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ARTICLE

DNA methylation-based predictors of metabolic
traits in Scottish and Singaporean cohorts

Hannah M. Smith,1 Hong Kiat Ng,2 Joanna E. Moodie,3 Danni A. Gadd,1 Daniel L. McCartney,1

Elena Bernabeu,1 Archie Campbell,1 Paul Redmond,3 Adele Taylor,3 Danielle Page,3 Janie Corley,3

Sarah E. Harris,3 Darwin Tay,2 Ian J. Deary,3 Kathryn L. Evans,1 Matthew R. Robinson,4

John C. Chambers,2,5 Marie Loh,2,5,6 Simon R. Cox,3 Riccardo E. Marioni,1,7,* and Robert F. Hillary1,7
Summary
Exploring the molecular correlates of metabolic health measures may identify their shared and unique biological processes and path-

ways. Molecular proxies of these traits may also provide a more objective approach to their measurement. Here, DNA methylation

(DNAm) data were used in epigenome-wide association studies (EWASs) and for training epigenetic scores (EpiScores) of six metabolic

traits: body mass index (BMI), body fat percentage, waist-hip ratio, and blood-based measures of glucose, high-density lipoprotein

cholesterol, and total cholesterol in >17,000 volunteers from the Generation Scotland (GS) cohort. We observed a maximum of

12,033 significant findings (p < 3.63 10�8) for BMI in a marginal linear regression EWAS. By contrast, a joint and conditional Bayesian

penalized regression approach yielded 27 high-confidence associations with BMI. EpiScores trained in GS performed well in both Scot-

tish and Singaporean test cohorts (Lothian Birth Cohort 1936 [LBC1936] and Health for Life in Singapore [HELIOS]). The EpiScores for

BMI and total cholesterol performed best in HELIOS, explaining 20.8% and 7.1% of the variance in themeasured traits, respectively. The

corresponding results in LBC1936 were 14.4% and 3.2%, respectively. Differences were observed in HELIOS for body fat, where the

EpiScore explained�9% of the variance in Chinese andMalay -subgroups but�3% in the Indian subgroup. The EpiScores also correlated

with cognitive function in LBC1936 (standardized brange: 0.08–0.12, false discovery rate p [pFDR] < 0.05). Accounting for the correlation

structure across the methylome can vastly affect the number of lead findings in EWASs. The EpiScores of metabolic traits are broadly

applicable across populations and can reflect differences in cognition.
Introduction

Measures of adiposity and lipids are central to profiling

metabolic health. There are several clinical measures of

metabolic health, which include body mass index (BMI),

body fat percentage, waist-hip ratio (WHR), blood glucose

levels, high-density lipoprotein (HDL) cholesterol, and to-

tal cholesterol. These traits have routinely been linked to

health-related risks including cardiovascular disease,1–3

myocardial infarction,4 and stroke.2,3,5 Multiple associa-

tions between metabolic traits and cognitive function

and rate of cognitive decline have also been observed.6–12

BMI is a widely assessed indicator of metabolic health

but is limited by its inability to directly track the amount

or distribution of fat in the body.13,14 BMI has previously

shown low specificity in identifying individuals with

excess body fat.15 Considering multiple measures that

track different aspects of adiposity (and related traits)

may provide a more complete assessment of metabolic

health. Furthermore, exploring the molecular correlates

of these metabolic indices may help to inform the shared

and unique biological processes and pathways with which

they are associated.
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The epigenetic modification DNA methylation (DNAm)

is dynamic and tissue/cell type specific and can be affected

by genetic and environmental factors. Epigenome-wide

association studies (EWASs) have detailed associations

between individual blood-based DNAm loci (CpG sites)

and metabolic traits including BMI, WHR, HDL choles-

terol, and total cholesterol.16–33 In our previous work,

penalized regression models were applied to DNAm data

to developmolecular predictors for a multitude of complex

traits. These epigenetic scores, or EpiScores, may augment

associations with health outcomes when combined

with their measured phenotypic counterparts.34–36 For

example, an EpiScore for BMI increased the amount of

variance in metabolic health outcomes accounted for by

measured BMI alone by an average of 3%.37 An EpiScore

for WHR was also associated with all-cause mortality in

the same population of healthy older adults after adjusting

for measured WHR.34

Here, we modeled EWASs with both marginal linear

regression and Bayesian penalized regression on six meta-

bolic traits in the Generation Scotland (GS) study

(N > 17,000). In the former approach, we obtained mar-

ginal estimates for each CpG, which do not take into
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account correlations across CpGs. By contrast, the

Bayesian penalized regression estimated CpG effects

jointly so that the effect of each CpG was conditional on

all other loci. We compared findings from the individual

EWASs to determine whether the six traits showed unique

or common methylomic signatures. We then trained

EpiScores for the six metabolic traits in GS (N > 17,000)

and projected them into two independent test cohorts—

the Lothian Birth Cohort 1936 (LBC1936) and the Health

for Life in Singapore (HELIOS) cohort. Finally, we tested

metabolic trait EpiScore associations with general cogni-

tive function level and change in LBC1936 (N ¼ 861). As-

sociations identified between EpiScores for metabolic traits

and cognitive phenotypes could offer new opportunities to

examine the relevance of metabolic health indicators to

aging and cognitive and neurological health outcomes.
Methods

GS cohort
The GS cohort has been previously described in detail.38 Briefly, it

is a Scotland-wide, family-based study of health. In the current

study, 18,411 individuals had DNAm profiled on the Illumina

EPIC array from blood samples taken at the study baseline be-

tween 2006 and 2011. 59% of the cohort was female, and the

mean age at baseline was 47.5 years (SD: 14.9). Six metabolic mea-

sures from GS were utilized in this study: BMI (kg/m2), body fat

percentage, WHR, glucose (mmol/L), serum HDL cholesterol

(mmol/L), and serum total cholesterol (mmol/L) (Table 1; supple-

mental methods). All components of GS received ethical approval

from the NHS Tayside Committee on Medical Research Ethics

(REC reference no. 05/S1401/89). GS has also been granted

Research Tissue Bank status by the East of Scotland Research Ethics

Service (REC reference no. 20-ES-0021), providing generic ethical

approval for a wide range of uses within medical research. All par-

ticipants signed a broad consent form. According to the terms of

consent for GS participants, access to data must be reviewed by

the GS access committee. Applications should be sent to access@

generationscotland.org.
The LBC1936
The LBC1936 is a longitudinal study of aging.39,40 The study con-

sists of individuals born in 1936, most of whom sat a general

cognitive ability test at amean age of 11 years in Scotland. Individ-

uals living in the Lothian area were recruited to the LBC1936 study

at around age 70 (baseline N ¼ 1,091). The volunteers undertook

triennial testing across five waves of follow-up (ages: �70, 73,

76, 79, and 82). Of those with blood-based DNAm data (profiled

on the Illumina 450k array) at wave 1, themean age was 69.6 years

(SD: 0.8), with 49.4% females. Three metabolic measures were uti-

lized in this study: BMI (kg/m2), serumHDL cholesterol (mmol/L),

and serum total cholesterol (mmol/L) (Table 1; supplemental

methods). Thirteen cognitive tests were assessed longitudinally

(details in supplemental methods). Ethical approval for the

LBC1936 study was obtained from the Multi-Centre Research

Ethics Committee for Scotland (Wave 1, MREC/01/0/56) and the

Lothian Research Ethics Committee (wave 1, LREC/2003/2/29)

and the Scotland A Research Ethics Committee (waves 2–5, 07/

MRE00/58). All participants provided written informed consent.
The Americ
These studies were performed in accordance with the Helsinki

declaration. LBC data are available upon request from the LBC

Study, University of Edinburgh (https://www.ed.ac.uk/lothian-

birth-cohorts/data-access-collaboration). LBC data are not pub-

licly available due to them containing information that could

compromise participant consent and confidentiality.
The HELIOS cohort
The HELIOS study is a single-center, multi-ancestry cohort of

approximately 10,000 individuals residing in Singapore. A subset

of the cohort in which Illumina EPIC DNAm data have been pro-

filed has a mean age of 54.3 (SD: 11.7), and 61.2% of the cohort

was female. The subset is made up of three self-reported sub-

groups: Chinese and other East Asian (Chinese) (n¼ 1,778), Malay

and other South East Asian (Malay) (n ¼ 242), and South

Asian (Indian and other countries from the Indian subcontinent)

(n ¼ 225). The participants answered the following question:

‘‘what is the race as indicated in your National Identification

Card?’’ Here, we considered three responses—Chinese, Malay,

and Indian—whichwere used to stratify the cohort into subgroups

for downstream analyses. However, we emphasize that these pop-

ulation descriptors may represent cultural as opposed to genetic

diversity. Five metabolic measures were utilized in this study:

BMI (kg/m2), body fat percentage, WHR, serum HDL cholesterol

(mmol/L), and serum total cholesterol (mmol/L) (Table 1; supple-

mental methods). The HELIOS study was approved by the Na-

tional Technological University (NTU) Institutional Review Board

(IRB-2016-11-030), with written informed consent obtained from

each participant before the commencement of the study. HELIOS

data are available upon request from the study’s principal investi-

gators. Data access requests for this study should be directed to

helios_science@ntu.ed.sg.
DNAm in GS
The GS cohort consists of 3 sets of participants, nset 1 ¼ 5,087,

nset 2 ¼ 4,450, and nset 3 ¼ 8,876, and 121 experimental batches.

The Illumina Methylation EPIC (850K) array was used to quantify

DNAm from whole-blood samples. A subset of set 1 included

related individuals determined by family ID. Participants in set 2

were not related to each other or related to the individuals in set

1. Set 3 included some participants that were related to each other

or related to participants in set 1/2. Details of the quality control

(QC) performed have been published previously.41 The QC was

performed slightly differently for set 1 than sets 2 and 3. In set

1, samples were removed ifR1% of probes had a detection p value

>0.05 and/or the methylation-predicted sex did not match the re-

ported sex. Further, in set 1, probes were removed if they had a

bead count<3 or a detection p value>0.05 inR5% of individuals.

In sets 2 and 3, samples were removed if R0.5% of probes had a

detection p value >0.01 and/or the methylation-predicted sex

did not match the reported sex. Further, in sets 2 and 3, probes

were removed if they had a bead count <3 in R5% of individuals

or a detection p value >0.01 in R1% of individuals. Probes that

resided on the sex chromosomes were removed in all sets. Probes

that overlay SNPs and/or possible cross-hybridizing locations were

removed in all sets. 15,509 probes did not meet the bead count or

detection p value criteria stated above. 19,681 probes belonged to

the sex chromosomes. 84,352 probes overlayed SNPs and/or

resided in a probable cross-hybridizing location. The union of

these probes was removed, leaving 752,722 CpGs for 18,411
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Table 1. Cohort demographics for Generation Scotland, the Lothian Birth Cohort 1936, and the Health for Life in Singapore study

Measure n Mean SD Range

Generation Scotland

Age (years) 18,411 47.5 14.9 17.1–98.5

BMI (kg/m2) 17,304 26.5 4.7 17–49

Body fat (%) 17,304 29.8 9.1 8–50

WHR 17,304 0.9 0.1 0.4–1.4

Glucose (mmol/L) 17,908 4.7 0.6 1.3–9.2

HDL cholesterol (mmol/L) 18,225 1.5 0.4 0.4–3.1

Total cholesterol (mmol/L) 18,270 5.1 1.1 0.9–9.3

Lothian Birth Cohort 1936

Age (years) 861 69.6 0.8 67.7–70.4

BMI (kg/m2) 860 27.8 4.3 16–47.3

HDL cholesterol (mmol/L) 779 1.5 0.4 0.5–3.8

Total cholesterol (mmol/L) 851 5.4 1.2 2.7–10.8

Health for Life in Singapore

Age (years) 2,245 54.3 11.7 30.2–85.4

BMI (kg/m2) 2,226 24.1 1.2 14.2–43.7

Body fat (%) 2,063 38.2 7.2 17.6–63.1

WHR 2,233 0.9 0.1 0.67–1.1

HDL cholesterol (mmol/L) 2,227 1.5 0.4 0.7–3

Total cholesterol (mmol/L) 2,223 5.3 1 2.4–8.6

A summary of the data included in this study, including n, mean, range, and standard deviation (SD) for each variable after outlier removal.
individuals available for analysis. Dasen normalization was carried

out across all individuals.42
DNAm in the LBC1936
In the LBCs of 1921 and 1936, DNAm was measured in whole-

blood samples using the Illumina methylation array (450K) in

three sets: nset 1 ¼ 2,195, nset 2 ¼ 996, and nset 3 ¼ 552. The QC

of the data has been described previously.43 Duplicate samples

were run to help quantify batch effects. The poorest-performing

duplicates were removed during QC. Samples and probes with

low call rates (call rate R95% at p value <0.01) were removed.

Probes that resided on the sex chromosomes were removed. The

dataset was subset to the LBC1936 data and set 1 only. 459,310

CpGs for 861 individuals were available for analysis after QC.

Beta values were background corrected and normalized to controls

using the minfi packaged in R.44
DNAm in HELIOS
DNAm from whole-blood samples in the HELIOS cohort was

measured using the Illumina HumanMethylation EPIC array after

bisulfite conversion of DNAwas carried out according to the man-

ufacturer’s protocol (EZ DNAMethylation Kit). The minfi software

package44 was used to obtain bead intensity, with a detection rate

of p < 0.02 used for marker calling. Probes with call rates <95%

were excluded. Samples were excluded for array scanning failures

(n ¼ 2), if the methylation-predicted sex did not match the re-

ported sex (n ¼ 39), and duplication (n ¼ 17). 2,445 samples
108 The American Journal of Human Genetics 112, 106–115, January
with 837,722 CpG sites were available for analysis after QC. Quan-

tile normalization was used to account for batch effects. The

HELIOS DNAm data were processed as a whole cohort; therefore,

there is no difference between probe sets across the Chinese, Ma-

lay, and Indian subgroups.
EWASs of six metabolic traits in GS
Linear regression models tested for associations between 752,722

CpG sites and each of the six metabolic traits in GS using the

fast linear method in the omics-data-based complex trait analysis

(OSCA) software.45 To facilitate less computationally expensive

analyses, phenotypes were regressed on age, age2, sex, and family

structure (to account for relatedness in GS) using linear mixed-ef-

fects models (lmekin function from the coxme package

[v.2.2.18.1, https://CRAN.R-project.org/package¼coxme] in R).

Family structure was modeled as a random effect via a kinship

matrix constructed using the R package kinship2 (v.1.9.6,

https://CRAN.R-project.org/package¼kinship2). This incorporates

maternal and paternal identifiers for each participant in the cohort

as a matrix e.g., values of 0.5 are specified for parent-offspring or

sibling pairs. CpG M-values were pre-corrected for age, sex, and

experimental batch (n ¼ 121 batches) in linear regression models

using the lm function in R. Residuals from the regression models

for each outcome trait and CpG were taken forward for the

EWASs. An epigenetic smoking score, EpiSmokEr, was derived us-

ing the smoking score (SSc) method from the EpiSmokEr R pack-

age.46 The SSc method multiplies methylation levels of 187 CpG
2, 2025
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sites using weights from a study by Zeilinger et al. that found these

sites to be significantly associated with smoking.46,47 The multi-

plied methylation levels at 187 sites are then summed for each in-

dividual to calculate their smoking score. EpiSmokEr scores and

Houseman-estimated white blood cell (WBC) proportions48 were

included as fixed-effect covariates in the OSCA analysis. A sensi-

tivity analysis was carried out by additionally including the first

20 methylation-based principal components (PCs) as covariates

to account for potentially unmeasured confounders. Adjustments

for inflation and bias were carried out on the results from the

DNAm-PC-adjusted models using the bacon package (v.1.18.0)

in R.49 Descriptive statistics can be found in Table S1. A signifi-

cance level of p < 3.6 3 10�8 was set to detect significantly associ-

ated CpGs as suggested by Saffari et al. in a study investigating sig-

nificance thresholds in EWASs using a simulation approach.50

Mapping of CpG sites to genes was performed using the ‘‘Methyl-

ationEPIC_v-1-0_B2.csv’’ file from the zip archive ‘‘infiniumme-

thylationepic-v1-0-b2-manifest-file-csv.zip’’ from www.illumina.

com. The annotation file is in build hg19. Principal-component

analyses (PCAs) were performed on the significantly associated

CpG sites from eachmetabolic trait EWAS. The number of approx-

imate independent signals was denoted as the cumulative number

of PCs that accounted for at least 80% of the variance among all

significantly associated probes. PCA was performed using the sci-

kit-learn package in Python (2.7.17).51

Bayesian EWAS
Probe-by-probe (marginal) linear regressionmodels fail to consider

the correlation structure that exists across the methylome. There-

fore, we considered Bayesian penalized regression, conducted us-

ing BayesRþ,52 as a secondary analysis. This method estimates sin-

gle marker or probe effects while controlling for all other probes as

well as being able to control for known and unknown confound-

ing variables. This method also estimates the amount of pheno-

typic variation attributed to genome-wide DNAm. We applied

the same covariate and phenotype preparation strategy as in the

linear regression models. Significant CpGs were defined as sites

with a posterior inclusion probability (PIP) R 0.95. Details on

the methods used for the Bayesian strategy can be found in the

supplemental methods.

Replication of previous literature
The EWAS Catalog16 was used to determine if the overlapping

CpGs that were found to be associated with all six metabolic traits

in the DNAm-PC-adjusted linear regression EWASs have previ-

ously been identified in other studies. The EWAS Catalog was

filtered to whole-blood samples, CpG-metabolic trait associations

with p < 3.6 3 10�8 (in line with our study and consistent with

Saffari et al.50), and study sample n> 1,000 participants. The num-

ber of studies that met our criteria and the search terms used to

identify studies from the EWAS Catalog can be found in

Table S2. The EWAS Catalog was filtered to exclude studies that

GS contributed data toward.

Generation and projection of DNAm-based proxies of

six metabolic traits
Penalized regression models were trained in GS to generate the

EpiScores of each of the six metabolic traits using the R package

biglasso (v.1.5.2).53 Each trait was modeled as the response vari-

able (using the same phenotype files from the EWASs). DNAm

is measured with the EPIC array in GS and HELIOS, while the
The Americ
450K array was used in the LBC1936. Therefore, the intersection

of 395,380 post-QC sites between GS and LBC1936 were consid-

ered as potential predictors. Cross-validation was carried out

(nfolds ¼ 20), and an elastic net (elnet) penalty was set (alpha ¼
0.5). CpG sites with a non-zero coefficient were retained and

used to derive EpiScores in LBC1936 (N¼ 861). This was followed

by further testing in the HELIOS cohort (N ¼ 2,245). All three da-

tasets (GS, LBC1936, and HELIOS) were pre-processed and

normalized independently, including the mean imputation of

missing CpG values. Predictors obtained from the Bayesian

penalized regression models were also projected into LBC1936

and HELIOS using the mean posterior effect sizes as weights for

the scores. The variance explained (incremental R2) in eachmeta-

bolic trait by their corresponding EpiScore over and above age

and sex in linear regression models was then calculated. In

HELIOS, the variance explained was calculated in the full cohort

and in the Chinese, Malay, and Indian subgroups. In HELIOS

full-cohort models, subgroup was additionally included as a

covariate.
EpiScore associations with general cognitive function

and change in LBC1936
A latent intercept and age-related slope for general cognitive func-

tion were generated in LBC1936 using a structural equation

modeling (SEM) framework with the R package Lavaan

(v.0.6.12).54 Measured traits and EpiScores were regressed on inter-

cepts and slopes in separate linear models. Full details are provided

in supplemental methods and Tables S3–S6.
Results

EWASs of six metabolic traits

Correlations between metabolic traits, covariates, and the

first 20 DNAm PCs in GS ranged between �0.36 (WHR

andHDL cholesterol) and 0.6 (BMI and body fat percentage)

and are shown in Figure S1. The largest absolute correlation

between the PCs and outcomes (covariates) was r ¼ 0.09 for

PC2 and BMI (and r ¼ 0.27 for PC1 and B cells). Marginal

linear regression EWASs of six metabolic traits were per-

formed in GS, adjusting for estimated WBC proportions,

and EpiSmokEr. The number of CpG sites significantly asso-

ciated (p< 3.63 10�8) with each of the traits is summarized

in Table 2. This ranged between 460 for glucose to 57,307

for BMI. Manhattan plots can be observed in Figure S2,

and the top 1,000 significantly associated CpGs with each

trait are listed in Table S7. Full summary statistic output is

publicly available at Zenodo: https://doi.org/10.5281/

zenodo.13998835 and Edinburgh Data Share: https://

datashare.ed.ac.uk/handle/10283/8877.

The large number of significant associations observed in

our models may reflect correlation structures among CpG

sites (quantile-quantile [Q-Q] plots and inflation factors—

which ranged between 1.8 and 7.4—can be observed in

Figure S3). Therefore, we performed PCA on the signifi-

cant CpGs (p < 3.6 3 10�8) for each trait to determine

the approximate number of independent features present.

We identified between 82 and 4,354 (for glucose and

BMI, respectively) PCs or ‘‘independent features’’ that
an Journal of Human Genetics 112, 106–115, January 2, 2025 109
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Table 2. The number of significantly associated CpGs with each metabolic trait in Generation Scotland

Trait

No. of significant CpGs

No. of PCs for R80% of
variance explained in
significant CpGs

non-PC-adjusted
marginal EWAS
at p < 3.6 3 10�8

DNAm-PC-adjusted
marginal EWAS
at p < 3.6 3 10�8

Bayesian EWAS at
PIP R 0.95 (overlap
in DNAm-PC-adjusted
marginal EWAS)

non-PC-adjusted
marginal EWAS

DNAm-PC-adjusted
marginal EWAS

BMI (kg/m2) 57,307 12,033 27 (25) 4,354 1,309

WHR 20,622 4,411 12 (11) 2,659 696

Body fat (%) 29,302 8,592 18 (17) 3,283 1,198

Glucose (mmol/L) 460 316 3 (1) 82 83

HDL cholesterol (mmol/L) 32,288 7,674 20 (16) 2,734 1,088

Total cholesterol (mmol/L) 1,645 1,740 19 (18) 376 328

The table shows the number of significantly associated CpGs with eachmetabolic trait usingmarginal linear regression, marginal DNAm-PC-adjusted linear regres-
sion, and Bayesian penalized regression. The table also shows the number of PCs that account for R80% of the variance of the significant CpGs from both of the
marginal linear regression analyses for each metabolic trait. Outcomes in each EWAS are the residuals frommetabolic traits regressed on age, age2, sex, and family
structure. Original outcome units are indicated in the table.
accounted for R80% of the variance in the underlying

CpG sites (Table 2). Next, we performed a sensitivity anal-

ysis that further adjusted the linear regression models for

the first 20 DNAm PCs. The first 20 PCs explain 21.6% of

the total variance in the methylation data (Figure S4). The

number of significant CpG sites ranged between 316 for

glucose and 12,033 for BMI. The number of PCs that ex-

plained 80% of the variance in the significant loci for

each trait ranged between 83 and 1,309 (Table 2). The

top 1,000 significantly associated CpGs for each trait

can be found in Table S8. Manhattan and Q-Q plots for

each trait can be found in Figures S5 and S6. Given that

the number of significant CpG associations was still rela-

tively large after further adjusting for 20 DNAm PCs, we

corrected the effect sizes and p values of the DNAm-PC-

adjusted results for inflation and bias using the bacon

method.49 This resulted in between 206 (for glucose)

and 4,390 (for HDL cholesterol) significant CpG associa-

tions (Table S9).

Finally, we performed Bayesian penalized regression,

which jointly models all CpGs and accounts for genome-

wide correlation patterns. Table 2 shows the number

of high-confidence associations (PIP R 0.95), which

ranged between 3 (glucose) and 27 associations (BMI)

(Table S10). Themajority of these significant findings over-

lapped with those observed using the DNAm-PC-adjusted

marginal linear regression approach (Table 2). Using the

Bayesian method, we obtained estimates for the variance

captured by genome-wide DNAm that ranged between

24% for WHR and 53% for BMI (Table S11).

36 CpG sites were significant (p < 3.6 3 10�8) across all

six metabolic traits in the marginal linear regression

models adjusted for DNAm PCs (Table S12; Figure S7). In

the Bayesian models, a single CpG site, ‘‘cg06500161’’

(mapped to ABCG1), was associated with BMI, body fat

percentage, HDL cholesterol, total cholesterol, and WHR

(PIP R 0.95; Table S10).
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13 of the 36 common CpGs from the DNAm-PC-

adjusted linear models had been previously associated

with metabolic traits in studies using whole-blood samples

at p < 3.6 3 10�8 and study sample n > 1,000 reported in

the EWAS Catalog (Table S12). Of the 36 CpGs associated

with all traits in the linear models, four mapped to

CPT1A, four mapped to ABCG1, and three mapped

to PHGDH. Seven of the overlapping CpGs did not map

to any genes. The remaining 18 CpGs mapped to unique

genes, giving a total of 21 unique genes containing the

overlapping CpGs.
EpiScores of metabolic traits tested in the LBC1936 and

HELIOS

EpiScores for each of the six metabolic traits were trained in

GS using elnet penalized regression and projected into the

LBC1936 and HELIOS cohorts. We explored how much

additional variance could be accounted for in each meta-

bolic trait by the corresponding EpiScore over and above

linear regression models adjusting for age and sex. In the

LBC1936, EpiScores accounted for 3.2% of the variance

for total cholesterol, 18.5% for HDL cholesterol, and

14.4% of the variance in BMI. In HELIOS full-cohort anal-

ysis, the incremental R2 estimates ranged between 7.1%

(for total cholesterol) and 20.8% (for BMI). However, there

was variability within the subsets of HELIOS. Most notably,

the body fat percentage EpiScore accounted for 9.2% and

9.5% in the Chinese and Malay subgroups but only 3.1%

in the Indian subgroup (Figure 1; Table S13). In LBC1936

and HELIOS, the correlations between all six EpiScores are

shown in Figure S8. Correlations between measured traits

ranged from �0.3 to 0.38 for LBC1936 and from �0.46 to

0.47 for HELIOS (Figure S9). Correlations betweenmeasured

traits and EpiScores ranged between �0.41 and 0.5 in

LBC1936 and �0.66 and 0.92 in HELIOS (Figure S10).
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Figure 1. The variance explained in
measured metabolic traits by elnet
EpiScores in the LBC1936 and the
HELIOS study
Additional variance (incremental R2) ac-
counted for in each metabolic trait (BMI
in kg/m2; HDL cholesterol and total
cholesterol in mmol/L; body fat in per-
centage; WHR) by their corresponding el-
net EpiScores over and above age- and
sex-adjusted (and subgroup—Chinese,
Malay, and Indian—in the Health for Life
in Singapore [HELIOS] full cohort) linear
regression models in the Lothian Birth
Cohort 1936 (LBC1936) and HELIOS.
Measured glucose levels were not available
for either cohort. Incremental R2 was
calculated for each subgroup and in the
whole cohort in HELIOS.
Next, we tested the Bayesian EpiScores in both LBC1936

and HELIOS, observing similar results to the elnet

approach (Figure S11; Table S13).
EpiScore associations with general cognitive function

Metabolic traits have previously been linked to cognitive

outcomes. Given this, we tested if the metabolic (elnet)

EpiScores were associated with general cognitive function

level and longitudinal changes in the LBC1936 (N ¼ 861).

In models adjusting for age and sex, the three measured

traits (BMI, total cholesterol, and HDL cholesterol) and all

EpiScores, except the total cholesterol EpiScore, were signif-

icantly associated with general cognitive function (inter-

cept) in LBC1936 (false discovery rate p [pFDR] < 0.05;

Figure S12; Table S14). In fully adjusted models, significant

(pFDR< 0.05) EpiScore associations were observed forWHR,

glucose, body fat percentage, and BMI (standardized brange:

�0.08 to �0.12) and for measured BMI (standardized b:

�0.10; Figure 2A). No significant associations were

observed with general cognitive change over �12 years

(mean age 70 to mean age 82) of follow-up (pFDR > 0.05;

Table S14). A combination of the EpiScore and measured

trait accounted for more variance explained in general

cognitive function level than an EpiScore or measured trait

alone (Figure 2B; Table S15). EpiScores explainedmore vari-

ance than themeasured trait for general cognitive function

by an average of 0.3%.
Discussion

EWASs of six metabolic traits were performed in GS

(N > 17,303). A large number of significantly associated

CpGs were identified for each trait via linear regression

models adjusted for WBCs and EpiSmokEr (marginal asso-

ciations with p< 3.63 10�8 ranged from 460 to 57,307 per

trait). Further adjustments for the first 20 DNAm PCs
The Americ
reduced the number of significant findings (from 316 to

12,033 per trait), most likely by adjusting for poorly

measured or unknown confounders. A Bayesian approach,

which modeled the CpGs jointly and conditionally upon

each other, resulted in between 3 and 27 high-confidence

(PIP R 0.95) CpG associations for the six traits. As shown

in extensive simulation work,52 BayesRþ yields a better

FDR than marginal regression approaches. Whereas the

lead loci identified in BayesRþ were contained in the list

of significant DNAm-PC-adjusted results, they can be

considered with high confidence as lead loci. EpiScores

for each metabolic trait were trained in GS and projected

into two independent test cohorts, LBC1936 and

HELIOS. The metabolic EpiScores were tested for associa-

tions with general cognitive function level and change.

Four of the EpiScores were associated with general cogni-

tive function in fully adjusted models (pFDR < 0.05), but

none were associated with longitudinal cognitive change.

36 CpGs were associated with all six traits when using

the DNAm-PC-adjusted marginal linear regression

modeling approach. This included 13 CpGs previously

linked to metabolic traits in the literature referenced in

the EWAS Catalog.17–25,32,55–57 However, it is worth noting

that the EWAS Catalog is not extensive, and some studies

may not be reported. Several genes the 36 CpGs mapped

to had known metabolic functions. ABCG1 and ABCA1

encode two proteins that are part of the ABC transporter

superfamily involved in the transport of cholesterol.58,59

CPT1A encodes a rate-limiting fatty acid oxidation enzyme

that oxidizes medium and long acyl-coenzyme A (CoA) es-

ters, an important step that allows these molecules access

to the inner mitochondrial membrane.60 PDK4 is a kinase

that inhibits the pyruvate dehydrogenase complex (PDC),

which is responsible for the decarboxylation of pyruvate to

acetyl-CoA.61 The inhibition of PDC results in a switch

from glucose oxidation to fatty acid oxidation, and PDK4

has been suggested as a marker for increased fatty acid
an Journal of Human Genetics 112, 106–115, January 2, 2025 111



Figure 2. EpiScore and measured metabolic traits in relation to general cognitive function level in the LBC1936
(A) Associations between measured traits (BMI in kg/m2; HDL cholesterol and total cholesterol in mmol/L) or EpiScores with general
cognitive function level in models with full adjustments. Standardized betas are shown, and error bars represent 95% confidence inter-
vals. The point estimates for associations that were significant after multiple test correction (FDR significant) are shown as circles. The
point estimates for non-significant associations are shown as triangles.
(B) Additional variance accounted for in general cognitive function level by measured metabolic traits (BMI in kg/m2, HDL cholesterol
and total cholesterol in mmol/L), metabolic EpiScores, and both combined, over and above linear regression models adjusted for age
and sex.
oxidation.61,62 Previous studies have used Mendelian

randomization approaches to suggest that DNAm is more

likely to be a consequence than a cause of differences in

BMI and HDL cholesterol.23,55,63 Future work could priori-

tize our lead CpGs to explore casual pathways across the re-

maining metabolic traits.

Metabolic EpiScores accounted for additional variance in

metabolic traits over and above age and sex in both

LBC1936 andHELIOS. The elnet EpiScores for BMI and total

cholesterol accounted for more variance in their corre-

sponding measured traits in the HELIOS full cohort than

in the LBC1936. Conversely, the EpiScore for HDL choles-

terol accounted for more variance in the LBC1936 than

the HELIOS full cohort. The performance of elnet metabolic

EpiScores in HELIOS varied across the Chinese, Malay, and

Indian subgroups. In particular, the body fat percentage

EpiScore performed similarly in the Chinese andMalay sub-

groups (�9% variance accounted for) but had a much lower

performance in the Indian subgroup (3.1% variance ac-

counted for). Within the Asian population, it has been re-

ported that Indians have a higher body fat percentage

compared with Chinese andMalay populations.64 Asian In-

dian individuals also have been shown to have increased to-

tal and centrally distributed body fat compared with those

of European ancestries.65 Previous EWASs have found evi-

dence for CpG-BMI associations to differ by ancestry,
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although sample sizes varied considerably between

groups.33 Here, a more robust comparison of EpiScores

would be aided by using equivalently sized cohorts for

each subpopulation and by training/testing across all sub-

groups—which could be defined by both genetic similarities

and cultural identities. Future work should also investigate

if factors such as diet or cultural environment can help to

refine our understanding of why some—but not all—EpiS-

cores perform well across different populations.

The potential usefulness of using DNAm to impute

measured traits in studies where they are not available

was highlighted by the similarity of effect sizes between

metabolic EpiScores and their corresponding measured

traits in models predicting general cognitive function

levels. In the future, these EpiScores could be explored

longitudinally in the LBC studies to determine if they

change in tandem with their measured traits or with con-

current physical and cognitive decline.

This study has multiple strengths, including large sam-

ple sizes, the use of multiple diverse cohorts, a multi-

method approach (marginal linear regression and Bayesian

penalized regression), volunteers from a wide range of ages

across adulthood, and longitudinal data to test for cogni-

tive changes in late-life testing (LBC1936). Of the two

EWAS strategies, and despite adjustments for relevant co-

variates, the marginal linear regression approach yielded
2, 2025



a vast number of significant CpGs associated with each

metabolic trait. However, this approach is naive in that it

does not account for the genome-wide correlation patterns

and structure across the methylome. This leads to an infla-

tion in the number of significant findings and biased esti-

mation of effect sizes. Using more stringent methods like

BayesRþ helped to overcome such issues, resulting in a

high-confidence set of CpG-trait associations. A limitation

is that only three of the six metabolic traits were measured

in LBC1936; therefore, we were unable to compare

EpiScore performance against measured WHR, glucose,

and body fat percentage in this cohort. A further limitation

lies in the methodological differences in the measuring of

metabolic traits in each cohort. For example, body-fat per-

centage is measured via bioimpedance in GS, whereas dual

energy X-ray absorptiometry (DEXA) scans were used in

the HELIOS cohort. Finally, alternative strategies for

feature pre-selection prior to training EpiScores are likely

to result in improved predictors.33,66,67

Toconclude, ourfindings suggest thatdifferent EWASstra-

tegies (i.e.,marginal linearmodels and conditional Bayesian

models) vastly alter the number of significant CpGs associ-

ated with metabolic traits. As increasingly large cohorts

with DNAm are generated, conditional analyses will help

to control false positive rates, although theywill not identify

all correlated/co-dependent sites under a peak.We have also

shownthatmetabolic EpiScores trained ina Scottishpopula-

tion perform well in external Scottish and Singaporean

cohorts.However, further testing is required in, e.g., subpop-

ulations of different genetic and cultural backgrounds to

determinehowwell the predictors generalize. Further,meta-

bolic EpiScores andmeasuredmetabolic traits had compara-

ble magnitudes of association with general cognitive func-

tion. This highlights the potential usefulness of metabolic

EpiScores to impute the corresponding traits where they

have not been measured in a cohort.
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