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Abstract

Let Qd be the d-dimensional binary hypercube. We say that P = {v1, . . . , vk} is an
increasing path of length k− 1 in Qd, if for every i ∈ [k− 1] the edge vivi+1 is obtained
by switching some zero coordinate in vi to a one coordinate in vi+1.

Form a random subgraph Qdp by retaining each edge in E(Qd) independently with
probability p. We show that there is a phase transition with respect to the length of
a longest increasing path around p = e

d
. Let α be a constant and let p = α

d
. When

0 < α < e, then there exists a δ ∈ (0, 1) such that whp a longest increasing path in
Qdp is of length at most (1− δ)d. On the other hand, when α > e, whp there is a path
of length d− 2 in Qdp, and in fact, whether it has length d− 2, d− 1, or d depends on
whether the vertices (0, . . . , 0) and (1, . . . , 1) are in the giant connected component.
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1 Introduction

1.1 Background and main result

The d-dimensional hypercube, Qd, is the graph whose vertex set is V (Qd) := {0, 1}d,
and where two vertices are adjacent if they differ in exactly one coordinate. The
hypercube and its subgraphs arise naturally in many contexts and have received much
attention in combinatorics, probability, and computer science.

The random subgraph Qdp is obtained by retaining each edge in E(Qd) independently
with probability p. Several phase transitions have been observed in Qdp. Indeed, the study
of Qdp was initiated by Sapoženko [13] and Burtin [7], who showed that the threshold for
connectivity is 1

2 : when p < 1
2 , whp1 Qdp is disconnected, whereas for p > 1

2 , whp Qdp is
connected. This result was subsequently strengthened by Erdős and Spencer [10] and by
Bollobás [4]. Bollobás further showed [5] that p = 1

2 is the threshold for the existence of
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Climbing up a random subgraph of the hypercube

a perfect matching. Recently, resolving a long-standing open problem, Condon, Espuny
Díaz, Girão, Kühn, and Osthus [8] showed that p = 1

2 is also the threshold for the
existence of a Hamilton cycle in Qdp.

In the sparser regime, Erdős and Spencer asked [10] whether Qdp undergoes a phase
transition with respect to its component structure around p = 1

d , similar to that of G(n, p)

around p = 1
n . This was confirmed by Ajtai, Komlós, and Szemerédi [1], with subsequent

work by Bollobás, Kohayakawa, and Łuczak [6]. See also the recent work [3] and the
references therein for the behaviour of the critical regime. Given α > 1, let ζα be the
unique solution in (0, 1) of the equation

ζα = 1− exp(−αζα). (1.1)

Then, Ajtai, Komlós, and Szemerédi [1], and Bollobás, Kohayakawa, and Łuczak [6]
showed that when p = 1−ε

d , for ε > 0, whp all components of Qdp have order Oε(d), and
when p = 1+ε

d whp Qdp contains a unique giant component of asymptotic order ζ1+ε2
d,

and all other components have order Oε(d). Here, we use the convention f(x) = Or(g(x))

to say that there exist a constant C, which may depend on r, such that for all sufficiently
large x we have f(x) ≤ C|g(x)|. We note that ζα is equal to the survival probability of a
Galton-Watson tree with offspring distribution Po (α).

In this paper, we show a phase transition in the hypercube, which occurs when p = e
d .

Before stating our result, let us introduce some notation. For a vertex v ∈ Qd, we
denote by I(v) ⊆ [d] the set of coordinates of v which are 1. For v1, v2 ∈ Qd, we say that
v1 < v2 if I(v1) ( I(v2). Given a path P = {v1, . . . , vk} in Qd (or Qdp), we say that P is an
increasing path of length k − 1 in the hypercube, if for every i ∈ [k − 1], vi < vi+1 and
|I(vi+1)| − |I(vi)| = 1. Note that the longest increasing path in Qd is of length d. Given a
subgraph H ⊆ Qd, let `(H) be the length of a longest increasing path in H. Our result is
as follows.

Theorem 1.1. Let α be a constant, and let p = α
d . Then, the following holds.

(a) For every 0 < α < e, there exists δ := δ(α), 0 < δ < 1, such that whp `(Qdp) ≤ (1−δ)d.

(b) For every α > e, whp `(Qdp) ≥ d− 2. Furthermore,

P
(
`(Qdp) = d

)
= (1 + o(1))ζ2

α,

P
(
`(Qdp) = d− 1

)
= (1 + o(1))2ζα(1− ζα),

where ζα is defined according to (1.1).

In a sense, the above shows that for α > e whp a longest increasing path is of length
at least d − 2, and whether it is of length d − 2, d − 1, or d depends on whether the
all-0-vertex and the all-1-vertex ‘percolate’; the probability that a vertex percolates is
approximated by the probability that an appropriate branching process survives, and is
asymptotically equal to the probability the vertex belongs to the largest component (see
Proposition 2.2 for a more precise statement).

Let us mention a related result of Pinsky [12], who considered (among other things)
the number of increasing paths of length d in Qdp, where p = α

d . In [12], he showed that if
α < e, then whp the number of such paths is 0. Theorem 1.1(a) shows that, in fact, when
α < e, typically a longest path is smaller by a multiplicative constant. Pinsky further
showed that if α > e, then the probability there are any such paths is bounded away from
0 and 1. Theorem 1.1(b) gives a detailed description of the typical length of a longest
path when α > e.

We finish this section by noting that while some of our lemmas extend to the case
where α = e, our overall proof does not. It would be interesting to see what the behaviour
is at this critical point.
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Question 1.2. Let p = e
d . Form Qdp by retaining each edge of Qd independently with

probability p. What can be said about a longest increasing path in Qdp?

1.2 Proof outline

The proof of Theorem 1.1(a) follows from a first moment argument. The proof of
Theorem 1.1(b), on the other hand, is far more delicate.

For proving Theorem 1.1(b), we begin by showing, through a careful second-moment
argument, that it is not very unlikely to have a path between the all-0-vertex and the
all-1-vertex in Qdp — in fact, we give a lower bound for the probability of that event which
is inverse-polynomial in d. Then, our goal is to show that if the all-0-vertex and the all-1-
vertex ‘percolate’, then whp we can find polynomially many vertex disjoint subcubes,
so that the 0 antipodal point of each of the subcubes is connected by a decreasing path
in Qdp to the all-0-vertex in Qd, and the 1 antipodal point of each of the subcubes is
connected by an increasing path in Qdp to the all-1-vertex in Qd. Since these subcubes are
vertex disjoint, the events that the 0 antipodal point is connected by an increasing path
to the 1 antipodal point in each of the subcubes are independent for different subcubes.
Thus, since for each subcube the probability that there is an increasing path between
the 0 antipodal point and the 1 antipodal point in Qdp is at least inverse polynomial in
d, having polynomially many such subcubes we will be able to conclude that whp in at
least one of these subcubes there is an increasing path from the 0 antipodal point to the
1 antipodal point, which then extends to an increasing path between the all-0-vertex and
the all-1-vertex in Qdp.

Finding these subcubes is the most involved part of the paper, and therein lie several
novel ideas. We note that key parts of this lie in the Tree Construction algorithm and its
properties, given in Section 2.1.

Roughly, we show that if the all-0-vertex ‘percolates’, then whp we can construct a
‘good’ tree in Qdp, denote it by T0, which is rooted at the all-0-vertex. We note that T0

is monotone increasing, that is, the layers of the tree correspond to the layers of the
hypercube. We construct this tree so that it has polynomially in d many leaves, all of
which reside in a relatively low layer (that is, O(log d)). Furthermore, we assign a set
of coordinates Cv to every leaf v ∈ V (T0), where Cv ∩ I(v) = ∅. While constructing this
tree, we ensure that this list is of size at most polylogarithmic in d, and that for every
other leaf v′ ∈ V (T0), there is some i ∈ Cv such that i ∈ I(v′) (we informally say that the
leaves of the tree are ‘easily distinguishable’). Let us denote by V0 the set of leaves of T0.

Then, we show that if the all-1-vertex ‘percolates’, then whp we can construct a
‘good’ tree in Qdp, denote it by T1, which is rooted at the all 1-vertex. Here T1 is monotone
decreasing, that is, the layers of the tree correspond (in decreasing order) to the layers
of the hypercube. The set of leaves of this tree, V1, resides in a relatively high layer (that
is, d−O(log d)), and we have that |V1| = d|V0|. Moreover, we will construct the tree so
that all of its vertices are above the vertices of T0, that is, for every v0 ∈ V0 and v1 ∈ V1,
we have that I(v0) ⊂ I(v1). While this might seem a stringent requirement, note that
given p = α

d with α > e, we have that p · d2 > 1, and thus we can restrict the growth of the
trees to half of the coordinates while remaining supercritical. Indeed, at a certain point
through the construction of the trees, we will grow T0 only on the first d

2 coordinates,
and T1 only on the last d

2 coordinates. After constructing T1, we will arbitrarily associate
disjoint sets of d vertices in V1 to every vertex in V0.

Since the leaves of T0 are easily distinguishable, we utilise a projection-type argument
to argue that given a set of, say, d leaves in T1 and a vertex v0 ∈ V (T0), whp we can
grow in Qdp a tree of small height, rooted at one of these leaves, such that it has a vertex
v1 which is above v0, but is not above any other leaf of T0. We do so by growing a tree,
rooted at one of the d leaves which were assigned to v0 (which is fixed), so that all
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its leaves are above v0, and to a sufficient height such that for every i ∈ Cv0 , we have
that i ∈ I(v1). This, in turn, will allow us to find pairs of vertices, which will form the
antipodal points of the vertex disjoint subcubes we seek to construct.

2 Preliminaries

We begin with some notation and terminology which will be of use for us throughout
the paper. Given a graph G, and a vertex v ∈ V (G), we let N(v) be the set of neighbours
of v inG, that is, N(v) := {u ∈ V (G) : uv ∈ E(G)}. Furthermore, given a subset S ⊆ V (G),
we let NS(v) := N(v) ∩ S, that is, the neighbourhood of v in S. With a slight abuse of
notation, given a subgraph H ⊆ G and v ∈ V (G), we define NH(v) := NV (H)(v). Finally,
given a probability p ∈ [0, 1], we denote by Gp the random subgraph of G obtained by
retaining each edge e ∈ E(G) independently with probability p.

Recall that for every v ∈ Qd, we denote by I(v) ⊆ [d] the set of coordinates which
are 1. Furthermore, for v1, v2 ∈ Qd, we say that v1 ≤ v2 if I(v1) ⊆ I(v2), and v1 < v2 if
I(v1) ( I(v2). Given a path P = {v1, . . . , vk} in Qd, we say that P is an increasing path
in the hypercube, if for every i ∈ [k − 1], vi < vi+1 and |I(vi+1)| − |I(vi)| = 1. We say that
a path P ′ = {vk, . . . , v1} is decreasing if P = {v1, . . . , vk} is increasing. Also, given a set
of vertices S ⊆ V (Qd), let I(S) := ∪v∈SI(v).

Given two vertices u, v ∈ Qd such that uv ∈ E(Qd), we denote by c(u, v) the coordinate
in [d] in which these two vertices differ. Given a tree T rooted in r ∈ V (Qd) and a vertex
v ∈ V (T ), let

CT (v) :=
{
c(x,w) : x 6= v, xw ∈ E(T ), x is on the path P from r to v in T,w /∈ P

}
.

Figure 1: Illustration of CT (v) for a fixed tree T in Q4, rooted at the all-0-vertex. On the
left side, the tree T and its vertices are presented. On the right side, the values of CT (v)

for every vertex of T appear in blue.

We say that a tree T is increasing if every path from the root to a leaf is increasing.
We similarly define a decreasing tree. Throughout the paper we will only consider trees
that are monotone (increasing or decreasing). When the tree is rooted at 0 it will be
increasing and when it is rooted at 1 it will be decreasing.

Define the sets CT (v, 0) := CT (v) \ I(v) and CT (v, 1) := CT (v) ∩ I(v).
Given v1, v2 ∈ V (Qd) such that v1 ≤ v2, let Q(v1, v2) be the induced subcube of Qd

whose vertex set is given by

V (Q(v1, v2)) := {u : v1 ≤ u ≤ v2} .

Note that Q(v1, v2) is isomorphic to a hypercube of dimension |I(v2)| − |I(v1)|. Fur-
thermore, note that given u1, u2 and v1, v2, we have that Q(u1, u2) and Q(v1, v2) are
guaranteed to be vertex disjoint if I(u1) 6⊆ I(v2), equivalently if I(u1) \ I(v2) 6= ∅. We
denote by 0 the all-0-vertex in Qd, and by 1 the all-1-vertex in Qd. For i ∈ [0, d], we
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denote by Li the i-th layer in the hypercube, that is, the set of vertices with exactly i ones.
Throughout the paper, we omit rounding signs for the sake of clarity of presentation. All
the logarithms are assumed to be the natural logarithm.

We will use the following Chernoff-type bounds on the tail probabilities of the binomial
distribution (see, for example, [2, Appendix A]).

Lemma 2.1. Let N ∈ N, let p ∈ [0, 1] and let X ∼ Bin(N, p).

• For every positive t, P(X > tNp) ≤
(
e
t

)tNp
.

• For every 0 < b ≤ Np
2 , P(X < Np− b) ≤ exp

(
− b2

4Np

)
.

2.1 Exploring a tree with ‘easily distinguishable’ leaves

We will utilise a heavily modified variant of the Breadth First Search (BFS) algorithm,
which we will refer to as the Tree Construction algorithm. The Tree Construction
algorithm is fed with the following as input.
(In1) A subcube H := Q(u0, u1) ⊆ Qd, with u0 ≤ u1, together with an order σ on V (H);
(In2) a vertex r ∈ {u0, u1}, which will serve as the root;
(In3) a set of coordinates C ⊆ [d], which are to be avoided;
(In4) a layer Li ⊆ V (Qd), with |I(u0)| ≤ i ≤ |I(u1)|, at which this algorithm is truncated;
(In5) a sequence of independent Bernoulli (p) random variables, {Xe}e∈E(H).
The algorithm outputs a BFS-type tree T , rooted at r in H. To that end, the algorithm
maintains three sets of vertices: B, the set of vertices whose exploration is complete
(and are part of the BFS tree); A, the active vertices currently being explored, kept in a
queue; and Y , the vertices that have not been explored yet. The algorithm starts with
T being the root r, B = ∅, A = {r} and Y = V (H) \ {r}. As long as A is not empty, the
algorithm proceeds as follows.

Let x be the first vertex in A and let j(x) ∈ [0, d] be such that x belongs to the layer
Lj(x). Let

Cx :=

{
CT (x, 0), if r = u0

CT (x, 1), if r = u1

, and jx :=

{
j(x) + 1, if r = u0

j(x)− 1, if r = u1

,

where we stress here that in CT (x, 0) and CT (x, 1), we have that T is the tree-in-progress
at the point in time that x becomes the first vertex in A.

If Ljx = Li then let Yx = ∅. Otherwise, let

Yx := {y ∈ Y ∩ Ljx : xy ∈ E(H) & c(x, y) ∈ [d] \ (C ∪ Cx)} ,

that is, the set of neighbours of x in Y ∩ Ljx that differ from x in a coordinate in
[d] \ (C ∪ Cx). Then, for y ∈ Yx, we query the edge yx. For this, we reveal the random
variable Xxy. If Xxy = 1 then the edge xy belongs to Hp, otherwise it does not. In the
case Xxy = 1, if so far we have identified fewer than log d edges xy′ with y′ ∈ Yx, that
is, we have had fewer than log d random variables Xxy′ = 1, then we move y from Y to
the end of A. If we have identified log d such edges (or if Xxy = 0), we move to the next
edge. Once all the edges xy for every y ∈ Yx have been queried, we move x from A to B.
The algorithm terminates once A is empty. It then outputs the tree T , rooted at r, and
spanned by the edges the algorithm has detected.

We will utilise the following properties of the Tree Construction algorithm.

Proposition 2.2. The following properties of the Tree Construction algorithm hold.
(a) If we start with u0, that is r = u0, then for every u ∈ V (T ) we have that |CT (u, 0)| ≤

i · log d. Similarly, if we start with u1, that is r = u1, then for every u ∈ V (T ) we
have that |CT (u, 1)| ≤ (d− i) log d.
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(b) If we start with u0, then for every two leaves w1, w2 ∈ V (T ) we have that I(w2) ∩
CT (w1, 0) 6= ∅. Similarly, if we start with u1, then for every two leaves w1, w2 ∈ V (T )

we have that ([d] \ I(w2)) ∩ CT (w1, 1) 6= ∅.
(c) Suppose that we are at the first moment where x is the first vertex in A and let

Ax, Bx be the sets A,B at that moment. Let y ∈ NH(x) ∩ Ljx . If y ∈ Ax ∪Bx then
c(x, y) ∈ Cx.

(d) Suppose that H has dimension (1− o(1))d, |C| ≤ d
2 +
√
d, the layer Li is at distance

` from the root, where ` = o(log5 d), ` = ω(1), and that p = α
d for some constant

α > e. Then, with probability at least (1 + o(1))ζp(d−|C|), where ζc is defined as
in (1.1), the following holds. The Tree Construction algorithm outputs a tree T ,
such that the number of leaves in the layer L`−1 if we start from u0, and in the
layer L`+1 if we start from u1, is between (p(d− |C|))0.9` and (pd)

1.1`.

Proof. For the first item, the claim follows as we truncate at layer Li, and the number of
direct descendants of every u ∈ V (T ) in T , allowed by the Tree Construction algorithm,
is at most log d.

For the second item, if we start with u0, then there exists some common ancestor
w ∈ V (T ) of w1 and w2, and vertices w−1 , w

−
2 , such that w < w−1 ≤ w1, w < w−2 ≤ w2 and

ww−1 , ww
−
2 ∈ E(T ). Let ` = c(w,w−2 ). Then ` ∈ I(w−2 ) ⊆ I(w2). On the other hand, by

definition ` ∈ Cw−1 . Since for any s ∈ A we do not allow traversing from s in T along the

coordinates of Cs, we have that ` ∈ Cs for every descendant s of w−1 in T , and hence `
does not belong to I(s) for any such s. In particular, ` /∈ I(w1) and ` ∈ Cw1

, and hence
` ∈ CT (w1, 0). Thus I(w2) ∩ CT (w1, 0) 6= ∅. The statement for when starting with u1

follows by symmetry.
For the third item, let us consider the case that r = u0, noting that the case r = u1

follows from symmetric arguments. Let y ∈ NH(x)∩Ljx and suppose that y ∈ Ax ∪Bx at
that moment. Let w be the unique vertex on the x− y path spanned by T which satisfies
w < x and w < y. Furthermore, let x−, y− be such that w < x− ≤ x, w < y− ≤ y, and
wx−, wy− ∈ E(T ) (see Figure 2). Then c(w, y−) ∈ I(y−) ⊆ I(y). In addition, by definition
c(w, y−) ∈ Cx− . Since for any s ∈ Ax we do not allow traversing from s in T along the
coordinates of Cs, we have that c(w, y−) ∈ Cs for every descendant s of x− in T , and
hence c(w, y−) does not belong to I(s) for any such s. In particular c(w, y−) /∈ I(x). The
above implies that c(x, y) = c(w, y−) ∈ Cx which completes the proof.

Figure 2: Illustration of the proof of Proposition 2.2(c). Here c(w, y−) = `. As for every
s ∈ A, we do not traverse from s on the coordinates of Cs in T , we have that ` is in Cs
for every descendant s of x−. As both zy and xy are in E(H), along any path from x to y
the `-th coordinate must be traversed, and therefore c(x, y) = ` ∈ Cx.

For the fourth item, for every integer k ∈ [0, d] and every x ∈ Lk one has that

ECP 29 (2024), paper 70.
Page 6/13

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP639
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Climbing up a random subgraph of the hypercube

|NLk+1
(x)| = d− k and |NLk−1

(x)| = k. Thus, suppose this is the first moment where x is
the first vertex in A, let dH be the dimension of H, and let

d′ =


dH − i− |C|, if v = u0 and x ∈

⋃i−2
j=0 Lj ,

dH − (dH − i)− |C|, if v = u1 and x ∈
⋃d
j=i+2 Lj ,

0 otherwise.

Then, by Proposition 2.2(c), we have that |Yx| ≥ d′ − |Cx|. Let Zx be the number
of direct descendants of x in the above process. Then, Zx stochastically dominates
min {log d,Bin(d′ − |Cx|, p)}. By Proposition 2.2(a), since Li is at distance at most ` =

o(log5 d) from the root, we have that |Cx| = o(log6 d). Since dH = (1 + o(1))d and
` = o(log5 d) we have that Zx stochastically dominates

Z ∼ min {log d,Bin ((1− o(1))(d− |C|), p)} .

By Lemma 2.1, P (Bin(d, p) ≥ log d) ≤
(

αe
log d

)log d

< 1
d5 . Thus,

E[Z] ≥ (1− o(1))(d− |C|)p− d · 1

d5
= (1− o(1))(d− |C|)p.

Since |C| ≤ d
2 +
√
d and α > e, we have that E[Z] > 1. Furthermore, recall that ` = ω(1).

Therefore, standard results (see, for example, [11, Page 1] and [9, Chapter 4.3.4]) imply
that with probability at least (1− o(1))ζ(d−|C|)p, the number of leaves after exposing `− 1

layers (that is, in the layer L`−1 if we start from u0, and in the layer L`+1 if we start from
u1) is at least (p(d− |C|))0.9`. Similarly, Zx is stochastically dominated by Bin(d, p), and
thus the number of leaves after exposing `− 1 layers is at most (pd)

1.1`.

3 Proof of Theorem 1.1(a)

The proof follows from a first-moment argument. Let X(1−δ)d be the number of

increasing paths on (1− δ)d vertices in Qdp. We have at most
(

d
(1−δ)d

)
ways to choose the

coordinates which change along the increasing path and ((1− δ)d)! ways to order them.
We then have 2δd ways to choose the values of the coordinates which are fixed along
the path. This determines a path on (1− δ)d vertices, whose edges appear in Qdp with

probability p(1−δ)d−1. Therefore,

E
[
X(1−δ)d

]
= 2δd

(
d

(1− δ)d

)
((1− δ)d)!p(1−δ)d−1 = 2δd

d!

(δd)!

(α
d

)(1−δ)d−1

.

By Stirling’s approximation and since α < e, we have that

E
[
X(1−δ)d

]
≤ 1

α
√
δ
· d · 2δd · (d/e)d

(δd/e)
δd
·
(α
d

)(1−δ)d
≤ 1

α
√
δ
· d ·

[
α

e
·
(

2

δ

)δ/(1−δ)](1−δ)d

.

Since limδ→0+

(
2
δ

) δ
(1−δ) = 1, for any constant α < e, we can choose a constant δ ∈ (0, 1),

sufficiently close to 0, such that E
[
X(1−δ)d

]
= o(1). Thus, whp, there is no increasing

path on at least (1− δ)d vertices.

4 Proof of Theorem 1.1(b)

We focus mainly on showing that P
(
`(Qdp) = d

)
= (1 + o(1))ζ2

α, as the other parts
follow with a slight modification of the arguments (which we will argue for at the end of
the section). We begin by showing, through a careful second-moment argument, that the
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existence of a path of length d is not very unlikely (at least inverse-polynomial in d in
probability).

To the task at hand, we start with the second-moment argument.

Lemma 4.1. Let p = α
d with α ≥ e. Then P

(
`(Qdp) = d

)
≥ 1

d5 .

Proof. Let X be the random variable counting the number of increasing paths of length

d in Qdp. By Paley-Zygmund, P (X > 0) ≥ E[X]2

E[X2] . We have that E[X] = d!pd. Let us turn

our attention to E[X2]. Let Π be the set of all increasing paths of length d in Qd. Define
id ∈ Π by id = {v0v1, . . . , vd−1vd}, where vi is the edge vertex whose first i coordinates
are one, and whose others are zero. Furthermore, given π1, π2 ∈ Π, we stress that
π1 ∩ π2, π1 ∪ π2, and π1 \ π2 are all with respect to the edges of π1 and π2. We then have:

E[X2] =
∑

π1,π2∈Π

P
(
π1 ∈ Qdp ∧ π2 ∈ Qdp

)
=

∑
π1,π2∈Π

p|π1∪π2| =
∑
π1∈Π

pd ·
∑
π2∈Π

p|π2\π1|

= d!pd ·
∑
π∈Π

p|π\id| = d!pd
∑
π∈Π

pd−|π∩id| = d!p2d
∑
π∈Π

p−|π∩id|. (4.1)

Now,

∑
π∈Π

p−|π∩id| =

d∑
k=0

(
d

α

)k
· Yk, (4.2)

where Yk is the number of increasing paths which intersect with id on exactly k edges.

Let us now estimate Yk. When k = d, we have that Yk = 1. Suppose that k < d.
Assume π ∈ Π intersects with id on exactly k edges. Let ` ≥ 1 be the number of maximal
segments of the path id that are edge-disjoint from π. Observe that there are at most(
d
2`

)
ways to choose where these segments lie. Indeed, in order to determine these

segments it is enough to choose the first and last edges of each of the segments out
of the d edges in the path id. Here, we used that each of these segments contains at
least 2 edges. Let us denote the number of edges in each of these segments by x1, . . . , x`,
where

∑`
i=1 xi = d− k (note that when choosing where the segments lie, we determined

x1, . . . , x`). As noted above, we have that xi ≥ 2 for 1 ≤ i ≤ ` and therefore 1 ≤ ` ≤ d−k
2 .

There are at most xi! ways to form each segment. Therefore, for k < d,

Yk ≤

d−k
2∑
`=1

(
d

2`

)
max

x1,...,x`≥2∑`
i=1 xi=d−k

{∏̀
i=1

xi!

}
.

We claim that in this range of variables
∏`
i=1 xi! is maximised when xi = 2 for all

i ∈ [`] except for one of them which is equal to d − k − 2(` − 1). Indeed, for any
sequence x1, . . . , x`, if there are i 6= j for which xi ≥ xj > 2 then one can replace

xi, xj with xi + 1 and xj − 1 and increase the product
∏`
i=1 xi! (since the ratio between

these products is (xi + 1)!(xj − 1)!/(xi!xj !) = (xi + 1)/xj > 1). Hence, for k < d,

Yk ≤
∑ d−k

2

`=1

(
d
2`

)
2`−1(d− k − 2`+ 2)!.

Returning to (4.2), we have that

d∑
k=0

(
d

α

)k
· Yk ≤ d! +

d
2∑
`=1

2`
(
d

2`

) d−2`∑
k=0

(
d

α

)k
(d− k − 2`+ 2)! , (4.3)
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where the first summand, d!, corresponds to the case where k = d — indeed, we use the

fact that
(
d
α

)d ≤ (de )d ≤ d! and that Yk = 1. Now,

d−2`∑
k=0

(
d

α

)k
(d− k − 2`+ 2)! =

(
d

α

)d−2` d−2`∑
m=0

(α
d

)m
(m+ 2)! ≤

(
d

α

)d−2`

d2
d−2`∑
m=0

(α
d

)m
m!

≤
(
d

α

)d−2`

d3
d−2`∑
m=0

(α
d

)m (m
e

)m
≤
(
d

α

)d−2`

d4 ·
(α
e

)d−2`

≤
(
d

e

)d−2`

d4,

where in the first inequality we used the fact that ` ≥ 1 and in the penultimate inequality
we used our assumption α ≥ e and the fact that m ≤ d. Returning to (4.3), we now have

d∑
k=0

(
d

α

)k
· Yk ≤ d! +

d
2∑
`=1

2`
(
d

2`

)(
d

e

)d−2`

d4 ≤ d! +

(
d

e

)d
d4

d
2∑
`=1

(
ed

`
· e
d

)2`

≤ d! · d5.

Substituting the above in (4.1), we obtain that E[X2] ≤
(
pdd!

)2
d5. By Paley-Zygmund,

and the above inequalities, P (X > 0) ≥ 1
d5 .

We note that in the proof above, we did not attempt to optimise the exponent in d−5,
and instead aimed for simplicity and clarity — indeed, with more careful calculations
one could obtain a better exponent, however, that does not affect the rest of the proof.

We now turn our attention to showing that if 0 and 1 both ‘percolate’, then whp
we can find d10 pairwise disjoint subcubes, Q(v1,0, v1,1), . . . , Q(vd10,0, vd10,1), of dimension
(1 − o(1))d, such that there is an increasing path in Qdp between 0 and every vi,0, and
a decreasing path between 1 and every vi,1. Showing the existence of such subcubes
requires a delicate construction. Throughout the rest of this section, we assume that
p = α

d for some α > e, and recall that ζα is defined according to (1.1).
We begin by showing that with probability at least (1−o(1))ζ2

α, both 0 and 1 ‘percolate’
in Qdp and we can find a tree rooted at 1 which is ‘above’ the tree rooted at 0. Formally,

Lemma 4.2. With probability at least (1− o(1))ζ2
α, the following holds. There exist two

trees T ′0, T
′
1 ∈ Qdp such that T ′0 and T ′1 have height 2 log log d, and:

1. 0 ∈ V (T ′0),1 ∈ V (T ′1); and,
2. |L2 log log d ∩ V (T ′0)| ≥ log d, |Ld−2 log log d ∩ V (T ′1)| ≥ log d; and,
3. |I(L2 log log d ∩ V (T ′0))| ≤ log2α d, |[d] \ I(Ld−2 log log d ∩ V (T ′1))| ≤ log2α d; and,
4. for every two leaves of T ′0, w1,0, w2,0 ∈ V (T ′0) with w1,0 6= w2,0, we have that

I(w2) ∩ CT ′0(w1, 0) 6= ∅; and,
5. for every two leaves of T ′1, w1,1, w2,1 with w1,1 6= w2,1, we have that ([d] \ I(w2)) ∩

CT ′1(w1, 1) 6= ∅; and,

6. for every v0 ∈ V (T ′0), we have that |CT ′0(v0, 0)| ≤ log2 d, and for every v1 ∈ V (T ′1) we

have that |CT ′1(v1, 1)| ≤ log2 d; and,
7. for every v0 ∈ V (T ′0) and v1 ∈ V (T ′1), v0 < v1.

Proof. Run the Tree Construction algorithm described in Section 2.1 with the following
inputs. Let (In1), the subcube, be Qd, let (In2), the root, be 0, let (In3), the set of
coordinates which we avoid, be ∅, let (In4), the layer at which we truncate, be L2 log log d+1,
and let (In5) be a sequence of independent Bernoulli (p) random variables. Let T ′0 be the
tree this Tree Construction algorithm outputs.

Item 4 follows deterministically from Proposition 2.2(b), and item 6, with respect
to T ′0, follows deterministically from Proposition 2.2(a). Note the dimension of the
subcube in the algorithm’s input is d, that we do not avoid any coordinates, and that the
distance of the layer we truncate at from the root is 2 log log d+ 1. Hence, we may apply
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Proposition 2.2(d). As pd = α and α0.9·2 log log d ≥ log d and α1.1·2 log log d ≤ log2α d, the part
of items 1, 2, and 3 which concerns T ′0, follows from Proposition 2.2(d). Let us denote
the event that such T ′0 exists by A0, where we have that P(A0) ≥ (1− o(1))ζα by 2.2(d).

Let I0 := I (V (T0) ∩ L2 log log d). Conditioned onA0, we have that |I0| ≤ log2α d. We now
run the Tree Construction algorithm described in Section 2.1 with the following inputs.
Let (In1), the subcube, be Qd, let (In2), the root, be 1, let (In3), the set of coordinates
which we avoid, be I0, let (In4), the layer at which we truncate, be Ld−2 log log d−1, and
let (In5) be a sequence of independent Bernoulli (p) random variables. Let T ′1 be the tree
this Tree Construction algorithm outputs.

Note that item 7 holds by construction. Item 5 follows deterministically from Propo-
sition 2.2(b), and item 6, with respect to T ′1, follows deterministically from Proposi-
tion 2.2(a). Note that the dimension of the subcube in the algorithm’s input is d,
that |I0| ≤ d

2 +
√
d, and that the distance of the layer we truncate at from the root is

2 log log d + 1. Thus, we may apply Proposition 2.2(d). As (d − |I0|)p = (1 + o(1))α, the
part of items 1, 2, and 3 which concerns T ′1, follow from Proposition 2.2(d). Let us denote
the event that such T ′1 exists by A1, and we have that, conditional on A0, the probability
that A1 holds is at least (1− o(1))ζ(1−o(1))α = (1− o(1))ζα by 2.2(d).

Furthermore, the sets of edges explored during the construction of T ′0 and that during
the construction of T ′1 are disjoint, and therefore the probability of both events A0 and
A1 holding is at least (1− o(1))ζ2

α.

We now turn to show that whp we can extend T ′0 to a tree of height O(log d), with,
say, d11 leaves, such that the leaves are easily distinguishable. That is, our goal is that
every leaf of T ′0 will be uniquely identified with a set of coordinates, whose order is, say,
150 log2 d. We also aim to extend T ′1 similarly, maintaining all of its vertices above T ′0.
We do so, roughly, by growing T ′0 on the first d/2 coordinates, and T ′1 on the last d/2
coordinates, utilising Proposition 2.2(d). More precisely,

Lemma 4.3. Suppose T ′0 and T ′1 satisfy the properties in the statement of Lemma 4.2.
Then, whp, there exist trees T0, T1 ∈ Qdp such that T0 and T1 have height 150 log d, and:

1. 0 ∈ V (T0) and 1 ∈ V (T1); and,
2. |L150 log d ∩ V (T0)| ≥ d11 and |Ld−150 log d ∩ V (T1)| ≥ d11; and,
3. for every v ∈ L150 log d ∩ V (T0), we have that |CT0(v, 0)| ≤ 150 log2 d; and,
4. for every v ∈ Ld−150 log d ∩ V (T1), we have that |CT1(v, 1)| ≤ 150 log2 d; and,
5. for every u, v ∈ L150 log d ∩ V (T0) with u 6= v, we have that I(u) ∩ CT0

(v, 0) 6= ∅; and,
6. for every u, v ∈ Ld−150 log d ∩ V (T1) with u 6= v we have that CT1

(v, 1) \ I(u) 6= ∅;
and,

7. for every v0 ∈ V (T0) and v1 ∈ V (T1), v0 < v1.

Proof. Note that when constructing T ′0 and T ′1, we only considered edges up to the
2 log log d-th, and (d− 2 log log d)-th layer, respectively. We may thus assume that edges
crossing the other layers have not been exposed yet.

We begin by showing that whp T0 exists. Let I1 := I (V (T ′1) ∩ Ld−2 log log d), where
we note that by assumption |I1| ≥ d − log2α d. Furthermore, since T ′0 satisfies the
properties of Lemma 4.2, we have that 0 ∈ V (T ′0) and |L2 log log d ∩ V (T ′0)| ≥ log d. Let
U0 = {u1, . . . , ulog d} be a set of arbitrary log d vertices from L2 log log d ∩ V (T ′0). For every
i ∈ [log d], let wi be defined by I(wi) = [d]\CT ′0(ui, 0). Since I(ui)∩CT ′0(ui, 0) = ∅, we have
that wi > ui. By our assumption, for every two leaves ui 6= uj ∈ V (T ′0)∩L2 log log d, we have
that I(ui)∩CT ′0(uj , 0) 6= ∅. Furthermore, by our assumption, for every i ∈ [log d], we have

that |CT ′0(ui, 0)| ≤ log2 d. Thus, Q(1) := Q(u1, w1), . . . , Q(log d) := Q(ulog d, wlog d) form a

set of log d pairwise disjoint subcubes of dimension at least d− log d− log2 d ≥ d− 2 log2 d.
We claim that with probability bounded away from zero, there exists an i ∈ [log d] such

ECP 29 (2024), paper 70.
Page 10/13

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP639
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Climbing up a random subgraph of the hypercube

that in Q(i)p there exists a tree Bi, such that Bi together with the path from 0 to ui in
Qdp form a suitable choice for T0.

To that end, for every i ∈ [log d], we run the Tree Construction algorithm given in
Section 2.1 with the following inputs. Let (In1), the subcube, be Q(i), let (In2), the root,
be ui, let (In3), the set of coordinates which we avoid, be ([d] \ I1) ∪ ([d] \ [d/2]), let (In4),
the layer at which we truncate, be L150 log d, and let (In5), be a sequence of independent
Bernoulli (p) random variables. Let Bi be the tree this algorithm outputs.

Note that the subcube in the algorithm’s input is of dimension (1− o(1))d, that the set
of coordinates we avoid, ([d] \ I1) ∪ ([d] \ [d/2]), is of size at most log2α d + d

2 ≤
d
2 +
√
d,

and that the distance of the layer we truncate at from the root is 150 log d − 2 log log d.
Thus, we may apply Proposition 2.2(d), and obtain that with probability at least c, for

some constant c > 0, |L150 log d ∩ V (Bi)| ≥
(

2e
5

)135 log d ≥ d11.
In the event |L150 log d ∩ V (Bi)| ≥ d11, note that letting T0 be Bi with the path from

0 to ui in Qdp, for every v ∈ V (Bi), we have that CT0(v, 0) = CBi(v, 0), and thus by

Proposition 2.2(a), |CT0(v, 0)| ≤ 150 log2 d. Since we restrict the queries to [d/2] ∩ I1, for
every v0 ∈ V (T0), we have that I(v0) ⊆ I1 and I(v0) ⊆ [d/2] ∪ I(V (T ′0)), where the first
further implies that for every v1 ∈ V (T ′1), we have v0 < v1. Finally, we need to verify that
for every u, v ∈ L150 log d ∩ V (T0) with u 6= v, we have that I(u) ∩ CT0(v, 0) 6= ∅ — indeed,
this follows from Proposition 2.2(b). Therefore, with probability at least c > 0, the path
from 0 to ui in Qdp appended with Bi forms a suitable choice for T0.

Since these events are independent for every i ∈ [log d], the probability there is no
such T0 is at most (1− c)log d = o(1).

The existence of T1 follows similarly, where we note that I(V (T0)) ⊆ I(V (T ′0)) ∪ [d/2]

and |I(V (T ′0))| ≤ log2α d = o(d).

We are now ready to show that whp we can extend T1, so that we can find d10 pairwise
disjoint subcubes, of dimension (1 − o(1))d, with their antipodal points connected by
increasing paths to 0 and 1, respectively.

Lemma 4.4. Suppose T0 and T1 satisfy the properties of Lemma 4.3. Then, whp, we
can find subsets V0 = {v1,0, . . . , vd10,0} ⊆ V (T0)∩L150 log d and V1 = {v1,1, . . . , vd10,1}, with
V1 being at layer at least d− 153 log6 d, such that the following holds.

1. For every v0 ∈ V0 and v1 ∈ V1, there is a path in Qdp between 0 and v0 and between
1 and v1.

2. for every i ∈ [d10], we have that vi,0 < vi,1; and,
3. for every i ∈ [d10], we have that CT0(vi,0, 0) ∩ I(vi,1) = ∅.

Proof. Once again, we stress that we have not queried any of the edges between the
150 log d-th and the d− 150 log d-th layers thus far.

Let V0 = {v1,0, . . . , vd10,0} be an arbitrary set of d10 vertices in V (T0) ∩ L150 log d. Note
that |I(vi,0)| = 150 log d for every i ∈ [d10].

Let M = {m1, . . . ,md11} be an arbitrary set of d11 vertices in Ld−150 log d ∩ V (T1).
We arbitrarily split them to sets S1, . . . , Sd10 , each of order d. For every i ∈ [d10], we
associate Si with vi,0. We now turn to show that whp, for every i ∈ [d10] there exists
a tree T (Si) in Qdp, rooted at some vertex in Si, such that at least one of its vertices

y ∈ V (T (Si)) ∩
⋃d
s=d−153 log6 d Ls, satisfies that vi,0 < y and I(y) ∩ CT0

(vi,0) = ∅.
Fix i ∈ [d10]. Denote the vertices of Si by {u1, . . . , ud}. For every k ∈ [d], let wk

be the vertex in Qd defined by I(wk) = CT1(uk, 1). Similar to the proof of Lemma 4.3,
we have that Q(1) := Q(w1, u1), . . . , Q(d) := Q(wd, ud) form d pairwise vertex disjoint
subcubes. By our assumption, |CT ′1(uk, 1)| ≤ 150 log2 d, and thus each of these subcubes

is of dimension at least d − 200 log2 d. Fix k ∈ [d] and consider Q(k). Run the Tree
Construction algorithm given in Section 2.1 with the following inputs. Let (In1), the
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subcube, be Q(k), let (In2), the root, be uk, let (In3), the set of coordinates which
we avoid, be I(vi,0), let (In4), the layer at which we truncate, be Ld−10 log4 d−1, and
let (In5) be a sequence of independent Bernoulli (p) random variables. Let Bk be the
tree this algorithm outputs. Similarly to previous arguments, by Proposition 2.2(d), since
(d−20 log4 d)p ≥ α

2 >
13
10 , with probability at least c, for some positive constant c, we have

|Vd−log4 d ∩ V (Bk)| ≥
(

13
10

)9 log4 d
. Note that every vertex in Bk is above vi,0. Thus, with

probability at least 1− (1− c)d = 1− o
(
d−11

)
, there exists a set of

(
13
10

)9 log4 d
vertices in

layer Ld−10 log4 d, all of which are connected to 1 via an increasing path in Qdp and all of
which are above vi,0. Denote this set of vertices by X.

Initialise X(0) := X and C(0) := CT0
(vi,0). Now, at each iteration j ∈ [|C(0)|], we

proceed as follows. Let ` be the first (smallest) coordinate in C(j − 1). If at least
|X(j−1)|

d vertices x ∈ X(j − 1) have that ` ∈ [d] \ I(x), we set X(j) to be these set of
vertices and update C(j) = C(j− 1) \ {`}. Otherwise, there are at least

(
1− 1

d

)
|X(j− 1)|

vertices x ∈ X(j − 1), such that ` ∈ I(x). Each such vertex x has exactly one neighbour
x′ in the layer below, such that ` ∈ [d] \ I(x′). The probability that xx′ is in Qdp is p,
and these are independent trials for every vertex x. Thus, the number of x′ such that
` ∈ [d]\I(x′) and that there is x ∈ X(j−1) such that xx′ ∈ E(Qdp) stochastically dominates

Bin
((

1− 1
d

)
|X(j − 1)|, p

)
. By Lemma 2.1, with probability at least 1− exp

(
− |X(j−1)|

10d

)
,

we have that the number of such x′ is at least |X(j−1)|
2d , where we stress that if |X(j−1)| ≥

d2, this holds with probability at least 1− o(d−11). We then let X(j) be the set of such
x′, and update C(j) = C(j − 1) \ {`}. Repeating the above process for |C(0)| ≤ 150 log2 d

iterations, by the union bound we have that with probability at least 1− o(log2 d · d−11) at

each iteration, |X(j)| ≥ |X(j−1)|
2d , and in particular, |X(|C(0)|)| ≥ ( 13

10 )
9 log4 d

(2d)150 log2 d
≥ d2. Thus,

with probability at least 1− o(d−10) there exists a proper choice of vi,1 at layer at least
d− 10 log4 d · 150 log2 d ≥ d− 153 log6 d. Union bound over the d10 choices of i completes
the proof.

We are now ready to prove Theorem 1.1(b).

Proof of Theorem 1.1(b). By Lemmas 4.2 through 4.4, with probability at least (1 −
o(1))ζ2

α−o(1) = (1−o(1))ζ2
α, we can find subsets V0 = {v1,0, . . . , vd10,0} ⊆ V (T ′0)∩L150 log d

and V1 = {v1,1, . . . , vd10,1}, with V1 being at layer at least d − 153 log6 d, such that the
following holds.

1. For every v0 ∈ V0 and v1 ∈ V1, we have that there is a path in Qdp between 0 and v0

and between 1 and v1.
2. for every i ∈ [d10], we have that vi,0 < vi,1; and,
3. for every i, j ∈ [d10] with i 6= j, we have that CT0(vi,0, 0) ∩ I(vi,1) = ∅.

By our construction of T0, for every u, v ∈ V (T0) we have that I(u) ∩ CT0(v, 0) 6= ∅. This
implies that I(u) \ I(v) 6= ∅. Therefore, for every i, j ∈ [d10] with i 6= j, we have that the
subcubes Q(vi,0, vi,1) and Q(vj,0, vj,1) are disjoint.

For every i ∈ [d10], let H(i) = Q(vi,0, vi,1). By Lemma 4.1, with probability at least 1
d5 ,

there is a path in H(i)p between vi,0 and vi,1, Thus, the probability that there is no path

between 0 and 1 in Qdp is at most 1−(1−o(1))ζ2
α+
(
1− 1

d5

)d10
= 1−(1−o(1))ζ2

α. Standard
results (see, for example, [9]) implies that there does not exist a path in Qdp from 0 to any
vertex in Llog d with probability at least (1 + o(1))(1− ζα). Similarly, the probability there
is no path from 1 to any vertex in Ld−log d is at least (1 + o(1))(1− ζα). Noting that these
two events are independent, and since the function f(x) = x2 + 2x(1− x) is increasing in
the interval (0, 1), the probability that at least one such path does not exist is at least
(1− ζα)2 +2ζα(1− ζα)−o(1) = (1+o(1))

(
1− ζ2

α

)
. Therefore, P

(
`(Qdp) = d

)
= (1+o(1))ζ2

α.
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The statements for d− 1, d− 2 follow similarly. For d− 1, in Lemma 4.2 we can first
grow T ′0. Conditioned on the event that the vertex 0 ‘percolates’ we have that whp
there exists a tree T ′0 that satisfies the parts of items 1, 2, and 3 that concern T ′0 in the
statement in Lemma 4.2, call this event A0. Then we continue and grow T ′1 using the
Tree Construction algorithm with the following adjustment. To the first level of T ′1, in
addition to the neighbours of 1 in Qdp, we add log d random vertices that lie above T ′0. It
follows that with this small adjustment, conditioned on A0, the statement of Lemma 4.2
is satisfied whp. The rest of the arguments follow in an identical manner. We then
obtain whp an increasing path of length d that may end at one of the log d added edges.
This corresponds to the existence, whp, of an increasing path of length d− 1 in Qdp. By
symmetry, we get that conditioned on at least one of the vertices 0 or 1 percolating,
`(Qdp) ≥ d − 1 whp. Thus `(Qdp) ≥ d − 1 with probability 1 − (1 + o(1))(1 − ζa)2. As
Pr(`(Qdp) = d) = (1 + o(1))ζ2

a we have that Pr(`(Qdp) = d − 1) = (1 + o(1))2ζa(1 − ζa). As
for d− 2, we can grow both T ′0 and T ′1 by adding to each of them, at their first level, log d

extra random vertices. This gives that whp Qdp contains an increasing path of length at
least d − 2. In extension, the probability that a longest increasing path has length at
least d− 2 is (1 + o(1))(1− ζa)2.
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