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Abstract
Given a locally finite X ⊆ Rd and a radius r ≥ 0, the k-fold cover of X and r consists of all
points in Rd that have k or more points of X within distance r. We consider two filtrations – one
in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and
decreasing k – and we compute the persistence diagrams of both. While standard methods suffice
for the filtration in scale, we need novel geometric and topological concepts for the filtration in
depth. In particular, we introduce a rhomboid tiling in Rd+1 whose horizontal integer slices are
the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that
is isomorphic to the persistence module of the multi-covers.
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1 Introduction

The work in this paper is motivated by density fluctuations in point configurations. These
fluctuations can be large – and the task may be the identification of regions with a prescribed
density profile – or they can be small – and the goal may be to pick up subtle variations.
For example, we may want to quantify local defects in lattice configurations or describe
long-range differences between similar configurations, such as the face-centered cubic (FCC)
lattice and the hexagonal close-packed (HCP) configuration in R3. While both give densest
sphere packings in R3, physical particle systems prefer to settle in the FCC configuration.
The reason for this preference is not well understood. Our quantification of the long-range
effects of density differences discriminates between the two configurations and this way sheds
light on this phenomenon.

Using standard methods from computational geometry and topology, we describe math-
ematical and computational tools to quantify density fluctuations. Our work is closely related
to the distance to a measure introduced in [6]. As demonstrated in a follow-up paper [14],
this distance can be approximated using the order-k Voronoi tessellation of the configuration,
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34:2 The Multi-cover Persistence of Euclidean Balls

a concept introduced in the early days of computational geometry [20], but see also [11, 16].
Order-k Voronoi tessellations are also at the core of our work:

1. Given a locally finite set X ⊆ Rd, we introduce a rhomboid tiling in Rd+1 whose horizontal
slices at integer depths are the geometric duals of the order-k Voronoi tessellations.

We call these duals the order-k Delaunay mosaics of X. The tiling clarifies the structure
of individual mosaics and the relationship between them. Restricting the order-k Voronoi
tessellation to the k-fold cover of the balls with radius r ≥ 0 centered at the points in X,
we get a subcomplex of the order-k Delaunay mosaic; see [15] for the introduction of this
concept for statistical purposes in two dimensions. Our second result makes use of the family
of such subcomplexes obtained by varying the scale:

2. Fixing k and varying r, we compute the persistence diagram of the density fluctuations
from the filtration of order-k Delaunay mosaics of X.

The ingredients for our second result are standard, but to get the actual results, we needed
an implementation of the order-k Delaunay mosaic algorithm, which we developed based
on the rhomboid tiling. In contrast to [2, 19], this gives a simple implementation, which
we will describe elsewhere. Using this software in R3, we find that the FCC and the HCP
configurations have the same persistence diagram for k = 1, 2, 3 but different persistence
diagrams for k = 4, 5. Our third result is an algorithm for the persistence of the multi-covers
obtained by varying the depth:

3. Fixing r and varying k, we compute the persistence diagram of the filtration of multi-covers
from the rhomboid tiling of X.

Several innovative adaptations of the standard approach to persistence are needed to get our
third result. The main challenge is the combinatorial difference of the Delaunay mosaics from
one value of k to the next. Here we use the rhomboid tiling to establish a zigzag module
whose persistence diagram is the same as that of the filtration of multi-covers. We get the
persistence diagram using the algorithm in [4, 5]. Our work is also related to the study of
multi-covers based on Čech complexes in [21]. While the relation between the different Čech
complexes is simpler than that between the Delaunay mosaics, their explosive growth for
increasing radius leads to algorithms with prohibitively long running time.

Outline. Section 2 describes the rhomboid tiling in Rd+1 that encodes the Delaunay mosaics
of all orders of a locally finite set in Rd. Section 3 relates the k-fold covers with the order-k
Delaunay mosaics and introduces radius functions on the rhomboid tiling and the mosaics.
Section 4 introduces slices of a tiling at half-integer depths and explains how they are used
to compute the persistence diagram in depth. Section 5 concludes the paper.

2 Rhomboid tiling

Given a locally finite set in Rd, we are interested in the collection of Delaunay mosaics of
all orders. Assuming the set is in general position, there exists a rhomboid tiling in Rd+1

such that the Delaunay mosaics are horizontal slices of the tiling. This section introduces
the tiling and proves the relation to Delaunay mosaics.

Rhomboid tiling. Let X ⊆ Rd be locally finite and in general position. Every (d − 1)-
dimensional sphere, S, in Rd partitions X into the points inside, on, and outside S. We call
this the ordered three-partition ofX defined by S, and denote it asX = In(S)∪On(S)∪Out(S).
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Figure 1 The rhomboid tiling of 5 points on the real line. For example, the upper left 2-
dimensional rhomboid defined by (∅, {A, B}, {C, D, E}) is the convex hull of the points y∅, yA, yB ,
and y{A,B}. The horizontal line at depth k intersects the tiling in a geometric realization of the
order-k Delaunay mosaic of the 5 points.

By assumption of general position, we have 0 ≤ |On(S)| ≤ d+ 1, but there are no a priori
upper bounds on the sizes of the other two sets.

We map each ordered three-partition defined by a (d− 1)-sphere, S, to a parallelepiped
in Rd+1, which we call the rhomboid of S, denoted rho(S). To define it, we write yx =
(x,−1) ∈ Rd+1, for every x ∈ X, and yQ =

∑
x∈Q yx for every Q ⊆ X. The (d + 1)-st

coordinate of yQ is therefore −|Q|, and we call |Q| the depth of the point. With this notation,
rho(S) = conv {yQ | In(S) ⊆ Q ⊆ In(S) ∪On(S)}. Equivalently, rho(S) is the rhomboid
spanned by the vectors yx, with x ∈ On(S), and translated along yIn(S). Its dimension is the
number of spanning vectors, |On(S)|. Observe that every face of rho(S) is again the rhomboid
defined by a sphere. To see this, we note that for every ordered partition of the points on S
into three sets, On(S) = Oin ∪Oon ∪Oout, there is a sphere S′ with In(S′) = In(S) ∪Oin,
On(S′) = Oon, and Out(S′) = Out(S) ∪ Oout. There are 3|On(S)| such ordered partitions,
and each corresponds to a face of rho(S). By definition, the rhomboid tiling of X, denoted
Rho(X), is the collection of all rhomboids defined by spheres; see Figure 1. As suggested by
the figure, the ordered three partition (∅, ∅, X) is mapped to the origin of Rd+1. We claim
the following properties.

I Theorem 1 (Rhomboid Tiling). Let X ⊆ Rd be locally finite and in general position. Then
1. Rho(X) is dual to an arrangement of hyperplanes in Rd+1;
2. Rho(X) is the projection of the boundary of a zonotope in Rd+2;
3. the horizontal slice of Rho(X) at depth k is the order-k Delaunay mosaic of X.

Note that Claim 2 in Theorem 1 implies that the rhomboid tiling is a geometric realization
of the dual of the arrangement in Rd+1, that is: its rhomboids intersect in common faces
but not otherwise. The remainder of this section proves the three claims. To keep the
proofs self-contained, we will define hyperplane arrangements and order-k Delaunay mosaics
before we use them. We refer to [7] for additional information on their relation to point
configurations.

Proof of Claim 1: hyperplane arrangement. For each point x ∈ X, write fx : Rd → R for
the affine map defined by fx(p) = 〈p, x〉−‖x‖2

/2 = (‖p‖2−‖p− x‖2)/2. The graph of fx is a
hyperplane in Rd+1 that is tangent to the paraboloid consisting of the points (p, z) ∈ Rd ×R
that satisfy z = ‖p‖2

/2. The collection of such hyperplanes decomposes Rd+1 into convex
cells, which we call the hyperplane arrangement of X, denoted Arr(X); see Figure 2. The cells

SoCG 2018



34:4 The Multi-cover Persistence of Euclidean Balls

in the arrangement are intersections of hyperplanes and closed half-spaces. More formally,
for each cell there is an ordered three-partition X = Xin ∪Xon ∪Xout such that the cell
consists of all points (p, z) ∈ Rd × R that satisfy

z ≤ fx(p) if x ∈ Xin, (1)
z = fx(p) if x ∈ Xon, (2)
z ≥ fx(p) if x ∈ Xout . (3)

Since X is assumed to be in general position, the dimension of the cell is i = d+ 1− |Xon|.
Turning the non-strict into strict inequalities, we get the interiors of the cells, which partition
Rd+1. We refer to the i-dimensional cells as i-cells and to the (d+ 1)-cells as chambers.

Importantly, there is a bijection between the cells of Arr(X) and the rhomboids in
Rho(X). To see this, map a point (p, z) in the interior of a cell to the sphere S with center
p and squared radius r2 = max{0, ‖p‖2 − 2z}. Using the definition of fx, we observe that
In(S) = Xin, On(S) = Xon, and Out(S) = Xout. We can reverse the map, and while this
will not reach the points with ‖p‖2 − 2z < 0, these points all belong to the chamber of the
ordered three-partition (∅, ∅, X). This establishes the bijection between the cells and the
rhomboids. This bijection reverses dimensions and preserves incidences, which justifies that
we call it a duality between the rhomboid tiling and the hyperplane arrangement. This
completes the proof of Claim 1 in Theorem 1. J

Proof of Claim 2: zonotope. We recall that a zonotope is a special convex polyhedron,
namely one obtained by taking the Minkowski sum of finitely many line segments. The
zonotope of interest is constructed from the line segments that connect the origin to the
points vx = (x,−1, ‖x‖2

/2) ∈ Rd+2, with x ∈ X. Note that these line segments project to
the vectors yx = (x,−1) used to build the rhomboid tiling. By construction, yx is normal to
the graph of fx, which is the zero set of Fx : Rd+1 → R defined by Fx(q) = 〈q, yx〉 − ‖x‖2

/2;
see Figure 2. Adding a (d + 2)-nd coordinate, w, we introduce Gx : Rd+2 → R defined by
Gx(q, w) = 〈q, yx〉 + w‖x‖2

/2. Its zero-set is normal to vx, the restriction of G−1
x (0) to

w = −1 is the zero-set of Fx, and Gx(0) = 0. In other words, if we identify Rd+1 with the
hyperplane w = −1 in Rd+2, then the zero-sets of the Gx intersect Rd+1 in Arr(X) and they
all pass through the origin in Rd+2.

By construction, the thus defined zonotope is dual to the arrangement of hyperplanes
G−1
x (0) for x ∈ X. Therefore, the antipodal face pairs of the zonotope correspond dually

to the cells of Arr(X), provided we interpret the arrangement projectively, which means we
combine antipodal pairs of unbounded cells; see also [7, Section 1.7]. We get a more direct
dual correspondence by projecting the bottom side of the boundary of the zonotope to Rd+1.
By choice of the line segments, the vertices on this side project vertically to the vertices of
Rho(X), and since both are dual to Arr(X), we conclude that Rho(X) is the projection of
this side of the zonotope. This completes the proof of Claim 2 in Theorem 1. J

Proof of Claim 3: Delaunay mosaics. We begin with some definitions. The Voronoi domain
of Q ⊆ X is dom(Q) = {p ∈ Rd | ‖p− x‖ ≤ ‖p− y‖,∀x ∈ Q,∀y ∈ X \ Q}. Its order is
|Q|. For each Voronoi domain, there is a chamber in Arr(X) that projects vertically to the
domain. Indeed, the chamber is defined by the ordered three-partition X = Xin ∪Xon ∪Xout
with Xin = Q, Xon = ∅, and Xout = X \ Q. For each positive integer k, the order-k
Voronoi tessellation is Vork(X) = {dom(Q) | |Q| = k}. We can construct it by projecting all
chambers whose ordered three-partitions satisfy |Xin| = k and |Xon| = 0; see [7, Chapter
13] or [10]. These chambers correspond to the vertices of the rhomboid tiling at depth k.
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0

Figure 2 A portion of the arrangement formed by the lines (hyperplanes) that are the graphs of
the fx, with x ∈ X. These lines are tangent to the paraboloid and normal to the vectors yx = (x,−1).
The topmost chamber contains the paraboloid.

Figure 3 The convex hulls of the barycenters of the (j−1)-faces of the tetrahedron. From outside
in: the tetrahedron for j = 1, the octahedron for j = 2, and another tetrahedron for j = 3.

Since Rho(X) is dual to Arr(X), we get the dual of the Voronoi tessellation by taking the
slice z = −k of Rho(X). However the dual of the order-k Voronoi tessellation is precisely
the order-k Delaunay mosaic [2]. This completes the proof of Claim 3 in Theorem 1. J

We see that the cells of Delk(X) are special slices of the rhomboids. Combinatorially,
they are equivalent to slices of the unit cube that are orthogonal to the main diagonal and
pass through non-empty subsets of the vertices. For the (d+ 1)-cube, there are d+ 2 such
slices, which we index from 0 to d+ 1. The j-th slice passes through

(
d+1
j

)
vertices, so we

have a vertex for j = 0, d+ 1 and a d-simplex for j = 1, d. To describe these slices in general,
let Ud+1 be the d+ 1 unit coordinate vectors. The j-th slice is the convex hull of the points∑
u∈Q u with Q ∈

(
Ud+1
j

)
, in which the empty sum is (0, 0) ∈ Rd × R, by convention. To get

an intuition, it might be easier to divide the sums by j, in which case the j-th slice is the
convex hull of the barycenters of the (j − 1)-faces of the standard d-simplex; see Figure 3.

SoCG 2018
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Figure 4 Left panel: six points in the plane and a pink ball of radius r centered at each. The black
order-2 Voronoi tessellation decomposes the 2-fold cover into convex domains. The corresponding
subcomplex of the dual order-2 Delaunay mosaic is superimposed in blue. Middle panel: the
barycentric subdivision of the order-2 Delaunay mosaic and its geometric realization inside the 2-fold
cover. Right panel: the black order-2.5 Voronoi tessellation decomposes the 2- and 3-fold covers into
convex domains each. The dual complexes are D2.5, whose cells are blue, and E2.5, whose additional
cells are green.

3 Multi-covers

In this section, we exploit the rhomboid tiling to shed light on the filtration of multi-covers
we get by varying the radius. The main new insight is that the discrete function on the
Delaunay mosaic that encodes this filtration is a relaxation of a standard discrete Morse
function. We begin with a formal introduction of the multi-covers.

k-fold cover. Let X ⊆ Rd be locally finite. Given a radius r ≥ 0, the k-fold cover of X and
r consists of all points p ∈ Rd for which there are k or more points x ∈ X with ‖x− p‖ ≤ r,
or in other words, the points p ∈ Rd that are covered by at least k of the balls of radius r
around the points x ∈ X. Denoting this set by Coverk(X, r), we have

Coverk(X, r) ⊆ Coverk(X, s), (4)
Coverk(X, r) ⊆ Cover`(X, r), (5)

whenever r ≤ s and ` ≤ k. We are interested in computing the persistent homology of the
multi-covers, both in the direction of increasing radius and in the direction of decreasing order.
To do so, we represent the covers by complexes, namely by subcomplexes of the Delaunay
mosaics. Varying the radius, we get a nested sequence of subcomplexes of the order-k
Delaunay mosaic, and the persistent homology can be computed with standard methods; see
e.g. [8, Chapter VII]. Varying the order, on the other hand, we get subcomplexes of different
Delaunay mosaics, and we need a novel algorithm to compute persistent homology.

Before we discuss this algorithm in Section 4, we note that the order-k Voronoi tessellation
decomposes the k-fold cover into convex sets. To see this, let |Q| = k and define dom(Q, r) =
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dom(Q) ∩ Coverk(Q, r), which is an intersection of convex sets and therefore convex. We
write Vork(X, r) for the collection of domains dom(Q, r) with |Q| = k, and since dom(Q, r) =
dom(Q)∩Coverk(X, r), we refer to this as the Voronoi decomposition of Coverk(X, r). Since
dom(Q, r) ⊆ dom(Q), the dual of this decomposition is a subcomplex of the order-k Delaunay
mosaic, which we denote Delk(X, r) ⊆ Delk(X). See the left panel in Figure 4 for an example.
Modulo a technicality caused by the mosaic not necessarily being simplicial, the Nerve
Theorem [17] implies that the cover and the mosaic have the same homotopy type. We state
this fact more formally and without proof.

I Lemma 2 (Almost Nerve). Let X ⊆ Rd be locally finite and in general position. For every
integer k ≥ 1 and real r ≥ 0, Delk(X, r) and Coverk(X, r) have the same homotopy type.

The radius function on the rhomboid tiling. To shed additional light on the subcomplexes
of the Delaunay mosaics, we introduce a discrete function on the collection of rhomboids
discussed in Section 2. Calling it the radius function, R : Rho(X) → R, we define it by
remembering that each j-dimensional rhomboid, ρ ∈ Rho(X), corresponds to a (d+ 1− j)-
dimensional cell, ρ∗ ∈ Arr(X). Decomposing a point of the cell into its first d coordinates
and its (d+ 1)-st coordinate, we write q = (p, z) ∈ Rd × R, and we define r(q) = ‖p‖2 − 2z.
With this notation, we define the radius function by mapping ρ to the minimum value of any
point in its dual cell:

R(ρ) = minq∈ρ∗ r(q). (6)

By convention, the value of the vertex that corresponds to the ordered three-partition X =
(∅, ∅, X) is R(0) = −∞. To obtain a geometric interpretation of this construction, consider
the paraboloid defined by the equation z = 1

2‖p‖
2 in Rd+1 and introduce πt(p) : Rd → R

defined by πt(p) = 1
2 (‖p‖2 − t). The image of πt is the original paraboloid dropped vertically

down by a distance t
2 . With this notation, R(ρ) is the minimum t such that the image of πt

has a non-empty intersection with ρ∗.
Clearly, R is monotonic, that is: R(ρ) ≤ R(%) if ρ is a face of %. Indeed, if ρ is a face of

%, then %∗ is a face of ρ∗, which implies that the paraboloid touches ρ∗ at the same time or
before it touches %∗ when dropped. It follows that the sublevel sets of the radius function
are subcomplexes of the rhomboid tiling. For X in general position, the radius function
satisfies the stronger requirement of a generalized discrete Morse function; see [12, 13]. To
explain what this means, let f : Rho(X)→ R and for each r ∈ R consider the Hasse diagram,
defined as the graph whose nodes are the rhomboids in f−1(r), with an arc connecting two
nodes if one rhomboid is a face of the other. The steps of f are the components of the
graphs representing the level sets of f . Note that the steps partition Rho(X). We call f a
generalized discrete Morse function if each step is an interval, meaning there are rhomboids
ρ ⊆ % such that the step consists of all rhomboids that are faces of % and contain ρ as a face.
It is useful to distinguish between singular intervals, when ρ = %, and non-singular intervals,
when ρ is a proper face of %. Indeed, consider two contiguous sublevel sets that differ by
a level set: f−1[−∞, r] \ f−1[−∞, r) = f−1(r). If this difference is a non-singular interval,
then the two sublevel sets have the same homotopy type, while if the difference is a singular
interval, then they have different homotopy types. We prove that the radius function is a
generalized discrete Morse function with the additional property that every sublevel set is
contractible.

I Lemma 3 (Generalized Discrete Morse). Let X ⊆ Rd be locally finite and in general position.
Then R : Rho(X)→ R is a generalized discrete Morse function. Furthermore, all intervals in
the implied partition have a vertex as a lower bound, and there is only one singular interval,
which contains the vertex at the origin.

SoCG 2018
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Proof. The vertex at the origin corresponds to the three-partition (∅, ∅, X), has radius
R(0) = −∞, and forms a singular interval. Every other interval is defined by a point
q ∈ Rd+1 at which the dropping paraboloid first touches a cell of the arrangement. There is
one such point on every plane that is the common intersection of hyperplanes forming the
arrangement. By general position, all these points are different. Let q belong to an i-plane,
which is common to j = d+ 1− i hyperplanes. It belongs to the interior of an i-cell, which is
common to 2j chambers. Exactly one of these chambers has not already been touched before
the i-cell. The paraboloid touches this chamber at the same point q and similarly every cell
that is a face of this chamber and contains the i-cell as a face. The corresponding rhomboids
form an interval of the radius function, with an upper bound of dimension j and a lower
bound of dimension 0. We have 1 ≤ j ≤ d+ 1, which implies that the interval is not singular.

To show that R is a generalized discrete Morse function, we still need to make sure
that intervals in the same level set are separated, by which we mean that no simplex of one
interval is face of a simplex in the other interval. By assumption of general position, there
is only one level set that contains more than one interval, namely R−1(0). All its intervals
are of the form [yx, 0yx], in which x is a point in X, the origin 0 ∈ Rd+1 corresponds to the
three-partition (∅, ∅, X), and 0yx is the edge that connects 0 with yx. While these edges all
share 0, no two also share the other endpoint. It follows that these intervals are components
of the Hasse diagram of the level set, as required. J

The radius function on a Delaunay mosaic. Recall that the order-k Delaunay mosaic of
X is the horizontal slice of the rhomboid tiling at depth k . In other words, every cell of
Delk(X) is the horizontal slice of a rhomboid. More formally, for every σ ∈ Delk(X) there
is a unique lowest-dimensional rhomboid ρ ∈ Rho(X) such that σ = ρ ∩ Pk, in which Pk
is the horizontal d-plane defined by z = −k. For vertices we have dim σ = dim ρ = 0, and
for all higher-dimensional cells we have dim σ = dim ρ− 1 ≥ 1. The radius function on the
order-k Delaunay mosaic, Rk : Delk(X)→ R, is simply the restriction of R to the horizontal
slice: Rk(σ) = R(ρ). Importantly, this definition is consistent with the subcomplexes
Delk(X, r) ⊆ Delk(X) used to represent the k-fold cover of X and r, but this needs a proof.

I Lemma 4 (Delaunay Radius Function). Let X ⊆ Rd be locally finite and in general position.
For every integer k ≥ 1 and every real r, we have Delk(X, r) = R−1

k [−∞, r].

Proof. Recall that πt : Rd → R is defined by πt(p) = 1
2 (‖p‖2 − t). The graph of πt is a

paraboloid that intersects Rd in the sphere with squared radius t. More generally, the
paraboloid intersects every d-plane tangent to the graph of π0 in an ellipsoid whose vertical
projection to Rd is a sphere with squared radius t. Dropping the paraboloid vertically
thus translates into growing balls simultaneously and uniformly centered at the points in
X. By definition, R(ρ) is the value t0 of t for which the paraboloid touches the dual cell,
ρ∗ ∈ Arr(X), for the first time. More formally, the set of points q ∈ ρ∗ that lie on or above
the graph of πt is empty for all t < t0 and non-empty for all t ≥ t0.

Let σ∗ be the vertical projection of ρ∗ to Rd, and assume it is a polyhedron in some
Voronoi tessellation of X. It belongs to Vork(X) iff its dual cell, σ, belongs to Delk(X) or,
equivalently, ifRk(σ) is defined. Assuming the latter, σ∗∩Coverk(X, r) is empty for all r < r0
and non-empty for all r ≥ r0, in which r2

0 = t0 = R(ρ) = Rk(σ). By definition, σ belongs to
Delk(X, r) iff this intersection is non-empty, which implies Delk(X, r) = R−1

k [−∞, r] for all
r ∈ R, as required. J

These results facilitate the computation of the persistence of the k-fold covers for varying
radii. Lemma 2 asserts that we can use Delk(X, r) as a proxy for Coverk(X, r). Lemma 4
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provides the recipe for computing the radii of the cells of Delk(X), and thus the sublevel
set filtration of Delk(X), whose persistence module is isomorphic to the persistence of
Coverk(X, r) for varying radius r. Finally, the persistence diagram is obtained from the
filtration via the boundary matrix reduction algorithm [8, Chapter VII].

Assuming X ⊆ Rd is locally finite and in general position, the radius function of the
order-1 Delaunay mosaic is known to be a generalized discrete Morse function [3]. This
property does not generalize to higher order. Nevertheless, we can still classify the steps of
Rk into critical and non-critical types such that each critical step changes the homotopy
type of the sublevel set in a predictable manner, and every non-critical step maintains the
homotopy type of the sublevel set. The proof of this claim together with an enumeration of
the types of steps can be found in [9].

4 Persistence in depth

In this section, we develop an algorithm that computes the persistence of the nested sequence
of multi-covers (5). We follow the usual strategy of substituting a complex for each cover,
but there are complications. Specifically, we represent Coverk(X, r) by Delk(X, r) and we
introduce additional complexes between contiguous Delaunay mosaics to realize the inclusion
between the covers.

Half-integer slices. There are generally no convenient maps connecting Delk(X) with
Delk−1(X). To finesse this difficulty, we use the horizontal half-integer slice of the rhomboid
tiling at depth ` = k − 1

2 :

Del`(X) = Rho(X) ∩ P`, (7)

for k ≥ 1. Similar to the Delaunay mosaic, the half-integer slice is a regular complex in
Rd. Not surprisingly, there is a well-known dual, namely the degree-k Voronoi tessellation
[10], which we denote Vor`(X). It refines the order-k Voronoi tessellation by decomposing
its domains into maximal regions in which every point has the same k-th nearest point in
X. Similarly, the degree-k tessellation refines the order-(k − 1) tessellation, and indeed
Vor`(X) is the superposition of Vork(X) and Vork−1(X). It can be constructed by projecting
the k-th level in Arr(X) to Rd. Without going into further details, we observe that this
level contains every cell of the arrangement whose corresponding ordered three-partition,
X = Xin ∪ Xon ∪ Xout, satisfies |Xin| ≤ k − 1 and |Xin| + |Xon| ≥ k. We refer to the
decomposition of Coverk(X, r) by Vor`(X) as Vor`(X, r).

Returning to the mosaics, there are natural piecewise linear maps from Del`(X) to Delk(X)
and to Delk−1(X). Specifically, we get Del`(X)→ Delk(X) by mapping the vertices dual to
the regions decomposing dom(Q) ∈ Vork(X) to the vertex dual to dom(Q). Symmetrically,
we get Del`(X) → Delk−1(X). However, because such maps lead to complications in the
persistence algorithm, we use the horizontal slabs of the rhomboid tiling to connect the
mosaics via inclusions. To formally define them, write P k` for the points in Rd+1 that lie
on or between P` and Pk. We define slab mosaics as intersections of such slabs with the
rhomboid tiling. Analogous to Delk(X, r), we also define radius-dependent subcomplexes of
these slab mosaics, as well as of half-integer mosaics:

Delk` (X, r) = {ρ ∩ P k` | R(ρ) ≤ r}, (8)
Del`(X, r) = {ρ ∩ P` | R(ρ) ≤ r}, (9)

Del`k−1(X, r) = {ρ ∩ P `k−1 | R(ρ) ≤ r}. (10)
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P2

P2.5

P3

Figure 5 A sublevel set of the 3-dimensional rhomboid tiling of the points in Figure 4. From
top to bottom: D2 in dark blue, D2.5 in purple, and D3 in dark red, with slabs connecting adjacent
slices.

To simplify the notation, we fix r and write Dk = Delk(X, r), Ck = Coverk(X, r), etc. The
half-integer Delaunay mosaic includes in both slab mosaics, Dk includes in the first, and
Dk−1 includes in the second; see Figure 5. We note an important difference between the
two slabs: Vor`(X, r) and Vork(X, r) are different convex subdivisions of the same space,
Ck, which implies that D` and Dk have the same homotopy type. Indeed, this is also the
homotopy type of Dk

` , and there are natural deformation retractions to D` and Dk. In
contrast, Dk−1 and D` have generally different homotopy types, and there is a deformation
retraction from D`

k−1 to Dk−1 but not necessarily to D`; see again Figure 5. To remedy this
deficiency, we introduce mosaics that contain D` and D`

k−1 as subcomplexes. To construct
them, we recall that Vor`(X) is a refinement of Vork−1(X), which implies that the polyhedra
of Vor`(X) intersect Ck−1 in convex sets. We let E` be the dual of this convex decomposition
of the (k − 1)-fold cover. Since Ck ⊆ Ck−1, we indeed have D` ⊆ E`; see the right panel in
Figure 4. Furthermore, we let E`k−1 be the maximal subcomplex of Rho(X) ∩ P `k−1 whose
boundary complexes at depths k − 1 and ` are Dk−1 and E`. Clearly, D`

k−1 is a subcomplex
of E`k−1, and because Dk−1 and E` are deformation retracts of E`k−1, these three mosaics
have the same homotopy type. We will use these relations shortly in the computation of the
persistence diagram of the filtration of multi-covers (5).

Connecting the spaces. To prepare the construction of the persistence and zigzag modules,
we connect the multi-covers and the corresponding Delaunay mosaics with maps. Fixing
r ≥ 0 and setting ` = k − 1

2 , as before, we consider the following diagram in which identities
and homotopy equivalences are marked as such:

Ck Ck Ck Ck Ck Ck−1

E`+1 E`+1
k Dk Dk

` D` E`

id id id id id

he

he

he

he

he

he

he

he he

he

he

The top row stretches out the filtration by writing each multi-cover five times and connecting
the copies with the identity. The remaining maps in this row are inclusions. The bottom
row contains the slice mosaics at integer and half-integer depths, and connects them with
inclusions, using slab mosaics as intermediaries. As argued above, the first five mosaics
all have the same homotopy type, and the inclusion maps between them are homotopy
equivalences.
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To get the vertical map from Dk to Ck, we first construct the barycentric subdivision,
SdDk, which is a simplicial complex. Each vertex u ∈ SdDk represents a j-cell in Dk, which
is dual to a (d− j)-dimensional Voronoi polyhedron, and we map u to the center of mass of
the intersection of this polyhedron with the k-fold cover. By construction, this intersection
is non-empty and convex, so it contains the center of mass in its interior. After mapping
all vertices, we map the other simplices of SdDk by piecewise linear interpolation; see the
middle panel in Figure 4. The resulting map is injective, and since Dk and Ck have the same
homotopy type, the map is a homotopy equivalence. Recall that D` is dual to Vor`(X, r),
which is another convex decomposition of the k-fold cover. We therefore get the vertical map
from D` to Ck the same way, first constructing SdD` and second mapping the vertices to
centers of mass. This is again a homotopy equivalence. Similarly, E` is dual to the convex
decomposition of Ck−1 with Vor`(X). As before, we get the vertical map by sending the
vertices of E` to centers of mass, but we distinguish between two cases. If a polyhedron of
Vor`(X) has a non-empty intersection with Ck, we send the corresponding vertex of SdE`
to the center of mass of this intersection. If, however, the intersection with Ck is empty but
the intersection with Ck−1 is non-empty, then we send the vertex to the center of mass of
the latter. This ensures that the geometric embedding of SdD` is contained in the geometric
embedding of SdE`.

To finally map the slab mosaics, we first deformation retract them to slice mosaics
and then map them reusing the barycentric subdivisions. Here we make arbitrary choices,
mapping E`+1

k to E`+1 to Ck and mapping Dk
` to Dk to Ck. Note that all vertical maps are

homotopy equivalences, as marked in the above diagram.

Modules. Applying the homology functor for a fixed coefficient field, we map all multi-
covers and mosaics to vector spaces and all maps to homomorphisms (linear maps) between
them. The top row of vector spaces with homomorphisms from left to right is referred to as a
persistence module, and we denote it MC(r). The bottom row of vector spaces are connected
by homomorphisms going from left to right or from right to left. This kind of structure is
referred to as a zigzag module, and we denote it ZZ(r). The advantage of the zigzag over the
persistence module is that its maps are induced by inclusions between complexes, which lend
themselves to computations. Our goal, however, is to compute the persistence diagram of
MC(r), and we do this by using ZZ(r) as a proxy. The following result is therefore essential.

I Lemma 5 (Isomorphism of Modules). Let X ⊆ Rd be locally finite and in general position.
Then the persistence diagrams of MC(r) and of ZZ(r) are the same for every r ≥ 0.

Proof. Write Ck,Dk,Ek for the vector spaces obtained by applying the homology functor to
Ck, Dk, Ek, etc. The goal is to show that the diagram of multi-covers and mosaics maps to a
diagram of vector spaces in which all squares commute and most maps are isomorphisms:

Ck Ck Ck Ck Ck Ck−1

E`+1 E`+1
k Dk Dk` D` E`

iso iso iso iso iso

iso

is
o

iso

is
o

iso

is
o

iso

is
o

is
o

iso

is
o

To prove commutativity, we consider the five squares shown in the above diagram. The first
square commutes already before applying the homology functor, and so does the third square.
Similarly, the fifth square commutes because the image of SdD` in Ck includes in the image
of SdE` in Ck−1.
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The second and fourth squares do not commute before applying the homology functor,
but we argue they do after applying the functor. The two cases are similar, so we focus on
the fourth square. Recall that Vork(X, r) and Vor`(X, r) are two convex decompositions of
the same space, which is Ck, and that Vor`(X, r) is a refinement of Vork(X, r). Dk and D`

are dual to these decompositions, with one or more vertices of D` corresponding to every one
vertex of Dk. When we map D` to Dk

` to Ck, the full subcomplex with these vertices is first
contracted to the single vertex by the deformation retraction from Dk

` to Dk, and second
it is mapped to the center of mass of the corresponding domain in Vork(X, r). In contrast,
when we map D` to Ck directly, all these vertices map to different points in Ck, but all these
points lie in the interior of the same domain in Vork(X, r). Indeed, the full subcomplex with
these vertices is dual to a convex decomposition of this domain and therefore contractible. It
follows that the fourth square of homomorphisms commutes. Similarly, the second square
commutes, and therefore all squares commute.

Isomorphisms are reversible, so we can draw them from left to right in the bottom row
of the diagram. The result are two parallel persistence modules whose vector spaces are
connected by isomorphisms. The Persistence Equivalence Theorem of persistent homology
[8, page 159] implies that the two modules have the same persistence diagram. J

Algorithm and running time. We compute the persistence diagram of the filtration of
multi-covers (5) using the zigzag algorithm generically described in [4] and explained in detail
for inclusion maps in [5]. Its worst-case running time is cubic in the input size, which is the
total number of cells in the mosaics. To count the cells, we assume a finite number of points
in Rd, n = |X|. All cells are horizontal slices or horizontal slabs of rhomboids in Rd+1. We
therefore begin by counting the rhomboids or, equivalently, the cells in the dual hyperplane
arrangement. These numbers are maximized when the n hyperplanes are in general position,
and then they depend only on n and d. Observe first that for every 0 ≤ i ≤ d + 1, there
are

(
n

d+1−i
)
i-planes, each the common intersection of d+ 1− i hyperplanes. There is one

chamber for each plane, which implies that the number of chambers in the arrangement is

Γd+1
d+1(n) =

(
n

d+ 1

)
+
(
n

d

)
+ . . .+

(
n

0

)
≤ (n+ 1)d+1

(d+ 1)! . (11)

Indeed, the paraboloid used in the proof of Lemma 3 sweeps out the arrangement and
encounters a new chamber whenever it first intersects one of the i-planes, for 0 ≤ i ≤ d+ 1.
The inequality on the right-hand side in (11) is easy to prove, by induction or otherwise. To
count the i-cells in the arrangement, we observe that each i-plane carries an arrangement
of n − (d + 1 − i) (i − 1)-planes. We get the number of (i-dimensional) chambers in this
arrangement from (11), and multiplying with the number of i-planes, we get the number of
i-cells:

Γd+1
i (n) =

(
n

d+ 1− i

)
Γii(n− d− 1 + i) ≤ nd+1−i

(d+ 1− i)!
(n+ 1)i

i! ≤ (n+ 1)d+1

(d+ 1− i)! i! . (12)

Writing j = d− i, we get a (j + 1)-rhomboids in Rho(X) for every i-cell in the arrangement.
In other words, (12) counts the (j + 1)-rhomboids in the rhomboid tiling. In particular, we
have Γd+1

d+1(n) vertices in the tiling. For 0 ≤ j ≤ d, the interior of every (j + 1)-rhomboid has
a non-empty intersection with 2j + 1 hyperplanes P`, in which 2` is an integer. The (j + 1)-
rhomboid thus contributes 2j + 1 j-cells to the Delaunay mosaics and 2j + 2 (j + 1)-prisms
to the slab mosaics. Taking the sum over all dimensions, we get the total number of cells in
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the mosaics used in the construction of the zigzag module:

#cells = Γd+1
d+1(n) +

d∑
j=0

(4j + 3)Γd+1
d−j(n) ≤ (n+ 1)d+1

(d+ 1)! +
d∑
i=0

4(d+1−i) (n+ 1)d+1

(d+1−i)! i! (13)

≤ (n+ 1)d+1

(d+ 1)! + 4(n+ 1)d+1
d∑
i=0

1
(d− i)! i! ≤ 9(n+ 1)d+1. (14)

Taking the third power, we get an upper bound for the worst-case running time of the
algorithm and thus the main result of this section.

I Theorem 6 (Multi-cover Persistence). Let X be a set of n points in general position in Rd.
For every radius r ≥ 0, the persistence diagram of the filtration of multi-covers with radius r
can be computed in worst-case time O(n3d+3).

5 Discussion

The main contribution of this paper is the introduction of the (d+ 1)-dimensional rhomboid
tiling of a locally finite set of points in Rd. It is the underlying framework that facilitates
the study of multi-covers with Euclidean balls and the computation of the persistence as
we increase the radius or we decrease the depth of the coverage. The latter requires novel
adaptations of the standard approach to persistence, which for n points in Rd lead to an
algorithm with worst-case running time O(n3d+3). This compares favorably to naive solutions
and the approach using Čech complexes [21], but it is not practical unless n and d are small.
While the time-complexity is too high for the density analysis of large data sets, we see
applications in the study of regular or semi-regular configurations that arise in the design
and investigation of materials. With some modifications, our results extend to balls with
different radii (points with weights); see [9], but the implied loss of intuitive appeal prevents
us from discussing this generalization. In particular, Theorem 1 extends, and Theorem
6 holds without change in this more general setting. There are a number of challenging
questions raised by the work reported in this paper.

Instead of computing the persistence in scale and depth separately, it might be interesting
to combine both to a concrete setting for 2-parameter persistence [18].
A set of n points in Rd has some constant times nd+1 ordered three-partitions defined by
spheres. We cannot improve the worst-case time of our persistence in depth algorithm
unless we avoid the enumeration of these partitions. Can this be done?

As proved in [1], for every locally finite X ⊆ Rd, there is a locally finite Y ⊆ Rd with real
weights such that the (order-1) weighted Voronoi tessellation of Y is the order-k Voronoi
tessellation of X. However, growing balls uniformly with centers in X and growing them
according to the weights with centers in Y gives different filtrations of the dual Delaunay
mosaic. It would be interesting to quantify this difference by bounding the distance between
the two persistence diagrams.
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