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Spatial games provide a simple and elegant mathematical model to study the evolution
of cooperation in networks. In spatial games, individuals reside in vertices, adopt simple
strategies, and interact with neighbors to receive a payoff. Depending on their own
and neighbors’ payoffs, individuals can change their strategy. The payoff is determined
by the Prisoners’ Dilemma, a classical matrix game, where players cooperate or defect.
While cooperation is the desired behavior, defection provides a higher payoff for a
selfish individual. There are many theoretical and empirical studies related to the role
of the network in the evolution of cooperation. However, the fundamental question of
whether there exist networks that for low initial cooperation rate ensure a high chance
of fixation, i.e., cooperation spreads across the whole population, has remained elusive
for spatial games with strong selection. In this work, we answer this fundamental
question in the affirmative by presenting network structures that ensure high fixation
probability for cooperators in the strong selection regime. Besides, our structures have
many desirable properties: (a) they ensure the spread of cooperation even for a low
initial density of cooperation and high temptation of defection, (b) they have constant
degrees, and (c) the number of steps, until cooperation spreads, is at most quadratic in
the size of the network.

cooperation | spatial games | evolutionary dynamics

Game theory is a broad field that provides the mathematical foundations related to
decision-making, which has many applications in economics (1, 2), computer science and
artificial intelligence (3), evolutionary dynamics (4–8), and physics (9–11). For example:
One-shot or matrix games have been studied in refs. 12 and 13; their generalization
as normal and extensive form games have wide applications in economics (1, 14); and
evolutionary games study competitive and collaborative behavior in biology (15–24).

An important class of games that arise in many different contexts is games on graphs.
The graph represents a network or a population structure. Individuals reside in vertices,
and the interactions happen over the edges of the graph. Well-known examples of games
over graphs are game of life (25), games with cellular automata (26); evolutionary games
on graphs (27–29); and spatial games (30–35).

One of the classical examples in game theory to represent social tension by a matrix
game is Prisoners’ Dilemma (PD) (13), which has been studied both theoretically (3) as
well as experimentally (36, 37). In PD, individuals can choose to cooperate or defect.
If they mutually cooperate, they both receive payoff R. If they mutually defect, they
receive payoff P. A cooperator facing a defector obtains payoff S, while a defector facing
a cooperator getsT . The payoffs follow inequalityT > R > P > S, which represents the
dilemma between altruistic behavior and self-interest. Mutual cooperation is the desired
behavior; however, defection is the dominant strategy, which achieves the best payoff for
a selfish individual no matter the strategy of the other player. Hence mutual defection
is the only Nash equilibrium. The population structure can help the cooperation to
overcome this trap (38–44).

Spatial games provide the framework to study PD games over structured populations
(graphs) played over multiple rounds. Individuals residing in vertices can adopt only
simple strategies, always cooperate C , or always defect D in every round. In one round,
the payoff of an individual is obtained by interacting with all neighbors by playing
pairwise PD. Based on the individual’s payoff and the payoffs of neighbors, the strategy
is updated by a variant of a replicator dynamic (5, 15, 30). The strategy can be updated
synchronously, where every individual can update its strategy; or asynchronously, where
only one individual from a random pair of neighbors can update its strategy. The
strategy update can be either deterministic: The individual with a lower payoff adopts
the strategy of a more successful individual; or randomized: With some probability
(given by the Fermi function), even the strategy with a lower payoff can replace a
higher payoff strategy. This represents the specific regime of spatial games with strong
selection, i.e., in the deterministic setting we have the best-response dynamics, and
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in the randomized setting replacement probability depends
exponentially on payoff difference.

The study of spatial games was initiated in the seminal work
of Nowak and May (30) and since then, it received a lot of
attention from several research perspectives. Ohtsuki et al. (45)
theoretically examine the graphs conducive to cooperation.
Traulsen et al. (46) examine how humans update their strategies
in the real world. Many works (47–49) simulate the process
on grids or natural graphs that approximate the social networks
(scale-free graphs). On scale-free graphs, cooperation is promoted
in comparison to highly regular graphs. The reason is that
scale-free graphs have large differences between the degrees of
the vertices. Highly connected cooperators can tolerate a lot of
defection in the neighborhood while spreading cooperation.

A fundamental question in spatial games is the role of the
graph structure in boosting or amplifying the desired cooperative
behavior. There are two notions of cooperation amplification:
1) an increase of cooperation in the stationary state during
coexistence; and 2) an increase in the probability that the
cooperators replace all defectors, this event is called cooperator
fixation. Most works on spatial games (9–11) study mainly
the aspect that cooperation increases in the stationary state
with results on scale-free networks (47–49). Moreover, these
works focus on empirical results and do not provide theoretical
guarantees with analytical results. Our work is distinguished
in two aspects. First, as compared to increasing cooperation
in the stationary state, we consider fixation, which is more
desirable as it ensures complete cooperation in the stationary state.
However, note that ensuring fixation is more challenging and
usually takes a long time to achieve in simulations. Second, our
goal is to establish analytical results that can provide theoretical
guarantees on fixation probability. By amplifying cooperation, we
mean increasing the fixation probability. This type of amplifying
has been studied in many contexts: such as amplification for
Moran processes (27, 50, 51) where the mutant has constant
advantage, or amplification for evolutionary games for weak
selection regimes (52). Despite the importance of amplifying
cooperation, in the context of spatial games in strong selection,
the existence of graphs that amplify cooperation has remained
elusive even after two decades of active research, which is the
question we address.

In this work, we present a classification of density amplifiers
in spatial games. A weak density amplifier ensures fixation with
a positive probability for a low initial cooperation rate. A strong
density amplifier guarantees the fixation probability close to 1
for a low initial cooperation rate. We show that previously
studied structures, such as grids and regular graphs are not even
weak density amplifiers. In contrast, we present graph structures
that are not only weak but even strong density amplifiers. We
demonstrate this amplifying effect across three replicator dy-
namics: deterministic synchronous, deterministic asynchronous,
and randomized asynchronous. Thus, our construction answers
the open question in the affirmative for the existence of density
amplifiers in spatial games.

Besides answering the open question, we present several
other results related to our construction. First, we present two
robustness results: Our structure ensures high fixation probability
even with: (a) a low rate of initial cooperation; and (b) high
temptation-reward ratio T /R above 2. Previous literature in
the context of spatial games (38, 48, 49, 52) requires a very
low temptation-reward ratio T /R and shows that with a high
initial cooperation rate (around 50%) structures can ensure a
steady-state of cooperation rate (around 50%). These results
neither start with a low cooperation rate (e.g., 5%) and ensure a

steady-state cooperation rate of 50%, nor start with a high initial
cooperation rate and ensure fixation. In contrast, our structures
with a low initial cooperation rate of 5% ensure fixation, which
is a significant advancement in the study of spatial games.
Second, we show that our structure ensures the fixation quickly.
In contrast to many structures in the literature where fixation
requires exponentially many steps, see refs. 30 and 53, we show
that for our structures the fixation happens within quadratic
steps. Third, our construction has degree variations between
neighbors, similar to scale-free networks, however, we ensure that
the maximal degree is constant (proportional toT /R). Finally, we
supplement our theoretical guarantees for large population limit
by simulation results to show the effectiveness of our structures
even for small population sizes. The simulation results consider
small population sizes with various ratios of T /R and show that
the fixation probability is high even for a small initial density of
cooperation and large T /R.

The framework of spatial games is quite general, with several
regimes, e.g., weak and strong selection and deterministic and
stochastic dynamics. Our work provides density amplification
in the strong selection regime. The extension of the density
amplification for all selection regimes and dynamics are an
interesting direction for future work.

Results

Model. As in the classical literature (30, 48), we focus on PD
with normalized payoffs, where R = 1, P = ", S = 0, and
T = b > 1. The individuals follow the replicator dynamics.
The detailed explanation is in Fig. 1. The individuals play PD
with all neighbors and collect the payoff, then change their
strategies based on their and the neighbor’s payoffs. We examine
the three main variants in replicator dynamics: 1) Synchronous
deterministic: Every individual that has a neighbor with a higher
payoff adopts a strategy of the neighbor with the highest payoff;
2) Asynchronous deterministic: One edge is selected randomly,
and the individual with a smaller payoff adopts its neighbor’s
strategy; and 3) Asynchronous randomized: One edge is selected
randomly. Let x and y be the selected neighbors. If the payoffs
are Px and Py then y changes its strategy to x’s strategy with
probability 1

1+e(Py−Px)/K
, whereK (selection intensity) is the noise

parameter, otherwise y adopts x’s strategy. See Fig. 1 D–F for
details on replicator dynamics.

The dynamic starts with some cooperators already present in a
graph, we denote the initial density of cooperation by p. Usually,
simulation studies start with large p (around 1

2 ). However,
ensuring initial configurations with such a large fraction of
cooperators is unrealistic. Here, we consider p to be small,
which goes to zero in the limit of a large population. This
requires the spread of cooperation even from a disadvantageous
initial position. Spatial games have rich and complex dynamics.
Deciding whether the cooperation survives on a general graph is
computationally hard (53). They give rise to beautiful patterns
even for grids; see Fig. 2. Given these complicated dynamics,
analytical results are challenging to achieve. The landscape of
results is dominated by simulations and case studies. The main
challenge is to establish results with provable guarantees, which
have been elusive.

We say that cooperators fixate if they replace all defectors and
the probability of this event is called the fixation probability.
Traditionally, previous works on spatial games consider the
density of cooperators in the steady-state of coexistence of
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Fig. 1. The description of the Prisoner’s dilemma on graphs. (A) The payoff
matrix of Prisoner’s dilemma, we have b > 1 and " = 0. (B) The initial
configuration on a graph, with cooperators being (pale) blue and defectors
(dark) red. (C) Payoffs of all players in one turn. The payoff of every cooperator
is equal to the number of cooperating neighbors, and the payoff of every
defector is b times the number of cooperating neighbors. (D) Synchronous
deterministic updating: Every individual updates its strategy to the strategy
of a neighbor with the highest payoff. The arrows denote the spread
of cooperation/defection. (E) Asynchronous deterministic updating: One
random edge is selected (highlighted in the figure), and the individual with a
higher payoff replaces the individual with a lower payoff. (F ) Asynchronous
randomized updating: One random edge is selected, and one individual
replaces the other with the probability given the Fermi function of the
payoffs. In the example, the defector replaces the cooperator with probability

1
1+e2−b .

cooperators and defectors. The fixation probability is much more
desirable as it ensures only cooperators in the steady state.

Now, we define the notion of density amplifiers. Given
temptation b > 1, the initial density of cooperators p > 0
and number of vertices n, we call a family of graphs: (a) weak
density amplifiers if the fixation probability for all graphs in the
family is above 0, even in the limit of large n; (b) mild density
amplifiers if the fixation probability for all graphs in the family is
higher than the probability that cooperators will become extinct;
(c) strong density amplifiers if the fixation probability tends to 1
in the limit of large n.

Note that complete graphs (unstructured populations) are
not even weak density amplifiers. By design of the Prisoner’s
dilemma, every defector in the population has a bigger payoff
than any cooperator. Moreover, results of ref. 45 imply that
regular graphs are also not even weak density amplifiers for all
b. Some graphs, for example, stars, are weak density amplifiers:
If the central vertex of the star starts as a cooperator, then the
cooperation has a chance to replace all defectors. However, if the
central vertex starts as a defector, then cooperation disappears.
Hence stars are not mild density amplifiers for p ≤ 1

2 . The two
fundamental open questions are (a) The existence of mild density
amplifiers; and (b) the existence of strong density amplifiers.

Analytical Results. To answer positively to both questions about
the existence of density amplifiers, we describe two graph families

parameterized by n, the number of nodes, and b, the temptation.
Later, we show that graphs Ad are strong density amplifiers
for deterministic (synchronous and asynchronous) settings and
graphs Ar are strong density amplifiers for randomized settings.
To simplify the construction, we first increase the defectors’
payoff against the cooperator by the highest degree times " and
then round up the payoff to the nearest higher integer. It allows
us to treat the payoff of a defector interacting with a defector as
0. This change gives the defector an advantage by giving them a
higher payoff. Finally, if there is a tie in the accumulated payoff,
then cooperators win ties. However, note that since we have
increased the defectors’ payoff, a tie implies a higher payoff for
cooperators in the original setting. Thus this procedure still only
provides an advantage to defectors.

The structure of Ad (n, b) is as follows: There are four types
of vertices: big, small, bridge, and leaf. The graph consists of
a path on which big and small vertices alternate. Between two
neighboring big and small vertices there are b− 1 bridge vertices
connected to both of them. Moreover, to every small vertex, b leaf
vertices connect, and to every big vertex, 10b2

− 2b leaf vertices
connect. The number n bounds the number of big vertices that
can be in the graph (around n

10b2 ). Fig. 3 shows the structure of
Ad together with the spread of cooperation.

The structure Ar(n, b) is similar. The graph contains big,
small, and leaf vertices. Again, big and small vertices alternate on
a path. Every big vertex connects to 10b2

− 2 leaf vertices. This
time, small vertices neighbor only two big vertices.

We describe the spread of cooperation onAd in a deterministic
(synchronous or asynchronous) setting. We suppose that b is
arbitrary and n sufficiently large. Since the initial density p is
above 0, we know that in the graph, there are a lot of seeded

A

C D

B

Fig. 2. Simulations of the spatial games on the lattice with unchange-
able boundary and size 100 × 120. Cooperators are denoted blue, and
defectors are red. The initial density of cooperators is p = 1

2 , and the
position is recorded after reaching equilibria. (A) Process for b = 1.3
and synchronous deterministic updating. (B) Process for b = 1.99 and
synchronous deterministic updating. Synchronicity and determinism ensure
that the cooperators create stable structures that are impossible to invade.
(C) Process for 1.03 and deterministic asynchronous updating. (D) Process
for b = 1.03 and randomized asynchronous updating. In the randomized
updating, cooperators cannot create structures, therefore defectors slowly
erode the cooperation.
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Fig. 3. The spread of cooperation inAd . (A) Big and small vertices alternate
on a line. One bridge vertex is connected to neighboring small and big
vertex, leaf vertices only connect to small and big vertices. More leaf vertices
connect to the big vertex. A big vertex that started as a cooperator with a
lot of cooperating neighbors spreads the cooperation while the cooperation
recedes everywhere else. (B) The cooperating big vertex becomes invincible.
Cooperation still recedes everywhere else. (C) The invincible vertex spreads
the cooperation to a small vertex, which in turn starts spreading cooperation
among the bridge neighbors. (D) The small vertex can convert the big
neighbor, and the spread of cooperation continues. (E) The neighborhood of a
seeded vertex for b = 3. The seeded vertex can convert only leaf neighbors;
bridge and small vertices can have a higher payoff. (F ) After a big vertex
has more than 2b cooperating neighbors, it can convert bridge vertices. (G)
Invincible vertex has at least 3b2 neighbors and can spread the cooperation
to any neighbor.

vertices. Seeded vertices are big vertices that are cooperators
and have at least b cooperating neighbors. Seeded vertices can
convert other leaf vertices to cooperation; see Fig. 3 E–G for a
detailed description of the neighborhood of the seeded vertex.
With substantial probability, the seeded vertex converts at least
3b2 of leaf vertices to cooperators. This cooperator cannot be
converted: No neighbor can have a higher payoff than 3b2 since
no neighbor has more than 3b neighbors. We call such a vertex
invincible. After an invincible vertex appears, the cooperation
cannot die out. Moreover, from every position, the probability
that the cooperation fixates is nonzero and happens quickly.

Observe that the probability that a big vertex becomes
invincible depends only on the neighborhood of the big vertex
and is also independent from all events happening at higher
distances in the graph. That means increasing the size of the
graph from n vertices to 2n vertices increases the probability
of invincible vertex appearing (and thus fixation probability)
roughly from � to 1 − (1 − �)(1 − �) = 2� − �2. Also, for
setting p = 1

2 , the expected number of cooperating neighbors
of a big vertex is around 5b2, which means that a big vertex
initialized as a cooperator is invincible from the start, so the
probability of an invincible vertex not appearing is exponentially
small.

Similar reasoning holds for randomized asynchronous settings.
Some big vertices have a cooperator in a neighborhood. This
cooperator has a small but positive chance to spread to the big
vertex and then convert all leaf vertices to cooperators. This
vertex, so-called stronghold, is more likely to convert another
neighboring vertex to a stronghold than to turn to a defector.
The spread of cooperators is a walk on a biased Markov Chain.

Since the bias is significant, the cooperators spread over the whole
graph with a large probability.

In summary, we show that the family of graphs Ad (n, b)
ensures high fixation probability for synchronous deterministic
and asynchronous deterministic processes, and family of graphs
Ar(n, b) ensures the same for asynchronous randomized setting;
see SI Appendix, Theorems 1 and 2 for details. In other words,
we establish the existence of strong density amplifiers for all
three replicator dynamics. Along with the main result proving
the existence of strong density amplifiers, our construction has
several other desirable properties. First, (a) in contrast to existing
simulation studies that consider high p = 1/2 (11, 48, 54), our
structure ensures high fixation probability even for low p, for

instance, for p of order of n−
1

3(b+1) , that goes to 0 as n goes

to ∞, the fixation probability is at least 1 − e−0.2n
1
3 in both

density amplifier families; (b) in contrast to previous studies that
consider low b, our structure ensures high fixation probability
for high b, for instance for b that is of order of

√
log n that

goes to ∞ as n goes to ∞, the fixation probability is again at

least 1− e−0.2n
1
3 in both density amplifier families. It shows the

robustness of our result with respect to low initial cooperation
and high temptation. Second, the number of steps to achieve
fixation is asymptotically quadratic in the size of the graph for
both Ad and Ar (SI Appendix, Lemmas 3 and 6). It means that
the fixation is achieved quickly with respect to the network size.
Third, our graph structures have constant degree, i.e., the degree
is bounded by 10b2 even when the population size increases to
∞. The constant-degree property is desirable as it ensures that
every individual finishes all interactions in constant time in every
round.
Significance of results. We further emphasize the strength and
significance of our results in the following ways:

Initial cooperation rate. First, while previous literature for
constant or weak selection, considers the probability that a
single cooperator fixates, we show in SI Appendix, section 5 that
for spatial games a lower bound on the initial cooperation rate
that is required for the deterministic setting. This complements
our initial cooperation density requirement.
Extinction of defectors. Our strong density amplifiers ensure
a high fixation probability of cooperation even with a low
initial cooperation rate. This also ensures that even if there
is a relatively high initial density of defectors (say 1

2 ) still the
defectors become extinct. In other words, our strong density
amplifiers ensure high fixation for cooperators and low fixation
for defectors.
Payoff matrix. While we focus our results on the classic matrix
from refs. 5 and 30, we also show the condition under which
we obtain strong density amplifiers for the general Prisoners’
dilemma payoff matrix. We show that our results about the
existence of strong density amplifiers hold in the randomized
update for all parameters, and for the deterministic update
when R2 > T · P (SI Appendix, section 6).
Initialization. We focus on the randomized initialization of
cooperators as this is one of the most difficult conditions
where cooperators are not clustered. We argue (in SI Appendix,
section 7) that our results hold for other initialization, e.g.,
temperature and correlated initialization.
Mutation rate. We present simulation results that consider
the cooperation rate over time for various mutation rates (SI
Appendix, Fig. S3), and our structure significantly outperforms
star and grid.
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Table 1. Fixation probabilities for a single randommutant in graph occupied by individuals of the other type: The
first column describes the graph type, and the second and third columns represent the fixation probability of a
single cooperator and defector, respectively

�nC �nD �nC FG �
n
D An =

�nC
�nD

lim
n→∞ An Bn =

�nC
�n

lim
n→∞ Bn

Complete graph 2−c1n c2 << 2−c1n/c2 0 n2−c1n 0
Grid 2−c3n c4 << 2−c3n/c4 0 n2−c3n 0
Star c5n−1 c6n−1

≈ c5/c6 c5/c6 c5 c5
Ar c7 2−c8n >> c72c8n ∞ c7n ∞

In the fourth column, we compare the two fixation probabilities where FG is the comparison operator, which can be very small <<, comparable ≈, or very large >>. The fifth and sixth
columns consider the ratio An of the two fixation probabilities and the respective large-population limit. The seventh and eighth columns consider the ratio Bn of the fixation probability
of a cooperator to the fixation probability of a neutral mutant, denoted �n , which is 1/n, and the respective large-population limit. In the table, c1 , c2 , . . . , c8 denote constants that are
independent of n. The table summarizes the following: (a) for complete graph and grid, the fixation probability of cooperators is exponentially small in n, whereas for defectors it is
constant; (b) for star, the fixation probabilities are proportional to 1/n; and (c) forAr the fixation probability of cooperators is constant, whereas for defectors it is exponentially small.
The large-population limit of the desired comparison ratios vanishes for the complete graph and grid, is constant for the star, and goes to∞ forAr . Observe that onlyAr yields that the
desired ratio goes to∞ in the large-population limit.

Fixation probability bounds for single mutant. As mentioned
above, in the deterministic setting we show that the initial density
of cooperators is required. We also consider the bounds on
fixation probability of a single mutant: a single cooperator among
defectors (fixation probability denoted as �nC in population of size
n) and a single defector among cooperators (fixation probability
of defector denoted as �nD). For Ar we show that �nC is constant
and �nD is exponentially small in n. In contrast, for complete
graph and grid, �nC is exponentially small in n, whereas �nD is
constant, and for star both �nC and �nD are proportional to 1/n.
The results are summarized in Table 1 (SI Appendix, section 8)
and the asymptotic fixation probabilities are highlighted in Fig. 4.

Simulation Results. Finally, we supplement our theoretical find-
ings with simulation results. While the theory provides guarantees
for large population sizes, the simulation results demonstrate the
effectiveness of our structure even for small population sizes,
with the code available at ref. 55. We examine three baselines:
complete graph, grid, and star. No matter the process and the
temptation (b), the fixation probability on these graphs does
not change much. On a complete graph, every defector has a
higher payoff than every cooperator, which means the fixation
probability tends to 0. Similarly, on a grid, the last defector has
a higher payoff than all neighbors, so it cannot be converted
in a deterministic setting. In a randomized setting, the fixation

probability is also 0. On a star, the probability that the center is a
cooperator is proportional to p. If at the same time p ≥ b

n−1 , the
central cooperator has a higher payoff than neighbors and can
spread. This means the fixation probability is proportional to p.

We run the asynchronous deterministic setting for three temp-
tations and graphs: Ad (104, 2), Ad (104, 4), and Ad (104, 6).
We examine how the initial cooperator density p influences the
fixation of cooperation in Ad against the baseline graphs. For
every graph and value of p, we report the fixation probability
by averaging over 5 · 104 runs. Every run is simulated until
one of the two things happens: Cooperators become extinct, or
cooperators create an invincible vertex (this is a big vertex with
3b2 cooperating neighbors). Since the invincible vertex cannot be
converted and cooperators eventually fixate, these two conditions
are equivalent to simulating until cooperators or defectors spread
over the whole graph. The first row of Fig. 5 shows the results.
We see that for all settings, the fixation probability increases
with increasing initial probability. At p = 0.04, the fixation
probability on Ad (104, 2) is already almost 1. The fixation
probability for other graphs rises more slowly since the temptation
to defect is larger, and the graphs Ad (104, 4) and Ad (104, 6)
have fewer big vertices than the graph Ad (104, 2).

For the asynchronous randomized setting, we again examine
three graphs: Ar(104, 2), Ar(104, 4), and Ar(104, 6). We

Fig. 4. Asymptotics of fixation probabilities. We examine the relationship between the fixation probability of one cooperator in asynchronous randomized
setting and the graph size as described in Table 1. We first show the asymptotic of the fixation probability and then compare it to two baselines. We see that
Ar is the only graph that grows to infinity while compared to the baselines.
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Fig. 5. Simulation results. We examine the fixation probability (y-axis) with respect to the starting density of cooperation p (x-axis) for four graphs: a density
amplifier, a star, a grid, and a complete graph. The rows examine asynchronous deterministic and asynchronous randomized setting, the columns examine
different temptation b ∈ {2,4,6}. All graphs have 104 vertices and the results are averaged over 5 · 104 runs. Cooperators on the grid and complete graph
have fixation probability 0. On star, the fixation probability is proportional p. The fixation probability on both density amplifiers quickly reaches 1 for p = 0.04
already.

examine how the initial cooperator density p influences the
fixation of cooperation in Ar against the baseline graphs. We
run the process for every combination of parameters 5 ·104 times
until either cooperation or defection fixate and report the fixation
probability. In the second row of Fig. 5, as our result suggests,
we see that cooperation increases even more steeply than in the
deterministic setting. At p = 0.02, the fixation probability on
Ar(104, 2) is already almost 1.

Discussion

In this work, we present Ad and Ar , the first graph families
that increase the fixation probability of cooperation in spatial
games with Prisoners’ dilemma with strong selection. Moreover,
the graph families ensure the fixation with several desirable
properties: (a) they are robust with respect to a low initial density
of cooperation and high temptation; (b) they have a constant
degree; and (c) they ensure a fast spread of cooperation within
quadratic steps in the size of the network.

First, the study of evolutionary graph theory for constant (or
frequency-independent) fitness has been widely studied in the
context of the Moran process (27). The role of graphs that
can amplify the fixation probability has been a key topic of
interest (56, 57). Moreover, the time to fixation is another
important aspect (58), and there is a very interesting tradeoff (59).
The existence of strong density amplifiers with fast fixation time
has been established in ref. 50. However, the techniques of these
works do not extend to evolutionary games, which represent
frequency-dependent selection.

Second, the study of evolutionary games on graphs, which
represent frequency-dependent selection, also received broad
attention (30, 45). The computational hardness of such games
has been established in refs. 53 and 60. In the regime of weak
selection, the role of graphs that help in increasing cooperative
behavior has been considered by Allen et al. (52), and by Fotouhi

et al. (61). While Allen et al. give the theoretical algorithms and
guarantee, Fotouhi et al. present natural graphs and empirical
results. However, these results do not extend to strong selection,
where the existence of density amplifiers is an interesting open
question. Spatial games intuitively represent the strong selection
limit, and our results complement the existing results in the
literature establishing the existence of strong density amplifiers
in this regime.

Finally, we believe that the structures we present have wider
applicability. The reasoning in our proof can be extended to
other two-player matrix games (dilemmas), such as snowdrift
and stag-hunt games. Even in these cases, prosocial behavior
creates invincible parts of the graph. Our structures will be
useful in problems where there is a hard-to-reach absorbing state
that is desired. Exploring the role of our structures in specific
applications is an interesting direction for future work.

Materials and Methods

In this section, we describe the main ingredients for both proofs.

Proof Sketch for Asynchronous Deterministic Updating. The graph family
Ad are strong density amplifiers. The proof has three main ingredients. First,

we show that with substantial probability there are at least n
1
3 big vertices that

are cooperators and have at least b cooperating neighbors (we call them seeded
vertices). Second, we prove that one seeded vertex becomes invincible with a
large probability. Third, we describe how one invincible vertex can convert the
whole graph to cooperation.

A vertex starts as a cooperator with probability p and we suppose that

p ≥
1

n1/(3b+3)
. [1]

Let us examine the probability that a big vertex is a cooperator and has at least b
cooperating leaf neighbors. With probability p, the big vertex is a cooperator. It
has 10b2

−2b leaf neighbors and the number of cooperating neighbors follows
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a binomial distribution, which gives the probability

p ·
∑
x≥b

px(1− p)10b2
−2b−x

(
10b2
− 2b

x

)
. [2]

We split the graph to n
1
3 parts. In one part, using b ≥ 2, Eqs. 1 and 3, we have

that there is no seeded vertex with probability at most

(
1−

10b2 + b + 2

n1/3

) n2/3

10b2+b+2
< e−2n1/3

. [3]

From union bound and Eq. 3, we get that in every part of the graph, there is at
least one seeded vertex (that means at least n1/3 seeded vertices in the whole
graph) with probability at least

1− e−n1/3
. [4]

Theseededvertexhasapayoffbigenoughtoconvertanyleaf tocooperation. In
the worst case, the neighboring small and bridge vertices can revert the seeded
vertex to defection. In one active step, the probability of the big vertex being
turned into defection is at most 2b

10b2−4b
< 1

4b . When the seeded vertex has at
least 2b cooperating leaf neighbors, the bridge vertices stop being threatening.
The failure probability in one active step decreases to 2

9b2−2(b−1)
< 1

4b2 until

the big vertex has b2 cooperating neighbors. Finally, the failure probability is
at most 2

7b2−2(b−1)
≤

1
3b2 in one step until the big vertex has at least 3b2

cooperating neighbors. At that point, it becomes invincible, no neighbor can
have a higher payoff, so it cannot be converted. From union bound, the seeded
vertex becomes invincible with probability at least(

1− b ·
1

4b

)(
1− b2

·
1

4b2

)(
1− 2b2

·
1

3b2

)
≥

3
4
·

3
4
·

1
3
≥

3
16

.

[5]
One invincible vertex can convert the rest of the graph to cooperation. It

first converts all bridge vertices and neighboring small vertex. This small vertex
converts its leaf neighbors, then the neighboring big vertex and remaining
bridge vertices. By this, the big vertex has at least b cooperating neighbors and
can start converting other vertices and becomes invincible. The probability of
everything happening is nonzero and the invincible vertex cannot be converted,
which means it happens eventually. To increase the number of invincible vertices
by one, we need the number of steps around the newly invincible vertex to be
around O((20b)2b). This means the number of steps until all vertices are
converted to cooperators is

O
(
(20b)2bn2

)
. [6]

That means, for initial rate of cooperation at least p ≥ 1
n1/(3b+3) (Eq. 1), from

Eqs. 4 and 5, the fixation probability is at least

(
1− e−n1/3)

·

(
1−

(
3

16

)n1/3)
≥ 1− e−0.2n1/3

. [7]

Note that for b around
√

log n (which is unbounded if n grows), the initial

density of cooperation is around e−
√

log n, which tends to 0 as n grows.
However, the theorem still holds and guarantees fixation probability that goes
to 1 with growing n.

Proof Sketch for Asynchronous Randomized Updating. The graph family
Ar are strong density amplifiers. The proof consists of two important steps.
First, we show that a big vertex that is seeded (has one cooperator in the
neighborhood) becomes a stronghold (all its leaf neighbors are cooperators)
with a large probability. Second, we estimate the probability that a stronghold
vertex converts the rest of the graph.

We split the spread of cooperation into several stages. In the first stage, the
big vertex v becomes a cooperator. Let i denote the number of cooperating
neighbors of v. In the second stage, we have i ≤ b, in the third b < i ≤ 3b,
and in the fourth 3b < i.

The first stage succeeds with probability

1

1 + eb−0
. [8]

During the second and third stages, we suppose that the edge between the
small and big vertex was not selected. This happens with probability at most(

1−
2

10b2 − 3b

)3b
> 1−

6b

10b2 − 3b
> 1−

1
17
12 b

. [9]

With probability 1
1+eb−i after selecting the edge between leaf and big vertex, the

cooperation spreads, that means the second phase succeeds with the probability

b∏
i=0

1

1 + eb−i
. [10]

By the same reasoning, the third phase succeeds with probability

3b∏
i=b+1

1

1 + eb−i
>

2b∏
i=1

1

1 + e−i
, [11]

and fourth with

10b2∏
i=3b+1

1

1 + e2b−i
=

10b2∏
i=0

1

1 + e−b−1−i
>

∞∏
i=0

eb+1+i

1 + eb+1+i
. [12]

Combining Eqs. 9–12, we get the success probability

2−5e−b2
. [13]

Having a stronghold in the graph and selecting an edge between the
stronghold and neighboring small vertex means that either stronghold becomes
a defector (with probability roughly 1

1+e10b2−2
) or the neighboring big vertex

becomes seeded and it might become a stronghold with probability 2−5e−b2
.

We track the number of strongholds using one dimensional Markov Chain.
Observe that the ratio between increasing and decreasing the number of
strongholds is

e6b2
. [14]

Suppose that p ≥ eb2
23
·10b2

n23
, then a big vertex is seeded with probability

at least 25p and from Eq. 13, we have that a big vertex becomes a stronghold

with probability at least e−b2
p. With probability at least 1 − e

49
16 n1/3

, at least
n1/3 seeded vertices turns into stronghold. In the Markov Chain tracking the
number of strongholds (with the ratio Eq. 14), the strongholds disappear with
probability at most e−6b2n1/3

. Therefore the fixation probability is at least

1− e−3n1/3
. [15]

Again, note that we can set b = (log n)1/3 which grows with n, and then p
tends to 0 with large n and the fixation probability tends to 1.

Data, Materials, and Software Availability. Code data have been deposited
in Code: Amplifiers of Cooperation (DOI: 10.5281/zenodo.10832535) (55).
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