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eLife Assessment
This work describes a new software platform for machine-learning-based segmentation of and 
particle-picking in cryo-electron tomograms. The program and its corresponding online database 
of trained models will allow experimentalists to conveniently test different models and share their 
results with others. The paper provides convincing evidence that the software will be valuable to 
the community.

Abstract Segmentation is a critical data processing step in many applications of cryo-electron 
tomography. Downstream analyses, such as subtomogram averaging, are often based on segmenta-
tion results, and are thus critically dependent on the availability of open-source software for accurate 
as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, 
and comprehensive segmentation software that offers an insightful overview of all steps involved in 
preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation 
package that is geared towards both high performance and accessibility, available on GitHub. In 
this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: 
particle picking for subtomogram averaging, and generating many-feature segmentations of cellular 
architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, 
and rendering functionality, as well as an open repository for trained models at ​aiscryoet.​org, we 
hope that Ais will help accelerate research and dissemination of data involving cryoET.

Introduction
Segmentation is a key step in processing cryo-electron tomography (cryoET) datasets that entails 
identifying specific structures of interest within the volumetric data and marking them as distinct 
features. This process forms the basis of many subsequent analysis steps, including particle picking for 
subtomogram averaging and the generation of 3D macromolecular feature maps that help visualize 
the ultrastructure of the sample.

Although it is a common task, the currently available software packages for tomogram segmen-
tation often leave room for improvement in either scope, accessibility, or open availability of the 
source code. Some popular programs, such as Amira (Thermo Fisher Scientific), are not free to use, 
while other more general purpose EM data processing suites offer limited functionality in terms of 
visualization and user interaction. Specifically, we found that a deficit existed of software that is easy 
to use, competitively performing, freely available, and dedicated to segmentation of cryoET datasets 
for downstream processing.

In this report, we present Ais, an open-source tool that is designed to enable any cryoET user 
– whether experienced with software and segmentation or a novice – to quickly and accurately 
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segment their cryoET data in a streamlined and largely automated fashion. Ais comprises a compre-
hensive and accessible user interface within which all steps of segmentation can be performed, 
including: the annotation of tomograms and compiling datasets for the training of convolutional 
neural networks (CNNs), training and monitoring performance of CNNs for automated segmen-
tation, 3D visualization of segmentations, and exporting particle coordinates or meshes for use in 
downstream processes. To help generate accurate segmentations, the software contains a library of 
various neural network architectures and implements a system of configurable interactions between 
different models. Overall, the software thus aims to enable a streamlined workflow where users can 
interactively test, improve, and employ CNNs for automated segmentation. To ensure compatibility 
with other popular cryoET data processing suites, Ais employs file formats that are common in the 
field, using .mrc files for volumes, tab-separated .txt or .star files for particle datasets, and the .obj 
file format for exporting 3D meshes.

To demonstrate the use of Ais, we outline its use in two such tasks: first, to automate the particle 
picking step of a subtomogram averaging workflow, and second for the generation of rich three-
dimensional visualizations of cellular architecture, with ten distinct cellular components, based on 
cryoET datasets acquired on cellular samples.

Results and discussion
The first step in image segmentation using CNNs is to manually annotate a subset of the data for 
use as a training dataset. Ais facilitates this step by providing a simple interface for browsing data, 
drawing overlays, and selecting boxes to use as training data (Figure 1A, Figure 1—figure supple-
ments 1–4). Multiple features, such as membranes, microtubules, ribosomes, and mitochondrial 
granules, can be segmented and edited at the same time across multiple datasets (even hundreds). 
These annotations are then extracted and used as ground truth labels upon which to condition 
multiple neural networks, each trained to segment a single feature type, with which one can auto-
matically segment the same or any other dataset (Figure 1B). Segmentation in Ais is performed 
on-the-fly and can achieve interactive framerates, depending on the size of the datasets and network 
architectures that are used. With a little experience, users can generate a training dataset and then 
train, apply, and asses the quality of a model within a few minutes (Figure 1C), including on desktop 
or laptop Windows and Linux systems with relatively low-end GPUs (e.g. we often use an NVIDIA 
T1000).

Many cryoET datasets look alike, especially for cellular samples. A model prepared by one user to 
segment, for example, ribosomes in a dataset with a pixel size of 10 Å, might also be adequate for 
another user’s ribosome segmentation at 12 Å per pixel. To facilitate this sort of reuse and sharing of 
models, we launched an open model repository at aiscryoet.org where users can freely upload and 
download successfully trained models (Figure 1D). Models that pass screening become public, are 
labelled with relevant metadata (Figure 1E), and can be downloaded in a format that allows for direct 
use in Ais. Thus, users can skip the annotation and training steps of the segmentation workflow. To 
kickstart the repository, all 27 models that are presented in this article have been uploaded to it.

Our software is not the first to address the challenge of segmenting cryoET datasets; established 
suites such as EMAN2 (Galaz-Montoya et al., 2015), MIB (Belevich et al., 2016), SuRVOS (Luengo 
et al., 2017), or QuPath (Bankhead et al., 2017) also provide some or most of the functionality that 
is available in Ais. Each comes equipped with one or various choices of neural network architectures 
to use, and many more designs for neural networks for semantic image segmentation can be found in 
the literature. Therefore, as well as creating a package geared specifically towards ease of use and fast 
results, we also wanted to include functionality that enables a user to quickly compare different models 
in order to facilitate determining which models are best suited for a particular segmentation task. The 
software thus includes a library of a number of well-performing architectures, including adaptations 
of single-model CNN architectures such as InceptionNet (Szegedy et al., 2014), ResNet (Szegedy 
et al., 2016), various UNets (Ronneberger et al., 2015), VGGNet (Simonyan and Zisserman, 2015), 
and the default architecture available in EMAN2 Galaz-Montoya et al., 2015, as well as the more 
complex generative-adversarial network Pix2pix (Isola et al., 2017). This library can also be extended 
by copying any Python file that adheres to a minimal template into the corresponding directory of the 
project (Appendix 1).

https://doi.org/10.7554/eLife.98552
http://www.aiscryoet.org
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Figure 1. An overview of the user interface and functionalities. The various panels represent sequential stages in the Ais processing workflow, including 
annotation (A), testing convolutional neural networks (CNNs) (B), and visualizing segmentation (C). These images (A–C) are unedited screenshots of 
the software. (A) The interface for annotation of datasets. In this example, a tomographic slice has been annotated with various features – a detailed 
explanation follows in Figure 5. (B) After annotation, multiple neural networks are set up and trained on the aforementioned annotations. The resulting 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.98552


 Tools and resources﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Last et al. eLife 2024;13:RP98552. DOI: https://​doi.​org/​10.​7554/​eLife.​98552 � 4 of 20

A library of neural network architectures supports varied applications
To illustrate how useful it can be to rapidly test various architectures before selecting one that is 
well suited for the segmentation of any particular feature, we used six different architectures for the 
segmentation of three distinct features within the same tomogram, and analyzed the results (Table 1). 
We used a cryoET dataset that we had previously acquired (Abendstein et al., 2023), which contained 
liposomes with membrane-bound Immunoglobulin G3 (IgG3) antibodies that form an elevated Frag-
ment crystallizable (Fc) platform, prepared on a lacey carbon substrate. The features of interest for 
segmentation were the membranes, antibody platforms, and carbon support film (Figure 2A).

After training, we applied the resulting models to a different tomogram containing the same 
features, that were not previously used to generate the training data (Figure 2B), so that there was 
no overlap between the training and testing datasets. Next, we compared the training times, relative 
loss values, and quality of the segmentations.

Based on the loss values (the loss is a metric of how well predictions match the ground truth 
labels), VGGNet was best suited for the segmentation of membranes, while UNet performed best 
on the carbon support film and antibody platforms. However, the loss values do not capture model 
performance in the same way as human judgement (Figure 2C). For the antibody platform, the model 
that would be expected to be one of the worst based on the loss values, Pix2pix, actually generates 
segmentations that are well-suited for the downstream processing tasks. It also outputs fewer false 
positive segmentations for sections of membranes than many other models, including the lowest-loss 
model UNet. Moreover, since Pix2pix is a relatively large network, it might also be improved further 

models can then be used to segment the various distinct features. In this example, double-membrane vesicles (double membrane vesicles DMVs, red), 
single membranes (blue), ribosomes (magenta), intermediate filaments (orange), mitochondrial granules (yellow), and molecular pores in the DMVs 
(lime) are segmented. (C) After training or downloading the required models and exporting segmented volumes, the resulting segmentations are 
immediately available within the software for 3d rendering and inspection. (D) The repository at aiscryoet.org facilitates the sharing and reuse of trained 
models. After validation, submitted models can be freely downloaded by anyone. (E) Additional information, such as the pixel size and the filtering 
applied to the training data, is displayed alongside all entries in the repository, in order to help a user identify whether a model is suited to segment 
their datasets.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Ais annotation interface.

Figure supplement 2. Ais training and model testing interface.

Figure supplement 3. Ais volume exporting interface.

Figure supplement 4. Ais 3D rendering interface.

Figure 1 continued

Table 1. Comparison of some of the default models available in Ais.
aThe computational cost is only roughly proportional to the number of model parameters, which is 
reported in the software. The specifics of the network architecture affect the processing speed more 
significantly. bTime required to process one 511 × 720 pixel-sized tomographic slice. cThese columns 
list the loss values after training, calculated as the binary cross-entropy (bce) between the prediction 
and original annotation. The loss is a (rough) metric of how well a trained network performs (see 
Methods). dUnlike the other architectures, Pix2pix is not trained to minimize the bce loss but uses 
a different loss function instead. The bce loss values shown here were computed after training and 
may not be entirely comparable.

Architecture Parameters Training timea Processing timea, b Membranec Carbonc Antibodyc

EMAN2 378,081 38 s 50 ms 0.044 .072 .010

InceptionNet 550,529 462 s 295 ms 0.046 .120 .008

UNet 922,881 132 s 110 ms 0.013 .007 .001

VGGNet 1,493,059 91 s 85 ms 0.011 .125 .013

ResNet 4,887,265 1533 s 980 ms 0.047 .060 .014

Pix2pixd 29,249,409 793 s 225 ms 0.050d .129d .016d

https://doi.org/10.7554/eLife.98552
https://www.aiscryoet.org/
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by increasing the number of training epochs. We thus decided to use Pix2pix for the segmentation of 
antibody platforms, and increased the size of the antibody platform training dataset (from 58 to 170 
positive samples) to train a much improved second iteration of the network for use in the following 
analyses (Figure 2—figure supplement 1).

When taking the training and processing speeds into account as well as the segmentation results, 
there is no overall best architecture. We, therefore, included multiple well-performing model archi-
tectures in the final library, in order to allow users to select from these models to find one that works 
well for their specific datasets. Although it is not necessary to screen different network architectures 
and users may simply opt to use the default (VGGNet), these results thus show that it can be useful to 
test different networks to identify one that is best. Moreover, these results also highlight the utility of 
preparing well-performing models by iteratively improving training datasets and re-training models in 
a streamlined interface. To aid in this process, the software displays the loss value of a network during 

Figure 2. A comparison of different neural networks for tomogram segmentation. (A) A representative example of the manual segmentation used to 
prepare training datasets. Membranes are annotated in red, carbon film in bright white, and antibody platforms in green. For the antibody training set, 
we used annotations prepared in multiple slices of the same tomogram, but for the carbon and membrane training set the slice shown here comprised 
all the training data. (B) A tomographic slice from a different tomogram that contains the same features of interest, also showing membrane-bound 
antibodies with elevated Fc platforms that are adjacent to carbon (red arrowheads). (C) Results of segmentation of membranes (top; red), carbon 
(middle; white), and antibody platforms (bottom; green), with the six different neural networks.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of manual annotations and UNet, Pix2pix, and improved Pix2pix antibody platform segmentations for the data in 
Figure 2.

https://doi.org/10.7554/eLife.98552
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training and allows for the application of models to datasets during training. Thus, users can inspect 
how a model’s output changes during training and decide whether to interrupt training and improve 
the training data or choose a different architecture.

Fine-tuning segmentation results with model interactions
Although the above results go some way towards distinguishing the three different structures, they 
also show demonstrate a common limitation encountered in automated tomogram segmentation: 
some parts of the image are assigned a high segmentation value by multiple of the networks, leading 
to false classifications and ambiguity in the results. For example, the InceptionNet and ResNet anti-
body platform models falsely label the edges of the carbon film.

To further improve the segmentation results, we decided to implement a system of proximity-
based ‘model interactions’ of two types, colocalization and avoidance (Figure 3A), using which the 
output of one model can be adjusted based on the output of other models. In a colocalization interac-
tion, the predictions of one model (the child) are suppressed wherever the prediction value of another 
model (the parent) is below some threshold. In an avoidance interaction, suppression occurs wherever 
the parent model’s prediction value is above a threshold.

These interactions are implemented as follows: first, a binary mask is generated by thresholding 
the parent model’s predictions using a user-specified threshold value. Next, the mask is then dilated 
using a circular kernel with a radius ‍R‍, a parameter that we call the interaction radius. Finally, the child 
model’s prediction values are multiplied with this mask.

Besides these specific interactions between two models, the software also enables pitching multiple 
models against one another in what we call ‘model competition’. Models can be set to ‘emit’ and/or 
‘absorb’ competition from other models. Here, to emit competition means that a model’s prediction 

Figure 3. Model interactions can significantly increase segmentation accuracy. (A) An overview of the settings available in the ‘Models’ menu in Ais. 
Three models: (1) ‘membrane’ (red), (2) ‘carbon’ (white), and (3) ‘antibody platforms’ (green) are active, with each showing a different section of the 
model settings: the training menu (1), prediction parameters (2), and the interactions menu (3). (B) A section of a tomographic slice is segmented by two 
models, carbon (white; parent model) and membrane (red; child model), with the membrane model showing a clear false positive prediction on an edge 
of the carbon film (panel ‘without interactions’). By configuring an avoidance interaction between the membrane model that is conditional upon the 
carbon model’s prediction, this false positive is avoided (panel ‘with interactions’). (C) By setting up multiple model interactions, inaccurate predictions 
by the ‘antibody platforms’ model are suppressed. In this example, the membrane model avoids carbon while the antibody model is set to colocalize 
with the membrane model. (D) 3D renders (see Methods) of the same dataset as used in Figure 2 processed three ways: without any interactions (left), 
using model competition only (middle), or by using model competition as well as multiple model interactions (right).

https://doi.org/10.7554/eLife.98552
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value is included in a list of competing models. To absorb competition means that a model’s predic-
tion value will be compared to all values in that list, and that this model’s prediction value for any pixel 
will be set to zero if any of the competing models’ prediction value is higher. On a pixel-by-pixel basis, 
all models that absorb competition are thus suppressed whenever their prediction value for a pixel is 
lower than that of any of the emitting models.

With the help of these model interactions, it is possible to suppress common erroneous segmen-
tation results. For example, an interaction like ‘absorbing membrane model avoids emitting carbon 
model with R = 10 nm’ is effective at suppressing the prediction of edges of the carbon film as being 
membranes (Figure 3B). Another straightforward example of the utility of membrane interactions is 
the segmentation of membrane-bound particles. By defining the following two interactions: ‘antibody 
platform model avoids membrane model with R = 10  nm’ followed by ‘antibody platform model 
colocalizes with membrane model with R = 30 nm’, the Fc-platforms formed by IgG3 at a distance 
of ~22 nm from the membrane are retained, while false positive labelling of features such as the 
membrane or carbon is suppressed (Figure 3C).

By conditionally combining and editing the prediction results of multiple neural networks, model 
interactions can thus be helpful in fine-tuning segmentations to be better suited for downstream appli-
cations. To illustrate this, we generated a comparison of segmentation results using (i) no interactions, 
(ii) model competition only, and (iii) model competition as well as model interactions (Figure 3D), 
which demonstrates the degree to which false positives can be reduced by the use of model interac-
tions (although at times at the expense of increasing the rate of false negatives).

Automating particle picking for subtomogram averaging
Protein structure determination by cryoET requires the careful selection of many subtomograms 
(i.e. sub-volumes of a tomogram that all contain the same structure of interest), and aligning and 
averaging these to generate a 3D reprojection of the structure of interest with a significantly 
increased signal to noise ratio. The process of selecting these sub-volumes is called ‘particle 
picking,’ and can be done either manually or in an automated fashion. Much time can be saved by 
automating particle picking based on segmentations. In many cases, though, segmentation results 
are not readily usable for particle picking, as they can often introduce numerous false positives. 
This is particularly the case with complex, feature-rich datasets such as those obtained within cells, 
where the structures of interest can visually appear highly similar to other structures that are also 
found in the data, or when the structures of interest are located close to other features and are, 
therefore, hard to isolate. An example of this latter case is the challenge of picking membrane-
bound particles.

Recently, we have used cryoET and subtomogram averaging to determine the structures of 
membrane-bound IgG3 platforms and of IgG3 interacting with the human complement system 
component 1 (C1) on the surface of lipid vesicles (Abendstein et al., 2023). The reconstructions of the 
antibody platforms alone and of the antibody-C1 complex were prepared using 1193 and 2561 manu-
ally selected subtomograms, extracted from 55 and 101 tomograms, respectively. Manual picking of 
structures of interest, although very precise, is very time-consuming and in this particular case took 
approximately 20 hr of work.

To demonstrate the utility of our software for particle picking, we re-analyzed these same data-
sets, this time using Ais to automate the picking of the two structures: antibody platforms and anti-
body-C1 complexes. For the antibody platforms, we used the same models and model interactions 
as described above, while we trained an additional neural network to identify C1 complexes for the 
segmentation of the antibody-C1 complexes. To prepare a training dataset for this latter model, we 
opened all 101 tomograms in Ais and browsed the data to select and annotate slices where one or 
multiple antibody-C1 complexes were clearly visible (Figure 4A). The training dataset thus consisted 
of samples taken from multiple different tomograms; the annotation and data selection in this case 
took around 1 hr of work.

The antibody platform and antibody-C1 complex models were then applied to the respective data-
sets, in combination with the membrane and carbon models and the model interactions described 
above (Figure 4B): the membrane avoiding carbon, and the antibody platforms colocalizing with the 
resulting membranes. We then launched a relatively large batch segmentation process (3 models × 
156 tomograms) and left it to complete overnight.

https://doi.org/10.7554/eLife.98552


 Tools and resources﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Last et al. eLife 2024;13:RP98552. DOI: https://​doi.​org/​10.​7554/​eLife.​98552 � 8 of 20

Once complete, we used Ais to inspect the segmented volumes and original datasets in 3D, and 
adjusted the threshold value so that, in as far as possible, only the particles of interest remained visible 
and the number of false positive particles was minimized (Figure 4C). After selecting these values, we 
then launched a batch particle-picking process to determine lists of particle coordinates based on the 
segmented volumes.

Particle picking in Ais comprises a number of processing steps (Figure 4, Figure 4—figure supple-
ment 1). First, the segmented (.mrc) volumes are thresholded at a user-specified level. Second, a 
distance transform of the resulting binary volume is computed, in which every nonzero pixel in the 
binary volume is assigned a new value, equal to the distance of that pixel to the nearest zero-valued 
pixel in the mask. Third, a watershed transform is applied to the resulting volume, so that the sets of 
pixels closest to any local maximum in the distance transformed volume are assigned to one group. 
Fourth, groups that are smaller than a user-specified minimum volume are discarded. Fifth, the 
remaining groups are assigned a weight value, equal to the sum of the prediction value (i.e. the corre-
sponding pixel value in the ​input.​mrc volume) of the pixels in the group. For every group found within 
close proximity to another group (using a user-specified value for the minimum particle spacing), the 
group with the lower weight value is discarded. Finally, the centroid coordinate of the grouped pixels 
is considered the final particle coordinate, and the list of all coordinates is saved in a tab-separated 
text file with values rounded to the nearest integer.

As an alternative output format, segmentations can also be converted to and saved as triangulated 
meshes (.obj file format), which can then be used for, e.g., membrane-guided particle picking (Pyle 
et al., 2022). After picking particles, the resulting coordinates are immediately available for inspection 
in the Ais 3D renderer (Figure 4, Figure 4—figure supplement 2).

Figure 4. Automated particle picking for sub-tomogram averaging of antibody complexes. (A) Manually prepared annotations used to train a 
neural network to recognize antibody platforms (top) or antibody-C1 complexes (bottom). (B) Segmentation results as visualized within the software. 
Membranes (red) and carbon support film (white) were used to condition the antibody (green) and antibody-C1 complex (yellow) predictions using 
model interactions. (C) 3D representations of the segmented volumes rendered in Ais. (D) Tomographic slices showing particles picked automatically 
based on the segmented volume shown in panel c. (E) Subtomogram averaging result of the 2499 automatically picked antibody platforms. (F) 
Subtomogram averaging result obtained with the 602 automatically picked antibody-C1 complexes. The quadrants in panels e and f show orthogonal 
slices of the reconstructed density maps and a 3D isosurface model (the latter rendered in ChimeraX [Goddard et al., 2018]).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A visual (2D) representation of the processing steps employed in the automated picking process.

Figure supplement 2. Inspecting the autopicking results in the Ais renderer.

Figure supplement 3. Comparison of the automatically picked C1-IgG3 complex reconstruction versus the original reconstruction in Abendstein et al., 
2023.

https://doi.org/10.7554/eLife.98552
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After picking, we used EMAN2 (Galaz-Montoya et al., 2015, ​spt_​boxer.​py) to extract volumes 
using the particle coordinates as an input (Figure 4D), which resulted in 2499 vol for the antibody 
platform reconstruction and 602 for the antibody-C1 complex (n.b. these numbers can be highly 
dependent on the threshold value). These volumes, or subtomograms, were used as the input for 
subtomogram averaging using EMAN2 Galaz-Montoya et  al., 2015 and Dynamo (Castaño-Díez 
et al., 2012; see Materials and methods), without further curation – i.e., we did not manually discard 
any of the extracted volumes.

After applying the same approach to subtomogram averaging as used previously (Abendstein 
et  al., 2023), the resulting averages were indeed highly similar to the original reconstructions 
(Figure  4E and F, Figure  4—figure supplement 3). These results demonstrate that Ais can be 
successfully used to automate particle picking, and thus to significantly reduce the amount of time 
spent on what is often a laborious processing step.

Many-feature segmentations of complex in situ datasets
Aside from particle picking, segmentation is also often used to visualize and study the complex 
internal structure of a sample, as for example encountered when applying tomography to whole cells. 
Here too, the accuracy of a segmentation can be a critical factor in the success of downstream anal-
yses such as performing measurements on the basis of 3D feature maps generated via segmentation.

A challenging aspect of the segmentation of cellular samples is that these datasets typically contain 
many features that are biologically distinct, but visually and computationally difficult to distinguish. 
For example, one challenge that is often encountered is that of distinguishing between various linearly 
shaped components: lipid membranes, actin filaments, microtubules, and intermediate filaments, 
which all appear as linear features with a relatively high density. To show the utility of Ais for the accu-
rate segmentation of complex cellular tomograms, we next demonstrate a number of examples of 
such feature-rich segmentations.

The first example is a segmentation of seven distinct features observed in the base of Chlamydo-
monas reinhardtii cilia (Figure 5A), using the data by van den Hoek et al., 2022 that was deposited 
in the Electron Microscopy Public Image Archive (EMPIAR, Iudin et al., 2023) with accession number 
11078. The features are: membranes, ribosomes, microtubule doublets, axial microtubules, non-
microtubular filaments, interflagellar transport trains (IFTs), and glycocalyx. This dataset was partic-
ularly intricate (the supplementary information to the original publication lists more than 20 features 
that can be identified across the dataset) and some rare features, such as the IFTs, required careful 
annotation across all tomograms before we could compile a sufficiently large training dataset. The 
final segmentation correctly annotates most of the selected characteristics present in the sample: the 
ribosome exclusion zone that surrounds the ciliary base (van den Hoek et al., 2022) is clearly recog-
nizable, and the structures of the glycocalyx, membranes, and microtubule doublets within the cilia 
are well defined. Some fractions of the meshwork of stellate fiber and Y-link proteins are also detected 
within the cilium.

In the second example, we show a segmentation of six features found in and around a mitochon-
drion in a mouse neuron (Figure 5B), using the data by Wu et al., 2023 as available in the Electron 
Microscopy Data Bank (EMDB) (Lawson et al., 2016) with accession number 29207. In the original 
publication, the authors developed a segmentation method to detect and perform measurements 
on the granules found within mitochondria. Using Ais, we were able to prepare models to segment 
these granules, as well as microtubules, actin filaments, and ribosomes, and to distinguish between 
the highly similar vesicular membranes on the one hand, and the membranes of the mitochondrial 
cristae on the other.

Lastly, we used Ais to generate a 3D visualization of ten distinct cellular features observed in 
coronavirus-infected mammalian cells (Figure 5C, Figure 5—figure supplement 1), using data by 
Wolff et al., 2020: single membranes, double-membrane vesicles (DMVs), actin filaments, interme-
diate filaments, microtubules, mitochondrial granules, ribosomes, coronaviral nucleocapsid proteins, 
coronaviral pores in the DMVs, and the nucleic acids within the DMV replication organelles. The 
software was able to accurately distinguish between single membranes and double membranes, as 
well as to discriminate between the various filaments of the cytoskeleton. Moreover, we could iden-
tify the molecular pores within the DMV, and pick sets of particles that might be suitable for use in 
subtomogram averaging (see Figure 5, Figure 5—figure supplement 2). We could also segment the 

https://doi.org/10.7554/eLife.98552
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Figure 5. Segmentations of complex in situ tomograms. (A) A segmentation of seven distinct features observed in the base of C. reinhardtii cilia (van 
den Hoek et al., 2022, EMPIAR-11078, tomogram 12): membranes (gray), ribosomes (magenta), microtubule doublets (green) and axial microtubules 
(green), non-microtubular filaments within the cilium (blue), inter-flagellar transport trains (yellow), and glycocalyx (orange). Inset: a perpendicular 
view of the axis of the cilium. The arrows in the adjacent panel indicate these structures in a tomographic slice. (B) A segmentation of six features 
observed in and around mitochondria in a mouse neuron with Huntington’s disease phenotype (Wu et al., 2023) (EMD-29207): membranes (gray), 
mitochondrial granules (yellow), membranes of the mitochondrial cristae (red), microtubules (green), actin (turquoise), and ribosomes (magenta). (C) 
Left: a segmentation of ten different cellular components found in tomograms of coronavirus-infected mammalian cells (Wolff et al., 2020): double-
membrane vesicles (double membrane vesicles DMVs, light red), single membranes (gray), viral nucleocapsid proteins (red), viral pores in the DMVs 
(blue), nucleic acids in the DMVs (pink), microtubules (green), actin (cyan), intermediate filaments (orange), ribosomes (magenta), and mitochondrial 
granules (yellow). Right: a representative slice, with examples of each of the features (except the mitochondrial granules) indicated by arrows of the 
corresponding colour.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Individual images of the ten features segmented in the coronavirus-infected mammalian cells dataset (Wolff et al., 2020, 
Science).

Figure supplement 2. A collage of automatically picked molecular pores in the double membrane vesicles.

https://doi.org/10.7554/eLife.98552
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nucleocapsid proteins, thus distinguishing viral particles from other, similarly sized, single membrane 
vesicles, as well as detect the nucleic acids found within the DMVs. Although manual annotation took 
some hours in this case, the processing of the full volume took approximately 3 min per feature once 
the models were trained, and models can of course be applied to other volumes without requiring 
additional training.

To conclude, our aim with the development of Ais was to simplify and improve the accuracy of 
automated tomogram segmentation in order to make this processing step more accessible to many 
cryoET users. Here, we have attempted to create an intuitive and organized user interface that stream-
lines the whole workflow from annotation, to model preparation, to volume processing and particle 
picking and inspecting the results. Additionally, the model repository at aiscryoet.org is designed 
to aid users in achieving results even faster, by removing the need to generate custom models for 
common segmentation tasks. To help users become familiar with the software, documentation and 
tutorials are available at ais-cryoet.readthedocs.org and video tutorials can be accessed via youtube.​
com/@scNodes. By demonstrating the use of Ais in automating segmentation and particle picking for 
subtomogram averaging, and making the software available as an open-source project, we thus hope 
to help accelerate research and dissemination of data involving cryoET.

Materials and methods
Neural network comparisons
The comparison presented in Table 1 was prepared with the use of the same training datasets for 
all architectures, consisting of 53/52/58 positive images showing membranes/carbon/antibody plat-
forms and corresponding annotations alongside 159/51/172 negative images that did not contain 
the feature of interest, but rather the other two features, reconstruction artefacts, isolated protein, 
or background noise. Images were 64 × 64 pixels in size and the dataset was resampled, in random 
orientations, such that every positive image was copied 10 times and that the ratio of negatives to 
positives was 1.3:1. Networks were trained for 50 epochs with 32 images per batch, with the excep-
tion of the ResNet and Pix2pix antibody platform models, which were trained for 30 epochs to avoid 
a divergence that occurred during training after a larger number of epochs, due to the large number 
of network parameters and relatively low number of unique input images.

The reported loss is that calculated on the training dataset itself, i.e., no validation split was applied. 
During regular use of the software, users can specify whether to use a validation split or not. By 
default, a validation split is not applied in order to prioritize training accuracy by making full use of the 
input set of ground truth annotations. When the training dataset is sufficiently large, we recommend 
increasing the size of the validation split. Depending on the chosen split size, the software reports 
either the overall training loss or the validation loss during training.

Data visualization
Images shown in the figures were either captured within the software (Figures  1 and 3BC ‘orig-
inal image’, Figure 4ABC), output from the software that was colourized in Inkscape (Figures 2C 
and 3BC), or output from the software that was rendered using ChimeraX11 (Figures 3D and 4EF, 
Figure 5). For the panels in Figure 3D, segmented volumes were rendered as isosurfaces at a manu-
ally chosen suitable isosurface level and with the use of the ‘hide dust’ function (the same settings 
were used for each panel, different settings used for each feature). This ‘dust’ corresponds to small (in 
comparison to the segmented structures of interest) volumes of false positive segmentations, which 
are present in the data due to imperfections in the used models. The rate and volume of false positives 
can be reduced either by improving the models (typically by including more examples of the images 
that would be false negatives or positives in the training data) or, if the dust particles are indeed 
smaller than the structures of interest, they can simply be discarded by filtering particles based on 
their volume, as applied here. In particle picking a ‘minimum particle volume’ is specified – particles 
with a smaller volume are considered ‘dust’.

Hardware
The software does not require a GPU, but works optimally when a CUDA-capable GPU is available. 
For the measurements shown in Table 1 we used an NVIDIA Quadro P2200 GPU on a PC with an Intel 

https://doi.org/10.7554/eLife.98552
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i9-10900K CPU. We’ve also extensively used the software on a less powerful system equipped with 
an NVIDIA T1000 and an Intel i3-10100 CPU, as well as on various systems with intermediate specifi-
cations, and found that the software reaches interactive segmentation rates in most cases. For batch 
processing of many volumes, a more powerful GPU is useful.

Tomogram reconstruction and subtomogram averaging
Data collection and subtomogram averaging (Figures 3 and 4) was performed as described in a previ-
ously published article (Abendstein et al., 2023). Briefly, tilt series were collected on a Talos Arctica 
200 kV system equipped with a Gatan K3 detector with an energy filter at a pixel size of 1.74 Å per 
pixel using a dose-symmetric tilt scheme with a range ±57° and tilt increments of 3° with a total dose 
of 60 e/Å (Belevich et al., 2016). Tomograms were reconstructed using IMOD (Mastronarde and 
Held, 2017). Particle picking was done in Ais (and is explained in more detail in the online documenta-
tion). Subtomogram averaging was done using a combination of EMAN (Galaz-Montoya et al., 2015) 
and Dynamo (Castaño-Díez et al., 2012). For a detailed description of the subtomogram averaging 
procedure, see Abendstein et al., 2023.

Open-source software
This project depends critically on a number of open-source software components, including: Python, 
Tensorflow (Abadi, 2015), numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), sci-kit-image 
(van der Walt et al., 2014), mrcfile (Burnley et al., 2017), and imgui (Cornut, 2023).

Software availability
A standalone version of the software is available as ‘Ais-cryoET’ on the Python package index and on 
GitHub, (copy archived at Last, 2024), under the GNU GPLv3 license. We have also integrated the 
functionality into scNodes (Last et al., 2023), our dedicated processing suite for correlated light and 
electron microscopy. In the combined package, the segmentation editor contains additional features 
for visualization of fluorescence data and the scNodes correlation editor can be used to prepare 
correlated datasets for segmentation. Documentation for both versions of Ais can be found at ais-​
cryoet.readthedocs.org. Video tutorials are available via youtube.com/@scNodes.
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Appendix 1
Supplementary note 1: Python file format for Ais models
Adding a Keras model
Most models in the standard Ais library are Keras models (​tensorflow.​keras). Adding an extra keras 
model with a new architecture is relatively straightforward and can be achieved by adding a.py file 
to Ais/models directory. ​The.​py file requires three components: a title for the model, a boolean that 
specifies whether the model should be available in the software, and a function ‘create’ that returns a 
keras model. The implementation of the VGGNet model (​vggnet.​py) is copied below as an example.

from ​tensorflow.​keras.​models import Model  
from ​tensorflow.​keras.​layers import Input, Conv2D, MaxPooling2D, 
Conv2DTranspose  
from ​tensorflow.​keras.​optimizers import Adam  
 
title = "VGGNet"  
include = True  
 
def create(input_shape):  
inputs = Input(input_shape)  
 
# Block 1  
conv1 = Conv2D(64, (3, 3), activation='relu', padding=’same')(inputs)  
conv2 = Conv2D(64, (3, 3), activation='relu', padding=’same')(conv1)  
pool1 = MaxPooling2D(pool_size=(2, 2))(conv2)  
 
# Block 2  
conv3 = Conv2D(128, (3, 3), activation='relu', padding=’same')(pool1)  
conv4 = Conv2D(128, (3, 3), activation='relu', padding=’same')(conv3)  
pool2 = MaxPooling2D(pool_size=(2, 2))(conv4)  
 
# Block 3  
conv5 = Conv2D(256, (3, 3), activation='relu', padding=’same')(pool2)  
conv6 = Conv2D(256, (3, 3), activation='relu', padding=’same')(conv5)  
pool3 = MaxPooling2D(pool_size=(2, 2))(conv6)  
 
# Upsampling and Decoding  
up1 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding=’same')(pool3)  
conv7 = Conv2D(128, (3, 3), activation='relu', padding=’same')(up1)  
 
up2 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding=’same')(conv7)  
conv8 = Conv2D(64, (3, 3), activation='relu', padding=’same')(up2)  
 
up3 = Conv2DTranspose(1, (2, 2), strides=(2, 2), padding=’same')(conv8)  
output = Conv2D(1, (1, 1), activation=’sigmoid')(up3)  
 
# create the model  
model = Model(inputs=[inputs], outputs=[output])  
model.compile(optimizer=Adam(), loss='binary_crossentropy')  
 
return model

https://doi.org/10.7554/eLife.98552
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Adding a custom model
Adding a non-Keras model is also possible but requires a little bit of extra work. Only a small number 
of methods of the Keras model object type are directly accessed by Ais. These are: count_params, 
fit, predict, save, and load. Adding a custom model thus requires adding a.py file to the Ais/models 
that contains four components: a title, a boolean that specifies whether the model is available in the 
software, and a function ‘create’ that returns model object (these are as before, with adding a keras 
model), and additionally a definition of a class that implements the required methods. The return 
types of these methods should be the same as those returned by the corresponding Keras methods. 
The content of the ​model_​template.​py template file is copied below as an example.

title = "Template_model"  
include = False  
 
 
def create(input_shape):  
return TemplateModel(input_shape)  
 
 
class TemplateModel:  
def __init__(self, input_shape):  
self.img_shape = input_shape  
self.generator, self.discriminator = self.compile_custom_model()  
 
def compile_custom_model(self):  
# e.g.: compile generator, compile discriminator, return.  
return 0, 0  
 
def count_params(self):  
# e.g. return self.generator.count_params()  
# for the default models, the number of parameters that is returned is the 
amount that are involved in processing, not in training. So for e.g. a GAN, 
the discriminator params are not included.  
return 0  
 
def fit(self, train_x, train_y, epochs, batch_size=1, shuffle=True,  
callbacks=[]):  
for c in callbacks:  
c.params['epochs'] = epochs  
 
# fit model, e.g.:  
for e in range(epochs):  
for i in range(len(train_x) // batch_size):  
# fit batch  
pass  
 
logs = {'loss': 0.0}  
for c in callbacks:  
c.on_batch_end(i, logs)  
 
def predict(self, images):  
# e.g.: return self.generator.predict(images)  
return None  
 
def save(self, path):  
pass  
 

https://doi.org/10.7554/eLife.98552
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def load(self, path):  
pass

A more concrete example of the implementation of a custom model can be found in Ais/models/​
pix2pix.​py. The pix2pix model (Isola et al., 2017) is also implemented in Keras, but since it internally 
uses two separate Keras model objects (the generator and the discriminator), some additional effort 
is required to make it compatible with the class format used in Ais. See: here and Linder-Norén, 
2019.

Importing and exporting models

Export
After training, Ais models can be saved for future re-use or for uploading to the repository aiscryoet.​
org. The resulting savefiles, with extension .scnm, are uncompressed .tar archives that contain an 
number of required files:

•	 A .h5 file that fully describes the CNN architecture and weights. The .h5 file is generated using 
the standard keras procedure ​model.​save.

•	 A .json metadata file, which contains information on the name and processing parameters 
used for the model.

If a tomogram was open in Ais at the moment of saving the model, two additional files are also 
included:

•	 A .tiff file, containing a single slice from that tomogram, saved so that the model performance 
can be validated prior to releasing it on the repository.

•	 A .png file, an image (downsized 512 × 512 pixels) depicting the validation slice with a segmen-
tation overlaid on top, which is used as the thumbnail on the model repository.

Of these last two files, only the .png file is publically available on the repository. The image that will 
be publically visible is also displayed on the aiscryoet.org upload page, prior to actually uploading 
the model.

https://doi.org/10.7554/eLife.98552
https://github.com/bionanopatterning/Ais/blob/master/Ais/models/pix2pix.py
https://aiscryoet.org/
https://aiscryoet.org/
https://aiscryoet.org
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Appendix 1—figure 1. Uploading a model to the model repository via ​aiscryoet.​org/​upload.

https://doi.org/10.7554/eLife.98552
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Import
A.scnm tar archive that contains correctly formatted.h5 ​and.​json files can be loaded into Ais. Models 
generated elsewhere can also be imported, if these two files are combined into a.tar archive and ​
renamed.​scnm.

The .h5 file is read using the standard keras load_model procedure.
The following fields are expected in ​the.​json:

{  
"title": "Membrane",  
"colour": [1.0, 0.40784314274787903, 0.0],  
"apix": 14.04,  
"compiled": true,  
"box_size": 64,  
"model_enum": 5,  
"epochs": 50,  
"batch_size": 64,  
"active": true,  
"blend": false,  
"show": true,  
"alpha": 0.75,  
"threshold": 0.5,  
"overlap": 0.20000000298023224,  
"active_tab": 0,  
"n_parameters": 17521921,  
"n_copies": 10,  
"info": "VGGNet L (17521921, 64, 14.040, 0.0189)",  
"info_short": "(VGGNet L, 64, 14.040, 0.0189)",  
"excess_negative": 100,  
"emit": false,  
"absorb": false,  
"loss": 0.01889071986079216  
}

Model groups
Instead of saving single models, it is also possible to save multiple models and the interactions 
between them as a group.

In this case, a single file with extension.scnmgroup is created. This file is also an ​uncompressed.​tar 
archive, and it contains ​one.​scnm file for each model in the group, as well as a.json file that describes 
the interactions between the models.

https://doi.org/10.7554/eLife.98552
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