian
fields analogous to & are known to be scaling limits of different discrete models. For n = 2, in light of the celebrated uni-
versality property of GFFs, the field & is a scaling limit for a huge number of different discrete Gaussian and non-Gaussian
fields defined in various settings, from lattices to random environments, as, for example, the random conductance
model [1]. For n = 4, the field h is generated by the Neumann bi-Laplacian; the analogous field generated by the Dirichlet
bi-Laplacian on [0,1]* is the scaling limit of the membrane model [10, 13], see [2, 14], as well as of the odometer for the
divisible sandpile model [11], see [4]. We stress that our convergence results for different discretizations of h hold in H~*
with s > 2, thus matching the same range of exponents as for the scaling limit of the sandpile odometer, see [3, Prop. 14].
On the other hand, the analogous scaling limit for the membrane model has so far been proven only in H~* for s > 6, see
[2, Thm. 3.11].
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5 | Liouville quantum gravity MEASURES ON DISCRETE AND CONTINUOUS TORI
We will introduce and analyze LQG measures on discrete and continuous tori. Our main result in this section will be that
as L — oo the LQG measures on the discrete tori Tf will converge to the LQG measure on the continuous torus T".

An analogous convergence assertion in greater generality will be proven for the so-called reduced LQG measures,
random measures on the discrete tori T} defined in terms of the discrete polyharmonic fields h;..
5.1 | Liouville quantum gravity measure on the continuous torus and its approximations
We define the parameters

Vs = /nje and y* i=v2n.

We further make the following definitions of random measures on the common probability space (Q, 2, P) supporting
the polyharmonic field h.

Definition 5.1. For y € R, define

(i) the Fourier approximation ps;, on T" by

2
dug 1 (x) = exp <thi,L(x) - %kﬁ,L(X,x)> dc(x),

where hy ;, denotes the Fourier projection (or eigenfunction approximation) of the polyharmonic field 4 and k; ;, the

associated covariance function (which takes the constant value ai > on the diagonal) as introduced
in Definition 4.3(i). ’

(ii) the piecewise-constant approximationuy, ; on T" by

1
zeZ7\{0} Q@r|z)n

2
09 = exp (Y100 = S0 ) 4G

where h;, ; denotes the piecewise constant projection of the polyharmonic field h and k, ;, the associated covariance
function (which is constant on the diagonal) as introduced in Definition 4.3(ii).
(iii) the enhanced approximationu, ; on T" by

2
i) = exp (Y0 = ok a(0)) A0

where h, ; denotes the enhanced projection of the polyharmonic field h and k, ; the associated covariance function
as introduced in Definition 4.3(iii);
(iv) the natural approximationu, ; on T" by

2

d:uo,L(x) = exp <yho,L(x) - %ko,L(x’ X)> dﬁn(x) ’

where h, ; denotes the natural projection of the polyharmonic field h and k, ;, the associated covariance function as
introduced in Definition 4.3(iv);
(v) the semi-discrete approximationy;, y (Figure 5) on T" by

2
dugg(x) = exp <th,g(x) - %km(x, x)> dci(x)
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(A) v = 0.01 = (B) y=1

FIGURE 5 The Gaussian multiplicative chaos 4,y on T2 for L = 15, different values of y and same realization of the randomness.

where hy 4 denotes the Fourier extension of the discrete polyharmonic field h;, and k; 4 the associated covariance
function as introduced in Definition 3.7(ii);
(vi) the spectrally reduced semi-discrete approximation/,tz‘g on T" by

2
d;2(x) = exp (yh;;(x) - %k;;(x, x)> dLn(x)

o

#
associated covariance function as introduced in Definition 3.7(iv).

where h; denotes the Fourier extension of the spectrally reduced discrete polyharmonic field h; ° and kL_; the

For a sequence (y), of random measures y; = u7’ on T" and a random measure u = u®, all defined on a same
probability space (Q, 2, P), we further define the following mode of convergence.

Definition 5.2 (Convergence of random measures). We say that (u;), converges to u as L — oo if both the following
conditions hold:

* P-a.s. weak convergence, that is,

lim/ fd,u‘f:/ fdu® forP-ae.w, foreveryf e C(T");
L—oo N R

* L'(P)-convergence in L' (T")*, that is,
Ll(P)-Llim / fdu; :/ fdu forevery f € LY(T") . (37)
— 00 -I]—” -I]—n

Theorem 5.3. Assume |y| < y*. Then, there exists a unique Borel random measure u = u® on T", namely the polyhar-
monic LQG measure (also: polyharmonic Gaussian multiplicative chaos), satisfying—all convergences are in the sense of
Definition 5.2

(i) pyr — masL — oo, and furthermore Equation (37) holds with LY(P)-convergence replaced by L*(P)-convergence if |y| <

Vi
(i) pyp > pasL = oo;

o

(iii) y;ﬁ —>uasL - oo;

(iv) iflyl < \/E, then u,; — pasL — co;
() iflyl <y. thenp,; — pasL — oo;
(vi) iflyl <¥s then upy — pasL — co.
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o

We note that the random measures My ﬁ
above are functions of the continuum random fields h.

and y; y are functions of the discrete fields h;,, while all other random measures

Proof. (i) and (ii) respectively hold by combining [5, Thms. 4.1 and 4.14] and [5, Thms. 4.1 and 4.13]. (iii) follows from
Lemma 4.9 and (i).

In order to prove the remaining assertions, we verify the necessary assumptions in [5, Lem. 4.5], a rewriting in the
present setting of the general construction of Gaussian multiplicative chaoses by Shamov [15].

(iv) Lemma 4.7 provides the convergence results for the regularizing kernel p,, ; and for the covariance kernel k, ;. The
uniform integrability—even L2-boundedness—of the approximating sequence of random measures y, ;, follows from the
L?-boundedness of the sequence of random measures My 1 as stated in (i) and a straightforward application of Jensen’s
inequality with the Markov kernel q;:

|

< sup // // exp (12 ke (2, 1)) qu (6 ) qu (0, y) Ay’ o dy dx
L JJnxtn JJTnxTn

2
[ exp (7hos) - Hkos ) )ax
‘[|'n

= sup // exp (Y2 ko (x,y))dy dx
L TnxTn

sup [E[|/,¢0’L(T”)|2] =supE l
L L

= sup // exp (y* kg (x,y))dy dx
L TnxTn

= sup E| |y (1| = E[ k@] < o0
L

Alternatively, we can also use Jensen’s inequality directly at the level of h, ;. Precisely, we find that

2 2
exp <7ho,L(x) - J%ko,L(x, x)> = exp < / (th,L(X’) - %kﬁ,L(x,,x”))QL(X,x’)QL(X,x”)dxdxldx”>

2
< [ exp (vhes = B3 e
from which, we get

Mo r(T") < g (TT) .

(v) Lemma 4.7 provides the convergence results for the regularizing kernel p, ; and for the covariance kernel k, ;. The
uniform integrability of the approximating sequence of random measures y ; follows from Theorem 5.6 in the last section.
(vi) According to Lemma 4.9, the Fourier extension hy, 4 of the discrete random field h;, coincides in distribution with
the field obtained from the continuous field & by regularization with the kernel rzr°. Conditions (ii) and (iii) in [5, Lem. 4.5]
can be verified exactly as in the proof of Lemma 4.7. The uniform integrability of the approximating sequence of random
measures follows from Theorem 5.6 in the last section. O

5.2 | Liouville quantum gravity measures on the discrete tori and their convergence

Let m;, be the normalized counting measure Lin Zu e d, on the discrete torus T7. Recall that if h; is a polyharmonic

field on Tz as in Equation (14), then

Sz
@) =) = ——= ¥ 2 Ee.w),  vET] 38)

V an zeZ} /12

defines a reduced polyharmonic field on the discrete torus.
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Definition 5.4. Fory € R, define

(i) the polyharmonic LQG measure u; (also: discrete LQG measure) on T} by

2
duy(v) = exp <7hL(U) - %kL(U, U)> dm(v),

where hy is the polyharmonic Gaussian field on the discrete torus T} and k, its covariance function (which takes the
1

1 . s . . .
constant value o ZZGZZ\{O} @ on the diagonal of T}) as introduced in Equations (14) and (6);

(ii) the reduced discrete LQG measure u; on T} by
2
du; (v) = exp <th_(v) — TkL_(v, v)> dmg (v) ,

where h; denotes the reduced polyharmonic field in Equation (38) and k; its covariance function.

In order to prove the convergence of the random measures y;, on the discrete tori T} as L — oo, we will restrict ourselves
to subsequences for which the discrete tori are hierarchically ordered, say L = a as £ — oo for some fixed integer a > 2
and ¢ € N. For convenience, we will assume that a is odd.

Theorem 5.5. Let a be an odd integer > 2. Then,

@) iflyl <y« := \/Z then p,e — pas¢ — oo in the sense that Equation (37) holds for every f € C(T");
e
@ii) iflyl < \/Z then K, = uas ¢ — oo in the sense that Equation (37) holds for every f € C(T").

Proof. Given a as above, let us call a function f on T" piecewise constant if it is constant on all cubes v + Q;, v € T"?, for
p L L

/
some L = a® .

(i) For a piecewise constant f and all € > ¢/,

[ rduee = [ Fie. (39)

Indeed, the field h, ,¢ is constant all cubes v + Q,¢, v € TZ ,»and Lemma 4.10(i) yields that the fields h,s and h, ,¢
coincide (in distribution) on the discrete torus TZ .- Thus, also the associated LQG measures of all cubes v + Q,¢,
veE TZf’ coincide.

Hence, for a piecewise constant functions f, the convergence

/fd,uag—>/fd,u ast — o

follows from the previous Theorem 5.3(v).
For a continuous f, the claim follows by approximation of f by piecewise constant f;, j € N. Indeed,

Eﬂ/fduae—/fjduaa]SE[/\f—fj]duaa] = [|r=si|dx ~ o

as j — oo, uniformly in ¢ € N, and similarly with u in the place of u,..
(ii) For a piecewise constant f, according to Lemma 4.10(ii) for all € > ¢’,

[ rau = [ i (40)
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Hence, for piecewise constant functions f, the convergence

/fd,u;—»/fd/,t ast — oo

follows from the previous Theorem 5.3(iv). For a continuous f, the claim follows by approximation of f by piecewise
constant f;, j € N, as in (i). O

5.3 | Uniform integrability of discrete and semi-discrete Liouville quantum gravity
measures

Finally, we address the question of uniform integrability of approximating sequences of LQG measures. We provide a
self-contained argument for L2-boundedness, independent of Kahane’s work [9].

Theorem 5.6. Assume |y| <y, = \/E Then
e

s%p/ exp (ysz,ﬁ(O,y)) dL"(y) < o , (41)

‘[[n

sgp / exp (y%kr,(0,)) dL™(y) < oo , (42)
Tn

sup / exp (y%ky.(0,)) dL™(y) < o0 . (43)
Tn

Proof. In order to prove Equation (41), recall from Equation (22) that for x,y € T",

1 1 .
kL,ﬁ(X,}’) :a_ Z Tz exp(riz-(x —y)),
" zeZ)\0} AL,

were, as usual, 4y , = 412 ZZ=1 sin’ (mz, /L). Given € > 0, choose R > 2 such that |z| + %\/ﬁ <A +¢)|z|forallz e Z"
with ||z]|e = R/2,and S > 1 such thatt < (1 + ¢€)sin(t) for all t € [0, %]. Decompose k; 4 for L > RS intok; g + 8L r +
fL,S with

1 1 . 1 1 o
fL,S(x:y) =a_ Z Y g2z (x=y) s gL’R(x,y) = ™ 2 el e2miz:(x=y)
n zezg\zz/s AL,z n 2€Z7\{0} /IL,z

and

1 1 o
ki rs(x,y) =— D - . e2miz(x-y)
" 2€2y \Z} Az

For fixed R, obviously g; z(x, y) is uniformly bounded in L, x, y. Similarly, since sin(t) > % t for t € [0, 77/2] we have
that for fixed S,

1 1 1 1
|frs](x.y) < o 2 2=, 2 4n|z|

n n
2€ZN\Z ¢ A, 2€ZN\Z} ¢

85USD| SUOLULLOD BRSO et dde au) Aq paLeA0B 88 S3RILe VO 1SN JO S3|NJ J0j ArIqIT 8UIUO AB]IA UO (SUORPUOD-PUB-SLULBILCY A8 | M Afe.q) U1 IUO//SAIY) SUORIPUOD PUe SWS L 8U} 385 *[5Z0Z/TO/ET] U0 Algiauliuo AB|IA LISNveURILI0D Ad 69T00FZ0Z BUBW/Z00T OT/I0p/L0Y A8 | M Ale.q 1 BUIIUO//SARY WO papeojuMod ‘T ‘5202 ‘9T922ZST



278 MATHEMATISCHE SCHIAVO ET AL.
NACHRICHTEN
1 1
< - n
<7, ac'(x)

B /ar/2(O\BL/25)(0) |x|"
= C [log(/nL/2) ~ log(L/(25))] = €' < 0.

Thus, for Equation (41) to hold, it thus suffices to prove that

sup / exp (121150, )) dL(Y) < o0 | (44)
™

for some R > 2 as above.
In order to prove the latter, we follow the argument of the proof of Lemma 2, p. 611 in [17]. To start with, we use the
multi-dimensional Hausdorff-Young inequality, which can be found in [8, p. 248]:

p-1
Forp22 [ hugs@uPdys| ¥ @l |
m €2} \Zy
—-n/2
where c¢(z) = L (4L2 ZZ—1 sinz(nzk/L)) and p’ €[1,2] is the Holder-conjugate. Since 7|zk|/L <(1+
a, =
€)| sin(zz, /L)| for all z; /L under consideration, we have that
p-1

’ 1
/ Ik rs(0, )P dy < (1 +¢)P' P~V L, ST —
Tn /S\eré (27T|Z|)np

an ZEZZ
Let Q,(z) be the unit cube H?zl[z - %ei, zZ+ %ei] around z € Z". Since by assumption

1 1
X < lzl + 5V <A+ 5Vn)lzl < (A +o)lz]

for all x € Q;(z) and all z with ||z||, > R/2, we estimate

1 ! 1
> / cdx< Y 1+ / —dx
/s \Zk Q2 121"P Q) |XI"P

zeZZ Z€Z"M\Z}

<1+ e)"p, / ;np, dx
R\Bg/2(0) 1XI

With Cavalieri’s principle the integral can be estimated by

[s9)
27"/? 1
/ ! ,dx:/ L pnet - dr
Rm\Bg,(0) 1%|™P g2 [(n/2) e

221 R\"F) a2 g
= — —_ < —_
IL'(n/2)n(p’ = 1) < 2) ~T(n/2)n

since p’ > 1 and R > 2. Hence, we obtain for k z s

1+e2\" 1 [ 2272 p\*~
/ |kL,R,s<o,y)|des<( . )> —p< p) | 45)
™ 4 a,

T(n/2)n
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Summing these terms over all p € N\ {1} yields

2p 2p o\ P n/2 p1
14 y (1+¢) 27"< p
Z Dl /Tn lkzr,s(0,¥)[Pdy < Z ol ((Zn)nan ) <I‘(n/2) n)

p>2 p>2

27n/2 & plp\ (27)a, nl(n/2)

_10/2) 55 ((1+e>2" 27/2p )p
B p'p
>2

nl'(n/2) Z 1 <(1 + €)1 2" ey? )p
2n/2 4% py2mp \ (2m)*aunl(n/2) ’

where we used Stirling’s formula p! ~ 4/ 27rp(§)P . The last sum is finite if

2m)*a,nT(n/2) n
21,2 n _n_ 2
(L+ey < 271/ 2e e Vo (46)

where we inserted a,, = . Since by assumption |y| < y.. and since € > 0 was arbitrary, by appropriate choice of

2
(4m)"/2T(n/2)
the latter, Equation (46) is satisfied.

To treat the cases p =0 and p = 1, observe that (/;, |kprs(0,)dy)* < [1, lky g 5(0,y)|* dy. Thus, there exists a

constant Cy, such that

yP R
Y Lr [ sy <cfy.
px0 = JT"

uniformly in L, and thus in turn there exists a constant Cg,}, such that

y>P » g
sup ) [ k40, )P dy <Cp
L p>0 p: Tn

which proves Equation (41).
In order to show Equation (42), note that

/ exp (r2k15(0,3)) dL7(y) = / exp (2,0, 0)) dmy (V)
-D—n 'I]'Vl

L
for every L. Furthermore, for p > 2,

p-1

/TZ|kL<o,u>|PdmL(v>s LY @

Ay zez!\{0}

Indeed, for p = 2 this is due to Parseval’s identity, and for p = oo this holds since | exp(27iz(x — y))| = 1. The estimate
holds for all intermediate p € (2, o0) by virtue of the Riesz-Thorin theorem. Then, the proof of Equation (42) follows the
lines above.

In order to show Equation (43), recall that k, = qLokz' with k; given is Equation (32). Thus by Jensen’s inequality,
Equation (43) will follow from

sup/ exp (y2k;(0,y)) dL"(y) < oo . (47)
L Tn

95UB01 7 SUOWIWOD 9A1E81D 3|qeot [dde 8y} Ag peusenob ale sajole YO 9SO S9|nI Joj Akeigi]8uUlUQ A8]IM UO (SUO N IPUD-pUE-SWRILIO" A8 | 1M ATelq 1 [Bul [UO//:SANL) SUONIPUOD PUe SWB | 8U18eS *[5Z0Z/TO/ST] Uo AleiqiTauliuQ 48] e LN yeUeI0D Aq 69T00VZ0Z eUBL/ZO0T OT/I0p/W00" A8 1M AeIq Ul juo//:sdny Wouy pepeojumod ‘T ‘SZ0¢ ‘9T9222ST



M %ﬁggﬁ%ﬁ%@ﬁHE SCHIAVO ET AL.
[NACHRICHTEN |

To prove this, we argue as before in (i), now with

kZ'(x,y) :ai -exp(2riz-(x—Yy))

" e} 9, /12,/22
in the place of kj 4(x, ). For given ¢ > 0, choose R > 2 and S > 1 as before. In particular, then ¢ < (1 + ¢) sin(t) for all
t €0, %] and thus

1>9,,>20+¢)™", zezz/s.
Thus, decomposing kzr intro three factors as before and then arguing as before will prove the claim. O

Corollary 5.7. If |y| < y,, then for each f € L*(T"),

(i) the family ( fon f dML,ﬁ)LEN is LX(P)-bounded,

(ii) the family ( /'I]'" f d,uL,b> is L?(P)-bounded.
LeN

(iii) the family ( Jon f d,u+,L> is L>(P)-bounded.
LeN

Proof.
(i) Given f € L?>(T") and y as above, consider the Gaussian variables
72
Yigi= [ fdupg= / exp (VhL,n(X) = Skog(x, X)> f(x)dL"(x) .
Tn Tn
Then

sup ¥, =sup [ [ exp (rsx,9)) 100 F0) 4270 7o)

IA

sl;p /Tn [/W exp ()/ZkL’ﬁ(x,y)) dE”(y)] F2(x) dLn(x)

and, by translation invariance of k; 4y and Equation (41),

<I1P - sup / exp (r2ky 4(0.)) dL"(y) < | f12 - CF < oo,
Tn

(ii) Similarly, again by translation invariance of k;, 4, and by Equation (42)

2
supE[ V1, '] <171 sup [ exp (17,0.) dL"0) < IfIP -y < o0
TN

2
forYy) := fw fdury = /‘D’n exp (VhL,b(x) - y?kL,b(X, X)) f)dLt(x).
(iii) Analogously. Ol
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