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Abstract

Many chemical and physical properties of materials are determined by the material’s shape,
for example the size of its pores and the width of its tunnels. This makes materials science
a prime application area for geometrical and topological methods. Nevertheless many
methods in topological data analysis have not been satisfyingly extended to the needs of
materials science. This thesis provides new methods and new mathematical theorems
targeted at those specific needs by answering four different research questions. While the
motivation for each of the research questions arises from materials science, the methods
are versatile and can be applied in different areas as well.

The first research question is concerned with image data, for example a three-dimensional
computed tomography (CT) scan of a material, like sand or stone. There are two commonly
used topologies for digital images and depending on the application either of them might be
required. However, software for computing the topological data analysis method persistence
homology, usually supports only one of the two topologies. We answer the question how to
compute persistent homology of an image with respect to one of the two topologies using
software that is intended for the other topology.

The second research question is concerned with image data as well, and asks how much
of the topological information of an image is lost when the resolution is coarsened. As
computer tomography scanners are more expensive the higher the resolution, it is an
important question in materials science to know which resolution is enough to get satisfying
persistent homology. We give theoretical bounds on the information loss based on different
geometrical properties of the object to be scanned. In addition, we conduct experiments on
sand and stone CT image data.

The third research question is motivated by comparing crystalline materials efficiently. As
the atoms within a crystal repeat periodically, crystalline materials are either modeled by
unmanageable infinite periodic point sets, or by one of their fundamental domains, which is
unstable under perturbation. Therefore a fingerprint of crystalline materials is needed, with
appropriate properties such that comparing the crystals can be eased by comparing the
fingerprints instead. We define the density fingerprint and prove the necessary properties.

The fourth research question is motivated by studying the hole-structure or connectedness,
i.e. persistent homology or merge trees, of crystalline materials. A common way to deal
with periodicity is to take a fundamental domain and identify opposite boundaries to form a
torus. However, computing persistent homology or merge trees on that torus loses some
of the information materials scientists are interested in and is additionally not stable under
certain noise. We therefore decorate the merge tree stemming from the torus with additional
information describing the density and growth rate of the periodic copies of a component
within a growing spherical window. We prove all desired properties, like stability and efficient
computability.
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CHAPTER 1
Introduction

This thesis provides several new geometrical and topological methods tailored towards the
needs of materials science applications, which will hopefully in the future lead to new insights
in materials science. Physical and chemical properties of materials are often determined
by the shape of the material. Hence, geometry and topology, the two mathematical fields
of shape, are particularly suitable for studying materials. However, some of the existing
geometrical and topological methods do not take into account the particularities of materials
science applications. Therefore, this thesis provides new methods to overcome these
limitations.

Topological Data Analysis (TDA), the study of shape and in particular holes, has proven
useful in numerous applications [DSG07, PC14, HNH+16, RNS+17]. A particularly popular
TDA method is persistent homology, which measures the hole-structure of an object at
different length scales. This is achieved by deciding how the object should grow (a so-called
filter function assigns every part of the growing object the time when it is being added),
and then tracking the appearance and disappearance of every hole and every connected
component in this sequence of different states in the growth process. The hole-structure
of an object can reveal its functional properties. For example, the tunnel-shaped hole of
Gramicidin proteins in the membrane of a biological cell are responsible for channeling ions
in and out of the cell [EÖ19]. In addition, the hole-structure of an object can be seen as a
descriptor carrying information about shape, which can be used to distinguish it from other
objects, even in situations where the holes are not the focus of attention. In applications
spanning from medical sciences [ARC14, CSMR+23] to cosmology [PEv+16, PAB+19],
computing the hole-structure of data and potentially passing the output to a machine
learning model has led to relevant insights.

In particular, TDA has established itself as a suitable method to gain insight into materials
science [RWS11, HNH+16, LBD+17, KHM20]. This is because physical and chemical
properties of materials are often determined by the shape of the material, for example by
the size of pores or the width of tunnels through the material. For example, the ability of
nanoporous materials to adsorb methane depends on the shape and size of the pores
[LBD+17, KHM20]. As materials science is such a promising application area for TDA
methods, it is important to tailor TDA methods to the needs of these applications.

However, there has not yet been enough attention on solving the problems encountered
when trying to apply TDA methods to materials science data. The disciplines materials
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1. INTRODUCTION

science and TDA are far enough removed so that most TDA experts are not aware of all
the problems materials scientists face when trying to use TDA methods on their data. In
spite of many successful applications, there are still unsolved problems, some of which are
addressed in this thesis. The problems arise from a variety of different materials science
applications, from studying buckets of sand on the level of sand grains to studying crystalline
materials on the level of atoms. Each of these applications faces its own problems that need
to be addressed by providing new TDA theory.

This thesis provides methods to solve four different problems occurring when using TDA
methods on materials science data and other data. For each of the four research questions,
there is one chapter of the thesis devoted to it (Chapters 3–6). The research is motivated by
specific applications in materials science that exhibit these problems. As other disciplines
encounter similar problems, the methods described in this thesis can be applied outside
materials science as well, for example in medical science and cosmology. The data is
usually given either as a digital image or as a point set and both data types are featured in
this thesis.

The first two research questions are concerned with image data. The application that
motivated this research is studying physical properties of porous materials, like the rate
of fluid flow through the material. For this micro-CT (micro Computed Tomography) x-ray
scanners are used to produce a three-dimensional high-resolution image of the material.
As the material typically consists of two phases, solid grains and between them pores
filled by fluid, the image is segmented into a binary image [WS13]. Taking sublevel sets of
the (two-sided) Euclidean distance transform of that image corresponds to shrinking and
enlarging the pore space [RWS11, DRS14]. Hence, its persistence homology describes
size, shape, and connectivity of the pores, which are known to determine physical properties
such as permeability and trapping capacity [HHA+13, HRS19]. In addition, the methods
presented could be used to analyze other images, for example medical CT images.

In order to topologically study digital images, the first question necessary to answer is
how the building blocks of an image—called pixels for 2-dimensional images and voxels in
general dimension—are supposed to connect to each other, in other words, which digital
topology to choose.

Research Question 1: Which Digital Topology for Image
Data?

As there are different choices which digital topology to use for image data, different TDA
software developers choose differently. We show how to use software implemented using
one topology in applications where another digital topology is needed, with hardly any extra
effort. That such a result exists, might not be surprising, but there are some important
details needing careful consideration.

For digital images, there is no canonical topology, instead it is necessary to choose one of
several digital topologies depending on the application. Two of the most-commonly used
digital topologies are called indirect and direct adjacency. For 2-dimensional images, the
indirect adjacency is known as 8-connectivity and direct adjacency as 4-connectivity. This is
because in indirect adjacency, each voxel of the foreground has 3𝑑 − 1 neighbors (including
diagonal ones), whereas in direct adjacency, it is has only the 2𝑑 direct neighbors. The
difference becomes visible when there is a thin diagonal black line on white background and
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a thin diagonal white line on black background, see Figure 1.1. Indirect adjacency considers
the thin black line connected, while breaking the thin white line into many disconnected
pieces. In other words it favors connectivity of the black foreground. Direct adjacency favors
connectivity of the white background: the thin white line stays connected, but the thin black
line breaks into disconnected pieces. Hence, in applications where thin dark features on
light background are more important, indirect adjacency should be used. Whereas direct
adjacency keeps better track of thin light features on dark background, or in other words,
thin light cracks between dark parts of the image.

a)

b) c)

Figure 1.1: a) a digital image with a thin black and a thin white line. b) Indirect adjacency:
The cubical complex constructed from the image using the T-construction yields indirect
adjacency. The black line stays connected, the white line gets broken apart and thus does
not separate the two black triangles. c) Direct adjacency: The cubical complex constructed
from the image using the V-construction yields direct adjacency. The black line gets broken
apart in six disconnected dots, while the white line separates the two black triangles.

When working with indirect or direct adjacency, note that it is not possible to choose the same
topology for the foreground and background. The diagonal connections of the foreground in
indirect adjacency automatically block diagonal connections in the complement, and thus
cause the background to be connected via direct adjacency. Similarly, when using direct
topology for the foreground, the lack of diagonal connections, causes diagonal connections
in the complement so that the background is connected via indirect topology.

The image itself, an array of grey values, does not have a topology. Instead, we choose
the topology by choosing how to represent the image as a cubical complex. A specific
construction that regards voxels as top-dimensional cubical cells—we call it T-construction—
yields the indirect adjacency topology. Whereas another construction that regards voxels as
vertices—we call it V-construction—yields the direct adjacency topology.

However, when designing a persistent homology algorithm for image data, the software
developer has to decide for a digital topology without knowing for which applications the
software will later be used. Once this choice is made, it is not easy to change the imple-
mentation to use another digital topology. This is because different digital topologies require
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using different cubical complex constructions. For this reason, software with certain advan-
tages is currently only available for one digital topology. For example, while the software
cubicle [Wag18, Wag23], which uses indirect topology, can compute persistent homology
of particularly large images (e.g., processing several billions of voxels on a regular laptop)
using a streaming approach, no such software seems to exist for direct topology. Contrarily,
the software diamorse [DFR15, RWS11, DRS15], which has the advantage of saving time
by omitting persistence pairs of low persistence, uses direct adjacency only. The question
arises: How to use the software of choice with its unique advantages if its digital topology
does not fit a given application?

The goal is to describe how software intended for one digital topology can be used to
produce results for the opposite one. The gist of the idea here is to flip the grey values
of the image, so that the foreground becomes the background and vice versa. Hence, a
software that favors connectivity of the background of the flipped image, favors connectivity
of the foreground of the original image. It is not surprising that there is some kind of
correspondence between the persistent homology of the foreground and the background,
because Alexander duality [Ale15, Hat02] provides a correspondence between the homology
of a set (in our case the foreground of an image) and the homology of its complement (the
background of the image).

Note that there are three relevant details that need to be taken care of. Firstly, when stating
the duality between the persistent homology of the original image and the flipped image,
it is important that opposite (not same) digital topologies are used for the two images.
Secondly, Alexander duality is usually stated between a set and its complement on the
sphere, whereas we would like to take the complement within the image domain, a rectangle.
Thirdly, there is a dimension shift between finite and infinite lifetime persistence pairs; see
Theorem 3.1.4. All three of these details are sometimes overlooked, leading to wrong claims
in the literature.

In Chapter 3, we describe in detail how software intended for one digital topology can be
used to produce results for the other. As we rigorously prove our claims, it is certain that we
took all the necessary details into account. While the result is not particularly surprising, we
believe it is important that we provide this resource for other scientists, so that they do not
need to reinvent the wheel every time, potentially overlooking the important details.

For proving our theorems, we chose a general approach, first proving the relationship
between dual filtrations in general in Section 3.1. This is followed by Sections 3.2, 3.3, and
3.4, where we prove how images can be modified to fit this setting. The general result can
be used in different settings as well, for example the filtration of (weighted) Alpha complexes
[Ede93] is dual to a filtration of the (weighted) Voronoi tessellation, describing the homology
of the complements of shrinking balls.

Research Question 2: Which Resolution for Image Data?

Continuing with the image setting, apart from choosing a digital topology, a resolution needs
to be chosen. Micro-CT scanners are more expensive the higher the resolution. Hence,
Research Question 2 asks how high the resolution needs to be to approximate topological
information satisfyingly.

For this we distinguish between two models. In the first, easier model, we approximate a
function f : R𝑑 → R by a grayscale digital image consisting of voxels, which are cubes of
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size 𝑟𝑑 . The gray value of a voxel is the average of the function f over the cube. We chose
indirect adjacency for the image to compute its persistent homology and compare it to the
persistent homology of the original function f. For this, we use a standard distance between
persistence diagrams, the bottleneck distance. In Corollary 4.2.3, not surprisingly, we prove
that when f is 𝐿-Lipschitz continuous, the bottleneck distance is bound by 𝐿𝑟

√
𝑑. In other

words, the bound is linear in the voxel length 𝑟, meaning simply the smaller the voxel length,
the better the approximation of the topology.

The more interesting model is the second. We assume there is an object 𝑋 ⊆ R𝑑 , approxi-
mated by a binary image 𝑋 (𝑟, 𝑡). In order to get information about the hole-structure of the
object at different length scales, we would like to use persistent homology of the (two-sided)
Euclidean distance transform of the object 𝑋. However, in applications, 𝑋 is not available,
only its approximation 𝑋 (𝑟, 𝑡). Hence, we compute persistent homology of the discrete
Euclidean distance transform of the image 𝑋 (𝑟, 𝑡), and bound its bottleneck distance to the
persistent homology of the (continuous) Euclidean distance transform of the set 𝑋. Note
that this setting is different from the first model: If 𝑟 is chosen large enough that a small
connected component or hole of 𝑋 is not captured by 𝑋 (𝑟, 𝑡), the distance transforms will
be vastly different, leading to bottleneck distances orders of magnitude larger than the voxel
length.

For the second model, we give theoretical bounds and experimental results. Our three
theoretical bounds are based on three different geometric characteristics of the object 𝑋.
The bound of Corollary 4.3.9 is based on the reach of the boundary of 𝑋 , measuring how far
the object can be shrunk or enlarged before two of its fronts meet [Blu67]. Theorem 4.3.1
is based on a geometric characteristic, introduced by us: the leash of 𝑋 with respect to a
certain radius—in our setting the diagonal

√
𝑑𝑟 of the pixel. It measures how long the leash

of a dog would need to be if attached to a ball of radius
√
𝑑𝑟 so that the dog can visit all

parts of the set 𝑋 while the ball needs to be fully inside 𝑋. The geometric characteristic of
Theorem 4.3.12 compares how far 𝑋 (𝑟, 𝑡) is from the two most extreme ways of thresholding:
𝑋 (𝑟, 𝑡) consists of the voxels which are covered more than 50 per cent by 𝑋, and the two
extreme versions would be allowing only those voxels covered 100 per cent by 𝑋 or all
voxels that are covered more than 0 per cent by 𝑋.

As this research is motivated by studying buckets of sand or stone, where those three
geometric characteristics are often not known, we provide a numerical case study of micro-
CT images of such porous materials, segmented into two phases, solid and void. For this,
we consider the given high-resolution binary image as ground truth, and track how the
bottleneck distance to the ground truth changes when the resolution is being reduced. In
addition, we illustrate our analysis methods on a simple synthetic example. Theorem 4.3.1
and the synthetic examples might suggest that as the resolution decreases, components and
holes are being lost in 𝑋 (𝑟, 𝑡) at different length-scales of the material, leading to several
sudden increases in the leash and thus in the bottleneck distance. This would lead to
plateaus between two such increases when plotting the bottleneck distances to the highest
resolution image. The lowest resolution within a plateau might be a good compromise
between cost and accuracy, because increasing the resolution more only provides a small
improvement in accuracy. However, in our analysis of the given micro-CT images these
plateaus are not as pronounced and instead seem to vanish in noise.
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Research Question 3: Finding a Fingerprint for Periodic
Point Data

In Crystal Structure Prediction (CSP), materials scientists try to simulate which possible
different crystalline materials a certain molecule can form. Crystalline materials are either
periodic or quasi-periodic, but in this thesis, we focus on the more common periodic setting,
meaning that the set of atoms in the crystal is translation invariant under a full-dimensional
lattice (the integer linear combinations of a basis of R3). With supercomputers, materials
scientists in CSP choose a so-called unit cell (a parallelepiped) with periodic boundary
conditions, insert several copies of the molecule, and simulate how the forces on the
atoms move the molecules until they converge into a periodic configuration. Repeating this
experiment for millions of different unit cells and starting positions of the molecules, they
need to find out which few of these configurations have potential to be stable enough in
practice to produce this crystal in a laboratory.

Obstacles in this endeavor are the numerous duplicates or near-duplicates in the millions of
simulations. For example, if a simulation has created atom positions 𝑀 inside a certain unit
cell, then a different simulation starting with two copies of that unit cell next to each other
and twice as many molecules might converge to two copies of 𝑀 (or a slight perturbation
thereof) inside the twice as large unit cell. Note that these simulations represent the same
crystal because periodically repeating either of them yields the same periodic point set (or a
slight perturbation thereof). Hence, supercomputing time is wasted if both simulations are
individually tested for their potential as stable crystals.

Motivated by this application, we introduce the density fingerprint of a periodic point set in
R3 to facilitate fast comparison between crystalline materials by comparing their density
fingerprints instead. The density fingerprint of a periodic point set 𝐴 is the collection of 𝑘-th
density functions for all non-negative integers 𝑘 . The 𝑘-th density function maps a positive
radius 𝑟 to the proportion of the volume of the regions of R3 covered by exactly 𝑘 balls
around the points of 𝐴. For the comparison between fingerprints to give information about
the comparison between crystals, we need certain properties to hold, which we prove:

• Invariance: The idea is that the fingerprint of a crystal should always be the same,
no matter how the crystal is rotated or translated. Indeed, the density fingerprint is
invariant under all isometries of R3 which also includes reflections; see Lemma 5.1.2.

• Lipschitz continuity: In order to avoid false negatives, we need to be certain that when
the distance between fingerprints is large, the distance between the corresponding
crystals is also large. Indeed, the density fingerprint map is Lipschitz continuous. The
Lipschitz constant depends on the smallest distance between points and the largest
void between points; see Theorem 5.2.2.

• Generic Completeness: We consider false positives as less problematic than false
negatives, but nevertheless want to have an informative fingerprint that hardly ever
maps two different crystals to the same fingerprint. Indeed, we prove that outside a
measure zero subset of the space of periodic point sets, non-isometric periodic point
sets never have the same density fingerprint; see Theorem 5.3.1. While this does not
prove anything inside the measure zero subset, so far there is no known example of
non-isometric crystals with the same density fingerprint, apart from an example in
dimension one that we did not manage to extend to higher dimensions and thus it
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seems irrelevant given that for applications crystals in three dimensions matter, not
one.

• Efficient Computability: While theoretically the conditions above could be strengthened,
compromises need to be made to achieve efficient computability. Indeed, the first 𝑘 +1
density functions of the density fingerprint of a periodic point set can be evaluated for
a constant number of radii, in time O(𝑚𝑘3), where m is the number of points per unit
cell; see Section 5.4.3. This opens the question how many density functions need to
be computed to get enough distinguishing power, which we approach by providing a
lower bound in Lemma 5.3.3.

Research Question 4: Extending Persistent Homology to
the Periodic Setting

Continuing with the periodic setting, we focus on computing the hole-structure of crystals or
other materials that are simulated as periodic. The hole-structure is crucial for estimating
properties of the material, like conductivity (which is relevant in battery research [CDS+23])
or the ability to adsorb methane molecules or other green-house gases [LBD+17, KHM20].
The shape and size of tunnels and pores (which are holes of dimension 1 and 2) indicates
whether Lithium ions can tunnel through the battery or whether methane or carbon-dioxide
molecules can be captured in pores. Note that by regarding the complement of the material,
i.e. the space in which the Lithium ions or methane molecules can roam around, both
questions can be phrased via connected components (which are holes of dimension 0).
Indeed, in battery research we desire connections between the anode and the cathode
within the complement of the material, corresponding to paths that a Lithium ion can take.
When wanting to trap carbon-dioxide molecules, it seems promising to study connected
components of the complement that become connected to the boundary for a certain stage
in the growth process.

Ideally, we would want to compute persistent homology of all dimensions of a periodic filter
function of the periodic material. However, the infinitely many repetitions in a periodic filter
cause the filter to lack a requirement (tameness) for the definition of persistent homology.
An alternative is taking the quotient with respect to the periodic repetitions and working on
the resulting quotient complex on the torus. However, this is neither stable under certain
perturbations nor does it provide the full information; see the Related Work Section in
Chapter 6. While it is thus not clear how to satisfyingly define persistent homology for holes
of arbitrary dimension, the 0-dimensional case is easier. The merge tree, which tracks
which components merge with each other at which time in the growth process, is defined
also for periodic filters, in spite of not being tame. However, merge trees of periodic filters
consists of infinitely many branches, making them impractical.

We introduce the periodic merge tree (see Definition 6.1.4), which compresses the infinite
merge tree into a finite tree, by removing redundancies, while keeping track of how many
branches of the merge tree have been compressed into one. When finitely many branches
get compressed into one, we label the compressed branch by that finite number. In the more
common infinite case, we label the compressed branch by what we call a shadow monomial,
giving the density and growth rate of the infinitely many components (corresponding to the
branches) seen within a spherical window with growing radius.
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While this description uses the infinite merge tree, our algorithm computing the periodic
merge tree efficiently performs the computations within only a small finite fundamental
domain of the periodic filter. This leads to a running time that is log-linear in the number of
edges and vertices per fundamental domain; see Theorem 6.2.4.

We define a pseudo-distance (see Definition 6.3.4) between equivalence classes of periodic
merge trees, and show stability with respect to that pseudo-distance (see Theorem 6.3.7). As
the pseudo-distance is hard to compute in practice, we introduce a second descriptor derived
from the periodic merge tree, the periodic 0-th persistence barcode (see Section 6.4.1), with
a distance that is easier to compute (see Definition 6.4.1). We prove that this descriptor is
stable as well (see Theorem 6.4.6) and can easily be computed from the periodic merge
tree.

Our methods can be applied to any periodic filter in any dimension. The most common ways
to derive a periodic filter from different periodic data types are:

• (Weighted) Alpha filtrations of periodic point sets: Modeling each atom of a periodic
material as a point or weighted point with different weights for different atom types
yields a (weighted) periodic point set. The (weighted) Delaunay mosaic and filter
of that (weighted) periodic point set are periodic as well. The sublevel sets of the
(weighted) Delaunay filter are called (weighted) Alpha complexes and have the same
persistent homology and merge tree as the union of growing balls around the points.

• Periodic digital images or piecewise constant functions: When simulating periodic
functions, like the electron density of a periodic material, it can be useful to discretize
space into voxels, and model the function as piecewise constant on the voxels. The
result is a periodic grayscale image, which can be the input filter for our methods.

• Piecewise-linear or smooth periodic functions: Instead of modeling a function as
piecewise constant, we can model it as piecewise linear or smooth. We can construct
a graph with a filter, consisting of the minima and saddle points together with their
function values. As they correspond to changes of the connected components of the
sublevel sets, the periodic merge tree of this filter tracks the connected components
of the sublevel sets of the original function.

Additionally to periodic structures, like crystals, these methods can be applied to structures
that are not periodic, but simulated with periodic boundary conditions. Molecular dynamics
simulations of aperiodic materials, like glass, often use periodic boundary conditions to avoid
boundary effects at the boundary of the simulated cube [CDS+23]. Similarly, cosmological
simulations of the universe use periodic boundaries [ABL+13]. The trick here is that an
infinite periodic structure does not have any boundary and thus no boundary effects. If
the cube is chosen large enough, the simulation is locally realistic in every point, while
globally the assumption of periodicity is of course not realistic. Nevertheless, studying global
behaviour of these periodic simulations can be meaningful. For example, when the cube
size is large enough, the periodic simulation approximates the aperiodic material well when
it comes to the percolation threshold (i.e. the largest radius of a ball that can tunnel from
one side of the material to the opposite side) [NZ01]. Note that the percolation threshold
can be read off the periodic merge tree of the filter that models the complements of the
shrinking balls around the atoms, namely as the first so-called catenation event.
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1.1. Connections Between Research Questions

1.1 Connections Between Research Questions

On the method side, our solutions to Research Questions 1, 3, and 4 have in common that
we remove unwanted boundary effects. In Research Question 1, the two cubical complex
constructions corresponding to the two different digital topologies are dual to each other,
except at the boundary. We remove this unwanted boundary effect by adding additional
cells at the boundaries to make them perfectly dual. Later we need to subtract the effect
of these additional cells on the persistent homology. In Research Question 4, the naïve
approach of computing persistent homology of a large enough chunk of the periodically
repeated data would yield unwanted boundary effects. The method we suggest instead,
the periodic merge tree, is carefully constructed to evade boundary effects. Similarly, in
Research Question 3, boundary effects would violate the invariance property. The solution
here is to use a descriptor that does not have boundary effects, namely the volume of certain
intersections of balls, instead of a descriptor like homology that would have boundary effects.
This theme of evading boundary effects will therefore be a red thread through the thesis.

On the application side, all four research questions have in common that they arose from
situations where existing topological data analysis methods were not enough to tackle
the various materials science problems. Different materials science applications look at
materials on a different scale. For example, the application motivating Research Questions
1 and 2 studies the hole-structure of micro-CT images of buckets of sand or stone on
the length scale of individual sand grains. Whereas in Research Question 3, we study
the material on the length scale of individual atoms. The method presented in Research
Question 4, can be applied to any length scale, and to both image data (typically appearing
for large length scales, like in Research Questions 1 and 2) and point cloud data (for
example modeling every atom as a point, like in Research Question 3).

Research Questions 3 and 4 can be combined fruitfully in the following way. In Research
Question 3, to avoid boundary effects, we had to use the simple descriptor measuring
volumes of intersections of balls, instead of more sophisticated descriptors, like persistent
homology. This comes with the disadvantage that the information necessary to reconstruct
the point set from its fingerprint is not well accessible inside the fingerprint. We prove in
Theorem 5.3.1 that the changes of derivative of the density functions carry the necessary
information to reconstruct almost all periodic point sets from their fingerprints. However,
since in practice we do not compute a closed form of the function but instead only sample
the function at many discrete points, the changes of derivatives are not accessible in this
discrete version of the density fingerprint. It would be more straight forward to directly only
track the moments where the derivative of the density function changes, instead of tracking
all the many discrete moments between changes. Persistent homology of a construction
called the order-k Delaunay mosaics of a periodic point set aims at tracking exactly those
discrete changes. However, persistent homology contrary to the density fingerprint has
boundary effects if applied naïvly. We therefore need to find a version of persistent homology
without boundary effects for periodic data. A first step towards this is to solve the case of
0-dimensional persistent homology, i.e. Research Question 4.

A connection between Research Questions 1, 2, and 4 is the usage of image data as an
input for persistent homology. The method suggested in Research Question 4 can handle a
variety of periodic input data, in particular periodic images. Image data (also called cubical
data), does not necessarily need to stem from an image per se, but also occurs in situations
where a function is being approximated by a piecewise constant function, using cubes as

9
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pieces. For example, the electron density of a material, which is the probability distribution
of the locations of electrons, is used as an informative descriptor of a material for estimating
material properties [TAS+23]. To approximate it, values are simulated along a grid, and the
resulting array of numbers can be viewed as an image. For a periodic material, the electron
density is simulated on the torus, yielding an image whose opposite boundaries should be
thought of as adjacent. Such an image can be the input for Research Questions 1, 2, or 4.
In the case of such an image on the torus, Research Question 1, simplifies because the
two cubical complex constructions are already perfectly dual to each other on the torus,
without the need of adding cells at the boundary, because the torus does not have any
boundary. However, the results of Research Question 1 do not apply to the infinite image
consisting of periodic copies of the original image, i.e., the setting of Research Question 4.
This is due to the assumption of finite complexes in the theorem about persistence of
dual filtrations (Theorem 3.1.4). Indeed, in the infinite periodic setting in R2, a death in
0-homology can be dual to a death in 0-homology (see Figure 7.1 in Chapter 7), which is
different to Theorem 3.1.4, where deaths can only be dual to births. Research Question 2
stays very similar in the periodic setting and can be combined with Research Question 4:
First choosing the resolution using the bounds provided in Chapter 4 and then computing
the periodic 0-th persistence barcode from Chapter 6.

10



CHAPTER 2
Mathematical Background

This chapter combines the background sections of [BGH+22, HTS+21b, EHK+21, EH24].

2.1 Cell Complexes and Filtrations

To allow computers to handle complicated shapes, we break the shape into building blocks.
Those building blocks could be simplices, cubes, or more generally, cells. We give an
unnecessarily general definition, given that we will restrict ourselves in Chapters 3 and 4 to
regular CW-complexes or even cubical complexes and in Chapter 6 to graphs (with possible
self-loops and possibly multiple edges between the same pair of vertices). The following
definition takes Hatcher’s definition of a Δ-complex [Hat02, p.103] (which is more general
than a simplicial complex, for example by allowing the two endpoints of an edge to coincide),
but replaces simplices by convex polytopes (to also include regular CW-complexes, in
particular cubical complexes).

A cell complex, 𝐾, is a topological space |𝐾 | (for example a subset of R𝑑) equipped with
continuous maps 𝜏𝑖 : 𝑃𝑖 → |𝐾 |, 𝑖 ∈ 𝐼, where 𝑃𝑖 is a closed convex 𝑝𝑖-dimensional polytope,
and 𝐼 is an index set. We require the following.

• We call the image of a map 𝜏𝑖 : 𝑃𝑖 → |𝐾 |, a (closed) 𝑝𝑖-dimensional cell and the
image of its restriction to the interior of the polytope, an open 𝑝𝑖-dimensional cell.

• The restriction of each map 𝜏𝑖 to the interior of the polytope is a homeomorphism onto
its image (the open 𝑝𝑖-dimensional cell).

• Every point of |𝐾 | is in exactly one open cell.

• For each 𝑖 ∈ 𝐼, every facet of 𝑃𝑖 can be identified with a 𝑃 𝑗 with 𝑗 ∈ 𝐼 such that
𝑝 𝑗 = 𝑝𝑖 − 1 and 𝜏𝑖 restricted to that facet is 𝜏𝑗 . If 𝜏𝑗 appears in this context an
odd number of times for 𝜏𝑖, we call the cell corresponding to 𝜏𝑗 a face of the cell
corresponding to 𝜏𝑖.

• A set in 𝐴 ⊆ |𝐾 | is open if and only if the preimage 𝜏−1
𝑖
(𝐴) is open in 𝑃𝑖 for every 𝑖 ∈ 𝐼.

Depending on the context, we treat 𝐾 as a combinatorial object (a collection of cells with
face relations), or as a geometric object (the set |𝐾 | of points in the union of these cells,

11



2. MATHEMATICAL BACKGROUND

dropping the vertical lines for convenience). The dimension dim(𝐾) of the cell complex 𝐾 is
the maximum dimension of cells in 𝐾. The (closed or open) 0-dimensional cells, which are
points, are referred to as the vertices, and the open 1-dimensional cells as the edges of 𝐾.

Note that this definition allows for infinitely many cells but in this thesis, 𝐾 will always
be either finite (Chapters 3 and 4) or locally finite (Chapter 6). In addition, this definition
allows, for example, the two endpoints of an edge to coincide. When we want to avoid such
situations, we restrict ourselves to regular cell complexes. A cell complex is regular if the
closure of each 𝑘-cell is homeomorphic to the closed 𝑘-dimensional ball 𝐷𝑘 . In Chapters 3
and 4, all cell complex will be assumed to be regular in addition to finite.

Let 𝐾 be a cell complex with cells 𝜏 and 𝜎. If 𝜏 is a face of 𝜎, then 𝜎 is a coface of 𝜏,
written as 𝜏 ⪯ 𝜎. The codimension of a pair of cells 𝜏 ⪯ 𝜎 is the difference in dimension,
dim(𝜎) −dim(𝜏). If 𝜏 is a face of 𝜎 of codimension 1, we call it a facet of 𝜎, and write 𝜏 ◁ 𝜎.
A function 𝑓 : 𝐾 → R on the cells of 𝐾 is monotonic if 𝑓 (𝜎) ≤ 𝑓 (𝜏) whenever 𝜎 ⪯ 𝜏.

Definition 2.1.1. A filtered (cell) complex (𝐾, 𝑓 ) is a cell complex 𝐾 together with a
monotonic function 𝑓 : 𝐾 → R on the cells. We call 𝑓 a filter on 𝐾.

For finite cell complexes 𝐾, a linear ordering 𝜎0, 𝜎1, . . . , 𝜎𝑛 of the cells in 𝐾, such that
𝜎𝑖 ⪯ 𝜎𝑗 implies 𝑖 ≤ 𝑗 , is compatible with the filter 𝑓 when

𝑓 (𝜎0) ≤ 𝑓 (𝜎1) ≤ . . . ≤ 𝑓 (𝜎𝑛).

Note that the monotonicity condition implies that, for 𝑟 ∈ R, the sublevel set

𝐾𝑟 := 𝑓 −1(−∞, 𝑟]
is a subcomplex of 𝐾. The nested sequence of sublevel sets is called a filtration. The value
𝑓 (𝜎) determines when a cell 𝜎 enters the filtration. The definition of a compatible ordering
also implies that each step in the sequence

∅ ⊂ { 𝜎0 } ⊂ { 𝜎0, 𝜎1 } ⊂ · · · ⊂ { 𝜎0, 𝜎1, . . . , 𝜎𝑛 } = 𝐾
is a subcomplex, and every sublevel set 𝐾𝑟 = 𝑓 −1(−∞, 𝑟] appears somewhere in this se-
quence: 𝑓 −1(−∞, 𝑟] = 𝑓 −1(−∞, 𝑓 (𝜎𝑖)] = { 𝜎0, 𝜎1, . . . , 𝜎𝑖 } for 𝑖 = max{ 𝑖 = 0, . . . , 𝑛 | 𝑓 (𝜎𝑖)
≤ 𝑟 }.

2.1.1 Dual Cell Complexes and Filtrations

Definition 2.1.2. The 𝑑-dimensional cell complexes 𝐾 and 𝐾∗ are combinatorially dual if
there is a bijection 𝐾 → 𝐾∗, 𝜎 ↦→ 𝜎∗ between the sets of cells such that

1. (Dimension Reversal) dim(𝜎∗) = 𝑑 − dim𝜎 for all 𝜎 ∈ 𝐾.

2. (Face Reversal) 𝜎 ⪯ 𝜏 ⇐⇒ 𝜏∗ ⪯ 𝜎∗ for all 𝜎, 𝜏 ∈ 𝐾.

Definition 2.1.3. Two filtered complexes (𝐾, 𝑓 ) and (𝐾∗, 𝑔) are dual filtered complexes
if 𝐾 and 𝐾∗ are combinatorially dual to one another and if there exists a linear ordering
𝜎0, 𝜎1, . . . , 𝜎𝑛 of the cells in 𝐾 that is compatible with 𝑓 and its dual ordering 𝜎∗𝑛 , 𝜎

∗
𝑛−1, . . . , 𝜎

∗
0

is compatible with 𝑔.

Proposition 2.1.4. Let 𝐾 and 𝐾∗ be combinatorially dual. Suppose two filters 𝑓 : 𝐾 → R
and 𝑓 ∗ : 𝐾∗ → R satisfy 𝑓 ∗(𝜎∗) = − 𝑓 (𝜎). Then (𝐾, 𝑓 ) and (𝐾∗, 𝑓 ∗) are dual filtered
complexes.
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2.2. Periodic Setting

2.2 Periodic Setting

Before introducing periodic point sets, we introduce two more general concepts. We recall
that 𝐴 ⊆ R𝑑 is locally finite if any compact subset of R𝑑 contains only finitely many points
of 𝐴. It is a Delone set [DLS98] if there exist 𝑟, 𝑅 > 0 such that every open ball of radius 𝑟
contains at most one point of 𝐴 and every closed ball of radius 𝑅 contains at least one point
of 𝐴. In other words, no two points of 𝐴 can be closer than 2𝑟 and no point of R𝑑 can be
further from 𝐴 than 𝑅. We refer to the largest such 𝑟 as the packing radius and the smallest
such 𝑅 as the covering radius of 𝐴. A Delone set is necessarily infinitely large and its points
are in a sense evenly spread out over the entire Euclidean space.

In Chapters 5 and 6, we are specifically interested in point sets, complexes and filters that
are periodically repeated copies of a finite point set, complex or filter. The natural language
for such a setting is that of lattices in Euclidean space, discussed e.g. in [Cas97, Zhi15]. Let
𝑢1, 𝑢2, . . . , 𝑢𝑝 be linearly independent vectors in R𝑑. The set of all integer combinations is
the lattice spanned by these vectors:

Λ = Λ(𝑢1, 𝑢2, . . . , 𝑢𝑝) =
{︁
𝜆1𝑢1 + 𝜆2𝑢2 + . . . + 𝜆𝑝𝑢𝑝 | 𝜆𝑖 ∈ Z for 1 ≤ 𝑖 ≤ 𝑝

}︁
, (2.1)

we call 𝑢1, 𝑢2, . . . , 𝑢𝑝 a basis of Λ and 𝑝 = dimΛ the dimension of the lattice. If 𝑝 = 𝑑, we
call the lattice full and write 𝑈 for the 𝑑 × 𝑑 matrix whose columns are the basis vectors.
The span of the vectors, denoted span(Λ), is the set of all real combinations of the vectors,
which is a 𝑝-dimensional linear subspace of R𝑑. Similarly, the unit cell, denoted Unit𝑈,
of the vectors is the set of real combinations with coefficients in [0, 1). The same lattice
can be spanned by different bases, but the dimension, the span, and the (𝑝-dimensional)
volume of the unit cell are always the same. We write vol𝑝 (Λ) for the latter and note that for
𝑝 = 𝑑, it is the determinant of 𝑈. Assuming the lattice is full, recall that the columns of 𝑈
are the basis vectors. Since𝑈−1𝑈 is the identity matrix, 𝑈−1 maps Λ to the standard integer
lattice, Z𝑑, and 𝑈−1 applied to a lattice vector gives the integer coordinates of that vector
with respect to the basis given by 𝑈.

Given a lattice Λ, a set 𝐴 is Λ-periodic if it is translation invariant under translations of Λ, i.e.
for every 𝑢 ∈ Λ, 𝐴 + 𝑢 = 𝐴. If Λ is full and 𝐴 is additionally locally finite, then 𝐴 is a periodic
point set. As any unit cell of Λ is compact, there are only finitely many points of Λ inside,
and we call that finite point set, a motif 𝑀. The periodic point set 𝐴 can then be written as
the Minkowski sum 𝐴 = 𝑀 + Λ. If Λ is the largest lattice with the property that the periodic
point set 𝐴 is Λ-periodic, then we call any unit cell of Λ primitive. Note that periodic point
sets are Delone sets.

It is important to keep in mind that the basis of a lattice and therefore the primitive unit cell
are not unique. This is illustrated in Figure 2.1, which shows three of the infinitely many
bases of the hexagonal lattice: 𝑎 together with 𝑏 − 𝑎, 𝑏, or 𝑏 + 𝑎. Applying Niggli’s algorithm
for the Niggli reduced cell [Nig28] to this particular lattice, there is an ambiguity between the
bases {𝑎, 𝑏} and {𝑎, 𝑏 − 𝑎}, because the projections of 𝑏 and 𝑏 − 𝑎 onto the line of 𝑎 both
have length 1

2 ∥𝑎∥. The tie can be broken by preferring 𝑏, but this causes a discontinuity in
the construction of the reduced unit cell.

Similarly, for a 𝑑-dimensional lattice Λ, a locally finite complex, 𝐾 ⊆ R𝑑, is Λ-periodic if
𝜎 ∈ 𝐾 and 𝑢 ∈ Λ implies 𝜎 + 𝑢 ∈ 𝐾. And a filter on a Λ-periodic complex 𝐾 is a Λ-periodic
filter, 𝐹 : 𝐾 → R, if it satisfies 𝐹 (𝜎) = 𝐹 (𝜎 + 𝑢) for every 𝜎 ∈ 𝐾 and 𝑢 ∈ Λ.

Periodicity means that information is repeated infinitely often. To avoid infinitely large
descriptors, it can therefore be useful to reduce redundancy by building quotients. The

13



2. MATHEMATICAL BACKGROUND

𝑏 − 𝑎

−𝑎 𝑎

𝑏 𝑏 + 𝑎

Figure 2.1: The bases {𝑎, 𝑏 − 𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏 + 𝑎} of the hexagonal lattice, and the
corresponding unit cells.

quotient, R𝑑/Λ, is obtained by identifying points 𝑥, 𝑦 ∈ R𝑑 whenever 𝑦 − 𝑥 ∈ Λ. This quotient
with topology inherited from the 𝑑-dimensional Euclidean space is usually referred to as
the 𝑑-dimensional torus. Similarly, we can identify cells of 𝐾 if they are translates of each
other by a vector of Λ. The resulting quotient complex, 𝐾/Λ, is a complex on the 𝑑-torus
consisting of finitely many cells because 𝐾 is locally finite and the 𝑑-torus is compact.1

We write 𝐹/Λ : 𝐾/Λ → R for the quotient filter, which is a convenient representation of
𝐹 : 𝐾 → R. Unfortunately, this representation is not unique since, for example, 𝐾 and 𝐹 are
also periodic with respect to 2Λ, or really any sublattice of Λ.

2.2.1 Rigid Motions and Isometries

Important classes of transformations between periodic point sets in R3 are rigid motions
and isometries. Rather than a fixed set in R3, we often consider the class of sets that are
equivalent under a particular type of transformation. For example, a rigid motion is a map
R3 → R3 that is composed of a rotation and a translation. It preserves distances between
pairs of points as well as orientations of ordered triplets of points. An isometry is a rigid
motion possibly composed with a reflection, and so preserves distances but not necessarily
orientations. This is a relevant group of transformations to this thesis as we model crystals
by isometry classes of periodic point sets in Chapter 5.

2.3 Persistent Homology

In this section, we provide a brief outline of the definitions and results of persistent homology.
The reader who is not familiar with the theory of persistent homology should refer to [EH08,
ZC05] for a more comprehensive introduction.

When working with data, standard topological quantities can be highly sensitive to noise and
small geometric fluctuations. Persistent homology addresses this problem by examining
a collection of spaces, indexed by a real variable often representing an increasing length
scale. These spaces are modelled by a cell complex 𝐾 with a filter function 𝑓 : 𝐾 → R
assigning to each cell the scale at which this cell appears.

1Note, however, that even a periodic complex that is simplicial can have a non-simplicial quotient, which
includes the possibilities of more than two edges connecting the same two vertices and an edge connecting a
single vertex back to itself.
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2.3.1 Definition

Given a filtered complex (𝐾, 𝑓 ), we obtain inclusions 𝑓 −1(−∞, 𝑟] → 𝑓 −1(−∞, 𝑠] of sublevel
sets for 𝑟 ≤ 𝑠. Assume 𝑓 is tame, i.e. all sublevel sets have finitely generated homology
groups and there are only finitely many thresholds 𝑟, where the homology groups change.
Applying degree-𝑘 homology with coefficients in Z/2Z to these inclusions yields linear maps
between vector spaces

𝐻𝑘 ( 𝑓 −1(−∞, 𝑟]) → 𝐻𝑘 ( 𝑓 −1(−∞, 𝑠]).

The resulting functor 𝐻𝑘 ( 𝑓 ) : (R,≤) → VecZ/2Z from the poset category (R,≤) to the
category of vector spaces over the field Z/2Z is called a persistence module, for details see
[CDSGO16].

As discussed in [CDSGO16], Gabriel’s Theorem from representation theory implies that the
persistence module 𝐻𝑘 ( 𝑓 ) decomposes into a sum of persistence modules consisting of
Z/2Z for 𝑟 ∈ [𝑏, 𝑑) connected by identity maps, and 0 elsewhere, called interval modules
I[𝑏,𝑑):

𝐻𝑘 ( 𝑓 ) ≅
⨁︂
𝑙∈𝐿

I[𝑏𝑙 ,𝑑𝑙) .

Each interval summand I[𝑏𝑙 ,𝑑𝑙) represents a degree-𝑘 homological feature that is born at
𝑟 = 𝑏𝑙 and dies at 𝑟 = 𝑑𝑙 . Intervals with 𝑑𝑙 = ∞ are called essential and correspond to
features that never die.

The degree-𝑘 persistence diagram of 𝑓 is the multiset

Dgm𝑘 ( 𝑓 ) = { [𝑏𝑙 , 𝑑𝑙) | 𝑙 ∈ 𝐿 }

and we call the pair (𝑏𝑙 , 𝑑𝑙) a (persistence) point in the diagram Dgm𝑘 ( 𝑓 ). We write
[𝑏𝑙 , 𝑑𝑙)𝑘 ∈ Dgm𝑘 ( 𝑓 ) to denote the homological degree of an interval and define the persis-
tence diagram of 𝑓 as the disjoint union over all degrees:

Dgm( 𝑓 ) =
dim(𝐾)⨆︂
𝑘=0

Dgm𝑘 ( 𝑓 ).

Writing DgmF( 𝑓 ) for the multiset of finite intervals with 𝑑𝑙 < ∞, and Dgm∞( 𝑓 ) for the
remaining essential ones, we obtain Dgm( 𝑓 ) = DgmF( 𝑓 ) ⊔ Dgm∞( 𝑓 ).

2.3.2 Computation

To compute the persistence diagram Dgm( 𝑓 ) of a finite filtered complex (𝐾, 𝑓 ), we choose
an ordering 𝜎0, 𝜎1, . . . , 𝜎𝑛 of the cells in 𝐾 that is compatible with 𝑓 . Choosing a compatible
ordering can be viewed as breaking ties between cells 𝜎𝑖 and 𝜎𝑗 with 𝑓 (𝜎𝑖) = 𝑓 (𝜎𝑗 ).
Without breaking the tie, they would appear at the same step in the nested sequence of
sublevel sets

(︁
𝑓 −1(∞, 𝑟]

)︁
𝑟∈R. For the following computations however, we must add exactly

one cell at every step:

∅ ⊂ { 𝜎0 } ⊂ { 𝜎0, 𝜎1 } ⊂ · · · ⊂ { 𝜎0, 𝜎1, . . . , 𝜎𝑛−1 } ⊂ { 𝜎0, 𝜎1, . . . , 𝜎𝑛 } = 𝐾.

When adding the cells one step at a time, a cell of dimension 𝑘 causes either the birth
of a 𝑘-dimensional feature or the death of a (𝑘 − 1)-homology class [DE95], that is, each
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cell is either a birth or a death cell. A pair (𝜎𝑖, 𝜎𝑗 ) of cells where 𝜎𝑗 kills the homological
feature created by 𝜎𝑖 is called a persistence pair. A persistence pair (𝜎𝑖, 𝜎𝑗 ) corresponds
to the interval [ 𝑓 (𝜎𝑖), 𝑓 (𝜎𝑗 )) ∈ DgmF( 𝑓 ). Note that this interval can be empty, namely if
𝑓 (𝜎𝑖) = 𝑓 (𝜎𝑗 ). Empty intervals are usually neglected in the persistence diagram. A birth
cell 𝜎𝑖 with no corresponding death cell is called essential, and corresponds to the essential
interval [ 𝑓 (𝜎𝑖),∞) ∈ Dgm∞( 𝑓 ).

Recall that presentations for the standard homology groups are found by studying the image
and kernel of integer-entry matrices that represent the boundary maps taking oriented
chains of dimension 𝑘 to those of dimension (𝑘 − 1) [Mun84]. In persistent homology, we
work with the Z/2Z total boundary matrix 𝐷, which is defined by 𝐷𝑖, 𝑗 = 1 if 𝜎𝑖 ◁ 𝜎𝑗 and 0
otherwise. Define

𝑟𝐷 (𝑖, 𝑗) = rank𝐷 𝑗

𝑖
− rank𝐷 𝑗−1

𝑖
− rank𝐷 𝑗

𝑖+1 + rank𝐷 𝑗−1
𝑖+1

where 𝐷 𝑗

𝑖
= 𝐷 [𝑖 : 𝑛, 0 : 𝑗] is the lower-left sub-matrix of 𝐷 attained by deleting the first rows

up to 𝑖 − 1 and the last columns starting from 𝑗 + 1. With this we get the persistence pairs
from the following theorem.

Theorem 2.3.1 (Pairing Uniqueness Lemma [CSEM06]). Given a linear ordering of the cells
in a filtered cell complex (𝐾, 𝑓 ), (𝜎𝑖, 𝜎𝑗 ) is a persistence pair if and only if 𝑟𝐷 (𝑖, 𝑗) = 1.

The ranks are usually computed by applying the column reduction algorithm [EH08] to obtain
the reduced matrix 𝑅 and using the property that rank𝐷 𝑗

𝑖
= rank 𝑅 𝑗

𝑖
under the operations of

the algorithm. The persistence pairs can then be read off easily since 𝑟𝑅 (𝑖, 𝑗) = 1 if and
only if the 𝑖th entry of the 𝑗 th column of the reduced matrix is the lowest 1 of this column.
However, in this thesis, we can work directly with 𝑟𝐷 .

Corollary 2.3.2. If 𝑟𝐷 (𝑖, 𝑗) ≠ 1 and 𝑟𝐷 ( 𝑗 , 𝑖) ≠ 1 for all 𝑗 then the cell 𝜎𝑖 is essential.

Proof. The fact that every cell is either a birth or a death cell implies that 𝜎𝑖 must be an
unpaired birth or death cell. However, as every filtration begins as the empty set, there are
no unpaired death cells. □

2.3.3 Bottleneck Distance

Let 𝑓 , 𝑓 ′ be two functions with persistence diagrams Dgm𝑘 ( 𝑓 ) and Dgm𝑘 ( 𝑓 ′). The bottle-
neck distance between Dgm𝑘 ( 𝑓 ) and Dgm𝑘 ( 𝑓 ′) is defined using matchings 𝛾 on persistence
points in the two diagrams,

dB(Dgm𝑘 ( 𝑓 ),Dgm𝑘 ( 𝑓 ′)) = min
𝛾

max
𝑥
∥𝑥 − 𝛾(𝑥)∥∞.

Note that a matching, 𝛾, is permitted to pair any persistence point (𝑏, 𝑑) in either diagram
with any point (𝑐, 𝑐) on the diagonal of the other diagram, i.e. imagine both diagrams to have
infinitely many points on the diagonal additionally to the persistence points. The stability
theorem of persistent homology [CSEH07] now tells us that if 𝑓 and 𝑓 ′ are tame functions
that are point-wise close, then their persistence diagrams are also close:

dB(Dgm𝑘 ( 𝑓 ),Dgm𝑘 ( 𝑓 ′)) ≤ ∥ 𝑓 − 𝑓 ′∥∞.

16



CHAPTER 3
The Persistent Homology of Dual Digital

Image Constructions

This chapter is based on [BGH+22]. Therefore, the CC-BY license of this thesis does not
apply to this chapter, instead the license of the original Springer book chapter applies.
Additionally, an extended abstract of it was published in the Young Researchers Forum of
the Symposium on Computational Geometry [GHM+20].

To compute the persistent homology of a grayscale digital image one needs to build a
simplicial or cubical complex from it. For cubical complexes, the two commonly used
constructions (corresponding to direct and indirect digital adjacencies) can give different
results for the same image. The two constructions are almost dual to each other, and we
use this relationship to extend and modify the cubical complexes to become dual filtered
cell complexes. We derive a general relationship between the persistent homology of
two dual filtered cell complexes, and also establish how various modifications to a filtered
complex change the persistence diagram. Applying these results to images, we derive a
method to transform the persistence diagram computed using one type of cubical complex
into a persistence diagram for the other construction. This means software for computing
persistent homology from images can now be easily adapted to produce results for either of
the two cubical complex constructions without additional low-level code implementation.

Prior work. At its most basic level, the algebraic relationship between the persistent
homology of two dual filtered cell complexes is similar to that between persistent homology
and persistent relative cohomology. The latter corresponds to taking the anti-transpose of the
boundary matrix [DSMVJ11] or equivalently, leaving the boundary matrix as is and applying
the row reduction algorithm instead of the column-reduction algorithm [DSMVJ11, EÖ20].
Lemma 3.1.2 shows that the same relationship applies to the boundary matrices of dual
filtered cell complexes. Therefore, Theorem 3.1.4 can be viewed as a translation of the
known bijection between the persistence pairs of persistent homology and relative persistent
cohomology into the setting of dual filtrations. This theorem is the first step towards
establishing the mapping between persistence diagrams of the T- and the V-construction of
images in Section 3.4. Furthermore, it applies more generally to the persistent homology of
dual filtered cell complexes without using the connection to persistent relative cohomology.

The symmetry theorem of extended persistence diagrams [CSEH09] is also closely related
to our Theorem 3.1.4 and Corollary 3.1.5. Given 𝑋 a manifold without boundary and a
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3. THE PERSISTENT HOMOLOGY OF DUAL DIGITAL IMAGE CONSTRUCTIONS

function 𝑓 : 𝑋 → R, the extended persistent homology sequence starts with a filtration by
sublevel sets 𝑓 −1(−∞, 𝑠] and continues with the relative homology of the pair (𝑋, 𝑓 −1 [𝑟,∞)),
where 𝑠 is an increasing threshold and 𝑟 is a decreasing one. In [CSEH09] the symmetry
theorem follows from a duality result for the extended persistence diagrams of a simplicial
complex 𝐾 whose underlying space is 𝑋 with 𝑓 defined on the vertices of 𝐾. As observed
in [ES12], the cubical complex constructions used in digital image analysis do not satisfy the
duality theorem of extended persistence because the Partition Lemma of [CSEH09] fails for
cubical complexes. The authors of [ES12] overcome this by constructing a simplicial complex
from the digital image that consistently reflects the connectivity of both sub- and super-level
sets, and use this to obtain the expected duality in the extended persistence diagram. In
contrast, we work with the existing widely-implemented cubical complex constructions of
digital images and establish results relating homology sequences of dual filtered complexes
rather than the homology and relative homology sequences of sub- and super-level set
filtrations of a single complex. This permits a simple high-level algorithm to transform
between two regular (not extended) persistence diagrams computed from a digital image.

Outline. Our results are aimed at both pure and applied mathematicians who want to
understand and use the relationship between the persistent homology of dual filtered cell
complexes and particularly the two standard constructions of cubical complexes from digital
images.

Section 3.1 establishes the relationship between persistence diagrams of two dual filtered
cell complexes. In Section 3.2, we describe and formalise the two standard cubical com-
plexes used in topological computations on digital images. We explain how these two
complexes (the T- and V-constructions described in Chapter 1) must be extended and
modified to form dual filtered cell complexes with underlying space homeomorphic to the
𝑑-sphere. The effects these modifications have on persistence diagrams are derived in
Section 3.3. For the investigation of one of these effects we use the long exact sequence
of a filtered pair of cell complexes arising from the category theoretic view of persistence
modules.

The last Section 3.4 states the results for persistence diagrams of digital images and explains
how to compute the persistence diagram of the T-construction by simple manipulation of
a persistence diagram computed using the V-construction, and vice versa. This gives a
practical method for adapting the output from existing software packages that use one or
the other construction to obtain the persistence diagram for the dual construction.

3.1 The Persistent Homology of Dual Filtered Complexes

In this entire chapter we assume all cell complexes to be finite and regular.

Recall again that in standard homology and cohomology the coboundary map is the
adjoint of the boundary map. Hence, given a consistent choice of bases for the chain and
cochain groups, their matrix representations are related simply by taking the transpose.
In [DSMVJ11], another algebraic relationship is established between persistent homology
and persistent relative cohomology, based on the observation that the filtration for relative
cohomology reverses the ordering of cells in the total (co)boundary matrix. The same
reversal of ordering holds for the dual filtered cell complexes defined here, so we obtain a
similar relationship between the persistence diagrams. Our proof of the correspondence
between persistence pairs in dual filtrations uses the matrix rank function and pairing
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uniqueness lemma in a similar way to the combinatorial Helmholtz-Hodge decomposition
of [EÖ20]. Nonetheless, Theorem 3.1.4 interprets the underlying linear algebra in the setting
of dual filtered complexes and only uses the concept of persistent homology without using
the connection to persistent relative cohomology, which makes it more accessible.

For this section suppose (𝐾, 𝑓 ) and (𝐾∗, 𝑔) are dual filtered cell complexes with 𝑛 + 1 cells.
Suppose that a linear ordering 𝜎0, 𝜎1, . . . , 𝜎𝑛 of the cells in 𝐾 is compatible with the filtration
(𝐾, 𝑓 ), and that 𝜎∗𝑛 , 𝜎

∗
𝑛−1, . . . , 𝜎

∗
0 is the dual linear ordering compatible with 𝑔. Let 𝐷 be the

total boundary matrix of 𝐾 and 𝐷∗ be the total boundary matrix of 𝐾∗ with their respective
orderings.

Remark 3.1.1. A useful indexing observation is that 𝜎∗
𝑖

is the (𝑛 − 𝑖)-th cell of the dual
filtration.

We denote by 𝐷⊥ the anti-transpose of the matrix 𝐷, that is the reflection across the minor
diagonal: 𝐷⊥

𝑖, 𝑗
= 𝐷𝑛− 𝑗 ,𝑛−𝑖 . Anti-transposition is also the composition of standard matrix

transposition with a reversal of the order of the columns and of the rows.

Lemma 3.1.2. The matrix 𝐷∗ is the anti-transpose 𝐷⊥ of 𝐷, that is,

𝐷∗𝑖, 𝑗 = 𝐷𝑛− 𝑗 ,𝑛−𝑖 = 𝐷
⊥
𝑖, 𝑗 .

Proof. The equivalences below follow from the definition of 𝐷, of dual cell complexes, and
the above remark.

𝐷𝑛− 𝑗 ,𝑛−𝑖 = 1⇔ 𝜎𝑛− 𝑗 ◁ 𝜎𝑛−𝑖 ⇔ 𝜎∗𝑛−𝑖 ◁ 𝜎∗𝑛− 𝑗 ⇔ 𝐷∗𝑖, 𝑗 = 1.

□

Lemma 3.1.3. The sub-matrices defined in Section 2.3.2 satisfy

(𝐷 𝑗

𝑖
)⊥ = (𝐷⊥)𝑛−𝑖𝑛− 𝑗

and thus
rank 𝐷 𝑗

𝑖
= rank (𝐷⊥)𝑛−𝑖𝑛− 𝑗

and
𝑟𝐷 (𝑖, 𝑗) = 𝑟𝐷⊥ (𝑛 − 𝑗 , 𝑛 − 𝑖).

Proof. The first statement follows from

(𝐷 𝑗

𝑖
)⊥ = (𝐷 [𝑖 : 𝑛, 0 : 𝑗])⊥ = 𝐷⊥ [(𝑛 − 𝑗) : 𝑛, 0 : (𝑛 − 𝑖)] = (𝐷⊥)𝑛−𝑖𝑛− 𝑗 .

The second statement follows because anti-transposition is attained by composing the
rank preserving operations of transposition and row and column permutations. The third
statement follows from the second through:

𝑟𝐷 (𝑖, 𝑗) = rank𝐷 𝑗

𝑖
− rank𝐷 𝑗−1

𝑖
− rank𝐷 𝑗

𝑖+1 + rank𝐷 𝑗−1
𝑖+1

= rank(𝐷⊥)𝑛−𝑖𝑛− 𝑗 − rank(𝐷⊥)𝑛−𝑖𝑛− 𝑗+1 − rank(𝐷⊥)𝑛−𝑖−1
𝑛− 𝑗 + rank(𝐷⊥)𝑛−𝑖−1

𝑛− 𝑗+1

= 𝑟𝐷⊥ (𝑛 − 𝑗 , 𝑛 − 𝑖).

□
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3. THE PERSISTENT HOMOLOGY OF DUAL DIGITAL IMAGE CONSTRUCTIONS

Theorem 3.1.4 (Persistence of Dual Filtrations). Let (𝐾, 𝑓 ) and (𝐾∗, 𝑔) be dual filtered
complexes with compatible ordering 𝜎0, 𝜎1, . . . , 𝜎𝑛. Then

1. (𝜎𝑖, 𝜎𝑗 ) is a persistence pair in the filtered complex (𝐾, 𝑓 ) if and only if (𝜎∗
𝑗
, 𝜎∗

𝑖
) is a

persistence pair in (𝐾∗, 𝑔).

2. 𝜎𝑖 is essential in (𝐾, 𝑓 ) if and only if 𝜎∗
𝑖

is essential in (𝐾∗, 𝑔).

Proof. Lemma 3.1.3 implies that 𝑟𝐷 (𝑖, 𝑗) = 𝑟𝐷∗ (𝑛 − 𝑗 , 𝑛 − 𝑖). Therefore,

𝑟𝐷 (𝑖, 𝑗) = 1⇔ 𝑟𝐷∗ (𝑛 − 𝑗 , 𝑛 − 𝑖) = 1.

By the Pairing Uniqueness Lemma 2.3.1, the above implies that (𝜎𝑖, 𝜎𝑗 ) is a persistence
pair whenever the (𝑛− 𝑗)-th cell of the dual filtration (𝐾∗, 𝑔) is paired with the (𝑛− 𝑖)-th, thus
proving Part (1). For Part (2), Lemma 3.1.3 also tells us that the following two statements
are equivalent:

• Both 𝑟𝐷 (𝑖, 𝑗) ≠ 1 and 𝑟𝐷 ( 𝑗 , 𝑖) ≠ 1 for all 𝑗 .

• Both 𝑟𝐷∗ (𝑛 − 𝑗 , 𝑛 − 𝑖) ≠ 1 and 𝑟𝐷∗ (𝑛 − 𝑖, 𝑛 − 𝑗) ≠ 1 for all 𝑛 − 𝑗 .

By Corollary 2.3.2, this means that 𝜎𝑖 is an essential cell in (𝐾, 𝑓 ) if and only if the (𝑛− 𝑖)-th
cell 𝜎∗

𝑖
is essential in the dual filtration (𝐾∗, 𝑔). □

Corollary 3.1.5. Let (𝐾, 𝑓 ) and (𝐾∗, 𝑔) be dual filtered complexes. Then

1.
[ 𝑓 (𝜎𝑖), 𝑓 (𝜎𝑗 )) ∈ Dgm𝑘

F( 𝑓 ) ⇔ [𝑔(𝜎
∗
𝑗 ), 𝑔(𝜎∗𝑖 )) ∈ Dgm𝑑−𝑘−1

F (𝑔).

2.
[ 𝑓 (𝜎𝑖),∞) ∈ Dgm𝑘

∞( 𝑓 ) ⇔ [𝑔(𝜎∗𝑖 ),∞) ∈ Dgm𝑑−𝑘
∞ (𝑔).

Proof. Note that for a persistence pair (𝜎𝑖, 𝜎𝑗 ), found for an ordering compatible with the
function 𝑓 , the birth value is 𝑓 (𝜎𝑖) and the death value is 𝑓 (𝜎𝑗 ). The result then follows
directly from Theorem 3.1.4. □

Remark 3.1.6. It is worth noting that there is a dimension shift between essential and non-
essential pairs coming from the fact that the birth cell defines the dimension of a homological
feature. For finite persistence pairs, the birth cell changes from 𝜎𝑖 (of dimension 𝑘) to 𝜎∗

𝑗
(of

dimension 𝑑 − (𝑘 + 1)) in the dual, while for an essential cycle, the birth cell in the dual is
𝜎∗
𝑖
. This dimension shift also appears in our results on images later on.

3.2 Filtered Cell Complexes from Digital Images

As described in the introduction, the motivating application for the duality results of this
chapter is grayscale digital image analysis. This section begins with the definition of
grayscale digital images and describes the two standard ways to model such images
by cubical complexes as well as the modifications required to make these dual filtered
complexes.
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3.2. Filtered Cell Complexes from Digital Images

Definition 3.2.1. A 𝑑-dimensional grayscale digital image of size (𝑛1, 𝑛2, . . . , 𝑛𝑑) is an
R-valued array I ∈ 𝑀𝑛1×𝑛2×...×𝑛𝑑 (R). Equivalently, it is a real-valued function on a 𝑑-
dimensional rectangular grid

I : 𝐼 = ⟦1, 𝑛1⟧ × ⟦1, 𝑛2⟧ × . . . × ⟦1, 𝑛𝑑⟧ → R

where ⟦1, 𝑛𝑖⟧ is the set { 𝑘 ∈ N | 1 ≤ 𝑘 ≤ 𝑛𝑖 }. The index set, 𝐼, of I is also called the image
domain.

Recall that elements 𝑝 ∈ 𝐼 are called pixels when 𝑑=2, voxels if 𝑑 ≥ 3, and the value
I(𝑝) ∈ R is the grayscale value of 𝑝.

One would like to use persistent homology to analyse such images via their sublevel
sets. However, the canonical topology on 𝐼 ⊆ Z𝑑 ⊂ R𝑑 makes it a totally disconnected
discrete space. To induce a meaningful topology on the image that better represents the
perceived connectivity of the voxels, grayscale digital images are modelled by regular cubical
complexes [Kov89].

Definition 3.2.2. An elementary 𝑘-cube 𝜎 ⊂ R𝑑 is the product of 𝑑 elementary intervals,

𝜎 = 𝑒1 × 𝑒2 × . . . × 𝑒𝑑

such that 𝑘 of the intervals have the form 𝑒𝑖 = [𝑙𝑖, 𝑙𝑖+1] and 𝑑−𝑘 are degenerate, 𝑒𝑖 = [𝑙𝑖, 𝑙𝑖].

A cubical complex 𝐾 ⊂ R𝑑 is a cell complex consisting of a set of elementary 𝑘-cubes, such
that all faces of 𝜎 ∈ 𝐾 are also in 𝐾, and such that all vertices of 𝐾 are related by integer
offsets.

3.2.1 Top-cell and Vertex Constructions

There are two common ways to build a filtered cubical complex from an image I : 𝐼 −→ R.
One method is to represent the voxels as vertices of the cubical complex as in [RWS11].
We call this cubical complex the vertex construction, or V-construction for short. The
second method takes voxels as top-dimensional cells: we call it the top-cell construction, or
T-construction. It is shown in [Kov89], that the vertex construction corresponds to the graph-
theoretical direct adjacency used in traditional digital image processing and the top-cell
construction to the indirect adjacency model. These adjacency models are also respectively
referred to as the open and closed digital topologies.

An example of how each construction is built from an image is given in Figure 3.1. The
explicit definitions of such constructions are given below.

Definition 3.2.3. Given a 𝑑-dimensional grayscale digital image I : 𝐼 → R, of size
(𝑛1, 𝑛2, . . . , 𝑛𝑑), the V-construction is a filtered cell complex (𝑉 (𝐼), 𝑉 (I)) defined as follows.

1. 𝑉 (𝐼) is a cubical complex built from an array of (𝑛1 − 1) × . . . × (𝑛𝑑 − 1) elementary
𝑑-cubes and all their faces.

2. The vertices 𝜐(0) ∈ 𝑉 (𝐼) are indexed exactly by the elements 𝑝 ∈ 𝐼, and we define the
function 𝑉 (I) firstly on these vertices as,

𝑉 (I)(𝜐(0)) = I(𝑝).
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-construction -construction
Image

Figure 3.1: Top: The V- and T-constructions generated by an image I : 𝐼 → R with the
values of I indicated on the vertices and the top-dimensional cells, respectively.
Middle: the filtration 𝑉 (I) : 𝑉 (𝐼) → R and the corresponding persistence pairs.
Bottom: the filtration 𝑇 (I) : 𝑇 (𝐼) → R and the corresponding persistence pairs.

Then for an elementary 𝑘-cube 𝜎, the function takes the maximal value of its vertices

𝑉 (I)(𝜎) = max
𝜐 (0)⪯𝜎

𝑉 (I)(𝜐(0)).

This ensures that 𝑉 (I) is monotonic with respect to the face relation on 𝑉 (𝐼).

Definition 3.2.4. Given a 𝑑-dimensional grayscale digital image I : 𝐼 → R, of size
(𝑛1, 𝑛2, . . . , 𝑛𝑑), the T-construction is a filtered cell complex (𝑇 (𝐼), 𝑇 (I)) defined as follows.

1. 𝑇 (𝐼) is a cubical complex built from the array of 𝑛1 × . . . × 𝑛𝑑 elementary 𝑑-cubes and
all their faces.

2. The 𝑑-cells 𝜏(𝑑) ∈ 𝑇 (𝐼) are indexed exactly by the elements 𝑝 ∈ 𝐼, and we define the
function 𝑇 (I) firstly on these top-dimensional cells as,

𝑇 (I)(𝜏(𝑑)) = I(𝑝).
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Then for an elementary 𝑘-cube 𝜎, the function takes the smallest value of any adjacent
𝑑-cubes,

𝑇 (I)(𝜎) = min
𝜎⪯𝜏 (𝑑)

𝑇 (I)(𝜏(𝑑)).

This ensures that 𝑇 (I) is monotonic with respect to the face relation on 𝑇 (𝐼).

The next section describes how to modify the original image and take quotients to obtain
dual complexes and filtrations.

3.2.2 Modifications for Duality

The cubical complexes defined using the top-cell and vertex constructions are not strictly
dual to each other in the standard context of a rectangular digital image domain due to the
presence of a boundary. If the rectangular image domain happens to be the unit cell for a
periodic structure, then we can identify opposite faces and form the 𝑑-torus. On this 𝑑-torus,
𝑉 (𝐼) and 𝑇 (𝐼) are dual cubical complexes with vertices and 𝑑-cubes indexed by 𝐼. Taking
𝑉 (I) as the function on 𝑉 (𝐼) and 𝑇 (−I) as the function on 𝑇 (𝐼), we obtain dual filtered
complexes and can immediately apply Corollary 3.1.5 to deduce the persistence pairs of
one filtration from the other.

Otherwise, the more commonly encountered situation is that the image is a simple convex
domain in R𝑑 . A standard approach to handling the boundary is to form a quotient identifying
the boundary to a point so that the convex domain becomes a subset of the 𝑑-sphere. To
obtain dual cell complexes on the 𝑑-sphere, we increase the size of the image domain
before taking the quotient modulo the boundary. The image function is assigned a large
arbitrary value on these extra voxels and dual filtered complexes are obtained by considering
I in one construction and −I in the other as detailed in the following definitions and results.

Let I : 𝐼 → R be a grayscale digital image with index set 𝐼 = ⟦1, 𝑛1⟧× . . .×⟦1, 𝑛𝑑⟧, and set

𝑁 > max
𝑝∈𝐼
I(𝑝).

Definition 3.2.5. The padded image IP : 𝐼P → R has image domain 𝐼P = ⟦0, 𝑛1 + 1⟧ ×
. . . × ⟦0, 𝑛𝑑 + 1⟧ and image function

IP(𝑝) =
{︄
I(𝑝), for 𝑝 ∈ 𝐼
𝑁, for 𝑝 ∈ 𝐼P \ 𝐼 .

As shown in Figure 3.2, the padded image is simply obtained by adding a shell of 𝑁-valued
voxels to I. We apply the V- and T-constructions to the padded image to obtain the functions
𝑉 (IP) : 𝑉 (𝐼P) → R and 𝑇 (IP) : 𝑇 (𝐼P) → R, respectively.

Let 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) denote the cell complex obtained from 𝑇 (𝐼) by attaching a 𝑑-cell 𝜅 (𝑑)

along the boundary 𝜕𝑇 (𝐼) (see [Hat02, p.5] for details). Furthermore, let 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) be
the quotient cell complex obtained by identifying all points of the boundary (see [Hat02, p.8]
for details). Note that both these modifications create cells that are not elementary cubes.

Lemma 3.2.6. Given a rectangular digital image domain, 𝐼, the quotient, 𝑉 (𝐼P)/𝜕𝑉 (𝐼P), of
the padded V-construction modulo its boundary is the combinatorial dual of 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) .
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Padded Image

Figure 3.2: The transformation of the V- and T-construction into dual cell complexes (right)
using the padded image (left) and a mapping from 𝑉 (𝐼P) to 𝑇 (𝐼) (center).

Proof. Each elementary 𝑘-cube, 𝜎 ∈ 𝑉 (𝐼P) takes the form

𝜎 = 𝑒1 × . . . × 𝑒𝑑 , 𝑒𝑖 = [𝑙𝑖, 𝑙𝑖 + 1] or 𝑒𝑖 = [𝑝𝑖, 𝑝𝑖]

where 𝑘 of the elementary intervals are non-degenerate with 𝑙𝑖 ∈ {0, . . . , 𝑛𝑖} and (𝑑 − 𝑘)
are degenerate with 𝑝𝑖 ∈ {0, . . . , 𝑛𝑖 + 1}. Note that 𝜎 ∈ 𝜕𝑉 (𝐼P) if at least one degenerate
interval has 𝑝𝑖 = 0 or (𝑛𝑖 + 1). Now consider the following cell constructed from 𝜎:

𝜎∗ = 𝑒∗1 × . . . × 𝑒
∗
𝑑 , 𝑒∗𝑖 = [𝑙𝑖 + 1

2 , 𝑙𝑖 +
1
2 ] or [𝑝𝑖 − 1

2 , 𝑝𝑖 +
1
2 ]

with 𝑙𝑖 and 𝑝𝑖 as defined above. This cell has 𝑘 degenerate intervals and (𝑑 − 𝑘) non-
degenerate ones so 𝜎∗ is an elementary (𝑑 − 𝑘)-cube. If we insist that 𝜎 ∉ 𝜕𝑉 (𝐼P), then we
see that 𝑝𝑖 ∈ {1, . . . , 𝑛𝑖}, and the degenerate coordinate values (𝑙𝑖 + 1

2 ) ∈ {
1
2 ,

3
2 . . . , (𝑛𝑖 +

1
2 )}.

Thus we obtain a bijection between 𝑘-cells in 𝑉 (𝐼P) \ 𝜕𝑉 (𝐼P) and (𝑑 − 𝑘)-cells in 𝑇 (𝐼).
Mapping the 0-cell [𝜕𝑉 (𝐼P)] ∈ 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) to the 𝑑-cell attached to 𝜕𝑇 (𝐼) yields a
dimension reversing bijection between all cells of 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) and those of 𝑇 (𝐼)⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) .

The next step is to confirm that the face relations between cells in𝑉 (𝐼P)/𝜕𝑉 (𝐼P) are mapped
to coface relations in 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑). By the construction above, all interior face relations
for 𝑉 (𝐼P) map to coface relations for 𝑇 (𝐼). Given that only cells in the boundary belong to
[𝜕𝑉 (𝐼P)], this correspondence is inherited by the quotient.

Hence, the last detail we need to check is that the vertex [𝜕𝑉 (𝐼P)] in 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) has
dual face relations to the 𝑑-cell 𝜅 (𝑑) attached to the boundary of 𝑇 (𝐼) in 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑).
This is equivalent to the statement that

[𝜕𝑉 (𝐼P)] ⪯ 𝜎 in 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) ⇔ 𝜎∗ ⪯ 𝜅 (𝑑) in 𝑇 ⊔𝜕𝑇 𝜅 (𝑑) .

Now, 𝜎∗ is a face of 𝜅 (𝑑) if and only if 𝜎∗ ∈ 𝜕𝑇 (𝐼), which means at least one of the
degenerate elementary intervals of 𝜎∗ has 𝑙𝑖 + 1

2 = 1
2 or (𝑛𝑖 + 1

2 ). This makes 𝑙𝑖 = 0 or 𝑛𝑖,
so the corresponding elementary interval in the dual cell 𝜎 is 𝑒𝑖 = [𝑙𝑖, 𝑙𝑖 + 1] = [0, 1] or
[𝑛𝑖, 𝑛𝑖 + 1]. This forces 𝜎 ∩ 𝜕𝑉 (𝐼P) ≠ ∅, so that [𝜕𝑉 (𝐼P)] ⪯ 𝜎. The converse implication
follows in the same manner, and we are done. □

Lemma 3.2.7. Given a rectangular digital image domain, 𝐼, the quotient, 𝑇 (𝐼P)/𝜕𝑇 (𝐼P), of
the padded T-construction modulo its boundary is the combinatorial dual of𝑉 (𝐼P)⊔𝜕𝑉 (𝐼P) 𝜅 (𝑑) .
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Proof. This follows from the same arguments as the previous lemma with the roles of T and
V reversed. Note that we pad the V-construction before attaching the cell 𝜅 (𝑑) to account for
the fact that 𝑇 (𝐼) naturally has more cells than 𝑉 (𝐼). □

We have described how the two cubical complex models can be augmented to form dual
cell complexes of the 𝑑-sphere. We now show how to obtain dual filtered cell complexes
by comparing the image function on one construction with its negative on the other. The
details are made precise in the lemmata below.

First note that the function 𝑉 (−IP) is constant on 𝜕𝑉 (𝐼P) so it induces a function on the
quotient space, ˜︁𝑉 (−IP) : 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) → R with ˜︁𝑉 (−IP) ( [𝜕𝑉 (𝐼P)]) = −𝑁 and agreeing
with 𝑉 (−IP) on all other cells. Similarly, the function 𝑇 (I) extends to a function ˆ︁𝑇 (I) on
𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) with ˆ︁𝑇 (I)(𝜅 (𝑑)) = 𝑁 .

Lemma 3.2.8. For each 𝜎 ∈ 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) and dual cell 𝜎∗ ∈ 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) we have

−ˆ︁𝑇 (I)(𝜎) = ˜︁𝑉 (−IP) (𝜎∗).

Proof. Firstly, suppose dim𝜎 = 𝑑 and 𝜎 ≠ 𝜅 (𝑑), the 𝑑-cell attached to the boundary.
Suppose 𝑝 ∈ 𝐼 is the corresponding element of the image domain, so that I(𝑝) = ˆ︁𝑇 (I)(𝜎).
The dual cell 𝜎∗ ∈ 𝑉 (𝐼P)/𝜕𝑉 (𝐼P) corresponds to the same voxel but is given the negative
value ˜︁𝑉 (−IP) (𝜎∗) = −I(𝑝) = −ˆ︁𝑇 (I)(𝜎).
For the remaining 𝑑-cell 𝜅 (𝑑), with dual [𝜕𝑉 (𝐼P)]∗, the function values satisfy

−ˆ︁𝑇 (I)(𝜅 (𝑑)) = −𝑁 = ˜︁𝑉 (−IP) ( [𝜕𝑉 (𝐼P)]).

Lastly, suppose 𝜎 ∈ 𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) and dim𝜎 < 𝑑. By construction, it follows that

−ˆ︁𝑇 (I)(𝜎) = − min
𝜏 (𝑑)⪰𝜎

ˆ︁𝑇 (I)(𝜏(𝑑)) = max
𝜏 (𝑑)⪰𝜎

−ˆ︁𝑇 (I)(𝜏(𝑑)) = max
𝜐 (0)⪯𝜎∗

˜︁𝑉 (−IP) (𝜐(0))

= ˜︁𝑉 (−IP) (𝜎∗)

as required. □

Now define the functions ˜︁𝑇 (−IP) on 𝑇 (𝐼P)/𝜕𝑇 (𝐼P) and ˆ︁𝑉 (IP) on 𝑉 (𝐼P) ⊔𝜕𝑉 (𝐼P) 𝜅 (𝑑) similarly
to those above.

Lemma 3.2.9. For each 𝜎 ∈ 𝑉 (𝐼P) ⊔𝜕𝑉 (𝐼P) 𝜅 (𝑑) and dual cell 𝜎∗ ∈ 𝑇 (𝐼P)/𝜕𝑇 (𝐼P) we have

−ˆ︁𝑉 (IP) (𝜎) = ˜︁𝑇 (−IP) (𝜎∗).

Proof. Similar to Lemma 3.2.8 with the roles of V and T interchanged. □

Corollary 3.2.10. For a grayscale digital image I : 𝐼 → R

1. The filtered complexes (𝑇 (𝐼) ⊔𝜕𝑇 (𝐼) 𝜅 (𝑑) , ˆ︁𝑇 (I)) and (𝑉 (𝐼P)/𝜕𝑉 (𝐼P), ˜︁𝑉 (−IP)) are dual.

2. The filtered complexes (𝑉 (𝐼P) ⊔𝜕𝑉 (𝐼P) 𝜅 (𝑑) , ˆ︁𝑉 (IP)) and (𝑇 (𝐼P)/𝜕𝑇 (𝐼P), ˜︁𝑇 (−IP)) are
dual.

Proof. This follows directly from applying Lemma 3.2.8 for part (1) and Lemma 3.2.9 for
part (2), then Proposition 2.1.4. □
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3.3 Persistence Diagrams of the Modified Filtrations

In the previous section, we showed that the T- and V-constructions built from an image
can be modified via padding, cell attachment, and taking quotients to become dual cell
complexes of the 𝑑-sphere. Our next step is to examine the effect of such operations on the
persistence module and diagram.

As in Section 3.2, suppose I : 𝐼 → R is a grayscale digital image and 𝑁 > maxI. The
specific operations we study are

1. Padding an image I : 𝐼 → R with a outer shell of 𝑁-valued pixels, then forming the V-
and T-constructions.

2. Attaching a 𝑑-cell to the boundary of 𝑉 (𝐼P) or to 𝑇 (𝐼) with value 𝑁 .

3. Taking the quotient modulo the boundary in the negative padded filtration, i.e. changing
from 𝑉 (−IP) to ˜︁𝑉 (−IP) and from 𝑇 (−IP) to ˜︁𝑇 (−IP).

Of these, the first two have relatively transparent effects on the persistent homology of the
filtered spaces. Padding the image as in (1) does not change the persistence diagrams;
attaching a 𝑑-cell as in (2) simply creates an essential 𝑑-cycle with birth at 𝑁 . We summarise
these formally as follows.

Proposition 3.3.1. For a grayscale digital image I : 𝐼 → R

1. Dgm(𝑉 (IP)) = Dgm(𝑉 (I)) and Dgm(𝑇 (IP)) = Dgm(𝑇 (I))

2.
Dgm(ˆ︁𝑉 (I)) = Dgm(𝑉 (I)) ∪ { [𝑁,∞)𝑑 }

and
Dgm(ˆ︁𝑇 (I)) = Dgm(𝑇 (I)) ∪ { [𝑁,∞)𝑑 }.

The remaining operation to investigate is the third, namely the effect of taking the quotient
modulo the boundary. For this we need some machinery we will now introduce.

3.3.1 Long Exact Sequence of a Filtered Pair

To examine the effect of taking quotients on persistence diagrams, we use the description
of persistence modules as functors together with a long exact sequence (LES) for these.
Given a pair of cell complexes (𝐾, 𝐴) with 𝐴 ⊆ 𝐾, we obtain a short exact sequence (SES)
of cellular chain complexes inducing the LES

. . .→ 𝐻𝑘 (𝐴)
𝑖−→ 𝐻𝑘 (𝐾)

𝑝
−→ 𝐻𝑘 (𝐾, 𝐴)

𝛿−→ 𝐻𝑘−1(𝐴) → . . .

which is a standard tool for analysing the homology of the pair, where 𝐻𝑘 (𝐾, 𝐴) denotes the
relative homology of the pair.

Similarly, suppose we have a filtered cell complex (𝐾, 𝑓 ) and a sub-complex 𝐴 ⊆ 𝐾. Then
the restriction 𝑓 |𝐴 : 𝐴 → R induces a filtered sub-complex (𝐴, 𝑓 |𝐴) and, at each index
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𝑟 ∈ R, we obtain a pair (𝐾𝑟 , 𝐴𝑟), where 𝐾𝑟 = 𝑓 −1(−∞, 𝑟] and 𝐴𝑟 = 𝑓 |−1
𝐴
(−∞, 𝑟]. Theorem

4.5 in [VYP18] states that the R-indexed collection of SESs of cellular chain complexes

0→ 𝐶∗(𝐴𝑟) → 𝐶∗(𝐾𝑟) → 𝐶∗(𝐾𝑟 , 𝐴𝑟) → 0

yields a LES of persistence modules:

Theorem 3.3.2 (Long Exact Sequence for Relative Persistence Modules). Given a mono-
tonic function 𝑓 : 𝐾 → R and a sub-complex 𝐴 ⊆ 𝐾, there is a long exact sequence of
persistence modules

. . .→ 𝐻𝑘 ( 𝑓 |𝐴) → 𝐻𝑘 ( 𝑓 ) → 𝐻𝑘 ( 𝑓 , 𝑓 |𝐴) → 𝐻𝑘−1( 𝑓 |𝐴) → 𝐻𝑘−1( 𝑓 ) → . . .

where 𝐻𝑘 ( 𝑓 , 𝑓 |𝐴) denotes the persistence module given by 𝑟 ↦→ 𝐻𝑘 (𝐾𝑟 , 𝐴𝑟).

Here the persistence modules are functors from the poset category (R,≤) to VecZ/2Z
and the morphisms are natural transformations obtained from the standard connecting
homomorphisms and the linear transformations induced by inclusions and projections
at each filtration index. The kernels and cokernels of the morphisms are themselves
persistence modules defined by taking the kernel or cokernel at each filtration index,
with maps between corresponding vector spaces at different filtration indices induced by
inclusions. This result is implicit in the recent work in [BM21, Mil20], where it follows as
corollary of the fact that persistence modules form an abelian category whereby the snake
lemma holds.

3.3.2 Persistence of the Image with Boundary Identified

The remaining operation to investigate is the effect of taking the quotient of a padded image
modulo the boundary filtered with the negative of the image function. We state the result
in terms of a space 𝐾 homeomorphic to the 𝑑-dimensional closed disc 𝐷𝑑, filtered by a
function 𝑓 : 𝐾 → R taking a constant minimal value, min 𝑓 = −𝑁 , on the boundary of 𝐾 so
that Lemma 3.3.3 applies to both T- and V-constructions. Using the long exact sequence of a
pair, we show that the (𝑑 − 1)-cycle with interval [−𝑁,max 𝑓 )𝑑−1 representing the boundary
is removed while a 𝑑-cycle with interval [max 𝑓 ,∞)𝑑 is added.

Lemma 3.3.3. Take a monotonic function 𝑓 : 𝐾 ≅ 𝐷𝑑 → R with

𝜎 ∈ 𝜕𝐾 ⇒ 𝑓 (𝜎) = −𝑁 = min 𝑓

and induced quotient map ˜︁𝑓 : 𝐾/𝜕𝐾 → R. Then

Dgm( ˜︁𝑓 ) = (︁
Dgm( 𝑓 ) \ { [−𝑁,max 𝑓 )𝑑−1 }

)︁
∪ { [max 𝑓 ,∞)𝑑 }.

Proof. For pairs of cell complexes the relative homology groups are naturally isomorphic
to the reduced homology groups 𝐻̃𝑘 ( 𝑓 ) of the quotient [Hat02, p.124]. Naturality implies
that the result extends to persistence modules and that the reduced persistence modules
differ only by the essential interval I[−𝑁,∞) in degree 0. To compute the reduced persistence
modules 𝐻̃𝑘 ( 𝑓 ) of the quotient, we therefore consider the LES of the filtered pair ( 𝑓 , 𝑓 |𝜕𝐾)

. . .→ 𝐻𝑘 ( 𝑓 |𝜕𝐾)
𝛼𝑘−−→ 𝐻𝑘 ( 𝑓 ) → 𝐻𝑘 ( 𝑓 , 𝑓 |𝜕𝐾) → 𝐻𝑘−1( 𝑓 |𝜕𝐾)

𝛼𝑘−1−−−→ 𝐻𝑘−1( 𝑓 ) → . . .

27



3. THE PERSISTENT HOMOLOGY OF DUAL DIGITAL IMAGE CONSTRUCTIONS

where 𝛼𝑘 is the map induced by the inclusion 𝜕𝐾 ⊆ 𝐾. Taking the cokernel of 𝛼𝑘 and the
kernel of 𝛼𝑘−1 the LES yields the SES

0→ Coker(𝛼𝑘 ) → 𝐻𝑘 ( 𝑓 , 𝑓 |𝜕𝐾) → Ker(𝛼𝑘−1) → 0.

First assume 𝑑 > 1 and note that, in this case,

𝐻𝑘 ( 𝑓 |𝜕𝐾) ≅
{︄
I[−𝑁,∞) for 𝑘 = 𝑑 − 1, 0
0 otherwise.

Thus Im(𝛼𝑘 ) ≅ Ker(𝛼𝑘 ) = 0 for 𝑘 ≠ 𝑑 − 1, 0. For 𝛼𝑑−1, the image of the essential (𝑑 − 1)-
cycle of the boundary dies once all cells in (𝐾, 𝑓 ) have been filtered at function value max 𝑓 .
Hence

Im(𝛼𝑑−1) ≅ I[−𝑁,max 𝑓 ) and Ker(𝛼𝑑−1) ≅ I[max 𝑓 ,∞) .

As −𝑁 = min 𝑓 we conclude 𝛼0(I[−𝑁,∞)) = I[−𝑁,∞), so that

Im(𝛼0) ≅ I[−𝑁,∞) and Ker(𝛼0) = 0.

Since 𝐾 is homeomorphic to a 𝑑-dimensional disc, 𝐻𝑑 ( 𝑓 ) = 0. Hence Coker(𝛼𝑑) = 0 and,
for 𝑘 = 𝑑, the SES implies

𝐻̃𝑑 ( 𝑓 ) ≅ 𝐻𝑑 ( 𝑓 , 𝑓 |𝜕𝐾) ≅ Ker(𝛼𝑑−1) ≅ I[max 𝑓 ,∞) .

For 0 ≤ 𝑘 < 𝑑 the persistence module on the right of the SES is trivial. Thus

𝐻̃𝑘 ( 𝑓 ) ≅ 𝐻𝑘 ( 𝑓 , 𝑓 |𝜕𝐾) ≅ Coker(𝛼𝑘 ) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐻𝑑−1( 𝑓 )/I[−𝑁,max 𝑓 ) for 𝑘 = 𝑑 − 1
𝐻𝑘 ( 𝑓 ) for 0 < 𝑘 < 𝑑 − 1
𝐻0( 𝑓 )/I[−𝑁,∞) for 𝑘 = 0

and the result follows for 𝑑 > 1.

For 𝑑 = 1 the only non-trivial persistence module of the boundary is 𝐻0( 𝑓 |𝜕𝐾) ≅ I[−𝑁,∞) ⊕
I[−𝑁,∞) and we obtain

Im(𝛼0) ≅ I[−𝑁,∞) ⊕ I[−𝑁,max 𝑓 ) and Ker(𝛼0) ≅ I[max 𝑓 ,∞) .

For 𝑘 = 1 we proceed as above and, for 𝑘 = 0, the SES yields

𝐻̃0( 𝑓 ) ≅ 𝐻0( 𝑓 , 𝑓 |𝜕𝐾) ≅ Coker(𝛼0) ≅ 𝐻0( 𝑓 )/
(︁
I[−𝑁,∞) ⊕ I[−𝑁,max 𝑓 )

)︁
.

As above we conclude 𝐻0( 𝑓 ) ≅ 𝐻0( 𝑓 )/I[−𝑁,max 𝑓 ). □

Corollary 3.3.4. For a 𝑑-dimensional image I : 𝐼 → R

Dgm(˜︁𝑉 (−IP)) = Dgm(𝑉 (−IP)) \ { [−𝑁,−minI)𝑑−1 } ∪ { [−minI,∞)𝑑 }

and

Dgm(˜︁𝑇 (−IP)) = Dgm(𝑇 (−IP)) \ { [−𝑁,−minI)𝑑−1 } ∪ { [−minI,∞)𝑑 }.

Proof. This follows from Lemma 3.3.3 applied to 𝑓 = 𝑉 (−IP) and 𝑓 = 𝑇 (−IP) respectively,
using max𝑉 (−IP) = −minI and max𝑇 (−IP) = −minI. □
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3.4 Duality Results for Images

In this section, we explicitly describe the relationship between the diagrams of both the T-
and V-constructions. Software to compute persistent homology of an image I : 𝐼 → R
typically builds one of the two constructions implicitly so the results in this section provide a
solution to the problem of how to use software based on the V-construction to compute a
persistence diagram with respect to the T-construction, and vice versa.

For the algorithms that we define in this section we assume the following sub-routines given
a grayscale digital image I.

1. PAD(I, 𝑁): returns the image padded with an outer shell of 𝑁-valued voxels.

2. NEG(I): multiplies each voxel value by −1.

3. max(I), min(I): returns the maximum and minimum voxel values of I respectively.

4. VCON(I), TCON(I): returns the persistence diagrams Dgm(𝑉 (I)) and Dgm(𝑇 (I))
of the V- and T-construction of the image respectively.

3.4.1 From the V-construction to the T-construction

Suppose we have software that computes the persistent homology of a 𝑑-dimensional
grayscale digital image I using the V-construction. The following theorem states that the
persistence diagram of the T-construction for I can be calculated directly from the pairs in
that of the V-construction of the negative padded image.

Theorem 3.4.1 (T from V). For a grayscale digital image I : 𝐼 → R the diagrams of the V-
and T-constructions satisfy

DgmF(𝑇 (I)) = { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑉 (−IP)) } \ { [minI, 𝑁)0 }

and
Dgm∞(𝑇 (I)) = { [minI,∞)0 }.

Proof. That Dgm∞(𝑇 (I)) = { [minI,∞)0 } follows from the fact that 𝑇 (𝐼) ≅ 𝐷 (𝑑) and the
first cell in the filtration occurs at time min𝑇 (I) = minI. For the finite case:

DgmF(𝑇 (I)) = DgmF(ˆ︁𝑇 (I))
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(˜︁𝑉 (−IP)) }
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑉 (−IP)) \ { [−𝑁,−minI)𝑑−1 } }
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑉 (−IP)) } \ { [minI, 𝑁)0 }

where the equalities follow from Proposition 3.3.1, Corollary 3.1.5 and Corollary 3.3.4
respectively. □

The structure of the algorithm follows immediately from the theorem and is summarised
below.
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Algorithm 1 Computing the T-construction persistence diagram with V-construction soft-
ware.
Require: An image I and the sub-routine VCON.

1: Dgm(𝑇 (I)) ← { [min(I),∞)0 }
2: 𝑁 ← max(I) + 𝐶 ⊲ choose 𝐶 to ensure 𝑁 ≫ max(I)
3: −IP ← NEG(PAD(I, 𝑁))
4: Dgm(𝑉 (−IP)) ← VCON(−IP) ⊲ Apply V-construction software.
5: for [𝑝, 𝑞)𝑘 in Dgm(𝑉 (−IP)) with 𝑝 ≠ −𝑁 do
6: Dgm(𝑇 (I)) ← Dgm(𝑇 (I)) ∪ { [−𝑞,−𝑝)𝑑−𝑘−1 }
7: return Dgm(𝑇 (I)) ⊲ Output T-construction persistence diagram.

3.4.2 From the T-construction to the V-construction

In the other direction, suppose we have software that computes the persistent homology of
a 𝑑-dimensional grayscale digital image I : 𝐼 → R using the T-construction. The following
theorem states that a persistence diagram for the V-construction of I can be calculated
directly from the pairs computed for the negative padded image using the T-construction.

Theorem 3.4.2 (V from T). For a grayscale digital image I : 𝐼 → R the diagrams of the V-
and T-constructions satisfy

DgmF(𝑉 (I)) = { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑇 (−IP)) } \ { [minI, 𝑁)0 }

and

Dgm∞(𝑉 (I)) = { [minI,∞)0 }.

Proof. That Dgm(𝑉 (I)) = { [minI,∞)0 } follows from the fact that 𝑉 (𝐼) ≅ 𝐷 (𝑑) and the
first cell in the filtration occurs at time minI. For the finite case, we have that

DgmF(𝑉 (I)) = DgmF(𝑉 (IP))
= DgmF(ˆ︁𝑉 (IP))
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(˜︁𝑇 (−IP)) }
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑇 (−IP)) \ { [−𝑁,−minI)𝑑−1 } }
= { [−𝑞,−𝑝)𝑑−𝑘−1 | [𝑝, 𝑞)𝑘 ∈ DgmF(𝑇 (−IP)) } \ { [minI, 𝑁)0 }

where the equalities follow from Proposition 3.3.1, Corollary 3.1.5 and Corollary 3.3.4
respectively. □

The structure of the algorithm follows immediately from the theorem and is summarised
below.
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Algorithm 2 Computing the V-construction persistence diagram with T-construction soft-
ware.
Require: An image I and the sub-routine TCON.

1: Dgm(𝑉 (I)) ← { [min(I),∞)0 }
2: 𝑁 ← max(I) + 𝐶 ⊲ choose 𝐶 to ensure 𝑁 ≫ max(I)
3: −IP ← NEG(PAD(I, 𝑁))
4: Dgm(𝑇 (−IP)) ← TCON(−IP) ⊲ Apply T-construction software.
5: for [𝑝, 𝑞)𝑘 in Dgm(𝑉 (−IP)) with 𝑝 ≠ −𝑁 do
6: Dgm(𝑉 (I)) ← Dgm(𝑉 (I)) ∪ { [−𝑞,−𝑝)𝑑−𝑘−1 }
7: return Dgm(𝑉 (I)) ⊲ Output V-construction persistence diagram.

Example 3.4.3. Suppose we are working with the two dimensional digital grayscale image
given in Figure 3.1 and have only the software to compute the T-construction. We depict the
filtration of 𝑇 (−IP) in Figure 3.3, and the corresponding intervals in the persistence module.
Similarly, we show the filtered V-construction 𝑉 (I) in Figure 3.4. The reader may confirm
that the correspondence between the intervals is accurately described by Theorem 3.4.2.

Figure 3.3: The filtration 𝑇 (−IP) and intervals of the persistence diagram Dgm(𝑇 (−IP))
for the image I : 𝐼 → R of Figure 3.1.

Figure 3.4: The filtration 𝑉 (I) and intervals of the persistence diagram Dgm(𝑉 (I)) for the
image I : 𝐼 → R of Figure 3.1.

3.5 Discussion

Our results clarify the relationship between the two cubical complex constructions commonly
used in digital image analysis software and provide a simple method to use software that
implements one construction to compute a persistence diagram for the other. This permits
a user’s choice of adjacency type for their images to depend on that appropriate to the
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application rather than on the type of construction used in available efficient persistence
software. In addition to facilitating this application, the results of Sections 3.1 and 3.3 may
be of independent interest for the following reasons.

Theorem 3.1.4 is a new interpretation of a duality relationship that manifests in many
contexts such as the correspondence between persistent homology and persistent relative
cohomology [DSMVJ11], the duality theorem of extended persistence [CSEH09], and a
discrete Helmholtz-Hodge decomposition [EÖ20].

The results of Section 3.3 are formulated specifically for the case of an image with its domain
homeomorphic to a closed ball, but could be extended to spaces with more interesting
topology. We anticipate that the long exact sequence of a pair can be used to derive
a relationship between filtered cell complexes that satisfy conditions for duality if their
boundaries can be capped or quotiented as in Section 3.2 to obtain a manifold.

As discussed at the beginning of this chapter, the duality and symmetry results of extended
persistence do not apply in the cubical setting because the Partition Lemma fails. However,
using the T-construction for homology and the V-construction for relative homology (or vice
versa), we can derive an extension of extended persistence to cubical filtrations of images
satisfying duality and symmetry similar to the results in [CSEH09]. Analyzing properties
of this definition and comparing this approach to that in [ES12] could be interesting future
work.

There are also interesting questions about algorithm performance to explore. The results of
Section 3.4 suggest that persistence diagram computation from grayscale images should
have the same average run time independent of the choice of T- and V-construction. If the
T-construction executes faster on a particular image, then the V-construction should execute
faster on the negative of the image. To answer this question fully requires a careful analysis
of the effects of taking the anti-transpose of the boundary matrix on the run time of the
matrix reduction algorithm and the extra cells added when padding the image.
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CHAPTER 4
The Impact of Changes in Resolution on

the Persistent Homology of Images

This chapter is based on [HTS+21b]1. Therefore, the CC-BY license of this thesis does not
apply to this chapter, instead the license of the original IEEE article applies. The extended
version of this chapter on arXiv [HTS+21a] contains additional appendices.

Digital images enable quantitative analysis of material properties at micro and macro length
scales, but choosing an appropriate resolution when acquiring the image is challenging. A
high resolution means longer image acquisition and larger data requirements for a given
sample, but if the resolution is too low, significant information may be lost. This chapter
studies the impact of changes in resolution on persistent homology, a tool from topological
data analysis that provides a signature of structure in an image across all length scales.
Given prior information about a function, the geometry of an object, or its density distribution
at a given resolution, we provide methods to select the coarsest resolution yielding results
within an acceptable tolerance. We present numerical case studies for an illustrative
synthetic example and samples from porous materials where the theoretical bounds are
unknown.

Prior work. There are several results on point-cloud approximations of manifolds in the
context of geometric triangulations built from randomly sampled points near a manifold
embedded in R𝑑 , [ACDL00, NSW08, CCSL09, ALS13, KSC+20]. Most of these results start
with the assumption that the point-cloud approximation is close to the original object 𝑋 in
the Hausdorff distance. In contrast, the main challenge in Section 4.3 is to establish that
the digital approximation is close to the object 𝑋 in the Hausdorff distance. Once this is
achieved, we apply Lemma 4.3.6 — an analogous result to those for point-clouds, but in the
setting of digital images and extended to the signed distance transforms.

An earlier paper working with the persistent homology of digital images [BEK10] uses an
adaptive grid derived from an oct-tree data structure to reduce data size. Those authors
bound the distances between persistence diagrams of the original high-resolution image
and their oct-tree approximation, similar in spirit to the results in our Section 4.2 and the
numerical case study in Section 4.4.1, but using the adaptive grid in the approximation
rather than a single coarser voxel size.

1Copyright © 2021 IEEE.
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Related work in [DW18] starts with a known continuous function, 𝑓 , builds an adaptive
rectangular subdivision of the domain and uses rigorous computer arithmetic to guarantee
their piecewise constant approximation is within 𝜀 of 𝑓 thus guaranteeing the same bound
on the bottleneck distances between persistence diagrams.

Papers that have studied how estimates of material properties from micro-CT images
change with image resolution include [BS16, HHS21]. Another paper [HLCK21] studies the
pore structure of firn (old glacial ice-pack) using two-parameter filtrations derived from the
grayscale threshold and distance transform.

Outline. After describing the mathematical model in Section 4.1, we state results in
Section 4.2 comparing real-valued functions (not necessarily continuous) with digital approx-
imations for different resolutions. Since we define the digital approximation of 𝑓 by taking
average values within each voxel, these results involve fairly direct bounds on the variation
of 𝑓 and an application of the stability theorem for persistence diagrams.

In Section 4.3 we focus on a particular application where the ground-truth is the continuous
signed Euclidean distance transform (CSEDT) derived from an object 𝑋 ⊂ R𝑑 . We compare
this function with the discrete signed Euclidean distance transform (DSEDT) of a digital
approximation to 𝑋 . This is more complex than simply applying the results of Section 4.2 to
the CSEDT of 𝑋, because the digital approximation to 𝑋 may result in small components
being lost, and this in turn may lead to a large difference between the CSEDT and the
DSEDT. The results and bounds obtained in this section are illustrated with simple examples
to show their relevance.

In Section 4.4.1 we present a numerical case study of a synthetic image with structure on
different length scales to illustrate circumstances where the theoretical bounds are unknown.
Finally, we study some porous materials in Section 4.4.2. These experiments show that the
actual data behaves even better than the bounds derived in Section 4.3 suggest.

4.1 Mathematical Models

4.1.1 Digital Images as Discretized Functions

There is a variety of different methods to define digital approximations to algebraic functions
whose domain is R𝑑. Here we consider a tame 𝜇-integrable function f : R𝑑 → R (where 𝜇
denotes Lebesgue measure) and take local averages over each voxel.

Let 𝑟 be the desired spacing for the digital grid and define a voxel 𝜎 to be an open 𝑑-cube
of side length 𝑟, and volume 𝜇(𝜎) = 𝑟𝑑. Voxels are indexed by the integer grid Z𝑑 so that
𝜎(𝑖) = 𝜎(𝑖1, . . . , 𝑖𝑑) ⊂ R𝑑 is the product of 𝑑 open intervals (𝑖𝑘𝑟, (𝑖𝑘 + 1)𝑟). The digital
approximation to f is the function

fr : R𝑑 → R,

which is a piecewise constant function defined on voxels 𝜎(𝑖) with

fr(𝑥) = 𝑟−𝑑
∫
𝜎(𝑖)

f 𝑑𝜇, if 𝑥 ∈ 𝜎(𝑖).

On the voxel faces, we define fr(𝑥) to be the minimum value taken on voxels 𝜎 with 𝑥 ∈ 𝜕𝜎.

If we restrict fr to the voxel centers indexed by integers 𝑖 ∈ Z𝑑, this discrete function is
usually referred to as a grayscale digital image. The above definition of fr then agrees with
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the 𝑇-construction for digital images defined in Chapter 3, Definition 3.2.4. The cubical
complex and its sublevel sets use the indirect adjacency of digital grids.

In Section 4.2 we use a bound on the differences |f (𝑥) − fr(𝑥) | to obtain a corresponding
bound on the bottleneck distance of their persistence diagrams.

4.1.2 Digital Images of Objects and their Distance Transforms

Let 𝑋 ⊂ R𝑑 be a compact subset representing the solid object we approximate with a digital
image. By a solid object, we mean cl(int(𝑋)) = 𝑋 . Typically 𝑑 = 2, 3, and we can shift 𝑋 so
that it is a subset of a rectangular prism, 𝑅.

A digital approximation to 𝑋 is defined using a discrete function 𝜌𝑟 : Z𝑑 → [0, 1] that
quantifies the proportion of space occupied by 𝑋 in each voxel 𝜎(𝑖) with

𝜌𝑟 (𝑖) =
𝜇(𝑋 ∩ 𝜎(𝑖))
𝜇(𝜎(𝑖)) .

Equivalently, 𝜌𝑟 is the grayscale digital image obtained from the digital approximation to the
indicator function for 𝑋.

The digital approximation 𝑋 (𝑟, 𝑡) is then the union of closed voxels of size 𝑟, with 𝜌𝑟 -values
at least threshold 𝑡 with 0 < 𝑡 ≤ 1,

𝑋 (𝑟, 𝑡) =
⋃︂
𝜌𝑟 (𝑖)≥𝑡

cl(𝜎(𝑖)).

This definition of digital approximation is a simplified model of segmenting an x-ray CT image.
If the material consists of just two components with a high degree of x-ray contrast, (e.g.,
silica and air), then the CT image measures the average x-ray density of each voxel-sized
patch of the sample. In this case, x-ray density encodes the proportion of space occupied
by the higher-density material. Segmenting converts the grayscale image to a binary image
that approximates the distribution in space of the higher-density material. The simplest
method of segmentation is to use a single threshold value, as we do here. In the presence
of noise and imaging artefacts this method is unsatisfactory, and there is a considerable
literature describing practical methods for achieving good segmentations [WS13].

Note that changing the choice of threshold 𝑡 can cause significant changes to the homology
of 𝑋 (𝑟, 𝑡). Fig. 4.1 shows an example where there is no choice of 𝑡 for which 𝑋 (𝑟, 𝑡) and 𝑋
have the same homology. The depicted problem of losing thin but possibly large features
of an object when the resolution is too low also causes problems in persistent homology.
Overcoming this is the main challenge in Section 4.3.

To quantify the size of the holes and other topological and geometric features of 𝑋 , a suitable
function to use is the signed Euclidean distance. The continuous signed Euclidean distance
transform (CSEDT) of 𝑋 is defined as

𝑑∓𝑋 : R𝑑 → R; 𝑦 ↦→
{︄
−𝑑 (𝑦, 𝜕𝑋) if 𝑦 ∈ 𝑋
𝑑 (𝑦, 𝜕𝑋) if 𝑦 ∈ 𝑋c,

where 𝜕𝑋 denotes the boundary of 𝑋 and 𝑋c denotes the complement of 𝑋 in R𝑑 .
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Figure 4.1: An object 𝑋 in blue, with a voxel grid of side 𝑟 overlayed in gray. There is no 𝑡
that makes 𝑋 (𝑟, 𝑡) have the same homology as 𝑋 . If 𝑡 is close to 1, the handle-shaped part
of 𝑋 is lost. If 𝑡 is small, then the narrow annulus in the middle will be filled in. © 2021 IEEE.

In practice, since we want to compare 𝑑∓
𝑋

and its discretized version, we restrict the distance
transforms to a rectangular prism 𝑅 that contains 𝑋. The discrete analog of the CSEDT is
the discrete signed Euclidean distance transform (DSEDT)

𝐷 [𝑋 (𝑟, 𝑡)] : 𝑅 → R

This is a piecewise constant function defined on voxels 𝜎(𝑖) ⊆ 𝑋 (𝑟, 𝑡) and 𝜎( 𝑗) ⊆ 𝑋 (𝑟, 𝑡)c
by

𝑥 ↦→
{︄
−min𝜎( 𝑗)⊆𝑋 (𝑟,𝑡)c 𝑟 𝑑 (𝑖, 𝑗) if 𝑥 ∈ 𝜎(𝑖) ⊆ 𝑋 (𝑟, 𝑡)
min𝜎(𝑖)⊆𝑋 (𝑟,𝑡) 𝑟 𝑑 (𝑖, 𝑗) if 𝑥 ∈ 𝜎( 𝑗) ⊆ 𝑋 (𝑟, 𝑡)c.

On voxel faces, 𝐷 [𝑋 (𝑟, 𝑡)] takes the minimum value over all voxels adjacent to the given
face. Again, this corresponds to the 𝑇 -construction mentioned earlier.

In Section 4.3, we investigate conditions on the geometry of 𝑋 and the voxel size 𝑟 necessary
to control the distance between the persistence diagrams of the CSEDT of 𝑋 and the DSEDT
of 𝑋 (𝑟, 𝑡). Even though the DSEDT depends on the threshold 𝑡, the bounds we obtain do
not depend on 𝑡. In other words, even though a wise choice of 𝑡 might help to achieve a
better approximation at a larger voxel size, we can guarantee a good approximation for any
value of 𝑡 > 0 once 𝑟 is chosen small enough compared to geometric characteristics of 𝑋,
such as the reach.

Intuitively, the reach of a closed subset 𝐴 ⊆ R𝑑 encodes the minimum distance at which two
or more fire fronts meet after 𝐴 is set on fire [Blu67]. Mathematically, the reach of a closed
set 𝐴 ⊆ R𝑑 is the largest 𝜀 (possibly∞) such that for every 𝑝 ∈ R𝑑 with distance 𝑑 (𝑝, 𝐴) < 𝜀,
𝐴 contains a unique point, 𝜉𝐴 (𝑝), nearest to 𝑝, i.e. 𝑑 (𝑝, 𝐴) = 𝑑 (𝑝, 𝜉𝐴 (𝑝)) [Fed59]. In this
thesis we use only one property of the reach, proven by Federer in [Fed59, Theorem
4.8 (12)]; see Lemma 4.1.3. The lemma states that when walking from a point 𝑎 ∈ 𝜕𝐴
orthogonally a distance 𝑟 < reach(𝐴) away from the closed set 𝐴, then the closest point
of 𝐴 is still the starting point 𝑎, and thus the distance to 𝐴 is 𝑟. Before we can state this
rigorously in Lemma 4.1.3, we need formal definitions [Fed59, Definitions 4.3 and 4.4] of
tangent vectors and normal vectors:

Definition 4.1.1 (Tangent vector). Let 𝐴 ⊆ R𝑑 be closed and 𝑎 ∈ 𝜕𝐴. Then 𝑢 ∈ R𝑑 is a
tangent vector of 𝐴 at 𝑎 if either 𝑢 = 0 or for every 𝜀 > 0 there exists a point 𝑏 ∈ 𝐴 with

0 < ∥𝑏 − 𝑎∥ < 𝜀 and
∥︁∥︁∥︁∥︁ 𝑏 − 𝑎
∥𝑏 − 𝑎∥ −

𝑢

∥𝑢∥

∥︁∥︁∥︁∥︁ < 𝜀.
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Definition 4.1.2 (Normal vector). Let 𝐴 ⊆ R𝑑 be closed and 𝑎 ∈ 𝜕𝐴. Then 𝑣 ∈ R𝑑 is a
normal vector of 𝐴 at 𝑎 if for every tangent vector 𝑢 of 𝐴 at 𝑎, the scalar product 𝑣 · 𝑢 is
non-positive.

Lemma 4.1.3 (Federer 1959). Let 𝐴 ⊆ R𝑑 be closed and 𝑎 ∈ 𝜕𝐴. Let reach(𝐴) > 𝑟 > 0. Let
𝑣 be a normal vector of 𝐴 at 𝑎. Then,

𝑑 (𝑎 + 𝑟 𝑣

∥𝑣∥ , 𝐴) = 𝑑 (𝑎 + 𝑟
𝑣

∥𝑣∥ , 𝑎) = 𝑟.

Note that the reach(𝐴) characterizes the geometry of the complement of 𝐴. Since we work
with the signed Euclidean distance transform of a solid object 𝑋 in this chapter, we will use

reach(𝜕𝑋) = min{reach(𝑋), reach(cl(𝑋c))}

to characterize the geometry of both 𝑋 and its complement. The geometric attributes that
determine the reach of 𝜕𝑋 are its radii of curvature and distances to the generalised critical
points of the signed Euclidean distance transform. It is known [Thä08], that if 𝜕𝑋 is a closed
𝐶2 submanifold of R𝑑 , then reach(𝜕𝑋) > 0.

In Section 4.3 we establish a bound on the difference between the CSEDT of 𝑋 and the
DSEDT of 𝑋 (𝑟, 𝑡) in terms of a geometric quantity we call the leash. We denote by 𝐴𝛿, the
set of all points within distance 𝛿 of a set 𝐴. Recall now, that the erosion of 𝑋 by balls of
radius 𝛿 is given by

E𝛿 (𝑋) = ((𝑋c)𝛿)c = {𝑥 ∈ 𝑋 | 𝐵𝛿 (𝑥) ⊆ 𝑋}.
The leash then measures the Hausdorff distance between 𝑋 and 𝐸𝛿 (𝑋):

leash𝑋 (𝛿) = 𝑑H (𝑋,E𝛿 (𝑋)) = sup
𝑥∈𝑋

𝑑 (𝑥,E𝛿 (𝑋)).

The name leash can be best understood by imagining an infinitesimally small dog connected
by a leash to the center of a ball of radius 𝑠, see Fig. 4.2. The ball must stay fully inside the
set 𝐴, while the dog is free to visit the whole of R𝑑. The minimal length of the leash such
that the dog can access every point of 𝐴 is then leash𝐴 (𝑠).

Figure 4.2: Illustration of the leash𝐴 (𝑠): The ball of radius 𝑠 gets stuck inside part of 𝐴 but
with a long enough leash the dog can reach every part of 𝐴. © 2021 IEEE.
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In Lemma 4.3.8, we show that if the reach is strictly positive and 0 < 𝑠 < reach(cl(𝑋)c), then
leash𝑋 (𝑠) = 𝑠. This is equivalent to saying that the closed 𝑠-neighborhood of 𝐸𝑠 (𝑋) exactly
recovers 𝑋.

As for the reach, we need to characterize both the geometry of 𝑋 and its complement 𝑋𝑐,
so we will use the two-sided leash, defined as

𝑙𝑋 (𝛿) = max{leash𝑋 (𝛿), leashcl(𝑋c) (𝛿)}.

4.2 Persistent Homology of Grayscale Images

Using the definitions and tools outlined in Section 4.1, we compare the persistence diagrams
of a real-valued function to the persistence diagrams of its digital approximation at a given
voxel size. This is achieved by bounding the difference between the function and its ap-
proximation and invoking the stability theorem for persistence diagrams in Proposition 4.2.1.
This result has a number of simple corollaries giving us bounds on the differences between
persistence diagrams of digital approximations for different voxel sizes, and for the case that
the ground-truth function is Lipschitz continuous.

Proposition 4.2.1. Let f be a tame 𝜇-integrable function, and fr its digital approximation on
a grid with spacing 𝑟. Suppose there is a positive number 𝑀𝑟 > 0 such that for every closed
voxel cl(𝜎(𝑖)) in the domain of f, the difference

sup
𝑥∈cl(𝜎(𝑖))

f (𝑥) − inf
𝑥∈cl(𝜎(𝑖))

f (𝑥) ≤ 𝑀𝑟 .

Then, ∥f − fr∥∞ ≤ 𝑀𝑟 and thus dB(Dgm(f),Dgm(fr)) ≤ 𝑀𝑟 .

Proof. For any 𝑥 in the domain of f, there is at least one voxel 𝜎(𝑖) with side-length 𝑟 such
that 𝑥 ∈ cl(𝜎(𝑖)). If 𝑥 belongs to more than one closed voxel, choose the one for which
fr(𝑥) = fr(𝑦) for 𝑦 ∈ 𝜎(𝑖). Let

𝑀𝑥 := sup
𝑦∈cl(𝜎(𝑖))

f (𝑦), and 𝑚𝑥 := inf
𝑦∈cl(𝜎(𝑖))

f (𝑦).

We have 𝑀𝑟 ≥ 𝑀𝑥−𝑚𝑥. The definition of fr and choice of 𝜎(𝑖) ensures that 𝑚𝑥 ≤ fr(𝑥) ≤ 𝑀𝑥.
It follows that

| f (𝑥) − fr(𝑥) | ≤ max{f (𝑥) − 𝑚𝑥 , 𝑀𝑥 − f (𝑥)}
≤ 𝑀𝑥 − 𝑚𝑥
≤ 𝑀𝑟 .

We conclude that ∥f − fr∥∞ ≤ 𝑀𝑟 . Thus, by the stability theorem [CSEH07] the bottleneck
distance between the persistence diagrams is also bounded by 𝑀𝑟 . □

We now compare the persistence diagrams of the digital approximations fr at different
resolutions. Given two grid spacings 𝑟1 > 0 and 𝑟2 > 0, suppose 𝑟2 is divisible by 𝑟1, i.e.,
𝑎 := 𝑟2/𝑟1 ∈ N, then any voxel of size 𝑟2 contains 𝑎𝑑 voxels of size 𝑟1. Since the measure of
the voxel faces is zero, f𝑟2 is the 𝑟2 digital approximation of f𝑟1 . Therefore, Proposition 4.2.1,
applied to f𝑟1 , implies an upper bound for the distance between the persistence diagrams of
the two digital approximations f𝑟1 and f𝑟2 as follows.
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Corollary 4.2.2. Suppose 𝑟2 > 𝑟1 > 0, 𝑎 = 𝑟2/𝑟1 ∈ N, and choose 𝑀 ≥ 0 such that for all
voxels 𝜎(𝑖) of size 𝑟2, the difference

max
𝜎′⊆𝜎 (𝑖)

{f𝑟1 (𝑥) : 𝑥 ∈ cl(𝜎′)} − min
𝜎′⊆𝜎 (𝑖)

{f𝑟1 (𝑥) : 𝑥 ∈ cl(𝜎′)} ≤ 𝑀,

where 𝜎′ refers to voxels of size 𝑟1.
Then, ∥f𝑟1 − f𝑟2 ∥∞ ≤ 𝑀 and thus dB(Dgm(f𝑟1),Dgm(f𝑟2)) ≤ 𝑀.

For the special case when f is Lipschitz continuous, we can estimate the constant 𝑀 in
Proposition 4.2.1 by the Lipschitz constant of f. Recall that a function f : R𝑑 → R is Lipschitz
continuous with constant 𝐿 > 0 if | f (𝑥)−f (𝑦) | ≤ 𝐿∥𝑥−𝑦∥. For brevity, we say f is 𝐿-Lipschitz
continuous. Note that the CSEDT 𝑑∓

𝑋
is Lipschitz continuous with constant 1.

Corollary 4.2.3. Suppose f : R𝑑 → R is 𝐿-Lipschitz continuous. Then, ∥ 𝑓 − 𝑓𝑟 ∥∞ ≤ 𝐿𝑟
√
𝑑

and thus dB(Dgm(f),Dgm(fr)) ≤ 𝐿𝑟
√
𝑑.

Proof. For any voxel 𝜎(𝑖), since the function f is continuous and cl(𝜎(𝑖)) is compact, there
are 𝑥1, 𝑥2 ∈ cl(𝜎(𝑖)) such that

f (𝑥1) = max
𝑦∈cl(𝜎(𝑖))

f (𝑦), and f (𝑥2) = min
𝑦∈cl(𝜎(𝑖))

f (𝑦).

It follows that

max
𝑦∈cl(𝜎(𝑖))

f (𝑦) − min
𝑦∈cl(𝜎(𝑖))

f (𝑦) = |f (𝑥1) − f (𝑥2) |

≤ 𝐿∥𝑥1 − 𝑥2∥ ≤ 𝐿𝑟
√
𝑑.

From Proposition 4.2.1, we see that ∥ 𝑓 − 𝑓𝑟 ∥∞ ≤ 𝐿𝑟
√
𝑑 and thus the bottleneck distance

between the persistence diagrams is bounded by 𝐿𝑟
√
𝑑. □

Under the Lipschitz continuity assumption, the bottleneck distance between persistence
diagrams of two digital approximations is bounded as follows.

Corollary 4.2.4. Suppose f : R𝑑 → R is 𝐿-Lipschitz continuous. Then, ∥f𝑟1 − f𝑟2 ∥∞ ≤ 𝐿𝑟2
√
𝑑

and thus dB(Dgm(f𝑟1),Dgm(f𝑟2)) ≤ 𝐿𝑟2
√
𝑑, when 𝑟2 > 𝑟1 > 0 and 𝑟2 is divisible by 𝑟1.

Proof. For any voxel 𝜎(𝑖) of size 𝑟2, since the function f is continuous and cl(𝜎(𝑖)) is
compact, there are 𝑥1 and 𝑥2 in cl(𝜎(𝑖)) such that

f (𝑥1) = max
𝑦∈cl(𝜎(𝑖))

f (𝑦), and f (𝑥2) = min
𝑦∈cl(𝜎(𝑖))

f (𝑦).

Note that

max
𝜎′⊂𝜎(𝑖)

{︁
f𝑟1 (𝑥) : 𝑥 ∈ cl(𝜎′)

}︁
≤ max
𝑦∈cl(𝜎(𝑖))

f (𝑦),

min
𝜎′⊂𝜎(𝑖)

{︁
f𝑟1 (𝑥) : 𝑥 ∈ cl(𝜎′)

}︁
≥ min
𝑦∈cl(𝜎(𝑖))

f (𝑦).

Therefore, the constant 𝑀 defined in Proposition 4.2.2 is bounded as

𝑀 ≤ max
𝑦∈cl(𝜎(𝑖))

f (𝑦) − min
𝑦∈cl(𝜎(𝑖))

f (𝑦)

= f (𝑥1) − f (𝑥2) ≤ 𝐿 | |𝑥1 − 𝑥2 | | ≤ 𝐿𝑟2
√
𝑑.

Hence, by Proposition 4.2.2, ∥f𝑟1 − f𝑟2 ∥∞ ≤ 𝐿𝑟2
√
𝑑 and thus dB(𝑃𝐷 (f𝑟1), 𝑃𝐷 (f𝑟2)) ≤ 𝐿𝑟2

√
𝑑.
□
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When 𝑟2 is not an integer multiple of 𝑟1, it is still possible to bound the bottleneck distance
between the persistent diagrams of f𝑟1 and f𝑟2 using Proposition 4.2.1 and triangle inequality.
However, in this case, the bound is not as tight as the bound in Corollary 4.2.4.

Corollary 4.2.5. Suppose f : R𝑑 → R is 𝐿-Lipschitz continuous. Then, ∥f𝑟1 − f𝑟2 ∥∞ ≤
𝐿 (𝑟1 + 𝑟2)

√
𝑑 and thus dB(Dgm(f𝑟1),Dgm(f𝑟2)) ≤ 𝐿 (𝑟1 + 𝑟2)

√
𝑑, for all 𝑟1, 𝑟2 > 0.

Proof. From triangle inequality and Corollary 4.2.3, we have

| | 𝑓𝑟1 − 𝑓𝑟2 | |∞ ≤ || 𝑓𝑟1 − 𝑓 | |∞ + || 𝑓𝑟2 − 𝑓 | |∞
≤ 𝐿𝑟1

√
𝑑 + 𝐿𝑟2

√
𝑑 = 𝐿 (𝑟1 + 𝑟2)

√
𝑑.

By the stability theorem, the bottleneck distance between the persistence diagrams is also
bounded by 𝐿 (𝑟1 + 𝑟2)

√
𝑑. □

4.3 Persistent Homology of the Distance Transform of
Binary Images

In this section, we consider 𝑋 ⊆ R𝑑 as a solid object that is imaged with voxel spacing 𝑟,
yielding its digital approximation 𝑋 (𝑟, 𝑡) for some choice of 0 < 𝑡 ≤ 1. We derive bounds
on the bottleneck distance between the persistence diagram of the DSEDT of 𝑋 (𝑟, 𝑡), and
the CSEDT of 𝑋, by first comparing both of them to the CSEDT of 𝑋 (𝑟, 𝑡), as outlined in
Fig. 4.3.

𝑋 ⊆ R𝑑 grayscale
image 𝜌𝑟

binary
image 𝑋 (𝑟, 𝑡)

𝑑∓
𝑋

: R𝑑 → R 𝑑∓
𝑋 (𝑟,𝑡) : R

𝑑 → R grayscale
image 𝐷𝑟

Dgm(𝑑∓
𝑋
) Dgm(𝐷𝑟)

discretize
𝑟

𝐶𝑆𝐸𝐷𝑇

threshold
𝑡

𝐶𝑆𝐸𝐷𝑇 𝐷𝑆𝐸𝐷𝑇

𝑃𝐻 𝑃𝐻

Figure 4.3: Diagram of our model for the digital approximation of a solid object 𝑋, and
its geometric characterisation using signed Euclidean distance transforms and persistent
homology. The top row is a simplified version of CT-imaging and segmentation. In gray: In
the proof of Theorem 4.3.1, instead of comparing the continuous distance transform 𝑑∓

𝑋
to

the discrete distance transform 𝐷𝑟 directly, we compare both to the continuous distance
transform 𝑑∓

𝑋 (𝑟,𝑡) of the discrete object. © 2021 IEEE.

4.3.1 Bounds using the reach or leash of 𝑋

The most relevant result of this section is Corollary 4.3.9, which states that when discretizing
with voxel length 𝑟 < 1√

𝑑
reach(𝜕𝑋), the bottleneck distance is bounded by a constant times

𝑟. This follows directly from Theorem 4.3.1, which bounds the bottleneck distance in terms
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4.3. Persistent Homology of the Distance Transform of Binary Images

of the two-sided leash 𝑙𝑋 (
√
𝑑𝑟) when discretizing with any voxel length 𝑟, not necessarily

smaller than the reach. Note that the bounds we give here do not depend on the threshold 𝑡.
The results could be slightly improved by incorporating 𝑡 but we do not do so for the sake of
brevity.

Theorem 4.3.1. Given 𝑋 ⊆ R𝑑 with 𝑋 = cl(int(𝑋)). Let 𝑑∓
𝑋

be the CSEDT of 𝑋, 𝑟 > 0, 𝑡 ∈
(0, 1], and 𝑋 (𝑟, 𝑡) be its digital approximation. Let 𝐷𝑟 = D[𝑋 (𝑟, 𝑡)] : R𝑑 → R denote the
discrete signed Euclidean distance transform. Then,

dB(Dgm(𝑑∓𝑋),Dgm(𝐷𝑟)) ≤ 𝑙𝑋 (
√
𝑑𝑟) + 2

√
𝑑𝑟

The proof requires the following lemmata. The first lemma shows that the DSEDT of 𝑋 (𝑟, 𝑡)
is a good approximation to the CSEDT of 𝑋 (𝑟, 𝑡).

Lemma 4.3.2. With the notation of Theorem 4.3.1,∥︁∥︁∥︁𝑑∓𝑋 (𝑟,𝑡) − 𝐷𝑟∥︁∥︁∥︁∞ ≤ √𝑑𝑟.
Proof. Let 𝑝 ∈ R𝑑 and assume 𝑝 ∈ 𝑋 (𝑟, 𝑡); the proof for 𝑝 ∈ 𝑋 (𝑟, 𝑡)c works analogously.
Let 𝑦 be a closest point of 𝜕𝑋 (𝑟, 𝑡) to 𝑝, i.e. 𝑑∓

𝑋 (𝑟,𝑡) (𝑝) = −𝑑 (𝑝, 𝜕𝑋 (𝑟, 𝑡)) = −𝑑 (𝑝, 𝑦), see
Fig. 4.4. As 𝑦 ∈ 𝜕𝑋 (𝑟, 𝑡), there exists a voxel 𝜎(𝑖) ⊆ 𝑋 (𝑟, 𝑡)c with voxel center 𝑦′ of distance

Figure 4.4: Illustration of the variables appearing in the proof of Lemma 4.3.2. © 2021 IEEE.

𝑑 (𝑦, 𝑦′) ≤ 1
2
√
𝑑𝑟. Let 𝜎( 𝑗) be the voxel with 𝑝 in its closure with minimal filtration value (in

case there are several), i.e. the voxel giving filtration value 𝐷𝑟 (𝑝) = 𝐷𝑟 (𝜎( 𝑗)) to 𝑝, and let
𝑝′ be its center. Thus, 𝑑 (𝑝, 𝑝′) ≤ 1

2
√
𝑑𝑟. Hence,

−𝐷𝑟 (𝑝) = −𝐷𝑟 (𝜎( 𝑗))
= min{𝑑 (𝑝′, 𝑐) | 𝑐 voxel center of 𝜎(𝑘) ⊆ 𝑋 (𝑟, 𝑡)c}
≤ 𝑑 (𝑝′, 𝑦′) ≤ 𝑑 (𝑝′, 𝑝) + 𝑑 (𝑝, 𝑦) + 𝑑 (𝑦, 𝑦′)

≤ 1
2
√
𝑑𝑟 − 𝑑∓

𝑋 (𝑟,𝑡) (𝑝) +
1
2
√
𝑑𝑟,

yielding 𝑑∓
𝑋 (𝑟,𝑡) (𝑝) − 𝐷𝑟 (𝑝) ≤

√
𝑑𝑟.
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Let 𝑧′ be the voxel center minimizing

min{𝑑 (𝑝′, 𝑐) | 𝑐 voxel center of 𝜎(𝑘) ⊆ 𝑋 (𝑟, 𝑡)c} = −𝐷𝑟 (𝑝).

As 𝑧′ ∈ 𝑋 (𝑟, 𝑡)c and 𝑝 ∈ 𝑋 (𝑟, 𝑡), there exists a 𝑧 ∈ 𝜕𝑋 (𝑟, 𝑡) on the straight line segment
between 𝑧′ and 𝑝. Hence,

−𝑑∓
𝑋 (𝑟,𝑡) (𝑝) = 𝑑 (𝑝, 𝜕𝑋 (𝑟, 𝑡)) ≤ 𝑑 (𝑝, 𝑧) ≤ 𝑑 (𝑝, 𝑧

′)

≤ 𝑑 (𝑝, 𝑝′) + 𝑑 (𝑝′, 𝑧′) ≤ 1
2
√
𝑑𝑟 − 𝐷𝑟 (𝑝),

yielding −(𝑑∓
𝑋 (𝑟,𝑡) (𝑝) − 𝐷𝑟 (𝑝)) ≤

1
2
√
𝑑𝑟. □

The authors of [CSEH07] mention that, by definition, the Hausdorff distance between two
sets equals the 𝐿∞-distance between the (unsigned) Euclidean distance transforms of these
two sets. For the proof of Theorem 4.3.1 an extension of this to the signed Euclidean
distance transform is needed, see Lemma 4.3.3. Note that the bound is between the
maximum and the sum of the two terms 𝑑H (𝐴, 𝐵) and 𝑑H (𝐴c, 𝐵c).

Lemma 4.3.3. Let 𝐴, 𝐵 ⊆ R𝑑 , then∥︁∥︁𝑑∓𝐴 − 𝑑∓𝐵∥︁∥︁∞ ≤ max{ sup
𝑏∈𝐵c

𝑑 (𝐴c, 𝑏) + sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵),

sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏) + sup
𝑎∈𝐴c

𝑑 (𝑎, 𝐵c)}

Proof. Let 𝑑𝐴 denote the unsigned Euclidean distance transform defined as 𝑑𝐴 (𝑝) =

𝑑 (𝑝, 𝐴), for any 𝑝 ∈ R𝑑. As mentioned above, we have by definition that ∥𝑑𝐴 − 𝑑𝐵∥∞ =

𝑑H (𝐴, 𝐵). To bound
∥︁∥︁𝑑∓

𝐴
− 𝑑∓

𝐵

∥︁∥︁
∞, we consider four cases for the point 𝑝 ∈ R𝑑 .

Case 1: 𝑝 ∈ 𝐴, 𝑝 ∈ 𝐵. Then, |𝑑∓
𝐴
(𝑝) − 𝑑∓

𝐵
(𝑝) | = |−𝑑𝐴c (𝑝) + 𝑑𝐵c (𝑝) | ≤ ∥𝑑𝐵c − 𝑑𝐴c ∥∞ =

𝑑H (𝐴c, 𝐵c) = max{sup𝑏∈𝐵c 𝑑 (𝐴c, 𝑏), sup𝑎∈𝐴c 𝑑 (𝑎, 𝐵c)}.

Case 2: 𝑝 ∉ 𝐴, 𝑝 ∉ 𝐵. Analogously, |𝑑∓
𝐴
(𝑝) − 𝑑∓

𝐵
(𝑝) | ≤ max{sup𝑎∈𝐴 𝑑 (𝑎, 𝐵),

sup𝑏∈𝐵 𝑑 (𝐴, 𝑏)}.

Case 3: 𝑝 ∈ 𝐴, 𝑝 ∉ 𝐵. Then, |𝑑∓
𝐴
(𝑝) − 𝑑∓

𝐵
(𝑝) | = |−𝑑 (𝐴c, 𝑝) − 𝑑 (𝑝, 𝐵) | = 𝑑 (𝐴c, 𝑝) +

𝑑 (𝑝, 𝐵) ≤ sup𝑏∈𝐵c 𝑑 (𝐴c, 𝑏) + sup𝑎∈𝐴 𝑑 (𝑎, 𝐵).

Case 4: 𝑝 ∉ 𝐴, 𝑝 ∈ 𝐵. Analogously, |𝑑∓
𝐴
(𝑝) − 𝑑∓

𝐵
(𝑝) | ≤ sup𝑏∈𝐵 𝑑 (𝐴, 𝑏) + sup𝑎∈𝐴c 𝑑 (𝑎, 𝐵c).

□

Remark 4.3.4. In the special case that max{𝑑H (𝐴, 𝐵), 𝑑H (𝐴c, 𝐵c)} < reach(𝜕𝐴),
Lemma 4.3.3 can be tightened to

∥︁∥︁𝑑∓
𝐴
− 𝑑∓

𝐵

∥︁∥︁
∞ ≤ max{𝑑H (𝐴, 𝐵), 𝑑H (𝐴c, 𝐵c)}, see Appendix

B in the extended version of this chapter on arXiv [HTS+21a].

However, when the sets differ by more than their reach, the bound in Lemma 4.3.3 can be
tight, as Example 4.3.5 shows.

Example 4.3.5. Let 𝐴 = [−1.5, 1.5] × R and 𝐵 = [−1.5, 1.5] × ((−∞,−1] ∪ [1,∞)). Then,
the bound given in Lemma 4.3.3 is tight:

∥︁∥︁𝑑∓
𝐴
− 𝑑∓

𝐵

∥︁∥︁
∞ = |𝑑∓

𝐴
(0) − 𝑑∓

𝐵
(0) | = |−1.5 − 1| =

1.5 + 1 = sup𝑏∈𝐵c 𝑑 (𝐴c, 𝑏) + sup𝑎∈𝐴 𝑑 (𝑎, 𝐵).
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Figure 4.5: The four different suprema in the bound of Lemma 4.3.3 can all have different
values. In the proof of Theorem 4.3.1 we show that suprema 1 and 3 are bounded by the
two-sided leash 𝑙𝑋 (

√
𝑑𝑟), while suprema 2 and 4 are bounded by the voxel diameter

√
𝑑𝑟.

© 2021 IEEE.

Lemma 4.3.6. With the notation of Theorem 4.3.1,

dB(Dgm(𝑑∓𝑋),Dgm(𝐷𝑟))
≤ max{ sup

𝑦∈𝑋 (𝑟,𝑡)c
𝑑 (𝑋c, 𝑦) + sup

𝑥∈𝑋
𝑑 (𝑥, 𝑋 (𝑟, 𝑡)),

sup
𝑦∈𝑋 (𝑟,𝑡)

𝑑 (𝑋, 𝑦) + sup
𝑥∈𝑋c

𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c)} +
√
𝑑𝑟

Proof. The proof is a combination of the stability theorem of persistent homology [CSEH07],
the triangle inequality, and Lemmata 4.3.3, 4.3.2:

dB(Dgm(𝑑∓𝑋),Dgm(𝐷𝑟))
≤
∥︁∥︁𝑑∓𝑋 − 𝐷𝑟∥︁∥︁∞
≤
∥︁∥︁∥︁𝑑∓𝑋 − 𝑑∓𝑋 (𝑟,𝑡)∥︁∥︁∥︁∞ + ∥︁∥︁∥︁𝑑∓𝑋 (𝑟,𝑡) − 𝐷𝑟∥︁∥︁∥︁∞
≤ max{ sup

𝑦∈𝑋 (𝑟,𝑡)c
𝑑 (𝑋c, 𝑦) + sup

𝑥∈𝑋
𝑑 (𝑥, 𝑋 (𝑟, 𝑡)),

sup
𝑦∈𝑋 (𝑟,𝑡)

𝑑 (𝑋, 𝑦) + sup
𝑥∈𝑋c

𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c)} +
√
𝑑𝑟.

□

Lemma 4.3.7. With the notation of Theorem 4.3.1,

1. sup𝑥∈𝑋 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) ≤ leash𝑋 (
√
𝑑𝑟)

2. sup𝑥∈𝑋c 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c) ≤ leashcl(𝑋c) (
√
𝑑𝑟)

3. sup𝑦∈𝑋 (𝑟,𝑡) 𝑑 (𝑋, 𝑦) ≤
√
𝑑𝑟
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4. sup𝑦∈𝑋 (𝑟,𝑡)c 𝑑 (𝑋c, 𝑦) ≤
√
𝑑𝑟

Proof. 1) To prove sup𝑥∈𝑋 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) ≤ leash𝑋 (
√
𝑑𝑟), let 𝑥 ∈ 𝑋 be arbitrary. By the

definition of leash𝑋 (
√
𝑑𝑟), there exists a point 𝑎 ∈ ((𝑋c)√

𝑑𝑟
)c with 𝑑 (𝑥, 𝑎) ≤ leash𝑋 (

√
𝑑𝑟).

As 𝑎 is at least
√
𝑑𝑟 far from 𝑋c, the open ball 𝐵√

𝑑𝑟
(𝑎) is fully inside 𝑋. Let 𝜎 be a voxel

containing 𝑎 in its closure. As the diameter of the voxel is diam(𝜎) =
√
𝑑𝑟, the voxel

𝜎 ⊆ 𝐵√
𝑑𝑟
(𝑎) ⊆ 𝑋 has density 𝜌𝑟 (𝜎) = 1 ≥ 𝑡, for all 𝑡 ∈ (0, 1]. Hence, 𝑎 ∈ cl(𝜎) ⊆ 𝑋 (𝑟, 𝑡)

and 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) ≤ 𝑑 (𝑥, 𝑎) ≤ leash𝑋 (
√
𝑑𝑟).

2) The proof for sup𝑥∈𝑋c 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c) ≤ leashcl(𝑋c) (
√
𝑑𝑟) is analogous.

3) To prove sup𝑦∈𝑋 (𝑟,𝑡) 𝑑 (𝑋, 𝑦) ≤
√
𝑑𝑟, let 𝑦 ∈ 𝑋 (𝑟, 𝑡) be arbitrary. Let 𝜎 ⊆ 𝑋 (𝑟, 𝑡) be such

that 𝑦 ∈ cl(𝜎). As 𝜌𝑟 (𝜎) > 𝑡 > 0, there exists a point 𝑥 ∈ 𝑋 ∩𝜎. Hence, 𝑑 (𝑋, 𝑦) ≤ 𝑑 (𝑥, 𝑦) ≤
diam(𝜎) =

√
𝑑𝑟.

4) The proof for sup𝑦∈𝑋 (𝑟,𝑡)c 𝑑 (𝑋c, 𝑦) ≤
√
𝑑𝑟 is analogous. □

Proof of Theorem 4.3.1. Lemma 4.3.7 shows that both the terms sup𝑦∈𝑋 (𝑟,𝑡)c 𝑑 (𝑋c, 𝑦) +
sup𝑥∈𝑥 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) and sup𝑦∈𝑋 (𝑟,𝑡) 𝑑 (𝑋, 𝑦) + sup𝑥∈𝑋c 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c) are bounded by

√
𝑑𝑟 +

𝑙𝑋 (
√
𝑑𝑟). In combination with Lemma 4.3.6 this finishes the proof. □

In the special case when the voxel diameter
√
𝑑𝑟 is smaller than reach(𝜕𝑋), we can calculate

the term 𝑙𝑋 (
√
𝑑𝑟) explicitly using the following Lemma.

Lemma 4.3.8. Let 𝐴 be a subset of R𝑑 with 𝐴 = cl(int(𝐴)) and reach(cl(𝐴c)) > 0. Let
𝑠 < reach(cl(𝐴c)), then leash𝐴 (𝑠) = 𝑠.

Proof. To show that leash𝐴 (𝑠) = sup𝑎∈𝐴 𝑑 (𝑎,E𝑠 (𝐴)) is at most 𝑠, we need to find for every
𝑎 ∈ 𝐴 an element 𝑏 ∈ E𝑠 (𝐴) with distance 𝑑 (𝑎, 𝑏) at most 𝑠. Let 𝑎 ∈ 𝐴 be arbitrary. If
𝑎 ∈ E𝑠 (𝐴), then 𝑏 = 𝑎 fulfills 𝑑 (𝑎, 𝑏) = 0 ≤ 𝑠. Therefore 𝑎 ∉ E𝑠 (𝐴), i.e. 𝑎 ∈ (𝐴c)𝑠. Let
𝑥 ∈ 𝜕 cl(𝐴c) be s.t. 𝑑 (𝑎, 𝑥) = 𝑑 (𝑎, cl(𝐴c)). If 𝑥 ≠ 𝑎, then 𝑛𝑥 = 𝑎−𝑥

∥𝑎−𝑥∥ is a unit normal vector of
cl(𝐴c) at 𝑥 (for a rigorous definition of normal vector, see Definition 4.1.2). If 𝑥 = 𝑎, let 𝑛𝑥 be
any unit normal vector of cl(𝐴c) at 𝑥. Define 𝑏 = 𝑥 + 𝑠𝑛𝑥. Since 𝑠 < reach(cl(𝐴c)), Federer’s
Lemma 4.1.3 yields, 𝑑 (𝐴c, 𝑏) = 𝑑 (cl(𝐴c), 𝑏) = 𝑑 (𝑥, 𝑏) = 𝑠. Hence, 𝑏 ∉ (𝐴c)𝑠 and thus
𝑏 ∈ ((𝐴c)𝑠)c = E𝑠 (𝐴). The points 𝑥, 𝑎, and 𝑏 lie on a straight line by construction. The point
𝑎 has distance 𝑑 (𝑎, 𝑥) = 𝑑 (𝑎, cl(𝐴c))) = 𝑑 (𝑎, 𝐴c) to 𝑥, which is less than 𝑠 as 𝑎 ∈ (𝐴c)𝑠.
Hence, 𝑎 lies on the line segment between 𝑥 and 𝑏, and thus 𝑑 (𝑎, 𝑏) ≤ 𝑑 (𝑥, 𝑏) = 𝑠,
concluding the proof of leash𝐴 (𝑠) ≤ 𝑠.

For any 𝑎 ∈ 𝜕𝐴, we get 𝑑 (𝑎,E𝑠 (𝐴)) ≥ 𝑠, yielding leash𝐴 (𝑠) = 𝑠. □

Corollary 4.3.9. Using the notation of Theorem 4.3.1. If 𝑟 < 1√
𝑑
reach(𝜕𝑋), then

dB(Dgm(𝑑∓𝑋),Dgm(𝐷𝑟)) ≤ 3
√
𝑑𝑟

Proof. Apply Theorem 4.3.1 and Lemma 4.3.8. □

Remark 4.3.10. Using Remark 4.3.4, the constant 3 in Corollary 4.3.9 can be tightened to
2, see Appendix B in the extended version of this chapter on arXiv [HTS+21a].
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4.3. Persistent Homology of the Distance Transform of Binary Images

4.3.2 Bounds using the density 𝜌𝑟
Suppose we start with 𝜌𝑟 , the function that tells us the proportion of 𝑋 in each voxel defined
in Section 4.1.2. As mentioned there, this is a reasonable model of the information contained
in an x-ray CT image of a two-phase material with high x-ray contrast. Theorem 4.3.12
bounds the bottleneck distance between the persistence diagrams of 𝑑∓

𝑋
and 𝐷𝑟 in terms of

𝜌𝑟 . The proof reuses Lemma 4.3.6, but we need to bound the suprema by quantities other
than the leash this time.

Lemma 4.3.11. Using the notation of Theorem 4.3.1.

1. sup𝑥∈𝑋 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) ≤ max
(︁
0,max𝜌𝑟 (𝑖)>0 𝐷𝑟 (𝜎(𝑖))

)︁
2. sup𝑥∈𝑋c 𝑑 (𝑥, 𝑋 (𝑟, 𝑡)c) ≤ max

(︁
0,max𝜌𝑟 (𝑖)<1 −𝐷𝑟 (𝜎(𝑖))

)︁
.

Proof. We prove the first statement here; the second can be shown similarly. Let 𝑥 ∈ 𝑋,
and assume 𝑥 ∉ 𝑋 (𝑟, 𝑡) (otherwise the statement follows trivially). As 𝑥 ∈ 𝑋 = cl(int(𝑋)),
any voxel 𝜎( 𝑗) containing 𝑥 in its closure has 𝜌𝑟 ( 𝑗) > 0. Let 𝑥′ be the center of 𝜎( 𝑗). As
𝑥 ∉ 𝑋 (𝑟, 𝑡), its voxel 𝜎( 𝑗) is in 𝑋 (𝑟, 𝑡)c. Let 𝑦′ be the voxel center minimizing

min{𝑑 (𝑥′, 𝑐) | 𝑐 voxel center ∈ 𝑋 (𝑟, 𝑡)} = 𝐷𝑟 (𝜎( 𝑗)).

As 𝑥 − 𝑥′ is a vector pointing from a voxel center to a point in the closure of the same voxel,
adding this vector to the voxel center 𝑦′ yields a point in the closure of the same voxel, and
thus a point in 𝑋 (𝑟, 𝑡). Hence,

𝑑 (𝑥, 𝑋 (𝑟, 𝑡)) ≤ 𝑑 (𝑥, 𝑦′ + (𝑥 − 𝑥′))
= 𝑑 (𝑥 − (𝑥 − 𝑥′), 𝑦′)
= 𝑑 (𝑥′, 𝑦′)
= min{𝑑 (𝑥′, 𝑐) | 𝑐 voxel center ∈ 𝑋 (𝑟, 𝑡)}
= 𝐷𝑟 (𝜎( 𝑗)) ≤ max

𝜌𝑟 (𝑖)>0
𝐷𝑟 (𝜎(𝑖)).

□

Define 𝑚𝜌𝑟 as the maximum of 0, max𝜌𝑟 (𝑖)>0 𝐷𝑟 (𝜎(𝑖)), and max𝜌𝑟 (𝑖)<1 −𝐷𝑟 (𝜎(𝑖)). This
measures how far 𝑋 (𝑟, 𝑡) is from the two most extreme ways of thresholding.

Theorem 4.3.12. With the notation of Theorem 4.3.1,

dB(Dgm(𝑑∓𝑋),Dgm(𝐷𝑟)) ≤ 𝑚𝜌𝑟 + 2
√
𝑑𝑟

Proof. Combining Lemma 4.3.6, Lemma 4.3.11, and items 3 and 4 of Lemma 4.3.7. □

4.3.3 Examples

We describe an example that illustrates many of the bounds derived above. The ground-truth
object 𝑋 consists of an array of small circular spots lying inside a large disk together with
the outside of this disk; see the image at top left of Fig. 4.6. In total this image is 2048×2048
pixels and the large white disk is a circle of radius 𝑅2 = 510 pixels. The small black disks
have radius 𝑅1 = 5 pixels and centers 𝑤 = 85 pixels apart.
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4. THE IMPACT OF CHANGES IN RESOLUTION ON THE PERSISTENT HOMOLOGY OF IMAGES

The reach of 𝜕𝑋 is the radius 𝑅1 of the small spots, so the image with 20482 pixels has
1 = 𝑟 < reach(𝜕𝑋)/

√
2 = 3.54. For any resolution with 𝑟 < 3.54, (no. pixels > 5802)

Remark 4.3.10 guarantees that the bottleneck distance between the persistence diagrams
for 𝑑∓

𝑋
and D[𝑋 (𝑟, 𝑡)] is no larger than 2

√
2𝑟.

At coarser resolutions, Theorem 4.3.1 still applies with 𝑙𝑋 (
√
𝑑𝑟) = 𝑅2 − 𝑤√

2
+ 𝑅1 +

√
2𝑟 =

454.9 +
√

2𝑟 when reach(𝜕𝑋) ≤
√

2𝑟 ≤ 𝑤√
2
− 𝑅1. So we see that

dB(Dgm(𝑑∓𝑋),Dgm(D[𝑋 (𝑟, 𝑡)])) ≤ 454.9 + 3
√

2𝑟,

for 3.55 ≤ 𝑟 ≤ 39.0.

For this synthetic example, we can also compute 𝜌𝑟 for all choices of 𝑟. Let 𝜖 > 0 be a small
tolerance to accommodate noise. The pixels where 𝜖 < 𝜌𝑟 < 1 − 𝜖 are those that have
non-empty intersection with 𝜕𝑋 . At high resolutions, i.e., pixel sizes 𝑟 < reach(𝜕𝑋)/

√
2, this

means the Hausdorff distances between 𝑋 (𝑟, 𝑡) and 𝑋 (𝑟, 1 − 𝜖) or 𝑋 (𝑟, 𝜖) are small.

At coarser resolutions, for example the image with 64 × 64 pixels depicted at lower left of
Fig. 4.6, each spot is smaller than a pixel and all pixels intersecting the large disk have
𝜖 < 𝜌𝑟 < 1 − 𝜖 . In this situation, setting 𝑡 = 1 − 𝜖 means the set 𝑋 (𝑟, 1 − 𝜖) is contained in
the outside of the large disk, while 𝑋 (𝑟, 𝜖) is the entire square.

Fig. 4.6 shows that the red bound from Section 4.3.2 has the advantage of being tighter
than the green bound from Section 4.3.1 at lower resolutions (i.e., pixel sizes larger than the
reach). However, at high resolutions the bound given by Remark 4.3.10 is better.

Figure 4.6: Left two columns: The top row shows a high resolution binary image with
corresponding DSEDT and the bottom row shows a lower resolution version obtained by
downsampling with the averaging method and thresholding with 𝑡 = 0.5 and its correspond-
ing DSEDT. Right column: Bottleneck distances comparing persistence diagrams for each
resolution with that for the highest resolution. The distances for dimensions 0 and 1 are
shown along with the bounds provided by Theorem 4.3.1 with Remark 4.3.10 (green) and
Theorem 4.3.12 (red). © 2021 IEEE.
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4.4. Applications

4.4 Applications

In any real-world situation, the reach and the leash for the object being imaged are likely
to be unknown, and/or computationally expensive to estimate. Similarly, the density 𝜌𝑟 at
a given pixel length 𝑟 might be known, but noisy. So in this section, we explore a different
approach. We treat the high-resolution image of the object as a ground truth, and describe
how much information is lost in the persistence diagrams of DSEDTs computed for a
succession of larger voxel sizes, i.e., decreasing image dimensions.

In our case studies, we begin with the highest resolution image and downsample to lower
resolution images as follows. For a 𝑑-dimensional binary image with grid spacing 𝑟, and
dimensions 𝑛1 × · · · × 𝑛𝑑 , we compute the averages in blocks of 𝑎𝑑 voxels, where 𝑎 is called
the kernel size. Based on these average values, we create the downsampled binary image
with grid spacing 𝑟′ = 𝑎𝑟 and dimensions 𝑛1/𝑎 × · · · × 𝑛𝑑/𝑎 by thresholding at value 𝑡 = 0.5,
similar to the process described in Section 4.1.2. From the new image, we compute the
DSEDT, with the new grid spacing 𝑟′ used as a scaling factor.

All examples in this section are square, so the image size is 𝑛𝑑 and we use 𝑛 to quantify
resolution. The voxel size is specified with arbitrary units so that 𝑟 = 1 for the highest-
resolution image in each case. To avoid issues caused by boundary effects, we only choose
kernel sizes that fit evenly within the original high-resolution image dimensions. Thus kernel
sizes are always integer divisors of the image size. This gives us a collection of images
of different resolutions that are approximations of the highest resolution image. Then we
compute the bottleneck distance between the persistence diagram for each resolution with
the persistence diagram from the high resolution image. This allows us to quantify how
much information is lost when we downsample.

We compute the persistence diagrams and bottleneck distance, using the Giotto-TDA python
package[TLT+20]. Code for this project, including code to generate the synthetic examples,
can be found on GitHub[Tym].

4.4.1 Structure at Different Length Scales

Our goal in this section is to explore how the persistent homology of a DSEDT changes at
different image resolutions when approximating a particular object 𝑋 ⊂ R𝑑 , with structure at
different length scales, illustrated in Fig. 4.7. Although the overall trend is that bottleneck
distance decreases with resolution, this decrease is not monotonic. The distinct length
scales mean the distances show a succession of plateaus as each feature is resolved and
the persistence diagrams remain relatively stable over an interval of resolutions.

We now define a Δ-𝜀 plateau to capture the change in bottleneck distance between persis-
tence diagrams as the image resolution changes. Recall that the (linear) image size 𝑛 is used
to quantify resolution, and, for the remainder of this section, denote the DSEDT D[𝑋 (𝑟, 𝑡)]
by 𝐷𝑛. Let 𝑁 denote the highest resolution available and take an interval Δ = [ℓ, 𝑚] of
image resolutions and 𝜀 > 0. We then say there is a Δ-𝜀 plateau if for all 𝑗 , 𝑘 ∈ [ℓ, 𝑚],

|dB

(︂
Dgm(𝐷 𝑗 ),Dgm(𝐷𝑁 )

)︂
− dB

(︂
Dgm(𝐷𝑘 ),Dgm(𝐷𝑁 )

)︂
| < 𝜀.

By the triangle inequality dB
(︁
Dgm(𝐷 𝑗 ),Dgm(𝐷𝑘 )

)︁
< 𝜀 is a sufficient condition for a Δ-𝜀

plateau.
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4. THE IMPACT OF CHANGES IN RESOLUTION ON THE PERSISTENT HOMOLOGY OF IMAGES

Figure 4.7: Top, the digital image we use as the ground truth with the corresponding DSEDT.
Middle, the plot of the bottleneck distances between 1-dimensional persistence diagrams
from each resolution and the highest resolution. Below, the DSEDT of the downsampled
image at three different resolutions. © 2021 IEEE.
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4.4. Applications

As an example, consider the image in Fig. 4.7 with three nested rings of different thicknesses.
The original high-resolution image, 𝑋𝑁 , has 𝑟 = 1 and 𝑁2 = 50402 pixels. We downsample
the original image to create 57 different images, where each new image has a kernel of size 𝑎
where 𝑎 is a proper divisor of 5040, so that the resolution in each case is 𝑛 = 5040/𝑎, and the
voxel size at this resolution is 𝑟 = 𝑎. The DSEDT and persistence diagrams are computed for
each image, and then we find the bottleneck distance dB(Dgm(𝐷𝑛),Dgm(𝐷5040)) comparing
each lower-resolution image with the original one. The plot of these results in Fig. 4.7 shows
three specific behaviors we would like to emphasize; spikes, plateaus, and final plateaus.

As we increase the resolution, some fluctuations in the bottleneck distance are to be
expected, even within a plateau. These fluctuations are on the order of magnitude of the
pixel diameter. For the example in Fig. 4.7 it makes a difference whether the center of the
image is the center of a pixel (for 𝑛 odd) or the center is in the closure of 4 pixels (for 𝑛
even). These effects can cause the bottleneck distance to spike, i.e. to increase and then
immediately decrease. The lower the resolution, the more pronounced these spikes usually
appear. The blue zero-dimensional bottleneck distance curve in Fig. 4.7 has a spike at
𝑛 = 21, the only odd number in this range of resolutions, with an increase by 366 from
𝑛 = 20 to 𝑛 = 21 and a decrease by 333 from 𝑛 = 21 to 𝑛 = 24. The magnitude of this spike
should be compared with the pixel diameter for 𝑛 = 21, which is 𝑟

√
2 = 240

√
2 = 339.4.

Next, we observe the plateau behavior outlined in the definition of a Δ-𝜀 plateau. This is
caused by the introduction of a new topological feature, such as a grain of sand or a small
pore. In the nested ring example, the plot of one-dimensional bottleneck distances shows
three plateaus. The zero-dimensional bottleneck distances mimics this behavior, but the
first one or two plateaus are overshadowed by noise, like spikes, explained above. The
three plateaus are due to the three different ring widths. After each of these is resolved, an
increase in resolution does little to change the persistence diagram. As shown in Fig. 4.7,
we see just one ring at resolution 18, two rings at 𝑛 = 40, the third ring starts being resolved
at 𝑛 = 105 (where it only consist of 4 pixels) and gets fully resolved at 𝑛 = 210. Specifically,
the first Δ-𝜀 plateau is at Δ = [18, 24] with 𝜀 = 36.96 in dimension 1 and 𝜀 = 402.51 in
dimension 0. The second Δ-𝜀 plateau is at Δ = [40, 90] with 𝜀 = 17.31 in dimension 1 and
𝜀 = 104.49 in dimension 0. The third Δ-𝜀 plateau is at Δ = [210, 5040] with 𝜀 = 13.43 in
dimension 1 and 𝜀 = 15.80 in dimension 0.

The existence of structure at just a few distinct, well separated length scales in the synthetic
example means there is a sequence of plateaus as each structure is resolved. This does
not happen for the porous materials discussed in Section 4.4.2. However, we note that
Corollary 4.3.9, and Remark 4.3.10 guarantee the existence of a final plateau for any
object with positive reach. Specifically, let 𝑀 be the lowest resolution required for the
corresponding voxel size 𝑟𝑀 < 1√

𝑑
reach(𝜕𝑋), and assume that the highest resolution image

has 𝑁 > 𝑀. Then the bottleneck distances will have a Δ-𝜀 plateau with Δ = [𝑀, 𝑁] and
𝜀 = 4

√
𝑑 𝑟𝑀 ≤ 4reach(𝜕𝑋). In practice, we often see a final plateau even when the reach

is zero, such as when the leash bounding the bottleneck distance converges to zero. The
glass bead packing in the following section is such an example.

Although a final plateau suggests the image resolution is sufficient to capture the actual
underlying structure of the imaged object, we can never definitively know whether a plateau
is final or not, because we do not know what structure exists at length-scales finer than the
voxel size. Hence, the plateau serves only as a guide for resolution choice.
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4. THE IMPACT OF CHANGES IN RESOLUTION ON THE PERSISTENT HOMOLOGY OF IMAGES

4.4.2 Application to Porous Materials

It is common for materials science examples to have zero reach. For example, packings of
spherical or elliptical grains have reach(𝑋) = 0, because two grains touch at a single point,
while other porous materials, such as a metal foam, have sharp corners. Here we present
three examples of micro-CT images of porous materials segmented into the two phases of
solid and void [SP15]. The images are subregions from a packing of spherical glass beads,
a sandstone (from Castlegate) and an unconsolidated sandpack, each with 5123 voxels.

In Fig. 4.8 we depict slices through each 3D binary image and their signed Euclidean
distance transforms, followed by plots of the bottleneck distances between persistence
diagrams computed at different resolutions. In each case, we downsample the binary image
to a lower resolution using the averaging technique described at the start of Section 4.4 with
a threshold 𝑡 = 0.5. We only use kernel sizes that fit evenly within the image; with 𝑁 = 512
we must use powers of two, 𝑎 = 2𝑘 . As the persistence diagrams for these examples
have so many points, we use an approximation algorithm for the bottleneck distances, as
implemented in Giotto-TDA. Specifically, we use an approximation value of 𝛿 = 0.1 for the
glass bead packing, and 𝛿 = 0.5 for the other two to make these computations feasible.

The green curve shown on the plots of bottleneck distances in Fig. 4.8 is the function
2
√

3𝑟 = 2
√

3(512/𝑛), where 𝑟 = 1 is the voxel spacing for the highest-resolution image, and
𝑛 is the resolution as measured by the number of voxels along each side of the cube. This is
the bound on bottleneck distance we derived in Section 4.3 for the case that the voxel size
𝑟 < reach(𝜕𝑋)/

√
𝑑. As already argued, the reach is zero for the glass bead pack, and likely

to be zero for the sand pack, so the fact that this bound holds suggests that our estimation
results are too generous, and/or that 𝑙𝑋 (𝑠) is approximately 𝑠 despite the reach being zero
for these examples.

We note that the glass bead example has significantly larger bottleneck distances between
its 1-dimensional persistence diagrams compared to the 0-dimensional distances for the
resolutions 𝑛 = 32, 64, 128, 256. Inspection of the dimension one Dgm1(𝐷𝑛) diagrams and
the original image shows that the larger values of 𝑑𝐵 (Dgm1(𝐷𝑛),Dgm1(𝐷512)) are due to
the presence of just a couple of high-persistence cycles near the boundary of the image,
each cycle due to a bead that intersects two faces of the boundary. The sensitivity of
the bottleneck distance to outliers is well known and is the reason Wasserstein distances
between diagrams are often preferred.

An important physical parameter associated with porous materials is the percolation thresh-
old, 𝑙𝑐. This is the radius of the largest sphere that can pass through the pore space from
one side of the image to the opposite. The distribution of points in Dgm0(𝐷𝑛) shows a
clear signature of this critical length scale; see [RSDS16] for details. As can be seen in
the persistence diagrams provided in Appendix D in the extended version of this chapter
on arXiv [HTS+21a], this signature yields the same estimate of 𝑙𝑐 for image resolutions
𝑛 = 512, 256, 128 in the three example materials. This supports the designation of a Δ-𝜀
plateau in the 0-dimensional bottleneck distances with Δ = [64, 512], and 𝜀 = 10 for all
three samples.

4.5 Discussion

This chapter has presented two sets of results about the digital approximation of functions,
and of solid objects. Section 4.2 makes explicit how far points in a persistence diagram can
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Glass Bead Packing

Castlegate Sandstone

Sandpack

Figure 4.8: 2D slices of the binary and DSEDT images for the glass bead packing, Castle-
gate sandstone, and sand packing samples. The colormap for the DSEDT is scaled to
the max and min values in each case. The plots in the right column show the bottleneck
distance between persistence diagrams for each downsampled resolution and the highest
resolution. The green dashed curve is the function 2

√
3(512/𝑛), where 𝑛 is the image

resolution. © 2021 IEEE.
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move when working with locally averaged digital approximations to a function at different
resolutions.

Section 4.3 has considered a more subtle question of how close are the persistence
diagrams of a solid object 𝑋 and a digital approximation to it, 𝑋 (𝑟, 𝑡), when they are filtered
by the continuous and discrete signed Euclidean distance transforms respectively. These
results are the analogues of seminal work for point-cloud approximations of manifolds, which
do not translate easily to the digital image setting.

In general, the difference between the continuous and discrete distance transforms is given
in terms of the voxel diameter plus the leash (Theorem 4.3.1). The leash may be large, for
example, if 𝑋 is a material that has regions of micro-porosity or extended structures with
geometric detail below the voxel size 𝑟. When the voxel diameter

√
𝑑𝑟 < reach(𝜕𝑋), we

show that the leash, 𝑙𝑋 (
√
𝑑𝑟) =

√
𝑑𝑟, so that the bottleneck distance between persistence

diagrams is bounded by 2
√
𝑑𝑟 (Corollary 4.3.9 and Remark 4.3.10).

The practical consequences of these results are that we expect the persistent homology to
converge with increasing image resolution, but the error may not be monotonic, especially
when considering images at low resolutions. When there is no prior information about the
critical length scales of the object 𝑋, the x-ray density function given by the CT-scan can
be interpreted as a (noisy) approximation to the density function 𝜌𝑟 , and the Hausdorff
distance between the two threshold choices 𝑋 (𝑟, 1 − 𝜖) and 𝑋 (𝑟, 𝜖) provides an estimate of
the possible error in the persistence diagrams (Theorem 4.3.12).

Ultimately, our results provide guidance to practitioners on how to balance the time, cost,
and processing power required for image acquisition and persistent homology computations
against the desired level of accuracy in their results.
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CHAPTER 5
The Density Fingerprint of a Periodic

Point Set

This chapter is based on [EHK+21].

Modeling a crystal as a periodic point set, we present a fingerprint consisting of density
functions that facilitates the efficient search for new materials and material properties. We
prove invariance under isometries, continuity, and completeness in the generic case, which
are necessary features for the reliable comparison of crystals. The proof of continuity
integrates methods from discrete geometry and lattice theory, while the proof of generic
completeness combines techniques from geometry with analysis. The fingerprint has a
fast algorithm based on Brillouin zones and related inclusion-exclusion formulae. We have
implemented the algorithm and describe its application to crystal structure prediction.

Prior work. The prior work in this area is best summarized by listing the software sys-
tems currently used in practice: COMPACK [CM05], MERCURY [MEM+06], and COMPSTRU

[FOT+16]. These systems are of great help in comparing crystals, but they employ heuristics
like cut-offs and tolerances, which come with the usual drawbacks. It is our ambition to
develop the mathematical and computational foundations needed to overcome the current
deficiencies.

Outline. Section 5.1 introduces the density functions for a periodic point set and the
corresponding density fingerprint map. Section 5.2 proves that the density fingerprint map
is continuous with respect to perturbations of the periodic point set. Section 5.3 proves that
the density fingerprint map is complete for generic periodic point sets. Section 5.4 explains
how the density fingerprint is computed using the Brillouin zones of the points. Section
5.5 describes a preliminary application of the density fingerprint map to Crystal Structure
Prediction. Section 5.6 concludes the chapter.

5.1 The Density Fingerprint and its Invariance

In this entire chapter, we assume all lattices to be full lattices, i.e. of dimension three.

A continuous invariant for comparing crystals is the density, defined as the total volume
of balls centered at points in the motif divided by the volume of the unit cell. To avoid the
choice of radii, we grow the balls continuously and simultaneously from their centers and
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get a 1-dimensional function rather than a single number. There are still many periodic point
sets this function cannot distinguish, for example any hexagonal close packing from the
face-centered cubic lattice. We therefore add information by distinguishing points covered
by a different number of balls.

Definition 5.1.1 (Density Functions and Fingerprint). Let 𝐴 = 𝑀 + Λ ⊂ R3 be a periodic
point set and write 𝐴(𝑡) for the collection of closed balls, 𝐵(𝑎; 𝑡), of radius 𝑡 ≥ 0 centered
at the points 𝑎 ∈ 𝐴. The 𝑘-fold cover of 𝐴(𝑡), denoted

⋃︁𝑘 𝐴(𝑡), consists of all points
𝑥 ∈ R3 contained in 𝑘 or more of these balls. The fractional volume of the 𝑘-fold cover,
𝜑𝐴
𝑘
(𝑡) = vol

(︂
Unit𝑈 ∩⋃︁𝑘 𝐴(𝑡)

)︂
/vol (Unit𝑈), is also the probability that a point chosen

uniformly at random within a unit cell, Unit𝑈, belongs to at least 𝑘 balls, and subtracting
the fractional volume of the (𝑘 + 1)-fold cover, we get the probability that the random point
belongs to exactly 𝑘 balls:

𝜑𝐴𝑘 (𝑡) = Prob[𝑥 ∈ 𝐵(𝑎; 𝑡) for 𝑘 or more points 𝑎 ∈ 𝐴]; (5.1)

𝜓𝐴𝑘 (𝑡) = 𝜑
𝐴
𝑘 (𝑡) − 𝜑

𝐴
𝑘+1(𝑡) = Prob[𝑥 ∈ 𝐵(𝑎; 𝑡) for exactly 𝑘 points 𝑎 ∈ 𝐴] . (5.2)

We call 𝜓𝐴
𝑘

: [0,∞) → [0, 1] the 𝑘-th density function of 𝐴. The density fingerprint of 𝐴 is
the vector of density functions: Ψ(𝐴) = (𝜓𝐴0 , 𝜓

𝐴
1 , . . . , 𝜓

𝐴
𝑘
, . . .), and 𝐴 ↦→ Ψ(𝐴) is the density

fingerprint map.

See Figure 5.1, which illustrates the density functions for the hexagonal and the square
lattices in R2. Note that the density fingerprint is an isometry invariant and that it neither
depends on the lattice used to write 𝐴 as a periodic point set, nor on its basis.

Lemma 5.1.2 (Invariance under Isometries). Let 𝐴 ⊆ R3 be a periodic point set, and let
𝑄 ⊆ R3 be isometric to 𝐴. Then Ψ(𝐴) = Ψ(𝑄).

Proof. Let now iso : R3 → R3 be the isometry for which 𝑄 = iso(𝐴), and note that it also
maps 𝐴(𝑡) to 𝑄(𝑡) and

⋃︁𝑘 𝐴(𝑡) to
⋃︁𝑘 𝑄(𝑡) for every 𝑘 ≥ 0. It follows that 𝜓𝐴

𝑘
(𝑡) = 𝜓𝑄

𝑘
(𝑡), for

every 𝑘 ≥ 0, and therefore Ψ(𝐴) = Ψ(𝑄), as claimed. □

While the fingerprint map is not invariant under similarities, we can write Ψ(𝑠𝐴) = (𝜓𝐴0 ◦
𝑠, 𝜓𝐴1 ◦ 𝑠, . . . , 𝜓

𝐴
𝑘
◦ 𝑠, . . .), in which 𝑠(𝑡) = 𝑠𝑡 scales the radius. It would therefore be easy to

construct a fingerprint map that is invariant under similarities, namely by normalizing the
radius, e.g. by letting the radius be 𝑡𝑟, in which 𝑟 is the packing radius of 𝐴.

5.2 Continuity

We prove that the density fingerprint map is Lipschitz continuous with respect to small
perturbations of the points. To formalize this result, we introduce distances between periodic
point sets and between density fingerprints. For sets 𝐴,𝑄 ⊆ R3 of equal cardinality,
the (Euclidean) bottleneck distance is the infimum, over all bijections, 𝛾 : 𝐴 → 𝑄, of
the supremum Euclidean distance between matched points, and for density fingerprints,
Ψ(𝐴),Ψ(𝑄), we use the supremum of the weighted infinity norms of the differences between
corresponding density functions:

𝑑𝐵 (𝐴,𝑄) = inf
𝛾 : 𝐴→𝑄

sup
𝑎∈𝐴
∥𝑎 − 𝛾(𝑎)∥2, (5.3)

𝑑∞(Ψ(𝐴),Ψ(𝑄)) = sup
𝑘≥0

1
3√
𝑘+1

2 ∥𝜓𝐴𝑘 − 𝜓
𝑄

𝑘
∥∞. (5.4)
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Figure 5.1: The density fingerprint map of the hexagonal lattice on the top and, for com-
parison, of the square lattice on the bottom. Left : the 𝑘-fold covers of the two sets for four
different radii each: 𝑡 = 0.25, 0.55, 0.75, 1.00. Right : the graphs of the respective first nine
density functions above the corresponding densigram, in which the zeroth function can be
seen upside-down and the remaining density functions are accumulated from left to right.

Note the damping of the difference between corresponding density functions. The reason
for it is technical and related to the fact that density functions with higher 𝑘 tend to vanish at
later values of 𝑡. As a consequence, the sensitivity of the density function to any perturbation
increases with growing 𝑘 , and the damping compensates for this tendency. Before proving
Lipschitz continuity, we show that two periodic point sets with small bottleneck distance
between them necessarily have a common lattice.

Lemma 5.2.1 (Common Lattice). Let 𝐴,𝑄 be periodic point sets in R3, and let 𝑟𝑄 > 0 be the
packing radius of𝑄. If 𝑑𝐵 (𝐴,𝑄) < 𝑟𝑄, then there is a lattice Λ with unit cell Unit𝑈 in R3 such
that #(𝐴 ∩ Unit𝑈) = #(𝑄 ∩ Unit𝑈) and 𝐴 = (𝐴 ∩ Unit𝑈) + Λ and 𝑄 = (𝑄 ∩ Unit𝑈) + Λ.

Proof. Since 𝐴,𝑄 ⊆ R3 are periodic, there are lattices with unit cells such that 𝐴 =

(𝐴 ∩ Unit𝑈𝐴) + Λ𝐴 and 𝑄 = (𝑄 ∩ Unit𝑈𝑄) + Λ𝑄. To get a contradiction, we assume that
there is however no common lattice for 𝐴 and 𝑄. Equivalently, Λ𝐴 ∩ Λ𝑄 is a lattice of
dimension at most 2. Therefore there exists a basis vector, 𝑣, of Λ𝐴 such that 𝑛𝑣 ∈ Λ𝑄
implies 𝑛 = 0. Picking a point 𝑎 ∈ 𝐴, we consider the infinitely many points 𝑎(𝑛) = 𝑎 + 𝑛𝑣,
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5. THE DENSITY FINGERPRINT OF A PERIODIC POINT SET

with 𝑛 ∈ Z. For each 𝑎(𝑛), let 𝑞(𝑛) be the point in Λ𝑄 such that 𝑎(𝑛) ∈ 𝑞(𝑛) + Unit𝑈𝑄, and
define 𝑏(𝑛) = 𝑎(𝑛) − 𝑞(𝑛), which we note belongs to Unit𝑈𝑄.

There are infinitely many pairwise different points 𝑏(𝑛) in the unit cell, and it suffices to
prove that at least one is at distance larger than 𝛿 = 𝑑𝐵 (𝐴,𝑄) from all points in 𝑄. To see
this, let 𝑏(𝑖) and 𝑏( 𝑗) be at distance less than 𝜀 = 𝑟𝑄 − 𝛿 from each other, and note that
𝑏(𝑖 + 𝑛[ 𝑗 − 𝑖]) = 𝑏(𝑖) + 𝑛[𝑏( 𝑗) − 𝑏(𝑖)], for 𝑛 ∈ Z, provided the point on the right-hand side
of the equation belongs to Unit𝑈𝑄. In other words, we have an entire line of points with
distance less than 𝜀 between contiguous points. The gap between balls of radius 𝛿 centered
at the points in 𝑄 is at least 2𝜀, which implies that at least one of the points on the line is
outside all such balls. This contradicts the assumption that the bottleneck distance between
𝐴 and 𝑄 is 𝛿 = 𝑟𝑄 − 𝜀. The existence of a common lattice of 𝐴 and 𝑄 follows. □

The proof of Lipschitz continuity makes use of the common lattice of the sets before and after
the perturbation. We therefore formulate the claim assuming that the bottleneck distance
between the two sets is less than the packing radii.

Theorem 5.2.2 (Fingerprint Continuity). Let 𝐴,𝑄 be periodic point sets in R3, both with
packing radius at least 𝑟 > 0 and with covering radius at most 𝑅 < ∞. If 𝛿 = 𝑑𝐵 (𝐴,𝑄) < 𝑟,
then there exists a constant 𝐶 = 𝐶 (𝑟, 𝑅) such that 𝑑∞(Ψ(𝐴),Ψ(𝑄)) ≤ 𝐶 · 𝑑𝐵 (𝐴,𝑄).

Proof. By Lemma 5.2.1, there is a lattice, Λ ⊆ R3, that is common to both sets, 𝐴 and 𝑄,
and we write Unit𝑈 for the corresponding unit cell. Let 𝛾 : 𝐴→ 𝑄 be a bijection such that
𝑑𝐵 (𝐴,𝑄) is the supremum Euclidean distance between corresponding points, let 𝑘 be a
non-negative integer, and let 𝑡 be a positive real number. We need an upper bound for|︁|︁|︁𝜓𝐴𝑘 (𝑡) − 𝜓𝑄𝑘 (𝑡)|︁|︁|︁ = |︁|︁vol

(︁
𝐴𝑘𝑡 ∩ Unit𝑈

)︁
− vol

(︁
𝑄𝑘
𝑡 ∩ Unit𝑈

)︁ |︁|︁
vol (Unit𝑈) , (5.5)

in which 𝐴𝑘𝑡 =
⋃︁𝑘 𝐴(𝑡) \ ⋃︁𝑘+1 𝐴(𝑡) consists of all points 𝑥 ∈ R3 contained in exactly

𝑘 balls of 𝐴(𝑡), and similarly for 𝑄𝑘
𝑡 . As a first step, we find an upper bound on the

numerator, Δ, for the case in which 𝛾 is the identity except for one point, 𝑎 ∈ 𝑀, which
it maps to 𝑞 = 𝛾(𝑎) ∈ 𝐵(𝑎; 𝛿); that is: 𝑄 = 𝐴 \ (𝑎 + Λ) ∪ (𝑞 + Λ). A point 𝑥 ∈ R3 is
possibly covered by a different number of balls before and after the perturbation only if
𝑥 ∈ [𝐵(𝑎; 𝑡) ⊖ 𝐵(𝑞; 𝑡)] + Λ, with ⊖ denoting the symmetric difference. Observe that this set
is contained in [𝐵( 𝑎+𝑞2 ; 𝑡 + 𝛿

2 ) \ 𝐵(
𝑎+𝑞

2 ; 𝑡 − 𝛿
2 )] + Λ. Hence,

Δ ≤ vol (𝐵(𝑎; 𝑡) ⊖ 𝐵(𝑞; 𝑡)) ≤ 4𝜋
3

[︂ (︁
𝑡 + 𝛿

2
)︁3 − (︁

𝑡 − 𝛿
2
)︁3]︂

=
4𝜋
3

[︁
3𝛿𝑡2 + 1

4𝛿
3]︁ . (5.6)

Perturbing one point of 𝑀 after the other, we can bound the error by (5.6) each time. Using
the intensity, 𝜌 = #𝑀/vol (Unit𝑈), this implies|︁|︁|︁𝜓𝐴𝑘 (𝑡) − 𝜓𝑄𝑘 (𝑡)|︁|︁|︁ ≤ 𝜌Δ ≤ 𝜌4𝜋

3
[︁
3𝛿𝑡2 + 1

4𝛿
3]︁ . (5.7)

We can eliminate the dependence on 𝑡 by observing that for each 𝑘 there is a value of
𝑡 beyond which the 𝑘-th density functions of 𝐴 and 𝑄 vanish. To determine this value,
consider a point 𝑦 ∈ R3 and the sets 𝐴 ∩ 𝐵(𝑦; 𝑡) and 𝑄 ∩ 𝐵(𝑦; 𝑡). By the definition of 𝑅, the
balls of radius 𝑅 centered at the points of 𝐴 cover 𝐵(𝑦; 𝑡 − 𝑅), and similarly for 𝑄. It follows
that the two sets contain at least (𝑡/𝑅 − 1)3 points each. Setting 𝑘 + 1 ≤ (𝑡/𝑅 − 1)3, we
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see that for 𝑡 ≥ 𝑅 3√
𝑘 + 1 + 𝑅, both sets have at least 𝑘 + 1 points each. Equivalently, 𝑦 is

covered by at least 𝑘 + 1 balls of radius 𝑡. Since this holds for every point 𝑦 ∈ R3, we have
𝜓𝐴
𝑘
(𝑡) = 𝜓𝑄

𝑘
(𝑡) = 0 for all 𝑡 ≥ 𝑅 3√

𝑘 + 1 + 𝑅. Note that 𝑅 3√
𝑘 + 1 + 𝑅 ≤ 2𝑅 3√

𝑘 + 1 for all 𝑘 ≥ 0.
Replacing 𝑡 in (5.7) by the latter bound, we get

1
3√
𝑘 + 1

2

∥︁∥︁∥︁𝜓𝐴𝑘 − 𝜓𝑄𝑘 ∥︁∥︁∥︁∞ ≤ 16𝜋𝜌𝑅2𝛿 + 𝜋
3
𝜌𝛿3 ≤ 12𝑅2

𝑟3 𝛿 + 1
4𝑟3 𝛿

3, (5.8)

in which we use 𝜌 4𝜋
3 𝑟

3 ≤ 1 to get the final inequality. Using 𝛿2 < 𝑟2 < 𝑅2, this gives
𝐶 = 13𝑅2/𝑟3 as an upper bound for the Lipschitz constant. □

Figure 5.2 illustrates Theorem 5.2.2 for a periodic point set, 𝐴, and its perturbation, 𝑄, in R2

by showing the first eight (undamped) density functions for both sets in different colors.
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Figure 5.2: Left : a periodic point set with two black points in its square unit cell, and the
perturbed periodic point set with two blue points in the same unit cell. Right : the graphs
of the density functions are solid for the original set and dashed for the perturbed set. As
predicted by Theorem 5.2.2, the small perturbation of the periodic point set causes a small
change in the fingerprint.

5.3 Completeness

The fingerprint map is complete if it is injective up to isometries; that is: non-isometric
periodic point sets are mapped to different fingerprints. We prove completeness generically,
i.e. on a dense open subset; compare to [BK04, Sen08, LSS03]. The density fingerprint
also distinguishes non-generic sets for which other means fail, as will be illustrated by an
example in Section 5.3.2. The completeness of the fingerprint for all periodic point sets,
however, remains an open question. Indeed, at the time of writing this thesis, the author is
not aware of a 3-dimensional counterexample to completeness, but there is a 1-dimensional
counterexample due to Morteza Saghafian: letting 𝑉 = {0, 4, 9} and 𝑊 = {0, 1, 3}, it can be
checked that the finite sets 𝑉 +𝑊 and 𝑉 −𝑊 , and the periodic point sets 15Z + (𝑉 +𝑊)
and 15Z + (𝑉 −𝑊) cannot be distinguished by the 1-dimensional density fingerprint map.

5.3.1 Generic Completeness

We prove the completeness of the density fingerprint map for generic periodic point sets
in R3. The notion of genericity is defined by conditions that are satisfied by an open and
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5. THE DENSITY FINGERPRINT OF A PERIODIC POINT SET

dense subset of the space of periodic point sets. We formulate such conditions in terms
of the circumradius of edges, triangles, and tetrahedra, which is the radius of the smallest
sphere that passes through the vertices of the simplex. To avoid infinitely many constraints,
we introduce an upper bound on the circumradii to consider. Denoting by 𝐿 = 𝐿 (𝐴, 𝜗) the
list of all edges (pairs), triangles (triples) and tetrahedra (quadruples) spanned by points
of a periodic point set 𝐴 whose circumradius is at most 𝜗, we call 𝐴 generic for a constant
threshold, 𝜗, if—apart from necessary violations due to periodicity—it satisfies the following
three conditions:

I. the circumradii of different simplices in 𝐿 are different;

II. the circumradii of different edges in 𝐿 are not related to each other by a factor of 2.

III. for every 𝑡 ≤ 𝜗, there is at most one set of six circumradii of simplices in 𝐿 such that
the edges with twice their lengths assemble to a tetrahedron whose circumradius is 𝑡.

We call an edge a lattice edge if its length is the distance between two points in the lattice.
Lattice edges violate Condition II and can thus be identified as such. A lattice triangle has
three lattice edges, and a lattice tetrahedron has six lattice edges. The important difference
between lattice and non-lattice simplices is that only the latter are unique up to lattice
translations.

Since Conditions I, II, III can be phrased via finitely many algebraic equations in the vectors
𝑥 ∈ 𝑀, 𝑣1, 𝑣2, 𝑣3, the set of generic periodic point sets with threshold 𝜗 is open and dense
(with respect to perturbations of these vectors) in the space of all periodic point sets with at
most 𝑚 motif points. We write Rad(𝐴) for the largest finite circumradius of 𝑝 ≤ 4 points in 𝐴
with pairwise distance at most four times the diameter of the unit cell. Since the diameter
is the distance between two lattice points, this implies that Rad(𝐴) is at least double the
diameter.

Theorem 5.3.1 (Generic Completeness). Let 𝐴,𝑄 ⊆ R3 be non-isometric periodic point
sets that are generic for the threshold 𝜗 = max{Rad(𝐴),Rad(𝑄)}. Then Ψ(𝐴) ≠ Ψ(𝑄).

Proof. Let [𝐴] denote the isometry class of 𝐴. We prove the unique reconstruction of [𝐴]
from Ψ(𝐴) in two steps:

Ψ(𝐴) Step 1−−−−→ tetrahedra in 𝐿 (𝐴, 𝜗), up to isometries
Step 2−−−−→ [𝐴]

STEP 1: Each density function is a weighted sum of the volumes of intersections of 2, 3,
or 4 balls around points of 𝐴; see [EIH18, Equation (5)]. The volume formulas of such
intersections are given in [EF94]. It is cumbersome but not difficult to prove that they are
piecewise analytic, and that the circumradii of edges, triangles and tetrahedra spanned
by points of 𝐴 are the positions where the functions are not analytic. Therefore, the set
of all positions up to 𝜗 where at least one density function is not analytic yields the set of
circumradii of simplices of 𝐿. We avoid the technicalities of using the differences between
the left- and right-derivatives to distinguish which of these are caused by 2, 3, or 4 balls
meeting, with the following trick. We treat all circumradii as if they were circumradii of edges,
multiply them by two (to get the edge length), and try to assemble six of these edge lengths
to form a tetrahedron. Whenever this gives a circumradius of a simplex of 𝐿, we have found
a tetrahedron of 𝐴 by Condition III. This way we can uniquely construct all tetrahedra of 𝐿
up to isometries.
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STEP 2: To start the process, we choose a non-lattice tetrahedron from the list. If there is
no such tetrahedron, then 𝐴 is a lattice and can be reconstructed from the lexicographically
shortest lattice tetrahedron from the list—i.e. the tetrahedron consisting of the shortest
lattice edge, the second-shortest lattice edge (linearly independent from the first), and so
on—defining a (Minkowski-)reduced [NS04] and therefore primitive unit cell of 𝐴. On the
other hand, if there exist non-lattice tetrahedra, we choose the lexicographically shortest
one, 𝑎𝑏𝑐𝑑, with non-lattice edge 𝑎𝑏.

Placing 𝑎𝑏𝑐𝑑 in space—as we are only interested in the isometry class of 𝐴, we can place
it arbitrarily—we identify all tetrahedra 𝑎𝑏𝑐𝑒 from the list that have 𝑎𝑏𝑐 as a face and try to
glue them onto 𝑎𝑏𝑐𝑑. There are two possibilities (related by a reflection) of how to glue
𝑎𝑏𝑐𝑒; we denote the two different tip positions by 𝑒1 and 𝑒2. We prove that at most one of
the two options gives a positive result when checking if the tetrahedron 𝑎𝑏𝑑𝑒𝑖 is in the list of
tetrahedra from Step 1: The triangles 𝑎𝑏𝑑 and 𝑎𝑏𝑒 are non-lattice, and therefore unique in
𝐴 up to lattice translations by Condition I. Thus, when glued along 𝑎𝑏, they span a uniquely
defined tetrahedron 𝑎𝑏𝑑𝑒 with a certain edge length 𝑑𝑒 that is the distance between 𝑑 and
𝑒𝑖 for at most one of its two possible positions.

This gluing procedure yields (among others) all points of distance at most four times the
diameter of the unit cell to 𝑎, 𝑏, 𝑐, 𝑑 (by definition of Rad(𝐴)), except the ones that lie on a
plane spanned by the triangles 𝑎𝑏𝑐 or 𝑎𝑏𝑑. This neighborhood is large enough such that
it contains every motif point at least once and such that it contains a lattice basis, which
can be identified by computing the pairwise differences between the reconstructed points
and checking whether they satisfy Condition II. Repeating the reconstructed points with
respect to the lattice yields the isometry class of 𝐴. As the construction was unique given
the genericity conditions, we get Ψ(𝐴) ≠ Ψ(𝑄). □

5.3.2 Distinguishing Non-Generic periodic point sets

There are indications that the density fingerprint map distinguishes all periodic point sets
and not just the generic ones. We now give the reason for our optimism. Example 5.3.2
describes two periodic point sets that violate the above genericity conditions and can
nevertheless be distinguished by the density fingerprint map. On the other hand, the two
sets can neither be distinguished by their density nor by their X-ray diffraction patterns; two
means commonly used in crystallography to determine the structure of a crystal. X-ray
diffraction patterns give all pairwise distance vectors of the periodic point set, but they do
not determine the isometry class of a periodic point set [PS30]: there exist homometric
structures, which are non-isometric periodic point sets with the same 2-point autocorrelation
functions; that is: identical multisets of pairs, up to translation. There even exist periodic
point sets with the same 2- and 3-point autocorrelation functions, as we now explain.

Example 5.3.2. Let 𝐴(1) and 𝑄 (1) be sets with periodicity 32 in R, each with 16 points in the
corresponding motif:

0, 7, 8, 9, 12, 15, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30; (5.9)
0, 1, 8, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 23, 27, 30; (5.10)

see Figure 5.3. The authors of [GM95, Section 5.3] show that 𝐴(1) and 𝑄 (1) have the same
2- and 3-point autocorrelation functions. Taking the Cartesian product with Z2 preserves the
equality between the autocorrelation functions, which yields periodic point sets, 𝐴,𝑄 ⊆ R3,
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Figure 5.3: periodic point sets 𝐴 and 𝑄 from Example 5.3.2, pictured with rectangular unit
cells in two dimensions, for simplicity. Filled dots belong to the motifs while unfilled dots
show the periodicity.

with matching 2- and 3-point autocorrelation functions. Nevertheless, our density fingerprint
map distinguishes them, as shown in Table 5.1: the 𝐿∞-distances between the first four
corresponding density functions vanish but the next five 𝐿∞-distances are strictly positive.

𝑘 0 1 2 3 4 5 6 7 8

∥𝜓𝐴
𝑘
− 𝜓𝑄

𝑘
∥∞ 0.000 0.000 0.000 0.000 0.005 0.007 0.013 0.022 0.007

Table 5.1: 𝐿∞-distances between the corresponding density functions of the sets 𝐴 and 𝑄
in Example 5.3.2.

5.3.3 How Many Density Functions are Needed?

The density fingerprint consists of infinitely many density functions, of which we can evaluate
only a finite number in practice; for example the first 𝐾, for some constant 𝐾. Assuming
completeness, it will be important to have estimates of the smallest 𝐾 for which the vector of
the first 𝐾 density functions, denoted by Ψ𝐾 , distinguishes two given non-isometric periodic
point sets.

We prove 𝐾 = Ω(𝜔3), in which 𝜔 = Diam(Unit𝑈)/𝑟 is the ratio of the unit cell diameter over
the packing radius. We lack an upper bound in the general case, as this would solve the
open completeness question. However, a variant of the proof of Theorem 5.3.1 implies an
asymptotically matching upper bound in the generic case (argument omitted). The top half
of Figure 5.4 illustrates the construction used to prove the lower bound in one dimension.
For every positive integer, ℓ, we let [0, 2ℓ + 4) be the unit cell in R, and we let 𝐴ℓ contain all
integer points in the unit cell other than 0 and ℓ + 1. The next missing point along the line
is 2ℓ + 4, so there are gaps of size ℓ + 1 and ℓ + 3 between them. Similarly, 𝑄ℓ contains
all integer points in the unit cell other than 0 and ℓ + 2, with two gaps of size ℓ + 2 each.
Hence, Diam(Unit𝑈) = 2ℓ + 4, 𝑟 = 0.5, and 𝜔 = 4ℓ + 8. It is not difficult to show that the
first ℓ − 1 density functions of 𝐴ℓ and 𝑄ℓ are the same; see Figure 5.4 and the proof of
the 3-dimensional case in Lemma 5.3.3. This implies that 𝐾 ≥ ℓ = 𝜔

4 − 2 is necessary to
distinguish 𝐴ℓ and 𝑄ℓ with Ψ𝐾 . This bound generalizes to 𝐾 = Ω(𝜔3) in three dimensions.

Lemma 5.3.3 (Number of Necessary Density Functions). Unless 𝐾 = Ω(𝜔3), there are
non-isometric periodic point sets 𝐴,𝑄 ⊆ R3, both with unit cell diameter over packing radius
at most 𝜔, such that Ψ𝐾 (𝐴) = Ψ𝐾 (𝑄).
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𝑄3𝐴3

Figure 5.4: Upper half: the periodic point sets 𝐴ℓ and 𝑄ℓ with ℓ = 3 in one dimension. The
blue points are present and the white points are missing. The cones illustrate the range
where the absence of the points is felt as the radius increases from bottom to top. The
bricks above the cones show how the intervals for radius 𝑡 = 2.0 cover the lines. Lower half:
the 2-dimensional extensions of the 1-dimensional data sets. The (growing) balls centered
at missing points in different slices start touching at radius 𝑡 = 2.0 in 𝐴3 and at radius 𝑡 = 2.5
in 𝑄3.

Proof. We prove 𝐾 = Ω(𝜔3) by generalizing the 1-dimensional example to R3, taking
Unit𝑈 = [0, 2ℓ+4)×[−0.5, 0.5)2 as unit cell, and 𝐴ℓ, 𝑄ℓ containing the integer points with the
same omissions as in one dimension. The diameter of the unit cell is Diam(Unit𝑈) < 2ℓ+5,
the packing radius is 𝑟 = 0.5, and the ratio is 𝜔 < 4ℓ + 10. As indicated in Figure 5.4, 𝐴ℓ and
𝑄ℓ have parallel slices of missing points, with gaps of size ℓ + 1 and ℓ + 3 between the slices
in 𝐴ℓ, and gaps of size ℓ + 2 between the slices in 𝑄ℓ. If follows that no two balls of radius
𝑡0 = ℓ/2 centered at missing points in different slices of 𝐴ℓ (or of 𝑄ℓ) have a non-empty
intersection. Hence, the 𝑘-fold covers of 𝐴ℓ and 𝑄ℓ with balls of radius 𝑡 ≤ 𝑡0 have the same
volume fractions for all 𝑘 .

Note that no ball of radius 𝑡0 = ℓ/2 contains missing points of more than one slice. We
can therefore use a volume argument to show that there are positive constants 𝑐0 < 𝐶0
such that the minimum number of points of 𝐴ℓ (or of 𝑄ℓ) in any ball of radius 𝑡0 satisfies
𝑐0𝑡

3
0 ≤ 𝑘0 ≤ 𝐶0𝑡

3
0. Hence, the 𝑘-fold cover with balls of radius 𝑡 ≥ 𝑡0 centered at the points

in 𝐴ℓ (or in 𝑄ℓ) exhausts the entire R3 whenever 𝑘 ≤ 𝑘0. It follows that for 𝑘 < 𝑘0, the 𝑘-th
density functions do not distinguish between 𝐴ℓ and 𝑄ℓ for any radius. This implies that
𝐾 ≥ 𝑘0 = Ω(𝜔3) is necessary to distinguish 𝐴ℓ and 𝑄ℓ with Ψ𝐾 . □

Lemma 5.3.3 studies the dependence of 𝐾 on 𝜔. A slightly modified argument relates 𝐾
to the motif size. Replacing 𝐴ℓ by ℓ𝐴1 before taking the Cartesian product with Z2, we get
constant motif size equal to 4 and 𝐾 increasing with ℓ. This implies that a bounded motif
size does not imply a bounded 𝐾.

5.4 Computation

The algorithm for the density fingerprint map is based on two related geometric concepts:
the 𝑘-th Dirichlet–Voronoi domain and the 𝑘-Brillouin zone of a point. After introducing both,
we explain how they are used, and how much time it takes to construct them.
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5.4.1 Dirichlet–Voronoi Domains and Brillouin Zones

Let 𝐴 ⊆ R3 be a locally finite set of points. For every positive integer 𝑘, the 𝑘-th Dirichlet–
Voronoi domain of a point 𝑎 ∈ 𝐴 is the set of points in R3 for which 𝑎 is among the 𝑘 closest
points in 𝐴, and the 𝑘-th Brillouin zone is the difference between the 𝑘-th and the (𝑘 − 1)-st
Dirichlet–Voronoi domains:

dom𝑘 (𝑎, 𝐴) = {𝑥 ∈ R3 | ∥𝑥 − 𝑏∥ < ∥𝑥 − 𝑎∥ for at most 𝑘 − 1 points 𝑏 ∈ 𝐴}, (5.11)
zone𝑘 (𝑎, 𝐴) = dom𝑘 (𝑎, 𝐴) \ dom𝑘−1(𝑎, 𝐴); (5.12)

see Figure 5.5. Here we set dom0(𝑎, 𝐴) = ∅ so that the first Brillouin zone is well defined.
Note that zone𝑘 (𝑎, 𝐴) is the set of points 𝑥 ∈ R3 for which there are exactly 𝑘 − 1 points
𝑏 ∈ 𝐴 that are closer to 𝑥 than 𝑎 is. Observe also that dom𝑘 (𝑎, 𝐴) is closed and star-
convex, and if 𝐴 is Delone, then it is also compact. If 𝐴 is a lattice, 𝐴 = Λ, then all 𝑘-th
Dirichlet–Voronoi domains are translates of each other, and similarly for the Brillouin zones:
dom𝑘 (𝑎,Λ) = dom𝑘 (0,Λ) + 𝑎 and zone𝑘 (𝑎,Λ) = zone𝑘 (0,Λ) + 𝑎. Except for a measure
zero subset of R3, every point 𝑥 has a unique 𝑘-closest point in Λ. This implies that the 𝑘-th
Brillouin zones tile R3, by which we mean that their closures cover R3 while their interiors
are pairwise disjoint. These properties generalize to a periodic point set, 𝐴 = 𝑀 + Λ: the
𝑘-th Brillouin zones of the points in 𝑎 + Λ are translates of each other, and the 𝑘-th Brillouin
zones of all 𝑎 ∈ 𝐴 tile R3.

Figure 5.5: The Brillouin zones of the point in the center of the integer lattice Z2. The second
and tenth Brillouin zones are colored dark blue and the sixth Brillouin zone is colored light
blue. The bisector used to construct the first ten Brillouin zones are colored in red. This
figure is a modification of a figure from [EGG+24].

5.4.2 Decomposed Multiple Cover

Assume from here on that 𝐴 = 𝑀 + Λ is a periodic point set. To compute 𝜑𝐴
𝑘
, we may

use any fundamental domain of the lattice. Particularly convenient is the union of the 𝑘-th
Brillouin zones of the points in 𝑀 as it lends itself to finding the subset covered by at least 𝑘
of the balls.
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Theorem 5.4.1 (Density for periodic point set). Let 𝐴 = 𝑀 + Λ be periodic with lattice
Λ ⊆ R3 and motif 𝑀 ⊆ Unit𝑈 in the unit cell of Λ, and let 𝑘 ≥ 1 be an integer. Then the
probability that a random point 𝑥 ∈ Unit𝑈 belongs to 𝑘 or more balls of radius 𝑡 ≥ 0 centered
at the points of 𝐴 is

𝜑𝐴𝑘 (𝑡) = 1
vol (Unit𝑈)

∑︂
𝑎∈𝑀

vol (zone𝑘 (𝑎, 𝐴) ∩ 𝐵(𝑎; 𝑡)) . (5.13)

Proof. Let 𝑀𝑘 be the union of the 𝑘-th Brillouin zones of the points 𝑎 ∈ 𝑀 and note that
𝑀𝑘 + Λ tiles R3. It follows that vol (𝑀𝑘 ) = vol (Unit𝑈). Let 𝑥 ∈ 𝑀𝑘 be in the interior of
zone𝑘 (𝑎, 𝐴). By construction, 𝑎 is the unique 𝑘-closest point to 𝑥, so 𝑥 lies in 𝑘 or more balls
if and only if 𝑥 ∈ 𝐵(𝑎; 𝑡). Summing over all points 𝑎 ∈ 𝑀 gives (5.13). □

Clearly, 𝜑𝐴0 (𝑡) = 1 for all radii 𝑡. Given 𝑘 ≥ 0 and 𝑡 ≥ 0, we use (5.13) to compute 𝜑𝐴
𝑘
(𝑡) and

𝜑𝐴
𝑘+1(𝑡), and we get 𝜓𝐴

𝑘
(𝑡) = 𝜑𝐴

𝑘
(𝑡) − 𝜑𝐴

𝑘+1(𝑡). To implement (5.13), we need to compute
the volume of the intersection of a ball with a convex polyhedron. We could, for example,
decompose the polyhedron into tetrahedra and use explicit expressions for the volume of
intersections between balls and simplices; see for example [ABI88]. A C++ implementation
evaluating the density functions for a given periodic point set using this strategy can be
found at [Smi20]. Alternatively, we could use inclusion-exclusion, which allows for further
consolidation of the formula, writing 𝜑𝐴

𝑘
(𝑡) as an alternating sum of common intersections of

up to four balls each. This does not lead to any asymptotic improvements of the running
time, so we omit further details and refer to [EIH18] instead.

5.4.3 Algorithm and Running Time

To evaluate the density functions 𝜓𝐴0 , 𝜓
𝐴
1 , . . . , 𝜓

𝐴
𝑘

at a value 𝑡, we compute a plane arrange-
ment for each point 𝑎 ∈ 𝑀 that consists of enough planes so that the first 𝑘 + 1 Brillouin
zones of 𝑎 occur. Specifically, for a large enough radius, 𝑠, we consider for each 𝑏 ≠ 𝑎

in 𝐴 ∩ 𝐵(𝑎; 𝑠) the bisector of 𝑏 and 𝑎, which is the plane defined by ∥𝑥 − 𝑎∥ = ∥𝑥 − 𝑏∥.
These bisectors decompose R3 into convex cells. We refer to this decomposition as the
arrangement of the planes. The 3-dimensional cells that are separated from 𝑎 by exactly
𝑗 − 1 planes form the 𝑗-th belt of the arrangement.

We now address the question how small we can choose 𝑠 such that the first 𝑘 + 1 belts
are the first 𝑘 + 1 Brillouin zones of 𝑎. To begin, we recall that 𝑡 ≥ 2𝑅 3√

𝑘 + 1 implies that
𝜓
𝑖
(𝑡) = 0 for 0 ≤ 𝑖 ≤ 𝑘 ; see the proof of Theorem 5.2.2. To express this insight geometrically,

let 𝑅𝑘+1(𝑎) be the maximum distance of a point in the (𝑘 + 1)-st Brillouin zone of 𝑎 from
𝑎. That the density functions 𝜓𝐴0 to 𝜓𝐴

𝑘
are zero for 𝑡 ≥ 2𝑅 3√

𝑘 + 1 implies 𝜑𝐴
𝑘+1(𝑡) = 1, for

these values of 𝑡, and therefore 𝑅𝑘+1(𝑎) ≤ 2𝑅 3√
𝑘 + 1. To capture all the relevant planes,

it thus suffices to consider all points 𝑏 ∈ 𝐴 \ {𝑎} at distance at most 𝑠 = 2𝑅𝑘+1(𝑎) from
𝑎. Using a straightforward volume argument, we see that 𝐵(𝑎; 2𝑅𝑘+1(𝑎)) contains at most
(4𝑅 3√

𝑘 + 1 + 𝑟)3/𝑟3 = O(𝑘) points, in which we treat 𝑟 and 𝑅 as constants.

Constructing the arrangement of O(𝑘) planes incrementally, as described in [Ede87, chapter
7], takes time O(𝑘3). Doing this for each point in the motif takes time O(#𝑀 · 𝑘3), and within
the same time bound we can evaluate the first 𝑘 + 1 density functions.
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5.5 An Application to Crystal Structure Prediction

Crystal Structure Prediction (CSP) aims to predict whether a selected molecule can exist
as a functional material, i.e. a crystal with useful functions or properties. In other words,
CSP seeks to answer the question of whether copies of a molecule can be arranged in
such a way that the resulting crystal is stable (will not deform and lose its properties over
time) as well as useful. Crucially, CSP tries to answer this question without setting foot in a
laboratory, with the hope of dramatically reducing the need to perform the time-consuming
process of physically synthesizing crystals.

Figure 5.6: Left : a T2 molecule. Middle: the T2-𝛿 crystal with highlighted unit cell. Right :
the output of CSP for the T2 molecule. It is a plot of 5679 simulated T2 crystal structures
[Pea17, Fig. 2d], each represented by two coordinates: the physical density (atomic mass
within a unit cell divided by the unit cell volume) and energy (determining the crystal’s
thermodynamic stability). Structures at the bottom of the ‘downward spikes’ are likely to be
stable.

Our collaborators at Liverpool’s Materials Innovation Factory [Pea17] used CSP to predict
that the T2 molecule (Figure 5.6) can be crystallized into a new structure that has half
the physical density of the only previously known structure for T2, a desirable property
for applications such as gas storage. As part of this process, they also identified four
other structures of interest. Following the CSP predictions, they synthesized 5 families of
T2-crystals in the laboratory by varying parameters like temperature and pressure, calling
them T2-𝛼, T2-𝛽, . . . , T2-𝜖 . One of them, T2-𝛾, indeed had the desired property of having
only half the physical density of the previously known structure T2-𝛼. They scanned the
synthesized crystals using X-ray powder diffraction yielding Crystallographic Information
Files, each containing the unit cell and the motif points representing the atoms. These
files were then compared with the results of the simulations, either by using their physical
density alongside the COMPACK algorithm—which compares only a finite portion of the
structure—or by looking at visualizations of the crystal structures. This comparison showed
that the synthesized crystals matched the prediction well. Our collaborators deposited these
structures into the globally used Cambridge Structural Database.

At a later time, we used our newly developed fingerprints to verify our collaborators’ match-
ings between the synthesized crystals T2-𝛼 to T2-𝜖 and the simulated crystals entry 99, 28,
62, 09, 01. We did so by computing, for each of the five matches, the distance between
the density functions of the synthesized and the simulated crystal. As one is the prediction
of the other, we expected to see small distances. And for four of the five structures this
was true: T2-𝛾, for example, always has an 𝐿∞-distance of less than 0.04 over the first
eight pairs of corresponding density functions; see Table 5.2. However, when we came to
check the distances between density functions of T2-𝛿 with its predicted structure, we were
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surprised to see large distances (the final row of Table 5.2). It turned out that a mix-up of
files had happened, and what was uploaded to the Cambridge Structural Database as T2-𝛿
was in fact T2-𝛽′ (a crystal from the T2-𝛽 family). The density fingerprint revealed this error,
which was verified by chemists upon a visual inspection, and it is because of this that T2-𝛿
was subsequently correctly deposited.

∥𝜓𝐴
𝑘
− 𝜓𝑄

𝑘
∥∞ 𝑘 = 0 1 2 3 4 5 6 7

T2-𝛼 vs entry 99 0.0042 0.0092 0.0125 0.0056 0.0099 0.0088 0.0127 0.0099
T2-𝛽 vs entry 28 0.0157 0.0156 0.0159 0.0224 0.0334 0.0396 0.0357 0.0454
T2-𝛾 vs entry 62 0.0020 0.0080 0.0128 0.0155 0.0153 0.0250 0.0296 0.0391
T2-𝛿 vs entry 09 0.0610 0.0884 0.1267 0.0676 0.0915 0.0801 0.0733 0.0388
T2-𝜖 vs entry 01 0.0132 0.0152 0.0207 0.0571 0.0514 0.0431 0.0468 0.0550
T2-𝛽′ vs entry 09 0.2981 0.2631 0.3718 0.3747 0.2563 0.2360 0.3161 0.3232

Table 5.2: First five rows: the 𝐿∞-distances between the first eight pairs of corresponding
density functions of physically synthesized T2 crystals (T2-𝛼, T2-𝛽, etc.) and the simulated
structures that had predicted them from the CSP output dataset (entry XX). Last row: the
suspiciously larger numbers revealed the mix-up of the files T2-𝛿 and T2-𝛽′ and thus led to
depositing the initially omitted Crystallographic Information File of the T2-𝛿 crystal into the
Cambridge Structural Database.

Plots of the density functions of correctly matched synthesized and simulated structures can
be seen in Figure 5.7. As another application, we expect that the fingerprint will be used
to simplify the large output data sets produced by CSP by comparing simulated structures
with each other, thus speeding up what is currently a slow process.

5.6 Discussion

The main contribution of this chapter is a fingerprint map from periodic point sets in R3

(which model crystals) to series of density functions. This map is obviously invariant
under isometries, and we prove it is continuous and generically complete. We leave the
completeness without genericity assumption as an open question. In this context, it is worth
noticing that our proof of generic completeness makes only limited use of the order, 𝑘, at
which the circumradius of an edge, triangle, or tetrahedron is detected. Recall that the
order is the number of points in the respective circumsphere. Is this additional information
sufficient to prove general completeness?

A drawback of the bottleneck distance between periodic point sets used in this chapter is its
sensitivity to changes of the unit cell; see Lemma 5.2.1. An alternative dissimilarity that may
be more relevant in practice considers affine transformations, 𝜏, that minimize the bottleneck
distance:

𝑑AT(𝐴,𝑄) = inf
𝜏

max{min{𝑑𝐵 (𝐴, 𝜏(𝑄)), 𝑑𝐵 (𝜏(𝐴), 𝑄)}, | log 𝑠1 |, | log 𝑠3 |}, (5.14)

in which 𝑠1 ≥ 𝑠2 ≥ 𝑠3 are the three singular values of the matrix of 𝜏. Is the density fingerprint
map defined in Section 5.1 continuous with respect to this dissimilarity?

We close this chapter with three extensions of the results presented in this chapter. Different
types of atoms are often modeled as balls with different radii. A possible geometric formalism
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Figure 5.7: Left : experimental T2 crystals (curved gray molecules) and their simulated
versions (straight green molecules) overlaid. Right : the density functions of the periodic
point sets of molecular centres of the experimental T2 crystals (solid curves) vs. simulated
crystals (dashed curves).

is that of weighted points and the power distance [Aur87]. Our geometric results generalize
to this setting, but some need a careful adaptation. Our continuity result for periodic
point sets (Theorem 5.2.2) also generalizes to non-periodic Delone sets that allow for a
reasonable definition of density functions. Considering that quasiperiodic crystals can be
modeled as such, it might be worthwhile to find out how far such an extension can be
pushed. Finally, we mention that our results generalize to arbitrary finite dimension.
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CHAPTER 6
Merge Trees of Periodic Filtrations

This chapter is based on [EH24]. Some of the results have already been described in
the Master’s thesis of Chiara Martyka [Mar23], where she cites an unpublished version of
[EH24] under the title “The decorated barcode of a periodic map”. In her Master’s thesis,
Chiara Martyka worked on an earlier version of the algorithm for periodic merge trees
together with Herbert Edelsbrunner and me.

Motivated by applications to crystalline materials, we generalize the merge tree and the
related barcode of a filtered complex to the periodic setting in Euclidean space. They are
invariant under isometries, changing bases, and indeed changing lattices. In addition, we
prove stability under perturbations and provide an algorithm that under mild geometric
conditions typically satisfied by crystalline materials takes O((𝑛 + 𝑚) log 𝑛) time, in which 𝑛
and 𝑚 are the numbers of vertices and edges in the quotient complex, respectively.

Prior work. Prior approaches to persistent homology for periodic data relied primarily on
one of two heuristics: work with a sufficiently large finite subset of the data, e.g. [HNH+16,
KHM20], or compactify using the torus topology, which is a classic mathematical concept and
supported by modern software, including the implementations of Delaunay triangulations in
CGAL [C+96]. The first heuristic suffers from unwanted boundary effects and unnecessarily
high computation costs, while the latter loses information about the patterns in the periodic
setting. Our approach is related to both and reaps the benefits of the compactness of the
torus while carefully recording the relation to the infinite periodic setting; see Figure 6.1.
Indeed, each connected component on the torus has preimages (shadows) in the Euclidean
space—perhaps infinitely many—and similar to Onus and Robins [OR22], we count these
preimages but in a fine-grained manner that keeps track of growth-rates as well as densities
(exponents and coefficients of the shadow monomials). The growth-rate distinguishes
between connected clumps, strings, sheets, and blocks, while the density quantifies how
densely these are distributed. Both pieces of information are needed for detailed statements
about how materials are composed. The periodicity lattice—which is used in the definition
of shadow monomials—has been introduced before under different names, and used to
compute 0-homology [CM90, DD89, OR22]. However, using it to quantify the growth-rate
and density of the components is to the best knowledge of the authors new.

Shifting the focus from counting components to recording when components merge, we
mention the work of Ingrid Hotz and her group [TAS+23]. In collaborations with domain
scientists, they study the electron density of 3-dimensional layered materials, and found
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6. MERGE TREES OF PERIODIC FILTRATIONS

Figure 6.1: In a unit cell with periodic boundary conditions (the torus), we see a single
snake that bites itself, both in the left and the right panel. There is however a significant
difference in the periodically tiled plane, since the snakes on the right connect in infinite
diagonal lines, while the snakes on the left remain isolated, a distinction we will quantify
with the novel concept of a shadow monomial. The material properties of the two examples
would indeed be rather different, with higher resistance to tearing on the right.

that the timing of the merge events is useful in the quick comparison of materials. They
compromise the (infinite) periodic setting by considering merge events within an array of
2 × 2 × 2 unit cells with periodic boundary conditions. Our method removes the restriction to
a finite portion of the data and provides extra information, such as how many and which
components join at a merge event.

Outline. Section 6.1 extends the concept of a merge tree to the periodic setting. Section 6.2
explains the algorithm for constructing periodic merge trees. Section 6.3 proves the invari-
ance and stability of equivalence classes of periodic merge trees. Section 6.4 introduces
the periodic 0-th barcode and proves invariance and stability. Section 6.5 illustrates the
concepts using a 3-dimensional periodic graph as an example. Section 6.6 concludes this
chapter.

6.1 The Periodic Merge Tree

This chapter is written for arbitrary but fixed dimension, 𝑑, with 𝑑 = 3 being the most
important case for applications, including to crystalline materials. We limit ourselves to the
discrete setting of complexes or graphs, and stress that the ideas also apply to smooth and
piecewise smooth functions.

6.1.1 Merge Tree

We begin with standard definitions. Recall the definition of a cell complex 𝐾 from Section 2.1.
Note that in this chapter, we allow for infinitely many points and cells but require that 𝐾 be
locally finite. The complex is connected if the graph that consists of its vertices and edges is
connected. Since this chapter is primarily concerned with 0-dimensional homology—whose
classes correspond to the connected components—we will mostly ignore cells of dimension
2 and higher. After removing such cells, we are left with a graph consisting of vertices
and edges, allowing for edges that start and end at the same vertex, and multiple edges
connecting the same two vertices. However, in anticipation of an extension of our methods
to higher homology dimensions, and because the overhead is modest, we nonetheless write
this chapter using the more general terminology of complexes.
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Recall from Section 2.1 that a filter of 𝐾 is a function 𝐹 : 𝐾 → R that satisfies 𝐹 (𝜎) ≤ 𝐹 (𝜏)
whenever 𝜎 is a face of 𝜏. And recall that the ordered sequence of sublevel set complexes
𝐾𝑡 = 𝐹

−1(−∞, 𝑡] is the filtration defined by 𝐹. As 𝐾𝑠 is a subcomplex of 𝐾𝑡 , whenever 𝑠 ≤ 𝑡,
every connected component of 𝐾𝑠 includes into a connected component of 𝐾𝑡 . Think of the
sublevel set as an object that evolves as the threshold grows continuously. With this picture
in mind, the merge tree of 𝐹 keeps track of the connected components and how they merge.
Intuitively, this tree has a point for each connected component of each sublevel set. We draw
the tree from left to right, nevertheless calling the threshold for the sublevel set the height of
the point. As long as a connected component stays the same or just grows, we draw the
point along a left-to-right trajectory, but when components merge, then the corresponding
trajectories meet, and afterwards continue as a single trajectory again in left-to-right direction.
Since trajectories meet but never bifurcate, and—assuming 𝐾 is connected—eventually
combine to a single trajectory, we indeed have a tree, as suggested by the name. The
number of points in a vertical section of this tree is the number of connected components of
the corresponding sublevel set, and the connectivity in the left-to-right direction reflects the
inclusion between connected components in different sublevel sets; see Figure 6.2, which
shows two merge trees of the same periodic point set. Each tree is drawn as a collection of
horizontal intervals, called beams, which we connect with short vertical line segments to
represent the merging of two components.
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Figure 6.2: Left panel: a periodic graph with two vertices and three edges inside a unit cell
in the shape of the unit square in the upper left portion, and the corresponding graph in
the 2-dimensional torus in the upper right portion of the panel. The filter maps the vertices
to their (real) labels and the edges to the values shown, which defines the merge tree at
the bottom in the panel. Right panel: the same periodic graph as in the left panel, but now
represented by a sublattice with a rectangular unit cell of twice the area. Correspondingly,
the graph in the 2-dimensional torus has twice the number of vertices and edges, and the
merge tree is richer than in the left panel.

Note the asymmetry, in which we always draw the vertical segment from the shorter to the
longer beam (comparing their lengths to the left of the bifurcation point). As a result, the
shorter beam ends, and the longer beam continues without interruption to the right. While
not being part of the definition of merge tree, this asymmetry will come handy when we
transition from merge trees to barcodes in Section 6.4. We call this the elder rule according
to which the younger component gets absorbed into the older component; see [EH10,
page 150]. Ties are broken arbitrarily, and we will see in Section 6.4 that different ways to
break a tie does not affect the barcode.

To give a more formal definition of the merge tree, we introduce the sublevel space of 𝐹,
denoted [𝐹], which consists of all points (𝑥, 𝑠) ∈ 𝐾 × R with 𝑥 ∈ 𝐾𝑠, in which 𝑥 may be a
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6. MERGE TREES OF PERIODIC FILTRATIONS

vertex or a point on an edge or higher-dimensional cell in 𝐾. Call two of its points equivalent,
written (𝑥, 𝑠) ∼ (𝑦, 𝑡), if 𝑠 = 𝑡 and 𝑥, 𝑦 belong to the same connected component of 𝐾𝑠 = 𝐾𝑡 .
The quotient, denoted [𝐹]∼, effectively combines all equivalent points into one and inherits
the quotient topology from the Euclidean topology of R𝑑+1 restricted to [𝐹] ⊆ R𝑑+1.

Definition 6.1.1 (Merge Tree). The merge tree of a filter 𝐹 : 𝐾 → R is the quotient of the
sublevel space of 𝐹, denoted M = M(𝐹) = [𝐹]∼, together with the corresponding quotient
topology. It is equipped with the height function, h : M→ R, which maps each point to the
value of the sublevel set in which the point is a connected component.

Whenever we talk about a merge tree, we will tacitly assume that it comes with a height
function. We will furthermore simplify language by saying that points 𝛼 and 𝛽 of the merge
tree not only represent but in fact are connected components of their respective sublevel
sets, namely of 𝐾h(𝛼) and 𝐾h(𝛽) , respectively. We say 𝛽 covers 𝛼 if h(𝛼) ≤ h(𝛽) and 𝛼 ⊆ 𝛽.

In this chapter, we are particularly interested in periodic filters on periodic complexes. If the
periodic filter is not constant, the merge tree consists of infinitely many beams, making it
an impractical descriptor. Instead we can use the quotient filter 𝐹/Λ : 𝐾/Λ→ R as a finite
representation of the periodic filter 𝐹 : 𝐾 → R and compute the (finite) merge tree M(𝐹/Λ),
as done in Figure 6.2.

Unfortunately, this representation is not unique since, for example, 𝐾 and 𝐹 are also periodic
with respect to 2Λ, or really any sublattice of Λ; compare the two panels in Figure 6.2 in
which the respective unit cells (a square on the left and a rectangle of twice the area on the
right) define the same periodic complex but yield different merge trees. This motivates the
introduction of a quantified version of the merge tree; see Figure 6.4. We first explain how
we quantify and then how we apply this idea to modify the merge tree.

6.1.2 Shadow Monomial

Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, and 𝐹 : 𝐾 → R a Λ-periodic filter on a Λ-periodic
complex. Write 𝜙 : R𝑑 → R𝑑/Λ for the projection that maps every 𝑥 to 𝑥 + Λ. Taking the
inverse, a sublevel set of the quotient filter lifts to the corresponding sublevel set of the filter:
𝐾𝑡 = 𝜙−1((𝐾/Λ)𝑡). Given a component Γ ⊆ (𝐾/Λ)𝑡 , we call a component 𝛾 of 𝜙−1(Γ) a
shadow of Γ. As an example, consider the sublevel set of the graph in Figure 6.2 before
adding the edge with value 9.0. The quotient is a loop whose shadows are infinite polygonal
lines that run parallel to each other in a diagonal direction, as shown in Figure 6.3. To count
the distinct shadows of Γ, we introduce the periodicity lattice of all vectors that keep the
shadows invariant:

ΛΓ = {𝑢 ∈ Λ | 𝛾 = 𝛾 + 𝑢 for at least one and therefore every shadow 𝛾 of Γ}. (6.1)

For example, translating the shadow in Figure 6.3 along the vector (1, 1) maps the polygonal
line to itself. All other vectors for which this holds are integer multiples of this vector. Hence,
the periodicity lattice of the loop is the 1-dimensional lattice spanned by (1, 1). With this,
counting the shadows of Γ reduces to counting the elements of Λ/ΛΓ. If the cardinality
of this quotient is finite, then this gives the number of shadows. On the other hand, if the
cardinality is infinite, we wish to count the elements that appear within a spherical window
of radius 𝑅. To this end, we introduce a monomial in the variable 𝑅, such that the coefficient
gives the density and the exponent gives the growth-rate. Write 𝜈𝑞 for the 𝑞-dimensional
volume of the unit ball in R𝑞, so 𝜈0 = 1, 𝜈1 = 2, 𝜈2 = 𝜋, 𝜈3 = 4𝜋

3 , etc.
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6.1. The Periodic Merge Tree

Definition 6.1.2 (Shadow Monomial). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, and 𝐹 : 𝐾 → R
a Λ-periodic filter. Letting Γ ∈ M(𝐹/Λ) be a connected component of a sublevel set of the
quotient filter, and 𝑝 the dimension of the corresponding periodicity lattice, ΛΓ, the shadow
monomial of Γ is

mΓ (𝑅) =
vol𝑝 (ΛΓ)
vol𝑑 (Λ)

· 𝜈𝑑−𝑝𝑅𝑑−𝑝 . (6.2)

Up to lower-order terms, this monomial gives the number of elements of Λ/ΛΓ that have
points inside the sphere of radius 𝑅 centered at the origin in R𝑑. For example, the loop
whose shadows are the polygonal lines in Figure 6.3, we have vol1 (ΛΓ) =

√
2, vol2 (Λ) = 1,

and 𝜈1 = 2, so mΓ (𝑅) = 2
√

2𝑅1, and up to a constant error term this is the number of
polygonal lines that pass through a disk of radius 𝑅. This property is fundamental to our
results, so we give a formal statement and a proof.

5.0

7.0

3

1

Figure 6.3: Each shadow of the loop in the quotient complex is an infinite polygonal line
with periodicity lattice spanned by the vector (1, 1). The length of its unit cell is

√
2, which

implies that its shadow monomial is 2
√

2𝑅.

Lemma 6.1.3 (Counting Inside Sphere). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice and ΛΓ ⊆ Λ

a 𝑝-dimensional sublattice. Then the number of elements of Λ/ΛΓ that have a non-empty
intersection with the ball of radius 𝑅 centered at 0 ∈ R𝑑 is mΓ (𝑅) + O(𝑅𝑑−𝑝−1).

Proof. We begin with the two extreme cases. In the zero-dimensional case, when 𝑝 = 0,
we have ΛΓ = {0} and Λ/ΛΓ = Λ. We thus count the points of Λ inside the 𝑑-ball of
radius 𝑅 centered at 0, which up to lower-order terms is the volume of the ball divided
by the volume of the unit cell: 𝜈𝑑𝑅𝑑/vol𝑑 (Λ) = mΓ (𝑅) because vol0 (ΛΓ) = 1. Observe
that this estimate also holds if we count the points inside the 𝑑-ball with radius 𝑅 − 1. In
the full-dimensional case, when 𝑝 = 𝑑, we have dimΛΓ = dimΛ, so Λ/ΛΓ is finite, with
cardinality vol𝑑 (ΛΓ) /vol𝑑 (Λ). Indeed, any unit cell of ΛΓ contains a point from each class
in the quotient, so for a large enough constant 𝑅, the 𝑑-ball with radius 𝑅 contains a point
from each class. Furthermore, vol𝑑 (ΛΓ) /vol𝑑 (Λ) = mΓ (𝑅) because 𝜈0𝑅

0 = 1.

In the general case, let Λ′ be the maximal sublattice of Λ that satisfies span(Λ′) = span(ΛΓ).
By construction, 𝑝 = dimΛ′ = dimΛΓ, so we can apply the result for the full-dimensional
case, in which we count exactly vol𝑝 (ΛΓ) /vol𝑝 (Λ′) translates of ΛΓ within Λ′. Next project
Λ orthogonally onto the linear subspace orthogonal to span(Λ′), which gives a (𝑑 − 𝑝)-
dimensional lattice, Λ′′. The unit cells satisfy vol𝑝 (Λ′) · vol𝑑−𝑝 (Λ′′) = vol𝑑 (Λ). Using the
result for the zero-dimensional case, we count 𝜈𝑑−𝑝𝑅𝑑−𝑝/vol𝑑−𝑝 (Λ′′) + O(𝑅𝑑−𝑝−1) points of
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Λ′′ within the ball of radius 𝑅, and multiplying the two counts while ignoring the lower order
term, we get

vol𝑝 (ΛΓ)
vol𝑝 (Λ′)

· 𝜈𝑑−𝑝𝑅𝑑−𝑝
1

vol𝑑−𝑝 (Λ′′)
=

vol𝑝 (ΛΓ)
vol𝑝 (Λ′)

vol𝑝 (Λ′)
vol𝑑 (Λ)

· 𝜈𝑑−𝑝𝑅𝑑−𝑝 = mΓ (𝑅). (6.3)

This expression measures the product of the (𝑑 − 𝑝)-ball with radius 𝑅 and the 𝑝-ball with
constant radius. This product is not contained in the 𝑑-ball of radius 𝑅, but if we shrink the
(𝑑 − 𝑝)-ball to radius 𝑅 − 1, then it is contained in the 𝑑-ball, assuming 𝑅 is sufficiently large.
This changes the count only by a lower-order term, which implies the claim in the general
case. □

6.1.3 Periodic Merge Tree

To cope with the potentially infinitely many connected components of a periodic complex, we
construct the merge tree for a finite representation in the torus and decorate this tree with a
shadow monomial at every point. Each shadow monomial is specified by a real coefficient
and an integer exponent, and we writeM[𝑅] for the set of such monomials.

Definition 6.1.4 (Periodic Merge Tree). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, and 𝐹 : 𝐾 →
R a Λ-periodic filter. The periodic merge tree of 𝐹 with respect to Λ, denoted M(𝐹,Λ),
is the merge tree of the quotient filter, M = M(𝐹/Λ) = [𝐹/Λ]∼, together with its height
function, h : M→ R, and the frequency function, f : M→M[𝑅], which maps each point
Γ ∈ M to its shadow monomial.

Whenever we talk about a periodic merge tree, we will tacitly assume that it comes with its
height and frequency functions. The notational ambiguity between merge trees and periodic
merge trees is deliberate and emphasizes that every periodic merge tree is also a merge tree.
See Figure 6.4 for two examples, in which we write the shadow monomials above the beams
of the two periodic merge trees. For notational reasons, we write mΓ (𝑅) = f(Γ) (𝑅) when
a value of the frequency function is applied to a radius, 𝑅. Since connected components
tend to grow with increasing threshold, it is plausible that the shadow monomial can only
get smaller when it changes as we move from left to right in the merge tree. To make this
intuition concrete, we write 𝑡𝑅𝑑−𝑞 < 𝑠𝑅𝑑−𝑝 if either 𝑑 − 𝑞 < 𝑑 − 𝑝 or 𝑑 − 𝑞 = 𝑑 − 𝑝 and 𝑡 < 𝑠,
and we write 𝑡𝑅𝑑−𝑞 ≤ 𝑠𝑅𝑑−𝑝 if equality is allowed.

Lemma 6.1.5 (Monotonicity). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, 𝐹 : 𝐾 → R a Λ-periodic
filter, and M = M(𝐹,Λ) the periodic merge tree of 𝐹 with frequency function f : M→M[𝑅].
If a point B ∈ M covers another point A ∈ M, then f(B) ≤ f(A).

Proof. Since B covers A, the periodicity lattice of A is a sublattice of that of B: ΛA ⊆ ΛB.
Indeed, if 𝛼 = 𝛼 + 𝑢 for every shadow 𝛼 of A, then 𝛽 = 𝛽 + 𝑢 for every shadow 𝛽 of B,
but not necessarily the other way round. The exponents of f(A) and f(B) are 𝑑 − dimΛA
and 𝑑 − dimΛB. If dimΛA < dimΛB, then f(B) < f(A), and if dimΛA = dimΛB, then the
coefficients determine the order, and the only difference between them is the volume of the
periodicity lattice, which is at least as large for A as it is for B. We thus get f(B) ≤ f(A) in
general. □

Since the shadow monomial can only decrease along a left-to-right trajectory in the merge
tree, its exponent progresses from 𝑑 down to 0, possibly skipping some integers. We
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Figure 6.4: The same graphs and periodic merge trees as in Figure 6.2 but with additional
information. Edges with non-zero shift vectors (to be defined in Section 6.2.2) are drawn
as (directed) arcs and labeled with their shift vectors, while edges with zero shift vectors
remain undirected and without vector. In addition to the appearances at 𝑡 = 1.0, 3.0 and
the merger at 𝑡 = 5.0, there are two catenations at 𝑡 = 7.0, 9.0 that define the shadow
monomials decorating the beams of the periodic merge trees in the left panel. Note that the
tree in the right panel has twice as many subtrees rooted at the point labeled 7.0, and that
the shadow monomials compensate for the increased number of beams. Indeed, we have
two events at each of the first four values defining the periodic merge tree, with a merger
followed by a catenation at 𝑡 = 7.0.

therefore define the (𝑑 − 𝑝)-ary era of a beam as the interval of points whose shadow
monomials have exponent 𝑑 − 𝑝. For example, the longest beams of the periodic merge
trees in Figure 6.4 have three eras each, characterized by the exponent of 𝑅, which shrinks
from left to right. We further subdivide each era into epochs, which are maximal intervals in
which the coefficient of the shadow monomial stays constant. From one epoch to the next on
the same beam, the periodicity lattice grows to a superlattice, which implies a strengthening
of Lemma 6.1.5, namely that the coefficient drops by division with an integer larger than 1.
The graph in Figure 6.4 is unfortunately too small to have eras consisting of more than one
epoch, but see Section 6.5 for a more elaborate example in R3.

6.2 The Algorithm

This section presents the algorithm we use to construct the periodic merge tree of a Λ-
periodic filter, 𝐹 : 𝐾 → R. This tree is but the merge tree of the quotient filter, 𝐹/Λ : 𝐾/Λ→
R, equipped with the frequency function. The construction of the merge tree has been amply
studied prior to this chapter; see e.g. [SM20], so we will focus on the frequency function.

6.2.1 Critical Events

Similar to Kruskal’s classic algorithm for minimum spanning trees [Kru56], we process the
cells of 𝐾/Λ in the order of the filter and update the periodic merge tree at each step. The
only relevant cells are the vertices and edges, and we distinguish the edges in the quotient
complex whose endpoints lie in the same and in different connected components. In the
former case, we consider a shadow of the edge and further distinguish when its endpoints
belong to the same or to different shadows of the connected component. We therefore have
three types of critical events that characterize the evolution of the connected components:
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• appearance: a vertex is added, which starts a new connected component or, equiva-
lently, a new beam of the periodic merge tree;

• merger: an edge with endpoints in two different connected components is added,
which merges these components into one or, equivalently, ends a beam by joining it
to another in the merge tree;

• catenation: an edge with both endpoints in the same connected component is added
and the endpoints of its shadow belong to two different shadows of that compo-
nent, which enlarges the periodicity lattice of the component and shrinks its shadow
monomial;

see Figure 6.4, where the tree in the left panel experiences two appearances, one merger,
and two catenations, while the tree in the right panel experiences four appearances, three
mergers, and two catenations. To add a new vertex in a appearance, we set its periodicity
lattice to {0}. To add a new edge, 𝑒, let A,B be the connected components that contain
its endpoints. If A = B, then 𝑒 together with a path connecting its endpoints form a loop
in the quotient complex, and the shadow of this loop can either be a loop in the periodic
complex, or a path that connects different shadows of the same vertex. Hence, the addition
of the edge has either no effect or it enlarges the periodicity lattice of the component and
thus decreases the shadow monomial. Writing Λ𝑒 for the periodicity lattice of the loop, and
writing Γ for the component A after adding 𝑒, the periodicity lattice of Γ is the smallest
common superlattice: ΛΓ = ΛA + Λ𝑒. On the other hand, if A ≠ B, the addition of 𝑒 merges
the two components, and we write Γ for the new component, which is the union of A, B, and
𝑒. The periodicity lattice of Γ is again the smallest common superlattice: ΛΓ = ΛA + ΛB.

6.2.2 Periodicity Lattice and Loops

There is a direct relation between the periodicity lattice of a connected component and its
loops. Since our primary concern are components (and not cycles of dimension 1 or higher),
we may assume that a component, Γ, is an undirected graph. Nonetheless, we need to
reason about loops in this graph, and this is done more conveniently in the representation
of Γ as a directed graph, in which the (undirected) edge connecting 𝑥 to 𝑦 is replaced by
two (directed) arcs, one from 𝑥 to 𝑦 and the other from 𝑦 to 𝑥.

Definition 6.2.1 (Paths and Loops). In a directed graph, a path from 𝑥 to 𝑦 is a sequence
of arcs, 𝑎𝑖 from 𝑥𝑖 to 𝑥𝑖+1, for 1 ≤ 𝑖 ≤ 𝑘, with 𝑥1 = 𝑥 and 𝑥𝑘+1 = 𝑦. This path is a loop if, in
addition, 𝑥 = 𝑦. A path or loop is simple if no arc is repeated.

In our context, each arc is labeled with an integer vector that records the relative position of
the unit cells where a trajectory that is a shadow of the arc starts and ends. Specifically, let
𝑎 be an arc from 𝑥 to 𝑦, write 𝑥0, 𝑦0 for the shadows of the endpoints inside a common unit
cell, and let 𝑥0 + 𝑢, 𝑦0 + 𝑤 be the endpoints of a shadow of the arc. Then the shift vector
of the arc is Shift(𝑎) = 𝑈−1(𝑤 − 𝑢). Correspondingly, the shift vector of the arc from 𝑦 to
𝑥 is Shift(−𝑎) = −Shift(𝑎). The drift vector of a path is the sum of shift vectors of its arcs,
and similarly for a loop. Assuming the directed graph represents a connected undirected
graph, Γ, we can designate one of its vertices as the root and extend every loop so it
starts and ends at the root without changing its drift vector. Any two loops can therefore be
concatenated while adding their drift vectors. The collection of drift vectors thus satisfies
the properties of a lattice: for every vector we also have its integer multiples, and for every
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two vectors we also have their sum. Hence, this collection is isomorphic to a sublattice of
Z𝑑, and we write 𝑉 ⊆ Z𝑑 for its basis. The periodicity lattice of the undirected graph, ΛΓ,
has basis 𝑈𝑉 .

EXAMPLE. Consider the right panel of Figure 6.4. The edges of the quotient graph with non-
zero shift vectors are drawn directed to avoid possible ambiguities. The counterclockwise
version of the upper loop consists of the edges with filter values 5.0, 7.0, 5.0, 7.0 and drift
vector 𝑣1 = (0, 0) + (0, 1) + (0, 0) + (1, 1) = (1, 2), which means this loop moves one unit
cells to the right and two unit cells up. The basis vectors that span the rectangular unit cell
are 𝑢1 = (2.0, 0.0) and 𝑢2 = (0.0, 1.0), so this drift vector corresponds to

𝑈 · 𝑣1 =

[︃
2.0 0.0
0.0 1.0

]︃
·
[︃
1
2

]︃
=

[︃
2.0
2.0

]︃
, (6.4)

which is a vector in Λ. Its length is 2
√

2, which explains the shadow monomial decorating the
epoch that starts at 𝑡 = 7.0 and ends at 𝑡 = 9.0. After adding the two edges with filter value
9.0, we get additional loops: the inner loop with drift vector 𝑣2 = (0, 0) − (0, 1) = (0,−1),
and the lower loop with drift vector 𝑣3 = (0, 0, ) + (0, 0) + (0, 0) − (1, 0) = (−1, 0). All other
loops are concatenations of these three loops, and thus their drift vectors are sums of these
three drift vectors. Writing 𝑉 for the matrix whose columns are 𝑣1, 𝑣2, 𝑣3, the corresponding
periodicity lattice is thus spanned by

𝑈 · 𝑉 =

[︃
2.0 0.0
0.0 1.0

]︃
·
[︃
1 0 −1
2 −1 0

]︃
=

[︃
2.0 0.0 −2.0
2.0 −1.0 0.0

]︃
. (6.5)

The last vector is redundant, so we may choose the first two as a basis. They span a unit
cell of area 2.0, which is the same area as the unit cell of Λ (the shaded rectangle). This
explains the shadow monomial decorating the last epoch in the periodic merge tree.

6.2.3 Implementing with Union-Find

For the computation of the periodicity lattice, it suffices to look at the drift vectors of a basis
of the loop space. We work with a basis defined by a spanning tree of Γ: each edge not
in this tree belongs to a unique simple cycle in which all other edges are taken from the
spanning tree. Choosing a direction for this edge, we get a corresponding simple loop
anchored at the root of Γ, and the basis consists of one such loop for each edge not in
the spanning tree. It is convenient to use the spanning tree that consists of the edges
corresponding to past merge events for this purpose. The construction of this tree can be
reduced to a sequence of find and union operations—the former are used to decide whether
the two endpoints of an edge belong to the same or to different components, and the latter
merge the two components that contain the endpoints, assuming they are different.

To put the theory into practice, we use a data structure that supports constant time find
and amortized logarithmic time union operations. Faster implementations of the union-find
data type exist; see e.g. the survey in [GI91], but they are not required for constructing the
periodic merge tree within the desired time bound. The data structure stores the vertices
of Γ in a linked list whose first vertex is the root 𝑟 of Γ. We write Next(𝑥) for the successor
of 𝑥, which is null if 𝑥 is last. In addition, 𝑥 stores a link to the root, Root(𝑥) = 𝑟, and the
drift vector of the unique simple path from 𝑟 to 𝑥 inside the spanning tree, denoted Drift(𝑥).
Finally, the root stores the number of vertices in the component, denoted Size(𝑟), the vertex
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with smallest filter value in Γ, denoted Old(𝑟), as well as an integer matrix, Basis(𝑟) = 𝑉 ,
such that 𝑈𝑉 is a basis of the periodicity lattice of Γ.

Given an edge with endpoints 𝑥, 𝑦, the find operation returns their respective roots: 𝑟 =

Root(𝑥) and 𝑠 = Root(𝑦). The vertices belong to the same component if and only if 𝑟 = 𝑠,
so we can distinguish between the cases in which the edge forms a loop or connects two
components in constant time. In the former case, we get a new path from 𝑟 to 𝑦, possibly
with a different drift vector, which requires updating the periodicity lattice. Let 𝑎 be the
directed version of the edge, leading from 𝑥 to 𝑦:

Algorithm 3 Possible catenation event

01 if 𝑟 = 𝑠 then 𝑣 = Drift(𝑥) + Shift(𝑎) − Drift(𝑦);
02 Basis(𝑟) = REDUCE(Basis(𝑟), 𝑣)
03 endif.

In the latter case, we form the union of the two components. To do this efficiently, we pick
the smaller component, update the information at all its vertices, and insert the updated list
right after the root of the larger component. In addition, we compute the periodicity lattice of
the union:

Algorithm 4 Merger event

01 if 𝑟 ≠ 𝑠 then assume Size(𝑠) ≤ Size(𝑟);
02 Old(𝑟) = min{Old(𝑟),Old(𝑠)}; Basis(𝑟) = REDUCE(Basis(𝑟),Basis(𝑠));
03 𝑣 = Drift(𝑥) + Shift(𝑎) − Drift(𝑦); 𝑧 = 𝑠;
04 while 𝑧 ≠ null do
05 Root(𝑧) = 𝑟; Drift(𝑧) = 𝑣 + Drift(𝑧); 𝑙𝑎𝑠𝑡 = 𝑧; 𝑧 = Next(𝑧)
06 endwhile;
07 Size(𝑟) = Size(𝑟) + Size(𝑠); Next(𝑙𝑎𝑠𝑡) = Next(𝑟); Next(𝑟) = 𝑠
08 endif.

The algorithm for updating the periodicity lattice, including its running time, will be discussed
in the next subsection. The running time of all other operations is easily analyzed. The
periodic merge tree of a Λ-periodic filter, 𝐹 : 𝐾 → R, is constructed incrementally, by adding
one vertex or edge at a time, and each addition gives rise to at most two find operations
and at most one union operation. Letting 𝑛 be the number of vertices of 𝐾/Λ, there are
𝑛 − 1 union operations in total. Each vertex that receives a new drift vector ends up in a
component at least twice the size of its old component. Hence, every vertex changes its
root and drift vector at most log2 𝑛 times. Letting 𝑚 be the number of edges of 𝐾/Λ, we
observe that each find operation takes constant time, which implies that O(𝑛 log 𝑛 + 𝑚) time
suffices for this part of the algorithm.

6.2.4 Euclid’s Algorithm for Lattices

Next, we explain how the bases of two periodicity lattices can be processed to give the
basis of their sum. Given sublattices, Λ′,Λ′′ ⊆ Λ, the vectors in their bases span Λ′ + Λ′′,
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which is the smallest sublattice of Λ that contains Λ′ and Λ′′. Since there are possibly
more vectors than necessary, we reduce the matrix of basis vectors to its Hermite normal
form; see Schrijver [Sch98] for general background. Working with the corresponding integer
matrices, this form can be computed in time polynomial in the size of the matrix and its
entries; see [KB79] for the historically first such algorithm. To be self-contained, we give a
simple algorithm that reduces the matrix by repeated application of Euclid’s algorithm for the
greatest common divisor (gcd) of two integers; see also [HMM98]. We focus on constant
size matrices and sacrifice the polynomial running time for the simplicity of the algorithm.

Let 𝑀 be a 𝑑 × 𝑐 integer matrix, and interpret its columns as vectors that span a sublattice
of Z𝑑. The algorithm reduces 𝑀 using only three types of column operations: multiply a
column with −1, exchange two columns, and subtract one column from another. An easy
but important observation is that these operations preserve the lattice spanned by the
columns. We reduce 𝑀 from left to right such that the non-zero columns of the resulting
lower triangular matrix define a basis of the lattice:

Algorithm 5 Hermite Normal Form reduction algorithm based on Euclid’s algorithm

01 𝑖 = 𝑗 = 1;
02 while 𝑖 ≤ 𝑑 do
03 if ∃ℓ with 𝑗 ≤ ℓ ≤ 𝑐 and 𝑀 [𝑖, ℓ] ≠ 0 then assume 𝑀 [𝑖, 𝑗] > 0;
04 for 𝑘 = 𝑗 + 1 to 𝑐 do assume 𝑀 [𝑖, 𝑘] ≥ 0;
05 while 𝑀 [𝑖, 𝑗] > 0 and 𝑀 [𝑖, 𝑘] > 0 do
06 subtract ⌊𝑀 [𝑖, 𝑗]/𝑀 [𝑖, 𝑘]⌋ times column 𝑘 from column 𝑗 ;
07 exchange columns 𝑗 and 𝑘
08 endwhile
09 endfor;
10 for 𝑘 = 1 to 𝑗 − 1 do
11 subtract ⌊𝑀 [𝑖, 𝑘]/𝑀 [𝑖, 𝑗]⌋ times column 𝑗 from column 𝑘
12 endfor; 𝑗 = 𝑗 + 1
13 endif; 𝑖 = 𝑖 + 1
14 endwhile.

The while-loop in lines 05 to 08 effectively computes the gcd of the 𝑖-th entries of columns
𝑗 and 𝑘; that is: 𝑀 [𝑖, 𝑗] = gcd(𝑀 [𝑖, 𝑗], 𝑀 [𝑖, 𝑘]) and 𝑀 [𝑖, 𝑘] = 0. This is prepared by
ascertaining 𝑀 [𝑖, 𝑗] > 0 and 𝑀 [𝑖, 𝑘] ≥ 0 in lines 03 and 04 by the possible exchange of
columns 𝑗 and ℓ and by possible multiplication with −1. After finishing the for-loop in
lines 04 to 09, all entries that succeed 𝑀 [𝑖, 𝑗] in its row are zero, and after finishing the
for-loop in lines 10 to 12, all entries that precede 𝑀 [𝑖, 𝑗] in its row are non-negative and
smaller than 𝑀 [𝑖, 𝑗]. After running the algorithm, each column has strictly more leading
zeros than the preceding column. Hence, there are at most 𝑑 non-zero columns left, and
they form a basis of the lattice defined by 𝑀. Indeed, the matrix is in Hermite normal form,
as defined in [Mad00] for the not necessarily full-rank case.

The running time depends, among other things, on the entries in 𝑀. To study this depen-
dence, we introduce the magnitude of 𝑀 as the maximum absolute entry in the matrix,
denoted ∥𝑀 ∥∞. Similarly, we talk about the magnitude of an integer vector and the magni-
tude of a basis of integer vectors. Setting 𝑁 = ∥𝑀 ∥∞, we show that the algorithm reduces
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𝑀 in time at most logarithmic in 𝑁 . Note however that there are faster variants of this
algorithm; see e.g. [HMM98, Sto00].

A key ingredient of the proof is Bézout’s identity, which is a statement about Euclid’s
algorithm for computing the gcd of positive integers 𝑠 ≤ 𝑡. Specifically, it asserts that there
are integers 𝑥 and 𝑦 such that 𝑥𝑠 + 𝑦𝑡 = gcd(𝑠, 𝑡) and |𝑥 |, |𝑦 | ≤ 𝑡. These coefficients are
computed by the extended Euclidean algorithm from the quotients that appear during the
execution of Euclid’s algorithm. The latter substitutes 0 and gcd(𝑠, 𝑡) for 𝑠 and 𝑡, so it is not
surprising that there are also integers 𝑥0 and 𝑦0 such that 𝑥0𝑠 + 𝑦0𝑡 = 0 and |𝑥0 |, |𝑦0 | ≤ 𝑡,
and they can similarly be computed from the quotients in Euclid’s algorithm. In summary,
the actions of Euclid’s algorithm are equivalent to substituting 𝑥𝑠 + 𝑦𝑥 and 𝑥0𝑠 + 𝑦0𝑡 for 𝑠
and 𝑡, and the magnitude of the four coefficients does not exceed 𝑡.

Lemma 6.2.2 (Time for Reduction). Given a lattice spanned by the columns of a 𝑑 × 𝑐
matrix of integer entries with absolute values at most 𝑁 , the reduction algorithm takes time
at most O(𝑑2𝑐𝑑 log(2𝑁)) to construct a basis of the lattice.

Proof. The algorithm consists of four loops, of which the outer while-loop iterates at most
𝑑 times, and the two for-loops together iterate 𝑐 − 1 times. To bound the number of
iterations of the inner while-loop, let 𝜇𝑖 be the maximum absolute entry that appears in
row 𝑖 at any time during the algorithm. We have 𝜇1 ≤ 𝑁 , because the reduction of the first
row does not increase its entries. However, it may increase entries in the other rows. To
understand by how much, we consider the side effect of Euclid’s algorithm computing the
gcd of 𝑠 = 𝑀 [1, 𝑗] and 𝑡 = 𝑀 [1, 𝑘], with 𝑠 ≤ 𝑡 or 𝑡 ≤ 𝑠. It substitutes gcd(𝑠, 𝑡) = 𝑥𝑠 + 𝑦𝑡
for 𝑠 in 𝑀 [1, 𝑗] and 0 = 𝑥0𝑠 + 𝑦0𝑡 for 𝑡 in 𝑀 [1, 𝑘]. Since the reduction works on columns,
it also substitutes 𝑥𝑀 [2, 𝑗] + 𝑦𝑀 [2, 𝑘] for 𝑀 [2, 𝑗] and 𝑥0𝑀 [2, 𝑗] + 𝑦0𝑀 [2, 𝑘] for 𝑀 [2, 𝑘].
We have |𝑥 |, |𝑦 |, |𝑥0 |, |𝑦0 | ≤ 𝑁 , so the first gcd computation in row 1 increases the magnitude
of row 2 from at most 𝑁 to at most 2𝑁2. Similarly, every additional gcd computation in
row 1, increases the magnitude of row 2 by at most a factor 2𝑁 , so after 𝑐 − 1 such
computations, we have 𝜇2 ≤ 𝑁 (2𝑁)𝑐−1 = 1

2 (2𝑁)
𝑐. We iterate this argument and get

𝜇𝑖 ≤ 1
2 (2𝜇𝑖−1)𝑐 ≤ 1

2 (2𝑁)
𝑐𝑖−1

for 2 ≤ 𝑖 ≤ 𝑑. Taking the binary logarithm of the final and largest
upper bound, we get

log2 𝜇𝑑 ≤ log2

(︂
1
2 (2𝑁)

𝑐𝑑−1
)︂
≤ 𝑐𝑑−1 log2(2𝑁). (6.6)

Since Euclid’s algorithm takes at most logarithmically many steps to compute the gcd of
two integers, this is an upper bound on the number of iterations of the inner while-loop.
Multiplying with 𝑑 (𝑐 − 1), we get 𝑑𝑐𝑑 log2(2𝑁) as an upper bound on the total number of
iterations. Each iteration takes O(𝑑) time to subtract an integer multiple of a column from
another, or to exchange two columns, which implies the claimed time bound. □

Remark on magnitude. While the above bound on the size of temporary entries in the
matrix is rather high, it is known that the magnitude of the matrix in Hermite normal form
is bounded from above by (

√
𝑑𝑁)𝑑 [Sto00, pages 91, 92]. Since the matrix in this form is

unique [Mad00, Theorem 1.5.2], it follows that this upper bound also applies to the reduced
matrix computed by the above algorithm.

6.2.5 Magnitude and Time for Construction

The size of the entries in the matrices plays an important role in the running time for
constructing a periodic merge tree. We thus express 𝑁 in terms of the size of 𝐾/Λ.
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Considering a (directed) edge of the quotient complex, 𝑎, we recall that Shift(𝑎) records the
relative position of the endpoints of a shadow. The magnitude of this vector is its largest
absolute entry, and we write 𝐷 for the maximum magnitude over all shift vectors of edges in
𝐾/Λ, noting that it depends on the chosen basis of Λ.

It is not difficult to see that there are cases in which an unfortunate choice of basis can
cause an arbitrarily large 𝐷, even independent of the number of vertices and edges in
𝐾/Λ. On the other hand, if 𝐾 is a Delaunay triangulation and the basis vectors are pairwise
orthogonal, then 𝐷 ≤ 1. This follows from [DH97, Theorem 3.1] but can also be proved
directly, as illustrated in Figure 6.5. Let 𝑥 and 𝑦 be the endpoints of an edge in the Delaunay
triangulation, and 𝑢𝑖 a basis vector. The four points, 𝑥, 𝑥 + 𝑢𝑖, 𝑦, 𝑦 − 𝑢𝑖 are the vertices of a
parallelogram, and the angles at 𝑥 + 𝑢𝑖 and 𝑦 − 𝑢𝑖 are equal and at most 90◦. Indeed, if they
exceed 90◦, then every (𝑑 − 1)-sphere that passes through 𝑥 and 𝑦 encloses at least one of
𝑥+𝑢𝑖 and 𝑦−𝑢𝑖, which contradicts that 𝑥 and 𝑦 are the endpoints of an edge in the Delaunay
triangulation. Since this holds for all basis vectors and their negatives, ±𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑑, we
conclude that 𝑦 is contained in the hyper-rectangle with vertices 𝑥 ± 𝑢1 ± 𝑢2 ± . . . ± 𝑢𝑑 . But
this hyper-rectangle overlaps only the unit cell that contains 𝑥 and the 3𝑑 − 1 neighboring
unit cells. It follows that 𝑥 and 𝑦 lie in neighboring unit cells, so 𝐷 ≤ 1, as claimed.

𝑦

𝑦 − 𝑢2

𝑥 + 𝑢2

𝑥 − 𝑢1 𝑥 + 𝑢1𝑥

𝑥 − 𝑢2

Figure 6.5: The edge connecting 𝑥 to 𝑦 cannot be in the Delaunay triangulation if 𝑦 lies
outside the hyper-rectangle whose facets are centered at the points 𝑥 ± 𝑢𝑖. This hyper-
rectangle has the volume of 2𝑑 unit cells and overlaps 3𝑑 of them, which for the displayed
2-dimensional case are drawn with dotted lines.

Lemma 6.2.3 (Magnitude of Basis). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice with given matrix
of basis vectors, 𝑈, let 𝐹 : 𝐾 → R be a Λ-periodic filter, let 𝑚 be the number of edges in
𝐾/Λ, and let 𝐷 the be maximum magnitude of their shift vectors. For every Γ ∈ M(𝐹,Λ),
let 𝑉 be the Hermite normal form of the lattice 𝑈−1(ΛΓ) ⊆ Z𝑑. Then, the basis, 𝑈𝑉 , of the
periodicity lattice of Γ satisfies ∥𝑉 ∥∞ ≤ (

√
𝑑𝐷𝑚)𝑑 .

Proof. Take a spanning tree of Γ, and for each edge not in this tree, take the drift vector of
the simple loop for which this edge is the sole edge not in the tree. There are at most 𝑚
edges in this loop, so its drift vector has magnitude at most 𝐷𝑚. We get fewer than 𝑚 such
vectors, which define the lattice of the periodicity lattice of Γ. Letting 𝑀 be the matrix whose
columns are these drift vectors, we compute a basis by reducing 𝑀 to Hermite normal
form. Since ∥𝑀∞∥ ≤ 𝐷𝑚, this implies that the magnitude of the reduced matrix is at most
(
√
𝑑𝐷𝑚)𝑑 . □

The overall algorithm constructs a periodic merge tree by incrementally adding the vertices
and edges of 𝐾/Λ. Whenever an edge connects two components (a merge event) or forms
a loop (a possible catenation), we use the reduction algorithm to compute a basis from two
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bases. By Lemma 6.2.3, the magnitude of the input matrices is at most (
√
𝑑𝐷𝑚)𝑑 . Indeed,

as the Hermite normal form of a lattice is unique, the iteratively computed Hermite normal
form from our algorithm agrees with the Hermite normal form from Lemma 6.2.3.

Theorem 6.2.4 (Time for Construction). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice with given
basis, 𝐹 : 𝐾 → R a Λ-periodic filter, 𝑛 and 𝑚 the number of vertices and edges in the
quotient complex, 𝐾/Λ, and 𝐷 the maximum magnitude of the shift vectors. Then the
periodic merge tree of 𝐹 can be constructed in time O(𝑛 log 𝑛 + 𝑚2𝑑𝑑𝑑+3 log(

√
𝑑𝐷𝑚)).

Proof. The union-find data structure is maintained in constant time per edge and amortized
logarithmic time per vertex, so O(𝑛 log 𝑛 + 𝑚) time in total. The reduction algorithm is used
at most once for each edge, and each time reduces an integer matrix with 𝑑 rows and at most
2𝑑 columns. By Lemma 6.2.3, its magnitude is at most (

√
𝑑𝐷𝑚)𝑑 , and by Lemma 6.2.2, the

time to reduce the matrix is at most O(𝑑2(2𝑑)𝑑 log(2(
√
𝑑𝐷𝑚)𝑑)). Assuming (

√
𝑑𝐷𝑚)𝑑 ≥ 2,

we can simplify the bound to O(𝑑3(2𝑑)𝑑 log(
√
𝑑𝐷𝑚)). After multiplying with the number of

edges, we get O(𝑚𝑑3(2𝑑)𝑑 log(
√
𝑑𝐷𝑚)) time in total, which implies the claimed bound. □

In the important application of our algorithm to crystalline materials, the dimension is a
constant, 𝑑 = 3. Using the filtration of alpha complexes in the torus, it is typical that each
vertex (atom center) is connected to at most some constant number of other vertices, so
the number of edges is 𝑚 = O(𝑛). Similarly typical is that entries in the shift vectors are
bounded by a small constant, 𝐷. In this case, the algorithm constructs the periodic merge
tree in time at most O(𝑛 log 𝑛).

6.3 Properties

This section studies the invariance under different choices of lattices and the stability with
respect to perturbations. We begin with the introduction of a notion of distance between
periodic merge trees, and follow up with an equivalence relation among periodic merge
trees and the corresponding quotient pseudo-metric.

6.3.1 Interleaving Distance

We adapt the interleaving distance between ordinary merge trees introduced in [MBW13]
to periodic merge trees by including the frequency function, which maps each point of the
tree to its shadow monomial. Recall that a point B ∈ M covers A ∈ M if h(A) ≤ h(B) and
A ⊆ B.

Definition 6.3.1 (Interleaving Distance). Let M and M′ be two periodic merge trees, with
height functions h : M → R, h′ : M′ → R and frequency functions f : M → M[𝑅],
f′ : M′ → M[𝑅]. For 𝜀 ≥ 0, continuous maps, 𝜑 : M → M′ and 𝜓 : M′ → M are 𝜀-
compatible if for all Γ ∈ M, Γ′ ∈ M′,

(i) h′ ◦ 𝜑(Γ) = h(Γ) + 𝜀 and h ◦ 𝜓(Γ′) = h′(Γ′) + 𝜀;

(ii) 𝜓 ◦ 𝜑(Γ) covers Γ and 𝜑 ◦ 𝜓(Γ′) covers Γ′;

(iii) f′ ◦ 𝜑(Γ) ≤ f(Γ) and f ◦ 𝜓(Γ′) ≤ f′(Γ′).
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The interleaving distance between M and M′, denoted 𝐼 (M,M′), is the infimum of the 𝜀 ≥ 0
for which there exist 𝜀-compatible maps from M to M′ and back.

We focus on finite periodic merge trees, for which the infimum in Definition 6.3.1 is a
minimum. Throughout this section, we will therefore assume finite trees, with the benefit of
simpler arguments involving the interleaving distance.

As an example, consider the two periodic merge trees in Figure 6.4. Writing M for the tree
in the left panel and M′ for the tree in the right panel, we need continuous maps 𝜑 and
𝜓 whose compositions increase the height of each point by 2𝜀 in its own tree (i.e. move
the point to the right in our drawing). For small 𝜀, this is not possible because M′ has
two subtrees rooted at the point with height 7.0, while M has only one such subtree. The
minimum height of any point is 1.0, and since 𝜀 is at least half the height difference, we
get 𝜀 ≥ 3.0. We get another constraint from Condition (iii): the shadow monomial cannot
increase from a point to its image. All points with height less than 7.0 in M have shadow
monomials larger than those of the points with height 1.0 in M′, hence 𝜀 ≥ 6.0. Indeed, for
𝜀 = 6.0 we get maps 𝜑 and 𝜓 that are 𝜀-compatible, which implies 𝐼 (M,M′) = 6.0.

We extend the proof of the interleaving distance being a metric for merge trees [MBW13] to
periodic merge trees, but note that [MBW13] missed the verification of positivity, which we
add in our extension.

Lemma 6.3.2 (Interleaving Distance is a Metric). Let M,M′,M′′ be periodic merge trees.
Then

• 𝐼 (M,M′) ≥ 0 and 𝐼 (M,M′) > 0 if and only if M ≠ M′ (positivity);

• 𝐼 (M,M′) = 𝐼 (M′,M) (symmetry);

• 𝐼 (M,M′) + 𝐼 (M′,M′′) ≥ 𝐼 (M,M′′) (triangle inequality).

Proof. Positivity : Clearly, 𝐼 (M,M′) = 0 if M = M′. It remains to show 𝐼 (M,M′) > 0 if
M ≠ M′. Recall that a complex in the 𝑑-dimensional torus is necessarily finite, so there are
only finitely many critical events in the construction of the corresponding periodic merge
tree. Let 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 be the values of the critical events that arise in the construction of
M and M′. They decompose both trees into a finite collection of intervals, each connecting
points at consecutive critical values. There is an adjacency preserving bijection between
the two collections of intervals that preserves heights and shadow monomials if and only
if M = M′. But if there is no such bijection, then there are also no 𝜀-compatible maps
for 𝜀 smaller than the minimum difference between consecutive critical values. Hence,
𝐼 (M,M′) > 0.

Symmetry : Since we can switch 𝜑 and 𝜓 in Definition 6.3.1, we have 𝐼 (M,M′) ≤ 𝜀 if and
only if 𝐼 (M′,M) ≤ 𝜀, for every 𝜀 ≥ 0. Hence, 𝐼 (M,M′) = 𝐼 (M′,M).
Triangle inequality : Writing 𝜀 = 𝐼 (M,M′) and 𝜀′ = 𝐼 (M′,M′′), there exist 𝜀-compatible maps
𝜑 : M→ M′, 𝜓 : M′→ M and 𝜀′-compatible maps 𝜑′ : M′→ M′′, 𝜓′ : M′′→ M′. It is easy
to see that 𝜑′ ◦ 𝜑 : M→ M′′ and 𝜓 ◦ 𝜓′ : M′′→ M satisfy (i) and (iii) of Definition 6.3.1 for
𝜀+𝜀′. To see (iii), we continuously advance Γ to the point Π ∈ M at height h(Π) = h(Γ)+2𝜀′.
By continuity of 𝜑, and because there is only one point of M′ whose height is h′(𝜑(Γ)) + 2𝜀′
that covers 𝜑(Γ), this point must be 𝜑(Π) = 𝜓′◦𝜑′◦𝜑(Γ). Hence, 𝜓◦𝜑(Π) = 𝜓◦𝜓′◦𝜑′◦𝜑(Γ).
Since 𝜓 ◦ 𝜑(Π) covers Π and therefore Γ, this implies that 𝜑′ ◦ 𝜑 and 𝜓 ◦ 𝜓′ satisfy (ii) for M
and similarly for M′′, which implies 𝐼 (M,M′′) ≤ 𝜀 + 𝜀′. □
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6.3.2 Splintering Periodic Merge Trees

While the periodic merge tree is independent of the choice of basis of a given lattice, it
heavily depends on the lattice used for the filter; see Figure 6.4, where we get interleaving
distance 𝜀 = 6.0 just because we switch from the integer lattice on the left to a sublattice
that drops every other column of integer points on the right. We desire a notion of distance
that tolerates different lattices, provided the filter is periodic with respect to both. To this
end, we introduce an equivalence relation and work with the corresponding quotient of the
interleaving distance. For each point Γ ∈ M, write MΓ for the subtree with topmost point Γ;
that is: MΓ consists of all points A ∈ M covered by Γ.

Definition 6.3.3 (Equivalence by Splintering). Let M and M′ be two periodic merge trees
with height functions h : M → R, h′ : M′ → R and frequency functions f : M → M[𝑅],
f′ : M′→M[𝑅]. We say M′ splinters M if there exists a continuous surjection 𝜔 : M′→ M
such that

(i) the surjection preserves height: h ◦ 𝜔 = h′;

(ii) it splits subtrees evenly: for every Γ ∈ M and all A,B ∈ 𝜔−1(Γ), the subtrees at A and
B are equal, 𝐼 (M′A,M

′
B) = 0, 𝜔 maps M′A as well as M′B surjectively onto MΓ, and the

shadow monomials are f′(A) = f′(B) = f(Γ)/#𝜔−1(Γ).

We call two periodic merge trees equivalent, denoted M ≃ N, if there exists a periodic merge
tree that splinters both, and we write [M] for the class of periodic merge trees equivalent to
M.

To be certain that “≃” is indeed an equivalence relation, we need to verify that it is transitive.
First note that splintering is transitive: if M′ splinters M and M′′ splinters M′, then M′′ also
splinters M. Second observe that two splinterings of the same tree can be composed: if M′

and N′ both splinter N, then there exists M′′ that splinters both M′ and N′. This operation
acts like point-wise multiplication: if Γ ∈ N has 𝑖 preimages in M′ and 𝑗 preimages in N′,
then it has 𝑖 𝑗 preimages in M′′. To see that this is well defined, we traverse the points of
the two trees in parallel and in the order of decreasing height, making sure that the split is
even whenever we encounter a point of bifurcation. With this we argue the transitivity of “≃”:
assuming M ≃ N ≃ O, there exist trees M′ and N′ splintering M,N and N,O, respectively.
Since M′ and N′ both splinter N, there exists M′′ that splinters M′,N′. By transitivity of
splintering, M′′ also splinters M as well as O, so M ≃ O as required.

Splintering happens, for example, when we construct the periodic merge tree of a Λ-periodic
filter for a sublattice of Λ; see Figure 6.4. By combining Definitions 6.3.1 and 6.3.3, we
obtain a pseudo-distance function that considers equivalent such trees the same. For this,
we use the quotient pseudo-metric of a metric space with respect to an equivalence relation
[BBI01, Definition 3.1.12]. The proof that this yields a pseudo-metric is both standard and
trivial.

Definition 6.3.4 (Interleaving Pseudo-distance). Let [M] and [M′] be two equivalence
classes of periodic merge trees. The interleaving pseudo-distance between them is the
infimum, over all sequences of equivalence classes and two trees per class, of the sum of
interleaving distances:

𝐽 ( [M], [M′]) = inf
{︂∑︂𝑘

𝑖=1
𝐼 (M𝑖,M′𝑖)

}︂
, (6.7)
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in which M1 ∈ [M], M′𝑘 ∈ [M
′], and M′

𝑖
≃ M𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑘 − 1.

As an example, consider again the two periodic merge trees in Figure 6.4. Writing M and M′

for the tree in the left and right panels, respectively, we recall that the interleaving distance
is 𝐼 (M,M′) = 6.0. The interleaving pseudo-distance is however zero, because M′ splinters
M and thus they are in the same equivalence class. Indeed, we get M′ by duplicating the
subtree of M below the point at height 7.0 and assigning half the shadow monomial to each
point of the two copies of the subtree.

6.3.3 Invariance of Equivalence Classes

As mentioned earlier, splintering occurs if we enlarge the unit cell by substituting a sublattice
for the original lattice in the construction of the periodic merge tree. We formalize this claim
and prove it.

Lemma 6.3.5 (Splintering from Sublattice). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, 𝐹 : 𝐾 →
R a Λ-periodic filter, and Λ′ ⊆ Λ a 𝑑-dimensional sublattice. Then M(𝐹,Λ′) splinters
M(𝐹,Λ).

Proof. To show that M′ = M(𝐹,Λ′) splinters M = M(𝐹,Λ), we study the projection
𝜙 : R𝑑/Λ′→ R𝑑/Λ defined by mapping every point 𝑥+Λ′ to 𝑥+Λ. Since dimΛ′ = dimΛ, the
degree of the map is finite, namely deg 𝜙 = vol𝑑 (Λ′) /vol𝑑 (Λ), and the image of 𝜙 covers
every point in the 𝑑-dimensional torus deg 𝜙 times. The projection induces a surjection,
𝜔 : M′→ M, that maps every point Γ′ ∈ M′ to the point Γ = 𝜔(Γ′) ∈ M with h(Γ) = h′(Γ′)
and 𝜙(Γ′) = Γ, where we note that Γ and Γ′ are connected components of sublevel sets.
The continuity of 𝜔 follows from the continuity of 𝜙 and the definition of quotient topology as
the final topology with respect to the quotient map. By construction, 𝜔 preserves height, so
it satisfies Condition (i) of Definition 6.3.3.

To prove Condition (ii), we note that all preimages of Γ are translates of each other and
thus have the same periodicity lattice and shadow monomials. Similarly, their subtrees are
identical. To show that 𝜔 maps subtrees surjectively to the appropriate subtrees, recall that
𝜙(Γ′) = Γ. Hence, for every component A in the subtree at Γ, we have 𝜙 |−1

Γ′ (A) ≠ ∅, and
hence at least one component at height h(A) in the subtree at Γ′ that 𝜔 maps to A. The
only part of Condition (ii) left to prove is the shadow monomial, f(Γ′). To this end, note
that the cardinality of the preimage, #𝜔−1(Γ), depends on deg 𝜙 but also on the periodicity
lattices of Γ and Γ′. By construction, these two lattices have the same dimension, 𝑝. The
number of times the projection of Γ′ covers Γ is thus finite, namely vol𝑝 (ΛΓ′) /vol𝑝 (ΛΓ).
Therefore, out of the deg 𝜙 preimages of every point in Γ, vol𝑝 (ΛΓ′) /vol𝑝 (ΛΓ) stem from
the same component, so the number of different components is

#𝜔−1(Γ) = deg 𝜙 ·
vol𝑝 (ΛΓ)
vol𝑝 (ΛΓ′)

. (6.8)

This yields the following calculation for the shadow monomial:

f′(Γ′) =
vol𝑝 (ΛΓ′)
vol𝑑 (Λ′)

· 𝜈𝑑−𝑝𝑅𝑑−𝑝 (6.9)

=
vol𝑝 (ΛΓ)
vol𝑑 (Λ)

· 𝜈𝑑−𝑝𝑅𝑑−𝑝/
[︃
vol𝑑 (Λ′)
vol𝑑 (Λ)

·
vol𝑝 (ΛΓ)
vol𝑝 (ΛΓ′)

]︃
=

f(Γ)
#𝜔−1(Γ)

, (6.10)
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in which the left-hand side of (6.10) is obtained using trivial substitutions, and the right-hand
side follows because the expression in squared brackets is 1/#𝜔−1(Γ). We conclude that 𝜔
satisfies all conditions of Definition 6.3.3. □

This implies the first main property of periodic merge trees we set out to prove in this section:
that their equivalence classes are invariant under different lattices and different bases of the
same lattice used in the construction of the trees.

Theorem 6.3.6 (Invariance of Equivalence Classes of Periodic Merge Trees). Let Λ ⊆ R𝑑

be a 𝑑-dimensional lattice, 𝐹 : 𝐾 → R a Λ-periodic filter, and Λ′,Λ′′ ⊆ Λ two 𝑑-dimensional
sublattices. Then M(𝐹,Λ′) and M(𝐹,Λ′′) are equivalent and thus the interleaving pseudo-
distance between their equivalence classes vanishes: 𝐽 ( [M(𝐹,Λ′)], [M(𝐹,Λ′′)]) = 0.

Proof. We show that the two trees are equivalent by finding a common splintering. For this,
consider the lattice Λ′′′ = Λ′ ∩ Λ′′. It is a sublattice of both Λ′ and Λ′′. By Lemma 6.3.5,
M(𝐹,Λ′′′) splinters both, M(𝐹,Λ′) and M(𝐹,Λ′′), which implies that the interleaving
pseudo-distance vanishes. □

6.3.4 Stability of Periodic Merge Trees

The second property addressed in this section is the stability of periodic merge trees under
perturbations of the filter. More specifically, we show that the interleaving pseudo-distance
between the equivalence classes of two periodic merge trees is bounded from above by the
𝐿∞-distance between the two filters.
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Figure 6.6: From left to right: a perturbation of the periodic graph in the left panel of
Figure 6.4, the corresponding quotient graph shown with filter values and shift vectors, and
the resulting periodic merge tree. Its interleaving pseudo-distance to the periodic merge
tree in the left panel of Figure 6.4 is 1.0. This can be seen by first splintering the tree in the
left panel to obtain the tree in the right panel of Figure 6.4, and then comparing the latter to
the periodic merge tree in this figure. The intermediate step is necessary because after the
perturbation, the graph is no longer periodic with respect to the initially used square lattice.

Theorem 6.3.7 (Stability of Periodic Merge Trees). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice,
and 𝐹, 𝐺 : 𝐾 → R two Λ-periodic filters. Then 𝐼 (M(𝐹,Λ),M(𝐺,Λ)) ≤ ∥𝐹 −𝐺∥∞ and hence
𝐽 ( [M(𝐹,Λ)], [M(𝐺,Λ)]) ≤ ∥𝐹 − 𝐺∥∞.

Proof. Writing M = M(𝐹,Λ) and M′ = M(𝐺,Λ) for the two periodic merge trees, we prove
𝐼 (M,M′) ≤ ∥𝐹 − 𝐺∥∞, and by definition of the interleaving pseudo-distance in terms of the
interleaving distance, we have 𝐽 ( [M], [M′]) ≤ 𝐼 (M,M′), which then implies the claimed
inequality. Write 𝜀 = ∥𝐹 − 𝐺∥∞, and let A and A′ be connected components of the sublevel
sets of 𝐹/Λ and 𝐺/Λ at height h(A) = h′(A′) = 𝑡, respectively. Since 𝜀 is the 𝐿∞-distance
between 𝐹 and 𝐺, there are unique connected components B and B′ of the sublevel sets of
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𝐹/Λ and 𝐺/Λ at height 𝑡 + 𝜀, respectively, such that A ⊆ B′ and A′ ⊆ B. By the stability
theorem for merge trees in [MBW13], the maps 𝜑 : M → M′ and 𝜓 : M′ → M defined by
𝜑(A) = B′ and 𝜓(A′) = B are 𝜀-compatible as far as the two merge trees are concerned;
that is: they satisfy Conditions (i) and (ii) of Definition 6.3.1.

It remains to prove Condition (iii). Since A ⊆ B′, an argument analogous to the proof of
Lemma 6.1.5 yields f′(B′) ≤ f(A) and, by symmetry, f(B) ≤ f′(A′). Therefore, 𝜑 and 𝜓
are 𝜀-compatible with respect to the two periodic merge trees, so 𝐼 (M,M′) ≤ 𝜀 by definition
of the interleaving distance between these trees. □

See Figure 6.6 for an illustration of the stability in which the perturbation forces a coarser
lattice and thus an intermediate step of splintering. With the help of Theorem 6.3.6, the
statement about the interleaving pseudo-distance in Theorem 6.3.7 can be extended to
periodic filters 𝐹 : 𝐾 → R and 𝐺 : 𝐿 → R, provided 𝐾 and 𝐿 have the same underlying
space and a common periodic refinement.

6.4 The Periodic Barcode

Motivated by simplifying the computation of distance, we strip information off the periodic
merge tree to construct the periodic analog of the 0-th barcode or persistence diagram.
Following the structure of the previous section, we introduce a new notion of distance right
after defining the concept and prove invariance and stability thereafter.

6.4.1 Definition by Construction

In a nut-shell, we get the periodic 0-th barcode by calling the beams of the periodic merge
tree bars while dropping the vertical segments that connect them. Recall, however, that
different epochs along a beam have different shadow monomials, which decrease from left
to right, and we need to account for them by possibly substituting more than one bar for
each beam. Specifically, when the monomial decreases from 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 to 𝑡𝜈𝑑−𝑞𝑅𝑑−𝑞 at
some interior point of a beam, this point marks the end of an era, if 𝑑 − 𝑞 < 𝑑 − 𝑝, and
the end of an epoch inside an era, if 𝑑 − 𝑞 = 𝑑 − 𝑝. This change is brought about by
𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 − 𝑡𝜈𝑑−𝑞𝑅𝑑−𝑞 deaths giving rise to polynomial decorations of bars; see the step
from the top left panel to the bottom left panel in Figure 6.7.

While the auction algorithm [KMN17] for computing Wasserstein distances between per-
sistence diagrams can deal with polynomial multiplicities, some vectorization methods
cannot (e.g. persistence images [AEK+17]). We therefore choose to decompose further.
We replace a bar with decorating polynomial 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 − 𝑡𝜈𝑑−𝑞𝑅𝑑−𝑞 by two bars with the
same birth and death, but decorated by the monomials 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 and −𝑡𝜈𝑑−𝑞𝑅𝑑−𝑞. These
monomials can then be viewed as real valued multiplicities (given by their coefficients) in
𝑑+1 different barcodes (separated by their exponents). This enables the classification of the
bars into 𝑑 + 1 eras, which is desirable since different growth-rates render the coefficients of
the corresponding monomials incommensurable. We thus obtain the 0-th barcode as an
ensemble of 𝑑 + 1 collections of bars, one for each era; see the middle panels in Figure 6.7.
The alternative visualization as an ensemble of 𝑑 + 1 points is displayed in the right panels
of the same figure. Within each era we, drop the factor 𝜈𝑑−𝑝𝑅𝑑−𝑝 of the decoration that all
bars share.
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Figure 6.7: Left: the periodic merge tree of the left panel in Figure 6.4 and below its
decomposition into labeled bars. Middle: The periodic barcode split into groups of bars per
era. Right: the corresponding ensemble of periodic persistence diagrams.

With this in mind, we compute the periodic barcode from the periodic merge tree one
epoch at a time. In particular, consider a beam with left endpoint Γ ∈ M, and an epoch
on this beam that starts at A ∈ M and ends entering B ∈ M. Letting f(A) = 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝

be the monomial decorating this epoch, we introduce two bars into the (𝑑 − 𝑝)-ary 0-th
barcode: [h(Γ),h(B)) with multiplicity 𝑠 and [h(Γ),h(A)) with multiplicity −𝑠, but note that
the second bar might be empty, in which case we skip it. The first bar tells us that 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝

(minus the monomial of the next epoch) of the shadows born at h(Γ) die at h(B), and
the second bar tells us that the monomial of the previous epoch minus 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 of the
shadows born at h(Γ) die at h(A). This straightforward conversion takes time proportional
to the number of epochs and gives a collection of bars with possibly negative multiplicities.
We refer to the collection of the 𝑑 + 1 different (𝑑 − 𝑝)-ary 0-th barcodes as the periodic 0-th
barcode, or the periodic 0-th persistence diagram, if we choose to visualize the information
with points rather than bars. Similar to the notation for the periodic merge tree, we write
B0(𝐹,Λ) for the periodic 0-th barcode of 𝐹 and Λ.

Setting R̄ = (−∞,∞], we note that for each era, the corresponding bars with multiplicities
can be viewed as a function R× R̄→ R, which maps a point (𝑏, 𝑑) to the (possibly negative)
sum of the multiplicities of all bars [𝑏, 𝑑). This sum is 0 if there are no such bars. While some
vectorization methods for barcodes require the multiplicities to be non-negative integers,
some other standard vectorization methods, such as persistence images [AEK+17], do not
need such requirements and can thus be used for periodic barcodes.

6.4.2 Alternating Wasserstein Distance

While the interleaving distance between periodic merge trees is difficult to find, it is straight-
forward to compute a meaningful distance between periodic 0-the barcodes, as we will
shortly see. We begin by formulating the Wasserstein distance between two periodic bar-
codes as a solution to an optimal transport problem. The bars in classic barcodes come
with positive integer multiplicities, for which the Wasserstein distance is a solution to an
optimal assignment problem; see [EH10, Section VIII.4] for an algorithm. Contrast this to the
periodic setting, in which we have real and possibly negative multiplicities, which requires
a solution to the more general optimal transport problem; see [PC19] for comprehensive
background. We will work with the linear version, commonly referred to as the 1-Wasserstein
distance, which is a weighted sum of distances between points. The main reason is that
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this version satisfies 𝑊1(𝜉, 𝜂) = 𝑊1(𝜉 + 𝜁, 𝜂 + 𝜁), and a similar relation does not hold if we
work with powers 𝑞 > 1 of the distances. This property allows for the removal of negative
multiplicities by adding them on both sides, which is also the intuition behind the definition
of the alternating 1-Wasserstein distance in (6.13). Recall that the support a function
𝑓 : R × R̄→ R, denoted supp( 𝑓 ), are the points in the domain for which 𝑓 is non-zero.

Definition 6.4.1 (Alternating Wasserstein Distance). Let 𝜉, 𝜂 : R × R̄ → R be two non-
negative multiplicity functions, each with finite support. Then the 1-Wasserstein distance
between 𝜉 and 𝜂 is

𝑊1(𝜉, 𝜂) = inf𝑇,𝑋,𝑌
[︂∑︂

𝑥,𝑦
𝑇 (𝑥, 𝑦)∥𝑥 − 𝑦∥1 +

∑︂
𝑥
𝑋 (𝑥)𝛿(𝑥) +

∑︂
𝑦
𝑌 (𝑦)𝛿(𝑦)

]︂
, (6.11)

in which 𝛿(𝑥) = |𝑥2 − 𝑥1 | is the vertical distance of 𝑥 = (𝑥1, 𝑥2) to the diagonal, and the
infimum is taken over all functions 𝑇 : supp(𝜉) × supp(𝜂) → [0,∞), 𝑋 : supp(𝜉) → [0,∞),
and 𝑌 : supp(𝜂) → [0,∞) that satisfy

𝑋 (𝑥) +
∑︂

𝑦∈supp(𝜂)
𝑇 (𝑥, 𝑦) = 𝜉 (𝑥) and 𝑌 (𝑦) +

∑︂
𝑥∈supp(𝜉)

𝑇 (𝑥, 𝑦) = 𝜂(𝑦), (6.12)

for all 𝑥 ∈ supp(𝜉) and 𝑦 ∈ supp(𝜂). Without assuming the non-negativity of the multiplicities,
we write 𝜉 = 𝜉+ − 𝜉− and 𝜂 = 𝜂+ − 𝜂−, in which 𝜉+, 𝜉−, 𝜂+, 𝜂− are non-negative. The more
general alternating 1-Wasserstein distance between 𝜉 and 𝜂 is

𝑊±1 (𝜉, 𝜂) = 𝑊1(𝜉+ + 𝜂−, 𝜉− + 𝜂+). (6.13)

Note that the relation𝑊1(𝜉, 𝜂) = 𝑊1(𝜉 + 𝜁, 𝜂 + 𝜁) implies that𝑊±1 (𝜉, 𝜂) does not depend on
the choice of 𝜉+, 𝜉−, 𝜂+, 𝜂−. We may therefore assume that 𝜉+ and 𝜉− have disjoint supports,
and similar for 𝜂+ and 𝜂−. We will use this property in the proof of the triangle inequality for
the alternating 1-Wasserstein distance.

Write Δ for the diagonal in R2; that is: the points 𝑥 = (𝑥1, 𝑥2) with 𝑥1 = 𝑥2. For non-negative
multiplicity functions whose support avoids Δ, the 1-Wasserstein distance is an extended
metric, meaning it can also take ∞ as a value, namely between persistence pairs with
finite and infinite deaths. We use this property to prove that the alternating 1-Wasserstein
distance is also an extended metric.

Lemma 6.4.2 (𝑊±1 is Extended Metric). Let 𝜉, 𝜂, 𝜁 : R × R̄ → R be multiplicity functions,
each with finite support avoiding Δ. Then

• 𝑊±1 (𝜉, 𝜂) ≥ 0 and 𝑊±1 (𝜉, 𝜂) > 0 if and only if 𝜉 ≠ 𝜂 (positivity);

• 𝑊±1 (𝜉, 𝜂) = 𝑊
±
1 (𝜂, 𝜉) (symmetry);

• 𝑊±1 (𝜉, 𝜂) +𝑊
±
1 (𝜂, 𝜁) ≥ 𝑊

±
1 (𝜉, 𝜁) (triangle inequality).

Proof. Write 𝜉 = 𝜉+ − 𝜉−, 𝜂 = 𝜂+ − 𝜂−, 𝜁 = 𝜁+ − 𝜁−, in which 𝜉+, 𝜉− are non-negative with
disjoint supports, and similar for 𝜂+, 𝜂− and 𝜁+, 𝜁−. To show positivity, we note that the right-
hand side of (6.13) can only vanish when 𝜉+ + 𝜂− = 𝜉− + 𝜂+. Since supp(𝜉+) ∩ supp(𝜉−) =
supp(𝜂+) ∩ supp(𝜂−) = ∅, this implies 𝜉+ = 𝜂+ and 𝜉− = 𝜂− and therefore also 𝜉 = 𝜂.
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Symmetry is implied by the symmetry of Definition 6.4.1. Finally, we use the triangle
inequality for positive multiplicities to prove the same for possibly negative multiplicities:

𝑊±1 (𝜉, 𝜂) +𝑊
±
1 (𝜂, 𝜁) = 𝑊1(𝜉+ + 𝜂−, 𝜉− + 𝜂+) +𝑊1(𝜂+ + 𝜁−, 𝜂− + 𝜁+) (6.14)

= 𝑊1(𝜉+ + 𝜂− + 𝜁−, 𝜉− + 𝜂+ + 𝜁−) (6.15)
+𝑊1(𝜉− + 𝜂+ + 𝜁−, 𝜉− + 𝜂− + 𝜁+) (6.16)
≥ 𝑊1(𝜉+ + 𝜂− + 𝜁−, 𝜉− + 𝜂− + 𝜁+) (6.17)
= 𝑊1(𝜉+ + 𝜁−, 𝜉− + 𝜁+), (6.18)

in which the last term is equal to𝑊±1 (𝜉, 𝜁). In summary, the alternating Wasserstein distance
satisfies positivity, symmetry, and the triangle inequality and is therefore an extended
metric. □

We define the alternating Wasserstein distance of two periodic 0-th barcodes as the sum
over the alternating Wasserstein distances of the (𝑑 − 𝑝)-ary barcodes.

6.4.3 Invariance of Periodic Barcodes

In this subsection, we prove that periodic barcodes do not depend on the lattice used in their
construction. This is in contrast to periodic merge trees, for which the splintering relation
is needed to get invariant equivalence classes of such trees. We begin by showing that
splintering does not affect the periodic barcode derived from a periodic merge tree.

Lemma 6.4.3 (Splintering Preserves Periodic Barcodes). Let B and B′ be the periodic 0-th
barcodes derived from the periodic merge trees M and M′. If M′ splinters M, then B′ = B.

Proof. To get B, we collect two bars from each epoch of M, one with positive and the other
with negative multiplicity, but note that the second bar may be empty. Let A,B ∈ M delimit
an epoch decorated with 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝, and let Γ ∈ M be the leftmost point on the same beam.
By the elder rule applied in the construction of the merge tree, h(Γ) is the minimum height
of any point in the subtree rooted at A. The two bars are [h(Γ),h(B)) with multiplicity 𝑠 and
[h(Γ),h(A)) with multiplicity −𝑠. If we subdivide the epoch into intervals we call ages and
construct the bars from each age, we get the same result because all bars ending at points
strictly between A and B cancel in pairs. This motivates us to refine the epochs of M and
M′ into ages such that

(i) none of the ages contains the value of critical event in its interior;

(ii) the preimages of an age in M are ages in M′.

Consider an age with shadow monomial 𝑠𝜈𝑑−𝑝𝑅𝑑−𝑝 in M, let 𝑁 be the number of its preim-
ages in M′, and observe that each of these preimages is an age with shadow monomial
𝑠
𝑁
𝜈𝑑−𝑝𝑅𝑑−𝑝. The bars generated by the age in M and its preimages in M are the same, ex-

cept that the former have multiplicities ±𝑠, while the latter have multiplicities ± 𝑠
𝑁

. Adding the
contributions of the 𝑁 preimages amounts to the same two bars with the same multiplicities.
Since this is true for all ages, we conclude that B = B′. □
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The invariance of periodic barcodes is an immediate consequence of Lemma 6.4.3 and
Lemma 6.3.5. Indeed, if Λ′,Λ′′ ⊆ Λ are two 𝑑-dimensional sublattices, and M(𝐹,Λ′),
M(𝐹,Λ′′) are the corresponding periodic merge trees, then they both splinter M(𝐹,Λ) by
Lemma 6.3.5. By Lemma 6.4.3, the periodic barcodes derived from these periodic merge
trees satisfy B0(𝐹,Λ′) = B0(𝐹,Λ) = B0(𝐹,Λ′′). We formulate for later reference:

Corollary 6.4.4 (Invariance of Periodic Barcodes). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lat-
tice, 𝐹 : 𝐾 → R a Λ-periodic filter, and Λ′,Λ′′ ⊆ Λ two 𝑑-dimensional sublattices. Then
B0(𝐹,Λ′) = B0(𝐹,Λ′′).

6.4.4 Size of Multiplicities

To prepare the proof of stability for periodic barcodes, this section studies how large the
multiplicities can get. We thus consider the maximum multiplicity of a bar in the 0-barcode
of 𝐹 and Λ,

𝜇(𝐹,Λ) = max
{︃

vol𝑝 (ΛΓ)
vol𝑑 (Λ)

| Γ ∈ M(𝐹,Λ)
}︃
, (6.19)

and prove an upper bound that depends on the dimension, 𝑑, the number of edges in the
quotient complex, 𝑚, the magnitude of the shift vectors, 𝐷, but also on the basis of Λ. As
before, we write 𝑈 for the matrix whose columns are the vectors in the basis of Λ. Recall
that 𝑈−1 maps Λ to Z𝑑 , and that the operator norm, ∥𝑈−1∥op = max𝑥∈R𝑑 ∥𝑈−1(𝑥)∥2/∥𝑥∥2, is
the largest singular value of 𝑈−1 and quantifies the maximum stretching experienced by any
vector 𝑥 ∈ R𝑑 .

Lemma 6.4.5 (Maximum Multiplicity). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, 𝑈 the matrix
of basis vectors, 𝐹 : 𝐾 → R a Λ-periodic filter on a Λ-periodic complex, 𝑚 the number
of edges, and 𝐷 the maximum magnitude of their shift vectors in 𝐾/Λ. Then 𝜇(𝐹,Λ) ≤
(𝑑2.5𝐷𝑚∥𝑈−1∥op)𝑑 .

Proof. Write M = M(𝐹,Λ), let Γ ∈ M be arbitrary, set 𝑝 = dimΛΓ, and let 𝑤1, 𝑤2, . . . , 𝑤𝑝
be a basis of ΛΓ. Write 𝑣𝑖 = 𝑈−1(𝑤𝑖). There are different ways to choose the basis. For
example, the columns of the reduced matrix in Hermite normal form would be a valid choice.
However, to get a better bound, we choose 𝑣𝑖 as the output of a different reduction algorithm,
described in [KR23], which we apply to the matrix of size 𝑑 ×𝑚 whose columns are the drift
vectors of the simple cycles that correspond to the fewer than 𝑚 catenation events in the
subtree rooted at Γ. As argued in the proof of Lemma 6.2.3, the magnitude of this matrix is
at most 𝐷𝑚, and according to [KR23], the magnitude of the reduced matrix—which is not
necessarily in Hermite normal form—is at most 𝑑2𝐷𝑚. It follows that the Euclidean norm
of each column vector satisfies ∥𝑣𝑖∥2 ≤

√
𝑑 (𝑑2𝐷𝑚) = 𝑑2.5𝐷𝑚. In order to write vol𝑝 (ΛΓ)

as a 𝑑-dimensional volume, let 𝑤𝑝+1, 𝑤𝑝+2, . . . , 𝑤𝑑 be unit vectors orthogonal to each other
and to ΛΓ, so that vol𝑝 (ΛΓ) = vol𝑑

(︁
Λ′
Γ

)︁
, with Λ′

Γ
spanned by 𝑤1, 𝑤2, . . . , 𝑤𝑑 . Since a linear

transformation changes the 𝑑-dimensional volume of any subset of R𝑑 in the same way, we
get

vol𝑑
(︁
Λ′
Γ

)︁
vol𝑑 (Λ)

=
vol𝑑

(︁
𝑈−1(Λ′

Γ

)︁
)

vol𝑑
(︁
𝑈−1(Λ

)︁
)

= vol𝑑
(︂
𝑈−1(Λ′Γ

)︂
) ≤

𝑑∏︂
𝑖=1
∥𝑣𝑖∥2 (6.20)

≤
(︂
𝑑2.5𝐷𝑚

)︂ 𝑝
· ∥𝑈−1∥𝑑−𝑝op ≤

(︂
𝑑2.5𝐷𝑚∥𝑈−1∥op

)︂𝑑
, (6.21)
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in which we get the third term in (6.20) by recalling that 𝑈−1(Λ) = Z𝑑, and we get the first
term in (6.21) by using Lemma 6.2.3 for the first 𝑝 and the operator norm for the last 𝑑 − 𝑝
basis vectors. □

Remark about dependence on basis. Both 𝐷 and ∥𝑈−1∥op depend on the basis we choose
for Λ, but by Corollary 6.4.4, the barcode and therefore the multiplicities of its bars do not.
To gain a better understanding of the size of the multiplicities, it would therefore we useful
to know how small 𝐷 and ∥𝑈−1∥op can be made by careful choice of a basis. Indeed, the
bound in Lemma 6.4.5 seems excessively pessimistic. It would be interesting to find out
what the maximum multiplicity is in practice, e.g. on average for the periodic structures
collected in popular crystallographic databases.

6.4.5 Stability of Periodic Barcodes

The cellular ℓ1-distance between filters 𝐹/Λ, 𝐺/Λ : 𝐾/Λ → R is the sum of absolute
differences over all simplices, ∥𝐹/Λ − 𝐺/Λ∥1 =

∑︁
𝜎∈𝐾/Λ |𝐹/Λ(𝜎) − 𝐺/Λ(𝜎) |, but note that

this is different from the 𝐿1-distance between the two functions, which is be the integral
of their point-wise differences. By comparing the 1-Wasserstein distance of two non-
periodic barcodes with the cellular ℓ1-distance between the corresponding filters, Skraba
and Turner [ST20] prove stability with Lipschitz constant 1. Following this approach, we
prove stability with respect to the cellular ℓ1-distance in the periodic setting, but with worse
Lipschitz constant. Observe first that the periodic 0-th barcode is invariant under changing
how ties in the ordering of the simplices are broken. Indeed, the periodic merge tree is
invariant, and the asymmetry introduced by the elder rule has no effect on the periodic
barcode computed from the periodic merge tree. This invariance is of course necessary for
the stability of periodic barcodes, which we prove next.

Theorem 6.4.6 (Stability of Periodic Barcodes). Let Λ ⊆ R𝑑 be a 𝑑-dimensional lattice, 𝑈
the matrix of a basis of Λ, and 𝐹, 𝐺 : 𝐾 → R two Λ-periodic filters. Then

𝑊±1 (B0(𝐹,Λ),B0(𝐺,Λ)) ≤ 2(𝑑 + 1)𝜇0 · ∥𝐹/Λ − 𝐺/Λ∥1, (6.22)

in which 𝜇0 = (𝑑2.5𝐷𝑚∥𝑈−1∥op)𝑑 is the upper bound on the maximum multiplicity from
Lemma 6.4.5, with 𝑚 the number of edges of 𝐾/Λ, and 𝐷 the maximum magnitude of any
of their shift vectors.

Proof. The proof is analogous to that of [ST20, Lemma 4.7 and Theorem 4.8], which itself
follows the strategy of the proof of [CSEM06, Combinatorial Stability Theorem]. It consists
of two steps: the first assumes that 𝐹 and 𝐺 are compatible to a common ordering of the
simplices, and the second analyzes the transpositions necessary to make them compatible
to such an ordering, if they are not.

Step 1. Assume the filters 𝐹 and 𝐺 allow for a total order of the simplices that is compatible
to both; that is: 𝜎𝑖 ⊆ 𝜎𝑗 , 𝐹 (𝜎𝑖) < 𝐹 (𝜎𝑗 ), and 𝐺 (𝜎𝑖) < 𝐺 (𝜎𝑗 ) all imply 𝑖 < 𝑗 . Let
index: 𝐾/Λ → R be the filter that assigns to each simplex its index in this order, and
construct Mindex = M(index,Λ). Replacing the height h(Γ) = 𝑖 of a critical event by
h(Γ) = 𝐹 (𝜎𝑖) and h(Γ) = 𝐺 (𝜎𝑖), respectively, we obtain two periodic merge trees, M𝐹

and M𝐺 , whose only difference is the height function. However, since 𝐹 (𝜎𝑖) = 𝐹 (𝜎𝑗 )
is possible even if 𝑖 ≠ 𝑗 , some epochs in Mindex may correspond to empty epochs in
M𝐹 , and similarly for M𝐺 . When we construct the periodic barcodes, B𝐹 = B0(𝐹,Λ) and
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B𝐺 = B0(𝐺,Λ), we use the empty epochs as well, while noting that each contributes two
bars that cancel each other. The bijection between the epochs of M𝐹 and M𝐺 (both empty
and non-empty) thus gives a bijection between B𝐹 and B𝐺 , which is a transportation plan,
𝑇 : supp(𝜉) ×supp(𝜂) → R, as in Definition 6.4.1. 1 2 We prove that the cost of this particular
transportation plan is bounded from above by 2(𝑑 + 1)𝜇0 · ∥𝐹/Λ − 𝐺/Λ∥1, which will imply

𝑊±1 (B𝐹 ,B𝐺) ≤ 2(𝑑 + 1)𝜇0 · ∥𝐹/Λ − 𝐺/Λ∥1. (6.23)

By construction, we compare two bars if they are born and die at the hands of the same
two simplices. Their contribution to 𝑇 is therefore the difference in birth values plus the
difference in death values, times the absolute multiplicity. Depending on the type of critical
event a simplex causes, its value may mark more or fewer births or deaths. If 𝜎 causes a
catenation or merge event, its value marks the death of at most three bars, with the absolute
multiplicity of each bounded by 𝜇0. So the total cost for transporting the corresponding
death values from 𝐹 to 𝐺 is bounded by 3𝜇0 |𝐹 (𝜎) − 𝐺 (𝜎) |. If 𝜎 causes an appearance,
its value may mark the births of any number of bars. However, within each era, absolute
multiplicities form a telescoping series whose sum is bounded by 2𝜇0. Since there are 𝑑 + 1
eras, the cost for transporting the corresponding birth values from 𝐹 to 𝐺 is bounded by
2(𝑑 + 1)𝜇0 · |𝐹 (𝜎) −𝐺 (𝜎) |. Adding the cost for the death and the birth values implies (6.23).

Step 2. If 𝐹 and 𝐺 are not necessarily compatible with the same total order, we look at the
straight-line homotopy between the two filters: 𝐹𝑡 = (1 − 𝑡)𝐹 + 𝑡𝐺 for 𝑡 ∈ [0, 1] and observe
that

• 𝐹0 = 𝐹 and 𝐹1 = 𝐺;

• each 𝐹𝑡 is a periodic filter with respect to Λ;

• for each 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, ∥𝐹𝑠/Λ − 𝐹𝑡/Λ∥1 = (𝑡 − 𝑠)∥𝐹/Λ − 𝐺/Λ∥1;

• there are only finitely many values 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 1 at which the total order
compatible with 𝐹𝑡 changes.

With this, we finish the proof by taking the sum of the bounds in (6.23) for each interval
between two such values:

𝑊±1 (B𝐹 ,B𝐺) ≤
∑︂𝑘

1
𝑊±1 (B0(𝐹𝑡𝑖−1 ,Λ),B0(𝐹𝑡𝑖 ,Λ)) (6.24)

≤ 2(𝑑 + 1)𝜇0
∑︂𝑘

1
∥𝐹𝑡𝑖−1/Λ − 𝐹𝑡𝑖/Λ∥1 (6.25)

= 2(𝑑 + 1)𝜇0 · ∥𝐹/Λ − 𝐺/Λ∥1, (6.26)

which is the claimed inequality. □

Remark about invariance. When a perturbation breaks a symmetry and thus forces a
coarser lattice, like in Figure 6.6, Theorem 6.4.6 can be applied to the filter before and after

1Whenever the transportation plan maps to or from a specific point on the diagonal, we could instead use
𝑋 or 𝑌 to or from the closest point on the diagonal. For the sake of a simpler argument, we refrain from using
𝑋 and 𝑌 and rely solely on 𝑇 , which leads to a possible over-estimation of the 1-Wasserstein distance.

2Note also that instead of canceling the two bars contributed by an empty epoch, we keep both. This
corresponds to looking at 𝑊1 (𝜉 + 𝜁, 𝜂 + 𝜁) instead of 𝑊1 (𝜉, 𝜂), but recall that they agree.

91



6. MERGE TREES OF PERIODIC FILTRATIONS

the perturbation, both considered under the coarse lattice. By Corollary 6.4.4, passing to an
unnecessarily coarse lattice does not change the periodic barcode.

Remark about distortion. For a Λ-periodic 𝐹 : 𝐾 → R, and an arbitrarily small 𝜀 > 0, a
uniform scaling of 𝐾 and Λ by 1 + 𝜀 that preserves the filter values yields a periodic merge
tree with slightly smaller shadow monomials. Hence, there is no arbitrarily small interleaving
with the original periodic merge tree. However, the 1-Wasserstein distance between the
corresponding periodic barcodes is less sensitive to small differences in the multiplicities
and therefore the better choice in coping with the effect of slight scalings, or more general
affine linear transformations with singular values close to 1.

Remark about Delaunay triangulations. Note that the perturbation of the vertices of a
2-dimensional Delaunay triangulation may change the filter values but possibly also the
underlying graph, which happens only when four points lie on a common circle so one
diagonal of a convex quadrangle flips to the other diagonal. In this case, neither diagonal
contributes to the merge trees, because their endpoints are connected via shorter edges
of the quadrangle. Hence, a diagonal flip does not affect the periodic merge tree. Since
Theorems 6.3.7 and 6.4.6 apply to each part of the straight line homotopy between Delaunay
triangulations during which the graph structure does not change—and there is no contribu-
tion due to the diagonal flips—the two theorems can be used to bound the distance between
our descriptors of two Delaunay triangulations with possibly non-isomorphic edge-skeletons.

6.5 A Working Example

This section illustrates the concepts introduced in Sections 6.2 to 6.4 using the periodic
graph in Figure 6.9 as a running example. Its quotient in the 3-dimensional torus has
five vertices, labeled from 1 to 5, and eight edges, each labeled with its filter value; see
Figure 6.8. If an edge has shadows whose endpoints lie in different copies of the unit cell,
we choose an arbitrary direction and label the directed edge with the shift vector that locates
the unit cell of the target vertex relative to that of the source vertex. In Figure 6.8, two
of the blue edges connect to the same vertex twice, and they correspond to two families
of parallel lines in R3: with diagonal direction defined by the drift vector (1, 1, 0), and with
vertical direction defined by the drift vector (0, 0, 1). The loop formed by the two edges

(1, 1, 0)

3

4

5

(1, 0, 0)

7.0 8.0(0, 0, 1)

(1, 0, 0)

1

10.0

(1, 0, 0)

12.0

13.0

11.0

6.0

9.0

2

Figure 6.8: The quotient of the graph in Figure 6.9. Each edge is labeled by its value in
the filter, and some also by their shift vectors. The spanning tree edges, which merge
components, are drawn straight and red, and the others are drawn curved and blue. Each
edge whose shadow has endpoints in different copies of the unit cell has a non-zero shift
vector associated to a directed version of the edge.
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1

4
5

3

2

Figure 6.9: A periodic graph in R3 serving as a running example to illustrate the periodic
merge tree and its construction. The portion of the graph inside five copies of the unit cell is
shown. Inside the middle unit cell, the vertices are shown with labels and the edges in the
spanning tree are drawn red. The motif within this cell consists of a cross above a double
helix, with a single edge connecting the two, and, in addition, a vertical line sharing a point
with the helix. This motif repeats periodically. The two lines of the cross meet at vertex 2,
and together with their periodic translates form a series of 2-dimensional grids. The two
strands of the double helix are periodic translates of each other and pass from left to right
through copies of vertices 3, 4, 5, in this cyclic sequence. For convenience, the vertex labels
are also used as filter values, and the values of the edges are shown in Figure 6.8, which
displays the corresponding quotient, i.e. the graph in the 3-dimensional torus.

connecting vertices 1 and 2 corresponds to another family of lines with direction defined by
(1, 0, 0). More interesting is the loop formed by the three edges connecting vertices 3, 4,
and 5. The drift vector is (2, 0, 0), which implies that two copies of the strand (drawn curved
in Figure 6.9 for better visibility) form a double helix that passes through a linear sequence
of unit cells.

Next we go through the motion of constructing the periodic merge tree incrementally, by
adding one vertex or edge at a time in the order of increasing filter value. The top panel of
Figure 6.10 shows the final tree. We pay special attention to the periodicity lattices, which
are maintained incrementally and used to compute the shadow monomials decorating the
beams of the tree. For simplicity, we assume that the underlying lattice is Λ = Z3, whose
unit cell is the unit cube with unit volume.

STEPS 1 TO 5: adding the five vertices, we get five connected components, each with trivial
periodicity lattice, Λ1 = Λ2 = Λ3 = Λ4 = Λ5 = {0}, in which we use the labels of the
vertices as indices. Each of these lattices has 0-dimensional volume 1, which implies
that the shadow monomial is 4𝜋

3 𝑅
3; see the left ends of the beams in the top panel of

Figure 6.10.

STEP 6: the edge with filter value 6.0 connects vertex 2 to itself, and its addition changes
the periodicity lattice of the corresponding component to Λ2 = Λ((1, 1, 0)). Its unit
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6. MERGE TREES OF PERIODIC FILTRATIONS

cell has 1-dimensional volume
√

2. Note that the dimension of the periodicity lattice
increases from 0 to 1, and the shadow monomial decreases from cubic to quadratic.
The drop of the exponent means the component leaves the cubic and enters the
quadratic era.

STEPS 7 TO 9: the edges with filter values 7.0, 8.0, 9.0 form the helix in the periodic graph.
The addition of the first edge merges the components of vertices 3 and 4, and the
addition of the second edge merges this component with that of vertex 5. These
mergers do not affect the periodicity lattices. However, the third edge completes the
helix with periodicity lattice Λ3 = Λ((2, 0, 0)) and shadow monomial 2𝜋𝑅2. The factor
2 indicates that shifting a strand by (1, 0, 0) produces a second strand, so we are
dealing with a double and not a single helix.

STEP 10: the edge with filter value 10.0 connects the line from Step 6 with the helix from
Step 9. The corresponding periodicity lattice is spanned by the vectors (1, 1, 0) and
(2, 0, 0), which after reduction becomes Λ2 = Λ((1, 1, 0), (0, 2, 0)). The 2-dimensional
volume of its unit cell is 2, and so is the 1-dimensional volume of the unit ball in R1,
which is why the shadow monomial is 4𝑅; see Figure 6.10. Note that the component
leaves the quadratic and enters the linear era.

STEP 11: the edge with filter value 11.0 connects vertex 3 to itself. Its addition combines
the 2-dimensional structures from Step 10 to form a bigger, 3-dimensional structure.
Indeed, the periodicity lattice is spanned by vectors (1, 1, 0), (0, 2, 0), and (0, 0, 1),
whose unit cell has 3-dimensional volume 2. The fact that the volume is 2 and not
1 suggests that the two strands of the double helix are still in separate components.
The corresponding shadow monomial is 2, so the component leaves the linear and
enters the constant era.

STEPS 12 AND 13: until now, vertex 1 was isolated, with its own beam in the periodic
merge tree. The first edge with endpoints 1 and 2 merges the two components,
keeping the larger of the two periodicity lattices unchanged, but assigning it now
to beam 1, by the elder rule. The second such edge forms a loop with drift vector
(1, 0, 0). We use the reduction algorithm to select a basis from the three vectors
spanning the lattice constructed in Step 11 and the drift vector of the new loop. The
result is Λ1 = Λ((1, 0, 0), (0, 1, 0), (0, 0, 1)), and the shadow monomial is 1, so this
step moves the one remaining component from a first to the second and final epoch
in the constant era; see the right end of the tree in the top panel of Figure 6.10.

Remark about stability. If we alter the value of the second vertex from 2 to 1 + 𝜀, for
an arbitrarily small 𝜀 > 0, the periodic merge tree and periodic barcode do not change
combinatorially, but if we alter it to 1 − 𝜀, then this vertex swaps with the current first vertex
and thus changes the combinatorics of the tree and barcode. While the adjustment from
1 + 𝜀 to 1 − 𝜀 mostly affects birth values in the arbitrarily small interval between these value,
there is one change worth noting: the two epochs with shadow monomial 2—which belong
to different beams in the tree shown in Figure 6.10—merge into one epoch on one beam.
Therefore, the points (2, 12) with multiplicity 2 and (1, 12) with multiplicity −2 disappear.
This illustrates the importance of negative multiplicities, which are essential for stability as
they facilitate the matching of such pairs using the alternating 1-Wasserstein distance.
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Figure 6.10: Top: the periodic merge tree of the filtered graph in Figure 6.9. The left
endpoints of the beams correspond to vertices of the quotient graph, and the vertical
segments correspond to edges in its spanning tree. The other edges form loops and thus do
not affect the set of components but possibly alter the shadow monomials, which decorate
the beams. Below the top on the left: the four collections of bars labeled with their possibly
negative multiplicities. On the right: the corresponding four persistence diagrams with
similarly labeled points. The bottommost constant diagram has a point with infinite vertical
coordinate, which is drawn above its window.

6.6 Discussion

The main contribution of this chapter is the extension of the persistent homology framework
to the periodic setting, albeit only for connected components; that is: for homological
dimension 0. The crucial ingredient in this extension is the notion of a shadow monomial,
which quantifies the growth-rate and density of the translates of a component. The two new
data structures are the periodic merge tree and the periodic 0-barcode, with the former
containing strictly more information and the latter offering computational advantages and
an easier connection to machine learning tools; see the text by Peyré and Cuturi [PC19]
for optimal transport algorithms and their application to data science. Both data structures
are invariant under isometries and a change of basis, which can be seen directly from the
definition of the shadow monomial. While the periodic merge tree splinters when we pass to
a sublattice of the original lattice, the periodic 0-th barcode is invariant under such changes,
and so are the equivalence classes of periodic merge trees. Both data structures are stable
under perturbations.

When defining a pseudo-distance between periodic merge trees, we chose the path of
first defining an interleaving distance that is sensitive to splintering and then in a second
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step making it insensitive to splintering via the equivalence relation. The idea is that
equivalent representations of periodic merge trees carry the same information, but some
representations might be more suitable for comparison. In particular, we get an unnecessary
large distance, when the two representations differ in how finely they are splintered; see
the example of Figure 6.4, which get distance 6 assigned in the interleaving distance, but
distance 0 after the correction via equivalence classes. An alternative approach would
have been to try to define directly a pseudo-distance between periodic merge trees that
is insensitive to splintering. A promising approach in this direction seems to replace the
𝜀-compatible maps in the definition of interleaving distance by some kind of 𝜀-compatible
transport plans. However, the details of this approach would need to be worked out, and it
is not clear if it would make the exposition clearer.

Possible applications of the method are for example

• Any application where connections in a periodic or periodically-simulated material or
in its complement are guiding physical or chemical properties of the material; see, for
example, [KHM20].

• In the search for a crystalline fingerprint [EHK+21, WK22], facilitating fast comparison
between crystalline materials, the density fingerprint has proven useful [EHK+21,
HMW+24]. Once extended to higher homological dimensions, the periodic barcode
applied to order-𝑘 Delaunay filtrations for several values of 𝑘 has potential to be a
more concise fingerprint with similar information content as the density fingerprint.

• Usually we do not evaluate the shadow monomial for a specific value of 𝑅 but rather
treat 𝑅 as a parameter going to infinity. However, in some applications it makes sense
to replace 𝑅 by a specific real number, evaluating all the monomials to real numbers.
In that case, there is no need to treat the 𝑑 + 1 different eras separately, yielding just
one barcode, instead of 𝑑 +1 separate ones. An example for an application where this
would make sense, is when wanting to compare a finite piece of an imperfect periodic
material (of unknown periodicity) observed in nature, with a database of perfectly
periodic simulated materials (of known periodicity). For simplicity, let us assume the
piece has the shape of a ball, so that we can replace 𝑅 by the radius of the piece.

The reported work suggests several avenues of future study aimed at broadening and
deepening the capabilities of the method and thus make it more compelling in applications
to the sciences.

• For the sake of convenience, we restricted ourselves to 𝑑-periodic filtrations in R𝑑.
However, the theory extends to the setting of 𝑘-periodic filtrations in R𝑑 , by replacing
all 𝑑 by 𝑘 in the definition of the shadow monomial. The non-periodic case, 𝑘 = 0,
then yields shadow monomials equal to 1 and thus the classical merge tree and 0-th
persistent homology. To what extent can the theory, and in particular Definition 6.1.2
and Lemma 6.1.3, be further extended to groups acting on topological spaces different
from R𝑑?

• Further extend the results of this chapter to homological dimensions beyond 0. Some
such capability can already be achieved by applying the periodic merge tree to the
dual filtration, describing the complements of the original filtration. While this idea is
not new [DE95], a key difference is that the infinite periodic space is not compact, and
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therefore Alexander duality does not hold in the usual way, which can be seen in the
right half of Figure 7.1 in Chapter 7. As a consequence, we not only get information
about (𝑑 − 1)- but also about (𝑑 − 2)-dimensional homology. In R3, 2-dimensional
homology (voids) of the original filtration corresponds to the cubic eras of the dual
filtration. In contrast, the quadratic eras, for example, describe infinitely long tunnels,
so a particular kind of 1-dimensional homology.

• Assuming success in extending periodic barcodes to higher homological dimension, it
will be interesting to combine the periodic with the chromatic setting recently developed
in [CdMDES24]. Indeed, crystalline materials are periodic and typically consist of
more than one type of atoms, which suggests both concepts in its analysis.

We conclude this chapter with a concrete geometric question about the Delaunay triangu-
lation of a locally finite Λ-periodic point set in R𝑑: does there exist a constant 𝐷 = 𝐷 (𝑑)
and a basis of Λ such that the shift vector of every edge in the Delaunay triangulation has
magnitude at most 𝐷? We recall that this constant is 𝐷 = 1 if Λ has a basis with pairwise
orthogonal vectors, as proved in Section 6.2.5. However, the proof does not extend to the
case in which the basis vectors enclose arbitrary angles. Is there a similar bound for nearly
orthogonal bases constructed with the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction
algorithm?
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CHAPTER 7
Conclusion

This thesis provides answers to four different research questions arising when trying to
apply topological data analysis methods to materials science data.

• Research Question 1 is answered thoroughly, by showing that the choice of digital
topology can be made purely based on the needs of the application, not limited by
available software. This is because software can be modified easily to produce results
for the other digital topology. Our results have already been used by the software
cubical ripser [KSA20].

• Research Question 2 about the choice of fine enough resolution for digital images does
not have a clear answer. Depending on the specific application, different assumptions
about the data can be made. We therefore provide guidance for various different
assumptions.

• Research Question 3 is answered by providing a specific fingerprint for crystals and
proving its properties. However, the search for fingerprints with even better properties
(completeness not only generically, faster computations, smaller Lipschitz constant,
etc.) continues [WK22]. In particular, one limitation of the density fingerprint is that
in practice, it is only computed for finitely many radius values, while the proof for
generic completeness relies on being able to take derivatives with respect to the
radius. Nevertheless, the density fingerprint has been successfully applied already
[HMW+24].

• Research Question 4 is answered in part, by providing a definition, an algorithm,
and proven properties for 0-dimensional persistent homology of periodic data. In
addition, we suggest to use dualities to infer some but not all information about other
homological dimensions.

One of the aspects that makes materials science data difficult is that it is often periodic.
For example, crystalline materials are periodic. The fact that a perfectly periodic structure
consists of infinitely many repetitions makes it lose properties that finite structures have.
For example, periodic filters are not tame, which is a problem for the definition of persistent
homology. We solve this problem in Chapter 6 for homological dimension 0, but it is still
open for other homological dimensions. Another example showing that periodic filters
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do not have certain properties finite filters have, has already been hinted at in Section
Section 1.1. Now, with the language of Chapter 6 available, we can go into more detail. The
duality result (Theorem 3.1.4) of Chapter 3 does not hold in the infinite periodic setting of
Chapter 6 because of its assumption that the complexes are finite. It is easy to construct a
counter-example; see Figure 7.1.

Alpha filtration step
−→

Voronoi filtration step
←−

Figure 7.1: The blue complexes are consecutive Alpha complexes of the blue periodic point
set. From the left to the right Alpha complex, one blue edge (along with its periodic copies)
is added. This addition causes a quadratic amount of 0-th persistence bars to die and there
is no 1-homology being born. The yellow complexes are consecutive complexes in the dual
Voronoi filtration. (The missing Voronoi edges are in light gray.) From the right to the left
complex, one yellow edge (along with its periodic copies) is added. This addition causes a
linear amount of 0-th persistence bars to die (along with the births of a quadratic amount of
1-homology). This shows that the linearly many yellow death edges are dual to blue death
edges, which is not allowed in Theorem 3.1.4, where death is always dual to birth.

Another problem about periodic data is that a small perturbation can cause the fundamental
domain (or primitive unit cell) to change, for example, to twice its size; see Figure 6.6. In
Chapter 6 this causes the complication of splinterings (see Theorem 6.3.5) which shows
that the state-of-the-art approach of computing the merge tree (or persistent homology) of
the quotient filter on the torus is not stable under such perturbations. We solve this problem
by introducing the shadow monomial, decorating the merge tree of the quotient complex.
With the shadow monomial, it is not a problem that splintering replaces a persistence bar by
several copies of it, because the shadow monomials of the new bars sum up to the original
shadow monomial. Therefore, splintering preserves the multiplicities of the persistence
bars (see Theorem 6.4.3). In Chapter 5, we solve this problem by not using homology as a
descriptor but instead a volumetric descriptor that is naturally invariant under such changes
of the fundamental domain.

The importance of the presented research stems from the role that materials science plays
in mitigating climate change. The new methods provided in this thesis can help in the search
for new materials with better chemical or physical properties, by gaining more insights about
the shape of the material and how it determines these properties. Improving the design of
new materials can help in making batteries more efficient or improving carbon capture, and
thus contributes to the mitigation of one of humanities most important problems: climate
change.

On the application side, I plan to extend this current line of research together with my chem-
istry and topology collaborators from Aalborg University. We plan on applying the methods
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of Chapter 6 to estimate the conductivity of their periodic simulations of different aperiodic
glass materials. Estimating the conductivity of these materials efficiently with topological
methods allows for finding the few most promising candidates for efficient batteries, which
can then be studied more thoroughly with expensive simulations on supercomputers or even
in the laboratory. The first, easiest step in that direction is to implement the algorithm given
as pseudo-code in Section 6.2.

On the theory side, the obvious next step is extending the theory of Chapter 6 to arbitrary
dimensional persistent homology. While we are well aware of the problems facing us in this
endeavour, we have ideas how to potentially overcome them.

Another interesting direction of further research, related to Chapter 5 and Chapter 6, is
proving whether the collection of persistence diagrams of all order-𝑘 Delaunay mosaics
characterizes a point set uniquely, or at least uniquely up to a measure zero set. The
question would both be interesting for finite and infinite periodic point sets. If the answer
is positive, the result would be similar in spirit to the injectivity of the persistent homology
transform [TMB14]. If the answer is negative, maybe the 2-parameter persistence module
(where one parameter is 𝑘 and the other is the radius 𝑟) is enough to characterize point sets
uniquely.
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